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1. Introduction 

1.1. Solvent Effects in Computational Chemistry 

Understanding the thermodynamics and kinetics of chemical reactions is one of the most 

important issues in the field of chemistry.1 While chemical thermodynamics can be described 

by the free energy changes of the species involved in chemical reactions, reaction kinetics is 

characterized by the rates of the chemical reactions. Key quantities are the energy barriers 

between reactants and products; the related barrier heights determine the branching ratios of 

competing products.1,2 The development of computational chemistry nowadays allows one to 

determine the electronic structure of molecules in the gas phase with a high level accuracy at 

affordable cost.3,4 The electronic structure description of quantum chemical applications in 

turn permits one to explore the stationary points on the potential energy surface (PES) of the 

system under study.3,4 To this end free energy differences between minima on the PES can be 

calculated and the transition state structures related to individual reaction paths and the 

activation barriers of chemical reactions can be localized and characterized.2-4 For isolated 

molecules, the electronic energy changes of the species involved are solely determining the 

chemical reaction.2,4 However, for many chemical reactions occurring in the solution phase, 

the solvation energies of the reactants due to the presence of the solvent are often comparable 

to the change of the electronic energy of the solute; in short, the PES can be affected notably 

due to a solvent.3-5 In addition, the solute electronic structure and thus also the physical 

properties of the solute itself can be significantly influenced by the solvent medium.5-7 As a 

result the solvation environment of a molecule can considerably affect its properties and thus 

also change the products, the rate of its chemical reactions, and even the reaction mechanism. 

One striking example for such solvent effects is the Menshutkin type SN2 reaction8 where 

the nucleophilic displacement of a halide in chloromethane (CH3Cl) by an amine (NH3) 

generates a halide anion (Cl–) and an alkylammonium cation (H3NCH3
+). In the gas phase this 

reaction is endergonic by 110 kcal/mol.9 On the other hand, the solvation energies of the Cl– 

and H3NCH3
+ ions in water are large enough that the reaction becomes exergonic by –34 

kcal/mol with the activation energy barrier estimated as about 24 kcal/mol.4,5,9 With the proper 

solvation models, quantum mechanics (QM) calculations successfully interpret the solvent 

effect on the reaction mechanism and are in good agreement with the experiment.9-12 

This example demonstrates that modeling solvation effects in computational chemistry is 

of central importance for understanding chemical reactions of organic and inorganic species 

in solution for scientific and industrial applications.5 Examples of pertinent application fields, 
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which also possess industrial importance, are catalytic reactions for the production of 

hydrogen from water,13 the conversion of CO2 into hydrocarbon fuel,14 and the 

transformations of biomass into fuels such as ethanol.15 Another important application relates 

to the nuclear fuel cycle and radioactive waste disposal, where the thermodynamic and 

structural properties of actinides in aqueous solution are crucial for understanding the complex 

chemistry and chemical processes in this field.16

1.2. Modeling the Solvation Effect 

Categorized by the interactions between solute and solvent molecules the solvation effects 

can fall into two broad categories, the long-range solvation effects including the polarization 

and dipole orientation and the short-range solvation effects including hydrogen bonding, van 

der Waals (vdW) interaction, solvent shell structure, solvent-solute dynamics, charge transfer 

effects, and hydrophobic effects.3 The electrostatic nature of the long-range solvation effects 

causes a screening of charge interactions which leads to a macroscopic dielectric constant 

measuring the polarity. The short-range solvation effects depend on the microscopic 

structures of the solvent molecules such as their shapes and their ability to form hydrogen 

bonds. In support of current experimental efforts in various areas of chemistry and materials 

science in solution, computational methods modeling solvation effects can therefore be 

partitioned into three types, treating the solvent implicitly as a continuum medium, taking 

account of the solvent molecules explicitly, and establishing a hybrid approach that combines 

aspects of implicit and explicit methods.5 

The combination of QM calculations with implicit solvation models, e.g. the polarizable 

continuum model (PCM)17 and its variants based on the conductor-like solvation model 

(COSMO),18 is one of the most popular strategies in computational chemistry for studying 

systems in solution. This type of implicit solvation models, so-called continuum solvation 

models, do not provide much insight into the structure and the statistical fluctuations of the 

solvent. Instead, continuum solvation model solvents are generally characterized by the use 

of the dielectric constant to account for the long-range electrostatic interactions.19 With this 

treatment, however, solvent species with very different physical properties that only share the 

similar dielectric constants, e.g. ethanol and acetonitrile, can be nearly indistinguishable.5 To 

discriminate such solvents, continuum solvation models have to rely on the empirical 

parameters such as effective radius to define the interface between solute and solvent by 

constructing the van der Waals surface (VWS), the solvent-accessible surface (SAS) and the 

solvent-excluded surface (SES).20 Note, however, that this simple approximation still does 

not properly describe important short-range interaction between solute and solvent, such as 
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hydrogen bonding.4,5  

Another approach to solvation is the so-called explicit solvation model, where one treats 

solute and solvent of the same level of theory by carrying out molecular dynamics (MD) 

simulations from first principles (ab initio MD – AIMD, or, more appropriately first-

principles MD – FPMD) or MD simulations based on a force-field description (molecular 

mechanics – MM) of both the solute and the solvent medium (MM-MD). Such methods 

explore the phase-space or configuration space of the solution system to obtain physical 

observables in terms of statistical averages of thermal quantities.3,4 However, the statistical 

sampling of large numbers of solvent configurations also entails significant computational 

costs. Explicit QM dynamic simulations are therefore restricted to models with a comparably 

small number of solvent molecules.5 The MM solvent description provided by MM-MD or 

hybrid QM/MM methods21,22 can reduce the computational cost. Yet, the results of statistical 

sampling are only as good as the effective force field used to describe the solvent-solvent and 

solute-solvent interactions. Furthermore, to compete with continuum models in reproducing 

electrostatic interactions also one has to account for the polarizability of the solvent medium.23 

Given the difficulties mentioned above for both continuum and explicit solvation models, 

strategies which combine QM methods with integral equation theory (IET) of molecular 

liquids5,24 are regarded as promising for studying ions and complexes and their chemical 

reactions in solution with sufficient accuracy and at an affordable cost. A very intuitive 

approach of IET is based on the Yvon-Born-Green (YBG) hierarchy equations,24 which has 

successfully been applied to simple fluids24 and molecular systems25,26 to determine the 

particle pair correlation functions. 

Another more popular IET approach is the reference interaction site model (RISM) also 

known as site-site Ornstein Zernike (SSOZ) equation,27 which provides solvation (free) 

energies and also averaged solvent structures via site-site radial distribution functions (RDF). 

In its original version of 1D RISM, the site-site RDFs are treated based on their spherically 

symmetric averages.5,27 With its extension (XRISM)28 to treat properly the electrostatic 

interaction in the molecular fluid system,29 1D RISM has successfully been applied to study 

aqueous and ionic solutions.5,6,30 However, the radial averaging treatment of the site-site RDF 

is unable to describe properly the spatial information of the solvent structure around a 

molecular solute of arbitrary shape.5,30 Therefore, a three-dimensional representation of 

RISM, 3D RISM31 was developed to provide a more detailed picture of the solvation structure, 

which is particularly important in the case of large complex solute molecules.5,30 Realizations 

of 3D RISM not only successfully describe the solvation of simple ions32-34 as well as of polar 

and non-polar solute molecules,35 but have proven useful also when applied to 
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supramolecules,36-38 proteins,36,39 drug design,40,41 and interfaces.42,43 

Inspired by these promising applications of force-field based RISM, the combination of 

RISM with high-level QM methods attracts more and more interest and has been explored 

extensively during the past decade.6,30 The hybrid approach of RISM together with a self-

consistent field (SCF) QM description of the solute system was first proposed at the level of 

Hartree-Fock theory44 while later on also Kohn-Sham density functional theory (KS-DFT) 

was combined with 3D RISM.45 Thus far, several implementations46-52 combined the RISM 

approach with state-of-the-art QM descriptions of the solute system and provide an appealing 

alternative to classical implicit and explicit solvation models. Hybrid RISM-SCF methods 

have successfully been applied to calculate the acidity of hydrogen halides53 and the basicity 

of substituted methylamines,54 the conformational equilibrium of different isomers,50,55,56 the 

molecular structures of urea,57 triiodide ion,58 carbonate and nitrate cations59 altered by 

solvation, important chemical reactions such as the SN2 reactions11,60 and excited states in 

solution systems.5,6,30 

Compared to the traditional continuum and explicit solvation models, RISM approaches 

account for the microscopic structural information of the solvent at an average level and 

calculate the thermodynamic properties of solution systems at an affordable cost. However, 

for being a rather novel tool for modeling solvent effects, there still remain many open issues 

yet to be clarified in this context.5,6,30 From the conceptual aspect, RISM methods have mostly 

been considered as qualitative tools because the solvation free energy is overestimated.5,6,30 

Recent developments in combining both MM61-64 and QM65 methods with RISM are 

exploring the determining factors for the predictive accuracy of this approach, aiming at 

making high-accuracy calculations possible in the near future.30 Also the popularity of RISM 

regarding applications nowadays is steadily increasing. However, RISM methods have not 

been extensively used to take solvation effects into account in catalytic reactions with 

transition metal complexes and in actinyl chemistry.6
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1.3. Thesis Outline 

This thesis focuses on the development, implementation, and application of a hybrid approach 

that combines RISM and KS-DFT. Thereby the electrostatic potential induced by the solute 

is directly derived from its electron density. This combination, which will be referred to as 

QM+RISM in this thesis, was added to the parallel density functional program package 

ParaGauss.66 The factors affording high-accuracy QM+RISM solvation energy calculations 

have been explored by suggesting a conceptual interpretation for the correction term of the 

solvation energy. In addition, QM+RISM is applied for the first time to studying the solvation 

of actinyl ions and their aqua complexes in an aqueous medium as well as to the overall 

catalytic cycle for CO2 conversion in acetonitrile solution with a Ru-bipyridine complex. The 

remaining part of this introduction is dedicated to a brief description of the structure of this 

thesis.  

Chapter 2 provides the theoretical background of the currently popular solvation models 

by briefly introducing the state-of-the-art continuum solvation models, explicit solvation 

models, and integral equation theory (IET) including RISM methods. 

Chapter 3 presents details of the implementation and numerical aspects of the coupling 

of the RISM method with the DFT program ParaGauss. After the basic theory of the 

combination of RISM with QM is introduced, the second section addresses the interfacing of 

the RISM solvent environment and the solute, with the latter being treated at the QM level. 

This requires implementing and evaluating the electrostatic interaction functional for the 

charge density of the QM region and that of the solvent medium. The third section deals with 

the construction of free energy functionals in the hybrid approach and presents the expressions 

approximated by the unperturbed electronic structure of the solute as well as a fully SCF 

treatment of the solute-solvent interaction. The last section discusses numerical aspects of the 

implementation including its validation, based on the electrostatic interaction between solute 

and solvent, as well as its convergence during the corresponding iterative solution of the 

working equations. 

Chapter 4 presents a methodology interpretation and several applications of the hybrid 

approach. First a benchmark for the RISM implementation is presented: the solvation energies 

of simple alkali and halide ions in water solution are calculated with 1D and 3D RISM. The 

values are then compared with those from other RISM solvers, MD calculations, and 

experiments. Second, the combination of KS-DFT with 3D RISM is systematically studied 

for a test set of 43 neutral organic solute molecules by applying the known partial molar 

volume correction for which an alternative interpretation is given. Also the influence of the 
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relaxation term on the solvation energy is examined based on the numerical results from both 

approximate and fully self-consistent approaches, as well as based on a simple linear model. 

Furthermore, the solvation of uranyl in water is thoroughly investigated using the hybrid 

method of QM with both 1D and 3D RISM. In this application the solvation energies and 

geometries of uranyl complexes with 4–6 explicit aqua ligands (i.e. the first solvation shell) 

in the presence of an implicit bulk solvent modeled by 1D and 3D RISM are compared to 

PCM as well as experiments. In addition, the activation energy for the exchange of water 

ligands is examined with a hybrid QM+RISM model. As a last application presented in this 

thesis, the hybrid method is used to explore the CO2 conversion to HCOO– in acetonitrile 

solution with a Ru-bipyridine complex. 
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2. Theory of Solvation Models 

2.1. Continuum Solvation Model 

 Polarizable Solvation Model 

The continuum solvation model relies on the basic assumption of using a continuous medium 

with the macroscopic dielectric constant, that equals the value of the solvent bulk, to represent 

the environment created by the latter around the solute.17 To this end, the solute molecule is 

located in the dielectric continuum in a cavity of arbitrary shape. In this cavity one has the 

solute electron density M( ) r . Then the electrostatic interaction potential el( )V r  between 

solute and the solvent medium can be determined from the Poisson equation for the space 

inside the cavity and from the Laplace equation outside the cavity:67 

 
el M

el

( ) 4 ( ), ;

( ) 0, .

V inside cavity

V outside cavity

     

    

r r r

r r
 (2.1.1) 

In the case of an irregular shape of the cavity of the solute, it is more practical to use the 

apparent surface charges (ASCs) method.17 One utilizes the apparent surface charges σ(s) 

spread on the surface   of the cavity to obtain the electrostatic potential17,67 

 2( )
( )V d s












s
r

r s
.  (2.1.2) 

Here ( )V r  corresponds to the interaction potential in Eq. (2.1.1). In general one achieves the 

solution of ASC method with the help of the boundary element method (BEM) where the 

cavity surface  is approximated by a set of finite elements (tesserae), to which individual 

apparent surface charges σ(s) are assigned.17 

At the QM level, the problem associated with the continuum solvation model can be 

expressed by the following Schrödinger equation (SE)17 

 0

R[ ]H V E    .  (2.1.3) 

Here H0 is the Hamiltonian of the solute in vacuum, Ψ is the wave function of the solute, E is 

the energy of the solute, and RV  is the interaction potential between the solute and the solvent 

medium. In the standard polarizable continuum model (PCM),17 RV  can be decomposed as 

follows 

 
R el dis repV V V V   ,  (2.1.4) 
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whereas 
elV , 

disV  and repV  denote the electrostatic, dispersion and repulsion contributions 

respectively. Correspondingly, the free energy functional of the solution system is given 

by17,19 

 
sol el dis rep cav tmG G G G G G     ,  (2.1.5) 

where the contributions elG , disG  and repG  correspond to the individual terms on the r.h.s of 

Eq. (2.1.4), respectively. These three terms involve the interaction with the solvent charge 

density and are included in the Hamiltonian in Eq. (2.1.3) as discretized contributions on the 

cavity surface.19 In addition, the electric polarization of the solvent is included in elG  as a 

polarization function P  in terms of the electric field generated by the electrostatic potential, 

either directly from Eq. (2.1.1) or via the apparent charges as Eq. (2.1.2),19 

 
1

4
V






 P Δ .  (2.1.6) 

Regarding the last two terms in Eq. (2.1.5), cavG  represents the energy required for creating 

the cavity with the appropriate shape inside the solute. Note that cavG  only depends on the 

geometry of the solute. The last term tmG  describes the contributions due to thermal motions 

of the nuclei. 

 Conductor-like Screening Model 

In the original PCM method, the determination of ASCs with the aid of BEM requires special 

care in order to have a good representation of electrostatic potential everywhere and to save 

computational cost during the iterative procedure.67 As an improvement, Klamt and 

Schüürmann68 suggested a new approach using a screening conductor theory to describe the 

reaction field of the continuous solvent. This so-called conductor-like solvation model 

(COSMO) describes the apparent polarization charge distribution on the cavity surface with 

the condition of a vanishing total electrostatic potential, Eq. (2.1.1), at the cavity boundary. 

With this boundary condition, the dielectric constant of the solvent medium is set to 

ε   , hence the value of an electric conductor. Afterwards the ASCs of Eq. (2.1.2) are 

determined by the local value of the electrostatic potential. To recover the dielectric constant 

of the solvent medium, the cavity surface charge density is defined as the product of the 

unscreened charge density    with a scaling function (ε)f ,19 

 ( ) ( ) ( )f   s s .  (2.1.7) 

The scaling function (ε)f  is then empirically determined by comparing the energies that 

result from the unscaled COSMO and the correct electrostatic solute-solvent interaction. The 
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corresponding expression read as19 

 
1

(f
k

 
 

 
, (2.1.8) 

with the parameter k set to k = 0.5 in the original COSMO approach68 while later on k = 0 

became more popular.19 With these modifications the point charges on the cavity surface can 

be directly calculated instead of using the iterative procedure of the original PCM. Therefore 

COSMO allows one to include a calculation of the solvent reaction field directly in the SCF 

procedure. As a result the solute electron density and the solvent reaction field can 

simultaneously reach convergence, which significantly accelerates the QM calculation.19 

 Summary 

Continuum solvation models constitute the most widely used approaches for treating solution 

systems due to their simple formalism and their convenient implementation in QM software 

packages.6,17,69 Besides COSMO PCM, other models have been also developed and applied, 

e.g. integral equation formalism polarizable continuum model (IEFPCM)70 and self-consistent 

isodensity polarizable continuum model (SCIPCM).71  

However, as seen from the conceptual aspects presented in Sections 2.1.1–2.1.2, no 

continuum model provides insight into the microscopic structure of the solvent. As mean-field 

theories they attempt to reproduce the average effect of the solute-solvent interactions on the 

electric structure of the solute by the effects of (correlated) thermal fluctuations of the 

microscopic structure on thermodynamics properties of the system. The long-range 

electrostatic interaction can reasonably be described with a macroscopic dielectric constant 

that represents the solvent medium. However, the treatment of short-range interactions such 

as dispersion forces or hydrogen bonding relies on empirical quantities defining the molecular 

cavities and shapes.4,5,19 The proper choice of the solute cavity size and shape to build the van 

der Waals surface (VWS), the solvent-accessible surface (SAS) and the solvent-excluded 

surface (SES) still remains a subject of debate.17,19,20 
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2.2. Explicit Solvation Models 

 Molecular Mechanics Models 

As mentioned in Section 2.1.3, continuum solvation models do not include a microscopic 

description of the solvent structure. A straightforward alternative is to treat molecular solvents 

explicitly at an atomic level in the energy expression.4 Molecular mechanics (MM) methods, 

also referred to as force field (FF) methods, provide simple and empirical descriptions of the 

solute/solvent molecules. The MM potential energy functional MMU  is the sum of various 

terms:3,4 

 
MM str bend tors cross vdw elU U U U U U U      ,  (2.2.1) 

Here 
strU  is the potential energy for bond stretching, 

bendU  represents the potential energy for 

bending an bond angle, torsU  is the torsional energy for rotation around a bond, and crossU  

describes the coupling between the first three terms. vdwU  and elU  are the non-bonding 

interaction potential energies, with the van der Waals (vdW) term vdwU  representing the 

combination of dispersion and repulsion energies and elU  the electrostatic potential energy 

in terms of atomic point charges mimicking the (re)distribution of electrons.  

With the appropriate form of the interaction potential energy functional for the solution 

system, molecular simulation techniques such as molecular dynamics (MD)3,4 and Monte 

Carlo (MC) methods3,4 can be employed to explore the phase space or the configuration space 

of the solution system to acquire observables as an average of mechanical quantities.3,4,72  

However, it is worth emphasizing that the MM model is basically a collection of 

functional forms that depend on the associated constants.3,4 The parameterization of the force 

field (FF) is usually done by reproducing experimental measurements as well as by fitting the 

MM molecular potential energy surface (PES) to the results of high-level QM calculations.4 

For non-aqueous molecules, the MM parameters can be picked from the common dataset, 

such as the universal force field (UFF)73 or the optimized potentials for liquid simulations 

(OPLS) and the OPLS all-atom (OPLS-AA) force field.74,75 For water as solvent, the most 

widely applied models are the transferable-intermolecular-potential-3- and -4-point-charge 

(TIP3P, TIP4P),76 the simple point charge (SPC),77 and the extended simple point charge 

(SPC/E) models.78 To account properly the solvent polarity, also polarizable force fields have 

been suggested.79 However, such polarizable force fields entail higher computational cost and 

adequate care is required when determining such a parameterization.80 Therefore, polarizable 

force fields are not yet widely employed.3,4  
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 Quantum Mechanics Models 

MM models have a number of limitations. The most striking one is that re-parameterization 

of the specific solute-solvent system is necessary to describe appropriately the bond-

breaking/forming events, which reduces the transferability of the FF model.3,4 To overcome 

this drawback, the so-called ab initio molecular dynamics (AIMD) method was proposed.81  

AIMD method combines finite temperature dynamics with forces obtained from 

electronic structure calculations carried out ‘on the fly’ as the MD simulation proceeds. In the 

AIMD method, each MD step involves taking a phase point, calculating the electronic energy 

and the gradients for that point with respect to changes of the positions of the nuclei, then 

propagating these positions for a short time step to enter the next iteration cycle.81 Compared 

to MM MD methods, this process requires a significantly higher computational cost. 

Therefore even with very powerful computer resources, present-day applications of AIMD 

remain somewhat limited.5 

 Hybrid QM/MM Models 

As mentioned in Sections 2.1.3 and 2.2.1, in continuum models the short-range solute-solvent 

interactions are not properly treated, while in MM models the appropriate description for 

bond-breaking/forming is missing. To overcome these drawbacks, the hybrid QM/MM 

method was proposed in which the electronic structure of the solute is fully treated at the QM 

level while the MM model is introduced to describe the solvent molecules. The effective 

Hamiltonian of the hybrid system reads as 

 hyb QM MM QM/MMH H H H   ,  (2.2.2) 

where QMH  represents the Hamiltonian of QM solute, MMH  accounts for the contribution of 

all MM solvent molecules, and QM/MMH  represent the interaction between QM solute and 

MM solvent. The latter contribution usually results from the non-bonding interactions of the 

MM model, which include the electrostatic interaction and the van der Waals interaction. 

Nevertheless, similar to other explicit models (Sections 2.2.1 and 2.2.2), a statistical 

sampling of the phase space or trajectory space of the MM solvent molecules is required in 

hybrid QM/MM methods.3,21 Such a statistical averaging entails significant additional cost, 

because a reasonable sampling involves a very large number of QM calculations for the solute 

part.4 Furthermore the results of the statistical sampling are only as good as the effective force 

field used to parameterize the solvent-solvent and solvent-solute interactions. 
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 Summary 

Compared to the continuum solvation models in Section 2.1, explicit solvation models are 

capable of recovering appropriately the short-range interactions between solvent and solute 

molecules. However, the simple MM description of both solute and solvents will result in 

loosing important information such as bond-breaking and forming, while the full QM 

treatment will significantly increase the cost and, thus, become less applicable. As already 

highlighted by the Nobel Prize in Chemistry in 2013,82 the hybrid QM/MM approach seems 

promising as it combines the advantages of both MM and QM methods. Yet, the system 

properties of the solution system modelled by a QM/MM method still require the statistical 

sampling which entails an enormous expense of computational resources.4 Regarding this 

difficulty, methods based on integral equation theories (IET)5 are able to provide the average 

solvation structures by solving a set of integral equations instead of carrying out the statistical 

sampling. IET approaches are in some sense intermediate between continuum solvation 

models and explicit solvation models and, as such, they intend to overcome the drawbacks in 

the latter two types of solvation models.5 As IET methods show great potential for modeling 

solution systems with adequate accuracy and at an affordable cost, they are discussed in the 

following sections in more detail. 
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2.3. Liquid State Integral Equation Theory 

 The Yvon-Born-Green Hierarchy 

Instead of an explicit treatment of solvent molecules in explicit solvation models, the liquid 

state integral equation theory (LS-IET) is based on information of the solvent density around 

the solute in terms of correlation functions. Taking a subsystem of n particles from a liquid in 

equilibrium of N particles in total (n < N), the distribution of the n-particle can be represented 

as the correlation function 
( )ng  of order n. Two successive correlation functions 

( )ng  and 

( 1)ng 
 are related via the Yvon-Born-Green (YBG-) hierarchy24 

 
1

( ) ( ) ( 1)

( ) 1 ( ) 1 1 ( 1) 1

2

( ) ( , ) ( ) ( , ) ( )
n

n n n

n i n n n n

i

g g g d  

  



   x x F x x x F x x x x   (2.3.1) 

Here the short-hand notation ( )nx  represents the coordinates of n particles 1( ,..., )nx x , while 

the pair-wise force contributions
ijF  are the derivatives of the pair interaction potential 

( , )i jv x x  

 ( , ) ( , )i j i i jvF x x x x .  (2.3.2) 

Combining the case n = 2 for pair correlation functions with the Kirkwood superposition 

approximation83 

 
(3) (2) (2) (2)

1 2 3 1 2 1, 3 2 3( , , ) ( , ) ( ) ( , )g g g gx x x x x x x x x ,  (2.3.3) 

one can write Eq. (2.3.1) as the Born-Green equation24 

 
1

(2)

1 2 1 2 1 3 1 3 2 3 3[ln ( , ) ( , )] ( , ) ( , )[ ( , ) 1]g v v g g d
1x xx x x x x x x x x x x .  (2.3.4) 

The Born-Green equation Eq. (2.3.4) can be solved for a given pair potential 1 2( , )v x x , to 

yield the pair correlation function 
(2)g . 

 The Three-dimensional Born-Green-Yvon Equation 

Based on the YBG-hierarchy and the Born-Green equations as in Eqs. (2.3.1) and (2.3.4), a 

three-dimensional Born-Green-Yvon equation, denoted as the BGY3dM model,26,84 was 

suggested for an arbitrary solute immersed into a molecular solvent.26,84 The essence of this 

model, the BGY3d equation, describes the solvent distribution g(x) around a fixed solute with 

m-tuple coordinates ( )mx  as follows: 

 
(2)

( )ln ( ) ( , ) ( , ) ( , ) ( )mg g g dx F x x F x x x x x x ,  (2.3.5) 

Here the pair distribution function 
(2)g  appears as an input and can be computed by the Born-
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Green equation, Eq. (2.3.4), which in turn can be regarded as a special case of the BGY3d 

equation, Eq. (2.3.5). The BGY3d equation can be generalized further for s molecular solvent 

sites, and the generalized equation is called the BGY3dM equation.26,84 For every solvent site 

α = 1,…,s, the BGY3dM equation reads as 

 
1

1

(2)

1 1 1 2 1 2 2 2

1

1 1 1 1

ln ( ) ( ) ( , ) ( , ) ( )

( , ) ( )

s

s

g g g d

g d

x

x

x F x F x x x x x x

x x x x

,  (2.3.6) 

with 
2

1 1 1 0 0( , ) ( ) / 4 ( )a x x r r r  denoting the intramolecular pair distribution 

function, 1 1 1r x x  being the distance between particles α and η, and 
0r  representing 

their equilibrium intramolecular distance. 

The BGY3dM model yields reasonable solvent distribution functions for solvent models 

such as hydrogen chloride (HCl) and carbon disulfide (CS2).
26,84 However, it fails to provide 

even qualitatively correct results for water, which plays a crucial role as solvent as well as 

reactant in chemical and biological systems. Alternatively, another model based on IET is 

known as the reference interaction site model (RISM).5,24 It does not only provides accurate 

information on the structure of a molecular solvent such as water, but also approaches 

chemical accuracy in terms of predictions of solvation thermodynamics.5 In the next section, 

a brief outline of the RISM theory will be presented. 
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2.4. Reference Interaction Site Model 

 Ornstein-Zernike Equation 

The theory framework of RISM is based on the seminal work of Ornstein and Zernike from 

1914,85 in which they used an equation to define the total correlation function h(r) between 

particles 1 and 2 in a uniform fluid 

 
2

12 12 13 32 3 13 34 42 3 4( ) ( ) ( ) ( ) ( ) ( ) ( ) ...h r c r c r c r dr c r c r c r dr dr       ,  (2.4.1) 

where   is the density of the liquid and r  represents the distance between two particles. c(r) 

is the so-called direct correlation function and the integral terms in Eq. (2.4.1) represent the 

indirect correlation functions mediated through other particles 3, 4 and all the rest. By 

recursively referring to the definition of h(r), Eq. (2.4.1) is rewritten as the famous Ornstein-

Zernike (OZ) equation5,24 

 12 12 13 32 3( ) ( ) ( ) ( )h r c r c r h r dr   .  (2.4.2) 

Both functions in Eq. (2.4.2), h(r) and c(r), are unknown, so that another equation is required 

to get a solution. A general relation which couples h(r) and c(r) with the interaction potential 

u(r) of fluid particles is the so-called “closure equation”5,24 

 ( ) exp[ ( ) ( ) ( ) ( )] 1h r u r h r c r b r        (2.4.3) 

where β = 1 / T is the inverse of the temperature T and b(r), the so-called “bridge” function, 

is a functional of h(r). By selecting the simplest approximations of u(r) and b(r), i.e. using the 

Lennard-Jones (LJ) potential and setting b(r) = 0 one recovers the hypernetted-chain (HNC) 

closure.5,86 Eqs. (2.4.2) and (2.4.3) indeed can be solved simultaneously. However, this 

original form is only applicable to atomic fluids. The OZ equation must be extended to obtain 

the correlation functions of a molecular liquid. 

 1D Reference Interaction Site Model 

Chandler and Anderson first generalized the OZ equation to polyatomic molecules by 

introducing the intramolecular correlation function ω(r) to represent the mutual orientations 

of molecules in liquids.27 To this end, the solvent liquid is considered to consist of atomic or 

rigid polyatomic species around the solute whose interaction with the solute is approximated 

by a two-particle interatomic potential (site-site potential). This site-site Ornstein–Zernike 

(SSOZ) equation, which later became known as 1D reference interaction site model (1D 

RISM), averages the correlation functions between solute and solvent molecules over 

orientations at fixed distances r  between their interaction sites. For infinitely dilute solutions, 
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the ansatz can be written in the following matrix form 5,28,29,87 

 
uv u uv v  h w c χ .  (2.4.4) 

Here huv and cuv are (rectangular) matrices of the total correlation functions uv ( )ih r  and direct 

correlation functions uv ( )ic r ,  

 

uv uv uv uv

11 1 11 1

uv uv

uv uv uv uv

1 1

,

i i

i i

h h c c

h h c c   

   
   

    
   
   

h c .  (2.4.5) 

The superscripts u and v label the solute and the solvent, respectively, while the subscripts i 

and α enumerate solute and solvent interaction sites, respectively. In Eq. (2.4.4) the star * 

denotes the convolution integral between two matrices a and b, 

 ( ) ( ) ( ) ( )ik ij jk

j

r a r r b r dr    a b   (2.4.6) 

with the summation over the corresponding matrix indices. With this convention Eq. (2.4.4) 

is calculated as 

 
u v

uv u uv v

1 1

( ) ( ) ( ) ( )
N N

i ij j

j

h r r r c r r r dr dr  



 
 

          (2.4.7) 

by summing over all the solute and solvent sites, j = 1, …, Nu and γ = 1, …, Nv, respectively. 

The solvent is represented by its (square symmetric) susceptibility matrix 
v v vvh    , 

which is obtained self-consistently from the pure solvent RISM equation5,87 

 
vv v vv v  h w c χ ,  (2.4.8) 

at a specific solvent number density  . Finally, 
u

w  and 
v

w  are the (square symmetric) 

matrices built of intra-molecular correlation functions of solute and solvent, respectively, 

which are radial δ-functions, best specified by their Fourier representations, e.g. 

v

0( ) ( )k j k   . Here, 0j  is the zeroth-order spherical Bessel function,5 k the wave 

number, and   the distance between two interaction sites α and γ of a rigid solvent 

species.5,27 

Similar to the original OZ equation in Section 2.4.1, a closure relation is necessary to 

admit solving Eqs. (2.4.4) and (2.4.8). In the framework of 1D RISM theory, the HNC closure 

reads86 

 exp[ ] 1i i i ih u h c          (2.4.9) 

Here iu   is the pair-wise potential between interaction sites i and α which accounts for short-

range repulsion and dispersion interactions. It commonly is represented by the sum of the 
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short-range LJ term LJ

iu   and the long-range Coulomb term C

iu  ,  

 

LJ C

12 6

,

( ) 4 [( / ) ( / ) ]; ( ) / .

i i i

LJ C

i i i i i i

u u u

u r r r u r q q r

  

       

 

  
  (2.4.10) 

The parameters of the pair interactions i  and i  were derived from site parameters using 

the Lorentz-Berthelot rules,5 which are ( ) / 2i i      and i i    . iq  and q  are 

the charges carried by the interaction sites. 

In the original 1D RISM theory, the solution of Eqs. (2.4.4) and (2.4.8) yields far too low 

dielectric constants of polar liquids according to the expression30,88 

 2

RISM 1 4 / 3   .  (2.4.11) 

Here   is the dipole moment of the solvent. A popular solution to this problem has been 

suggested,89 namely the dielectrically consistent RISM (DRISM) with an additional term 

introduced in Eq. (2.4.8):32,88,89 

 ˆ ( )      h w c w ρh   (2.4.12) 

Eq. (2.4.12) involves   h h ζ ,   w w ρζ  and ˆ  c c b , whereas b is the bridge 

correction term coming into Eq. (2.4.12) from the general closure relation Eq. (2.4.3), and ζ  

is the renormalized correction satisfying   ζ = w b (w ρζ) , which can be obtained in 

reciprocal space using experimental results for the dielectric constant.32,88  

 3D Reference Interaction Site Model 

Due to the radial average of correlation functions, the site-site treatment in 1D RISM theory 

does not represent the full tree-dimensional structure of the solvation.5,30 An intuitive 

approach to overcome this issue may consist in taking the molecular orientation into account 

in the OZ equation, Eq. (2.4.2), which leads to the molecular OZ (MOZ) equation5,24 

 12 1 2 12 1 2 13 1 3 32 3 2 3 3( , , ) ( , , ) ( , , ) ( , , )h r c r c r h r dr d


          
 

,  (2.4.13) 

in terms of the molecular orientation  ; d    is the normalization factor of the 

orientational integral for different species. Although several trials have been made in this 

direction,90-93 the difficulty of solving the six-dimensional (6D) MOZ equation hampered its 

broad application.30 Instead, Beglov and Roux94 pioneered solving the RISM equation by 

using a 3D grid space and employing the density functional theory of non-uniform polyatomic 

liquids.95 Kovalenko and Hirata derived the 3D RISM integral equations later from the 6D 

MOZ equation by partial integration over the orientational coordinates.96 The 3D RISM 
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equation reads as5 

 
uv uv v h c χ .  (2.4.14) 

Here huv and cuv are matrices of the three-dimensional total correlation functions uv ( )h r  and 

the 3D direct correlation functions uv ( )c r  of solvent site α around a solute of arbitrary shape. 

The star symbol  has the same meaning as in Eq. (2.4.4). As in the 1D RISM theory in Section 

2.4.2, v ( )r   is the bulk solvent susceptibility represented by a (symmetric square) matrix. It 

can be derived from the radial site-site correlation functions of the pure solvent in 1D RISM 

equations, Eqs. (2.4.8) and (2.4.9) for a specific temperature and solvent number density ρ.5,32 

By comparing the 1D and 3D RISM equations, hence Eq. (2.4.4) with Eq. (2.4.14), one 

notes that the latter does not require the intramolecular correlations to represent the molecular 

orientation. Instead, the orientation dependence is retained via the partial integration of the 

total and direct correlation vectors in a 3D uniform space. In analogy to 1D RISM, the closure 

relation is again required for solving Eq. (2.4.14). The HNC closure in 3D RISM reads5 

 exp[ ] 1h u h c        .  (2.4.15) 

Here u
α is the interaction potential between solvent site α and the solute. In actual applications, 

this quantity is estimated as a superposition of the site-site interaction potentials u
iα

, 

Eq. (2.4.10), between the solute site i and the solvent site α 

 ( ) ( )i i

i

u r u r r   .  (2.4.16) 

With Eqs. (2.4.14) and (2.4.15), the spatial correlation functions of a solvent around the solute 

molecule with an arbitrary shape can be solved. 

 Closure Relations 

As discussed in Sections 2.4.1–2.4.3 the closure relation, which couples the total and direct 

correlations functions with the interaction potential, is necessary for solving the OZ equation 

as well as 1D and 3D RISM equations. Setting the bridge term b(r) to zero in the general form 

Eq. (2.4.3) yields the HNC closures Eq. (2.4.9) and Eq. (2.4.15). However, in this case the 

exponential form in the HNC closure leads to a slow convergence rate or may even cause 

numerical instabilities.5 For a numerically more stable closure expression, Kovalenko and 

Hirata partially linearized the exponent term of the HNC closure.97 The new closure, which is 

referred to as partial-linearized HNC (PLHNC) or KH closure, reads as  

( )i i i ih f u h c        in 1D RISM and ( )ah f u h c       in 3D RISM, with 
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e 1 0

( )
0

x x
f x

x x

  
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
.  (2.4.17) 

The KH closure, Eq. (2.4.17) with the relevant expressions in 1D and 3D RISM, 

combines the HNC approximation in the solvent density depleted regions where h < 1, and 

the linearization of the entire exponent in the enriched regions where h > 1. Being more 

numerically stable, the KH closure is widely applied in the studies performed with RISM 

method.5,30 Recently, Kast and Kloss systematically investigated the convergence problem of 

the HNC closure with a partial series expansion of order n (PSEn), which yields f(x) in terms 

of the following expression98 

 

1

e 1 0

( )
/ ! 0

x

n
k

k

x

f x
x k x



  


 





.  (2.4.18) 

The formulation of PSEn closure of Eq. (2.4.18) provides a good balance between the limiting 

cases of HNC (n → ∞) and KH (n = 1) closures. The partial series expansion for f(x) became 

thus popular in the recent studies of polar and charged system as the convergence of solving 

RISM equations can be improved altering n.30 Other closures which were proposed for early 

RISM variants, e.g. the Percus-Yevick (PY) approximation and the mean-spherical 

approximation (MSA), provide different linearization of the exponent term in the HNC 

closure.5 However, these latter formulations were found to behave erratically for Coulombic 

systems and are therefore rarely used in applications.5 

 Excess Chemical Potential 

The excess chemical potential of a solute at infinite dilution, also known as the “solvation free 

energy”, corresponds to the free energy change associated with a process in which a solute 

molecule is coupled to the solvent. The coupling process can be expressed in terms of the 

Kirkwood coupling parameter ξ 5 

 vv uv( )U U U     (2.4.19) 

where U, Uvv, and Uuv represent the interaction potential of the total system, the solvent-

solvent contribution, and the solute-solvent part. The coupling parameter ξ thereby varies 

from 0 to 1, representing all states, from no solute coupling to full coupling. The free energy 

change related to the coupling process can be written in terms of the configuration integral of 

the system which is a functional of the coupling state at a given temperature T 5 

 ln ( 1) [ ln ( 0)]kT Z kT Z          (2.4.20) 

In the context of 1D RISM theory, Eq. (2.4.20) can be expressed in terms of the pair 
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correlation functions as thermodynamic integration (TI) over ξ 5 

 
1

2

0 0
1 1

4
( ) ( , )

u vN N

i i

i

d u r g r r dr 




  





 

   .  (2.4.21) 

Here 1i ig h    is the site-site radial distribution function (RDF). The numeric integration 

in Eq. (2.4.21) requires a numeric solution of the RISM equation for each finite increment of 

ξ, which can be expensive for large systems. In practice, one of the analytical expressions for 

the closure relations discussed in Section 2.4.4 is used to calculate the excess chemical 

potential. When using the HNC closure, the excess chemical potential reads86 

 
u v

2HNC 2

1D
0

1 1

2
[ 2 ]

N N

i i i i

i

h c c h r dr   










 

   .  (2.4.22) 

For the KH closure and the generalized form of the PSEn closure ( )i i i ih f u h c       , 

the excess chemical potential is98 

 
u v

PSE HNC 2

1D 1D
0

1 1

2
( )

N N
n

i

x r dr




  


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 

   ,  (2.4.23) 

with 
0

( ) ( ) ( )
x

x f x x f y dy     . Eq. (2.4.23) has a particularly simple form with f(x) 

defined in Eq. (2.4.18): 1( ) / ( 1)!n

n x x n     for x > 0 and zero otherwise. In the case of the 

KH (PSE1) closure, the additional term –x2 / 2 cancels the h2 / 2 term of the HNC integrand, 

Eq. (2.4.22), in the regions where x = h > 0. 

Another popular expression was proposed by Chandler, Singh and Richardson assuming 

Gaussian fluctuations (GF) of the solvent molecules,99 
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 
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 

   .  (2.4.24) 

The GF expression in Eq. (2.4.24) omits contribution of order h2 in the HNC expression in 

Eq. (2.4.22) and thus reduces the overestimated energies calculated by the HNC-like closures. 

However, it was found problematic for polar solutes.5 

Analogously, the excess chemical potential can be expressed in 3D RISM theory. To this 

end, the HNC, PSEn, and GF functionals read as 

 
2HNC 3

3D

1

[ 2 ]
vN
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


 

 

   , respectively.  (2.4.27) 

Here ϕ(x) has the same definition as in 1D RISM in Eq. (2.4.23). 

 Cavity Formation Correction 

Due to the explicit treatment of the spatial orientation of the molecular solute, 3D RISM was 

expected to yield energetic results of higher accuracy than 1D RISM. However, when only 

applying the various functionals for the closure relations and the excess chemical potential as 

in Section 2.4.4 and 2.4.5, 3D RISM fails to provide satisfactory results.5,30 Several studies 

showed that for organic solutes the calculated solvation free energy can deviate from 

experiment by an order magnitude.5,30,62 

Recently, several systematical studies covering a large test set of molecular solutes 

reported a correlation between the error of the calculated solvation free energy and the partial 

molar volume (PMV) of the solute.64,100-102 Followed by both semi-empirical functionals with 

parameter fitted against the error64 as well as a first principle theoretical argument,61,63,64 PMV 

corrections provide significantly improved solvation free energy results for a wide range of 

molecular solutes and are becoming increasingly popular.30 

Within the 3D RISM approach the dimensionless PMV of the solute5 

 
v

T
u

1

1 (0)
N

V c



 

 

 
  

 
 ,  (2.4.28) 

involves the Fourier representation of the solvent-solute direct correlation functions ( )c k at 

k = 0. κ
T
 denotes the compressibility of the pure solvent5 

 
v v
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,  (2.4.29) 

with 
v ( )c k  being the Fourier representation of the direct correlation function of the pure 

solvent. Based on the strong linear correlation of errors in the solvation free energy and the 

PMV, Palmer et al. suggested a semi-empirical correction expression64 

 PMV

u( )a V b     ,  (2.4.30) 

to compensate for the asymptotic deficiency of the original 3D RISM expression, by fitting 

the parameters a and b to a data set of 189 simple organic molecules. Following this fitting 

strategy, several research works reported refinements and further extensions of the 

semi-empirical functional.30,100,101,103 Yet the physical meaning of the correction coefficients 
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remained unclear. 

Sergiievskyi et al.63 proposed a first conceptual interpretation of the correction 

coefficients in an isothermal-isobaric ensemble by molecular density functional theory 

(MDFT) which they further extended to 3D RISM. They derived the correction coefficients 

as v( / 2) (0)c
    and b = 0. However, their thermodynamic arguments for the 

derivation of this particular PMV correction form were questioned later104 and the recent work 

of Minsin et al.61 favors a different correction coefficient, v( / 2) (0) 1c
   . Both 

correction functionals have been justified for a data set of small organic molecules. As will 

be presented in Section 4.3, those two choices of correction coefficient can be interpreted in 

an asymptotic analysis of the excess chemical potential functional. 
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3. Implementation of a Hybrid Approach of RISM and QM 

3.1. Basics of the Hybrid Method 

 Hybrid Method of RISM with Hartree-Fock Theory 

With the wide range of applications and the rapid development of RISM theory, the 

combination of RISM with QM is regarded as a promising alternative to the QM/MM method 

and the PCM method for studying the electronic structure of molecular species in the presence 

of a solvent. The hybrid approach of 1D RISM together with a self-consistent field (SCF) QM 

solute description was first proposed by Ten-no et al. at the level of Hartree-Fock (HF) 

theory.44 The implementation of this hybrid approach combining HF with RISM is not 

covered in this thesis, but an overview of fundamental aspects is briefly presented in the 

following.  

The combination of HF theory with RISM can be derived by considering the reaction 

field of the solvent molecules. The variational equation subject to the orthonormalization 

constraint reads as44 

 | | 0i i i i

i

F f V b 



        (3.1.1) 

where iF  is the Fock operator of an isolated molecule and the term 
i i

F f V b
 

   denotes the 

Fock operator solv

iF of the solvated system. if  are the occupation numbers of the orbitals 

{ }i , b  is the population operator for a solute atomic site λ, and V  is the electrostatic 

potential induced by the solvent medium on the solute site 

 24 ( )
q

V r h r dr
r


 



   .  (3.1.2) 

Here q  represents the partial charge of a site α of the solvent molecule with number density 

ρ and ( )h r  is the total correlation function which results from RISM theory as described in 

Section 2.4.2. The RISM equations (2.4.4-2.4.9) are solved with the appropriate partial charge 

q  assigned to the solute site λ to calculate the site-site Coulomb interaction 

( ) /Cu r q q r   . The charge q  can be obtained by summing over all the orbitals { }i  and 

including the contribution due to nuclei 

 
( )N

i i i

i

q q f b       ,  (3.1.3) 

where ( )Nq
 is the charge contributed by nucleus N. The correlation functions are updated in 
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the RISM equations, 2.4.4 to 2.4.9, with partial charges of solute sites determined from 

Eq. (3.1.3). Then the new Fock operator can be obtained via Eq. (3.1.1). One repeats this 

procedure until convergence, so that the electronic structure of a solute and the surrounding 

solvent environment are determined in a self-consistent manner. 

This first generation of the hybrid method combining RISM with HF theory was 

developed further. The analytical expression of the energy gradient can be derived with 

respect to the nuclear coordinates.56 It was suggested to treat explicitly the spatial electron 

density distribution (SEDD) when calculating the electrostatic interaction between solute and 

solvent instead of using the fitted atomic charges of solute sites.105 Discussing these aspects 

in detail would lead away from the main topic of this thesis which aims at combining the 

RISM method with electronic density functional theory; the details of that approach can be 

found in the original papers56,105 as well as recent reviews.6,30  

 Hybrid Method of 3D RISM with Density Functional Theory 

The Kohn-Sham density functional theory (KS-DFT) can be considered as an improvement 

of the HF theory, since the many-body effect of electron correlation is approximated by a 

functional of the electron density.3 As the KS-DFT approach requires the spatial density 

profiles but not the radial site-site distribution functions, the 3D RISM method which yields 

the 3D correlation profiles of solvents is more suited for combining with the KS-DFT 

approach in a self-consistent description of the electronic structure of solvated molecules.45,48 

In the following, the fundamental aspects of combining 3D RISM with KS-DFT will be 

presented. 

The KS equation of the KS-DFT approach, is used to determine the spin-polarized KS 

molecular orbitals { ( )}a

 r , represented in terms of the spatial electronic coordinates r 45,48 

 
,

v
ˆ[ ( )] ( ) ( )KS

a a a a ah        r r r   (3.1.4) 

where 
,ˆKS

ah 
 is the single-particle KS Hamiltonian of the solute molecule,{ }a

  denote the 

eigenvalues of the KS orbitals, and v ( )r  is the solvent electrostatic potential acting on the 

KS orbitals. Solving the KS-DFT equation Eq. (3.1.4) yields the solute charge density u( )n r  

which includes both the contribution from electrons and nuclei. 

At the level of 3D RISM theory, the interaction energy between the QM solute and the 

solvent molecule needs to be calculated as in Eq. (2.4.16). It consists of two parts, the short-

range interaction modeled by the LJ potential uLJ between the solute nuclei and the solvent 

site as the expression in Eq. (2.4.10), and the long-range electrostatic interaction uC evaluated 

by solute potential u ( ) r  acting on the solvent charge density v ( ) ( )n q gr r . Here 
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u ( ) r  can be derived from the charge density of the QM solute u( )n r obtained from KS-DFT. 

To this end, the general form of the electrostatic interaction between the QM solute and the 

solvent molecules can be written in terms of the charge densities un  and vn  

 
C C

u v( ) ( ) ( )u n f n d dr r r r r r ,  (3.1.5) 

where 
C 1 /f r  is the Coulomb kernel. From Eq. (3.1.5), the solute and solvent electrostatic 

potentials u  and v  can be defined as: 

 

C

u u

C

v v

f n

f n





 

 
  (3.1.6) 

Eq. (3.1.5) connects the charge density un  of the QM solute obtained from KS-DFT and the 

solvent charge density vn  evaluated by 3D RISM, so that their determination can be carried 

out by combining KS-DFT with 3D RISM in a self-consistent manner.  

Figure 3.1.1 illustrates the self-consistency cycle of the hybrid method of 3D RISM with 

KS-DFT. Starting with the solutions of the KS equation of the molecular solute in the gas 

phase without the solvent potential term in Eq. (3.1.4), the initial solute charge density un  is 

determined and transferred to the 3D RISM solver. The converged 3D RISM calculation 

yields the solvent distribution g as well as the solvent potential v , Eq. (3.1.6). With the 

solvent potential v  present, the KS equation, Eq. (3.1.4), is solved for the electronic 

structure of the solute as well as the charge density un of the solvated solute. Repeating this 

process until the DFT calculation converges to yield the solute electronic structure, perturbed 

by the solvent medium, and the solvent structure in the presence of a QM solute. 

 

Figure 3.1.1: Flow chart of the self-consistency cycle of the hybrid 3D RISM DFT method.
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3.2. Interfacing a 3D RISM Solvent and a DFT Solute 

The self-consistent combination of the 3D RISM with KS-DFT involves a two-phase 

implementation that implies a) updating the solvent distribution in the electrostatic field of 

the solute charge density and b) a KS-DFT calculation in the mean field of the solvent 

distribution that determines the electronic structure and the electron charge distribution of the 

solute. This section describes details of the implementation of these two aspects. 

 Numerical Solution of the 3D RISM Equations 

The non-linear equations of 3D RISM requires an iterative solution. The solving procedure of 

3D RISM with a QM description for the solute is conducted analogously to the case of a MM 

representation.45,48 The QM solute affects the solvent medium via an electrostatic potential 

acting on the charged solvent sites (Section 3.1.2). The following discussion therefore briefly 

introduces the numerical solution of the 3D RISM equation of which the original 

implementation was contributed by A.V. Matveev based on the earlier studies and the 

refinements were conducted in the context of this thesis.65,106  The modification to the solvent-

solute interaction due to the presence of a QM solute will then be presented in the subsequent 

section.  

The elements of the correction function matrices in the non-linear equations (2.4.14-

2.4.15) are central for this. For the sake of brevity the subscripts are omitted and one sets  = 1 

in the closure relation. Then the non-linear system of equations reads  

 
( ).

h c

c f u h c

 


   
  (3.2.1) 

The solute-solvent interaction potential u and the solvent susceptibility χ are calculated 

externally and thus act as “constants” in Eq. (3.2.1). As the two unknown sets of variables h 

and c appear both in the non-linear functional f of the closure relation in Eq. (3.2.1), it is 

numerically advantageous to operate with a single set of unknowns defined as 

 t h c    (3.2.2) 

t  is called the indirect correlation function.107 The closure relation in Eq. (3.2.1) is then 

reformulated as a functional C(t) 

 ( ) ( )C t c f u t t   (3.2.3) 

With Eq. (3.2.3) the non-linear equations system of Eq. (3.2.1) is transformed into a non-

linear functional T(t) 

 ( ) ( 1) ( )T t t C t      (3.2.4) 
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Solving Eq. (3.2.4) yields t and, together with Eqs. (3.2.2-3.2.3), h and c can be obtained. A 

naive solution of Eq. (3.2.4) can be achieved by searching for a fix point of the simple iterative 

scheme 1 ( )n nt T t . However, this is not the most efficient approach as it tends to diverge 

for the highly non-linear closure relations defined in Eq. (2.4.17). Instead, a better choice is 

to solve the reduced non-linear problem 

 ( ) ( ) 0F t T t t   (3.2.5) 

using a Newton-Krylov non-linear solver included in the Portable, Extensible Toolkit for 

Scientific Computation (PETSc) library.108 With that solver the solution of Eq. (3.2.5) is 

achieved by iteratively searching t via 

 
1

( ) ( );

,

n n n

n n n

J t t F t

t t t

  

  
  (3.2.6) 

where J(t) denotes the corresponding Jacobian of F(t). Also note that in practice the indirect 

correlation function t is represented as a vector on a 3D uniform grid so that it is enormously 

expensive to compute and store all elements of the Jacobian matrix. It is therefore 

advantageous to provide the Jacobian as an analytical matrix-free linear operator J = δF / δt 

defined by its action on an arbitrary vector δt 

 
[ ( ) ]

[( 1) ( ) ]

( 1)

J t F

T t t

C t t

C t

 



 

  

 

 

   

   

.  (3.2.7) 

Indeed, the expression in Eq. (3.2.7) containing the response δC = (δC / δt) * δt as an 

intermediate provides a more intuitive and straightforward way for computing the operator 

result  J * δt. The convolution operations in Eqs. (3.2.4) and (3.2.7) are carried out using the 

fast Fourier transformation109 according to the convolution theorem. To this end, the 

calculation of T(t) in Eq. (3.2.4) is transformed as 

 
 

3 3 3 3

1

3 3

[ ( )] [( 1) ( )] ( 1) [ ( )];

( ) [ ( )] ,

T t C t C t

T t T t

 



    



F F F F

F F
  (3.2.8) 

where 3
F  denotes the three-dimensional Fourier transformation operator and 1

3

F  its inverse. 

The solvent susceptibility χ, one of the two “constants” χ and u in the non-linear equations 

system, Eq. (3.2.1), can be obtained by solving the 1D RISM equations (2.4.8-2.4.9) with a 

similar approach as described above. The interaction u between solute and solvent defined by 

the pair-wise potential as in Eq. (2.4.10) requires a special treatment due to the long-range 

nature of the electrostatic potential. According the scheme proposed by Ng,110 the long-range 
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asymptote Lu  of the interaction potential is separated from the indirect correlation t  as well 

as Lu  from the direct correlation c. The operator T(t) in Eq. (3.2.4) is then adapted to act 

primarily with the short-range counterparts Su , Sc , and St  

 
S S S L L

S

( ) ( 1) ( )

( 1) c

T t c u u

 

    

   
,  (3.2.9) 

with S S S S S S( ) ( )c C t f u t t      and the constant “renormalization” term L.u    The 

corresponding non-linear functional in Eq. (3.2.5) is transformed to 

 
S S S

S S

( ) ( )

[( 1) ]

S SF t T t t

c t 

 

    
  (3.2.10) 

Eqs. (3.2.10) and (3.2.11) have essentially the same functional form as Eqs. (3.2.4) and 

(3.2.5), albeit with a “constant” addition   in the non-linear functional. While this constant 

term does not affect the form of Jacobian, it depends on the form of Lu , which also 

determines the direct correlation L Lc u   and the indirect correlation L Lt u  at long 

distances. The asymptotic form of Lu  must therefore be chosen sufficiently smooth to be 

represented by a truncated Fourier expansion with known coefficients, thus avoiding a 

numerically problematic fast Fourier transforms of these terms. 

In the atomic charge representation of the solute, the long-range behavior of the Coulomb 

interaction Cu  in Eq. (2.4.10) is separated into two components with the Ewald summation 

scheme111 

 C C C C C

S L S L( ) ( ) ( ) ( ) ( )i iu r u r u r q q af ar q q af ar     ,  (3.2.11) 

using the Ewald range parameter a = 1.2 Å–1. The functions C

Sf  and C

Lf  are defined via the 

error function 

 

C

L

C

S

erf ( )
( )

1 erf ( ) erfc( )
( )

r
f r

r

r r
f r

r r




 

  (3.2.12) 

The potential kernel C

Sf  is singular short-range and C

Lf  is regular long-range, so that the 

separation of the long-range asymptote Lu  from the interaction u  can be written as 

 LJ C C

S L S L( )u u u u u u       (3.2.13) 

 Solution of the 3D RISM Equations in the Presence of a QM Solute 

The Coulomb kernel 
Cf  in Eq. (3.1.5) needs to be adapted due to the presence of the QM 
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solute. Compared to the site atomic charge representation of molecular solute in 

MM/3D RISM, the solute charge density un  of a QM solute is the sum of the distributed 

electron density en  and a localized core density nn  

 u e n( ) ( ) ( )n r n r n r  .  (3.2.14) 

Here nn  represents the atomic nuclei or effective core charges and can be approximated by 

Dirac-δ functions 

 n ( ) ( )i i

i

n r z r r    (3.2.15) 

Here iz  is the positive (effective) core charge of atomic nucleus i. In practice, when 

evaluating the Coulomb potential, a more stable procedure results by “broadening” the core 

charges in the form of a Gaussian kernel p of scale parameter η 

 

3

2 2( ) exp( )p r r





 
  
 

  (3.2.16) 

This yields the broadened core density nn  
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   (3.2.17) 

Then the solute electrostatic potential u , Eq. (3.1.6) can be expressed as 

 C C

u u e n n n( ) { ( ) ( ) [ ( ) ( )]}f n r f n r n r n r n r         ,  (3.2.18) 

where the effects caused by broadening the singular core charges needs to be evaluated with

C

n n( )f n n  . The contributions of the electrons C

ef n  and the broadened core charges 

C

nf n  are both long-range. With the latter term 
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  (3.2.19) 

the contribution of 
C

n n( )f n n   yields a short-range expression 
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  (3.2.20) 
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When inserting Eqs. (3.2.19) and (3.2.20) into Eq. (3.2.18), the solute electrostatic potential 

u  can be written as 

 C C C

u e L n S nf n f n f n       .  (3.2.21) 

In this way, the separation of long-range asymptote Lu  required to solve the 3D RISM 

equation as described in Section 3.2.1 also applies in the presence of a QM solute. Lu  is 

calculated by applying the long-range part of u , which is C C

e L nf n f n   , with the solvent 

charge density v gn q g
  . The short-range part Su  is computed in similar fashion as in 

Eq. (3.2.13), hence by evaluating the explicit expression at each point with the short-range 

potential C

S nf n  defined in Eq. (3.2.20) and the LJ potential. Here the LJ field takes the 

coordinates of the solute nuclei as the superposition of solute site in Eq. (2.4.10). 

In this way, the 3D RISM equations can be solved in the presence of a QM description 

of the solute following strategies discussed in Section 3.2.1. The corresponding solvent 

electrostatic potential v  can then be obtained and transferred to the DFT program ParaGauss, 

in which it is included in the Hamiltonian when solving the KS equation, Eq. (3.1.4). In the 

implementation of this thesis, the solvent electrostatic potential v  and that of the solute u  

are calculated by the Poisson equation using fast Fourier transform techniques with periodic 

boundary conditions; for details, see Section 3.4.1. 

Figure 3.2.1 summarizes the procedure of solving the 3D RISM equations with the 

effective core charges and electron density representation of the solute, as described in 

Sections 3.2.1-3.2.2. Each step depicted in Fig. 3.2.1 represents the name of the relevant 

implementation module. The short-range potential LJu , C

Su  and the long-range part C

Lu  are 

evaluated by the module solute_field, the solvent susceptibility χ is pre-processed by the 

module solvent_kernel. Then the non-linear functional T(t) is constructed within the 

module iterator_T and passed to the non-linear equation solver snes_solver for solving 

Eq. (3.2.6). Once the solution of the non-linear equations is converged, the solvent 

electrostatic potential v  is evaluated, ready to be passed on to ParaGauss. 
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Figure 3.2.1. The flow chart of solving 3D RISM with a QM solute. The names of the various 

implementation modules are also shown. 

 Implementation in ParaGauss with 3D RISM Solvent 

The non-linear equation solver in 3D RISM uses vector data types which are of the form 

Vec[1:Ni][1:Nj][1:Nk] and distributed over the available computing nodes in parallel 

program runs to represent the 3D vector on a uniform Cartesian grid. Here Ni, Nj and Nk are 

the numbers of the grid points in each dimension labelled by the indices i, j and k. To pass 

the value of the electron density en  from ParaGauss to the 3D RISM solver in a convenient 
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fashion, and to return the value of the solvent potential filed v  from the 3D RISM solver to 

ParaGauss, a grid mapping scheme is used for transforming the coordinate vector in 3D RISM 

to a two-dimensional array in ParaGauss and vice versa 

 RISM i j k PG ijkr [1:N ][1:N ][1:N ] r [1:3,1:N ]   (3.2.22) 

where Nijk=Ni× Nj× Nk is the total number of grid points. The operation with the grid points is 

performed in serial batches. Each batch has the size no larger than the memory cache pre-

defined in ParaGauss, thus the additional memory consumption for direct storing the 

large-size 3D RISM vectors is avoided when running ParaGauss. 

With the transformed coordinates, the electron density of the solute molecule can be 

calculated by the following summation over the KS molecular orbitals { ( )}a

 r
4,112 

 
2

e ( ) ( )a

a

n 



r r   (3.2.23) 

The procedure for calculating the electron density is implemented as the function density in 

the RISM solvent module of ParaGauss, and the relevant pseudo code is presented in 

Scheme 3.2.1. 

 

    do while (get_gridpoints) 

       do i = 1, nportion 

          gridpoints unit conversion 

       end do 

       call orbital_calculate  

       call density_calculate 

       sum the total density 

       move to next batch 

    end do 

Scheme 3.2.1. Pseudo code for calculating the electron density. 

As for the solvent potential v  transferred from the 3D RISM solver to ParaGauss, the 

contribution to the KS Hamiltonian is evaluated in the latter code by the integral over the 

MOs. Its matrix form read as3,4 

 solv va a

a

 



    V   (3.2.24) 

The integration is implemented in the subroutine integrate, and its main loop structure is 

shown in Scheme 3.2.2. With the solvent contribution included, the SCF calculation is carried 
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out to obtain an updated electronic structure of the solute system. Thus, the new electron 

density en  is updated and transferred to the 3D RISM solver. 

 

    do while (get r and V from batch) 

      do i = 1, n 

        r(i, :) and V(i) units conversion 

      end do 

      call orbital_calculate  

      do i = 1, n_irrep ! loop over irreps 

        do j = 1, partners(i) ! loop partners 

          do k = 1, dims(i) 

            work array: |V|j> 

          end do 

          call dgemm to calculate <i|V|j> 

        end do ! end loop over partners 

      end do ! end loop over irreps 

    end do ! end loop to get values 

Scheme 3.2.2. Pseudo code for calculating the integral of the solvent potential over the MOs. 
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3.3. Free Energy Functional 

 A Simple Linear Model  

Before introducing the functionals which are used when calculating the free energy with the 

hybrid QM+RISM approach, this section analyzes the solvation energy contribution to the 

total free energy with a simple linear model originally suggested by A.V. Matveev.65 Based 

on the following discussions, approximative expressions for the free energy functional will 

be derived in the next section.  

For simplicity, assume a model that is characterized by a single degree of freedom d, e.g. 

the dipole moment. Minimization of the energy expression, for a > 0,  

 2

0[ ] ( ) / 2e d a d d    (3.3.1) 

leads to a “permanent” dipole moment 0d . The response to an additional electric field, 

e fd   , results in 1

0d d a f   and suggests identifying a–1 as the “polarizability” of the 

system. The simple expression for the solvation energy of a rigid dipole, 

 2

*[ ] ( ) / 2d b d d    ,  (3.3.2) 

is sufficiently flexible for parametrizing the electric cavity reaction field *[ ] /f d d     to 

have a linear form with some generally non-vanishing intercept * *[0]f bd  . Embedding a 

frozen system (with 0d  in the “gas phase”) into a solvent leads to the solvation energy 

 2

0 0 *[ ] ( ) / 2d b d d    .  (3.3.3) 

Minimizing the sum [ ] [ ] [ ]G d e d d   results in to a new minimum at 

 0 *
1

ad bd
d

a b





  (3.3.4) 

assuming 0 < b < a. Finally, one obtains the energy  

 

2

2

1 0 *
[ ] ( )

2

a b
e d d d

a b
 



 
  

,  (3.3.5) 

the “solvation” energy  

 

2

2

1 0 *
[ ] ( )

2

b a
d d d

a b
   



 
  

,  (3.3.6) 

and the total free energy  

 
2

1 0 *
[ ] ( )

2( )

ab
G d d d

a b
  


  (3.3.7) 
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Assuming 0 < b < a, the ratio of the changes in the energy defined in Eq. (3.3.5) and the 

“solvation” energy defined in Eq. (3.3.6) 

 
1 0

1 0

[ ] [ ]
(2 / )

[ ] [ ]

d d
b a

e d e d

 
  


  (3.3.8) 

has a value between −2 and −1, independent of the system parameters 0d  and *d . Naturally 

only the ratio of b / a, defining the scale of the two contributions, matters for this result. The 

relaxation effect of the free energy,  

 

2

2

1 0 0 *
[ ] [ ] ( )

2( )

b
G d G d d d

a b
   


  (3.3.9) 

is 2( )b , compared to 0[ ]G d  which is ( )b .  

Previously, Sato et al.113 demonstrated that the ratio in Eq. (3.3.8) is equal to –2 in the 

linear-response electrostatic limit. This result is confirmed by the present linear model in the 

limit b → 0. This limit has to be carried out with care, e.g. by setting b = ε and * * /d f    

with ε → 0, so that * *bd f const   . By discarding from μ[d] and G[d] divergent terms 

independent of d, one obtains 

 

2

*

1 0
[ ] [ ]

2

f
G d G d

a
    (3.3.10) 

Thus, the relaxation effect of the free energy is constant when the ratio, Eq. (3.3.8), of the two 

contributions to this form of the relaxation energy is exactly –2. 

 Expressions for the Free Energy Functional 

In electronic DFT, the ground state of the electronic structure of a solute in the gas phase is 

determined by minimizing the KS energy functional with respect to the KS orbitals in 

agreement with the Hohenberg-Kohn theorem,114 which states that the energy functional is 

uniquely determined by the ground state electron density.2-4 In the following, for brevity, the 

energy is expressed as a functional u[ ]E n  of the solute charge density un , whereas (0)

un  

denotes the solute charge density in the ground state. The free energy expression in the self-

consistent field (SCF) QM+RISM model is assumed to be obtained from the free energy 

functional 

 SCF u u u[ ] [ ] [ ]G G n E n n   ,  (3.3.11) 
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with the minimization of the self-consistent solution given for un . This self-consistent model 

will denoted as “SCF”. With the unperturbed charge density  for the solute in the  

gas-phase, Eq. (3.3.11) leads to the first-order perturbation theory (PT1) expression 

 (0) (0) (0)

PT1 u u u[ ] [ ] [ ]G G n E n n   ,  (3.3.12) 

It will be denoted as “PT1” model. With the force-field treatment, the charge distribution of 

the solute sites evaluates the ground state charge density  with a coarse approximation 

(0)

un . Accordingly, RISM calculations of the excess chemical potential with a discrete force-

field will give the approximation 
(0)

u[ ]n  for the solvation free energy of the solute in the 

solvent medium. The corresponding free energy 

 (0) (0)

MM u u[ ] [ ]G E n n  ,  (3.3.13) 

will be referred as “MM”  model. In the following, it will turn out to be more convenient to 

shift the free energy values by the energy (0)

u[ ]E n  of the solute in the gas phase. The 

corresponding deviations (0)

u[ ]G G E n    of Eqs. (3.3.11-3.3.13) then are 

 (0)

MM u[ ]G n  ,  (3.3.14) 

 (0)

PT1 u[ ]G n  ,  (3.3.15) 

and 

  (0)

SCF u u u[ ] [ ] [ ]G E n E n n      (3.3.16) 

By construction, the solvent reaction field forms an electrostatic potential u u/ n    to be 

added to the effective Kohn-Sham potential. The corresponding electric field leads to a 

redistribution of the electron charge density SCF (0)

u u u .n n n    The difference 

(0)

SCF u u[ ] [ ]E E n E n    in Eq. (3.3.16) thereby arises due to the polarization of the solute 

by the solvent and is always positive for any given un , because un  represents the charge 

density of the solute electronic structure distorted from the minimization in gas-phase. 

In contrast, one always has (0)

u u[ ] [ ]G n G n  so that the SCF relaxation of the excess 

chemical potential (0)

SCF u u[ ] [ ]n n      is necessarily a non-positive value with a 

magnitude larger or equal to that of the polarization energy: SCF SCFE   . From the 

simplified linear model presented in Section 3.3.1, the upper and lower bounds for the ratio 

of the two relaxation terms for the energy functionals E and μ can be predicted as 

SCF SCF2 / 1E      . The lower bound is realized with the limit of a linear μ corresponding 

to a static reaction field. From the application of the organic solutes solvated by water as will 

(0)

un

(0)

un
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be presented in Section 4.3, that ratio is demonstrated quite close to –2. The magnitude of the 

polarization term (1) (0)

u u[ ] [ ]E n E n  is evaluated by applying a static solvent reaction field to 

the QM part. This solvent reaction field reads as (0)

u u[ ] /n n    and can be estimated from 

the force-field solute model. With the approximation (1)

u un n   and the assumption  that the 

two relaxation terms for the energy functionals E and μ have a fixed ratio of –2,21,22,113 the 

solvation free energy functional including an approximate term of second order in the solvent 

reaction field is 

  (1) (0)

PT2 PT1 [ ] [ ]u uG G E n E n       (3.3.17) 

It is referred to as “PT2” model. The result u u/ n    for the reaction field contributes to 

the KS potential as a mean field of the solvent electrostatic potential. This treatment also 

depends on the observation that the expressions of the excess chemical potential, as discussed 

in Section 2.4.5, are path-independent integrals of work,86,98 and on the assumption that the 

electrons interact with the solvent charged sites according to an unscreened Coulomb law.48 

Therefore the PMV correction 
PMV  , as previously suggested in Eq. (2.4.30) in Section 

2.4.6, can be added as an empirical post-SCF term instead of being part of the self-consistent 

expression, Eq. (3.3.11). This post-SCF treatment is also based on the observation that the 

molar volume Vu of the solute is almost independent of the various options to approximate the 

solute charge density un ; this will be demonstrated in Section 4.3. 
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3.4. Numerical Aspects 

 Solving the Poisson Equation with FFT 

In the following we denote the charge density n(r) and the electrostatic potential ϕ(r) 

represented on a 3D Cartesian grid with a grid spacing of h = L / N as 

 ( ) ( , , ) ( , , )

( ) ( , , ) ( , , )

n n x y z n i j k

x y z i j k  

 

 

r

r
  (3.4.1) 

To this end, i = x / h, j = y / h, and k = z / h denote the grid indices along the x, y, and z-axis. 

The Poisson equation can be expressed as 

 
2

2
( , , ) 4 ( , , )

n
i j k n i j k

L
      (3.4.2) 

When applying the Fourier transformation to n and ϕ, one obtains  

 
2 2

3 32

4
( ) ( )n

L


 

k
F F  (3.4.3) 

with 
2 2 2 2k k kx y z  k  being the square summation of the wavenumbers in k-space. After 

applying the inverse Fourier transformation to 3( )nF  and dividing by the normalization factor 

N3, ϕ is conveniently calculated from Eq. (3.4.3) by the FFTW3 implementation: 

 
2

1 1 3
3 3 33 3 2 2

1 1 ( )
[ ( )] [ ]

4

L n

N N
 



  
k

F
F F F   (3.4.4) 

Table 3.4.1. Excess chemical potentials calculated by 3D RISM, with the long-range 

Coulomb potential expressed analytically and obtained by solving the Poisson equation with 

FFT.a 

Solvent model Analytical FFT 

Two-point chargeb 16.29 16.29 

PR-SPC/E waterc –6.32 –6.31 

a Energies in kcal/mol. b Pseudo solvent model with point charge 0.1 e and –0.1 e on two sites. 

c Ref. 115. 

 To validate the electrostatic potential obtained from Eq. (3.4.4) with the 3D RISM 

formalism, the excess chemical potentials calculated from this latter intermediate are 

compared to those obtained from the analytical expression of the Coulomb potential. Table 

3.4.1 shows the results of a pseudo solvent model with point charges 0.1 e and –0.1 e on the 

two sites and those from the PR-SPC/E water model.115 As can be seen, for the pseudo two-

point charge model, the analytical and FFT treatments yield nearly identical results. When the 

water model is applied, the excess chemical potentials resulting from these two treatments 
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only differs by 0.01 kcal/mol. This comparison shows that the electrostatic potential from 

solving the Poisson equation with FFT yields the same results as when directly applying the 

analytical expression of the Coulomb potential. The FFT treatments is comparatively efficient 

as it allows for the direct usage of the solute charge density obtained from the DFT calculation. 

In contrast to that, the analytical expression needs to be tabulated on a real-space grid using 

the effective solute site charges. For a solute with a QM description its effective site charges 

are usually fitted from the population analysis,3,4 with which additional evaluations of the 

charge fitting procedure may be required.6,105 

 Evaluating the Electrostatic Interaction in QM+RISM 

From Eqs. (3.1.5) and (3.1.6), one obtains 

 
C

u v( ) ( )u n d  r r r   (3.4.5) 

for the electrostatic interaction between the solute in a QM description and the solvent 

determined by 3D RISM. Calculating the integral in Eq. (3.4.5) yields the electrostatic 

interaction between the solute in a DFT description and the solvent environment determined 

by 3D RISM. On the one hand, this calculation can be done within the DFT program package 

ParaGauss, by forming a trace of the product of the density matrix with the matrix 

representation of the solvent potential and including the contribution arising from the nuclei. 

This result is labeled as C

QMu . Alternatively, the results can also be obtained by integrating 

the solvent electrostatic potential over the diffuse charge density of the solute, which, as 

described in Section 3.2.2, includes the electron density and the broadened core charge density. 

This latter approach yields the long-range contribution CL

RISMu . The short-range part CS

RISMu  in 

turn needs to be estimated with the analytical expression of the electrostatic kernel in Eq. 

(3.2.20) to compensate the broadened core charges. Given the different implementation details 

in ParaGauss and the 3D RISM solver, it is necessary to compare the value of 
Cu  which can 

be calculated either way. The main goal of this comparison consists in validating the transfer 

of the solute charge density and the solvent electrostatic potential between the ParaGauss 

program and the 3D RISM solver via the grid mapping scheme (Section 3.2.3) 

In Table. 3.4.2 the electrostatic interactions calculated between water as solvent described 

by the TIP3P model76,115 with different solute molecules are presented. The values in the 

second column exactly match those in the first column. Thus the electrostatic interaction 

between solute and solvent is described essentially identical by ParaGauss and 3D RISM. 

Therefore, the transfer of the electron density and the solvent potential through the interface 

between 3D RISM and ParaGauss in the hybrid approach does not result in any loss of 
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accuracy. Besides, when comparing analogous values in the first and third columns one 

notices that by integrating only the “diffuse” part of charge density with the solvent potential, 

the electrostatic interactions are overestimated by nearly 20%. Thus, the compensation of the 

broadened core charges is indeed necessary. 

Table 3.4.2. Electrostatic interaction calculated in ParaGauss and in the 3D RISM solver.a 

Solute 
C

QMu  CL CS

RISM RISMu u  CL

RISMu  CS

RISMu  

Methanol –13.65 –13.65 –15.95 2.30 

Formic acid –14.31 –14.31 –17.03 2.72 

Formaldehyde –9.04 –9.04 –10.91 1.87 

a Energies in kcal/mol. Computational details and parameters for the solute can be found in 

Section 4.1 

 Convergence of 3D RISM with Grid Settings 

Table 3.4.3. Convergence of the excess chemical potential with respect to the grid settings, 

obtained in 3D RISM calculations of a pure solvent. N is the number of grid points in each of 

the three dimensions, L the length of the cubic cell.a  

 L 

N 20 25 30 35 

128 –5.79 –5.81 –5.84 –5.83 

160 –5.78 –5.82 –5.84 –5.83 

192 –5.78 –5.82 –5.84 –5.85 

224 –5.79 –5.82 –5.84 –5.85 

a Energies in kcal/mol. Length in Å. TIP3P water was used.76,115 

Before using the hybrid approach in actual applications the convergence of the excess 

chemical potential was also examined with regard to the grid settings. The results were 

obtained with 3D RISM pure solvent calculation using the TIP3P water model76,115 and are 

shown in Table 3.4.3. Apparently, for a given size of the cubic unit cell, the reduction of the 

grid step, hence increasing the number of grid points from N = 128 to N = 224 in each 

dimension, yields only a slight change of at most 0.02 kcal/mol. The results are more sensitive 

to an increase of the cubic cell size from L = 20 Å to L = 35 Å, which may be due to the long-

range interactions. However, even the difference between the smallest cubic cell (L = 20 Å) 

and the largest one (L = 35 Å) only amount to 0.07 kcal/mol. Therefore, it can be claimed that 

the most efficient grid setting (N = 128, L = 20 Å) in the 3D RISM calculation yields a 

sufficiently high accuracy. This setting is therefore used in the applications discussed in 

Chapter 4. 
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4. Applications 

4.1. General Computational Details 

 RISM Calculations 

All the RISM calculations were carried out for the temperature T = 298 K. For the benchmark 

calculations on monatomic alkali and halide ions, the coincident SPC/E water model 

(cSPC/E)116 with σH = 1.1658 Å and εH = 0.01553 kcal/mol was used. The dielectric constant 

of water solvent was set to 78.4 with the corresponding water solvent density ρ = 0.0333295 

Å–3 to be consistent with the reference RISM calculation.88 The force field parameters for 

alkali and halide ions were adopted from reference RISM and MD calculations.88,117 The 

three-dimensional grid for representing the correlation functions was chosen with 4096 grid 

points in each Cartesian direction and a uniform spacing of 0.0390625 Å; this amounts to a 

radial range of 160 Å. In the 3D RISM test calculations, a moderate setting for the grid 

resolution was used, with 643 points in total in a cubic volume of 203 Å3. 

The geometries of 43 neutral organic molecules chosen as solutes in Section 4.3 were 

taken from the database of Mobley et al.118 and the NIST database.119 The LJ parameters and 

the solute site charges were taken from the OPLS-AA force field.120 The TIP3P water model,76 

was used with the modified LJ parameters for hydrogen atoms, σH = 0.4 Å and 

εH = 0.046 kcal/mol, as suggested by Pettitt and Rosky.115 The corresponding water solvent 

particle density was set to ρ = 0.033427745 Å–3, equivalent to 1.0 g/cm3 which slightly differs 

from the parameter chosen for the initial benchmark calculations but is more commonly used 

in other 3D RISM studies.35,47,121,122 A uniform grid with a spacing of 0.15625 Å and 128 grid 

points in each of the three dimensions was chosen to represent the correlation functions. This 

amounts to a cubic grid of (20 Å)3, consistent with other RISM applications.46,62,123 

Various options of the uranyl force-field models were examined in the application of 

uranyl solvation. First force-field parameters as suggested by Guilbaud and Wipff (GW)124 

were chosen and the results were compared to those of models developed by Maginn et al. 

(RM12 and PM13),125,126 see Table 4.1.1. Recently, Kerisit and Liu modified the parameters 

of the GW model to strengthen the uranyl–water interaction.127 For their models KL1 and 

KL2 they reported improved values for the hydration free energy and the water exchange rates 

of the uranyl aqua complex. Therefore, in this thesis the results of KL1 and KL2 models were 

also compared with those obtained with the GW, RM12, and PM13 variants. For the water 

solvent, the atomic charges and LJ potential parameters of the extended simple point charge 
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model SPC/E78 were adopted. While the original SPC/E water model does not contain a 

repulsive potential for hydrogen atoms, a LJ-type potential for hydrogen atoms is necessary 

in RISM calculations to avoid numerical singularities. In their early study, Pettitt and Rosky115 

introduced a parameter set with σ = 0.4 Å and ε = 0.046 kcal/mol (PR-SPC/E). Sato and 

Hirata128 adopted the parameters for the hydrogen atom as σ = 1.0 Å and ε = 0.05455 kcal/mol 

(SH-SPC/E). Table 4.1.2 summarizes the details of these three popular modified water 

models. The PR-SPC/E and KL2 models for water and uranyl, respectively, were applied in 

the 3D RISM study of uranyl solvation reported later on. 

In the RISM applications of uranyl solvation, the same dielectric constant and number 

density of water solvent were employed as in the benchmark calculations of monatomic akali 

and halide ions. The grid setting in 1D RISM was kept the same and the solvent susceptibility 

was determined from the pure water site-site RISM equation by Newton iterations with a 

convergence tolerance of 10–14 for the L2 norm of the indirect correlation matrix. The discrete 

sine transform was applied for the Fourier transformation when calculating convolution 

integrals in 1D RISM.109 The grid setting was slightly refined for the 3D RISM applications, 

in which the 3D domain was represented by a cubic cell of 203 Å3, a Cartesian grid with 963 

points, and a resolution of 0.208 Å. The radial grid used to precompute and interpolate the 

solvent susceptibility and its contractions with the Coulomb kernel was chosen with a radial 

range of 40 Å and 1536 points corresponding to a resolution of about 0.026 Å.  

Table 4.1.1. Lennard–Jones interaction parameters of uranyl: σ (Å), ε (kcal/mol), and atomic 

charge q (e). 

Uranyl model σU εU qU σO εO qO 

GW 2.8152 0.4 2.5 3.1181 0.2 −0.25 

RM12 3.3334 0.0268 2.5 2.8344 0.4290 −0.25 

PM13 2.95 0.1266 2.5 3.83 0.0136 −0.25 

KL1 2.8509 0.12 3.25 3.1181 0.2 −0.625 

KL2 2.8152 0.3 3.5 3.1181 0.2 −0.75 

The geometry optimizations for the applications on uranyl solvation have been carried 

out using the BFGS method as implemented in the utility package ParaTools.129,130 During 

the QM calculations, the U–O bonds were relaxed under C8h symmetry constraints. In the MM 

and MM+RISM calculations uranyl was kept rigid, however. Motivated by earlier results, the 

U–O distances were fixed to 176 pm in the RISM calculations of the bare uranyl ion.125,126 In 

MM+RISM geometry optimizations of uranyl aqua complexes 2+

2 2[UO (H O) ]n
, the uranyl 
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bonds were fixed to 178 pm for n = 4 and n = 5, and set to 177 pm for n = 6. These choices 

for the fixed uranyl bond lengths are consistent with results of previous studies.131-133 

However, for a study of the water exchange with the MM+RISM approach, a flexible uranyl 

model without symmetry constraints was adopted and compared to two sets of intramolecular 

parameters127,134 from the results of unconstrained QM+RISM calculations. The two uranyl 

force field models employed differ only by the uranyl equilibrium bond length and the force 

constants for stretching and bending modes. The SPC/E geometry of explicit water ligands in 

the aqua complexes 2+

2 2[UO (H O) ]n
 with n = 4–6, features an O–H distance of 100 pm and 

an H–O–H angle of 109.47°. 

Table 4.1.2. Lennard–Jones interaction parameters of water: σ (Å), ε (kcal/mol), and atomic 

charge q (e). 

Water model    σO εO qO σH εH qH 

SH-SPC/E 3.1656 0.1553 −0.8476 1.0 0.0545 0.4238 

PR-SPC/E 3.1656 0.1553 −0.8476 0.4 0.046 0.4238 

cSPC/E 3.1656 0.1553 −0.8476 1.1658 0.01553 0.4238 

In the application with acetonitrile as solvent (Section 4.5), the LJ parameters and the 

solvent site charges were taken from a new six-site acetonitrile model.135 The dielectric 

constant of acetonitrile solvent was set to its experimental value ε = 36,136 with a 

corresponding solvent number density ρ = 0.033427745 Å–3.35,47,120,121 The LJ parameter for 

the H,C,N and O sites in the Ru-pyridine complex were selected from the OPLS-AA force 

field,120 by referring to the pyridine group and formic acid group. For the ruthenium atom, we 

applied the parameters of a recent molecular dynamic study of Ru-pyridine in water.137 To 

represent the correlation functions in this case a uniform grid with a spacing of 0.15625 Å and 

96 grid points in each of the three Cartesian directions was chosen. This amounts to a cubic 

grid extending over a spatial volume of (32 Å)3, which, due to the large size of the Ru-pyridine 

complex catalysts, is more than 50% larger than the previous 3D RISM applications. 
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 QM Calculations 

For the uranyl solvation applications, all-electron calculations were carried out with the linear 

combination of Gaussian-type orbitals fitting-functions (LCGTO-FF) density functional 

method138 as implemented in the parallel code ParaGauss.66 The second-order Douglas–

Kroll–Hess all-electron scalar-relativistic approach139 was used to account for relativistic 

effects in the electronic structure of the actinide compound.140 The gradient-corrected 

exchange-correlation functional (generalized gradient approximation, GGA)2,141 was chosen 

as suggested by Becke and Perdew (BP).142,143 The Kohn–Sham orbitals were represented by 

flexible Gaussian-type basis sets, which were contracted in a generalized fashion using atomic 

eigenvectors. Basis sets and further computational details are the same as in earlier studies on 

uranyl(VI) species.131,144-146 For U, a basis set of the size (24s, 19p, 16d, 11f) contracted to 

[10s, 7p, 7d, 4f] was used, while O and H atoms were described by standard basis sets 

featuring the contractions (9s, 5p, 1d) → [5s, 4p, 1d] and (6s, 1p) → [4s, 1p], respectively. 

Atomic eigenvectors were employed to construct the general contractions for the calculation 

of the Hartree potential in ParaGauss.147 The electronic density is approximately represented 

by a set of fitting functions.138,148 The s- and r2 exponents of this set of fitting functions were 

determined from a subset of the s- and p-orbital exponents scaled by a factor of 2; the fit basis 

was augmented by sets of five p- and d-type “polarization” exponents,148, chosen as geometric 

series with factors of 2.5, starting at 0.1 and 0.2 au, respectively. 

For the application addressing 43 neutral solutes in Section 4.3, the GGA exchange-

correlation functional suggested by Perdew, Burke and Ernzerhof (PBE) was used.143,149 The 

CRENBL effective core potential (ECP),150-153 which entails an orbital basis with a large-core 

ECP was employed, together with the Coulomb fitting basis set developed by Ahlrichs and 

coworkers.154,155 

For the QM calculations carried out with ParaGauss in Sections 4.3 and 4.4, the COSMO 

PCM solvation model was used for comparison,69 with the cavity defined via an effective 

solvent radius of 1.4 Å and van der Waals radii of solute atoms as tabulated by Bondi156 and 

scaled by 1.125 (except for hydrogen). The cavity tessellation with the FIXPVA 

approach146,157 (fixed points with variable areas) was employed to obtain numerically stable 

energies and forces.146 

For the application of CO2 conversion in acetonitrile solvent, the geometries and 

electronic energies for the species in the previous DFT study158 were used as calculated with 

the conductor-like polarizable continuum model (CPCM).159 For the underlying electronic 

structure calculations the Gaussian 03 program package160 and the B3LYP142,161 hybrid 

functional in the unrestricted KS formalism were applied on geometries obtained in the 
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preceding study of Damianos et al.158 For the Ru atom, the Stuttgart-Dresden effective core 

potential MWB28 ECP162 was employed and for the lighter atoms H,C,N and O the 6-

31G(d,p) basis set was used. Additional charge analyses for all species were carried out by 

the natural population analysis (NPA); these atomic charges were later used later on in the 3D 

RISM calculations. 
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4.2. Monoatomic Ions Test 

To evaluate the RISM approach implemented in the framework of this thesis, the recently 

reported 1D RISM results88 for the solvation of alkali and halide ions were reproduced by 

applying the cSPC/E water model. As shown in Table 4.2.1, the results for the excess chemical 

potential of simple ions as obtained with 1D RISM in the context of this thesis agree well with 

the reported values and are also comparable to the results from MD calculations with SPC/E 

water as well as those from experiments.163 The most significant technical difference to 

Ref. 88 is the choice of a smaller radial range, 160 Å (819 Å in Ref. 88), and a somewhat 

coarser grid spacing, 0.0390625 Å (0.025 Å in Ref. 88). With the moderate grid setting 

described in Section 4.1.1 the 3D RISM results match the 1D cases within 0.2 kcal/mol at 

most (Table 4.2.1). 

Table 4.2.1. Solvation energies (excess chemical potentials) for alkali metal and halide ions 

in water by 1D and 3D RISM approaches with the cSPC/E model.a 

 Li+ Na+ K+ Cl− Br− I− 

1D KHb −108.5 −85.0 −68.5 −78.5 −72.6 −63.1 

3D KHb –108.5 –85.0 –68.5 –78.4 –72.5 –62.9 

1D KHc −108.3 −85.0 −68.6 −78.1 −72.2 −62.7 

1D HNCb −111.7 −86.3 −69.3 −79.9 −74.2 −64.9 

3D HNCb –111.7 –86.3 –69.3 –79.8 –74.1 –64.7 

1D HNCc −111.4 −86.2 −69.4 −79.5 −73.7 −64.5 

1D KH+PMVd −108.5 −87.2 −73.0 −85.1 −80.5 −73.4 

1D HNC+PMVd −110.3 −87.4 −72.7 −84.8 −80.0 −72.8 

MDe −113.3 −88.4 −71.0 −89.3 −82.7 −74.4 

Expf −113.8 −88.7 −71.2 −89.1 −82.7 −74.3 

a MD results and experimental values are also shown. Energies in kcal/mol. b This work. c 

Ref. 88. d This work, with partial molar volume correction as in Ref. 164; see Section 2.4.6.  

e MD with SPC/E water from Ref. 117.  f Ref. 163. 

The excess chemical potential is insensitive to the specific value of the radial range. With 

the radial range set to 320 Å and 80 Å while keeping the same grid spacing, the excess 

chemical potential changes by 0.01 kcal at most. In contrast, explicit solvent models may 

require a size-dependent correction.165,166 The RISM model predicts a double charge layer 

around a neutral ion leading to a finite electrostatic cavity potential of 10–14 kcal/(mol∙e) 

depending on the size of the ion and the dispersion parameters. This is comparable to estimates 
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from MD for the jump of the vacuum–liquid interfacial potential167 and about half of the value 

for an orientationally disordered liquid,166 which in explicit methods are highly sensitive to 

the Coulomb summation scheme. 

Overall the HNC closure relation yields slightly better results than the KH closure as 

compared to MD and experimental reference data. Compared to experiments, the RISM model 

underestimates the magnitude of the solvation free energies of cations by a few percent only 

and the results for anions are slightly worse. The difference results in part directly from the 

RISM approximation and in part from the difference in LJ parameters of the hydrogen centers 

of water. Another intrinsic problem of the RISM approach is that it overestimates the cavity 

formation energy which may be approximated as the solvation energy of the uncharged solute. 

For larger anions the cavity formation energy amounts to 14–19 kcal/mol whereas the MD 

suggests smaller values of ~7 kcal/mol.88,168 Although this error is notable for neutral solutes, 

it is less important for ions where the electrostatic contribution dominates. This holds even 

more so for the uranyl di-cation. To some extent this overestimation may be compensated by 

a correction proportional to the molar volume of the solute;164 see the calculations with the 

PMV corrections in Table 4.2.1.The more pronounced compensation effects of the PMV 

corrections for neutral solutes will be discussed in Section 4.3.  
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4.3. 3D RISM Combined with a QM Description of the Solute 

 Introduction 

Following the discussions in Section 3.3 it can be anticipated from the free energy functionals 

that two main factors determine the solvent effect in the free energy calculations when 

combining QM calculation with RISM. These are the contributions of the solute electronic 

relaxation and the excess chemical potential.5 As discussed in Section 2.4.6, the excess 

chemical potential calculated from 3D RISM is well known5 to overestimate the energy 

required for the formation of the solute cavity. Thus 3D RISM poorly predicts the 

thermodynamics of hydrophobic hydration of neutral solutes.169 To overcome this weakness, 

several correction schemes have been proposed for the solvation free energy, including the 

repulsive bridge correction (RBC),5,169 the cavity formation energy correction,6,62 and the 

partial molar volume (PMV) correction;61,63,64 see Section 2.4.6. Thus far, these correction 

methods have mainly been applied in MM-RISM calculations, in which a static electronic 

structure of the solute is implied. Yet, the energy due to the electronic relaxation of the solute 

is always found significant in the case of SCF-RISM and PCM calculations.6,170 The change 

of the solvation free energy due to solute polarization is known to be almost proportional to 

this term,6,113 but so far the influence of the solute polarization on the accuracy of the solvation 

free energy from SCF-RISM calculations has not been studied in detail. 

Therefore, in the following, the accuracy of the solvation free energy in hybrid QM RISM 

calculations will be examined for a test set of 43 neutral organic solute molecules in aqueous 

solution. This test set comprises hydrocarbon chains and aromatic rings, as well as various 

organic molecules with functional groups. A list of all species can be found in Figure 4.3.1. 

The effect of solute electronic relaxation is explored in stepwise fashion following the free 

energy functionals in Section 3.3. Starting from MM-RISM as a reference, the polarization of 

the solute in the solvent medium is then introduced by applying first- and second-order 

perturbation theory, labeled as PT1-RISM and PT2-RISM, respectively, and finally in terms 

of the full SCF-RISM relaxation. For all method variants, the performance of a recently 

reported PMV correction63 is examined with its absence and presence in the solvation free 

energy. These results are compared to those from PCM calculations and to experimental 

measurements, to analyze the accuracy the RISM approach. 
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Figure 4.3.1. 43 compounds, categorized in seven groups, that were examined as solutes. 
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Table 4.3.1. Experimental solvation free energies (kcal/mol) and the corresponding values calculated with PCM and 3D RISM using various methods. 

Results without and with PMV corrections are shown.a  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a ΔG represents the solvation free energy, in which the subscripts MM, PT1, PT2, and SCF denotes the results calculated with MM-, PT1-, PT2- and 

SCF-RISM models, respectively, and the superscript PMV denotes the results corrected by the PMV correction. PCM and experimental results are 

labeled as ΔGPCM and ΔGExp. For PT2- and SCF-RISM models the solute relaxation energies due to the solvent medium are labeled as ΔEPT2 and 

ΔESCF, respectively.   

Solute 
MM

G   
PMV

MM
G  

PT1
G  

PMV

PT1
G  

PT2
E  

PT2
G   

PMV

PT2
G  

SCF
E  

SCF
G  

PMV

SCF
G  

PCM
G  Exp

G  

methanol 2.77 -5.89 2.66 -5.90 1.72 0.94 -7.62 2.46 0.70 -7.77 -5.42 -5.11 

ethanol 6.17 -6.10 7.12 -5.02 2.14 4.98 -7.16 2.67 5.07 -7.00 -4.26 -5.00 

1-propanol 11.36 -4.35 11.95 -3.71 1.72 10.22 -5.43 2.32 10.15 -5.44 -2.61 -4.83 

1-butanol 14.79 -4.25 15.72 -3.25 1.92 13.79 -5.17 2.47 13.82 -5.07 -1.47 -4.72 

1-pentanol 19.32 -3.44 20.10 -2.60 1.89 18.22 -4.48 2.52 18.17 -4.45 -0.28 -4.52 

formaldehyde 4.17 -3.71 4.97 -2.87 1.58 3.4 -4.45 2.31 3.34 -4.46 -3.76 -2.76 

acetaldehyde 8.19 -3.12 8.40 -2.90 1.60 6.8 -4.5 2.92 6.43 -4.84 -3.34 -3.51 

propanal 12.45 -2.30 12.53 -2.23 1.49 11.04 -3.72 2.77 10.64 -4.10 -2.17 -3.44 

butanal 16.51 -1.67 16.64 -1.55 1.48 15.16 -3.03 2.74 14.77 -3.40 -1.00 -3.18 

pentanal 20.69 -1.19 21.19 -0.73 1.62 19.58 -2.35 2.93 19.24 -2.68 0.14 -3.03 

formic acid 3.51 -4.98 0.87 -7.46 1.17 -0.29 -8.62 2.19 -0.87 -9.07 -7.41 -6.99 

acetic acid 7.29 -4.60 4.14 -7.63 1.20 2.94 -8.83 2.67 2.09 -9.57 -6.61 -6.70 

propanoic acid 10.99 -4.46 7.61 -7.11 1.24 6.37 -8.34 2.87 5.44 -9.19 -6.02 -6.48 

butanoic acid 15.86 -3.04 12.73 -6.10 1.14 11.59 -7.25 2.72 10.66 -8.09 -4.39 -6.38 

pentanoic acid 20.30 -2.37 17.26 -5.34 1.19 16.07 -6.53 2.70 15.19 -7.30 -2.91 -6.20 

methylamine 3.87 -5.34 2.13 -7.00 1.92 0.2 -8.93 3.74 -0.64 -9.64 -4.76 -4.55 

ethylamine 8.19 -4.47 7.00 -5.60 1.94 5.06 -7.55 3.82 4.24 -8.24 -3.47 -4.50 

propan-1-amine 12.21 -3.92 11.09 -5.00 1.95 9.14 -6.95 3.88 8.30 -7.68 -2.37 -4.39 



 4.3. 3D RISM Combined with a QM Description of the Solute

    

51 

 

Table 4.3.1 (continued). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Solute 
MM

G   
PMV

MM
G  

PT1
G  

PMV

PT1
G  

PT2
E  

PT2
G   

PMV

PT2
G  

SCF
E  

SCF
G  

PMV

SCF
G  

PCM
G  Exp

G  

butan-1-amine 16.15 -3.48 15.24 -4.35 2.04 13.2 -6.4 4.05 12.36 -7.11 -1.17 -4.24 

pentan-1-amine 20.47 -2.74 19.54 -3.66 2.02 17.52 -5.67 4.02 16.67 -6.40 -0.02 -4.09 

methanethiol 10.23 -0.26 8.84 -1.54 0.69 8.16 -2.23 1.53 7.72 -2.54 -3.30 -1.24 

ethanethiol 14.27 0.28 13.23 -0.68 0.76 12.47 -1.43 1.63 12.06 -1.72 -2.06 -1.14 

propan-1-thiol 18.55 1.10 17.26 -0.14 0.67 16.59 -0.81 1.56 16.13 -1.14 -0.89 -1.06 

butan-1-thiol 22.36 1.45 21.71 0.83 0.78 20.93 0.05 1.61 20.58 -0.19 0.57 -0.99 

benzenethiol 21.24 0.53 20.03 -0.47 0.61 19.42 -1.07 1.31 19.03 -1.31 -2.70 -2.55 

benzene 17.89 0.04 18.97 2.22 0.53 18.44 0.73 0.31 18.71 1.02 0.36 -0.86 

pyridine 13.86 -2.94 13.86 -3.85 1.74 12.12 -4.63 4.00 11.39 -5.35 -3.11 -4.69 

phenylmethanol 17.62 -4.86 18.32 -3.98 1.80 16.52 -5.79 2.48 16.39 -5.82 -3.00 -6.62 

benzaldehyde 18.77 -2.68 19.29 -2.09 1.41 17.88 -3.5 3.37 17.17 -4.20 -2.57 -4.02 

thiophene 15.77 -0.03 16.28 0.58 0.42 15.86 0.16 0.26 16.06 0.37 -1.70 -1.42 

phenol 13.82 -4.91 14.62 -3.90 1.76 12.87 -5.65 1.95 13.08 -5.32 -4.60 -6.61 

chlorobenzene 21.51 1.29 21.68 1.52 0.28 21.4 1.24 0.29 21.44 1.30 0.11 -1.12 

2-chlorophenol 19.01 -2.18 19.38 -1.68 1.09 18.29 -2.77 1.20 18.45 -2.56 -2.88 -4.55 

3-chlorophenol 17.05 -4.09 17.47 -3.49 1.56 15.91 -5.04 1.72 16.08 -4.75 -4.68 -6.62 

4-chlorophenol 16.89 -4.24 17.25 -3.70 1.62 15.63 -5.32 1.85 15.77 -5.05 -5.02 -7.03 

fluoroethane 12.23 0.23 11.89 -0.11 0.48 11.41 -0.59 0.86 11.21 -0.78 -0.82 -0.40 

chloroethane 14.20 0.70 14.30 0.81 0.39 13.91 0.42 0.50 13.91 0.43 -0.39 -0.63 

bromoethane 14.35 0.46 13.29 -0.46 0.48 12.81 -0.94 0.82 12.67 -1.05 -0.41 -0.74 

iodoethane 16.29 1.32 15.82 0.87 0.23 15.6 0.64 0.31 15.58 0.64 -1.57 -0.74 

1,1-dichloroethane 17.87 1.87 16.83 0.89 0.16 16.67 0.73 0.43 16.48 0.58 -1.01 -0.84 

1,2-dichloroethane 14.61 -1.34 15.45 -0.45 0.95 14.49 -1.41 1.00 14.66 -1.17 -3.09 -1.79 

1,1,1-trichloroethane 20.15 1.67 20.27 1.79 0.23 20.04 1.56 0.22 20.08 1.62 0.17 -0.19 

1,1,2-trichloroethane 18.28 -0.18 18.30 -0.09 0.73 17.57 -0.82 0.89 17.59 -0.71 -3.27 -1.99 
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 Asymptotic Analysis of the Cavity Formation Energy 

The expressions of Eqs. (2.4.25) to (2.4.26) for the excess chemical potential in combination 

with the linear convolution relation h=c*χ between the total and direct correlation functions 

h and c, lead to seriously overestimated cavity formation energies.64,103 The possible reason 

can be attributed to the contribution of the |h|2 term to the integral in the low-solvent-density 

region where h ≈ –1, while natively omitting this term as in the GF functional, Eq. (2.4.26), 

can yield problematic results for polar solute.5 Indeed, by assuming a simple liquid exposed 

to a potential which is sufficiently repulsive within an extended volume V0 and approximating 

h ≈ –1 and c ≈ –z–1 within that volume, one obtains the excess chemical potential as 

 1

0( 1) / 2V z    .  (4.3.1) 

To this end, one uses the convolution relation and the short-hand notation z = ρκ / β for the 

compressibility factor.  

Water is nearly incompressible with the compressibility factor z ≈ 1 / 15.8 at normal 

conditions.171 With the KH closure and a modified TIP3P water model,76,115 both 1D and 3D 

RISM theories yield a comparable value of about z = 1/15. The asymptotic RISM expression 

for the formation energy of the solute cavity therefore suggests that the energy 

1 1( 1) / 2 5a z      kcal/mol is required to displace each of ρV0 water solvent molecules 

when forming the cavity at normal conditions. This asymptotic behavior is far too 

hydrophobic in comparison to the correct asymptote 0pV   and the corresponding rate 

a = p / ρ which amounts to 0.4×10–3 kcal/mol per displaced water molecule. Because of this 

low pre-factor, for many chemical applications the water surface tension of 104×10–3 

kcal/mol/Å2 is significantly more important for medium-sized cavities of nanosized solutes.172 

Nevertheless, the large error of the RISM expression for the chemical potential cannot be 

ignored in practice. 

The erroneous behavior of Eq. (4.3.1) likely arises from the fact that this method also 

relies on the solvent susceptibility χ for the (dense) liquid water inside the cavity where the 

solvent density is in fact vanishingly small. When one substitutes the compressibility factor 

in Eq. (4.3.1) by its low-density (ideal gas) limit z = 1, the RISM asymptotic expression 

acquires the correct form 0 0/V pV    . 

With regard to the PMV correction expression, Eq. (2.4.30), the correction coefficient a 

proposed by Sergiievskyi et al.63 may alternatively be expressed via the solvent 

compressibility factor 
1( 1) / 2a z    . An extension of the asymptotic analysis for simple 
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liquids to the PMV correction shows that it cancels the main term 1

0( ) / 2z V   of the 

asymptotic 3D RISM error in the excess chemical potential for nearly incompressible liquids 

with 1z   when u 0V V  . Therefore, another value for the correction coefficient a  

from a recent work,61 
1( 1) / 2a z    , can also be derived from the asymptotic analysis 

for simple liquids via Eq. (4.3.1), by assuming u 0V V  and neglecting the pressure term. 

 Force Field Solute Model: MM-RISM 

The theory of 3D RISM was originally based on pair-wise interactions between solute and 

solvent sites.5 Thus the analysis of this application starts with a MM-RISM model using the 

LJ parameters and the site charges from a well-tested standard force-field for organic solutes 

in water.76,115,120 Similar to other studies,47,63,64,169 the solvation free energies for 43 neutral 

organic solutes calculated with MM-RISM are significantly overestimating experiment 

(Table 4.3.2). Without the PMV correction, the correlation coefficient r between MM-RISM 

and experimental values is only 0.30. The dimensionless PMV factor ρVu ranges from about 

1.9 to 5.5 for the 43 solutes examined. The error grows with the (dimensionless) molar volume 

at a rate of 5a   kcal/mol as estimated in Section 4.3.2. As a consequence the product of a 

and ρVu dominates the energy of the relatively weak solvation of these organic molecules, 

ranging from −7 kcal/mol to ~0 kcal/mol.118,173 The correlation of the calculated solvation 

energies with experiment is poor. The calculated values are overestimated by 18 kcal/mol on 

average; see the mean absolute deviation (MAD) between MM-RISM and experimental 

values in Table 4.4.2. With the PMV correction applied, the quality of the linear correlation 

between MM-RISM and experiments improves significantly with a correlation coefficient of 

r = 0.88* (Table 4.3.2) and MAD = 1.57 kcal/mol (Table 4.3.3). 

The effect of the PMV correction is confirmed by Figure 4.3.2a, which depicts an obvious 

linear correlation of the deviation from the experiment and the solute molar volume. 

Table 4.3.4 provides the parameters of the linear regression between the calculated 

(dimensionless) partial molar volume ρVu and the difference ∆2G between the calculated and 

the experimentally measured solvation free energies. According to this regression, the 

coefficient of determination of the linear fit of the uncorrected results is R2 = 0.97. The linear 

correlation between ρVu and the remaining error ∆2G is significantly weakened to R2 = 0.37 

                                                 

*  In the correlation analysis both quantities are independent random variables (e.g. computed energy vs. 

experimental energy). Their relation is investigated in terms of the correlation coefficient r. In regression analysis 

one quantity is an independent random variable while the other random variable depends on it, e.g. ∆2G vs. ρVu 

as will be shown in the following. In this case the coefficient of determination R2 is used to evaluate the linear 

fit; see Ref. 174.  
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after applying the PMV correction (Table 4.3.4). This reduction indicates that not the cavity 

formation error but other factors affect the overall accuracy of the solvation free energy in 3D 

RISM most. The remaining correlation of the corrected results with PMV manifests itself in 

the slope Aʹ = 0.66 kcal/mol (Table 4.3.4), which may be rationalized with the accuracy of the 

universal correction coefficient, Eq. (2.4.12). This is can be confirmed by the fitted slope of 

the uncorrected error A = 4.88 kcal/mol (Table 4.3.4) which is somewhat higher than the 

magnitude of the universal correction coefficient a = –4.22 kcal/mol. As suggested in Ref. 63, 

the latter is derived from the solvent properties.

Table 4.3.2. Matrix of correlation coefficients r of solvation free energies, calculateda with 

variants of 3D RISM and PCM as well as from experiment.b Values are given both without 

(uncorr.) and with (corr.) a PMV correction. 

 Method MM PT1 PT2 SCF PCM Exp. 

uncorr. MM 1.00 0.98 0.98 0.97 0.67 0.30 

 PT1  1.00 1.00 0.99 0.71 0.33 

 PT2   1.00 1.00 0.72 0.40 

 SCF    1.00 0.72 0.41 

 PCM     1.00 0.73 

corr. MM 1.00 0.90 0.93 0.90 0.70 0.88 

 PT1  1.00 0.99 0.99 0.78 0.88 

 PT2   1.00 1.00 0.73 0.89 

 SCF    1.00 0.71 0.86 

a This work. b Refs. 118,173. The corresponding energy values are listed in Table 4.3.1  

Table 4.3.3. Matrix of mean absolute deviations MAD of solvation free energies (kcal/mol), 

calculateda with variants of 3D RISM and PCM as well as from experiment.b Values are given 

both without (uncorr.) and with (corr.) a PMV correction. 

 uncorr.     corr.  

Model A B R2 MAD  Aˊ R2 

MM 4.88 -1.22 0.97 0.73  0.66 0.37 

PT1 5.12 -2.49 0.97 0.72  0.91 0.51 

PT2 5.09 -3.59 0.94 1.03  0.87 0.33 

SCF 5.13 -3.97 0.92 1.24  0.92 0.27 

a This work. b Refs. 118,173. The corresponding energy values are listed in Table 4.3.1 
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Figure 4.3.2．Correlation between the calculated solute partial molar volume ρVu and the 

difference Δ2G of the computed and the experimental solvation free energies. Results are 

shown for four approaches to the solute-solvent interactions: a) MM, b) PT1, c) PT2, and d) 

SCF. Gray squares represent uncorrected results, white circles designate PMV-corrected 

results. For both datasets a linear regression line is shown. 
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Table 4.3.4. Partial molar volume V scaled by the solvent number density ρ and the dipole 

moment of the solute calculated with various methods.a  

 ρV    Dipole     

 Solute MM PT1/2 SCF  MM PT1 PT2 SCF PCM 

methanol 2.05 2.03 2.01  0.48 0.42 0.54 0.56 0.51 

ethanol 2.91 2.88 2.86  0.50 0.39 0.54 0.55 0.50 

1-propanol 3.73 3.71 3.70  0.49 0.43 0.57 0.59 0.53 

1-butanol 4.52 4.50 4.48  0.49 0.39 0.56 0.58 0.52 

1-pentanol 5.40 5.38 5.37  0.49 0.40 0.57 0.59 0.52 

formaldehyde 1.87 1.86 1.85  0.56 0.52 0.67 0.71 0.66 

acetaldehyde 2.68 2.68 2.67  0.59 0.58 0.77 0.84 0.77 

propanal 3.50 3.50 3.50  0.59 0.60 0.78 0.85 0.78 

butanal 4.31 4.32 4.31  0.59 0.61 0.80 0.87 0.79 

pentanal 5.19 5.20 5.20  0.59 0.57 0.77 0.85 0.78 

formic acid 2.01 1.98 1.94  0.30 0.27 0.36 0.38 0.35 

acetic acid 2.82 2.79 2.77  0.28 0.34 0.43 0.49 0.45 

propanoic acid 3.66 3.49 3.47  0.28 0.34 0.42 0.49 0.43 

butanoic acid 4.48 4.47 4.45  0.27 0.39 0.47 0.55 0.48 

pentanoic acid 5.38 5.36 5.34  0.28 0.38 0.47 0.55 0.48 

methylamine 2.19 2.17 2.14  0.38 0.37 0.49 0.54 0.46 

ethylamine 3.00 2.99 2.96  0.38 0.36 0.50 0.55 0.46 

propan-1-amine 3.83 3.82 3.79  0.38 0.37 0.52 0.57 0.48 

butan-1-amine 4.66 4.65 4.62  0.38 0.36 0.51 0.56 0.47 

pentan-1-amine 5.51 5.50 5.47  0.38 0.37 0.52 0.57 0.48 

methanethiol 2.49 2.46 2.43  0.42 0.38 0.50 0.54 0.50 

ethanethiol 3.32 3.30 3.27  0.43 0.38 0.51 0.56 0.52 

propan-1-thiol 4.14 4.13 4.93  0.43 0.39 0.52 0.57 0.52 

butan-1-thiol 4.96 4.95 4.10  0.43 0.36 0.51 0.55 0.51 

benzenethiol 4.91 4.86 4.83  0.30 0.27 0.36 0.41 0.38 

benzene 4.23 4.20 4.20  0.00 0.00 0.00 0.00 0.00 

pyridine 3.99 3.97 3.97  0.50 0.52 0.74 0.85 0.74 

phenylmethanol 5.33 5.29 5.27  0.48 0.49 0.63 0.68 0.59 

benzaldehyde 5.09 5.07 5.07  0.53 0.74 0.91 1.14 1.02 

thiophene 3.75 3.72 3.72  0.30 0.09 0.19 0.11 0.12 

phenol 4.44 4.39 4.36  0.45 0.33 0.48 0.47 0.45 

chloroethane 3.20 3.20 3.20  0.45 0.42 0.53 0.54 0.55 

bromoethane 3.29 3.26 3.25  0.48 0.39 0.52 0.56 0.53 

iodoethane 3.55 3.55 3.54  0.38 0.34 0.44 0.45 0.46 

1,1-dichloroethane 3.79 3.78 3.77  0.31 0.44 0.51 0.56 0.58 

1,2-dichloroethane 3.78 3.77 3.75  0.75 0.60 0.79 0.79 0.82 

1,1,1-trichloroethane 4.38 4.38 4.38  0.47 0.40 0.49 0.49 0.51 

1,1,2-trichloroethane 4.38 4.36 4.34  0.70 0.61 0.77 0.79 0.84 

a The product of ρV is dimensionless, the dipole moment of the solute is in unit of eÅ.   
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 Unperturbed QM Solute Model: PT1-RISM 

In a second step towards self-consistency, the point charge representation of the solute charge 

density is replaced by the QM charge density of the solute in the gas phase. The corresponding 

solvent distribution functions are solutions of the 3D RISM equations with the electrostatic 

field of the unperturbed solute in the gas phase. This new electrostatic field replaces that of 

point charges when defining the interaction potential ( )u r  of the “external” field in the 

closure relations; see the discussions in Section 3.1.2. From the matrix of correlation 

coefficients (Table 4.3.2) one notices that the PT1-RISM and MM-RISM solvation energies 

are strongly correlated with r = 0.98. The corresponding moderate MAD = 0.95 kcal/mol 

(Table 4.3.3) is another indication for the similarity between these computational approaches. 

Therefore, it is also not surprising to find again a weak correlation between uncorrected PT1-

RISM and experimental results which yields r = 0.33 and a MAD of 17.6 kcal/mol (Tables 

4.3.2, 4.3.3). When the PMV correction is introduced, the correlation again significantly 

improves and reaches to r = 0.88 and MAD = 1.40 kcal/mol. The PMV values differ by no 

more than 5% between PT1 and MM. Therefore, the cross correlation of the PMV-corrected 

MM and PT1 solvation energies is nearly as strong as that of the uncorrected variants with 

r = 0.90 and MAD = 0.94 kcal/mol (Tables 4.3.2, 4.3.3). 

Table 4.3.5. Parameters of linear regression, y ≈ Ax + B, between the calculated solute partial 

molar volume measure x = ρVu and the solvation free energy difference y = Δ2G between 

computed and experimental results for four variants of 3D RISM solvation models, without 

and with PMV correction.a 

 uncorr.     corr.  

Model A B R2 MAD  Aˊ R2 

MM 4.88 -1.22 0.97 0.73  0.66 0.37 

PT1 5.12 -2.49 0.97 0.72  0.91 0.51 

PT2 5.09 -3.59 0.94 1.03  0.87 0.33 

SCF 5.13 -3.97 0.92 1.24  0.92 0.27 

a Slope A, Aˊ=A – a, intercept B, and mean average deviation (MAD) in kcal/mol. Intercept B 

and MAD are the same for the uncorrected and the corrected regression models. 

Inspection of the errors in the solvation energy from PT1-RISM calculations in Figure 

4.3.2b suggests a very similar correlation between PMV and the MM-RISM approach. The 

error of the uncorrected solvation free energy correlates linearly with the dimensionless PMV 

with a slope of A = 5.12 kcal/mol, intercept B = –2.49 kcal/mol, and R2 = 0.97 (Table 4.3.4). 

By applying the PMV correction with a = –4.22 kcal/mol, most of the linear correlation is 
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removed and the corresponding measures are reduced to Aʹ = 0.91 kcal/mol and R2 = 0.51 

(Table 4.3.4). A slight growth of the remaining error with the system size (hence measured 

by PMV) can be detected from Figure 4.3.2b despite the scattering due to other factors 

affecting the error. Nevertheless, the error in the formation energy of the solute cavity appears 

to constitute the largest part of the deviation of the solvation free energy from experiment for 

the neutral solutes examined here. 

Some difference between the MM and PT1 approaches is nevertheless to be expected. As 

the electrostatic field derived from the atomic charges of the force-field representation 

represents a relatively crude approximation to the field of the charge distribution of the more 

sophisticated QM model. Figure 4.3.3a provides evidence for this suggestion as it shows the 

relation of the solute dipole moments of the MM and PT1 solute models. The correlation is 

far from ideal with the slope of the linear fit equal to 0.84 and R2 = 0.68. Apparently, there is 

no clear trend regarding the difference between the MM and PT1 approaches. Despite the 

differences of basic electrostatic solute properties in the MM and PT1 approaches, it can be 

concluded that the solvation free energies calculated using these two methods are at the similar 

levels of accuracy. 

 Perturbed QM Solute Model: PT2-RISM 

In both the MM-RISM and PT1-RISM approaches the charge distribution of the solute does 

not adapt to the solvent medium. In either case, the solute is embedded as static species in the 

solvent environment. Then the perturbation of the solute electronic structure due to the 

reaction field of the solvent medium is introduced. However, the solvent field taken from a 

MM-RISM calculation is fixed during the electronic structure calculations. The polarization 

energy δE ≥ 0 of the QM subsystem is then used to estimate the relaxation of the excess 

chemical potential δμ ≈ –2δE and to compute the second-order free energy contribution as in 

Eq. (3.3.17). 

For the systems under study, the polarization due to the reaction field affects the solute 

electronic energies only moderately with δE ≤ 2.1 kcal/mol. Because of the small scale of the 

second-order correction, solvation free energies from PT2-RISM calculations are strongly 

correlated with the MM-RISM and PT1-RISM results, with r = 0.98 and MAD= 1.68 kcal/mol 

as well as r > 0.99 and MAD = 1.22 kcal/mol, respectively (Tables 4.3.2, 4.3.3; without PMV 

correction). Similar as the findings obtained with MM and PT1 methods, the PT2 results 

without PMV correction do not compare well with the experimental results with r = 0.4 and 

a corresponding MAD of 16.4 kcal/mol (Table 4.3.3). The correlation with the experimental 

measurements improves to r = 0.89 and MAD = 1.27 kcal/mol (Tables 4.3.2, 4.3.3) when the 
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PMV correction is applied. These estimates are comparable to those of the MM and PT1 

approaches and better than in the case of the PCM results. Although the magnitude of the 

second-order effect is comparable to the accuracy of the MM and PT1 results, its addition 

does not improve the overall accuracy. This supports the interpretation that other error sources 

dominate the PMV-corrected RISM results. 

 

Figure 4.3.3．Comparison of dipole moment of solutes: a) MM vs. gas phase QM (with a 

linear regression line y = 0.84x + 0.086), b) aqueous phase vs. gas phase for SCF-RISM and 

PCM solvent models. In b), gray square represent PCM results (with a linear regression line 

y = 1.30x + 0.001), and white solid cycles represent SCF-RISM results (with a linear 

regression line y = 1.40x + 0.001). 

The effect of the second-order correction can be examined in Figure 4.3.3c. The 

scattering around the linear regression line slightly increases compared to MM and PT1, 

which is confirmed by a slightly larger MAD from Table 4.3.3. However, on average the 

PMV-corrected results are closer to the base line in Figure 4.3.3c because of the net negative 

shift due to the second-order relaxation term. As discussed above this base line reflects a 

marginally better comparison to experiment. The slope of the regression line for the corrected 

PT2 results is very similar to that of the PT1 results, while the intercept of B = –3.59 kcal/mol 
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is lower by ~2.1 kcal/mol because of the overall negative shift. 

 Self-consistent QM Solute Model: SCF-RISM 

Finally, the relaxation of the solute electron distribution upon self-consistent treatment of the 

solvent distribution is discussed. In contrast to the variants elaborated above, the solvent 

rearrangement is now taken into account. The error in the energy for forming the solute cavity 

leads to a poor correlation with the experiment yielding r = 0.41 and MAD = 16.1 kcal/mol 

(Tables 4.3.2, 4.3.3) for the SCF-RISM solvation energies without PMV corrections. The 

approximations considered in the previous sections strongly correlate with the self-consistent 

approach. The correlation coefficients are r = 0.97, 0.99, and 1.00 for the MM, PT1, and PT2 

methods, respectively (Table 4.3.2). The mean absolute deviations of self-consistent and 

approximate results differ notably and amount to 2.01 kcal/mol, 1.52 kcal/mol, and 

0.37 kcal/mol for MM, PT1, and PT2, respectively (Table 4.3.3). Note that the rough estimate 

of the second-order correction brings the PT2 data closer to the SCF results than the 

corrections due to the two first-order approximations. 

 

Figure 4.3.4．Correlation of two contributions to the relaxation energy δG = δE + δµ from 

the self-consistent treatment of the electronic charge distribution and the solvent charge 

density, with a linear regression line δµ =–1.69 δE – 0.10. 

With the SCF results the assumptions of the previous section can be verified now. For 

nearly all the solutes shown in Figure 4.3.1, the self-consistent approach yields larger solute 

polarization energies δE than the PT2 estimates, which is reflected by a wider range of 
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0 ≤ δE ≤ 4.1 kcal/mol (Figure 4.3.4). The relaxation of the solvent chemical potential δμ is 

indeed strongly correlated with the polarization energy δE. The ratio of the two contributions 

to the relaxation energy estimated from a linear regression is about −1.69, see Figure 4.3.4. 

This value thus falls between the limits of −1 and −2 derived from the simple linear model 

(Section 3.3.1). The mean signed deviation (MSD) of PMV-corrected data shows that the on 

average PT2 model underestimates experiment by −0.16 kcal/mol while the average 

underestimation from SCF results is −0.39 kcal/mol. This indicates that the net effect of the 

self-consistent relaxation is slightly more negative than the second-order correction. 

The PMV correction is hardly affected by a redistribution of the solute charge density in 

response to the solvent field. The effect is below 2% for the 43 solutes studied in this section. 

Therefore, the PMV correction of solvation energies has almost the same effect as for the 

other three approximations. In consequence, the PMV-corrected SCF-RISM results agree 

reasonably well with the experiment; r = 0.86 and MAD = 1.51 kcal/mol (Tables 4.3.2, 4.3.3). 

Judged by these metrics, the SCF-RISM method together with the PMV correction does 

not improve upon PT2 or even PT1 (Tables 4.3.2, 4.3.3). A possible reason may be the 

overestimation of the solute polarization due to the volume charge of the solvent medium, 

because the repulsive exchange interaction between solute and solvent electrons is neglected 

in the SCF-RISM model. An unphysical distortion of the electron cloud by a nearby positive 

charge is known to cause artifacts in hybrid models175 while omission of the exchange 

repulsion in negatively charged model atoms is less critical.176 The solvation energies 

calculated with PT2 and SCF, hence method variants that account for electron polarization 

are on average slightly too negative than the experimental results. This is especially 

pronounced for the self-consistent variant. Figure 4.3.3b compares the dipole moments of the 

solute molecules in an aqueous environment and in the gas phase. It can be seen that the dipole 

moment increases by about 40% on average in SCF-RISM and by only 30% in PCM 

calculations. Note that the latter method also does not explicitly account for exchange 

repulsion. 
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Figure 4.3.5.Radial distribution functions of solvated acetic acid: a) O–HW (carbonyl oxygen 

– water hydrogen) and b) H–OW (hydroxyl hydrogen – water oxygen). Results obtained with 

the MM, PT1 and SCF methods are shown as dotted line, dashed line and solid line, 

respectively. 

This discrepancy of ~10% in the dipole moment between SCF-RISM and PCM 

calculations may be another indication of an overestimated solute polarization in SCF-RISM. 

Related evidence can also be obtained by inspecting radial distribution functions (RDFs). 

Figure 4.3.5 shows the RDFs of the pairs O–HW (carbonyl oxygen – water hydrogen) and H–

OW (hydroxyl hydrogen – water oxygen) of solvated acetic acid. Comparing the results 

obtained from the MM, PT1, and SCF methods, respectively, one notices that the peak of 

positively charged HW around O is significantly increased, by ~50%, when the electronic 

structure of the solute is relaxed self-consistently in the solvent field, while that of the 

negatively charged OW around H increases by less than 10%. These findings agree with results 
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of Du and Wei47 who observed an increase of water hydrogen and oxygen distributions around 

trans-N-methylamine from cycle 0 to cycle 5 during QM/3D RISM-HNC SCF iterations. 

Similarly, an earlier SCF-RISM study by Kawata et al.54 also confirmed an increasing density 

of water hydrogen covalently bonded to the nitrogen center of the amine moiety when the 

electrostatic potential is switched on in a self-consistent treatment. 

The plot of RISM solvation energies in Figure 4.3.2d is similar to that of PT2-RISM in 

Figure 4.4.1c. The magnitude of the residual error, which is unrelated to the PMV factor, is 

slightly larger for SCF-RISM than for PT2-RISM. This is confirmed by the larger MAD from 

the regression line (Table 4.3.4). The correlation of the SCF-RISM error with PMV is still 

obvious with R2 = 0.92 and the fitted slope of A = 5.13 kcal/mol is close to the PT2 and PT1 

results (Table 4.3.4). The PMV correction reduces these measures to R2 = 0.27 and 

Aʹ = 0.92 kcal/mol. The net negative shift due to the self-consistent solute density relaxation 

is slightly larger than for PT2 and the intercept B = –3.97 kcal/mol is the most negative among 

the regression lines of all considered methods. 

 Concluding Remarks 

This application combined a QM description for the solute with a 3D RISM treatment of the 

solvent medium by a series of approximations as well as a fully self-consistent hybrid 

approach. The results of these treatments reveal that the accuracy of the calculated solvation 

free energies is mainly determined by the asymptotic error of the cavity formation energies 

for neutral solutes. Significantly better agreement with experimental results is obtained in 

previous non-hybrid studies61,63,64 by applying the “partial molar volume” (PMV) correction. 

On empirical grounds the certainly useful PMV correction was justified,64 although the 

thermodynamic arguments were disputed later.63,104 Recently, a different pre-factor for PMV 

correction term was advocated.61 This application presents an asymptotic analysis that offers 

an alternative interpretation of the origin of the error. The analysis leads to the same pre-factor 

as used in Ref. 61 for simple liquids, but does not rely on the thermodynamic arguments of 

Ref. 63. 

When comparing approximate methods it is found that the representation of the solute 

charge density by point charges of a force field or by the gas-phase QM electron density leads 

to quite comparable solvation energies. The mean absolute deviations of these variants from 

each other amount to ~1 kcal/mol while these results differ by 1.4–1.6 kcal/mol from the 

experimental measurements. An approximate way to estimate the electron relaxation caused 

by the solvent reaction field and the resulting solvent relaxation energy are also examined. On 

average this approximate approach and the fully self-consistent 3D RISM QM method agree 
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to better than 0.4 kcal/mol. The ratio of the solute polarization and the solvent relaxation 

energies is nearly constant for all solutes studied, but it differs notably from the linear-

response electrostatic limit of −2 (Section 3.3.1). 

Relaxation terms have been suggested to be important for neutral molecules with overall 

rather small solvation energies.6,113 The magnitude of the relaxation terms determined in the 

present context seems to support this argument. Nevertheless, using the approximate second-

order (PT2) method to address the relaxation terms reduces the deviation from the 

experimental reference only slightly, while a self-consistent approach does not have any 

further essential effect. This latter finding may be due to an artificial polarization of the 

electron density by nearby localized positive volume charges of the force-field representation 

of the solvent medium. That effect likely is overestimated in the absence of repulsive 

exchange interactions between solute and solvent electrons. The slight overestimation of the 

induced solute dipole moments in comparison to the PCM approach is indicative for this 

artifact. An increased density of hydrogen and oxygen centers of water molecules around the 

solute in the SCF-RISM also supports this hypothesis. Alternatively, an asymptotic correction 

limited to a term which is strictly proportional to the solute volume may not suffice for 

reducing the intrinsic error of 3D RISM for neutral solutes in water to less than 1–2 kcal/mol. 

A careful analysis of the asymptotic behavior of 3D RISM may offer a more accurate error 

estimate and resolve some of the remaining issues. 
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4.4. Uranyl Solvation by 1D and 3D RISM 

 Introduction 

Understanding the thermodynamic and structural properties of uranium in aqueous solution 

is crucial for modeling processes during geological radioactive waste disposal and recycling 

of used nuclear fuel.177,178 Thus, both experimental and theoretical studies have been carried 

out to elucidate structural and energetic information of the uranyl(VI) cation UO2
2+ which is 

the most common stable oxidation state of this species in aqueous solution.179,180 While in 

experimental studies of uranyl cations researchers have to face the radiotoxicity of uranium, 

theoretical methods, including QM and classical MM simulations, provide alternative ways 

for studying the solvation of such systems with considerable accuracy. Given the difficulties 

of the popular PCM and MD methods discussed in Sections 2.1 and 2.2, RISM approaches 

are regarded as promising direction for studying ions and complexes as well as their chemical 

reactions in aqueous solution with sufficient accuracy at affordable costs. Therefore, in this 

section RISM approaches including both 1D and 3D RISM techniques were applied to the 

solvation of uranyl(VI) in aqueous solution. While the 1D RISM calculations were conducted 

in the context of this thesis, the discussion related to 3D RISM is based on the results reported 

by A.V. Matveev et al..106  

 Calculation of Uranyl Solvation Energy 

Due to the complex models used in this application, the free energy functional in terms of G 

and E described in Section 3.3 needs further refinement to yield the correct solvation energy 

of uranyl in water. Here the solvation energy of uranyl is estimated as 

 2+ 2+

sol 2 2 2 2[UO (H O) ] [H O] [UO ]nG G nG E      (4.4.1) 

for n ≥ 0 explicit aqua ligands. Without proper statistical sampling over the solute degrees of 

freedom this approximation of the solvation energy, while being justified to some extent for 

sufficiently rigid solutes, does not hold for systems with a large number n  of explicit 

water molecules outside of the tightly bound first solvation shell. Indeed, in a hypothetical 

experiment the difference 2 2[(H O) ] [H O]nG nG  for the above definition of G applied to 

water droplets asymptotically approaches 2 2( [H O] [H O])n E G , where E  is the average 

configurational energy of a water molecule. The value of 2 2[(H O) ] [H O]nG nG is about 

−9.9 kcal/mol.78,181 This value is to be compared to the solvation energy of −6.3 kcal/mol 
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derived from the ratio of the equilibrium vapor/liquid concentrations.182 The intramolecular 

energy intraE  of the solute model complex is obtained by substituting E for G in Eq. (4.4.1). 

 Comparison of Water Models 

As a first test, well-established124 and newly developed125-127 empirical force field 

parameterizations for uranyl as well as a suitable water model, solvent structures around the 

bare uranyl ion were inspected with the 1D RISM method and compared with results of MD 

simulations. In this section, the PM13 uranyl model as shown in Table 4.1.1 was chosen to 

explore the performance of the three water models that differ only by the LJ parameters of the 

hydrogen sites, Table 4.1.2. Based on the parameters used in the classical MD calculation of 

Maginn et al.,125 the radial distribution functions (RDFs) of the SPC/E water was reproduced 

for comparison using Gromacs 3.183 The RDFs of the oxygen and hydrogen sites of water 

molecules, OW and HW, around the uranium center and the oxygen sites of the uranyl ion, U 

and O, are shown in Figure 4.4.1.  

When comparing the 1D RISM results with those from MD calculations one notices that 

the RDFs for site pairs carrying charges of opposite sign, i.e. for the pairs U–OW and O–HW, 

show quite similar shapes although the double peak feature of the latter is not resolved in the 

RISM RDF. For the pairs U–HW and O–OW which carry charges of the same sign, the 

differences between MD and 1D RISM models are more pronounced and shared by all three 

water models. From the analysis of the RDF plots it can be concluded that the three variations 

of the SPC/E water model differ slightly in the intensity of the peaks, while the positions do 

not vary much. The positions of the first peaks of the U–OW radial distribution function are 

between 241 pm and 243 pm for the various water models (Table 4.4.1) while the 

corresponding coordination numbers vary from 4.9 to 5.8. The MD reference results provide 

a peak at a slightly longer distance, 246 pm, that integrates to a coordination number of 5.0. 

The excess chemical potential, calculated between −309 kcal/mol and −293 kcal/mol, is 

somewhat higher than the solvation free energy of −332 kcal/mol determined with the MD 

approach (Table 4.4.1). The observation that the 1D RISM model underestimates the solvation 

free energy of uranyl ion by 9–13% is not surprising, given the results and discussions for 

simple ions, Section 4.2.  
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Figure 4.4.1. Radial distribution function of solvated uranyl, calculated with three 

modifications of the SPC/E water model by using 1D RISM method. SPC/E MD results are 

shown for comparison. 
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Table 4.4.1. RISM results for solvated uranyl described by the PM13 force field and various 

water models: coordination number N of the first solvation shell, position of the first peak 

d1(U–OW) (pm), and solvation free energy ∆Gsol (kcal/mol). 

Water model N d1(U–OW) ∆Gsol 

SH-SPC/E 5.8 243 –309 

PR-SPC/E 4.9 241 –293 

cSPC/E 5.8 243 –308 

SPC/E MDa 5.0 246 –332 

a Ref. 125. 

 Comparison of Uranyl Models in 1D RISM 

To compare the performance of 1D RISM for the five uranyl models listed in Table 4.1.1, the 

PR-SPC/E water model (Table 4.1.2) was chosen as it yields a coordination number of 4.9 

which is closest to 5 among all water models studied (Table 4.4.1). As can be seen from Figure 

4.4.2 and Table 4.4.2, the coordination numbers 4.9–5.2 as determined by GW and Maginn’s 

models, RM12 and PM13, deviate from the results of ab-initio MD (AIMD)184,185 quantum 

mechanical charge field MD (QMCF-MD)186 and MM-MD.126,187 The latter three methods 

predict coordination number 5, while the range 4–5 is spanned by experiments of X-ray 

scattering,188 extended X-ray Absorption Fine Structure (EXAFS),189 and high-energy X-ray 

scattering (HEXS).190 The positions of the first U–OW peaks calculated with RM12 and RM13 

vary from 241 pm to 242 pm. These results are close to those of MM-MD calculations126,187 

and experimental values,188-190 while the position of 248 pm obtained with the GW model falls 

in the range of 246–249 pm of AIMD and QMCF-MD calculations.184-186 The variations 

between different uranyl models are not surprising as they were fitted to different 

experimental solvation energies (see below). However, RISM calculations applying these 

models generally show the solvent structure around uranyl ion to be comparable with the 

results of experiments and explicit solvation model simulations.  

The calculated solvation free energies are slightly below the experimental range 

determined with Fourier transform ion cyclotron resonance mass spectrometer (FTICR–

MS).191 On the other hand, Kerisit and Liu intentionally increased the charge separation in the 

uranyl force field to yield solvation free energies of −375 kcal/mol and −380 kcal/mol, which 

fall right into the experimental range.127 A larger charge separation in the models KL1 and 

KL2 leads to stronger uranyl-water interactions which become manifest in shorter U–OW 

bonds and higher RDF peaks (Figure 4.4.2) as well as shell coordination numbers close to 6 
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(Table 4.4.2). The original MD simulation employing the models KL1 and KL2 for uranyl 

predicted the first U–OW peak with a height of about 16 and a coordination number of 5.127 

The U–OW distance of the first RDF peak in the 1D RISM calculations is somewhat shorter 

than in the MD simulation: 232 pm for KL1 RISM and 238 pm for KL2 RISM (Table 4.4.2) 

as compared to 236 pm and 240 pm, respectively, in the MD calculations.127 Despite these 

geometric differences of RISM and MD, the free energy of solvation is well reproduced. MD 

predicted −304 kcal/mol, −371 kcal/mol, and −377 kcal/mol for the models GW, KL1, and 

KL2, respectively,127 the corresponding results of the present RISM approach are −296 

kcal/mol, −375 kcal/mol, and −380 kcal/mol, Table 4.4.2.  

Table 4.4.2. Calculated (1D RISM, MD) and experimental results for uranyl (VI) UO2
2+, 

solvated in water: coordination number N of the first solvation shell, positions (pm) of the 

first, d1 (U–OW), and second, d2 (U–OW), peaks of the radial distribution function, solvation 

free energy ∆Gsol (kcal/mol). 

 Method N d1 (U–OW) d2 (U–OW) ∆Gsol 

Calc. RISM GW 5.2 248 455 −296 

  RM12 5.1 241 448 −305 

  PM13 4.9 241 452 −293 

  KL1 5.8 232 451 −375 

  KL2 6.1 238 452 −380 

 AIMDa 5.0 246 459  

 AIMDb 5.0 248 460  

 QMCF–MDc 5.0 249 430–500  

 MM–MDd 5.0 242 450   

 MM–MDe 5.0 241–245  460  

Exp. X-ray scat.f 4.9 242 446  

 EXAFSg 4.5±0.5 241   

 HEXSh 4.61 242 450  

 FTICR–MSi    –293±5 

 FTICR–MSk    –369±15 

 FTICR–MSl    −437 ÷ −318 

a Ref. 185. b Ref. 184. c Ref. 186. d Ref. 187. e Ref. 126.  f Ref. 188.  g Ref. 189. h Ref. 190. 
i Calculated from hyd absH  = −1345±20 kJ/mol and hyd absS  = −399±5 J/(mol·K) as in 

Ref. 192. k Calculated from 
hydH  = −1665±64 kJ/mol and 

hydS  = −400 J/(mol·K) as in 

Ref. 193. l Calculated from 
fH  = −371±60 kcal/mol for uranyl in the gas phase, from 

Ref. 191, using 
hS  = −78.6 cal/(mol·K) following Ref. 131. 
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Figure 4.4.2. Radial distribution function from 1D RISM calculations applying various force 

field models for uranyl. 

In an AIMD calculation185 and in the classical MD simulations of Keresit und Liu with 

KL1 and KL2127 there is a small peak at 196 pm in the RDF of the O–HW pair that corresponds 

to water molecules which form a hydrogen bond to the terminal oxygen centers of uranyl. The 

results of the RISM calculation with the KL2 uranyl model also show the same small peak, 

albeit at a shorter O–HW separation of 160 pm (Figure 4.4.2). This feature in the RDF was 

already observed in the early work187 when the site charge on the uranium atom was increased 

from 3 e to 6 e. Hagberg et al.194 also stated that in some configurations during their MD 



 4.4. Uranyl Solvation by 1D and 3D RISM

    

71 

 

simulations, there exists a weak hydrogen bond of 200–250 pm in length to the uranyl oxygen. 

In the AIMD simulations, it was observed that such close contacts between uranyl oxygen 

and water with O–HW distances below 200 pm are rarely maintained for longer than a few 

hundred femtoseconds.184 Thus, a corresponding peak is absent in the AIMD RDF. 

Based on the values of solvation free energies of a bare uranyl solute model, which does 

not include explicit aqua ligands in the definition of the solute complex, the uranyl models 

can be roughly divided into two groups regarding to the strength of the uranyl-water 

interactions. The weaker FF group (GW, RM12, PM13) and the stronger FF group (KL1, 

KL2). The latter two uranyl models yield solvation free energies which lie close to the center 

of the interval of the experimental results, Table 4.4.2. However, this improvement of the 

solvation free energy comes at the expense of higher coordination numbers which exceed the 

experimental references, Table 4.4.2. 

One possible reason for the existence of these two classes of models is that the earlier 

force fields were parameterized on older and less negative experimental estimates,  

ΔGsol = −293±5 kcal/mol.192 The largest uncertainty of the uranyl solvation energy, 

−437 kcal/mol  ΔGsol  −318 kcal/mol,131 as well as of the other ΔGsol entries in Table 4.3.2 

is due to the experimental value of the heat of formation of uranyl in the gas phase,  

ΔHf
°  = –371±60 kcal/mol.191 A more recent work provides a narrower interval for that value, 

ΔHf
°  = –364±15 kcal/mol,193 which is close to the estimate, ΔHf

°  = –370±12 kcal/mol, obtained 

by comparing relativistic DFT results with experimental enthalpies of model reactions.144,145 

 Free Energy Minimization for Uranyl Aqua Complexes Using 1D RISM 

More insight into the structure of the first solvation shell and details of the uranyl-water 

interactions can be gained by adding explicit water ligands to the solute model embedded in 

a solvent model described by 1D RISM. Hence the application turned to the standard model 

of uranyl solvation in water where the solute is described as aqua complexes [UO2(H2O)n]
2+ 

with n = 4–6, i.e. the first solvation shell of uranyl is represented by explicitly treated water 

molecules in equatorial positions.69,131,145,184,195-197 For this standard model free energy 

surfaces of uranyl-water complexes in the presence of a 1D RISM water solvent environment 

outside the first solvation shell were computed both with MM and QM methods. The uranyl 

geometry is either fixed (MM, MM+1D RISM) or not (QM, QM+1D RISM, see below) while 

the positions and orientations of the water ligands are always optimized. The results of the 

MM calculations will be discussed first followed by those of QM treatments of the solute, 

embedded in water treated at the 1D RISM level. 
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MM+1D RISM 

Table 4.4.3 lists the intra-molecular energy ΔEintra of the solute and the solvation free energy 

solG  of uranyl, as defined in Section 4.4.2. Both of them were determined for the solvated 

aqua complex [UO2(H2O)5]
2+, using MM+RISM with various uranyl force fields. These 

energies confirm the classification of the uranyl force fields into two groups. The three weaker 

force fields (GW, RM12, PM13) suggest the intra-molecular energy between uranyl and its 

five first shell aqua ligands to lie in the range of −216 kcal/mol  ΔEintra  −210 kcal/mol, 

while the two stronger force fields suggest notably larger ligand binding energies, −268 

kcal/mol (KL1) and −271 kcal/mol (KL2). The solvation free energies correlate with the 

strength of the uranyl-water interactions, Table 4.4.4. A comparison of the corresponding 

rows in Tables 4.4.3 and 4.4.4 also shows that the free energies based on the model with five 

explicit water ligands are by 10–15 kcal/mol lower than those of a bare uranyl model. A part 

of this difference is attributed to the missing statistical average over various accessible 

arrangements of the ligands. 

Table 4.4.3. Properties of solvated uranyl from various force-field models: average uranyl–

water distance, d(U–OW), intra-molecular interaction energy, ΔEintra, between a uranyl ion and 

its water ligands, and solvation free energy, ΔGsol, for [UO2(H2O)5]
2+ calculated with MM+1D 

RISM method.a 

Uranyl model d(U–OW) intraE  solG  

GW 251 −210 −311 

RM12 246 −216 −321 

PM13 247 −212 −309 

KL1 238 −268 −384 

KL2 243 −271 −390 

a Distance in pm, energies in kcal/mol. 

Based on the results in Table 4.4.3 and the discussion in Section 4.4.4, the force field 

KL2 gave reasonable agreement for geometry parameters with experimental measurements 

and favorable solvation energies for the bare uranyl model and the aqua complex model 

[UO2(H2O)5]
2+. Therefore, the further free energy minimizations of the uranyl aqua 

complexes [UO2(H2O)n]
2+ (n = 4–6) was limited to the force field KL2. 

Geometry optimizations of these complexes were carried out in the gas phase at the MM 

level and in solution at the MM+RISM level, both without symmetry constraints. The force 

field optimization in the gas phase led to nearly symmetric structures for n = 4 and 5, see 

Figure 4.4.3. In the case of n = 6 a single water ligand is moved to a position outside the first 



 4.4. Uranyl Solvation by 1D and 3D RISM

    

73 

 

solvation shell: d(U–OW) = 411 pm. The RISM solvent environment was also found to 

compensate the fifth water molecule in the undercoordinated uranyl aqua complex 

[UO2(H2O)4]
2+, which results in the asymmetric structure depicted in Figure 4.4.3a. This 

compensation is also reflected by the average U–OW distance in the first solvation shell. This 

quantity, 239 pm in the gas phase for [UO2(H2O)4]
2+, is shorter than that of 244 pm for 

[UO2(H2O)5]
2+, while in solution it increases to 245 pm and compares well with the result for 

[UO2(H2O)5]
2+ which amounts to 243 pm (Figure 4.4.3a). For [UO2(H2O)6]

2+ a similar 

structure as in the gas phase is obtained, albeit with a considerably longer U–OW distance, 

453 pm, to the second-shell aqua ligand. Free energy values in Table 4.4.4 show that 

embedding into the RISM solvent yields a solvation free energy that is essentially constant 

and thus independent of the number of explicit water ligands. This quantity is again more 

negative by about 10 kcal/mol than the solvation energy of the bare uranyl solvent model, 

Table 4.4.2. 

Table 4.4.4. Calculated properties of solvated uranyl from molecular mechanics calculations 

using n explicit water ligands: average uranyl–water distance, d(U–OW), to the first solvation 

shell, intra-molecular energy, ΔEintra,
a with and without 1D RISM solvent, and solvation free 

energy, ΔGsol.
b 

 N 0 4c 5c 6c 

MM d(U–OW) – 239 244 244 

 ∆Eintra 0 –232 –271 –294 

MM+RISM d(U–W) − 245 243 244 

 ∆Eintra 0 –217 –271 –275 

 ∆Gsol –380 –388 –390 –391 

a Value corresponds to the binding energy of the water ligands in [UO2(H2O)n]
2+, n = 4–6, but 

is identically zero for rigid bare uranyl, n = 0. b Distances in pm, energies in kcal/mol. c For 

the structure, see Figure 4.4.3. 

QM+1D RISM 

The results from calculations with gas phase, PCM, and 1D RISM models for bare uranyl as 

well as systems with 4–6 explicit aqua ligands are compared in Table 4.4.5. The uranyl-water 

interactions described by DFT in the QM, QM+PCM, and QM+1D RISM calculations in 

general are comparable to those obtained from the KL1 and KL2 force field models. The 

typical intra-molecular energy corresponding to the binding of the five ligands of the penta-

aqua uranyl complex, including uranyl relaxation, amounts to about −270 kcal/mol, see Table 

4.4.5. On the other hand, inspection of the attractive branch of the solute-solvent interaction 
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potential as a function of d(U–OW) reveals that it is less steep when calculated with a QM 

method than with the KL2 force field. This inconsistency may partially rationalize why during 

some free energy minimizations with the QM+1D RISM approach without symmetry 

constraints explicit water molecules were found to be replaced by the 1D RISM medium. 

Hence, when comparing QM, QM+PCM, and QM+1D RISM models, symmetric 

conformations of the solute complexes were applied to avoid the substitution effect described 

above. The point group symmetries were assigned as D4h for n = 4, D5h for n = 5, and D3d for 

n = 6. 

 

Figure 4.4.3. Optimized structure of selected local minima of the uranyl aqua complexes 

[UO2(H2O)n]
2+n = 4–6, with (first row) and without (second row) embedding in an aqueous 

solvent medium described by 1D RISM method. U–OW distances (pm) are averaged over the 

solvation shell. 

Table 4.4.5 compares the results of QM, QM+PCM, and QM+1D RISM calculations for 

such symmetric uranyl aqua complexes [UO2(H2O)n]
2+ (n = 4–6) with those obtained for a 

bare uranyl ion as solute (n = 0). In all cases the intra-molecular energies ΔEintra with explicit 

water molecules were found almost independent of the method used to optimize the geometry 

of the solvated complex, as indicated by their deviations 
2

intraE  ≤ 2.2 kcal/mol to the 

analogous quantities for the gas phase. In the case of a bare uranyl solute, ΔEintra corresponds 

to the relaxation energy of uranyl itself. Its change of 6.7 kcal/mol upon solvation as described 

by the 1D RISM approach is larger than for the other complexes. In fact, the U–O bond 

increases from 172 pm in the gas phase to 180 pm in solution, see Table 4.4.5. The explicit 

modeling of the first solvation shell explicitly hardly affects this distance. The terminal 

distance U–O of 181 pm is therefore only 1 pm longer for all n = 4–6 than for the bare uranyl 
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model. The results of the QM+PCM approach are rather different. Here the relaxation of bare 

uranyl due to the medium is much smaller. The energy change is 0.4 kcal/mol with a 

corresponding bond elongation of only ~2 pm. The U–O bond reaches values in the range of 

179–180 pm only when explicit water molecules are introduced in the first solvation shell. 

Another qualitative difference between the QM+PCM and QM+1D RISM results is the 

consistent shortening of the U–OW bonds by 4–6 pm with the QM+PCM approach in 

comparison to the gas phase QM results. This solvent effect is not confirmed by the 

QM+1D RISM results. In this latter case the changes of d(U–OW) due to solvation are found 

between −1 pm and +4 pm, see Table 4.4.5. The relatively long U–OW bonds of the 1D RISM 

models may tentatively be rationalized by an increased first shell coordination of uranyl due 

to a 1D RISM solvent contribution in addition to the explicit aqua ligands. This effect 

manifests itself as a peak in the U–OW radial distribution function. 

While most experimental studies reported the number of water ligands bound to UO2
2+ 

cation in aqueous solution to vary between 4 and 5,188-190 most computational results suggest 

five-coordinated uranyl to be the dominating species.132,133,195,197 

Neglecting the small differences due to relaxation, the binding energy intraE  varies by 

about −26 kcal/mol when going from n = 4 to n = 5 and by another −19 kcal/mol when going 

to n = 6 (QM results). Therefore it is not useful to compare the stability of these conformations 

in solution. However, the solvation free energy of uranyl for various conformations of the first 

solvation shell shows quite a different trend when being estimated with complexes 

[UO2(H2O)n]
2+ with n = 4–6. According to QM+PCM and QM+1D RISM calculations, the 

five-coordinated uranyl complex is the most stable conformation with ΔGsol = −426 kcal/mol 

(QM+PCM) and ΔGsol = −390 kcal/mol (QM+1D RISM). The latter value is close to the 

center of the experimental range of results, from −437 kcal/mol to −318 kcal/mol, while the 

former is closer to its lower bound. Apart from the difference in magnitude, there is also a 

qualitative difference between QM+PCM and QM+1D RISM results for the relative stability 

of the four-, five-, and six-coordinated conformations. The QM+PCM model predicts the four-

coordinated and six-coordinated complexes to be less stable than the five-coordinated one by 

10 kcal/mol and 1 kcal/mol, respectively (Table 4.4.5). The relative order is opposite at the 

QM+1D RISM level, the four-coordinated complex is only by about 1 kcal/mol less stable 

than the five-coordinated one while the six-coordinated complex lies by about 6 kcal/mol 

higher in energy, see Table 4.4.5. It is not surprising that the free solvation energies at the 

QM+1D RISM and the MM+1D RISM levels agree very well for comparable structures 

(Table 4.4.4 and 4.4.5), because the KL2 force field was parameterized to yield nearly the 

same intra-molecular energies as the results from QM calculations for the uranyl aqua 
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complex models.127  

Table 4.4.5. Calculated properties of solvated uranyl from QM calculations, either pure or 

with 1D RISM solvent models: uranyl bond length, d(U–O), uranyl–water distance, d(U–OW), 

intra-molecular energy, ΔEintra,
a its changes due to the solvent environment, Δ2Eintra, and the 

solvation free energy, ΔGsol, of uranyl.b 

 n 0 4c 5c 6c 

QM d(U–O) 172 177 177 178 

 d(U–OW) – 242 249 253 

 
intraE  0 –244 –270 –289 

QM+PCM d(U–O) 174 179 179 180 

 d(U–OW) – 237 243 249 

 2

intraE  0.4 1.1 1.3 2.0 

 
solG  –322 –416 –426 –425 

QM+RISM d(U–O) 180 181 181 181 

 d(U–OW) – 246 248 254 

 2

intraE  6.7 2.2 1.1 2.2 

 
solG  –379 –388 –390 –384 

a Value corresponds to the binding energy of the water ligands in [UO2(H2O)n]
2+, n = 4–6, but 

is identically zero for rigid bare uranyl, n = 0. b Bond lengths in pm, energies in kcal/mol. 

Uranyl aqua complexes [UO2(H2O)n]
2+ (n = 4–6), and a bare uranyl (n = 0) treated by QM 

while interactions with the PR-SPC/E water solvent are described by the KL2 force field. c 

Symmetry constraints (see text), D4h for n = 4, D5h for n = 5, and D3d for n = 6. 

While most quantities in QM+1D RISM calculations are rather independent of the 

number of aqua ligands, the U–OW distances to the explicit aqua ligands increase from 246 pm 

(n = 4) to 254 pm (n = 6); see Table 4.4.5. These values of d(U–OW) are larger than the results 

of QM+PCM calculations and the experimental results of 241–242 pm (Table 4.4.5). This 

overestimation is due to the effectively higher coordination of uranyl in the QM+1D RISM 

model. Besides the explicit aqua ligands, also 1D RISM water contributes to the first shell 

coordination of uranyl and these additional contributions lead to effective coordination 

numbers of 5.8 (n = 4), 6.2 (n = 5), and 6.9 (n = 6). 
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Table 4.4.6. Propertiesa of solvated uranyl, modeled as [UO2(H2O)5]
2+ (with two 

exceptionsb,c) calculated by combinations of QM and 1D RISM as well as various solvation 

models: uranyl bond length d(U– O), uranyl–water distance d(U–OW), solvation energy ΔGsol 

of uranyl, reaction energy ΔGR for adding an explicit water ligand to the tetra-coordinated 

complex, Eq. (4.4.2). Experimental values shown for comparison.  

Method d(U–O) d(U–OW) ∆Gsol ∆GR 

BP+COSMOd 179 243 –426 –10.3 

BP+RISMd 181 248 –390 –1.6 

MP2+IEFPCMe 178 244–248 –464 –24.7 

B3LYP+COSMOf 176 249  –11.1 

PBE+COSMOg 178 247 –384h –4.9 

BLYP+CPMDb 178 250  –8.7 

MP2+SCIPCMi 175 250 –412 –7.8 

MP2+SCIPCMc 176 244–255 –411 –2.5 

HEXSj 177 242  –1.2 

a Distances in pm, energies in kcal/mol. b Car-Parinello molecular dynamics (CPMD) 

calculation on uranyl, UO2
2+, in a water solution, Ref. 132. c Self-consistent isodensity 

polarizable continuum model (SCIPCM), Ref. 196; structure optimization at the B3LYP level 

on a model in the gas phase that includes the second solvation shell. d This work. e Integral 

equation formalism polarizable continuum model (IEFPCM), Ref. 133.  f Small-core effective 

core potential, Ref. 195. g All-electron four-component scalar relativistic calculation, 

Ref. 195, except the value of ∆Gsol. 
h Single-point calculation at the all-electron zeroth order 

regular approximation (ZORA) level, Ref. 195. i Self-consistent isodensity polarizable 

continuum model (SCIPCM), Ref. 196; structure optimization at the B3LYP level on a model 

in the gas phase. j Experimental results, Ref. 190. 

A useful quantity for determining the preferred coordination number is the reaction 

energy ΔGR for the water exchange process between four- and five-coordinated uranyl: 

 2 2

2 2 4 2 2 2 5[UO (H O) ] H O [UO (H O) ]   .  (4.4.2) 

Table 4.4.6 compares the results of various QM calculations of uranyl solvation to those 

of a high-energy x-ray scattering (HEXS) experiment.190 A small free energy difference of 

−1.2 kcal/mol between four- and five-coordinated uranyl in aqueous solution has been 

determined in the HEXS experiment190 by estimating the relative weights of four- and five-

coordinated species, based on an average coordination number. Various computational results 

reveal that ΔGR is commonly overestimated when determined by combinations of QM and 

continuum solvation models as well as by first-principles MD calculations (Table 4.4.6). 

Density functional and MP2 calculations combined with COSMO or SCIPCM 
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variants131,133,195 yield ΔGR values between −11.1 kcal/mol and –4.9 kcal/mol (Table 4.4.6), 

which are more negative than the experimental estimate. The strongest overestimation, 

ΔGR = –24.7 kcal/mol, of the experimental value is determined with the MP2+IEFPCM 

approach due to the overestimation of hydrogen bonds in MP2 method.133 A noteworthy better 

result, ΔGR = −2.5 kcal/mol, has been achieved with the MP2+SCIPCM approach when 

explicitly accounting for the second solvation shell.196 A Car−Parinello MD simulation also 

somewhat overestimated the preference for the five-coordinated species, 

ΔGR = −8.7 kcal/mol.132 Without significantly increasing the computational cost compared to 

those of QM calculations, the QM+1D RISM approach leads to a favorable result of 

ΔGR = −1.6 kcal/mol. This value agrees best with the experimental result of 

ΔGR = −1.2 kcal/mol. However, the quality of the present result should not be over-

interpreted as it likely arises from a favorable method combination, i.e. the force fields, the 

exchange-correlation functional, and the 1D RISM approach.  

Finally, the geometric parameters shown in Table 4.4.6 will be briefly discussed. The 

uranyl bond 181 pm of 1D RISM calculations is by 2.3% larger than the experimental value 

177−178 pm188-190 and also longer than the results obtained from the PCM solvation models, 

178−179 pm (see above). The uranyl–water distance d(U–OW) = 248 pm as calculated with 

RISM is also longer than the experimental results of 241–242 pm.188-190 However, this value 

agrees with the results calculated with other methods like BLYP and MP2 combined with 

PCM models (Table 4.4.6). In summary, when studying chemical processes in the solvent 

environment, the 1D RISM approach seems to provide an accuracy that is equal or superior 

to that of traditional continuum solvation models. 

 Combination of 3D RISM with MM and QM 

As discussed in Section 4.4.5 there remain deficiencies when applying the 1D RISM 

technique to study the uranyl solvation problem. The uranyl-water coordination number is 

overestimated and the U–O and U–Ow bonds are excessively elongated. In this section, 3D 

RISM is applied to study the uranyl solvation with the same models while aiming to resolve 

the aforementioned issues. 

MM+3D RISM 

The combination of 3D RISM for bulk water and a force field potential for the interactions of 

uranyl and n explicit water ligands was first examined for n = 4−6. For the optimized 

geometries there is a qualitative difference for the structures obtained by the MM and MM+3D 

RISM methods, of which the latter features a missing equatorial ligand for the complex with 
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n = 4. This finding is consistent with the results obtained by MM+1D RISM (Figure 4.4.3). 

The location of this missing water ligand corresponds to the vacancy of the solvent 

distribution in the equatorial plane of the uranyl. While the information of this vacancy is hard 

to be interpreted from RDFs averaged over the radial grid in 1D RISM, 3D RISM allows its 

direct observation from the spatial distribution of the solvent, see the water oxygen 

distribution plot in Ref. 106. A straightforward MM calculation yields a minimum at a D4h-

like structure with four water ligands evenly distributed in the equatorial plane, while 

structures with a vacancy in the equatorial plane are by 13−15 kcal/mol higher in energy. The 

average U−Ow bond of 239 pm in the MM-optimized structure is slightly shorter than the 

corresponding bonds of 240−242 pm for the structures optimized at the MM+3D RISM 

level.106 The shorter distances indicate a weaker steric ligand−ligand repulsion in the 

undercoordinated complex in the gas phase. Note however, this effect is opposite in the five-

coordinated uranyl complexes. U−Ow distances are shortened from 243−244 to 240 pm after 

embedding a complex with a structure optimized for the gas phase into the RISM medium.106 

This result may indicate a partial screening of the steric repulsion of the equatorial ligands of 

a saturated complex by the second solvation shell. This effect seems to be present also in 

PCM calculations (see below). 

The mechanism by which the MM+3D RISM model compensates for the missing ligand 

is described as a local increase of the water density at the location of the missing explicit 

ligand, see Ref. 106. Yet, the 3D RISM representation of the missing ligand has to be 

considered as an approximate substitute for an explicit water ligand. This can be interpreted 

from the notable width of the local distribution both in equatorial and in apical directions but 

less so when being averaged over the volume in radial direction.106 Indeed, the average 

distances U−Ow between the complexes with 4 and 5 explicit aqua ligands in the first solvation 

shell differ, 241−242 pm for n = 4 and 240 pm for n = 5.106 

QM+3D RISM 

Symmetric models of uranyl aqua complexes were used in the QM+3D RISM calculations to 

facilitate a comparison with previous results obtained with PCM and 1D RISM 

representations of the solvent. In these symmetric models the equatorial aqua ligands are 

evenly distributed. The symmetric structures of the five- and six-coordinated uranyl aqua 

complexes are qualitatively consistent with the structures obtained from an unconstrained 

optimization (see next section). In contrast, the unconstrained four-coordinated species 

features a vacancy in the first solvation shell which is filled by the 3D RISM solvent. These 

QM models feature the uranyl bond length as an additional intramolecular degree of freedom, 

unlike the MM models discussed in the previous section where this distance was kept 
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constant.  

 

Figure 4.4.4. Radial distribution functions of solvated uranyl without (top panel) and with 

(bottom panel) explicit aqua ligands from QM+3D RISM calculations: U−OW (red) and U−HW 

(blue). Results obtained with the PSE1 closure are shown as solid lines; results obtained with 

the closure relations PSE2 and PSE3 are displayed using dashed lines and dotted lines, 

respectively.  

Consistently longer U−O and U−Ow bond lengths were determined in QM+1D RISM 

calculations compared to QM+PCM and experiment when treating these symmetric models 

(Section 4.4.5). This trend may be attributed to the excess coordination of uranyl as 

manifested by the presence of a peak in the U−Ow RDF at the distance that corresponds to the 

first solvation shell for models with explicit ligands. From these 3D RISM calculations, it is 

clear that this artifact is specific to 1D RISM. Comparing the U−Ow RDFs from the models 

without and with five water ligands (Figure 4.4.4), such a feature is absent in the RDF plot. 

However, the number integrals 5.3, 6.2, and 6.4 for the first peak of the U−Ow RDFs with PSE 

closures of orders 1 to 3, respectively, are overestimated in the model without explicit aqua 

ligands (Figure 4.4.4). 

  



 4.4. Uranyl Solvation by 1D and 3D RISM

    

81 

 

 

Table 4.4.7. Uranyl bond length, d(U−O), uranyl−water distance, d(U−OW), and estimate, 

ΔGsol, of the uranyl solvation energy, as obtained using a QM model for a system in the gas 

phase (GP) as well as QM+PCM and QM+3D RISM models.a 

n  0 4b 5c 6d 

d(U–O) GP 172 177 177 178 

 PCM 174 179 179 180 

 PSE1 179 179 179 180 

 PSE2 179 179 179 180 

 PSE3 179 179 179 180 

d(U–OW) GP  242 249 253 

 PCM  237 243 249 

 PSE1  237 243 248 

 PSE2  237 243 248 

 PSE1  237 243 248 

ΔGsol GPe  –244 –270 –289 

 PCM –322 –416 –426 –425 

 PSE1 –357 –377 –388 –393 

 PSE2 –373 –379 –389 –394 

 PSE3 –378 –379 –389 –393 

a Bond lengths in pm, energies in kcal/mol. Symmetric uranyl aqua complexes [UO2(H2O)n]2+, 

4 ≤ n ≤ 6, and the bare uranyl (n = 0) are treated by QM, and interactions with the PR-SPC/E 

water solvent are treated by the KL2 force field. b D4h structure. c D5h structure. d D3d structure. 

e Binding energies of n aqua ligands.106 

The QM+3D RISM and QM+PCM results agree for uranyl bond lengths of 179−180 pm 

with the QM+PCM result of 174 pm, with the bare uranyl remaining the only less satisfactory 

exception (Table 4.4.7). On the other hand, the QM+3D RISM results for uranyl bond lengths 

are around 179 pm, hence equally long (PSE1) or even marginally longer by 0.3 and 0.7 pm 

for PSE2 and PSE3, respectively, than for four-coordinated uranyl. The effect of the RISM 

medium on the bond length of bare uranyl is thus comparable to that of the explicit water 

ligands; the elongation of the uranyl bond by 7−8 pm corresponds to 5−6 kcal/mol change in 

the intra-molecular energy. 

Another notable discrepancy between the PCM and 1D RISM results mentioned in 

Section 4.4.5 is also resolved by the 3D RISM approach. Namely the uranyl−water distances 

U−OW are consistently shorter in solvated complexes than in the gas phase by a measurable 
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amount of 4−6 pm. The 1D RISM approach did not show this effect in a convincing manner. 

Recall that this effect of the medium can be interpreted as a screening of repulsive 

ligand−ligand interactions in the first coordination shell due to the solvent. 

The results for the solvation energy ΔGsol of uranyl estimated with QM+3D RISM models 

are comparable to those obtained in the previous work using 1D RISM. The estimates of 

−388 kcal/mol and −389 kcal/mol using the standard model of hydrated uranyl with five 

explicit water ligands vary only little with the order of the closure and agree very well with 

the result −390 kcal/mol from the previous work in Section 4.4.5. However, the relative order 

of the estimates based on the four- and six-coordinated complexes is not reproduced. The 

estimate of ΔGsol from the four-coordinated complex is by ∼10 kcal/mol less negative than the 

result of the standard model with five aqua ligands, see Table 4.4.7. That difference of ΔGsol 

values is the same as obtained from the PCM calculations, although the PCM values are by 

∼40 kcal/mol more negative than the 3D RISM results. With 1D RISM the ΔGsol values differ 

by 1.6 kcal/mol only, see Table 4.4.5. 

Water Exchange 

Besides the overestimation of the bond lengths of U–O and U–OW exposed when using 1D 

RISM method was resolved when applying 3D RISM, the spatial representation of the solvent 

structure in the latter method also allows one to investigate the process of exchanging an aqua 

ligand of uranyl and a water molecule from the surrounding solvent. The activation energy 

for such exchanging process is estimated at about 9 kcal/mol when one applies the Eyring 

equation to the experimentally available water exchange rate of 1.3 × 106 s–1.198 Many 

theoretical studies134,185,186,194,199,200
 predict a much faster water exchange than that the 

available experimental data suggests. As the experimentally observed exchange rate is many 

orders of magnitude lower than a diffusion-controlled reaction rate 4πρDR for a solvent 

molecule characterized by self-diffusion coefficient D and a solute approximated as spherical 

particle of radius R (uranyl, R = ∼3 Å), the rate limiting step of the reaction must be an 

exchange of a uranyl water ligand and a solvent molecule from the second solvation shell.134 

Such an exchange involves breaking a uranyl−ligand bond for the molecule leaving the first 

solvation shell and dissolving a network of hydrogen bonds for the incoming water molecule. 

The section below will focus on the water exchange between the first and second solvation 

shells, without assuming any specific mechanism of this reaction. However, given that a six-

coordinated uranyl species was determined to be significantly more stable in the gas phase 

than a four coordinated species (Table 4.4.7), it can be anticipated that an associative 

mechanism via the six-coordinated intermediate is preferred over a dissociative mechanism 

via the four-coordinated species. Furthermore, the equivalence of the solvent molecules 
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participating in the exchange allows one to focus on the first half-reaction with the 

intermediate as final state. 

The analysis of the potential of mean force (PMF) in Ref. 106 predicted the activation 

energy barriers ranging from 3.1 kcal/mol to 5.2 kcal/mol,106 which are significantly lower 

than the experiment estimate, 9.1 kcal/mol.198 The possible reason can be attributed to the fact 

that the radical reduction of the dimensionality of the free energy surface will likely obscure 

mechanistic details. Hence, the (one-dimensional) PMF profile does not indicate any 

metastable intermediate. It is not possible to draw any conclusion regarding the collective 

behavior of the incoming and leaving ligands from one-particle PMF profiles. To investigate 

the collective behavior of the ligands in the water exchange process, one needs an explicit 

treatment of the first solvation shell and the incoming water molecule. Besides, a flexible 

uranyl moiety has to be used to evaluate accurately the exchange process.134
 To describe a 

flexible uranyl species, two intramolecular force fields that primarily differ by the force 

constant of the uranyl bending modes and the equilibrium bond length d0(U−O) were 

employed. The force field referred to as “soft” yields d0(U−O) = 176 pm while the harmonic 

frequency of the bending mode is 159 cm–1.134 The alternative “hard” force field features a 

somewhat longer uranyl bond d0(U−O) = 180 pm.127 The corresponding frequency of the 

uranyl bending mode (393 cm–1) is also significantly higher than the experimental references, 

which have been characterized in the range 180−270 cm–1 from the bending vibrations in 

solution and in crystals.201-204
 The DFT models at the BP level employed in the present and in 

earlier works yield the bending frequency in this experimental range when one uses 5−6 

explicit water ligands.205
 For uranyl species in the gas phase, such standard DFT calculations 

with the BP exchange−correlation functionals predict a too soft bending mode. The three free 

energy profiles are shown along the reaction coordinate q  = d(U−Ow1) − d(U−Ow2) where the 

labels “1” and “2” refer to the incoming and leaving water molecules, respectively. Small 

values of q correspond to a metastable six-coordinated complex and the large absolute values 

of q correspond to a five-coordinated uranyl complex with one (q > 0) or the other (q < 0) 

explicit water molecule in the second shell. The full profile is symmetric around q = 0. Due 

to the apparent symmetry of the metastable state and the exchange process as the whole, only 

the non-redundant part of the actual reaction profile is displayed in Figure 4.4.5.  



4. Applications 

 

84 

 

 

Figure 4.4.5. Free energy profiles, G(q), along the water exchange pathway using uranyl force 

fields with soft (squares) and hard (diamonds) uranyl bending modes. The QM+3D RISM 

profile is represented by three stationary states (circles) connected by strait lines to guide the 

eye. The reaction coordinate q is the difference of U−OW distances of two selected water 

molecules.106 

The QM+RISM profile is approximated by just three stationary points, two local minima 

and a saddle point obtained as root of the Lagrange multiplier in a series of constrained 

optimizations. The reaction path was sampled in a preparation step using lower quality 

settings for the QM and 3D RISM energy terms. All three profiles feature an intermediate 

metastable state at around q = 0, roughly corresponding to the six-coordinated D3d-like uranyl 

aqua complex. With the “soft” force field, the uranyl species in this metastable state is bent 

with an O−U−O angle of 155° and the distances of uranium atom to the two water ligands 

participating in the exchange are about 15 pm longer than the distances to the other four water 

ligands. The deviations from the D3d geometry are less pronounced for the other two models, 

QM and “hard” force field. 

The transition state approximated by the structure with the highest free energy is 

characterized by q > 0.6 Å for both the QM and the “soft” uranyl models, with the longest 

U−OW distances at 303 pm and 310 pm, respectively. These distances are comparable to or 
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slightly below the estimates derived from the 1D and 3D PMFs, see Ref. 106. On the other 

hand, the “hard” uranyl model suggests a transition state with a much shorter distance, ∼280 

pm, to the outermost water ligand and a shallow metastable state. This is likely a consequence 

of the significantly longer U−O bond of the solvated uranyl species, which is ∼186 pm and 

more than 6 pm longer than the corresponding distances of the other models employed here 

and in other works.127,134
 This particular elongation should be considered as a deficiency of 

the parametrization. In turn, the “soft” model does not convincingly show a preference for 

five-coordinated uranyl with the sixth water in the second solvation shell over the six-

coordinated broken symmetry metastable structure. The QM model and the “hard” force field 

model predict the six-coordinated D3d-like state to be less stable by 5.6 and 3.6 kcal/mol, 

respectively, than the five-coordinated structure with an extra water in the second shell (Table 

4.4.8). The presence of such a six-coordinated intermediate may be taken to suggest an 

associative two-step water exchange mechanism. This latter finding is consistent with the 

results of other theoretical studies,134,199,206-208
 which report an associative mechanism more 

favorable than the dissociative mechanism via the four-coordinated intermediate structure. 

Table 4.4.8. Free energy values G(q) at local minima q = q*, Corresponding to a five-

coordinated uranyl complex with an explicit water molecule in the second shell, and q = 0, 

representing a six-coordinated metastable intermediate, as well as at the corresponding 

transition state, q = q#, obtained by MM+3D RISM and QM+3D RISM approaches, Figure 

4.4.5.a 

 MM+RISM  

 soft hard QM+RISM 

G(q*) –426.0 –430.8 –434.4 

G(q#) –423.7 –426.5 –425.2 

G(0) –426.1 –427.2 –428.7 

ΔG# b 2.3 4.3 9.1 

a Free energies in kcal/mol. The exchange reaction corresponds to a transition from q* to −q*, 

but due to symmetry G(q*) = G(−q*) and G(q#) = G(−q#). b The activation free energy is 

estimated as ΔG#
 = G(q#) − G(q*). 

The water exchange barrier of 2.3 kcal/mol and 4.3 kcal/mol calculated with the “soft” 

and the “hard” force field models, respectively (Table 4.4.8), are rather close to the estimates 

obtained from the PMF analysis ranging from 3.4 kcal/mol to 5.2 kcal/mol.106 Yet, these 

barrier values are significantly lower than the result determined with the QM+3D RISM 

model (Table 4.4.8) and the experimental estimate.198 These latter two values of ~9 kcal/mol 
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are in excellent agreement. A comparison of the three models regarding the location and the 

orientation of the second-shell explicit water molecule suggests that the force field models 

slightly underestimate the strength and alter the directional nature of the hydrogen bonds 

between the incoming explicit water molecule and two of the explicit aqua ligands of uranyl. 

This may explain the low activation energy for water exchange and the stability of the six-

coordinated metastable state relative to the structure with an explicit water molecule in the 

second shell when predicted by the force field models (Figure 4.4.5).  

Finally, the present results for the activation barrier of exchanging two water molecules 

of the first and the second solvation shell of uranyl are compared to the results of some state-

of-the-art QM calculations. The computed values are sensitive to the choice of the reaction 

path, the level of theory, and the solvation model.134
 Tsushima206 reported activation barriers 

of 10.1 kcal/mol and 4.8 kcal/mol at the B3LYP level with the CPCM approach by 

considering final states with one and two hydrogen bonds, respectively. The latter value is 

close to the prediction of 4.5 kcal/mol of an earlier study,199
 yet both values are lower than the 

experimental result. Rotzinger applied a complete active space self-consistent field method in 

combination with two solvation models, a PCM approach and a spherical cavity self-

consistent reaction field (SCRF) solvation model.208
 For the associative pathway he obtained 

barriers of 9.4 kcal/mol and 6.5 kcal/mol, respectively. Bühl and Kabrede calcualted the free 

energy profile for the ligand exchange of uranyl from the thermodynamic sampling of a 

constrained Car−Parrinello molecular dynamic calculation for which they combined the 

BLYP functional with norm-conserving pseudopotentials.207 They observed a “shallow 

ragged plateau” around the six-coordinated intermediate and estimated the activation barrier 

by 6.7 kcal/mol, which is only slightly lower than the experiment and the present QM+3D 

RISM value. 

The good agreement between the QM+3D RISM result and experiment198
 as well as with 

the values of other accurate theoretical models indicates that the 3D RISM model provides an 

attractive approach for solvation in particular as a hybrid solvation strategy applied to uranyl 

aqua complexes. Using a semi-local DFT method in combination with the 3D RISM strategy 

offers an adequate accuracy at an affordable cost. 

 Conclusions 

The atomistic nature of the 1D RISM model offers a more detailed and consistent view on 

solvation effects of uranyl aqua complexes in comparison to the state-of-the-art PCM models. 

Combined QM+1D RISM models predict essentially the same uranyl bond lengths and similar 

solvation free energies, independent of the number of explicit water molecules introduced into 
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the first solvation shell. The results of the PCM solvation model depend more strongly on the 

structure of an explicitly treated first solvation shell. Exploration of the free energy surface 

with a MM+1D RISM method suggests a qualitative difference to the polarizable continuum 

models. The solvation energy and the structure of the first solvation shell of an under-

coordinated complex of uranyl with four water molecules match those of a five-coordinated 

complex. Thus, explicit water molecules in the first solvation shell and their net statistical 

effect as modeled with the 1D RISM approach are largely interchangeable. 

Without the need for statistical sampling required for explicit solvation models, the 

1D RISM method predicts a water-solvent structure around a uranyl ion in good qualitative 

agreement with experimental measurements. The QM+1D RISM approach yields a small free 

energy difference of −1.6 kcal/mol between four- and five-coordinated uranyl complexes in 

aqueous solution, which is in excellent agreement with the experimental result of −1.2 

kcal/mol. This success stands in contrast to the results of polarizable continuum models and 

AIMD calculations which both notably overestimate this difference. However, one qualitative 

difference between the PCM and 1D RISM models remains arguable. The former method 

predicts uranyl-water distances shorter in solution than in the gas phase while the latter yields 

only a small change for this quantity upon solvation. 

3D RISM is not susceptible to this deficiency. When applying the 1D RISM technique, 

an artificial superposition of explicit aqua ligands and the RISM medium leads to an 

overestimation of the effective uranyl-water coordination, which results in an excessive 

elongation of the U−O and U−OW bonds. With the present 3D RISM method, semi-local DFT 

calculations on uranyl aqua complexes with 4−6 explicit ligands essentially predict the same 

structure of the first solvation shell as the conventional PCM strategy. The net effect of a 

missing explicit aqua ligand in the first solvation shell is correctly represented in a qualitative 

fashion by an excess solvent density of the RISM medium, leading to comparable results for 

uranyl with 5 and 4 explicit water ligands.  

Any hybrid approach that combines two models of ion−water interactions, “first-

principles” and force field, relies heavily on the consistency of the two interaction models. 

For uranyl hydration, the force field KL2 features large charges of interacting sites as selected 

in the 1D RISM study for predicting the largest uranyl solvation energy in absolute terms. 

This model is far from being practical for routine calculations because it strongly favors 

substitution of explicit QM aqua ligands by the 3D RISM medium. Such artifacts affect the 

3D RISM approach, suggesting that this particular QM+RISM combination may require some 

revision. 

Nevertheless, by employing the 3D RISM model for the second solvation shell and the 
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bulk water, the hybrid QM+3D RISM model produces meaningful structures of the first 

solvation shell and results in solvation energies that are competitive to the state-of-the-art 

PCM procedures. 

By examining the activation energy for the exchange of aqua ligands, this application 

convincingly demonstrated the benefits of the hybrid QM+3D RISM model for addressing 

properties that are not easily reproduced by pure force field models. This type of activation 

energy is predicted too low with the current force field models, likely due to a 

misrepresentation of hydrogen bonding. In contrast, the present hybrid QM+3D RISM model 

yields an activation barrier for ligand exchange that agrees remarkably well with the available 

experimental results.198 
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4.5. CO2 Conversion to HCOO– in Solution by 3D RISM 

 Introduction 

The conversion of CO2 into hydrocarbon fuels is a crucial process which would benefit our 

environment and the energy industry.14 However, due to the high kinetic and thermodynamic 

stability of the CO2 molecule, this conversion process consumes a large amount of energy. 

CO2 conversion is therefore only reasonable in combination with renewable energy sources 

such as solar energy as well as with the aid of an appropriate catalyst to overcome the 

otherwise very high reaction barriers.14,209,210 The photochemical reduction process of CO2 

seems a promising way to solve both of these difficulties. However, understanding the way in 

which photons provide the energy for the reaction represents a major concern in both, 

experimental and theoretical studies.14,209,211 For this purpose the use of homogeneous 

catalysts such as molecular catalysts that possess pyridine-based ligands is greatly desired, as 

it is well known since early eighties that those ligands in combination with, for instance, a Ru 

metal center can photochemically promote the reduction of CO2.
211,212 Using the catalyst 

Ru(bpy)2(CO)H+ (bpy: 2,2ʹ bipyridine) suggested in an earlier electrochemical study,213 

Damianos et al.158 carried out a computational study by utilizing the PCM method to 

investigate the mechanism of the overall catalytic cycle for the reduction of CO2 into formate 

in acetonitrile solution. 

However, as noted in Section 2.1, PCM method misses the microscopic picture of the 

solvent structure. This information can be conveniently obtained from the 3D RISM approach, 

and it has been shown in Sections 4.3 and 4.4 that the hybrid method of 3D RISM and QM 

yields solvation energy results comparable to state-of-the-art continuum solvation model. To 

this end, the combination of 3D RISM with QM calculation is applied to this problem to 

examine the overall catalytic reaction cycle of the CO2 conversion investigated in the 

aforementioned PCM study. The free energies of all the reaction species are calculated with 

the first-order perturbation theory (PT1) QM+RISM model as described in Section 3.3. The 

PT1 model approximates the solvation energy results at an adequate level of accuracy and its 

simplicity allows its application to model the complicate molecular solutes in this section. To 

compare with the results obtained in the preceding PCM study, in the free energy functional 

G = E + ΔGsol the solvation free energy ΔGsol calculated with the PCM method is replaced the 

excess chemical potential term (0)

u[ ]n  calculated with 3D RISM, see Eq. (3.3.12). 

For brevity we used A and A+ to represent the reduced and non-reduced catalyst complex, 

respectively. The molecular structures of the catalyst A+ and the acetonitrile solvent are shown 

in Figure. 4.5.1. Note, that the preceding PCM study revealed only minor structural 
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differences (e.g. Ru-ligand distances varying less than 2 pm) between the systems A and A+.  

For brevity the two bpy ligands in the catalyst are labeled as L1 and L2, respectively. The CO 

ligand is nearly perpendicular to the pyridine rings of L2 while being almost coplanar to L1. 

 

Figure 4.5.1. Molecular structures of (a) the catalyst A+: Ru(bpy)2(CO)H+ and (b) the 

acetonitrile solvent. The two bpy ligands in the catalyst molecule are labeled as L1 and L2, 

respectively. 

The discussion of the results in this section starts by examining the solvent structure of 

acetonitrile around the catalyst, for both reduced and non-reduced species. Then following the 

catalytic cycle in Scheme 4.5.1 the reactions happened in the first and second one-electron 

reduction steps, including the CO2 insertion (A+→A→B→C1) and isomerization (C1→C3), 

HCOO– formation (C3→C3–→D) and catalyst regeneration (D→A+) are discussed by 

comparing the 3D RISM and PCM calculations for all those reaction steps. Finally the overall 

catalytic cycle obtained by the 3D RISM approach is presented and also compared with that 

from PCM calculations.158 
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Scheme 4.5.1. Main catalytic cycle that has been suggested in Ref. 158 for the formation of 

HCOO– starting from the catalyst complex A+ as well as the two one-electron transfer steps 

are included. L2 represents the bpy ligands. 

 Solvation Structure of the Catalyst 

The spatial information of acetonitrile solvent around the positively charged catalyst A+ 

and the neutral species A in the presence of reduction can be found in Fig. 4.5.2. As shown in 

Fig.4.5.2a, there are three types of regions where the carbon atom of methyl group is 

concentrated in the first solvation shell: the outer sphere around the plane of the pyridine rings 

of the ligand L1, the regions above and below the pyridine ring, and the region near the oxygen 

center below one pyridine ring. Note that there is a narrow gap between the outer sphere of 

the methyl carbon distribution and the cavity formed by the catalyst solute. By comparing the 

distribution of the nitrogen center (Fig. 4.5.1b), the relevant outer sphere is closely adjoined 

to the cavity; the distribution of the nitrogen center does not show any localization above and 

below the pyridine rings of the ligand L2 or around the oxygen site of the solute. From these 

observations one can conclude that in the first solvation shell, the acetonitrile solvents are 

partly distributed around the plane of the pyridine ligand with the nitrogen atom pointing into 

the solute. Above and below the two pyridine rings of the ligand L2 as well as around the 

oxygen center of the CO ligand, acetonitrile solvent molecules are oriented with their methyl 

group pointing towards the solute. Another region of noticeable concentration of the solvent 
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is located in the second solvation shell with the methyl group pointing to the oxygen atom of 

the CO ligand, which is also visible in Figures 4.5.2a and 4.5.2b. 

 

Figure 4.5.2. Acetonitrile carbon atom of methyl group (a) and nitrogen atom (b) distribution 

around the positively charge catalyst A+ (top panel) and neutral species A (bottom panel). The 

distribution profiles are cut at the plane z = 0 of the cubic cell, with which the CO ligand and 

the L1 ligand (Figure 4.5.1) approach.  

The differences for the non-reduced and reduce catalysts can be observed when 

comparing the top panels (solute is positive charged, A+) with the bottom panels (solute is 

neutral, A) in Figure 4.5.2a and 4.5.2b. When going from solute A+ to A, the surrounding 

solvent distribution decreases in the outer sphere around the two pyridine rings of the ligand 

L1 while increasing in the regions parallel to the two pyridine rings of the ligand L2, those 

around the oxygen atom, and in the second solvation shell with acetonitrile methyl group 

pointing to the oxygen. This observation can be rationalized by analyzing the charge 

differences158 for each atomic site on the positively charged catalyst A+ and the neutral specie 

A upon one-electron reduction. When A+ is reduced to A, a positive charge of 0.03 e on 

average is shifted to each atomic site on the hydride ligands of all the pyridine rings, while a 

negative charge of up to 0.06 e is transferred to every atomic site on each bi-pyridine ring and 

the Ru atom as well as to the oxygen atom of the CO ligand. When considering that in the 

acetonitrile solvent the nitrogen sites possess partially negative charges while the methyl 
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group is positively charged, the increase of the solvent distribution with methyl groups 

pointing to the negatively charged part of the solute can be understood in terms of electrostatic 

interaction. With more electron charge density being transferred to the negative charged sites 

of the solute upon reduction, the electrostatic interactions between those negatively charged 

sites of the solute and the positively charged sites of the solvent are enhanced. In consequence 

the solvent distribution shows more concentrations in the relevant regions. 

 CO2 Insertion and Isomerization Reaction 

Following the reaction path suggested in the preceding (PCM) study (Scheme 4.5.1, 

A+→A→B→C1),158 the influence of reduction on the reaction of inserting CO2 to break the 

metal-hydride bond will be addressed in this section. As shown in Figure 4.5.3a (without 

reduction), the free energy differences of the intermediate B+ against the initial reactants A+ 

+ CO2 obtained from the PCM and QM+3D RISM results are quite comparable, which yield 

9.8 kcal/mol and 9.7 kcal/mol, respectively. With reduction the relevant quantities increase to 

12.0 kcal/mol and 11.8 kcal/mol for the latter two variants, respectively, see Figure 4.5.3b. 

This trend due to the presence of the reduction is reversed when it comes to the transition 

states B-C1 and B-C1+. With QM+3D RISM the energy barrier for forming the Ru-O species 

C1 is lowered by 7.2 kcal/mol from 35.7 kcal/mol for the non-reduction case to 28.5 kcal/mol 

with reduction. Both of these values are smaller than the barriers of 42.5 kcal/mol and 31.8 

kcal/mol obtained with PCM where the energy barrier decreases by about 11 kcal/mol upon 

reduction.158 However, even the lowered energy barrier of 28.5 kcal/mol obtained with 

QM+3D RISM is still significantly higher than the commonly used rule-of-thumb limit of 21 

kcal/mol for a reaction to take place at room temperature. It is also larger than the energy 

barrier of 15 kcal/mol for CO2 insertion, using a Ru-complex catalyst with a larger ligand as 

reported by Creutz et al.214.  

The dashed lines in Figure 4.5.3 represent the subsequent isomerization reactions 

following the CO2 insertion. A detailed demonstration of the reaction path of the formato-

complex from C1 to C3 (Scheme 4.5.1, C1→C3) can be found in Figures 4.5.4a and 4.5.4b, 

for cases without and with reduction, respectively. The results obtained from QM+3D RISM 

are close to those from PCM. As shown in Figure 4.5.4a, QM+3D RISM yields the reaction 

barriers of formation of the isomers C2+ and C3+ as 6.1 kcal/mol and 5.4 kcal/mol, 

respectively, which are quite comparable with the values of 5.4 kcal/mol and 5.2 kcal/mol 

calculated by PCM.158 The trend shown in Figure 4.5.4b is similar to that in Figure 4.5.4a, 

when using the 3D RISM method the reaction barriers of forming C2 and C3 are 6.7 kcal/mol 

and 5.3 kcal/mol, respectively, marginally higher than the corresponding values of 
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5.8 kcal/mol and 4.7 kcal/mol from PCM.158 Both, QM+3D RISM and PCM, results show 

that the one-electron reduction does not have significant effects on the isomerization reactions. 

Although QM+3D RISM yields somewhat higher energy barriers for the CO2 insertion 

reaction than PCM, the difference of the energy barrier for isomerization reaction is less than 

1 kcal/mol only. 

 

Figure 4.5.3. (a) Free Energy profiles of CO2 insertion in the (a) absence and (b) presence of 

reduction leading to the Ru-O bound species C1 through transition state B-C1. Species are 

positively charged in (a) and neutral in (b). As reference energy the sum of the total energies 

of the catalyst complex and CO2 are considered. Free energies are given in kcal/mol. 

QM+3D RISM results are in black and PCM results are in gray. 
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Figure 4.5.4. Isomerization profile of product C1 to C3 (a) without and (b) with the presence 

of reduction. Free energies are given in kcal/mol. QM+3D RISM results are in black, PCM in 

gray. 

 Second Reduction of HCOO– Formation 

The dissociative path was proposed in the PCM study158 to start from the format–species C3, 

go through the transition state C3-D, and finally form the 5-coordinated species D with the 

generation of HCOO– (Scheme 4.5.1, C3→C3–→D). As shown in Fig. 4.5.5a for the case 

without reduction, QM+3D RISM predicts the reaction barrier for this dissociation to be 

19.4 kcal/mol, hence slightly higher than the PCM value of 17.3 kcal/mol.158 Upon the second 

one-electron reduction a relatively large decrease of the energy barrier amounting to 

6.6 kcal/mol is obtained from the PCM calculation158 while that from QM+3D RISM is only 

3.3 kcal/mol. As a result, with reduction, the QM+3D RISM method yields a notably higher 

reaction barrier of 16.1 kcal/mol compared to the PCM barrier of 9.7 kcal/mol.158  
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Figure 4.5.5. Free energy profile of the Dissociative mechanism for the formate liberation 

and the formation of the five-coordinated Ru-complex (a) without and (b) with the presence 

of the second reduction. QM+3D RISM results are in black, PCM in gray. 

This result is in contrast to the CO2 insertion reaction upon the first one-electron reduction 

where the reaction barrier is lower in QM+3D RISM than in PCM. It can be rationalized with 

the solvation free energy term ΔGsol, whose changes are different in these two methods when 

going from reactants C3/C3– to transition states C3-D/C3–-D. Without reduction ΔGsol 

decreases by 8.5 kcal/mol from 10.7 kcal/mol for C3 to 2.2 kcal/mol for C3-D in PCM,158 
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while in QM+3D RISM it is reduced to go down from –11.6 kcal/mol to –18.1 kcal/mol with 

the decrease of 7.5 kcal/mol. However, when the solutes are negatively charged, namely upon 

the reduction ΔGsol decreases by 8.9 kcal/mol from –18.8 kcal/mol to –27.7 kcal/mol in 

PCM158 while only a smaller decrease of 2.5 kcal/mol from –47.2 to –49.7 kcal/mol is 

obtained in QM+3D RISM. Given that the electronic energy is the same for species in 

comparison in both calculations, the much higher activation energy barrier of forming HCOO– 

can be attributed to the different ways of evaluating of the changes of ΔGsol from the reactant 

to the transition state obtained from QM+3D RISM and PCM. Yet, despite this difference, 3D 

RISM results still support the conclusions of the PCM study;158 without reduction the 

formation of HCOO– is endergonic while the one-electron reduction lowers the reaction 

barrier. 

 Catalyst Regeneration 

Following the reaction path in the PCM study,158 the catalyst A+ is regenerated from the 5-

coordinated species D (Scheme 4.5.1, D→A+). The catalyst regeneration profiles of the two-

step pathway modeled by PCM and QM+3D RISM methods are shown in Figure 4.5.6. At 

the start of the catalyst regeneration process, the five-coordinated species D is protontated 

with the combination of H3O
+ and H2O to form the species G+. While PCM calculates the free 

energy difference between the pronated D and G+ to –3.9 kcal/mol, the QM+3D RISM 

calculation in this thesis yields a more energetically favored result with a free energy 

difference of –9.8 kcal/mol.  

This noticeable difference can be observed during the intermediate process G+→E+ with 

the loss of the water molecule loss from the pronated species. As can be seen from Figure 

4.5.6, the PCM results show that this process has two steps overcoming first an energy barrier 

of 1.7 kcal/mol to complete the proton transfer from H3O
+ and H2O to species H+ (path 

G+→H+) and then another barrier of 1.4 kcal/mol to attach a water molecule to the CO ligand 

(path H+→E+). In contrast, QM+3D RISM shows that this process is single-step with an 

energy barrier of about 2.8 kcal/mol (considering H+ with two free water molecules as the 

intermediate). No additional search for a transition state was attempted with QM+3D RISM 

were performed and the geometries and electronic structures of the relevant species are 

identical in both, PCM and QM+3D RISM calculations. Therefore the argument of “two-step” 

vs. “one-step” in these two models must be taken carefully into account. It was also mentioned 

in the PCM study158 that the reaction path D→G+→H+ lacks sufficient optimization for a 

species that comes from the forward path of the intrinsic reaction coordinate. The discrepancy 

between PCM and QM+3D RISM results presented above demonstrates that not only the 
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quantitative differences of the free energies, but also qualitatively different reaction 

mechanisms can be obtained when using those two solvation models. 

Regardless of the difference in the intermediate process, the final step from E+ to A+ is 

again similar in PCM and QM+3D RISM, with a reaction barrier of 1.6 kcal/mol obtained 

from both methods. 

 

Figure 4.5.6．Catalyst regeneration profiles that starts from the neutral, 5-coordinated 

species complex D. Free energy levels are given with respect to the summation of species D, 

H3O
+ and H2O. The step from E+ to A+ benefits from an explicit H2O ligand. QM+3D RISM 

results are in black, PCM in gray. 
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Figure 4.5.7. The overall reduction profile leading to the formation of HCOO–. Free energies 

are given in kcal/mol and drawn against the standard hydrogen electrode reaction (SHE), Eq. 

(4.5.1), as in the preceding PCM study.158 The reference energy is the sum of the energies of 

CO2, H2O and H2 in which the two electrons of each half cell reaction cancel out. The two, 

one-electron reductions are indicated by the paths A+→A and C3→C3–. QM+3D RISM 

results are in black, PCM in gray. 
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 The Overall Catalytic Cycle 

Finally, the energy profile of the overall reaction cycles is shown in Figure 4.5.7. Analogously 

to the reference PCM study158, each step of the first and second reductions calculated by 

QM+3D RISM is considered against the half-cell oxidation reaction of the standard hydrogen 

electrode (SHE)215 

 1
2 2 32

H H O H O 1e      (4.5.1) 

whose reaction energy is about 98.7 kcal/mol. With this treatment on one hand the largely 

negative absolute values of the free energies can be avoided when expressing the overall 

reaction path, on the other hand the half-cell oxidation reaction, Eq. (4.5.1), can be considered 

as the source of consumed electrons for reduction.158 To this end, the overall absolute reaction 

 +

2 3 2CO H O +2 HCOO +H Oe     (4.5.2) 

can be transformed to the relative reduction reaction 

 - +

2 2 2 3CO +H +H O HCOO +H O .  (4.5.3) 

For the reduction processes A+→A and C3→C3–, QM+3D RISM yields free energy 

differences of 22.3 kcal/mol and 36.7 kcal/mol, respectively, which are slightly lower than 

the PCM results of 26.8 kcal/mol and 42.8 kcal/mol, respectively. The CO2 insertion exhibits 

the highest reaction barrier which results to about 30 kcal/mol in both, PCM and 3D RISM 

calculations. With H2 and H2O as educts, the reaction of Eq. (4.5.2) is exergonic by –12.9 

kcal/mol in QM+3D RISM, slightly higher than the PCM result of –11.6 kcal/mol. 

 Conclusions 

In this application the conversion of CO2 to HCOO– in acetonitrile solution with the aid of a 

Ru-based homogeneous catalyst was examined with the QM+3D RISM model. The solvation 

structure obtained from 3D RISM shows that the acetonitrile solvents distribute along the 

outer sphere around the pyridine rings of the ligand L1 (Figure 4.5.1) with the nitrogen atom 

pointing to the solute, while above and below the pyridine rings of the ligand L2 (Figure 4.5.1) 

as well as around the oxygen atom of CO ligand the solvent distributes itself with its methyl 

group pointing to the solute. In the case of the reduced catalyst complex more negative 

electronic charge is located at the negative charge sites of the solute. As a result of this electron 

transfer the solvent distribution increases in the regions corresponding to those sites. 

The conversion free energy profile  was also calculated with the solvation free energies 

obtained from QM+3D RISM in comparison with PCM results.158 The QM+3D RISM model 

yields results generally in good agreement with PCM results. The highest activation free 

energy barrier for the CO2 insertion is 31.8 kcal/mol in PCM and only slightly lowered to 
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28.5 kcal/mol in QM+3D RISM. The catalyst regeneration process shows some differences 

when using these two methods. PCM predicts this process as a a two-step reaction, while from 

the same geometry and electronic structure a one-step reaction is suggested by the QM+3D 

RISM calculations. Both methods yield quite low barriers, ~ 2 kcal/mol, for the catalyst 

regeneration process. By taking the overall catalytic cycle against the standard hydrogen 

electrode, Eq. (4.5.1), QM+3D RISM and PCM predict both that the HCOO– formation is an 

exergonic process of around –10 kcal/mol, with only 1.3 kcal/mol difference for the free 

energies of the final products.  

This application demonstrates that for complicated catalytic reactions, QM+3D RISM is 

capable of produce free energy results comparable to those of state-of-the-art continuum 

solvation models. In addition, QM+3D RISM calculations produce information about the 

atomistic structure of the solvent from which the changes due to the presence of reduction can 

be clearly observed. Therefore, when comparing to the continuum solvation model, QM+3D 

RISM method seems more advantageous for investigating chemical reactions which are 

sensible to the solvation environment. 
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5. Summary 

This thesis presented a novel implementation of a hybrid approach to modeling the 

microscopic solvent effects that occur in chemical systems and reactions in solution. This 

hybrid approach combines the reference interaction site model (RISM) representation of the 

solvent with a quantum mechanical (QM) electronic structure description of the solute. This 

QM+RISM method has been implemented in the parallel density functional program 

ParaGauss. The resulting implementation was then verified and applied in several case studies 

where solvation effects play an important role. 

State-of-the-art solvation models either implicitly describe the solvent in terms of a 

continuum medium or by taking the explicit solvent molecules into account. Both strategies 

are widely applied despite of several drawbacks associated with them. Continuum solvation 

models are by design unable to provide any microscopic information about the solvent which 

in turn prevents an appropriate description of the short-range, non-covalent interactions 

between solvent and solute such as hydrogen bonding. Explicit solvation models account for 

both, short- and long-range interactions. However, their applicability is limited either by the 

accuracy loss originating from a molecular mechanics (MM) description of the whole solution 

system or by the enormous computational costs of the very many full QM or hybrid MM/QM 

calculations required for an accurate statistical sampling. On the other hand, a hybrid RISM 

approach allows one to overcome these drawbacks of traditional solvation models. In contrast 

to continuum solvation models, RISM methods recover the microscopic description of the 

solvent medium, while in comparison with explicit solvation models they are free of statistical 

sampling which significantly reduces the computational costs of their applications. 

Based on integral equation theories (IET), RISM methods describe the solvent 

microscopic structure in terms of site-site distribution functions. RISM theories also provide 

an analytical expression for conveniently calculating the solvation energy from these site-site 

distribution functions. Two main variants of this approach exist, 1D RISM and 3D RISM, 

depending on the specific treatment of the distribution functions. In the 1D version of RISM 

the site-site distribution functions are spherically averaged, while in the 3D version they are 

represented as the spatial distribution functions and thus provide a more realistic, spatially 

resolved description of the solvent structure.  

Both approaches can be combined with QM methods. However, for the applications 

examined with RISM in the context of this thesis, the 3D variant is more favorable as it is 

more feasible for modeling complicated molecular solutes. Therefore a combination of 3D 

RISM with Kohn-Sham density functional theory (KS-DFT) was implemented in the parallel 
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density functional program ParaGauss in the context of this thesis. One of the most important 

aspects when interfacing 3D RISM with KS-DFT is an adequate evaluation of the electrostatic 

interaction between the QM solute and the solvent molecules. For this purpose, a robust and 

efficient scheme is suggested in this thesis. This strategy allows one to determine the 

perturbation of the solute electronic structure by the solvent environment and vice versa 

within QM+3D RISM in a self-consistent manner. A comparison with the electrostatic 

interactions computed with ParaGauss thereby shows no significant loss in accuracy. 

Furthermore, the solvation energy of the hybrid method can be evaluated either in a fully self-

consistent fashion or by approximate expressions that correspond to different orders of 

perturbation theory. The latter cases were thereby implemented based on a simple linear 

model that describes the relation between of the solute polarization and the solvent relaxation. 

Subsequently the RISM solver implemented in the context of this thesis was carefully 

validated. In a first step its convergence behavior with respect to different grid resolutions 

was examined. Furthermore, the solvation energies of monoatomic ions in water were 

computed and compared with experiments as well as with the results of MD simulations and 

other RISM solvers. In addition, the PMV corrections were found to compensate different 

percentages of errors for anions and cations. As a satisfying level of accuracy could be 

confirmed in those tests, the hybrid approach of QM+RISM was subsequently applied in 

several case studies. 

In a systematical study involving a test set of 43 neutral organic solute molecules in 

aqueous medium the accuracy of the solvation free energy delivered by the QM+3D RISM 

method was analyzed. The solvation free energy is mainly determined by two factors, the 

contribution from excess chemical potential upon solvation and that from the electronic 

relaxation of the solute. The excess chemical potential is known to be calculated too large due 

to the overestimated cavity formation error in MM+3D RISM studies. The results obtained 

from the hybrid QM+3D RISM method in this thesis essentially confirmed this source of error. 

A significantly better agreement with experimental results can be achieved when the partial 

molecular volume (PMV) is suitably corrected. This study also presented an asymptotic 

scaling analysis and thereby provided an alternative interpretation of the origin of the 

aforementioned error. Furthermore, this analysis also showed an alternative route for deriving 

the pre-factors required for the individual terms of the PMV correction. In addition, the 

importance of the relaxation terms, hence the electron relaxation caused by the solvent 

reaction field and the resulting solvent relaxation energy, was investigated. The ratio of the 

solute polarization and the solvent relaxation energies was calculated to be nearly constant for 

all solutes studied. Using the second-order (PT2) approximation or a self-consistent approach 
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for the relaxation term reduced the deviation of the calculated solvation energy from the 

experimental reference only slightly. This latter finding likely arises due to the artificial 

polarization of the electron density by nearby localized positive charge accumulations in the 

solvent medium described by MM force field. In the absence of repulsive exchange 

interactions between solute and solvent electrons this effect is likely overestimated, which is 

also suggested by the slight overestimation of the induced solute dipole moments in 

comparison to the PCM approach. The above interpretation is further supported by an 

increased water hydrogen and oxygen density around the solute in the SCF-RISM description. 

In summary, this systematical studies reveals that when the main error source is removed in 

the hybrid QM+3D RISM method, the approximations of the free energy functional yield 

results quite comparable with the fully SCF treatment as well as the PCM method. Although 

the SCF-RISM method is able to show the solute polarization in solvent medium, this effect 

is overestimated possibly due to the absence of the solute-solvent exchange repulsion. 

Based on the findings in the first application, a second application study addressed the 

solvation of uranyl in aqueous medium by means of 1D and 3D RISM calculations with the 

approximative free energy expression. The 1D RISM method was applied first to bare uranyl 

ions in order to compare the various force field parameterizations for uranyl and water. The 

models determined most accurate thereby were then used in calculations of uranyl aqua 

complexes [UO2(H2O)n]
2+ with n = 4–6. The net effect of a missing explicit aqua ligand in the 

first solvation shell is represented in a qualitative fashion by an excess solvent density 

described by 1D RISM and 3D RISM, leading to comparable result for the four- and five-

coordinated uranyl complexes. QM+1D RISM and 3D RISM both predict the uranyl solvation 

free energy quite close to the experimental value. In agreement with experiment, the QM+1D 

RISM approach also yields a small free energy difference between four- and five-coordinated 

uranyl complexes in aqueous solution. However, an artificial superposition of explicit aqua 

ligands and the 1D RISM medium leads to an overestimation of the effective uranyl-water 

coordination, which results in an excessive elongation of the U−O and U−OW bonds. 3D RISM 

is not susceptible to this deficiency and the hybrid QM+3D RISM model thus produces 

meaningful structures of the first solvation shell. The corresponding results for the solvation 

energies are comparable to those of state-of-the-art PCM procedures. In addition, the 

qualitative analyses in 1D and 3D RISM both indicate the interchangeability of the explicit 

ligands with their RISM representation while this microscopic feature is missing in continuum 

solvation models like PCM. This advantage is also confirmed by the quantitative aspect, that 

QM+3D RISM method yields an activation barrier for ligand exchange which agrees 

remarkably well with the available experimental result compared to the traditional continuum 
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and explicit solvation models. 

To further extend the applicability of this novel hybrid method, the final study examined 

the solvation effects during the conversion of CO2 to HCOO– in acetonitrile solution with the 

aid of a Ru-based homogeneous catalyst by comparing the results obtained from 

QM+3D RISM and PCM solvation models. First the solvent structure and especially the 

orientation of the individual acetonitrile molecules around the catalyst was determined with 

QM+3D RISM. The resulting figures nicely depict the accumulation of solvent molecules in 

the case of a cationic, reduced Ru complex. Upon a stepwise comparison of the reaction 

energy barriers of the catalytic reaction cycle the QM+3D RISM model was found to agree in 

general with PCM. Consistency between these two variants was also found by taking the 

overall catalytic cycle against the standard hydrogen electrode, where both methods predicted 

that the HCOO– formation to be an exergonic process. However, PCM predicts the catalyst 

regeneration process is a two-step reaction, while a one-step reaction is suggested by 

QM+3D RISM calculations from the same geometry and electronic structure. 

Overall, this thesis demonstrated that the hybrid method of QM+3D RISM is competitive 

or even superior to traditional solvation models for the description of chemical systems and 

reactions in solution. However, the applications presented in this thesis also suggested cases 

in which the accuracy of RISM results can still be further improved. Also the analysis of the 

cavity formation error and the electron relaxation term in the solvation energy can be extended 

to ionic solute molecules. As suggested from the MM+RISM calculations of monoatomic ions, 

the cavity formation error does not play a major role in QM+RISM calculations of charged 

solutes. Indeed, in the case of ionic solutes the electrostatic interaction terms are much larger 

and thus, the corresponding errors in these terms may become important instead. In addition, 

the current implementation of SCF-RISM in this thesis is dependent on employing the 

effective core potentials in the QM calculations. For more general purpose one may consider 

the extension of utilizing larger basis sets with the numerical convergence issues being 

resolved. Also the accuracy can be improved by taking the repulsive exchange interactions 

between solute and solvent electrons into account.  

Until now, theoretical developments of the general accurate energy functionals are still 

pending in the hybrid QM+RISM approaches. We hope that the work conducted in this thesis 

in combination with ParaGauss will help to speed up the popularity and development of this 

novel hybrid method, which ultimately will improve our understanding of solution science. 
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Appendix A. Flowchart of the SCF-RISM Cycle of 

ParaGauss 

 

Figure A1. Flowchart for the calling sequence of the modules in the SCF-RISM 

implementation of ParaGauss. Each process in the rectangle is labeled with the real name of 

the relevant subroutines. The details for the 3D RISM inner cycle can be found in Section 

3.2.2. PG represents the density functional program ParaGauss.
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Appendix B. Usage of the RISM Implementation of 

ParaGauss 

Overview 

The stable version of reference interaction site model (RISM) implementation in combination 

with the density functional program ParaGauss, has the following features: 

 Site-site radial distribution function (RDF) in 1D RISM, 

 Spatial distribution function in 3D RISM, 

 Closure relations: HNC, KH, and GF expressions. 

 Excess chemical potential both in 1D and 3D RISM, 

 Partial molar volume (PMV) corrections available in 1D and 3D RISM, 

 Repulsive bridge correction (RBC) evaluated with the thermodynamic perturbation 

theory (TPT) available in 1D RISM, 

 Charged solutes described by molecular mechanics in 1D RISM, 

 Full SCF-RISM calculation in combination with ParaGauss, available in 3D RISM for 

neutral solutes. 

The developer version also allows: 

 Charged solutes described by molecular mechanics in 3D RISM, 

 PSEn closure relations. 

 Import electron density data from other QM programs into 3D RISM solver, 

 Geometry optimization for solute molecules using MM-RISM and PT1-RISM free 

energy functionals in combination with ParaTools. 

Compiling the RISM solver 

Those prerequisites of libraries and software packages are needed to compile and run the 

RISM solver: 

 GNU Compiler Collection (GCC) 

 GNU Ubiquitous Intelligent Language for Extensions (Guile) 

 Open MPI 

 parallel FFTW library (libfftw3-mpi3) 

 Portable, Extensible Toolkit for Scientific Computation (PETSc) library 

 Python 

The compilation and installation of the PETSc library also require a lot of prerequisite libraries 

of which more information can be found from the PETSc manual.108 The following versions 
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of the packages have been tested and used for production in this thesis; GCC 4.7.2, Guile-

2.0, Open MPI 1.4.5, libfftw3-mpi3 3.3.2-3.1, libpetsc3.2-dev_3.2.dfgs-6, 

and  python 2.7.3. 

The environment variables for PETSc library (shown for the bash-console here) need to 

be correctly set before compiling the RISM solver. In bash, one can execute the commands: 

export PETSC_DIR=<path-to-petsc-library> 

export PETSC_ARCH=linux-gnu-c-opt 

or write them into the user’s “.bashrc” file. After that one can start the compilation from the 

source code directory of the RISM 

cd <path-to-RISM-folder> 

make 

to generate the binary executable bgy3d there. The command “make distclean” can be used 

prior to a full re-compilation.  

The executable bgy3d is a guile interpreter. To run the RISM solver, one needs to modify 

the script <path-to-RISM-folder>/guile/runbgy.scm by setting the path in the header as 

#!<path-to-RISM-folder>/bgy3d –s 

!# 

and adapting the line 

(set! %load-path (cons “<path-to-RISM-folder>” %load-path))) 

It is strongly suggested to run the regression test after compilation by typing “make test-

all” to check the results for a few test cases in comparison with those obtained in this thesis. 

This regression test depends on using the Python binding for PETSc which called petsc4py. 

Compiling the RISM module in ParaGauss 

The RISM module in ParaGauss is to be compiled by setting the tags in the Makefile of 

ParaGauss: 

WITH_GUILE = 1 

WITH_BGY3D = 1 

It is also required to set a link to the directory of the RISM source code where the libraries 

libbgy3d.a and libbgy3d.so.1 can be located. This can be done by typing: 

cd <path-to-paragauss-folder> 

ln –sf <path-to-RISM-folder> ./bgy3d 

Then type “make” to compile the ParaGauss program and later “make link” to link the 

ParaGauss executable guile-qm to the RISM solver library. 
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Running the SCF-RISM Calculation 

The script <path-to-RISM-folder>/test-qm/runqm is used to run the SCF-RISM 

calculation, in which one needs to set the correct interpreter: 

#!<path-to-paragauss-folder>/guile-qm 

!# 

and the paths: 

(set! %load-path (cons “<path-to-RISM-folder>” %load-path)) 

(set! %load-path (cons “<path-to-paragauss-folder>” %load-path))) 

An example of the input files “hcl.scm” for SCF-RISM calculation is: 

;; 
;; HCl, ECP, RKS. 
;; 
((operations 
  (operations_symm #t) 
  (operations_integral #t) 
  (operations_scf #t) 
  (operations_dipole #t) 
  (operations_properties #t)) 
 (main_options 
  (integrals_on_file #f)                ; This is faster 
  (relativistic "false")                ; This is an ECP calculation 
  (spin_restricted #t))                 ; HCl is closed shell 
 (geo 
  (units angstrom) 
  ("H" (0.6285 0.0 0.0)) 
  ("Cl" (-0.6285 0.0 0.0))) 
 (mixing (chmix 0.5) (start_after_cycle 5)) 
 (grid (sym_reduce #t) (weight_grads #t)) 
 (rep 2 (gridatom (nrad 30) (nang 131))) 
 (xc_control (xc "pbe")) 
 (bas "nwchem" "H" "crenbl_ecp" "ahlrichs_coulomb_fitting") 
 (ecp "nwchem" "Cl" "crenbl_ecp" "ahlrichs_coulomb_fitting") 
 (properties 
  (plot_orbitals #t)) 
 (orbital_plot 
  (n_input_lines 0) 
  (density_plot #t) 
  (density_tot #t))) 
 
;;; 
;;; RISM input  follows. The parameter solute specifies  the table to 
;;; take the  site-specific force field  parameters. The names  of the 
;;; sites are those specified in PG input above: 
;;; 
((solute "hydrogen chloride") 
 (solvent "water") 
 (L 10.0)                               ; box size, A 
 (N 96)                                 ; grid dimension 
 (rho 0.033427745)                   ; solvent number density, A^-3 
 (beta 1.6889)                       ; inverse temperature, kcal^-1 
 (closure KH)) 

The first half of the input file is for running the QM calculation and the second half is for 3D 
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RISM. The force field parameters for the solute and solvent molecules are listed in the 

database files  “<path-to-RISM-folder>/guile/solutes.scm” and “<path-to-RISM-

folder>/guile/force-fields.scm”. It is also possible to update and add more molecular 

systems by following the syntax in these files. The input file only contains the most important 

parameters for running 3D RISM calculations, e.g. solute and solvent names, grid dimension, 

solvent number density, temperature and closure relation option. More settings can be given 

with the list pairs: 

    (norm-tol 1.0e-7)                 ; convergence threshold 

    (max-iter 1500)                   ; max number of iterations 

    (damp-start 1.0)                  ; scaling factor 

    (lambda 0.02)                     ; Mixing parameter for Picard iteration 
scheme 

    (bond-length-thresh 1.0)   ; scale for covalent bond autodetection 

    (closure HNC)                     ; HNC, KH or PY 

    (derivatives #f)                  ; #t for calculating the derivatives 
or #f for not 

(snes-solver "trial")             ; “jager”, “newton”, “picard”, “trial” 

The SCF-RISM calculation for the example input file “hcl.scm” can be run serially by typing: 

<path-to-RISM-folder>/test-qm/runqm hcl.scm 

or in parallel with N processors by using Open MPI: 

mpirun –np N <path-to-RISM-folder>/test-qm/runqm hcl.scm 

With the successful ending of the calculation, the normal exit information of both ParaGauss 

and the RISM solver can be found in the output. Information of the excess chemical potential 

results is printed with the PMV correction values: 

Nonlinear solve converged due to CONVERGED_PNORM_RELATIVE 
 # Chemical potentials, default is marked with *: 
 # mu = 4.833630 kcal (HNC) 
 # mu = 2.737230 kcal (KH)* 
 # mu = -0.746960 kcal (GF) 
 # Calculated partial molar volume (PMV), need to be scaled by kappa: 
 # PMV = 18.543616  
 # PMV * rho = 0.619871 

The spatial distribution functions will be stored as binary files as “guv.bin”, where u and v 

are the indices for the solute and solvent sites starting from 0. The binary files can be dumped 

to the output by running: 

<path-to-RISM-folder>/guile/runbgy.scm dump guv.bin
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