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Abstract

A boundary element method (BEM) with the Green’s function of the rectangular cav-
ity is derived, analyzed, and employed for the numerical modeling of reverberation
chambers. Di�erent from previous work, two approaches, a fast group spectral do-
main approach (FGSDA) and a fast Fourier transform (FFT) accelerated Ewald summation
technique, are presented which relieve the major shortcomings of the cavity Green’s
function (CGF) BEM: the large computational burden of the CGF in the high frequency
regime and the computationally expensive �lling of the system matrix.

The FGSDA is based on a hybrid Ewald-2D spectral representation of the CGF and a
spectral domain factorization. In the hybrid representation, near interactions are calcu-
lated with the Ewald summation technique while far interactions are calculated with
the 2D spectral representations. Combining the advantages of both representations,
the hybrid representation reduces the frequency complexity of the CGF. To accelerate
the �lling of the system matrix, the interaction integrals are evaluated in the spectral
instead of the spatial domain. In the spectral domain, the nested interaction integrals
over the test and the source domain are decomposed into two non-nested integrals, one
over the test and one over the source domain. Precomputing the non-nested integrals
supersedes the double integration during the �lling of the system matrix and leads to
a signi�cant acceleration.

The second approach is based on the Ewald summation technique, the FFT, and La-
grange interpolation. The Ewald summation is composed of a spatial and a spectral
series. The computationally expensive spectral series is sampled and precomputed.
The interaction integrals are calculated using the prestored values and Lagrange inter-
polation – the computationally expensive CGF does not have to be evaluated during the
�lling of the system matrix. To accelerate the sampling process, the spectral series is
reformulated into a sum of eight plane waves which only depend on the relative posi-
tion of observation and source point. Discretizing the reformulated series on a uniform
grid, the computation of the sample values can be accelerated using the FFT.

Numerical results demonstrate the e�ciency of the proposed approaches. In dif-
ferent scenarios, ranging from a reverberation chamber which contains a small-sized
antenna to a reverberation chamber with a stirrer and a device under test, they out-
perform a multilevel fast multipole method (MLFMM) accelerated BEM and other state-
of-the-art methods for the numerical modeling of reverberation chambers. Depending
on the scenario, the simulation time is reduced by a factor of four to more than three
orders of magnitude. The proposed methods are validated not only against the other
numerical methods but also against measurements. An error analysis complements the
validation and reveals the particular challenges in reverberation chamber simulation.
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Besides, the proposed methods are applied to reverberation chamber research. First,
the independent stirrer positions in reverberation chambers are considered in the frame-
work of linear algebra. It is shown that the number of independent positions is limited
by the number of measurement points in the test volume. Second, a dual rotation speed
stirring mode is proposed and analyzed. Without reducing the available test volume
as in the case of a second stirrer, the new stirring mode improves the chamber perfor-
mance with respect to �eld homogeneity and independent stirrer positions.
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1. Introduction

1.1. Introduction to Reverberation Chambers

An electromagnetic reverberation chamber is a facility for but not limited to electro-
magnetic compatibility (EMC) testing [Hol06]. The use of reverberation chambers for
EMC testing was �rst proposed in 1968 [Hil09] and standardized in 2003 [IEC11]. A re-
verberation chamber is an electrically large cavity resonator with a high quality factor
which contains one or several transmitting and receiving antennas, the device under
test, and inmost cases a mode stirrer [Hil09]. The cavity is usually rectangular in shape
although other geometries have been proposed [Arn98; Hua99a; Hua99b].

Reverberation chambers are statistical facilities. Inside the test volume of the cham-
ber, a normally distributed electromagnetic �eld is desired for EMC testing [Hil09]. To
generate the statistics, the per se deterministic �elds in the cavity need to be stirred.
The most widespread stirring technique is mechanical stirring. An electrically large
scatterer called mode stirrer or mode tuner is rotated to continuously change the res-
onance frequencies of the cavity modes. Other stirring techniques are wall [Hua92b],
frequency [Hil94], source [Hua92a; Cer05; Mon08; Cer09], and platformstirring [Ros01;
Che12].

Initially, reverberation chambers were used for EMC tests [Cor80; Cra86]. Nowa-
days, many other applications such as measuring the radiation e�ciency, the free-
space input impedance, and the e�ective diversity gain of antennas [Ros00; Ros01;
Kil02a; Kil02b] exist. Reverberation chambers are used to determine the correlation
and capacity of multiple input multiple output (MIMO) systems [Kil04; Ros05] and they
are applied to characterize the shielding e�ectiveness of cables, connectors, materials,
and enclosures (e.g., [Cra88; Wan04; Lou95; Fou96; Hol03; Hol08]). In addition to the
classical high frequency applications, reverberation chambers are employed to study
biological and biomedical e�ects [Jun08; Bia09; Fic12].

Besides the exploration of new application areas, more fundamental issues in re-
verberation chamber theory are researched. One example is the e�ciency of the stir-
ring process. Several methods exist to assess the e�ectiveness – all with their pros
and cons with respect to simplicity, �exibility, and correctness [IEC11; Mad04; Kra05;
Gra12; Pfe12; Esp13; Pfe13; Pfe14]. However, none of them combines all qualities.
Another example is mechanical stirring. The e�ect of various parameters (e.g., the
size, the shape, the position of the stirrer, and the number of stirrers) on the stirring
performance has been studied [Wu89; Cle05; Arn06; Hua06; Wel07; Lun10; Mog10;
Mog11; Mog12; Bos12; Pri14]. Yet, the construction guidelines given in the IEC stan-
dard are still rather basic (e.g., symmetries should be avoided or multiple stirrers can
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Introduction Chapter 1

improve the chamber performance) [IEC11]. A last example is the quality factor. It is
known that too high or too low losses result in a poor reverberation chamber perfor-
mance [Hol06]. However, the determination of the optimum quality factor is subject
of ongoing research [Ada14].

1.2. Numerical Modeling of Reverberation Chambers

The numerical modeling of reverberation chambers is challenging as they are electri-
cally large, highly resonant, and over-moded. The electrically large size yields a large
number of unknowns. The resonant and over-moded nature impedes the convergence
properties of iterative solvers in terms of iteration count and accuracy. As, for these
reasons, standard solvers often fail to e�ciently produce accurate results, many spe-
cialized techniques have been proposed in recent years.

For broadband analysis, time-domain methods, such as the �nite di�erence time do-
main (FDTD) (see e.g., [Taf95; Pet98]) or the transmission line matrix (TLM) method (see
e.g., [Chr95]), are advantageous. However, time-domain solvers convergence slowly in
the case of resonating structures. Appropriatemodi�cations of the numerical modeling
process are necessary. In [Mog04], Moglie accelerated the convergence of an FDTD

solver by arti�cially decreasing the conductivity of the cavity walls. He showed that
the �eld distributions of the decreased conductivity and the original model are strongly
correlated as long as the arti�cial conductivity of the cavity walls is greater than one
hundredth of the real conductivity. In [Orj06], a post-processing of the time-domain
signal was proposed to consider di�erent quality factors of the cavitywithout repeating
the simulation. With the post-processing technique, the simulation time could also be
reduced.

In [Cle05], Clegg et al. tried to optimize stirrer designs with a genetic algorithm us-
ing the TLMmethod. Although they decreased the conductivity of the cavity walls, the
optimization of the stirrer design inside the chamber was computationally not feasi-
ble. As a remedy, they optimized the stirrer design in a free-space model without the
chamber. However, concerns about the validity of the free-space model were raised
in [Wel07]. In [Coa07], the TLM method was validated against measurements. To re-
duce the simulation time, the solver was stopped long before the �elds had been de-
cayed. The agreement ofmeasured and simulated data was not excellent but, according
to [Coa07], satisfactory considering that the numerical model was rather simple.

When only a certain number of discrete frequencies is required, frequency domain
methods, such as the �nite element method (FEM) (see e.g., [Jin02]) and the bound-
ary element method (BEM) (see e.g., [Jin10]), are favorable. As the FEM is a volume-
discretizing method, the large space comprising air inside the cavity must be dis-
cretized. This drawback is often mitigated by restricting the numerical model to the
two-dimensional (2D) case. In 1999, Bunting et al. compared mechanical and frequency
stirring in a 2D reverberation chamber [Bun99]. As only the lower frequency range

2



Section 1.2 Numerical Modeling of Reverberation Chambers

was simulated, they could not reproduce a statistically uniform �eld in the case of me-
chanical stirring. In 2002, Bunting analyzed the max-to-average ratio, the normalized
standard deviation, the stirring ratio, and the �eld uniformity in a 2D reverberation
chamber [Bun02]. In [Bun01; Bun03], the shielding e�ectiveness of a 2D, electrically
small box in a 2D reverberation chamber was investigated. In [Rau12], Raum et al. pre-
sented a preliminary study on the modeling of three-dimensional (3D) reverberation
chambers using the FEM. However, the group has not published any further work until
now.

The BEM, also referred to as method of moments (MoM), is a surface-discretizing
method. The large empty space inside the cavity does not need to be discretized. The
number of unknowns is considerably reduced in comparison to volume-discretizing
methods, such as the FDTD, the TLM, or the FEM. However, the system matrix is dense.
When a direct solver is used, the operation count grows with N 3 where N is the num-

ber of unknowns. Iterative solvers reduce the complexity to O
(

N 2
)

, but they con-
verge slowly because of the resonating and over-moded nature of reverberation cham-
bers [Zha12a; Zha13]. In [Leu03a; Leu03b; Bru05], Bruns et al. simulated a medium-
sized reverberation chamber using the BEM. Because of the high computational and
memory complexity, the simulationswere limited to lower frequencies (i.e., f < 3fLUF).
The complexity of the BEM is improved by using fast multiplication methods, such as
the adaptive cross approximation (ACA) (see e.g., [Jin10]) or theMLFMM (see e.g., [Che01;
Jin10]). The matrix-vector equation is solved iteratively. By approximating the far in-
teractions using the ACA or the MLFMM, the cost per matrix-vector product is reduced
from N 2 to N logN . Nevertheless, as in the case of the unaccelerated BEM, the iterative
solver needs many iterations to converge [Zha12a; Zha13].

Besides the work on standard methods, non-standard approaches have been pro-
posed in recent years. In 2011, Zhao and Shen presented a hybrid discrete singular
convolution method of moments (DSC-MoM) [Zha11]. The large cavity is modeled by
the discrete singular convolution (DSC) method which is advantageous for rectangular
geometries: Maxwell’s equations in di�erential form are approximated using Lagrange
polynomials. Depending on the order of the polynomial interpolation, a discretization
density of one third of the wavelength is su�cient. As the DSC method is less e�cient
for arbitrarily shaped geometries, objects inside the cavity are modeled by the more
�exible MoM. Versus a commercial numerical solver, the DSC-MoM achieved a speed-
up of one order of magnitude. However, because of the hybrid approach, the use of
a direct solver is necessary which resulted in a large memory consumption. Using a
recursive update discrete singular convolution (RUDSC) method, Zhao and Shen could
reduce the memory demand of their algorithm, but at the expense of a larger compu-
tation time [Zha12b].

Another non-standard approach is the cavity Green’s function (CGF) BEM. Instead
of the free-space Green’s function (FGF), the Green’s function of the rectangular cavity
is used in the boundary integral (BI) formulation. As the CGF incorporates the cavity

3



Introduction Chapter 1

walls, they do not need to be discretized. Depending on the number and the size of
objects within the cavity, the number of unknowns is signi�cantly reduced. However,
the CGF approach involves two challenges: 1) �nding an e�cient representation of the
cavity Green’s function, and 2) the quadratic complexity of the system matrix.

In 2004, Laermans et al. modeled a 2D cavity using a one-dimensional (1D) spectral
representation of the CGF [Lae04]. The spectral representation only involves a simple
series, although the problem is 2D. Yet, the convergence of the simple series dete-
riorates when the observation point approaches the source point. To accelerate the
convergence, Learmans et al. used a Shanks transformation and the Veysoglu integral
transform. In [Gro03; Gro05; Car05; Car06; Car09], 3D cavities were modeled using the
Ewald summation technique [Ewa21] – a method which expresses the CGF as a sum
of a spatial and a spectral series [Par98]. In 2006, the Green’s function of the rectan-
gular cavity was constructed combining image theory and the Green’s function of 1D
multilayer planar structures [Kar06]. Depending on the frequency, the proposed rep-
resentation was slightly slower or faster than the Ewald representation in [Car05], but
the computation times were in the same order of magnitude.

As the second limitation of the CGF BEM (i.e., the �lling of the system matrix) was
not addressed in [Gro03; Gro05; Car05; Kar06; Car06; Car09], the use of the CGF BEM

was restricted to small, 1D objects. In [Gro03], the electromagnetic coupling of a dipole
antenna to a rectangular cavity was investigated. In [Gro05], the mutual coupling of
two dipole antennas was analyzed. Also using two dipoles, position and frequency
stirring were investigated in [Car05; Car09]. In [Kar06], three z-directed wires were
modeled.

In [Bor04; Yan14], both limitations of the CGF BEMwere addressed. Borji and Safavi-
Naeini approximated the CGF using Chebychev polynomials and the Ewald summation
technique [Bor04]. The interactions integrals were evaluated using the cheap polyno-
mial approximation. To generate the coe�cients of the polynomials, the Ewald sum-
mation technique was employed in a preprocessing step. Although the approach does
not reduce the complexity of the system matrix �ll, it achieved a speed-up of more
than one order of magnitude versus the ordinary Ewald summation technique in the
lower frequency range.

In [Yan14], the CGF BEM was accelerated by Yang and Yilmaz using the Ewald sum-
mation technique together with the adaptive integral method (AIM), where only the
parts of the spatial series (i.e., the source term and the immediate image term(s) when
the source is located close to the boundary) are computed directly. The remainder of
the spatial and the spectral series are computed on-the-�y using the adaptive integral
method (AIM) during the iterative solution of the linear equation system. To achieve
the shift invariance needed for the AIM, the modes in the spectral series are rewritten
as a sum of eight plane waves. The algorithm achieved a signi�cant speed-up for cavi-
ties containing large or multiple objects. However, for medium- or small-sized objects,
the additional overhead introduced by the inter- and anterpolation steps of the AIM

decelerated the algorithm.
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Section 1.3 Scope of this Thesis

1.3. Scope of this Thesis

In this thesis, two acceleration techniques for the CGF BEM are presented. Both ap-
proaches address the large computational burden of the CGF as well as the quadratic
complexity of the system matrix.

The �rst approach uses a hybrid representation of the CGF and a fast group spec-
tral domain approach (FGSDA). In most previous works, the Ewald summation tech-
nique was employed to evaluate the CGF [Gro03; Gro05; Car05; Car06; Car09]. The
Ewald sum consists of two exponentially convergent series: the spatial and the spec-
tral series [Ewa21]. Although the Ewald summation technique is optimal in the under-
moded frequency regime, it su�ers from a high-frequency breakdown in the over-
moded range [Cap07]. The number of terms in the spectral series needs to be in-
creased with f 3 where f is the frequency to avoid numerical over�ow errors. Besides
the Ewald representation, 2D spectral representations of the CGF exist [Tai76]. As they
involve a double instead of a triple sum, the number of necessary terms grows with
f 2 only. However, the convergence rates of the 2D spectral representations decrease
when the observation point approaches the source. To combine the advantages of both
representations, a hybridization of the Ewald and the 2D spectral representation is pro-
posed herein. When observation and source point are close to one another, the Ewald
summation technique is used. Otherwise, one of the 2D spectral representations is em-
ployed. The hybrid approach relieves the �rst shortcoming of the CGF BEM as it scales
only with f 2. The second shortcoming, i.e., the computationally expensive �lling of
the system matrix is addressed by the FGSDA. Naturally, the interaction integrals are
evaluated in the spatial domain. However, the interactions integrals can be evaluated
in the spectral domain as well [Eib98; Eib00; Eib03]. The nested interaction integrals
over test and source region are separated into two non-nested integrals, one over the
test and one over the source domain. The non-nested integrals correspond to the rep-
resentations of the basis functions in the spectral domain. Precomputing and storing
the spectral representations, the integration over test and source domain in the evalu-
ation of the interaction integrals is not needed anymore and the major computational
load is reduced from complexity N 2 to N .

The second approach employs a fast Fourier transform (FFT) accelerated Ewald sum-
mation technique and Lagrange interpolation. The Ewald summation technique orig-
inated in electrostatics. In 1921, Ewald developed the method to calculate the inter-
action energy for a lattice of ions [Ewa21]. In electrostatics, the Ewald summation
technique does not su�er from the high-frequency breakdown as it is used to solve
the Laplace and not the Helmholtz equation. Nevertheless, there have been simi-
lar problems. The computational load scaled quadratically with the number of par-
ticles [Des98]. The breakthrough was the development of FFT accelerated Ewald tech-
niques [Str92; Dar93; Ess95]. Appropriately discretizing the spectral part of the Ewald
sum on an equispaced grid, the sum over the particle interactions becomes an FFT.
When, in addition, the range of the spatial part is chosen small enough, the complex-
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Introduction Chapter 1

ity decreases to linearithmic [Des98]. In this thesis, the FFT acceleration is applied to
the electromagnetic Green’s function of the rectangular cavity. The spectral part of
the Ewald summation, which naturally depends on observation and source point (i.e.,
it is a six-variable function), is reformulated as a sum of three-variable functions which
only depend on the relative position of observation and source point. Discretizing the
three-variable functions on an equispaced grid, they become an FFT. As the values on
the grid are precomputed and stored, the interaction integrals are computed with little
computational e�ort using the fast Lagrange interpolation.

1.4. Outline of this Thesis

This thesis is structured as follows. In the next chapter, the boundary value problem of
the rectangular cavity is analyzed for perfectly and imperfectly conducting walls. The
surface integral equations for the rectangular cavity Green’s function and their discrete
counterparts are derived. The modeling of perfectly conducting, well conducting, and
dielectric objects is discussed. In Chapter 3, di�erent representations of the Green’s
function of the rectangular cavity are introduced, derived, and discussed with respect
to their convergence properties. The proposed acceleration techniques are presented
in Chapter 4 and 5, respectively.

In Chapter 6, numerical results for reverberation chambers containing perfectly con-
ducting, well conducting, and dielectric objects are presented. The proposed algo-
rithms are validated against and compared with an MLFMM accelerated FGF BEM and
other state-of-the-art methods for the numerical modeling of reverberation chambers.
The particular challenges in reverberation chamber simulation are identi�ed and nu-
merical consistency checks are performed. The complexity of the proposed algorithms
with regard to computation time and memory requirement is derived in Section 6.3.
In the last section of Chapter 6, the proposed methods are validated against measure-
ments. In Chapter 7, the presented algorithms are used to contribute to the answering
of some questions raised in Section 1.1. The problem of the independent stirrer posi-
tions is considered in the framework of linear algebra and a new dual rotation speed
stirring mode for reverberation chambers is proposed and analyzed.
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2. Cavity Green’s Function Boundary Element Method

2.1. Fundamental Concepts

2.1.1. Maxwell’s Equations

James Clerk Maxwell discovered that electricity and magnetism are not two separate
forces but are part of the same phenomena termed electromagnetism [Max65]. By in-
serting the displacement current into Ampère’s law, he uni�ed Gauss’s law, Gauss’s
law for magnetism, Faraday’s law, and Ampère’s law into a single theory and laid
the foundation for electromagnetic waves. About two decades after Maxwell’s pre-
sentation on the theory of electromagnetism [Max65], Heinrich Hertz gave the �rst
experimental veri�cation of electromagnetic waves by transmitting and receiving an
electromagnetic pulse [Her88] . Commonly, Maxwell’s equations are written in the
formalism of Heaviside [Hea93]. Assuming a time-harmonic dependence ejωt , they
are in di�erential form [Jin10]

∇ ·D = ρ, (2.1)

∇ · B = ρm, (2.2)

∇ × E + jωB = −M, (2.3)

∇ ×H − jωD = J (2.4)

where E and H are the electric and the magnetic �eld, D and B are the electric and the
magnetic �ux density, J and M are the electric and the magnetic current density, and
ρ and ρm are the electric and the magnetic charge density. Although magnetic charges
and currents have not been found in normal matter1 yet, they serve as a valuable tool in
form of equivalent charges and currents for the solution of electromagnetic boundary
value problems [Jin10].

The �elds and currents in Maxwell’s equations are related via the constitutive re-
lations which specify the characteristics of the surrounding medium. Assuming a ho-
mogeneous, linear, isotropic, and non-dispersive medium, they are

D = εE, (2.5)

B = µH , (2.6)

J = κE, (2.7)

M = κmH (2.8)

1 Recently, magnetic monopole quasi-particles have been observed in condensed matter systems [Cas08].

7
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where ε is the permittivity, µ is the permeability, and κ and κm are the electric and the
magnetic conductivity of the medium. In an inhomogeneous, non-linear, anisotropic,
or dispersive medium, the material parameters would depend on the position, the elec-
tric or the magnetic �eld, the polarization, or the frequency, respectively. In the special
case of a perfect electric conductor (κ → ∞), the electric �eld is zero. Likewise, the
magnetic �eld vanishes in a perfect magnetic conductor (κm →∞).

FromMaxwell’s equations in integral form, boundary conditions at media interfaces
can be derived [Jin10]. At the interface between a medium 1 and a medium 2, they
are [Jin10]

n̂ · (D2 − D1) = ρs, (2.9)

n̂ · (B2 − B1) = ρm,s, (2.10)

n̂ × (E2 − E1) = −Ms, (2.11)

n̂ × (H2 −H1) = J s (2.12)

where J s and Ms are the impressed surface current densities, ρs and ρm,s are the im-
pressed surface charge densities, and n̂ is the unit normal vector pointing frommedium
1 to 2. If surface currents and charges are zero, (2.9) and (2.10) enforce the continuity
of the normal components of electric and magnetic �ux across an interface and (2.11)
and (2.12) dictate the continuity of the tangential components of electric and magnetic
�eld. If medium 1 is a perfect electric conductor, E1 = 0 and the tangential electric �eld
n̂ × E2 in medium 2 must vanish at the boundary. Likewise, if medium 1 is perfectly
magnetically conducting (PMC), H1 = 0 and n̂ ×H2 = 0 at the media interface.

If the domain is unbounded (i.e., an open problem), the electric and the magnetic
�eld satisfy the radiation conditions

lim
r→∞

r
(∇ × E + jkr̂ × E

)

= 0, (2.13)

lim
r→∞

r
(∇ ×H + jkr̂ ×H

)

= 0. (2.14)

The above equations have been �rst derived by Silver and Müller and are known as
Silver-Müller radiation conditions [Sil49; Mül57]. They enforce that 1) waves propa-
gate away from the source at in�nity, 2) the ratio of the electric and the magnetic �eld
is a �xed value (i.e., the wave impedance ZF = µ/ε), and 3) electric �eld, magnetic �eld,
and the propagation direction form a right-handed trihedron [Jin10].

Equations 2.1 – 2.4 are a coupled partial di�erential equation system. The decou-
pled curl curl equation for the electric �eld is derived by applying the curl to (2.3),
substituting from (2.4) and using (2.5) and (2.6). Analogously, the curl curl equation
for the magnetic �eld is derived by inserting (2.3) into the curl of (2.4) and using the
constitutive relations. According to [Jin10], the curl curl equations are given by

∇ × ∇ × E − k2E = −jωµ J − ∇ ×M, (2.15)

∇ × ∇ ×H − k2H = −jωεM + ∇ × J (2.16)
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Section 2.1 Fundamental Concepts

where k = ω
√
µε is the wavenumber.

2.1.2. Auxiliary Vector Potentials

An elegant way to solve Maxwell’s equations are auxiliary scalar and vector potentials.
Instead of a curl curl equation, they yield two vector Helmholtz equations. Follow-
ing [Jin10], the electric and the magnetic �eld are decomposed into

E = Ee + Em , (2.17)

H = He +Hm (2.18)

where Ee and He are due to electric sources and Em and Hm are due to magnetic
sources. Since the di�erential equation system in (2.1) – (2.4) is linear, it is decomposed
into one system due to electric currents and charges and another one due to magnetic
currents and charges.

In the case of electric sources, Be = µH e is a solenoidal vector function as the diver-
gence of µH e is zero. Introducing the magnetic vector potential A according to

He =
1

µ
∇ ×A (2.19)

the equation ∇ ·
(

µH e

)

= 0 is satis�ed by the de�nition of A. Inserting (2.19) into
Faraday’s law from (2.3), the relation

∇ × (

Ee + jωA
)

= 0 (2.20)

applies which is satis�ed by introducing the electric scalar potential ϕe according to

Ee + jωA = −∇ϕe . (2.21)

Substituting (2.19) and (2.21) into Ampère’s law from (2.4) and using that ∇ × ∇ ×A =

∇ (∇ ·A)−∆A, themagnetic vector and the electric scalar potential satisfy the equation

∆A + k2A = −µ J + jωεµ∇ϕe + ∇∇ ·A . (2.22)

The magnetic vector potential is not uniquely de�ned. Only the curl of A is speci�ed
by (2.19), the choice of the divergence of A is free. In order to simplify (2.22), ∇ · A is
set to

∇ ·A = −jωµεϕe (2.23)

which is referred to as Lorenz gauge condition [Jin10]. Using (2.23), the electric �eld
due to electric sources is derived as

Ee = −jω
(

A +
1

k2
∇∇ ·A

)

(2.24)

9



Cavity Green’s Function Boundary Element Method Chapter 2

and (2.22) is simpli�ed to
∆A + k2A = −µ J . (2.25)

In the same manner, the introduction of the electric vector potential for magnetic
sources yields

Em = −
1

ε
∇ × F , (2.26)

Hm = −jω
(

F +
1

k2
∇∇ · F

)

, (2.27)

and
∆F + k2F = −εM . (2.28)

The introduction of scalar and vector potentials simpli�es the solution of Maxwell’s
equations into solving two vector Helmholtz equations, one for the magnetic and one
for the electric vector potential. The corresponding electric and magnetic �elds are
obtained via (2.19), (2.24), (2.26), and (2.27). In Cartesian coordinates, the auxiliary
potentials are in particular advantageous as the vector Helmholtz equations in (2.25)
and (2.28) decompose into three scalar Helmholtz equations, respectively.

2.2. Rectangular Cavity

2.2.1. Cavity Modes

Consider a source-free rectangular cavity with perfectly electrically conducting (PEC)
walls and suppose the size of the cavity is a × b × c (see Fig. 2.1). The interiorV of the
cavity is �lled with a homogeneous, isotropic, linear, non-dispersive dielectric with
the permittivity ε ≈ ε0 and the permeability µ ≈ µ0. According to (2.15) and (2.11), the
electric �eld satis�es

∇ × ∇ × E − k2E = 0 , r ∈ V (2.29)

together with the boundary condition

n̂ × E = 0 , r ∈ ∂V (2.30)

where n̂ is the outward directed unit normal on ∂V .
The boundary value problem of the ideal rectangular cavity has a countably in�nite

number of solutions which are called eigenmodes. To derive the electric and magnetic
�elds of the eigenmodes, the auxiliary vector potentials introduced in Section 2.1 are
used. Eigenmodes which are derived from the magnetic vector potential are called
transverse magnetic (TM) modes. Eigenmodes which are derived from the electric vec-
tor potential are referred to as transverse electric (TE) modes. In contrast to waveg-
uides, the rectangular cavity does not have a preferred direction. TM and TE modes
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x

y

z

a

b

c

V

∂V

Fig. 2.1.: Source-free rectangular cavity of size a × b × c with PEC walls.

can be constructed with respect to x-, y-, or z-direction. However, it is su�cient to
select one component of the magnetic and the electric vector potential. The �elds of
the eigenmodes of the other two components are linearly dependent [Mor53, p. 1849
et sqq.]. In accordance with waveguide theory, the z-component is chosen in what
follows.

Solving the homogeneous vector Helmholtz equation for A = Az ẑ, applying (2.24)
and (2.19), and enforcing the boundary condition from (2.30), the electric and the mag-
netic �eld of TM modes become

ETM
mnp (r ) = jE0

kxkz

k2xyz
ϕx,mnp (r ) x̂ + jE0

kykz

k2xyz
ϕy ,mnp (r ) ŷ

− jE0
k2x + k

2
y

k2xyz
ϕz,mnp (r ) ẑ , (2.31)

HTM
mnp (r ) = H0

ky

kxyz
ψx,mnp (r ) x̂ − H0

kx

kxyz
ψy ,mnp (r ) ŷ , (2.32)

where m, n, and p are the non-negative indices of the respective mode, kx = mπ/a,
ky = nπ/b , and kz = pπ/c are the wavenumbers in x-, y-, and z-direction, k2xyz =

k2x + k
2
y + k

2
z , E0 is the complex amplitude of the electric �eld, H0 = E0/ZF where

11
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ZF =
√

µ/ε is the wave impedance,

ϕx,mnp (r ) =

√

τmτnτp

abc
cos(kxx ) sin(kyy ) sin(kzz) , (2.33a)

ϕy ,mnp (r ) =

√

τmτnτp

abc
sin(kxx ) cos(kyy ) sin(kzz) , (2.33b)

ϕz,mnp (r ) =

√

τmτnτp

abc
sin(kxx ) sin(kyy ) cos(kzz) , (2.33c)

where

τi =


2 if i , 0,

1 if i = 0,

are the eigenfunctions of the magnetic vector potential, and

ψx,mnp (r ) =

√

τmτnτp

abc
sin(kxx ) cos(kyy ) cos(kzz) , (2.34a)

ψy ,mnp (r ) =

√

τmτnτp

abc
cos(kxx ) sin(kyy ) cos(kzz) , (2.34b)

ψz,mnp (r ) =

√

τmτnτp

abc
cos(kxx ) cos(kyy ) sin(kzz) , (2.34c)

are the eigenfunctions of the electric vector potential. In Fig. 2.2, the x-component of
the electric and the magnetic �eld are exemplarily shown for the TM221 mode. Anal-
ogously, solving the homogeneous vector Helmholtz equation for F = Fz ẑ, applying
(2.26) and (2.27), and enforcing the boundary condition from (2.30), the electric and the
magnetic �eld of the TE modes are derived as

ETE
mnp (r ) = E0

ky

kxyz
ϕx,mnp (r ) x̂ − E0

kx

kxyz
ϕy ,mnp (r ) ŷ , (2.35)

HTE
mnp (r ) = jH0

kxkz

k2xyz
ψx,mnp (r ) x̂ + jH0

kykz

k2xyz
ψy ,mnp (r ) ŷ

− jH0

k2x + k
2
y

k2xyz
ψz,mnp (r ) ẑ . (2.36)

For TM modes, the indices m and n must be greater than zero in order to obtain a
non-trivial solution. In the case of TE modes, p > 0 and a non-zerom or n is su�cient.

The wavenumbers kx , ky , and kz are related to the wavenumber k via the dispersion
relation

k2 = k2x + k
2
y + k

2
z . (2.37)
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Fig. 2.2.: Im {Ex } and Re {Hx } of the TM221 mode in the plane x = 4m for E0 = 103 Vm−1 ,
ZF = 120πΩ, and a × b × c = 12m × 6m × 4m.

Using that k = 2πf /c0, where f is the frequency and c0 = 1/
√
µ0ε0 is the vacuum

speed of light , the resonance frequencies of the cavity are derived as

fmnp =
c0

2

√

(

m

a

)2
+

(

n

b

)2
+

(

p

c

)2
. (2.38)

In addition to the �elds and the resonance frequencies of the eigenmodes, the mode
distribution is of interest. Table 2.1 lists the �rst ten TM or TEmodes and their resonant
frequencies for a cavity of size 12m × 6m × 4m. Since modes number 4, 5, and 6; 7
and 8; and 9 and 10 have the same resonances frequencies, they are called degenerate
modes. An estimation of the cumulated number of modes Nmodes is given in [Liu83].
It is approximately

Nmodes ≈
8π

3
abc

(

f

c0

)3

− (a + b + c )
f

c0
+

1

2
. (2.39)

The cumulated number of modes grows with f 3. Di�erentiating (2.39) with respect to
frequency gives the mode density [Liu83]

∂Nmodes

∂ f
≈ 8πabc

(

f

c0

)2

− (a + b + c )
1

c0
. (2.40)

The mode density increases with f 2. In Fig. 2.3, the cumulated number of modes and
the estimated cumulated number of modes according to (2.39) are shown for a cubical
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Number Mode fmnp in MHz

1 TM110 27.95
2 TM210 35.36
3 TE101 39.53
4 TE011 45.07
5 TE201 45.07

6 TM310 45.07
7 TM111 46.77
8 TE111 46.77
9 TM120 51.54
10 TM211 51.54

Tab. 2.1.: First ten eigenmodes and their resonance frequencies for a cavity of size
12m × 6m × 4m.

and a cuboidal cavity. In both cases, (2.39) approximates the cumulated number of
modes very well.

The cumulated number of modes and the mode density are important parameters
for reverberation chambers. While microwave resonators are usually operated in the
range of the fundamental resonance, reverberation chambers are operated in the over-
moded frequency range of the cavity. The performance of reverberation chambers
depends on the mode density. The higher the density of modes, the better is the per-
formance of the chamber. Therefore, the lowest usable frequency of a reverberation
chamber is often estimated using the cumulated number of modes or the mode density.
It is de�ned by either the resonance frequency of the 60th eigenmode or amode density
which is greater than 1.5modes/MHz. In the case of a cavity size of 12m × 6m × 4m,
the resonance frequency of the 60th mode is 100.78MHz and the mode density meets
the requirement at about 75MHz.

2.2.2. Wall Losses and Quality Factor

Real cavity walls are well but imperfectly conducting. The exact analytic solution of
the boundary value problem of the imperfect cavity is di�cult but an approximate
solution is found using perturbation theory [Jin10]. The �eld distribution in the im-
perfect cavity is approximated by the �eld distribution of the corresponding perfect
cavity. In contrast to the ideal cavity, the eigenmodes in the real cavity are damped. In
frequency domain, a damped oscillation is usually modeled by a complex wavenumber
according to [Hil94]

kc = k

(

1 − 1

2Q

)

(2.41)
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Fig. 2.3.: Counted cumulated number of modes and estimated cumulated number of modes ac-
cording to (2.39).

where Q is the quality factor of the resonator. In general, the quality factor is de�ned
as the ratio of the stored and the dissipated energy per period [Jac99]

Q = ω
W s

P l
(2.42)

whereW s is the time-averaged stored energy and P l is the average power loss. In the
case of the rectangular resonator, the quality factor of a modemnp becomes [Hil09]

Qmnp = ω
µ
#

V
Hmnp ·H∗

mnp dv

Zs
!
S
Hmnp ·H∗

mnp da
(2.43)

where Hmnp is the magnetic �eld of the respective cavity mode,

Zs =

√

ωµw

2κw
=

1

κwδw
(2.44)

is the surface impedance of the walls, µw is the wall permeability, κw is the wall con-
ductivity, and δw is the skin depth of the walls. Inserting (2.32) and (2.36) respectively
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into (2.43), the quality factors of TM and TE modes become

QTM
mnp =

τp

2µr,wδw

abc k2xy

a
(

cτp + b
)

k2y + b
(

cτp + a
)

k2x
, (2.45)

QTE
mnp =

τmτn

2µr,wδw

abc k2k2xy

bcτn
(

k4xy + k
2
zk

2
y

)

+ acτm
(

k4xy + k
2
zk

2
x

)

+ abτmτnk
2
xyk

2
z

(2.46)

where k2xy = k
2
x + k

2
y and µr,w is the relative wall permeability.

A compositeQ of TM and TEmodes is calculated by averaging 1/Q over the individual
modes. According to [Liu83], the compositeQ of the rectangular cavity is given by

Q =
1

〈

1
Qmnp

〉 =

3V

2µwSwδw

1

1 + 3π
8k

(

1
a +

1
b
+

1
c

) (2.47)

where V is the volume and Sw is the surface area of the cavity. For electrically large
cavities (i.e., ka ≫ 1, kb ≫ 1, and kc ≫ 1), (2.47) becomes

Q =
3V

2µwSwδw
. (2.48)

In [Dun90], (2.47) and (2.48) were con�rmed by using a local plane-wavemethod. It was
shown that the additional terms in (2.47) originate from opposite walls in electrically
short distance and from cavity edges. In Fig. 2.4a and 2.4b, the quality factors of the
individual TM and TE modes and the composite Q ’s according to (2.47) and (2.48) are
respectively shown for a cubical and an elongated cavity. Although the derivations
in [Liu83] and [Dun90] are correct under the assumptions made, in the lower frequency
range, (2.47) rather gives a lower bound for the individual quality factors than the
average Q . The asymptotic composite Q from (2.48), on the other hand, provides a
good estimate of the average Q at all frequencies.

2.2.3. Green’s Functions

In the previous sections, the source-free cavity has been considered (i.e., the homoge-
neous boundary value problem). In this section, the inhomogeneous boundary value
problem (e.g., an ideal cavity with an electric current source, see Fig. 2.5) is analyzed.
Inhomogeneous boundary value problems can be solved using Green’s functions. The
Green’s function of a boundary value problem is de�ned as its impulse response [Jac99].
Hence, using (2.15) together with (2.30), the Green’s function of the rectangular cavity
for the electric �eld due to electric currents satis�es

∇ × ∇ ×G
E
J

(

r ,r ′
)

− k2GE
J

(

r ,r ′
)

= −jωµ I δ
(

r − r ′
)

, r ∈ V (2.49)
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Composite Q after (2.47)
Composite Q after (2.48)
TE modes
TM modes

Q

f in MHz
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104

105

(a) Cavity size a × b × c = 8m × 8m × 8m

Composite Q after (2.71 )
Hill
TE modes
TM modes

Q

f in MHz
0 100 200 300 400 500

104

105

(b) Cavity size a × b × c = 12m × 6m × 4m

Fig. 2.4.: Individual and composite quality factors for a wall conductivity of κw = 106 Sm−1.
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∂V

Fig. 2.5.: Ideal rectangular cavity with electric current density.

together with the boundary condition

n̂ ×G
E
J

(

r ,r ′
)

= 0 , r ∈ ∂V (2.50)

where I is the identity dyad2 and δ

(

r − r ′
)

is the Dirac delta distribution [Råd04]. In
the same manner, the Green’s function for the electric �eld due to magnetic currents
and the Green’s functions for the magnetic �eld are de�ned.

Following Section 2.1.2, auxiliary vector potentials are used to derive the Green’s
functions of the rectangular cavity for the electric and the magnetic �eld. According

to (2.25), the Green’s function for the magnetic vector potentialG
A
satis�es

∆G
A (

r ,r ′
)

+ k2G
A (

r ,r ′
)

= −µ I δ
(

r − r ′
)

, r ∈ V (2.51)

together with the boundary condition

n̂ ×
(

I +
1

k2
∇∇

)

·GA (

r ,r ′
)

= 0 , r ∈ ∂V (2.52)

where (2.24) and (2.50) have been used to derive (2.52). Using (2.28), the Green’s func-

tion for the electric vector potentialG
F
satis�es

∆G
F (

r ,r ′
)

+ k2G
F (

r ,r ′
)

= −ε I δ
(

r − r ′
)

, r ∈ V (2.53)

2 In Cartesian coordinates the identity dyad is given by I = x̂ x̂ + ŷ ŷ + ẑẑ .
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together with the boundary condition

n̂ × ∇ ×G
F (

r ,r ′
)

= 0 , r ∈ ∂V (2.54)

where (2.26) and (2.50) have been used to derive (2.54). Di�erent techniques are avail-
able to construct the Green’s function of the rectangular cavity (e.g., the image prin-
ciple and eigenfunction expansions). The di�erent representations are introduced and
analyzed in Chapter 3.

The solution of the inhomogeneous boundary value problem results as the convolu-
tion of the corresponding Green’s function and the source distribution [Jac99]. Hence,
the magnetic and the electric vector potential are calculated from an electric current
density J and an magnetic current densityM as

A (r ) =

$
V
G
A (

r ,r ′
)

· J
(

r ′
)

dv′ , (2.55)

F (r ) =

$
V
G
F (

r ,r ′
)

·M
(

r ′
)

dv′ , (2.56)

respectively. Using (2.19) – (2.27), the electric and magnetic �eld become

E (r ) = −jω
$

V

(

I +
1

k2
∇∇

)

·GA (

r ,r ′
)

· J
(

r ′
)

dv′

− 1

ε

$
V
∇ ×G

F (

r ,r ′
)

·M
(

r ′
)

dv′ , r ∈ V , (2.57)

H (r ) =
1

µ

$
V
∇ ×G

A (

r ,r ′
)

· J
(

r ′
)

dv′

− jω

$
V

(

I +
1

k2
∇∇

)

·GF (

r ,r ′
)

·M
(

r ′
)

dv′ , r ∈ V , (2.58)

respectively.
The Helmholtz equations in (2.25) and (2.28) for the magnetic and the electric vector

potential and (2.24) and (2.27) are derived under the assumption that the magnetic and
the electric vector potential satisfy the Lorenz gauge condition [Jin10]. Accordingly,
the Green’s functions of the magnetic and the electric vector potential must meet the
Lorenz gauge in order for (2.57) and (2.58) to be valid. In Appendix A.1, the validity of
the Lorenz gauge for the Green’s function of the rectangular cavity is shown.

2.3. Surface Integral Equations

In Section 2.2, the homogeneous and the inhomogeneous boundary value problem of
the rectangular cavity have been considered for perfectly and imperfectly conducting
cavity walls. In this section, arbitrarily shaped objects are placed in the cavity. The
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PEC

εobj,µobj

Vobj

S

Einc

ε ,µ

V Sw

Fig. 2.6.: Rectangular cavity with arbitrarily shaped objects.

walls of the cavity are modeled as PEC and the cavity is excited by an incident electric
�eld Einc . The material properties of the objects are described by the permittivity εobj
and the permeability µobj. The interior of the objects is denoted byVobj, the volume in
the cavity is referred to as V , and S and Sw denote the surfaces of the objects and the
cavity walls, respectively, see Fig. 2.6.

In general, the considered problem does not have an analytical solution and needs
to be approximated using numerical techniques. While local techniques, such as �-
nite di�erence and �nite element methods, discretize the partial di�erential equations
(i.e., Maxwell’s equations), boundary element methods approximate the correspond-
ing integral equations (i.e., the Stratton-Chu integral equations). In the following, the
Stratton-Chu integral equations are derived but in contrast to the standard formulation,
the Green’s function of the rectangular cavity is used instead of the Green’s function
of free-space.

Using the surface equivalence principle [Jin10] with the CGF, the boundary value
problem is converted into an equivalent empty cavity problem. The objects inside
the cavity are replaced by equivalent electric and magnetic surface currents densities
according to [Jin10]

J s = n̂ ×H
���S , (2.59)

Ms = −n̂ × E
���S (2.60)

where E = Einc + Esca and H = H inc + H sca are the total (incident and scattered)
electric and magnetic �eld, respectively. The cavity walls do not need to be replaced
by equivalent currents as they are incorporated into the CGF. The equivalent empty
cavity problem is illustrated in Fig. 2.7.

In the volumeV , the scattered �elds are related to the equivalent currents via (2.57)
and (2.58). On the boundary S , the integrals in (2.57) and (2.58) become singular. They
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Vobj

J s

Ms

n̂

Einc

ε ,µ

V

Fig. 2.7.: Equivalent empty-cavity problem.

are evaluated in a principle value sense, after the singularities have been extracted
analytically [Mic14]. On locally smooth surfaces, the total �elds satisfy [Ylä13]

1

2
E (r ) = −ZFT A

(

J s

)

− K F (Ms) + Einc (r ) , r ∈ S , (2.61)

1

2
H (r ) = − 1

ZF
T F (Ms) +KA

(

J s

)

+H inc (r ) , r ∈ S (2.62)

where T A/F
= T A/F

w + T A/F
h

, the weakly singular and the hypersingular operator3

T A/F
w and T A/F

h
are de�ned as

T A/F
w (X ) =

jk

µ/ε

"
S
G
A/F (

r ,r ′
)

· X
(

r ′
)

ds ′, (2.63)

T A/F
h

(X ) =
jk

µ/ε

"
S

1

k2
∇∇ ·GA/F (

r ,r ′
)

·X
(

r ′
)

ds ′, (2.64)

and

KA/F (X ) =
1

µ/ε

"
S
∇ ×G

A/F (

r ,r ′
)

· X
(

r ′
)

ds ′ (2.65)

is a strong singular operator.

The �elds in (2.61) and (2.62) are related to the equivalent currents via (2.59) and
(2.60) on the surface S . Following [Ylä13], the tangential trace operator τt and the

3 Herein, weakly, strong, and hypersingular operator refer to integral kernels which are proportional to 1/r ,
1/r 2, and 1/r 3, respectively where r is the distance between r and r ′
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rotated tangential trace operator τr are de�ned as

τtX := −n̂ × n̂ ×X
���S , (2.66)

τrX := n̂ ×X
���S . (2.67)

Applying the tangential trace operator to (2.61) and using the boundary condition for
the electric �eld according to (2.59) yields the electric �eld integral equation (EFIE)

1

2
n̂ ×Ms − n̂ × n̂ ×

[
ZFT A

(

J s

)

+K F (Ms)

]
= −n̂ × n̂ × Einc (r ) . (2.68)

Analogously, applying the rotated tangential trace operator to (2.62) and using the
boundary condition for the magnetic �eld according to (2.60) gives the magnetic �eld
integral equation (MFIE)

1

2
J s + n̂ ×

[
1

ZF
T F (Ms) − KA

(

J s

)

]
= n̂ ×H inc (r ) . (2.69)

Both the EFIE and the MFIE su�er from the internal resonance problem [Che01].
When the frequency of the incident wave is equal to an internal resonance frequency
of a closed body, the solution is not unique [Che01]. The internal resonance problem
can be overcome by using a combined �eld integral equation (CFIE) formulation. The
CFIE is a linear combination of EFIE and MFIE according to

CFIE = α EFIE + (1 − α )ZF n̂ ×MFIE (2.70)

where 0 ≤ α ≤ 1 is the combination coe�cient. The CFIE is free from interior reso-
nances as it shifts the internal resonance frequencies into the complex plane [Che01].

The discretization of the EFIE in (2.68) or theMFIE in (2.69) yields an underdetermined
linear equation system. The unknown equivalent electric and magnetic current densi-
ties generate double the unknowns as equations. Additional constraints are necessary
to solve the boundary value problem. As the integral equations in (2.68) and (2.69)
only describe the �eld problem in V , the interior of the objects needs to be considered
additionally. Setting up equations for the interior completes the system of equations.
In the following, three cases are addressed: PEC, metallic, and dielectric objects.

On perfect electric conductors, the magnetic current density is zero. The number of
unknowns is halved and the solution of the boundary value problem becomes unique.
The EFIE and the MFIE from (2.68) and (2.69) simplify to

ZF n̂ × n̂ × T A
(

J s

)

= n̂ × n̂ × Einc (r ) , (2.71)

1

2
J s − n̂ × KA

(

J s

)

= n̂ ×H inc (r ) . (2.72)

The EFIE in (2.71) is an integral equation of the �rst kind since the unknown quantity
occurs only inside the integral. It is applicable to closed and open surfaces. In the
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Section 2.4 Method of Moments

latter case, the surface current is the sum of the currents on both sides of the surface.
The MFIE in (2.72) is an integral equation of the second kind as the unknown quantity
occurs inside and outside the integral. In contrast to (2.71), it cannot be applied to open
surfaces as the boundary condition for the magnetic �eld is not unique on an open PEC

surface.
Good, but not perfect conductors actually belong to the class of penetrable ob-

jects. However, as the �elds decay rapidly in the interior, they can be modeled using
impedance boundary conditions (IBCs) [Sen95]. The most wide-spread IBC goes back to
Leontovich. On a planar surface, the electric current density is related to the magnetic
current density via

Ms = −Zsn̂ × J s (2.73)

where the characteristic surface impedanceZs =
√

µω/κ , µ is the permeability, andκ is
the conductivity of the object. Impedance boundary conditions are applicable to solid
objects (i.e., closed objects) only. In�nitesimally thin imperfectly conducting bodies
can be modeled using resistive sheet boundary conditions [Med85].

In the case of dielectric bodies, the �elds in the exterior and in the interior need to
be considered. When the dielectric is homogeneous, a second set of integral equations
can be formulated for the interior [Ylä13]. When the dielectric is inhomogeneous or
anisotropic, surface integral equations are less appropriate [Ylä13] and hybridmethods,
such as the �nite element boundary integral (FE/BI) method, become favorable [Eib96;
Eib99; Jin10]. The exterior is modeled in the integral equation while the interior is
considered in the �nite element (FE) formulation.

2.4. Method of Moments

The MoM is a general projection method: a linear integral (or di�erential) equation is
approximated in a �nite-dimensional space by a matrix-vector equation. Firstly, the
unknown quantity is represented by a �nite set of N basis functions. Secondly, the
discretized quantity is inserted into the integral equation yielding an equation with
N unknown coe�cients. Lastly, to obtain a matrix-vector equation, the discretized
integral equation is tested with so-called testing or weighting functions (i.e., the L2-
inner product of testing functions and the discretized integral equation is formed). A
proper choice of the basis functions is crucial [Ylä13]. Appropriate basis functions
should span the domain of the integral operator (i.e., the physical properties of the
unknown quantity are represented well). When basis and testing functions are the
same, the testing procedure is called a Galerkin method.

In the case of the EFIE and the MFIE, the unknown electric and magnetic current

densities are elements of the Sobolev space H−1/2
div

[Ylä13]. Basis functions in H−1/2
div

are divergence-conforming (i.e., they are able to appropriately approximate the surface
current and charge density). Non divergence-conforming basis functions would, for in-
stance, allow unphysical line charges. The lowest order divergence-conforming func-
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ln

T +n

T −n

Fig. 2.8.: RWG function on two adjacent triangles.

tions on a triangular mesh are the Rao-Wilton-Glisson (RWG) basis functions [Rao82].
RWG functions are local basis functions. They are de�ned on two adjacent trianglesT+n
and T−n according to

βn (r ) =


ln
2A±n

ρ±n , r ∈ T±n ,
0 , otherwise

(2.74)

wheren is the index of the common edge of the triangles, ln is the length of the common
edge, ρ±n are the vectors connecting the free vertex of the triangle and the position vec-
tor r and vice versa, and A±n is the surface area of the respective triangle (see Fig. 2.8).
Expanding the unknown electric and magnetic surface current density into RWG basis
functions gives

J s (r ) ≈
N
∑

n=1

Inβn (r ) , (2.75)

Ms (r ) ≈
N
∑

n=1

Vnβn (r ) (2.76)

where In are the unknown current coe�cients and Vn are the unknown voltage coef-
�cients.

Inserting (2.75) and (2.76) in (2.68) yields the discretized EFIE. Following the classical
approach [Rao82; Son97; Ism09], the discretized EFIE is tested with RWG functions.
Using the identity4 β · (n̂ × n̂ ×X ) = −β ·X yields a linear equation system in form of

(

1

2
A +

1

ε
D

)

v + ZF

(

jk

µ
B +

jk

µ
C

)

i = g (2.77)

4 β · (n̂ × n̂ × X ) = β · [(n̂ · X ) n̂ − (n̂ · n̂ )X ]

= β · n̂ (n̂ · X ) − β · X = −β · X , as β is orthogonal to n̂.
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where the system matrices are

[A]mn =

"
S
βm (r ) ·

[
n̂ × βn (r )

]
ds , (2.78a)

[B]mn =

"
S
βm (r ) ·

"
S
G
A (

r ,r ′
)

· βn
(

r ′
)

ds ′ ds , (2.78b)

[C]mn =

"
S
βm (r ) ·

"
S

1

k2
∇∇ ·GA (

r ,r ′
)

· βn
(

r ′
)

ds ′ ds , (2.78c)

[D]mn =

"
S
βm (r ) ·

"
S
∇ ×G

F (

r ,r ′
)

· βn
(

r ′
)

ds ′ ds , (2.78d)

m = 1, . . . ,N , and the excitation vector is

[g]m =

"
S
βm (r ) · Einc (r ) ds . (2.79)

Analogously, inserting (2.75) and (2.76) in n̂ × (2.69) yields the discretized n̂ × MFIE.
Again, following the classical approach, the discretized n̂×MFIE is tested with n̂ × RWG

functions. Using the identity5
(

n̂ × β
)

· (n̂ × n̂ ×X ) = −
(

n̂ × β
)

· X gives a linear
equation system of the form

1

ZF

(

− 1
2
A′ − 1

µ
D′

)

v +

(

jk

ε
B′ +

jk

ε
C′

)

i = g ′ (2.80)

where the system matrices are

[
A′

]
mn
=

"
S

[
n̂ × βm (r )

]
·
[
n̂ × βn (r )

]
ds , (2.81a)

[
B′

]
mn
=

"
S

[
n̂ × βm (r )

]
·
"

S
G
F (

r ,r ′
)

· βn
(

r ′
)

ds ′ ds , (2.81b)

[
C′

]
mn
=

"
S

[
n̂ × βm (r )

]
·
"

S

1

k2
∇∇ ·GF (

r ,r ′
)

· βn
(

r ′
)

ds ′ ds , (2.81c)

[
D′

]
mn
=

"
S

[
n̂ × βm (r )

]
·
"

S
∇ ×G

A (

r ,r ′
)

· βn
(

r ′
)

ds ′ ds , (2.81d)

and the excitation vector is[
g ′
]
m
=

"
S

[
n̂ × βm (r )

]
·H inc (r ) ds . (2.82)

The discretized EFIE andMFIE in (2.77) and (2.80) are underdetermined linear equation
systems. There are twice as many unknowns (i.e., N discrete currents and N discrete

5
(

n̂ × β
)

· (n̂ × n̂ × X ) =
(

n̂ × β
)

· [

(n̂ · X ) n̂ − (n̂ · n̂)X ]

=

(

n̂ × β
)

· n̂ (n̂ · X ) −
(

n̂ × β
)

· X =

−
(

n̂ × β
)

β · X , as
(

n̂ × β
)

is orthogonal to n̂.
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voltages) as equations. To complete the equation systems, the interior of the objects
needs to be considered. In the case of PEC objects, the unknown voltages are zero. For
imperfectly conducting objects, the IBC from (2.73) yields a second system of equations
in form of [Ism09]

A′v + ZsAi = 0. (2.83)

In the case of dielectric objects, the discretization of the FE/BI approach results in a
coupled system of equations according to [Jin10]

*....,
Kvv Kvs 0

Ksv Kss B

0 P Q

+////-
*....,
vv

vs

is

+////-
=

*....,
0

0

b

+////-
(2.84)

where vv represents the discrete electric �eld inside the FE domain and vs and is are the
discrete electric and magnetic surface currents, respectively (cf. (2.75) and (2.76)). The
blocksKvv, Kvs, Ksv,Kss, and B are the FE matrices and P and Q are the BI matrices.
In the case of the EFIE, the matrix P is composed of the matrices A and D from (2.77)
and the matrices B and C form the matrix Q. In the case of the MFIE, A, B, C, and D
are replaced by their primed counterparts from (2.80).

The system matrices in (2.77) and (2.80) and the lower part of the system matrix
in (2.84) are fully populated matrices. The computation of the coe�cients of a dense

matrix requires O
(

N 2
)

operations. The solution of the linear equation system needs

O
(

N 3
)

operations when a direct solver is used and O
(

N 2
)

operations per iteration
when an iterative solver is employed. In contrast to the FGF BEM, the most computation
time is needed by the interaction integrals in the CGF BI formulation as 1) the CGF is
computationally considerably more expensive than the FGF and 2) the number of un-
knowns is signi�cantly smaller since the cavity walls are not discretized. In the next
chapter, di�erent representations of the CGF are introduced. After that, two accelera-
tion techniques for computing the system matrix are presented.
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3. Representations of the Rectangular Cavity Green’s Function

In the following, di�erent representations of the rectangular cavity Green’s function
are presented and analyzed. The representations are introduced for the Green’s func-
tion of the magnetic vector potential only as the analysis of the Green’s function of the
electric vector potential and the derivatives of the Green’s functions is analogous. In
brief, the representations of the other Green’s functions are given in Appendix B.

3.1. Spatial Representation

The spatial representation of the Green’s function of the rectangular cavity is con-
structed using the image principle [Mor53]. Starting from the boundary value problem
of the rectangular cavity with an electric current element, the for example upper PEC
boundary is replaced by an image current. Iteratively repeating the image principle in
all directions moves the boundaries to in�nity and results in the equivalent free-space
problem, see Fig. 3.1.

Accordingly, the spatial representation of the CGF of the magnetic vector potential
is given by [Ham70]

G
A
spat

(

r ,r ′
)

= µ

∞
∑

m,n,p=−∞

7
∑

q=0

e−jkrmnp,q

4πrmnp,q

(

Ax,q x̂x̂ +Ay ,q ŷŷ + Az,q ẑẑ
)

(3.1)

where

rmnp,q =

√

(

xq − 2ma
)2
+

(

yq − 2nb
)2
+

(

zq − 2pc
)2

(3.2)

is the distance between the observation point and the source or an image current. The
distances xq , yq , and zq are the Cartesian components of the distance vector between
the observation point and the source or its seven immediate images. Likewise, the
coe�cients Ax,q , Ay ,q , and Az,q correspond to the relative orientation of the source
and its immediate images. The distances and the coe�cients Ax,q , Ay ,q , and Az,q are
given in Tab. 3.1.

The spatial representation is conditionally convergent6 as the number of terms in
(3.1) grows cubically with rmnp,q but the terms decay only with 1/rmnp,q . While the
singularity in the spatial domain (i.e., r = r ′) is considered directly, the singularities in

6 A series
∑∞
n=0 an is conditionally convergent if limN→∞

∑N
n=0 an is a �nite but

∑∞
n=0 |an | = ∞ [Råd04].
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J (r )

x

y

a

b

Fig. 3.1.: Image principle for the Green’s function of the rectangular cavity.

q xq yq zq Ax,q Ay ,q Az,q

0 x − x ′ y − y ′ z − z′ +1 +1 +1

1 x + x ′ y − y ′ z − z′ +1 −1 −1
2 x + x ′ y + y ′ z − z′ −1 −1 +1
3 x − x ′ y + y ′ z − z′ −1 +1 −1
4 x − x ′ y − y ′ z + z′ −1 −1 +1
5 x + x ′ y − y ′ z + z′ −1 +1 −1
6 x + x ′ y + y ′ z + z′ +1 +1 +1
7 x − x ′ y + y ′ z + z′ +1 −1 −1

Tab. 3.1.: Distances xq , yq , and zq and coe�cients Ax,q , Ay ,q , and Az,q .
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Fig. 3.2.: Relative error of the spatial representation at 200MHz (left) and 400MHz (right) for a
cavity of size a × b × c = 12m × 6m × 4m, x = x ′ = a/2, y = y ′ = b/2, and z′ = c/2.

the spectral domain (i.e., the resonances of the cavity) are considered in the asymptotic
limit only.

In Fig. 3.2, the convergence behavior of the series is illustrated for di�erent distances
between observation and source point and di�erent frequencies. As the singularity in
the spatial domain is modeled directly, the convergence of the series improves when
the observation point approaches the source point. Still, the relative error is not mono-
tonically decreasing. With increasing frequency the resonance density grows. As reso-
nances are only considered in the asymptotic limit, the convergence is poor even when
the distance between the observation and the source point is small. In conclusion, the
spatial representation is not suited for numerical usage.

3.2. Spectral Representation

The dual representation to the spatial is the spectral representation. While the spatial
representation is derived in the spatial domain by image theory, the spectral repre-
sentation is constructed in the reciprocal spectral domain in terms of eigenfunctions
which satisfy the boundary conditions of the �eld problem [Mor53]. For the magnetic
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Fig. 3.3.: Relative error of the spectral representation at 200MHz (left) and 400MHz (right) for a
cavity of size a × b × c = 12m × 6m × 4m, x = x ′ = a/2, y = y ′ = b/2, and z′ = c/2.

vector potential, the spectral representation is [Tai76]

G
A
spec

(

r ,r ′
)

= µ

∞
∑

m,n,p=0

1

k2xyz − k2
[
ϕx,mnp (r ) ϕx,mnp

(

r ′
)

x̂x̂

+ ϕy ,mnp (r ) ϕy ,mnp

(

r ′
)

ŷŷ + ϕz,mnp (r ) ϕz,mnp

(

r ′
)

ẑẑ

]
(3.3)

where k2xyz = k
2
x + k

2
y + k

2
z and ϕx,mnp (r ), ϕy ,mnp (r ), and ϕz,mnp (r ) are the eigen-

functions of the magnetic vector potential as de�ned in Section 2.2.

The spectral representation is conditionally convergent because the number of terms
in (3.3) grows with k3xyz but the terms decay only with 1/k2xyz . Vice versa to the
spatial representation, the singularity in the spatial domain is considered only in the
asymptotic limit while the resonances of the cavity are modeled directly.

In Figure 3.2, the convergence behavior of the spectral representation is illustrated.
As the case r = r ′ is only considered asymptotically in the spectral representation, the
series decays either very slowly or not at all for small distances. When the distance
increases, the convergence improves when the resonant modes (i.e., the modes whose
resonance frequencies are in the range of the considered frequency) are added to the
series. Yet, as the series is conditionally convergent, the error is not monotonously de-
creasing. In conclusion, the spectral representation is also not suitable for numerically
usage.
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3.3. 2D Spectral Representation

Another option to represent the cavity Green’s function are the 2D spectral representa-
tions. In contrast to the spectral representation, only two of the three coordinates (e.g.,
thex- and they-coordinate) are expanded into eigenfunctions. Inserting the eigenfunc-
tion expansion into the corresponding partial di�erential equation yields an ordinary
di�erential equation for the remaining coordinate (e.g., the z-coordinate) [Col91]. The
ordinary di�erential equation is solved piecewise for z < z ′ and z > z ′ �rst. Using
that the derivative of the solution of the ordinary di�erential equation must undergo
a unit step change at z = z ′ to model the singularity in the spatial domain gives the
remaining coe�cient and yields the �nal solution for the Green’s function.

Adapting the notation from Collin [Col91] where z> means the greater of z and z ′

and vice versa z< means the smaller of z and z ′, the z-2D spectral representation for
the magnetic vector potential is written as [Tai76]

G
A
z-2D

(

r ,r ′
)

= µ

∞
∑

m,n=0

Hmn

[
ξx,mn (r> ) ξx,mn (r< ) x̂x̂

+ ξy ,mn (r> ) ξy ,mn (r< ) ŷŷ + ξz,mn (r> ) ξz,mn (r< ) ẑẑ
]

(3.4)

where r> =
(

x,y ,c − z>
)

, r< =
(

x ′,y ′,z<
)

,

Hmn =
1

αmn sinh (αmnc )
, (3.5)

and αmn =

√

k2x + k
2
y − k2 . The functions ξx,mn , ξy ,mn , and ξz,mn are de�ned as

ξx,mn (r ) =

√

τmτn

ab
cos (kxx ) sin

(

kyy
)

sinh (αmnz) , (3.6a)

ξy ,mn (r ) =

√

τmτn

ab
sin (kxx ) cos

(

kyy
)

sinh (αmnz) , (3.6b)

ξz,mn (r ) =

√

τmτn

ab
sin (kxx ) sin

(

kyy
)

cosh (αmnz) (3.6c)

where

τi =


1 if i = 0,

2 if i > 0.

In Fig. 3.4, the discontinuity of the individual terms in the 2D spectral representation
at the z coordinate of the source point is illustrated.
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Fig. 3.4.: ξz,21 (r > ) ξz,21 (r < ) in the plane x = 4m for z′ = 1m and a×b ×c = 12m × 6m × 4m.

In the form of (3.4), the z-2D spectral representation is numerically unstable: the
hyperbolic sine and the hyperbolic cosine functions in nominator and denominator
cause numerical over�ow errors for largeαmn . To remove the instability, the functions
ξx,mn (r ), ξy ,mn (r ), and ξz,mn (r ) are multiplied by e−αmnz . The modi�ed functions
ξ ′x,mn (r ), ξ ′y ,mn (r ), and ξ ′z,mn (r ) become

ξ ′x,mn (r ) =
1

2

√

τmτn

ab
cos (kxx ) sin

(

kyy
) (

1 − e−2αmnz
)

, (3.7a)

ξ ′y ,mn (r ) =
1

2

√

τmτn

ab
sin (kxx ) cos

(

kyy
) (

1 − e−2αmnz
)

, (3.7b)

ξ ′z,mn (r ) =
1

2

√

τmτn

ab
sin (kxx ) sin

(

kyy
) (

1 + e−2αmnz
)

(3.7c)

and are bounded for large αmn . Inserting the modi�ed functions in (3.4), the z-2D
spectral representation of the cavity Green’s function is given by

G
A
z-2D

(

r ,r ′
)

= µ

∞
∑

m,n=0

H ′
mn

[
ξ ′x,mn (r> ) ξ

′
x,mn (r< ) x̂x̂

+ ξ ′y ,mn (r> ) ξ
′
y ,mn (r< ) ŷŷ + ξ

′
z,mn (r> ) ξ

′
z,mn (r< ) ẑẑ

]
(3.8)
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where

H ′
mn =

eαmn (c−z> )eαmnz<

αmn sinh (αmnc )
=

2eαmn (c−z> )eαmnz<

αmn (eαmnc − e−αmnc )
=

2e−αmn∆z

αmn

(

1 − e−2αmnc
) , (3.9)

and ∆z =
���z − z ′��� = z> − z< . As the nominator of H ′

mn goes to zero for large αmn and
the denominator goes toαmn , (3.9) is also bounded and the z-2D spectral representation
in the form of (3.8) is numerically stable.

Next, the convergence properties of the z-2D spectral representation are analyzed. In
contrast to the spatial and the spectral representations, the z-2D spectral representation
converges exponentially. For large αmn , the terms in (3.8) are proportional to

e−αmn∆z . (3.10)

In the following, the number of terms Nz-2D in the z-2D spectral representation needed
for an accuracy δ are determined. When the set of modes (m,n) with k2x + k

2
y < k

2
r ,0

(i.e., the modes within a quarter circle of radius kr ,0, see Fig. 3.5) is considered in (3.8),
the accuracy of the series is roughly given by7

δ = e
−

√

k2
r ,0−k2∆z

. (3.11)

Solving (3.11) for kr ,0 yields

kr ,0 =

√

k2 +

(

lnδ

∆z

)2

. (3.12)

The number of modes is approximately given by the area of the quarter circle with
radius kr ,0 divided by the area of a single mode, see Fig. 3.5. Thus, the number of
modes as a function of the radius kr ,0 becomes

Nz-2D =

1
4πk

2
r ,0

π
a
π
b

=

abk2r ,0

4π
. (3.13)

Inserting (3.12) in (3.13) gives the number of modes in dependence of the accuracy

Nz-2D =
ab

4π

k
2
+

(

lnδ

∆z

)2 . (3.14)

The convergence rate of the z-2D spectral representation depends on the distance
∆z: the smaller the distance ∆z, the slower is the convergence rate. Consequently, the
number of necessary modes depends on the distance ∆z: the smaller the distance ∆z,

7 The remainder of an exponentially convergent series after n terms is less than the nth term. To proof this, the
geometric series [Råd04] is used.
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Fig. 3.5.: Number of modes within a circle of radius kr ,0 .

the more modes are necessary to attain a desired accuracy. When ∆z = 0 (i.e., z = z ′),
the series does not converge exponentially anymore. The number of necessary modes
becomes in�nite.

The x- and the y-2D spectral representations are derived in a similar manner. Anal-
ogous to the z-2D spectral representation, their convergence rates depend on the dis-
tances ∆x and ∆y and they do not converge when ∆x = 0 and ∆y = 0, respectively.
The numbers of necessary modes are derived as

Nx -2D =
bc

4π

k
2
+

(

lnδ

∆x

)2 , (3.15)

Ny -2D =
ac

4π

k
2
+

(

lnδ

∆y

)2 . (3.16)

The convergence rates of the 2D spectral representations do not only depend on the
relative position of observation and source point but also depend on the frequency. For
a given accuracy δ and given observation and source point, the number of modes in
(3.15), (3.16), and (3.14) grows with f 2 for large frequencies. At low frequencies, the
number of modes is approximately constant with respect to frequency. A possible def-
inition for the transition range is to equate the summands in (3.15), (3.16), and (3.14),
respectively. In Fig. 3.6, the numbers of necessary terms are shown for di�erent dis-
tances∆z. The transition frequency is inversely proportional to the distance∆z. While
it is at 220MHz for ∆z = 0.5c , the transition frequency for ∆z = 0.2c is at 550MHz.

In Fig. 3.7, the convergence behavior of the z-2D spectral representation is illustrated
for di�erent distances ∆z and frequencies. The numerical results con�rm (3.14). One
the on hand, the series decays the faster, the larger the distance∆z. On the other hand,
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Fig. 3.6.: Number of necessary terms in the z-2D spectral representation for di�erent distances∆z ,
an accuracy δ = 10−4, and a cavity of size 12m × 6m × 4m.

the convergence rate hardly changes with frequency since the considered frequencies
are smaller than the transition frequency.

3.4. Ewald Representation

Both the spatial and the spectral representation of the Green’s function of the rectan-
gular cavity are slowly and conditionally convergent series. The slow convergence of
the spatial representation outside the source region originates from the singularities
in the spectral domain (i.e., the resonances of the cavity). The poor convergence of the
spectral representation in the source region is caused by the singularity in the spatial
domain. Albeit, the convergence of the spatial and the spectral representations is im-
proved in the source region and in the range of resonance frequencies, respectively.
The advantage of the spatial representation is the drawback of the spectral represen-
tation and vice versa.

The Ewald summation technique [Ewa21] removes the shortcomings of the spatial
and the spectral representations and combines their advantages. The transformation
starts from the spatial representation using the identity

e−jkrmnp,q

rmnp,q
=

2
√
π

∫ ∞

0
e
−r 2mnp,qs

2
+
k2

4s2 ds (3.17)

for a suitable path of integration in the complex plane [Jor86]. Splitting the path of in-
tegration at the so-called real-valued splitting parameter E [Val07] and inserting (3.17)
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Fig. 3.7.: Relative error of the z-2D spectral representation at 200MHz (left) and 400MHz (right)
for a × b × c = 12m × 6m × 4m, x = x ′ = a/2, y = y ′ = b/2, and z′ = c/2.

in (3.1), the Green’s function of the rectangular cavity becomes a hybrid series of the
form

G
A
Ewald

(

r ,r ′
)

= G
A
Ew-spat

(

r ,r ′
)

+G
A
Ew-spec

(

r ,r ′
)

(3.18)

where

G
A
Ew-spat

(

r ,r ′
)

=

2µ

4π
√
π

∞
∑

m,n,p=−∞

7
∑

q=0

∫ ∞

E
e
−r 2mnp,qs

2
+
k2

4s2 ds
3

∑

i=1

Ai,qx̂i x̂i (3.19)

is referred to as the spatial series of the Ewald summation,

G
A
Ew-spec

(

r ,r ′
)

=

2µ

4π
√
π

∞
∑

m,n,p=−∞

7
∑

q=0

∫ E

0
e
−r 2mnp,qs

2
+
k2

4s2 ds
3

∑

i=1

Ai,qx̂i x̂i (3.20)

is denoted as the spectral series, and {x1,x2,x3} =
{
x,y ,z

}
. Following Ewald [Ewa21],

the integral in (3.19) becomes

2
√
π

∫ ∞

E
e
−r 2mnp,qs

2
+
k2

4s2 ds =
1

rmnp,q
Re

e+jkrmnp,q erfc

(

rmnp,qE + j
k

2E

) (3.21)
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where erfc is the complementary error function [Råd04]. Using this identity, the spatial
series is given by [Par98; Gro05; Car05]

G
A
Ew-spat

(

r ,r ′
)

= µ

∞
∑

m,n,p=−∞

7
∑

q=0

Re
{

e+jkrmnp,q erfc
(

rmnp,qE + j
k
2E

)

}

4πrmnp,q

·
(

Ax,q x̂x̂ +Ay ,q ŷŷ + Az,q ẑẑ
)

(3.22)

which is essentially an error function weighted spatial representation of the Green’s
function. The spectral series is more elaborate to derive as (3.20) needs to be trans-
formed from the spatial to the spectral domain �rst. The Poisson summation for-

mula [Råd04] relates an integrable function f with its Fourier transform f̃ via

∞
∑

m,n,p=−∞
f

(

m,n,p
)

=

∞
∑

m,n,p=−∞
f̃

(

2mπ,2nπ,2pπ
)

. (3.23)

Scaling the argumentsm,n, andp of the function f with−2a,−2b , and−2c , respectively
and shifting the scaled arguments by x , y , and z, the Poisson summation formula from
(3.23) becomes [Råd04]

∞
∑

m,n,p=−∞
f

(

x − 2am,y − 2bn,z − 2cp
)

=

1

8abc

∞
∑

m,n,p=−∞
f̃

(

−mπ

a
,−nπ

b
,−pπ

c
,

)

ej
(

mπ
a x+ nπ

b
y+

pπ
c z

)

. (3.24)

Using (3.24) together with the 3D Fourier pair [Råd04]

f (x ) = exp
(

−|x |2 s2
)

❝ s f̃
(

y
)

=

π1.5

s3
exp

*..,
−
���y���2
4s2

+//-
, (3.25)

the spectral series in (3.20) becomes

G
A
Ew-spec

(

r ,r ′
)

=

µ

16abc

∞
∑

m,n,p=−∞

∫ E

0

1

s3
exp *.,−

k2xyz − k2

4s2
+/- ds

·
7

∑

q=0

ej
(

kx xq+ky yq+kzzq
) 3
∑

i=1

Ai,qx̂i x̂i . (3.26)
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Evaluating the integral over s by substitution with u = 1/s yields

G
A
Ew-spec

(

r ,r ′
)

=

µ

8abc

∞
∑

m,n,p=−∞
Hmnp

7
∑

q=0

ej
(

kx xq+ky yq+kzzq
) 3
∑

i=1

Ai,qx̂i x̂i (3.27)

where

Hmnp =
1

k2xyz − k2
exp *.,−

k2xyz − k2

4E2
+/- . (3.28)

Now, using that8

1

8abc

∞
∑

m,n,p=−∞
Hmnp

7
∑

q=0

Ai,qe
j
(

kx xq+ky yq+kzzq
)

=

∞
∑

m,n,p=0

Hmnp ϕi,mnp (r ) ϕi,mnp

(

r ′
)

(3.29)

gives the spectral series of the Ewald representation in its �nal form [Par98; Gro05;
Car05]

G
A
Ew-spec

(

r ,r ′
)

= µ

∞
∑

m,n,p=0

Hmnp

[
ϕx,mnp (r ) ϕx,mnp

(

r ′
)

x̂x̂

+ ϕy ,mnp (r ) ϕy ,mnp

(

r ′
)

ŷŷ + ϕz,mnp (r ) ϕz,mnp

(

r ′
)

ẑẑ

]
(3.30)

The spectral series is basically an exponential function weighted spectral represen-
tation of the Green’s function. The principle of the Ewald summation technique is
illustrated in Fig. 3.8. The singularity in the spatial domain is considered in the spa-
tial part of the Ewald summation while the spectral part models the singularities in
the spectral domain (i.e., the resonances of the cavity). The singularities in both do-
mains are therefore modeled in the “correct” domain and hence, they do not impair the
convergence of the series.

In the following, the convergence of the Ewald representation and the choice of
the splitting parameter are analyzed. For large arguments, the complementary error
function in the spatial series is approximated by its asymptotic expansion erfc (z) ≈
e−z

2
/
(√

πz
)

[Abr70]. Hence, the terms in (3.22) are proportional to

exp
(

−r2mnp,qE
2
)

(3.31)

8 For a proof of (3.29), the interested reader is referred to Appendix A.2.
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Fig. 3.8.: Spatial (left) and spectral (right) part of the cavity Green’s function for the magnetic
vector potential in the plane z = c/2 for a × b × c = 12m × 6m × 4m, f = 150MHz,
x ′ = a/2, y ′ = b/2, and z′ = 0.55c .

for large rmnp,q . The asymptotic behavior of the spectral series is determined byHmnp

from (3.28) as the eigenfunctions in (3.30) are bounded. For large kxyz , Hmnp is ap-
proximated as

exp *.,−
k2xyz − k2

4E2
+/- . (3.32)

Both the spatial and the spectral series exhibit exponential convergence. In the follow-
ing, the number of necessary terms in the spatial and the spectral series are derived
in dependence of the accuracy. When the source and the images within a sphere of
radius r0 (i.e., the set of currents (m,n,p,q) with rmnp,q < r0) are considered in (3.22),
the accuracy δ of the spatial series is, according to (3.31), approximately given by

δ = exp
(

−r20E
2
)

. (3.33)

Given a desired accuracy, the radius of the sphere becomes

r0 =

√
− lnδ

E
. (3.34)

The number of terms in a sphere of radius r0 is approximately given by the volume
of the sphere divided by the volume of a single cell, which is the volume of the cavity
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in the case of the spatial series. Thus, the number of necessary terms NEw-spat in the
spatial series is

NEw-spat =

4
3πr

3
0

abc
=

4π (− lnδ )3/2

3E3abc
. (3.35)

The accuracy of the spectral series is, according to (3.32), roughly given by

δ = exp *.,−
k2r ,0 − k

2

4E2
+/- (3.36)

when the set of modes (m,n,p) with k2x + k
2
y + k

2
z < k

2
r ,0 is considered in (3.30). Given

a desired accuracy, kr ,0 becomes

kr ,0 =
√

k2 − 4E2 lnδ . (3.37)

In the case of the spectral series the number of terms NEw-spec is approximately given
by the volume of one eights of a sphere with radius kr ,0 divided by the volume of a
single mode as only positive indices occur in (3.30). It is

NEw-spec =

1
8
4
3πk

3
r ,0

π
a
π
b
π
c

=

abc
(

k2 − 4E2 lnδ
)3/2

6π2
. (3.38)

The splitting parameter E controls the convergence rate of the spatial and the spec-
tral series. A larger splitting parameters results in a faster decaying spatial series and
a slower decaying spectral series. Vice versa, a smaller splitting parameter accelerates
the convergence of the spectral series while it decelerates the convergence of the spa-
tial series. Consequently, the necessary terms in the spatial series decrease when the
splitting parameter is increased (cf. (3.35)) while the necessary terms in the spectral
series increase (cf. (3.38)). In general, the choice of the splitting parameter is arbitrary.
It is chosen such that the total number of terms is minimized [Jor86; Cap07]. However,
in the over-moded frequency range, the choice of the optimum splitting parameter
results in numerical over�ow errors [Cap07]. To avoid the so-called high frequency
breakdown of the Ewald summation technique, a high frequency splitting parameter
must be selected instead. Below, the choice of the splitting parameter and the conse-
quences are analyzed for both low and high frequencies.

In the low frequency regime, the splitting parameter is chosen such that the total
number of terms is minimized. As kr ,0 ≫ k for low frequencies, the accuracy of the

spectral series is approximately given by δ ≈ exp
[
−k2r ,0/

(

4E2
)

]
and the number of

spectral terms becomes

NEw-spec =
4E3abc (− lnδ )3/2

3π2
. (3.39)
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Fig. 3.9.: High-frequency breakdown of the Ewald summation technique: relative error of the cav-
ity Green’s function in the low- and the high-frequency regime for E = Eopt and a cavity
of size a × b × c = 12m × 6m × 4m . The threshold between low- and high-frequency
regime is, according to (3.42), (3.43), and (3.44), at 51.26MHz.

Minimizing the total number of terms with respect to the splitting parameter

d

dE

(

NEw-spat + NEw-spec

)

= 0 , (3.40)

− 4π (− lnδ )3/2

E4abc
+

4E2abc (− lnδ )3/2

π2
= 0 (3.41)

gives the optimum splitting parameter

Eopt =

√
π

3√
abc
. (3.42)

With E = Eopt, the necessary terms in the spatial and the spectral series are constant.
In the high frequency regime, the terms in the spectral series grow exponentially

with frequency for smallm,n, and p when the optimum splitting parameter is selected.
Although, the large terms in the spectral series cancel with large terms from the spatial
series analytically, numerical over�ow errors occur in practice as illustrated in Fig. 3.9.
To avoid the so-called high-frequency breakdown of the Ewald summation technique,
the splitting parameter is chosen as

Ehf =
k

4
(3.43)
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Fig. 3.10.: Number of necessary terms in the Ewald representation for an accuracy δ = 10−4, and a
cavity size of 12m × 6m × 4m. The threshold between low and high frequency regime
is, according to (3.42), (3.43), and (3.44), at 51.26MHz.

in the over-moded frequency range [Car05]. The overall splitting parameter is then
chosen as

E = max
(

Eopt,Ehf
)

. (3.44)

The inevitable choice of the splitting parameter in the over-moded frequency range
causes a major drawback of the Ewald summation technique. With Ehf = k/4, the
number of necessary terms in the spectral series becomes

NEw-spec =
abck3

(

1 − 1
4 lnδ

)3/2

6π2
, (3.45)

i.e., it grows with f 3. In Fig. 3.10, the number of necessary terms in the Ewald rep-
resentation are shown as a function of frequency. While the total number of terms
is approximately constant in the low frequency regime, it grows with f 3 in the over-
moded regime. The threshold between low- and high-frequency regime is determined
by equating Ehf and Eopt.

The convergence behavior of the Ewald representation is illustrated in Fig 3.11. In
contrast to the 2D spectral representations (cf. 3.7), the Ewald representation converges
exponentially independent from the relative position of observation and source point.
Yet, because of the high frequency breakdown, the number of necessary terms grows
with f 3 while the number of modes in the 2D spectral representations only grows
with f 2. At 400MHz, more than seven times as many terms as needed at 200MHz are
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Fig. 3.11.: Relative error of the Ewald representation at 200MHz (left) and 400MHz (right) for
a × b × c = 12m × 6m × 4m , x = x ′ = a/2, y = y ′ = b/2, and z′ = c/2.

necessary to achieve an accuracy of 10−4 and the series starts to decay only after the
modes whose resonance frequencies are in the range of 400MHz have been added (see
steps of the curves in Fig. 3.11 (right) at roughly 3 300 terms).
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4. Hybrid Fast Group Spectral Domain Approach

The CGF BEM has two shortcomings: the large computational burden of the CGF at
high frequencies and the quadratic complexity of the system matrix. In this chapter,
a hybrid representation of the CGF together with a FGSDA are proposed. The hybrid
representation reduces the large computational e�ort of the CGF and is presented in
Section 4.1. The FGSDA addresses the quadratic complexity in �lling the system matrix
and is described in Section 4.2.

4.1. Hybrid Ewald-2D Spectral Representation

4.1.1. Derivation

The advantage of the Ewald representation is the exponential convergence rate inde-
pendent from the relative position of observation and source point. Its drawback is
that the number of necessary terms increases with f 3 in the high frequency regime. In
contrast, the number of necessary terms in the 2D spectral representations grows only
with f 2 but at the expense of a slow convergence rate when the observation point is
close to the source.

To combine the advantages of both representations and remove their limitations,
a hybrid Ewald-2D Spectral representation is proposed in the following. When the
observation point is near the source point, the Ewald representation is used. When
observation and source point are well separated, one of the 2D spectral representations
is employed. Let∆xnear×∆ynear×∆znear be the size of the near region, then the hybrid
Ewald-2D Spectral representation is given by

G
A
hybrid =


G
A
Ewald if ∆x ≤ ∆xnear, ∆y ≤ ∆ynear, and ∆z ≤ ∆znear,

G
A
2D else

(4.1)

whereG
A
2D refers to one of the 2D spectral representations. The convergence rates of the

2D spectral representations depend on the distances∆x = x−x ′,∆y = y−y ′, and∆z =
z − z ′, respectively. The larger the distance, the faster the respective series converges.
Thus, thex-2D spectral representation is optimalwhen∆x/∆xnear is maximal, they–2D
spectral representation is preferable when∆y/∆ynear is maximal, and the z-2D spectral
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∆x

∆y

∆xnear

∆ynear

Ewald x-2D

y-2D

Fig. 4.1.: Coupling scheme of the hybrid Ewald-2D Spectral representation.

representation is the best choice when ∆z/∆znear is maximal. Accordingly,

G
A
2D =



G
A
x -2D if ∆x/∆xnear ≥ ∆y/∆ynear and ∆x/∆xnear ≥ ∆z/∆znear,

G
A
y -2D if ∆y/∆ynear > ∆x/∆xnear and ∆y/∆ynear ≥ ∆z/∆znear,

G
A
z-2D if ∆z/∆znear > ∆x/∆xnear and ∆z/∆znear > ∆y/∆ynear,

(4.2)

as illustrated in Fig. 4.1.
The size of the near region is chosen such that the Green’s function is calculatedwith

the representation which needs the least computation time. The computation time of
the 2D spectral representations is given by the time per mode t2D times the number
of modes. As the spatial series is negligible in the over-moded frequency range, the
computation time of the Ewald representation is approximately given by the spectral
series, i.e., the computation time per mode tEw-spec times the number of modes in the
spectral series. Equating the computation times of the Ewald and the 2D spectral repre-
sentations gives the optimum size of the near region. For the optimum length ∆xnear,
it follows

NEw-spec tEw-spec = Nx -2D t2D ,

abck3
(

1 − 1
4 lnδ

)3/2

3π2
tEw-spec =

bc

4π

k
2
+

(

lnδ

∆x

)2 t2D . (4.3)

Solving (4.3) for ∆x gives the optimum length

∆xnear =
1

k

− lnδ
√

2a
3πγ k

(

1 − 1
4 lnδ

)1.5 − 1

(4.4)
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Fig. 4.2.: Normalized optimum length, width, and height of the near region for a cavity of size
12m × 6m × 4m.

where γ = t2D/tEw-spec is the ratio of the computation times per mode between the 2D

spectral representations and the Ewald representation. The ratio γ is around four as
the 2D spectral representations mainly involve complex operations in contrast to the
Ewald representation which mainly involves real operations. Likewise, the optimum
width ∆ynear and height ∆znear of the near region become

∆ynear =
1

k

− lnδ
√

2b
3πγ k

(

1 − 1
4 lnδ

)1.5 − 1

(4.5)

and

∆znear =
1

k

− lnδ
√

2c
3πγ k

(

1 − 1
4 lnδ

)1.5 − 1

, (4.6)

respectively. As shown in Fig. 4.2, the optimum size of the near range decreases with
frequency. In the over-moded frequency range, it is proportional to 1/f 1.5. The op-
timum length, width, and height of the near region decrease when the respective di-
mensions of the cavity are increased. As the optimum size of the near region (i.e., the
Ewald region) goes to zero in the asymptotic limit, the complexity of the hybrid repre-
sentation with respect to frequency is inherited from the 2D spectral representations:
the operation count scales with f 2.
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Fig. 4.3.: Relative error of the hybrid Ewald-2D Spectral representation averaged over 103 Green’s
function values.

4.1.2. Validation and Performance

The hybrid Ewald-2D Spectral representation is validated against and compared with
the ordinary Ewald representation. The precision of the reference is set to 10−8 (i.e.,
single precision). The accuracy of the hybrid representation is set to 10−4 according
to (3.11) and (3.36). A cavity of size 12m × 6m × 4m is considered in the frequency
range from 200MHz to 1 600MHz. The Green’s function is evaluated at 1 000 randomly
selected source and observation points.

In Figure 4.3, the average relative error of the hybrid Ewald-2D Spectral representa-
tion is plotted over the frequency. For all frequencies, the relative error is smaller than
the preset value. In Table 4.1, the performance of the hybrid and the Ewald representa-
tion are compared. The hybrid representation outperforms the pure Ewald representa-
tion at all frequencies. At high frequencies, it is particularly advantageous. While the
computation time of the ordinary Ewald summation scales with f 3, the computation
time of the hybrid representation grows less than quadratically with frequency. The
reasons for the less than quadratic growth are twofold. On the one hand, the size of the
near region shrinks with frequency. Hence, more andmore samples are calculatedwith
the 2D spectral representations, see Table 4.1. On the other hand, the number of nec-
essary modes in the 2D spectral representations grows with f 2 in the high frequency
range only. In the lower frequency range, it is approximately constant, cf. Fig. 3.6.
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Ewald Hybrid

f in MHz tEwald in s tHybrid in s NEwald N2D spectral

200 1.09 0.45 305 695
400 7.96 1.01 21 979
600 24.6 1.37 6 994
800 57.7 1.89 1 999

1 000 115.8 2.54 0 1 000
1 200 192.7 3.23 0 1 000
1 400 250.9 4.33 0 1 000
1 600 424.6 5.23 0 1 000

Tab. 4.1.: Computation times of the hybrid Ewald-2D Spectral and the ordinary Ewald represen-
tation for 103 values and number of samples calculated with the Ewald (NEwald) and the
2D spectral representations (N2D spectral).

4.2. Fast Group Spectral Domain Approach

The Ewald-2D Spectral representation is a hybrid representation. Near couplings are
calculated with the Ewald representation while far couplings are calculated with one
of the 2D spectral representations. To transfer the hybrid scheme to the BI formulation,
the domain (i.e., the cavity) is divided into groups of size ag × bg × cg and center r c =
(

xc yc zc

)

. The size of the groups is chosen as ag ≈ ∆xnear such that the a is an

integer multiple of ag, bg ≈ ∆ynear such that the b is an integer multiple of bg, and so
forth. Interactions within a group and between neighboring groups are calculatedwith
the Ewald representation. Interactions between well separated groups are calculated
with thex-, they-, or thez-2D spectral representation. Thex-2D spectral representation
is employed when the relative distance |(xc − x ′c )/ag | in x-direction is maximal where
the primed and the unprimed coordinate refer to test and group center, respectively.
The y- and z-2D spectral representations are employed when the relative distances in
y- and z-direction are maximal, respectively. The grouping scheme is illustrated in
Fig. 4.4.

Accordingly, the system matrix is decomposed into near- and far-interaction com-
ponents

B = Bnear + Bfar. (4.7)

Because the Ewald representation consists of a spatial and a spectral series, the near-
interaction matrix is further decomposed into a spatial and a spectral part according
to

Bnear = Bspat +Bspec . (4.8)

In the over-moded frequency range, the operation count of the spatial part of the
near-interaction matrix is negligible compared to the operation count of the spectral
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Fig. 4.4.: Grouping scheme of the hybrid approach for a source in the left lower group: Ewald rep-
resentation (crosshatch), x -2D spectral representation (upward diagonal), y -2D spectral
representation (downward diagonal)

part. It is evaluated in the spatial domain without any acceleration. The singular inte-
grals originating from the singularity in the spatial domain are treated analogously to
the singular integrals in FGF BI formulations. As the singular part of the spatial series
has the same structure as the FGF, the hyper singularity is reduced to a weak singularity
using the mixed potential formulation and the surface divergence theorem [Jin10]. The
remaining weak singularities are integrated using singularity cancellation techniques
(see e.g., [Kha05; Ism08; Li14]).

The spectral part of the near-interaction matrix causes the major operation count in
the over-moded frequency. To accelerate the evaluation of the spectral part, a fast spec-
tral domain approach (FSDA) is presented in the following. The approach is derived for
the weakly singular system matrixB only. The other system matrices are treated anal-
ogously. Inserting (3.30) into (2.78b), the spectral part of the near-interaction matrix
is

[
Bspec

]
kl
=

"
S

"
S
βk (r ) ·

µ

∞
∑

m,n,p=0

Hmnp

3
∑

i=1

ϕi,mnp (r ) ϕi,mnp

(

r ′
)

x̂i x̂i · β l
(

r ′
)

ds ′ ds (4.9)

where {x1,x2,x3} =
{
x,y ,z

}
. Interchanging the order of integration and summation
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yields

[
Bspec

]
kl
= µ

∞
∑

m,n,p=0

Hmnp

"
S

"
S
βk (r ) ·

3
∑

i=1

ϕi,mnp (r ) ϕi,mnp

(

r ′
)

x̂i x̂i · β l
(

r ′
)

ds ′ ds . (4.10)

Since the individual terms of the spectral series are factorizable with respect to obser-
vation and source point, the nested integration over test and source domain is split
into two non-nested integrals according to

[
Bspec

]
kl
= µ

∞
∑

m,n,p=0

Hmnp

3
∑

i=1

"
S
ϕi,mnp (r ) x̂i · βk (r ) ds

"
S
ϕi,mnp

(

r ′
)

x̂i · βl
(

r ′
)

ds ′ . (4.11)

In compact form (4.11) reads

[
Bspec

]
kl
=

∞
∑

m,n,p=0

β̃k,mnp · G̃
A

Ew-spec,mnp · β̃ l,mnp . (4.12)

where

β̃k,mnp =

3
∑

i=1

"
S
ϕi,mnp (r ) x̂i · βk (r ) ds (4.13)

turn out to be the representations of the basis functions in the spectral domain, and

G̃
A

Ew-spec,mnp = µ Hmnp

3
∑

i=1

x̂i x̂i (4.14)

is the spectral representation of the spectral series of the Ewald summation. The FSDA

signi�cantly accelerates the evaluation of the near-interaction matrix as 1) the opera-
tion count of the spectral representations in (4.13) scales linearly with the number of
unknowns when they are precomputed and stored and 2) the evaluation of (4.12) is sig-
ni�cantly faster than the evaluation of (4.9) since the integration over test and source
domain is not needed. A pseudo-code of the computation of the near interactions is
sketched in Algorithm 4.1.

The far-interactions are calculated with one of the 2D-spectral representations. Ac-
cordingly, the far-interaction matrix is split into

Bfar = Bx -far +By -far +Bz-far. (4.15)
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Algorithm 4.1 Fast group spectral domain approach

% Near interactions

% precompute and store spectral representations

1: for k ← 1,N do % loop basis functions

2: for imode ← 0,NEwald do % loop modes

3: · · ·
4: end for

5: end for

% compute system matrix

6: for k ← 1,N do % loop test basis functions

7: for l ← 1,N do % loop source basis functions

8: for imode ← 0,NEwald do % loop modes

9: · · ·
10: end for

11: end for

12: end for

In the following, the spectral domain acceleration for Bz-far is presented. The other
matrices are treated analogously. Although the z-2D spectral representation has a simi-
lar structure as the spectral series of the Ewald summation, the FSDA cannot be applied
withoutmodi�cation. The key property of the spectral series is that its individual terms
are factorizable with respect to observation and source point. Without this property
the FSDA is not applicable. In (3.4), the individual terms of the 2D-spectral represen-
tation are factorizable but the series is numerically not stable. The series in (3.8) is
numerically stable but the terms are no longer factorizable. To address this issue, a
FGSDA inspired by the fast multipole method (FMM) [Jin10] is proposed. The functions
ξi,mn are shifted to the center of the corresponding group according to

ξ ′′i,mn (r> ) = e−αmn (c−zc,> ) ξi,mn (r> ) , (4.16a)

ξ ′′i,mn (r< ) = e−αmnzc,< ξi,mn (r< ) . (4.16b)

The z-2D spectral representation becomes

G
A
z-2D

(

r ,r ′
)

= µ

∞
∑

m,n=0

TmnHmn

3
∑

i=1

ξ ′′i,mn (r> ) ξ
′′
i,mn (r< ) x̂i x̂i (4.17)

where
Tmn = e−αmn (zc,>−zc,<−c ) (4.18)

is the translation function between test and source group, zc,> means the greater of test
and source group center, and vice versa zc,< means the lesser of test and source group
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center. The z-2D spectral representation in the form of (4.17) meets both requirements.
It is numerically stable for large αmn as shown in Appendix A.3 and it preserves the
factorizability of the individual terms as test and source group center do not depend
on observation and source point. Following (4.9) to (4.12), the z-2D part of the far-
interaction matrix becomes

[

Bz-far
]

kl =

∞
∑

m,n=0

β̃k,mn,> ·TmnG̃
A

z-2D,mn · β̃ l,mn,< (4.19)

where

β̃k,mn,>/< =

3
∑

i=1

"
S
ξ ′′i,mn

(

r>/<
)

x̂i · βk (r ) ds (4.20)

are the shifted spectral representations of the basis functions and

G̃
A

z-2D,mn = µ Hmn

3
∑

i=1

x̂i x̂i (4.21)

is the z-2D spectral representation in the spectral domain. The FGSDA needs only
marginally more computation time per mode than the original FSDA. Both signi�cantly
accelerate the computation of the system matrix as the integration over test and source
domain is not necessary. Only the translation function between test and source group
must additionally be computed in the case of the FGSDA.

The implementation of the FGSDA as suggested in Fig. 4.1 requires a lot of mem-
ory at high frequencies. The spectral representations of the basis functions must be
stored for each mode. As the number of modes grows with f 3, the memory demand
of the algorithm would scale with f 3 as well. For a cavity of the size 12m × 6m × 4m,
roughly 105 modes (Ewald and 2D spectral representations) would have to be consid-
ered at 600MHz (i.e., 2.9MBmemory are needed per basis function). However, it is not
necessary to precompute all spectral representations of the basis functions at the same
time. Instead, the interaction integrals are evaluated mode-wise: 1) the spectral repre-
sentations of the �rst mode of the Ewald representation are precomputed and stored,
2) the contribution of the �rst mode to the interaction integrals is computed and added
to the system matrix, and 3) the spectral representations of the �rst mode are deleted.
Now, the steps are repeated for the second mode and so forth. After the near-zone part
of the system matrix is complete, the far interactions are calculated in the same way.
A pseudo-code of the mode-wise computation of the near interactions is sketched in
Algorithm 4.2.
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Algorithm 4.2Mode-wise fast group spectral domain approach

% Near interactions

1: for imode ← 0,NEwald do % loop modes

% precompute and store spectral representations mode-wise

2: for k ← 1,N do % loop basis functions

3: · · ·
4: end for

% compute system matrix mode-wise

5: for k ← 1,N do % loop test basis functions

6: for l ← 1,N do % loop source basis functions

7: · · ·
8: end for

9: end for

10: end for
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The CGF BEM su�ers from two limitations: the computationally expensive CGF in the
over-moded frequency range and the quadratic complexity in �lling the systemmatrix.
In this chapter, an FFT accelerated Ewald summation technique together with Lagrange
polynomial interpolation is presented to address these limitations. The �lling of the
system matrix is accelerated by sampling the CGF in a pre-processing step and using
Lagrange interpolation to evaluate the interaction integrals. To generate the required
samples e�ciently, the Ewald summation technique is accelerated using the FFT. In
Section 5.1, the FFT accelerated Ewald summation technique is presented and analyzed.
In Section 5.2, the computation of the interaction integrals is optimized.

5.1. Fast Fourier Transform Accelerated Ewald Summation Technique

5.1.1. Derivation

In the over-moded frequency range, the Ewald summation technique su�ers from the
high-frequency breakdown. The number of terms in the spectral series grows with f 3.
To address this issue, an FFT accelerated spectral series is proposed in the following. For
brevity, the FFT acceleration is only presented for the Green’s function of the magnetic
vector potential (i.e., the weakly singular integral kernel). The other Green’s functions
are treated similarly.

As the FFT is applicable to uniformly spaced data only, it is necessary to sample the
spectral series. In the form of (3.30), the spectral series is a six-variable function as it
depends on observation and source point. Sampling a six-variable function results in
a prohibitively poor memory complexity. But the spectral series can be rewritten as
a sum of eight three variable functions which only di�er by their arguments. Using
Euler’s relations and changing the indicesm,n, andp appropriately (see Appendix A.2),
the spectral series becomes

G
A
Ew-spec

(

r ,r ′
)

=

µ

8abc

7
∑

q=0

Q
(

xq ,yq ,zq
)

3
∑

i=1

Ai,qx̂i x̂i (5.1)

where

Q
(

xq ,yq ,zq
)

=

∞
∑

m,n,p=−∞
Hmnp e

jkx xq ejky yq ejkz zq . (5.2)
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Sampling Q
(

xq ,yq ,zq
)

on an equispaced grid with xq = αhq, yq = βhq, and zq =
γhq, where hq is the sampling density, the array Qα βγ becomes the inverse Fourier
transform (FT) of Hmnp according to

Qα βγ =

M
∑

m=−M+1

N
∑

n=−N+1

P
∑

p=−P+1
Hmnp e

jπαm/M ejπβn/N ejπγp/P

= FT−1
{
Hmnp

}
. (5.3)

where M = ⌈a/hq⌉, N = ⌈b/hq⌉, and P = ⌈c/hq⌉. Since α ∈ [−M + 1;M], β ∈
[−N + 1;N ], and γ ∈ [−P + 1; P], −a < xq ≤ a, −b < yq ≤ b , and −c < zq ≤ c ,
respectively. Values of xq , yq , and zq outside these intervals9 are obtained using the
periodicity of theQ-array.

Values in between the grid are interpolated using Lagrange polynomials. The three-

dimensional Lagrange interpolation of a function f
(

x,y ,z
)

is given by

f
(

x,y ,z
)

≈
Np+1
∑

u=1

Np+1
∑

v=1

Np+1
∑

w=1

f
(

xu ,yv ,zw
)

ℓu (x ) ℓv
(

y
)

ℓw (z) , (5.4)

where ℓu (x ), ℓv
(

y
)

, and ℓw (z) are the one-dimensional Lagrange polynomials [Abr70]
in the respective dimension and Np is the order of the Lagrange polynomials. Using
the barycentric representation of the Lagrange polynomials, they are evaluated with
linear instead of quadratic complexity [Str07] and the overall operation count of (5.4)
scales only with N 3

p instead of N 6
p . The interpolation nodes are chosen symmetrically

around the interpolation point as the interpolation error is minimal at the center of the
interpolation region. Using the Lagrange interpolation together with the Q-array, the
spectral series of the Ewald summation is written as

G
A
Ew-spec

(

r ,r ′
)

=

µ

8abc

7
∑

q=0

3
∑

i=1

Ai,qx̂i x̂i

Np+1
∑

u=1

Np+1
∑

v=1

Np+1
∑

w=1

Qαu β vγw ℓu

(

xq
)

ℓv

(

yq
)

ℓw

(

zq
)

, (5.5)

where αu , β v , and γw are the indices of the symmetrically chosen interpolation nodes,
see Fig. 5.1.

9 According to 3.1, xq , yq , and zq are in the intervals (−a; 2a ), (−b ; 2b ), and (−c ; 2c ), respectively
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Fig. 5.1.: Choice of interpolation nodes for aQ -array of size 6×4 and a Lagrange polynomial order
Np = 1. The indices αu and βv are α1 = 1, α2 = 2, β1 = 0, and β1 = 1 .

5.1.2. Validation and Performance

In the following, the accuracy and the performance of the FFT accelerated Ewald sum-
mation technique are investigated. A cavity of size 12m × 6m × 4m is considered. The
ordinary Ewald summation technique with an accuracy of 10−8 (i.e., single precision)
serves as reference. The Green’s function is calculated at 1 000 points.

The accuracy of the proposed approach is in�uenced by the sampling density hq
of the Q-array and the Lagrange polynomial order Np. In Fig. 5.2, the relative error
is illustrated for di�erent sampling densities and polynomial orders at 200MHz. The
FFT accelerated Ewald summation technique achieves an accuracy close to single pre-
cision for suitably chosen sampling densities and polynomial orders. With regard to
e�ciency, neither a combination of high sampling densities and low polynomial orders
nor a combination of low sampling densities and high polynomial orders are advan-
tageous. They lead to either high memory consumption or high computational e�ort.
Combinations of medium sampling densities and medium polynomial orders are favor-
able as they balance memory demand and computational cost. A Lagrange polynomial
order of Np = 2 would, for instance, require 40 samples per wavelength to attain an
accuracy of 10−4. When the polynomial order is doubled, however, 15 samples per
wavelength (i.e., less than half) are su�cient.

The frequency may in�uence the accuracy of the proposed method. In Fig. 5.3, the
relative error is shown for di�erent frequencies. The sampling density is set to 15
samples per wavelength and the polynomial order is set to Np = 4. The relative error
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Fig. 5.2.: Relative error of FFT accelerated Ewald summation technique as a function of sampling
density and polynomial order at 200MHz.

varies little over frequency. It is constantly below 10−4. Consequently, the accuracy of
the FFT accelerated Ewald summation technique is not in�uenced by the frequency as
long as the number of samples per wavelength is constant.

Next, the performance of the FFT accelerated Ewald summation technique is an-
alyzed. The desired accuracy of the CGF is 10−4. According to Fig. 5.2, a sampling
density of 15 samples per wavelength and a polynomial order of Np = 4 achieve this
precision. The computation times tEwald and tLagrange of the ordinary and the FFT ac-
celerated Ewald summation are listed in Table 5.1 for di�erent frequencies. The com-
putation time of the ordinary Ewald summation scales approximately with f 3. While
it needs 22.38 s at 600MHz, 164.9 s are needed at twice the frequency. The FFT accel-
erated Ewald summation technique does, in contrast, barely depend on the frequency.
The computation times are constant at lower frequencies. At higher frequencies, the
computation times increase slightly since the memory access to the Q-array becomes
more expensive. The constant computational time complexity comes at the expense
of precomputing and storing the Q-array. The operation count of the Q-array scales
with f 3 log f and its memory demand increases with f 3, see also Section 6.3. Yet, for
several hundred million Green’s function evaluations as needed in BEMs, the time of
the Q-array is negligible. The next-to-last column in Table 5.1 shows the maximum
speed-up (i.e., tQ -array is neglected) of the FFT accelerated versus the ordinary Ewald
summation technique. The acceleration reaches up to four orders of magnitude.
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Fig. 5.3.: Relative error as a function of frequency for a sampling density of 15 samples per wave-
length and a polynomial order of Np = 4.

Ewald FFT Ewald

f in
MHz

tEwald in s tLagrange in s tQ -array in s memory in
GB

maximum
speed-up

200 0.951 27.6 · 10−3 0.476 0.018 34.5
400 7.261 26.4 · 10−3 3.981 0.147 275.0
600 22.38 25.1 · 10−3 13.30 0.498 891.6

800 50.91 30.3 · 10−3 34.03 1.180 1 680
1 000 103.3 34.0 · 10−3 68.00 2.304 3 038
1 200 164.9 31.7 · 10−3 109.9 3.981 5 202

Tab. 5.1.: Computation times of the FFT accelerated and of the ordinary Ewald summation tech-
nique for 103 Green’s function values.
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5.2. Accelerated System Matrix Fill

Inherited from the ordinary Ewald summation technique, the system matrix is decom-
posed into a spatial and a spectral part for the FFT accelerated technique according
to

B = Bspat +Bspec . (5.6)

The spatial part is evaluated as described in Chapter 4. For the spectral part, the Q-
array is computed and stored �rst. Then, the interaction integrals are evaluated using
(2.78b) and (5.5) according to

[
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ds ′ ds (5.7)

where αu , β v , and γw are the indices of the interpolation nodes which are chosen
symmetrically around interpolation point. The computation of (5.7) is straightforward,
however, the implementation is optimized as described in the following.

The integrals over test and source domain are evaluated using aGaussian quadrature
rule [Pre92]. The interpolation values are loaded from thememory for each quadrature
point. In particular, when the Q-array is large, this is the most time-consuming step
in the computation of the interaction integrals. As a remedy, the interpolation values
are loaded only once per interaction integral. They are cached and used throughout
the integration. The nodes are chosen on the basis of the centers of test and source
triangles. As the distance between the triangle center and a quadrature point is, for
reasonable discretization densities of the surfaces and sampling densities of the Q-
array, considerably smaller than the size of the interpolation region, the accuracy of
the Lagrange interpolation is maintained. In Fig. 5.4, the interpolation points and nodes
are shown for an exemplary interaction integral.
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Fig. 5.4.: Interpolation points (crosses) and nodes (circles) for an exemplary interaction integral
for q = 0, Np = 4, and a sampling density (Q -array) of λ/15. The discretization density
is λ/10. The frequency is set to 150MHz. Both the test and the source triangle are located
in the yz-plane.
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6. Numerical Results

In this chapter, numerical results are presented. In Section 6.1, the FGSDA and the FFT

accelerated CGF BEM are validated against and compared with other state of the art
algorithms. Examples of practical relevance which involve perfectly conducting, well
conducting, and dielectric objects are presented. Standard simulation settings are used.
In Section 6.2, the accuracy and the stability of the CGF BEM is further investigated.
Among other consistency checks, the discretization density is re�ned. In Section 6.3,
the complexities of the proposed algorithms are derived. The operation count and
memory requirements of the FGSDA and FFT Ewald (Ewd) algorithm are analyzed in
detail and discussed with respect to the complexity of the algorithms. Last but not
least, the CGF BEM is validated against measurements in Section 6.4.

6.1. Validation and Comparison Against other Numerical Methods

The CGF BEM algorithms are validated against and compared with an MLFMM acceler-
ated FGF BEM algorithm [Eib05] and two other recently proposed algorithms for the
numerical modeling of reverberation chambers [Zha11; Yan14]. In the �rst part of the
section, PEC objects are considered. In the second part, well but not perfectly con-
ducting objects are modeled and dielectric objects are considered in the third part. In
all cases, the EFIE is used. For well conducting objects, the IBC is added and for di-
electric objects, the BI formulation is coupled to the FEM, see Section 2.3 and 2.4. In
Sections 6.1.1 to 6.1.3, the walls of the cavity are modeled as perfect electric conduc-
tors. The validity of the CGF BEM for imperfectly conducting walls is investigated in
Section 6.1.4.

6.1.1. Perfectly Conducting Objects

Firstly, the FGSDA and the FFT accelerated CGF BEM algorithms are compared with an
MLFMM accelerated FGF BEM [Eib05]. The algorithms are referred to as FGSDA, FFT
Ewd, and MLFMM, respectively. The linear equation system is solved with a GMRES

solver in the case of the FGSDA and the FFT Ewd and with a �exible inner-outer GMRES

(GMRES-IO) [Saa93] in the case of the MLFMM algorithm. Using the GMRES without in-
ner loopswould speed up theMLFMMalgorithm, however, at the cost of a considerably
increased memory demand. The exact trade-o�s and limitations of the non inner-outer
GMRES in the case of MLFMM accelerated BEM are not studied in here and remain for
future work. The residual of the GMRES solver and the accuracy of the CGF are set to
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Fig. 6.1.: Computation times of the FGSDA, the FFT Ewd, and the MLFMM algorithm for the Vivaldi
antenna.

10−4. The discretization density is λ/10. A detailed list of all simulation parameters is
given in Appendix C.

The size of the considered reverberation chamber is 12m × 6m × 4m. Its lowest
usable frequency is around 75MHz according to [IEC11]. Three di�erent scenarios are
considered in the frequency range from 75MHz to 750MHz: in the �rst scenario, a
small object is placed in the reverberation chamber; in the second one, the chamber
contains a medium-sized object; and a large and a mid-size object are considered in the
third one.

In the �rst scenario, a Vivaldi antenna is considered. The shape of the Vivaldi an-
tenna is adopted from [Mar13]. Its size is doubled as the considered reverberation
chamber is approximately twice as large as the chamber in [Mar13]. The generator
impedance Zg is set to 50Ω. The computation times of the FGSDA, the FFT Ewd, and
the MLFMM algorithm are compared in Figure 6.1. As the object in the cavity is small
relative to the walls, the CGF BEM is in particular advantageous: the number of un-
knowns is reduced by more than two orders of magnitude. The speed-up of the FGSDA

versus the MLFMM ranges from 67 at 75MHz to 600 at 750MHz. The FFT Ewd algorithm
achieves an even higher speed-up in the upper frequency range. At 750MHz, the gain
versus the MLFMM algorithm is about 2 500. The normalized input impedance Zin/Zg
of the Vivaldi antenna is given in Table 6.1. At lower frequencies, the results are in
good agreement: the relative di�erence at 75MHz and 150MHz is below 2%. With
increasing frequency, the di�erence between the CGF BEM algorithms and the MLFMM

algorithm increases: at 750MHz, the relative deviation is about 17%.
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f in MHz Zin/Zg

MLFMM FGSDA FFT Ewd

75 0.00 − j0.48 0.00 − j0.49 0.00 − j0.49

150 0.00 + j3.58 0.00 + j3.61 0.00 + j3.61

300 0.02 + j0.00 0.00 + j1.25 0.00 + j1.25

450 0.00 + j0.46 0.00 + j0.69 0.00 + j0.69

600 0.01 + j2.16 0.00 + j2.18 0.00 + j2.18

750 0.08 + j2.52 0.00 + j3.08 0.00 + j3.08

Tab. 6.1.: Normalized input impedance Zin/Zg of the Vivaldi antenna.

f in MHz δ in %

FGSDA vs. MLFMM FFT Ewd vs. MLFMM FGSDA vs. FFT Ewd

75 0.79 0.79 0.00

150 1.88 1.89 0.01

300 20.03 20.07 0.07

450 22.27 22.42 0.14

600 212.2 201.2 10.29

750 161.0 164.5 80.30

Tab. 6.2.: Relative di�erence δ between the current densities on the stirrer.

As a mid-size object, a w-shaped two-plate stirrer inspired by [Wel07] is chosen.
The surface area of the stirrer is 8.8m. When it is rotated parallel to the z-axis around
its center at (10.0m,3.0m,2.0m), the stirred volume is about 8% of the cavity volume.
The chamber is excited by an electrically small strip dipole of size 0.2m × 0.05mwhich
is aligned to the z-axis. The generator impedance of the dipole is set to 50Ω. The
computation times of the CGF BEM algorithms and the MLFMM algorithm are shown in
Fig. 6.2. The maximum speed-up of the FGSDA against the MLFMM is 37 at 300MHz.
With increasing frequency, the gain of the FGSDA compared to the MLFMM decreases
slightly. In contrast, the speed-up of the FFT Ewd versus theMLFMM algorithm increases
with frequency but the FFT Ewd algorithm is for f < 750MHz slower than the FGSDA.

Table 6.2 shows the relative di�erence between the electric currents on the stirrer.
Again, the di�erence is small at low frequencies and increases with frequency. In par-
ticular, the results of the CGF BEM algorithms deviate signi�cantly from that of the
MLFMM algorithm at high frequencies. The di�erence between the FGSDA and the FFT

Ewd algorithm is generally low. Yet, there is also an increase at high frequencies.

In the last scenario, a car body is added to the w-shaped stirrer of the previous
scenario. The center of the car bottom is at (5.5m,3.0m,0.3m). As the reverberation
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Fig. 6.2.: Computation times of the FGSDA, the FFT Ewd, and theMLFMM algorithm for thew-shaped
two-plate stirrer.

chamber now contains a mid-size and a large object, the advantage of the CGF against
the FGF BEM is reduced. The number of unknowns is only decreased by a factor of
ten. At 750MHz, the discretization of the cavity walls, the car body, and the stirrer
create about 600 000 unknowns while only the car body and the stirrer generate about
60 000 unknowns. The computation times of the FGSDA, the FFT Ewd, and the MLFMM

algorithm are shown in Fig. 6.3. At its best, the FFT Ewd algorithm outperforms the
MLFMM by a factor of 2.4. The speed-up of the FGSDA versus the MLFMM ranges from
1.5 to 7.3. Except for 75MHz, the FGSDA algorithm achieves an acceleration of at least
3.5.

In Fig. 6.4 and Fig. 6.5 the surface current densities computed by the FGSDA and the
MLFMM algorithm are compared. The frequencies are 150MHz and 450MHz, respec-
tively. Similar to the �rst and second scenario, the results are in good agreement at
low frequencies and match less at high frequencies.

Lastly, the presented algorithms are compared with and validated against other state
of the art methods for the numerical modeling of reverberation chambers, namely the
DSC-MoM method [Zha11] and the AIM accelerated CGF BEM method [Yan14]. The con-
sidered cavity has the dimension 12.5m × 8.5m × 6m. Its lowest usable frequency is
approximately 50MHz according [IEC11]. In [Zha11; Yan14], the cavity is excited by a
Hertzian dipole at 82MHz. As Hertzian dipoles are not implemented in our algorithm,
the cavity is excited by an electrically short strip dipole herein. The dipole is oriented
in (−x̂ + ŷ + ẑ)/

√
3 direction. Its magnitude is

√
3Am. A 8m long and 0.8m wide

single plate stirrer is placed in the cavity. Its center is at (6.25m,6.6m,4.25m).
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Fig. 6.3.: Computation times of the FGSDA, the FFT Ewd, and theMLFMM algorithm for thew-shaped
two-plate stirrer and the car body.

Method CPU time in s Memory demand in MB

FGSDA 4.1 5
FFT Ewd 5.9 22
DSC-MoM 183 660
AIM 442.2 52
MLFMM 156.1 49

Tab. 6.3.: Computation times and memory requirements of the FGSDA, the FFT Ewd, the DSC-MoM,
the AIM, and the MLFMM algorithm for the single plate stirrer

In Table 6.3, the timings and the memory requirements of the proposed algorithms
(FGSDA and FFT Ewd), the algorithm of Zhao (DSC-MoM) [Zha11], and the algorithm of
Yang (AIM) [Yan14] are shown. Additionally, the computational time and the memory
demand of the MLFMM accelerated FGF BEM (MLFMM) [Eib05] are given. The computa-
tion times of the DSC-MoM and the AIM are taken from [Zha11] and [Yan14], respec-
tively. In [Zha11], the results were computed on a personal computer with a 2.67GHz
CPU and 3.25GB RAM. In [Yan14], the simulations were performed on the Lonestar
Cluster where only one core of the multi-core processors was activated (see [Yan14]
and references therein). Our simulations were performed on a personal computer with
a 3.4GHz CPU and 32GB RAM. As the results were computed on di�erent machines,
a strict comparison of the timings is not possible. Yet, the advantage of the proposed
algorithms against [Zha11] and [Yan14] is signi�cantly more than one order of mag-
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Fig. 6.4.: Surface current density in Am−1 at 150MHz computed by the FGSDA (left) and the
MLFMM (right) algorithm.

Fig. 6.5.: Surface current density in Am−1 at 450MHz computed by the FGSDA (left) and the
MLFMM (right) algorithm.
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Fig. 6.6.:Magnitude of the electric �eld in Vm−1 along a straight line from (2m, 1m, 3m) to
(2m, 7.5m, 3m) computed by the FGSDA (-) and the AIM algorithm (- -).

nitude – a factor which cannot be caused by di�erent hardware only. The major dis-
advantage of the DSC-MoM is its high memory consumption. It exceeds the demand of
the FGSDA by roughly two orders of magnitude. Although the storage requirement of
the AIM algorithm is not as high, the FGSDA outperforms it still by a factor of ten.

In Fig. 6.6, the magnitude of the components of the electric �eld along a straight line
form (2m,1m,3m) to (2m,7.5m,3m). The results of the FGSDA agree well with that
presented in [Yan14]. To compensate for the di�erent excitations, the results of the
FGSDA have been scaled by a constant factor.

Since the AIM accelerated CGF BEM is more e�cient when large or multiple objects
are in the cavity [Yan14], Yang and Yilmaz additionally consider a 6×3 array of stirrers
with 1.2m spacing iny- and z-direction. The cavity and the stirrers are of the same size
as above. The center of the stirrer array is at (6.25m,4.25m,4m) . The computational
times and the memory requirements are displayed in Table 6.4.

Although the performance of the FGSDA and the FFT Ewd algorithm degrades, they
still outperform the AIM accelerated CGF BEM in both computation time and memory
demand. Considering the performance of the MLFMM accelerated FGF BEM, it is ques-
tionable whether the CGF BEM is the method of choice in this case. The ordinary BEM is
only slightly slower than the FGSDA and considerably faster than the FFT Ewd and the
AIM algorithm as the CGF loses its advantage over the FGF BEM when many objects are
inside the cavity.
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Method CPU time in s Memory demand in MB

FGSDA 190.4 67
FFT Ewd 947.6 80
AIM 4 600 342
MLFMM 353.0 63

Tab. 6.4.: Computation times and memory requirements of the FGSDA, the FFT Ewd, the DSC-MoM,
the AIM, and the MLFMM algorithm for the 6 × 3 array of plate stirrers.

6.1.2. Imperfectly Conducting Objects

Closed imperfectly conducting bodies are considered using the EFIE together with an
IBC. In contrast to PEC surfaces, electric and magnetic currents exist on imperfectly
conducting surfaces. As the FFT accelerated Ewald representations of the CGF for mag-
netic currents have not been implemented yet, the analysis is restricted to the FGSDA

and the MLFMM algorithm. As in the previous section, the residual of the GMRES solver
and the accuracy of the CGF are set to 10−4, the discretization density is λ/10, and the
remaining simulation parameters are set as in Appendix C.

A metallic cuboid with conductivity κ = 106 Sm−1 and relative permeability µr = 1
is placed in a chamber of the dimension 8m × 4.5m × 2.8m. The cuboid is centered
at (6m,2.25m,1.4m) and it is 0.8m long, 1m wide, and 0.6m high. The loaded re-
verberation chamber is excited by an electrically small strip dipole in the frequency
range from 100MHz to 800MHz. The lowest usable frequency of the reverberation
chamber is around 130MHz. At 100MHz, the characteristic surface impedance Zs of
the metallic cuboid is calculated as 0.028 S.

The computation times of the FGSDA and the MLFMM algorithm are compared in
Figure 6.7. The number of unknowns is reduced by a factor of 20. At 800MHz, 16 500
unknowns are created in the case of the FGSDA while about 320 000 are needed by the
MLFMM algorithm. The speed-up of the FGSDA versus theMLFMM algorithm ranges from
4 at 800MHz to 11 at 200MHz and decreases with frequency.

In Table 6.5, the relative deviations between the results (electric and magnetic cur-
rents on the strip dipole and the cuboid) of the FGSDA and the MLFMM algorithm are
shown. As in the previous section, the results agree very well in the lower frequency
range and di�er more at high frequencies.

6.1.3. Dielectric Objects

For dielectric bodies, the CGF BEM is coupled to the FEM. Similar to metallic objects,
dielectrics require the consideration of electric and magnetic currents in the BI formu-
lation. Thus, again only the FGSDA is validated against and compared with the MLFMM

algorithm.
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Fig. 6.7.: Computation times of the FGSDA and theMLFMM algorithm for the imperfectly conduct-
ing cuboid.

f in MHz δ in %

100 0.7
200 1.7
400 2.1

800 18.3

Tab. 6.5.: Relative di�erence δ between the results of the FGSDA and the MLFMM algorithm.
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Fig. 6.8.:Magnetic surface current density on the dielectric cuboid in Vm−1 at 400MHz for the
FGSDA (left) and the MLFMM algorithm (right).

The geometry from the previous section is considered except that a dielectric cuboid
with permittivity εr = 4 and permeability µr = 1 replaces themetallic one. The scenario
is simulated at 400MHz. The number of unknowns are 2 017 + 8 580 = 10 687 (BI + FE)
for the CGF and 78 121 + 8 580 = 86 701 for the FGF BEM and the simulation times are
2 960.1 s and 23 389.2 s, respectively. In Fig. 6.8, the magnetic current density is shown
on the cuboid. The visual agreement between the results of the FGSDA and the MLFMM

algorithm is good. The relative deviation of electric andmagnetic currents is calculated
as 10.0%.

6.1.4. Imperfectly Conducting Cavity Walls

The Green’s function of the rectangular cavity is exact for perfectly conducting cavity
walls only. Imperfectly conducting walls can be approximately handled by complexi-
�cation of the wavenumber according to (2.41) [Gro05]. In the following, the validity
of (2.41) in the CGF BI formulation is investigated.

Two 0.5m long and 0.1m wide strip dipoles are placed in a 12m long, 6m wide,
and 4m high cavity. The dipoles are aligned to the z-axis and are located at the points
(1m,3m,2m) and (11m,3m,2m), respectively. The conductivity of the cavity walls
is set to 106 Sm−1. The transmission coe�cient S21 between the two dipoles is com-
puted in the range of the TM110 resonance using the FGSDA and theMLFMM accelerated
FGF BEM as reference. In the CGF BI formulation, the lossy walls are considered us-
ing (2.41) together with the composite Q from (2.48) and the individual quality factor
of the TM110 resonance, respectively. In the FGF BI formulation, the well conducting
walls are modeled using the IBC as described in [Ism09]. In Fig. 6.9, the magnitude of
the transmission coe�cient is shown. Except in the immediate vicinity of the reso-
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Fig. 6.9.:Magnitude of the transmission coe�cient S21 in the range of the TM110 resonance for a
wall conductivity of κ = 106 Sm−1.

nance frequency, the results agree perfectly. At the resonance frequency, the S21 of
the compositeQ is 1.5 dB smaller than the reference. However, the deviation is below
0.5 dB when the individual quality factor of the TM110 mode is used. Consequently,
the approximate modeling of imperfectly conducting cavity walls is accurate when
the correct quality factor is used.

However, the usage of the individual quality factors for each cavity mode in the CGF

is di�cult. In the spectral representation or the spectral part of the Ewald represen-
tation, the modeling of individual Q ’s is possible. Because the spectral representation
is a sum over all modes, an individual wavenumber could be used for each mode. As
the terms in the spatial representation and the 2D spectral representations do not cor-
respond to the cavity modes, individual wavenumbers cannot be employed. As the
FGSDA and the FFT Ewd algorithm involve at least one of the latter representations, the
compositeQ from (2.48) is used.

Although the composite Q is not as accurate as the individual Q ’s in the immedi-
ate vicinity of resonances, it is accurate elsewhere. Moreover, in the high frequency
regime of the cavity, many modes contribute to the total �elds. To estimate the average
error which is introduced by the compositeQ in the over-moded frequency range, the
transmission coe�cient of the two dipoles is computed at 100 arbitrary frequencies in
the range from 100MHz to 150MHz. The results of the compositeQ FGSDA algorithm
are compared to the reference in Fig. 6.10. With the exception of a few frequencies,
the results agree very well. The average relative error is below 10%. The maximum
relative error is 27%.
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Fig. 6.10.: Transmission coe�cient at 100 arbitrary frequencies for a wall conductivity of κ =
106 Sm−1 .

6.2. Error Analysis

Common to all examples in Section 6.1.1 and 6.1.2 is the frequency dependence of the
error. At low frequencies, the results of the di�erent algorithms agree well while the
agreement deteriorates with increasing frequency. This evokes two questions:

1. Why does the di�erence between the results tend to increase with frequency
although the same accuracy settings are used?

2. Which method, the CGF or the FGF BEM, is more accurate?

The answer to the �rst question requires a closer look at over-moded cavities. The
resonance density in a cavity grows with f 2, cf. Section 2.2. Consequently, the prob-
ability that a particular frequency is in the range of a resonance is larger at high than
at low frequencies. As resonances deteriorate the conditioning of the system matrix,
small di�erences in the input variables (i.e., the discretization of the cavity walls in
contrast to the analytical modeling of the walls in the CGF) cause a large di�erence in
the output variables (i.e., the surface current density or the electric �eld). Therefore,
results tend to disagree more at high frequencies although the same accuracy settings
are used.

The second question is more di�cult to answer. A rigorous validation against ana-
lytical results is not possible as the boundary value problem of the rectangular cavity
does, in the general case of arbitrarily shaped objects, not have a closed-form solu-
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Q Discretization δ in %

MLFMM FGSDA

103 λ/10 vs. λ/20 10.26 36.13
λ/15 vs. λ/20 6.04 4.67

104 λ/10 vs. λ/20 15.76 48.25
λ/15 vs. λ/20 7.54 7.77

Tab. 6.6.: Relative error δ in % between the electric �elds of di�erent discretization densities.

tion. Instead, three consistency checks are performed in the following. As recom-
mended in [Jak14], the discretization is re�ned, the reciprocity condition is veri�ed,
and the power budget is checked. At �rst, the stability and the convergence of the
results under mesh re�nement are checked. The second scenario from Section 6.1.1
(i.e., the w-shaped stirrer) is considered. Because of the statistical nature of rever-
beration chambers, the results will be subject to statistical variation. To enhance the
signi�cance of the results, the chamber is simulated at twelve di�erent stirrer angles
α = 0°,30°, . . . ,330°. The rotation axis is parallel to the z-axis and passes through the
point (10m,3m,2m) (i.e., the center of the stirrer). The frequency is set to 100MHz.
Two di�erent quality factors, Q = 103 and Q = 104, are considered, respectively. The
magnitude of the electric �eld is computed at 5× 5× 3 = 75 equispaced points within a
cuboid volume of the size 4m × 4m × 2m for each stirrer position. Overall, 75·12 = 900
�eld values are computed. The stirrer and the cavity are discretized with an average
edge length of λ/10, λ/15, and λ/20, respectively.

In Table 6.6, the relative error between the electric �elds of di�erent discretization
densities is displayed. In addition, the magnitude of the electric �eld at the point
(4m,1m,3m) is shown in Fig. 6.11 over the stirrer angle α for the di�erent discretiza-
tion densities and for Q = 104. The results in Table 6.6 show three developments:
1) the relative error goes up when the quality factor is increased, 2) the relative er-
ror becomes smaller with increasing discretization density, 3) both algorithms su�er
roughly equally from the discretization error. The results in Fig. 6.11 show that the
error is not evenly distributed over the stirrer angles. The relative error of the electric
�elds converges worse under mesh re�nement for both algorithms when a resonance
of the cavity is hit, for example, at α = 120° (FGSDA) and at α = 240° (MLFMM). Other-
wise, both algorithms converge well.

Secondly, the reciprocity condition is checked. Two 0.5m high and 0.1m wide strip
dipoles are placed in a cavity of the dimension 12m × 6m × 4m. The dipoles are lo-
cated at the points (1m,3m,2m) and (11m,3m,2m), respectively and are aligned to
the z-axis. The walls of the cavity and the dipoles are modeled as PEC. Since the cavity
does not contain any non-reciprocal materials, the problem is reciprocal.
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Fig. 6.11.:Magnitude of the electric �eld in Vm−1 at the point (4m, 1m, 3m) for di�erent dis-
cretization densities and Q = 104 computed by the FGSDA (left) and the MLFMM (right)
algorithm.

In Fig. 6.12, the di�erence |S21 − S12 | of the forward and the reverse transmission
coe�cient is displayed for the FGF (MLFMM) and the CGF BEM (FGSDA). In Fig. 6.13, the
absolute values |S21 | of the forward transmission coe�cient are shown. In addition,
the �ve largest values of |S21 − S12 | are displayed. The maximum deviation of the for-
ward and the backward transmission coe�cient is 1.82 · 10−4 (MLFMM) and 0.41 · 10−4
(FGSDA). The average deviations are 0.073 · 10−4 and 0.059 · 10−4, respectively. In the
case of the MLFMM, the largest deviations occur in the immediate range of resonance
frequencies, cf. black squares in Fig. 6.13. In the case of the FGSDA, the largest devi-
ations are considerably lower and are not due to cavity resonances. The resonances
are modeled more accurately as they are considered analytically within the CGF. In
conclusion, the CGF BEM better reproduces the reciprocity condition since the FGF BEM

is not as accurate in the range of resonances.

Lastly, the power budgets of the FGF and the CGF BEM are veri�ed on the basis of the
�rst scenario from Section 6.1 (Vivaldi antenna). As the cavity walls and the antenna
are modeled as perfect conductors, the scenario is lossless and the power which is fed
into the cavity should be zero. The input power is zerowhen the input impedance of the
antenna has a zero real part. At low frequencies, both the FGF and the CGF BEM obtain
input impedances with zero real part, see Table 6.1. However, at high frequencies, the
FGF BEM fails to meet this condition while the values of the CGF algorithms remain
purely imaginary.
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ℓp in m N Ntot

1 1 550 155 528
2 3 087 157 065
3 4 624 158 602
4 6 161 160 139
5 7 698 161 676

6 9 235 163 213
7 10 772 164 750
8 12 309 166 287
9 13 841 167 819
10 15 383 169 361

Tab. 6.7.: Number of unknowns N of the plate and total number of unknowns Ntot of the plate
and the cavity walls for the di�erent plate lengths ℓp.

6.3. Complexity Analysis

The computational time and the memory complexity of the FGSDA and the FFT acceler-
ated CGF BEMs are derived and analyzed. For comparison, the computational time and
the memory complexity of the MLFMM accelerated FGF BEM are analyzed for reverber-
ation chambers. Two cases are distinguished:

1. How do computation time and memory demand scale with the number of un-
knowns of the objects within the cavity assuming a constant frequency and dis-
cretization density?

2. How do computation time and memory demand scale with frequency assuming
a constant geometry and discretization density per wavelength?

The �rst case is referred to as number of unknowns complexity (N -complexity) herein.
For a �xed frequency, the number of unknowns is increased by either enlarging the
objects within the cavity or by placing additional objects in the cavity but not by re-
�ning the discretization. The second case is referred to as frequency complexity (f -
complexity) herein. In this case, the frequency is varied while the number of objects
and the dimension of the objects are not changed. As the average cell size per wave-
length is �xed, the number of unknowns increases with frequency squared.

If possible, the complexities are derived from theory. Simulated data serves to com-
plete and supplement the analysis. For the N -complexity case, a rectangular plate is
placed in a cavity of size 12m × 6m × 4m in the plane z = 2m. The length of the
plate is varied from 1m to 10m while its width is 3m. The plate and the cavity are
discretized with an average edge length of λ/10 at 400MHz. The number of unknowns
N of the plate and the total number of unknowns Ntot of the plate and the cavity walls
are displayed in Table 6.7. For the f -complexity case, a 10m long and 2m wide plate
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f in MHz N Ntot

100 636 10 290
200 2 753 41 759
300 6 043 93 178
400 10 596 164 574
500 16 880 258 443

600 24 163 371 002
700 32 556 503 556

Tab. 6.8.: Number of unknowns N of the plate and total number of unknowns Ntot of the plate
and the cavity walls for the di�erent frequencies.

is placed in a cavity of the same size in the same plane. The plate and the cavity are
discretized with an average edge length of λ/10. The frequency is varied from 100MHz
to 700MHz. In Table 6.8, the number of unknowns and the total number of unknowns
are displayed.

In the following sections, the complexities of the FGSDA, the FFT Ewd, and theMLFMM

algorithm are derived and analyzed. As the complexity of the iterative solver cannot
be derived from theory, it is analyzed in an additional section. Last but not least, the
complexities of the algorithms are compared with one another and discussed.

6.3.1. Fast Group Spectral Domain Approach (CGF BEM)

The computational time and memory complexity of the FGSDA accelerated CGF BEM are
derived and analyzed. The algorithm is subdivided into three parts: the computation
of spectral representations of the basis functions (a), the computation of the system
matrix (b), and the iterative solution of the linear equation system (c).

Number of Unknowns Complexity:

1a) As the spectral representations need to be computed only once per basis func-
tion, their computation time and their memory demand scale with N .

1b) The operation count and thememory demand of the systemmatrix growwithN 2

as the system matrix is fully populated.

1c) The solution of the matrix-vector equation needs N 2 operations per iteration.
The number of iterations Nit increases roughly with N as the results in Sec-

tion 6.3.4 indicate. Consequently, the time complexity is O
(

N 3
)

. The memory
demand of the iterative solver is given by the product of the number of solution
vectors and the length of the solution vectors. As the not-restarted GMRES is
employed, cf. Section 6.3.4, the memory demand is proportional to NitN ∝ N 2.
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Frequency Complexity:

2a) The operation count of the spectral representations depends on the number of
unknowns and the number of modes in the respective representation of the CGF.
The number of unknowns grows with f 2 as the cell size is proportional to the
wavelength. The number of modes in the Ewald and the 2D spectral representa-
tions increase with f 3 and f 2, respectively. Thus, the computational time com-

plexity of the spectral representations is O
(

f 5
)

. The memory demand would

scale with N f 3 ∝ f 5 if the spectral representation were computed and stored
in advance for all modes, see Algorithm 4.1. However, when the interaction in-
tegrals are evaluated mode-wise, see Algorithm 4.2, the memory demand scales
only with N ∝ f 2.

2b) The systemmatrix is decomposed into near and far interaction components. The
near interactions are calculated using the Ewald representation which scales
with f 3. But, as the group size decreases with frequency, see Chapter 4, the
number of near interactions grows only with N . The number of far interactions
grows with N 2 but the number of modes scales only with f 2 as the far inter-
actions are calculated with the 2D spectral representations. Thus, the operation
counts of near and far interactions are proportional toN f 3 ∝ f 5 andN 2 f 2 ∝ f 6,

respectively. Overall, the time complexity of the system matrix is O
(

f 6
)

. The

memory demand is proportional to N 2 ∝ f 4.

In practice, however, it needs to be considered that the number of modes in the
2D spectral representations increases with f 2 in the high frequency range only.
For low frequencies, the number of modes is constant, cf. Fig. 3.6. In Fig. 6.14,
the computation time of the system matrix is displayed for the rectangular plate
example. The data is �tted to polynomials of degree four, �ve, and six in the
least square sense. In the considered frequency range, the polynomial of order
�ve �ts best. Hence, the operation count of the FGSDA grows rather with f 5

than f 6 in the low and mid frequency range. Compared to the CGF BEMwith the
standard Ewald representation, the FGSDA reduces the time complexity of the
system matrix by two orders from N 2 f 3 ∝ f 7 to f 5.

2c) The solution of the linear system of equations requires N 2Nit operations. Since
the number of iterations increases roughly with f 2 as indicated in Section 6.3.4,

the time complexity becomes O
(

f 6
)

. The memory demand of the iterative so-

lution is proportional to N 2 ∝ f 4.

The total number of unknowns complexity of the FGSDA is of the order N 3 with re-
spect to operation count and of the order N 2 with respect to memory demand. The

total frequency complexity is O
(

f 6
)

and O
(

f 4
)

, respectively. The total time com-
plexity is determined by the iterative solver. With regard to the memory demand, the
system matrix and the iterative solver decide the total complexity.
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Fig. 6.14.: Computation time of the systemmatrix (FGSDA) for the rectangular plate example �tted
to polynomials of degree four, �ve, and six in the least-square sense.

The complexity describes the performance of an algorithm except for a constant fac-
tor. While the constant factor is negligible in the asymptotic limit, it can be important
for �nite number of unknowns or frequencies: An algorithm with a higher complexity
does not necessarily need more operations or more memory if the constant factor is
considerably smaller. In Fig. 6.15 and 6.16, the percentages of the total computational
time and the total memory demand of the single FGSDA subroutines are plotted over the
number of unknowns and frequency, respectively for the rectangular plate examples.
The percentage of the iterative solver with respect to computation time is very low
despite its higher complexity. For the considered number of unknowns and frequency
range, the computation of the spectral representations and particularly the system ma-
trix are dominant. Consequently, the operation count of the FGSDA scales rather with
N 2 than N 3 and is rather proportional to f 5 than f 6. Similar to the operation count,
the memory demand of the iterative solver is very low while the storing of the system
matrix needs the most memory. As both the iterative solver and the system matrix
have the same memory complexity, the overall performance of the FGSDAwith respect
to memory does not change.

The theoretical considerations are con�rmed by the simulated data from the rect-
angular plate examples. In Fig. 6.17, the total computation time is plotted versus the
number of unknowns and the frequency, respectively and �tted to polynomials of dif-
ferent degrees in the least square sense. With respect to the number of unknowns, the
total operation count scales even less than quadratically which can be explained as fol-
lows: With increasing length of the plate (i.e., with increasing number of unknowns),
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Fig. 6.15.: Percentage of the total computational time (left) and the total memory demand (right)
of the single FGSDA subroutines versus the number of unknowns for the rectangular
plate example.
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Fig. 6.16.: Percentage of the total computational time (left) and the total memory demand (right)
of the single FGSDA subroutines versus frequency for the rectangular plate example.
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Fig. 6.17.: Total computation time of the FGSDA algorithm versus the number of unknowns (left)
and frequency (right) for the rectangular plate examples.

the average distance between test and source edges grows. As the convergence rates
of the 2D spectral representations improve with increasing distance between observa-
tion and source point, cf. Section 3.3, the evaluation of far interactions between more
distant edges needs less computation time. With respect to frequency, the polynomial
of order �ve �ts best as derived.

6.3.2. Fast Fourier Transform Approach (CGF BEM)

The computational time and memory complexity of the FFT accelerated CGF BEM are
derived. The algorithm consists of three parts: the computation of the Q-array (a),
the computation of the interaction integrals (b), and the iterative solution of the linear
system of equations (c).

Number of Unknowns Complexity:

1a) The operation count and the memory requirement of theQ-array depend on the
number of samples only. As the sampling density of theQ-array is proportional
to the wavelength but does not depend on the number of unknowns, the compu-
tational time and the memory complexity of theQ-array is constant with respect
to the number of unknowns.

1b) As the system matrix is fully populated, the computation time and the memory
demand of the system matrix increase with N 2.

83



Numerical Results Chapter 6

1c) The iterative solution of the matrix-vector equation needs O
(

N 3
)

operations

and the memory demand is proportional to N 2, see Section 6.3.1.

Frequency Complexity:

2a) The sampling density of the Q-array is set proportional to the wavelength. As
theQ-array is a three dimensional object, the number of sampling points grows
with f 3. The number of necessary terms in the Ewald summation technique
is also proportional to f 3. Without FFT acceleration, this would yield an oper-
ation count proportional to f 6. With FFT acceleration, the computational time

complexity of the sampling process is reduced to O
(

f 3 log f
)

. The memory re-

quirement of the Q-array grows with f 3 as it is proportional to the number of
sampling points.

2b) The operation count of the interaction integrals is determined by the number
of unknowns and the order of the Lagrange polynomials. As the discretization
density is proportional to the wavelength, the number of unknowns increases
with f 2. The order of the Lagrange polynomials needs not to be increased with
frequency because the sampling density of theQ-array is chosen proportional to

the wavelength. Therefore, the time complexity of the system matrix is O
(

f 4
)

.

The memory demand of the system matrix is proportional to N 2 ∝ f 4.

2c) The computational time and the memory complexity of the iterative solver are

O
(

f 6
)

and O
(

f 4
)

, respectively, cf. Section 6.3.1.

The total number of unknowns complexity of the FFT Ewd is of the order N 3 with re-
spect to operation count and of the order N 2 with respect to memory demand. The to-

tal frequency complexity is O
(

f 6
)

and O
(

f 4
)

, respectively. With regard to operation
count, the iterative solver decides the total complexity. The total memory complexity
is determined by the system matrix and the iterative solver.

As the complexity does not include the constant factor, the percentages of the single
subroutines are, analog to the previous subsection, plotted versus the number of un-
knowns in Fig. 6.18 and versus frequency in Fig. 6.19. As in the case of the FGSDA, the
operation count and the memory demand of the iterative solver are low compared to
the time and memory requirements of the system matrix. The operation count of the
Q-array is negligible. However, the memory demand of theQ-array is large for smaller
numbers of unknowns and lower frequencies. With increasing number of unknowns
and frequency, the memory requirement of the system matrix overshoots that of the
Q-array because of the higher memory complexity of the system matrix. Overall, as a
consequence of the low constant factor of the iterative solver, the total operation count
of the FFT Ewd algorithm scales rather with N 2 or f 4 than with N 3 or f 6, respectively.

The theoretical considerations are con�rmed by the simulated data from the rectan-
gular plate examples. In Fig. 6.20, the total computation times are plotted versus the
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Fig. 6.18.: Percentage of the total computational time (left) and the total memory demand (right)
of the single FFT Ewd subroutines versus the number of unknowns for the rectangular
plate example.
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Fig. 6.19.: Percentage of the total computational time (left) and the total memory demand (right)
of the single FFT Ewd subroutines versus frequency for the rectangular plate example.
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Fig. 6.20.: Total computation time of the FFT Ewd algorithm versus the number of unknowns (left)
and frequency (right) for the rectangular plate examples.

number of unknowns and frequency, respectively. The computation times are �tted to
polynomials of di�erent degrees in the least square sense. As derived, the quadratic
polynomials �ts best for the number of unknowns and the polynomial of order four
approximates the scaling with frequency best.

6.3.3. Multilevel Fast Multipole Method (FGF BEM)

The complexity of theMLFMM accelerated FGF BEM is analyzed for reverberation cham-
bers. In contrast to the CGF BEM, the cavity walls have to be discretized in the FGF BI for-
mulation. According to [Jin10], the time complexity of theMLFMM isO

(

NitNtot logNtot

)

where Ntot is the total number of unknowns of the objects within the cavity and the
cavity walls and Nit is the number of iterations. The memory complexity of theMLFMM

is O
(

Ntot logNtot

)

when the iterative solver is restarted after a �xed number of iter-
ations [Jin10]. When the iterative solver is not restarted, the memory demand grows
with NitNtot as Nit solutions vectors of the length Ntot have to be stored during the
iterative solution. In the following, N -complexity and f -complexity are again distin-
guished.

Number of Unknowns Complexity:

1. By their nature, most parts of reverberation chambers are �lled with air. Hence,
the unknowns of the objects inside the chamber is small compared with the
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unknowns generated by the cavity walls and the total number of unknowns is
hardly changed by adding objects or increasing the size of the objects (cf. also
Table 6.7). Thus, the time and the memory N -complexity are approximately
O (1).

Frequency Complexity:

2. The total number of unknowns Ntot increases with f
2 as both the objects within

the cavity and the cavity walls are discretized with a constant edge length per
wavelength. The number of iterations grows approximately with f 2 as the re-
sults in Section 6.3.4 indicate. Consequently, the time complexity of the MLFMM

is O
(

f 4 log f
)

for reverberation chambers. The memory demand grows with

NitNtot ∝ f 4 as the restarted iterative GMRES solver is not feasible for reverber-
ation chambers, see Section 6.3.4.

6.3.4. Number of Iterations

The number of iterations plays a crucial role in determining the complexity of the algo-
rithms. Since reverberation chambers are highly over-moded and resonant structures,
the problem is ill-conditioned. The higher the resonance density (i.e., the higher the fre-
quency) or the larger the number of unknowns, the larger is the number of iterations.
This phenomenon is referred to as high-frequency breakdown of the EFIE [Bou14]. In
contrast to the low-frequency and the dense-discretization breakdown [And10], the
high-frequency breakdown has not been thoroughly described or cured for the gen-
eral case yet. Only for convex geometries, it is addressed in [Bou14].

In order to still estimate the complexity of the algorithms, the convergence prop-
erties of the iterative solver are analyzed on the basis of the simulated data from the
rectangular plate examples. In the case of the CGF BEM, an iterative GMRES solver is em-
ployed to solve the linear equation system. In the case of the MLFMM accelerated FGF

BEM, a �exible GMRES-IO [Saa93; Eib07] is used and the near-zone matrix is precondi-
tioned with a Gauss-Seidel and an iterative near-zone preconditioner in the innermost
loop.

At �rst, the N -complexity is investigated. In Fig. 6.21, the number of iterations is
plotted versus the number of unknowns generated by the objects inside the cavity. For
the CGF BEM, the number of iterations increases approximately linearly with the num-
ber of unknowns. In the case of the MLFMM, the number of iterations is approximately
constant since the total number of unknowns Ntot (i.e., the number of unknowns of
the objects inside the cavity and the walls of the cavity) does hardly change when the
size of the object inside the chamber is increased.

Secondly, the f -complexity is analyzed. In Fig. 6.22, the number of iterations is
plotted versus frequency. In the case of the CGF BEM, the number of iterations grows
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Fig. 6.21.: Number of iterations versus the number of unknowns for the CGF BEM (left) and the
MLFMM accelerated FGF BEM (right).

approximately with f 2. Also, in the case of the ordinary BEM, quadratic growth can be
observed although the curve shows stronger �uctuations.

To limit the memory consumption of the GMRES solver, it is usually restarted after
a �xed number of iterations. However, the restarted GMRES does not necessarily con-
verge. This is in particular the case when the problem is ill-conditioned. In Fig. 6.23,
the convergence behavior of the restarted and the not-restarted GMRES are compared
for the rectangular plate example at 400MHz. In the case of the CGF BEM, the restarted
solver does not converge. Although the restarted solver converges for the FGF BEM,
the number of necessary iterations increases by a factor six versus the not-restarted
GMRES.

6.3.5. Comparison and Discussion

The computational time and the memory complexities of the FGSDA accelerated CGF,
the FFT accelerated CGF, and theMLFMM accelerated FGF BEM are summarized and com-
pared in Table 6.9. The algorithms are referred to as FGSDA, FFT Ewd, and MLFMM,
respectively.

In comparison with the MLFMM, the time complexities of the FGSDA and the FFT Ewd

with respect to the number of unknowns are poor, i.e., O (1) vs. O
(

N 3
)

. Although,
according to Sections 6.3.1 and 6.3.2, the operation count of the proposed algorithms
scales only with N 2 for the considered number of unknowns, quadratic growth is still
poor compared toO (1). Yet, as the cavity walls do not need to be discretized, the FGSDA
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Fig. 6.22.: Number of iterations versus frequency for the CGF BEM (left) and theMLFMM accelerated
FGF BEM (right).
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Fig. 6.23.: Convergence behavior of the restarted and the not-restarted GMRES for the CGF BEM

(left) and the MLFMM accelerated FGF BEM (right) for the rectangular plate example at
400MHz. For the CGF BEM, the number of iterations per restart was limited to 500. In
the case of theMLFMM, the number of iterations per restart in the outer loop was limited
to 50. In the second loop, the number of iterations was limited to 120.
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Algorithm N -complexity f -complexity

CPU time Memory CPU time Memory

FGSDA spec. repres. O (N ) O (N ) O
(

f 5
)

O
(

f 2
)

FGSDA system matrix O
(

N 2
)

O
(

N 2
)

O
(

f 6
)

O
(

f 4
)

FGSDA iter. solver O
(

N 3
)

O
(

N 2
)

O
(

f 6
)

O
(

f 4
)

FGSDA overall O
(

N 3
)

O
(

N 2
)

O
(

f 6
)

O
(

f 4
)

FFT Ewd Q -array O (1) O (1) O
(

f 3 log f
)

O
(

f 3
)

FFT Ewd system matrix O
(

N 2
)

O
(

N 2
)

O
(

f 4
)

O
(

f 4
)

FFT Ewd iter. solver O
(

N 3
)

O
(

N 2
)

O
(

f 6
)

O
(

f 4
)

FFT Ewd overall O
(

N 3
)

O
(

N 2
)

O
(

f 6
)

O
(

f 4
)

MLFMM overall O (1) O (1) O
(

f 4 log f
)

O
(

f 4
)

Tab. 6.9.: Complexity of the FGSDA, the FFT Ewd, and theMLFMM algorithm for over-moded cavities
versus frequency and number of unknowns.

and the FFT Ewd have signi�cant advantages as long as the objects inside the cavity are
small compared to the cavity itself. To quantify what “small” is, the timings of the
FGSDA, FFT Ewd, and MLFMM from the rectangular plate example are plotted versus the
ratio N /Ntot in Fig. 6.24. The timings of the FGSDA and FFT Ewd are �tted to quadratic
polynomials in the least square sense and the timings of the MLFMM are �tted to a
constant. Using the �tted polynomials, the break even points of the CGF BEMs versus
the FGF BEM are estimated. In the case of the FGSDA, the MLFMM is less e�cient as long
as N < Ntot/6. The FFT Ewd approach is to prefer versus the MLFMM when N < Ntot/8.

The time complexity with respect to frequency of the FGSDA and the FFT Ewd is

O
(

f 6
)

while the time complexity of the MLFMM is O
(

f 4 log f
)

. Yet, as it was dis-
cussed in Sections 6.3.1 and 6.3.2, the operation count of the iterative solver is small
in scenarios of practical relevance and the time complexity of the CGF BEM algorithms
is determined by the system matrix. For the FGSDA, the time complexity of the system

matrix is O
(

f 6
)

. For the FFT Ewd, it is O
(

f 4
)

. As it was discussed in Section 6.3.1, the

operation count of the FGSDA is proportional to f 5 and not f 6 in the frequency range of
interest. Thus, the complexities of the CGF BEM algorithms and the MLFMM algorithm
with respect to frequency are of similar order which is con�rmed by the timings in
Section 6.1.1.
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Fig. 6.24.: Computation times of the FGSDA, FFT Ewd, and MLFMM algorithm versus the number of
unknowns ratio N /Ntot for the rectangular plate example.

6.4. Validation Against Measurements

The accurate numerical modeling of real reverberation chambers is a demanding and
time-consuming process. As the problem is ill-conditioned, even �ne geometrical de-
tails (e.g., cables, the stirrer axis, or chamber door) and �ne modeling di�erences (e.g.,
discretization or analytic consideration of the cavity walls) have a non-negligible im-
pact on the results (see e.g., [Leu03a; Bru05] and Section 6.2, respectively). However,
in the majority of cases, deterministic quantities, such as the electric �eld, are of minor
interest in reverberation chamber research and application. The important quantities
are of statistical nature (e.g., the homogeneity of the �eld, the number of independent
stirrer positions, or the �eld statistics). In the following, the reverberation chamber
from the Technical University of Dresden is modeled using the FGSDA accelerated CGF

BEM. The number of independent stirrer positions is determined according to the stan-
dard and the general method (see [IEC11] and [Pfe12], respectively). The simulated
results are validated against the measured ones from [Pfe12].

The reverberation chamber at the TU Dresden is 5.3m long, 3.7m wide, and 3.0m
high. It is equipped with a z-shaped mode stirrer whose axis is de�ned by the points
(4.3m,1.0m,0.0m) and (4.3m,1.0m,3.0m). Pictures of the stirrer and the antenna
are displayed in Fig. 6.25. In [Pfe12], the stirrer was rotated clockwise in 1° steps. The
chamber was excited by a log-per antenna at ten discrete frequencies in the frequency
range from 150MHz to 1GHz. The magnitude of the electric �eld was measured in a
cubic test volumewith a side length of 1m at 3×3×3 = 27 equally spaced measurement
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Fig. 6.25.: Picture of the mode stirrer (left) and the log-per antenna (right) in the reverberation
chamber of the Technical University of Dresden by courtesy of the Chair of Electro-
magnetic Theory and Compatibility, TU Dresden, Germany.

points. The center of the test volume was at the point (2.3m,2.0m,1.5m).
In the numerical model, �ne geometrical details, such as the stirrer axis, cables, or

�eld probes, are neglected. Instead of the geometrically complex log-per antenna, a
strip dipole of the size 0.4m × 0.16m is used. The dipole and the stirrer plates are
discretized with an average edge length of 0.04m or λ/10, respectively. The cavity
walls do not need to be modeled since they are incorporated in the Green’s function of
the cavity. Although the CGF BEM is capable to consider metallic objects, the dipole and
the stirrer plates are modeled as perfect electric conductors for simplicity. The losses
are lumped together in the complexwavenumber according to (2.41). The quality factor
of the reverberation chamber in use was measured in [Pfe15] and �tted to the model

Q =
1

1
Qa
+

1
Qw

(6.1)

where

Qa = 16π2V

(

f

c0

)3

(6.2)

is the individual quality factor due to antenna losses and

Qw =
3V

2Sw

√

πµ0κw f (6.3)
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Fig. 6.26.: Magnitude of the electric �eld at the 27 measurement points within the test volume for
the zeroth stirrer position at 250MHz.

is the individual quality factor due to the wall losses. To include not only the wall but
also the other losses inQw, an arti�cial wall conductivity of κw = 2 · 104 Sm−1 is used
in accordance with [Pfe15].

In [Pfe12], the number of independent stirrer positions was estimated according to
the standard [IEC11] and the general method [Pfe12]. The magnitude of the electric
�eld was measured at Nr = 27 points within the test volume for Nα = 360 stirrer posi-
tions. In the case of the standard method, the average over the 27 measurement points
was formed. Two positions were considered as independent when the correlation co-
e�cient of the corresponding �elds was less than the threshold rs = 0.37.

In Fig. 6.26, the magnitude of the electric �eld at the 27 measurement points for the
zeroth stirrer position at 250MHz. As expected, the measured and the simulated �elds
do not agree. Possible reasons are that 1) losses are modeled in an average quality
factor but not individually for each stirrer position, 2) the log-per antenna is simplisti-
cally modeled as an electrically short dipole, 3) discretization errors, and 4) other �ne
geometrical details such as cables, the door, and the stirrer axis are not considered in
the numerical model.

In Fig. 6.27 and 6.28, the number of independent stirrer positions Nα ,ind calculated
according to the standard and the general method are shown, respectively. In the over-
moded frequency range, the agreement between the simulated data agrees well with
the measurements. The deviation is below 20% for frequencies greater than 250MHz.
In the transition range, the di�erence is larger. One possible reason for the deviation
is the coarse modeling of the excitation antenna. While there is a direct path between
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Fig. 6.27.: Number of independent stirrer positions Nα ,ind calculated according to the standard
method [IEC11].

the test volume and the antenna in the numerical model, this is not the case in the real
reverberation chamber. Another reason may be the modeling of the quality factor in
(6.1). In the lower frequency range, the measured average quality factor showed strong
deviations from the theoretical one [Pfe15].

In summary, the CGF BEM is able to reproduce statistical quantities such as the num-
ber of independent stirrer positions. Despite the coarseness of the numerical model,
a good agreement was achieved in the over-moded frequency range. In the transition
range of the reverberation chamber, a more detailed modeling of the antenna pattern
and the quality factor may improve the accuracy of the numerical results. Determin-
istic quantities such as the electric �eld are di�cult to reproduce. Although the res-
onances of the cavity are considered analytically in the Green’s function of the rect-
angular cavity, the main error sources are discretization errors, the quality factor, and
geometrical inaccuracies in the numerical modeling process.
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Fig. 6.28.: Number of independent stirrer positions Nα ,ind calculated according to the general
method [Pfe12].
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7. Application to Reverberation Chamber Research

7.1. The Number of Independent Stirrer Positions: An Inner Product
Space Approach

Important measures for the performance of reverberation chambers are among oth-
ers the �eld homogeneity, the statistically independent stirrer positions, the max-to-
average ratio, and the �eld statistics [Mog10; Mog11]. While the de�nitions of the
former and the latter two measures are non-controversial, there are several meth-
ods to estimate the number of independent stirrer positions [Pfe13]. The standard
method [IEC11] is easy to perform but it is not applicable to multiple stirrers [Kra07;
Mog10] and gives wrong results in the transition frequency range of a reverberation
chamber [Pfe12].

In [Pfe12; Pfe13; Pfe14], a generalized method which does not have these shortcom-
ings has been developed. The magnitude of the electric �eld is measured at Nr points
within the test volume for each stirrer position α0,α1, . . . ,αNα

. Two stirrer positions
iα and jα are called independent when the Pearson correlation coe�cient

riα jα =
Cov

(

xiα ,xjα

)

√

Var xiα Var xjα
(7.1)

of the corresponding �eld distributions

xiα =
(

Eiα 0,Eiα 1, . . . ,EiαNr

)

, (7.2)

xjα =
(

Ejα 0,Ejα 1, . . . ,Ejα Nr

)

(7.3)

is less than the correlation threshold rs where Eiα ir is the magnitude of the electric
�eld for the iα th stirrer position at the ir th measurement point, iα , jα = 0,1, . . . ,Nα ,
and ir = 0,1, . . . ,Nr . A set of independent stirrer positions is a set of stirrer positions
which are mutually independent. The problem of �nding the maximum set of indepen-
dent stirrer positions is known from graph theory as the maximum clique problem and
is illustrated in Fig. 7.1. The exact solution of the maximum clique problem is not pos-
sible in polynomial time, however, heuristic algorithms which achieve good results in
reasonable time are available [Pul06]. Although the general method does not have the
shortcomings of the standard method, Pfennig and Krauthäuser have not stated how
many measurement points must be selected. In [Pfe12], the number of measurement
points is set to 27. However, in [Pfe13], 63 measurement points result in a larger set of
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Fig. 7.1.: Number of independent stirrer positions as a maximum clique problem: the nodes corre-
spond to the stirrer positions; two nodes are independent when they are connected; the
maximum set of independent stirrer positions is colored in red.

independent stirrer positions and the question arises which number of measurement
points yields the correct set.

Herein, the general method is considered in the framework of linear algebra. It is
shown that the number of independent stirrer positions is bounded for a �xed corre-
lation threshold and a �xed number of measurement points. As the correlation co-
e�cient satis�es the axioms of an inner product (i.e., conjugate symmetry, linearity,
and positive-de�niteness [Råd04]), the �eld distributions xi are elements of an Nr-
dimensional inner product space. In this framework, the question

Problem 1. How many independent stirrer positions exist given a correlation threshold

rs and a number of measurement points Nr?

can be reformulated as

Problem 2. How many vectors xiα , xjα satisfying
〈

xiα ,xjα

〉

< rs exist in an Nr-dimen-

sional vector space?

The latter is known as the problem of spherical codes. A spherical code (n,N ,r ) is a
set of N points on the unit hypersphere in n dimensions for which the scalar product
of unit vectors from the origin to any two points is less than or equal to r (i.e., the
minimum angle between two vectors is the inverse cosine of r ) [Con99]. In Fig. 7.2,
a spherical code on the ordinary sphere is illustrated. Unfortunately, the problem of
spherical codes is unsolved in general. Solutions exist for a few special cases only (e.g.,
low dimensional spaces and symmetric con�gurations [Slo12]). Nevertheless, it has
been shown that the number of points on a hypersphere is bounded for a given min-
imum angle between two points [Con99]. In the case of the independent stirrer posi-
tions problem, the points on the hypersphere correspond to the number of independent
stirrer positions, the dimension of the hypersphere corresponds to the number of mea-
surement points Nr, and r corresponds to the correlation threshold rs. Accordingly,
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Fig. 7.2.: Spherical code on the ordinary sphere with r = cos 20° ≈ 0.9397 and N = 110 [Slo12].

the number of independent stirrer positions is bounded given a correlation threshold
and a number of measurement points.

In the following, a numerical example is shown. The w-shaped two plate stirrer sce-
nario from Section 6.1 is considered. The quality factor of the reverberation chamber
is set to 104. The stirrer is rotated parallel to the z-axis in 1° degree steps around its
center. The magnitude of the electric �eld is computed at 120 equispaced points in a
7m long, 4m wide, and 2m high test volume whose center is at (4.5m,3m,2m). The
maximum set of independent stirrer positions is searched using the algorithm from
Pullan and Hoos [Pul06] for a correlation threshold of rs = 0.37. In Fig. 7.3, the num-
ber of independent stirrer positions Nα ,ind are shown in dependence of the number of
measurement points for f = 200MHz and f = 400MHz. In addition, the number of
independent stirrer positions for an ideal reverberation chamber (i.e., the magnitude of
the electric �eld is chi distributed with six degrees of freedom [Hil09].) is displayed. At
200MHz, Nα ,ind saturates at Nr = 60. At 400MHz and in the case of the ideal reverber-
ation chamber, about 100 measurement points are necessary to obtain the maximum
number of independent stirrer positions. For 27 measurement points, only about 65%
(200MHz), 50% (400MHz), and 30% (ideal reverberation chamber) of the maximum
number of independent positions are found, respectively.

In summary, the number of measurement points limits the independent stirrer po-
sitions when insu�cient measurement points are selected. In particular at high fre-
quencies, the number of 27 measurement points, which was used in [Pfe12], leads to
an underestimation of the independent positions.
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Fig. 7.3.: Number of independent stirrer positions Nα ,ind against the number of measurement
points Nr for f = 200MHz, f = 400MHz, and an ideal reverberation chamber.

7.2. A Dual Rotation Speed Stirring Mode

7.2.1. Motivation

In the last decade, mechanical stirring played an important role in reverberation cham-
ber research [Cle05; Arn06; Hua06; Wel07; Lun10; Mog10; Mog11; Mog12; Bos12;
Pri14]. In [Wel07], the in�uence of the stirrer height and diameter on the homogene-
ity of the �eld was studied. In [Lun10], it was found that in particular the periphery
of a stirrer contributes to the generation of the random process. Based on the results
from [Lun10], Moglie and Primiani proposed a new location for the test volume within
a carousel-like stirrer [Mog12]. The new location inside the tuner improves the cham-
ber performance signi�cantly. In contrast, the position of the stirrer hardly a�ects the
quality of the stirring process [Pri14]. Another possibility to improve the performance
of a reverberation chamber is adding a second stirrer [IEC11]. In [Mog10; Mog11], a
reverberation chamber which contains two tuners was considered. The stirrers were
operated in synchronized (i.e., the stirrers are rotated with the same speed) and in in-
terleavedmode (i.e., the stirrer are rotatedwith di�erent velocities). While the chamber
performance only improved slightly in synchronized mode, a signi�cant improvement
was achieved in interleaved mode.

Although a second stirrer enhances the stirring process, there is a shortcoming: the
space needed for the additional stirrer decreases the available test volume. Therefore,
another approach is pursued herein. A reverberation chamber with a single tuner is
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Fig. 7.4.: Geometry of the reverberation chamber and the test volume.

considered, but, in contrast to the standard case, not all parts of the stirrer are rotated
by the same angular increment. The angle increment of the upper part of the stirrer is,
for instance, �ve times the increment of the lower part. The e�ciency of the proposed
scheme is evaluated based on two criteria. The number of the independent stirrer
positions is estimated according to the generalized method from [Pfe12; Pfe13; Pfe14]
and the homogeneity of the �eld in the test volume is determined according to the
international electrotechnical commission (IEC) standard [IEC11].

7.2.2. Geometry of the Analyzed Structure

The considered reverberation chamber is of the size 5.3m × 3.7m × 3m. A four-plate
stirrer is located in the front right corner of the chamber. The stirrer is rotated parallel
to the z-axis about its center at (4.3,1.0,1.5). A 0.16m long and 0.04m wide strip
dipole centered at the point (0.5,3.0,1.5) is used as excitation. In the test volume, the
magnitude of the electric �eld is determined at Nr = 63 equally spaced points, see
Fig. 7.4. The distance in x-, y-, or z-direction between any two points is 0.5m. The
performance of the reverberation chamber is analyzed at six discrete frequencies in
the frequency range from 150MHz to 500MHz.

In contrast to the standard mode, the plates of the stirrer are rotated with di�erent
speeds, e.g., the upper plates are rotated twice as fast as the lower ones. To investigate
if the order of the rotation speeds in�uences the performance of the proposed stirring
mode, two cases are considered. In case A, the upper plates are rotated by the angle
∆α1 while the lower plates are rotated by the increment ∆α2. In case B, the upper and
the lower plate are rotated by the angle increment ∆α1 while the two middle plates are

101



Application to Reverberation Chamber Research Chapter 7

∆α2

∆α2

∆α1

∆α1

(a) Case A

∆α1

∆α2

∆α2

∆α1

(b) Case B

Fig. 7.5.: Geometry of the four-plate stirrer and corresponding rotation speeds of the plates.

να ∆α1 ∆α2 Stirring Mode

1 1° 1° standard

5 1° 5° dual rotation speed

20 1° 20° dual rotation speed

72 1° 72° dual rotation speed

Tab. 7.1.: Ratios να and angle increments for the considered stirring modes.

rotated by the increment ∆α2, see Fig. 7.5. The ratio between the angle increments is
denoted byνα = ∆α2/∆α1. In Table 7.1, the considered ratiosνα and the corresponding
angle increments are listed. Overall, Nα = 360 stirrer positions are considered.

7.2.3. Numerical Results

The reverberation chamber is simulated using the FGSDA accelerated CGF BEM algo-
rithm. The excitation and the stirrer are modeled as PEC. They are discretized with an
average edge length of 0.04m and λ/10, respectively. Losses are introduced by com-
plexi�cation of the wavenumber according to (2.41). The quality factor of the chamber
is adopted from Section 6.4.

The new stirring mode is evaluated based on the following criteria: the number
of independent stirrer positions and the homogeneity of the electric �eld within the
test volume. As the standard method [IEC11] for estimating the number of indepen-
dent stirrer positions is restricted to one degree of freedom (i.e., one rotation speed
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Fig. 7.6.: Number of independent stirrer positions for the standard (να = 1) and the dual rotation
speed (να = 5, 20, 72) stirring modes (Case A).

in our case), it is not suited to assess the proposed stirring mode. Instead the general
method [Pfe12], which does not su�er from this limitation, is employed. The threshold
correlation for independence of two stirrer positions is set to

rs =
1

e
*,1 −

7.22

N 0.64
α

+- =
1

e

(

1 − 7.22

3600.64

)

= 0.3065 (7.4)

in accordance with the IEC standard [IEC11]. The maximum set of independent stirrer
positions is searched using the algorithm of Pullan and Hoos [Pul06].

In Fig. 7.6, the number of independent stirrer positions is displayed for the di�erent
ratios να in case A. The dual rotation speed stirring modes outperform the standard
mode. The modes να = 5 and να = 72 are similarly good. The mode να = 20 performs
best. In the over-moded frequency range (f ≥ 200MHz), it generates more than twice
as many independent positions. In the under-moded range, it achieves an improvement
of one and a half. In average over all frequencies, the number of independent stirrer
positions is increased by a factor of 2.32. In Fig. 7.7, the number of independent stirrer
positions is displayed in the case B. The results are similar to case A. In average, the
number of independent stirrer positions is increased by a factor of 2.15.

As the second criteria, the homogeneity of the �eld is tested. In accordance with
the IEC standard [IEC11], eight measurement points within the test volume and mu-
tual distance of at least λ/2 are selected. The points are located at the vertices of a
cubic volume with 1m side length and center (2.3,2.0,1.5). In order to obtain a sin-
gle measure, we follow [Cle05]. The di�erences Dx , Dy , Dz , and Dtot of the standard
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Fig. 7.7.: Number of independent stirrer positions for the standard (να = 1) and the dual rotation
speed (να = 5, 20, 72) stirring modes (Case B).

deviations of Ex , Ey , Ez , and Etot to the tolerance level speci�ed in [IEC11] are calcu-
lated, respectively and added up to the total di�erence D = Dx +Dy +Dz +Dtot. The
greater the total di�erence, the more homogeneous is the �eld. When D < 0, at least
one component does not meet the IEC criteria. In Fig. 7.8, the di�erence D is shown
for the di�erent ratios να in case A. The dual rotation speed stirring modes generate
a more homogeneous �eld than the standard mode although the improvement is not
as signi�cant as for the independent stirrer positions. In average, the mode να = 20
achieves a 1 dB higher �eld homogeneity than the standard mode. The total di�erence
of the modes να = 5 and να = 72 is, on average, about 0.5 dB larger than that of the
standard mode. Again, the mode να = 20 performs best. In Fig. 7.8, the di�erence D is
shown for case B. The average improvement for the mode να = 20 is 1.2 dB.

In summary, the dual rotation speed stirring mode improves the performance of
reverberation chambers with respect to independent stirrer positions and �eld homo-
geneity. The order of the rotation speeds of the plates has a minor impact. The perfor-
mance is best when the ratio of the rotation speeds is approximately the square root
of the total number of tuner positions.

104



Section 7.2 A Dual Rotation Speed Stirring Mode

να = 72
να = 20
να = 5
να = 1

N
α
,in

d

f in MHz
100 200 300 400 500

−5

0

5

10

Fig. 7.8.: Homogeneity of the electric �eld for the standard (να = 1) and the dual rotation speed
(να = 5, 20, 72) stirring modes (Case A).
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Fig. 7.9.: Homogeneity of the electric �eld for the standard (να = 1) and the dual rotation speed
(να = 5, 20, 72) stirring modes (Case B).
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8. Conclusion and Outlook

Two di�erent acceleration techniques for the cavity Green’s function (CGF) bound-
ary element method (BEM), a fast group spectral domain approach (FGSDA) and a fast
Fourier transform (FFT) accelerated Ewald summation technique, were presented. Both
techniques address the major shortcomings of the unaccelerated CGF BEM. The com-
plexity with respect to frequency is decreased by two, respectively, three orders. Al-
though the complexity with respect to the number of unknowns is not reduced, the
computationally most expensive part, the �lling of the system matrix, is accelerated
signi�cantly.

The presented methods were compared with and validated against a multilevel fast
multipole method (MLFMM) accelerated free-space Green’s function (FGF) BEM over a
wide frequency range for di�erent scenarios. For a Vivaldi antenna, the FFT acceler-
ated Ewald summation technique achieved a speed-up of more than three orders of
magnitude. In the case of a mode stirrer, the simulation time was decreased by more
than one order of magnitude using the FGSDA. Although the speed-up reduced for a car
body, the simulation time was still decreased by at least a factor of four for frequen-
cies greater than the lowest usable frequency of the chamber in the case of the FGSDA.
The performances of the FGSDA and the FFT accelerated Ewald summation technique
are similar. At high frequencies, the FFT accelerated Ewald summation is advantageous
since the frequency complexity of the algorithm is lower. In the low and mid frequency
range, the FGSDA is preferable. Also, for reverberation chambers with large or multi-
ple objects, the FGSDA is favorably as the hybrid Ewald-2D Spectral representation of
the CGF is the cheaper, the greater the distance between observation and source point.
In addition, the CGF BEMs were compared with other state-of-the-art methods for re-
verberation chamber modeling, namely the discrete singular convolution method of
moments (DSC-MoM) [Zha11] and the adaptive integral method (AIM) accelerated CGF

BEM [Yan14]. In all scenarios, the proposed approaches outperformed the other meth-
ods by often more than one order of magnitude with respect to computation time and
memory consumption.

TheVivaldi antenna, themode stirrer, and the car bodyweremodeled as perfect elec-
tric conductors using the electric �eld integral equation (EFIE). To model imperfectly
electrically conducting and dielectric objects, the CGF boundary integral (BI) formu-
lation was coupled to an impedance boundary condition (IBC) and the �nite element
method (FEM), respectively. An electrically well conducting and a dielectric cuboid
were considered to validate the FGSDA. The speed-up versus the MLFMM accelerated
FGF BEM decreased since well conducting and dielectric objects involve electric and
magnetic currents. Still, an acceleration of up to a factor of ten was achieved.
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Conclusion and Outlook

The CGF BEM is valid for ideal cavity walls only. Well but not perfectly conducting
cavity walls are usually approximated by complexi�cation of the wavenumber using
the quality factor of the cavity. In this work, the CGF BEM with the complex wavenum-
ber approximation was validated against the FGF BEM where in the latter one, an IBC

was used to model the well conducting walls. Using the individual quality factor of a
cavity mode, the complex wavenumber approximation agreed very well with the ref-
erence. When the composite quality factor was used, the agreement deteriorated in
the range of the cavity resonances. While the introduced error plays a minor role in
the over-moded range of a reverberation chamber since in this range a large number
of modes contributes to the �eld, it becomes important in the transition range of the
chamber where only a few modes or a single mode contribute to the �eld. How to
integrate the individual quality factors of the cavity modes into the representations of
the CGF is a possible topic for future research.

As the walls and the resonances of the cavity are modeled analytically in the CGF,
the CGF BEM is more accurate than the FGF BEM. The CGF BEM complies better with the
reciprocity condition and satis�es the power budget not only at low but also at high
frequencies. However, both the CGF and the FGF BEM su�er from the discretization
errors in the range of the cavity resonances. In practice, the accuracy gain due to the
analytical modeling of the cavity walls and resonances plays a minor role as the major
challenges are the accuratemodeling of the quality factor and small geometrical details.

Last but not least, the accelerated CGF BEM was applied to reverberation chamber
research. The number of independent stirrer positions was considered in the frame-
work of linear algebra and a new dual speed rotation stirring mode was proposed and
analyzed. It was shown that the number of independent stirrer positions is limited by
the number of measurement points in the test volume and that the new stirring mode
improves the chamber performance although the available test volume is not reduced
as in the case of a second stirrer. In this application area of mode stirrer analysis, the
CGF BEM is particularly advantageous: on the one hand, the number of unknowns is
reduced by one to two orders of magnitude versus the FGF BEM as only the chamber
with the stirrer and not the chamber with the stirrer and the device under test is ana-
lyzed; on the other hand, stirrer analysis is easy to parallelize as each position of the
stirrer is independent from the others.

In futurework, the quadratic complexity of the FGSDA could be addressed. The FGSDA
can, in principle, be applied on-the-�y during the iterative solution of thematrix-vector
equation. This would reduce the complexity from quadratic to linear. However, the
large number of iterations would degrade the e�ciency of the iterative FGSDA. A possi-
ble remedy is proposed in [Eib06]. In [Eib00], a FSDA for the Green’s function of double
in�nite periodic structures was presented. In [Eib06], the approach was extended to
a multilevel FSDA. Using the multilevel approach, less modes must be stored on �ne
levels to represent the corresponding Green’s function and the cost per matrix-vector
product is reduced signi�cantly.
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A. Theorems and Proofs

A.1. Lorenz Gauge Condition

In the following, it is shown that the di�erent representations of the CGF satisfy the
Lorenz gauge condition. The Green’s function of the rectangular cavity for the mag-
netic vector potential satis�es the Lorenz gauge

∇ ·A + jωµεϕ = 0 (A.1)

if the equation

∇ ·GA
= −µε∇′Gϕ (A.2)

is ful�lled where ∇′ denotes the nabla operator with respect to r ′, Gϕ is the Green’s
function of the electric scalar potential [Mic90], and the dependence from observation
and source point is suppressed for brevity. To prove that we start from the left-hand
side of the Lorenz gauge

∇ ·A + jωµεϕ = ∇ ·
$

V
G
A · J dv′ + jωµε

$
V
Gϕ ρ dv′ ,

=

$
V

(

∇ ·GA
)

· J dv′ + jωµε
$

V
Gϕ ρ dv′ . (A.3)

Using (A.2), the above equation becomes

= −εµ
$

V
∇′Gϕ · J dv′ + jωµε

$
V
Gϕ ρ dv′ . (A.4)

Applying the divergence theorem [Råd04] to the �rst term gives

= −εµ
[	

∂V
Gϕ J · da′ −

$
V
Gϕ∇′ · J dv′

]

+ jωµε

$
V
Gϕ ρ dv′,

= −εµ
	

∂V
Gϕ J · da′ + εµ

$
V
Gϕ

(

∇′ · J + jωρ
)

dv′

= 0 (A.5)

since J is orthogonal to da′ on ∂V and ∇ · J + jωρ = 0 (continuity equation).
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Theorems and Proofs Chapter A

Now, (A.2) is shown for the spatial and the spectral representation of the CGF. The
proofs for the 2D spectral and the Ewald representation are omitted as they are anal-
ogous to the spatial and the spectral representation. The divergence of the spatial
representation of the CGF for the magnetic vector potential is

∇ ·GA
spat

(

r ,r ′
)

= µ

∞
∑

m,n,p=−∞

7
∑

q=0

∇ · *.,
e−jkrmnp,q

4πrmnp,q

∑

i

Ai,q x̂i x̂i
+/- ,

= µ

∞
∑

m,n,p=−∞

7
∑

q=0

e−jkrmnp,q

4πrmnp,q

*,−
1

rmnp,q
− jk+-

[
Ax,q

(

xq − 2ma
)

x̂

+ Ay ,q
(

yq − 2nb
)

ŷ +Az,q
(

zq − 2pc
)

ẑ

]
. (A.6)

The spatial representation of the CGF for the electric scalar potential reads

GΦspat

(

r ,r ′
)

=

1

ε

∞
∑

m,n,p=−∞

7
∑

q=0

e−jkrmnp,q

4πrmnp,q
Aq (A.7)

where Aq = 1 for q = 0,2,4,6, Aq = 0 for q = 1,3,5,7 and rmnp,q is de�ned as in
Chapter 3. Applying the gradient with respect to r ′ and multiplying (A.7) with −µε
yields

− µε∇′GΦspat
(

r ,r ′
)

= µ

∞
∑

m,n,p=−∞

7
∑

q=0

e−jkrmnp,q

4πrmnp,q

*,−
1

rmnp,q
− jk+-

·
−
∂xq

∂x ′
Aq

(

xq − 2ma
)

x̂ −
∂yq

∂y ′
Aq

(

yq − 2nb
)

ŷ −
∂zq

∂z ′
Aq

(

zq − 2pc
)

ẑ

 . (A.8)

Evaluating the partial derivatives of xq , yq , and zq with respect to x ′, y ′, and z ′ by
means of Table 3.1 gives (A.6).

The divergence of the spectral representation of the CGF for the magnetic vector
potential is

∇ ·GA
spec

(

r ,r ′
)

= µ

∞
∑

m,n,p=0

1

k2xyz − k2
∇ ·

∑

i

ϕi,mnp (r ) ϕi,mnp

(

r ′
)

x̂i x̂i

= −µ
∞
∑

m,n,p=0

1

k2xyz − k2
∑

i

kiϕmnp (r ) ϕi,mnp

(

r ′
)

x̂i (A.9)

where

ϕmnp (r ) =

√

τmτnτp

abc
sin(kxx ) sin(kyy ) sin(kzz) . (A.10)
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The spectral representation of the CGF for the electric scalar potential reads

GΦspec

(

r ,r ′
)

=

1

ε

∞
∑

m,n,p=0

1

k2xyz − k2
ϕmnp (r ) ϕmnp

(

r ′
)

. (A.11)

Applying the gradient with respect to r ′ and multiplying (A.11) with −µε gives

− µε∇′GΦspec
(

r ,r ′
)

= −µ
∞
∑

m,n,p=0

1

k2xyz − k2
∑

i

kiϕmnp (r ) ϕi,mnp

(

r ′
)

x̂i (A.12)

which is equal to (A.9).

A.2. Spectral Series of the Ewald Summation Technique

For the derivation of the Ewald summation technique (cf. Section 3.4) and the FFT

accelerated Ewald summation technique (cf. Section 5.1), the identity

∞
∑

m,n,p=0

Hmnp ϕi,mnp (r ) ϕi,mnp

(

r ′
)

=

1

8

∞
∑

m,n,p=−∞
Hmnp

7
∑

q=0

Aq,ie
j
(

kx xq+ky y+kzzq
)

(A.13)
is necessary. In the following, (A.13) is shown for the x-component. Inserting (2.33a),
the x-component of the left-hand side of (A.13) is given by

∞
∑

m,n,p=0

Hmnp ϕx,mnp (r ) ϕx,mnp

(

r ′
)

=

∞
∑

m,n,p=0

Hmnp
τmτnτp

abc

· cos(kxx ) cos(kxx ′) sin(kyy ) sin(kyy ′) sin(kzz) sin(kzz ′) . (A.14)

Using the exponential form of the sine and cosine function, it becomes

=

∞
∑

m,n,p=0

Hmnp
τmτnτp

64abc

·
[
+ejkx (x+x

′)
+ ejkx (x−x

′)
+ e−jkx (x−x

′)
+ e−jkx (x+x

′)
]

·
[
−ejky (y+y ′) + ejky (y−y ′) + e−jky (y−y ′) − e−jky (y+y

′)
]

·
[
−ejkz (z+z′ ) + ejkz (z−z′ ) + e−jkz (z−z′ ) − e−jkz (z+z

′ )
]
. (A.15)
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Observing that Hmnp = H−m−n−p and
∑∞
m=0 τm

(

ejmx
+ e−jmx

)

= 2
∑∞
m=−∞ ejmx

reduces (A.15) to

=

1

8abc

∞
∑

m,n,p=−∞
Hmnp

[
ejkx (x+x

′)
+ ejkx (x−x

′)
]

·
[
−ejky (y+y ′) + ejky (y−y ′)

] [
−ejkz (z+z′ ) + ejkz (z−z′ )

]
. (A.16)

Expanding the braces and using the relations from Tab. 3.1 yields

=

1

8abc

∞
∑

m,n,p=−∞
Hmnp

[
ejkx (x+x

′)ejky (y+y
′)ejkz (z+z

′ )

− ejkx (x+x
′)ejky (y+y

′)ejkz (z−z
′ ) − ejkx (x+x

′)ejky (y−y
′)ejkz (z+z

′ )

+ ejkx (x+x
′)ejky (y−y

′)ejkz (z−z
′ )
+ ejkx (x−x

′)ejky (y+y
′)ejkz (z+z

′ )

− ejkx (x−x
′)ejky (y+y

′)ejkz (z−z
′ ) − ejkx (x−x

′)ejky (y−y
′)ejkz (z+z

′ )

+ ejkx (x−x
′)ejky (y−y

′)ejkz (z−z
′ )
]
, (A.17)

=

1

8abc

7
∑

q=0

Aq,x

∞
∑

m,n,p=−∞
Hmnp e

jkx xq ejky yq ejkz zq . (A.18)

The other components of (A.13) are shown in the same manner.

A.3. 2D Spectral Representation

In the derivation of the FGSDA, the functions ξi,mn (r> ) and ξi,mn (r< ) of the z-2D
spectral representation are shifted to the center of the corresponding group to avoid
numerical over�ow errors and preserve the factorizability of the individual terms with
respect to observation and source point.

In the following, it is shown that the shifted z-2D spectral representations in (4.17)
are numerically stable, i.e., the shifted functions ξ ′′i,mn (r> ) and ξ

′′
i,mn (r< ) are bounded

for large αmn and the product of the translation function and Hmn is bounded for large
αmn . The magnitudes of the shifted functions ξ ′′i,mn (r> ) satisfy

���ξ ′′i,mn (r> )
��� = ����e−αmn (c−zc,> ) ξi,mn (r> )

����
≤ C e−αmn (c−zc,> ) ����eαmn (c−z> ) ± e−αmn (c−z> ) ����

≤ C
[
e−αmn (z>−zc,> )

+ e−αmn (2c−z>−zc,> )
]

(A.19)
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where the exponential notations of hyperbolic sine and hyperbolic cosine have been
used and C is a real-valued constant. The �rst term in (A.19) is bounded: The distance
between z> and zc,> is smaller than the group height cg. As the z-2D spectral repre-
sentation is used for far-interactions only, there is at least one group between test and

source group. Because of this one group distance, cg < ∆z =
���z − z ′��� and the relation

e−αmn (z>−zc,> ) < e−αmn|z>−zc,> | < eαmncg < eαmn∆z (A.20)

holds. According to (3.11),

αmn =

√

k2x + k
2
y − k2 <

√

k20 − k2 = −
ln∆

∆z
(A.21)

for an accuracy δ of the z-2D spectral representation. Inserting (A.21) into (A.20) shows

e−αmn (z>−zc,> ) < exp

(

− lnδ
∆z

∆z

)

= exp

(

ln
1

δ

)

=

1

δ
. (A.22)

The second term in (A.19) is also bounded since 2c − z> − zc > 0.
The boundedness of the shifted functions ξ ′′i,mn (r< ) is shown in a similar manner.

Again using the exponential notation of hyperbolic and sine hyperbolic cosine, the
magnitudes of the shifted functions ξ ′′i,mn (r< ) satisfy

���ξ ′′i,mn (r< )
��� = ���e−αmnzc,< ξi,mn (r> )

���
< Ce−αmnzc,<

����
(

eαmnz< ± e−αmnz<
) ����

= C
����e−αmn (zc,<−z< )

+ e−αmn (z<+zc,< ) ���� . (A.23)

As the distance between zc,< and z< is smaller than cg, the �rst term in (A.23) is
bounded by the aforementioned arguments. The second term is also bounded since
z< + zc,< > 0 .

The product of translation function and Hmn is given by

TmnHmn =
e−αmn (zc,>−zc,<−c )

αmn sinh (αmnc )
<

eαmn (zc,>−zc,<−c )

sinh (αmnc )
(A.24)

for large αmn . Writing the hyperbolic sine in exponential notation and expanding the
fraction by e−αmnc gives

TmnHmn <
e−αmn (zc,>−zc,< )

1 − e−2αmnc
. (A.25)

In the asymptotic limit the denominator goes to one and the nominator goes to zero as
zc,> − zc,< > 0 . Therefore, the product of translation function and Hmn is bounded.
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A.4. Dyadic Analysis

In this section, some expressions which are required in Appendix B are derived. Let
A = Axx x̂x̂ + Ay y ŷŷ + Azz ẑẑ =

∑3
i=1Aii x̂i x̂i be a dyadic �eld, δi j is the Kronecker

symbol, and ϵi jk be the Levi-Civita symbol [Its07]. Then, the curl of the dyadic �eldA
is given by

∇ ×A =

3
∑

i=1

∂

∂xi
x̂i ×

*..,
3

∑

j=1

Aj j x̂j x̂j
+//-
=

3
∑

i,j=1

∂

∂xi
Aj j

(

x̂i × x̂j
)

x̂j ,

=

3
∑

i,j,k=1

ϵi jk
∂

∂xj
Akk x̂i x̂k . (A.26)

The gradient of the divergence of the dyadic �eld is

∇∇ ·A =
3

∑

i=1

∂

∂xi
x̂i


3

∑

j=1

∂

∂xj
x̂j · *.,

3
∑

k=1

Akk x̂k x̂k
+/-

,

=

3
∑

i,j,k=1

∂

∂xi

∂

∂xj
Akk

[
x̂i

(

x̂j · x̂k
)

]
x̂k ,

=

3
∑

i,j,k=1

∂

∂xi

∂

∂xj
δ jkAkk x̂i x̂k ,

=

3
∑

i,j=1

∂

∂xi

∂

∂xj
Aj j x̂i x̂j . (A.27)

114



B. Representations of the Rectangular Cavity Green’s Functions
for the Magnetic Vector Potential and the Derivatives

In Chapter 3, the di�erent representations of the rectangular cavity Green’s function
for the magnetic vector potential are derived and analyzed. As the Green’s function
for the electric vector potential and the curl and the gradient of the divergence of the
Green’s functions are also needed to evaluate the interaction integrals in Chapter 2,
they are introduced in the following.

B.1. Spatial Representation

The spatial representation of the Green’s function of the rectangular cavity for the
electric vector potential is given by

G
F
spat

(

r ,r ′
)

= ε

∞
∑

m,n,p=−∞

7
∑

q=0

e−jkrmnp,q

4πrmnp,q

(

Fx,q x̂x̂ + Fy ,q ŷŷ + Fz,q ẑẑ
)

(B.1)

where rmnp,q is the distance between the observation point and the source or an image
current as de�ned in Chapter 3. The coe�cients Fx,q , Fy ,q , and Fz,q correspond to the
relative orientation of the magnetic source and its immediate images and are given in
Table B.1.

Using (A.26), the curl of the Green’s function of the rectangular cavity for the mag-

q Fx,q Fy ,q Fz,q

0 +1 +1 +1
1 −1 +1 +1
2 −1 −1 +1

3 +1 −1 +1
4 +1 +1 −1
5 −1 +1 −1
6 −1 −1 −1
7 +1 −1 −1

Tab. B.1.: Coe�cients Fx,q , Fy ,q , and Fz,q .
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netic vector potential is

∇ ×G
A
spat

(

r ,r ′
)

= µ

∞
∑

m,n,p=0

3
∑

i,j,k=1

ϵi jk
∂G0

∂rmnp,q

∂rmnp,q

∂xj
Ak,q x̂i x̂k (B.2)

and the curl of the CGF for the electric vector potential becomes

∇ ×G
F
spat

(

r ,r ′
)

= ε

∞
∑

m,n,p=0

3
∑

i,j,k=1

ϵi jk
∂G0

∂rmnp,q

∂rmnp,q

∂xj
Fk,q x̂i x̂k (B.3)

where

G0 =
e−jkrmnp,q

4πrmnp,q
(B.4)

and the partial derivative ofG0 with respect to rmnp,q is

∂G0

∂rmnp,q
= *,−

1

rmnp,q
− jk+-G0 . (B.5)

The partial derivatives of rmnp,q with respect to x , y , and z are trivial and are for
brevity not given herein.

Using (A.27), the gradient of the divergence of the CGF for the magnetic vector po-
tential is

∇∇ ·GA
spat

(

r ,r ′
)

= µ

∞
∑

m,n,p=0

7
∑

q=0

3
∑
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+

∂G0

∂rmnp,q
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∂xi∂xj

+/-Aj,q x̂i x̂j (B.6)

and the gradient of the divergence of the CGF for the electric vector potential becomes

∇∇ ·GF
spat

(

r ,r ′
)

= ε

∞
∑

m,n,p=0

7
∑

q=0

3
∑
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∂rmnp,q
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∂xj
+

∂G0

∂rmnp,q
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∂xi∂xj

+/- Fj,q x̂i x̂j (B.7)

where the second derivative ofG0 with respect to rmnp,q is

∂2G0

∂r2mnp,q

=

(

2

r2
+

2jk

r
− k2

)

G0 . (B.8)
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B.2. Spectral Representation

The spectral representation of the Green’s function of the rectangular cavity for the
electric vector potential is derived as

G
F
spec

(

r ,r ′
)

= ε

∞
∑

m,n,p=0

1

k2xyz − k2
(

ψx,mnp (r )ψx,mnp

(

r ′
)

x̂x̂

+ ψy ,mnp (r )ψy ,mnp

(

r ′
)

ŷŷ +ψz,mnp (r )ψz,mnp

(

r ′
)

ẑẑ
)

(B.9)

where k2xyz is de�ned as in Chapter 3 and ψx,mnp (r ),ψy ,mnp (r ), and ψz,mnp (r ) are
the eigenfunctions of the electric vector potential as given in Section 2.2.

Using (A.26), the curl of the Green’s function of the rectangular cavity for the mag-
netic vector potential becomes

∇ ×G
A
spec

(

r ,r ′
)

= µ

∞
∑
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1
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·
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r ′
)

x̂i x̂k . (B.10)

Analogously, the curl of the CGF for the electric vector potential is

∇ ×G
F
spec

(

r ,r ′
)

= −ε
∞
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m,n,p=0

1

k2xyz − k2

·
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Using (A.27), the gradient of the divergence of the CGF for the magnetic vector po-
tential is

∇∇ ·GA
spec
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r ,r ′
)

= −µ
∞
∑

m,n,p=0

1
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·
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r ′
)

x̂i x̂j (B.12)
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and the gradient of the divergence of the CGF for the electric vector potential becomes

∇∇ ·GF
spec

(

r ,r ′
)

= −ε
∞
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m,n,p=0

1

k2xyz − k2

·
3
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i,j=1

kikj

k2
ψi,mnp (r )ψ j,mnp

(

r ′
)

x̂i x̂j . (B.13)

B.3. 2D Spectral Representation

The z-2D spectral representation of the Green’s function of the rectangular cavity for
the electric vector potential is derived as

G
F
z-2D

(

r ,r ′
)

= ε

∞
∑

m,n=0

Hmn

[
χx,mn (r> ) χx,mn (r< ) x̂x̂

+ χy ,mn (r> ) χy ,mn (r< ) ŷŷ + χz,mn (r> ) χz,mn (r< ) ẑẑ
]

(B.14)

where

χx,mn (r ) =

√

τmτn

ab
sin (kxx ) cos

(

kyy
)

cosh (αmnz) , (B.15a)

χy ,mn (r ) =

√

τmτn

ab
cos (kxx ) sin

(

kyy
)

cosh (αmnz) , (B.15b)

χz,mn (r ) =

√

τmτn

ab
cos (kxx ) cos

(

kyy
)

sinh (αmnz) , (B.15c)

and r> , r< , τm , τn , αmn , and Hmn are de�ned as in Chapter 3.

Using (A.26), the curl of the Green’s function of the rectangular cavity for the mag-
netic vector potential becomes

∇ ×G
A
z-2D

(
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= µ
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3
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(
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(
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)

, if z < z ′
(B.16)
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and the curl of the CGF for the electric vector potential is
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(B.17)

where

H∇×mn = Hmn

*....,
0 −σzz′αmn ky

σzz′αmn 0 −kx
−ky kx 0

+////-
(B.18)

and σzz′ = 1 if z ≥ z ′ and σzz′ = −1 if z < z ′.
Using (A.27), the gradient of the divergence of the CGF for the magnetic vector po-

tential is

∇∇ ·GA
z-2D

(
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= − µ
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∞
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3
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i,j=1
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and the gradient of the divergence of the CGF for the electric vector potential becomes
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where

H∇∇·mn = Hmn

*....,
k2x kxky kxσzz′αmn

kxky k2y kyσzz′αmn

−kxσzz′αmn −kyσzz′αmn −k2x + k2y

+////-
. (B.21)

B.4. Ewald Representation

The Ewald representations of the Green’s function of the rectangular cavity for the
electric vector potential and the derivatives of the Green’s functions are derived using
the results from Section B.1 and B.2. The spatial parts of the Ewald representations
have the same form as (B.1) – (B.3), (B.6), and (B.7), respectively, except that G0 is
replaced by

GEw-0 =

Re
{

ejkrmnp,q erfc
(

rmnp,qE + j
k
2E

)

}

4πrmnp,q
. (B.22)
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Introducing f = e+jkrmnp,q erfc
(

rmnp,qE + j
k
2E

)

and д = e
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2
+
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4E2 , the �rst and
the second derivative ofGEw-0 with respect to rmnp,q are derived as
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The spectral parts of the Ewald representations have the same form as (B.9) – (B.13),
respectively except that 1/(k2xyz − k2) is replaced by Hmnp .
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C. Simulation Parameters

The simulation parameters of the CGF BEM algorithms and the MLFMM algorithm are
listed in Table C.1 and C.2, respectively.

Parameter Value

FGSDA FFT

Cavity Green’s function

Accuracy of cavity Green’s function 10−4 10−4

CPU time ratio of 2D-spectral and
Ewald representation

4

Lagrange polynomial order 4

Sampling density of Q -array λ/15

GMRES

Residual GMRES 10−4 10−4

Tab. C.1.: Simulation parameters of the FGSDA and the FFT algorithm.

Parameter Value

MLFMM

Group size λ/4
Number of spherical harmonics 4
Accuracy d0 of Green’s function series 3

Lagrange polynomial order 12

GMRES

Solver Flexible GMRES-IO with 2 inner loops

Preconditioner 1st inner loop Full system matrix (MLFMM)

Preconditioner 2nd inner loop Full near-zone matrix (non-MLFMM

contributions)
Preconditioner on top of everything Gauss-Seidel
Number of iterations in the 1st inner
loop

120

Residual 10−4

Tab. C.2.: Simulation parameters of the MLFMM algorithm.
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