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Abstract 

Early Warning Systems (EWS) are increasingly applied to mitigate the risks posed by natural 

hazards. To compare the effect of EWS with alternative risk reduction measures and to optimize 

their design and operation, their reliability and effectiveness must be quantified. In the present 

contribution, a framework approach to the evaluation of threshold-based EWS for natural 

hazards is presented. The system reliability is classically represented by the Probability of 

Detection (POD) and Probability of False Alarms (PFA). We demonstrate how the EWS 

effectiveness, which is a measure of risk reduction, can be formulated as a function of POD and 

PFA. To model the EWS and compute the reliability, we develop a framework based on 

Bayesian networks, which is further extended to a decision graph, facilitating the optimization 

of the warning system. In a case study, the framework is applied to the assessment of an existing 

debris flow EWS. The application demonstrates the potential of the framework for identifying 

the important factors influencing the effectiveness of the EWS and determining optimal 

warning strategies and system configurations. 
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1 Introduction 

Early Warning Systems (EWS) are frequently applied as cost-effective risk mitigation measures 

against natural hazards, which provide timely information on future or ongoing events to reduce 

loss of life and damages [1]. In contrast to structural protection measures such as dams, galleries 

and rock fall nets, EWS are cheaper, have shorter installation time and have lower impact on 

the environment [2]. During the last decade, EWS have undergone a rapid technical 

development and are today frequently implemented as mitigation measures in an integrated risk 

management approach [3]. To compare the economic efficiency of mitigation measures and to 

identify the optimal risk reduction strategy, cost-benefit analyses are conducted. Following the 

standard convention, risk is defined as the expected value of adverse consequences [4]. The risk 

associated with an object 𝑖 and scenario 𝑗 is [5]: 

 𝑅𝑖𝑗 = 𝑝𝑗 × 𝑝𝑒𝑖𝑗 × 𝑣𝑖𝑗 ×  𝐴𝑖  (1) 

where 𝑝𝑗 is the probability of occurrence of a scenario 𝑗, 𝑝𝑒𝑖𝑗 is the presence probability of 

object 𝑖 in scenario 𝑗, 𝑣𝑖𝑗 is the vulnerability of object 𝑖 in scenario 𝑗 and 𝐴𝑖 the value of object 

𝑖. The overall risk 𝑅 is evaluated by summing or integrating over all possible scenarios and 

exposed objects: 

 𝑅 = ∑ ∑ 𝑅𝑖𝑗

𝑛𝑜𝑏𝑗

𝑖=1

𝑛𝑠𝑐𝑒𝑛

𝑗=1

 (2) 

Existing guidelines recommend that the benefits achieved due to reduced risk are compared 

against the costs induced to develop and maintain the measure [6, 7]. Detailed guidelines for 

calculating the effectiveness, i.e. the achieved risk reduction, are available for structural risk 

mitigation measures [8]. However, for natural hazard EWS such guidelines and procedures for 

quantifying the effectiveness are lacking.  

The reliability of EWS for natural hazards has been investigated in the past. It is generally 

accepted that an evaluation of EWS must include both the benefits of risk reduction and the 

negative consequences of missed events and false alarms [9-12]. A first approach for 

quantification of the reliability of a flood EWS was published by Krzysztofowicz et al. [13]. 

Following earlier work carried out in other areas [e.g.14], they quantify the reliability of a flood 

EWS following the concept of signal detection theory through the Probability of Detection 

(POD) and the Probability of False Alarm (PFA). In more recent case studies, the reliability of 

flood EWS and their forecasting performance are likewise expressed in terms of hits, missed 
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events and false alarms for different thresholds [15, 16].  Similar concepts are used for the 

assessment of EWS operated for other natural hazard processes. E.g., Simmons and Sutter [17] 

express the Tornado warning performance of the U.S. National Weather Service in terms of 

number of detected events and the ratio between false alarms and warnings, and Rheinberger 

[18] models the performance of avalanche warnings through POD, PFA and additional 

measures. As shown by Paté-Cornell [14], such an analysis is ideally based on detailed models 

of the response to false warnings, facilitating the identification of an optimal trade-off between 

POD and PFA. In addition to POD and PFA, the reliability of EWS depends on the probability 

of technical failures of system components. Bründl and Heil [19] assessed the technical 

reliability of the Swiss avalanche EWS in a case study. They conducted a fault tree analysis to 

identify the most critical system components but concluded that the method is not sufficient to 

cover the entire complexity of EWS. In a subsequent study, Sturny & Bründl [20] apply 

Bayesian Networks (BN) to assess the technical reliability of a glacier lake EWS. In Sättele et 

al. [21], we propose an enhanced BN to evaluate the reliability of a debris flow EWS, which 

computes POD and PFA including the technical reliability of the system components. 

In this contribution, a first step towards a generic framework for quantifying the effectiveness 

of EWS for natural hazards is presented. EWS can be classified into alarm, warning and 

forecasting systems [22]. These classes differ in their degree of system automation. Alarm 

systems detect ongoing hazard events, have short lead times and include fully automated 

threshold-based decisions. Warning and forecasting systems monitor precursors to predict 

events and are only partly automated including model-based human decisions. In this 

contribution, we limit ourselves to alarm systems, and show how their effectiveness can be 

quantified from their POD and PFA using a BN. We first define the terms reliability and 

effectiveness in the context of alarm systems, before we propose a framework BN and an 

associated Decision Graph (DG). In a case study, we apply the framework on an existing debris 

flow threshold-based alarm system to find the optimal system configuration, to identify the 

main factors influencing the system effectiveness and to demonstrate the applicability of the 

novel framework approach.   

2 Reliability of alarm systems for natural hazards 

Following [23], reliability is defined as the "ability of an item to fulfill a required function under 

stated conditions for a stated period of time". An EWS for natural hazards fulfills its designated 
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function if it detects all hazard events in a timely manner, transfers the warning to the effected 

persons and leads to measures that avoid damage and loss of life.  

This requires (a) that the system and its components are available and work perfectly, and (b) 

that the monitoring and the data interpretation units are able to perfectly distinguish between 

hazard events and background noise. The requirement (a), to which we refer as technical 

reliability, can be quantified using the classical methods for assessing the reliability of technical 

systems, including fault trees, bow-tie models, failure mode and effective analysis [24, 25]. 

More recently, BN have been applied as a flexible and powerful alternative to these models 

[26]. The requirement (b), to which we refer as inherent system reliability, is quantified through 

POD and PFA using the concepts of signal detection theory [27], which has found applications 

in many field including medical testing [28, 29] and non-destructive testing of technical systems 

[30, 31]. In the context of alarm systems, one can define the POD and the PFA as 

 𝑃𝑂𝐷 = E [
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑒𝑣𝑒𝑛𝑡𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑒𝑣𝑒𝑛𝑡𝑠
 ] (3) 

 

 𝑃𝐹𝐴 = E [
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑑𝑎𝑦𝑠 𝑤𝑖𝑡ℎ 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡 𝑓𝑟𝑒𝑒 𝑑𝑎𝑦𝑠
] (4) 

where E[∙] is the expectation operator.  

Note that the PFA must be defined using a reference unit, which is chosen here as days, but 

other temporal or spatial references can be appropriate. To ensure comparability, it is important 

to use the same unit consistency throughout all studies. Unfortunately, this is often overlooked 

and many studies do not even state the reference unit of the PFA. 

POD and PFA are both influenced by the interpretation of the monitoring data. This is illustrated 

in Fig. 1, which shows the basic concepts of signal detection theory. The measured signal can 

be either due to a hazard event 𝐻 or due to noise N. The decision to issue a warning is based on 

the threshold 𝑡. If the measured signal is larger than 𝑡, a warning is issued. With 𝑓𝑆|𝐻(𝑠) being 

the conditional probability density function (PDF) of the signal 𝑆 given a hazard event 𝐻, and 

𝑓𝑆|�̅�(𝑠) being the conditional PDF of 𝑆 given no hazard event  �̅�, it is [27, 32]: 

 𝑃𝑂𝐷(𝑡) = ∫ 𝑓𝑆|𝐻(𝑠)d𝑠

∞

𝑡

 (5) 
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 𝑃𝐹𝐴(𝑡) = ∫ 𝑓𝑆|�̅�(𝑠)d𝑠

∞

𝑡

 (6) 

With increasing threshold 𝑡, both the POD and the PFA decrease. This dependence between the 

two is graphically embodied in the Receiver Operator Characteristic (ROC) curve, see Fig. 1. 

ROC curves summarize the reliability of EWS for varying thresholds. They graphically 

represent the system reliability as a trade-off between POD and PFA.  

 

Fig.1. Conditional Probability Density Functions (PDFs) representing noise and a hazard event and the 

Probability of Detection (POD) and Probability of False Alarms (PFA) for two different thresholds (upper 

part).Correlated Receiver Operator Characteristics (ROC) curve for varying thresholds and the optimal 

performance of an EWS (lower part). 

The overall system reliability as a combination of the technical reliability and the inherent 

system reliability is also expressed in terms of ROC curves. To this end, we compute the POD 

and PFA as the conditional probability of a warning given a hazard event, including the 

probability of system component failures. This is achieved by modeling both the inherent and 

the technical reliability jointly in a Bayesian network, as described in Section 4.  
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3 Effectiveness of alarm systems for natural hazards 

It is commonly accepted that the effectiveness of a mitigation measure equates to the relative 

reduction of the overall risk [5, 8]. We propose to calculate the effectiveness of an EWS 𝐸𝑤 

from 𝑅 being the overall risk without the EWS and 𝑅(𝑊) the risk with the EWS system installed: 

 𝐸𝑤 = 1 −
𝑅(𝑊)

𝑅
 (7) 

Both 𝑅 and 𝑅(𝑊) are evaluated according to Eq. (1) and (2). EWS aim to generate information 

before a hazard event causes damage; they reduce risk primarily by mitigating the exposure 

probability 𝑝𝑒𝑖𝑗 of persons and mobile objects 𝑖 in a hazard scenario 𝑗, following Eq. (1). If the 

EWS provides sufficient lead time, the risk can be additionally reduced through the 

implementation of supplementary intervention measures such as e.g. mobile flood protection. 

Consequently, the effectiveness of EWS 𝐸𝑤  is primarily a result of the reduced exposure 

probability 𝑝𝑒𝑖𝑗, but can also be due to other factors such as the vulnerability of object 𝑖 in 

scenario 𝑗 in Eq. (1).  

In the present contribution, we focus on alarm systems with limited lead time, during which the 

only possible action is to reduce the presence probability from a value 𝑝𝑒𝑖𝑗 without warning to 

a value 𝑝𝑒𝑖𝑗
(𝑊)

. Combining Eq. (7) with Eqs. (1) and (2), the effectiveness for this case becomes  

 𝐸𝑊 = 1 −
∑ ∑ 𝑝𝑗 × 𝑝𝑒𝑖𝑗

(𝑊)
× 𝑣𝑖𝑗 ×  𝐴𝑖 

𝑛𝑜𝑏𝑗

𝑖=1

𝑛𝑠𝑐𝑒𝑛
𝑗=1

∑ ∑ 𝑝𝑗 × 𝑝𝑒𝑖𝑗 × 𝑣𝑖𝑗 ×  𝐴𝑖 
𝑛𝑜𝑏𝑗

𝑖=1

𝑛𝑠𝑐𝑒𝑛
𝑗=1

 (8) 

Most alarm systems are installed primarily to warn people. Thus, 𝑛𝑜𝑏𝑗 is the number of exposed 

people and it is reasonable to assume that the exposure probability is the same for different  𝑖, 

i.e. 𝑝𝑒𝑖𝑗 = 𝑝𝑒𝑗. Finally, we limit ourselves to a situation with only one relevant scenario 𝑗 = 1, 

and the warning effectiveness then reduces to 

 𝐸𝑤 = 1 −
𝑝𝑗 × 𝑝𝑒𝑗

(𝑊)
× ∑ 𝑣𝑖𝑗 ×  𝐴𝑖 

𝑛𝑜𝑏𝑗

𝑖=1

𝑝𝑗 × 𝑝𝑒𝑗 × ∑ 𝑣𝑖𝑗 ×  𝐴𝑖 
𝑛𝑜𝑏𝑗

𝑖=1

 (9) 

= 1 −
𝑝𝑒𝑗

(𝑊)

𝑝𝑒𝑗
 

 

The alarm system reduces the exposure probability to 𝑝𝑒𝑗
(𝑊)

. This reduction is equal to the 

probability that a warning is issued, transferred to the target persons and that the affected people 
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comply with the warning. The former corresponds to the POD, the latter to the Probability of 

Compliance (POC). Therefore, 

 𝑝𝑒𝑗
(𝑊)

= 𝑝𝑒𝑗(1 − 𝑃𝑂𝐷 × 𝑃𝑂𝐶) (10) 

Inserting in Eq. (9), the effectiveness becomes  

 𝐸𝑊 = 𝑃𝑂𝐷 × 𝑃𝑂𝐶 (11) 

The POC, i.e. the degree to which warnings are followed in practice, is strongly dependent on 

the PFA. A high number of false alarms reduces the POC to an issued warning, due to a loss of 

trust that is known as the cry-wolf syndrome [33, 34]. We calculate POC as a result of a basic 

compliance probability 𝑃𝑂𝐶0 and a compliance reduction factor due to false alarms 𝑅𝐹(𝑃𝐹𝐴): 

 𝑃𝑂𝐶 = 𝑃𝑂𝐶0 × 𝑅𝐹(𝑃𝐹𝐴) (12) 

For the case study, we estimate the general compliance rate 𝑃𝑂𝐶0 = 0.95 from traffic analyses 

[35, 36]. One analysis investigated the behavior of pedestrians towards red lights and revealed 

that 5% ignore red-lights. The second analysis considered the behavior of cyclist, where about 

7% ignore red lights. To estimate the compliance reduction factor due to false alarms 𝑅𝐹(𝑃𝐹𝐴) 

we adopt results from a case study that assessed the compliance frequency of students as a 

function of false alarms [37]. The resulting compliance frequencies (corresponding to our RF) 

at different levels of the False Alarm Ratio (FAR) are shown in Fig. 2, together with a fitted 

quadratic function:  

 𝑅𝐹(𝐹𝐴𝑅) = −0.34 𝐹𝐴𝑅2 −  0.66 𝐹𝐴𝑅 + 1   (13) 

 

Fig.2.  Compliance frequency at different levels of  False Alarm Ratio (FAR), according to [37]. 
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To incorporate the effect of decreasing compliance for a given number of false alarms in the 

effectiveness of the alarm system, the FAR, which is defined as the ratio of false to correct 

alarms, is related to the PFA by 

 𝐹𝐴𝑅 = 𝑃𝐹𝐴
Pr (�̅�)

Pr (𝐴)
 (14) 

where Pr (�̅�) is the probability of no hazard event and Pr(𝐴) is the probability of an alarm (both 

correct and false) on a given day. For the case study considered here, it is approximately 

Pr(�̅�) ≈ 95% and Pr(𝐴) ≈ 5%, therefore 𝐹𝐴𝑅 ≈ 19 𝑃𝐹𝐴. Combining Eqs. (11) – (14), we 

obtain the effectiveness as a function of POD and PFA, see also Fig. 3.: 

 𝐸𝑤 = 𝑃𝑂𝐷 × 0.95(−0.34 𝐹𝐴𝑅2 −  0.66 𝐹𝐴𝑅 + 1) (15) 

= 𝑃𝑂𝐷 × (0.95 − 116 𝑃𝐹𝐴2 −  11.9 𝑃𝐹𝐴),       𝑃𝐹𝐴 ≤
1

19
 

 

Fig.3. Effectiveness as a function of Probability of Detection (POD) and Probability of False Alarms (PFA) for 

the case study. 

4 Bayesian network to quantify the system reliability and maximize the 

effectiveness  

To probabilistically model the system reliability for varying thresholds of an existing debris 

flow alarm system and to identify the threshold combination that implies the optimal 

effectiveness, we design a BN and an associated DG. A BN is a graphical probabilistic model, 

in which each node represents a random variable and the arcs among the nodes characterize the 

stochastic dependence among these [38, 39]. In many instances, the arcs can be constructed 

following the causal relations between the random variables [40]. To each node, a Conditional 

Probability Table (CPT) is attached, specifying the probability of the random variable 
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conditional on its parent nodes. The BN facilitates the computation of the probability of any set 

of nodes conditional on observations of other nodes. BNs can be extended to DGs for decision 

making under uncertainty, whereby the strategy that maximizes the expected utility is sought 

[41]. DGs are essentially BNs augmented with decision and utility nodes, wherein the latter 

describe the preferences of the decision maker.   

BN allow the incorporation of expert knowledge, can deal with rare data and are based on an 

intuitive modeling approach. In recent years BN have been applied frequently for 

environmental modeling and for the evaluation of natural hazard risks [38, 42]. Applications of 

BN for modeling EWS are presented by Medina-Cetina & Nadim [43-45], who present a BN 

of a landslide EWS and apply it to determine optimal thresholds, and by Blaser et al. [46], who 

use BN to assess a Tsunami EWS in Sumatra. 

Our framework BN to model the reliability of alarm systems for natural hazards is designed 

according to three main units of a EWS [47]: monitoring, data interpretation and information 

dissemination (Fig. 4). The monitoring unit is equipped with sensors, which continuously 

monitor the environment. In the data interpretation unit, the measured data are analyzed to 

detect irregularities and make the final warning decision. The information dissemination unit 

conveys the warning information to responsible authorities and finally to endangered persons 

and responsible authorities.  This BN describes the causal chain from the event to the warning. 

Component failure nodes are included to model the technical reliability of the system dependent 

on the failure probabilities of different system components. The node “event indicated” 

represents the inherent system reliability as a function of the selected threshold. To compute 

the POD, the top node is set to the state “hazard event = true” and the BN is evaluated; the POD 

is then obtained as the probability of a warning. Likewise, the PFA is obtained by setting the 

top node to “hazard event =  false”. By varying the threshold, different combinations of POD 

and PFA are obtained, allowing the construction of the ROC curve. 

By adding a utility node, the BN is extended to a DG, which can automatically identify the 

optimal warning threshold (Fig. 5). This is of particular use when multiple sensors are installed. 

In this case, thresholds must be set for all sensors and combination rules (logic operators) must 

be defined, e.g. that a warning is issued only if more than 𝑥 sensors have a signal above their 

threshold. This leads to a high-dimensional optimization problem, which can be effectively 

solved with the DG.  



Reliability and effectiveness of EWS for natural hazards  10/26 

 

Fig. 4. Schematic framework of a Bayesian Network (BN) to model the reliability in terms of Probability of 

Detection (POD) and Probability of False Alarms (PFA) for alarm systems. 

 

 

Fig.5. Schematic Decision Graph (DG) to identify the optimal threshold combination that maximizes the alarm 

system effectiveness. 

5 Case study: The Illgraben debris flow alarm system 

The system under investigation is located at the Illgraben catchment in the western part of the 

Swiss Alps. The catchment ranges in elevation from 610 m a.s.l. to 2716 m a.s.l. and half of the 

catchment area (~ 4 km2) is covered by bedrock and debris deposits. Due to the geological 

conditions there is a remarkably high occurrence rate of debris flows. A debris flow is a 

spontaneous fast-flowing mixture of water and solid particles, which typically consists of surges 

[48].  In 2006, the Swiss Federal Institute for Forest, Snow and Landscape Research WSL 

designed an alarm system to protect local residents and tourists frequently crossing the 
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catchment (Fig. 6). In the present case study, we assess the reliability and effectiveness of the 

existing Illgraben system, which is a typical fully-automated threshold-based system [49].  

 

Fig.6. The components of the Illgraben debris flow alarm system can be described in three main units: 

monitoring, data interpretation and information dissemination. 

The monitoring unit includes five sensors that are located close to the release area to detect 

events in real-time. In the upper catchment, one single sensor, Geophone 1 (G1), continuously 

monitors ground vibrations. Further down in the catchment, some hundred meters below, two 

geophones, geophone 2 (G2) and geophone 3 (G3), measure ground vibrations and two radar 

devices, radar 1 (R1) and radar 2 (R2), measure the flow depth in the river bed. The upper G1 

is controlled by one logger and the remaining four sensors are controlled by a second logger. 

The power at these remote locations is supplied via solar panels and batteries. The loggers build 

an interface between the monitoring unit and the data interpretation unit. If predefined threshold 

values in the data loggers are exceeded, a warning call is automatically activated via modem 

and transmitted to the valley. The incoming warning calls are forwarded via two communication 

devices to the information dissemination unit. To release the warning information to 

endangered persons in the catchment, three alarm stations are located close to three crossings 

of the streambed. Each station consists of an audible signal and a red light. The lead time of the 

system is determined by the velocity of the debris flow and the runtime between the lower 

sensor units and the upper crossing and is in the range between 5 and 15 min. 
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6 BN to model the reliability of the Illgraben alarm system 

By applying the BN framework (Fig. 4) to the system sketch of the alarm system (Fig. 6), the 

BN depicted in Fig. 7 is obtained.  The oval grey nodes in the BN represent the causal chain 

from the event to the warning. This chain can also be interpreted as the information flow. For 

each sensor, a local interpretation is made in node “event indicated”, which is in state ”true” 

only if the sensor signal exceeds the corresponding threshold. The information from sensors in 

the lower catchment (G2,G3,R1,R2) is merged in the node “warning issued 2”, where it is 

decided whether or not to issue a warning, following the selected criterion defined in the node 

“decision criteria”. The node “warning transmitted” is in state “true” if either of the two 

warnings is issued (OR connection). If the warning is transmitted, a warning is released at each 

of the three stations, given that no component failures occur. Therefore, the final node “warning” 

should in principle have four states 0,1,2,3, corresponding to the number of stations where 

warnings are released. However, to comply with the binary definition of POD and PFA, this 

node has only two states “yes” and “no”. To account for the number of warnings released, the 

conditional probability of “warning = yes” is 0.33 if two stations release a warning respectively 

0.67 if only one station releases a warning.  

The BN is implemented with the free GeNIe software [22]. 
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Fig. 7. Tailored BN to model the reliability of the Illgraben debris flow alarm system. 

6.1 Technical reliability 

The technical reliability of the system describes the probability that failures of technical system 

components (TSC) lead to a malfunctioning of the alarm system. The TSC are the white nodes 

in the BN of Fig. 7. They are modeled by binary random variables, with states “functioning” 

and “failed”. Failures occur following a Poisson process, i.e. they occur randomly in time and 

independently of each other. The probability of a TSC failure at time Pr(𝐹(𝑡)) is calculated as 

[50]: 
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 Pr(𝐹(𝑡)) ≈  λ × E[𝑇𝑟]   (16) 

where λ is the failure rate of the TSC and E[𝑇𝑟] is the expected time it takes to detect and repair 

a failure. The approximation holds for small values of λ , i.e. for  

λ ≪
1

E[𝑇𝑟 ]  
 . In the Illgraben system, E[𝑇𝑟] is one day for all TSCs, because diagnosis tools are 

incorporated into the system to ensure that failures are detected within one day. If the failures 

cannot be repaired immediately, additional operational measures are taken to ensure detection 

of an event.  

The failure rate 𝜆 of TSC includes both internal failures, with corresponding rate 𝜆𝐼𝐹 , and 

failures caused by external influences, with rate 𝜆𝐸𝐹: 

 λ = 𝜆𝐼𝐹 + 𝜆𝐸𝐹 (17) 

The internal failure rate 𝜆𝐼𝐹 is directly derived from the Mean Time To Failure (MTTF) or, for 

repairable parts, from the Mean Time Between Failure (MTBF), as specified by the suppliers. 

As an example, for radar devices the MTTF is 60 years and the corresponding internal failure 

rate is  𝜆𝐼𝐹 = 4.5 ∗ 10−5 per day. If MTTF or MTBF are not specified by the supplier, expert 

judgment is used to estimate 𝜆𝐼𝐹.  

Failures probabilities due to external causes 𝜆𝐸𝐹 are more difficult to quantify. EWS are 

primarily installed in remote areas in alpine regions, close to rivers and glaciers, in high 

altitudes, steep catchments and are thus prone to numerous external failure causes. Lightning, 

humidity, storm and extreme temperatures are the most frequent external factors that cause 

failures on system components. Rock falls, snow avalanches and snow load, ice blocks, flood, 

vegetation, mud, dust and fog are site or system specific causes that can lead to failures of TSC. 

Additional potential failure causes such as construction, vandalism and animals must also be 

considered. To estimate 𝜆𝐸𝐹, we consult experts and evaluate historical data from repair records. 

Since the installation of the Illgraben debris flow system in 2006, one solar panel was destroyed 

by a rock fall.  In the Illgraben, rock fall is common and we assume the failure rate to be  3 ×

10−4d−1, which corresponds to a return period of 10 years. System failure due to extreme floods, 

lightning, animals, vandalism and extreme temperatures have not occurred yet, but should be 

considered as possible failure causes. We assume a failure rate of  3.0 × 10−5d−1 for each 

external failure, which corresponds to a return period of 100 years. Summing up these rates, we 
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receive an overall 𝜆𝐸𝐹 =  4.5 × 10−4d−1 for all TSC. This is in good agreement with available 

repair records. 

To quantify the effect that technical failures have on the overall system reliability, we 

incorporate technical failure rates 𝜆 for all TSC in the BN. In doing so, the maximum POD 

(achieved with the optimal thresholds described later in the paper) is decreased by 0.34%. 

Thereof, 0.12% are due to internal failures (𝜆𝐼𝐹) and 0.22% are due to external failures (𝜆𝐸𝐹). 

6.2 Inherent system reliability 

The inherent reliability of the Illgraben system, as expressed through POD and PFA, depends 

on the selected threshold for each sensor signal. To analyze the influence of these thresholds, 

decision nodes representing varying thresholds are included in the BN/DG (Fig. 7). In addition, 

a decision node “decision criteria” allows various criteria to be analyzed for issuing warnings 

based on the indications from the individual sensors, e.g. a warning is issued if at least two 

sensors indicate an event.   

Each of the five signal nodes in the monitoring unit are described by the conditional PDF of 

maximum measured signal during a day, conditional on whether or not a debris flow event 

occurs during that day. These conditional probability distributions correspond to those of the 

signal detection theory as illustrated in Fig. 1. To estimate them, recorded sensor data from the 

period between 1st of May 2008 and 24th September 2012 were used. During this period, 44 

debris flow events were recorded on 883 days. For each of the five sensors, a probability 

distribution is fitted to the observed signals for days with and for days without events, as 

displayed in Fig. 8 for geophone G2. For inclusion in the BN, the signal is discretized in 10 

classes, as exemplarily shown in Table 1 for G2.  
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Fig.8. Cumulative distribution function (CDF) of the signal of geophone 2. Solid lines represent observed data 

and dashed lines the fitted probability distributions.  

 

Table 1. Discretized probability distribution of signals measured by geophone 2 on days with and without event: 

 

class impulses/ sec. no event event 

1 ≤ 1  0.8332 0.0767 

2 >1 ≤  5 0.0512 0.1071 

3 >5 ≤ 10 0.0295 0.0663 

4 >10 ≤ 20 0.0305 0.0772 

5 >20 ≤ 30 0.0163 0.0492 

6 >30 ≤ 40 0.0102 0.0362 

7 >40 ≤ 50 0.0069 0.0286 

8 >50 ≤ 200 0.0208 0.1789 

9 >200 ≤ 500 0.0014 0.1075 

10 >500  0.0001 0.2713 

 

To quantify the inherent reliability of individual sensors, POD and the PFA are evaluated from 

the conditional distributions of the signal following Eqs. (5) – (6). The resulting ROC curves 

that represent the reliability of individual sensors for varying thresholds are presented in Fig. 9. 

They indicate that the inherent reliability of the individual sensors varies strongly. Geophone 

G1 performs best and reaches a reliability close to the optimum with 𝑃𝑂𝐷 = 0.992 and 𝑃𝐹𝐴 =
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10−4 , whereas the remaining sensors have much lower inherent reliability. The difference 

among the reliabilities of the sensors is mainly due to the positioning of the sensors in the field, 

which influences their ability to detect hazardous debris flow events and the amount of external 

disturbances, e.g. from animals, humans, rock falls. 

 

Fig. 9. Receiver Operator Characteristic ROC curves illustrate the reliability of sensors for nine predefined 

thresholds. The highest threshold is represented by operation points left. Geophone 1 shows the best 

performance. 

6.3 Decision graph to identify optimal threshold combinations  

With five sensors, and all the signals discretized in 10 classes, there are 95 = 59 × 103 possible 

threshold combinations, each of which leads to a POD and a PFA. Furthermore, for combing 

the individual sensor results different decision criteria can be defined, which further increase 

the number of possible warning strategies. For the Illgraben case study, two such decision 

criteria are considered. Either one individual sensor can issue a warning individually or a 

warning is issued when geophone 1 or at least one geophone and one radar device in the lower 

catchment indicate an event. The optimal warning criterion in all instances for the Illgraben 

case study is the second criterion. 

Most of the possible warning strategies will be sub-optimal. Of interest are only the Pareto 

optimal warning strategies, for which it holds that no other strategy exists with simultaneously 

higher POD and lower PFA. To identify the Pareto optimal solutions, we employ the DG of 

Fig.5. In the utility node, we modify the ratio of cost of false alarm to cost of a missed event. 
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The costs of false alarm include spendings for activating the alarm units and are typically low 

compared to the expected cost of a missed event. Lattest, involve costs that are caused through 

damage and loss of life. The DG is used to identify the optimal threshold combination and 

decision criterion for each utility ratio. In this way, we obtain a set of Pareto optimal solutions, 

which allow the construction of the system ROC curve. In Table 2, the optimal threshold 

combinations for 20 utility ratios are presented, together with the corresponding POD, PFA and 

effectiveness, as computed with Eq. (15). The results are also graphically illustrated in Fig. 10. 

Here, the technical reliability is already included, i.e. the results show the overall sytem 

reliability and effectiveness. 

 

Table 2. Pareto optimal solutions for varying utility ratios: 

 

utility ratio =  

cost of false alarm/ 

 cost of miss 

threshold 

POD PFA Effectiveness 
G1 G2 G3 R1 R2 

0.009/ 0.01 2 8 7 3 9 0.996772 0.002851 0.912171 

0.02 2 8 8 3 8 0.996342 0.000783 0.937166 

0.03/ 0.04/ 0.05 2 8 8 3 9 0.996336 0.000775 0.937260 

0.06/ 0.07/ 0.08/ 0.09/ 0.1 2 8 8 4 8 0.996072 0.000520 0.940068 

0.2 2 8 9 3 9 0.995582 0.000339 0.941772 

0.3 2 8 9 4 8 0.995339 0.000277 0.942281 

0.4/ 0.5/ 0.6 2 9 9 4 8 0.995125 0.000248 0.942423 

0.7/ 0.8/ 0.9 2 9 9 4 9 0.995110 0.000247 0.942424 

1 3 8 9 4 8 0.992215 0.000078 0.941680 
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Fig. 10. Reliability and effectiveness of Pareto optimal warning strategies, as shown in Table 2. 

6.4 Reliability and effectiveness of the Illgraben alarm system 

The POD and PFA of the Pareto optimal warning strategies for the Illgraben alarm system are 

summarized in Table 2 and Fig. 10. Using these values, the overall ROC curve of the system is 

constructed, as depicted in Fig. 11. This ROC curve is overlaid with the system effectiveness 

calculated as a function of POD and PFA, following Fig. 3.  

 

Figure 11: The resulting Receiver Operator Characteristic ROC curve of the Illgraben alarm system, 
overlaid on the effectiveness.  



Reliability and effectiveness of EWS for natural hazards  20/26 

Overall, the reliability of the Illgraben debris flow alarm system is high, and so is its efficiency. 

According to Table 2, the warning strategy that maximizes the effectiveness of the system is 

the one found with utility ratios 0.7/ 0.8 and 0.9. This warning strategy has low thresholds for 

sensors G1 and R1, whereas the thresholds of the remaining three sensors G2, G3 and R2, are 

set to their maximum. Geophone G3 still has a POD of 0.79 even with the largest threshold (see 

also Fig. 9). For G2 and R2, these optimal maximum thresholds indicate that these sensors do 

not contribute to the system reliability and may even decrease the overall effectiveness of the 

Illgraben debris flow system.  

To assess the influence of individual technical system components (TSCs) on the overall system 

reliability and the resulting effectiveness, a sensitivity analysis is conducted. For each TSC 𝑖, 

the system effectiveness with the optimal warning strategy is recalculated once by assuming 

that the TSC 𝑖 failed and once by assuming that the TSC 𝑖 is perfectly reliable. This is done by 

simply setting the node of TSC 𝑖 to “functioning” or “failure” respectively. The difference in 

effectiveness between the system with the perfectly reliable TSC 𝑖 and the original system is 

called Effectiveness Achievement Worth, as it corresponds to the Risk Achievement Worth 

importance measure [51]. Accordingly, the difference in effectiveness between the original 

system and the one with TSC 𝑖 failed is called Effectiveness Reduction Worth, corresponding 

to the Risk Reduction Worth importance measure [52]. The results are summarized in Table 3, 

where TSCs are ordered according to their importance. Overall, the Effectiveness Achievement 

Worth of all TSCs is small; indicating that little can be gained from improving the reliability of 

individual TSCs. On the other hand, the Effectiveness Reduction Worth of the TSCs that are 

responsible for the data transmitting within the Illgraben system (modem 3, call receiver 1, call 

transmitter 1, mobile network or power supply), is large (9.42 × 10−1). Upon failure of any of 

these TSCs, the system will not work, which is a consequence of the missing redundancy. 

Redundantly constructed data transmitting devices would therefore improve the system 

reliability and so its effectiveness considerably. However, as the Effectiveness Achievement 

Worth shows, the effect would be limited. For a further analysis of possible modifications in 

the system configuration, a cost analysis should be conducted.  

The non-redundant TSCs in the information dissemination unit (call receiver 2/3/4, battery 3/4) 

are among the most critical TSCs and so their Effectiveness Reduction Worth (3.10 × 10−1) is 

significant. Because all three alarm stations are equipped with redundant release devices, an 

audible signal and a red light, these two devices are less critical (1.82 × 10−4). 
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 Table 3. Influence of individual technical system components (TSC) on effectiveness. 

Ranking TSC Effectiveness  

TSC = 

"functioning" 

Effectiveness 

Achievement 

Worth 

Effectiveness  

TSC = "failure" 

Effectiveness 

Reduction Worth 

1 modem 3 

call receiver 1  

call transmitter  

power network 

mobile network 

 

0.943741 

 

1.32 x 10-3 

 

0.0 

 

9.42 x 10-1 

 

2 battery 3/4 

call receiver 2/3/4  

 

0.942581 

 

1.57 x 10-4 

 
0.632004 

3.10 x 10-1 

 

3  geophone 1 

logger 1 

modem 1 

battery 1 

 

0.942509 

 

8.45 x 10-5 

 
0.764853 

1.77 x 10-1 

 

4 modem 2 

logger 2 

battery 2 

0.942427 

 

3.30 x 10-6 

 

0.935417 

 

7.01x 10-3 

 

5 radar 1 

 
0.942427 3.24 x 10-6 0.935876 6.55x 10-3 

6 geophone 3 

 
0.942426 2.19 x 10-6 0.937827 4.60 x 10-3 

7 solar panel 3/4 

 
0.942426 1.45 x 10-6 0.939547 2.88 x 10-3 

8 solar panel 1 

 
0.942425 8.31 x 10-7 0.940781 1.64 x 10-3 

9 geophone 2 

 
0.942424 2.34 x 10-7 0.942048 3.77 x 10-4 

10 red light 1/2/3 

audible signal 1/2/3 

 

0.942424 1.04 x 10-7 0.942242 1.82 x 10-4 

11 solar panel 2 

 
0.942424 3.51 x 10-8 0.942359 6.50 x 10-5 

12 radar 2 0.942424 8.16 x 10-9 0.942405 1.91 x 10-5 

 

The overall high system effectiveness is mainly a consequence of the high reliability of 

geophone G1 in the upper catchment. If that single geophone G1 or the TSCs essential for its 

functioning (logger 1, modem 1, battery 1) fail, the loss in effectiveness is large (1.77 × 10−1). 

The influence of this individual sensor exceeds the joint influence of all four sensors in the 

lower catchment. The latter is quantified through the influence of logger 2, modem 2 or battery 

2, whose failures would render all four sensors in the lower catchment useless. The influence 

of the individual sensors varies drastically. While G3 and R1 have a considerable effect on the 

effectiveness of the Illgraben system, G2 and in particular R2 are assumed to be sensors with 

minor significance. Nevertheless, the positioning of the four sensors in the lower catchment is 

limited. The position is chosen to detect debris flow events that could enter the main channel 

below the upper geophone at the earliest possible moment. 



Reliability and effectiveness of EWS for natural hazards  22/26 

7 Discussion 

EWS for natural hazards are safety-critical systems, whose reliability and effectiveness depends 

on the technical reliability of its components and the inherent ability of the system to correctly 

identify the hazard events. The framework proposed in this paper combines these two aspects 

into a single model, using a Bayesian network (BN). The BN is constructed to calculate the 

reliability of automated alarm systems in terms of probability of detection (POD) and 

probability of false alarm (PFA) as a function of the thresholds set for all sensors. The reliability 

is defined probabilistically, in agreement with existing concepts of risk management for natural 

hazards. The flexibility of the BN makes it straightforward to include potential technical failures 

of system components into this analysis. By extending the BN to a decision graph (DG), we 

furthermore find an effective way to solve the multi-dimensional optimization problem of 

identifying the optimal warning strategy with multiple sensors, i.e. the determination of the 

optimal combination of signal thresholds at the individual sensors.  

We define effectiveness as a relative measure of the achieved risk reduction. We show that if a 

EWS is installed primarily for limiting the presence of people in the endangered area, the 

effectiveness can be assessed as a function of the POD and PFA alone. A crucial point is the 

quantification of the effect of false alarms on people’s compliance with warnings. It is well 

known that false alarms deteriorate compliance, the so-called cry wolf syndrome, but studies 

quantifying this effect for natural hazard warnings are lacking, and assumptions have to be 

made on a relatively weak basis. Even when owners and operators of EWS do not intend to 

quantify the effectiveness, they must still understand the effect of false alarms, in determining 

the maximum acceptable PFA of a system.  

The approach presented is applicable to automated alarm systems with limited lead times. 

Modifications will be necessary for EWS that offer larger lead times, such as in the case of slow 

rock movement process or flood hazards in the lower catchment area. For such events, the 

system reliability will be a function of the lead time. It will then be necessary to find a trade-

off not only between POD and PFA, as in the current study, but also between POD, PFA and 

the lead time. For warning and forecasting EWS, decisions are not fully automated. For these 

systems, a comprehensive evaluation of EWS reliability and effectiveness has to include 

human-decision making and the quality of predictive models. Nevertheless, parts of the 

framework introduced in this paper are applicable also to such EWS, as we demonstrate in a 

case study on a rockslide warning system [53] 
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For the investigated debris flow alarm system, the final sensitivity analysis showed that most 

of the individual technical components have little impact on the reliability, with the exception 

of the non-redundant communication system and the most important sensors. For these 

components, additional protection measures such as fences, rockfall nets and standardized 

double-wall box may be installed to protect them. The case study furthermore revealed that 

besides the types and numbers of sensors, mainly their positioning in the field is crucial for the 

inherent system reliability. Finally, we find that the combination of multiple sensors can 

increase the POD while keeping PFA low, but only to a certain level.  

The approach presented can be applied to optimize existing alarm systems, but can also assist 

in the design phase when a new system configuration is developed. In the latter case, cost-

benefit analysis should be conducted to assess and compare different system configurations. In 

contrast to the case study presented, data availability is a problem for most applications. The 

fact that the sensitivity of sensors to a hazard event is often strongly site-specific – as shown by 

our case study – makes it difficult to transfer models describing the inherent reliability of 

individual sensors among different applications. During a test phase, site-specific models may 

be developed, following the procedure presented in this paper. However, during the design 

phase or for locations with only few hazard events such an approach is not feasible. Models for 

the inherent reliability of sensors must then be developed based on expert opinions or using 

detailed physical models, e.g. as developed in structural reliability applications.  

8 Conclusion 

We propose a framework to quantify the reliability of alarm systems for natural hazards based 

on Bayesian network (BN), accounting for both technical failures and the inherent system 

ability. The reliability is expressed in terms of the Probability of Detection (POD) and the 

Probability of False Alarms (PFA). To find a warning strategy that offers an optimal trade-off 

between these two, we define the system effectiveness as a function of POD and PFA as a 

measure of risk reduction. The optimal warning strategy is the one maximizing the system 

effectiveness. We show that by enhancing the BN to a decision graph, one is able to 

automatically identify an optimal warning strategy for systems with multiple sensors, where the 

decision on whether or not to issue an alarm is based on a combination of signals from all these 

sensors. By implementing the framework for a debris flow alarm system, we are able to 

demonstrate the applicability and usefulness of the framework for real alarm systems installed 

in practice.  
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