
  
 

Wissenschaftszentrum Weihenstephan 

 für Ernährung, Landnutzung und Umwelt 

Lehrstuhl für Ernährungsmedizin 

Postprandial metabolic changes in healthy males  

and in subjects homozygous for GWAS-identified variants          
at lipid metabolism loci 

Tina Cornelia Brennauer 

Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für 

Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des 

akademischen Grades eines 

Doktors der Naturwissenschaften 

genehmigten Dissertation. 

 

Vorsitzender:    Univ.-Prof. Dr. D. Haller 

Prüfer der Dissertation:  1. Univ.-Prof. Dr. J. J. Hauner 

     2. Univ.-Prof. Dr. H. Daniel 

 

Die Dissertation wurde am 23.09.2015 bei der Technischen Universität München eingereicht 

und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und 

Umwelt am 05.01.2016 angenommen. 



 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

            GEWIDMET 

            MEINEN ELTERN 

 

 

  



 
 

  

DANKSAGUNG (ACKNOWLEDGEMENT) 

 

Die wissenschaftliche Arbeit im Rahmen dieser Doktorarbeit wurde am Else Kröner-Fresenius-Zentrum für 
Ernährungsmedizin der Technischen Universität München durchgeführt. Ich danke Prof. Dr. Hans Hauner, Leiter 
des Institutes, für die Möglichkeit dieses Thema zu bearbeiten, sowie für seine fortwährende Unterstützung 

während der Durchführung und Ausarbeitung dieser Arbeit.  

Ein Dankeschön möchte ich Dr. Helmut Laumen für seine Hilfe und Unterstützung, sowie seine vielfältigen 
Ideen, aussprechen. Daneben möchte ich Dr. Thomas Skurk für die Betreuung des klinischen Teils der Arbeit 
danken. Durch die Zusammenarbeit mit ihm war ein reibungsloser und schneller Studienablauf in stets 

humorvoller und herzlicher Atmosphäre möglich. 

Besonderer Dank geht an das Bundesministerium für Bildung und Forschung (BMBF) für die Förderung des 
Systems Biology of Metabotypes (SysMBo)-Projektes (Förderkennzeichen 0315494D) und im speziellen des 
Teilprojektes 8 „Human Studies“. Dank geht auch an alle Kooperationspartner, die das SysMBo-Projekt möglich 
gemacht haben. Besonders bedanken möchte ich mich bei Ivan Kondofersky für die Hilfe und gute 
Zusammenarbeit bei der statistischen Auswertung. Darüber hinaus möchte ich mich bei Harald Grallert für die 
Hilfe bei der Rekrutierung von Probanden aus der KORA-Kohorte, sowie bei Werner Römisch-Margl und Gabi 

Kastenmüller für die Ermöglichung der Metabolomics-Messungen bedanken. 

Nicht zuletzt danken möchte ich Sylvia, sowie allen anderen Mitarbeitern des Lehrstuhls für Ernährungsmedizin 
für die freundliche und sehr herzliche Arbeitsatmosphäre, sowie die stete Unterstützung und Hilfe in allen 
Bereichen. Besonderer Dank geht an Carola, Elisabeth und Manuela für die Hilfe im Labor, sowie bei der 
Studiendurchführung. Ein herzliches Dankeschön möchte ich an Kerstin, Heekyoung, Britta und Therese richten, 
die für mich weit mehr als gute Kolleginnen geworden sind.  

Ein Dank geht an Anne-Christin für ihre außergewöhnliche Freundschaft und die vielen motivierenden 
Diskussionen, sowohl wissenschaftlicher Art als auch alle anderen Lebensbereiche betreffend. 

Von ganzem Herzen möchte ich meiner Familie danken. Ganz besonders meinen Eltern, Monika und Jürgen, für 
ihre Liebe und Unterstützung und ihr Vertrauen in mich. In jeder Hinsicht haben sie die Grundsteine meines 
Weges gelegt und mich all die Jahre durch mein Studium begleitet. Danke auch an meine beiden Schwestern 
Nadine und Simone, für ihren Glauben an mich und ihr Verständnis für die wenige gemeinsame Zeit in den 

letzten Jahren.  

Mein innigster Dank geht an Thomas für seine Liebe, Unterstützung und unermüdliche Kraft mich immer wieder 
aufzubauen und zu motivieren. Worte vermögen nicht zu beschreiben, wie viel du mir bedeutest. Danke, dass 

du immer für mich da bist! 



T A B L E  O F  C O N T E N T  I 
 

  

TABLE OF CONTENT 

 

SUMMARY …………………………………………………………………………………………………………………………………………….. III 

ZUSAMMENFASSUNG ……………………………………………………………………………………………………………………………  V 

ABBREVATIONS ……………………………………………………………………………………………………………………………………. VII 

1 INTRODUCTION ..................................................................................................................................... 1 

1.1 Metabolomics ................................................................................................................................ 1 

1.2 Human metabolism ....................................................................................................................... 2 

1.2.1 Influences on human metabolism ......................................................................................... 2 

1.2.2 Dietary influences on human metabolism - the catabolic state ........................................... 3 

1.2.3 Dietary influences on human metabolism - the anabolic state ............................................ 5 

1.2.4 Metabolic flexibility ............................................................................................................... 8 

1.3 Aim of the work ............................................................................................................................. 9 

2 POSTPRANDIAL METABOLISM IN HEALTHY MALES ............................................................................ 10 

2.1 Study design and methods .......................................................................................................... 10 

2.1.1 Study design ........................................................................................................................ 10 

2.1.2 Standard biochemistry parameters ..................................................................................... 13 

2.1.3 Analysis of dietary records .................................................................................................. 13 

2.1.4 Metabolomics analysis ........................................................................................................ 13 

2.1.5 Statistical analysis ................................................................................................................ 14 

2.2 Effect of dietary standardization on the plasma metabolomic response to a defined meal 
challenge in healthy individuals .................................................................................................. 19 

2.2.1 Background .......................................................................................................................... 19 

2.2.2 Results ................................................................................................................................. 21 

2.2.3 Discussion ............................................................................................................................ 29 

2.3 Comparative analysis of postprandial plasma metabolic changes to a fast-food meal and a 
healthy breakfast ......................................................................................................................... 31 

2.3.1 Background .......................................................................................................................... 31 

2.3.2 Results ................................................................................................................................. 33 

2.3.3 Discussion ............................................................................................................................ 38 



T A B L E  O F  C O N T E N T  II 
 

  

3 POSTPRANDIAL METABOLISM IN SUBJECTS HOMOZYGOUS FOR GWAS-IDENTIFIED VARIANTS AT 
LIPID METABOLISM LOCI ..................................................................................................................... 41 

3.1 Background .................................................................................................................................. 41 

3.2 Study design and methods .......................................................................................................... 43 

3.2.1 Study design ........................................................................................................................ 43 

3.2.2 Standard biochemistry parameters ..................................................................................... 46 

3.2.3 Linkage disequilibrium-block analysis ................................................................................. 46 

3.2.4 Genotype analysis ............................................................................................................... 46 

3.2.5 Metabolomics analysis ........................................................................................................ 47 

3.2.6 Statistical analysis ................................................................................................................ 47 

3.3 The impact of rs2014355 in the ACADS locus on the plasma metabolism in the anabolic and 
catabolic state ............................................................................................................................. 50 

3.3.1 The ACADS (Acetyl-dehydrogenase, short chain) – gene .................................................... 50 

3.3.2 Results ................................................................................................................................. 53 

3.3.3 Discussion ............................................................................................................................ 62 

3.4 The impact of rs174547 in the FADS1 locus on the plasma metabolism in the anabolic state 
during nutritional challenges ....................................................................................................... 66 

3.4.1 The FADS (Fatty acid desaturase) – genes ........................................................................... 66 

3.4.2 Results ................................................................................................................................. 69 

3.4.3 Discussion ............................................................................................................................ 79 

4 GENERAL DISCUSSION ......................................................................................................................... 85 

REFERENCES ................................................................................................................................................ 89 

APPENDIX .................................................................................................................................................. 113 

PUBLICATIONS AND PRESENTATIONS ....................................................................................................... 141 

 

 

 

 

  

 

 



S U M M A R Y  | III 
 

  

SUMMARY 

The recent developments of metabolomics technologies enable the simultaneous measurement of various 

metabolites produced along a wide range of interconnected pathways of the human metabolism. 

Metabolism is influenced by a given genetic make-up and a number of environmental factors, including 

nutrition combining to shape health outcomes. This thesis addresses the human metabolism after 

nutritional challenges in strictly controlled human intervention studies applying time-resolved plasma 

metabolomics measurements. The work is divided into two major parts: 

The first part of the work aims to further understand the postprandial plasma metabolism in healthy 

individuals. Six male subjects were given a high-fat, high-carbohydrate (HFHC) meal consisting of a 

conventional fast food meal on two independent study days (i) with their habitual diet before the HFHC 

challenge and (ii) with three-day food standardization before the second identical meal. In addition, at a 

third study day, subjects were given a healthy breakfast (HB). Plasma samples were obtained in the fasting 

state, and at several postprandial time-points. Samples were analyzed by targeted and non-targeted mass 

spectrometric methods.  

In a first sub-project the need for a short-term dietary standardization at the days prior to a time-resolved 

nutritional challenge test was addressed. Therefore, the metabolite measurements of the HFHC meal with 

and without prior food standardization were compared. Significant differences in mean postprandial 

metabolite time-courses were identified for isobutyrylcarnitine and branched-chain amino acids. 

Moreover, the study revealed that the postprandial inter-individual variance in acyl-alkyl 

phosphatidylcholines is reduced by dietary standardization. Nonetheless, valid postprandial time-course 

measurements of most metabolite classes seem to be possible without standardized dietary lead-in 

periods in healthy subjects. 

Aside, in a second sub-project differences in the postprandial metabolism of an unhealthy fast-food meal 

(HFHC meal) for breakfast and a healthier breakfast alternative (HB) were studied. Significant postprandial 

differences of both test meals were merely shown for mean metabolite time-courses of N-methyl proline, 

stachydrine, 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF), as well as isoleucine and for the 

metabolite group of amino acids. Therefore, adverse effects of fast food consumption on plasma 

metabolites seem to be mainly determined by long-term exposure, whereas single fast food meals may be 

well compensated in healthy men due to a high metabolic flexibility.  

Aside of providing insight into the postprandial metabolism, metabolic challenge tests might be able to 

unravel aspects of metabolic health, that would not be apparent from studying solely the fasting 
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metabolism. Thus, in the second part of this work, metabolic challenge tests were applied to further 

characterize the GWAS-identified gene variants rs2014355 in the acetyl-CoA-dehydrogenase short chain 

(ACADS) locus and rs174547 in the fatty acid desaturase 1 (FADS1) locus and targeted metabolomics were 

used as hypothesis free approach.  

12 homozygous carriers of the minor C allele of rs2014355 and 9 homozygous carriers of the major T allele 

were exposed to a 24 h fasting period and an oral glucose tolerance test (OGTT). Plasma samples were 

obtained at baseline and at several time-points during the tests. Aside of confirming baseline differences 

in butyrylcarnitine (C4), the time-resolved data showed fasting-induced genotype dependent differences 

for acyl-alkyl phosphatidylcholine C42:0. Further challenge-genotype interactions were identified for 

glutamine and lyso phosphatidylcholine C20:4 during the OGTT. The results of the time-course analysis of 

these metabolites might indicate a less flexible metabolism in response to fasting and a glucose load in 

minor CC allele carriers compared to controls.  

Aside, 12 homozygous carriers of the minor C allele of rs174547 and 13 homozygous carriers of the major 

T allele were exposed to an oral lipid tolerance test (OLTT) and an OGTT. Blood samples were taken at 

baseline and at several time-points after ingestion of the test meals. The results confirm previously 

reported genotype-dependent differences in phosphatidylcholines, lyso phosphatidylcholines and 

sphingomyelines, especially becoming obvious by calculation of metabolite ratios. However, further 

genotype-challenge interactions were not visible.  

Interestingly, whereas the calculation of metabolite ratios strongly improved the genotype distinction of 

rs174547, it hardly improved the genotype distinction for rs2014355.   

In conclusion, the results of the second part of this work show that metabolic challenge tests may 

contribute to a better understanding of gene function and may help to estimate the risk and progression 

of metabolic diseases.  
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ZUSAMMENFASSUNG 

Technologische Fortschritte ermöglichen die zeitgleiche Messung einer Vielzahl von Metaboliten, die im 

menschlichen Stoffwechsel in einer Reihe verschiedener, miteinander verbundener Stoffwechselwege 

entstehen. Der Stoffwechsel wird sowohl durch die Gene, als auch durch eine Vielzahl an Umweltfaktoren, 

unter anderem der Ernährung, beeinflusst, die in ihrer Gesamtheit den menschlichen Gesundheitzustand 

beeinflussen und modellieren. Diese Dissertation befasst sich mit dem Stoffwechsel nach verschiedenen 

Nahrungsbelastungen im Rahmen von streng kontrollierten humanen Interventionsstudien mit 

zeitaufgelösten Metabolitenmessungen in Plasmaproben. Die Arbeit ist in zwei Hauptforschungsziele 

gegliedert:  

Der erste Teil der Arbeit zielt darauf ab, den postprandialen Metabolismus bei gesunden Menschen zu 

untersuchen. Sechs Männer erhielten an zwei unabhängigen Studientagen jeweils eine fett- und  

kohlenhydratereiche (HFHC) Mahlzeit, bestehend aus einem konventionellen Fast Food Menü (i) mit der 

gewöhnlichen Ernährung vor der HFHC-Mahlzeit und (ii) mit einer dreitägigen 

Ernährungsstandardisierungsphase vor der HFHC-Mahlzeit. Zudem erhielten die Teilnehmer an einem 

dritten Studientag ein gesundes Frühstück (HB). Plasma-Proben wurden jeweils im Nüchternzustand, 

sowie zu verschiedenen Zeitpunkten nach Nahrungsaufnahme entnommen. Die Proben wurden mit  

verschiedenen massenspektrometrischen Methoden analysiert.  

In einem ersten Teilprojekt wurde die Notwendigkeit einer Ernährungsstandardisierung vor 

zeitaufgelösten Nahrungsbelastungstests untersucht. Hierzu wurden die Metabolitenmessungen infolge 

der HFHC-Mahlzeiten mit und ohne einer vorherigen Standardisierungsphase verglichen. Signifikante 

Unterschiede in den mittleren Zeitverläufen nach Nahrungsbelastung zeigten sich für Isobutyrylcarnitin, 

sowie für die verzweigtkettigen Aminosäuren. Daneben konnte durch die Ernährungsstandardisierung die 

inter-individuelle Varianz in der Metabolitengruppe der acyl-alkyl Phosphatidylcholine signifikant reduziert 

werden. Dennoch ist eine valide zeitaufgelöste Messung nach Nahrungsaufnahme im Plasma gesunder 

Männer für die meisten der untersuchten Metabolitengruppen ohne eine vorherige 

Ernährungsstandardisierungphase möglich.  

Daneben wurden in einem zweiten Teilprojekt metabolische Unterschiede nach Aufnahme eines Fast Food 

Menüs (HFHC-Mahlzeit) als Frühstück und einer gesunden Frühstück-Alternative (HB) untersucht. 

Signifikante Unterschiede in den Zeitverläufen beider Testmahlzeiten wurden lediglich für N-Methyl-

Prolin, Stachydrin, 3-Carboxy-4-Methyl-5-Propyl-2-Furanpropanoat (CMPF), Isoleucin und für die Gruppe 

der Aminosäuren deutlich. Daher sind nachteilige Effekte von Fast Food Konsum auf den Plasma 

Metabolismus wahrscheinlich hauptsächlich durch wiederholten Konsum hervorgerufen. Eine einzelne 
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Fast Food Mahlzeit dagegen scheint beim gesunden Mann wahrscheinlich aufgrund hoher metabolischer 

Flexibilität gut kompensiert zu werden. 

Neben der Erforschung des postprandialen Metabolismus können Nahrungsbelastungstests geeignet sein, 

um frühe Veränderungen im Hinblick auf metabolische Erkrankungen zu erkennen, die durch alleinige 

Untersuchungen im Nüchternzustand nicht deutlich werden. Daher wurden im zweiten Teil dieser Arbeit 

metabolische Belastungstests in Kombination mit Metabolomics-Messungen als hypothesen-freier Ansatz 

zur weitergehenden Charakterisierung der beiden GWAS-identifizierten Genvarianten rs2014355 im 

Kurzketten-Acyl-CoA-Dehydrogenase (ACADS) Locus und rs174547 im Fettsäure-Desaturase 1 (FADS1) 

Locus eingesetzt.  

12 homozygote Träger des seltenen C Alleles von rs2014355 und 9 homozygote Träger des häufigen                 

T Alleles wurden einer 24-stündigen Fastenperiode und einem oralen Glukosetoleranztest (OGTT) 

ausgesetzt. Während beider Tests wurde kontinuierlich Blut abgenommen. Neben der Bestätigung basaler 

Unterschiede in Butyrylcarnitine (C4), zeigten die zeitaufgelösten Daten Fasten-induzierte, Genotyp-

abhängige Unterschiede für das acyl-alkyl Phosphatidylcholin C42:0. Weitere Unterschiede konnten für 

Glutamin und das lyso Phosphatidylcholine C20:4 während dem OGTT gefunden werden. Die 

Zeitverlaufsanalyse dieser Metabolite könnte auf eine weniger flexible metabolische Antwort der Träger 

des seltenen C Alleles auf den Fastenzustand und eine Glukosebelastung im Vergleich zu den Kontrollen 

hinweisen.  

Daneben wurden 12 homozygote Träger des seltenen C Alleles von rs174547 und 13 homozygote Träger 

des häufigen T Alleles einem oralen Lipidtoleranztest (OLTT) und einem OGTT ausgesetzt. Plasmaproben 

wurden im Nüchternzustand, sowie zu mehreren Zeitpunkten nach den Testmahlzeiten entnommen. Die 

Ergebnisse bestätigen bereits gezeigte genotyp-spezifische Unterschiede in Phosphatidylcholinen, lyso 

Phosphatidylcholinen und Sphingomyelinen, die besonders durch die Analyse von Metaboliten-

Verhältnissen deutlich werden.  

Interessanterweise verbessert die Berechnung von Metabolitenverhältnissen deutlich die Genotyp-

Zuordnung von rs174547, wohingegen sie bei der Genotyp-Zuordnung von rs2014355 kaum Vorteile zeigt.  

Zusammenfassend zeigen die Ergebnisse des zweiten Teils dieser Arbeit, dass metabolische 

Belastungstests zu einem besseren Verständnis von Genfunktionen beitragen können, als auch helfen 

können Krankheitsrisiken und –Verläufe abzuschätzen. 
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1 INTRODUCTION 

1.1 Metabolomics 

The metabolome consists of all abundant low molecular weight molecules (metabolites) in a cell, tissue or 

an organism in a particular physiological or developmental state (Goodacre et al. 2004; Roberts et al. 

2012). It can be considered as downstream end-product of the genome, transcriptome and proteome 

modified by environment and, thus, represents the link between genome and the phenotype (Fiehn 2002). 

Metabolomics aims to study the metabolome by comprehensive profiling of a wide range of metabolites 

under a given set of conditions (Fiehn 2001). At present there is no complete documentation of all 

molecules in the human metabolome for any tissue and cell type. However, there are a few comprehensive 

metabolomic databases listing a huge number of metabolites in the human body. For example the 

comprehensive Human Metabolome Database (HMBD) comprised about 40,153 metabolites in 2013 

(Wishart et al. 2013). Metabolites span a variety of chemical classes and physical properties, with 

significant differences in polarity and size, across a large range of concentrations. Thus, at present, no 

single analytical method is able to cover the chemical diversity of the entire metabolome and 

metabolomics is still in its shoes of infancy. However, technical advances in the last years made available 

various analytical methods to acquire extensive metabolomic information. Two core technologies are 

mainly in the focus of attention: Nuclear Magnetic Resonance (NMR) spectroscopy and Mass Spectroscopy 

(MS).  

NMR spectroscopy uses the magnetic properties of atomic nuclei for determination of abundance and 

structure of metabolites in biological samples. An NMR-active nucleus absorbs electromagnetic radiation 

at a characteristic frequency, when placed inside a strong magnetic field. The exact characteristic 

frequency is depending on the chemical environment of the nucleus and the coupling with adjacent nuclei 

and allows to identify an energetic fingerprint for that molecule (Rhee and Gerszten 2012; Griffin et al. 

2011; Pohmann 2011). The most frequently used nuclei for biological metabolites are 1H, 13C, and 31P 

(Griffin et al. 2011). NMR requires little sample preparation including no column chromatography and no 

derivatization, is non-destructive and very reproducible. Moreover, NMR enables absolute quantification 

without applying isotope-labeled standards. However, despite recent improvements like the cryoprobe 

technology, NMR is less sensitive than MS (Cox et al. 2014; Rhee and Gerszten 2012; Claus and Swann 

2013). 
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Mass spectrometry resolves metabolites based on the mass-to charge ratio (m/z). Therefore, gas phase 

ions are produced i.e. by electron ionization, and placed in an electrical field (de Hoffmann and Stroobant 

2007). In tandem mass spectrometry (MS/MS) three quadrupoles are arranged in series. Each quadrupole 

consists of 4 parallel rods creating oscillating electrical fields. The first quadrupole acts as mass filter for 

ions, the second quadrupole is used as collision cell to fragment ions and the third quadrupole serves as 

mass filter for ion fragments (de Hoffmann and Stroobant 2007; Rhee and Gerszten 2012). The greatest 

advantage of MS is its high sensitivity. However, disadvantages arise from destruction of samples and long 

time for sample preparation. MS is often combined with chromatography for analytical separation of 

compounds allowing a time-resolved delivery of molecules from a complex biological sample to the mass 

spectrometer. The two main methods for analytical separation applied for metabolite profiling are gas 

chromatography (GC) and liquid chromatography (LC) (Claus and Swann 2013; Lenz and Wilson 2007). 

Aside of different technologies, metabolic profiling can be divided into untargeted and targeted 

approaches. Untargeted metabolomics is the comprehensive analysis of all measurable metabolites in a 

sample, including also unknown metabolites and thus, offers the opportunity for discovering novel targets 

(Roberts et al. 2012). Aside, targeted metabolomics quantifies predefined groups of chemically 

characterized and biochemically annotated metabolites. Using internal standards, analysis can take part 

in a quantitative or semi-quantitative way (Roberts et al. 2012).  

 

1.2 Human metabolism 

1.2.1 Influences on human metabolism 

Applying metabolomics technologies enables to characterize the metabolic phenotype (metabotype) of an 

individual at a given time-point. The human metabotype exists in a dynamic flux shaped by a wide range 

of internal and external factors of influence. Such internal factors comprise the genome as well as 

epigenetic influences (Petersen et al. 2013). For instance, recent genome wide association studies (GWAs) 

have impressively shown profound impact of genetic variances on human metabolic traits (Illig et al. 2010; 

Gieger et al. 2008; Tanaka et al. 2009; Hicks et al. 2009; Demirkan et al. 2012; Ehrlein and Pröve 1982; 

Kettunen et al. 2012; Nicholson et al. 2011). Extrinsic metabotype-influencing factors combine with the 

genome to shape health outcomes. Such factors include physical activity (Chorell et al. 2012), gut 

microbiota (Wikoff et al. 2009), diurnal cycles (Slupsky et al. 2007), temperature (Westerterp-Plantenga et 

al. 2002), stress (Krug et al. 2012), drugs (Trupp et al. 2012), age (Yu et al. 2012) and diet (Krug et al. 2012) 
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(FIGURE 1). Metabolomic measurements represent the closest measurement of the phenotype compared 

to potential outcomes measured by transcriptomic and proteomic approaches. Hence, application of 

metabolomics in nutritional research is a powerful tool for exploring the influence of diet on the human 

metabolism and health (Claus and Swann 2013). 

 

 

 

 

 

 

 

 

 

 

 

1.2.2 Dietary influences on human metabolism - the catabolic state 

The catabolic state starts in the post-absorptive state, when the whole last meal is fully absorbed by the 

intestinal tract - in humans typically appearing after an overnight fast. Then, blood insulin concentration 

is low, glucagon concentrations rise and endogenous energy storages are utilized for energy requirements. 

During the post-absorptive period, blood glucose homeostasis is maintained by hepatic glycogenolysis and 

gluconeogenesis (Wahren and Ekberg 2007; Cahill 2006; Wahren et al. 1972). Glucose production covers 

glucose oxidation of the brain as well as the obligatory glycolytic tissues like bone marrow, red blood cells, 

renal medulla and peripheral nerves, whereas in other tissues like muscle and adipose tissue glucose 

oxidation is diminished in favor of lipid oxidation (Cahill 2006; Andres et al. 1956). Hepatic glycogen stores 

are depleted by the second or third day of starvation and the percentage of glucose provided by 

gluconeogenesis increases consecutively reaching its peak after approximately two days of fasting                    

(Cahill 2006). Substrates for hepatic glucose production are mainly supplied by muscle proteolysis. 

 

FIGURE 1: Influence factors on human metabolism 
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Additional substrates are recycled lactate and pyruvate from the cori cycle, glycerol from adipose tissue 

lipolysis and in small amounts from ß-hydroxybutyrate (Cahill 2006; Bao et al. 2011). After about three 

days of starvation, the metabolic profile is set to conserve protein and to supply greater quantities of 

alternate fuels. Although cells exclusively depend on glucose are still served by glucose from hepatic 

gluconeogenesis and by a gradually increasing component of renal gluconeogenesis, the brain metabolism 

switches from using glucose to ketone acids (Wahren and Ekberg 2007; Cahill 2006). Ketone bodies are 

produced by ketogenesis from acetyl-CoA in the liver and are a biomarker of lipolysis and fatty acid                        

ß-oxidation in tissues. Even though the oxidation of ketone bodies preserves protein stores as well as 

functional proteins, plasma protein levels are not uniform during fasting. Whereas branched-chain amino 

acids, α-aminobutyrate and methionine show an early increase followed by a decrease in prolonged fasting 

periods, other amino acids like glycine, threonine and serine increase time-delayed after day 5 of fasting 

(Felig et al. 1969).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2: Schematic overview of key metabolic processes in the catabolic state 

Red lines show metabolites released by the liver. NEFA, non-esterified fatty acids 

(adapted from Sailer 2013, Rubio-Aliaga et al. 2011 and Cahill 2006). 
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Literature shows several studies applying metabolomic technologies for detection of metabolic profiles 

after an overnight fast (Shaham et al. 2008; Skurk et al. 2011; Walsh et al. 2006; Wopereis et al. 2009; Lenz 

et al. 2003). However, studies extending the fasting period are rare (Krug et al. 2012; Rubio-Aliaga et al. 

2011). Rubio-Aliaga et al. comprehensively assessed the metabolic differences of a prolonged fasting of          

36 h and an overnight fast of 12 h in 10 heterogeneous subjects using a variety of state-of-the-art                    

NMR- and MS-based methods. They identified some 100 new metabolites in blood and urine that change 

in the fasting state and revealed 2-hydroxybutyrate, α-aminobutyrate, methionine and the branched chain 

keto-acids as new fasting markers (Rubio-Aliaga et al. 2011). Aside, Krug et al. extended studies of the 

fasting metabolism by a time-resolved analysis including 10 sampling time-points within a 36h fasting 

period in 15 young healthy males (Krug et al. 2012). 

FIGURE 2 gives an overview of key metabolic processes in the fasting state. 

 

1.2.3 Dietary influences on human metabolism - the anabolic state 

After food intake, glucose and amino acids are absorbed into the portal circulation and the liver takes a 

major role in controlling the release into the peripheral circulation. Aside, most fatty acids are absorbed 

into the lymphatic system as chylomicrons and are initially available for peripheral tissues. Due to the rise 

in blood glucose and intestinal hormones, insulin is released from the ß-cells of the pancreas, blood insulin 

concentrations rise, the insulin/glucagon ratio increases and the metabolism switches from the catabolic 

to the anabolic state. Rising glucose concentrations in the portal vein and increased insulin levels lead to 

an inactivation of glycogenolysis and reduction of gluconeogenesis in the liver. Glucose is metabolized to 

meet the demands for liver metabolism and glycogen synthesis is activated. As glycogen storages are 

limited compared to lipid storages, an excess of carbohydrates is used for synthesis of fatty acids that are 

exported in VLDL (Frayn 2010; Bender 2008). Besides glucose, the liver also extracts amino acids like 

alanine and glutamine arriving in the portal vein (Fouillet et al. 2002). Nevertheless, parts of glucose and 

amino acids, mainly branched chain amino acids, pass through the liver to reach the systemic circulation 

and are taken up by peripheral tissues (Bender 2008; Fouillet et al. 2002).  

In adipose tissue, insulin has a direct suppressive effect on lipolysis, followed by a reduction in plasma 

NEFA-levels. Moreover, glucose is taken up and glycolysis is stimulated. Insulin also stimulates fatty acid 

uptake from chylomicrons and very low density lipoproteins. However, a study using a test meal containing 

[U-13C]palmitate combined with intravenous infusion of [2H2]palmitate to label plasma fatty acids and 

VLDL-triglycerides showed a greater fractional extraction of chylomicron-triglycerides compared to                 
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VLDL-triglycerides (Bickerton et al. 2007). Once taken up, fatty acids are esterified to form new 

triacylglycerol for storage in adipose tissue (Frayn 2010; Bender 2008).  

Further, the declining blood NEFA concentrations down-regulate the drive for the skeletal muscle to 

oxidize fatty acids. Instead, insulin increases glucose uptake, leading to increased glucose oxidation, 

glycolysis and output of lactate and pyruvate. In addition, muscle glycogen stores are replenished. Amino 

acids, preferentially branched chain amino acids are taken up and protein synthesis is stimulated (Frayn 

2010; Bender 2008). Studies using stable isotope labeled amino acids in human leg and forearm muscle 

show an insulin-induced decrease in muscle protein breakdown with minor effects of insulin on protein 

synthesis (Fontaine-Bisson et al. 2007; Meek et al. 1998; Gelfand and Barrett 1987), which, in turn, is 

increased by high levels of amino acids. Additionally, an excess of amino acids that cannot be incorporated 

in muscle protein undergoes ureagenesis or gluconeogenesis (Rennie et al. 2002). 

Increasing lactate and pyruvate levels after meal intake undergo gluconeogenesis in the liver (Rennie et 

al. 2002; Rathee et al. 2012; Frayn 2010; Bender 2008). Resulting glucose-6-phosphate is directed into 

glycogen synthesis rather than released as glucose (Frayn 2010; Bender 2008). 

Taken as a whole, the postprandial metabolism of a mixed meal containing carbohydrates not only reflects 

a general metabolic switch to use glucose as major fuel but also to store glucose as glycogen. In addition, 

fatty acids are stored in adipose tissue and protein synthesis is stimulated. However, rates of the complex 

postprandial processes depend on both the physiological and the nutritional status of an individual as well 

as on the specific meal composition. Nonetheless, a schematic overview of the postprandial metabolism 

is illustrated in FIGURE 3.  

Recently, a rising number of studies applying metabolomics technologies have been focusing on the 

postprandial metabolism (Bondia-Pons et al. 2014; Mathew et al. 2014; Wahl et al. 2013; Krug et al. 2012; 

Pellis et al. 2012; Ramos-Roman et al. 2012; Skurk et al. 2011; Zivkovic et al. 2009; Ho et al. 2013; Spégel 

et al. 2010; Deo et al. 2010; Shaham et al. 2008; Zhao et al. 2008). These studies extend our knowledge of 

the postprandial metabolism by providing understanding of the behavior of hundreds of metabolites in 

addition to the standard biochemistry parameters like glucose, insulin, triglycerides and NEFAs. For 

instance, Wahl et al. show different behaviors within the metabolite class of acylcarnitines after the intake 

of mixed nutrient challenges trough cluster analysis. Whereas most of the acylcarnitines decreased during 

the first 2h after challenge and increased thereafter, C3, C5 as well as C4, C5:1, C8:1, C10:1 and C18 

clustered differentially. For example, C3 and C5 showed an opposing behavior to most of the acylcarnitines 

and cluster together with most amino acids, suggesting that C3 and C5 may be derived from a triggered 

metabolism of branched-chain amino acids after protein intake (Wahl et al. 2013; Zivkovic et al. 2009).  
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Because of the complexity of the postprandial processes, it may be useful to examine metabolic processes 

primarily by pure challenges. The simplest and highest standardized method to study the condition of an 

anabolic state is the oral glucose tolerance test (OGTT). For decades, the OGTT has been a standard 

diagnostic tool in diabetology to measure the body´s ability to metabolize glucose and, thus, the test 

provides information on glucose tolerance (World Health Organization 2006). Recently, metabolomic 

studies have shown that the response to the defined amount of 75 g glucose is even more complex than 

considered so far (Ho et al. 2013; Skurk et al. 2011; Matysik et al. 2011; Spégel et al. 2010; Deo et al. 2010; 

Shaham et al. 2008; Zhao et al. 2008). Formerly unreported changes in metabolites include increases in 

bile acids (Shaham et al. 2008; Zhao et al. 2008; Matysik et al. 2011) and lyso phosphatidylcholines (Zhao 

et al. 2008), decreases of urea cycle metabolites (Ho et al. 2013), differences in the decrease of different 

amino acids (Deo et al. 2010; Skurk et al. 2011) as well as of fatty acids due to their degree of saturation 

(Zhao et al. 2008).  

FIGURE 3: Schematic overview of key metabolic processes in the anabolic state                                                                                                                                             

Red lines show metabolites released by the liver; VLDL, very low density lipoprotein. 
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Although there is a rising number of studies focusing on the postprandial metabolism, studies focusing on 

differences between nutritional challenges that might allow a more thorough characterization of the 

postprandial behavior of different metabolite classes and pathways are rare (Wahl et al. 2013; Krug et al. 

2012; Skurk et al. 2011). 

 

1.2.4 Metabolic flexibility 

The human metabolism needs to be well adapted to adjust fuel oxidation to fuel availability. Thus, “the 

capacity to switch from predominantly lipid oxidation and high rates of fatty acid uptake during fasting 

conditions to the suppression of lipid oxidation and increased glucose uptake, oxidation, and storage under 

insulin-stimulated conditions” (Kelley and Mandarino 2000) is termed as “metabolic flexibility” and 

characterizes the healthy state. The failure to match fuel oxidation to changes in fuel availability or 

metabolic inflexibility was shown to be a key dysfunction in disease states characterizing the metabolic 

syndrome. For instance, in diabetics and obese individuals, metabolic inflexibility becomes apparent for 

instance in the failure of the skeletal muscle to move between the use of lipid in the fasting state and the 

use of carbohydrates in the insulin-stimulated state (Storlien et al. 2004; Kelley et al. 1999; Kelley and 

Mandarino 2000) or impaired transition of the adipose tissue from fatty acid release in the fasting state 

and to fatty acid storage in the postprandial state (Storlien et al. 2004; Frayn 2002; Coppack et al. 1992). 

Thus, a rising number of studies in nutrition and health research focuses on the perturbation of 

homeostasis by metabolic challenges to study aspects of metabolic health that would not be apparent 

from solely studying the fasting metabolism (Shaham et al. 2008; Ramos-Roman et al. 2012; Deo et al. 

2010). Aside, combining such studies with metabolomics technologies provides powerful study designs for 

a comprehensive characterization of the postprandial response in health and disease.   
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1.3 Aim of the work 

The present thesis focuses on the human metabolism during metabolic challenges in strictly controlled 

human intervention studies with time-resolved plasma metabolomics measurements.  

The first part of the work aims to further understand the postprandial plasma metabolism in healthy 

individuals by using targeted and untargeted metabolomic approaches. Thereby, in a first sub-project the 

need for a short-term dietary standardization at the days prior to a time-resolved nutritional challenge 

test is addressed. In a second sub-project differences in the postprandial metabolism of an unhealthy               

fast-food meal for breakfast and a healthier breakfast alternative were studied aiming to get a thorough 

characterization of the postprandial behavior of different metabolites and metabolite classes with respect 

to adverse long-term effects of nutrition. 

In the second part of this thesis, metabolic challenge tests were applied to further characterize the GWAS 

identified gene variants rs2014355 in the acetyl-CoA dehydrogenase, short chain (ACADS) locus and 

rs174547 in the fatty acid desaturase 1 (FADS1) locus using targeted metabolomics as hypothesis free 

approach. These studies aim to unravel gene-diet interactions that might give some indications about the 

early development of metabolic diseases. 

 

 

 

 

 

 

 

 

 

Due to the diversity of the addressed projects and subprojects, each part of the thesis is accompanied by 

further background information introducing the respective topic. 

FIGURE 4: Illustration of the aim of the second part of this thesis: Unraveling gene-diet 

interactions at the level of the plasma metabolism that might give early indications 

about the development of metabolic diseases 
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2 POSTPRANDIAL METABOLISM IN HEALTHY MALES 

2.1 Study design and methods 

2.1.1 Study design 

Six healthy, normal-weight and non-smoking males aged 40-53 years from the Munich area were recruited 

at the Else Kröner-Fresenius-Centre for Nutritional Medicine (EKFZ) of the Technical University of Munich. 

All volunteers attended a two-step screening procedure, first time by phone, second time by a screening 

examination which included measurement of height, weight, waist- and hip-circumference, body 

composition (Tanita BC‐418 segmental body composition analyzer, Sindelfingen, Germany) and blood 

pressure using established methods. In addition, routine clinical chemistry was performed. Exclusion 

criteria were medication, body mass index (kg/m2) < 20 and > 27, physical activity > 5h/week, diagnosed 

diabetes mellitus (T2D), immunosuppression, severe cardiovascular disease, liver disease (GOT, GPT >                 

3-fold of upper limits), kidney disease (creatinine > 1.2 mg/dl), psychiatric disease or unwillingness for 

written consent.  

The study design (FIGURE 5) included three visits at the study unit separated by a “wash-out phase” of at 

least 2 days. The volunteers were required to abstain from taking any medication and to refrain from 

exertive physical activity for 24 h before each visit at the study unit. During the days before the first and 

the third visit, subjects were asked to maintain their normal eating and drinking habits except alcohol 

ingestion. Prior to the second study day, subjects were required to follow a standardized, balanced and 

isocaloric diet protocol according to their individual caloric requirements estimated by bioelectric 

impedance analysis (Tanita BC‐418 segmental body composition analyzer, Sindelfingen, Germany) for 

three days. During this standardization phase, macronutrient intake was composed of 15% protein,                   

30% fat and 55% carbohydrates. On the first and the second day of standardization, subjects got an 

individualized diet plan elaborated according to their individual dietary habits. At the third day of 

standardization, diet of all subjects was completely standardized by providing subjects with identical food 

(breakfast: fruit muesli, milk (3.5% fat), orange juice, banana; lunch: whole grain bread, cheese, butter, 

tomato, gummibears; dinner: Knorr Spaghetteria Spinaci (Unilever, Hamburg, Germany)) and advising 

them to ingest solely provided food according to a defined time-schedule. During the three days of dietary 
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standardization anterior to study day 2 subjects were allowed to drink mineral water or unsweetened fruit 

tea ad lib.  

After an overnight fast of 12 h at each study day, a venous catheter (Braun, Melsungen, Germany) was 

inserted into an antecubital vein and a fasting blood sample was taken. On study day 1 and 2, participants 

were asked to consume a high-fat, high-carbohydrate (HFHC) meal (Big Mac menu: Bic Mac, medium size 

French Fries, ketchup, 0.5l Orangeade, Mc Donald´s, Freising, Germany) and at study day 3 a defined 

healthy breakfast (HB) (100 g whole grain bread, 35 g cream cheese, 5 g margarine, 50 g boiled ham, 50 g 

tomatoes, 150 g yoghurt, 150 g apples, 200 g orange juice, 250 ml of herb tea). Both meals had to be eaten 

within 10 minutes. Details on the composition of the two test meals are given in TABLE 1. Blood samples 

were collected using a defined time-schedule: at 1, 2, 4, 6 and 8 h after the HFHC meal (study day 1 and 2) 

and at 1, 2, 4 and 6 hours after the HB (study day 3). Blood was collected into 4.9 ml EDTA K2-Gel tubes 

(Sarstedt, Nümbrecht, Germany), tubes were mixed thoroughly and plasma was obtained by immediate 

centrifugation at 3.000 x g for 10 min at room temperature. Plasma was aliquoted on ice, immediately 

frozen on dry ice and stored at -80°C until further analysis. The participants were allowed to consume 

mineral water, water and unsweetened fruit tea, and fluid intake was carefully recorded on all study days.   

During the whole study period, dietary records were used for detailed documenting of food and fluid 

intake. Moreover, subjects’ habitual diet was assessed by three-day dietary records.  

 

 

FIGURE 5: Study design of the SysMBo-Pilot study 

 At day 1 and 2 of the three day standardization phase percentage of macronutrient intake was 

standardized and at day 3 a highly defined diet was provided; HB, healthy breakfast; HFHC,                  

high-fat, high carbohydrate. 



P O S T P R A N D I A L  M E T A B O L I S M  I N  H E A L T H Y  M A L E S | 12 
 

  

The study was approved by the ethics committee of the Technical University München and performed in 

accordance with the Helsinki Declaration of 1975 as revised in 2008. Each participant had signed an 

informed consent. The study is registered at Deutscher Register Klinischer Studien (DRKS) as 

DRKS00004335. 

 

TABLE 1: Nutrient composition of the test meals of the SysMBo pilot-study 

Energy content, macro- and micronutrient intake is shown per dose; HB, healthy breakfast; HFHC, high-fat,        

high-carbohydrate. 

  Test meal HFHC meal HB   

  

Composition Big Mac menu: Big Mac, 
medium size French Fries, 
0.5 l Orangeade, ketchup 
(Mc Donalds, Germany) 

100 g of whole grain bread,       
35 g of cream cheese,                  
5 g margarine,                            
50 g boiled ham, 50 g tomato, 
150 g yoghurt, 150 g apple,  
200 g orange juice,                    
250 ml of herb tea    

    Per meal Per meal   
  Energy (kcal) 1110 646   
  Energy density (kcal/g) 1.3 0.7   
 Energy density without drinking (kcal/g)  2.6 1.0  
  Fat (g) 49.4 (39%) 17.2 (23%)   
  Sattured fatty acids (g) 19.8 (16%) 8.3 (11%)   
  Monounsatured fatty acid (g) 11.8 (9.4%) 5.8 (7.9%)   
  Polyunsatured fatty acids (g) 12.5 (10%) 2.6 (3.5%)   
  Cholesterol (mg) 66.0 55.4   
  Carbohydrates (g) 132.0 (48%) 87.8 (55%)   
  Monosaccharides (g) 41.3 27.5   
  Disaccharides (g) 7.3 17.6   
  Oligosaccharides resororbable (g) 0.163 0.459   
  Oligosaccharides not resorbable (g) 0 0.002   
  Polysaccharides (g) 83.1 36.7   
  Fiber (g) 5.4 12.6   
  Protein (g) 31.1 (11%) 30.5 (19%)   
  Essential amino acids (g) 14.8 15.9   
  Non-essential amino acids (g) 16.3 16.1   
  Sodium (g) 1.6 1.1   
  Water (l) 0.626 0.901   
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2.1.2 Standard biochemistry parameters 

Venous plasma glucose was determined by an enzymatic amperometric technique (Super Gl easy+,                       

Dr. Müller Geräte Bau, Freital, Germany). Insulin was quantified by an enzyme-linked immunosorbent 

assay (ELISA; K6219; Dako, Glostrup, Denmark). Non-esterified fatty acids (NEFAs) and triglycerides (TG) 

were quantified using commercially available enzymatic methods (NEFA-HR, Wako Chemicals GmbH, 

Neuss, Germany and Triglycerides liquicolor mono, Human GmbH, Wiesbaden, Germany). Cholesterol, 

HDL-, LDL-cholesterol, triglycerides, glutamic oxalacetic transaminase (GOT), glutamic pyruvate 

transaminase (GPT) and creatinine were determined using established commercial tests by Synlab 

(Munich, Germany). 

2.1.3 Analysis of dietary records 

Dietary records were analyzed by a commercial nutrition software based on the official German 

Lebensmittelschlüssel BLS II (OptiDiet, version 5.0.0.029; GOE mbH, Linden, Germany)  

2.1.4 Metabolomics analysis 

Targeted and non-targeted metabolomic analyses were performed at the Genome Analysis Center of the 

Helmholtz Zentrum München. Liquid handling for both platforms was done on a Hamilton Microlab Star 

robotics system (Hamilton Bonaduz AG, Bonaduz, Switzerland). 

2.1.4.1 Targeted metabolomics analysis 

Targeted metabolomics measurements were carried out by using the AbsoluteIDQTM p180 kit (Biocrates 

Life Sciences AG, Innsbruck, Austria) as described previously (Zukunft et al. 2013; Goek et al. 2013).                      

186 metabolites were analyzed by flow injection analysis and liquid chromatography tandem mass 

spectrometry (FIA-MS/MS and LC-MS/MS) on an API4000 mass spectrometer (AB Sciex Deutschland 

GmbH, Darmstadt, Germany), equipped with an 1200-Series HPLC (Agilent Technologies Deutschland 

GmbH, Böblingen, Germany) and a HTC PAL auto sampler (CTC Analytics, Zwingen, Switzerland). The 

metabolite panel includes amino acids, biogenic amines, acylcarnitines (C), sugars (H1), sphingomyelins 

(SM), diacylphosphatidylcholines (PC aa), acyl-alkyl phosphatidylcholines (PC ae) and                                                             

lyso phosphatidylcholines (lysoPC) (SUPPLEMENTARY TABLE 1). The ratio of the median metabolite 

concentration in the 5 standard reference plasma samples present in every batch to the median 
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concentration of reference samples in all batches was used to correct inter-day variance of each 

metabolite. Concentrations are given in μmol/L. 

2.1.4.2 Non-targeted metabolomics analysis 

Non-targeted metabolomics profiles were measured using a previously described method of Metabolon 

Inc. (Durham, USA) (Evans et al. 2009; Boudonck et al. 2009). A brief description including some 

modifications is given in SUPPLEMENTARY TEXT 1. 265 metabolites as well as 136 compounds with 

unknown chemical structure, indicated by a X followed by a number as compound identifier were 

identified by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) on a 

LTQ mass spectrometer (Thermo Fisher Scientific GmbH, Dreieich, Germany) equipped with a Waters 

Acquity UPLC system (Waters GmbH, Eschborn, Germany). The metabolite panel can be divided into the 

following groups: amino acids, carbohydrates, cofactors and vitamins, energy, lipids, nucleotides, peptides 

and xenobiotics (SUPPLEMENTARY TABLE 2). Moreover, the eight groups can be subdivided into                              

56 biochemical pathways which are specified in SUPPLEMENTARY TABLE 2. For each identified metabolite 

the raw area counts were normalized to the median value of the run day to correct for inter-day variation 

of the measurements. 

2.1.5 Statistical analysis 

The statistical analysis was done by means of Ivan Kondofersky from the Institute of Computational Biology 

of the Helmholtz Zentrum München (German Research Center for Environmental Health (GmbH), 

Neuherberg, Germany) using the R statistical software (http://www.r-project.org). 

2.1.5.1 Univariate t-tests 

The baseline fasting levels of each metabolite of the six study participants at study day 1 and 2 as well as 

the energy intake and the intake of single macronutrients of the three-day dietary standardization phase 

and the habitual diet of the six subjects were tested for differences by using a standard univariate t-test 

on paired observations (Sprinthall and Fisk 1990). False discovery rate (FDR) p-value correction was used 

for consideration of multiple testing issues at a global significance level of 0.05 (Hochberg and Benjamini 

1995). 
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2.1.5.2 Principal component analysis (PCA) 

The baseline levels of metabolites on study day 1 and 2 were analyzed by using a PCA approach and 

projecting the multidimensional dataset onto two principal components. This dimension reduction was 

done to check whether a substantial difference was detectable between two study days under baseline 

conditions. The targeted metabolomic measurements were analyzed by using standard PCA since there 

were no missing observations. The non-targeted metabolomic measurements contained some missing 

data.  Therefore the NIPALS algorithm (Wold and Ed. 1966) was applied. 

2.1.5.3 Time-resolved paired difference test (TPDT)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6: Concept figure of the time-resolved paired difference test (TPDT). The test is explained by means of three 

example data sets (A, B and C) including data of three subjects  

For each subject (coded by different forms or lines) time-curves of two treatments (blue and red) are represented by 

fitted smoothing splines and difference curves of the two treatments (green curves) are calculated. The value u0 (in 

each case (A, B and C) left picture of the forth row) is determined by dividing the area under the mean difference 

curve of all subjects (in each case (A, B and C) left picture of the third row) by the area under the standard deviation 

curve (in each case (A, B and C) richt picture of the third row) and correcting for the number of subjects. A large value 

of u0 suggests a substantial difference between the groups (A and C), a value close to 0 suggests no difference (B). 

Due to unknown distribution of u0, a resampling approach is applied to quantify the significance of the test statistic 

and approximate a p-value (represented by histograms). H0, null hypothesis; sd, standard deviation. 
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FIGURE 6 A, B and C provide a graphical guide for the new methodology developed by Ivan Kondofersky 

from the Institute of Computational Biology of the Helmholtz Zentrum München (German Research Center 

for Environmental Health (GmbH), Neuherberg, Germany). For a brief and simplified explanation of the 

new methodology refer to the figure legend of FIGURE 6. The following text describes the methodology in 

more detail.  

To test for paired time-resolved differences, it was assumed that time-resolved measurements of two 

variables 𝑥𝑥𝑖𝑖(𝑡𝑡𝑗𝑗)  and 𝑦𝑦𝑖𝑖(𝑡𝑡𝑗𝑗)  of two groups are paired over the index 𝑖𝑖 ∈ {1 …𝑁𝑁}  (top left panel of             

FIGURE 6). The measurements were made at discrete time-points 𝑡𝑡𝑗𝑗, 𝑗𝑗 ∈ {0 … 𝐽𝐽}. This notation was chosen 

for simplicity. Since the method can deal with possibly non-synchronized and missing or repeated 

measurements at the same time-point, the notation would be slightly altered. It was assumed that those 

measurements represent local snapshots of a smooth time-course of the variables. Thus, in order to 

recover this time-course the discrete measurements were used and time-curves 𝑥𝑥�𝑖𝑖(𝑡𝑡) and 𝑦𝑦�𝑖𝑖(𝑡𝑡) (top right 

panel in FIGURE 6) identified using smoothing splines (Ramsay and Silverman 2005). This curve 

representation was used to calculate the difference curves 𝑑̂𝑑𝑖𝑖(𝑡𝑡) =  𝑦𝑦�𝑖𝑖(𝑡𝑡) −  𝑥𝑥�𝑖𝑖(𝑡𝑡)  (second row in            

FIGURE 6).  

The TPDT was then constructed similarly to a univariate paired t-test by computing the test statistic to 

equal 

𝑢𝑢 =  √𝑁𝑁
𝐷𝐷
𝑆𝑆

=  √𝑁𝑁
∫ �𝑑̅̂𝑑(𝑡𝑡) −  𝜇𝜇0(𝑡𝑡)� 𝑑𝑑𝑑𝑑𝑡𝑡𝑛𝑛
𝑡𝑡0

∫ � 1
𝑁𝑁 − 1∑ �𝑑̂𝑑𝑖𝑖(𝑡𝑡) −  𝑑̅̂𝑑(𝑡𝑡)�

2

𝑖𝑖 𝑑𝑑𝑑𝑑𝑡𝑡𝑛𝑛
𝑡𝑡0

 

consisting of three major parts: location measure D (third row on the left in FIGURE 6), variability measure 

S (third row on the right in FIGURE 6), and correction term √𝑁𝑁. The location term was constructed by 

substituting a possible baseline curve 𝜇𝜇0(𝑡𝑡) from a functional mean difference curve 𝑑̅̂𝑑(𝑡𝑡) =  1
𝑁𝑁
∑ 𝑑̂𝑑𝑖𝑖(𝑡𝑡)𝑖𝑖  

with the functional difference curve 𝑑̂𝑑𝑖𝑖(𝑡𝑡) =  𝑦𝑦�𝑖𝑖(𝑡𝑡) −  𝑥𝑥�𝑖𝑖(𝑡𝑡)  and integrating over the considered time 

interval  [𝑡𝑡0, 𝑡𝑡𝑛𝑛]. In the context of this work we used 𝜇𝜇0(𝑡𝑡) = 0 for all computed tests. The integral was 

approximated through finite differences (Ramsay and Silverman 2005). The variability measure 𝑆𝑆  was 

computed by integrating the functional standard deviation of the difference curves 𝑑̂𝑑𝑖𝑖(𝑡𝑡).  

The test statistic 𝑢𝑢  has a positive value and equals 0 only if 𝐷𝐷 = 0 , which corresponds to identical 

observations from both groups. A large value of 𝑢𝑢 suggests a substantial difference between the two 
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groups. However, the distribution of 𝑢𝑢 is unknown. In order to quantify the exact significance of this test 

statistic, a resampling approach was applied. To that end, spline curves under the assumption that there 

is no difference between the two groups (null hypothesis) were simulated (here we repeated for 106 times) 

and the variability in the simulated data was preserved to equal the variability of the original data. This 

was done by adding independent and identically distributed multivariate normal variables with 0 mean to 

the spline parameters with a fixed covariance matrix calculated from the already adapted spline curves on 

the original data. The same sample size was used for the simulated test statistics. With the resampling 

approach, we were able to quantify whether the observed test statistic has a significantly high value or 

whether this value could also be observed under the null hypothesis (considering the level of noise and 

the sample size of the data) by using the percentile method and counting the fraction of random test 

statistics which have a more extreme value than the original test statistic (bottom left in FIGURE 6). In 

summary, the newly developed TPDT is able to identify whether two paired groups of time-resolved 

measurements significantly differ in location from each other and summarizes this result in a single scalar 

p-value (bottom right in FIGURE 6). 

In this work, the test was used on three different scenarios arising from the considered datasets. Firstly, 

the test was applied directly on the measurements, allowing the identification of metabolites which were 

significantly differing in their location. Secondly, one of the advantages of using smoothing splines was 

exploited, namely the easy access to the time-derivatives of the considered metabolites. Applying the test 

on these derivatives was straightforward, since the smoothing spline curves 𝑥𝑥𝑖𝑖(𝑡𝑡) and 𝑦𝑦𝑖𝑖(𝑡𝑡) were only 

replaced with 𝑑𝑑𝑥𝑥𝑖𝑖
𝑑𝑑𝑑𝑑

(𝑡𝑡) and 𝑑𝑑𝑦𝑦𝑖𝑖
𝑑𝑑𝑑𝑑

(𝑡𝑡). These time-derivatives had the same structure as the splines adapted on 

the discrete measurements and thus the method was directly applicable. The third scenario was the 

application of TPDT on groups of functional standard deviation (fsd). In this context, the question whether 

such fsds computed for a given group of biologically grouped metabolites (SUPPLEMENTARY TABLE 1 and 

SUPPLEMENTARY TABLE 2) on the first data collection day significantly differ from fsds computed for the 

same metabolite groups on the second data collection day was asked.  

TPDT p-values were corrected for multiple testing by controlling the false discovery rate (Hochberg Y 1995) 

at a global significance level of 0.05 separately for each of the three test scenarios and each method of 

measurement (targeted and non-targeted metabolomics). 
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2.1.5.4 Weighted enrichment analysis  

In order to assess the impact of dietary standardization or of nutritional challenges on specific biochemical 

groups and metabolic pathways (SUPPLEMENTARY TABLE 1 and SUPPLEMENTARY TABLE 2) we performed 

weighted enrichment analysis based on the statistical results from the t-tests and TPDT tests. In contrast 

to classical hypergeometric enrichment tests, this approach does not require a cutoff to determine which 

metabolites are significantly affected. The weighted enrichment analysis rather takes into account the 

weights (i.e. t-test or TPDT p-values) of each metabolite in its group. Specifically, it determines whether 

the sum of all TPDT statistics of a specific group is significantly larger than the sum of TPDT statistics based 

on random metabolite-group assignments. Empirical enrichment p-values were calculated by randomly 

shuffling metabolite-group assignments 106 times. A detailed description of the weighted enrichment 

method can be found in Krumsiek et al. (Krumsiek et al. 2012). Enrichment p-values were corrected for 

multiple testing by controlling the false discovery rate at a global significance level of 0.05 (Hochberg and 

Benjamini 1995). 
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2.2 Effect of dietary standardization on the plasma metabolomic response to a 

defined meal challenge in healthy individuals 

2.2.1 Background 

The metabolic phenotype of an individual provides a readout of the metabolic state at a given time point 

that is modified by extrinsic factors like diet (Krug et al. 2012), physical activity (Chorell et al. 2012), gut 

microbiota (Wikoff et al. 2009), diurnal cycles (Slupsky et al. 2007), temperature (Westerterp-Plantenga et 

al. 2002), stress (Krug et al. 2012), drugs (Trupp et al. 2012), age (Yu et al. 2012) and, moreover, by the 

endogenougs genetic (Illig et al. 2010) and epigenetic (Petersen et al. 2013) background. Therefore, 

metabolomic studies are influenced by distinct intra- and inter-individual variations, with the latter being 

considerably higher indicating a distinct metabolic phenotype of each person (Lenz et al. 2003; Walsh et 

al. 2006; Winnike et al. 2009; Zivkovic et al. 2009). However, this variability is a strong confounder in 

human studies. Therefore, the impact of diet as one modifier of the intra- and inter-individual variability 

in metabolic profiling was addressed in different studies. One day of dietary standardization reduced the 

inter-individual variation in the first void urine, but did not affect fasting plasma samples (Walsh et al. 

2006). In contrast, another study reported that a normalization of the fasting serum metabolome was 

achieved after one day of dietary standardization, whereas the urinary metabolome was not affected 

(Winnike et al. 2009). Thus, the issue of dietary standardization remains a subject of controversy.  

Over the last years, a rising number of metabolomics studies focused on time-resolved measurements 

following metabolic challenges like oral glucose tolerance testing (Ho et al. 2013; Skurk et al. 2011; Shaham 

et al. 2008; Wopereis et al. 2009), different other oral test meals (Krug et al. 2012; Pellis et al. 2012; Bondia-

Pons et al. 2011) or physical activity tests (Krug et al. 2012). Time-resolved metabolic challenge tests can 

improve the identification of metabolic alterations associated with early disease states that are not 

detected in a homeostatic situation (Shaham et al. 2008; Ramos-Roman et al. 2012; Deo et al. 2010). 

However, the inter-individual variance in the fasting state was shown to be extended in the postprandial 

state, possibly due to the complexity of the physiological and biochemical response to a metabolic 

challenge (Krug et al. 2012; Zivkovic et al. 2009). This metabolic “accordion effect” (Krug et al. 2012) 

indicates the presence of distinct metabotypes of individuals determined by environmental factors and a 

given genetic and epigenetic disposition. 

Aim of this project was to test the effect of a short-term dietary standardization on the postprandial time-

courses of plasma metabolites after a high-fat, high-carbohydrate (HFHC) meal in healthy males. Thus, six 
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healthy males were provided an identical HFHC meal at two independent study days. At the days before 

the first study day, subjects were advised to maintain their individual eating habits and three days before 

the second study day, subjects had to follow a standardized, balanced and isocaloric diet protocol. On both 

study days, plasma samples were taken at five postprandial time-points and were analyzed by targeted 

and non-targeted mass spectrometric techniques. To assess both differences of the mean metabolite time-

courses and the inter-individual variance of both study days, the statistical approach for the detection of 

paired time-resolved differences (TPDT) was applied.  
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2.2.2 Results 

2.2.2.1 Description of the study population 

The baseline characteristics including blood pressure and clinical chemical parameters of the participants 

demonstrate homogeneity within the study group (TABLE 2).  

 

 

 

 

 

 

Variable Mean ± sd Range 

Baseline characteristics     

Age (years) 44.3 ± 5.2 40 - 53 

Weight (kg) 83.0 ± 10.0 72.9 - 99.9 

BMI (kg/m2) 24.8 ± 2.5 22.3 - 28.6 

Waist circumference (cm) 90.7 ± 6.3 82.0 – 99.0 

Lean mass BIA (kg)  69.6 ± 8.2 62.6 - 84.8 

Fat mass BIA (kg)  13.4 ± 4.3 9.3 - 18.4 

Body fat BIA (%)  16.1 ± 5.2 11.2 - 22.1 

Blood pressure      

Systolic (mmHg) 125.5 ± 8.8 120 - 140 

Diastolic (mmHg) 78.3 ± 4.1 70 - 80 

Clinical chemical parameters     

Fasting blood glucose (mg/dl) 79.3 ± 6.7  70.8 - 90.9 

Cholesterol (mg/dl) 193.2 ± 24.1 150 - 216 

HDL (mg/dl) 60.7 ± 5.6 53 - 67 

LDL (mg/dl) 122.2 ± 20.8 90 - 150 

Triglycerides (mg/dl) 88.3 ± 16.9 60 - 112 

GOT (U/l) 31.7 ± 9.7 26 - 49 

GPT (U/l) 26.3 ± 7.4 20 - 40  

Creatinine (mg/dl)  0.87 ± 0.05 0.79 - 0.94 
      

TABLE 2: Baseline characteristics, blood pressure and clinical chemical 

parameters                                                                         

Data are shown as mean value and standard deviation (sd) of the six subjects 

and range between lowest and highest value; BIA, Bioelectrical impedance 

analysis; GOT, glutamic oxaloacetic transaminase; GPT, glutamic pyruvate 

transaminase; WHR, waist-to-hip ratio. 
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2.2.2.2 Comparison of the diet in the standardization phase and of subjects’ habitual diet 

The habitual dietary intake of each subject was assessed by three-day dietary records and reflects the 

(unstandardized) diet before study day 1. Mean usual dietary intake of energy and macronutrients of the 

six subjects was compared to that in the diet ingested during the three-day dietary standardization phase 

before study day 2 by a paired t-test (TABLE 3). No significant differences were observable after correction 

for multiple testing. However, prior to the correction for multiple testing differences were observed for 

carbohydrate, fiber and alcohol intake. The percentage of carbohydrates was lower in the subjects’ 

habitual diet (43.5 ± 4.0%) compared with the diet during the standardization phase (52.8 ± 3.8%; p= 0.007 

prior to FDR correction). Fiber intake was also lower in the normal diet (21.6 ± 7.1 g) compared with the 

diet during the dietary standardization phase (35.3 ± 6.0 g; p= 0.02 prior to FDR correction). Moreover, 

prior to correction for multiple testing, alcohol intake was significantly higher during the normal diet 

compared with the three-day dietary standardization phase (17.4 ± 13.2 g vs. 0.5 ± 0.7 g/d; p= 0.02).   

TABLE 3: Composition of the usual diet of subjects and the diet during the three-day dietary standardization phase 

assessed by dietary records 

Dietary components are shown as mean value and standard deviation (sd) according to calculations with Opti Diet 

(Geo mbH, Linden, Germany) and a p-value of difference is calculated by a paired t-test and shown uncorrected (pval) 

und corrected for multiple testing by FDR correction (adj pval). 

                     Usual diet   Dietary standardization         p-value 
    Mean ± sd   Mean ± sd   pval   adj pval 
  Energy (kcal) 2366.67 ± 576.60   2641.67 ± 446.70   0.24   0.59 
  Protein (g) 86.03 ± 20.09   94.28 ± 16.17   0.31   0.59 
  Protein (%) 15.00 ± 3.35   14.67 ± 1.37   0.85   0.95 
  Protein/body weight (g/kg) 1.04 ± 0.21   1.14 ± 0.11   0.31   0.59 
  Isoleucine (g) 3.97 ± 0.92   4.27 ± 0.77   0.45   0.65 
  Leucine (g) 6.71 ± 1.63    7.46 ± 1.30   0.28   0.59 
  Valine (g) 4.71 ± 1.11   5.12 ± 0.90   0.39   0.62 
  Carbohydrates (g) 256.33 ± 74.42   342.67 ± 51.63   0.03   0.16 
  Carbohydrates (%) 43.50 ± 4.04   52.83 ± 3.76   0.007   0.14 
  Fat (g) 95.23 ± 29.01   95.43 ± 24.80   0.99   0.99 
  Fat (%) 35.33 ± 4.80    31.67 ± 4.13   0.70   0.89 
  SFA (g) 42.97 ± 17.68   46.12 ± 11.91   0.64   0.87 
  MUFA (g) 33.28 ± 7.86   29.47 ± 8.29   0.20   0.59 
  PUFA (g) 12.1 ± 3.25   11.80 ± 3.23   0.87   0.95 
  Cholesterol (g) 0.34 ± 0.14   0.47 ± 0.33   0.36   0.62 
  Fiber (g) 21.60 ± 7.10   35.25 ± 6.02   0.02   0.15 
  Alcohol (g) 17.39 ± 13.21   0.46 ± 0.71   0.02   0.15 
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2.2.2.3 Effect of dietary standardization on baseline plasma metabolite levels 

Direct comparison of baseline plasma metabolite levels after a 12 h overnight fast with or without previous 

dietary standardization revealed no significant differences by a paired t-test (data not shown). 

Furthermore, a weighted enrichment analysis based on the results of the paired t-test was performed in 

order to assess whether specific metabolite groups show concerted differences after a 12 h overnight fast 

with or without previous dietary standardization. Thereby, metabolite groupings as predefined by the 

targeted and non-targeted metabolomic approaches were applied (SUPPLEMENTARY TABLE 1 and 

SUPPLEMENTARY TABLE 2). Results showed no significantly enriched differences (data not shown). 

Next, a PCA (principle component analysis) displaying the first two principle components was performed, 

accounting for 44.7 % and 30.7 % of the variation of metabolite levels measured by the targeted and non-

targeted metabolomics technology, respectively (FIGURE 7). PCA-plots revealed no apparent improvement 

of metabolite clustering with respect to the two groups, indicating that dietary standardization does not 

reduce the inter-individual variation of baseline plasma metabolite profiles. 

 

 

 

 

 

 

 

 

 

 

FIGURE 7: Principle component analysis of fasting samples measured with targeted (A) and the untargeted 

metabolomic approach (B) with and without previous dietary standardization  

Rectangles show the fasting time points without dietary standardization; circles represent the fasting time points 

following a three day dietary standardization phase; persons are coded by color; the two red rhombi represent 

measurement repetitions. 
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2.2.2.4 Effect of dietary standardization on postprandial plasma metabolite levels 

To study the influence of dietary standardization on postprandial metabolite responses, time-course 

experiments were performed by measuring postprandial plasma metabolite levels 1, 2, 4, 6 and 8 h after 

a HFHC meal for each individual on two independent study days with or without prior dietary 

standardization. The baseline and postprandial plasma levels were plotted over time for all metabolites 

using smoothing splines. 

To quantify potential differences in mean postprandial time-curves of metabolites after a defined HFHC 

meal with and without prior dietary standardization, a new statistical method (chapter 2.1.5.3) to test for 

differences in paired time-resolved observations by taking the whole time-scale of postprandial metabolic 

changes into account was used. The time-resolved paired difference test (TPDT) was applied to the 

metabolite measurements of the HFHC meal with or without prior three-day dietary standardization and 

results for both metabolites measured with the targeted and non-targeted metabolomics approach are 

shown in the upper left part of TABLE 4. 

A significant difference was identified for isobutyrylcarnitine (non-targeted metabolomics). Metabolite 

time-courses of the six subjects (FIGURE 8A) indicated lower baseline and postprandial isobutyrylcarnitine 

levels after the HFHC meal with previous dietary standardization as compared to the identical challenge 

test without previous standardization. Of note, with the targeted metabolomics approach we measured 

acylcarnitines with a chain length of 4 carbons (C4), potentially also including isobutyrylcarnitine. However, 

C4 did not reach significance after FDR correction for multiple testing (p= 0.55), although differences were 

indicated prior to the correction for multiple testing (p= 0.01). 

Next, the TPDT was applied to compare the first time-derivative of postprandial time-courses for each 

metabolite. Significant inequalities on this derivative level would reveal differences in the rate of change 

of the considered metabolite time-course. In contrast to the application of TPDT on the original time-

courses, the focus was hereby put on the curve gradients and not on the location of the two groups. The 

upper right part of TABLE 4 indicates a negligible effect of dietary standardization influences on the 

gradient of time-courses, but rather on their location as shown for lower postprandial isobutyrylcarnitine 

levels (FIGURE 8A) after the HFHC meal with previous dietary standardization compared to the HFHC meal 

without standardization.  
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TABLE 4: Paired time-resolved differences of the HFHC meal with previous three-day dietary standardization and 

without standardization 

Results for the TPDT and weighted enrichment analysis are shown for the targeted and non-targeted metabolomic 

measurements based on the zeroth derivative (f(x)) and the first derivative (f´(x)). Weighted enrichment analysis 

was performed based on the results of the TPDT using metabolite groupings and sub-groupings as predefined by 

the targeted and non-targeted metabolomic approaches (SUPPLEMENTARY TABLE 1 and SUPPLEMENTARY TABLE 

2). HFHC, high-fat, high-carbohydrate; TPDT, time-resolved paired difference test. 

    F (x)       F´(x)       
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  Metabolite u0 p-value   Metabolite u0 p-value   
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No differences       No differences       
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Isobutyrylcarnitine 5.4994 < 0.0305   No differences       
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  Metabolite group   p-value   Metabolite group   p-value   

Ta
rg
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ed

 

Acylcarnitines   0.9824   Acylcarnitines   0.9764   

Amino acids   0.5043   Amino acids   0.3699   

Biogenic amines   0.9881   Biogenic amines   0.9764   

Phosphatidylcholines acyl-alkyl   0.1767   Phosphatidylcholines acyl-alkyl   0.3699   

Phosphatidylcholines diacyl   0.9881   Phosphatidylcholines diacyl   0.9451   

Sphingolipids   0.9678   Sphingolipids   0.7193   

Lyso-phosphatidylcholines   0.5314   Lyso-phosphatidylcholines   0.3699   

N
on

-t
ar

ge
te

d 

Amino acids   0.0011   Amino acids   0.7124   

Sub-group: branched chain 
amino acid metabolism   0.0105           

Carbohydrates   0.6691   Carbohydrates   0.1386   

Cofactors and vitamins   0.6691   Cofactors and vitamins   0.8119   

Energy   0.9993   Energy   0.9776   

Lipids   0.9993   Lipids   0.9776   

Nucleotides   0.6691   Nucleotides   0.7124   

Peptides   0.6691   Peptides   0.7124   

Xenobiotics   0.6040   Xenobiotics   0.1386   
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Furthermore, a weighted enrichment analysis based on the results of the TPDT was performed in order to 

assess whether specific metabolite groups show concerted differences. Therefore, metabolite groupings 

as defined by the targeted and non-targeted metabolomic approaches (SUPPLEMENTARY TABLE 1 and 

SUPPLEMENTARY TABLE 2) were applied. Significantly enriched differences for the amino acid group (non-

targeted metabolomics) that could be further specified as a specific difference in the branched-chain 

amino acid metabolism (BCAA) sub-group (lower part of TABLE 4) were observed. The BCAA metabolism 

sub-group includes the three BCAA valine, leucine and isoleucine and degradation products arising during 

BCAA metabolism including also isobutyrylcarnitine. Metabolite time-courses indicate lower basal levels 

FIGURE 8: Postprandial time-courses of isobutyrylcarnitine (A) and the branched-chain amino acids valine (B), 

leucine (C) and isoleucine (D) (non-targeted metabolomics measurements) of the six subjects after ingestion of the 

HFHC meals 

Red lines show the postprandial time-courses of the HFHC meal without previous dietary standardization 

(unstandardized), blue lines after three-day dietary standardization (standardized). Dots represent single 

measurements, lines show fitted smoothing splines with the degree of smoothness chosen with leave-one-out cross 

validation. HFHC, high-fat, high-carbohydrate. 
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for valine after dietary standardization (FIGURE 8B) maintained over postprandial time-courses. Similar 

trends were observed in three subjects for leucine (FIGURE 8C) and isoleucine (FIGURE 8D). Noteably, 

amino acids measured with the targeted metabolomics approach did not reach statistical significance                

(p= 0.5043). This difference in the weighted enrichment analysis between targeted and untargeted 

metabolomics methods might be explained by the different composition of the metabolite group of amino 

acids defined by the targeted and non-targeted metabolomics approaches. Including a total of                               

68 metabolites, the amino acid group defined by the non-targeted metabolomics approach comprises 

amino acids as well as metabolites involved in amino acid metabolism, whereas the amino acid group 

defined by the targeted metabolomics approach includes merely 20 amino acids. Therefore, amino acid 

groups of both methods are hardly comparable, despite an overlap of 15 amino acids. 

Overall, differences in mean time-courses of the HFHC meal with previous three-day dietary 

standardization and without previous standardization are shown for isobutyrylcarnitine as well as in the 

metabolite groups amino acids and BCAA metabolism. Differences in time-courses are mainly determined 

by lower metabolite levels with prior three-day dietary standardization compared to time-courses without 

previous standardization. Noteably, the comparison of fasting metabolite levels of isobutyrylcarnitine              

(p= 0.65) and of metabolite groups of amino acids (p= 0.27) as well as BCAAs metabolism (p= 0.43) did not 

reach significance after correction for multiple testing. However, a difference was indicated prior to the 

correction for multiple testing (p= 0.02, p= 0.03 and p= 0.03, respectively). 

To quantify differences in postprandial inter-individual variations comparing HFHC meals with and without 

previous dietary standardization, we applied TPDT (chapter 2.1.5.3) based on the comparison of the 

standard deviations over all subjects over time (functional standard deviation (fsd)) of both test meals. 

Analysis of differences in functional standard deviations was performed separately for both metabolites 

measured by the targeted and non-targeted metabolomics technology and, additionally, for specific 

metabolite groups (SUPPLEMENTARY TABLE 1 and SUPPLEMENTARY TABLE 2). No significant differences 

were found for metabolites measured with the targeted and non-targeted metabolomic approaches 

(TABLE 5), indicating negligible effects of dietary standardization on the plasma metabolome. However, 

assessing specific metabolite groups elucidated significant different functional standard deviations for 

acyl-alkyl phosphatidylcholines (PC ae) measured with the targeted metabolomics approach (TABLE 5). 

Specifically, the mean functional standard deviations of the PC ae group showed lower postprandial levels 

for the HFHC meal after dietary standardization as compared to the HFHC meal without dietary 

standardization (FIGURE 9), indicating an effect of dietary standardization on inter-individual variation 
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solely for metabolite levels of PC ae (single plots of the 37 PC ae are shown in SUPPLEMENTARY                      

FIGURE 1). 

 

 

 

 
 

  Metabolite group p-value 

Ta
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All groups (all metabolites) 0.30 

Acetylcarnitines 0.5702 

Amino acids 0.1552 

Biogenic amines 0.7778 

Lyso Phosphatidylcholine 0.1552 

Phosphatidylcholine acyl-alkyl 0.0217 

Phosphatidylcholine diacyl  0.2066 

Sphingolipids 0.1552 

  All groups (all metabolites) 0.07 

N
on

-t
ar
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Carbohydrate 0.5153 

Lipid 0.2840 

Amino acid 0.6636 

Xenobiotics 0.5153 

Cofactors and vitamins 0.5153 

Peptide 0.5153 

Energy 0.5178 

Nucleotide 0.5153 

      
 

  

TABLE 5: Paired time-resolved differences in standard deviations after the HFHC meal with previous three-day 

dietary standardization and without standardization 

The TPDT based on functional standard deviations (fsd) is shown for all metabolites measured by the targeted and 

the non-targeted metabolomic approach, respectively and for specific metabolite groups. HFHC, high-fat,                           

high-carbohydrate. 

 

FIGURE 9: Mean of the functional standard deviations (fsd) of the acyl –alkyl 

phosphatidylcholines (PC ae) measured with the targeted metabolomic 

approach after the two HFHC meals  

The red line shows the mean of the fsd after the HFHC meal without dietary 

standardization (unstandardized), the blue line shows the mean of the fsd 

after the HFHC with previous three-day dietary standardization 

(standardized); functional standard deviations of the single PC ae are shown 

in SUPPLEMENTARY FIGURE 1; HFHC, high-fat, high-carbohydrate. 
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2.2.3 Discussion 

The aim of this study was to assess if a dietary standardization prior to a defined test meal is necessary to 

reduce variations of postprandial plasma metabolite time-courses.  

As a main result, differences in postprandial time-courses of isobutyrylcarnitine as well as of the 

metabolite groups of amino acids and branched chain amino acids (BCAAs) were found. Time-courses 

show lower postprandial plasma-isobutyrylcarnitine and valine levels after dietary standardization and 

similar trends in some subjects for leucine and isoleucine. An explanation may be the trend for higher 

carbohydrate and fiber intake in the standardization phase compared with the habitual diet of the study 

participants. Dietary fiber is discussed to delay nutrient absorption and, therefore, might lead to a higher 

local protein synthesis and oxidation in the small intestine (Pirman et al. 2007; ten Have et al. 2007). 

Consequently, amino acid levels in the portal vein and plasma might be reduced (ten Have et al. 2007). 

BCAAs are not degraded in the liver and therefore may directly influence plasma concentrations, as shown 

under a prolonged protein-enriched diet (Jakobsen et al. 2011). Isobutyryl-CoA is known to be an 

intermediate of valine metabolism (Luís et al. 2011), therefore, valine levels might be associated with 

isobutyryl-CoA levels measured as isobutyrylcarnitine levels in plasma. Although current literature shows 

a reduction of BCAA levels in the postprandial state (Tovar et al. 1996) and after long-term intervention of 

a fiber enriched diet (Moazzami et al. 2012), a three-day fiber enriched diet shows a trend, but no 

significant reduction of fasting BCAA levels (Tovar et al. 1996). Thus, due to the current literature and the 

fact that fiber intake was not significantly different after correction for multiple testing, it is not clear 

whether the difference in BCAA metabolism can be fully explained by fiber intake. It is noteworthy that 

the difference observed in time-courses for isobutyrylcarnitine and in the group of amino acids, specifically 

BCAA, was not statistically significant after correction for multiple testing by merely comparing baseline 

measurements, showing the potential benefit of postprandial time-course experiments compared to a 

single fasting metabolite profile. 

In addition to the specific effects of the three-day dietary standardization on mean time-courses of single 

metabolites, the effects on the inter-individual variation after a defined HFHC meal were assessed. 

Studying inter-individual variance in time-courses for all metabolites measured either by the targeted or 

untargeted metabolomic approach showed no effect of dietary standardization on the plasma 

metabolome. However, assessing single metabolite categories revealed that dietary standardization 

reduced variance in PC ae. Consistent with our findings, a recent study also applying targeted 

metabolomics in fasted serum samples showed that the proportion of explained variation by habitual diet 
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was highest for PC ae (5.7%) (Floegel et al. 2013a). Studying fasting plasma samples, we observed no 

apparent effect of standardization on inter-individual variance, indicating that time-resolved tests are able 

to overcome this limitation. At present, clinical trials investigating the effect of dietary standardization on 

variation in fasting plasma or serum metabolite profiles have been rare and controversial (Walsh et al. 

2006; Winnike et al. 2009), and the effects on postprandial time-resolved metabolite profiles have not 

been studied so far. Altmaier et al. showed that dietary fiber intake is associated with a shift towards more 

saturation and smaller chain length of the fatty acid residues of phosphatidylcholines (Altmaier et al. 

2013). Therefore, an increased fiber intake during dietary standardization might be associated with the 

reduced inter-individual variance in PC ae levels, however, the underlying mechanisms remain to be 

elucidated. 

The effect of dietary standardization on postprandial plasma metabolomics profiles was comprehensively 

investigated by two commercial platforms using sensitive mass spectrometry. However, the                                       

45 overlapping metabolites of both methods did not reach the same significance levels, although high 

correlations were found for most metabolites (data not shown). Thus, differences across technological 

platforms have to be considered in future studies. Another shortcoming of our study was the limited 

number of subjects analyzed. Although the smooth curves were fitted using cross validation techniques, 

the considered time-series consisted of six subsequent measurements, which is possibly at the lower limit 

for a spline representation of a time-depending variable and, thus, outliers may represent a serious 

obstacle and may lead to result modification. 

In conclusion, the current study shows that dietary standardization prior to a defined high-fat, high-

carbohydrate test meal results in significant differences in mean postprandial time-courses for 

isobutyrylcarnitine and BCAAs compared to an identical meal without dietary standardization. Moreover, 

our study revealed that the postprandial inter-individual variance in PC ae is reduced by dietary 

standardization. Nonetheless, valid postprandial time-course measurements of most metabolite classes 

seem to be possible without standardized dietary lead-in periods in healthy subjects.   
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2.3 Comparative analysis of postprandial plasma metabolic changes to a fast-

food meal and a healthy breakfast 

2.3.1 Background 

The modern lifestyle is characterized by time scarcity for food preparation and a growing trend towards 

consumption of fast and convenience foods away from home (Jabs and Devine 2006; Guthrie et al. 2002). 

Frequent takeaway and fast food consumption was shown to be associated with higher intake of energy, 

fat, saturated fatty acids, trans fatty acids, added sugar and sodium and lower intake of fiber, vitamins and 

micronutrients compared with the consumption of self-prepared food eaten at home (Jaworowska et al. 

2013; Orfanos et al. 2007; Bowman and Vinyard 2004; Paeratakul et al. 2003; French et al. 2001). This 

changing dietary pattern was shown to result in elevated plasma triglycerides, total cholesterol and low-

density lipoprotein cholesterol, as well as decreased high-density lipoprotein cholesterol concentrations 

and, moreover, was associated with overweight as well as increased risk of insulin resistance and T2D 

(Jaworowska et al. 2013; Pereira et al. 2005; Duffey et al. 2009).  

Recent studies suggested acute impairments of metabolic risk factors after intake of a single meal. For 

instance, fat load was shown to induce postprandial inflammatory responses that might be associated with 

endothelial dysfunction and atherosclerosis (Alipour et al. 2008; van Oostrom et al. 2004; van Oostrom et 

al. 2003a; van Oostrom et al. 2003b). Moreover, high glycemic index food is well known to induce 

postprandial hyperglycemia (Brynes et al. 2003; Liu et al. 2012) discussed to contribute to the etiology of 

obesity, cardiovascular disease and T2D (Blaak et al. 2012). There are only few studies directly focusing on 

the postprandial plasma metabolism after a single conventional fast food meal (Bray et al. 2007; Ramel et 

al. 2012; Rudolph et al. 2007). Comparing a fast food meal to unconventional fast food alternatives or a 

healthier meal, such studies have shown higher postprandial glucose as well as insulin concentrations 

(Ramel et al. 2012) and higher LDL area under the curve after the fast food meal (Bray et al. 2007).  

To our knowledge, studies analyzing postprandial plasma metabolism of a fast food meal compared to a 

healthy alternative are limited on studying classic clinical chemical parameters. However, addressing this 

topic by a comprehensive metabolomics-based approach might enable to unravel further acute 

impairments in plasma metabolism. Thus, the aim of this sub-project was to compare postprandial 

metabolic changes upon a defined fast food meal for breakfast and a healthier breakfast alternative in 

healthy males applying a comprehensive metabolomics approach. Due to the valid metabolomics 

measurements without lead-in periods of dietary standardization shown in paragraph 2.2, previously 
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unstandardized postprandial metabolite measurements of the HFHC meal (fast food) on study day 1 and 

of the HB (healthy breakfast) at study day 3 were choosen for comparison. Thereby, plasma samples taken 

at baseline and at four postprandial time-points up to 6 h after the challenges, analyzed by targeted and 

non-targeted mass spectrometric techniques, were analyzed regarding differences in mean metabolite 

time-courses by the time-resolved paired difference test (TPDT).  
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2.3.2 Results 

2.3.2.1 Description of the study population 

The baseline characteristics including blood pressure and clinical chemical parameters of the six 

participants are shown in TABLE 2 in paragraph 2.2.2.1. 

2.3.2.2 Composition of test meals 

For the HFHC meal and the HB normal meal size of an adult person was chosen to study “real-life 

conditions”. The composition of the test meals as well as their energy, micro- and macronutrient content 

is shown in TABLE 1 in paragraph 2.1.1. Energy intake and energy density was higher in the HFHC meal 

(1110 kcal, 1.3 kcal/g (without drinking: 915 kcal, 2.6 kcal/g)) than in the HB (646 kcal, 0.7 kcal/g (without 

drinking: 560 kcal, 1.0 kcal/g)). The difference in energy density was determined by higher content of fat 

in the HFHC meal compared to the HB (49.4 g (39%) and 17.2 g (23%), respectively). Due to the high total 

fat content, the HFHC meal had more saturated fatty acids (SFA), monounsatured fatty acids (MUFA) but 

also polyunsatured fatty acids (PUFA) than HB (TABLE 1). Moreover, cholesterol intake was higher in the 

HFHC meal compared to the HB (66 mg and 55.4 mg, respectively). Total carbohydrate intake was 1.5 times 

higher in the HFHC meal compared to the HB (132 g and 87.8 g, respectively), due to a higher content of 

mono- and polysaccharides, though fiber intake was 2.3 times higher in the HB (HFHC meal 5.43 g and HB 

12.6 g). Total protein content as well as the composition of amino acids was similar in both test meals, 

however percentage of protein intake was higher in the HB compared to HFHC meal (19% and 11%, 

respectively). Sodium intake was higher in the HFHC meal than in the HB (1.64 g and 1.11 g, respectively), 

whereas intake of most vitamins was lower in the HFHC meal compared to the HB. 

2.3.2.3 Time-resolved differences of test meals 

To compare the postprandial metabolite responses of the HFHC meal and the HB, time-course experiments 

were performed by measuring metabolite levels in the fasting state and 1, 2, 4 and 6 h after both test 

meals. The baseline and postprandial plasma levels were plotted over time for each metabolite using 

smoothing splines. The quantification of differences in postprandial time-courses of each metabolite after 

the defined HFHC meal and HB was done by the time-resolved paired differences test (TPDT). TPDT was 

applied to the metabolite measurements of both test meals and results are shown in the upper left part 

of TABLE 6. The test revealed significant functional differences between the HFHC meal and the HB in                   
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F (x) F´(x)

Metabolite u0 p-value Metabolite u0 p-value

Ta
rg

et
ed

No differences No differences

N-methyl proline 7.2591 < 0.0061 stachydrine 6.0002058 0.0306

stachydrine 8.3542 < 0.0061 N-methyl proline 3.46807 0.0459

3-carboxy-4-methyl-5-propyl-2-
furanpropanoate (CMPF)

6.1331 0.0061

isoleucine (Ile) 4.1428 0.0061

X_09789 6.3784 0.0061

X_11360 4.5137 0.0102

X_18913 4.4468 0.0481

Metabolite group p-value Metabolite group p-value

Acylcarnitines 0.7009 Acylcarnitines 0.9448
Amino acids 0.1149 Amino acids 0.0054
Biogenic amines 0.9999 Biogenic amines 0.7319
Phosphatidylcholines acyl-alkyl 0.9999 Phosphatidylcholines acyl-alkyl 0.9448
Phosphatidylcholines diacyl 0.7009 Phosphatidylcholines diacyl 0.7319
Sphingolipids 0.1672 Sphingolipids 0.9448
Lyso-phosphatidylcholine 0.1672 Lyso-phosphatidylcholine 0.7319
Amino acids 0.3041 Amino acids 0.8124
Carbohydrates 0.9827 Carbohydrates 0.9659
Cofactors and vitamins 0.9411 Cofactors and vitamins 0.6855
Energy 0.9827 Energy 0.9659
Lipids 0.9827 Lipids 0.9659
Nucleotides 0.9827 Nucleotides 0.9659
Peptides 0.9827 Peptides 0.8282
Xenobiotics 0.3041 Xenobiotics 0.6855
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N-methyl proline, stachydrine, 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF), isoleucine and 

three unknown metabolites measured by the untargeted metabolomics approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 6: Time-resolved paired differences of the HFHC meal and the HB 

Results for the TPDT and weighted enrichment analysis are shown for the targeted and non-targeted metabolomic 

measurements based on the zeroth derivative (f(x)) and the first derivative (f´(x)). Weighted enrichment analysis was 

performed based on the results of the TPDT using metabolite groupings and subgroupings as predefined by the 

targeted and non-targeted metabolomic approaches (SUPPLEMENTARY TABLE 1 and SUPPLEMENTARY TABLE 2).    HB, 

healthy breakfast; HFHC, high-fat, high carbohydrate; TPDT, time-resolved paired difference test. 
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In addition, TPDT was applied to compare the first time-derivative of postprandial time-courses of both 

test meals for each metabolite. Significant differences in the time-derivatives would unveil inequalities in 

the rate of change of the postprandial metabolite responses of a considered metabolite. In contrast to the 

test application on original time-courses, TPDT on the first time-derivative enables to focus on the curve 

gradients and not on the location of postprandial time-courses of the two test meals. Significant 

differences in the first time-derivative were revealed for stachydrine and N-methylproline (upper right 

part of TABLE 6).  

  

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 10: Postprandial time-courses of significant different metabolites by comparison of the HFHC meal and the 

HB 

(A) N-methylproline; (B) stachydrine; (C) 3-carboxy-4-methyl-5-prolyl-2-furanpropanoate (CMPF); (D) isoleucine 

(non-targeted metabolomics measurements); the red lines show the time-courses after the HFHC meal, the green 

lines after the HB. Dots represent single measurements, lines show fitted smoothing splines with the degree of 

smoothness chosen with leave-one-out cross validation; HB, healthy breakfast; HFHC, high-fat, high-carbohydrate.  
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Time-courses of the HFHC meal and the HB are shown for significant different metabolites, separately for 

the six subjects in FIGURE 10. Statistically significant differences in original time-courses as well as in the 

first time-derivative of the time-courses indicate the most distinct differences between the test meals in 

N-methylproline and stachydrine. Time-courses of both metabolites (FIGURE 10A and B) showed a precise 

postprandial increase in metabolite levels in the first 2 h due to the HB and stable levels following the 

HFHC meal. 3-carboxy-4-methyl-5-prolyl-2-furanpropanoate (CMPF) (FIGURE 10C) showed lower baseline 

and postprandial levels for the HB than for the HFHC meal. Isoleucine rose in response to both challenges, 

showing an earlier and steeper increase induced by the HB (FIGURE 10D). 

Moreover, we performed a weighted enrichment analysis based on the results of TPDT to assess if specific 

metabolite groups show concerted differences. We used metabolite groupings defined by the targeted 

and non-targeted metabolomic approaches (SUPPLEMENTARY TABLE 1 and SUPPLEMENTARY TABLE 2). 

Significantly enriched differences of the HFHC meal and the HB in the first deviation were identified for 

amino acids measured with the targeted metabolomics approach (lower part of TABLE 6). Time-curves of 

single amino acids (e.g. isoleucine, threonine, asparagine, proline) implied postprandial increases after 

both test meals, tending to be more distinct for the HB and more delayed for the HFHC meal as shown for 

isoleucine measured with non-targeted metabolomics approach.  

Although most amino acids measured with targeted and the non-targeted metabolomics approaches 

showed close correlations (e.g. isoleucine: r= 0.74), the targeted measurement of isoleucine did not reach 

significance by TPDT after correction for multiple testing (p-value= 0.7), although differences were 

indicated prior to the correction for multiple testing (p-value= 0.02). Moreover, weighted enrichment 

analysis revealed significant differences of both test meals in the metabolite group of amino acids 

measured with the targeted approach, but did not reach significance for the non-targeted measurements 

(TABLE 6). These differences might partially be explained by different composition of the metabolite group 

of amino acids defined by the targeted and non-targeted metabolomics technologies. The amino acids 

group of the non-targeted metabolomics approach includes a total of 68 metabolites, implicating amino 

acids as well as metabolites involved in amino acid metabolism, whereas the amino acid group defined by 

the non-targeted metabolomics approach includes merely 21 amino acids and no metabolites of the amino 

acid metabolism. Thus, the amino acid groups of both methods are hardly comparable, despite an overlap 

of 15 metabolites. 

Overall, distinct differences of the HFHC meal and the HB were identified in postprandial time-courses of 

N-methyl proline, stachydrine, 3-carboxy-4-methyl-5-propyl-2-furanpropanoate, isoleucine and of three 
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unknown metabolites measured with the non-targeted metabolomics approach. Moreover, concerted 

differences were shown in the metabolite group of amino acids measured with the targeted metabolomics 

approach. 
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2.3.3 Discussion 

Aim of this study was to compare the dynamic postprandial metabolite responses of two defined meal 

challenges, the first one representing a western fast food meal and the second one a healthy alternative. 

For both meals a “normal” meal size of an adult person was chosen instead of an isocaloric state to be 

close to “real life conditions”. The comprehensive metabolomic analysis applying targeted and untargeted 

metabolomics methods in the six healthy males showed rather modest postprandial differences between 

the fast food meal and the healthy breakfast. Statistically significant differences were identified in time-

courses of N-methyl-proline, stachydrine, 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF), 

isoleucine, three unknown metabolites and in the group of amino acids.  

N-methyl-proline and stachydrine are betaines found in many citrus foods and juices (Servillo et al. 2011). 

The postprandial increases of both metabolites after the HB were induced by the 200 ml of orange juice 

included. In contrast, plasma levels of both metabolites following the HFHC meal remained almost stable, 

despite containing 500 ml Fanta including orange juice and orange extract in addition to water, sugar and 

other compounds (McDonalds Germany 2013). The current knowledge on the physiological role of 

stachydrine is limited. In human studies, stachydrine was shown to increase urinary loss of glycine-betaine 

and is, therefore, discussed to be associated with an increased risk of cardiovascular disease (Lever et al. 

2007; Lever et al. 2005). In contrast, in vitro studies demonstrated beneficial functions of stachydrine for 

endothelial cell injury (Yin et al. 2010).   

3-carboxy-4-methyl-5-propyl-2-furanpropanoate (CMPF) plasma levels were shown to be associated with 

the intake of fish and greens (Hanhineva et al. 2015; Guertin et al. 2014). Thus, higher baseline plasma 

levels of CMPF during the HFHC meal compared to the HB, might imply an increased intake of fish or greens 

in the days prior to the HFHC meal. Aside, Prentice et al. showed elevated plasma CMPF levels in individuals 

with gestational diabetes, T2D and prediabetes (Prentice et al. 2014). Moreover, CMPF was shown to be 

one of the major uremic toxins (Miyamoto et al. 2012). However, as we recruited healthy persons with 

normal renal function and glucose tolerance, we did not expect an elevation or accumulation of CMPF due 

to such reasons.  

In addition, significantly different postprandial metabolite levels after both test meals were found for 

isoleucine and in the metabolite group of amino acids. Most amino acids increased after both challenges 

due to the substantial protein load, but there was a lower and delayed increase after the HFHC meal 

compared to the HB. Plasma levels of amino acids were mainly determined by the amount of 
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protein/amino acids ingested by a diet/meal, but may also depend on factors like gastric emptying, 

utilization by gut epithelial cells, liver and peripheral tissues like muscle. In view of the rather similar 

protein content of the HFHC meal (31.1 g) and the HB (30.5 g) (TABLE 1) and of lacking postprandial 

differences in plasma insulin levels, this effect may be explained by differences in gastric emptying or 

intestinal absorption. A high energy density of food was shown to be associated with a lower rate of gastric 

emptying (Calbet and MacLean 1997; Hunt and Stubbs 1975). Thus, there might be a slower gastric 

emptying of the HFHC meal (1.3 kcal/g, without drinking 2.6 kcal/g) compared to the HB (0.7 kcal/g, 

without drinking 1.0 kcal/g). It is interesting to note that only negligible differences in plasma free fatty 

acids, triglycerides as well as glucose and insulin were observed between both test meals despite of 

substantial differences in macronutrient and energy intake (HFHC meal contained an almost 3-times higher 

amount of fat and an 1.5 times higher amount of carbohydrates than HB) (TABLE 1). This surprising finding 

may also be explained by potentially slower gastric emptying due to the high energy density of the HFHC 

meal (Calbet and MacLean 1997; Hunt and Stubbs 1975). However, one has to keep in mind the low time-

resolution of glucose and insulin measurements after the two meals. It is known that, depending on the 

composition of meals, postprandial increases in blood glucose and insulin concentrations may be 

detectable within about 15 minutes and peak at around 45 to 90 minutes after a meal (Krug et al. 2012; 

Wahl et al. 2013; Ramel et al. 2012). 

There are only a few studies in the literature which investigated differences in postprandial metabolism 

after a fast food compared to a balanced healthy meal or fast food alternatives (Ramel et al. 2012; Bray et 

al. 2007; Rudolph et al. 2007) and, to our knowledge, there are no studies comparing postprandial 

metabolic changes by a comprehensive large-scale metabolomics approach. Ramel et al. (Ramel et al. 

2012) reported higher postprandial glucose and insulin levels after a conventional hamburger meal 

compared with an isocaloric salmonburger meal. Several explanations were discussed by the authors, 

mainly differences in the composition of both meals such as fiber content. In the study of Rudolf et al. 

(Rudolph et al. 2007), the acute effects of a conventional burger meal was compared to two vegetarian 

alternatives. No differences in plasma glucose and insulin concentrations and in flow-mediated 

endothelium-dependent dilatation were found at baseline 2 and 4 h after the meals. Using closer intervals 

for blood collection, Bray et al. were also unable to detect significant differences in postprandial glucose 

and insulin levels in overweight subjects after consumption of a fast food meal, an organic beef meal and 

a turkey meal (Bray et al. 2007).  

Based on a comprehensive metabolomics approach using two commercial technologies, rather modest 

differences in the plasma metabolomic response to a fast food meal compared to a healthy breakfast could 
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be shown, despite of an 1.7 times higher amount of calories and considerably different compositions of 

macro- and micronutrients in the HFHC meal. This surprising result may be attributable to the high 

metabolic flexibility of the human volunteers, although they were at an age in which metabolic diseases 

are common. However, they were healthy according to usual criteria and may have retained the capacity 

to perfectly adapt to substantial differences in meal composition. Thus, short-term exposure of healthy 

individuals to varying meals might be fully balanced by this metabolic flexibility. It is likely that adverse 

health effects of fast food consumption including changes in plasma metabolites (Jaworowska et al. 2013; 

Pereira et al. 2005; Duffey et al. 2009) are predominantly determined by long-term and repeated exposure 

to fast food or may be more rapidly visible in individuals who are particularly susceptible to metabolic 

disturbances due to genetic or environmental factors.  As such individuals were excluded from this study, 

it remains to be elucidated as to whether this comparison would result in similar or other findings in 

subjects at risk of metabolic diseases. 

In conclusion, comparing a conventional fast food meal and a healthy breakfast, only modest differences 

in the postprandial plasma metabolite profiles measured by a comprehensive metabolomics approach 

were found. Differences were merely shown for N-methyl-proline, stachydrine, CMPF, as well as for amino 

acids. Therefore, adverse effects of fast food consumption on plasma metabolites seem to be mainly 

determined by long-term exposure, whereas single fast food meals may be well compensated by healthy 

men due to a high metabolic flexibility. Additional studies are needed to better define the conditions under 

which the analysis of the postprandial metabolomic profile may provide an improvement of the early 

detection of individuals at risk of diet-related metabolic diseases. 
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3 POSTPRANDIAL METABOLISM IN SUBJECTS HOMOZYGOUS 

FOR GWAS-IDENTIFIED VARIANTS AT LIPID METABOLISM 

LOCI 

3.1 Background 

Recent genome-wide association studies (GWASs) identified thousands of single nucleotide 

polymorphisms (SNPs) associated with an increased risk of common diseases (Zeggini et al. 2008; Hindorff 

et al. 2009; Samani et al. 2007). However, this approach does not allow insight into the biological processes 

underlying these associations. Metabolomics has become a powerful tool to define specific metabotypes 

potentially linking gene variants and their potential contribution to disease-causing processes. The linkage 

of GWASs with metabotypes identified genetic variants in genes encoding transporter proteins and 

enzymes with profound impact on human metabolic traits (Illig et al. 2010; Gieger et al. 2008; Tanaka et 

al. 2009; Hicks et al. 2009; Demirkan et al. 2012; Kettunen et al. 2012; Nicholson et al. 2011). Moreover, 

few GWASs using metabolite concentration ratios as proxies for enzymatic reaction rates identified several 

genetic loci highly associated with metabolite pairs (Gieger et al. 2008; Illig et al. 2010; Nicholson et al. 

2011). These studies found strongest associations for the SNP rs2014355 in the acetyl-CoA dehydrogenase 

short chain (ACADS) gene locus (OMIM: 606885), with the C3/C4-acylcarnitine ratio and of the SNP 

rs174547 in the fatty acid desaturase 1 (FADS1) gene locus (OMIM: 606148) with the diacyl 

phosphatidylcholine (PC aa) ratio C36:3/C36:4 (Illig et al. 2010; Nicholson et al. 2011) in the fasting state. 

The variants rs2014355 in the ACADS-locus and rs174547 in the FADS1 locus explained 21.5 - 29% of the 

inter-individual variance of the metabolite ratio of C3/C4 and 28.62 - 36.5% of the inter-individual variance 

of the metabolite ratio of PC aa C36:3/C36:4, respectively (Gieger et al. 2008; Illig et al. 2010; Nicholson et 

al. 2011). In addition, applying a longitudinal twin design Nicholson et al. reported a familial component of 

variation of 51% and 12% in metabolite levels of C3/C4 and PC aa C36:3/C36:4, respectively. This familial 

component of variation is determined i.e. by common environmental and heritable factors (Nicholson et 

al. 2011). Nutrition seems to be the most important environmental factor in this context as the 

composition of food may strongly modulate circulating lipid parameters in humans and may also play a 

major role in the development of frequent chronic metabolic diseases. Defined nutritional challenge tests 

were reported to uncover early metabolic changes in carriers of genotypes associated with a higher risk 
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for metabolic diseases (Franks et al. 2007; Tan et al. 2006; Weickert et al. 2007). Thus, genotype effects of 

rs2014355 and rs174547 may be more easily unmasked by using challenge tests compared to analyzing 

merely fasting state conditions. 

Aim of this second part of the work was to characterize the functional role of the gene variants rs2014355 

in the ACADS gene locus and rs174547 in the FADS1 locus in strictly controlled human studies using 

targeted metabolomics as hypothesis-free approach. Homozygous carriers of the minor C and major                            

T allele of the gene variant rs2014355 were exposed to a 24 h fasting period and a standardized oral 

glucose tolerance test (OGTT), homozygous carriers of the minor C and major T alleles of the variant 

rs174547 were exposed to an oral lipid tolerance test (OLTT) and a standardized OGTT. Potentially novel 

genotype-dependent differences were studied by a logistic regression model using bootstrap randomized 

performance. Details about the studied variants and the associated genes are given prior to the respective 

results. 
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3.2 Study design and methods 

3.2.1 Study design 

Subjects were recruited from the population-based KORA (Cooperative Health Research in the Region of 

Augsburg) S1-S3 and follow-up F3 and F4 cohort in the region of Augsburg, southern Germany (Rathmann 

et al. 2009) based on existing imputed genome-wide association data using Affymetrix 6.0 chip (Kolz et al. 

2009), Affymetrix 500K chip (Voight et al. 2010) and Illumina Cardio-Metabochip (Morris et al. 2012). From 

all male participants of Caucasian origin aged 18 to 69 years with BMI < 35 kg/m2 and available genotype 

data, 13 subjects carrying the CC genotype of the variant rs2014355 in the ACADS locus and 13 subjects 

carrying the TT genotype (controls) were recruited. In addition, 13 subjects carrying the CC genotype of 

the variant rs174547 in the FADS1 locus and 13 subjects carrying the TT genotype (controls) were recruited. 

Seven of the recruited subjects carried the TT genotype of rs2014355 and rs174547, and thus, overlap as 

control for both genotypes. Subjects with known diabetes mellitus, immune-suppressive therapy, 

cardiovascular disease, liver disease (GOT (glutamic oxalacetic transaminase), GPT (glutamic pyruvate 

transaminase) >3-fold above normal range), kidney disease (creatinine >1.2 mg/dl) and psychiatric disease 

were excluded from the study. All participants gave written informed consent. The study is registered as 

DRKS00006202 at the Deutsches Register Klinischer Studien, was approved by the ethics committee of the 

Bavarian Medical Association (Bayerische Landesärztekammer) and performed in accordance with the 

Helsinki Declaration of 1975 as revised in 2008.  

The study design (FIGURE 11) included two days with two overnight stays at the Else Kröner-Fresenius-

Centre for Nutritional Medicine (EKFZ) of the Technische Universität München. Volunteers were carefully 

advised to refrain from exertive physical activity and alcohol for 24 h before the first study day. After arrival 

at the study center in the late afternoon, subjects were given a standardized supper (REWE Bio Schlemmer 

Spätzle, (REWE, Köln, Germany), 0.1 l orange juice (461 kcal, 23.9 g protein, 64.4 g carbohydrates, 11.8 g 

fat)) at 8 pm. Following an overnight fast of 12 h, a venous catheter (Braun, Melsungen, Germany) was 

inserted into an antecubital vein and a first fasting blood sample (baseline) was taken. In addition, an 

anthropometric examination was performed including measurement of height, weight, waist 

circumference and blood pressure using established methods. For minor CC allele carriers of rs2014355 in 

the ACADS locus and controls further blood samples were taken after 14, 16, 18, 20, 22 and 24 h of fasting. 

The fasting period was terminated by another standardized supper (2 pretzels, 16.7 g butter, 25 g liver 

sausage, 16.7 g cream cheese, 1 canned peach, 1 Kinder Riegel (Ferrero, Frankfurt am Main, Germany),                    
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0.1 l orange juice (869 kcal, 20.5 g protein, 121.6 g carbohydrates, 32.2 g fat). In parallel, the minor CC 

allele carriers of rs174547 and controls were asked to consume an oral lipid tolerance test (OLTT) 

consisting of three parts Fresubin Energy Drink (Fresenius Kabi, Bad Homburg, Germany) and one part 

Calogen (Nutricia, Zoetemeer, The Netherlands) (TABLE 7). The volume of the liquid meal was calculated 

for each volunteer to provide 35 g fat/m2 body surface area. Additional blood samples were taken at 1, 2, 

3, 4, 6 and 8 h after the OLTT. At 8 pm, subjects were given a standardized supper identical to that provided 

to subjects of the ACADS-study at study day 1. At 8 am of the second study day, all subjects underwent a 

standardized oral glucose tolerance test (OGTT, 75 g glucose, Dextro O. G. T., Roche Diagnostics, 

Mannheim, Germany). During OGTT, venous blood samples were taken at baseline (after 12 h overnight 

fast) and 15, 30, 60, 120 and 240 min after the glucose load.  

 

 

 

 

 

 

Blood was collected into 4.9 ml EDTA K2-Gel tubes (Sarstedt, Nümbrecht, Germany). Tubes were mixed 

thoroughly and plasma was obtained by immediate centrifugation (10 min at 3.000 x g, 20°C). Plasma was 

aliquoted on ice, immediately frozen on dry ice, stored at -80°C and defrosted only once before metabolite 

measurement. In addition, at 8 am of the first study day, a further blood sample was collected into a 9 ml 

FIGURE 11: Study design of the SysMBo-study 

A: study design for carriers of the minor CC allele of rs2014355 in the acetyl-CoA dehydrogenase, short chain (ACADS) 

locus and carriers of the major TT alleles for controls; B: study design for minor CC allele carriers of rs174547 in the 

fatty acid desaturase 1 (FADS1) locus and carriers of the major TT alleles for controls; OGTT, oral glucose tolerance 

test; OLTT, oral lipid tolerance test. 
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heparin-monovette (Sarstedt, Nümbrecht, Germany) for isolating genomic DNA from peripheral 

mononuclear cells (PBMC). Blood was diluted 1:2 with phosphate buffered saline (PBS). 16 ml Ficoll (Biocoll 

#L 6115, Biochrome, Berlin, Germany) were overlaid with the diluted blood sample. Tubes were 

subsequently centrifuged for 25 min at 400 x g and 20°C. PBMC were harvested from the interface above 

the Ficoll solution and were washed twice with PBS. Supernatants were discarded and cell pellets were 

immediately (shock) frozen in liquid nitrogen. Cell pellets were stored at -80°C until isolation of genomic 

DNA with the DNeasy blood and tissue kit (Qiagen, Hilden, Germany) according to the manufacturer’s 

instructions.  

The participants were allowed to consume tap water, mineral water, and unsweetened fruit tea ad lib, and 

fluid intake was carefully recorded over the study period. To control nutrient intake and activity, 

participants stayed at the study center at both study days. Study personnel and volunteers were blinded 

for the genotype during the study. 

 

TABLE 7: Nutrient composition of the test meals of the SysMBo study 

Energy content, macro- and micronutrient intake is shown per meal; OGTT, oral glucose tolerance test; OLTT, oral 

lipid tolerance test. 
 

  Test meal OLTT OGTT   
  Composition Three parts Fresubin Energy Drink 

(Fresenius Kabi, Bad Homburg, Germany) 
+ one part Calogen (Nutricia, Zoetemeer, 
The Netherlands) 

 75 g glucose, Dextro O. G. T., 
(Roche Diagnostics, 
Mannheim, Germany) 

  

    Per meal (mean ± SD) Per meal   
  Amount (ml) 425.9 ± 31.0 300   
  Energy (kcal) 958.2 ± 69.8 300   
  Fat (g) 71.8 ± 5.2 (67.5%) 0   
  Sattured fatty acids (g) 7.2 ± 0.5 0   
  Monounsatured fatty acid (g) 44.2 ± 3.2  0   
  Polyunsatured fatty acids (g) 20.3 ± 1.5  0   
  Linoleic acid (C18:2 n6) (g) 15.5  ± 1.1 0   
  α-linoleic acid (C18:3 n3) (g) 3.7  ± 0.3 0   
  Cholesterol (mg) <0.01 0   
  Carbohydrates (g) 60.0 ± 4.4 (25%) 75   
  Fiber (g) 1.6 ± 0.1 0   
  Protein (g) 17.9 ± 1.3 (7.5%) 0   
  Sodium (g) 0.3 ± 0.02 0   
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3.2.2 Standard biochemistry parameters 

Venous plasma glucose concentrations were determined by an enzymatic amperometric method (Super 

Gl easy+, Dr. Müller Geräte Bau, Freital, Germany). Insulin was quantified by an enzyme-linked 

immunosorbent assay (ELISA; K6219; Dako, Glostrup, Denmark). Non-esterified fatty acids (NEFAs) and 

triglycerides (TG) were quantified using commercially available enzymatic methods (NEFA-HR, Wako 

Chemicals GmbH, Neuss, Germany and Triglycerides liquicolor mono, Human GmbH, Wiesbaden, 

Germany). Cholesterol, HDL-, LDL-cholesterol, triglycerides, glutamic oxalacetic transaminase (GOT), 

glutamic pyruvate transaminase (GPT), creatinine, hemoglobin, thrombocytes and leucocytes were 

determined using established commercial tests by Synlab (Munich, Germany). HOMA-B and HOMA-IR 

were calculated using the following formulas: HOMA-B (%) = 20 x fasting insulin (mU/l) / (fasting glucose 

(mmol/l) – 3.5) and HOMA-IR = fasting insulin (mU/l) x fasting glucose (mmol/l) / 22.5. 

3.2.3 Linkage disequilibrium-block analysis 

Linkage disequilibrium block analysis (LD, r2= 1.0) of the lead SNPs rs2014355 and rs174547 was done using 

public data bases: HapMap release 22 and 1,000 Genome Pilot I: CEU (Utah residents with ancestry from 

northern and western Europe) population with SNAP (Broad institute) (Johnson et al. 2008) and                          

1,000 Genome Phase 1: European population with HaploReg (Broad institute) (Ward and Kellis 2012).  

3.2.4 Genotype analysis 

The genotypes of rs2014355 were verified by allelic discrimination (TaqMan® SNP Genotyping Assay                          

# C_8713836_20, Life Technologies) using standard protocols on an ABI 7900 HT instrument (Applied 

Biosystems) with automated calling by the SDS 2.3 software.  

Genotypes of the missence variant rs1799958 in perfect linkage disequilibrium block with rs2014355 were 

sequenced by standard Sanger sequencing on an ABI3730 instrument (Applied Biosystems) using standard 

protocols after PCR amplification of the SNP containing DNA fragment with genomic DNA as template and 

with the following primers: for-5'-tgggctgctgtcatttct, rev-5'-agtcctcaaagatgaggtt. 

Genotypes of the variant rs174547 were verified by genotyping with the MassARRAY system using the 

iPLEX Gold Chemistry (Sequenom, San Diego, CA, USA). The samples were analyzed in a matrix-assisted 

laser desorption ionization time of flight mass spectrometer (MALDI TOF MS, Bruker Daltonik, Leipzig, 
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Germany). χ2 test was used to test for deviation from the Hardy–Weinberg equilibrium (HWE). The single 

nucleotide polymorphism (SNP) rs174547 fulfilled HWE (P>0.05), and the genotyping success rate was 

99%. 

3.2.5 Metabolomics analysis  

Targeted metabolomic measurements were performed at the Genome Analysis Center of the Helmholtz 

Zentrum München using the AbsoluteIDQTM p180 kit (Biocrates Life Sciences AG, Innsbruck, Austria) as 

described previously (Zukunft et al. 2013; Goek et al. 2013). Liquid handling was done on a Hamilton 

Microlab Star robotics system (Hamilton Bonaduz AG, Bonaduz, Switzerland). 186 metabolites were 

analyzed by flow injection analysis and liquid chromatography tandem mass spectrometry (FIA-MS/MS 

and LC-MS/MS). The metabolite panel includes amino acids, biogenic amines, acylcarnitines (C), sugars 

(H1), sphingomyelins (SM), diacyl phosphatidylcholines (PC aa), acyl-alkyl phosphatidylcholines (PC ae) and 

lyso phosphatidylcholines (lysoPC) (SUPPLEMENTARY TABLE 1). The ratio of the median metabolite 

concentration in the 5 standard reference plasma samples present in every batch to the median 

concentration of reference samples in all batches was used to correct for inter-day variance of each 

metabolite. Concentrations are given in μmol/L. 

3.2.6 Statistical analysis 

The statistical analysis was done by means of Ivan Kondofersky from the Institute of Computational Biology 

of the Helmholtz Zentrum München (German Research Center for Environmental Health (GmbH), 

Neuherberg, Germany) using the R statistical software (http://www.r-project.org). 

3.2.6.1 Univariate t-tests 

The baseline characteristics of carriers and non-carriers of both genotypes were tested for differences by 

using a standard univariate t-test on unpaired observations.  

3.2.6.2 Logistic regression with bootstrap randomized performance 

In this project a potential connection between a binary outcome (homozygous carriers of the minor C allele 

of rs2014355 (carriers) and homozygous carriers of the major T allele (non-carriers)) and metabolic 

variables was investigated. We selected logistic regression to quantify this connection. Thereby, a series 
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of logistic regression models was performed instead of one overall model. The corresponding equations 

can be summarized as: 

𝑃𝑃(𝑦𝑦|𝑥𝑥𝑖𝑖) =  
1

1 + exp (−(𝛼𝛼𝑖𝑖 + 𝑥𝑥𝑖𝑖 ∗ 𝛽𝛽𝑖𝑖)) 
 

𝑦𝑦 describes the binary outcome (1 denoting carriers and 0 non-carriers), 𝑥𝑥𝑖𝑖 describes the i-th metabolic 

measurement, 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑖𝑖 are regression coefficients that are estimated in the model using the data 𝑦𝑦 and 

𝑥𝑥𝑖𝑖 and 𝑃𝑃(𝑦𝑦|𝑥𝑥𝑖𝑖) describes the probability of the binary outcome to have the value of 1 given the covariate 

𝑥𝑥𝑖𝑖.  

Two different logistic regression models were applied for analyzing the data depending on the data 

structure. The simple case of analyzing data recorded at a single time point (after 12 hours of fasting) was 

tackled by a standard logistic regression model (Lenz and Wilson 2007). Analyzing the connection between 

a binary outcome and a whole time-series is more challenging and was tackled by functional data analysis 

(Ramsay and Silverman 2005). To that end, an altered version of the standard logistic regression model 

was used: 

𝑃𝑃(𝑦𝑦|𝑥𝑥𝑖𝑖(𝑡𝑡)) =  
1

1 + exp (−(𝛼𝛼𝑖𝑖 + 𝑥𝑥𝑖𝑖(𝑡𝑡) ∗ 𝛽𝛽𝑖𝑖(𝑡𝑡))) 
 

The biggest change was introduced by considering the time variable 𝑡𝑡  and thus also extending the 

covariates 𝑥𝑥𝑖𝑖(𝑡𝑡) and the coefficients 𝛽𝛽𝑖𝑖(𝑡𝑡) to be both time-resolved. The theory and software for fitting 

logistic regression models with time-resolved covariates has recently been developed (de Hoffmann and 

Stroobant 2007).  

The estimated 𝑃𝑃(𝑦𝑦|𝑥𝑥𝚤𝚤)�  could then be compared to the true outcome and different diagnostic goodness-

of-fit measures could be used to establish the quality of the i-th model. Especially for low sample sizes, 

these diagnostic measures contain a high amount of optimism. This can be explained by the fact that 

diagnostics are computed by evaluating the data a second time after having used it for the model 

calibration and thus the predictive quality of the model is biased. To correct for this optimism, Steyerberg 

et al. (Steyerberg et al. 2001) proposed and evaluated several diagnostic measures and concluded that 

using bootstrap techniques to estimate the optimism leads to a more realistic and stable assessment of 

the performance of logistic regression models. Following this finding, a bootstrap approach for estimating 

an optimism-corrected concordance statistic 𝑐𝑐𝑖𝑖 was applied for each of the computed regression models. 
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For binary outcomes 𝑐𝑐𝑖𝑖 is identical to the area under the receiver operating characteristic (ROC) curve. The 

optimism-corrected concordance index was computed as  

𝑐𝑐𝑖𝑖 = 𝑐𝑐𝑖𝑖𝑜𝑜 −
1
𝐵𝐵
�(𝑐𝑐𝑖𝑖𝑏𝑏 − 𝑐𝑐𝑖𝑖𝑜𝑜𝑜𝑜)
𝐵𝐵

𝑏𝑏=1

 

In this notation, 𝑐𝑐𝑖𝑖𝑜𝑜 is the concordance index computed on the original data that is too optimistic. 𝑐𝑐𝑖𝑖𝑜𝑜𝑜𝑜 is 

the concordance index computed on the original data by using a model that was calibrated on the b-th 

bootstrap sample. Finally, 𝑐𝑐𝑖𝑖𝑏𝑏 is the concordance index computed on the b-th bootstrap sample by using a 

model that was calibrated on this b-th bootstrap sample. In this part of the work, a total of 𝐵𝐵 = 200 

bootstrap samples were used. 

The described method was applied by using the metabolite measurements as covariates. Furthermore, we 

also analyzed enzymatic reactions, which are appropriately described by computing metabolite ratios of 

various fatty acid concentrations (Illig et al. 2010). 
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3.3 The impact of rs2014355 in the ACADS locus on the plasma metabolism in the 

anabolic and catabolic state  

3.3.1 The ACADS (Acetyl-dehydrogenase, short chain) – gene 

The ACADS gene spans approximately 13 kb on the terminal region of the long arm of chromosome 12 and 

consists of 10 exons (Corydon et al. 1997). Its transcription product is the enzyme acetyl-CoA 

dehydrogenase short chain (ACADS) that belongs to a large family of acyl-CoA dehydrogenases (ACADs), 

flavoproteins that are involved in the mitochondrial fatty acid oxidation (FAO, ß-oxidation).  

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

FIGURE 12: Transport of long-chain fatty acids into the 

mitochondrial matrix and subsequent four chain-

shortening steps of the ß-oxidation cycle 

CACT, carnitine-acylcarnitine translocase; CoA, 

coenzyme A; CPT I, carnitine palmitoyltransferase I; 

CPT II, carnitine palmitoyltransferase II; FAD, flavin 

adenine dinucleotide; FATP, fatty acid transport 

protein; NAD, nicotinamide adenine dinucleotide; 

(adapted from Ehlers 2014 and Dokoupil and 

Ensenauer 2008). 
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Substrates of the FAO are mainly fatty acids released during adipose tissue lipolysis during exercise or 

fasting. Released fatty acids are imported into various tissues. Thereby, long-chain fatty acids are 

dependent on fatty acid transporters. Inside the cytosol, long-chain fatty acids are rapidly esterified to 

fatty acyl-CoAs. Whereas short- and medium-chain fatty acids can enter the mitochondria passively, the 

transport of long-chain fatty acids depends on the carnitine shuttle consisting of three interdependent 

enzymatic reactions (FIGURE 12). Inside the mitochondrion, acyl-CoAs are released and can be degraded 

by the mitochondrial FAO. Thereby, fatty acid chains are shortened by repetitive ß-oxidation cycles 

including four enzymatic reactions and resulting in the release of an acetyl-CoA (FIGURE 12). ACADs are 

the first enzymes in this four-step ß-oxidation cycle, catalyzing the dehydrogenation of CoA-conjugated 

fatty acids. ACADS is specific for fatty acids with a chain length of 4 to 6 carbons, with C4-CoA being the 

favorite substrate (Ghisla and Thorpe 2004). Thus, ACADS catalyses the initial step of the final ß-oxidation 

cycle, resulting in the production of two acetyl-CoA molecules. The acetyl-CoA molecules can enter the 

tricarboxylic acid cycle and the respiratory chain for adenosine triphosphate production (Houten and 

Wanders 2010; Eaton et al. 1996).  

In the literature, a number of cases of SCAD (short chain acetyl-CoA dehydrogenase) deficiency (OMIM: 

201470) are described with variable genetic, biochemical and clinical characteristics (Pedersen et al. 

2008a; Gallant et al. 2012; Tein et al. 2008). About 70 rare mutations (van Maldegem et al. 2010) and two 

common missense variants c.625G>A (rs1799958; G185S) and c.511 C>T (rs1800556; R147W) (Gregersen 

et al. 1998; Kristensen et al. 1994) were reported to be associated with SCAD deficiency (van Maldegem 

et al. 2006). The two missense variants have been found with a prevalence of homozygosity and 

heterozygosity of approximately 0.3% and 5.6% for the c.511C>T and 5.5% and 31.3% for the c.625G>A 

variant, respectively (van Maldegem et al. 2006). The common variants as well as most of the reported 

deleterious mutations cause single amino acid substitutions leading to protein miss-folding and 

aggregation (Pedersen et al. 2008b; Pedersen et al. 2003). Clinical symptoms reported in patients with 

SCAD deficiency are variable, ranging from hypotension, mental retardation, behavioral disorders and 

epilepsy to ketotic hypoglycaemia. However, in some cases, symptoms ameliorate or disappear and many 

individuals diagnosed with SCAD deficiency remain fully asymptomatic. Therefore, there is discussion 

about co-incidence of symptoms or other factors like genetic or environmental, that may be needed to 

develop from susceptibility to clinical disease (van Maldegem et al. 2010). Moreover, the high frequency 

of the common gene variants might indicate a potential involvement of SCAD deficiency in the 

pathogenesis of relatively common disorders. Biochemical symptoms of SCAD deficiency are determined 

by an accumulation of the substrate of SCAD. Accumulating C4-CoA can be converted into different 
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metabolites including the corresponding carnitineester butyrylcarnitine (C4), the corresponding glycine 

ester butyrylglycine, butyrate and ethylmalonic acid (EMA) (van Maldegem et al. 2006). Thus, the 

accumulation of potentially toxic metabolites like EMA was supposed to be the most likely mechanism 

involved in the pathophysiology of SCAD deficiency (van Maldegem et al. 2006). However, highest levels 

of C4 and EMA were not shown to be stronger related to clinical symptoms than moderately elevated 

levels (van Maldegem et al. 2006; van Maldegem et al. 2010). 

The variant rs2014355 (minor allele frequency: 27.7%) has been shown to cause a mild biochemical 

phenotype (Gieger et al. 2008; Illig et al. 2010; Nicholson et al. 2011) mainly characterized by increased C4 

levels (Illig et al. 2010) in minor C allele carriers compared to the average population. Though this 

phenotype does not lead to clinical symptoms, it might be that carriers of the minor allele are more 

sensitive to metabolic stress like fasting and thus potentially are more susceptible to the development of 

metabolic diseases during lifetime (Illig et al. 2010). In this context, there is a first study showing an 

association of rs2014355 with reduced measures of glucose-stimulated insulin release during an oral 

glucose tolerance test (OGTT) (Hornbak et al. 2011). 
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3.3.2 Results 

3.3.2.1 Genotype verification and baseline characteristics of the study population 

Based on the imputed genome-wide association data of the KORA cohort, 13 homozygous carriers of the 

minor C allele of rs2014355 (carriers) and 13 homozygous carriers of the major T allele (non-carriers, 

controls) were recruited. Genotype verification revealed four of the recruited “non-carriers” as 

heterozygous carriers of the minor C allele of rs2014355. Thus, these four subjects were excluded from 

further analysis. LD-block analysis based on 1,000 Genome Pilot I data (SUPPLEMENTARY TABLE 3) revealed 

the missense variant rs1799958 to be in perfect LD with rs2014355. Sequencing of rs1799958 showed 

100% compliance with rs2014355. During OGTT, one of the carriers showed a 2 h-glucose concentration 

higher than 200 mg/dl as a prove of overt diabetes and was excluded from further analysis.  

Baseline characteristics and clinical chemical parameters of the remaining 12 carriers and 9 non-carriers 

included in the statistical analysis are shown in TABLE 8. Carriers and non-carriers did not differ significantly 

in age and BMI and in most of the clinical chemical parameters. Of note, participants carrying the                              

CC genotype showed a significantly higher waist circumference compared with the major TT genotype                

(p= 0.004). In addition, homozygous minor allele carriers had significantly higher NEFAs (p= 0.027), 

hemoglobin (p= 0.008) as well as thrombocytes (p= 0.002) and significantly lower GOT (p= 0.032) and 

creatinine (p= 0.009).  
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TABLE 8: Baseline characteristics and clinical chemical parameters of the study population per genotype 

Data are given as mean value and standard deviation (sd) and range between lowest and highest values. p-values 

were derived from an unpaired t-test; OGTT, oral glucose tolerance test; NEFA, non-esterified fatty acids; GOT, 

glutamic oxalacetic transaminase; GPT, glutamic pyruvate transaminase. 
 

      Carriers (n=12)  Non-Carriers (n=9)       

  Variable   Mean sd Range   Mean sd Range   p-value   

  Baseline characteristics                   

  Age  (years)   60.8 6.9 46.0 - 68.0   62.1 3.0 57.0 - 64.0   0.586   

  BMI (kg/m²)   27.4 1.9 24.1 - 30.5   25.8 1.7 22.5 - 27.9   0.053   

  Waist circumference (cm)   98.6 4.9 92.0 - 107.0   91.1 5.4 80.0 - 100.1   0.004   

  Blood pressure (mmHg)                   

  Systolic   125.8 15.1 100.0 - 145.0   121.1 14.3 100 - 140.0   0.477   

  Diastolic   76.3 8.3 60.0 - 85.0   71.7 15.0 50.0 - 90.0   0.381   

  Clinical chemical parameters                   

  Glucose (mg/dl)    97.8 11.8 78.1 - 116.6   95.3 8.7 84.3 - 108.4   0.603   

  Glucose 2h after OGTT (mg/dl)   140.1 40.7 92.3 - 198.5  112.3 27.2 78.4 - 156.5   0.093   

  Insulin (µIU/ml)   4.0 1.7 2.1 - 7.9   3.3 1.0 1.5 - 5.0   0.319   

  Cholesterol (mg/dl)   228.3 24.0 194.0 - 276.0   218.2 24.9 193.0 - 275.0   0.359   

  HDL (mg/dl)   60.4 13.5 38.0 - 84.0   61.2 9.6 47.0 - 79.0   0.881   

  LDL (mg/dl)   145.0 29.0 95.0 - 197.0   139.3 22.4 111.0 - 180.0   0.632   

  LDL/HDL   2.5 0.7 1.1 - 3.6   2.3 0.6 1.5 - 3.7   0.549   

  Triglycerides (mg/dl)   116.7 51.0 57.0 - 240.0   113.7 35.8 79.0 - 196.0   0.882   

  NEFA (mmol/l)   0.6 0.2 0.4 - 1.0   0.4 0.2 0.3 - 0.8   0.027   

  GOT (U/l)   23.6 5.8 16.0 - 32.0   29.0 4.5 24.0 - 38.0   0.032   

  GPT (U/l)   24.8 8.6 12.0 - 42.0   29.3 22.4 12.0 - 86.0   0.531   

  Creatinine (mg/dl)   1.0 0.1 0.8 -1.2   1.1 0.1 1.0 - 1.2   0.009   

  Hemoglobin (g/dl)   15.4 0.6 14.7 - 16.4   14.3 1.1 13.3 - 16   0.008   

  Thrombocytes (thou/µl)   244.8 35.6 188 - 312   196.8 22.8 171 - 246   0.002   

  Leucocytes (nl)   6.1 1.2 4.4 - 7.4   5.7 0.5 5.2 - 6.7   0.423   
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3.3.2.2 Baseline and time-resolved measurements during metabolic challenges 

To study genotype effects on metabolite responses after the catabolic and anabolic challenge, time-course 

experiments were performed by measuring time-resolved metabolite levels during fasting with the first 

measurement after a 12h overnight fast (baseline) and further measurements every 2h up to 24h fasting 

on study day 1, as well as after a 12h overnight fast (baseline) and at 5 postprandial time-points after an 

OGTT on study day 2 (FIGURE 11).  

FIGURE 13 shows time-courses of glucose (A), insulin (B), 

isoleucine (C), acetylcarnitine (C2) (D) and NEFA (E) during 

the fasting period (left part of FIGURE 13) and during the 

OGTT (right part of FIGURE 13). Plasma concentrations of 

glucose and insulin were low during fasting and increased 

after the glucose load. However, some of the subjects 

showed more delayed and higher peaks during the OGTT 

than others, indicating impaired glucose tolerance of some 

of the subjects. Time-courses of other selected metabolites 

also showed dynamic changes characteristic of an anabolic 

and catabolic state (Krug et al. 2012). Fasting for 24 h 

increased branched chain amino acids (e.g. shown for 

isoleucine (FIGURE 13C)), C2 as well as NEFAs. In contrast, 

up to 2 h after the OGTT, levels of isoleucine and C2 

decreased and showed a mirror-like behavior in the 

anabolic as compared to the catabolic state. 

 

 

 

 

 

 

FIGURE 13: Time-courses of selected plasma metabolites during 

the fasting period and the OGTT 

Glucose (A), insulin (B), isoleucine (C), C2 (D) are shown during the 

fasting period and the OGTT and NEFAs (E) during the OGTT. 

Single black lines show homozygous carriers of the major T allele 

of rs2014355 (non-carriers), single orange lines show homozygous 

carriers of the minor C allele of rs2014355 (carriers). C2, 

acetylcarnitine; NEFA, non-esterified fatty acids; OGTT, oral 

glucose tolerance test. 
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3.3.2.3 Effect of rs2014355 on baseline and time-resolved metabolite-levels 

To study genotype effects on fasting metabolite levels and on time-resolved metabolite responses during 

the catabolic and anabolic challenge, logistic regression with bootstrap randomized performance was 

applied. Using this model, we studied the accuracy by which baseline metabolite levels or the metabolite 

responses to both challenges predict the respective alleles of rs2014355. A C-index for estimation of 

prediction was calculated for each metabolite and a cutoff of 0.9 was defined for determination of highly 

predictive metabolites (Vanagas 2004). A C-index of 0.5 indicates random group assignment, whereas an 

index of 1.0 shows 100% group assignment. 

3.3.2.3.1 Baseline differences after a 12h overnight fast 

Applying logistic regression on baseline metabolite levels after an overnight fast of 12h, unraveled solely 

C4 (butyrylcarnitine) as highly predictive for the genotype at both study days (left part of TABLE 9).  

 

TABLE 9: Results of the logistic regression model 

Results are shown for baseline (after 12h overnight fasting) and time-resolved metabolite levels after OGTT and 

during fasting; top-ten results are given in SUPPLEMENTARY TABLE 4; adj. wc., analysis adjusted for waist 

circumference; C4, butyrylcarnitine; lysoPC a C20:4, lyso phosphatidylcholine C20:4; OGTT, oral glucose tolerance 

test; PC ae C42:0, acyl-alkyl phosphatidylcholine C42:0. 
  

    Metabolite C-index (adj. wc.)   Metabolite C-index (adj. wc.)   

st
ud

y 
da

y 
1 

  12 h fasting       Time-resolved analysis (fasting)   

  C4 0.950 (0.969)     C4 0.999 (0.978)   

          PC ae C42:0 0.906 (0.914)   

                

st
ud

y 
da

y 
2 

  12 h fasting       Time-resolved analysis (OGTT)   

  C4 0.969 (0.970)     C4 0.964 (0.976)   

          lysoPC a C20:4 0.917 (0.926)   

          Glutamine 0.909 (0.912)   
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3.3.2.3.2 Time-resolved analysis during fasting 

Next, logistic regression was applied to the time-resolved metabolite measurements during the fasting 

period. Thereby, a good group assignment was also shown for C4 (upper right part of TABLE 9). 

FIGURE 14A illustrates smoothed time-courses of single subjects as well as the mean curve and standard 

deviation over time for carriers and non-carriers, respectively. It clearly shows higher baseline and time-

resolved concentrations of C4 in carriers of the minor CC allele. Aside, the time-resolved analysis of 

metabolite levels during fasting shows high genotype prediction for PC ae C42:0 (acyl-alkyl 

phosphatidylcholine C42:0; upper right part of TABLE 9). FIGURE 14B indicates a trend for an increase of 

plasma levels of PC ae C42:0 with prolonged fasting for non-carriers, whereas plasma levels of carriers 

remained rather stable over time. 

FIGURE 14: Time-courses of C4 (A) and PC ae C42:0 (B) during the 24h fasting period 

Black lines show homozygous carriers of the major T allele of rs2014355 (non-carriers), orange lines show 

homozygous carriers of the minor C allele of rs2014355 (carriers); light lines show time-courses of single subjects 

fitted by smoothing splines with the degree of smoothness chosen with leave-one-out cross validation; the bold line 

shows mean values of time-courses of all subjects per genotype; the bold and dashed line shows the standard 

deviation of time-courses of all subjects per genotype; C4, butyrylcarnitine; PC ae C42:0, acyl-alkyl 

phosphatidylcholine C42:0. 
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In addition, we calculated selected metabolite ratios of time-resolved metabolites during the fasting 

challenge as proxies for enzymatic activities of ß-oxidation enzymes and also applied logistic regression 

with bootstrap randomized performance (SUPPLEMENTARY TABLE 5). The metabolite ratio of 

acetylcarnitine and butyrylcarnitine (C2/C4) (left part of FIGURE 15) resembling most likely the enzyme 

activity of ACADS was highly predictive for the respective allele of rs2014355 (C-index= 0.96), however, 

less predictive than analyses including solely time-courses of C4 (C-index= 0.999). Nevertheless, the ratio 

of propionylcarnitine to butyrylcarnitine (C3/C4) (right part of FIGURE 15), that showed highest 

associations with rs2014355 in GWAS (Illig et al. 2010), showed a C-index of 0.999 for the time-resolved 

analysis during fasting and, thus, showed equal prediction of the respective allele of rs2014355 like C4. 

The metabolite ratio of butyrylcarnitine and hexanoylcarnitine/fumarylcarnitine (C4/C6 (C4.1 DC) resulted 

in a C-index of 1.0 and, thus, a slightly better group assignment than C4 and C3/C4. Calculations of the 

same metabolite ratios after an overnight fast of 12 h on study day 1 (left part of SUPPLEMENTARY TABLE 

5) indicated that the same ratios were highly predictive for the respective allele of rs2014355 like the time-

resolved measurements. However, the time-resolved measurements showed a slightly better group 

assignment for the respective ratios. In conclusion, there was no remarkably better group assignment by 

calculating metabolite ratios at baseline and during the fasting period than by analyzing exclusively the 

levels of C4. 

As expected, the metabolite ratio of C2/C4 that might approximate the enzyme activity of ACADS clearly 

showed increasing levels during fasting for carriers and non-carriers that were less pronounced in carriers 

(FIGURE 15). In line with the literature, C2 and most higher-chained acylcarnitines showed an increase of 

levels during fasting. Nevertheless, C4 levels of carriers and non-carriers rather tended to decrease over 

the fasting period (Krug et al. 2012). Remarkably, in spite of the genotype difference in C4 levels that might 

approximate C4-CoA levels (substrate of ACADS), time-courses showed no genotype-difference in C2 

approximating the ACADS product acetyl-CoA (FIGURE 15). Moreover, there were also no genotype-

dependent differences in higher-chained acylcarnitines.  
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FIGURE 15: Timelines of the metabolite ratios C2/C4 and C3/C4 during fasting and corresponding metabolites over 

time during the fasting period 

Black lines show homozygous carriers of the major T allele of rs2014355 (non carriers), orange lines show 

homozygous carriers of the minor C allele of rs2014355 (carriers); light lines show time-courses of single subjects 

fitted by smoothing splines with the degree of smoothness chosen with leave-one-out cross validation; the bold line 

shows mean values of time-courses of all subjects per genotype; the bold and dashed line shows the standard 

deviation of time-courses of all subjects per genotype; C2, acetylcarnitine; C3, propionylcarnitine; C4, 

butyrylcarnitine. 
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3.3.2.3.3 Time-resolved analysis after the OGTT 

 

 

 

 

 

 

 

 

The logistic regression model with bootstrap randomized performance was also applied for the time-

resolved metabolite levels during OGTT. Again, the analysis revealed C4 as highly predictive for the 

respective allele of rs2014355 (lower right part of TABLE 9). Time-courses of C4 showed higher baseline 

concentrations (after a 12h overnight fast) in carriers of the minor CC allele (FIGURE 16A) which 

approached the levels of the non-carriers over time. The time-resolved analysis further unraveled                          

lyso PC a C20:4 (lyso phosphatidylcholine C20:4) and glutamine as highly distinctive metabolites for the 

respective alleles of rs2014355 (lower right part of TABLE 9). Time-courses of lyso PC a C20:4 (FIGURE 16B) 

indicated a decrease of metabolite level in non-carriers, whereas metabolite levels of carriers were not 

uniform. Time-courses of glutamine (FIGURE 16C) generally showed lower levels for carriers than for non-

carriers during OGTT with a trend for a stronger decrease over time in carriers. 

FIGURE 16: Postprandial time-courses of C4 (A), PC a C20:4 (B) and glutamine (C) after OGTT 

Black lines show homozygous carriers of the major T allele of rs2014355 (non carriers), orange lines show 

homozygous carriers of the minor C allele of rs2014355 (carriers); Light lines show time-courses of single subjects 

fitted by smoothing splines with the degree of smoothness chosen with leave-one-out cross validation; the bold line 

shows mean values of time-courses of all subjects per genotype; the bold and dashed line shows the standard 

deviation of time-courses of all subjects per genotype; C4, butyrylcarnitine; lyso PC a C20:4, lyso phosphatidylcholine 

C20:4; OGTT, oral glucose tolerance test. 



P O S T P R A N D I A L  M E T A B O L I S M  I N  G W A S - I D E N T I F I E D  V A R I A N T S | 61 
 

  

3.3.2.3.4 Adjusted analysis for waist circumference 

Due to the baseline difference between minor CC allele compared to major TT allele carriers in waist 

circumference, we additionally applied logistic regression with bootstrap randomized performance 

adjusted for waist circumference and, again, set the cutoff for highly predictive metabolites and metabolite 

ratios to 0.9. Including waist circumferences into the analysis and comparing the adjusted C-indices to the 

unadjusted C-indices allowed us to assess the strength of genotype-prediction that can be explained by 

waist circumference. TABLE 9 compares results of the logistic regression analysis adjusted for waist 

circumference (C-index in brackets) with C-indices of highly predictive unadjusted metabolites and clearly 

shows comparable genotype prediction. Thus, waist-circumference seems to have no relevant influence 

on genotype prediction by C4, PC ae C42:0, lyso PC a C20:4 and glutamine in the baseline state as well as 

during the respective metabolic challenge tests. Moreover, results of the metabolite ratios at baseline and 

during the fasting period also showed equal genotype-prediction by adjusting waist circumference 

(SUPPLEMENTARY TABLE 5). 
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3.3.3 Discussion 

Using targeted metabolomics as a hypothesis-free approach, we investigated whether a 24h fasting period 

and an OGTT might unravel novel metabolic effects for the GWAS-identified variant rs2014355 in the 

ACADS locus. The idea was that defined challenges may unmask early metabolomic changes which are not 

detectable in the fasting state.  

Logistic regression identified butyrylcarnitine as highly genotype-distinctive metabolite after an overnight 

fast of 12h (baseline) and during a prolonged fasting period of 24h as well as during 4h following an OGTT. 

Further genotype-fasting interaction was shown for PC ae C42:0 and a genotype-OGTT interaction for 

lysoPC a C20:4 as well as for glutamine.   

Acylcarnitines measured in plasma or serum approximate intra-mitochondrially accumulating acyl-CoAs 

which are exported out of the mitochondria as their corresponding carnitine esters (Noland et al. 2009; 

Ventura et al. 1999; ter Veld et al. 2009). However, the exact mechanism of the transport of acylcarnitines 

across the mitochondrial and plasmalemmal membranes into the extracellular space is still elusive 

(Violante et al. 2013). Butyryl-CoA is the major substrate of ACADS (Ghisla and Thorpe 2004), and thus, 

changes in plasma levels of butyrylcarnitine (C4) probably indicate an altered enzyme activity of ACADS. 

Time-courses of C4 during the fasting challenge as well as after the OGTT showed higher baseline 

concentrations for homozygous carriers of the minor C allele of rs2014355 (carriers) compared to the 

homozygous carriers of the major T allele (non-carriers). Higher C4 concentrations of carriers remained 

stable during the fasting challenge and approached levels of non-carriers during the OGTT. Our baseline 

data are in line with the GWAS identified association of rs2014355 with decreased C3/C4 acetylcarnitine 

ratios (Gieger et al. 2008; Illig et al. 2010; Nicholson et al. 2011), mainly explained by increased C4 levels 

in carriers (Shin et al. 2014; Illig et al. 2010). Thus, there might be an accumulation of the major substrate 

of ACADS (Ghisla and Thorpe 2004) reflecting a reduced ACADS activity in minor C allele carriers of 

rs2014355. Our analysis showed rs2014355 to be in perfect LD with rs1799958, one of the two common 

variants described in association with SCAD deficiency (Gregersen et al. 1998). Biochemical symptoms of 

SCAD deficiency are determined by an accumulation of the substrate of SCAD. Accumulating C4-CoA can 

be converted into different metabolites including the corresponding carnitineester C4, the corresponding 

glycine ester butyrylglycine, butyrate and ethylmalonic acid (EMA) that is excreted via urine                                     

(van Maldegem et al. 2006). Including homozygous carriers of rs1799958 in perfect LD with rs2014355, 

Maldegem et al. conducted fasting tests up to 46h and showed that EMA levels in urine increased during 

fasting, whereas consistent with our findings, plasma C4 levels remained stable over time (van Maldegem 
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et al. 2010). Thus, potentially increasing butyryl-CoA levels during fasting might be converted into EMA 

and excreted via urine and thus are not becoming apparent as increased C4 in our plasma samples. Aside, 

the decrease in plasma C4 levels observed during OGTT in our study might probably be based on insulin-

induced inhibition of ß-oxidation in the catabolic state.  

Hornbaek et al. hypothesized that elevated circulating C4 levels in subjects homozygous for the minor 

allele of rs2014355 increase basal insulin secretion thereby causing hyerinsulinemia that might exhaust              

ß-cells and desensitize insulin receptors in the long run (Hornbak et al. 2011). In glucose-tolerant 

individuals carrying the minor C allele of rs2014355, authors showed a reduced glucose-stimulated insulin 

release during an OGTT prior to the correction for multiple testing. However, the minor allele was not 

directly associated with T2D (Hornbak et al. 2011). This finding is in line with previously published meta-

analyses (Zeggini et al. 2008; Morris et al. 2012) showing that the ACADS variant rs2014355CC does not 

associate with an increased risk for development of T2D. Moreover, GWAS showed no significant 

association between fasting glucose (Dupuis et al. 2010; Manning et al. 2012), fasting insulin (Dupuis et al. 

2010; Manning et al. 2012) and 2 h glucose after OGTT (Saxena et al. 2010) for rs2014355 as well as for 

SNPs in high linkage disequilibrium (LD) with rs2014355. Though there was a trend for an association                  

(ß= 0.234, p = 3.70 x 10-3) of rs2066938 (LD: r2= 0.91 with rs2014355, European population, 1,000 Genome 

Phase 1) and homeostatic model assessment-B (HOMA-B) (Dupuis et al. 2010) (Data on glycaemic traits 

have been contributed by MAGIC investigators and have been downloaded from 

www.magicinvestigators.org). Aside, the data of our study did not indicate differences of carriers of 

rs2014355 and controls in basal glucose, 2 h glucose after OGTT and basal insulin levels (TABLE 8) as well 

as no genotype destinction for basal and time-resolved metabolite levels of insulin and glucose (TABLE 9). 

Therefore, the association of rs2014355 with T2D is still controversial and remains subject for further 

investigation. 

In addition to increased C4 levels, we found a moderate genotype-fasting and genotype-OGTT interaction 

in phosphatidylcholines that was not identified in the analysis of baseline samples in our study as well as 

in GWAS (Shin et al. 2014; Gieger et al. 2008; Illig et al. 2010). During fasting, plasma levels of PC ae C42:0 

showed an increase in non-carriers, whereas concentrations of carriers remained stable over time. A study 

with healthy young males also showed a slight increase in PC ae C42:0 levels in the catabolic state (Krug et 

al. 2012). Thereupon, PC ae C42.0 seems to be mobilized during fasting in healthy males, whereas there 

might be less mobilization in homozygote carriers of the minor C allele of rs2014355. Moreover, during 

the OGTT, lyso PC a C20:4 levels remained rather stable or were not uniform over time in carriers, whereas 

levels were reduced in plasma of non-carriers. Consequently, the stronger reduction of lyso PC a C20:4 in 
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the anabolic state as well as the higher increase in PC ae C40:2 in the catabolic state in control subjects 

may indicate a less flexible reaction of lipid metabolism in carriers of the minor C allele in response to these 

conditions. Altered PC/lyso PC metabolism was shown to be associated with atherosclerosis (Lusis 2000), 

obesity (Pietilainen et al. 2007), impaired glucose tolerance and T2D (Zhu et al. 2011; Floegel et al. 2013b; 

Wang-Sattler et al. 2012; Ha et al. 2012). However, to our knowledge, PC ae C42.0 has not been reported 

to be associated with diabetes and lyso PC C20.4 levels were shown to be increased in T2D compared to 

controls (Zhu et al. 2011). 

Moreover, we observed a genotype-OGTT interaction in glutamine levels, that was also not identified in 

our analysis of baseline data as well as in published GWAS (Gieger et al. 2008; Illig et al. 2010). We found 

a decrease in glutamine concentrations over 4h after OGTT with a stronger manifestation in homozygous 

carriers of the minor C allele. A study measuring metabolites during 180 minutes after OGTT in healthy 

subjects showed a minor increase of glutamine 30 min after OGTT and levels returned to baseline after 

180 minutes (Skurk et al. 2011). Aside, another study measuring metabolites at baseline and 240 min after 

OGTT also showed a decrease of glutamine after 240 min compared to baseline (Ho et al. 2013). Alterations 

in the glutamine-glutamate cycle have also been shown in epilepsy (Petroff et al. 2002; Pan et al. 2008) 

and, hence, there might be a potential link between the altered postprandial glutamine metabolism in 

minor C allele carriers of rs2014355 and epilepsy as one of the clinical symptoms reported in patients with 

SCAD deficiency (van Maldegem et al. 2010). In addition, an inverse association of glutamine levels with 

multiple metabolic risk factors like insulin, triglycerides and lower HDL was reported (Cheng et al. 2012; 

Menge et al. 2010). Decreased plasma glutamine levels were also shown in early T2D (Menge et al. 2010). 

However, Xu et al. described a significant increase in glutamine levels in subjects with impaired fasting 

glucose, whilst no significant changes could be shown in subjects with T2D (Xu et al. 2013).  

Our study revealed significantly higher mean waist circumferences in homozygous minor C allele carriers 

of rs2014355 compared to homozygous major T allele carriers. Waist circumference was found to be 

inversely associated with lyso PCs as well as PCs in overweight males (Szymanska et al. 2012) and visceral 

adiposity was inversely associated with ae PCs in obese females (Martin et al. 2013). In contrast, glutamine 

levels were shown to be rather increased with increasing visceral adiposity (Martin et al. 2013). Due to the 

potential influence of waist-circumference on concentrations of selected metabolites, we additionally 

analyzed data adjusted for waist circumference. As genotype prediction of C4, PC ae C42:0, lyso PC a C20:4 

as well as glutamine adjusted for waist circumference was similar to the unadjusted prediction, we assume 

no marked influence of waist circumference on these metabolites in our study.  
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A limitation of the study is its small sample size, thus results should be considered as preliminary findings 

that need verification by other studies. Moreover, impaired glucose tolerance after OGTT, might 

potentially be due to the advanced age of participants (61.3 ± 5.5 years) and, hence, verification in a 

younger study cohort might be useful. Furthermore, our analysis only includes male subjects to increase 

the homogeneity within the study population. However, men and women differ in their postprandial 

response (Ho et al. 2013), thus, generalization of the finding to both sexes should be avoided. We used 

targeted metabolomics mainly focusing on lipids. Hence, associations of rs2014355 with other metabolites 

cannot be excluded. In addition, the exact biochemical mechanisms leading to the observed changes of 

metabolites remain unknown and further investigations are needed to clarify the biological significance of 

the findings.  

To our knowledge, this is the first study clearly underlining the link between the GWAS tag SNP rs2014355 

and the variant rs1799958 (625G>A) frequently reported in association with SCAD deficiency. Due to using 

a comprehensive metabolomics approach to analyze gene-environment interactions, our data clearly show 

that studies of rs2014355 phenotypes in the basal state after a 12h overnight fast deliver incomplete 

information and metabolic challenge tests are essential for detecting moderate differences in plasma 

metabolism. In addition to genotype-dependent baseline differences in C4 levels, we found moderate 

genotype-fasting interactions in PC ae C42:0 and genotype-OGTT interactions in lyso PC a C20:4 as well as 

glutamine. Further studies are needed to unravel how gene variants in the ACADS locus affect 

metabolomics responses to anabolic and catabolic challenges and to find out if there is susceptibility for 

the development of a multifactorial disease like T2D.  
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3.4 The impact of rs174547 in the FADS1 locus on the plasma metabolism in the 

anabolic state during nutritional challenges  

3.4.1 The FADS (Fatty acid desaturase) – genes 

The FADS1 gene spans 17.2 kb on chromosome 11 and is located in a gene cluster including also FADS2 

(OMIM 606149, 39.1 kb) and FADS3 (OMIM: 606150, 18.0 kb). FADS1 and FADS2 are oriented head-to-

head, with the exons 1 of both genes being separated by an 11.4 kb region. FADS3 is located in the 6 kb 

telomeric side from FADS2 in tail-to-tail orientation. FADS1, FADS2 and FADS3 show the same exon/intron 

organization (12 exons and 11 introns) suggesting that they have arisen evolutionary from gene duplication 

(Nakamura and Nara 2004; Lattka et al. 2010). Whereas the function of the transcripts of the FADS3 gene 

is still an open question (Lee and Park 2014), FADS1 and FADS2 encode for fatty acids desaturases                  

(delta-5 desaturase and delta-6 desaturase, respectively), nonheme iron-containing enzymes that 

introduce a double bound between carbons of fatty acid acyl chains during the biosynthesis long-chain 

fatty acids (Nakamura and Nara 2004).  

 

 

FIGURE 17: Mammalian pathway for omega-6 and omega-3 long-chain polyunsatured fatty acid synthesis from 

essential fatty acids by enzymatic desaturation and chain elongation 

Modified from Sprecher 1981. 
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The delta-6 destaurase converts the essential fatty acid 18:2 n-6 (linoleic acid) to 18:3 n-6 in the omega-6 

pathway and the essential fatty acid 18:3 n-3 (α-linoleic acid) to 18:4 n-3 in the omega-3 pathway                 

(FIGURE 17). After an elongation step, the delta-5 desaturase desaturates 20:3 n-6 to 20:4 n-6 (arachidonic 

acid) in the omega-6 pathway and 20:4 n-3 to 20:5 n-3 (eicosapentaenoic acid (EPA)) in the omega-3 

pathway (FIGURE 17). These molecules are either converted into eicosanoids or further elongated and 

desaturated (again with a delta-6 desaturase (Nakamura and Nara 2004)), resulting in several long chain 

polyunsaturated fatty acids (LC-PUFAs), e.g. 22:6 n-3 (docosahexaenoic acid (DHA)). Thus, the levels of             

LC-PUFAs in the human body are highly dependent on their intake of precursor fatty acids that are 

endogenously elongated and desaturated to physiologically active LC-PUFAS or the intake of LC-PUFAS by 

diet (Lattka et al. 2009b). Thereby, the ratio of n-6 to n-3 fatty acid intake is of special importance as a high 

ratio of omega-6 to omega-3 fatty acids is considered as a major contributor to the pathogenesis of many 

diseases, such as diabetes, cardiovascular disease and cancers (Lee and Park 2014). 

LC-PUFAS perform a variety of physiological functions in the human metabolism. For example, the fluidity 

and integrity of cell membranes is influenced by the LC-PUFA composition in phospholipids. Further,            

LC-PUFAS have several other central functions on the molecular level, e.g. by acting as second messengers 

in intracellular signaling pathways or regulating transcription. Aside, they are precursors of eicosanoids 

and play an important role in inflammatory processes (Nakamura and Nara 2004; Lattka et al. 2009a). 

Moreover, LC-PUFAS, especially DHA, are very important for early stage brain development (Martinez 

1992). 

Emerging research has demonstrated that genetic variation in FADS1 and FADS2 are associated with 

alterations in fatty acid composition of different biological sources that may subsequently modify an 

individual’s propensity for disease. Common genetic variants of FADS1 and FADS2 were shown to be in 

high LD, with one LD block (including rs174547) spanning over FADS1, the intergenic region and the 

promotor region of FADS2 (Zietemann et al. 2010). Association studies on FADS polymorphisms clearly 

showed significant associations with an accumulation of desaturase substrates and a decline of desaturase 

products due to the minor alleles of the associated SNPs in serum (Schaeffer et al. 2006; Malerba et al. 

2008; Gieger et al. 2008), plasma (Lemaitre et al. 2011; Martinelli et al. 2008; Baylin et al. 2007; Rzehak et 

al. 2009; Xie and Innis 2008; Tanaka et al. 2009), erythrocyte membranes (Zietemann et al. 2010; Martinelli 

et al. 2008; Malerba et al. 2008; Rzehak et al. 2009; Xie and Innis 2008), adipose tissue (Baylin et al. 2007) 

and breast milk phospholipids (Xie and Innis 2008). Most significant associations were observed for the 

majority of SNPs in FADS1 and FADS2 genes and arachidonic acid (Schaeffer et al. 2006; Malerba et al. 

2008; Xie and Innis 2008; Tanaka et al. 2009). Aside, GWAs on complex lipid traits reported decreased total 
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cholesterol (Aulchenko et al. 2009; Tanaka et al. 2009), LDL (Aulchenko et al. 2009; Sabatti et al. 2009; 

Tanaka et al. 2009) and HDL levels (Kathiresan et al. 2009) and increased triglyceride levels (Kathiresan et 

al. 2009) in carriers of the minor alleles of SNPs in the FADS-locus (Sabatti et al. 2009). Moreover, FADS 

gene cluster polymorphisms are disscused to be associated with several diseases. It is discussed that FADS 

genotypes have a modulating effect on fatty acid related phenotypes such as mental ability (Caspi et al. 

2007; Brookes et al. 2006), atopic disease (Lattka et al. 2009b), coronary artery disease (Liu et al. 2015; 

Martinelli et al. 2008), the metabolic syndrome (Truong et al. 2009) and T2D (Kroger and Schulze 2012; 

Dupuis et al. 2010). 
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3.4.2 Results 

3.4.2.1 Genotype verification and baseline characteristics of the study population 

Based on the imputed genome-wide association data of the KORA cohort 13 homozygous carriers of the 

minor C allele of rs174547 (carriers) and 13 homozygous carriers of the major T allele (non-carriers, 

controls) were recruited. Genotype verification showed 100% compliance with assumed genotypes of 

rs174547. The results of the LD-block analysis of rs174547 are shown in SUPPLEMENTARY TABLE 6. During 

the OGTT, one of the carriers showed a 2 h-glucose concentration higher than 200 mg/dl as a sign of overt 

diabetes and, thus, was excluded from further analysis.  

Baseline characteristics and clinical chemical parameters of the 12 carriers and 13 non-carriers included in 

the statistical analysis are shown in TABLE 10. Carriers and non-carriers did not differ significantly in age, 

BMI, waist circumference, blood pressure and in most of the clinical chemical parameters. Of note, 

participants carrying the CC genotype showed significantly higher fasting insulin concentrations, HOMA-B 

and HOMA-IR compared to the major TT genotype (p= 0.017, 0.020 and 0.033, respectively). Moreover, 

homozygous minor allele carriers were significantly higher in triglycerides (p= 0.034).  
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TABLE 10: Baseline characteristics and clinical chemical parameters of the study population per genotype 

Data are given as mean value and standard deviation (sd) and range between lowest and highest values. p-values 

were derived from unpaired t-tests; GOT, glutamic oxalacetic transaminase; GPT, glutamic pyruvate transaminase; 

HOMA, homeostatic model assessment; OGTT, oral glucose tolerance test. 

      Carriers (n= 12)    Non-Carriers (n= 13)       

  Variable   Mean sd   Range   Mean sd Range   p-value   

  Baseline characteristics                     

  Age  (years)   57.7 6.5   43.0 - 65.0   61.8 3.5 53.0 - 65.0   0.056   

  BMI (kg/m²)   26.6 3.6   19.1 - 30.2   27.0 3.2 22.6 - 33.6   0.745   

  Waist circumference (cm)   94.6 10.2   76.0 - 109.0   93.8 8.1 82.0 - 110.0   0.828   

  Blood pressure (mmHg)                     

  Systolic   123.8 17.1   100.0 -150.0   122.4 14.7 100.0 -140.0   0.832   

  Diastolic   70.0 7.7   60.0 - 80.0   71.5 13.0 50.0 - 90.0   0.725   

  Clinical chemical parameters                     

  Glucose (mg/dl)    94.5 10.2   80.0 - 113.6   94.9 10.2 74.3 - 110.5   0.923   

  Glucose 2h after OGTT (mg/dl)    104.0 18.7   66.3 - 132.0   105.3 20.5 78.4 - 156.5   0.867   

  Insulin (µIU/ml)   4.8 2.3   1.2 - 9.7   3.0 1.1 1.5 - 5.0   0.017   

  HOMA-B   56.1 23.1   24.4 - 104.6   36.7 15.6 14.4 - 60.4   0.020   

  HOMA-IR   1.2 0.6   0.2 - 2.7   0.7 0.3 0.3 - 1.2   0.033   

  Cholesterol (mg/dl)   234.3 35.9   197.0 - 320.0   216.4 30.7 177.0 - 275.0   0.193   

  HDL (mg/dl)   53.9 14.5   37.0 - 79.0   59.4 13.1 38.0 - 85.0   0.331   

  LDL (mg/dl)   152.5 24.6   120.0 - 204.0   138.3 30.2 103.0 - 188.0   0.213   

  LDL/HDL   3.1 1.1   1.7 - 5.5   2.5 0.8 1.3 - 3.7   0.134   

  Triglycerides (mg/dl)   177.8 98.9   93.0 - 453.0   110.7 40.9 45.0 - 196.0   0.034   

  GOT (U/l)   24.8 4.2   20.0 - 33.0   25.2 5.4 16.0 - 38.0   0.840   

  GPT (U/l)   29.3 10.2   10.0 - 43.0   31.1 20.3 12.0 - 86.0   0.782   

  Creatinine (mg/dl)   1.0 0.1   0.8 - 1.2   1.0 0.1 0.8 - 1.3   0.097   

  Hemoglobin (g/dl)   15.7 1.2   13.8 - 17.5   14.8 1.0 13.3 - 16.1   0.069   

  Thrombocytes (thou/µl)   230.4 48.6   174.0 - 350.0   200.8 53.3 148.0 - 317.0   0.162   

  Leucocytes (nl)   6.3 1.6   3.6 - 8.9   5.9 1.0 4.6 - 8.5   0.413   
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3.4.2.2 Baseline and time-resolved measurements during metabolic challenges 

To study genotype effects on metabolite responses after two anabolic metabolic challenges, time-course 

experiments were performed by measuring time-resolved metabolite levels during the OLTT and the OGTT 

with the first measurement after a 12h overnight fast (0h, baseline) and further measurements at                               

5 postprandial time-points after the OLTT and the OGTT, respectively.  

FIGURE 18 shows time-courses of glucose (A), insulin (B), 

isoleucine (C) and acetylcarnitine (C2) (D) during the OLTT and 

the OGTT. Plasma concentrations of glucose and insulin 

increased after the OGTT (FIGURE 18A, B, right part). 

However, some of the subjects showed more delayed and 

higher peaks than others, indicating impaired glucose 

tolerance of some of the subjects. Aside, glucose and insulin 

levels also increased after the OLTT with a peak at about 2 h 

(FIGURE 18A, B, left part). This increase was expected, 

because the OLTT includes a substantial amount of 

carbohydrates (60.0 ± 4.4 g) aside from the high amount of 

fatty acids (71.8 ± 5.2 g). Time-courses of other selected 

metabolites (FIGURE 18C, D) showed dynamic changes 

characteristic for an OLTT and an OGTT (Krug et al. 2012). Due 

to the OLTT, isoleucine (FIGURE 18C, left part) levels increased 

within 2 h, decreased thereafter within about 4 h and 

approximated baseline levels after 8 h. In contrast, 

concentrations of C2 (FIGURE 18D, left part) initially 

decreased within 2 to 4 h, thereafter increased with a peak at 

6 h and in most cases approximated baseline levels 8 h after 

challenge. Aside, during the OGTT, plasma concentrations of 

FIGURE 18: Time-courses of selected plasma metabolites during the OLTT and the OGTT 

Glucose (A), insulin (B), isoleucine (C) and C2 (D) concentrations are shown as time-resolved measurements during 

the OLTT (left part) and the OGTT (right part). Single black lines show homozygous carriers of the major T allele of 

rs174547 (non-carriers), single blue lines show homozygous carriers of the minor C allele of rs174547 (carriers). C2, 

acetylcarnitine; OGTT, oral glucose tolerance test; OLTT, oral lipid tolerance test. 
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both isoleucine (FIGURE 18C, right part) and C2 (FIGURE 18D, right part) decreased within 2 h and 

approximated baseline thereafter. 

3.4.2.3 Effect of rs174547 on baseline and time-resolved metabolite-levels 

To study genotype effects on fasting metabolite levels and on time-resolved metabolite responses during 

the OLTT and the OGTT, logistic regression with bootstrap randomized performance was applied. Using 

this model, the accuracy by which the baseline metabolite levels or the challenge responses of metabolites 

predict the respective alleles of rs174547 was studied. A C-index for estimation of prediction was 

calculated for each metabolite and a cutoff of 0.9 was defined for determination of highly predictive 

metabolites (Vanagas 2004). A C-index of 0.5 indicates random group assignment, an index of 1.0 shows 

100% group assignment.  

3.4.2.3.1 Baseline differences after a 12h overnight fast 

Applying logistic regression on baseline metabolite levels after an overnight fast of 12h did not unravel 

highly predictive metabolites for the respective genotype at both study days (left part of TABLE 11).  

 

TABLE 11: Highly distinctive metabolites revealed by logistic regression 

Results are shown for baseline (after 12h overnight fast) and time-resolved metabolite levels after the OLTT and the 

OGTT; top-ten results are given in SUPPLEMENTARY TABLE 7; lyso PC a C 20.4, lyso phosphatidylcholine C20:4; OGTT, 

oral glucose tolerance test; OLTT, oral lipid tolerance test; SM C20:2, shingomyeline C20:2. 

    Metabolite C-index     Metabolite C-index    

st
ud

y 
da

y 
1   12 h fasting       Time-resolved analysis (OLTT)   

          

SM C20:2 0.903 

  

                

st
ud

y 
da

y 
2   12 h fasting       Time-resolved analysis (OGTT)   

          

lysoPC a C20:4 0.900 

  

                

                  
 

 



P O S T P R A N D I A L  M E T A B O L I S M  I N  G W A S - I D E N T I F I E D  V A R I A N T S | 73 
 

  

3.4.2.3.2 Time-resolved analysis during the OLTT 

Next, logistic regression was applied to the time-resolved metabolite measurements during the OLTT. 

Thereby, shingomyeline C20:2 (SM C20:2) was identified as the only highly predictive metabolite for the 

genotype of rs174547 (upper right part of TABLE 11). FIGURE 19 illustrates the smoothed time-couses of 

single subjects as well as the mean curve and standard deviation over time for carriers and non-carriers, 

respectively. Although a difference between carriers and non-carriers is hardly visible, carriers show a 

trend for a slight decrease over time, while non-carriers rather show a slight increase prior to approaching 

baseline levels after 8 h.  

 

3.4.2.3.3 Time-resolved analysis after the OGTT 

The logistic regression model with bootstrap randomized performance was also applied for the time-

resolved metabolite levels during the OGTT. The analysis revealed solely lyso phosphatidylcholine C20:4 

(lyso PC a C20:4) as highly predictive for the respective allele of rs174547 (lower right part of TABLE 11). 

Time-courses of lyso PC a C20:4 (FIGURE 20B) showed lower concentrations for carriers than for non-

carriers at baseline as well as during 4 h after the OGTT. Moreover, there was a general trend towards a 

decrease in lyso PC a C20:4 levels over time being slightly more pronounced for non-carriers than for 

carriers. Although lyso PC a C20:4 was not identified as highly genotype-distinctive during the OLTT, it 

showed a good C-index of 0.883. Time-courses during the OLTT (FIGURE 20A) also showed lower 

concentrations for carriers than for non-carriers. However, there were higher inter-subject variations at 

baseline in non-carriers at the day of the OLTT compared to the day of the OGTT. 

FIGURE 19: Time-courses of SM C20:2 during the OLTT 

Black lines show homozygous carriers of the major T allele of 

rs174547 (non-carriers), blue lines show homozygous carriers of 

the minor C allele of rs174547 (carriers); light lines show time-

courses of single subjects fitted by smoothing splines with the 

degree of smoothness chosen with leave-one-out cross validation; 

the bold line shows mean values of time-courses of all subjects per 

genotype; the bold and dashed line shows the standard deviation 

of time-courses of all subjects per genotype; SM C20:2, 

sphingomyeline C20:2; OLTT, oral lipid tolerance test. 
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3.4.2.3.4 Analysis of selected metabolite ratios 

In addition to the analysis of single metabolites, metabolite ratios of metabolites that were previously 

associated with SNPs in high LD with rs174547 (Illig et al. 2010; Hicks et al. 2009; Gieger et al. 2008) as well 

as metabolite ratios approximating enzyme activity of the delta-5 and delta-6 desaturase were calculated 

(SUPPLEMENTARY TABLE 8). Logistic regression with bootstrap randomized performance was applied on 

these selected metabolite ratios at baseline and on time-resolved metabolite ratios during the OGTT and 

OLTT (SUPPLEMENTARY TABLE 9). Results showed a number of ratios previously reported to be associated 

with rs174547 or SNPs in high LD with rs174547 in fasting blood samples (Illig et al. 2010; Gieger et al. 

2008) to be highly distinctive for the respective allele of rs174547 at baseline as well as during the OLTT 

and OGTT. Most of the distinctive metabolite ratios contain an acyl-alkyl, diacyl or lyso phoshatidylcholine 

with four double bonds as numerator or denumerator and an acyl-alkyl, diacyl or lyso phoshatidylcholine 

with less than four double bonds on the repective other side of the fraction line. FIGURE 21 illustrates the 

metabolite ratio of lyso PC a C20:4 / lyso PC a C20:3 during the OLTT (left part) and the OGTT (right part). 

The ratio shows a clear distinction between carriers of the minor CC allele (carriers) and of the major                       

TT allele (non-carriers) at baseline (0 h) of both study days as well as during the OLTT and the OGTT. The 

FIGURE 20: Postprandial time-courses of lyso PC a C20:4 after the OLTT (A) and OGTT (B)          

Black lines show homozygous carriers of the major T allele of rs2014355 (non-carriers), blue lines show 

homozygous carriers of the minor C allele of rs2014355 (carriers); light lines show time-courses of single subjects 

fitted by smoothing splines with the degree of smoothness chosen with leave-one-out cross validation; the bold 

line shows mean values of time-courses of all subjects per genotype; the bold and dashed line shows the standard 

deviation of time-courses of all subjects per genotype; lyso PC a C20:4; lyso phosphatidylcholine C20:4; OGTT, 

oral glucose tolerance test; OLTT, oral lipid tolerance test. 
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C-indices (SUPPLEMENTARY TABLE 9) confirmed the high genotype distinction of the ratio (baseline OLTT: 

c= 0.947; OLTT: c= 0.904; baseline OGTT: c= 0.928; OGTT: c= 0.886). Aside, the upper and lower part of 

FIGURE 21 shows the time-courses of the corresponding metabolites lyso PC a C20.3 (upper part) and lyso 

PC a C20:4 (lower part) during the OLTT (left part) and the OGTT (right part). The time-courses elucidated 

that lower levels of lyso PC a C20:4 in carriers at baseline as well as over time during the OLTT and OGTT 

were mainly responsible for genotype-distinctive characteristics of the ratio of                                                                     

lyso PC a C 20:4 / lyso PC a C20:3. However, there were also slightly higher lyso PC a C20:3 levels in carriers 

that might contribute to the good genotype distinction of the ratio of both metabolites. 

  

FIGURE 21: Time-courses of the metabolite ratio of lyso PC a C20:4 / lyso PC a C20:3 as well as the time-courses of                     

lyso PC a C20:3 (upper part) and lyso PC a C20:4 (lower part) shown during the OGTT (left part) and the OGTT (right part)        

Black lines show homozygous carriers of the major T allele of rs174547 (non carriers), blue lines show homozygous 

carriers of the minor C allele of rs174547 (carriers); light lines show time-courses of single subjects fitted by smoothing 

splines with the degree of smoothness chosen with leave-one-out cross validation; the bold line shows mean values of 

time-courses of all subjects per genotype; the bold and dashed line shows the standard deviation of time-courses of all 

subjects per genotype; lyso PC a, lyso phosphatidylcholine; OGTT, oral glucose tolerance test; OLTT, oral lipid tolerance 

test. 
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FIGURE 22 illustrates time-courses of the metabolite ratio of PC aa C36:4 / PC aa C36:3 that was reported 

to have highest association with rs174547 in fasting serum samples by Illig et al. (Illig et al. 2010). In line 

with the findings of Illig et al, the ratio showed a very good distinction between the respective genotype 

(baseline OLTT: c= 0.966; OLTT: c= 0.949; baseline OGTT: c= 0.974; OGTT: c= 0.97). The upper and lower 

part of FIGURE 22 show the time-courses of the corresponding metabolites PC aa C36:3 (upper part) and 

PC aa C36:4 (lower part) during the OLTT (left part) and the OGTT (right part). Both metabolites were not 

highly genotype distinctive by their own. However, time-courses of both metabolites indicated differences 

FIGURE 22: Time-courses of the metabolite ratio of PC aa C36:4 / PC aa C36:3 as well as the time-courses of PC aa 

C36:3 (upper part) and PC aa C36:4 (lower part) shown during the OGTT (left part) and the OGTT (right part)        

Black lines show homozygous carriers of the major T allele of rs174547 (non carriers), blue lines show homozygous 

carriers of the minor C allele of rs174547 (carriers); light lines show time-courses of single subjects fitted by 

smoothing splines with the degree of smoothness chosen with leave-one-out cross validation; the bold line shows 

mean values of time-courses of all subjects per genotype; the bold and dashed line shows the standard deviation of 

time-courses of all subjects per genotype; OGTT, oral glucose tolerance test; OLTT, oral lipid tolerance test; PC aa, 

diacyl phosphatidylcholine. 
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between carriers and non-carriers at baseline of both study days as well as during the OLTT and the OGTT 

that might combine and become highly genotype-distinctive by calculating the ratio of both metabolites.  

Aside of a number of further metabolite ratios (SUPPLEMENTARY TABLE 9), the ratio of SM C18:0 to SM    

C 18:1 (FIGURE 23) was highly distinctive for the respective genotype of rs174547 (baseline OLTT: c= 0.901; 

OLTT: c= 0.862; baseline OGTT: c= 0.950; OGTT: c= 0.916). Interestingly, the ratio was highly distinctive 

although no genotype effect was visible in the included metabolites (upper and lower part of FIGURE 23). 

 

  FIGURE 23: Time-courses of the metabolite ratio of SM C18:0 / SM C18:1 as well as the time-courses of SM C18:1 

(upper part) and SM C18:0 (lower part) shown during the OGTT (left part) and the OGTT (right part)        

Black lines show homozygous carriers of the major T allele of rs174547 (non carriers), blue lines show homozygous 

carriers of the minor C allele of rs174547 (carriers); light lines show time-courses of single subjects fitted by smoothing 

splines with the degree of smoothness chosen with leave-one-out cross validation; the bold line shows mean values 

of time-courses of all subjects per genotype; the bold and dashed line shows the standard deviation of time-courses 

of all subjects per genotype; OGTT, oral glucose tolerance test; OLTT, oral lipid tolerance test; PC aa, diacyl 

phosphatidylcholine.  
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Overall, genotype-distinction of metabolite ratios potentially approximating enzyme activity of the                   

delta -5 and delta-6 desaturases at baseline as well as during the anabolic challenges showed much better 

prediction of the respective allele of rs174547 than the baseline metabolite levels and postprandial time-

courses of single metabolites.  
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3.4.3 Discussion 

Using targeted metabolomics as a hypothesis free approach, it was investigated whether an OLTT and an 

OGTT might unravel novel metabolic effects for the GWAS-identified variant rs174547 in the FADS1 locus. 

The idea was that defined challenges may unmask early metabolic changes which are not detectable in the 

fasting state.  

Logistic regression identified shingomyeline C20:2 (SM C20:2) as a highly genotype-distinctive metabolite 

following an OLTT as well as lyso phosphatidylcholine C20:4 (lyso PC a C20:4) as highly genotype-distinctive 

following an OGTT. Moreover, a number of selected metabolite ratios were highly distinctive at baseline 

as well as during the OLTT and OGTT.   

Phosphatidylcholines (PCs) contain two fatty acid side chains esterified to a glycerol backbone and a 

phosphodiester linkage connecting the third hydroxylgroup to choline. PCs contain a range of fatty acids 

varying in position of double bonds and length (Cole et al. 2012). PCs are physiologically important as main 

component of eukaryotic cell membranes, as precursor of signaling molecules (van Meer et al. 2008; 

Robinson et al. 1989) and as key element of bile (Alvaro et al. 1986), lung surfactant (Perez-Gil 2008) and 

lipoproteins (Skipski et al. 1967). Lysophosphatidylcholines (lyso PCs) are the primary product of 

phosphatidylcholine hydrolysis catalyzed by phospholipase A2 (Nishizuka 1992). Lyso PC C20:4 includes 

only one fatty acid with a chain length of twenty carbons and four double bonds that might be C20:4 n-6 

(arachidonic acid) or C20:4 n-3. Time-courses of lyso PC C20:4 generally showed lower concentrations for 

carriers of the minor CC alleles of rs174547 than for non-carriers. Although the c-index was solely highly 

distinctive for the respective allele of rs174547 during the OGTT (FIGURE 20B), the same trend was 

indicated in time-courses during the OLTT (FIGURE 20A) as well as at baseline of both study days. Our 

observations are in line with the findings of the GWA by Illig et al. (Illig et al. 2010). The authors showed 

the highest association of rs174547 with single metabolites (not ratios) for lyso PC 20:4 in baseline serum 

samples (p= 2.6 x e-51). 20:4 n-6 is the product of the delta-5 desaturase in the omega-6 pathway                     

(FIGURE 17). Thus, a lower enzyme activity of the delta-5 desaturase would result in lower levels of                      

20:4 n-6. Aside, 20:4 n-3 is the substrate of the delta-5 desaturase in the omega-3 pathway as well as the 

elongated product of the first delta-6 desaturation (FIGURE 17). Hence, decreased delta-6 desaturase 

activity might also be responsible for the decreased levels of lyso PC C20:4. Given that the intake of                  

omega-6 fatty acids is generally higher than that of omega-3 fatty acids, with a ratio of 15/1– 16.7/1 in 

typical Western diets (Simopoulos 2003), omega-6 fatty acids are likely to be the predominant fatty acids. 

Therefore, lower levels of lyso PC a C20:4 are probably mainly determined by lower levels of arachidonic 
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acid. This assumption correlates with previous studies that directly measured n-3 and n-6 polyunsatured 

fatty acids and showed the highest association of SNPs in high LD with rs174547 with arachidonic acid in 

baseline blood samples (Schaeffer et al. 2006; Malerba et al. 2008; Tanaka et al. 2009).  

The findings could be an indication for a decline in the conversion rates of desaturases or of changes 

occurring at the transcriptional level. If functional polymorphisms exist in the FADS gene cluster, it can 

affect the expression of the delta-6 as well as the delta-5 desaturase. In a genome-wide association study 

of global gene expression, rs174546 in LD 1.0 with rs174547 was associated with FADS1 expression but not 

with FADS2 expression in lymphoblastoid cells (Dixon et al. 2007). This would explain highest impact on 

arachidonic acid as the product of the delta-5 desturase encoded by FADS1. Moreover, a further 

expression study in human liver tissue samples showed correlation of rs174547 with expression of both 

FADS1 and FADS3 genes (Kathiresan et al. 2009).  

Aside, our findings show a number of metabolite ratios that were highly distinctive at baseline as well as 

during the OLTT and OGTT. Metabolite concentration ratios were shown to reduce the variance and noise 

in the dataset and yield robust statistical associations (Illig et al. 2010; Gieger et al. 2008; Altmaier et al. 

2008). Thereby, they were shown to increase the power of GWA studies by reducing the p-values of 

association by several orders of magnitude (Gieger et al. 2008). Moreover, if a pair of metabolites is related 

to the direct substrates and products of an enzymatic conversion, the ratio between their concentrations 

can be applied as an approximation of the enzymatic activity (Gieger et al. 2008). Most of the distinctive 

metabolite ratios in our study contained an acyl-alkyl, diacyl or lyso phoshatidylcholine with four double 

bonds as numerator or denumerator and an acyl-alkyl, diacyl or lyso phoshatidylcholine with less than four 

double bonds on the respective other side of the fraction line. Therefore, they might approximate enzyme 

activity of the delta-5 desaturase. Exemplarily, we show the metabolite ratio of lyso PC a C20:4 and                      

lyso PC a C20:3 (FIGURE 21) and of PC aa C36:4 and PC aa C36:3 (FIGURE 22), showing highest association 

with rs174547 in baseline blood samples in GWAS (Illig et al. 2010; Nicholson et al. 2011) and also being 

highly distinctive at baseline as well as during the challenges in our study. C20:4n-6 and C16:0 represent 

major fatty acids in membranes and thus are the most common fatty acid side chains in PCs. Thus,                           

PC aa C36:4 most likely comprises the product of the delta-5 desaturase C20:4 n-6 and C16:0 as second 

incorporated fatty acid, while PC aa C36:3 on the other hand might contain the substrate of the                             

delta-5 desaturase C20:3 n-6 and C16:0 (Lattka et al. 2010). Thus, both ratios can be considered as modified 

substrate and product of the delta-5 desaturase reaction. Time-courses of the single metabolites included 

in both ratios indicated higher levels of substrates (upper part of FIGURE 21 and FIGURE 22) and lower 

levels of products of the delta-5 desaturase (lower part of FIGURE 21 and FIGURE 22). However, compared 
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to these time-courses of single metabolites, ratios clearly showed a more pronounced distinction of 

carriers and non-carriers over time.  

Time-courses of lyso PC a C20:4, lyso PC a C20:3 as well as PC aa C36:3 and PC aa C36:4 slightly increased 

during the OLTT. Although phosphatidylcholines showed a high inter-individual variability, the finding most 

widely correlates with a previous study applying identical test meals in healthy, young males (Krug et al. 

2012). The OLTT contains 20.3 g ± 1.5 g of polyunsatured fatty acids consisting of 15.5 g ± 1.1 g of                          

C18:2 n-6 (Linoleic acid) and 3.7 g ± 0.3 g of C18:3 n-3 (alpha-linoleic acid). Hence, almost no higher 

unsatured fatty acids are included. Fatty acids in the OLTT were desaturated and elongated and might be 

incorporated into phosphatidylcholines and as a result explain increasing levels of lyso PC a C20:4,                          

lyso PC a C20:3, PC aa C36:3 and PC aa C36:4 during the OLTT. In contrast, during the OGTT, PCs rather 

remained stable or decreased slightly over time. This finding is generally in line with previous findings in 

healthy young males (Krug et al. 2012).  

Phosphatidylcholine and the shingolipide ceramide are converted to diacylglycerol and sphingomyeline 

(SM) by the sphingomyelin synthase. Aside, SM may be generated from lysosphingomyelin (lyso SM) by 

fatty acid acylation or by direct transfer of phosphocholine to ceramide without PC (Taniguchi and Okazaki 

2014; Bielawski et al. 2010). SMs are sphingophospholipids consisting of a sphingosine bound to a 

phosphorylcholine and are amide-linked with an acyl-chain differing widely in length (from 16 to 24 

carbons). Amongst others, SMs function as a structural component in biological membranes. Recently, 

novel functions of SM have been revealed, such as a regulating microdomain structure, attenuating of in–

out/out–in signal through SM-containing microdomains, exocytosis and endocytosis, intracellular vesicular 

trafficking and nuclear function (Taniguchi and Okazaki 2014). Aside, products of the SM metabolism like 

sphingosine, sphingosine-1 phosphate, ceramide and diacylglycerol are important cellular effectors 

functioning, for instance in apoptosis, ageing and development (Ramstedt and Slotte 2002). SM C20:2 is a 

shingomyeline with an acyl-chain of twenty carbons and two double-bondings. Levels of SM C20:2 were 

highly distinctive during the OLTT with carriers showing a trend for a slight decrease over time. Whereas 

non-carriers rather showed a slight increase prior to approaching baseline levels after 8 h. However, the 

difference was very slight and might also be random. Applying an identical OLTT, a study in young, healthy 

males showed rather stable metabolite levels of SM C20:2 over time confirming our assumption of a 

random effect (Krug et al. 2012). However, the GWA of Illig et al. showed a significant association of 

rs174547 with SM C20:2 in baseline serum samples (p= 2.5 x 10-10) determined by lower metabolite levels 

in carriers of the minor C allele. Aside, associations with further sphingomyelines were shown (Illig et al. 

2010). Moreover, other GWAS in baseline blood samples also showed associations of FADS gene variants 

with sphingomyeline levels (Hong et al. 2013; Gieger et al. 2008; Hicks et al. 2009). Further, we calculated 
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the metabolite ratio SM C16:0/ SM C16.1 that was previously shown to be associated with SNPs in perfect 

LD with rs174547 as well as SM C18:0/ SM C18:1 that was previously shown to be associated with a SNP 

in LD 0.8 with rs174547 (Hicks et al. 2009). Our results also showed SM C18:0 to SM C18:1 to be highly 

distinctive for the respective allele of rs174547 at baseline of both study days as well as during the OGTT. 

Thus, results of our study as well as the literature shows an association of rs174547 with altered 

sphingomyeline levels.  

Alterations in sphingomyelines and PC/lyso PCs are discussed to be associated with metabolic diseases 

including atherosclerosis (Fan et al. 2010; Dong et al. 2006; Lusis 2000), coronary artery disease and T2D 

(Yano et al. 2011; Taniguchi and Okazaki 2014; Zhu et al. 2011; Floegel et al. 2013; Wang-Sattler et al. 2012; 

Ha et al. 2012). Thus, there might be a potential link of the altered sphingomyeline as well as 

phosphatidylcholine metabolism in carriers of the minor allele of rs174547 and common complex disease 

processes. 

 

In addition to the genotype-dependent differences in the targeted metabolomics measurements, our 

study showed genotype-depedent differences in the baseline characteristics in triglycerides, insulin, 

HOMA-B and HOMA-IR.  

Higher triglyceride levels of carriers compared to non-carriers are in line with a meta-analysis of seven 

GWAS of blood lipoprotein and lipid phenotypes by Kathiresan et al. (association of rs174547 with 

triglycerides: p= 2.0 x 10-14) (Kathiresan et al. 2009). However, the authors also showed lower HDL levels 

in minor allele carriers of rs174547. Moreover, further GWAs showed associations of SNPs in high LD with 

rs174547 with LDL and total cholesterol levels with minor allele carriers showing lower concentrations of 

both lipid traits (Tanaka et al. 2009; Sabatti et al. 2009). Thereby, recent work observed that FADS variants 

potentially interact with dietary omega-3 and omega-6 PUFA intake to affect cholesterol levels (Hellstrand 

et al. 2012; Lu et al. 2010). However, we did not assess the usual dietary PUFA intake of our subjects which 

might be a reason for no significance in baseline cholesterol levels in our study aside of the low number of 

participants. The underlying biological mechanisms between FADS gene variants and blood lipoprotein and 

lipid phenotypes are not entirely clear (Standl et al. 2012). It is likely that the variations in LC-PUFAS are 

the direct link between the observed associations. Tanaka et al. (Tanaka et al. 2009) supposed that higher 

concentrations of the precursor fatty acids shown in minor allele carriers might result in increased 

membrane fluidity and, thus, in lower LDL. In addition, decreases in LC-PUFAs in minor allele carriers might 

lead to reduction in PPARα (peroxisome proliferator activating receptor alpha) activation as endogenous 

LC-PUFAS are natural ligands of PPARα (Fruchart et al. 1999). PPARα activation has been shown to lower 

triglyceride levels and elevate HDL levels by inducing the expression of ApoAI, Apo-AII, lipoprotein lipase 
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and by suppressing ApoCIII (Hertz et al. 1995; Schoonjans et al. 1996; Vu-Dac et al. 1994; Vu-Dac et al. 

1995). Therefore, lower levels of LC-PUFAs might result in lower PPARα activation and increased TG as well 

as decreased HDL levels. However, PPARα is also known to increase LDL-C clearance (Guerin et al. 1996). 

Thus, one would also expect higher LDL levels in carriers of the minor C allele. Therefore, other regulatory 

mechanisms are likely (Tanaka et al. 2009). Overall, blood lipid concentrations are well known to be 

associated with cardiovascular disease (Kannel et al. 1961; Gordon et al. 1977; Kareinen et al. 2001). Thus, 

altered lipoproteins are very likely to be one link to metabolic diseases associated with FADS gene variants. 

Aside, our findings showed significantly higher baseline insulin concentrations as well as higher HOMA-B 

and HOMA-IR in carriers of the minor C allele of rs174547 by a paired t-test compared with controls. 

Interestingly, results of the logistic regression model did not classify insulin levels as highly distinctive for 

the respective allele of rs174547 (baseline OLTT: c= 0.499; OLTT: c= 0.703; baseline OGTT: c= 0.247; OGTT: 

c= 0.624) indicating the severity of the selected statistical test. GWAS showed a significant association 

between fasting glucose and rs174547 (p= 1.72 x 10-8 (Dupuis et al. 2010) and p= 1.33 x 10-17 (Scott et al. 

2012)) as well as for SNPs in high linkage disequilibrium (LD) and a trend for an association with fasting 

insulin (p= 1.8 x 10-2 (Scott et al. 2012)) and HOMA-B (p= 4.31 x 10-5 (Dupuis et al. 2010)). However, there 

was no association for HOMA-IR and for 2 h glucose after OGTT (Dupuis et al. 2010). Although the genome-

wide significance level was not reached, a meta-analysis by Morris et al. (Morris et al. 2012) showed a 

trend for an association of rs174547 with an increased risk for the development of T2D (p= 3.30 x 10-3). 

(Data on glycaemic traits have been contributed by MAGIC investigators and have been downloaded from 

www.magicinvestigators.org). A number of studies with comprehensive confounder adjustment showed, 

that the estimated delta-5-desaturase and delta-6-desaturase activity by metabolite ratios is associated 

with T2D risk. Thereby, most of these studies observed a strong inverse relation of the estimated                       

delta-5 desaturase activity and a strong direct relation of the estimated delta-6 desaturease activity to T2D 

risk (Hodge et al. 2007; Krachler et al. 2008; Kroger et al. 2011; Patel et al. 2010). However, as SNPs in the 

FADS1 and FADS2 genes are in high LD, opposing effects might counterbalance each other resulting in a 

weak overall association between the variance and T2D risk. The biological mechanisms underlying the 

relation of fatty acid desaturases activity are not well understood yet. However, effects are likely to be 

mediated by changes in fatty acids. The fatty acid composition of cell membranes might affect cellular 

functions, insulin receptor affinity and binding, translocation of glucose transporters as well as intracellular 

signaling (Storlien et al. 1996; Ginsberg et al. 1981). Moreover, LC-PUFAs might act as ligands for 

transcription factors like SREBP1 (sterol regulatory element binding protein 1), HNF4 (hepatocyte nuclear 

factor 4), NFκB (nuclear factor κB), and PPARs (peroxisome proliferators activating receptors), which are 
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participating in lipogenesis and fatty acid oxidation (Jump and Clarke 1999; Kroger and Schulze 2012). Thus, 

more research is needed to understand the biological mechanisms underlying the observed associations. 

 

A limitation of the study is the small sample size of 12 carriers and 13 non-carriers. Aside, impaired glucose 

tolerance after OGTT, might be based on generally increased age of participants (MV= 59.8 ± 5.5). 

Therefore, further studies should be based on a younger study cohort. We used targeted metabolomics 

mainly focusing on amino acids, biogenic amines, acylcarnitines, sphingomyelins, diacyl 

phosphatidylcholines, acyl-alkyl phosphatidylcholines and lyso phosphatidylcholines. However, omega-3 

and omega-6 fatty acids were not directly measured, which would be very useful in further studies. 

Moreover, the measurement of eicosanoids as arachidonic acid derived metabolites might shed new light 

on the impact of genetics on inflammatory processes in the context of nutritional challenges. Of note, we 

only calculated metabolite ratios of metabolites that were previously associated with SNPs in high LD with 

rs174547 (Illig et al. 2010; Hicks et al. 2009; Gieger et al. 2008) as well as metabolite ratios approximating 

enzyme activity of the delta-5 and delta-6 desaturase for proof of concept. Thus, results for metabolite 

ratios should be considered as preliminary findings. For a detailed discussion of metabolite ratios, ratios 

of all measured metabolites have to be calculated which was not possible in the time-frame of this thesis.  

 

In conclusion, the study confirms previously reported genotype-specific effects of the variant rs174547 in 

the FADS1 locus on triglycerides, insulin and HOMA-B at baseline. Aside, minor allele carriers of rs174547 

were significantly higher in HOMA-IR than carriers of the major allele. Our time-resolved analysis identified 

genotype-OLTT interactions in SM C 20:2. Nevertheless, time-courses were not able to show a clear 

distinction by the respective genotype of rs174547. Moreover, lyso PC a C20:4 showed a high genotype-

distinction during the OGTT. Time-courses confirmed previously reported lower metabolite levels of 

carriers of the minor alleles at baseline and showed that this difference is maintained during the time-

course. However, the number of subjects seems to be too low to confirm reported baseline differences in 

our baseline samples. No further genotype-challenge interactions could be identified for the measured 

metabolites. However, calculation of selected metabolite ratios showed a number of metabolite ratios to 

be highly distinctive for the respective genotype at baseline as well as during the OLTT and OGTT. Thus, 

further studies should include calculations of metabolite ratios aside a higher sample size and direct 

measurements of omega-3 and 6 fatty acids and eicosanoids. 
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4 GENERAL DISCUSSION 

The present thesis focuses on the postprandial plasma metabolism by time-resolved studies in healthy 

subjects and in subjects homozygous for the GWAS-identified variants rs2014355 and rs174547 in the 

acetyl-CoA dehydrogenase, short chain (ACADS) and the fatty acid desaturase 1 (FADS1) locus.  

The statistical analysis of all sub-projects mainly focused on time-resolved analyses of the plasma 

metabolism during metabolic challenges. The time-dependence was taken into account by using smooth 

functions as a representation of the time-series data. After the smooth functions were fixed, parameters 

describing the functions were used for the comparison of two groups. This kind of analysis taking the whole 

time-interval during a metabolic challenge into account is advantageous compared to usually applied 

analyses based on single snapshots because it is able to deal with missing or repeated values and non-

synchronized measurements. Thus, such kind of analyses, for example allow to include precise time-points 

of blood taking and thus are able to overcome limitations of human studies like delayed blood sampling, 

for instance due to occluded vein catheters. For the study in healthy males, we compared postprandial 

time-courses of identical subjects, thus a statistical test for paired time-resolved differences was needed. 

The case of paired time-resolved measurements was considered in a recent publication (Crainiceanu et al. 

2012). The authors propose the usage of bootstrap methods for the detection of certain intervals of the 

considered time-scale with a high contrast between the two considered groups. Although this approach is 

suitable for examination of a low number of variables in a very detailed manner, its application on a large 

number of variables as in this thesis (approx. 600 variables) is not feasible. Therefore, in the context of the 

data generated by the study in healthy males, the time-resolved paired difference test (TPDT) that is 

applicable on paired time-resolved data including a large number of variables was developed by Ivan 

Kondofersky at the Institute of Computational Biology at the Helmhotz Zentrum München. Aside, the 

second part of this thesis aimed to study a potential connection between carriers of the minor CC allele 

and the major TT alleles of rs2014355 and rs174547, respectively, and time-resolved metabolic variables. 

Hence, a statistical analysis that is able to deal with time-courses of two groups including different subjects 

was needed. We decided for logistic regression with bootstrap randomized performance that is also based 

on smoothing functions and, thus, also utilizes the advantages of a time-resolved analysis based on 

smoothed functions named to be able to deal with missing and repeated values, non-synchronized 

measurements or multiple time-series per group. 
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Combined with recent advances in metabolomics technologies, time-resolved metabolic challenge tests 

provide further understanding of the human metabolism (Ho et al. 2013; Skurk et al. 2011; Shaham et al. 

2008; Wopereis et al. 2009; Krug et al. 2012; Pellis et al. 2012; Bondia-Pons et al. 2011) and, moreover, 

were shown to improve the identification of metabolic alterations associated with early disease states that 

were not detected in a homeostatic situation (Shaham et al. 2008; Ramos-Roman et al. 2012; Deo et al. 

2010). However, the variance between healthy individuals in the fasting state (Lenz et al. 2003; Walsh et 

al. 2006; Winnike et al. 2009) appreared to be extended in the postprandial state (Krug et al. 2012; Zivkovic 

et al. 2009) indicating the presence of distinct metabotypes of individuals determined by environmental 

factors and a given genetic and epigenetic disposition.  

Thus, one aim of the study in healthy males was to investigate the effect of a three-day dietary 

standardization on the postprandial time-courses of plasma metabolites after a high-fat, high-

carbohydrate (HFHC) meal. Thereby, lower mean postprandial metabolite levels were unveiled for 

branched chain amino acids and isobutyrylcarnitine after dietary standardization. Aside, standardization-

induced reduction in the inter-individual variation was achieved for the metabolite group of acyl-alkyl 

phosphatidylcholines. However, postprandial time-course measurement of most metabolite classes was 

shown to be feasible without lead-in periods of dietary control in healthy males. Therefore, depending on 

the study design and the research question, it should be considered, whether a dietary standardization 

previous to nutritional challenge tests could be advantageous or not. Nevertheless, diet at the days prior 

to postprandial time-course measurements does not seem to have a major impact on the determinded 

metabolites.  

The second part of the study in healthy males compared the postprandial metabolism of a HFHC meal 

consisting of a conventional fast food meal for breakfast and a healthier breakfast alternative to assess 

potential differences in the metabolic profile and to identify potential specific markers that might be 

associated with fast food consumption. Despite considerably different compositions of macro- and 

micronutrients of both test meals, few differences (in N-methyl proline, stachydrine, CMPF, isoleucine and 

in generally in the group of amino acids) were apparent in the measured metabolites in plasma samples 

within 6 h after test meals. Therefore, short-term exposure of healthy individuals to varying meals mostly 

seems to be balanced by metabolic flexibility.  

To conclude, such studies in healthy individuals are of great importance for further understanding the 

nutritional impact on the human metabolism. Aside, distinct metabotypes after an overnight fast (Lenz et 

al. 2003; Walsh et al. 2006; Winnike et al. 2009) as well as in the postprandial state (Krug et al. 2012; 

Zivkovic et al. 2009) are determined by the individual genetic make-up. GWAS using basal metabolite 

concentrations have shown a number of genetic variants in genes encoding transporter proteins and 
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enzymes with profound impact on human metabolic traits (Shin et al. 2014; Illig et al. 2010; Gieger et al. 

2008; Tanaka et al. 2009; Hicks et al. 2009; Demirkan et al. 2012; Kettunen et al. 2012; Nicholson et al. 

2011). The observed metabotypes might therefore be partially caused by gene variants and by complex 

interaction of gene variants with environmental factors including nutrition. In this context, defined 

nutritional challenge tests were reported to uncover early metabolic changes in carriers of genotypes 

associated with a higher risk for metabolic diseases (Franks et al. 2007; Tan et al. 2006; Weickert et al. 

2007).  

Thus, in the second part of the work, the functional role of the gene variants rs2014355 in the ACADS gene 

locus and rs174547 in the FADS1 locus should be characterized in strictly controlled human intervention 

studies using targeted metabolomics as hypothesis free approach.  

The study of rs2014355 in the ACADS locus showed previously unreported fasting-induced genotype 

dependent differences for acyl-alkyl phosphatidylcholine C42:0 during a prolonged fasting of 24 h and 

further challenge-genotype interactions for glutamine and lyso phosphatidylcholine C20:4 during an OGTT 

that might indicate a less flexible metabolism in response to fasting and to a glucose load in minor CC allele 

carriers compared to controls.  

Besides, the study of rs174547 in the FADS1 locus confirmed previously reported genotype-dependent 

differences in phosphatidylcholines, lyso phosphatidylcholines and sphingomyelines, especially becoming 

obvious through calculation of metabolite ratios. However, further genotype-challenge interactions were 

not visible.  

Interestingly, whereas calculations of metabolite ratios strongly improved the genotype distinction of 

rs174547, it did hardly improve the genotype distinction for rs2014355. A reason might be the coding SNP 

rs1799958 in perfect LD with rs2014355 that might induce stronger variations in the plasma metabolism 

of minor CC allele carriers than the non-coding variant rs174547 and various non-coding SNPs in LD with 

rs174547. This assumption might be confirmed by the GWA of Illig et al. (Illig et al. 2010) that showed a 

lower p-value of association for rs2014355 with the metabolite C4 of 2.5 x 10-78 than for rs174547 with the 

metabolite PC aa C36:4 of 2.3 x 10-43 in the KORA cohort. We calculated c-indices that show group 

assignment of metabolites or metabolite time-courses to the respective genotypes, no p-values. Thus, the 

group assignment of solely C4 seems to be good enough for distinction of the respective alleles of 

rs2014355. Moreover, a closer investigation of the time-courses of C3 showed no obvious genotype 

distinction for rs2014355, while time-courses of PC aa C36:3 indicated a trend for lower levels in carriers 

of the minor CC alleles of rs174547. Thus, there seems to be an accumulation of substrates of the enzyme 

acetyl-CoA dehydrogenase short chain and fatty acid desaturase 1 in carriers of the minor alleles of 

rs2014355 and rs174547, respectively, whereas metabolite levels of enzyme products seem to be 
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decreased solely for the fatty acid desaturase 1. This might be the reason for the notably added value of 

the calculation of metabolite ratios for rs174547 compared to rs2014355 in our study, which was also 

confirmed by the GWA of Illig et al. showing a p-value of association for rs2014355 and C3/C4 of                              

5.1 x 10-96 compared to a lower p-value of association of rs174547 and PC aa C36:3/PC aa C36:4 of                  

6.5 x 10-179. However, it seems to be advantageous to include calculations of metabolite ratios in all kinds 

of metabolomics studies. 

In summary, the studies in the second part of this thesis indicate that metabolic challenge tests may 

contribute to a better understanding of gene function and may help to estimate the risk and progression 

of metabolic diseases. However, such studies are rather proof-of-concept for recruitment by genotype and 

further studies are needed to unravel how gene variants affect metabolic responses to metabolic 

challenges and whether there is susceptibility to the development of common diseases. Such nutrigenetic 

studies as well as nutrigenomic studies are extremely important and valuable to detect early disturbances 

in chronic disease processes which may be accessible to individualized preventive interventions. Although 

there are some examples of personalized nutrition in monogenetic disorders, like lactose intolerance 

(Lomer et al. 2008; Swallow 2003) and phenylketonuria (Blau et al. 2010), the application of personalized 

nutrition in polygenetic disorders like hypertention or T2D is much more challenging and far from practice 

as the interaction of the genetic make-up, diet and health is far more complex and subtle than originally 

assumed (Minihane 2013). For instance, a number of loci, identified primarily through large-scale GWAS, 

have been found to be associated with susceptibillity to T2D (Mahajan et al. 2014; Morris et al. 2012). At 

the same time, development of T2D is known to be modified by exogenous factors including diet (Schulze 

and Hu 2005) and the extent to which exogenous factors affect disease outcome in individuals can be 

influenced by individual genotypes. Thus, we have learned that the prediction of a single genotype is small 

compared to that of a family history of an individual, risk scores and other risk factors in complex diseases 

(de Roos 2013). To clear up this complexity, e.g., a more detailed understanding of the penetrance of 

genotypes in population subgroups, the identity of biological mechanisms behind variants and interactions 

of multiple variants with environmental factors is needed (Rimbach and Minihane 2009). Thereby, 

metabolomics along with genomics, epigenomics, transcriptomics, and proteomics combined with health 

phenotyping are very powerful by development of integrative system biology approaches with robust 

computational and statistical approaches. Such kind of analysis enables the development of integrative 

models required for personalized diet in complex diseases. Thus, not only from the bioinformatic point of 

view, personalized nutrition is one of the major challenges in nutrition research of the twenty-first century. 
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APPENDIX 

 

SUPPLEMENTARY FIGURE 1: Functional standard deviation (fsd) of the 37 PC ae measured with the targeted 

metabolomic approach after the two HFHC meals 

The red lines show the fsd after the HFHC meal without dietary standardization (unstandardized), the blue line shows 

the fsd after the HFHC with previous three-day dietary standardization (standardized); HFHC, high-fat, high-

carbohydrate. 
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SUPPLEMENTARY TABLE 1: Metabolites measured with the targeted metabolomic approach and assignment to 

metabolite groups predefined by Biocrates  

Metabolite 
Group   Metabolite   

Ac
yl

ca
rn

iti
ne

s 

  C0  (Carnitine) 
  C10 (Decanoylcarnitine) 
  C10.1 (Decenoylcarnitine) 
  C10.2  (Decadienylcarnitine) 
  C12  (Dodecanoylcarnitine) 
  C12.DC (Dodecanedioylcarnitine) 
  C12.1  (Dodecenoylcarnitine) 
  C14  (Tetradecanoylcarnitine) 
  C14.1  (Tetradecenoylcarnitine) 
  C14.1.OH  (Hydroxytetradecenoylcarnitine) 
  C14.2  (Tetradecadienylcarnitine) 
  C14.2.OH  (Hydroxytetradecadienylcarnitine) 
  C16  (Hexadecanoylcarnitine) 
  C16.OH  (Hydroxyhexadecanoylcarnitine) 
  C16.1  (Hexadecenoylcarnitine) 
  C16.1.OH (Hydroxyhexadecenoylcarnitine) 
  C16.2  (Hexadecadienylcarnitine) 
  C16.2.OH  (Hydroxyhexadecadienylcarnitine) 
  C18  (Octadecanoylcarnitine) 
  C18.1 (Octadecenoylcarnitine) 
  C18.1.OH  (Hydroxyoctadecenoylcarnitine) 
  C18.2  (Octadecadienylcarnitine) 
  C2  (Acetylcarnitine) 
  C3  (Propionylcarnitine) 
  C3.DC..C4.OH.  (Hydroxybutyrylcarnitine) 
  C3.OH  (Hydroxypropionylcarnitine) 
  C3.1  (Propenoylcarnitine) 
  C4  (Butyrylcarnitine) 
  C4.1  (Butenylcarnitine) 
  C5  (Valerylcarnitine) 
  C5.DC..C6.OH. (Glutarylcarnitine (Hydroxyhexanoylcarnitine)) 
  C5.M.DC  (Methylglutarylcarnitine) 
  C5.OH..C3.DC.M.  (Hydroxyvalerylcarnitine (Methylmalonylcarnitine)) 
  C5.1  (Tiglylcarnitine) 
  C5.1.DC  (Glutaconylcarnitine) 
  C6..C4.1.DC. (Hexanoylcarnitine (Fumarylcarnitine)) 
  C6.1  (Hexenoylcarnitine) 
  C7.DC  (Pimelylcarnitine) 
  C8  (Octanoylcarnitine) 
  C9  (Nonaylcarnitine) 
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Metabolite 
Group   Metabolite   

Am
in

o 
ac

id
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  Ala  (Alanine) 
  Arg  (Arginine) 
  Asn  (Asparagine) 
  Asp  (Aspartate) 
  Cit  (Citrulline) 
  Gln  (Glutamine) 
  Glu  (Glutamate) 
  Gly  (Glycine) 
  His  (Histidine) 
  Ile  (Isoleucine) 
  Leu (Leucine) 
  Lys  (Lysine) 
  Met  (Methionine) 
  Orn  (Ornithine) 
  Phe  (Phenylalanine) 
  Pro  (Proline) 
  Ser  (Serine) 
  Thr  (Threonine) 
  Trp  (Tryptophan) 
  Tyr  (Tyrosine) 
  Val  (Valine) 

Bi
og

en
ic

 a
m

in
es

 

  Creatinine   
  ADMA  (Asymmetric dimethylarginine) 
  Ac.Orn  (Acetylornithine) 
  Carnosine   
  DOPA   
  Dopamine   
  Histamine   
  Kynurenine   
  Met.SO (Methioninesulfoxide) 
  Nitro.Tyr (Nitrotyrosine) 
  OH.Pro (Hydroxyproline) 
  PEA (Phenylethylamine) 
  Putrescine   
  SDMA (Symmetric dimethylarginine) 
  Sarcosine   
  Serotonin   
  Spermidine   
  Spermine   

 

continued 
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Metabolite 
Group   Metabolite   

Bi
og

en
ic

 
am

in
es

   Taurine   
  alpha.AAA (Alpha-Aminoadipic acid) 
  total.DMA (Total dimethylarginine) 

Ph
os

ph
at

id
yl

ch
ol

in
es

 a
cy

l-a
lk

yl
 

  PC.ae.C30.0 (Phosphatidylcholine acyl-alkyl C30:0) 
  PC.ae.C30.1 (Phosphatidylcholine acyl-alkyl C30:0) 
  PC.ae.C30.2 (Phosphatidylcholine acyl-alkyl C30:2) 
  PC.ae.C32.1 (Phosphatidylcholine acyl-alkyl C32:1) 
  PC.ae.C32.2 (Phosphatidylcholine acyl-alkyl C32:2) 
  PC.ae.C34.0 (Phosphatidylcholine acyl-alkyl C34:0) 
  PC.ae.C34.1 (Phosphatidylcholine acyl-alkyl C34:1) 
  PC.ae.C34.2 (Phosphatidylcholine acyl-alkyl C34:2) 
  PC.ae.C34.3 (Phosphatidylcholine acyl-alkyl C34:3) 
  PC.ae.C36.0 (Phosphatidylcholine acyl-alkyl C36:0) 
  PC.ae.C36.1 (Phosphatidylcholine acyl-alkyl C36:1) 
  PC.ae.C36.2 (Phosphatidylcholine acyl-alkyl C36:2) 
  PC.ae.C36.3 (Phosphatidylcholine acyl-alkyl C36:3) 
  PC.ae.C36.4 (Phosphatidylcholine acyl-alkyl C36:4) 
  PC.ae.C36.5 (Phosphatidylcholine acyl-alkyl C36:5) 
  PC.ae.C38.0 (Phosphatidylcholine acyl-alkyl C38:0) 
  PC.ae.C38.1 (Phosphatidylcholine acyl-alkyl C38:1) 
  PC.ae.C38.2 (Phosphatidylcholine acyl-alkyl C38:2) 
  PC.ae.C38.3 (Phosphatidylcholine acyl-alkyl C38:3) 
  PC.ae.C38.4 (Phosphatidylcholine acyl-alkyl C38:4) 
  PC.ae.C38.5 (Phosphatidylcholine acyl-alkyl C38:5) 
  PC.ae.C38.6 (Phosphatidylcholine acyl-alkyl C38:6) 
  PC.ae.C40.1 (Phosphatidylcholine acyl-alkyl C40:1) 
  PC.ae.C40.2 (Phosphatidylcholine acyl-alkyl C40:2) 
  PC.ae.C40.3 (Phosphatidylcholine acyl-alkyl C40:3) 
  PC.ae.C40.4 (Phosphatidylcholine acyl-alkyl C40:4) 
  PC.ae.C40.5 (Phosphatidylcholine acyl-alkyl C40:5) 
  PC.ae.C40.6 (Phosphatidylcholine acyl-alkyl C40:6) 
  PC.ae.C42.0 (Phosphatidylcholine acyl-alkyl C42:0) 
  PC.ae.C42.1 (Phosphatidylcholine acyl-alkyl C42:1) 
  PC.ae.C42.2 (Phosphatidylcholine acyl-alkyl C42:2) 
  PC.ae.C42.3 (Phosphatidylcholine acyl-alkyl C42:3) 
  PC.ae.C42.4 (Phosphatidylcholine acyl-alkyl C42:4) 
  PC.ae.C42.5 (Phosphatidylcholine acyl-alkyl C42:5) 
  PC.ae.C44.3 (Phosphatidylcholine acyl-alkyl C44:3) 
  PC.ae.C44.4 (Phosphatidylcholine acyl-alkyl C44:4) 
  PC.ae.C44.5 (Phosphatidylcholine acyl-alkyl C44:5) 
  PC.ae.C44.6 (Phosphatidylcholine acyl-alkyl C44:6) 

 
    

continued 
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Metabolite 
Group   Metabolite   

Ph
os

ph
at

id
yl

ch
ol

in
es

 d
ia

cy
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  PC.aa.C24.0 (Phosphatidylcholine diacyl C24:0) 
  PC.aa.C26.0 (Phosphatidylcholine diacyl C26:0) 
  PC.aa.C28.1 (Phosphatidylcholine diacyl C28:1) 
  PC.aa.C30.0 (Phosphatidylcholine diacyl C30:0) 
  PC.aa.C30.2 (Phosphatidylcholine diacyl C30:2) 
  PC.aa.C32.0 (Phosphatidylcholine diacyl C32:0)  
  PC.aa.C32.1 (Phosphatidylcholine diacyl C32:1) 
  PC.aa.C32.2 (Phosphatidylcholine diacyl C32:2) 
  PC.aa.C32.3 (Phosphatidylcholine diacyl C32:3) 
  PC.aa.C34.1 (Phosphatidylcholine diacyl C34:1) 
  PC.aa.C34.2 (Phosphatidylcholine diacyl C34:2) 
  PC.aa.C34.3 (Phosphatidylcholine diacyl C34:3) 
  PC.aa.C34.4 (Phosphatidylcholine diacyl C34:4) 
  PC.aa.C36.0 (Phosphatidylcholine diacyl C36:0) 
  PC.aa.C36.1 (Phosphatidylcholine diacyl C36:1) 
  PC.aa.C36.2 (Phosphatidylcholine diacyl C36:2) 
  PC.aa.C36.3 (Phosphatidylcholine diacyl C36:3) 
  PC.aa.C36.4 (Phosphatidylcholine diacyl C36:4) 
  PC.aa.C36.5 (Phosphatidylcholine diacyl C36:5) 
  PC.aa.C36.6 (Phosphatidylcholine diacyl C36:6) 
  PC.aa.C38.0 (Phosphatidylcholine diacyl C38:0) 
  PC.aa.C38.1 (Phosphatidylcholine diacyl C38:1) 
  PC.aa.C38.3 (Phosphatidylcholine diacyl C38:3) 
  PC.aa.C38.4 (Phosphatidylcholine diacyl C38:4) 
  PC.aa.C38.5 (Phosphatidylcholine diacyl C38:5) 
  PC.aa.C38.6 (Phosphatidylcholine diacyl C38:6) 
  PC.aa.C40.1 (Phosphatidylcholine diacyl C40:1) 
  PC.aa.C40.2 (Phosphatidylcholine diacyl C40:2) 
  PC.aa.C40.3 (Phosphatidylcholine diacyl C40:3) 
  PC.aa.C40.4 (Phosphatidylcholine diacyl C40:4) 
  PC.aa.C40.5 (Phosphatidylcholine diacyl C40:5) 
  PC.aa.C40.6 (Phosphatidylcholine diacyl C40:6) 
  PC.aa.C42.0 (Phosphatidylcholine diacyl C42:0) 
  PC.aa.C42.1 (Phosphatidylcholine diacyl C42:1) 
  PC.aa.C42.2 (Phosphatidylcholine diacyl C42:2) 
  PC.aa.C42.4 (Phosphatidylcholine diacyl C42:4) 
  PC.aa.C42.5 (Phosphatidylcholine diacyl C42:5) 
  PC.aa.C42.6 (Phosphatidylcholine diacyl C42:6) 

 

  

continued 
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Metabolite 
Group   Metabolite   

Sh
in

go
lip

id
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  SM..OH..C14.1 (Hydroxysphingomyeline C14:1) 
  SM..OH..C16.1 (Hydroxysphingomyeline C16:1) 
  SM..OH..C22.1 (Hydroxysphingomyeline C22:1) 
  SM..OH..C22.2 (Hydroxysphingomyeline C22:2) 
  SM..OH..C24.1 (Hydroxysphingomyeline C24:1) 
  SM.C16.0 (Sphingomyeline C16:0) 
  SM.C16.1 (Sphingomyeline C16:1) 
  SM.C18.0 (Sphingomyeline C18:0) 
  SM.C18.1 (Sphingomyeline C18:1) 
  SM.C20.2 (Sphingomyeline C20:2) 
  SM.C22.3 (Sphingomyeline C22:3) 
  SM.C24.0 (Sphingomyeline C24:0) 
  SM.C24.1 (Sphingomyeline C24:1) 
  SM.C26.0 (Sphingomyeline C26:0) 
  SM.C26.1 (Sphingomyeline C26:1) 

Ly
so

 p
ho

sp
ha

tid
yl

ch
ol

in
es

 

  lysoPC.a.C14.0 (lysoPhosphatidylcholine acyl C14:0) 
  lysoPC.a.C16.0 (lysoPhosphatidylcholine acyl C16:0) 
  lysoPC.a.C16.1 (lysoPhosphatidylcholine acyl C16:1) 
  lysoPC.a.C17.0 (lysoPhosphatidylcholine acyl C17:0) 
  lysoPC.a.C18.0 (lysoPhosphatidylcholine acyl C18:0) 
  lysoPC.a.C18.1 (lysoPhosphatidylcholine acyl C18:1) 
  lysoPC.a.C18.2 (lysoPhosphatidylcholine acyl C18:2) 
  lysoPC.a.C20.3 (lysoPhosphatidylcholine acyl C20:3) 
  lysoPC.a.C20.4 (lysoPhosphatidylcholine acyl C20:4) 
  lysoPC.a.C24.0 (lysoPhosphatidylcholine acyl C24:0) 
  lysoPC.a.C26.0 (lysoPhosphatidylcholine acyl C26:0) 
  lysoPC.a.C26.1 (lysoPhosphatidylcholine acyl C26:1) 
  lysoPC.a.C28.0 (lysoPhosphatidylcholine acyl C28:0) 
  lysoPC.a.C28.1 (lysoPhosphatidylcholine acyl C28:1) 

    H1 (Hexose) 
        

 

  

continued 



A P P E N D I X | 119 
 

  

SUPPLEMENTARY TABLE 2: Metabolites measured with the untargeted metabolomic approach and assignment to 

metabolite groups and subgroups predefined by Metabolon 

 

Metabolite 
Group   Metabolite Subgroup Metabolite 

Am
in

o 
ac

id
s 

     

  alanine and aspartate metabolism alanine 

  alanine and aspartate metabolism N-acetyl-beta-alanine 

  alanine and aspartate metabolism N-acetylalanine 

  butanoate metabolism 2-aminobutyrate 

  creatine metabolism creatine 

  creatine metabolism creatinine 

  cysteine, methionine, sam, taurine metabolism alpha-ketobutyrate 

  cysteine, methionine, sam, taurine metabolism methionine 

  cysteine, methionine, sam, taurine metabolism N-formylmethionine 

  cysteine, methionine, sam, taurine metabolism S-methylcysteine 

  glutamate metabolism glutamine 

  glutamate metabolism pyroglutamine 

  glutathione metabolism 5-oxoproline 

  glutathione metabolism glutathione, oxidized (GSSG) 

  glycine, serine and threonine metabolism betaine 

  glycine, serine and threonine metabolism N-acetylthreonine 

  glycine, serine and threonine metabolism threonine 

  guanidino and acetamido metabolism 4-acetamidobutanoate 

  histidine metabolism 3-methylhistidine 

  histidine metabolism cis-urocanate 

  histidine metabolism histidine 

  histidine metabolism trans-urocanate 

  lysine metabolism glutarylcarnitine (C5) 

  lysine metabolism lysine 

  lysine metabolism N6-acetyllysine 

  lysine metabolism pipecolate 

  phenylalanine & tyrosine metabolism 3-(4-hydroxyphenyl)lactate 

  phenylalanine & tyrosine metabolism 3-methoxytyrosine 

  phenylalanine & tyrosine metabolism 3-phenylpropionate (hydrocinnamate) 

  phenylalanine & tyrosine metabolism 4-hydroxyphenylpyruvate 

  phenylalanine & tyrosine metabolism p-cresol sulfate 

  phenylalanine & tyrosine metabolism phenol sulfate 

  phenylalanine & tyrosine metabolism phenylacetylglutamine 

  phenylalanine & tyrosine metabolism phenylalanine 

  phenylalanine & tyrosine metabolism phenyllactate (PLA) 

  phenylalanine & tyrosine metabolism tyrosine 
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Metabolite 
Group   Metabolite Subgroup Metabolite 

Am
in

o 
ac

id
s 

  tryptophan metabolism 3-indoxyl sulfate 

  tryptophan metabolism C-glycosyltryptophan 
  tryptophan metabolism indoleacetate 

  tryptophan metabolism indolelactate 

  tryptophan metabolism indolepropionate 

  tryptophan metabolism kynurenine 

  tryptophan metabolism tryptophan 

  tryptophan metabolism tryptophan betaine  

  urea cycle; arginine-, proline-, metabolism arginine 

  urea cycle; arginine-, proline-, metabolism citrulline 

  urea cycle; arginine-, proline-, metabolism N-acetylornithine 

  urea cycle; arginine-, proline-, metabolism N-methyl proline 

  urea cycle; arginine-, proline-, metabolism proline 

  urea cycle; arginine-, proline-, metabolism trans-4-hydroxyproline 

  urea cycle; arginine-, proline-, metabolism urea 

  valine, leucine and isoleucine metabolism 2-hydroxy-3-methylvalerate 

  valine, leucine and isoleucine metabolism 2-methylbutyrylcarnitine (C5) 

  valine, leucine and isoleucine metabolism 3-hydroxyisobutyrate 

  valine, leucine and isoleucine metabolism 3-methyl-2-oxobutyrate 

  valine, leucine and isoleucine metabolism 3-methyl-2-oxovalerate 

  valine, leucine and isoleucine metabolism 3-methylglutarylcarnitine (C6) 

  valine, leucine and isoleucine metabolism 4-methyl-2-oxopentanoate 

  valine, leucine and isoleucine metabolism alpha-hydroxyisocaproate 

  valine, leucine and isoleucine metabolism alpha-hydroxyisovalerate 

  valine, leucine and isoleucine metabolism beta-hydroxyisovalerate 

  valine, leucine and isoleucine metabolism isobutyrylcarnitine 

  valine, leucine and isoleucine metabolism isoleucine 

  valine, leucine and isoleucine metabolism isovalerylcarnitine 

  valine, leucine and isoleucine metabolism leucine 

  valine, leucine and isoleucine metabolism levulinate (4-oxovalerate) 

  valine, leucine and isoleucine metabolism tiglyl carnitine 

  valine, leucine and isoleucine metabolism valine 

 

 

 

 

 

continued 
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Metabolite 
Group   Metabolite Subgroup Metabolite 

Ca
rb

oh
yd

ra
te
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  fructose, mannose, galactose, starch, and sucrose 
metabolism 

methyl-beta-glucopyranoside 

  glycolysis, gluconeogenesis, pyruvate metabolism 1,5-anhydroglucitol (1,5-AG) 
  glycolysis, gluconeogenesis, pyruvate metabolism lactate 

  glycolysis, gluconeogenesis, pyruvate metabolism pyruvate 

  

isobar Isobar: glucose, fructose, mannose, 
galactose, allose, altrose, etc. 

  isobar Isobar: glucose, mannose,  galactose, 
gulose 

Co
fa

ct
or

s a
nd

 v
ita

m
in

s 

  hemoglobin and porphyrin metabolism bilirubin (E,E) 

  hemoglobin and porphyrin metabolism bilirubin (Z,Z) 

  hemoglobin and porphyrin metabolism biliverdin 

  hemoglobin and porphyrin metabolism heme 

  hemoglobin and porphyrin metabolism L-urobilin 

  hemoglobin and porphyrin metabolism urobilinogen 

  nicotinate and nicotinamide metabolism nicotinamide 

  nicotinate and nicotinamide metabolism trigonelline (N'-methylnicotinate) 

  pantothenate and coa metabolism pantothenate 

  vitamin b6 metabolism pyridoxate 

En
er

gy
 

  krebs cycle citrate 

  krebs cycle malate 

  krebs cycle succinylcarnitine 

  oxidative phosphorylation phosphate 

Li
pi

ds
 

  bile acid metabolism cholate 

  bile acid metabolism deoxycholate 

  bile acid metabolism glycochenodeoxycholate 

  bile acid metabolism glycocholate 

  bile acid metabolism glycocholenate sulfate 

  bile acid metabolism glycodeoxycholate 

  bile acid metabolism glycolithocholate sulfate 

  bile acid metabolism glycoursodeoxycholate 

  bile acid metabolism taurochenodeoxycholate 

  bile acid metabolism taurocholate 

  bile acid metabolism taurocholenate sulfate 

  bile acid metabolism taurodeoxycholate 

  bile acid metabolism taurolithocholate 3-sulfate 

 

 

continued 
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Metabolite 
Group   Metabolite Subgroup Metabolite 

Li
pi

ds
 

  carnitine metabolism 3-dehydrocarnitine 

  carnitine metabolism acetylcarnitine 
  carnitine metabolism carnitine 

  carnitine metabolism cis-4-decenoyl carnitine 

  carnitine metabolism decanoylcarnitine 

  carnitine metabolism deoxycarnitine 

  carnitine metabolism hexanoylcarnitine 

  carnitine metabolism myristoylcarnitine 

  carnitine metabolism octanoylcarnitine 

  carnitine metabolism oleoylcarnitine 

  carnitine metabolism palmitoylcarnitine 

  carnitine metabolism stearoylcarnitine 

  endocannabinoid palmitoyl ethanolamide 

  essential fatty acid dihomo-linolenate (20:3n3 or n6) 

  essential fatty acid docosahexaenoate (DHA; 22:6n3) 

  essential fatty acid docosapentaenoate (n3 DPA; 22:5n3) 

  essential fatty acid docosapentaenoate (n6 DPA; 22:5n6) 

  essential fatty acid eicosapentaenoate (EPA; 20:5n3) 

  essential fatty acid linoleate (18:2n6) 

  essential fatty acid linolenate [alpha or gamma; (18:3n3 or 6)] 

  fatty acid metabolism isovalerate 

  fatty acid metabolism (also bcaa metabolism) butyrylcarnitine 

  fatty acid metabolism (also bcaa metabolism) propionylcarnitine 

  fatty acid, amide linoleamide (18:2n6) 

  fatty acid, amide oleamide 

  fatty acid, amide palmitic amide 

  fatty acid, amide stearamide 

  fatty acid, branched 13-methylmyristic acid 

  fatty acid, branched 15-methylpalmitate (isobar with 2-
methylpalmitate) 

  fatty acid, branched 17-methylstearate 

  fatty acid, dicarboxylate 3-carboxy-4-methyl-5-propyl-2-
furanpropanoate (CMPF) 

  fatty acid, dicarboxylate azelate (nonanedioate) 

  fatty acid, dicarboxylate dodecanedioate 

  fatty acid, dicarboxylate hexadecanedioate 

  fatty acid, dicarboxylate octadecanedioate 

  fatty acid, dicarboxylate tetradecanedioate 

 

 

continued 



A P P E N D I X | 123 
 

  

Metabolite 
Group   Metabolite Subgroup Metabolite 

Li
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  fatty acid, monohydroxy 2-hydroxydecanoic acid 

  fatty acid, monohydroxy 2-hydroxypalmitate 
  fatty acid, monohydroxy 2-hydroxystearate 

  fatty acid, monohydroxy 3-hydroxydecanoate 

  fatty acid, monohydroxy 3-hydroxyoctanoate 

  glycerolipid metabolism choline 

  ketone bodies 3-hydroxybutyrate (BHBA) 

  long chain fatty acid 10-heptadecenoate (17:1n7) 

  long chain fatty acid 10-nonadecenoate (19:1n9) 

  long chain fatty acid adrenate (22:4n6) 

  long chain fatty acid arachidonate (20:4n6) 

  long chain fatty acid dihomo-linoleate (20:2n6) 

  long chain fatty acid docosadienoate (22:2n6) 

  long chain fatty acid eicosenoate (20:1n9 or 11) 

  long chain fatty acid margarate (17:0) 

  long chain fatty acid mead acid (20:3n9) 

  long chain fatty acid myristate (14:0) 

  long chain fatty acid myristoleate (14:1n5) 

  long chain fatty acid nonadecanoate (19:0) 

  long chain fatty acid oleate (18:1n9) 

  long chain fatty acid palmitate (16:0) 

  long chain fatty acid palmitoleate (16:1n7) 

  long chain fatty acid pentadecanoate (15:0) 

  long chain fatty acid stearate (18:0) 

  lysolipid 1-arachidonoylglycerophosphocholine 

  lysolipid 1-arachidonoylglycerophosphoethanolamine 

  lysolipid 1-arachidonoylglycerophosphoinositol 

  lysolipid 1-docosahexaenoylglycerophosphocholine 

  lysolipid 1-docosapentaenoylglycerophosphocholine 

  lysolipid 1-eicosadienoylglycerophosphocholine 

  lysolipid 1-eicosatrienoylglycerophosphocholine 

  lysolipid 1-heptadecanoylglycerophosphocholine 

  lysolipid 1-linoleoylglycerophosphocholine 

  lysolipid 1-linoleoylglycerophosphoethanolamine 

  lysolipid 1-myristoylglycerophosphocholine 

  lysolipid 1-oleoylglycerophosphocholine 

  lysolipid 1-oleoylglycerophosphoethanolamine 

 

 

continued 
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Metabolite 
Group   Metabolite Subgroup Metabolite 

Li
pi

ds
 

  lysolipid 1-palmitoleoylglycerophosphocholine 

  lysolipid 1-palmitoylglycerophosphocholine 
  lysolipid 1-palmitoylglycerophosphoethanolamine 

  lysolipid 1-palmitoylglycerophosphoinositol 

  lysolipid 1-palmitoylplasmenylethanolamine 

  lysolipid 1-pentadecanoylglycerophosphocholine 

  lysolipid 1-stearoylglycerophosphocholine 

  lysolipid 1-stearoylglycerophosphoethanolamine 

  lysolipid 1-stearoylglycerophosphoinositol 

  lysolipid 2-arachidonoylglycerophosphocholine 

  lysolipid 2-arachidonoylglycerophosphoethanolamine 

  lysolipid 2-linoleoylglycerophosphocholine 

  lysolipid 2-linoleoylglycerophosphoethanolamine 

  lysolipid 2-myristoylglycerophosphocholine 

  lysolipid 2-oleoylglycerophosphocholine 

  lysolipid 2-oleoylglycerophosphoethanolamine 

  lysolipid 2-palmitoleoylglycerophosphocholine 

  lysolipid 2-palmitoylglycerophosphocholine 

  lysolipid 2-palmitoylglycerophosphoethanolamine 

  lysolipid 2-stearoylglycerophosphocholine 

  medium chain fatty acid 10-undecenoate (11:1n1) 

  medium chain fatty acid 5-dodecenoate (12:1n7) 

  medium chain fatty acid caprate (10:0) 

  medium chain fatty acid caproate (6:0) 

  medium chain fatty acid caprylate (8:0) 

  medium chain fatty acid heptanoate (7:0) 

  medium chain fatty acid laurate (12:0) 

  medium chain fatty acid pelargonate (9:0) 

  medium chain fatty acid undecanoate (11:0) 

  monoacylglycerol 1-oleoylglycerol (1-monoolein) 

  monoacylglycerol 1-palmitoylglycerol (1-monopalmitin) 

  monoacylglycerol 1-stearoylglycerol (1-monostearin) 

  sterol/steroid 21-hydroxypregnenolone disulfate 

  sterol/steroid 4-androsten-3beta,17beta-diol disulfate 1 

  sterol/steroid 4-androsten-3beta,17beta-diol disulfate 2 

  sterol/steroid 5alpha-androstan-3beta,17beta-diol disulfate 

  sterol/steroid 5alpha-pregnan-3beta,20alpha-diol disulfate 

  sterol/steroid 7-alpha-hydroxy-3-oxo-4-cholestenoate (7-Hoca) 

 

continued 
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Metabolite 
Group   Metabolite Subgroup Metabolite 

Li
pi

ds
 

  sterol/steroid andro steroid monosulfate 2 

  sterol/steroid androsterone sulfate 
  sterol/steroid corticosterone 

  sterol/steroid cortisol 

  sterol/steroid cortisone 

  sterol/steroid dehydroisoandrosterone sulfate (DHEA-S) 

  sterol/steroid epiandrosterone sulfate 

  sterol/steroid pregn steroid monosulfate 

  sterol/steroid pregnanediol-3-glucuronide 

  sterol/steroid pregnen-diol disulfate 

  sterol/steroid pregnenolone sulfate 

N
uc

le
ot

id
es

 

  purine metabolism, (hypo)xanthine/inosine 
containing 

hypoxanthine 

  purine metabolism, adenine containing adenosine 5'-monophosphate (AMP) 

  purine metabolism, adenine containing N1-methyladenosine 

  purine metabolism, guanine containing 7-methylguanine 

  purine metabolism, guanine containing N6-carbamoylthreonyladenosine 

  purine metabolism, urate metabolism urate 

  pyrimidine metabolism, cytidine containing N4-acetylcytidine 

  pyrimidine metabolism, uracil containing 5-methyluridine (ribothymidine) 

  pyrimidine metabolism, uracil containing pseudouridine 

  pyrimidine metabolism, uracil containing uridine 

Pe
pt

id
es

 

  dipeptide phenylalanyltryptophan 

  dipeptide pro-hydroxy-pro 

  fibrinogen cleavage peptide DSGEGDFXAEGGGVR 

  gamma-glutamyl gamma-glutamylglutamine 

  gamma-glutamyl gamma-glutamylisoleucine 

  gamma-glutamyl gamma-glutamylleucine 

  gamma-glutamyl gamma-glutamylmethionine 

  gamma-glutamyl gamma-glutamylphenylalanine 

  gamma-glutamyl gamma-glutamyltyrosine 

  gamma-glutamyl gamma-glutamylvaline 

  polypeptide bradykinin 

  polypeptide bradykinin, des-arg(9) 

  polypeptide bradykinin, hydroxy-pro(3) 

 

 

 

continued 
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Metabolite 
Group   Metabolite Subgroup Metabolite 

Xe
no

bi
ot

ic
s 

  benzoate metabolism 3-hydroxyhippurate 

  benzoate metabolism 4-hydroxyhippurate 
  benzoate metabolism 4-methylcatechol sulfate 

  benzoate metabolism 4-vinylphenol sulfate 

  benzoate metabolism catechol sulfate 

  benzoate metabolism hippurate 

  chemical 2-ethylhexanoate (isobar with 2-
propylpentanoate) 

  drug 4-acetaminophen sulfate 

  drug p-acetamidophenylglucuronide 

  edta EDTA 

  food component/plant piperine 

  food component/plant stachydrine 

  food component/plant thymol sulfate 

  xanthine metabolism 1-methylxanthine 

  xanthine metabolism 3-methylxanthine 

  xanthine metabolism caffeine 

  xanthine metabolism paraxanthine 

  xanthine metabolism theobromine 

  xanthine metabolism theophylline 
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SUPPLEMENTARY TABLE 3: LD blocks (r2 = 1.0) of lead SNP rs2014355 according to different public data bases 

Hap Map release 22 and 1,000 Genome Pilot 1: CEU (Utah residents with acestry from northern and western Europe) 

population, data obtained from SNAP (Broad institute) (Johnson et al. 2008). 1,000 Genome Phase 1: European 

Population, data obtained from HaploReg (Broad institute) (Ward and Kellis 2012); Chr, chromosome; MAF, minor 

allele frequency; UTR,  untranslated region. 
 

  tag SNP proxy SNP Chr Position MAF type of SNP Nearest Gene(s)   

Ha
pM

ap
 re

le
as

e 
   

   
   

   
   

   
 

22
 C

EU
 d

at
a 

rs2014355 rs3916 12 119661655 [GRCh36/hg18] 0.25 3'-UTR ACADS   

  rs3999408 12 119651770 [GRCh36/hg18] 0.25 INTRONIC ACADS   

  rs2066938 12 119644998 [GRCh36/hg18] 0.25 INTRONIC UNC119B   

  rs7306541 12 119614429 [GRCh36/hg18] 0.25 INTRONIC KIAA0152   

1,
00

0 
G

en
om

e 
Pi

lo
t 1

 C
EU

 d
at

a rs2014355 rs1799958 12 119660466 [GRCh36/hg18] 0.242 MISSENCE ACADS   

  rs3916 12 119661655 [GRCh36/hg18] 0.242 3'-UTR ACADS   

  rs34708625 12 119664402 [GRCh36/hg18] 0.242 DOWNSTREAM N/A   

1,
00

0 
G

en
om

e 
Ph

as
e 

1 
Eu

ro
pe

an
 

po
pu

la
tio

n 

rs2014355 rs1799958 12 121176083 [GRCh37/hg19] 0.26 MISSENCE ACADS   

  rs3916 12 121177272 [GRCh37/hg19] 0.26 3'-UTR ACADS   

  rs34708625 12 121180019 [GRCh37/hg19] 0.26 N/A RP11-173P15.7   
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SUPPLEMENTARY TABLE 4: Results of the logistic regression model for the top ten percent of metabolites measured 

with the targeted metabolomics approach in the partial study examining rs2014355 in the ACADS locus 

Results are shown for baseline (after 12h overnight fast) and time-resolved metabolite levels during the fasting period 

and the OGTT; adj. wc., analysis adjusted for waist circumference; OGTT, oral glucose tolerance test; a detailed 

description of the metabolite abbrevations is given in SUPPLEMENTARY TABLE 1. 
 

    Metabolite C-index (adj. wc) Metabolite C-index (adj. wc) 

st
ud

y 
da

y 
1 

  12 h fasting       Time-resolved analysis (fasting)   

  C4 0.950 (0.969)   C4 0.999 (0.978)   

  SM C16:0 0.837 (0.906)     PC ae C42:0 0.906 (0.914)   

  C5 M DC 0.824 (0.908)     Methionine 0.883 (0.954)   

  PC ae C44:5 0.817 (0.898)   PC ae C42:4 0.878 (0.899)   

  NEFA 0.808 (0.933)     C16:1 OH 0.877 (0.892)   

  PC aa C32:0 0.788 (0.940)     Ornithine 0.875 (0.874)   

  lyso PC a C18:1 0.784 (0.847)     PC aa C40:2 0.872 (0.882)   

  PC ae C44:6 0.776 (0.929)     PC ae C38:1 0.871 (0.931)   

  SM C24:1 0.773 (0.878)     C16:1 0.859 (0.885)   

                  

st
ud

y 
da

y 
2 

  12 h fasting       Time-resolved analysis (OGTT)   

  C4 0.969 (0.970)   C4 0.964 (0.976)   

  Serine 0.866 (0.915)     lysoPC a C20:4 0.917 (0.926)   

  Creatinine 0.860 (0.912)     Glutamine 0.909 (0.912)   

  lyso PC a C28:0 0.775 (0.856)     lyso PC a C16:1 0.895 (0.915)   

  lyso PC a C26:0 0.774 (0.861)   Spermidine 0.890 (0.905)   

  SM C16:0 0.769 (0.896)     SM OH C24:1 0.867 (0.914)   

  C10:2 0.754 (0.874)     Serine 0.865 (0.909)   

  SM C24:1 0.745 (0.871)     lyso PC a C16:0 0.856 (0.924)   

  lyso PC a C18:0 0.740 (0.901)     C5:1 0.854 (0.878)   
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SUPPLEMENTARY TABLE 5: Results of the logistic regression model with acylcarnitine metabolite ratios approximating 

enzyme activity of ß-oxidation enzymes in the partial study examining rs2014355 in the ACADS locus 

Results are shown for baseline (after 12h overnight fast) and time-resolved metabolite levels during the fasting 

period; adj. wc., analysis adjusted for waist circumference; a detailed description of the metabolite abbrevations is 

given in SUPPLEMENTARY TABLE 1. 
 

    Metabolite ratio C-index (adj. wc)   Metabolite ratio C-index (adj. wc.)   

st
ud

y 
da

y 
1 

  12 h fasting       Time-resolved analysis 
(fasting)       

  C3/C4 0.967 (1.000)   C3/C4 0.999 (1.000)   

  C2/C4 0.913 (0.889)   C2/C4 0.961 (0.934)   

  C2/C6..C4.1.DC. 0.668 (0.880)   C2/C6..C4.1.DC. 0.839 (0.882)   
  C2/C8 0.559 (0.856)   C2/C8 0.746 (0.875)   
  C2/C10 0.624 (0.856)   C2/C10 0.749 (0.858)   
  C2/C12 0.542 (0.831)   C2/C12 0.675 (0.877)   
  C2/C14 0.573 (0.887)   C2/C14 0.738 (0.897)   
  C2/C16 0.500 (0.846)   C2/C16 0.758 (0.882)   
  C2/C18 0.523 (0.828)   C2/C18 0.590 (0.850)   
  C4/C6..C4.1.DC. 0.969 (0.988)   C4/C6..C4.1.DC. 1.000 (0.995)   
  C6..C4.1.DC./C8 0.668 (0.856)   C6..C4.1.DC./C8 0.601 (0.813)   
  C8/C10 0.605 (0.824)   C8/C10 0.595 (0.803)   
  C10/C12 0.508 (0.852)   C10/C12 0.620 (0.842)   
  C12/C14 0.505 (0.862)   C12/C14 0.628 (0.862)   
  C14/C16 0.622 (0.856)   C14/C16 0.634 (0.821)   
  C16/C18 0.502 (0.836)   C16/C18 0.627 (0.819)   
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SUPPLEMENTARY TABLE 6: LD blocks (r2 = 1.0) of lead SNP rs174547 according to different public data bases. Hap 

Map release 22 and 1,000 Genome Pilot 1: CEU (Utah residents with acestry from northern and western Europe) 

population, data obtained from SNAP (Broad institute) (Johnson et al. 2008). 1,000 Genome Phase 1: European 

Population, data obtained from HaploReg (Broad institute) (Ward and Kellis 2012). Chr, chromosome; MAF, minor 

allele frequency; UTR, untranslated region. 
 

  tag SNP proxy SNP Chr Position MAF type of SNP Nearest Gene(s)   

Ha
pM

ap
 re

le
as

e 
22

 C
EU

 d
at

a 

rs174547 rs174550 11 61328054 [GRCh36/hg18] 0.367 INTRONIC FADS1,FADS3   

  rs174546 11 61326406 [GRCh36/hg18] 0.367 3'-UTR FADS1,FADS3   

  rs174545 11 61325882 [GRCh36/hg18] 0.367 3'-UTR FADS1,FADS3   

  rs102275 11 61314379 [GRCh36/hg18] 0.367 INTRONIC C11orf10   

  rs174537 11 61309256 [GRCh36/hg18] 0.367 INTRONIC C11orf9   

  rs174536 11 61308503 [GRCh36/hg18] 0.367 INTRONIC C11orf9   

  rs174535 11 61307932 [GRCh36/hg18] 0.367 SYNONYMOUS 
CODING C11orf9   

  rs1535 11 61354548 [GRCh36/hg18] 0.367 INTRONIC FADS1,FADS3,FADS2   

  rs174574 11 61356918 [GRCh36/hg18] 0.367 INTRONIC FADS1,FADS3,FADS2   

  rs174576 11 61360086 [GRCh36/hg18] 0.367 INTRONIC FADS1,FADS3,FADS2   

  rs174577 11 61361390 [GRCh36/hg18] 0.367 INTRONIC FADS1,FADS3,FADS2   

  rs174578 11 61362075 [GRCh36/hg18] 0.367 INTRONIC FADS1,FADS3,FADS2   

  rs174583 11 61366326 [GRCh36/hg18] 0.367 INTRONIC FADS1,FADS3,FADS2   
                

1,
00

0 
G

en
om

e 
Pi

lo
t 1

 C
EU

 
da

ta
 

rs174547 

              

1,
00

0 
G

en
om

e 
Ph

as
e 

1 
Eu

ro
pe

an
 

po
pu

la
tio

n 

rs174547 rs174545 11 61569306  [GRCh37/hg19] 0.36 3'-UTR FADS1   

  rs174546 11 61569830 [GRCh37/hg19] 0.36 3'-UTR FADS1   

  rs174547 11 61570783 [GRCh37/hg19] 0.36 INTRONIC FADS1   

  rs174550 11 61571478 [GRCh37/hg19] 0.36 INTRONIC FADS1   

  rs174553 11 61575158 [GRCh37/hg19] 0.36   FADS1   

  rs174554 11 61579463 [GRCh37/hg19] 0.36   FADS1   

  rs174562 11 61585144  [GRCh37/hg19] 0.36   FADS1   
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SUPPLEMENTARY TABLE 7: Results of the logistic regression model for the top ten percent of metabolites measured 

with the targeted metabolomics approach in the partial study examining rs174547 in the FADS1 locus 

Results are shown for baseline (after 12h overnight fast) and time-resolved metabolite levels after the OLTT and the 

OGTT; OLTT, oral lipid tolerance test; OGTT, oral glucose tolerance test; a detailed description of the metabolite 

abbrevations are given in SUPPLEMENTARY TABLE 1. 

 

    Metabolite C-index     Metabolite C-index    

st
ud

y 
da

y 
1 

  12 h fasting       Time-resolved analysis (OLTT)   

  C9 0.520     SM C20:2 0.903   

  PC aa C42:5 0.515     PC aa C36:1 0.896   

  PC aa C40:3 0.509     lyso PC a C20:4 0.883   

  total dimethylarginine 0.505     threonine 0.881   

  C16:2 OH 0.504     leucine 0.875   

  PC aa C40:6 0.504     PC aa C36:3 0.853   

  PC aa C42:2 0.503     PC ae C36:3 0.849   

  proline 0.503     tyrosine 0.847   

  C14:2 OH 0.503     PC aa C34:1 0.843   

                  

st
ud

y 
da

y 
2 

  12 h fasting       Time-resolved analysis (OGTT)   

  C6:1 0.513     lyso PC a C20:4 0.900   

  lyso PC a C28:1 0.510     PC aa C38:4 0.869   

  PC ae C34:0 0.509     C5 OH C3 DC.M. 0.857   

  alpha-aminoadipic acid 0.508     PC aa C36:4 0.852   

  C3 OH 0.508     C10:1 0.838   

  lyso PC a C24:0 0.506     C12 0.833   

  C18:1 0.505     PC aa C36:5 0.832   

  SM OH C16:1 0.504     lyso PC a C26:1 0.827   

  C10:2 0.504     C5:1 0.822   
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SUPPLEMENTARY TABLE 8: Metabolite ratios calculated for studying  

the gene variant rs174547 in the FADS1 locus 
 

  Numerator Denominator 

  lysoPC.a.C16:0 lysoPC.a.C20:4 
  lysoPC.a.C18:0 lysoPC.a.C20:4 
  lysoPC.a.C18:1 lysoPC.a.C20:4 
  lysoPC.a.C18:2 lysoPC.a.C20:4 
  lysoPC.a.C20:4 lysoPC.a.C16:0 
  lysoPC.a.C20:4 lysoPC.a.C18:1 
  lysoPC.a.C20:4 lysoPC.a.C18:2 
  lysoPC.a.C20:4 lysoPC.a.C20:3 
  PC.aa.C32:2 PC.aa.C38:4 
  PC.aa.C34:1 PC.aa.C36:4 
  PC.aa.C34:1 PC.aa.C38:4 
  PC.aa.C34:2 PC.aa.C36:4 
  PC.aa.C34:2 PC.aa.C38:4 
  PC.aa.C34:2 PC.aa.C38:5 
  PC.aa.C34:4 PC.aa.C34:3 
  PC.aa.C36:1 PC.aa.C36:4 
  PC.aa.C36:1 PC.aa.C38:4 
  PC.aa.C36:2 lysoPC.a.C20:4 
  PC.aa.C36:2 PC.aa.C36:4 
  PC.aa.C36:2 PC.aa.C38:4 
  PC.aa.C36:2 PC.aa.C38:5 
  PC.aa.C36:3 lysoPC.a.C20:4 
  PC.aa.C36:3 PC.aa.C36:4 
  PC.aa.C36:3 PC.aa.C38:4 
  PC.aa.C36:3 PC.aa.C38:5 
  PC.aa.C36:4 PC.aa.C34:3 
  PC.aa.C36:4 PC.aa.C34:1 
  PC.aa.C36:4 PC.aa.C34:2 
  PC.aa.C36:4 PC.aa.C36:2 
  PC.aa.C36:4 PC.aa.C36:3 
  PC.aa.C36:5 PC.aa.C.34:3 
  PC.aa.C36:5 PC.aa.C.34:4 
  PC.aa.C36:5 PC.aa.C.36:4 
  PC.aa.C38:3 PC.aa.C38:4 
  PC.aa.C38:4 PC.aa.C34:3 
  PC.aa.C38:4 PC.aa.C34:2 
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  Numerator Denominator 

  PC.aa.C38:4 PC.aa.C36:1 
  PC.aa.C38:4 PC.aa.C36:2 
  PC.aa.C38:4 PC.aa.C36:3 
  PC.aa.C38:4 PC.aa.C38:3 
  PC.aa.C38:5 PC.aa.C.34:3 
  PC.aa.C38:5 PC.aa.C.34:4 
  PC.aa.C38:5 PC.aa.C.36:4 
  PC.aa.C40:4 PC.aa.C34:2 
  PC.aa.C40:4 PC.aa.C34:3 
  PC.aa.C40:4 PC.aa.C36:3 
  PC.aa.C40:5 PC.aa.C.34:4 
  PC.aa.C40:5 PC.aa.C.36:4 
  PC.aa.C40:5 PC.aa.C34:2 
  PC.aa.C40:5 PC.aa.C34:3 
  PC.aa.C40:5 PC.aa.C36:3 
  PC.aa.C40:6 PC.aa.C.34:3 
  PC.aa.C40:6 PC.aa.C.34:4 
  PC.aa.C40:6 PC.aa.C.36:4 
  PC.ae.C36:2 PC.ae.C38:4 
  PC.ae.C36:3 lysoPC.a.C20:4 
  PC.ae.C36:3 PC.aa.C36:4 
  PC.ae.C36:3 PC.aa.C38:4 
  PC.ae.C36:3 PC.ae.C36:4 
  PC.ae.C36:3 PC.ae.C36:5 
  PC.ae.C36:3 PC.ae.C38:4 
  PC.ae.C36:3 PC.ae.C38:5 
  PC.ae.C36:4 PC.ae.C34:2 
  PC.ae.C36:4 PC.ae.C34:3 
  PC.ae.C36:4 PC.ae.C36:3 
  PC.ae.C36:5 PC.ae.C.34:3 
  PC.ae.C36:5 PC.ae.C.34:4 
  PC.ae.C36:5 PC.ae.C.36:4 
  PC.ae.C36:5 PC.ae.C36:3 
  PC.ae.C38:3 PC.aa.C38:4 
  PC.ae.C38:3 PC.ae.C38:4 
  PC.ae.C38:4 PC.ae.C34:2 
  PC.ae.C38:4 PC.ae.C34:3 
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  Numerator Denominator 

  PC.ae.C38:4 PC.ae.C36:3 
  PC.ae.C38:4 PC.ae.C36:3 
  PC.ae.C38:4 PC.ae.C38:3 
  PC.ae.C38:5 PC.ae.C.34:3 
  PC.ae.C38:5 PC.ae.C.34:4 
  PC.ae.C38:5 PC.ae.C.36:4 
  PC.ae.C38:5 PC.ae.C36:3 
  PC.ae.C40:4 PC.ae.C34:2 
  PC.ae.C40:4 PC.ae.C34:3 
  PC.ae.C40:4 PC.ae.C36:3 
  PC.ae.C40:5 PC.ae.C.34:3 
  PC.ae.C40:5 PC.ae.C.34:4 
  PC.ae.C40:5 PC.ae.C.36:4 
  PC.ae.C40:5 PC.ae.C34:2 
  PC.ae.C40:5 PC.ae.C36:3 
  PC.ae.C40:6 PC.ae.C.34:3 
  PC.ae.C40:6 PC.ae.C.34:4 
  PC.ae.C40:6 PC.ae.C.36:4 
  SM.C16:0 SM.C16:1 
  SM.C18:0 SM.C18:1 
  SM.C24:1 PC.aa.C38:4 
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SUPPLEMENTARY TABLE 9: Highly distinctive metabolite ratios (metabolites measured with the targeted 

metabolomics approach) for the respective allele of rs174547 (in the FADS1 locus) calculated with logistic regression 

Results are shown for baseline (after 12h overnight fast) and time-resolved metabolite levels during the OLTT and 

the OGTT; OGTT, oral glucose tolerance test; OLTT, oral lipid tolerance test; a detailed description of the metabolite 

abbrevations are given in SUPPLEMENTARY TABLE 1. 
 

    Metabolite C-index     Metabolite C-index    

st
ud

y 
da

y 
1 

  12 h fasting       Time-resolved analysis (OLTT)     

  lysoPC.a.C16.0 / lysoPC.a.C20.4 0.99358974     lysoPC.a.C16.0 / lysoPC.a.C20.4 1   

  lysoPC.a.C20.4 / lysoPC.a.C16.0 0.99358974     lysoPC.a.C20.4 / lysoPC.a.C16.0 0.995   

  PC.aa.C36.3 / PC.aa.C36.4 0.96620192     PC.aa.C38.4 / PC.aa.C34.2 0.98607372   

  PC.aa.C36.4 / PC.aa.C36.3 0.96589744     PC.aa.C34.2 / PC.aa.C38.4 0.97950321   

  PC.ae.C36.3 / lysoPC.a.C20.4 0.96262821     PC.aa.C36.4 / PC.aa.C34.2 0.97934295   

  PC.aa.C36.4 / PC.aa.C34.2 0.96201923     PC.aa.C34.2 / PC.aa.C36.4 0.97862179   

  PC.aa.C38.3 / PC.aa.C38.4 0.96057692     PC.ae.C38.3 / PC.ae.C38.4 0.97102564   

  lysoPC.a.C18.0 / lysoPC.a.C20.4 0.95950321     PC.aa.C36.1 / PC.aa.C36.4 0.97032051   

  PC.aa.C34.2 / PC.aa.C36.4 0.95940705     PC.ae.C36.3 / PC.ae.C38.4 0.96418269   

  PC.aa.C38.4 / PC.aa.C38.3 0.95767628     lysoPC.a.C18.1 / lysoPC.a.C20.4 0.96240385   
  PC.aa.C34.1 / PC.aa.C36.4 0.95475962     PC.ae.C38.4 / PC.ae.C36.3 0.96224359   
  PC.aa.C36.3 / lysoPC.a.C20.4 0.954375     PC.aa.C38.4 / PC.aa.C36.2 0.96179487   
  PC.aa.C36.4 / PC.aa.C34.1 0.95285256     PC.ae.C38.4 / PC.ae.C38.3 0.96129808   
  PC.aa.C36.3 / PC.aa.C38.4 0.95224359     PC.aa.C38.4 / PC.aa.C36.1 0.95831731   
  PC.ae.C38.5 / PC.ae.C36.3 0.95094551     lysoPC.a.C20.4 / lysoPC.a.C18.1 0.95684295   
  PC.aa.C38.4 / PC.aa.C36.3 0.95052885     PC.aa.C34.1 / PC.aa.C38.4 0.94913462   
  PC.ae.C40.5 / PC.ae.C36.3 0.9500641     PC.aa.C36.1 / PC.aa.C38.4 0.94884615   
  lysoPC.a.C20.4 / lysoPC.a.C18.2 0.94987179     PC.aa.C36.4 / PC.aa.C36.3 0.94878205   
  PC.ae.C36.3 / PC.ae.C36.5 0.94875     PC.aa.C36.2 / PC.aa.C38.4 0.94834936   
  PC.ae.C36.3 / PC.ae.C38.5 0.94870192     PC.aa.C36.3 / PC.aa.C36.4 0.94738782   
  PC.aa.C34.2 / PC.aa.C38.5 0.94854167     PC.aa.C36.3 / lysoPC.a.C20.4 0.94719551   
  PC.ae.C38.4 / PC.ae.C36.3 0.9481891     PC.aa.C38.3 / PC.aa.C38.4 0.94613782   
  lysoPC.a.C20.4 / lysoPC.a.C20.3 0.94722756     PC.ae.C36.3 / lysoPC.a.C20.4 0.94512821   
  PC.ae.C36.5 / PC.ae.C36.3 0.94682692     PC.aa.C36.2 / lysoPC.a.C20.4 0.94129808   
  lysoPC.a.C18.1 / lysoPC.a.C20.4 0.94536859     PC.ae.C36.3 / PC.aa.C36.4 0.94028846   
  PC.ae.C36.3 / PC.ae.C38.4 0.94453526     PC.ae.C40.5 / PC.ae.C36.3 0.94009615   
  lysoPC.a.C18.2 / lysoPC.a.C20.4 0.94421474     PC.aa.C38.4 / PC.aa.C38.3 0.93849359   
  PC.ae.C36.3 / PC.aa.C36.4 0.94410256     PC.aa.C36.3 / PC.aa.C38.4 0.93679487   
  lysoPC.a.C20.4 / lysoPC.a.C18.1 0.94310897     PC.ae.C38.4 / PC.ae.C34.2 0.93605769   
  PC.ae.C38.4 / PC.ae.C34.2 0.94163462     PC.aa.C38.4 / PC.aa.C36.3 0.93386218   
  PC.aa.C34.2 / PC.aa.C38.4 0.9380609     PC.ae.C40.4 / PC.ae.C36.3 0.93134615   
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continued 

    Metabolite C-index     Metabolite C-index    
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  12 h fasting       Time-resolved analysis (OLTT)     

  PC.aa.C38.4 / PC.aa.C34.2 0.93798077     PC.aa.C34.2 / PC.aa.C38.5 0.9305609   

  PC.aa.C36.3 / PC.aa.C38.5 0.93778846     lysoPC.a.C18.0 / lysoPC.a.C20.4 0.92921474   

  PC.aa.C38.4 / PC.aa.C36.1 0.9369391     PC.aa.C38.5 / PC.aa.C34.3 0.92919872   

  PC.aa.C36.1 / PC.aa.C38.4 0.93552885     PC.aa.C34.1 / PC.aa.C36.4 0.92900641   

  PC.ae.C36.3 / PC.aa.C38.4 0.93317308     PC.aa.C36.4 / PC.aa.C34.1 0.92823718   

  PC.aa.C36.1 / PC.aa.C36.4 0.93283654     PC.aa.C36.5 / PC.aa.C34.3 0.92793269   

  PC.aa.C36.2 / lysoPC.a.C20.4 0.93262821     PC.ae.C36.5 / PC.ae.C36.3 0.92709936   

  PC.aa.C36.5 / PC.aa.C34.3 0.92525641     PC.ae.C36.3 / PC.ae.C36.5 0.92564103   

  PC.aa.C36.2 / PC.aa.C38.4 0.92024038     lysoPC.a.C18.2 / lysoPC.a.C20.4 0.92310897   

  PC.ae.C40.4 / PC.ae.C36.3 0.91985577     lysoPC.a.C20.4 / lysoPC.a.C18.2 0.92145833   

  PC.aa.C38.4 / PC.aa.C36.2 0.91798077     PC.ae.C36.3 / PC.ae.C38.5 0.92108974   

  PC.aa.C36.2 / PC.aa.C38.5 0.91464744     PC.aa.C36.4 / PC.aa.C36.2 0.91932692   

  PC.aa.C34.1 / PC.aa.C38.4 0.90774038     PC.ae.C38.5 / PC.ae.C36.3 0.91600962   

  PC.ae.C40.5 / PC.ae.C34.2 0.90314103     PC.aa.C36.2 / PC.aa.C36.4 0.91378205   

  PC.aa.C36.4 / PC.aa.C36.2 0.90192308     PC.aa.C36.3 / PC.aa.C38.5 0.91238782   

  PC.aa.C36.2 / PC.aa.C36.4 0.90144231     PC.aa.C38.4 / PC.aa.C34.3 0.90866987   

  PC.aa.C36.4 / PC.aa.C34.3 0.90116987     lysoPC.a.C20.4 / lysoPC.a.C20.3 0.90375   

  SM.C18.0 / SM.C18.1 0.90099359     PC.aa.C40.5 / PC.aa.C34.3 0.90248397   
                

    Metabolite C-index     Metabolite C-index    
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  12 h fasting       Time-resolved analysis (OGTT)     

  lysoPC.a.C18.2 / lysoPC.a.C20.4 1     lysoPC.a.C18.2 / lysoPC.a.C20.4 1   

  lysoPC.a.C20.4 / lysoPC.a.C18.2 1     lysoPC.a.C20.4 / lysoPC.a.C18.2 1   

  PC.aa.C34.2 / PC.aa.C36.4 1     PC.aa.C34.2 / PC.aa.C38.4 1   

  PC.aa.C34.2 / PC.aa.C38.4 1     PC.aa.C36.2 / PC.aa.C38.4 1   

  PC.aa.C34.2 / PC.aa.C38.5 1     PC.aa.C38.4 / PC.aa.C36.2 1   

  PC.aa.C36.2 / PC.aa.C38.4 1     PC.aa.C36.4 / PC.aa.C34.2 0.99980769   

  PC.aa.C36.4 / PC.aa.C34.2 1     PC.aa.C34.2 / PC.aa.C36.4 0.99977273   

  PC.aa.C38.4 / PC.aa.C34.2 1     PC.aa.C38.4 / PC.aa.C34.2 0.99807692   

  PC.aa.C38.4 / PC.aa.C36.2 1     PC.aa.C34.2 / PC.aa.C38.5 0.99272727   

  PC.aa.C38.5 / PC.aa.C34.3 0.97961538     PC.aa.C38.5 / PC.aa.C34.3 0.9923951   
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continued 

    Metabolite C-index     Metabolite C-index    
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  12 h fasting       Time-resolved analysis (OGTT)     

  lysoPC.a.C20.4 / lysoPC.a.C16.0 0.97692308     PC.aa.C36.4 / PC.aa.C36.3 0.97   

  lysoPC.a.C16.0 / lysoPC.a.C20.4 0.97552448     PC.aa.C36.3 / PC.aa.C38.5 0.96466783   

  PC.aa.C36.3 / PC.aa.C36.4 0.97447552     lysoPC.a.C20.4 / lysoPC.a.C18.1 0.96391608   

  PC.aa.C36.4 / PC.aa.C36.3 0.97444056     PC.aa.C36.2 / PC.aa.C36.4 0.96283217   

  PC.aa.C36.3 / PC.aa.C38.5 0.97370629     PC.aa.C36.3 / PC.aa.C36.4 0.96117133   

  PC.ae.C36.3 / PC.aa.C36.4 0.97325175     PC.aa.C36.4 / PC.aa.C36.2 0.95994755   

  PC.aa.C36.2 / PC.aa.C36.4 0.97173077     PC.aa.C38.4 / PC.aa.C36.3 0.95961538   

  PC.aa.C38.4 / PC.aa.C36.3 0.96965035     PC.aa.C36.3 / PC.aa.C38.4 0.95729021   

  PC.aa.C36.5 / PC.aa.C34.3 0.96837413     PC.aa.C36.5 / PC.aa.C34.3 0.95659091   

  PC.aa.C36.4 / PC.aa.C36.2 0.96776224     lysoPC.a.C18.1 / lysoPC.a.C20.4 0.95592657   

  PC.aa.C36.3 / PC.aa.C38.4 0.96732517     PC.ae.C38.4 / PC.ae.C34.2 0.95472028   

  PC.ae.C36.5 / PC.ae.C36.3 0.96407343     PC.aa.C40.5 / PC.aa.C34.3 0.94734266   

  PC.ae.C36.3 / PC.ae.C36.5 0.96256993     lysoPC.a.C20.4 / lysoPC.a.C16.0 0.94713287   

  PC.aa.C38.4 / PC.aa.C38.3 0.95994755     lysoPC.a.C16.0 / lysoPC.a.C20.4 0.94541958   

  PC.ae.C38.4 / PC.ae.C34.2 0.95984266     lysoPC.a.C18.0 / lysoPC.a.C20.4 0.93996503   

  PC.ae.C36.3 / PC.aa.C38.4 0.95975524     PC.ae.C36.3 / PC.aa.C36.4 0.93952797   

  lysoPC.a.C18.0 / lysoPC.a.C20.4 0.9593007     PC.aa.C38.4 / PC.aa.C36.1 0.9377972   

  PC.aa.C38.3 / PC.aa.C38.4 0.95893357     PC.aa.C36.1 / PC.aa.C38.4 0.93730769   

  PC.ae.C38.4 / PC.ae.C36.3 0.95715035     PC.ae.C36.5 / PC.ae.C36.3 0.93309441   

  PC.ae.C36.3 / PC.ae.C38.4 0.95708042     PC.aa.C34.1 / PC.aa.C38.4 0.9320979   

  PC.aa.C36.2 / PC.aa.C38.5 0.95676573     PC.aa.C34.4 / PC.aa.C34.3 0.93188811   

  lysoPC.a.C18.1 / lysoPC.a.C20.4 0.95302448     PC.aa.C36.5 / PC.aa.C34.4 0.92933566   

  PC.aa.C38.4 / PC.aa.C36.1 0.95152098     PC.aa.C36.2 / PC.aa.C38.5 0.92844406   

  PC.aa.C36.1 / PC.aa.C38.4 0.95106643     SM.C24.1 / PC.aa.C38.4 0.92793706   

  lysoPC.a.C20.4 / lysoPC.a.C18.1 0.95043706     PC.ae.C36.3 / PC.aa.C38.4 0.92697552   

  SM.C18.0 / SM.C18.1 0.95013986     PC.ae.C36.3 / PC.ae.C38.4 0.92631119   

  PC.aa.C36.4 / PC.aa.C34.3 0.94980769     PC.aa.C36.4 / PC.aa.C34.3 0.92503497   

  PC.aa.C38.4 / PC.aa.C34.3 0.94564685     PC.aa.C34.1 / PC.aa.C36.4 0.9248951   

  PC.aa.C34.1 / PC.aa.C38.4 0.94188811     PC.aa.C38.4 / PC.aa.C38.3 0.92479021   

  PC.ae.C38.5 / PC.ae.C36.3 0.9413986     PC.ae.C38.4 / PC.ae.C36.3 0.92451049   

  PC.aa.C40.5 / PC.aa.C34.3 0.93923077     PC.aa.C36.4 / PC.aa.C34.1 0.92388112   

  PC.aa.C36.4 / PC.aa.C34.1 0.93881119     PC.aa.C36.1 / PC.aa.C36.4 0.92368881   

  PC.aa.C34.1 / PC.aa.C36.4 0.93622378     PC.ae.C36.3 / PC.ae.C36.5 0.9220979   
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continued 

    Metabolite C-index     Metabolite C-index    
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  12 h fasting       Time-resolved analysis (OGTT)     

  SM.C24.1 / PC.aa.C38.4 0.93393357     PC.aa.C38.3 / PC.aa.C38.4 0.91891608   

  PC.ae.C36.3 / PC.ae.C38.5 0.93361888     PC.aa.C40.5 / PC.aa.C36.3 0.91758741   

  PC.aa.C40.5 / PC.aa.C36.3 0.93328671     PC.ae.C40.5 / PC.ae.C34.2 0.91638112   

  PC.ae.C40.5 / PC.ae.C34.2 0.93314685     SM.C18.0 / SM.C18.1 0.91636364   

  PC.aa.C32.2 / PC.aa.C38.4 0.92882867     PC.aa.C38.4 / PC.aa.C34.3 0.91576923   

  PC.aa.C34.4 / PC.aa.C34.3 0.92769231     PC.aa.C40.5 / PC.aa.C34.2 0.91195804   

  lysoPC.a.C20.4 / lysoPC.a.C20.3 0.92756993     PC.ae.C38.5 / PC.ae.C36.3 0.9063986   

  PC.aa.C36.5 / PC.aa.C34.4 0.92678322     PC.ae.C36.3 / PC.ae.C38.5 0.90342657   

  PC.aa.C36.5 / PC.aa.C34.4 0.92678322     PC.ae.C38.3 / PC.aa.C38.4 0.90227273   

  PC.aa.C36.2 / lysoPC.a.C20.4 0.92335664           

  PC.aa.C36.2 / lysoPC.a.C20.4 0.92335664           

  PC.aa.C40.5 / PC.aa.C34.2 0.91968531           

  PC.aa.C40.5 / PC.aa.C34.2 0.91968531           

  PC.ae.C36.3 / PC.ae.C36.4 0.9186014           

  PC.ae.C36.3 / PC.ae.C36.4 0.9186014           

  PC.aa.C36.3 / lysoPC.a.C20.4 0.91844406           

  PC.aa.C36.3 / lysoPC.a.C20.4 0.91844406           

  PC.ae.C36.4 / PC.ae.C36.3 0.91818182           

  PC.ae.C36.4 / PC.ae.C36.3 0.91818182           

  PC.ae.C40.5 / PC.ae.C36.3 0.91337413           

  PC.ae.C40.5 / PC.ae.C36.3 0.91337413           

  PC.aa.C36.1 / PC.aa.C36.4 0.91202797           

  PC.aa.C36.1 / PC.aa.C36.4 0.91202797           

  PC.ae.C36.3 / lysoPC.a.C20.4 0.90513986           

  PC.ae.C36.3 / lysoPC.a.C20.4 0.90513986           
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SUPPLEMENTARY TEXT 1: Detailed description of the non-targeted metabolomic analysis  

Non-targeted metabolomics profiles were measured using a previously described method of Metabolon 

Inc. (Durham, USA) (Evans et al. 2009; Boudonck et al. 2009). Plasma samples (100 µl) were pipetted into 

a 96 deep well plate. In addition to samples from this study, a pooled human reference plasma sample 

was extracted in 6 independent times per 96 well plate. These samples served as technical replicates 

throughout the data set to assess process variability. Besides the reference plasma samples, 100 μL of 

water was extracted in 5 independent times per 96 well plate to serve as process blanks.  

Proteins were precipitated and metabolites were extracted from the samples with methanol containing 4 

recovery standards, which allowed the monitoring of extraction efficiency. After centrifugation, the 

supernatant was split into four aliquots. The first two aliquots were used for LC/MS analysis in positive and 

negative electrospray ionization mode. Two further aliquots on a second 96 well plate were kept in 

reserve.  

The samples were dried under nitrogen on a TurboVap 96 (Biotage). For LC/MS pos. ion mode samples 

were reconstituted with 50 µl of 0.1% formic acid and for neg. ion mode with 50 µl of 6.5 mM ammonium 

bicarbonate pH 8.0. Both reconstitution solvents contained internal standards that were used to monitor 

instrument performance and as retention index markers. LC/MS analysis was performed on a LTQ XL mass 

spectrometer (Thermo Fisher Scientific GmbH, Dreieich, Germany) equipped with a Waters Acquity UPLC 

system (Waters GmbH, Eschborn, Germany). Two separate columns (2.1 x 100 mm Waters BEH C18 1.7 

µm particle) were used for acidic (solvent A: 0.1% formic acid in H2O, solvent B: 0.1% formic acid in 

methanol) and basic (A: 6.5 mM ammonium bicarbonate pH 8.0, B: 6.5 mM ammonium bicarbonate in 

95% methanol) mobile phase conditions, optimized for positive and negative electrospray ionization, 

respectively. After injection of the sample extracts the columns were developed in a gradient of 99.5% A 

to 98% B in 11 min runtime at 350 µl/min flow rate. The eluent flow was directly connected to the ESI 

source of the LTQ XL mass spectrometer. The MS interface capillary was maintained at 350 °C, with a 

sheath gas flow of 35 (arbitrary units) and aux gas flow of 20 (arbitrary units) for both positive and negative 

injections. The spray voltage for the positive ion injection was 4.23 kV, and it was 4.0 kV for the negative 

ion injection. The instrument scanned was 80-1000 m/z and alternated between MS and MS/MS scans 

with dynamic exclusion technique which enables a wide range of metabolome coverage. The scan speed 

was approximately six scans per second (three MS and three MS/MS scans). The MS scan had an ion-trap 

target of 2 × 104 (arbitrary units) and an ion-trap fill time cutoff of 200 ms. The MS/MS scan had an ion-

trap target of 8 × 103 (arbitrary units) and an ion-trap fill time cutoff of 100 ms. MS/MS normalized collision 
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energy was set to 30, activation Q 0.25, and activation time 30 ms, with a 3 m/z isolation window. 

Metabolites were identified by Metabolon from the LC/MS data by automated multiparametric 

comparison with a proprietary library, containing retention times, m/z ratios, and related adduct/fragment 

spectra. 265 known metabolites were identified in this study, as well as 136 compounds with unknown 

chemical structure, indicated by a X followed by a number as compound identifier. For each identified 

metabolite the raw area counts were normalized to the median value of the run day to correct for inter-

day variation of the measurements. 
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