
Technische Universität München
Lehrstuhl für Integrierte Systeme

Text Analytics on Reconfigurable Platforms

Dipl.-Ing. Univ. Raphael Polig

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und
Informationstechnik der Technischen Universität München zur Erlangung des
akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Gerhard Rigoll
Prüfer der Dissertation:
1. apl. Prof. Dr. Walter Stechele
2. Univ.-Prof. Dr. Marco Platzner, Universität Paderborn

Die Dissertation wurde am 05.10.2015 bei der Technischen Universität München
eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik am
22.11.2015 angenommen.

To all my family

Abstract

With the arrival of Big Data, analyzing large amounts of unstructured data is becoming
increasingly popular. The way digital data is generated has been revolutionized by the
use of mobile devices and social media platform where unstructured data is shared in
many forms from digital video and images to plain text. But also scientific publications,
medical records, patent applications or machine data logs are created and stored in
form of digital data. The analysis of this type of data may reveal valuable insights to
scientists, marketers, medical doctors and system administrators, which can help them
in their decision making.

At the same time, the end of transistor scaling makes it difficult for future processor
generations to provide sufficient computational power to perform such analyses. To cope
with this situation special purpose processors or accelerators are entering the data-
centers. In particular reconfigurable architectures, such as field-programmable gate
arrays (FPGAs), have proven to provide significant performance gains at low power
increase. While the low power aspect allows them to be integrated into existing systems,
their ability to reconfigure provides a level of flexibility to adapt to new applications.

This dissertation explores how a query-based text analytics system can be mapped
onto a reconfigurable architecture and exploit it to achieve significant speedups. For this
purpose a hardware compiler has been developed to generate a custom architecture for
a user defined query. The document text is scanned by a set of finite state-machines in a
single pass character-by-character. The state-machines are able to report the start and
end offsets of various patterns within the text and produce naturally ordered results by
the end offset. These results are further processed by relational algebra operators which
can leverage this natural ordering to compose a fast and efficient streaming architecture.
Additional optimizations have been developed for the query compiler when targeting an
FPGA. These optimizations can significantly reduce the amount of resources required
by the generated hardware.

To avoid lengthy synthesis times for an FPGA device, this thesis also explores a
programmable approach for relational operators which does not require synthesis nor
reconfiguration of the device. This led to the design of a custom soft-core processor
array that leverages insights learned from the hardware compilation architecture. At
the heart of the soft-core is the concept of virtual streams, which allows multiple data
flows to be consolidated onto a single core. The soft-core array is augmented with shared
resources for pattern matching operations and token offset lookup.

V

To ensure the feasibility of the approach, the system integration of the accelerator
into an enterprise server system is discussed. The hardware interface logic has been
designed to minimize the latency for individual document processing, while maximiz-
ing the compiled query core’s throughput by supporting multiple submitting software
threads. The software interface library is designed accordingly and is made available to
the high-level programming language Java.

This work demonstrates the capabilities of reconfigurable architectures for text-based
information extraction systems by allowing large scale queries to be run on-line.

VI

Zusammenfassung

Die Art und Weise, wie digitale Daten erzeugt werden, wurde durch die Nutzung mo-
biler Geräte und sozialer Medien revolutioniert. Diese Daten sind vorrangig unstruk-
turiert und liegen in Form von Bildern, Videos oder kurzen Text Abschnitten vor. Big
Data Analysen versuchen aus diesen Daten konkrete Informationen zu gewinnen, um
Wissenschaftlern, Marketing Experten, Ärzten und IT Kräften bei ihren Entscheidun-
gen zu unterstützen. Dabei werden neben sozialen Medien, auch wissenschaftliche Ar-
beiten, Patentanmeldungen, Patienten-unterlagen und System Logs analysiert, was eine
zunehmende Anforderung an die Rechenleistung von IT Systemen bedeutet.

Zur gleichen Zeit, erschwert das Ende der Transistor Skalierung es, künftigen Prozes-
sor Generationen, genügend Rechenleistung für solche Analysen bereitzustellen. Um
dieser Situation entgegenzuwirken, werden vermehrt anwendungs-spezifische Prozes-
soren oder Beschleuniger in Rechenzentren verbaut. Besonders rekonfigurierbare Ar-
chitekturen, wie field-programmable gate arrays (FPGAs), erzielen merkliche Verbes-
serungen bei nur geringfügig höherer Leistungsaufnahme. Zum einen lässt der geringe
Stromverbrauch es zu, solche Architekturen in bestehende Systeme zu integrieren, zum
anderen erlaubt die Möglichkeit der Rekonfiguration sich an neue Anwendungen anzu-
passen.

Ziel dieser Dissertation ist die Untersuchung von rekonfigurierbaren Architekturen als
Zielplatform für query-basierende Text Analyse Systeme, um eine signifikante Reduktion
der Verarbeitungszeit zu erreichen. Dazu wurde ein Hardware Compiler entwickelt, der
eine spezifische Architektur erzeugt, welche eine gegebene benutzer-definierte Query
abbildet. Eine Reihe von Zustandsautomaten analysieren ein Dokument Buchstabe für
Buchstabe in einem einzigen Durchgang und erkennen dabei verschiedene Text-Muster.
Durch diese Art der Verarbeitung werden sortierte Ergebnise erzeugt, mit Start- und
End-Punkten der Muster innerhalb des Dokumentes. Diese werden durch relationale
Algebra weiter verarbeitet, welche diese natürliche Reihenfolge nutzen kann, um effizient
in einer Datenfluss Architektur abgebildet zu werden. Für die Abbildung von Queries auf
FPGAs wurden spezielle Optimierungen fuer den Compiler entwickelt. Diese können die
benötigten Resourcen, und damit auf die Leistungsaufnahme, der erzeugten Hardware
Architektur erheblich senken.

Um lange Synthese Zeiten fuer FPGA Syteme zu vermeiden, untersucht diese Ar-
beit auch einen programmierbaren Ansatz fuer relationale Algebra, welcher weder eine
Synthese, noch eine Rekonfiguration des Chips benoetigt. Dies mündete in der En-

VII

twicklung eines soft-core Prozessor Arrays, welches Erkenntnisse aus dem Hardware
Compiler Ansatz weiterführt. Ein wichtiges Konzept dieser Architektur sind virtuelle
Datenströme, welche es ermöglichen mehrere Ströme auf einem Prozessor zu verarbeiten.

Um den Nutzen des gesamten Ansatzes zu verifizieren, wurde der Beschleuniger in
ein kommerzielles Server System integriert. Das entwickelte Hardware Interface min-
imiert die Verarbeitungslatenz fuer einzelne Dokumente, erlaubt aber mehreren software
threads gleichzeitig Dokumente einzureichen. Dadurch wird der Verarbeitungsdurchsatz
maximiert. Die Software Schnittstelle wurde dementsprechend entwickelt und steht für
die Hochsprache Java zur Verfügung.

Diese Arbeit zeigt das Potential von rekonfigurierbaren Architekturen für Text-basierte
Informationsexkration, durch das deutlich beschleunigte Ausführen repräsentativer Queries.

VIII

Contents

1 Introduction 1
1.1 Thesis statement . 3
1.2 Summary and key contributions . 3
1.3 Outline of this thesis . 5

2 Background 7
2.1 Text Analytics . 7
2.2 SystemT . 10
2.3 Reconfigurable architectures . 12

2.3.1 FPGAs . 13
2.3.2 Coarse grained reconfigurable and overlay architectures 15
2.3.3 Manycore processor arrays . 16

2.4 Regular expression matching . 17
2.5 Methodology . 18

3 Dictionary matching 21
3.1 Design requirements . 22
3.2 Hardware architecture . 24

3.2.1 Single token matching . 25
3.2.2 Multi token matching . 27
3.2.3 Result reporting . 27

3.3 Compiler . 29
3.4 Evaluation . 30

3.4.1 Resource requirements . 31
3.4.2 Performance . 33

3.5 Related work . 34
3.6 Summary . 37

4 Relational operations 39
4.1 Design objectives . 40
4.2 Hardware modules . 41

4.2.1 Adjacent Join . 42
4.2.2 Difference . 44

IX

Contents

4.2.3 Union . 45
4.2.4 Select . 46
4.2.5 Consolidate . 48
4.2.6 Apply Function . 49
4.2.7 Project . 50

4.3 Compilation framework . 51
4.3.1 Compilation . 52
4.3.2 Optimizations . 55

4.4 Evaluation . 58
4.4.1 Performance . 60
4.4.2 Scalability . 61
4.4.3 Energy consumption . 62
4.4.4 Utilization . 63

4.5 Related work . 66
4.6 Summary . 67

5 Soft-core processor array 69
5.1 Design objectives . 69
5.2 Microarchitecture . 70

5.2.1 Instruction Set Architecture . 72
5.2.2 Shared-memory FIFO . 74
5.2.3 Asymmetric register file . 75
5.2.4 Doorbell . 76
5.2.5 External commands . 77

5.3 Soft-core array . 78
5.3.1 Shared token cache . 79
5.3.2 Shared regular expression unit 80

5.4 Programming . 81
5.5 Evaluation . 83

5.5.1 Scalability . 83
5.5.2 Performance . 85

5.6 Related work . 86
5.7 Summary . 88

6 System integration 91
6.1 Design objectives . 92
6.2 Hardware integration . 93

6.2.1 POWER8 host system . 93
6.2.2 Coherent Accelerator Processor Interface 94
6.2.3 Text Analytics AFU . 95

6.3 Software integration . 99
6.3.1 Java interface . 101

6.4 Evaluation . 102
6.4.1 Final performance evaluation . 103

6.5 Summary . 104

X

Contents

7 Conclusion 107
7.1 Outlook . 108

Acronyms 109

Author’s Publications 111

Bibliography 113

XI

List of Figures

2.1 Information extraction transforms unstructured data into a structured
form. Example by Cohen [37] . 9

2.2 Example query written using the annotation query language (AQL) . . 11
2.3 System architecture of SystemT [66] . 11
2.4 Example of an annotation operator graph (AOG) 12
2.5 Example of a generic logic cell of an FPGA [10] 14
2.6 The ADRES CGRA core architecture [72] 16
2.7 Network of state machines for regular expression matching [20] 18

3.1 Profiling of a text analytics query dominated by Dictionaries 22
3.2 Dictionary matcher architecture . 25
3.3 Multi token matching architecture . 28
3.4 Cascaded result lookup . 28
3.5 Dictionary compiler framework overview 29
3.6 Evaluation setup for the dictionary matcher 31
3.7 Resource consumption in percent vs. number of words 32
3.8 Throughput over document size for different number of streams 34
3.9 Dictionary matcher comparison . 36

4.1 Concepts of the relational model [13] . 39
4.2 Wrapper module rearranging input and output schemas 42
4.3 Adjacent Join operator node and example 43
4.4 Architecture of the generic Adjacent Join module 44
4.5 Difference operator node and example 44
4.6 Union operator node and example . 45
4.7 Architecture of a sorted Union . 46
4.8 Select operator node and example . 46
4.9 Top-level architecture of Select . 47
4.10 Architecture of the token buffer . 47
4.11 Generic Consolidate node . 48
4.12 Architecture of an exact match predicate 49
4.13 Two stage filtering for Contained Within consolidation 49
4.14 Apply Function node in the AOG with example tuples 50

XIII

List of Figures

4.15 Architecture of the generic Combine Spans operation 51
4.16 Project node in the AOG with example tuples 51
4.17 Overview of the compiler framework . 52
4.18 Processing steps of the compilation flow 53
4.19 Inserted bumper node to synchronize multiple receivers 54
4.20 Required data fields for an Adjacent Join followed by a CombineSpans . 56
4.21 Original situation in an AOG that can be replaced by a bi-directional Join 57
4.22 Equivalent subgraphs that are executed for different tagged parts can be

merged . 58
4.23 Union of dictionary matches can be removed 58
4.24 Execution profiles of the evaluation queries 59
4.25 Maximum document throughput for multi-threaded software and a single

hardware stream . 60
4.26 Query resource utilization on Stratix IV GX530 61
4.27 Overall system power consumption . 62
4.28 Total no. of active transfers in the datapath 65
4.29 Utilization of the operators in query LOG3 from highest to lowest . . . 65

5.1 Turtle’s top-level architecture . 71
5.2 Instruction format A . 73
5.3 Instruction format J . 73
5.4 Instruction format M . 73
5.5 Instruction formats E1 and E2 . 74
5.6 Architecture and instructions for the shared-memory FIFO 75
5.7 Register file with asymmetric read and write ports 76
5.8 Doorbell architecture . 77
5.9 External commands architecture . 77
5.10 Turtle array architecture including shared units 78
5.11 Shared token cache architecture . 80
5.12 Assembler framework and flow . 81
5.13 Normalized resource utilization of the core and different operator modules

when servicing 16 input streams . 83
5.14 Resource utilization of a single core supporting different no. of streams

as well as the normalized area consumption when supporting 128 streams 84
5.15 Profile of two queries showing the number of operators, the avg. operator

activity rate and the required number of cores when using 16 or 32 virtual
streams per core. 87

6.1 POWER8 with CAPP and attached CAPI accelerator 94
6.2 CAPI software and hardware stack [53] 96
6.3 AFU top-level . 96
6.4 AFU command unit . 97
6.5 AFU core input side . 99
6.6 AFU core output side . 99
6.7 Flowchart to use the AFU by libafu ta 100

XIV

List of Figures

6.8 Library stack for the AFU . 101
6.9 Interface throughput for different number of submitting threads and batch

mode . 102
6.10 Java Native Interface throughput for different number of submitting threads103
6.11 Performance of POWER7 and POWER8 systems and their respective

single stream FPGA accelerator . 104

XV

List of Tables

3.1 Dictionaries used for evaluation . 32
3.2 Dictionaries used for evaluation . 36

4.1 Reference document throughput of the system in MB/s 61
4.2 Energy efficiency for various queries in J/MB 63

5.1 Required ALU operations by relational operator 72
5.2 Comparison of a single core to the custom hardware modules in terms of

area and cycles/output tuple . 85

XVII

CHAPTER 1

Introduction

Digital data is being generated in every aspect of our daily lives [69]. We create more
than 2.5 billion gigabytes of data per day [12], from sensor data to online shopping trans-
actions. A great part of this data is represented by un-structured and semi-structured
text documents. Such as the 500 million Twitter messages per day [65], uncountable
number of daily news entries around the world or fewer but more complex scientific
research papers. All of this data may or may not contain valuable information for a
different audience such as a medical scientist or a marketing expert [103]. Extracting
the specific information from this text-based data is the task of text analytics.

Although many improvements have been applied to the underlying frameworks and
algorithms, text analytics continues to be computationally very intensive. Also because
the level of detail at which data is analyzed continues to increase to improve the quality
of results achieved. Furthermore these frameworks benefit only little from new features
in modern microprocessors such as wide single-instruction multiple-data units [60]. This
leads to a performance gap between the ever faster growing amounts of data and the
moderate performance enhancements of new processor generations.

Text analytics can be easily parallelized as extraction queries are run for each text doc-
ument individually. Cloud computing offers a way to cope with the lack of single node
performance by massively parallelizing the task on a large compute cluster. Thus each
thread in a cluster can operate independently from each other and will be utilized as the
amount of data to be analyzed can be scaled. But this comes with a drop of efficiency
due to the increased management and communication overheads. To counter this prob-
lem system designers turn to heterogeneous platforms which include special purpose
processors such as graphics processing units (GPUs), digital signal processors (DSPs)
or field-programmable gate arrays (FPGAs). While such systems are pre-dominantly
used in high-performance computing (HPC) clusters, they are finding their way into
enterprise data-centers [83]. By off-loading selected compute intensive parts of an appli-
cation to these accelerator units the performance and power efficiency of a single node

1

1 Introduction

can be enhanced by orders of magnitude, depending on the application.

The execution units of GPUs and DSPs are geared towards numerical tasks where they
can exploit a high degree of parallelism on many levels together with very high memory
bandwidth. In scientific computing GPUs are often used to accelerate Fourier trans-
forms, Monte Carlo simulations or image processing. But due to the high popularity
and low cost of GPUs, several projects have successfully attempted to also implement
string pattern matching operations on them such as exact string matching [68] or reg-
ular expressions [101]. These implementations achieve fairly high throughput rates by
utilizing one thread per pattern on the GPU, at the cost of high power consumption.
Also advanced regular expression features such as capturing groups are not available in
these implementations as they can have a significant impact on performance on these
architectures.

FPGAs are the most common form of a reconfigurable architecture. They can imple-
ment merely any digital logic which is defined using a hardware description language.
This allows them to efficiently execute a wide range of applications such as computer
vision [80], genomic sequencing [73] and database operations [75]. Also string-based
tasks such as regular expression matching perform an order of magnitude better than
on GPUs, at a fraction of the power costs. Recent work also included complex regular
expression features [18] with no impact on performance.

A drawback of FPGAs are lengthy design and synthesis times, creating the hardware
description and generating the configuration memory from it. Furthermore the config-
uration can only be generated by FPGA vendor tools. Because text analytics queries
are static in many cases, these limitations may be negligible, but yet limit the use of
FPGA acceleration. To cope with synthesis times, chip designers turn to coarse grained
reconfigurable arrays (CGRAs) or many-core architectures. These types of architectures
are tailored towards a specific range of applications and can achieve higher operating
frequencies. Yet they provide different levels of programmability, by trading a level of
parallelism.

To be able to use any type of accelerator, it needs to be integrated into a host system.
FPGAs are often used as ingress accelerators, where they perform a pre-filtering of
incoming data from disks or the network connection. To benefit from GPU acceleration,
a single work item has to be large enough to amortize the communication costs to the
accelerator and back. In the text analytics case the accelerator needs to be tightly
integrated into the system with minimal communication overhead. This is because
single documents often are pre-processed and the results are required immediately to
continue execution.

This dissertation describes the use of FPGAs to accelerate the processing of text an-
alytics queries. It implements a query compilation framework that allows offloading
complete queries onto FPGAs. The framework consists of a set of hardware operator
modules and a hardware compiler that generates the hardware description for a given
query. The framework is tightly integrated into an enterprise server system and achieves
up to 945 MB/s document processing rate which is 71 times higher than the original soft-
ware product. To avoid long synthesis times, a novel programmable soft-core processor

2

1.1 Thesis statement

array is presented which requires less area at equivalent average performance.

1.1 Thesis statement

FPGAs have proven to be highly efficient for sub-tasks used in query-based text analyt-
ics such as regular expression matching and relational algebra. But to fully exploit the
potential of FPGAs for text analytics, a holistic approach is necessary that extends and
combines these tasks in a single accelerator framework. The framework must consist of
an architecture and a compiler to be able to offload contiguous query graph operations.
Offloading only individual operations is not suitable due to the small work size of an
individual document. Because text analytics is not a stand-alone application, the accel-
erator needs to be tightly integrated into a host system. The host provides the input
data and immediately acts on the results produced by the accelerator.

This leads to the following statement:

Field programmable gate arrays provide sufficient flexibility and indepen-
dent parallelism, to efficiently execute query-based text analytics. While
individual operations exist for this technology, only a holistic framework
consisting of a compiler and an architecture, will be able to demonstrate the
true end-to-end potential in terms of performance and power consumption.

To validate this thesis I proceed as follows: An essential first step is to support the com-
plete set of pattern matching operators with features specific to text analytics. While
existing architectures can be used for regular expressions, a new architecture needs to
be explored for large-scale token-aware dictionary matching. Once these units are avail-
able a framework can be developed to map relational operations to an FPGA fabric.
The framework consists of a set of hardware operator modules that are combined by a
hardware compiler to implement a specified query. Although the hardware compilation
approach can leverage all features of an FPGA architecture, it requires long synthesis
times and FPGA vendor tools to be deployed. To avoid these requirements, I design a
programmable micro-architecture, to allow fast and vendor-independent query compila-
tion. The programmable architecture serves as an alternative or extension to dynamic
queries. Furthermore this architecture can be implemented as an application-specific
integrated circuit, which can increase the performance even further. As a last step,
the accelerator is integrated into an enterprise server system to evaluate the impact of
interface communication costs.

1.2 Summary and key contributions

This dissertation investigates how text analytics queries can be mapped efficiently to a
reconfigurable logic-based accelerator and how it can be integrated into an enterprise
system. The main goal is to achieve significant improvements in terms of performance
and power efficiency compared to a high-end server node. The presented architectures

3

1 Introduction

and framework enable to compile and run text analytics queries on a reconfigurable
platform while little or no modification need to be made to existing applications to
benefit from this technology. To summarize, the key contributions of this thesis are as
follows:

Framework for compiling text analytics queries to FPGAs

I describe a first of a kind framework for compiling text analytics queries to hardware
structures. A hardware operator library is presented that allows stream processing of
relational operations. The compiler is able to fuse these hardware elements to generate
parallel and deep pipelines to execute entire queries. The combination of pattern extrac-
tion units and relational algebra modules results in unprecedented document processing
rates, at less overall power consumption compared to a state-of-the-art commercial soft-
ware implementation. Furthermore the compiler applies novel optimizations that can
be applied when running text analytics queries on an FPGA to reduce the area con-
sumption. This enables execution of large complex queries and reduces the static power
consumption of the accelerator.

The acceleration framework was tested with a set of representative queries from differ-
ent application domains such as business analytics, social media analytics and log file
analysis. When using an Altera Stratix IV FPGA the accelerator is able to execute
these queries up to 79 times faster and 89 times more energy efficient than the original
commercial software on a POWER7 CPU using 64 threads.

Programmable architecture for fast and vendor independent compilation

I design a tailored programmable microarchitecture to avoid lengthy query compilation
times required by the hardware compilation approach. Also the need for FPGA vendor
design software to compile a query is removed by using this architecture. It exploits
the streaming nature of the relational operations found in text analytics queries and
combines it with the sparsity of document processing. By introducing the concept of
virtual streams, the architecture is able to consolidate multiple operators onto a single
core, while exploiting parallelism on an array of cores. The core is designed to efficiently
execute relational algebra operators that are augmented with operations specific to text
analytics.

The implemented core achieves up to 200 MHz operating frequency on a Altera Stratix
V FPGA and can process up to 128 virtual streams. A single core processes 16 virtual
streams, it requires 23 % less logic resources and an order of magnitude less memory
resources than the custom hardware modules. The required performance for a text
analytics query was modeled to determine the required size of the processor array. This
analysis showed that all evaluated queries can run with 25 cores or less, without impact
on the document processing rate.

4

1.3 Outline of this thesis

Application integration and evaluation

I integrate the presented accelerator framework into a high-end enterprise server system.
The designed hardware-software interface allows multiple threads running on the host
processor to submit jobs to the accelerator card simultaneously without a communica-
tion thread. A Java interface layer allows easy integration into existing application code
and allows to perform end-to-end measurements to compare performance and power
consumption.

The accelerator was integrated using the coherent accelerator processor interface avail-
able on the POWER8 CPU. It allows the accelerator to access the virtual memory space
and communicate with a software process via shared memory. This allowed to design a
low latency communication scheme which enables full bandwidth of the accelerator core
using small work items, such as real-life documents. Deployed on an Altera Stratix V
FPGA the integrated accelerator framework was able to achieve up to 945 MB/s docu-
ment processing rate, end-to-end. This is up to 71 times faster than the multi-threaded
software on the POWER8 CPU.

1.3 Outline of this thesis

This thesis is organized as follows:

Chapter 2 provides some background on the topic of text analytics and its importance.
It will then introduce the SystemT text analytics application and its terminology.

Chapter 3 presents the hardware architectures and compilers developed for pattern
detection operations. These architectures provide deterministic performance character-
istics as well as advanced detection features.

Chapter 4 presents the relational operations and their hardware implementations. After
introducing the individual operators, the hardware compiler is presented. It combines
and fuses the operators to form execution pipelines that are described in Verilog.

Based on insights gained in chapter 4, chapter 5 will introduce a programmable micro-
architecture to execute relational operators. A custom soft-core processor is presented
and its use in a stream-based manycore mesh.

The overall system integration will be presented in chapter 6. The hardware-software
interface is presented as well as the integration into a Java-based application.

Chapter 7 summarizes and concludes this dissertation, before giving an outlook on future
work.

5

CHAPTER 2

Background

The goal of this chapter is to establish a common basis of understanding of text analytics
and the difficulties it poses on general purpose compute systems. The task of text
analytics is introduced and how it has developed since its first steps in the 1950’s.
Example applications will demonstrate the importance of text analytics in today’s digital
world.

After the task of text analytics has been introduced, a detailed overview is provided on
query-based text analytics. As a representative application IBM’s SystemT is presented,
on which the accelerator framework in this thesis is based off, and important terminology
and concepts are defined and explained.

Section 2.3 provides an overview on some reconfigurable architectures and discusses
their trade-offs.

The task of regular expression matching is introduced in section 2.4. After a short
introduction of the main concepts the core hardware architecture is presented which is
being used in this work.

2.1 Text Analytics

One of the most recent and popular examples employing text analytics’ technologies
is IBM’s Watson computer [47]. The system was built to compete in the American
television game show Jeopardy! where questions posed in natural language need to be
answered. During the game Watson used text analytics to understand the question
that had been given. But before being able to retrieve the correct information from its
memory to answer such a question, Watson required to learn and it did so by analyzing
text.

7

2 Background

The underlying framework Watson uses to analyze unstructured text data, is called
Unstructured Information Management Architecture (UIMA) [46]. UIMA enables de-
velopers from different disciplines to create a single large scale analytics system from
many different complex components. It defines interfaces that each component needs to
implement, in order to communicate with each other. The components itself, perform
the actual analysis on the unstructured data like language identification, tokenization
or information extraction. These components are designed by natural language pro-
cessing (NLP) experts and can be written in Java or C++. On the other side domain
experts create UIMA pipelines that combine multiple of these components to extract
relevant and correct information from unstructured data sources. This allows language
processing techniques to independently advance, while being able to integrate them to
a language understanding system [47].

It is the latest development in NLP, bringing together technologies from over 50 years
of research and engineering. Some of the earliest examples of language processing can
be considered the Georgetown experiment from 1957 [85], in which an IBM mainframe
translated Russian sentences to English, or the famous computer program ELIZA [104]
developed by Joseph Weizenbaum. All of these early systems were using a set of hand-
crafted rules to decompose a sentence and extract information from it. This approach
is referred to as knowledge engineering and is still used in today’s systems.

With the availability of increasing computational power in the 1980’s and 1990’s machine
learning algorithms were introduced to natural language processing [49]. In contrast to
the previous approach, systems based on machine learning try to create or learn rules to
understand a document. These approaches are often based on statistical inference [98].
By analyzing large amounts of data and using statistical models that create rules with
a certain probability. Often the input data to such systems is hand-annotated with the
correct values for the system to learn. Such systems are more robust to unfamiliar input,
which is very important when analyzing social media documents, where new words and
short-forms are created daily.

Modern natural language processing frameworks such as UIMA, GATE [40], NLTK [25]
or OpenNLP [23] often combine multiple approaches to achieve best results. Specifically
the task of information extraction (IE) has received increased attention with the vast
availability and fast growth of unstructured digital data over the last few years. Due
to the wide popularity of social media platforms, internet users today create the same
amount of data every week, as there was created from the beginning of the internet until
2003 [29]. Information extraction is a part of natural language processing that aims to
transform unstructured or semi-structured data into structured form like a table [37].
Such kind of data structure may already contain the information a user was looking for
or can be further processed by a machine to create it. Figure 2.1 illustrates the task of
IE, creating a table containing the desired information, extracted from a news article
on the left.

Information extraction is a combination of different techniques, which are applied to
process a text document [37]. As a first step the document is scanned and split into
parts. These parts can be e.g. entire sentences or single words. This step is referred
to as segmentation or tokenization. The following step is called classification or named

8

2.1 Text Analytics

Figure 2.1: Information extraction transforms unstructured data into a structured form.
Example by Cohen [37]

entity recognition (NER). It tries to identify words or a combination of multiple and
assign them a category such as e.g. name of a country, name of an organization or
telephone number. This is mainly done using pattern matching techniques such as
regular expression matching and exact string matching. The same segment may belong
to multiple categories or overlap with another segment as in this step the context is
often neglected. After all possible entities have been detected, relationship extraction
tries to identify the relation between them. This is often done by checking the distances
between various entities and if they are contained within the same sentence. A similar
task is coreference resolution, which tries to find text entities which refer to the same
real-world entity.

In order to define the information that should be extracted from a document, a user
needs to configure and combine these steps accordingly. In many cases users need to
write their own software code while making use of libraries provided by natural language
processing frameworks. With the shift towards language engineering it was important to
make reuse of components and integrate them with the ability to relate them with each
other. The Common Pattern Specification Language CPSL [17] developed in the late
1990’s, became a very popular language for expressing rules on how certain components
should behave and relate with each other. Similarly the Java Annotation Pattern Engine
(JAPE) [41] defines a similar language to be used with the GATE framework.

These languages are mostly based on cascaded grammars defining a sequence of patterns
expressed by regular expressions. Although these rules can be very powerful they often
lack support for complex operations such as e.g. dictionary matching or the combination
with character level regular expressions. Also because the input to such rules is a linear
sequence of annotations, handling overlaps is difficult. Many of these issues have been
addressed with advanced features of various frameworks but now they lack performance
when analyzing data and achieving high quality results [66].

9

2 Background

Because the available data on our planet is doubling every two years [97], performance
and power efficiency are becoming an important factor when running such applica-
tions [64]. According to a study from the McKinsey Global Institute [69] these big
data applications are becoming a major part of how businesses will work. And as the
history of computing progresses from today’s systems of engagement [74] towards cog-
nitive computing [61], analyzing large amounts of data and especially text data will be
a crucial task.

2.2 SystemT

This work is based on text analytics systems, which utilize rules to define the informa-
tion which should be extracted from a set of documents called corpus. In particular
algebraic rules, introduced by Clarke et al. [35] in 1995. A representative framework is
SystemT [66], which is developed by a team at IBM Research - Almaden and is used in
several IBM products such as IBM Notes or Infosphere BigInsights. It aims to overcome
some of the difficulties that arise from using cascaded grammar-based approaches and
their extensions. By simplifying the work-flow the interaction between various tasks
becomes maintainable and can be expressed in a cleaner way. This also allows to de-
couple the way how rules are expressed in a language and how they will be executed by
a system.

To achieve this SystemT uses a declarative rule language called Annotation Query Lan-
guage (AQL), which is very similar to the Structured Query Language (SQL) [32] known
from relational database applications. While keeping many relational operations from
SQL like e.g. Select, Union or Join, AQL adds text-level features such as regular expres-
sions and dictionary matching that operate on an entire text document or a segment
of it. Such an expressive language allows users to define rules or queries in a modular
and maintainable way, and are independent of the actual implementation of the opera-
tors. Figure 2.2 provides an example AQL query, extracting person names from a text
document. Entire queries are often referred to as extractors.

SystemT is implemented in Java and consists of two main components as can be seen
in Figure 2.3. On the left, there is the development environment in which a user creates
and refines the AQL queries. Besides the user interface this environment contains the
AQL compiler and an optimizer to create an execution plan for a given query. In a
first step the AQL compiler translates the query into an annotation operator graph
(AOG). The AOG is an acyclic dependency graph, where the nodes represent individual
operators that work on the incoming data of their input edges. The optimizer then
derives an execution plan for an AOG by applying transformations and using a cost-
based optimization model. This can involve profiling the analysis of a set of reference
documents to choose the best performing execution plan.

Once the user is satisfied with the results the developed query produces and the ex-
ecution plan has been established, it can be deployed on the SystemT runtime. The
runtime can be embedded into any Java application that requires text analytics capa-
bilities. This can range from local email clients to large analytics applications. In the

10

2.2 SystemT

Figure 2.2: Example query written using the annotation query language (AQL)

Figure 2.3: System architecture of SystemT [66]

latter case SystemT is often deployed on a large cluster of compute nodes using the
Hadoop framework [11]. The SystemT runtime executes the query plan individually on
each document it receives. The query plan is completely executed by a single thread
over an entire document. Thus multiple threads are running independently from each
other and exploit parallelism from the large number of individual documents. This type
of large scale analytics is usually running continuously, processing online data, or for
multiple hours on a given large set of documents.

11

2 Background

Figure 2.4 represents the annotation operator graph for the AQL query shown in Fig-
ure 2.2. The two main categories of operators used are extraction operators and rela-
tional operators. Primarily the extraction operators consist of pattern matching steps
such as regular expression matching or dictionary matching and are run over the entire
document. This has the effect that often these types of operators are located at the
very top or beginning of an AOG. These operators are creating a sequence of segments,
which match the pattern they are looking for. Such segments are referred to as Spans
and are described using a character-based start offset and an end offset. If an extrac-
tion operator follows a previous extraction operator, it will operate within the spans
produced by its predecessor.

In most cases the extraction operators are followed by a usually larger number of rela-
tional operators. These operators mainly operate only on the offset values of the spans
produced by parent nodes, creating a new set of spans. A prominent exception is the
Select operation, which when using a regular expression in its conditional expression
requires access to the actual document data of the span it currently operates on.

Figure 2.4: Example of an annotation operator graph (AOG)

2.3 Reconfigurable architectures

The main idea of this work is to create a custom datapath for parts of or an entire an-
notation operator graph to increase the document throughput rate. A custom datapath
leverages the compute in space paradigm by carrying out many operations simultane-
ously in breadth as well as in depth. To enable the usage of a custom datapath the
target platform requires to have at least one device with a reconfigurable architecture.

12

2.3 Reconfigurable architectures

A reconfigurable architecture aims to perform a task just as fast as a dedicated piece of
hardware. At the same time a reconfigurable architecture is able to adjust to perform
another task just as fast at a different point in time. A general purpose processor
coordinates the configuration of such a device with the appropriate data movement to
and from it. Gerald Estrin was one of the first to propose such a computer architecture
in 1960 [45]. But only with the advances in silicon technology and suitable electronic
design automation (EDA) tools this idea came to live during the 1990’s. At the same
time these advancements pushed the development and performance of microprocessors
with higher frequencies, larger caches, more complex instructions and lately increased
number of cores per chip. Despite their efficiency, this put reconfigurable architectures
into a niche due to their high costs and low productivity compared to general purpose
processors.

With the end of frequency and multi-core scaling [44] the road to more performance
for general purpose microprocessors became unclear. While optimizations to the ar-
chitecture and compilers improve the overall performance of a system, the real gain
in performance in recent years comes from heterogeneous systems [56]. Such systems
include different types of compute units which are tailored towards a particular task
such as massive parallel floating point operations. This already resembles Estrin’s sys-
tem architecture even so the compute units execute software code rather than being
configured to perform a specific task.

Although system designers saw the potential of using reconfigurable architectures as
an additional component in their systems, software application developers feared the
loss of flexibility, longer design times and difficult debugging environment when using
such components. This led to developments on both ends, leveraging languages and
compilers as well as different reconfigurable architectures to simplify their usability in
a heterogeneous system.

2.3.1 FPGAs

Field programmable gate arrays are the most widely deployed type of reconfigurable
architecture. Initially used by the telecommunication industry, FPGAs today are used
in many sectors such as automotive, healthcare or consumer devices [70]. The two
main FPGA manufacturers are Altera and Xilinx, which control about 80% of today’s
multi-billion market [9].

Due to their fine granularity at Boolean logic level, FPGAs provide very high flexibility
in what and how to implement a desired task. The basic idea of an FPGA is a set of
configurable logic cells referred to as configurable logic block (CLB) (Xilinx) or adaptive
logic module (ALM) (Altera) that can be arbitrarily interconnected via a programmable
mesh of wires. A configurable logic cell is made up of a set of look-up tables (LUT),
which can be configured to implement any desired logic function such as OR, AND or
XOR. The LUTs are followed by a full adder (FA) structure, which can be used to create
larger arithmetic or logic functions. The outputs of either LUTs or FAs can be routed
to a flip-flop or register to create synchronous designs. Figure 2.5 illustrates this generic

13

2 Background

architecture of a logic cell in an FPGA.

Figure 2.5: Example of a generic logic cell of an FPGA [10]

To enhance the efficiency and performance of FPGAs, modern architectures include
special hard macros implementing a wide range of functions. Common blocks types are
embedded memory, often referred to as BlockRAM, or digital signal processing (DSP)
blocks, which consists of a multi-bit wide multiplier followed by an adder or accumulator
stage. Furthermore complex input/output (I/O) blocks are added such as memory
controllers for high throughput external memory access or PCI-Express controllers to
provide a high-speed interface to a host processor. Especially for embedded systems
some FPGA products include a full processor core such as an ARM A9 to perform less
critical but more complex operations.

The mean to describe a task that should be executed on an FPGA is to write code
in a hardware description language (HDL) such as VHDL or Verilog. Sophisticated
electronic design automation tools are provided by chip vendors to compile such code
and generate the contents of the configuration memory. The tools map the code to
vendor-specific logic elements and perform placement and routing of these elements on
the chip. This means that the design-flow for an FPGA application is closely related to
designing hardware on a logic level. A designer needs to be aware e.g. of the limited
amount and different types of available resources and the depth of logic between register
stages to achieve timing closure. For hardware designers this is an ideal playground to
experiment with different architectures but for a software programmer these are new
unknown requirements.

To abstract these requirements from the programmers research and industry turned
to high-level synthesis (HLS) [30]. In HLS the flow does not start from a hardware
description but rather from an algorithm description in a programming language such
as C. Although some restrictions apply this allowed software programmers to experiment
with FPGAs in a way they are familiar with. A wide range of industry products adopted
this flow and allowed different kind of inputs such as C, C++, SystemC or even Java
and MatLab code.

With the increasing heterogeneity of computer systems the urge was strong to find a
common way to program and communicate with different processing units. By the end of
2008 the first OpenCL technical specification was published by a consortium consisting
of both hardware and software companies to tackle this challenge. OpenCL standard
defines a hierarchical memory layout with different access permissions for different parts

14

2.3 Reconfigurable architectures

of the code. While the code itself is very C-like, the programmer has to put some thought
into how to partition the application into data-parallel and task-parallel pieces. This
enabled hardware vendors to produce compilers that are able to compile such kernels
to run on their devices. Initially CPU, GPU and DSP vendors provided such compilers
and the required API library implementation to run it. But in 2013 Altera released the
software development kit for OpenCL with their 13.0 tool suite [90].

Although all of these design technologies raised the interest of application designers, a
last hurdle remains: long compilation times. Despite the use of incremental compilation
and hard IP blocks the compile times of modern FPGAs can become easily multiple
hours long.

2.3.2 Coarse grained reconfigurable and overlay architectures

While FPGAs can be configured at bit level, coarse grained reconfigurable arrays (CGRAs)
and overlay architectures are configured at word level. These architectures consist of a
sea of functional units (FUs) that can be interconnected using either statically config-
urable switchboxes, which create routing paths between FUs or by using a network type
interconnect where packets are routed. The latter is often referred to as a network-on-
chip (NoC). The coarse granularity of the individual components has two key advantages:
On the one hand synthesis time to map a given algorithm to a CGRA is much smaller
compared to the lengthy compilation times of FPGAs, on the other hand if designed
as an ASIC the word-level functional units can achieve much higher frequencies as they
can be optimized to their specific function. Such architectures are usually tailored to
a specific set of applications such as multimedia or encryption tasks. The target ap-
plication set determines the type and number of functional units as well as the level of
configurability of the units and the interconnect network. Functional units can be word-
wide adders and multipliers but also larger blocks such as complete FFT1 IP blocks or
programmable arithmetic-logic-units.

As an example figure 2.6 shows the architecture of the ADRES [72] CGRA template. It
tightly integrates a very long instruction word (VLIW) processor with a reconfigurable
mesh of reconfigurable cells (RCs). The RCs can be pre-configured with their function-
ality before generating the actual architecture. More architectures will be discussed in
section 5.6.

While the term CGRA refers to an implementation as an ASIC, an overlay architecture
is a design which is configured onto an FPGA and can be further configured to perform
the desired task. Such designs may be also referred to as virtual or intermediate fabrics.
The most notable difference of intermediate fabrics compared to CGRAs is that they
provide the compiler the ability to select an optimized fabric for the required application.
Using this two-level configuration the overhead consumed by the fabric can be minimized
while maintaining short compilation times [95]. Besides the short compilation time
another advantage of overlay fabrics is the ability to use readily available FPGA chips
and decouple an end-user of the necessity to run the FPGA vendors synthesis tools to

1 Fast Fourier Transform

15

2 Background

Figure 2.6: The ADRES CGRA core architecture [72]

program them.

2.3.3 Manycore processor arrays

Another type of coarse grained architecture is a manycore processor array. Instead of
using static or configurable functional units (FUs), processor cores are used, which ex-
ecute software kernels or even run entire operating systems. This makes the FUs more
flexible and allows them to compute more complex kernels instead of single functional
steps. This comes at the price of a higher area consumption of the FUs and a trade-off
between computations in space versus time as instructions are carried out in sequence.
But the ability to program the individual cores with common programming languages
such as C, C++ or OpenCL has allowed such architecture to become commercially
successful. Examples of such architectures are Intel’s Xeon Phi [33], which is used as
a co-processor card for high-performance computing (HPC) applications, or EZChip’s
(former Tilera) TILE processor [43] which targets high bandwidth networking applica-
tions. Also graphic processors (GPUs) may be considered a manycore architecture, such
as the nVidia Kepler architecture [79], which is suitable for HPC and visual applications.

The interconnect of a manycore array is a key component, as it determines the com-
munication performance of the core with each other and peripheral components such
as memory and/or a system bus. Networks-on-Chip (NoC) are widely adopted as a
communication scheme to connect a large number of functional units in a manycore
system or a complex System-on-Chip (SoC) [27]. NoCs are categorized into circuit-
switched and packet-switched networks. Circuit-switched networks create point-to-point
connections at runtime between a sender and a receiver. Once the connection is estab-
lished such networks provide a deterministic high bandwidth at a fair amount of power
consumption [107]. Packet-switched networks can reduce the latency introduced by
circuit-switched and also scale to an even higher number of cores. On the down-side
packet-switched networks require the switch nodes to buffer the incoming packets before

16

2.4 Regular expression matching

forwarding them. Although the mechanisms are well-known from the classic networking
domain these type of networks consume a high amount of power due to complex switch
nodes and transmission of additional routing data with every data packet.

An alternative implementation are bus-based systems. For manycores the bus architec-
ture is often designed as a ring connecting all or a subset of cores. Examples for such a
design are Intel’s Xeon Phi [33] or IBM’s Cell Broadband engine [62]. The advantages
of such architectures are the deterministic latency and performance they can provide
as well as an adequate power consumption as little or no buffering is required and the
routing complexity is low compared to packet-switched networks.

2.4 Regular expression matching

A regular expression is a search pattern consisting of a sequence of characters, where
some of them have a special meaning and can be used to detect the defined pattern
in a string. The formalism behind regular expressions is Kleene’s theorem [63] which
defines a regular language as a language that can be detected by a finite automaton.
Thompson’s construction algorithm [96] transforms a given regular expression into a
non-deterministic finite automaton (NFA) by recursively splitting the expression into
sub-expressions. A sub-expression at some point matches a defined rule which can
be added to the automaton. To derive a deterministic finite automaton (DFA) from
the constructed NFA, the powerset construction by Rabin and Scott [84] can be used.
Running the finite automata over an input string will detect the pattern specified by
the regular expression.

Pattern detection is a key component of text analytics and thus regular expressions are
an important part of it. In SystemT regular expressions belong to the extraction type
operators, the same as dictionary matching and are run over the entire document. The
operator scans the document text and creates a span for every section of text matching
the regular expression which is being evaluated.

The architectures used for regular expression matching were explored and designed by
Atasu et al. [18, 20, 21]. Prior art hardware architectures for regular expression matching
were only capable of identifying if and what regular expression matched a given string.
These architectures targeted intrusion detection systems, where it was necessary to
evaluate many patterns over a large number of network streams. A match was more of
an exception and the reduced number of streams was then further evaluated in software
to locate the match and determine an appropriate action. To locate the starting position
of the match backtracking has to be performed which is computationally intensive and
requires the input string to be scanned multiple times.

To avoid performing backtracking to find the start offset of a match, Atasu proposed
the use of a network of state machines as seen in Fig. 2.7. It consists of multiple state
machines and a shutdown logic. Every state machine implements the same DFA that has
been constructed from the equivalent regular expression. On every starting transition
a new state machine is started and captures the current character position as its start

17

2 Background

offset. If two or more state machines reach an equivalent state the shutdown logic will
compare the start offsets and disable all state machines but the one with the earliest
offset. The comparison can also be omitted if during the activation of a new state
machine the state (meaning whether or not a state machine is active) of the other state
machines is captured. The size of the network can be computed during the conversion
of the NFA representation to the DFA. The number of NFA states which are mapped
to a single DFA state determines the number of required state machines to process the
text document in a single pass [20].

Figure 2.7: Network of state machines for regular expression matching [20]

An alternative architecture was proposed by Atasu in [18]. Instead of instantiating
multiple state machines implementing the same DFA, this design employs a single NFA-
based architecture based on Sidhu and Prasanna [89]. The start offset registers are
attached to every state instead of every state machine. From multiple incoming transi-
tions to the same state in the NFA the smallest start offset is selected and propagated.
Also for this architecture it is possible to avoid the comparison logic by storing infor-
mation about which state was active earlier. This optimized architecture requires up to
three times less area resources and achieves up to 25% higher clock frequencies.

To implement the architecture a custom Verilog description is generated by a compiler
for every regular expression individually. The compiled architecture can then be used
as a module block by the hardware compiler presented in chapter 4.

2.5 Methodology

This dissertation aims to evaluate the feasibility and value of executing rule-based text
analytics queries on reconfigurable architectures. To do so a representative text process-
ing framework called SystemT is analyzed and extended to run on an FPGA platform.

The regular expression architecture presented in 2.4 serves as a starting point, as it

18

2.5 Methodology

implements one fundamental pattern detection operator. To complete the set of extrac-
tion operators a scalable dictionary matching architecture will be developed. It needs to
operate in parallel to the exiting regular expression architecture and support matching
of multiple thousand string patterns.

Once the hardware architectures for the extraction operators are available, the rela-
tional algebra operators can be explored. Every operator requires an individual and
configurable architecture but needs to be inter-operable with all operators. To compile
complete queries onto an FPGA fabric, a compiler framework needs to be developed
to generate and interconnect the operator modules. Such a framework will allow the
evaluation and analysis of text analytics queries on FPGAs.

As an alternative, a programmable solution shall be presented that allows to change the
query to be executed without reconfiguring the FPGA. The architecture will be imple-
mented as a soft-fabric on the FPGA. Insights learned from the hardware compilation
framework can be applied here and tailor the architecture.

To prove the value of the acceleration framework, it needs to be integrated into an
enterprise system. Hardware and software interfaces need to be provided and evaluated,
as they can add a substantial amount of communication overhead.

19

CHAPTER 3

Dictionary matching

Dictionary matching refers to the task of finding string patterns within a text document
that belong to one or multiple collections of patterns, so called dictionaries. In natural
language processing this step is also referred to as named entity recognition (NER)
where a dictionary contains many patterns of a unique type such as city names, company
names or actions (opens, starts, launches, ...). NER follows a tokenization step at which
the document was split into non-overlapping segments called tokens. Tokenization is
often done by splitting the text on white spaces, punctuation characters and special
characters such as parentheses. Every created token is then matched against all required
dictionaries to identify the potential meaning of it. Although many dictionary patterns
consist only of a single token they also contain many other patterns which are a sequence
of tokens, e.g. New York. The number of patterns in text analytics varies depending
on the desired information to be discovered but ranges between a few hundred to a few
100,000 patterns.

Within SystemT the dictionary matching is an operator of the extraction class. Using
AQL a user specifies each dictionary matching step individually by first creating a
dictionary within AQL or from an external file and indicating whether the dictionary
should be matched against the entire document or only a segment of it. The result
is a list of spans indicating the positions within the text which matched the given
dictionary. The compiler will group several dictionary matching operations into a single
operator node if feasible for the execution plan. As software executes the operator
nodes in sequence, it may decide to skip the execution of some operators if no results
were produced by a previous operator. This can lead to a significant improvement in
performance as entire sets of character-level operation may be skipped. On the other
hand shared dictionary matching requires less passes over all tokens to identify their
matches.

Despite these optimizations the processing time spent at dictionary matching is a sig-
nificant amount of the overall runtime. SystemT is capable of generating an operator

21

3 Dictionary matching

type-level profile to inspect the performance bottlenecks of a text analytics query. The
profiling results strongly depend on the query itself as well as the chosen set of docu-
ments the profiler runs with. Documents with few pattern matching results will perform
better as many nodes in the AOG can be skipped, distorting the measurement. Thus the
set of reference documents should be representative for the bulk of data to be processed.

Figure 3.1: Profiling of a text analytics query dominated by Dictionaries

Figure 3.1 shows the profile of a text analytics query. The profile shows the relative
processing time spent at each operator type. Together with regular expression matching,
dictionary matching requires the most processing time in many queries ranging from 10
to 70 % of the overall execution time. Furthermore, because dictionary matching is
part of the extraction operators which are required to run as a first set of operations,
they determine the overall document processing rate. Reducing the time sent on this
operator type is a first step to accelerate the overall document throughput.

The following sections will present and evaluate the hardware unit for dictionary match-
ing. Section 3.1 will discuss the design requirements for the unit before section 3.2 will
present the hardware architecture. Section 3.3 describes the compiler that is used to
program the presented architecture. The design will be evaluated in section 3.4 before
discussing related work in 3.5.

3.1 Design requirements

The design objectives for the dictionary matching unit are driven by the functional de-
scription of the operator as well as the existing implementation of the regular expression
unit discussed in 2. The latter defines the way how input data shall be consumed by the
pattern matching units as the text input can be shared among all of them. Because the
regular expression unit consumes a single character every cycle the dictionary matching
unit must follow this approach, though it could operate on entire tokens in a single cycle
as presented by Agarwal et al. [14]. Although the token-based approach has a much
higher throughput rate it limits the width of a single token to the one pre-configured
in the hardware unit. Furthermore the overall processing rate would still be limited by
the regular expression units thus no benefit can be gained by such an approach for the
entire query processing architecture.

22

3.1 Design requirements

A functional requirement is the detection of patterns on pre-defined token boundaries.
This means patterns may only be reported as a match if they start at the beginning of a
token and match on the end of a token. This is similar to anchored regular expressions
like e.g. ˆabc$. The tokens are defined by software as tuples of two integers which
the hardware unit must read to detect the individual tokens. Tokens may be single
character wide and may follow each other immediately in the input text. The pattern
detection requirement is extended by detecting sequences of tokens. The unit must
be able to remember the occurrence of single token matches and report a match if a
specified sequence appears.

When a pattern has been detected by the unit it must be reported on the output side.
While many architectures are only required to signal that a match has occurred within
a stream or file, this is not sufficient for text analytics as the subsequent operations
require more information to function properly. Every match is required to be reported
with the exact start- and end-offset location. The token-based operation may simplify
this task but the appropriate offsets still need to be selected when it comes to multi-
token patterns. In addition to the location information, a dictionary identifier needs to
be reported. If multiple dictionaries contain the same pattern, every dictionary needs to
be reported individually because the software wants the results grouped by dictionary in
different memory locations to continue working with them. Also downstream relational
operators in hardware require a valid tuple for each matching dictionary to function
properly. These operators furthermore require their inputs to be sorted either by start
or by end offset. Thus the dictionary matching architecture should support both output
methods.

The aspect of scalability is neither negligible nor dominant. The architecture must
support at least 5,000 patterns and should scale to as many as possible as dictionaries
in text analytics can become arbitrarily large.

To summarize the requirements for the dictionary matching unit:

• Operate at a character-per-cycle rate to share the input data across multiple dif-
ferent pattern detection units

• Detect single token patterns only on pre-defined token boundaries

• Detect token sequences defined as multi token patterns

• Report all dictionaries containing the detected patterns with according offsets
defining the position of the match

• Allow result reporting to be sorted either by start- or end-offset

• Support multiple large dictionaries with at least 5,000 patterns

23

3 Dictionary matching

3.2 Hardware architecture

The basic concept of the core architecture are two finite state machines (FSMs) con-
nected in series. The first state machine is responsible for processing the input text
document and detect single token wide patterns, while the second state machine is
activated at every end of a token and reacts to the output of the first FSM to detect
multi-token patterns. This type of architecture is similar to the concept of a decomposed
automaton [78] which can be used to detect transition strings in regular expression pat-
terns. This separates the problem into two parts, both having individual requirements
and implementation options.

The input to the core are two data streams containing the document text data and the
token definitions. The text data is stored as 8-bit ASCII characters and is streamed to
the module one character per cycle. Although the ASCII encoding limits the number
of the available characters it simplifies the design as every character is described in a
single byte. Furthermore the UTF-8 standard includes ASCII as a subset, allowing the
architecture to be extended to support UTF-8. The module uses an elastic interface with
two handshaking signals valid and ready, where data is only accepted if both signals are
asserted high. The token definitions are stored as tuples of two unsigned 32-bit integers
and are passed to the core on a separate 64-bit wide bus using an elastic interface.
Using 32-bit values simplifies the software integration as it standard datatype on many
common platforms.

Figure 3.2 shows the overall dictionary matcher architecture. It is split into three
sections: single token matching, multi token matching and result reporting. The single
token matching part determines the processing rate of the text document and needs to
synchronize the two input streams. It should have a deterministic operation and thus
avoid backtracking or any other additional checks that need to be run when encountering
a match. It is followed by the multi token section which operates on the results of the
first stage. The multi token section is activated once per token and thus has a lower
activity rate for natural language documents than the single token stage. Still the multi
token part should finish within a single cycle or pipeline its operation to avoid stalling
the input stage as a sequence of many single character wide tokens may appear e.g.
in data logs. The last section handles the result reporting. It receives the matching
results of the first two stages and generate the according outputs for them. As this
stage may have to report multiple dictionaries for a single match the operation can take
multiple cycles. The output of the core is composed of five integer values describing the
dictionary identifier, the character-based start and end offsets and the token based start
and end offsets. While the bitwidth of the character-based offsets remains at 32-bit the
other values may be customized as they are used locally on the FPGA. If the dictionary
id is required to be reported to software it will be padded to a 32-bit format. The result
generation step will put the results on an elastic bus that holds the entire tuple to be
communicated in a single cycle. It reacts to the ready signal controlled by the connected
consumer.

24

3.2 Hardware architecture

Figure 3.2: Dictionary matcher architecture

3.2.1 Single token matching

As a first step the single token matching (STM) part synchronizes the text document
stream with the token offsets stream. To do so it uses an internal character pointer which
represents the current position within the document. If both input streams assert their
valid signals high, the character pointer is compared to the end offset of the token
definition. If the pointer is less than or equal to it the character stream is accepted,
while the token stream is advanced only if pointer is equal to the end offset. This keeps
a constant stream of one character per cycle alive if both streams supply valid data fast
enough. If the valid signal of either stream falls low, the other stream is stopped as well.

A boundary detection unit uses the character pointer and compares it with the token
definitions to create start-of-token (sot) and end-of-token (eot) signals. These are single
bit wide signals accompanying the character stream to indicate whether a character

25

3 Dictionary matching

is at the start or the end of a token or both for single wide tokens. These signals
are important for the actual pattern matching unit and the activation of the multi
token matching (MTM) part. Furthermore the eot signal enables a second counter for
providing the current token id which is propagated with the token offsets to a buffer for
use during the result reporting stage.

The pattern matching is performed by a finite-state machine (FSM) employing a deter-
ministic finite automaton (DFA) constructed by a modified version of the Aho-Corasick
algorithm [15] (AC). The AC-DFA contains a state for every prefix for every pattern in
the dictionary where every transition is triggered by a single character. Every state is
labeled whether it belongs to the dictionary or not. Additionally the AC-DFA contains
fail transitions to other nodes that share the longest common prefix. This allows the
automaton to evaluate additional transitions without backtracking.

The DFA is implemented using multiple Balanced Routing Table-based FSMs (BFSMs)
by van Lunteren [99]. A BFSM is a programmable finite-state machine with transition
rules stored in memory and uses a hashing function to efficiently distribute the rules
in depth and width. A state is associated with a bitmask that is combined with the
current input character to determine the next address to read from the rule memory. If
the bitmask is all zero the address is directly determined by the 8 bit character value.
To extend the address a table index or cluster index is added as the most significant
bits. This cluster index is stored with every state node and determines in which rules
cluster to operate. The transition rules are split into two groups: regular transition
rules and default transition rules. The address generation for default transition rules
does not rely on the current state and mask, but always uses the default state and a
predefined mask.

An incoming character is passed to the classifier which assigns the character a 7-bit wide
character class e.g. digit. On the FPGA this is implemented as a memory using the
character as an address. The character is then used by the two address generation (AG)
instances to produce an address for the transition as well as for the default rules. When
the start-of-token signal is asserted high the remaining inputs to the transition rules
address generator are set to default as the state-machine operates in an anchored mode.
This means the state-machine can only leave the default state when the start-of-token
signal is high, otherwise it will lock on the default state and shut down until the next
start-of-token is asserted. This ensures that the FSM will only flag patterns that match
with the beginning of a token.

Every entry in the transition rules memories consists of three rules with an increasing
priority. At every cycle a complete rule line is read from both the transition rules and
the default rules resulting in a total of six rules that are evaluated in parallel. The
rules encode a test part and a result part [99] with an extended match information
section that is variable in width depending on the number of patterns and dictionaries
described in section 3.3. The test part of the rule defines what and how to test the
input for. Whether to compare the character or the character class with the according
test field, check for case sensitivity and/or test the current state or not. The tests
are processed in parallel and then combined using a priority scheme where the first
transition rule has the highest priority and the last default rules has the lowest. If none

26

3.2 Hardware architecture

of the rules match, the FSM will fall back to its default state and default mask.

If a rule is evaluated positively and contains a match flag, a pattern has been found. But
the flag is combined using a logical AND with the end-of-token signal as only matches on
the token boundaries are desired. Any match that occurs during the evaluation of a token
is ignored. Once the end-of-flag has been asserted the FSM will shut down, continuing
the process characters but waiting in its default state as the current characters are
outside a token definition. If a match is valid, it will be signaled to the multi-token
matching stage with the according match information encoded in the results part of the
winning rule.

3.2.2 Multi token matching

The multi token matching (MTM) section of the architecture receives the match infor-
mation determined by the single token matching (STM) stage. The MTM stage will
always be enabled when the end-of-token signal is high regardless if there is a match
or not. The stage will keep track of the matches that occurred over a sequence of sin-
gle tokens and determine whether there was a multi token pattern matching a specific
sequence.

To complement the resource usage of the single token matching stage the MTM stage
is designed to utilize the logic and registers on the FPGA instead of memory blocks. The
patterns are compiled to custom hardware blocks as described by Sidhu and Prasanna [89].
It implements a non-deterministic automaton (NFA) based on the Baeza-Yates or shift-
and algorithm [22]. Every token sequence has its own register chain where the registers
are interconnected using AND gates. While the output of a register drives one input
of an AND gate, the second input is determined by the match information from the
STM stage. This allows a bit flag to propagate through the register chain if the se-
quence of tokens is correct, otherwise the bit will fall low and not trigger the last output
register high. As the chains operate on tokens the registers are clock-gated using the
end-of-token signal.

The number of registers is equal to the number of tokens in a pattern. But as many
patterns are searched for, shared prefixes can share the same resources. Also if different
patterns belong to the same dictionary they can share the same resources by ORing the
decoded match information or properly adjusting the decoding. Figure 3.3 shows an
example circuit that detects the following three patterns: ”multi token”, ”multi token
match” and ”multi token pattern”. The patterns share the resources for their common
prefix by adding a single OR to the last stage for the patterns of length three. The
results are propagated to the result reporting stage.

3.2.3 Result reporting

After the successful detection of a dictionary element the results need to be produced.
A single result is composed of a 32-bit dictionary identifier and the start and end offset
position of the element found in the current document. As a single element may be

27

3 Dictionary matching

Figure 3.3: Multi token matching architecture

contained in multiple dictionaries, multiple results need to be produced. This implies
that the amount of data generated by the dictionary matcher may exceed the size of
the actual document processed. A cascaded result lookup is used to efficiently store the
information in which dictionaries an element is contained in.

A match in the pattern detection engines results in an address derived from its matching
state to the pointer memory. This memory contains a single entry for each match from
the BFSM and the multi token chains. Each entry consists of an address to the result
memory and a result length. The result memory contains the actual dictionary IDs,
which are grouped by a particular element appearing in such a group. For instance if
an element appears in dictionaries A, B and C then these form a continuous group in
the result memory. A second element appearing in dictionaries D, E and F forms a
separate continuous group. But for a further element appearing in B, C, D and E, the
compiler will create a group overlapping the previously created ones, thus minimizing
the necessary storage. Figure 3.4 illustrates this example.

Figure 3.4: Cascaded result lookup

The result generator receives the base address and the result length and generates the
addresses to the result memory. It also receives the number of tokens involved in a
match and assembles the correct token offsets from the token FIFO and writes the

28

3.3 Compiler

results to the output. This operation runs at full clock speed with no clock gating as
it is independent of the end-of-token signal except for acknowledging the Token FIFO.
Still the result generation may take more cycles and cause backpressure to the matching
stages. To avoid the document processing from halting the single token matching stage
is separated from the multi token matching stage by shallow FIFOs.

The output results are always sorted by their end offsets first and then by their start
offsets. This is simply done by using a priority scheduler where patterns with more
tokens have a higher priority. If a downstream requirement is to have the output sorted
by start offset first, the priority scheduler inserts additional delays to shorter token
patterns while keeping the scheduling mechanism. This way a single token match arrives
later at the scheduler allowing the MTM stage to detect any longer patterns meanwhile.
Finally the result generator needs to be aware of this setup as well, to correctly select
the offsets from the Token FIFO.

3.3 Compiler

The compiler framework for the dictionary matcher architecture is composed of two
parts. The outer part is written in Python and is responsible for processing the input
files and generating the output files. Furthermore it generates the Verilog hardware
description for the multi token matching architecture. The framework employs the
regular expression compiler (RegX) by Rohrer et al. [86] to generate the initial transition
rule memories for the BFSM engines. Figure 3.5 shows the basic steps of the compiler
and their data flow.

Figure 3.5: Dictionary compiler framework overview

29

3 Dictionary matching

The compilation process starts by reading a plain text file containing a list of paths to
dictionaries to compile. Additionally each dictionary entry has an option flag to indicate
whether or not the dictionary should be matched case sensitive. Every dictionary file
contains one string pattern per line, where multi token patterns are split by whitespaces
on the same line. The compiler will split the multi token patterns into single token pat-
terns and consolidate them. Every single token pattern is assigned a unique id and the
sequence of ids is stored for later use to generate the multi token matching architecture.
It will then create the input file for the regular expression (RegX) compiler [86] and
launch it.

The RegX compiler will compile the individual patterns by distributing them among
multiple BFSMs and generate the according transition rule memories. Additionally it
sets the value for the default mask of the BFSM and produces a results table providing
information about which state on which BFSM belongs to which pattern id. These
files are then read by the dictionary compiler again to generate the final output files.
The BFSM rules are modified such that a multi token id is inserted on the appropriate
matching rules. At the same time a custom decoder for the multi token chains is
constructed as a Verilog file, which decodes the multi token id to a one-hot bus. This
then allows the compilation of the multi token chain registers which are all compiled to
single large Verilog file.

As a last step the result memory file is assembled. During the parsing step the compiler
collected information about shared patterns and uses a simple heuristic to minimize
the required memory space. It will start with the patterns with the most occurrences
in different dictionaries as patterns that occur in only one dictionary can then simply
point to an already existing entry if it exists. This will produce a longer sequence in the
results memory where the dictionary ids are sorted in ascending order. The compiler
will then iteratively add new id sequences by first sorting them and checking if they
already exist in the results memory and create the corresponding entry in the pointer
memory. If the sequence does not exist the compiler appends it to the end of the results
memory. Although this may not lead to the optimal solution it provides an efficient
solution in terms of processing time and result.

3.4 Evaluation

The dictionary matching architecture is evaluated under two aspects: performance and
scalability. For both aspects the architecture is integrated with a POWER7 host using a
predecessor of the Coherent Accelerator Processor Interface (CAPI) used in chapter 6.
The accelerator card is directly attached to the processor bus (GX) and holds two
FPGAs. One system FPGA that links the processor bus to an application FPGA
which holds the actual accelerator logic. The application FPGA is an Altera Stratix
IV GX530 FPGA running at 250 MHz and is connected to the system FPGA using a
custom interface capable of 4 GB/s in both directions. The accelerator card can access
the host’s main memory via the processor bus. The application FPGA operates on
virtual 64 bit addresses that are resolved to actual physical addresses by the system

30

3.4 Evaluation

FPGA in cooperation with a translation server running with the software application.
Basic memory copy tests indicate a maximum bandwidth of around 3.4 GB/s for the
system. Figure 3.6 illustrates the setup.

Figure 3.6: Evaluation setup for the dictionary matcher

The exerciser application used for performance evaluation is written in Java and the
measured time is taken from the submission of the first document to the reception of
the last results. The application will read a set of documents into the host memory and
generate the token information to avoid any file I/O operations. To run for a sufficiently
long time (>10 sec.) the exerciser will resubmit the documents to the accelerator card for
a given number of times. This will adjust for any effects imposed by the operating system
and the Java virtual machine. For the performance test a single thread is launched that
submits a batch of documents to the hardware. Once half the number of documents are
returned the thread will resubmit the batch of documents again to ensure the hardware
queue is never empty.

The dictionaries have been taken from the Moby Word List [102] by Grady Ward. It
is a collection of 16 dictionaries with different types such as names, places and other
words. For the evaluation a subset with different properties has been selected and is
summarized in table 3.1. The selection comprises the complete NAMES dictionaries
of the Moby word list that represent basic sizes. Additionally two dictionaries have
been constructed from the first 50,000 and 100,000 words of the SINGLE word list to
stress the single token detection part of the architecture. To evaluate the multi-token
matching part three dictionaries have been generated from the first 1,000 to 3,000 multi
token words in the COMPOUND list.

3.4.1 Resource requirements

The resource requirements of the architecture determine the scalability of the design
and the maximum size of the dictionaries that can be used. While the single token
matching stage uses mainly memory resource to implement the transition rules of the
AC-DFA the multi token matching stage relies on a large number of logic resources and
registers to implement the NFA. These properties of the architecture complement each
other to achieve a high utilization of the FPGA resources.

31

3 Dictionary matching

Dictionary # of # of avg. # of MT
name words characters char. / word words

NAMES-M 3,897 27,518 7.06 1

NAMES-F 4,946 36,329 7.34 5

NAMES 21,986 158,275 7.2 7

SINGLE-50000 50,000 507,249 10.14 0

SINGLE-100000 100,000 1,034,613 10.34 0

COMPOUND-1000 1,000 27,338 27.34 1,000

COMPOUND-2000 2,000 42,294 21.25 2,000

COMPOUND-3000 3,000 57,575 19.19 2,000

Table 3.1: Dictionaries used for evaluation

Figure 3.7 shows the percentage of resources used on the Altera Stratix IV GX530
FPGA over the number of characters. For the single token matching stage it can be
seen that the use of logic cells (ALUTs) stays below 10 % even for 800,000 characters.
These were 32 instantiated BFSMs consuming about 70 % of all memory blocks (M9K)
on the FPGA including the classifier and other memories in the architecture. Also a
small number of output buffers used for the output channel communication is included
in this numbers but stays the same for all evaluation runs.

Figure 3.7: Resource consumption in percent vs. number of words

To formalize the design efficiency of the design two measures can be established. One is
the logic cell efficiency which can be calculated by dividing the number of total required
logic cells by the number of characters (Equation 3.1). And the memory efficiency which
is the number of required memory bits per character (Equation 3.2).

efflc =
LCtotal

chars
(3.1)

32

3.4 Evaluation

effmem =
bitstotal
chars

(3.2)

On average the presented architecture achieves a logic efficiency of 0.35 LC/char and
a memory efficiency of 25.5 bits/char. These values can be used to compare different
types of architectures with each other. Section 3.5 will discuss related work and compare
these numbers.

3.4.2 Performance

The primary performance measure is the character throughput of the architecture. As
the compiler is limited to the ASCII character set the unit of characters per second
is equivalent to bytes per second as every ASCII character has a size of exactly one
byte. The throughput of the architecture indicates how fast a set of documents can be
processed. The interface link to the dictionary matcher must also sustain the transfer of
token definitions in parallel to the document characters but is not part of the reported
throughput numbers.

The maximum peak processing rate can be calculated using equation 3.3. Every stream
in the architecture consumes a single character per cycle thus the frequency determines
the processing rate of a single stream. The throughput multiplies with every instance
of an additional stream. While a single instance of a dictionary matcher is designed to
process two character streams, the second one can be removed if i.e. there are insufficient
logic resources two implement a second multi-token matching stage.

Tmax = f ∗ nstreams (3.3)

The number of possible streams is limited by the available logic and memory resources.
Limiting factors that may reduce the actual throughput are the saturation of the pro-
cessor bus interface or transfer setup penalties when translating virtual addresses to
physical ones. Both scenarios have a similar effect that the document and token streams
have to wait for each other. Figure 3.8 shows the throughput for different number of
streams over the individual document size.

The dependency from the document size can be explained by the virtual to physical
address translation. For every document a new transfer has to be initiated and thus
a new translation has to be requested. In the used CAPI predecessor system this
translation happens via a software translation server performing the lookup and sending
back the physical address using an MMIO write. This is causing a transfer setup penalty
that is limiting the performance for small document sizes.

To improve the situation for small documents a batching mechanism has been introduced
which groups four documents into one larger buffer before sending it to the FPGA. The
effect can be seen in figure 3.8 between the two measurements for 2 streams. The
batching mechanism helps the smaller documents (<1000 bytes) but also allows larger
documents to reach the peak processing rate earlier.

33

3 Dictionary matching

Figure 3.8: Throughput over document size for different number of streams

The maximum measure throughput was 9.2 Gb/s using six streams which is an equiva-
lent of 1.15 giga characters per second. This is 76 % of the maximum theoretical peak
processing rate and indicates a limitation on the interface side. A single instance of a
dictionary matcher using two streams reached 3.5 Gb/s which is 87.5 % of the theoretical
maximum.

The original Java-based software implementation reaches a maximum throughput of
51.44 Mb/s on an Intel XEON E5530 with 2.40 GHz using 16 threads. The software
measurements use the same dictionaries and documents. This is an up to 178x improve-
ment using the presented architecture.

3.5 Related work

String pattern and regular expression matching has been studied for a wide range of
applications and on different platforms. FPGA implementations have been driven by
the network intrusion detection (NID) community to identify malicious network streams.
Such architectures do not have the requirement to report the exact positions of a match
but rather flag a stream once a pattern has been detected. With the ever growing traffic
in global networks other implementations for NID systems were done in ASIC or event
custom processor technology. To compare the different architectures with each other
two common metrics can be used:

• Memory efficiency in terms of how many bytes are required per character or pattern

• Aggregated throughput, which is the overall throughput of all streams through

34

3.5 Related work

the architecture. This may also be dependent on the number of patterns.

An alternative FPGA implementation for dictionary matching for text analytics is pre-
sented by Agarwal et al. [14]. It uses a collision free hashing architecture to determine
if a token is contained within a dictionary. The size of the lookup table is determined
by a predefined maximum length for a single token as this determines the hash size.
This architecture implements its own tokenization circuitry, splitting the document text
on whitespaces. Furthermore the design is not capable of multi token matches and
multi dictionary reports. Despite the missing features the implementation achieves high
throughput rates by processing every token in pipelined cycles.

Nakahara et al. [78] discuss an architecture based on a decomposed automaton for regu-
lar expression matching. The regular expression is converted to an NFA and the number
of states is reduced by merging and concatenating transition strings creating a modular
non-deterministic finite automaton with unbounded string transition (MNFAU). The
transition strings are then detected by a DFA implemented using off-chip memory while
the MNFAU is implemented in FPGA logic using and AND-shift architecture. The
design consumes a single character per cycle and runs at 200 MHz, while being very
efficient in terms of logic cells per character and memory per character.

Yang et al. [111] also take a combined approach to large scale string matching. To reduce
the number of backward transitions in an Aho-Corasick DFA (AC-DFA) a binary search
tree (BST) architecture is used to find a subset of strings and prefixes. Once the BST
reaches an output state it can trigger a tail root node, which is a starting node of a
AC-DFA that is implemented in a second part of the architecture. The architecture has
a guaranteed worst-case performance and achieves high throughput rates for very large
string sets.

A software implementation on the Cell Broadband Engine processor achieving good
performance is presented by Scarpazza et al. [88]. By properly parallelizing the AC-DFA
algorithm and carefully timing the memory transfers between the processing engines by
using DMA primitives this software implementation achieves an aggregated throughput
of 3.7 Gb/s for a set of 20,000 words.

Van Lunteren et al. [100] present a regular expression co-processor based on BFSM tech-
nology that was implemented as part of IBM’s Power Edge of Network processor in 45nm
SOI custom technology. The implementation focuses of regular expression matching for
network intrusion detection. Two co-processor instances where implemented running at
2.3 GHz, achieving up to 40 Gb/s scan rates. To achieve high memory efficiency for
various regular expressions a local result processor is used as a post-processor to the
BFSM units. This allows to split patterns into smaller parts that can be stored more
efficiently in memory. If a match occurs the co-processor is able to report the type of
match and the end offset but then hands off to the main processor to further evaluate
the stream.

Another network intrusion detection architecture is presented by Yu et al. [112] which
is based on a ternary content addressable memory (TCAM). The TCAM can be used
to directly find a pattern based on the input string. To increase the memory efficiency

35

3 Dictionary matching

the string patterns are split into prefix and suffix patterns to achieve a similar pattern
length. The architecture can also handle correlated patterns and a subset of regular
expressions at a scan rate of up to 2 Gb/s.

Other network detection intrusion detection systems are presented by Song et al. [93]
as ASIC design, and FPGA designs by Bispo et al. [26] and Yang et al. [110]. Ta-
ble 3.2 compares some architectures in terms of maximum reported performance and
resource efficiency. It indicates that the presented design is well balanced in terms of
resource utilization and achievable throughput, as it does not strongly outperform nor
underperform in any category.

Method Type Gb/s LC/char bit/char

Sourdis 05 [94] Dict 12.67 16.86 n.a.

Bispo 06 [26] Regx 2.9 1.28 0

Yang 10 [110] Dict 3.5 n.a. 8.4

Nakahara 11 [78] Regx 1.6 0.25 21.4

Agarwal 13 [14] Dict 17.8 0.4 21.2

BFSM+NFA Regx 9.2 0.35 25.5

Table 3.2: Dictionaries used for evaluation

Figure 3.9 illustrates the performance of various architectures for string and regular
expression matching over the number of patterns to be searched for. Although the
architectures provide different levels of features, the figure shows the tradeoff between
capacity and performance. The presented architecture [82] shows strong performance
per pattern numbers getting close to the ASIC implementation by Song et al. [93].

Figure 3.9: Dictionary matcher comparison

36

3.6 Summary

3.6 Summary

Named entity recognition (NER) is a key processing step in natural language processing.
Individual string tokens are assigned one or multiple categories such as e.g. person or
country. These categories refer to large lists of string patterns so called dictionaries. The
patterns may only be matched on the token boundaries which are defined by a preceding
tokenization step. Profiling of text analytics queries shows that NER is one of the most
time consuming processing steps including regular expression and dictionary matching.
Multiple hundreds of dictionaries may contain multiple thousands of patterns that are
required to be found.

While previous work on string pattern matching has been focused on network intrusion
detection systems (NIDS) where only the sole occurrence of a match is required to be
reported, pattern matching in text analytics requires all match locations to be reported.
Furthermore the sequence of pattern matches may generate additional matches so called
multi token matches that also must be reported. If the same pattern appears in multiple
dictionaries, every dictionary must be reported. This can be done by generating super-
set dictionaries or by the hardware architecture.

A dictionary matching design was presented to fulfill all the requirements of the text
analytics processing step. It is composed of two matching stages where the first stage
processes the document at a deterministic rate of one character per clock cycle and de-
tects single token patterns. This stage is implemented as a programmable state-machine
mainly utilizing the FPGA’s block memory resources. The second stage implements a
shift-and algorithm in custom logic to perform multi token matching. This stage com-
plements the first stage in terms of area by utilizing mainly logic resources on the FPGA.

Evaluation has shown that despite the additional features of the architecture the design
is capable of high performance large scale named entity recognition. The architecture
was able to process 100,000 patterns at 3.2 Gb/s which is up to 178 times faster than
the original software implementation.

37

CHAPTER 4

Relational operations

This chapter will discuss relational operations performed by text analytics queries and
present a hardware library and compiler [81] to run such operations in FPGA logic,
together with the extraction operators.

The relational model was introduced by Edgar Codd in 1970 [36]. It is a theoretical data-
model based on a table-like data-structure called a relation, which consists of attributes
organized as columns and individual data entries organized as rows called tuples. The
attributes are defined by a header, and define the attribute’s name and datatype. The
relational model provides a declarative method to define the structure and retrieval of
data, and does not define how it is implemented by a specific application. A common
application is a relational database, which is organized according to this model. Most
relational databases use the structured query language (SQL) to define and interact
with the data. Figure 4.1 visualizes the concepts of the relational model.

Figure 4.1: Concepts of the relational model [13]

To retrieve data from relations, queries can be formulated to define the desired data.
Queries use relational operations to combine, filter and generate the requested result
set from a number of relations. To select only a specific set of attributes from a relation

39

4 Relational operations

the Project operation is used. The restriction operation filters the rows that are not
applicable to a given predicate, this operation is often also called Select. Multiple tables
can be combined by generating the Cartesian product of two tables, where every tuple
in one table is combined with every tuple from a second table. Usually the resulting
product is filtered according to a given predicate. The combination of product generation
and filtering is referred to as a Join operation. Additional operations accessing two or
more tables are, Difference where all tuples from a first table are filtered if they appear
in the second one, Intersect which generates a set of tuples that appear in both tables,
and Union which creates a single table from multiple one that have the same structure.

In SystemT the initial tables are either created by the user and static for the entire query
or generated by the extraction operators for each individual document. These tables
contain attributes of type Span, but may also contain integer, float or string values. A
particular sequence of attributes defining the header is called a Schema and is always
associated with the output of an operator. SystemT provides relational operations with
additional specific features such as pattern matching for the Select operation or special
versions of Join. Also consolidation and grouping operations are provided to remove
duplicate entries or count appearances.

The next section will define the design requirements for the implementation of the
relational operators on the hardware before section 4.2 will describe the architecture
and operation of the individual hardware modules. The compilation process is presented
and discussed in section 4.3, before evaluating the design in section 4.4. Related work
is outlined in section 4.5 and the chapter is summarized in 4.6.

4.1 Design objectives

As seen in chapter 2 the relational operators follow the extraction operators in an an-
notation operator graph (AOG). The extraction operators determine the rate at which
documents are processed by the hardware and should not be stalled during their oper-
ation. As the output of the extraction engines is sorted by either start or end offset,
many relational operations can be performed in a streaming fashion with some addi-
tional buffering, if necessary. This streaming type of processing should ensure that any
tuple generated by the pattern detection units (PDUs) can be accepted by the following
logic implementing the relational operators.

While the output tuples of the extraction operators always have the same schema of
a single span type describing the position of a match, the schemas are altered by the
relational operators. As the operators can be interconnected in any way, the hardware
modules implementing the operators must be configurable to any arbitrary schema. The
attributes used by the operator may also be located at any position within the schema,
while the remainder of the schema is considered payload.

To process entire queries, a compiler framework must be provided to create and configure
the hardware operators and interconnect them in the appropriate way to represent the
annotation operator graph. The compiler must ensure the proper functionality of the

40

4.2 Hardware modules

operators by adjusting settings of parameterizable modules or create custom modules,
if necessary. Furthermore the compiler needs to check the order of the tuples on a graph
edge to ensure the operator can process the stream in a single pass. Also the flow-control
must be inspected by the compiler when a single operator has multiple consumers.

In order to process large queries or achieve higher processing rates, the compiler must
apply optimization strategies to the annotator graph before creating the hardware de-
scription. Because of the sequential nature when processing a query in software, the
runtime may skip entire parts of the graph when no results are produced at a given
node. The hardware does not benefit from such a strategy and must leverage other
insights to reduce resource consumption and increase frequency. Especially identifying
unnecessary payload attributes or unused parts of an attribute, can have a significant
impact on the area requirements of hardware operators.

Summarized the requirements for the relational operators framework are:

• Stream based execution of relational operations, to avoid stalling the extraction
operators which provide the input results

• Operators must be configurable to arbitrary schemas, as they can be intercon-
nected in any way

• Compiler framework that creates the individual operator modules and generates
complete query graphs in hardware

• Optimization techniques to reduce the overall hardware resource consumption to
allow complex queries to be mapped and reduce the static power consumption

4.2 Hardware modules

The basic functionality of every supported relational operator is implemented as a sep-
arate hardware module that can be configured by setting a range of parameters. Oper-
ators that are highly configurable such as the Select operator are compiled to custom
HDL code. As the modules need to communicate with each other they all implement
the same interface on their top-level. The interface is defined as an elastic interface,
which allows the producer to indicate whether or not the data is valid and the receiver
whether or not it is ready, to accept the data in the current clock cycle. This scheme
also allows to insert register stages into both the valid and ready direction to achieve
the desired target frequency.

The data is transported on a wide data-bus. The width of the bus is determined by
the output schema of the driving operator. In order to decouple the design of the
core modules and from the schema layout, a wrapper is generated for each operator
instance which rearranges the attributes of the schema. Actively required attributes
will be located on the most significant end of the data-bus while the remainder will
be classified as payload for the actual module. On the output side of the module the
wrapper will again rearrange the outputs to correspond to the correct schema of the

41

4 Relational operations

operator instance. Figure 4.2 shows an example of a wrapper module. The active
column is moved to the left for the input and restored for the output of the module.
Any newly generated columns get appended to the right.

Figure 4.2: Wrapper module rearranging input and output schemas

The span data type, is represented as four integer values. The first two values are the
character-based start and end offsets within a document. These values are 32 bits wide,
each. The second pair are the token-based start and end offsets, and are 16 bits wide.
These token ids are used internal to the hardware only, and simplify token-based range
operations to avoid additional lookups.

An additional bit, which is treated the same as the data-bus, is the end signal. It
indicates the end of a stream and must be asserted by each operator after it has produced
the last tuple. The end flag is first generated by the extraction operators, after the last
character of the document has been processed. Data on the data-bus is invalid when
the end flag is asserted high.

4.2.1 Adjacent Join

The Adjacent Join operator is a specialized and heavily used Join type in text analytics
queries. It calculates the product of two sets and uses a distance metric to filter the
appropriate candidates. The distance metric is defined as the difference between the
end token id of a span from set A and the start token id of a span from set B. If the
distance lies within a user-specified range the two tuples from both sets are Joined and
put into the resulting set. The distance may also specified as the distance between a
character-based end and start-offset, in which case the operator is named Sort-Merge
Join, which is a known type of Join algorithm.

In both cases the core hardware implementation is the same, taking two streams A, B as
inputs and producing an output stream with the joined schema. This means the total
data bus width remains the same for input and output. Figure 4.3 shows the operator

42

4.2 Hardware modules

representation in the annotation operator graph on the left and an example on the right.
The operator node has a secondary type node added to it describing the Join criterion in
terms of distance and which set follows the other. The compiler will read the secondary
node to correctly wire the wrapper module. Additionally the compiler sets the correct
values for the minimum and maximum distance.

Figure 4.3: Adjacent Join operator node and example

The hardware operator benefits from the ordering of the tuples on the two input streams
to process them in a streaming fashion. In the case where a tuple from stream B follows
a tuple from stream A, stream A must be sorted by end offset while stream B must be
sorted by start offset. Advancing stream A will always shorten the distance or keep it
constant, while advancing stream B will only increase the distance. As multiple tuples
from A may be joined by multiple tuples from stream B, the distance checks must be
performed multiple times on the same tuples from one set. This requires at least one
stream to be buffered again to a temporary area.

Figure 4.4 show the overall core architecture of the Adjacent Join module. Both incom-
ing streams are buffered to individual FIFOs, as it cannot be foreseen when tuples arrive
on the inputs. Once data is available in both FIFOs, a distance check is performed in
a single clock cycle and determines the read and write operations on all buffers. If the
calculated distance is within the user-defined range, the tuple is moved to the output
and the valid signal is asserted high. In this case the tuple from stream B is also written
to a temporary FIFO (T) as it may join the next tuple from A again. This process is
repeated with a new tuple from stream B as long as the distance does not surpass the
maximum defined distance. Once that happens, the first tuple from set A is discarded
and the next one will be used. First all tuples from buffer T will be tested with the new
tuple from A, and are run through the distance check. If the distance gets negative, the
tuple is discarded from the temporary buffer as there will be no tuple in stream A with
an earlier end offset. Once all tuples have been processed from the T FIFO, the process
starts looking at tuples from stream B again.

This architecture is not suitable for generic Join as the temporary buffer has only a
limited capacity to perform the product operation. In the event of a buffer overflow the
first tuple of any FIFO is dropped to continue processing the document. In the general
use-case this does not result in wrong results due to the linear processing of the text
document. This means the distance of the first tuple in a full buffer to a first tuple
of an empty buffer will be out of the valid range. But to inform the software of the
event a special exception flag is set and it is left to the application whether to rerun the

43

4 Relational operations

Figure 4.4: Architecture of the generic Adjacent Join module

document in software only, or ignore the exception.

4.2.2 Difference

The Difference operation takes two sets as input and removes any tuples from the first
set if they appear also in the second set. The output schema is defined by the input
schema of the first set (A). The hardware module does not require any parameters to
be set by the compiler other than the width of the test input. The compiler will rewire
the wrapper such that the attributes required for the equality test are fully sorted.
The rewiring may switch start and end offset of a span depending on what the stream
is sorted by first. Figure 4.5 illustrates the operator node and an example including
wrapper rewiring.

Figure 4.5: Difference operator node and example

The core architecture is similar to the Adjacent Join operator without the additional
temporary buffer. The input streams are put into FIFOs as the streams need to wait
for each other. The output from buffer A will always be presented as output data but it
is not validated until a greater tuple arrives on stream B. Once valid data is available in
both buffers a comparison operation is carried out in a single cycle to determine which
buffer will be advanced and whether the output tuple is validated. Stream B is advanced
as long as its tuples are smaller than the current tuple from buffer A. If the tuple from
stream B is greater than the current tuple from A, the output valid signal is asserted

44

4.2 Hardware modules

high and kept until the receiver accepts the tuple. Then stream A is advanced and the
test begins again. If the tuples are equal, stream A is advanced as well but without
validating the output.

As the Difference operator synchronizes two streams it may run into the same deadlock
situation as the Adjacent Join, when a single buffer overflows. To resolve the situation
a similar mechanism is used by dropping the first element of an overflowing buffer but
if stream A overflows the elements are pushed to the output as it is likely that there
is no equivalent tuple in set B. Again an exception flag is raised to allow the software
application to react to such a scenario.

4.2.3 Union

The Union operator takes a number of sets with an equal schema and combines them
to a single set. On the hardware this is equivalent to multiplexing multiple data-buses
onto one. If the receiving operators do not require any special ordering of the output
stream a round-robin arbiter is used to merge the streams. To increase the performance
of the input acceptance rate a multi-staged implementation can be instantiated. The
compiler can decide to set a stages parameter higher than one to do so. This might also
be necessary for very wide unions of more than eight streams. Figure 4.6 depicts the
operator node in the AOG and an example.

Figure 4.6: Union operator node and example

If the output is required to be sorted in a specific way a specialized version of the Union
architecture is instantiated by the Compiler. This is a multi-staged version where at
every stage a comparison is carried out for the required attribute and determines which
tuples to advance first. This requires all streams to be valid before a decision can be
made about the order of the output. Figure 4.7 outlines the architecture for this type
of Union.

An alternative implementation with less resource consumption is to multiplex the streams
in a round-robin fashion into one buffer and sort them before they are sent to the out-
put. This type of architecture has a higher latency when producing outputs but it can
accept incoming data without synchronizing the input streams.

45

4 Relational operations

Figure 4.7: Architecture of a sorted Union

4.2.4 Select

To filter tuples from a single set based on an arbitrary condition the Select operation
is used. For each tuple in a set it evaluates a condition that does not depend on any
other tuple in the set. But the condition may operate on multiple attributes from the
set’s schema. To describe the condition or predicate that needs to be evaluated the
Select node in the annotation operator graph is enhanced with a set of secondary nodes
as shown in Figure 4.8. The compiler will take these nodes and transform them into
appropriate Verilog code.

Figure 4.8: Select operator node and example

This means the condition evaluation core is an individually compiled hardware mod-
ule. The top-level however is static that controls and schedules the stream flow and
condition evaluation. Figure 4.9 illustrates the top-level design with the stream FIFO
that is required to buffer the incoming tuples as the condition evaluation core may take
several cycles before returning with a result. The read control unit is responsible for the
communication between the buffer the evaluation core, as well as validating the output.
In case of a full FIFO buffer the module will set its ready signal to low and not accept
any input data until the current condition evaluation has finished.

Although the condition evaluation is a blocking operation and takes several clock cycles,
it is sufficiently fast to keep the tuple buffer from overflowing. The compiler is given

46

4.2 Hardware modules

Figure 4.9: Top-level architecture of Select

additional profiling information about the rate at which tuples enter the operator. Typ-
ical numbers range from less than 0.1 to about 16 tuples for an average document size
of 250 bytes. The compiler can then size the FIFO buffer accordingly to avoid excessive
overflows.

The condition is described by the user via AQL statements. They can range from simple
offset comparisons to evaluating multiple regular expressions over adjacent contexts of
a span. These sub-conditions may be combined using Boolean logic to create the final
condition flag. The user may specify to test the left or right context of a span, in
terms of number of tokens to the left or right. In such a case the condition module will
instantiate a token id buffer to perform a lookup of a token id to retrieve the respective
character based offset. This way a new span is assembled that can be used for further
processing. Figure 4.10 illustrates the architecture for the token buffer. The buffer will
fill up until it is full and then drop the oldest token when a new one is written to it. If
an access to a lost token is made an exception is raised but the oldest token is taken to
continue processing. If an access to a token is made that is not yet in the buffer, the
control logic will wait until it arrives.

Figure 4.10: Architecture of the token buffer

47

4 Relational operations

If the condition requires to evaluate a regular expression or a string match of a span, the
hardware module needs to access the actual document data as well. To do so a rolling
buffer is instantiated that behaves equally as the token buffer by dropping the oldest
character once a new character is written to the full buffer. This resembles a sliding
window over the text document and provides sufficient range to retrieve document data
as the incoming spans arrive in a linear order. The readout of a data is controlled by
applying a span on the read control of the document buffer. The read control will then
generate the necessary addresses to retrieve the entire span, allowing back pressure if
necessary by the receiver.

4.2.5 Consolidate

Consolidation is another filter operation that is applied to a single set and handles
duplicates or overlaps. This requires the operator to look at multiple tuples to determine
whether the tuple in question is filtered out or not. To enable a streaming execution the
hardware module leverages the fact that the tuples are sorted on the inputs. This allows
to compare only two tuples and decide whether one of them can be eliminated. The
operator can have different policy on which to consolidate the tuples. The most common
cases are Exact Match and the Contained Within policies which will be described in
more detail. Figure 4.11 shows the generic operator node in the annotation operator
graph. The policy is annotated as an attribute to the node and read by the compiler to
instantiate the proper hardware module.

Figure 4.11: Generic Consolidate node

Exact Match

The Exact Match policy will only keep one tuple of multiple equivalent tuples in a set.
Thus the hardware module will only validate the output data when consecutive spans
are note equal or the end of stream has been reached. For the operator to work properly
the data needs to be fully sorted either by start or end offset, the compiler will adjust
the wiring within the wrapper to ensure that. The core architecture is made up of
two register stages where the tuples are pushed through. The output valid signal is
controlled by a wide comparator that will test the test field for equivalence. For a span
only the character based offsets are compared as they are a superset of the token ids.
If the two tuples are equal then the valid flag is not raised but the tuples are shifted by

48

4.2 Hardware modules

one stage, therefore dropping the tuple currently held in the output stage. If the two
tuples are not equivalent the valid signal is asserted high and the operator halts if the
ready signal is low. Figure 4.12 illustrates the architecture.

Figure 4.12: Architecture of an exact match predicate

Contained Within

To remove any spans that are contained within another span the Contained Within
policy is used for the Consolidate operator. If for the span in question there is another
span in the set with an equal or greater start offset and an equal or smaller end offset,
the span is removed. For the hardware to operate properly the input stream needs to be
sorted by start offset. The core architecture has two stages. The first stage captures the
longest match for a unique start offset since the longest span contains all spans with the
equivalent start offset. The resulting spans are passed to a second stage which removes
all spans having an equal or smaller end as they are contained within an earlier span
that had a smaller start offset.

Figure 4.13: Two stage filtering for Contained Within consolidation

4.2.6 Apply Function

The Apply Function operator node runs a scalar function on every tuple of a set. Some
of the functions are not suitable to be executed on the accelerator as they perform
operations to setup auxiliary data. An example for such a case is the GetText operation
which will add the string value to the schema, for a given span. This data is irrelevant for
processing the query on the FPGA and often appears at the very end of an annotation
operator graph to setup a specific output schema. This task remains in software and will
not be pushed to the accelerator. The generic operator node is shown in Figure 4.14.
The operator works on a single set and creates an additional attribute which is added
to the output schema.

49

4 Relational operations

Figure 4.14: Apply Function node in the AOG with example tuples

The operator is enhance by secondary nodes that define the operations to be carried
out on the tuples. The compiler will analyze the nodes and check if they are suitable for
offloading. It will then generate a custom Verilog description for every Apply Function
node accordingly. An important operation is the CombineSpans operation which will
be discussed in detail.

Combine Spans

The Combine Spans operation is a secondary operation of the Apply Function operator
which is carried out by itself. As the name suggests this operator combines two input
spans and creates a new span by taking the smaller start offset and the greater end
offset. In the general case the hardware module operates on every tuple of the stream
in a single clock cycle using two comparators and four multiplexers. It does not require
a special ordering of the tuples as every tuple is treated independently. The ready
signal of the receiver is directly passed to the input to control the dataflow. The core
architecture is outlined in Figure 4.15.

4.2.7 Project

A Project operation selects only a subset of attributes from the input schema and creates
a new set. It may also retain every input attribute but reorder them. In software the
attributes can be accessed by name but in hardware the sequence is important. It
is realized by correctly wiring the Verilog top-level of the query graph without any
additional modules and instances. The mapping between the input and output schema
is defined as an attribute on the operator node in the annotation operator graph. It is
described as a JSON list with pairs of attribute names, the first being the input attribute
name and the second is the output name. Figure 4.16 shows the operator node with an
example.

50

4.3 Compilation framework

Figure 4.15: Architecture of the generic Combine Spans operation

Figure 4.16: Project node in the AOG with example tuples

4.3 Compilation framework

The compilation process transforms a declarative AQL query into a synthesizable Verilog
hardware description. It is responsible for creating the individual operator modules
with their respective parameters, requirements and additional functional units. To
perform these tasks a compilation framework has been designed that interacts with
a number of different tools and component compilers and can be easily extended to
support additional operators or tasks. Figure 4.17 shows an overview of the compilation
framework and its components. The overall core framework is written in Python but
employs other tools written in C++ and Java.

While the core framework handles graph level operations and transformations, the indi-
vidual operators are defined as separate Python modules that can be loaded on demand.
Every module defines the requirements for its operator, how the Verilog module is gen-
erated and how the module is instantiated and routed in the top-level graph module.

51

4 Relational operations

Figure 4.17: Overview of the compiler framework

Each module implements one operator class which extends either one of the base classes
Operator or Secondary. The operator classes must implement at least the three methods
compile(), addToNetlist() and routeInst() as these will be called by the core framework
for each operator node in an annotation operator graph. The compile() method gen-
erates the HDL for a specific operator instance. As this process is very different for
every operator the base classes only supply an empty method creating no HDL at all
which can also be the case if no specific hardware module needs to be generated for the
operator e.g. Project. Other operators such as RegularExpression or Dictionary will call
external applications to generate the complete or parts of the hardware block. In this
case the compile() method must setup the inputs to these applications appropriately
and collect their output data.

The addToNetlist() and routeInst() methods define how a generated hardware module
is instantiated and routed on the top-level graph module. Although a standard interface
was defined some operators may require different or additional port definitions, as well as
specific parameters that need to be set on the top-level instance. To have this flexibility
these methods can be redefined by the operator classes. The methods provided by the
base class can be used when the hardware module adheres to the standard interface
definition and does not require any special processing. The module’s name is stored as
an attribute value on the object and needs to be set during initialization or operator
compilation.

Furthermore the framework employs SystemT to compile an AQL query into an initial
annotation operator graph (AOG) and acquire profiling information on the query.

4.3.1 Compilation

The compilation flow is multi-staged process to transform a text analytics query into
a hardware description and eventually to an FPGA bitstream. This process requires
multiple software tools and applications and is outlined in Figure 4.18 showing the steps
involved and the data they produce.

The input to the compiler framework is a query written in AQL as well as a set of

52

4.3 Compilation framework

Figure 4.18: Processing steps of the compilation flow

reference documents the query should be run on. If the reference documents are omitted
a set of standard documents is taken and the compiler will optimize the design more
conservatively. The AQL query is transformed into an annotation operator graph (AOG)
by calling the SystemT compiler, which generates a .aog file that can be used by the
SystemT runtime to run the query on a document set. The AOG is run against the
reference document set with an extended SystemT profiler that will capture statistics
about the individual operator nodes such as average execution time and average number
of tuples produced. This information is added to the operator nodes and dumped into
a graph description using the GraphViz DOT language [51].

The root node is called DocScan and provides the document and token data. In the
hardware description this results in a SubgraphInput module that synchronizes the two
data streams of document characters and token definitions. This is the front-end cir-
cuitry of the dictionary matching architecture discussed in chapter 3 and is now shared
across all extraction operators. As now multiple receivers may cause backpressure to
this input node the flow control signals must be combined to invalidate the data if a
single receiver asserts the ready signal low. This is done by bumper nodes and mod-
ules which the compiler will insert after any operator that has more than one receiver.
Figure 4.19 depicts the logic of a bumper node.

After the initial DocScan node the actual operators follow and describe the data depen-

53

4 Relational operations

Figure 4.19: Inserted bumper node to synchronize multiple receivers

dency between the nodes. The last level of nodes are Output nodes. These nodes do not
perform any operations but define the output set names and attributes. In a first step
the compiler will select a single contiguous subgraph starting from the DocScan node.
The subgraph contains all the operators that are supported by the framework, which in
the ideal case are all nodes down to the Output nodes. If an operator is not supported
by the framework, the compiler will add extra Output nodes that will produce the input
tuples to the unsupported node which can then be executed in software. In many cases
these are the last operators before the actual output nodes that transform a span into
the actual string representation.

To finalize the subgraph selection step a SubgraphOutput node is added as the very last
node in the graph.. This is a hardware module that will multiplex the individual outputs
into a single 128-bit wide output stream using a round-robin arbitration scheme for a
single tuple of each input edge. As the different output nodes may produce tuples with
schemas of different width, a wider tuple takes multiple consecutive cycles when written
to the output port. Furthermore the module will assign each output a 32-bit result id
which prefixes the actual result schema. The integrating logic must decide whether the
results are written to a single buffer in host memory or into multiple different ones.

The next step in the compilation process is to derive the ordering requirements of the
operator inputs. This is done by visiting every node and query the ordering requirements
for the input and output edges. This information is then collected for every edge in the
graph, which are then checked for consistency. If an edge has contradicting ordering
information the compiler will try to adjust the nodes by parameters appropriately. If
that is not possible or multiple receivers have different requirements the compiler cannot
change, it adds a sorting node to create a correctly sorted data stream. Once all re-
quirements are satisfied, the compiler applies a set of optimizations which are discussed
in section 4.3.2.

After the optimization phase the individual hardware modules are generated by calling
the compile() method on all remaining primary nodes in the graph. The modules are
then assembled to the top-level graph netlist according the graph description with the
addToNetlist() and routeInstance() methods. The routeInstance() method will look at
the input edges and interpret the index attributes annotated on these edges. If an
operator produces multiple output views an index determines the view that is going to

54

4.3 Compilation framework

the next operator. If an operator has multiple inputs the same applies and an index
defines which input is meant by this edge. Secondary operators often only operate
on one attribute of the entire input schema. Therefore an additional column index
defines which attribute to pick. If multiple attributes are required, multiple edges are
defined in the graph and routed accordingly. Every operator that additionally requires
the document or token data gets these signals routed to them from the SubgraphInput.
These signals are not allowed to create backpressure but honor the global valid signal
after the input bumper node.

This concludes the HDL generation process and usually takes only a few seconds. If
large dictionaries or complex regular expressions are used the compilation time may
become multiple minutes long. Once all HDL files are in place the FPGA vendor tools
are set up with the project files and the synthesis flow is executed. Depending on the
complexity of the query the hardware design can become rather large, lengthening the
synthesis time to multiple hours.

4.3.2 Optimizations

The annotation operator graph (AOG) generated by the SystemT compiler is optimized
for sequential execution in software. On the hardware now all operators are running
in parallel and require and allow a different set of optimizations to be applied. These
optimizations primarily target the area requirements of the generated hardware design
by inspecting dataflow constructs in the operator graph. Some constructs allow the
compiler to fuse multiple operators and instantiate a special hardware module that cov-
ers all of the fused operators. Other optimizations remove operations that are required
to satisfy the general case but can be omitted in the context they are instantiated. The
following sections discuss these optimizations applied by the compiler.

Adjacent Join followed by CombineSpans

A common case is that a CombineSpans operation follows an Adjacent Join to create
a single span containing both joined spans. A generic CombineSpans instantiates two
comparators and four multiplexers to select the appropriate start and end offset fields.
But for the case where the input to the CombineSpans operation is generated by an
Adjacent Join the positions of the two spans are known, thus eliminating the need for
a comparison. This removes the entire logic from the CombineSpans operation creating
only wiring as shown in figure 4.20.

The removal of the comparison logic has further implications on the required data fields
by the Adjacent Join module. Because the final span is constructed immediately one
field of each input span is never required to generate the output. This reduces the width
of all FIFO buffers in the Adjacent Join module. Depending whether the distance check
is made with token ids or character offsets, the memory requirements of the module
drop by 16 to 33 %. The input interface is kept the same to use the same top-level
wiring methods but a number of bits will be dangling wires. These may trigger further

55

4 Relational operations

Figure 4.20: Required data fields for an Adjacent Join followed by a CombineSpans

optimizations applied by the synthesis tools as the logic to drive these ports can be
removed.

To apply this optimization the compiler inspects the predicate of the Adjacent Join
operation to determine which of the output spans follows the other one. It also inspects
whether there are any Project operations in between the Adjacent Join and the Com-
bineSpans operation that flip the position of the spans in the schema. Also the compiler
ensures that only the generated output span by the CombineSpans operation propa-
gates and the input spans are removed by following Projects. Once these aspects are
determined the compiler sets a parameter on the top-level of the two module instances
that direct the Verilog code to generate the appropriate hardware for this case.

Bi-directional Adjacent Join

An Adjacent Join checks the distance between to spans and joins them if they are within
a maximum distance. This check only works to one side of the first input span i.e. to its
right. Often queries implement this Join operation to both sides of the first input span
checking the distance towards both directions and perform a Union on the results of
these operations. Figure 4.21 shows such a situation in an annotation operator graph.

In this case the inputs A and B are joined twice with two different predicates. An-
other equal situation is to swap the inputs to the Adjacent Join and maintain the same
predicate function. The compiler will detect both cases and replace it with a single bi-
directional adjacent Join operator if the inputs arrive from dictionary matching units.
Because in this case the maximum length of a span in terms of tokens can be predeter-
mined, the read logic of an AdjacentJoin can be adjusted such that it only drops a span
once the distance to the left can never be reduced again.

This optimization requires a more complex Adjacent Join module but allows the module
to merge the buffering stage which is costly in terms of memory blocks. Also the Union
stage can be removed which further reduces the amount of required FPGA resources.

56

4.3 Compilation framework

Figure 4.21: Original situation in an AOG that can be replaced by a bi-directional Join

Merge of equivalent subgraphs

After detagging a document with the Detag operator the query can select on which
parts of the document it wants to operate. Often the same sub-query or subgraph are
run on different parts of the document. Within the annotation operator graph these
subgraphs are then replicated and their results are Union’ed. While for the software
execution the operations must be replicated in hardware these subgraphs can be merged.
By inserting a DocUnion operator after the Detag node the two document streams are
multiplexed into a single document stream and fed to only one remaining instance of
the subgraph. The DocUnion operator will create a valid stream of characters when one
of the input streams from the Detag operator is valid. As the document is processed
character by character only one stream can be valid at a time. Figure 4.22 illustrates
the optimization and that the final Union operation can be removed.

Union of dictionary matches

In some cases keywords with similar meaning are stored in different dictionaries. In
an AQL query the dictionaries get extracted separately and are then unioned. The
AQL compiler does not combine these dictionaries but keeps the initial structure. Al-
though this might be negligible for software the hardware implementation can benefit
from merging the dictionaries into one large dictionary and remove the Union operator
completely.

This can only be done if the individual dictionaries are not used elsewhere. The hardware
compiler will check whether the output of a dictionary node does not go elsewhere and
only then remove the Union operator. It will create a new dictionary and merge all
required entries to compile the dictionary matcher appropriately. Figure 4.23 illustrates
this optimization.

57

4 Relational operations

Figure 4.22: Equivalent subgraphs that are executed for different tagged parts can be
merged

Figure 4.23: Union of dictionary matches can be removed

4.4 Evaluation

The main aspects for the evaluation are performance, scalability and energy efficiency.
The primary driver for this work has been the limited performance of pure software-
based text analytics software. The performance will be evaluated as the document
throughput rate, which will be measured in number of characters per second. For
ASCII encoding this is equivalent to bytes per second as a single character is always
one byte. For UTF-8 encoding this is different as a single character can be made up of
multiple bytes. The documents for this evaluation will only be ASCII encoded.

The scalability aspect reflects the ability of the hardware architecture to execute large
complex queries. As every operator is instantiated as a separate module, large queries
will occupy more resources on the FPGA and eventually more than there are available.
The resource measurements will also evaluate the impact of the compiler optimizations.

With the increasing cost of energy [24, 64], energy efficiency is becoming a differentiating
factor for a workload optimized system. Although the time to completion may always
be shorter on the accelerated system, the overall energy consumption may be higher

58

4.4 Evaluation

than the one of a standard system. This part of the evaluation will measure the power
consumption of different components within the system during idle time and runtime.

To evaluate the proposed framework, a set of representative queries with according ref-
erence documents has been chosen. The queries belong to different application domains
such as log analytics (LA), business analytics (BA) and social media analytics (SMA).
Queries and documents create different execution profiles to provide an overview of all
evaluated aspects. Figure 4.24 shows the execution profiles of the various evaluation
queries. It shows the relative execution time of the type of operator for a particular
query run against the reference document set.

Figure 4.24: Execution profiles of the evaluation queries

While the log analytics queries (LOG) heavily rely on regular expression matching,
the social media analytics queries (SMA) have a larger portion of relational algebra
operations in them as well. The business analytics queries (BA) show very different
behavior. BA1 relies heavily on regular expressions while BA2 spends a large amount
of time on the detag operation preparing the document.

These numbers represent software profiling results. The time spent at relational op-
erations appears to be low but the extraction operations (Regular Expressions, Dic-
tionaries) have been accelerated by orders of magnitude in previous work [18] and the
previous chapter 3. Thus the relational operations have to be accelerated to see an
overall performance improvement.

The evaluation system is the POWER7-based enterprise server system introduced in 3.4.
The POWER7 processor is capable of executing up to 64 threads in parallel using
simultaneous multithreading (SMT) and runs at a frequency of 3.55 GHz. The FPGA
accelerator card is directly attached to the processor host bus (GX bus) and is capable
of 3.4 GB/s throughput. The compiled hardware query is embedded in a separate clock
region to relax the timing requirements for the synthesis tools. All queries were compiled
such that the hardware is capable of consuming four document streams in parallel.

59

4 Relational operations

4.4.1 Performance

To establish a performance reference the queries were run by the original software in
a long-running setup to avoid any effects by the Java virtual machine. Each query
was run against its two sets of documents for five times 30 seconds and the average was
taken. One document set was the reference document set of each query while the second
set was a collection of dummy documents data. The documents were all pre-loaded to
main memory to avoid any limitation from the file system. Every query was also run
with every possible number of software threads from one to 64 and the best value was
selected. Figure 4.25 shows the performance results for all queries.

Figure 4.25: Maximum document throughput for multi-threaded software and a single
hardware stream

The software performance is directly impacted by the type of document it scans. The
performance of the dummy data documents is higher due to the limited number of
pattern matches by the extraction operators. Hence there are no results for the relational
operators to work on and the optimized execution plan allows the software to stop early.
But also the query size or complexity has an impact on the software’s throughput rate.

For the hardware measurements the documents were sent to the FPGA several times to
also measure a 30 seconds window and count the number of characters processed. All
documents were stored again in main memory and were then sent to the FPGA. The
submission was done by a single software thread which was also running the translation
server mechanism for virtual to real address translations. The compiled query was
running at the maximum frequency with no negative slack. The hardware throughput
results are summarized in table 4.1.

The performance of the hardware queries is primarily limited by the complexity of the
query. The larger the queries are the more difficult is timing closure and thus the max-
imum achievable frequency which determines the maximum possible throughput rate.

60

4.4 Evaluation

System setup LOG1 LOG2 LOG3 BA1 BA2 SMA1 SMA2

SW 1 thread 1.3 1.2 0.6 0.35 2.5 2.6 2.9

SW 64 threads 17.7 18.5 13.7 3.6 38.2 9.6 62.7

FPGA 4 streams 760.0 630.8 630.8 630.8 570.0 630.8 570.0

Improvement 42.8x 33.9x 45.7x 79.8x 14.9x 65.4x 9.1x

Table 4.1: Reference document throughput of the system in MB/s

Also the documents show an impact on the performance. But it is the size of the individ-
ual documents changing the throughput rather than the content of the documents. This
is due to the higher transfer setup costs associated with smaller documents as discussed
in section 3.4. To minimize the transfer setup costs the same batching mechanism was
applied as in 3.4. In comparison the performance of the hardware queries is up to 79
times higher than of the pure software version running multiple threads on the host
system.

4.4.2 Scalability

This section evaluates the resource consumption of the compiled hardware queries on
the FPGA. This is important to understand the scalability of the approach and how
complex the text analytics queries can be and still fit on the FPGA. The queries have all
been compiled for four document streams with and without the optimizations discussed
in 4.3.2. Figure 4.26 shows the percentage of the total available resources on the FPGA
required by the compiled query for different types of resources.

Figure 4.26: Query resource utilization on Stratix IV GX530

The numbers do not include the static amount of resources required for the communi-
cation logic with the system FPGA. This logic stays the same for all queries and uses
10 % of the Stratix IV GX530 FPGA’s logic resources.

The dominating resource are the memory blocks (M9K and M144K). While the logic

61

4 Relational operations

resources range between 7 and 50 % the memory blocks sometimes require up to 90 % of
all available resources. This is the case for query BA2 which is not able to be complied
to the FPGA when not applying optimizations. This is due a detag operation followed
by two large equivalent subgraphs. The remaining queries fit onto the FPGA without
optimizations but benefit in a reduced area consumption.

4.4.3 Energy consumption

Another important aspect for compute systems within data-centers is the power or
energy consumption. Predictions assume that the energy consumption of information
and communication infrastructures will increase up to 30x by 2030 [48]. Although special
purpose compute units offer better power efficiency for the task they were designed for
they add a significant amount of static and idle power when they are not in-use. For this
reason the energy evaluation is performed for the entire system and not the accelerator
sub-system.

To measure the power consumption of a POWER-based host system, the EnergyScale
power management system is used [71]. The system is equipped with various sensors and
counters at critical locations such as the memory or I/O sub-system. These sensors can
be read at maximum rate of 1 kHz during runtime via the system’s service processor.
For the measurements dynamic voltage and frequency scaling has been activated to
balance performance and power consumption. The results are plotted in figure 4.27.

Figure 4.27: Overall system power consumption

The baseline system without the FPGA accelerator card attached consumes 199 W
when idle. This amount of power is always consumed for all use cases with or without
an accelerator. When a single thread is launched to execute a text analytics query
additional 3 W are consumed by the system. The consumption ramps up to 37 W when
using 64 threads on the processor. The additional power consumption is distributed
among the processor modules and the memory sub-system. The power consumption is

62

4.4 Evaluation

not affected by the type of query or the document’s content.

When the FPGA accelerator card is plugged into the system additional 14 to 18 W are
consumed when the system is idle. This is the idle power consumption of the FPGA
card mainly driven by static power which is different for each design which is loaded
onto the FPGA. Larger text analytics queries result in a larger design on the FPGA
area and thus activate more resources such as embedded memory blocks. If these blocks
are not used the synthesis tool generates FPGA configurations which will power them
down.

When processing documents on the FPGA additional 5 W are consumed by the FPGA
which has been measured on the I/O sensor. The remaining system adds one more
Watt for the total power consumption when running the text analytics query on the
FPGA. This results in a lower power consumption compared to running the query with
64 threads on the POWER7 processors. But to correctly compare the required energy
by the various system configurations the performance has to be taken into account by
applying equation 4.1.

ε =
throughput

Ptotal
(4.1)

This results in a relative number of how many Joules are required per Megabyte of doc-
ument data. Table 4.2 summarizes these values and indicates an up to 85x improvement
in energy efficiency under full utilization. This is possible due to the both an improved
throughput and better power efficiency of the accelerator design.

System setup LOG1 LOG2 LOG3 BA1 BA2 SMA1 SMA2

SW 1 thread 0.006 0.006 0.003 0.002 0.013 0.013 0.015

SW 64 threads 0.07 0.08 0.06 0.03 0.16 0.04 0.26

FPGA 3.47 2.88 2.85 2.85 2.55 2.88 2.58

Improvement 46.1x 36.5x 48.8x 85.2x 15.8x 70.4x 9.7x

Table 4.2: Energy efficiency for various queries in J/MB

4.4.4 Utilization

To measure the efficiency of the hardware design its utilization was evaluated. Uti-
lization can be defined using equation 4.2 as the amount of clock cycles the circuitry
performs active operations over the total number of cycles required to complete a task.

ε =
tactive
ttotal

(4.2)

The definition of an active cycle depends on the hardware architecture in question.

63

4 Relational operations

While for a microprocessor the number of NOP1 instructions maybe considered inactive
cycles, for a streaming architecture every cycle where there is valid data and no back-
pressure may be considered an active cycle. We will use the latter to define the number
of operations that are carried out during a cycle in a given compiled annotation operator
graph. Equation 5.1 defines the activity of the architecture for a given time step t, as
the sum of all input edges which have their valid and ready signals asserted high during
that cycle. Input edges are considered because, for each input tuple the operator module
will calculate a result, regardless whether it is sent to the output or not. An exception
are the Project nodes as they are always implemented as wiring only their operation
will not count towards the total activity value. To honor operators that require multiple
cycles to compute their results e.g. Select an additional eops term is added. This term
is updated using equation 4.4 in every cycle. If a tuple enters the operator during that
cycle, the number of required cycles is added to it. If the term is not zero before adding
new operations, a one gets subtracted to account for the operation. This distributes the
number of operations properly over time.

ops(t) =
∑

edgesin

evalid(t) ∗ eready(t) + eops(t) (4.3)

eops(t) = eops(t− 1) − 1 + (evalid(t) ∗ eready(t) ∗ fops(t, tuple)) (4.4)

These equations where implemented as functions to the Verilog top-level of a compiled
annotation operator graph. During simulation the functions will print the current cycle
and the number of operations active during that cycle. This data can then be plotted to
visualize the activity and a utilization factor can be calculated by computing the sum
of all operations and divide it by the number of cycles measured.

Figure 4.28 plots the activity for query LOG3 while processing four complete documents.
A blue triangle indicates a non-zero activity from the extraction units while an orange
dot is the activity from the relational operators in the compiled datapath. The high
peaks indicate the end of a document as the end flag is propagating through all operators.
While the first document produces a fairly large number of matches at the extraction
units the number of matches during a single cycle rarely exceeds one. For the remaining
documents the extraction operators produce less results. The relational operators are
even less active for all documents but there are some transactions happening in all cases,
sometimes at the very end of a document.

On average only in 5.5 % of the cycles an activity has been recorded at all across the
measurements. When averaging the activity across all operators in the query graph the
average utilization is less than 1 % of all cycles.

To verify these measurements on a profiling level the SystemT profiler has been extended
to report the average number of tuples produced by each operator in the annotation
operator graph for a given set of documents. When dividing this number by the average
document size of the set, a utilization number for each operator can be derived as the

1 No operation

64

4.4 Evaluation

Figure 4.28: Total no. of active transfers in the datapath

document size roughly determines the execution time of the hardware pipeline. The
obtained results match the hardware measurements and reveal an average maximum
utilization of roughly 2 %. Figure 4.29 shows the utilization of the top 36 operators
in query LOG3. Only three of 54 operators produce a tuple in more than 1 % of the
execution time.

Figure 4.29: Utilization of the operators in query LOG3 from highest to lowest

Although the compiled query datapaths achieve high throughput rates and good scala-
bility the utilization evaluation shows great potential to reduce the amount of required
resources without sacrificing performance. Area resources may be time-shared among
operators or document streams to achieve a higher utilization.

65

4 Relational operations

4.5 Related work

Using FPGAs to execute relational database queries has been studied by a few groups
and was integrated into a commercial database appliance as well. A quantitative com-
parison is difficult as not only the applications vary from network stream applications to
database application, but also the query language to be accelerated is ranging from SQL
over Datalog to commercial languages. Also the presented approach combines pattern
matching on unstructured data with the immediate execution of relational algebra oper-
ations on a hardware platform. On a qualitative level this section provides an overview
of related work in the field of hardware-based query processing. Projects range from
FPGAs and GPGPUs to a custom in-core architecture.

With the Glacier project Mueller et al. [76] present a query compiler for the StreamSQL
language targeting streams of financial transactions. The transactions arrive as UDP
packets via an Ethernet link that is directly attached to the FPGA. The queries allow a
user to filter and aggregate incoming tuples to evaluate the number of transactions dur-
ing a specified time window or construct the average value of the past five transactions.
While the pure software implementation drops up to 60 % of the incoming packets the
FPGA accelerator allows full processing at 100 million tuples per second.

Although the query language is capable of performing string comparisons the length of
the string is predefined in the schema of the incoming tuples. Other than such string
compares there are no text operations available. Also the use of Join was disallowed and
was introduced as a separate component to the Glacier project [77]. Mueller evaluates
various architectures to perform a windowed Join which is required when implementing
a Join in a streaming context.

Work leveraging the use of dynamic partial reconfiguration for relational database
queries has been done by Dennl et al. [42]. Similarly a library of components is used
which implement basic operations such as Boolean and arithmetic functions. These
target the restriction operation which is the condition statement in a Select opera-
tion. These blocks are pre-compiled to partial bitstreams which can be loaded to the
re-configurable area of the FPGA. A datapath is assembled at runtime from these oper-
ators to represent the query statement. Thus no re-synthesis of the query is necessary
and the query can run immediately once the datapath is configured. The performance
is up to 6 times higher than of a pure software implementation but the library contains
no complex string operations other than fixed length string comparisons.

The LINQits project by Chung et al. [34] aims to accelerate the language integrated
query language (LINQ) which was developed by Microsoft and is part of the .NET
framework. The LINQ language is similar to SQL and allows to easily query data struc-
tures such as arrays or enumerable classes. LINQits is a set of parameterizable hardware
templates that implement functions available within LINQ such as Joins or GroupBy.
During an ahead-of-time compilation step a user query is mapped to these hardware
templates and a datapath is generated. This hardware datapath is then attached to an
ARM core and the runtime system may decide to offload a query based on problem size
or other input values. The speedup results range from 10x to 38x over an optimized

66

4.6 Summary

multi-threaded C code running on two ARM cores.

Also GPGPUs have been exploited for relational algebra query processing. Wu et
al. [108] propose a set of kernel fusion optimization that can be applied to relational
operators implemented on GPGPUs. They have extended a compilation and runtime
framework based on the Datalog query language. Their optimizations aim to reduce the
memory transfers required between the execution of multiple operators. By doing so a
speedup by a factor of 2.89 for computation and 2.35 for PCIe transfers can be achieved
over the original GPU-based implementation.

Lisa Wu et al. [109] present a in-core accelerator for the range partitioning step of
relational operations. A large table is partitioned into multiple smaller tables where a
specific key is always within a set of ranges. If range partitioning is performed prior
to the actual relational operations the tables can be kept in a cache memory and a
standard core can process the data faster. The in-core accelerator performs the task of
range partitioning up to 7.8 times faster than a CPU and requires 6.9 % of the core’s
area. The data transfers to the accelerator are software controlled while the actual
partitioning is performed in hardware.

4.6 Summary

To perform complete text analytics queries on an FPGA relational algebra operations
have to be performed on the results produced by a pattern matching step. Due to
the sequential nature of pattern matching the relational operators can benefit from a
natural ordering of the input results. This can be exploited to implement the relational
operators in a streaming fashion to achieve high performance at low area cost.

In this chapter a novel hardware compilation framework has been presented consisting
of a hardware module library and a compiler. It builds on top of IBM’s SystemT AQL
compiler and allows to generate a full hardware description of a text analytics query
defined in AQL. As a first of a kind it combines pattern detection units and relational
algebra operations into a complex streaming datapath. Furthermore it supports string
operations within filtering operators by buffering document and token data.

A set of optimizations applied by the compiler are specific to the hardware implementa-
tion of a query. Leveraging the spatial compute paradigm data types can be shortened
and operations can be omitted as the location of the data already defines the result.
By applying these optimizations the scalability for complex queries with more than 200
operators can be ensured.

The performance of the approach is up to 79 times higher than the original software
implementation running on a large enterprise server with 64 threads. The accelerated
system is capable of processing documents at 796 MB/s. The limiting factor of the
throughput is the maximum achievable frequency and the number of parallel datapaths
which are determined by the complexity of the query. The larger a query becomes
the more area it consumes on the FPGA which reduces the frequency due to complex
placement and routing constraints.

67

4 Relational operations

Also the energy consumption has been evaluated. Although the accelerator card adds
to the system’s overall power consumption, during active operation exercising the accel-
erator consumes less power than running the original software on all cores. This boosts
the energy efficiency for text analytics queries by a factor of 85.

68

CHAPTER 5

Soft-core processor array

This chapter discusses the design and use of a soft-core processor array, called Turtle, to
replace the custom compiled annotation operator graph (AOG) hardware presented in
chapter 4. The motivation of using a processor array is, to be able to compile and execute
different text analytics queries, without requiring re-synthesis and reconfiguration of the
FPGA. This allows faster compilation times, enabling the use of dynamic queries and
decouples the users of the system from FPGA vendor tools. Furthermore a context
switch, meaning the change of a query on the hardware, can be performed faster on a
soft-core instead of partially reconfiguring the FPGA.

5.1 Design objectives

The fact that the utilization of the individual operator modules is low, as discussed in
section 4.4.4, indicates that the area resources can be shared in a time-sliced fashion
among multiple operators or streams at the same performance.

There are multiple ways to implement time sharing. One option is to keep generic
instances of the previously presented hardware operator modules and use them as func-
tional units. A small control unit can orchestrate the memory transfers to and from the
units, thereby implementing a given AOG. Depending on the memory and bus system
this could strictly linearize the execution of the operators and perform very similar to
software. In order to allow such functional units to operate in parallel, a high memory
bandwidth would be required which is capable of accessing multiple regions in parallel.

Another option is to implement the operators as a software code on a programmable
soft-core processor and create an array of cores to implement complete operator graphs.
This allows every core to run any operator at any time, decoupling a specific operator
from a specific functional unit in the system. The memory performance requirements

69

5 Soft-core processor array

can then be relaxed by communicating results directly between individual cores. The
load on the processor cores can be balanced by combining only an appropriate number of
operators on a single core. To keep the area requirements for a single core low, complex
operations should be externalized and shared among multiple cores. Such operations
include the token ID to character pointer lookup and pattern matching within a specific
region of the text document.

While the arithmetic and logic operations on the data itself should be kept at a word
level, data movement operations such as loading from memory or core-to-core commu-
nication can be performed at the datatype level of a span, which is a quad-word. This
should allow the data to be communicated efficiently while giving the core sufficient flex-
ibility to implement any logic required by the operators. The communication between
the cores should be based on streams as the previous chapter has shown the positive
properties of streams in the text analytics context.

To summarize the requirements for the soft-core processor and array:

• Simple instruction set architecture capable of efficiently implementing relational
algebra operators for text analytics

• Access to shared resources such as token definition data or text-based operations

• Efficient communication network with low overhead data identification

5.2 Microarchitecture

The soft-core microarchitecture as described here is tailored towards the Altera Stratix
V [58] family of FPGAs. The main constraint arising from this target FPGA architecture
are the distinct available sizes of the embedded memory blocks referred to as M20Ks.
For Stratix V these blocks can be configured as follows (depth x width): 512 x 40b, 1024
x 20b, 2048 x 10b down to 16k x 1b. Adjusting the widths of instructions and data is
crucial to achieve a high utilization of a single memory block, without leaving memory
regions idle.

The top-level of the soft-core architecture is shown in figure 5.1. On the input side, the
interfaces to the core consist of a load bus for configuring the core and data inputs from
four directions, each being quad-word wide plus an additional index field for each bus
to identify the virtual stream. The width of the index field is tailored to the shared-
memory FIFO design discussed in section 5.2.2. The data output port is quad-word
wide as well, includes a single index field and can signal valid data to four different
consumers. Additionally each core has an external interface which will be discussed in
section 5.2.5 to communicate with shared resources.

On the top-level, the core consists of nine main components. The program memory
(PGM) holds and dispatches the instructions that are executed by the core. It can be
written via the load bus interface and is 1k deep and 20 bits wide. The PGM contains
the program counter (PC) which is automatically incrementing by one every clock cycle,

70

5.2 Microarchitecture

Figure 5.1: Turtle’s top-level architecture

unless a stall is issued from the control logic. The PC can be saved and restored to and
from a single stack register to implement CALL and RET instructions.

The data inputs are processed by a priority arbiter before being stored to the shared-
memory FIFO (SMF). The connections to the arbiter will be discussed in section 5.3.
The SMF is a key component of the architecture and allows to store multiple virtual
FIFOs in a single large memory resource. The virtual FIFOs are accessed via the stream
ID which is provided by the data inputs or an instruction accessing a FIFO. The SMF
will be discussed in more detail in section 5.2.2.

If a virtual input stream is written to an empty FIFO the SMF activates the doorbell
(DB) unit with the appropriate stream index. The doorbell consists of a short queue
for the incoming stream indices and a look-up memory which holds the appropriate
instruction address to start processing a particular stream. Once the control logic
(CTRL) is ready to accept a new stream it accepts the start address, updates the
program counter accordingly and starts processing the instruction flow. By accepting a
new stream, the control logic pops the stream index from the doorbell’s queue.

In order to perform operations with the arithmetic-logic unit (ALU) data needs to be
loaded to the register file (RF) 5.2.3. The ALU can perform five basic operations:
addition, subtraction, logical AND, OR and NOT in a single cycle using two words
from the RF as inputs or one word from the RF and one as an immediate value stored
in the instruction stream.

Once a result has been computed it can be pushed to the output registers forming a

71

5 Soft-core processor array

complete quad-word. The instruction will then also assign a stream index to the output
quad-word and a direction where it should be sent to. The output registers will signal
the availability of new valid data by asserting a valid signal high until the appropriate
receiver acknowledges the transfer with ready high signal. In the meantime the core can
continue to operate on a new data tuple until it wants to push new data to the output
registers. If a transfer is still ongoing and the core wants to initiate a new transfer the
core will stall until the first transfer is completed.

5.2.1 Instruction Set Architecture

For the design of the instruction set an instruction word length of 16 bit has been
chosen. This allows to store up to 1k instructions in a single M20K element and can
still be extended to up to 20 bits for future use. The opcode width has been set to
four bits allowing up to 16 instructions to be implemented. This may seem fairly small
but is sufficient to implement the relational operations discussed in chapter 4. Table 5.1
gives an overview of the operators and their required ALU operations including external
commands.

Operator ADD SUB AND OR NOT EXT

Joins no yes yes no no no

Difference no yes yes no no no

Consolidates no yes yes no no no

Unions no yes yes no no no

Apply Function yes yes yes yes yes yes

Select yes yes yes yes yes yes

Table 5.1: Required ALU operations by relational operator

Subtraction is often used as it implements the compare functionality. Most operators
rely on conditional checks on the result of ALU operations whether a zero or an overflow
has been signaled. Besides the ALU and jump operations, basic memory operations
are required to load data from the SMF and push data to the output interface. The
instructions are grouped into five types depending on the type of operation they carry
out. The types are as follows:

• A - ALU operations

• J - Jump operations with or without condition

• M - Memory operations

• E - External operation

• D - Data word

ALU operations (format A) consist of the four bit wide opcode followed by a single
type bit. The remaining fields are a three bit wide target register and two 4-bit source

72

5.2 Microarchitecture

registers. The type bit indicates whether the second operand is an immediate value
stored in the instruction stream. If the type bit is set high then the two following
16-bit instructions form a 32-bit immediate value. The control logic will assemble the
quad-word and pass it to the ALU accordingly.

Figure 5.2: Instruction format A

There are five ALU operations that can be carried out ADD, SUB, AND, OR and NOT.
The first four can be used with immediate values with the type bit set to 1. For the
assembler these instructions are named ADDI, SUBI, ANDI and ORI.

Jump operations (format J) are based on the same opcode (1111) and are differentiated
by a two bit condition type field. The remaining 10 bits represent an absolute address
as the target address. The condition type field allows to implement four types of jumps.
If the field is set to 00 the jump is an unconditional one, JMP. To test whether the zero
flag has been raised or not, the branch instructions BZS (branch if zero set, 01) and
BZC (branch if zero clear, 10) can be used. The carry flag can be tested by using BCS
(branch carry set), which has type field value 11.

Figure 5.3: Instruction format J

Format F is also used by the CALL instruction which behaves equal to an unconditional
jump but captures the current value of the program counter (PC) to perform a sub-
routine. Once this routine ends the RET instruction will jump back to the stored PC
value and continue. This allows to reuse program blocks for different operators and can
reduce the total number of required instructions.

Memory operations (format M) target the shared-memory FIFO (see section 5.2.2) and
the output interface. Although similar to classic load-store instructions these operations
adhere to the stream-based concept. Following the four bit opcode a two bit wide register
is indicated used either as a target or source register depending on the operation. Then a
flag bit follows which indicates whether or not a load operation on an empty stream will
result in a WAIT condition. The following field determines the sub-type of operation
to be carried out and the remaining 7 bits represent the virtual stream index on which
to operate.

Figure 5.4: Instruction format M

73

5 Soft-core processor array

External operations (formats E1 and E2) consist of two consecutive instruction words.
The first instruction holds the opcode for an external command and two source registers.
The second instruction carries the second pair of source registers as well as the three
bit wide target register, the result will be written to. But the opcode field of the second
instruction is used for the external processor to indicate the type of operation. This
way the external functional unit gets four 32 bit values and an instruction opcode to
compute a result which is written back to the target register.

Figure 5.5: Instruction formats E1 and E2

5.2.2 Shared-memory FIFO

The shared-memory FIFO (SMF) is a key component in the Turtle architecture. It
enables the efficient linear access to multiple virtual streams that can be stored in a
single memory element. The architecture uses the concept of a singly-linked list where
each data element stores a pointer to the next data element. A head and a tail pointer
indicate the first and the last element of a list. By using multiple head and tail pointers
multiple queues can be implemented. These pointers are indexed by the stream index
which is required when writing to or reading from the SMF. An additional current
pointer allows reads from the shared-memory FIFO without losing the read data. For
some of the relational operations that is a key feature to avoid additional writes to a
temporary queue, e.g. AdjacentJoin. Figure 5.6 shows the conceptual architecture and
instructions for the SMF.

To keep track of free memory slots where data can be written to, a list of free pointers is
kept in a bucket. After a reset the free bucket will output a linearly increasing address
on request. Once all possible addresses have been issued the bucket operates as a FIFO.
When a pointer becomes available again because of a POP or LDPOP operation, the
pointer is written to the FIFO and can be issued to the next requester. If the FIFO is
empty, then there are no slots available a request has to wait.

The main instructions that operate on the SMF are shown at the bottom of figure 5.6.
The LD commands load the current element (light grey) into a specified register. The
standard LD command advances the current pointer to the next element in the vir-
tual queue while the LDS command leaves the current pointer untouched. The POP
command loads the current element and drops the head of queue. At the same time
the current pointer drops to the new head of queue. Similarly the LDPOP command
drops the head of queue but leaves the current pointer untouched. To move the current
pointer back to the head of queue the RST instruction can be used.

A high performance implementation of the SMF uses register files to implement the

74

5.2 Microarchitecture

Figure 5.6: Architecture and instructions for the shared-memory FIFO

pointer tables (tail, head and current) while using embedded memory blocks for the
data, next and free pointers. This implementation allows single cycles read and write
operations that do not interfere with each other. But register files are expensive in terms
of resource utilization on an FPGA. First because all storage bits are implemented as
separate registers and second because multi-write and read ports require a lot of logic
resources. An initial analysis showed that over 40 % of logic resources of a Turtle core
were used by the shared-memory FIFO.

To reduce the required amount of logic resources the pointers (tail, head and current)
as well as some status flags where consolidated onto a single M20K embedded RAM.
By utilizing the byte-enable feature for the write operation the logic resource utilization
was reduced by over 50 % at the resource penalty of one additional M20K. On the
performance side the read operation now requires two cycles to complete while the
write operation remains at a single cycle. This is acceptable as load instructions are
rarely back to back or can be avoided.

5.2.3 Asymmetric register file

The Turtle core can perform ALU operations on data in the register file (RF). Although
operations are performed on single 32-bit wide data words the basic data type used for
the text analytics application is a span consisting of four data words. The core design
has been chosen such that data movement operations (load/push) are always performed
on spans while individual ALU operations are performed on single data words. This
reduces the amount of required cycles to serialize and de-serialize a span.

As a result the register file has been designed asymmetric. It consists of 16 32-bit wide
registers grouped into four groups of four registers each. These groups are also referred

75

5 Soft-core processor array

to as span registers (SR). The first two span registers (SR0 and SR1) can only be written
by load instructions with data from the SMF. Always a full span is loaded. The second
and two span registers (SR2, SR3) can be written by the ALU and external commands.
In this case every data word is written individually allowing the core to create and
assemble new spans.

Figure 5.7: Register file with asymmetric read and write ports

On the read side there are two word-wide port to fetch two data elements for ALU
processing. These ports can access every register in the register file. A third read port
is used to implement the PUSH instruction. It can read all four span registers and reads
an entire span at once.

5.2.4 Doorbell

The doorbell mechanism allows the core to fall into a wait mode when there is no data
to be processed. Instead of polling for data from the SMF the core will stall and wait
until it gets activated by a new incoming piece of data. Because every data is associated
with a stream index, the index can be used to lookup the appropriate start address of
the operator to be executed for it. This removes the burden of identifying the stream
in software.

The doorbell logic is partially included in the shared-memory FIFO (SMF). When the
SMF receives a write operation for an empty virtual stream it will raise a flag signal
with the according stream index and present it to the doorbell module (DB). The stream
index is stored into a FIFO deep enough to hold all virtual stream indices. Figure 5.8
shows the connections of the doorbell module.

On the output side of the FIFO the stream index is used as an address to a translation
memory. This memory is configured with jump addresses that are generated during the
assembly process. If the FIFO is not empty it signals it to the control logic of the core
and presents the appropriate jump address for the first stream index. Once the core is
in a wait state it will set the program counter to this new start address and continue
operating. The jump is acknowledged and the stream index is removed from the FIFO.

76

5.2 Microarchitecture

Figure 5.8: Doorbell architecture

5.2.5 External commands

For more complex operations such as regular expression matching or access to token
definitions Turtle provides an interface to execute external commands. The interface
consists of a control register and four data registers that present their data on the inter-
face ports. When an external instruction is issued the control logic first sets the registers
and then raises a valid flag to indicate the external resource to fetch the command. The
valid pin remains high until the external resource acknowledges the completion of the
operation and presents the result as a single dataword on the interface input. The result
is written to a register in the RF which has been indicated by the external instruction.

Figure 5.9: External commands architecture

The Turtle core stalls during the processing of an external command. Although this is
inefficient in terms of utilization it simplifies the design as otherwise the context of the
RF and the PC needs to be captured and restored. Assuming token lookups can be
performed in a few cycles the main concern are regular expression checks as they have
a longer processing time. In this case the partitioning of the operators across the core
array (see section 5.3) is important.

77

5 Soft-core processor array

5.3 Soft-core array

The Turtle core was designed to operate in a mesh of cores. Although a single core
can execute multiple relational operators, it does not scale to the number and required
performance for larger text analytics queries. Large queries often have a higher number
of extraction operators, detecting patterns within the document. As a result, the number
of input tuples to the mesh of cores increases and the mesh needs to be able to accept
these tuples in order to avoid the pattern detection units (PDUs) from stalling. This is
crucial, as the PDUs determine the document throughput performance.

On the other hand, large queries perform more relational operations to increase the
quality of the extraction results. Although this means many more operations have to
be carried out, many of these operations are restrictive, meaning there are less and
less tuples propagating towards the end of an operator graph. As annotation operator
graphs (AOGs) do not contain loops there is a clear propagation direction of tuples in
an AOG.

These aspects can be taken into account when designing the overall system. As presented
in section 5.2, the Turtle core has the ability to send and receive data streams to and from
four directions. This allows to design a mesh of cores, where each core can communicate
with its adjacent neighbors. But because of the directed nature of an AOG, the north
connection has been rerouted to the sending core itself. As there are no loops, there is
no need to go back. But by sending data to itself, a core can create its own temporary
data or streams for another operator it runs.

Figure 5.10: Turtle array architecture including shared units

Figure 5.10 depicts the overall system with the mesh of cores at the center. The west-
most and east-most cores are interconnected as well, to have a consistent communication
scheme for every core. The northern input to the top row of cores is fed by the pat-
tern detection units, which operate on the input document and the associated token

78

5.3 Soft-core array

definitions. The input data gets stored into rolling-buffer type caches discussed in sec-
tions 5.3.2 and 5.3.1. While the token cache can be accessed directly by a core the
document cache is only used by the shared regular expression core. The last row of
cores can create output data by sending data southwards with an associated stream
index.

The inputs to every core arrive at a priority arbiter (see section 5.2. The highest priority
is given to the input from the north as it is the primary source of data. Furthermore if a
tuple is sent southwards its processing has been finished in a particular row. This is also
true for the PDUs, which provide the initial tuples. These inputs should not stall and
thus have the highest priority. Second priority is given to the self-loop because if a core
sends data to itself it either requires it immediately or needs it to continue consuming
other input streams. The last priorities are given to the horizontal connections in no
particular order. The priority scheme is acceptable as it is unlikely for a core to produce
a valid output at every clock cycle.

5.3.1 Shared token cache

The shared token cache (T-Cache) is used to buffer the token input stream for an
associated document character stream. It provides a mechanism to access the token
definitions required by the token-based Context functions used by some operators such
as e.g. Select. The operator may want to build a new span by extending the original
span three tokens to the left. While the calculation of the token index is a simple
subtraction the character-based offset needs to be determined by a lookup.

As the pattern detection units create spans in order from the beginning of the document
towards the end also the context lookups are likely to occur in such an order. Although
some relational operations may have altered the spans this general concept still holds
as seen in chapter 4. Also the range of the token-based context extension is in most
cases less than 20 tokens. This allows the use of a rolling buffer where the character-
based token definition is written in to FIFO-like memory. Once the FIFO is full the
first element is dropped and the next definition is written in its place. To access the
memory the LSBs of a given token index are used while the entire index is checked
against two element counters to ensure the data is available in the cache. If the data is
not available because it has not yet been received or it has been dropped the cache will
fetch the required data from main memory. Figure 5.11 shows the overall architecture
of the T-Cache.

The T-Cache can be accessed by a core using the two instructions TOKS and TOKE.
Each of the instructions requires a destination register and a single source register
holding the token index. While TOKS gets the start offset of a token TOKE gets
the end offset and stores it into the destination register. Both operations are blocking
as all external commands (see section 5.2.5 until the result is available.

The T-Cache has the ability to store multiple token definition streams. This allows to
program multiple operator graphs on the core array, which may operate on different
documents.

79

5 Soft-core processor array

Figure 5.11: Shared token cache architecture

5.3.2 Shared regular expression unit

The condition check within a Select operator may require to check a regular expression
against a span within the input document. This requires access to the actual document
data and perform a character-based check, which cannot be executed very efficiently
on the Turtle core. For this purpose a shared regular expression core (SREX) is added
to the core array which can be accessed by multiple Turtle cores. The SREX has a
document cache (D-Cache) attached to it that works similar to the shared token cache
(5.3.1). But instead of reading a single character the D-Cache produces a character
stream based on a given span either reading the document data from a buffer or main
memory.

The SREX itself is implemented as a programmable state machine using the BaRT
scheme (see chapter 3) called BFSM. It allows to program multiple regular expression
patterns as a state machine which are checked at the same time when running a test.
The SREX receives a span and a pattern id as inputs and checks whether the according
pattern is contained within that section of the document. It can either check whether the
pattern is contained within the span or if it matches on the boundaries of the span. The
cores can submit requests to the SREX by issuing the instructions CREX or MREX.
Both instructions have four arguments: A destination register, a register containing the
pattern id and two registers defining the character-based start and end offsets. While
CREX checks if the pattern is contained anywhere within the span MREX requires
the pattern to match on the boundaries of the span. As a result either a 0 or a 1 is
written back to the destination register. While a zero means no match, a one indicates
a positive result.

80

5.4 Programming

5.4 Programming

In order to program the presented architecture two simple assemblers have been de-
veloped. The main concept is to develop individual operators as Turtle assembly code
(TASM) that may contain configurable parameters with default values. These operator
templates are stored in an operator database for use by the array assembler. To instan-
tiate an operator on a core in the processor array a second type of descriptive language
(TSOA) is used that can overwrite the default values and associates the operator with
one or multiple stream indices. This is required to create the contents of the doorbell
translation RAM. At the end of the assembly process two binaries is produced for every
core in the core array, one for the doorbell and one for the program code. Figure 5.12
illustrates the two main components as well as the operator library and the flow.

Figure 5.12: Assembler framework and flow

To create an operator a developer must write assembly code using the instruction set
of the Turtle micro architecture. The code may contain labels that mark specific entry
points of instruction blocks. These labels can then be used in any branch instructions
such as e.g. JMP or BZC. Labels are defined by a descriptive name followed by a
colon. To use the label in an instruction the colon prefixes the name of the label. The
assembler resolves these labels and replaces them with the actual values. A reserved
label is the START label which will be used for creating the entry point in the doorbell
to this operator.

Numerical values can be passed to the instructions as either decimal or hexadecimal
values where the latter are prefixed with 0x. The PUSH instruction may use the
letters M, E, W and S to indicate the direction of the output where M is the self-loop.
To use configurable values or directions variables can be used that are indicated with a
dollar sign ($) followed by a number starting with 1. The variables can then be set by
using the arguments passed to an operator instance in the array-level assembly code.
The default value to a variable is assigned by the right-hand side of the equal sign
separating variable name and default value. Below is an example of the assembly code
for the consolidate on exact match operation.

81

5 Soft-core processor array

START:
LDW SR0 $1=0
SUBI R8 R0 0xFFFFFFFF
BZS :END
LD SR1 $1=0
SUB R8 R0 R4
SUB R9 R1 R5
OR R8 R8 R9
BZS :OUT

END:
PUSH SR0 $2=0 $3=S

OUT:
POP $1=0
JMP :START

Listing 5.1: Configurable assembly code for a consolidate on exact match operation

To program the core array an operator-level configuration can be used. It allows to
instantiate multiple different operators on every core of the core array. First a core has
to be defined by specifying the X:Y coordinates starting with 0:0 as the top-left core.
Then a stream label needs to be defined which tells the assembler on which streams this
operators will work on. This simplifies the process of creating the doorbell translation
RAM contents. The label can be a multi-label if the same operator works on multiple
stream ids which will create the same entry address for the defined streams. After the
label the operator name is given followed by arguments setting the parameters in the
code template.

0:0
S0,S1: AJCS 0 1 5 0 S
S2,S3: AJCS 2 3 1 1 S

1:0
S0,S1: AJCS 0 1 5 0 S
S2,S3: AJCS 2 3 5 1 S

0:1
S0,S1: DIFF 0 1 0 S
S2,S3: UNION2 2 3 4 M
S4: CONSCW 4 1 S

1:1
S0: COPY 0 2 W
S1: COPY 1 3 W

Listing 5.2: Core array assembly example

82

5.5 Evaluation

5.5 Evaluation

The evaluation of the soft-core array focuses on two aspects: scalability and performance.
The scalability of the approach is determined by the resource consumption of the core
array and its configuration. Although a single core can operate on multiple virtual
streams now this adds several additional resources to it. Also the performance behavior
is different from the previous 4 approach as the operators are implemented as small
software sub-routines and take several clock cycles to finish producing a single result
tuple.

5.5.1 Scalability

The resource consumption of the soft-core array is determined by the required area of a
single core. As the core contains all the necessary arbitration and routing logic for four
inputs the area requirements for an array of cores can be obtained by multiplying the
area of a single core with the number of cores in the system. Synthesis results confirm
this behavior for an array of up to 5x5 cores.

To evaluate the area overhead of a single core over the hardware library implementations
the resources need to be normalized. While a single core can operate on multiple streams
the library modules work on one, two or in case of a Union on multiple streams. A core
with 16 virtual streams has been synthesized and multiple instances of an operator
module have been synthesized to operate on 16 streams as well for a target frequency
of 200 MHz. For example 8 AdjacentJoin modules or 16 Consolidate operators.

Figure 5.13: Normalized resource utilization of the core and different operator modules
when servicing 16 input streams

Figure 5.13 shows the results of this comparison. The figure indicates that a single
soft-core is more efficient in terms of area requirements than an equivalent number of
operator instances. A significant difference can be seen for the operators with multiple
input streams which require buffering and complex read logic to achieve the desired

83

5 Soft-core processor array

behavior. The single stream modules have similar area requirements without the need
for memory blocks.

The soft-core can be parameterized by the number of streams it supports. This is a trade-
off between how many operators can be run on a single core and their performance. The
more operators have to be executed on a core the slower is their individual execution
time. The array may be built in an asymmetric fashion with a mix of smaller and larger
cores. This can potentially optimize the utilization across the array.

To evaluate the impact of the number of virtual streams on the resource consumption
again a normalized approach has been taken. Assuming 128 streams have to be processed
this can be done by one single core with 128 virtual streams or four cores with 32 virtual
streams each. The resource requirements by these setups can then be compared as shown
in Figure 5.14.

Figure 5.14: Resource utilization of a single core supporting different no. of streams as
well as the normalized area consumption when supporting 128 streams

It shows that the resource requirements can be significantly reduced when using multiple
virtual streams. As only the shared-memory FIFO is impacted by the number of virtual
streams, the remaining logic does not need to be duplicated. The impact on the output
register stage is an additional single bit to widen the stream index. If more than 128
virtual streams should be supported by the architecture the instruction width needs to
be increased.

Although this evaluation neglects the performance degradation, it indicates the scal-
ability of the approach by allowing more operators to be run on the same amount of
area.

84

5.5 Evaluation

Resource In streams c/t (HW) c/t (Core)

Core (16 vStreams) 16 n/a n/a

Adjacent Join 2 1 12

Difference 2 1 13

Union of 4 4 1 4

Cons. Exact 1 1 12

Cons. Contained 1 1 12

Combine Spans 1 1 5

Split 1 1 10

Project 1 0 2

Table 5.2: Comparison of a single core to the custom hardware modules in terms of
area and cycles/output tuple

5.5.2 Performance

To evaluate the performance impact of the programmable soft-core a theoretical evalu-
ation has been performed to determine the number of required cores for a given queries.
The hardware modules were designed to produce a new output tuple on every cycle if
data is available. Although some operators are pipelined and have a short latency before
the first tuple is produced the throughput is the relevant measure. The core performs
its operations sequentially and thus requires a few cycles to produce every output tuple.
The comparison is summarized in the last two columns of table 5.2. The cycles per
tuple (c/t) count is one for all hardware modules while running as a single operator on
a core the number of cycles per output tuple lies between 4 and 12. Some operators
can be fused when running on a single core and do not require the total sum of cycles
to produce a new tuple, i.e. a Combine Spans operation that follows an Adjacent Join
adds only one additional cycle and reduces the amount of data to be communicated to
the next core. The Project operation was implemented by custom wiring thus requiring
0 cycles. In terms of frequency hardware operators as well as the soft-core achieve the
target of 200 MHz.

The evaluation queries from chapter 4.4 have been analyzed for their activity by using the
software runtime and profiler. The queries were run against individual reference sets of
documents to produce representative results. The profiler returns the average number of
tuples each individual operator produces per document. As the pattern detection units
used in the system consume the document one character per cycle, we can obtain an
activity value per operator αop by using equation 5.1. This value represents a relative
rate at which a valid tuple is communicated via an edge of the query graph or a stream

85

5 Soft-core processor array

in hardware.

αop =
tuplesop

sizedocument
(5.1)

To calculate the maximum number of operators a single core can execute to sustain
the average throughput we combine the activity rate of an operator with its processing
time on a core from table 5.2. Equation 5.2 states that the sum of products of operator
processing time and activity must not exceed 1, otherwise a core cannot keep up with
the required activity rate at its output. Also the number of operators to be run on a
single core may be limited by the available number of virtual streams.

opscore ≤
1∑

opscore

(c/t)coreop ∗ αop

(5.2)

Using the profiling results this allows to estimate the required number of cores to execute
a specific query on the array of cores. Fig. 5.15 shows the number of operator nodes
on every level of a query graph together with the average operator activity rate αop.
While the activity rate drops rapidly on the first three levels, the number of operators
decreases at a slower rate towards the center of the graph. The increase of αop mid-way
through the graph is due to Union operations that combine the outputs of multiple
operators into a single stream. If the results of a Union operation do not require to be
sorted this operation can be implemented on the array for free by assigning different
results the same stream id.

Fig. 5.15 also shows the required number of cores to implement the given query using
either 16 or 32 virtual streams per core. The number of cores is primarily driven by
the number of operators, while only at the beginning the combination of activity and
operators lead to a stronger increase. A higher number of virtual streams does not lead
to a reduced number of overall cores while only using 8 streams requires a total of 38
cores for this query.

These numbers are considered estimations only as they do not take into account the
possibility to fuse multiple operators when running on a single core which may lead to
a lower number of required cores. But also it does not consider routing effects, as such
when a core is only used as a bypass. In this case a core can only run a reduced number
of operators, thus more core may be required. To evaluate these effects a compiler and
mapper needs to be developed.

5.6 Related work

Coarse grained reconfigurable arrays (CGRAs) as well as manycore architectures have
been studied for over 15 years. All architectures try to exploit the spatial-compute

86

5.6 Related work

(a) LOG3 (b) BA2

Figure 5.15: Profile of two queries showing the number of operators, the avg. operator
activity rate and the required number of cores when using 16 or 32 virtual
streams per core.

paradigm but vary in the programmability of the individual functional units. Intro-
duced in 1980 by Kung et al. systolic arrays [67] where a first type of coarse grained
architecture with fixed functional units and fixed routing. Although these special pur-
pose architectures achieve high speeds they lack in programmability to allow other
applications to utilize them.

The MorphoSys chip presented by Singh et al. [91] comprises of a RISC core and an
attached array of reconfigurable cells (RCs). The RCs are the basic level of configuration
and hold an ALU+multiplier unit with a context register which selects the input data
and defines the operation to be executed in each cycle. The context register can be
updated every cycle from the contents of a larger context memory. Video compression
and encryption algorithms perform very efficiently on this architecture.

Goldstein et al. [54] presented PipeRench for accelerating multimedia streaming ap-
plications. The reconfigurable architecture consists of stripes which contain multiple
processing elements (PEs) composed of an ALU and a pass registerfile. Multiple stripes
can then be interconnected to create parallel pipelines with high computational density.

Mei et al. also target multimedia applications with their ADRES architecture [72].
It comprises of a very long instruction word (VLIW) which performs the load/store
operations from and to the memory, and a reconfigurable array of reconfigurable cells
which are tailored to perform data-flow kernels. Each of the cells contains a small local
register file to perform local data operations.

Giefers et al. discuss a manycore architecture based on a mesh of PicoBlaze cores [52],
where each core is managing the connected switch element. The architecture is inte-
grated as a peripheral to a MicroBlaze core which controls the dataflow to the reconfig-
urable mesh. As a case study a mesh sorting algorithm is deployed on the architecture
with significant improvements over single core execution.

Coole et al. [38] introduce intermediate fabrics as a translation layer between a user

87

5 Soft-core processor array

netlist and the physical device. They are able to show a significant improvement in
compilation time by using their technique for a range compute tasks. Through special-
ization of the intermediate fabrics the overhead of using an overlay architecture can be
reduced by up to 45 %.

Capalija et al. present an coarse-grained overlay architecture for FPGAs [31]. Its
functional units (FUs) are pre-synthesized single operations which can take multiple
cycles to execute. These are interconnected by an elastic network compensating for
execution and communication latency. This implementation achieves high frequencies
of over 300 MHz and is tailored to the execution of data-flow graphs of numerical
algorithms.

EGRA by Ansaloni et al. [16] is named expression grained. Similar to FPGAs which
continue to include more complex hard IP macro blocks, EGRA uses a reconfigurable
ALU cluster as a processing element. This allows it to perform more complex multi-
staged computations in a single PE before passing the results on to the next PE.

Recent work of Hannig et al. [59] describes an invasive tightly-coupled processor array.
The processing elements are similar to EGRA and use a very long instruction word
(VLIW) but instead of executing in a staged fashion the PEs execute multiple functional
units in parallel in a single cycle.

5.7 Summary

Over the past decade, FPGA research has presented many promising results for ap-
plication speed-up. But even with the end of Dennard’s scaling the integration of re-
configurable architectures into compute nodes still receives opposition. On one side
application programmers do not want to wait multiple hours for their software to be
synthesized and be limited to a particular FPGA architecture. Furthermore expensive
EDA software needs to be licensed by the software developers. On the other hand data-
center administrators do not want FPGAs to be fully reconfigured due to the changing
effects on the hardware setup.

To avoid both of these refutations, soft-layered architectures have been introduced, cre-
ating a portable abstraction layer. These architectures are often based on coarse grained
reconfigurable arrays (CGRAs) or programmable manycore architectures. Compilation
and reprogramming of such architectures can be very fast, while the interface logic
remains static and does not change the hardware setup.

In this chapter a novel soft-core processor array has been introduced to efficiently execute
relational algebra operations of text analytics queries. The architecture retains the
benefits of the data streaming approach used in chapter 4 and replaces the hardware
modules with a programmable soft-core. The core supports up to 128 virtual streams
and provides sufficient performance, to achieve full document processing speeds by the
pattern detection units. In order to map large queries, an array of cores has been
introduced with a directed mesh interconnect and shared resources for pattern matching
and token lookup.

88

5.7 Summary

The additional programmability of the core does not prevent the scalability of the ap-
proach. By using virtual streams, multiple operators can be consolidated onto a single
core, resulting in a lower per operator area cost. On average a single core capable of 16
virtual streams, requires 23 % less logic resources than an equivalent number of custom
hardware operator modules. This comes with a performance penalty, which should not
exceed the average cycles per tuple per operator execution time. A model has been
introduced, to estimate the required number of cores for a given text analytics query.
All queries do not require more than 25 cores, to sustain the full document processing
rates at the pattern detection units. Although this evaluation neglects the route-ability
aspect when mapping a query to the processor array, it shows that a reasonable sized
array can perform a wide number of text analytics queries.

89

CHAPTER 6

System integration

While the previous chapters focused on the functional core units to build the acceler-
ator, this chapter discusses the integration of it into an enterprise server system. The
integration is crucial to the system’s overall performance as it links the relevant user
software application to the accelerator core. It requires a balanced design to achieve a
high utilization of the accelerator core without blocking the software side from contin-
uing execution. Because the only valuable acceleration is the measurable acceleration
from end to end.

Accelerators may be attached to a host system in many ways [106, 113]. The standard
way of attaching an accelerator is via the system peripheral bus i.e. PCI Express. With
the increasing transfer rates of the system bus this has become a viable option and is the
standard communication link for most commercial GPGPU-, FPGA- and DSP-based
accelerators. Although PCI-Express has a high bandwidth it still imposes a significant
latency penalty. The software application needs to copy the data to the accelerator’s
on-card memory before it can be processed and eventually read back the results. Fur-
thermore the driver software must copy the data to a location in main memory the
peripheral device can access. To avoid these penalties other proposed architectures
leverage in-memory computing [57, 113] where the processing hardware resides within
the system’s main memory. Although this paradigm allows high bandwidth at low la-
tency, a standard programming model has yet to be developed. Another alternative are
custom instructions within the processor core [19, 55]. This approach usually does not
accelerate entire application tasks but rather smaller blocks of execution that reappear
often in the standard instruction stream. Data transfers are provided by the same logic
as for the processor core and allows access to the entire system’s memory. To use the
custom instructions support for them needs to be built into the compiler or dynamic
recompilation takes place during execution time [28].

Another aspect of system integration is the ease of use for a software programmer. A
software application is supposed to run on many systems either with or without special

91

6 System integration

purpose accelerators without any changes to the source code. If the hardware accelerator
is not an essential part of the application the use of it must be as transparent as possible.
Often this is achieved by replacing standard libraries with an accelerated versions. By
dynamically linking these libraries they can be activated at runtime of the application
without requiring a re-compilation.

This requires the hardware and driver software to provide binary compatibility on the
data structures that are exchanged. If the driver software needs to perform too many
memory transfers and translations the performance penalty imposed can become greater
than the acceleration gained. Thus the thinner the driver layer is the fewer operations
need to be performed by the host processor to interact with the accelerator. For an
application that often switches between software and hardware execution a low latency
interface is crucial.

6.1 Design objectives

The SystemT text analytics runtime is implemented as a Java package. Although it can
be used stand-alone it is mainly used as a component within larger software applications
such as IBM BigInsights or IBM InfoSphere Streams. These applications either provide
users the ability to write their own AQL queries or use pre-defined queries developed
by IBM internal domain experts. In either case these queries are run against large sets
or fast moving set of documents such as e.g. large databases or social media streams.

While the document set is large the individual documents are relatively small. Social
media documents are usually around 512 bytes in size, eMails are around a few kilobytes
and larger patent applications or other publications may be up to a few megabytes. Fol-
lowing a document-per-thread execution model a thread within the SystemT runtime
will finish processing a document before continuing with the next one. This leads to a
latency requirement for the hardware accelerator as the host thread idles after submit-
ting the document to the accelerator. To compensate for the idling threads additional
ones can be launched to prepare and submit documents while the accelerator executes.
This requires the accelerator to accept a larger number of work submissions without
interrupting the current execution. To cope with the small document sizes on the hard-
ware side data must be pre-fetched for the individual jobs. This closes the gap created
by the transfer setup time and increases the overall document throughput rate while
reducing the latency for individual jobs.

The following list summarizes the requirements for the system integration:

• Design and implementation of a communication logic that is capable of continu-
ously supplying data to the text analytics core logic

• The communication logic must support multiple data streams that can operate
independent from each other

• The communication logic must support a large number of software threads that
may submit jobs at any time of operation

92

6.2 Hardware integration

• Design and implementation of a software application programming interface (API)

• The API must support communication with multiple threads

• The API must be available for Java

The next section will discuss the hardware integration before the software API is pre-
sented in section 6.3. This chapter concludes with the evaluation of the interface and is
summarized in 6.5.

6.2 Hardware integration

The hardware integration deals with the integration of the accelerator’s core logic into
a host system. It provides a communication logic to efficiently supply the core with
all necessary data for continuous operation. This logic may provide access to different
types of interfaces and/or memories such as e.g. PCI Express or local DDR3 memory.
Furthermore the wrapper logic provides the host and ultimately the software with means
to access and configure it.

For this work a POWER8-based system has been chosen as an enterprise-scale compute
system. The POWER8 CPU is designed for large scale analytics workloads and provides
a new interface for accelerators. The following sections 6.2.1 and 6.2.2 will introduce the
host system before section 6.2.3 will present the communication logic which operates
the text analytics core unit.

6.2.1 POWER8 host system

The host system used for this integration work is an IBM Power System S824 [87]. It is
a 4U rack server based on two POWER8 dual-chip modules (DCM). Each of the DCMs
has 6 active cores where each core is capable of executing 8 threads using simultaneous
multi-threading (SMT) technology. This leads to a total of 96 threads that can be
executed in parallel on the system and are visible to the operating system. The sockets
in the system are connected to DDR3 memories via multiple memory hub chips [50].
These hub chips are located on each memory module and contain a level-4 cache with
16 MB of eDRAM. The maximum amount of memory is 2 TB while achieving a peak
bandwidth of 192 GB/s for each socket.

In contrast to POWER7 the POWER8 processor has a direct PCI Express interface
available. This reduces the system design complexity and the latency for PCIe commu-
nication. The system has twelve PCIe slots of which four can be used by the Coherent
Accelerator Processor Interface (CAPI) 6.2.2.

Another key difference the previous generations of POWER processor is the endianness.
POWER8 is designed to support both little-endian (LE) and big-endian modes without
any particular performance difference. This enables the use of existing accelerator ar-
chitectures such as GPUs and simplifies the process of porting software to the POWER

93

6 System integration

platform [92]. As an operating system the little endian version of Ubuntu 15.04 is used.

6.2.2 Coherent Accelerator Processor Interface

The Coherent Accelerator Processor Interface (CAPI) is a key feature of the POWER8
processor. It leverages the use of system-level accelerators by providing a high-bandwidth
and low-latency interface built on top of the physical specification of PCIe. CAPI allows
accelerators to operate in the same virtual address space as the processor cores allowing
them to act as part of program execution [105]. This eliminates the need for device
drivers and simplifies the software integration of the accelerator.

The enabling component for CAPI is the Coherent Accelerator Processor Proxy (CAPP)
unit of the POWER8 processor chip. It is connected to the PCIe interface and acts as
a representative core for the accelerator on the internal processor bus. It participates
in the coherency protocols and maintains a directory of all cachelines held by the accel-
erator [105].

The accelerator itself uses the POWER Service Layer (PSL) to communicate with the
processor’s CAPP unit. The PSL is an IBM supplied IP block that can be implemented
in different FPGA fabrics or in an ASIC. It contains a 256 kB cache for frequent data
accesses and enables the accelerator to operate in the virtual address space. Further-
more it provides all memory operations as the cores itself such as e.g. reads, writes,
reservations or locks. The actual accelerator is referred to as Accelerator Function Unit
(AFU) and communicates with the PSL. Figure 6.1 shows the various units required for
a CAPI system.

Figure 6.1: POWER8 with CAPP and attached CAPI accelerator

The simplest access method to the AFU is via a memory-mapped I/o (MMIO) interface
that can read or write 32-bit or 64-bit words. The AFU must contain a configuration
memory referred to as AFU descriptor which can be accessed via MMIO reads. This
descriptor contains information for the hypervisor and operating system how the ac-
celerator can be used and what resources it requires. For example it configures the
minimum and maximum number of interrupts but also which programming model it
supports. Two main categories of programming models are available, a dedicated model

94

6.2 Hardware integration

and a shared model.

For the dedicated model the accelerator belongs to a single process running on the host
side. The application can use the CAPI API libcxl to open, start and use an AFU. If an
application tries to open an AFU which is in use by another process the function call will
return with an error allowing the application to run in a non-accelerated mode. This
model is suited for appliances where the entire system is optimized to perform a specific
task such as i.e. a database server. Also application servers can employ this model as
a single server provides services over the network. But if there are multiple different
application types running on the system or the system is virtualized the dedicated model
limits the use of the accelerator.

For sharing the accelerator across multiple processes two shared programming models
are available. For both models the operating system and the hypervisor maintain a list
of work elements that where requested by different processes. The AFU needs to be
able to interrupt the execution of a specific work element, save the required context and
continue with another work element. In the time shared model the hypervisor controls
the time slicing. A request to stop execution is sent to the AFU which needs to react
within a specified amount of time and pick up the new work element. Another time
sliced model is the AFU directed mode. In this model the AFU controls the time slicing
and services the queue of work elements.

Figure 6.2 shows in detail the various components used for a CAPI-based design. On the
software (host) side the application code uses the libcxl API to control an AFU while
data communication occurs via shared virtual memory. The CAPP unit communicates
with the PSL on the FPGA over the PCIe interface and establishes coherency. The PSL
at last communicates with the AFU via a set of five interfaces. A control interface to
start, reset and stop the AFU from the host side. A MMIO interface to read and write
small pieces of data. The command interface is driven by the AFU and allows it to
issue commands such as reads, writes or locks on specified virtual 64-bit wide addresses.
The commands are reordered to achieve the best performance and every command is
acknowledged by the PSL via the response interface. Data transfers are performed via
the buffer interface which provides separate read and write buses.

6.2.3 Text Analytics AFU

The Text Analytics AFU is the wrapper logic around a compiled annotation operator
graph unit or a Turtle array. In both cases it is responsible to receive jobs from software
threads, perform the necessary read and write operations and signal the completion of
an individual job. The AFU was designed such that it can be parameterized to service
a given number of document streams. This parameter needs to be set at synthesis time
and is usually limited by the available resources depending on the core unit’s size.

Figure 6.3 shows all units of the text analytics AFU top level. The control block reacts
to commands on the PSL’s control interface. For a reset command it generates a three
cycle wide active high reset pulse that is fed to the entire AFU. It also controls the
global clock enable signal across the AFU. Only once a start command has been issued

95

6 System integration

Figure 6.2: CAPI software and hardware stack [53]

by the PSL the AFU becomes active and reacts to any other interface. The control unit
is also responsible for signaling the correct shutdown of the AFU. A shutdown can be
triggered from the software by writing a 1 to the MMIO register at offset 0x0.

Figure 6.3: AFU top-level

The MMIO unit acknowledges the read and write operations on the PSL’s MMIO in-
terface. The unit also holds the AFU descriptor which is read during system boot time.
The AFU is designed to operate as a dedicated accelerator for one host process only as
this was the only programming model available at the time of implementation. The first
64-bit register at offset 0x0 is used as a control register. By writing defined values to it
the software can control certain functions of the AFU such as e.g. shutdown. A read
from this register return the states of all statemachines within the AFU. Offsets 1-3 are
read-only registers and are used to read out the trace buffer for debugging purposes.
The trace buffer stores the last 256 issued commands and received responses. Offset 4
is used as a write-only register and is used to submit a job pointer which is a 64-bit
virtual address to a job struct (see 6.3). The job pointer gets immediately forwarded to

96

6.2 Hardware integration

the job unit for further processing.

The cmd unit is the central unit for memory operations and interrupts. The cmd unit
connect to the PSL’s command and response interfaces and is responsible for maintaining
the available credits the AFU has for submitting PSL commands. When an AFU start is
issued by the control unit the cmd unit captures the maximum available credits indicated
by the PSL. Every submitted command requires one credit which is returned when the
command gets acknowledged via the response interface. The commands are identified
by tags. The cmd unit keeps available tags in a bucket memory as the commands are
serviced by PSL in a best performance order and may be returned reordered. The unit
further acts as an arbiter for all client units connected to it and abstracts the PSL
commands to a simple read, write or interrupt request signaling. When the cmd unit
grants a request it indicates the used tag to the requesting client who is then responsible
for all operations associated with this tag. Figure 6.4 shows the overall architecture of
the cmd unit.

Figure 6.4: AFU command unit

As the memory operations are performed out-of-order the arriving data needs to be
re-ordered before it can be passed to the core units. For this purpose a GET unit has
been implemented that submits the memory read requests via the cmd unit and reacts
to incoming data on the buffer interface. The GET unit receives in-order read request
from the core logic, forwards them to the cmd unit and receives a tag for each request.
The tag is decoded into a fence mask to check whether a response tag belongs to a
particular GET unit instance. Furthermore an index is stored at the position of the
tag value to indicate which memory request a tag services. When data arrives via the
buffer interface a tag-to-index lookup is performed to determine the data’s destination
address in the data RAM. This can happen multiple times by the PSL so no further
action is taken other than writing the data to the data RAM. The memory transaction
is completed with a positive response on the response interface. The GET module
performs a tag-to-index lookup for the response tag and sets a bit to high at the index
position in the response mask. A read counter provides the read address for the data
RAM and checks whether it has been set in the response mask. If so valid data is

97

6 System integration

indicated to the receiving core unit which needs to be ready to accept new data. Once
data is transferred the index bit in the response mask is set back to zero.

A similar mechanism is implemented for the write operation by the PUT units. In
this case the write data arrives in-order but is collected by the PSL out-of-order. The
main reason to keep track of the ordering is the ability to know when a transfer has
been completed. Only when all results have been transferred a job can be marked as
complete and a signal can be sent to the software to continue execution. Both PUT
and GET units operate on entire cachelines and do not perform any coalescing. The
requests can be marked using an end flag. The units will then mark the last pieces of
incoming data as end data or send a done pulse in case of PUT.

Jobs are submitted via MMIO writes and are forwarded to the job management unit
(JOB). It receives a 64 bit virtual address pointer to a job structure. This job structure
holds all necessary information to process a document through a text analytics pipeline
and is set up by the software (6.3). The job management unit fetches the job structures
and stores them in a FIFO queue. The core units indicate via a ready signal whether
they can accept a new job. If a new job is available the job management unit will
forward it to one of the core units using a round-robin arbitration. This prefetching
scheme ensures that the actual struct data is available when a core unit becomes ready.

struct afu_ta_wed {
unsigned char *doc; /* Document pointer */
unsigned int *tok; /* Token pointer */
unsigned int *sts; /* Status list pointer */
unsigned int **bufs; /* Pointer to result buffers */
unsigned int docSize; /* Document size in Bytes */
unsigned int tokSize; /* Token size in Bytes */
unsigned int bufsSize; /* Result buffer size in Bytes */
unsigned int bufsCount; /* Number of result buffers */

};

Listing 6.1: Job struct for the text analytics AFU

The core units operate on the actual job structures received from the job management
unit. A core unit is responsible for the read and write request generation towards the
GET and PUT modules and for the serialization and de-serialization of data blocks.
For the incoming data the job structure holds a pointer to the document and token
buffers. Furthermore it contains the size values for both of these buffers in number of
Bytes. With this information the core unit can generate all necessary read requests and
produce a character and token stream that is sent to the compiled query or the processor
array. Figure 6.5 illustrates the read transfers and input side of the core units.

On the output side of the query module the core unit collects the results data and stores
it in the appropriate memory buffers in the host memory. For this the job structure
contains a pointer to a list of result buffer pointers which all have the same initial size
indicated by bufsSize. The number of result buffers is indicated by bufsCount and can
be a maximum of 512 as this is the maximum number of entries of the lookup tables
within the core unit. The result buffer pointers are preloaded into a lookup table while
the result count table is reset to zero during this process. The query unit will produce

98

6.3 Software integration

Figure 6.5: AFU core input side

outputs of 16 bytes together with a result index which is used as a key to the lookup
tables. The data will be batched until a complete cacheline is available for a result
index. Only then the data and the write request are submitted to the PUT unit.

Once the query unit indicates that is has finished processing the core unit will start
fetching the next result buffer pointers. At the same time it scans the current lookup
tables for remaining results that have not yet been written to host memory and submits
them. Once all data is written to the host the result counts are reported back by writing
them to the status (*sts) location with an offset of one. The first 32-bits in the status
field are reserved for thread control mechanisms. A thread will poll this location to wait
for a AFU DONE value to continue operation. Figure 6.6 illustrates the write transfers
and the output side of the core units.

Figure 6.6: AFU core output side

6.3 Software integration

On the software side integration has to take place on two levels. On a low level there
needs to be a programming interface to communicate with the hardware and setup the
appropriate data structures for it. This also includes data structures and functions to
support multiple threads. At a higher level language such as e.g. Java the integration
work should provide a simple to use programming interface based around functions that
abstract the lower level API. A user should not be bothered by implementation details
but be exposed to the features on a functional level.

At a low level the core functionality is provided by a C library called libafu ta. It wraps
the basic libcxl calls and provides additional simplicity to deal with the text acceleration

99

6 System integration

AFU. To start interaction with the AFU the library provides the afu ta start() function
which returns zero on success. This function opens the CXL device and attaches the
AFU to the current process. It also maps the MMIO register space and saves the
necessary pointers in a global struct. This allows all future libafu ta calls to refer to this
struct. To stop the AFU, close the device and free all data structures the equivalent
stop() function must be called after all interaction with the accelerator has been finished.

To communicate with the AFU the library wraps MMIO read and write functions for
64 bit values. These are single instructions in the final program code followed by a syn-
chronization instruction to ensure the operation has completed before continuing. These
functions are used i.e. for the readout of the trace buffer contents or the submission of a
pointer to a job structure. At a more functional level the library provides three functions
to create, submit and wait for completion of a job. The flowchart in Figure 6.7 shows
how to use these functions to sequentially submit a set of documents. After the AFU
has been started a job memory structure can be created using the init wed() function
(WED refers to the term work element descriptor an is synonymous to a job structure).
Once the job structure has been created and populated with data the job can be sub-
mitted and execution waits for its completion. After the AFU has finished working on
the document the results can be used for further processing and the job structure can
be freed. If all documents in the set have been processed the stop() function is called
to shutdown the AFU and allow other processes to access it again.

Figure 6.7: Flowchart to use the AFU by libafu ta

100

6.3 Software integration

6.3.1 Java interface

In order to use the AFU from within a Java application the libafu ta function calls must
be made available to be called from the Java virtual machine (JVM). For this purpose
Java provides the Java Native Interface (JNI) [39]. It allows Java classes to define native
methods that may be implemented in C, C++ or assembler. The methods declared as
native are exported to a C header file which get automatically generated by the javah
tool. This header file defines the exact naming and type definition for each function
which corresponds to a single method in a Java class. These functions can then be
implemented by the user.

In many cases it is sufficient to create a one to one mapping of the existing C library
functions in a Java class and create wrapper JNI code to access and cast some Java
datatypes. Also for the libafu ta this is the first approach to make all functions avail-
able to a Java application. This way the previously described access to the AFU can
be performed just equally in Java. Figure 6.8 illustrates the complete software stack
provided to an application to interact with the text analytics AFU.

Figure 6.8: Library stack for the AFU

To simplify the submission of documents to the accelerator the Java class Afu provides
a method runSubgraph() that takes a string and an array of token offsets and performs
all necessary steps before returning. Once the accelerator has been started this method
can be called by multiple threads for processing documents. Although the threads can
submit jobs in parallel each thread will wait until the completion of its own document
before continuing to submit a new one. This introduces a setup penalty for each thread
that maybe hidden by launching more threads that prepare and submit documents in
the meantime.

To avoid this penalty and avoid launching too many software threads an asynchronous
interface is provided by the methods forkSubgraph() and joinSubgraph(). Instead of
waiting for the completion of a job forkSubgraph() submits a job to the accelerator
and returns immediately. This allows the software to continue operation, performing
other computations or submitting a next document until it requires the results from the
accelerator. At this point the program needs to call joinSubgraph() which will block
until the accelerator is finished for a specific job indicated by an argument.

101

6 System integration

6.4 Evaluation

The system integration is evaluated in terms of performance impact as there are multiple
communication interfaces that interact with each other. The hardware interface needs
to be able to supply the compiled text analytics query core with a continuous stream
of documents. This can be evaluated by creating a large batch of documents in system
memory and submit all created jobs at once. This evaluation can take into account the
document size which determines a single job size and the transfer setup costs.

A similar measurement can be set up to measure the impact of the multi-threaded
software interface. Each thread prepares a job in system memory and submits it to
the accelerator. The thread will wait for completion of the job before resubmitting the
job again. The time between job completion and re-submission is software execution
time and can be adjusted for the test application. The throughput performance of this
test depends on the number of threads used and the time each thread waits before
re-submitting a job.

Figure 6.9: Interface throughput for different number of submitting threads and batch
mode

Figure 6.9 shows the measured document throughput results in MB/s, both of these
tests over the document size in bytes. The BATCH case marks the maximum possible
throughput which is then limited by the AFU interface logic. At a document size of
128 B the performance is about 500 MB/s but immediately reaches its maximum of
950 MB/s with document sizes of 256 B and larger. This test has been performed with
a test query, that is capable of running at 250 MHz. Thus the possible peak throughput
is 1 GB/s.

When exercising the AFU with sequential call by the multi-threaded software interface
the performance depends on the number of software threads running and the document
size. While a single thread only achieves 40 MB/s with 128 B sized documents the
throughput increases linearly with the number of threads close to the maximum of
500 MB/s limited by the hardware. Also the document size increases the throughput

102

6.4 Evaluation

linearly for all cases. By using 12 threads the full performance of the BATCH mode can
be achieved with 512 B documents.

The last level interface is the Java Native Interface (JNI) connecting the Java virtual
machine (JVM) to the accelerator. The interface has to copy the document and token
offset data from the Java heap to native code memory before submitting a job. To test
the performance of the JNI a similar multi-threaded test can be performed. A set of
documents is prepared within the JVM for multiple threads. Each thread then calls
a dummy version of the runSubgraph() method which will copy the according data to
native code and return immediately after the data has been copied. This ensures only
the impact by the JNI can be measured.

Figure 6.10: Java Native Interface throughput for different number of submitting
threads

The measurement results are plotted in Figure 6.10 as the throughput of document
characters per second over the number of Java threads. The throughput increases lin-
early from 1 to 12 threads where it reaches a peak of 4.6 GB/s. When increasing further
the number of threads the throughput does not increase much anymore. The maximum
observed document throughput rate is about 5 GB/s with no results returning to the
JVM.

If the JNI has to return results back to the JVM the document throughput rate drops
significantly for higher numbers of threads. Up to 1 GB/s less throughput rate can be
achieved when returning 9 or more results. The number of results does not change the
performance impact as much as returning results at all. This seems to be caused by
the creation of a new integer array on the Java heap when returning results oppose to
returning a Null when there are no results.

6.4.1 Final performance evaluation

For a final evaluation, the reference queries from chapter 4.4 have been recompiled for
the Altera Stratix V FPGA, used by the POWER8-based system. Although this is a
newer generation FPGA, the number of streams was not increased beyond four, because
a larger portion of the FPGA is occupied by the CAPI PSL logic. On the POWER7

103

6 System integration

system, this logic was put onto the separate system FPGA, which reduced the interface
logic on the actual application FPGA. Nevertheless, the placed and routed queries are
all capable of achieving an operating frequency of 200 MHz, which is 20 to 33 % higher
compared to the previous Stratix IV FPGA.

The software implementation was run in a scale-out test, utilizing up to 96 threads on
the POWER8 server. The best result was selected, regardless of the number of threads.
The documents where pre-loaded to Java memory to avoid any file I/O operations. The
application then runs for 30 seconds and counts the number of characters processed.
On average the POWER8 system shows a 29 % document throughput improvement
over POWER7, using Java 8. Figure 6.11 summarizes the performance of the individual
systems when processing the reference documents, and shows the throughput of a single
FPGA processing stream on the respective system.

Figure 6.11: Performance of POWER7 and POWER8 systems and their respective sin-
gle stream FPGA accelerator

It shows, that new generations of reconfigurable devices can keep up with the perfor-
mance improvements of new processors. The accelerated system performs 36 times
better in terms of throughput than the pure software implementation, excluding query
BA1. BA1 is the only query which is running slower on the POWER8 system and can
be executed up to 200 times faster on the FPGA.

6.5 Summary

Although the increased performance and energy efficiency of an accelerator can be high
at an architectural level, the integration into a host system can reduce this benefit sig-
nificantly. Efficient and reliable system integration is a key component to successfully
deploy an accelerator in an enterprise environment. It comprises of a hardware com-
munication logic that can operate the core logic to its full capacity, as well as software

104

6.5 Summary

components for low and high level languages.

This chapter presented all necessary components to efficiently deploy the text analyt-
ics accelerator within a POWER8-based enterprise system. The hardware integration
leverages the novel coherent accelerator processor interface (CAPI) to operate in the
virtual address space of the software process. The architecture was designed such that
it supports multiple software threads submitting document processing jobs to it and
shared memory completion notification. To avoid transfer setup penalties for small doc-
uments the communication logic implements a pre-fetching scheme while waiting for the
query core to finish processing. Additional trace and debug registers simplify the error
detection and debug.

On the software side two libraries are provided to communicate with the accelerator.
One library provides the basic functionality to start and stop the accelerator as well as
setup the appropriate data structures in memory which the accelerator can interpret.
Also functions for job submission and wait for completion are available to exercise the
accelerator from multiple threads. A second library enables the use of the accelerator
from with the Java virtual machine. By using the Java Native Interface documents
are copied to native code and processed on the accelerator before returning to the Java
heap. This library also provides an asynchronous call scheme to achieve high document
throughput with a fewer number of threads.

Measurements indicate that the impact of the integration are acceptably low reaching
95% of the query core’s peak throughput rate. End-to-end a document processing rate
of up to 943 MB/s has been measured, which is up to 71 times faster than the multi-
threaded software implementation. This performance can be achieved by either running
the accelerator in a batched mode where a set of documents is prepared and then sent off
to the accelerator for processing. An alternative integration into a software application
is a sequential call to the accelerator. This type of integration may cost less effort for the
software developer and can still reach high performance by utilizing multiple threads.

Although the new generation POWER processor is up to 29 % faster when performing
text analytics, the presented accelerator framework can maintain a significant perfor-
mance lead. By using a commercial off the shelf FPGA card, this integration demon-
strates the feasibility and impact of reconfigurable architectures for text-based informa-
tion extraction.

105

CHAPTER 7

Conclusion

With the arrival of Big Data the task of information extraction has gained high interest.
The ability to process large amounts of unstructured textual data and distill a piece
of structured information from it, has become an important task in today’s enterprise
businesses. The task of text analytics poses challenges to modern processor architectures
which limit the performance at which information can be extracted from a document
corpus.

This dissertation presents an integrated accelerator framework for text analytics based
on reconfigurable architectures. The framework augments an existing query-based text
analytics application with a hardware compiler which allows queries to be offloaded to
an FPGA-based co-processor. The hardware compiler the spatial compute paradigm on
a reconfigurable architecture by creating a custom datapath for every query. Every dat-
apath combines pattern detection tasks with relational algebra tasks which all operate
in parallel to create a highly efficient streaming architecture for text analysis.

The evaluation of the framework demonstrates significant improvements in performance
compared to the original software product running on a powerful enterprise server sys-
tem. These measurements include end-to-end communication costs from the host’s main
memory and back. Also the power consumption of the accelerated system is lower than
the pure software implementation when processing data. This suggests that the accel-
erator framework is a valuable addition to increase the performance for text analytics
queries and free processor cycles for additional tasks.

Because hardware compilation may be considered a static approach this dissertation
also presents a programmable architecture for efficiently executing relational algebra
operations which are specific to text analytics. The architecture consists of an array of
custom soft-core processors that leverage the streaming dataflow with an added level of
programmability. The evaluation of the architectures shows that it is sufficiently fast to
avoid the pattern detection step from stalling. Furthermore by consolidating multiple

107

7 Conclusion

relational operators onto the same chip area the architecture allows the execution of
large complex queries.

The impact of text analytics acceleration on a reconfigurable platform has been demon-
strated. It enables users to go from offline to online processing of large unstructured
text data.

7.1 Outlook

While the presented work has been integrated into enterprise systems and has proven
strong results in various demonstrators there remain open issues and questions. The
pattern detection units in this work operate with ASCII characters which limits them to
the English language. Enabling UTF-8 support is a key task to enable the accelerator
for international use. As the ASCII character set is a subset of UTF-8 the extension
to the pattern detection units may be trivial but has an impact on the offsets of the
document. Because a UTF-8 character may consist of multiple bytes the character offset
of a token does not point to the correct memory location anymore.

One research direction is the HW/SW partitioning of an annotation operator graph.
For large queries it may be necessary or for custom functions to be executed on the host
processor. Such graphs must be partitioned in an optimized fashion with communication
and resource constraints in mind. The presented framework provides the necessary
hardware compilation step to perform such research.

To fully utilize the presented programmable architecture a compiler needs to be de-
veloped. It needs to be able to partition the relational operators across the processor
array thereby utilizing the profiling information available to avoid performance bottle-
necks. Optimizations to the annotation operator graph should be explored to benefit
from architectural features.

Another research direction is dynamic adaptation of compute resources on the pro-
grammable architecture. Depending on the load of a particular virtual stream it may
be moved to another processor. Metrics and methods needs to be found to extend and
evaluate such a system. The presented programmable architecture provides a possible
baseline to be extended.

108

Acronyms

AFU accelerator functional unit
ALU arithmetic logic unit
AOG annotation operator graph
ALM adaptive logic module
API application programming interface
ASCII american standard code for information interchange
ASIC application-specific integrated circuit
AQL annotation query language
BaRT balanced routing table
BFSM BaRT-based finite state machine
CAM content addressable memory
CAPI coherent accelerator processor interface
CAPP coherent accelerator processor proxy
CGRA coarse-grained reconfigurable array
CMOS complementary metal oxide semi-conductor
CPU central processing unit
DMC dual-chip module
DFA deterministic finite automaton
DMA direct memory access
DSP digital signal processor
EDA electronic design automation
FIFO first-in first-out
FPGA field programmable gate array
FU functional unit
FSM finite state machine
GPU graphics processing unit
GPGPU general-purpose computing on graphics processing unit
HDL hardware description language
HLS high-level synthesis
HPC high-performance computing
IP intellectual property
ISA insturction set architecture

109

7 Conclusion

JNI Java native interface
JSON JavaScript object notation
JVM Java virtual machine
LUT look-up table
M20K internal FPGA memory block
M9K internal FPGA memory block
MMIO memory mapped input/output
NER named entity recognition
NFA non-deterministic finite automaton
NIDS network intrusion detection system
NLP natural language processing
NoC network on chip
PDU pattern detection unit
PE processing element
PSL POWER service layer
RAM random access memory
RISC reduced instruction set computer
ROM read-only memory
SIMD single-instruction multiple-data
SMT simultaneous multi-threading
SQL structured query language
UTF unicode transformation format
VLIW very long instruction word
WED work element descriptor

110

Author’s Publications

[1] Raphael Polig, Heiner Giefers, and Walter Stechele. A Soft-Core Processor Ar-
ray for Relational Operators. In Application-Specific Systems, Architectures and
Processors (ASAP), 2015 IEEE 26th International Conference on, pages 59–66.
IEEE, 2015.

[2] Raphael Polig, Kubilay Atasu, Heiner Giefers, and Laura Chiticariu. Compiling
text analytics queries to FPGAs. In Field Programmable Logic and Applications
(FPL), 2014 24th International Conference on, pages 1–6. IEEE, 2014.

[3] Raphael Polig, Kubilay Atasu, Laura Chiticariu, Christoph Hagleitner, Peter H.
Hofstee, Frederick R. Reiss, and Huaiyu Zhu. Hardware-accelerated text analytics.
IEEE Hotchips, 2014, IEEE, 2014.

[4] Raphael Polig, Kubilay Atasu, Laura Chiticariu, Christoph Hagleitner, Peter H.
Hofstee, Frederick R. Reiss, and Huaiyu Zhu. Giving text analytics a boost. In
IEEE Micro, 2014, pages 6–14. IEEE, 2014.

[5] Raphael Polig, Kubilay Atasu, and Christoph Hagleitner. Token-based dictionary
pattern matching for text analytics. In Field Programmable Logic and Applications
(FPL), 2013 23rd International Conference on, pages 1–6. IEEE, 2013.

[6] Kubilay Atasu, Raphael Polig, Christoph Hagleitner, and Frederick R Reiss.
Hardware-accelerated regular expression matching for high-throughput text an-
alytics. In Field Programmable Logic and Applications (FPL), 2013 23rd Interna-
tional Conference on, pages 1–7. IEEE, 2013.

[7] Kubilay Atasu, Raphael Polig, Jonathan Rohrer, and Christoph Hagleitner. Ex-
ploring the design space of programmable regular expression matching accelera-
tors. Journal of Systems Architecture, 59(10):1184–1196, 2013.

[8] Kanak Agarwal and Raphael Polig. A high-speed and large-scale dictionary match-
ing engine for information extraction systems. In Application-Specific Systems,
Architectures and Processors (ASAP), 2013 IEEE 24th International Conference
on, pages 59–66. IEEE, 2013.

111

Bibliography

[9] Altera and xilinx report: The battle contin-
ues. http://seekingalpha.com/article/
85478-altera-and-xilinx-report-the-battle-continues. Ac-
cessed: 2015-01-21.

[10] FPGA cell example png. http://commons.wikimedia.org/wiki/File:
FPGA_cell_example.png. Accessed: 2015-01-21.

[11] Hadoop. http://hadoop.apache.org/. Accessed: 2015-01-19.

[12] IBM: What is Big Data? Bringing Big Data to enterprise. http://www-01.
ibm.com/software/data/bigdata/. Accessed: 2014-03-21.

[13] An illustration of Relational model concepts. http://en.wikipedia.org/
wiki/File:Relational_model_concepts.png. Accessed: 2015-03-06.

[14] Kanak Agarwal and Raphael Polig. A high-speed and large-scale dictionary match-
ing engine for information extraction systems. In Application-Specific Systems,
Architectures and Processors (ASAP), 2013 IEEE 24th International Conference
on, pages 59–66. IEEE, 2013.

[15] Alfred V Aho and Margaret J Corasick. Efficient string matching: an aid to
bibliographic search. Communications of the ACM, 18(6):333–340, 1975.

[16] Giovanni Ansaloni, Paolo Bonzini, and Laura Pozzi. EGRA: A coarse grained re-
configurable architectural template. Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, 19(6):1062–1074, 2011.

[17] Douglas E Appelt and Boyan Onyshkevych. The common pattern specification
language. In Proceedings of a workshop on held at Baltimore, Maryland: October
13-15, 1998, pages 23–30. Association for Computational Linguistics, 1998.

[18] Kubilay Atasu. Resource-efficient regular expression matching architecture for text
analytics. In Application-specific Systems, Architectures and Processors (ASAP),
2014 IEEE 25th International Conference on, pages 1–8. IEEE, 2014.

113

http://seekingalpha.com/article/85478-altera-and-xilinx-report-the-battle-continues
http://seekingalpha.com/article/85478-altera-and-xilinx-report-the-battle-continues
http://commons.wikimedia.org/wiki/File:FPGA_cell_example.png
http://commons.wikimedia.org/wiki/File:FPGA_cell_example.png
http://hadoop.apache.org/
http://www-01.ibm.com/software/data/bigdata/
http://www-01.ibm.com/software/data/bigdata/
http://en.wikipedia.org/wiki/File:Relational_model_concepts.png
http://en.wikipedia.org/wiki/File:Relational_model_concepts.png

Bibliography

[19] Kubilay Atasu, Wayne Luk, Oskar Mencer, Can Özturan, and Günhan Dündar.
Fish: Fast instruction synthesis for custom processors. Very Large Scale Integra-
tion (VLSI) Systems, IEEE Transactions on, 20(1):52–65, 2012.

[20] Kubilay Atasu, Raphael Polig, Christoph Hagleitner, and Frederick R Reiss.
Hardware-accelerated regular expression matching for high-throughput text an-
alytics. In Field Programmable Logic and Applications (FPL), 2013 23rd Interna-
tional Conference on, pages 1–7. IEEE, 2013.

[21] Kubilay Atasu, Raphael Polig, Jonathan Rohrer, and Christoph Hagleitner. Ex-
ploring the design space of programmable regular expression matching accelera-
tors. Journal of Systems Architecture, 59(10):1184–1196, 2013.

[22] Ricardo Baeza-Yates and Gaston H Gonnet. A new approach to text searching.
Communications of the ACM, 35(10):74–82, 1992.

[23] Jason Baldridge. The opennlp project. URL: http://opennlp. apache. org/index.
html,(accessed 2 February 2015), 2005.

[24] Luiz André Barroso and Urs Hölzle. The case for energy-proportional computing.
IEEE computer, 40(12):33–37, 2007.

[25] Steven Bird. NLTK: the natural language toolkit. In Proceedings of the COL-
ING/ACL on Interactive presentation sessions, pages 69–72. Association for Com-
putational Linguistics, 2006.

[26] Joao Bispo, Ioannis Sourdis, Joao MP Cardoso, and Stamatis Vassiliadis. Regular
expression matching for reconfigurable packet inspection. In Field Programmable
Technology, 2006. FPT 2006. IEEE International Conference on, pages 119–126.
IEEE, 2006.

[27] Tobias Bjerregaard and Shankar Mahadevan. A survey of research and practices
of network-on-chip. ACM Computing Surveys (CSUR), 38(1):1, 2006.

[28] Darrell Boggs, Gary Brown, Nathan Tuck, and K Venkatraman. Denver: Nvidia’s
first 64-bit arm processor. 2015.

[29] Erik Cambria and Bebo White. Jumping nlp curves: A review of natural language
processing research. IEEE Computational Intelligence Magazine, 9(2):48–57, 2014.

[30] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona,
Jason H Anderson, Stephen Brown, and Tomasz Czajkowski. Legup: high-level
synthesis for fpga-based processor/accelerator systems. In Proceedings of the 19th
ACM/SIGDA international symposium on Field programmable gate arrays, pages
33–36. ACM, 2011.

[31] Davor Capalija and Tarek S Abdelrahman. A high-performance overlay architec-
ture for pipelined execution of data flow graphs. In Field Programmable Logic and
Applications (FPL), 2013 23rd International Conference on, pages 1–8. IEEE,
2013.

114

Bibliography

[32] Donald D Chamberlin and Raymond F Boyce. Sequel: A structured english query
language. In Proceedings of the 1974 ACM SIGFIDET (now SIGMOD) workshop
on Data description, access and control, pages 249–264. ACM, 1974.

[33] George Chrysos. Intel R© Xeon Phi Coprocessor - the architecture. Intel Whitepa-
per, 2014.

[34] Eric S Chung, John D Davis, and Jaewon Lee. Linqits: Big data on little clients. In
ACM SIGARCH Computer Architecture News, volume 41, pages 261–272. ACM,
2013.

[35] Charles LA Clarke, Gordon V. Cormack, and Forbes J. Burkowski. An algebra
for structured text search and a framework for its implementation. The Computer
Journal, 38(1):43–56, 1995.

[36] Edgar F Codd. A relational model of data for large shared data banks. Commu-
nications of the ACM, 13(6):377–387, 1970.

[37] W Cohen and Andrew McCallum. Information extraction from the world wide
web. KDD, 2003.

[38] James Coole and Greg Stitt. Intermediate fabrics: Virtual architectures for circuit
portability and fast placement and routing. In Hardware/Software Codesign and
System Synthesis (CODES+ ISSS), 2010 IEEE/ACM/IFIP International Con-
ference on, pages 13–22. IEEE, 2010.

[39] Oracle Corp. Java native interface specification. URL: http://docs. oracle. com/-
javase/8/docs/technotes/guides/jni/spec/jniTOC. html,(accessed 4 August 2015),
2015.

[40] Hamish Cunningham. GATE, a general architecture for text engineering. Com-
puters and the Humanities, 36(2):223–254, 2002.

[41] Hamish Cunningham, Diana Maynard, and Valentin Tablan. Jape: a java anno-
tation patterns engine. 1999.

[42] Christopher Dennl, Daniel Ziener, and Jürgen Teich. On-the-fly composition of
FPGA-based SQL query accelerators using a partially reconfigurable module li-
brary. In Field-Programmable Custom Computing Machines (FCCM), 2012 IEEE
20th Annual International Symposium on, pages 45–52. IEEE, 2012.

[43] George Doud. Accelerating the data plane with the tile - mx manycore processor.
Linley Data Center Conference, 2015.

[44] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam,
and Doug Burger. Dark silicon and the end of multicore scaling. In Computer
Architecture (ISCA), 2011 38th Annual International Symposium on, pages 365–
376. IEEE, 2011.

115

Bibliography

[45] Gerald Estrin. Organization of computer systems: the fixed plus variable structure
computer. In Papers presented at the May 3-5, 1960, western joint IRE-AIEE-
ACM computer conference, pages 33–40. ACM, 1960.

[46] David Ferrucci and Adam Lally. UIMA: an architectural approach to unstructured
information processing in the corporate research environment. Natural Language
Engineering, 10(3-4):327–348, 2004.

[47] David A Ferrucci. Introduction to this is watson. IBM Journal of Research and
Development, 56(3.4):1–1, 2012.

[48] Gerhard Fettweis and Ernesto Zimmermann. Ict energy consumption-trends and
challenges. In Proceedings of the 11th International Symposium on Wireless Per-
sonal Multimedia Communications, volume 2, page 6, 2008.

[49] Dayne Freitag. Multistrategy learning for information extraction. In ICML, pages
161–169, 1998.

[50] Joshua Friedrich, Hung Le, William Starke, Jeff Stuechli, Balaram Sinharoy, Eric J
Fluhr, Daniel Dreps, Victor Zyuban, Gregory Still, Christopher Gonzalez, et al.
The POWER8 tm processor: Designed for big data, analytics, and cloud en-
vironments. In IC Design & Technology (ICICDT), 2014 IEEE International
Conference on, pages 1–4. IEEE, 2014.

[51] Emden R. Gansner and Stephen C. North. An open graph visualization system
and its applications to software engineering. SOFTWARE - PRACTICE AND
EXPERIENCE, 30(11):1203–1233, 2000.

[52] Heiner Giefers and Marco Platzner. A many-core implementation based on the
reconfigurable mesh model. In Field Programmable Logic and Applications, 2007.
FPL 2007. International Conference on, pages 41–46. IEEE, 2007.

[53] Heiner Giefers, Raphael Polig, and Christoph Hagleitner. Accelerating arithmetic
kernels with coherent attached fpga coprocessors. In Proceedings of the 2015
Design, Automation & Test in Europe Conference & Exhibition, pages 1072–1077.
EDA Consortium, 2015.

[54] Seth Copen Goldstein, Herman Schmit, Mihai Budiu, Srihari Cadambi, Matthew
Moe, and R Reed Taylor. Piperench: A reconfigurable architecture and compiler.
Computer, 33(4):70–77, 2000.

[55] Diego González, Guillermo Botella, Carlos Garćıa, Manuel Prieto, and Francisco
Tirado. Acceleration of block-matching algorithms using a custom instruction-
based paradigm on a nios ii microprocessor. EURASIP Journal on Advances in
Signal Processing, 2013(1):1–20, 2013.

[56] Michael Gschwind. The cell broadband engine: exploiting multiple levels of par-
allelism in a chip multiprocessor. International Journal of Parallel Programming,
35(3):233–262, 2007.

116

Bibliography

[57] Said Hamdioui, Lei Xie, Hoang Anh Du Nguyen, Mottaqiallah Taouil, Koen Ber-
tels, Henk Corporaal, Hailong Jiao, Francky Catthoor, Dirk Wouters, Linn Eike,
et al. Memristor based computation-in-memory architecture for data-intensive
applications. In Proceedings of the 2015 Design, Automation & Test in Europe
Conference & Exhibition, pages 1718–1725. EDA Consortium, 2015.

[58] Stratix V Device Handbook. 14th ed., 2014.

[59] Frank Hannig, Vahid Lari, Srinivas Boppu, Alexandru Tanase, and Oliver Re-
iche. Invasive Tightly-Coupled Processor Arrays: A Domain-Specific Architec-
ture/Compiler Co-Design Approach. ACM Transactions on Embedded Computing
Systems (TECS), 13(4s):133, 2014.

[60] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia Ailamaki.
Toward dark silicon in servers. IEEE Micro, 31(EPFL-ARTICLE-168285):6–15,
2011.

[61] John Kelly III and Steve Hamm. Smart Machines: IBM’s Watson and the Era of
Cognitive Computing. Columbia University Press, 2013.

[62] Michael Kistler, Michael Perrone, and Fabrizio Petrini. Cell multiprocessor com-
munication network: Built for speed. IEEE micro, 26(3):10–23, 2006.

[63] Stephen Cole Kleene. Representation of events in nerve nets and finite automata.
Technical report, DTIC Document, 1951.

[64] Jonathan Koomey. Growth in data center electricity use 2005 to 2010. A report
by Analytical Press, completed at the request of The New York Times, 2011.

[65] Raffi Krikorian. New tweets per second record, and how!, 2013.

[66] Rajasekar Krishnamurthy, Yunyao Li, Sriram Raghavan, Frederick Reiss, Shiv-
akumar Vaithyanathan, and Huaiyu Zhu. SystemT: a system for declarative in-
formation extraction. ACM SIGMOD Record, 37(4):7–13, 2009.

[67] HT Kung and Philip L Lehman. Systolic (VLSI) arrays for relational database
operations. In Proceedings of the 1980 ACM SIGMOD international conference
on Management of data, pages 105–116. ACM, 1980.

[68] Cheng-Hung Lin, Sheng-Yu Tsai, Chen-Hsiung Liu, Shih-Chieh Chang, and J-M
Shyu. Accelerating string matching using multi-threaded algorithm on gpu. In
Global Telecommunications Conference (GLOBECOM 2010), 2010 IEEE, pages
1–5. IEEE, 2010.

[69] James Manyika, Michael Chui, Brad Brown, Jacques Bughin, Richard Dobbs,
Charles Roxburgh, and Angela Hung Byers. Big data: The next frontier for
innovation, competition, and productivity. Technical report, McKinsey Global
Institute, May 2011.

117

Bibliography

[70] Clive Maxfield. The design warrior’s guide to FPGAs devices, tools and flows.
Newnes Elsevier, Boston, 2004.

[71] H. Y McCreary, M. A. Broyles, M.S. Floyd, A.J. Geissler, S. P. Hartman, F.L.
Rawson, T.J. Rosedahl, J.C. Rubio, and M.S. Ware. EnergyScale for IBM
POWER6 microprocessor-based systems. IBM Journal of Research and Devel-
opment, 51(6):775–786, Nov 2007.

[72] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and Rudy Lauw-
ereins. Adres: An architecture with tightly coupled vliw processor and coarse-
grained reconfigurable matrix. In Field Programmable Logic and Application,
pages 61–70. Springer, 2003.

[73] Pingfan Meng, Matthew Jacobsen, Motoki Kimura, Vladimir Dergachev, Thomas
Anantharaman, Michael Requa, and Ryan Kastner. Hardware accelerated novel
optical de novo assembly for large-scale genomes. In Field Programmable Logic
and Applications (FPL), 2014 24th International Conference on, pages 1–8. IEEE,
2014.

[74] Geoffrey A Moore. Crossing the Chasm: Marketing and Selling Technology
Project. HarperCollins e-Books, 2014.

[75] Rene Mueller and Jens Teubner. FPGA: what’s in it for a database? In Proceedings
of the 2009 ACM SIGMOD International Conference on Management of data,
pages 999–1004. ACM, 2009.

[76] Rene Mueller, Jens Teubner, and Gustavo Alonso. Streams on wires: a query
compiler for fpgas. Proceedings of the VLDB Endowment, 2(1):229–240, 2009.

[77] René Müller. Data stream processing on embedded devices. PhD thesis, ETH
Zurich, 2010.

[78] Hiroki Nakahara, Tsutomu Sasao, and Munehiro Matsuura. A regular expression
matching circuit based on a decomposed automaton. In Reconfigurable Computing:
Architectures, Tools and Applications, pages 16–28. Springer, 2011.

[79] nVidia Corporation. Nvidia’s next generation cuda compute architecture: Kepler
gk110. nVidia Whitepaper, 2012.

[80] Matthias Pohl, Michael Schaeferling, and Gundolf Kiefer. An efficient FPGA-
based hardware framework for natural feature extraction and related Computer
Vision tasks. In Field Programmable Logic and Applications (FPL), 2014 24th
International Conference on, pages 1–8. IEEE, 2014.

[81] Raphael Polig, Kubilay Atasu, Heiner Giefers, and Laura Chiticariu. Compiling
text analytics queries to FPGAs. In Field Programmable Logic and Applications
(FPL), 2014 24th International Conference on, pages 1–6. IEEE, 2014.

118

Bibliography

[82] Raphael Polig, Kubilay Atasu, and Christoph Hagleitner. Token-based dictionary
pattern matching for text analytics. In Field Programmable Logic and Applications
(FPL), 2013 23rd International Conference on, pages 1–6. IEEE, 2013.

[83] Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou, Kypros Con-
stantinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth
Gopal, Jan Gray, et al. A reconfigurable fabric for accelerating large-scale data-
center services. In Computer Architecture (ISCA), 2014 ACM/IEEE 41st Inter-
national Symposium on, pages 13–24. IEEE, 2014.

[84] Michael O Rabin and Dana Scott. Finite automata and their decision problems.
IBM journal of research and development, 3(2):114–125, 1959.

[85] IBM Press Release. 701 translator. http://www-03.ibm.com/ibm/
history/exhibits/701/701_translator.html, 1954. Accessed: 2015-01-
15.

[86] Jonathan Rohrer, Kubilay Atasu, Jan van Lunteren, and Christoph Hagleitner.
Memory-efficient distribution of regular expressions for fast deep packet inspec-
tion. In Proceedings of the 7th IEEE/ACM international conference on Hard-
ware/software codesign and system synthesis, pages 147–154. ACM, 2009.

[87] IBM Power Systems S814, S824 Technical Overview, and Introduction. First
edition, 2014.

[88] Daniele Paolo Scarpazza, Oreste Villa, and Fabrizio Petrini. High-speed string
searching against large dictionaries on the Cell/BE processor. In Parallel and
Distributed Processing, 2008. IPDPS 2008. IEEE International Symposium on,
pages 1–12. IEEE, 2008.

[89] Reetinder Sidhu and Viktor K Prasanna. Fast regular expression matching using
FPGAs. In Field-Programmable Custom Computing Machines, 2001. FCCM’01.
The 9th Annual IEEE Symposium on, pages 227–238. IEEE, 2001.

[90] Deshanand Singh. Implementing fpga design with the opencl standard. Altera
whitepaper, 2011.

[91] Hartej Singh, Ming-Hau Lee, Guangming Lu, Fadi J Kurdahi, Nader Bagherzadeh,
and Eliseu M Chaves Filho. Morphosys: an integrated reconfigurable system for
data-parallel and computation-intensive applications. Computers, IEEE Transac-
tions on, 49(5):465–481, 2000.

[92] B Sinharoy, JA Van Norstrand, RJ Eickemeyer, HQ Le, J Leenstra, DQ Nguyen,
B Konigsburg, K Ward, MD Brown, JE Moreira, et al. Ibm power8 processor core
microarchitecture. IBM Journal of Research and Development, 59(1):2–1, 2015.

[93] Tian Song, Wei Zhang, Dongsheng Wang, and Yibo Xue. A memory efficient
multiple pattern matching architecture for network security. In INFOCOM 2008.
The 27th Conference on Computer Communications. IEEE. IEEE, 2008.

119

http://www-03.ibm.com/ibm/history/exhibits/701/701_translator.html
http://www-03.ibm.com/ibm/history/exhibits/701/701_translator.html

Bibliography

[94] Ioannis Sourdis and Dionisios Pnevmatikatos. Fast, large-scale string match for a
10 Gbps FPGA-based NIDS. In New Algorithms, Architectures and Applications
for Reconfigurable Computing, pages 195–207. Springer, 2005.

[95] Greg Stitt and James Coole. Intermediate fabrics: Virtual architectures for near-
instant FPGA compilation. Embedded Systems Letters, IEEE, 3(3):81–84, 2011.

[96] Ken Thompson. Programming techniques: Regular expression search algorithm.
Communications of the ACM, 11(6):419–422, 1968.

[97] Vernon Turner, David Reinsel, John F. Gantz, and Stephen Minton. The digital
universe of opportunities: Rich data and the increasing value of the internet of
things. Technical report, IDC, April 2014.

[98] Graham Upton and Ian Cook. A Dictionary of Statistics 3e. Oxford university
press, 2014.

[99] Jan Van Lunteren et al. High-performance pattern-matching for intrusion detec-
tion. In Infocom, volume 6, pages 1–13. Citeseer, 2006.

[100] Jan van Lunteren and Alexis Guanella. Hardware-accelerated regular expression
matching at multiple tens of gb/s. In INFOCOM, 2012 Proceedings IEEE, pages
1737–1745. IEEE, 2012.

[101] Giorgos Vasiliadis, Michalis Polychronakis, Spiros Antonatos, Evangelos P
Markatos, and Sotiris Ioannidis. Regular expression matching on graphics hard-
ware for intrusion detection. In Recent Advances in Intrusion Detection, pages
265–283. Springer, 2009.

[102] Grady Ward. Moby Word Lists. http://www.gutenberg.org/ebooks/
3201. Accessed: 2015-03-3.

[103] Gerhard Weikum. From text to entities and from entities to insight: A perspective
on unstructured big data. Presented at Microsoft Research Big Data Analytics
Workshop 2013, Cambridge, UK, 2013.

[104] Joseph Weizenbaum. Eliza a computer program for the study of natural language
communication between man and machine. Communications of the ACM, 9(1):36–
45, 1966.

[105] Bruce Wile. Coherent Accelerator Processor Interface (CAPI) for POWER8 Sys-
tems. IBM White Paper, Sep 2014.

[106] Wayne Wolf. The future of multiprocessor systems-on-chips. In Design Automa-
tion Conference, 2004. Proceedings. 41st, pages 681–685. IEEE, 2004.

[107] Pascal T Wolkotte, Gerard JM Smit, Gerard K Rauwerda, and Lodewijk T Smit.
An energy-efficient reconfigurable circuit-switched network-on-chip. In Parallel
and Distributed Processing Symposium, 2005. Proceedings. 19th IEEE Interna-
tional, pages 155a–155a. IEEE, 2005.

120

http://www.gutenberg.org/ebooks/3201
http://www.gutenberg.org/ebooks/3201

Bibliography

[108] Haicheng Wu, Gregory Diamos, Srihari Cadambi, and Sudhakar Yalamanchili.
Kernel weaver: Automatically fusing database primitives for efficient gpu compu-
tation. In Proceedings of the 2012 45th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, pages 107–118. IEEE Computer Society, 2012.

[109] Lisa Wu, Raymond J Barker, Martha A Kim, and Kenneth A Ross. Navigating big
data with high-throughput, energy-efficient data partitioning. ACM SIGARCH
Computer Architecture News, 41(3):249–260, 2013.

[110] YE Yang, Hoang Le, and Viktor K Prasanna. High performance dictionary-based
string matching for deep packet inspection. In INFOCOM, 2010 Proceedings
IEEE, pages 1–5. IEEE, 2010.

[111] YE Yang and Viktor K Prasanna. Memory-efficient pipelined architecture for
large-scale string matching. In Field Programmable Custom Computing Machines,
2009. FCCM’09. 17th IEEE Symposium on, pages 104–111. IEEE, 2009.

[112] Fang Yu, Randy H Katz, and Tirunellai V Lakshman. Gigabit rate packet pattern-
matching using tcam. In Network Protocols, 2004. ICNP 2004. Proceedings of the
12th IEEE International Conference on, pages 174–183. IEEE, 2004.

[113] Qiuling Zhu, Bilal Akin, H Ekin Sumbul, Fazle Sadi, James C Hoe, Larry Pileggi,
and Franz Franchetti. A 3d-stacked logic-in-memory accelerator for application-
specific data intensive computing. In 3D Systems Integration Conference (3DIC),
2013 IEEE International, pages 1–7. IEEE, 2013.

121

	1 Introduction
	1.1 Thesis statement
	1.2 Summary and key contributions
	1.3 Outline of this thesis

	2 Background
	2.1 Text Analytics
	2.2 SystemT
	2.3 Reconfigurable architectures
	2.3.1 FPGAs
	2.3.2 Coarse grained reconfigurable and overlay architectures
	2.3.3 Manycore processor arrays

	2.4 Regular expression matching
	2.5 Methodology

	3 Dictionary matching
	3.1 Design requirements
	3.2 Hardware architecture
	3.2.1 Single token matching
	3.2.2 Multi token matching
	3.2.3 Result reporting

	3.3 Compiler
	3.4 Evaluation
	3.4.1 Resource requirements
	3.4.2 Performance

	3.5 Related work
	3.6 Summary

	4 Relational operations
	4.1 Design objectives
	4.2 Hardware modules
	4.2.1 Adjacent Join
	4.2.2 Difference
	4.2.3 Union
	4.2.4 Select
	4.2.5 Consolidate
	4.2.6 Apply Function
	4.2.7 Project

	4.3 Compilation framework
	4.3.1 Compilation
	4.3.2 Optimizations

	4.4 Evaluation
	4.4.1 Performance
	4.4.2 Scalability
	4.4.3 Energy consumption
	4.4.4 Utilization

	4.5 Related work
	4.6 Summary

	5 Soft-core processor array
	5.1 Design objectives
	5.2 Microarchitecture
	5.2.1 Instruction Set Architecture
	5.2.2 Shared-memory FIFO
	5.2.3 Asymmetric register file
	5.2.4 Doorbell
	5.2.5 External commands

	5.3 Soft-core array
	5.3.1 Shared token cache
	5.3.2 Shared regular expression unit

	5.4 Programming
	5.5 Evaluation
	5.5.1 Scalability
	5.5.2 Performance

	5.6 Related work
	5.7 Summary

	6 System integration
	6.1 Design objectives
	6.2 Hardware integration
	6.2.1 POWER8 host system
	6.2.2 Coherent Accelerator Processor Interface
	6.2.3 Text Analytics AFU

	6.3 Software integration
	6.3.1 Java interface

	6.4 Evaluation
	6.4.1 Final performance evaluation

	6.5 Summary

	7 Conclusion
	7.1 Outlook

	Acronyms
	Author's Publications
	Bibliography

