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Prüfer der Dissertation: 1. Univ.-Prof. Dr.-Ing. Thomas Eibert

2. Univ.-Prof. Dr.-Ing Wolfgang Menzel, Universität Ulm

Die Dissertation wurde am 08.09.2015 bei der Technischen Universität München einge-
reicht und durch die Fakultät für Elektrotechnik und Informationstechnik am 17.12.2015 
angenommen.





Acknowledgment

I would like to show my sincere gratitude to Prof. Dr.-Ing. Thomas Eibert for provid-
ing me the opportunity to perform my doctoral research at the Chair of High-Frequency
Engineering, Technische Universität München. His guidance and encouragement inspired
me a lot in both daily life and research work. I was always motivated under his supervision.
I am also grateful to my second examiner Prof. Dr.-Ing Wolfgang Menzel from Universität
Ulm. His comments are quite helpful to enhance the quality of this thesis. Also, I would like
to thank all my colleagues for the nice working environment and the instructive suggestions.
I appreciate the colleagues from our workshop for their support during manufacturing the
antenna components. Many thanks to Prof. Dr. Sheng Sun for giving me the chance to
visit the University of Hong Kong, where I had a very nice experience. I would specially
thank my wife and my parents. Without the support and encouragement from them, my
doctoral work would not be so successful. Last but not least, I would like to thank all my
family members and friends.

I





Abstract

Multiple input multiple output wireless communication systems are advantageous for
pursuing high data rates within limited frequency bands. For low profile devices such as
smart phones, compact antenna arrays are of high demand. However, the compactness of
antenna arrays is restricted due to the mutual coupling effects between the radiation ele-
ments, which degrade the system performance in terms of impedance matching, radiation
efficiency and antenna diversity. For solving this problem, matching and decoupling strate-
gies are required. In this thesis, investigations of matching and decoupling approaches for
compact antenna arrays are performed and a series of issues, which have not been solved
in the past, are addressed.

Matching and decoupling networks implemented between the input ports and the an-
tenna array based on eigenmode excitation or multiport conjugate matching are introduced
to overcome the mutual coupling effects. Three designs of compact monopole arrays with
feeding networks based on one-layer microstrip line structures are presented. Two two-
element monopole antenna arrays with separations of 10% of the wavelength in free space
and a four-element monopole array with separations of 7% of the wavelength in free space
operating around 2.45 GHz have been designed, manufactured and measured. Comparisons
and relationships between the two design theories are demonstrated. Based on the multi-
port conjugate matching method, beamforming applications for linearly aligned compact
monopole arrays are studied. Moreover, particular decoupling approaches for printed com-
pact arrays are developed. Simple and efficient solutions are utilized for realizing three novel
compact printed arrays, consisting of two-element printed monopole arrays with partially
extended ground plane, a three-element printed antenna array with combined antenna types
and a dual-band two-element array with low profile elements. Promising performances of
the arrays are demonstrated.

The received signal correlation between the ports of an array can be estimated from
the radiation pattern correlation. According to the power conservation law, it is possible
to relate the pattern correlation coefficient to the scattering parameters for lossless antenna
arrays. For lossy antenna arrays with decoupling approaches such as decoupling networks,
the previously published methods are not able to calculate the exact pattern correlation
through the scattering parameters. Therefore, a new semi analytical method is introduced
to characterize the coupling loss in a compact array with decoupling network. Hence, the
pattern correlation can be approximated through the scattering parameters together with
the coupling loss.

The channel capacities for compact antenna arrays with different decoupling approaches
are evaluated for both statistical and deterministic models, where the radiation properties
are included as well. Through comparisons between the obtained results, general methods
for predicting the capacity performance according to the radiation patterns are addressed.
New parameters such as a pattern on-off ratio for evaluating systems based on statistical
indoor channel models are derived in this thesis.
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1 Introduction

Antenna arrays have been extensively investigated since several decades due to the
advantages in achieving high directivity and for their beamforming capabilities [Collin and
Zucker, 1969]. However, with the development of modern wireless communication tech-
niques, antenna arrays become more and more popular for other applications, such as for
multiple input multiple output (MIMO) systems in the current and upcoming generations
of wireless communication systems. For example, the IEEE standard 802.11n and the Long-
Term Evolution (LTE) technique already include MIMO configurations [Li et al., 2010b].
Utilizing MIMO techniques in wireless communication systems brings many benefits, e.g.,
high channel capacity can be achieved within limited frequency bands, so that the band
usage efficiency is enhanced, and the multipath interference problem can be avoided as well
[Paulraj et al., 2004]. Nowadays, wireless communication systems are even more exploited
in daily life, e.g., the research for car to car communications has been established in recent
years [Dikaiakos et al., 2007]. As a result, research on antenna arrays in MIMO systems is
important and rewarding. In consequence, the relevant topics of compact antenna arrays
are investigated in this thesis.

It is well known that when two or more antenna elements are placed close to each
other, there are mutual coupling effects between them. For general types of antennas such
as dipoles, a reasonable distance between the antennas should be maintained in order to
get rid of the mutual coupling effect between neighboring radiation elements. It is com-
monly accepted that the minimum distance should be half of a wavelength, e.g., 60 mm at
2.4 GHz. However, this space requirement does not correspond to the dimension considera-
tions of small mobile terminals, where the antenna elements should be positioned compactly.
Under such a condition, the mutual coupling problem seems unavoidable. Consequently,
the performance of the antenna arrays with respect to antenna diversity, efficiency of power
transmission and so on, is highly degraded [Jensen and Wallace, 2004]. As a result, addi-
tional approaches and novel structures must be developed in order to design a multiport
radiation system with good port isolation and a minimized overall dimension.

It is true that with respect to signal processing, the problems caused by mutual cou-
pling might be solved by appropriate algorithms. E.g., in [Lui and Hui, 2010, Yu et al.,
2011], methods based on the receiving mutual impedance have been investigated for com-
pensating the mutual coupling effects. However, these methods do not take into account the
decreased power matching of compact arrays, which is critical in practical MIMO systems.
For improving power matching, several recent researches concerning this topic have been
put forward. The core idea behind all these studies and designs is to isolate and match
the input ports of compact antenna arrays in the analog domain. For example, the fol-
lowing approaches, which are suitable for compact monopole arrays, have been published.
In [Chaloupka and Wang, 2004, Chaloupka et al., 2004, Volmer et al., 2008a,b, Yu and
Hui, 2011], matching and decoupling networks are deployed; either networks with realistic
lumped elements or directional couplers based on microstrip technology are utilized. Eigen-
mode excitation theory [Volmer et al., 2008b] and multiport conjugate matching methods
[Wallace and Jensen, 2004] are the two basic theories for designing the matching and decou-
pling networks. However, the networks with lumped components bring extra Ohmic losses
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into the system, which lowers the radiation efficiency. Alternatively, methods of applying
parasitic scattering components have been studied in [Lau and Andersen, 2012, Salama and
Solbach, 2014], which means one or more parasitic elements with specialized loads are im-
plemented between the radiation elements to isolate the array input ports. However, there
are two major drawbacks of this method. Firstly, extra array elements are required for
the system and the total cost for mass fabrication is also increased. Moreover, the design
appears as an (M+m)-element antenna array which works actually as an M -element array,
where m is the number of the additional parasitic elements. Consequently, and as reported
in [Pelosi et al., 2012], it is not easy to derive an analytical formulation for designing the
parasitic elements. In consequent continuation of the above discussions, a method of using
matching and decoupling networks with low loss technology is the most suitable candidate
for designing compact monopole arrays. In this thesis, three novel prototypes of compact
monopole antenna arrays with separations of only 10% of the free space wavelength op-
erating at 2.45 GHz are presented, where microstrip line based matching and decoupling
networks are investigated and implemented based on the two above mentioned theories.
Good MIMO performance is obtained through both simulations and measurements. Com-
pared to the previous designs, the networks introduced in this thesis show a number of
advantages with respect to power efficiency, simplicity, compactness and so on. Besides the
antenna designs, some physical insights are investigated in this thesis as well, which have
not been addressed in previous publications. For example, the connection between the two
theories is derived, the relationship between the radiation pattern correlation and scattering
parameters is investigated, and beamforming applications of compact monopole arrays are
also studied.

However, the proposed matching and decoupling networks are difficult to realize in
small mobile devices such as smart phones, in which the antennas are mostly based on
printed circuit technology. For printed antenna arrays, there are also several decoupling
concepts published recently, e.g., the defect ground plane in [Georgakopoulos et al., 2001,
Saleem et al., 2015, Younkyu et al., 2004, Zhu et al., 2009], electromagnetic band gap (EBG)
structures shown in [Kim et al., 2013, Yang and Rahmat-Samii, 2003a,b], and neutralization
techniques in [Su et al., 2012, Wang and Du, 2014b]. In this thesis, to expand the variety
of choices for antenna designs, novel decoupling strategies for compact printed arrays are
investigated as well. Due to the particular features of printed antennas such as printed
monopoles, the obtained operation bandwidth is much wider as compared to other tech-
niques and the dimension of the array is much more compact. The partially extended ground
plane and modified ground planes are utilized in the designs to achieve improved MIMO
performance. Additionally, a very innovative antenna design concept named contour inte-
grated antenna for future ultra thin mobile terminals is presented, which occupies even less
space. The proposed antennas and arrays can be integrated at the contour of mobile devices
and require quite little space extended from the contour. Promising antenna performance
is obtained by combining many novel approaches with some known techniques. Based on
this concept, a two-element compact MIMO array is designed as well and a new decoupling
technique especially for arrays with radiation elements with two radiation apertures, named
self-neutralization, is introduced.

In this thesis, the channel capacity is chosen as an evaluation standard for the MIMO
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system performance. Different wireless communication models integrated with practical
antenna array properties are utilized for the investigations, consisting of statistical models
for outdoor and indoor wireless communication channels and deterministic models for room
and corridor scenarios. For this study, the Kronecker model [Maharaj et al., 2007, Yu
et al., 2004] and the Saleh-Valenzuela model [Saleh and Valenzuela, 1987] are utilized for
the statistical analysis. The ray tracing method is exploited for the deterministic studies.
Afterwards, the capacity performance of the antenna arrays is evaluated and interesting
results are obtained and shown. Some new parameters for predicting the performance
based on antenna patterns are also derived.

The content of this thesis is organized as follows. The antenna basics and the important
parameters used in this thesis are defined and derived in Chapter 2. Chapter 3 derives
the basic mathematics for calculating the channel capacity for MIMO systems based on
information theory and defines the design objectives for compact antenna arrays. The
matching and decoupling networks for compact arrays and the relevant investigations are
proposed in Chapter 4. Novel compact printed antennas and arrays are introduced in
Chapter 5. In Chapter 6, the channel capacity performance of MIMO systems is evaluated
based on different models. The summary of the thesis and the outlook of this research topic
are given in Chapter 7.
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2 Antenna Basics

In this chapter, the basic concepts and definitions of antennas are introduced. Most of
the parameters used for defining and evaluating the properties and performances of antennas
or antenna arrays are presented.

2.1 Introduction to Antennas

There are a number of definitions for antennas given in literature, such as in the IEEE
standards of antennas [IEEE, 1983]. Instead of writing down all these definitions, the func-
tionality of antennas is summarized from available documents. In general, an antenna is
a transducer between a guided electromagnetic wave in a waveguide structure and an un-
guided wave such as the wave propagating in free space, as shown in Figure 2.1. The physical
radiation mechanisms of antennas can be deduced from the Maxwell equations, which make
it possible to calculate the antenna properties numerically and to predict the performance of
an antenna. Nowadays, commercial electromagnetic simulation software packages like CST
MWS [CST MWS, 2014], HFSS [HFSS, 2014] and FEKO [FEKO, 2014] are quite efficient
in solving electromagnetic problems. In this thesis, the antenna simulations are carried out
with CST MWS.

Antennas are widely used in daily life for a wide variety of applications, e.g., antennas
are applied for receiving radio broadcasting signals, antennas are implemented in cell phones
or laptops, antenna arrays are utilized in radar systems, and so on. In general, different
applications require different types of antennas. In the following, the antenna types and the
development history are introduced briefly.

The history of antennas can be traced back to the 1830s when Faraday made the ex-
periment with a magnetic coil which was used to track an electromagnetic pulse. This
magnetic coil was operated as an antenna. Around 1890, the first group of antennas, such
as induction coils used for wireless communication experiments, were developed [Ramsay,
1981]. The most important progresses in antennas were made in the 20th century. In the
beginning of the 20th century, several popular antenna concepts were developed for radio
telegraphy applications, for instance the linear dipoles were widely deployed and improved.
Based on the dipoles, in the 1920s the Yagi-Uda antenna was firstly proposed, which has
been deployed for a long period [Yagi, 1928]. Nowadays, on the roofs of buildings, there are
still such antennas which are installed to receive broadcasting signals for television. The
design concept from the Yagi-Uda antenna is also applied quite often in designing planar
antennas such as the wide band quasi Yagi antenna [Kaneda et al., 2002]. Horn antennas
or hollow waveguide antennas were developed around 1939. They are directional antennas
and functional from lower frequency ranges such as hundreds of MHz to millimeter wave
frequencies. Nowadays, hollow waveguide antennas are still widely used, e.g., they are im-
plemented as probes for antenna measurements and radiation elements for millimeter wave
antenna arrays. In the early 1940s, reflector antennas were firstly investigated to meet the
demands of early radar systems. Commonly, reflector antennas own a directivity of more
than 20 dB and can be found very often at airports, ground to satellite communication sta-
tions as well as on the balconies of buildings. At the same period, dielectric lens antennas
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Figure 2.1: Functionality of transmitting and receiving antennas.

and antenna phased arrays also got developed. With the progress of printed circuit board
(PCB) technology in the 1970s, printed antennas such as patch antennas were invented and
they were extensively employed in electronic devices. In the 1990s, the planar inverted F
antenna (PIFA) was developed to satisfy the size requirement of portable mobile terminals.
Since the 21st century, metamaterial antennas, dielectric resonator antennas, compact an-
tenna arrays and so on have become more and more popular. Some classic antenna types
are shown in Figure 2.2 [AntennaWeb, 2015, Balanis, 1992].

2.2 Antenna Parameters and Basic Equations

In this section, general parameters and definitions for antenna design and analysis are
introduced. Some derivations are carried out for further discussions.

2.2.1 Isotropic Antenna and the Coordinate System

An isotropic antenna is a specialized electromagnetic radiator, radiating equal power in
all directions. It does not exist in reality, but it is utilized as a standard reference antenna
for defining parameters of practical antennas.

As done in most literature, the spherical coordinate system is adopted in this thesis
to indicate the antenna far field radiation properties, as shown in Figure 2.3. For example,
the position of point P in the figure can be described as (r, θ, φ) and the radiated field and
power are then depicted as a function of r, θ and φ. It is well known that in the far field
approximation, the radiated electromagnetic waves are assumed to be locally plane waves
(r → ∞, Er ≈ 0), and the polarization of the fields can also be described by the θ and
φ components, which are orthogonal in space. For example, the electric field ~E and the
magnetic field ~H at a point P in the far field can be written as{

~E = Eθ~eθ + Eφ~eφ,
~H = Hθ~eθ +Hφ~eφ,

(2.1)

where ~eθ and ~eφ are unit vectors towards the θ and φ directions, respectively. Also, it should
be noted that time harmonic fields with a suppressed time factor ejωt are considered. The
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Figure 2.2: Some popular antenna types: (a) dipole antenna; (b) horn antenna [Balanis,
2005]; (c) Yagi-Uda antenna [Wikipedia, 2015c];(d) parabolic reflector antenna [Wikipedia,
2015a]; (e) rectangular patch antenna [Balanis, 2005]; (f) PIFA [Wikipedia, 2015b].

root mean square (RMS) radiated power density can be expressed as Re[~S] with

~S(θ, φ, r) =
1

2
~E(θ, φ, r)× ~H∗(θ, φ, r), (2.2)

where ~S(θ, φ, r) is the complex Poynting vector. Only the real part of the complex Poynting
vector is related to the radiated power, while the imaginary part corresponds to the stored
energy around the antenna in the near field. Consequently, the total radiated power over a
closed sphere surface equals

Prad =

∫ 2π

0

∫ π

0

1

2
Re[ ~E(θ, φ, r)× ~H∗(θ, φ, r)]r2 sin θdθdφ. (2.3)

For isotropic radiators, the radiation power density depends only on r, based on equation
(2.3),

|~Si(r)| =
Prad
4πr2

. (2.4)

2.2.2 Input Impedance and Operation Frequency Bandwidth

The input impedance of an antenna is defined as the ratio between the voltage at the
antenna feeding point representing the electric field and the current flowing into the antenna
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Figure 2.3: The spherical coordinate system.

representing the magnetic field. Mathematically, it is written as

Za =
Va
Ia

= Ra +Xaj, (2.5)

where Va and Ia are the corresponding voltage and current at the antenna feed, Ra and Xa

are the real and imaginary part of the antenna input impedance. If there is a mismatch
between the port impedance and the antenna impedance, the undesired reflection at the
interface occurs and the reflection coefficient is calculated through

Γ =
Za − Z0

Za + Z0
, (2.6)

where Z0 is the port or reference impedance. Generally the reflection coefficient is shown
in logarithmic scale, the value is

|Γ| [dB] = 20 log10 |Γ|. (2.7)

Sometimes, the impedance matching property of antennas is also characterized by the volt-
age standing wave ratio (VSWR). The VSWR is defined as the ratio of the maximum
standing wave amplitude to the minimum standing wave amplitude and is, thus, calculated
as

VSWR =
1 + |Γ|
1− |Γ|

. (2.8)

The operation bandwidth of an antenna generally indicates in which frequency band the
desired antenna performance in terms of radiation pattern or return loss is achieved. In
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most cases, the operation bandwidth is referred to the matching bandwidth. In this thesis,
-10 dB return loss is chosen to define the matching bandwidth. The relative bandwidth
BW is expressed in percentage as

BW =
∆f

fc
100%, (2.9)

where ∆f is the operation frequency band and fc is the center frequency. For ultra wide
band (UWB) antennas, the bandwidth can also be expressed as the ratio between the
highest operation frequency to the lowest one.

The maximum achievable matching bandwidth normally depends on the structure of
radiation elements, e.g., electrically small antennas always encounter bandwidth problems.
In [Yaghjian and Best, 2005], an analytical derivation is performed with respect to the
relationship between the achievable bandwidth and the antenna quality factor Q, which is

Q(ω0) =
(2
√
β)

BW (ω0)
,
√
β =

(s− 1)

2
√
s
, (2.10)

where BW is the matching bandwidth corresponding to the desired VSWR and s is the
limiting value of the VSWR. It is shown that the quality factor is inversely proportional to
the bandwidth.

2.2.3 Directivity, Gain and Efficiency

The maximum value of directivity defines how directional an antenna is. The directivity
of an antenna is the ratio between the radiated power density of this antenna in a particular
direction at a certain distance and the radiated power density of an isotropic antenna at
the same distance with the same total radiated power. The directivity D is mathematically
defined as

D(θ, φ) = lim
r→∞

|~S(θ, φ, r)|
Prad
4πr2

= lim
r→∞

|~S(θ, φ, r)|
|~Si(r)|

, (2.11)

where ~Si(r) is the radiation power density of the isotropic antenna with the total radiated
power Prad. It is clear that the directivity of an isotropic antenna is 1, which is normally
marked as 0 dB. In some literature and antenna manuscripts, the directivity of an antenna
is just given as a particular number, in this case, it means the maximum directivity. The
directivity is an important parameter for characterizing the radiation properties. E.g., in
cell phone applications the directivity should be low because an isotropic radiation pattern
is desired, due to the electromagnetic waves impinging from arbitrary directions in a rich
scattering environment. For radar applications the directivity needs to be high, i.e., more
than 20 dB in general.

The gain of an antenna is defined in a similar way as the directivity. It is the ratio
between the radiated power intensity of an antenna in a particular direction and the radiated
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Figure 2.4: Definition of the antenna input interface and the equivalent circuit model.

power intensity of a lossless isotropic antenna with the same accepted power. The gain can
be expressed as

G(θ, φ) = lim
r→∞

|~S(θ, φ, r)|
Pac
4πr2

, (2.12)

where Pac means the accepted power of the antenna. Here, the accepted power is defined
as

Pac = Pin − Pre =
1

2
|a|2 − 1

2
|b|2 = (1− |Γ|2)Pin, (2.13)

where Pin and Pre are the input and reflected power, a and b are the input and reflected
power wave amplitudes, Γ is the reflection coefficient. In this thesis, the interface for the
input and reflected waves of an antenna is chosen at the AA’ plane as shown in Figure 2.4,
because feeding networks are quite often adopted in designing compact antenna arrays, and
they are an integrated part of the array. Due to their losses, their consideration is important
for a realistic characterization of the antenna array performance.

The antenna radiation efficiency is utilized for evaluating the losses. It is defined as
the ratio between the radiated power Prad and the accepted power Pac,

ηr =
Prad
Pac

=
Rrad

Rrad +Rloss
, (2.14)

where Rrad is the equivalent radiation resistance and Rloss is the equivalent loss resistance
in the series equivalent circuit model as shown in Figure 2.4 (the reactive elements are
neglected in the circuit model). Consequently, the total efficiency is defined as the ratio
between the total radiated power and the input power. From equations (2.14) and (2.15),
the total efficiency is written as

ηt =
Prad
Pin

= (1− |Γ|2)ηr. (2.15)
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It is also noticed that the relationship between directivity and gain is

G(θ, φ) = ηrD(θ, φ). (2.16)

This relationship can be applied for radiation efficiency measurements, where the gain can
be measured with a reference antenna and the directivity can be calculated from 3D pattern
measurements.

The reflection coefficient Γ can be reduced by inserting appropriate matching networks.
However, the matching network can bring additional losses and reduce the overall efficiency.
Therefore, the total efficiency should be evaluated after adding the matching network to
ensure maximum radiated power. In this thesis, the gain and efficiency of MIMO antenna
arrays are defined in the same way, as shown in Appendix A.

2.2.4 Effective Receiving Area and Friis Transmission Equation

When an antenna works in RX mode, the effective receiving area is utilized to char-
acterize the maximum received power, which equals the effective area multiplied with the
power density W of the incident plane wave according to

PRX = Aeff|~S|. (2.17)

The effective receiving area of an isotropic radiator is given as [Balanis, 2005],

Aeffi =
λ2

4π
, (2.18)

where λ is the wavelength in free space. The effective receiving area of realistic antennas is
given as

Aeff(θ, φ) = G(θ, φ)
λ2

4π
. (2.19)

It shows that the effective area for the incoming wave from a particular direction depends on
its gain towards this direction, which agrees well with reciprocity. Antennas always receive
more power from the direction towards which they transmit more power.

Once the antenna receiving power is calculated, the power transmission from one an-
tenna to another antenna can be characterized. Figure 2.5 plots a transmission system
between two antennas. PTX is the accepted power by the transmitting antenna. PRX is
the output power at the receiving antenna assuming conjugate matching. The transmitted
power density towards the specific direction (θTX, φTX) in the far field is

|~S(θTX, φTX)| =
GT (θTX, φTX)PTX

4πr2
, (2.20)

where r is the distance between the antennas. The received power of the RX antenna is

PRX =|~S(θTX, φTX)|Areff(θRX, φRX)

=
GT (θTX, φTX)PTX

4πr2

GR(θRX, φRX)λ2

4π
, (2.21)
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Figure 2.5: Transmission between two dipole antennas.

where Areff is the effective area of the RX antenna. Equation (2.22) is known as the Friis
transmission equation, the maximum transmission coefficient can be achieved when the
two antennas are aligned to obtain the maximum gain of both the TX and RX antennas,
respectively. Then, the transmission coefficient becomes

PRX
PTX

=

(
λ

4πr

)2

GTmGRm, (2.22)

where GTm and GRm are the maximum gains of the TX and RX antennas. The factor
( λ

4πr )2 is the free space loss factor, and its dependency on wavelength is with respect to the
size of the effective receiving area. It is noticed that this factor is inversely proportional
to the square of the distance between the two antennas and the frequency. This explains
why for long distance communication systems, lower frequencies are mostly adopted, while
for indoor communications, the frequencies are normally higher in order to achieve larger
available bandwidth. The Friis equation is applied in the following chapters to characterize
the channel properties of wireless communication systems.

2.2.5 Array Factor of Linear Antenna Arrays

When more than one radiation elements appear at the TX or RX stage in a communi-
cation system, an antenna array is obtained. Antenna arrays have extensively been imple-
mented for radar applications since several decades due to their beamforming capabilities.
In this subsection, beamforming with linear antenna arrays is introduced. In Figure 2.6, an
N -element linear antenna array with a uniform distance d between the elements is plotted,
all the radiation elements are the same and it is assumed that the existence of one antenna
does not affect the radiation of other elements. In the far field, the radiation pattern of
the array is expressed as the linear superposition of the contributions from all the elements.
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The total radiated electric field is

~Et(α, P ) =
N∑
i=1

~Ei(α, P ). (2.23)

~Ei(α, P ) is the radiated electric field due to the ith antenna, the plane P is parallel to the
antenna alignment and the angle α is indicated in Figure 2.6. If the ith element is excited
with a constant amplitude ai and a constant phase βi, the radiated electric fields of two
neighboring elements own the relationship

~Ei(α, P )

~Ei−1(α, P )
=
aie

j(− 2π
λ
d cosα+βi)

ai−1ejβi−1
(2.24)

under the far field condition. The phase term e−
2π
λ
d cosα is due to the additional travel

distance d cosα. Then, equation (2.24) can be written as

~Et(α, P ) = ~E1(α, P )FA, (2.25)

where

FA = 1 +
a2e

j(− 2π
λ
d cosα+β2)

a1ejβ1
+
a3e

j(−2 2π
λ
d cosα+β3)

a1ejβ1
+ · · ·+ aNe

j(−(N−1) 2π
λ
d cosα+βN)

a1ejβ1
(2.26)

is called the array factor. For uniform linear arrays, the excitation amplitude of each
element is identical and the phase difference between the neighboring elements is equal to
∆β = βi − βi−1. In this case, the array factor becomes

FA =

N∑
i=1

ej(N−1)(− 2π
λ
d cosα+∆β). (2.27)

In order to obtain the maximum array factor, the term (−2π
λ d cosα+∆β) must equal integer

multiples of 2π, including 0. In the broadside direction of the array (α = 90◦), the condition
∆β = 0 leads to the maximum array factor. In the end fire direction (α = 0◦), the condition
∆β = 2π

λ d leads to the maximum array factor. If d is larger than half a wavelength for a
certain ∆β, there are more than one peak values of FA, which are called grating lobes. 2D
and 3D arrays can be analyzed by applying the same approach.

2.2.6 Scattering, Impedance and Admittance Matrices of Antenna Arrays

For N -port networks, scattering, impedance and admittance matrices are convenient
mathematical tools for describing the properties such as the voltage-current relationship,
reflections, couplings between the ports, and so on. It is important and beneficial to apply
these tools during the investigation of compact antenna arrays. In this subsection, a two-
port network is analyzed as an example as shown in Figure 2.7. Vi and Ii are defined as the
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Figure 2.6: Linear uniform array with N radiation elements.

voltage and current at the ith port. ai and bi are the input and output wave amplitudes at
the ith port. The relationships between ai, bi, Vi and Ii are

ai =
V +
i√
Z0
,

bi =
V −i√
Z0
,

Vi = V +
i + V −i ,

Ii = I+
i − I

−
i = 1√

Z0
(V +
i − V

−
i ).

(2.28)

Z0 is the port impedance and the standard value of it is 50 Ω in most microwave systems, V +
i

is the input voltage wave and V −i is the reflected or output voltage wave. The same definition
is also applied to the current waves. The definition of the elements in the scattering matrix
is

Sij =
bi
aj
|ak=0 for k 6=j , (2.29)

where Sij is the ratio of the output wave amplitude at the ith port and the input wave
amplitude at the jth port when the remaining ports are not excited but loaded with the
reference impedance Z0. Similarly, the definition of the elements in the impedance and
admittance matrices are {

Zij = Vi
Ij
|Ik=0 for k 6=j ,

Yij = Ii
Vj
|Vk=0 for k 6=j .

(2.30)

The two-port network can be characterized by the scattering matrix in the form of

~b =

[
b1
b2

]
=

[
S11 S12

S21 S22

] [
a1

a2

]
= S~a, (2.31)
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Figure 2.7: Two-port antenna array network.

where ~a and ~b are the input and output wave vectors and S stands for the scattering matrix.
The impedance matrix Z and the admittance matrix Y are expressed in a similar way. If
one of the three matrices is known, the other ones can be found from{

Z = Z0(I + S)(I− S)−1,

Y = Z−1,
(2.32)

where I is the unit matrix.

2.2.7 Multipath Interference and Antenna Array Diversity

When an antenna array is utilized in a communication system instead of a single an-
tenna, the diversity improvement is an important factor indicating how the communication
system benefits from the antenna array. Considering communication systems in reality,
multipath interference problems commonly exist. For example, in Figure 2.8 there are two
possible paths between the TX and RX antennas. If the signals from the two paths are
in phase and constructive interference occurs, very good transmission is achieved. On the
other hand, if the signals are out of phase, then destructive interference occurs and the
received signal power is very low. For illustrating this phenomenon, the following situation
is analyzed. The TX and RX antennas are assumed to be isotropic and they are 20 m above
the ground, the reflection coefficient at the ground plane is -1 and the polarization is not
considered. According to equation (2.23), the received power of path 1 is

PRX1 = (
λ

4πD
)2PTX (2.33)

and the received power of path 2 is

PRX2 =

 λ

4π(2
√

(D2 )2 + h2)

2

PTX. (2.34)

The phase of the transmission coefficient between the two isotropic radiators is calculated
as ej(−

2π
λ
L), where L is the travel distance of the wave. Considering the interference effect,

the received power at the RX antenna is

PRX =

∣∣∣∣∣√PRX1e
j(− 2π

λ
D) −

√
PRX2e

j

(
− 2π
λ

(2
√

(D
2

)2+h2)

)∣∣∣∣∣
2

. (2.35)
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Figure 2.8: Multipath interference between two antennas.

The transmitted power is assumed to be 1 W and the frequency is selected as 1 GHz.
Figure 2.9 plots the received powers versus the distance between the antennas. There are
several positions where the received signal power is as low as -60 dBm and the link is bad.
When two antennas are properly implemented in the receiver, the multipath problem is
solved due to the diversity of the two antennas. For example, one antenna can be set at
the position of 100 m while the other is located at 95 m. This ensures that at least one of
the antennas receives the transmitted signal well. The benefit of this arrangement is called
space diversity of antenna arrays. However, in practical communication devices such as
mobile terminals, the antennas can not be arranged with such a large separation, so that
space diversity is not feasible. Then, an arrangement named radiation pattern diversity
is adopted in antenna arrays, where the radiation patterns of the antennas in an array
should be angularly diverse. The antenna array shown in Figure 2.10 can be adopted for
the situation shown in Figure 2.8,, where the two RX antennas have different main beam
directions. Then, by proper combination techniques of the received signals, the multipath
problem is solved. In some literature, a quantity named diversity gain is applied to assess
the diversity performance of antenna arrays. A detailed definition is found in [Kildal and
Rosengren, 2004].
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Figure 2.9: Received signal power versus the distance between two antennas.

Figure 2.10: An example of an RX antenna array with pattern diversity.
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3 Fundamentals of Multiple Input Multiple Output Commu-
nication Systems

In this chapter, the theoretical fundamentals of multiple input multiple output (MIMO)
communication systems are introduced and derived. The basic configuration of MIMO
systems and the corresponding mathematical descriptions are presented. The advantages of
MIMO systems are verified through channel capacity evaluations. Discussions with respect
to the challenges of applying MIMO antenna arrays in practical communication devices are
carried out. Consequently, possible solutions and the design objectives of MIMO antenna
arrays are addressed.

3.1 Introduction to MIMO Communication Systems

In the previous chapter, it has already been shown that multiple RX antennas are
beneficial in solving multipath problems. However, MIMO communication systems are
also advantageous in pursuing high data rates within limited frequency bandwidth and
with power constraints, and this can be proved by evaluating the wireless channel capacity.
Intuitively, when more parallel channels are utilized in a transmission link, more information
can be transferred from the transmitter to the receiver through all these channels.

Figure 3.1 shows the general configuration of a MIMO system, where M TX antennas
and N RX antennas are utilized. xn is the complex transmitted signal of the nth antenna
among the TX antennas and ~x = [x1, x2, ...xM ]T is the complex transmitted signal vector.
Similarly, ~y = [y1, y2, ...yM ]T is the complex received signal vector, which is obtained through

~y =


y1

y2
...
yN

 =

h11 · · · h1M
...

. . .
...

hN1 · · · hNM



x1

x2
...
xM

+


n1

n2
...
nN

 = H~x+ ~n. (3.1)

H is the channel matrix with the dimension of N ×M . ~n is a zero mean complex Gaussian
noise vector at the receiver. Element hij represents the transmission coefficient between
the ith RX antenna and the jth TX antenna. In order to evaluate the performance of
a MIMO system, the channel matrix should be firstly characterized. The channel matrix
can be obtained either by simulations or by measurements. Popular simulation methods
consist of statistical modeling methods [Spencer et al., 2000], full wave electromagnetic field
simulations [Zhang and Sarris, 2014], ray tracing methods [Gesbert et al., 2002], and so on.
Measurements of course return the most practical results, but the measurement setups are
problematic for different scenarios.

3.2 Advantages of MIMO Systems

As mentioned above, MIMO systems are advantageous for pursuing high data rates.
The data rate performance can be represented by the channel capacity [Cover and Gamal,
1979]. Channel capacity means the upper bound of the rate for information transfer in the
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Figure 3.1: Configuration of a MIMO communication system.

channel. When the desired system data rates are smaller than the channel capacity, it is
said that reliable communication can be achieved by applying proper coding techniques.
Mathematically, channel capacity is defined as the maximum mutual information I(X,Y )
per unit time duration between the TX and RX ports [Gray, 2011],

I(X,Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X), (3.2)

where H(X) is the entropy of a discrete random process {X} and Xi is the ith element in
{X} with the probability p(Xi). H(X) is also called the self information and for discrete
distributions, it is calculated through

H(X) = −
N∑
i=1

p(Xi) log2 p(Xi). (3.3)

In this case, the unit of H(X) is bit. For example, if {X} contains two elements and
the probability of each is 0.5, the corresponding self information is 1 bit. For continuous
distributions {X} with the probability density function p(x), the self information is

H(X) = −
∫
p(x) log2 p(x)dx. (3.4)

H(X|Y ) is the conditional entropy, which means the uncertainty of {X} when elements in
{Y } appear. For discrete distributions, it is

H(X|Y ) = −
M∑
k=1

p(Yk)

N∑
i=1

p(Xi|Yk) log2 p(Xi|Yk), (3.5)

20



and for continuous distributions, it is

H(X|Y ) = −
∫ ∫

p(y)p(x|y) log2 p(x|y)dxdy. (3.6)

If there is no uncertainty between the TX and RX ports such as p(Xi|Yk) = 1, thus
H(X|Y ) = 0, the mutual information equals the self information at the TX port. How-
ever, uncertainties always exist in reality due to the existence of noise, and the mutual
information is always less than the self information at the TX port. In this chapter, the
investigation focuses on continuous channels.

3.2.1 Channel Capacity of Single Input Single Output (SISO) Systems

The channel capacity of a zero mean additive white Gaussian noise (AWGN) channel
is given by the Shannon information theorem as [Shannon, 1948]

C = B log2

(
1 +

S

N

)
, (3.7)

where B is the bandwidth of the channel, S is the received signal power, N is the noise
power at the receiver, and S

N is the receiver signal to noise ratio (SNR). The unit of C is
bit/s. Equation (3.7) can be proved as follows. It is assumed that the TX signal x satisfies
the Gaussian distribution and the received signal is

y = hx+ n. (3.8)

Based on equation (3.4), the entropy of {X} with Gaussian distribution and standard
deviation δ is [Telatar, 1999]

H(X) = −
∫
p(x) log2 p(x)dx = log2(

√
2πeδ). (3.9)

where e is the Euler number.

Since the distributions of x and n are both zero mean Gaussian, y is also zero mean
Gaussian. In this case, the time average signal power equals the variance. Based on the
power conservation low,

Py = δ2
y = |h|2δ2

x + δ2
n = S +N. (3.10)

Then,

H(Y ) = log2

√
2πe(S +N). (3.11)

H(Y |X) is the conditional entropy and it equals the entropy of the noise H(n) [Telatar,
1999]. Based on equation (3.2), the mutual information is written in the form of

I(X,Y ) = log2

√
2πe(S +N)− log2

√
2πeN

=
1

2
log2(1 +

S

N
). (3.12)
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Figure 3.2: The average channel capacity versus receiver SNR.

For the realization of data transfer, discrete transmissions of signals are assumed, where the
ideal sampling rate based on the Nyquist theorem is ts = 1

2B . As a result, the maximum
data rate of the channel becomes

C = I(X,Y )
1

ts
= B log2

(
1 +

S

N

)
. (3.13)

It is noticed that the maximum data rate of a channel is related to the bandwidth
and the SNR at the receiver. When infinite signal power or zero noise power exists, the
channel capacity can be infinite in theory. As a result, it is important to ensure a good
SNR at the RX stage in communication systems, since the bandwidth is always limited
by the standards or regulations. The average channel capacity (spectrum channel capacity
density) is defined as

C ′ = log2

(
1 +

S

N

)
, (3.14)

where the unit is bit/s/Hz. Figure 3.2 plots the average channel capacity versus the SNR.
For example, if 1 Gbit/s data rate is desired and the receiver SNR is 50 dB, 75 MHz
bandwidth are required according to equation (3.13).

3.2.2 Channel Capacity of MIMO Systems

The considerations concerning MIMO channel theory follow [Goldsmith et al., 2003,
Telatar, 1999, Wang et al., 2005]. When multiple antennas are used in a communication
system, the entropy of the input signals should be redefined. The TX signals are presented
as the elements in the vector ~x in equation (3.1). When the real and imaginary parts of
the elements of ~x are both Gaussian, ~x is called a complex Gaussian vector. Each element
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in ~x is assumed to have zero mean and all signals are assumed to be independent from the
others. Then, the covariance matrix of the TX signals is

Qx = E[~x~xH ] =

T1 · · · 0

0
. . . 0

0 · · · TM

 , (3.15)

where []H is the conjugate transpose operator and E[] denotes expectation. Ti is the average
transmitted power of the ith TX port. The total transmitted power is the sum of them,
given by

PTX =

M∑
i=1

Ti. (3.16)

The probability density of the multivariate Gaussian distribution is defined as [UIUC, 2015]

p(~x) =
1√
|2πQx|

e(− 1
2

(~x−~µ)TQ−1
x (~x−~µ)), (3.17)

where ~µ is the mean vector which is assumed zero in the following analysis and || denotes
the determinant of a matrix. The entropy of a complex vector ~x is derived as

H(~x) =−
∫
p(~x) log2 p(~x)d~x

=
1

2
log2 |2πeQx|. (3.18)

According to equation (3.1), the covariance matrix of the RX signal vector ~y is

Qy =E[~y~yH ]

=E[(H~x+ ~n)(H~x+ ~n)H ]

=HE[~x~xH ]HH + HE[~x~nH ] + HHE[~n~xH ] + E[~n~nH ]. (3.19)

Since the noise at the RX ports is not correlated with the TX signals and the noise from
different RX ports is also independent, then E[~n~xH ] = E[~x~nH ] = 0 and E[~n~nH ] = PnIN ,
where Pn is the average noise power at the RX ports and IN is the N × N unit matrix.
Equation (3.19) can be simplified as

Qy = HQxH
H + PnIN . (3.20)

Since the TX signals and the noise at the RX ports are all Gaussian, the RX signals are
also Gaussian, so based on equation (3.18), the entropy of the RX signals is

H(~y) =
1

2
log2 |2πeQy|

=
1

2
log2

∣∣2πe(HQxH
H + PnIN )

∣∣ . (3.21)
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Figure 3.3: Communication between TX and RX antennas: (a) SISO; (b) 2×2 MIMO.

The conditional entropy H(~y|~x) equals the entropy of the noise, where

H(~n) =
1

2
log2 |2πeQn| =

1

2
log2 |2πePnIN |. (3.22)

The mutual information between the TX ports and the RX ports is

I(~x, ~y) =H(~y)−H(~n)

=
1

2
log2

∣∣∣∣IN +
HQxH

H

Pn

∣∣∣∣ . (3.23)

The channel capacity equals the maximum mutual information times the sampling rate as
shown in equation (3.13),

C = I(~x, ~y)
1

ts
= B log2

∣∣∣∣IN +
HQxH

H

Pn

∣∣∣∣ . (3.24)

The average channel capacity (spectrum channel capacity density) for MIMO systems is
defined as

C ′ = log2

∣∣∣∣IN +
HQxH

H

Pn

∣∣∣∣ . (3.25)

Once the channel matrix H has been obtained, the capacity performance of the system
can be evaluated. Since the average noise power is constant at each RX port, the channel
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capacity only depends on the channel coefficients and the power allocation strategy of the
TX signals. A simple example is investigated to show how much a MIMO system benefits
in channel capacity. Assuming the situation shown in Figure 3.3(a), a SISO communication
system is built up with two isotropic antennas at 1 GHz, the distance between the TX and
RX antennas is 10 m. In Figure 3.3(b), a 2×2 MIMO communication system is shown,
the element spacing of the TX and RX antenna arrays is 2 m and the distance between
the TX array and the RX array is 10 m. Within the MIMO arrays, it is assumed that
there is no mutual coupling between the antennas. For comparison, it is assumed that the
SISO and MIMO systems transmit equal power and the two antennas within the MIMO
TX array carry the same amount of power, where PTX1 = PTX2 = 1

2PSISO. The average
noise power of all RX antennas is assumed identical. The amplitude of the transmission
coefficient is calculated through equation (2.23) and the phase constant is approximated

by ej(−
2π
λ
L), where L is the distance between the isotropic antennas. The transmission

coefficient of the SISO system is

hSISO = 0.0024e−120◦j . (3.26)

The channel matrix of the 2×2 MIMO system is

H =

[
0.0024e−120◦j 0.0023

0.0023 0.0024e−120◦j

]
. (3.27)

Then, the average channel capacities are calculated through equations (3.14) and (3.25),
respectively. The results are plotted in Figure 3.4. Different from Figure 3.2, the average
channel capacity is plotted versus the ratio of the total TX power and the average noise
power at each RX antenna. It is clearly noticed that with the same PTX/Pn, the 2×2
MIMO system owns much higher channel capacity and with increasing PTX, the channel
capacity of the 2×2 MIMO system increases faster.

In a MIMO communication system, the channel matrix plays an important role during
the analysis of the channel performance, which is performed by a singular value decompo-
sition (SVD) in the following. SVD is a mathematical tool commonly adopted in linear
algebra. It decomposes a complicated matrix and extracts the features of the matrix. In
practical communication systems, the channel matrix is commonly complex, especially when
a number of scatterers exist in the propagation paths. As a result, the SVD is adopted to
investigate the MIMO channel matrix. An N ×M channel matrix H can be decomposed
as

H = UDVH . (3.28)

where U is an N ×N unitary matrix, V is an M ×M unitary matrix, and D is an N ×M
diagonal matrix. The columns of U are the normalized eigenvectors of HHH , the columns
of V are the normalized eigenvectors of HHH, and the entries of D are the square roots of
the eigenvalues of HHH . The eigenvectors ~v and eigenvalues λ of a matrix M are defined
as

M~v = λ~v. (3.29)
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Figure 3.4: The average channel capacity versus the ratio of the total TX power and the
average noise power at each RX antenna.

The elements of the SVD components are placed in descending order. For example, the first
column of U is the normalized eigenvector corresponding to the largest eigenvalue and the
same holds for V. The first entry of D is the square root of the largest eigenvalue of HHH .

The RX signal vector can be described as

~y = UDVH~x+ ~n. (3.30)

Set ~y
′

= UH~y, ~x
′

= VH~x and ~n
′

= UH~n. Because UHU = IM , equation (3.29) becomes

~y
′

= D~x
′
+ ~n

′
. (3.31)

The covariance matrix of ~n′ is

Qn′ = E[~n′~n′H ] = E[UH~n~nHU] = PnU
HINU = PnIN = Qn. (3.32)

It is concluded that ~n
′

owns the same probability distribution as ~n, which is zero mean
and Gaussian. The diagonal entries of D should have min(M,N) non-zero elements. The
elements in ~y

′
can then be written as{

y′i =
√
λix
′
i + ni, (i = 1, ...,min(M,N))

y′i = ni, (i = min(M,N) + 1, ...,max(M,N)).
(3.33)

For the elements i ≤ min(M,N), the channel is functional between the TX and RX anten-
nas. For i > min(M,N), the RX signals only contain noise components. According to this,
the communication system can be equivalent to the one shown in Figure 3.5, where the sizes
of ~x′′, ~n′′ and ~y′′ are the same and equal to min(M,N). The equivalent channel matrix H′

is diagonal and has a dimension of min(M,N) ×min(M,N). If all the TX ports transmit
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Figure 3.5: Representation of the channel matrix by SVD.

the same power, similar to equation (3.32), the covariance matrix of ~x′ can be written as

Qx′ = E[~x′~x′H ] = E[VH~x~xHV] =
PTX
M

V =
PTX
M

IN = Qx. (3.34)

The covariance matrix Qx′′ of ~x′′ contains the first min(M,N) columns and rows of Qx′ .
Then, the equivalent average channel capacity of such a system is

C ′ = log2

∣∣∣∣IN +
H′Qx′′H

′H

Pn

∣∣∣∣
=

min(M,N)∑
i=1

log2

(
1 +

λiPTX
MPn

)
. (3.35)

The channel capacity of MIMO systems here is written in the form of the summation of
the capacity of several individual transmission channels with the channel gain λi of the ith
channel. Evenly distributing the power among the ports of the TX array might not be
the ideal strategy. In order to maximize the channel capacity, optimized power allocation
methods should be utilized. Assume the power transmitted from the ith equivalent TX
port is P ′TXi

, then the total transmitted power is

P ′TX =

min(M,N)∑
i=1

P ′TXi
. (3.36)

Since VHV = IM , P ′TX = PTX is true. The average channel capacity becomes

C ′ =

min(M,N)∑
i=1

log2

(
1 +

λiP
′
TXi

Pn

)
. (3.37)

By the so called ’water-filling’ method, an ideal distribution of the power is obtained to
maximize the channel capacity for a certain total transmitted power. According to equation
(3.36), the power of the ith TX port should be [Telatar, 1999]

P ′TXi
= max

(
µ

P ′TX
min(M,N)

− Pn
λi
, 0

)
, (3.38)
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where µ is a constant and its value can be calculated from equation (3.36). Then, equation
(3.37) becomes

C ′ =

min(M,N)∑
i=1

log2

(
max(

λiµP
′
TX

Pnmin(M,N)
, 1)

)
. (3.39)

To sum up, in a MIMO communication system, the optimal power allocation strategy
depends on the channel condition. If the transmitter is able to get the channel information
feedback from the receiver, it can adjust the transmitted power at each antenna by following
the results based on the above equations. To ensure high data rates, the channels with good
conditions should be assigned more information while the poor quality channels should be
assigned less. However, if the transmitter can not obtain the channel information feedback,
the power at the transmitter should be evenly assigned. In reality, it is also difficult to
realize the hardware for random power assignment, so for later investigations in Chapter 6,
the strategy of evenly distributing the power is always deployed.

In order to illustrate the benefits of applying the ’water-filling’ method, a simple ex-
ample is analyzed. The example is shown in Figure 3.6, which is modified from the one
in Figure 3.3(b). In this case, an absorber is placed in the middle which blocks the trans-
missions from TX Antenna 1 to RX Antenna 2 and from TX Antenna 2 to RX Antenna 1.
The elements h12 and h21 in the channel matrix become 0 and now H is diagonal. It is as-
sumed that there is an absorption environment between TX Antenna 2 and RX Antenna 2
and only 10% of the power is received as compared to before, which means h22 = 0.33h11.
Since h11 > h22 and H is diagonal, the equivalent matrix H′ in Figure 3.5 equals H. The
channel capacity is calculated according to two strategies, one is that the power is evenly
distributed to the two TX antennas and the second is that the power is allocated under the
’water-filling’ approach. The calculated results are plotted in Figure 3.7. It is noticed that if
PTX/Pn is less than 65 dB, the ’water-filling’ method shows better channel capacity. When
PTX/Pn is larger, the two methods show the same channel capacity. Figure 3.8 plots the
power allocation ratio. It shows that when PTX/Pn is small, the power is more allocated to
the channel with better condition. When the PTX/Pn becomes larger, the power is evenly
allocated.

In this section, it was shown that MIMO communication systems are advantageous
in pursuing high data rates. The channels were modeled in a deterministic manner for
arrays with isotropic radiators. For more complex channel situations such as channels in
multipath fading environments with practical antenna elements, the channel capacity will
be investigated in more detail in Chapter 6.

3.3 Challenges of MIMO Antenna Arrays in Modern Communication
Devices

The implementation of MIMO antenna arrays in practical communication devices en-
counters several challenges. For instance, nowadays, the mobile terminals are becoming
more and more compact. As a result, the room left for the antennas is quite limited. If the
antenna elements of an array are placed close to each other, mutual coupling occurs, which
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Figure 3.6: 2×2 MIMO system with absorber and absorption environment.

means that parts of the TX signal from one antenna can be directly received by another TX
antenna in its near field. Consequently, the transmission efficiency of the antenna array is
lower. For indicating this effect, three two-element antenna arrays are investigated here as
shown in Figure 3.9. In Figure 3.9(a), a monopole array is modeled in CST MWS operating
around 2.4 GHz with an edge to edge distance of around 0.15λ0, where λ0 is the free space
wavelength. The monopole and ground plane material are chosen as copper, the simulated
S-parameters are shown in Figure 3.10(a). In Figure 3.9(b), the elements of the array are
printed monopoles. The printed monopoles are built on the substrate RO 4350 [Rogers,
2015] with a thickness of 0.762 mm, the metallization is 0.018 mm, the dielectric constant
is 3.66, and tan δ=0.004. The printed monopole array also works around 2.4 GHz with an
edge to edge distance of 0.15λ0. The simulated S-parameters of this array are plotted in
Figure 3.10(b). A patch antenna array operating at 2.45 GHz is shown in Figure 3.9(c)
and the radiation elements are aligned in parallel with the H-plane. The same substrate
is used for the printed monopole array and the edge to edge distance is still 0.15λ0. The
simulated S-parameters are shown in Figure 3.10(c). To characterize the influence on the
radiated power from the mutual coupling effect, the following calculations are carried out.
The radiated power from one port can be written in the form of

Prad = (1− |S11|2 − |S21|2)Pin − Ploss. (3.40)

If the ports are both individually matched, e.g. |S11| = 0, the radiated power becomes

Prad = (1− |S21|2)Pin − Ploss = Pin − Ploss − Pcouple, (3.41)

where Pcouple is the coupled power from one antenna to the other. The radiated power of
a single indicated element in the matched case is

Ps,rad = Pin − Ps,loss. (3.42)

Ps,loss is the power loss of the single element. Then, the radiated power reduction ratio
can be defined as

ξ =
Ps,rad − Prad

Pin
. (3.43)
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Figure 3.7: The average channel capacity for the configuration in Figure 3.6 versus the
ratio of the TX power and noise power at each RX antenna according to different power
allocation strategies.

If Ps,loss = Ploss, it can be shown that ξ = |S21|2. For example, for the two-element

monopole array, 30% power cannot be radiated due to the mutual coupling. The coupling
between radiation elements depends on the distance between the antennas and also the
type of the antennas. For example, for antennas based on printed circuit board (PCB)
technology, the coupling of the printed monopole array is much higher than the one for
the patch antenna array, of which the coupling coefficient is as low as -18 dB. This is due
to their different radiation mechanisms. For patch antennas, the radiation is due to the
fringe electric fields at the open ends of the resonator in the E-plane. Since the antennas
are aligned in the H-plane, even with a small separation, the mutual coupling is still low.

The second effect of mutual coupling is the change of radiation patterns. When one
antenna of the array is working, the neighboring antennas perform as loaded parasitic
elements. As a result, the radiation pattern of an antenna in a compact array can be
different from the pattern of an individual element. Consequently, parameters such as gain
and pattern correlation are affected. Therefore, these considerations should be treated
carefully during the design of MIMO antenna arrays for modern communication devices.

3.4 Design Objectives for Compact MIMO Antenna Arrays

In this section, the design objectives for compact antenna arrays are presented. In
order to enhance the radiated power, matching and decoupling between the array input
ports should be achieved. Generally, decoupling is always firstly performed, because when
the ports are decoupled and able to radiate, each port can be matched individually by
proper matching circuits. Mathematically, matching and decoupling means the scattering
matrix of an antenna array is a null matrix. There are a number of solutions to achieve this
objective. For example, matching and decoupling networks can be implemented between the

30



Figure 3.8: Power allocation ratio of the TX signals according to the water-filling method
for the system in Figure 3.6.

input ports and the radiation elements [Volmer et al., 2008a,b]; electromagnetic bandgap
(EBG) structures can be used to block the surface wave prorogation in the substrate of
planar antennas [Yang and Rahmat-Samii, 2003a]; particularly loaded parasitic elements
can be placed between the radiation elements for decoupling purposes [Lau and Andersen,
2012]; the characteristic modes excitation can be adopted in the design of communication
devices mostly with conducting body [Li et al., 2014, Martens et al., 2011]. All these
solutions can match and decouple the input ports, but of course there are some drawbacks
as well, such as the decrease of operation bandwidth, reduction of efficiency, more cost and
so on.

The second consideration in MIMO antenna array design is the radiation property.
The radiation patterns of the elements in an array should correspond to the requirements of
different applications. Generally, for MIMO antenna arrays, the received signal correlation
can be applied to estimate the performance of MIMO systems. The signal correlation
between the received signals (zero mean) of the ith and jth port ρij is defined as

ρij =
E[yiy

∗
j ]√

E[yiy∗i ]E[yjy∗j ]
, (3.44)

where []∗ denotes the conjugate operator. Take a 2×2 MIMO system as an example, the
numerator of the signal correlation between two RX ports is

E[y1y
∗
2] =E[(h11x1 + h12x2 + n1)(h21x1 + h22x2 + n2)∗]

=E[(h11x1)(h21x1)∗] + E[(h12x2)(h21x1)∗] + E[n1(h21x1)∗]+

E[(h11x1)(h22x2)∗] + E[(h12x2)(h22x2)∗] + E[n1(h22x2)∗]+

E[(h11x1)n∗2] + E[(h12x2)n∗2] + E[n1n
∗
2]

=E[(h11x1)(h21x1)∗] + E[(h12x2)(h22x2)∗]. (3.45)
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Figure 3.9: Two-element compact antenna arrays: (a) monopole array; (b) printed
monopole array; (c) patch antenna array.

In this equation, it is assumed that the TX signals are uncorrelated and the noise at the
RX ports is independent from the TX signals. According to equation (3.21), the entropy of
the RX signals is maximized if the RX signals are uncorrelated. Consequently, the channel
capacity is also maximized. As a result, if the transmitted power is evenly distributed to
the TX ports, to obtain the optimal channel performance, the channel matrix should fulfill
the condition

h11h
∗
21 + h12h

∗
22 = 0. (3.46)

However, it is still difficult to extract the desired radiation property from equation
(3.46). In [Vaughan and Anderson, 1987] and [Dietrich et al., 2001], approximation meth-
ods are utilized to evaluate the radiation performance of antenna arrays based on the signal
correlation. In outdoor communication systems, there are a great number of scatterers such
as buildings, plants and so on. As a result, it is reasonable to assume that the RX antennas
receive signals from all directions. For example, Figure 3.11 depicts a two-element MIMO
antenna array in the RX mode. The coordinate origin is defined at the middle point be-
tween the two antennas. Electromagnetic waves from direction (θ, φ) are time dependent
and expressed as ~E(θ, φ, t) = Eθ(θ, φ, t)~eθ +Eφ(θ, φ, t) ~eφ, containing two polarization com-
ponents. The gain of an antenna for a certain direction can be expressed in the form of
G(θ, φ) = Gθ(θ, φ) +Gφ(θ, φ), so the received power from a certain direction is{

PRX,θ(θ, φ) = |Eθ(θ,φ)|2
2Zs

(λ
2

4π )Gθ(θ, φ)

PRX,φ(θ, φ) =
|Eφ(θ,φ)|2

2Zs
(λ

2

4π )Gφ(θ, φ),
(3.47)

where Zs is the impedance of free space, |E(θ,φ)|2
2Zs

is the power density of the plane wave in
free space and E is the electric field magnitude. The power of the received signal from a

certain direction is defined as |u(θ,φ)|2
Z0

, where u(θ, φ) is the RX port voltage and Z0 is the
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Figure 3.10: Simulated S-parameters in CST MWS: (a) monopole array; (b) printed
monopole array; (c) patch antenna array.

port impedance. Then the following relationship can be found:|uθ(θ, φ)| = |Eθ(θ, φ)|
√

Z0
Zs

(λ
2

4π )Gθ(θ, φ) = χ
√
Gθ(θ, φ)|Eθ(θ, φ)|

|uφ(θ, φ)| = |Eφ(θ, φ)|
√

Z0
Zs

(λ
2

4π )Gφ(θ, φ) = χ
√
Gφ(θ, φ)|Eφ(θ, φ)|,

(3.48)

with

χ =

√
Z0

Zs
(
λ2

4π
). (3.49)

For convenience, the magnitude of the normalized radiation pattern is defined as

|F (θ, φ)|2 =
G(θ, φ)

Gm
=
Gθ(θ, φ)

Gm
+
Gφ(θ, φ)

Gm
= |Fθ(θ, φ)|2 + |Fφ(θ, φ)|2, (3.50)

where Gm is the maximum gain of the antenna. The complex normalized radiation pattern
on a sphere with radius R is

~F (θ, φ) = Fθ(θ, φ)ejψθ(θ,φ) ~eθ + Fφ(θ, φ)ejψφ(θ,φ) ~eφ, (3.51)
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Figure 3.11: A two-element RX MIMO array receives signals from different directions.

where ψθ and ψφ are the phase constant of the two polarizations on the sphere. Then,
based on the above equations and the reciprocity theory, the received signal from a certain
direction is

u(θ, φ, t) = χ~F (θ, φ) · ~E(θ, φ, t). (3.52)

For a MIMO array, the received signal of the ith antenna is

ui(t) =

N∑
k=1

ui(θk, φk, t) =

N∑
k=1

χ~Fi(θk, φk) · ~E(θk, φk, t). (3.53)

The correlation coefficient between the voltages of the RX ports is

ρij =
E[uiu

∗
j ]√

E[uiu∗i ]E[uju∗j ]
, (3.54)

with
E[uiu

∗
j ] = E[

∑N
k=1 χ

~Fi(θk, φk) · ~E(θk, φk, t)
∑N

k=1 χ
~E∗(θk, φk, t) · ~F ∗j (θk, φk)]

E[uiu
∗
i ] = E[

∑N
k=1 χ

~Fi(θk, φk) · ~E(θk, φk, t)
∑N

k=1 χ
~E∗(θk, φk, t) · ~F ∗i (θk, φk)]

E[uju
∗
j ] = E[

∑N
k=1 χ

~Fj(θk, φk) · ~E(θk, φk, t)
∑N

k=1 χ
~E∗(θk, φk, t) · ~F ∗j (θk, φk)].

(3.55)
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As mentioned before, in an outdoor rich scattering environment, signals from different
directions and with different polarizations can be assumed to be uncorrelated, which means{

E[Eθ(θk, φk, t)E
∗
θ (θl, φl, t)] = 0, | for k 6=l

E[Eθ(θk, φk, t)E
∗
φ(θl, φl, t)] = 0, | for all k,l .

(3.56)

Often it is reasonable to assume that the signal power is uniform for the signals from all
directions and polarizations, which means{

E[Eθ(θk, φk, t)E
∗
θ (θk, φk, t)] = E[Eθ(θj , φj , t)E

∗
θ (θl, φl, t)] = C | for all k,l

E[Eφ(θk, φk, t)E
∗
φ(θk, φk, t)] = E[Eφ(θj , φj , t)E

∗
φ(θl, φl, t)] = C | for all k,l .

(3.57)

Then, equation (3.55) can be simplified as
E[uiu

∗
j ] = Cχ

∑N
k=1

~Fi(θk, φk) · ~F ∗j (θk, φk)

E[uiu
∗
i ] = Cχ

∑N
k=1

~Fi(θk, φk) · ~F ∗i (θk, φk)

E[uiu
∗
i ] = Cχ

∑N
k=1

~Fj(θk, φk) · ~F ∗j (θk, φk).

(3.58)

In consequence, the received signal correlation coefficient can be represented by the radiation
patterns, which is

ρij =

∑N
k=1

~Fi(θk, φk) · ~F ∗j (θk, φk)√∑N
k=1 |~Fi(θk, φk)|2

∑N
k=1 |~Fj(θk, φk)|2

≈
∫
~Fi(θ, φ) · ~F ∗j (θ, φ)dΩ√∫

|~Fi(θ, φ)|2dΩ
∫
|~Fj(θ, φ)|2dΩ

. (3.59)

This is also called the radiation pattern correlation coefficient between two antennas. Equa-
tion (3.59) is generally applied to assess the performance of MIMO antenna arrays.

To sum up, if there is no particular requirement for the radiation patterns, the design
objectives of MIMO arrays are good power matching and low radiation pattern correlations
between the array elements. It will be proved in Chapter 4 that for lossless antennas, if
matching and decoupling are achieved, the radiation patterns are uncorrelated. In Chapter
6, a more rigorous derivation of the relationship between the pattern correlation and the
channel correlation will be performed.
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4 Matching and Decoupling Networks for Compact Antenna
Arrays

In this chapter, matching and decoupling networks utilized for solving mutual coupling
problems of compact antenna arrays are addressed. The two design theories exploited in
this chapter are introduced, derived and compared. Two two-element and one four-element
compact monopole antenna arrays are designed, fabricated and measured. The relationship
between the radiation pattern correlation coefficient and S-parameters is derived, while the
beamforming applications of compact monopole arrays are investigated as well. Parts of the
achievements demonstrated in this chapter have been published in [Wang et al., 2013a,b,c,
2014e, 2015a].

4.1 Introduction to Matching and Decoupling Networks

The method of utilizing matching and decoupling networks is illustrated in Figure 4.1,
where the matching and decoupling network is utilized between the compact antenna array
and the input ports. The function of the network is to isolate the input ports and achieve
power matching. This solution is universal because the design of the network only depends
on the scattering parameters of the array and it is not related to the type of the radiation
elements. For designing this network, there are two basic theories: the eigenmode excitation
method and the multiport conjugate matching.

Eigenmode excitation means that each input port excites a certain mode in the antenna
array through the additional network, which is an eigenvector of the scattering matrix of
the antenna array. Based on the condition of multiport conjugate matching at the inputs
of the antenna array, it is known that maximum power transmission is achieved for lossless
feeding networks. Consequently, no reflection and coupling occur among the system input
ports. The matching and decoupling networks can be realized by both lumped elements
and transmission lines. However, the drawback of using lumped elements is that additional
Ohmic losses are brought into the array, which reduces the efficiency. As a result, in this
chapter the decoupling networks are designed according to approaches considering only
transmission lines. In the following, monopole arrays at 2.45 GHz are utilized as examples
for detailed investigations.

4.2 Eigenmode Excitation Method

4.2.1 Mathematical Description of the Eigenmode Excitation Method

The signal flow chart of the considered compact array with feeding network is shown
in Figure 4.2, where ~a and ~b are the input and reflected wave vectors of the system. The
matching and decoupling network is modeled as a 2N -port network. The input wave ampli-
tudes at the left-hand side of the network are given as a vector where ~al = [a1, a2 · · · , aN ]T ,
the output wave vector at the left-hand side of the network is ~bl = [b1, b2 · · · , bN ]T . The
input wave vector at the right-hand side of the network is ~ar = [aN+1, aN+2 · · · , a2N ]T and
the output wave vector at the right-hand side is ~br = [bN+1, bN+2 · · · , b2N ]T . Then, the
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Figure 4.1: Configuration of an M -element compact antenna array with matching and
decoupling network.

Figure 4.2: Signal flow chart of the antenna array with matching and decoupling network.

scattering matrix of the 2N -port network can be decomposed into four sub-matrices, where
~bl = S11,N~al, ~bl = S12,N~ar, ~br = S21,N~al and ~br = S22,N~ar. The network is cascaded with
the compact antenna array with the scattering matrix Sant. For this configuration, the

design target is to have the output vector ~b in Figure 4.2 equal to zero, which means there
is no coupling between the ports and all the inputs ports are matched. The reflected wave
vector ~b is

~b = S11,N~a+ S12,NSant~v, (4.1)

where ~v is the input wave vector of the antenna array. The following equation can be applied
to solve for ~v:

S21,N~a+ S22,NSant~v = ~v. (4.2)
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Then, ~v can be written in the form of

~v = (I− S22,NSant)−1S21,N~a. (4.3)

For the derivation, it was assumed that the matrix (I − S22,NSant) is invertible. This
assumption is physically based on the fact that there should be always a stable and unique
solution of ~v for all passive networks with a certain input vector S21,N~a. Equation (4.1)
becomes

~b = S11,N~a+ S12,NSant(I− S22,NSant)−1S21,N~a. (4.4)

The scattering matrix of the system with the antenna array and the feeding network is

Ssys = S11,N + S12,NSant(I− S22,NSant)−1S21,N . (4.5)

The design objective of the matching and decoupling network is to generate the correspond-
ing eigenvectors by exciting a single input port, where the other input ports are decoupled.
For an N ×N matrix Sant, there exist N eigenvalues λi, which can be calculated through

|Sant − λI| = 0. (4.6)

By solving for the eigenvalues of the scattering matrix of the antenna array, the eigenvectors
are obtained. Their relationship is

Sant~ri = λi~ri, (4.7)

where ~ri is the ith eigenvector. This equation can be explained physically in a way that the
reflected wave vector and the corresponding incident wave vector, which is the eigenvector of
the array scattering matrix, are identical except for the multiplication with the eigenvalue λi.
In order to let each port at the input side generate one eigenvector through the matching and
decoupling network, the matrix S21,N is created column by column through ~gi = ci~ri, where
~gi is the ith column of S21,N and ci is a constant. Generally, the matching and decoupling
network contains only passive elements. As a result, reciprocity can be expected, which
means

S21,N = ST12,N . (4.8)

It is known that for a symmetric matrix the eigenvectors corresponding to different eigen-
values are orthogonal, which is

~gi · ~gj = 0 | for i 6=j . (4.9)

Assume the ith port is excited, ~ai = [0, 0, · · · , ai, · · · , 0]T . According to the above relation-
ship, it can be derived that

S21,N~ai = aici~gi (4.10)

and based on equation (4.3),

~vi = aici(I− S22,NSant)−1~gi. (4.11)
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To maintain the vector ~vi to be the eigenvector of the scattering matrix of the antenna array,
the matrix S22,N should be either a null matrix or a matrix owning the same eigenvectors
as Sant. Assume S22,NSant~gi = xi~gi, then

(I− S22,NSant)~gi = (1− xi)~gi, (4.12)

and

(I− S22,NSant)−1~gi =
1

1− xi
~gi. (4.13)

According to equation (4.4), the reflected wave vector can be written in the form of

~bi = S11,N~ai +
aiciλi
1− xi

S12,N~gi. (4.14)

Together with the relationship shown in equation (4.8) and the orthogonality property
shown in equation (4.9), it can be derived that

S12,N~gi =



0
0
...

ci~gi · ~gi
...
0


, (4.15)

which means, if the input wave vector of the antenna array is an eigenvector of its scat-
tering matrix, the reflected wave vector from the antenna array only couples to the port
which excites it. This property can be understood as the reciprocity of the matching and
decoupling network. In order to ensure the decoupling between the input ports, the matrix
S11,N should be diagonal and there should be no direct coupling within the network on the
left-hand side. To achieve the matching, the matching network at each input port should
be properly designed and the following relationship should be achieved:

Sii +
c2
iλi

1− xi
~gi · ~gi = 0, (4.16)

where Sii is the ith element on the diagonal of S11,N . Based on the above discussions, in
order to solve the mutual coupling problem based on the eigenmode generation method, the
following requirements should be fulfilled: a) the matching and decoupling network should
be passive and reciprocal; b) each column of S21,N should be an eigenvector of Sant; c) S22,N

should either be a null matrix or should have eigenvectors in common with Sant(eigenvalues
can be different); d) S11,N should be diagonal and the entries on the diagonal should be
solved from equation (4.16).

4.2.2 Design of a Matching and Decoupling Network with Eigenmode Excita-
tion for a Two-Element Monopole Antenna Array

In this section, the matching and decoupling network based on the eigenmode excitation
method for a two-element monopole array operating around 2.45 GHz with element spacing
of 10% of the free space wavelength is designed.
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Figure 4.3: Schematic for the eigenmode excitation of a two-element compact antenna array.
TL: transmission line.

For a two-element monopole antenna array, which is aligned symmetrically, the scat-
tering matrix can be described mathematically as

Sant =

[
r c
c r

]
, (4.17)

where r denotes the reflection coefficient at each port and c is the coupling coefficient
between the ports. To generate the eigenmodes at the antenna array, a four-port network
is required. It is simply solved for the eigenvectors ~v1 = [1, 1]T and ~v2 = [1,−1]T , together
with the corresponding eigenvalues λ1 = r+ c and λ2 = r− c, respectively. The two modes
can also be called the even mode and the odd mode, since for one of the modes the elements
are excited in phase while for the other one the elements are excited out of phase.

Based on the above discussions, a simple matching and decoupling network is configured
as shown in Figure 4.3. Port 1 is planned to generate the odd mode and port 2 is used
to excite the even mode. The power from each port is divided into two branches by a
microstrip divider and each branch is connected with one radiation element. In order to
generate the odd mode, a 180◦ phase shifter is inserted in one of the branches near port
1. Instead of the antenna array, if two 50 Ω terminals are placed, the scattering matrix of
the network can be obtained. It is obvious that this network contains only passive elements
and the two rows of S21,N are the eigenvectors of Sant. For such a network, S22,N is not a
null matrix, but it should have the same eigenvectors as Sant. The decoupling network can
be modeled as shown in Figure 4.4. Since the circuit is passive, it is obvious that S43 = S34

due to reciprocity. If S33 = S44, it can be concluded that S22,N has the same eigenvectors as
Sant. To prove this, in the following the even-odd mode excitation analysis is utilized. Port
1 and port 2 can be equivalent to two loads of 50 Ω and after the impedance transformation
by the matching network, the impedances are demonstrated as Z1 and Z2, respectively.
Consequently, each of them can be divided into two loads in shunt with impedances of
2Z1 and 2Z2, respectively. The four transmission lines have equal length and the same
characteristic impedance. Then, if port 3 and port 4 are excited simultaneously with the
same amplitude and out of phase, which means a3 = −a4 = a, a virtual ground is formed
in the middle on the upper branch and a virtual open is formed in the middle of the lower
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branch as shown in Figure 4.4. In this case, the circuit can be decomposed into two one-port
circuits and the equivalent reflection coefficients of the circuit at port 3 and port 4 can be
derived as {

r3 = b3
a3

= S34a4+S33a3
a3

= −S34 + S33

r4 = b4
a4

= S43a3+S44a4
a4

= −S43 + S44.
(4.18)

It is already known that S34 = S43, so if r3 = r4, S33 = S44 is true. Comparing the two
one-port equivalent circuits, the only difference is that there is a phase inverter in one of
the branches for port 3. The effect of the phase inverter is investigated based on the circuit
model shown in Figure 4.5. Without the phase inverter, the reflection coefficient is

Γ =
b

a
. (4.19)

When a phase shifter is applied at the input, the new input wave amplitude is a′ = aejφ0

and the output wave amplitude becomes b′ = be−jφ0 , where φ0 is the phase shift. Then,
the reflection coefficient becomes

Γ′ =
b′

a′
=
be−jφ0

aejφ0
= Γe−2jφ0 . (4.20)

The phase shift of a phase inverter is 180◦, in this case, Γ′ = Γ. The input impedance of a
one-port network is

ZL = Z0
1 + Γ

1− Γ
. (4.21)

With the same reflection coefficient, the corresponding input impedances are identical.
Consequently, it is concluded that the two one-port networks in Figure 4.4 are equivalent,
so r3 = r4 and then S33 = S44. As a result, S22,N has the same eigenvectors as Sant. When
the odd mode port is excited, destructive interference occurs at the node in front of the
even port (port 2), as a result, S21 = S12 = 0 and S11,N is diagonal. By properly designing
the matching circuit, matching and decoupling of the array can be achieved.

The implementation of the matching and decoupling network for a compact monopole
antenna array is shown in Figure 4.6. The rod monopole antennas are made of copper
and they are mounted on an aluminum plate with the size of 150 mm × 150 mm. The
thickness of the plate is 5 mm. The diameter of the copper rod is 2.5 mm. The matching
and decoupling network is implemented on the other side of the aluminum plate for its
convenience in installation and for avoiding radiation influences from the network. The
substrate is FR 4 with a dielectric constant εr = 4.518, tan δ = 0.016, the thickness of the
substrate is 1.5 mm and the metalization is 0.018 mm. In the plate, two holes are drilled
to connect the rod antenna with the microstrip lines on the substrate. Inside of the hole,
Teflon is filled into the space to hold the monopoles and the diameter of the hole is 5 mm.
The length of the monopoles above the ground plate is 29.65 mm. Two monopoles are
aligned in the middle of the plate and the center to center distance between the monopoles
is 16 mm.
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Figure 4.4: Simplification and decomposition of the schematic shown in Figure 4.3.

The proposed matching and decoupling network is shown in Figure 4.7(a). The feeds
of the two monopole antennas are located at the center of the PCB board. In the network,
a folded microstrip line structure with electric length of half the effective wavelength at
around 2.45 GHz is applied to generate the odd mode from the excitation (the structure
is named as microstrip balun). The miter at the corners compensates the parasitic effects
caused by the 90◦ bending [Pozar, 2011]. Two narrow strip lines with particular length
and characteristic impedance are implemented for the purpose of matching by the method
of impedance transformation. Virtual ground points are formed due to the destructive
interference at point A and B. When the odd mode is excited, point A is equal to a ground,
which means the circuit after point A does not affect the operation of the odd mode and
this is also true for point B when the even mode is excited. The transmission line lengths
from the two points to the monopole feeding points are chosen approximately one quarter
of the effective wavelength to transform the virtual ground into an open at the antenna
feedings.

It is noticed that the transmission line used for matching the odd port is much narrower.
This is due to the fact that the input impedance due to the odd mode radiation is very
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Figure 4.5: Transformation of the reflection coefficient by a phase shifter.

Figure 4.6: Feeding and implementation of the radiation elements.

small, which is transformed to a high impedance at point B. As a result, the matching
transmission line is required to have a higher characteristic impedance. The simulated
electric field distribution from CST MWS at 2.45 GHz is plotted in Figure 4.8. It is obvious
that the field is almost zero at one port when the other port is excited. The simulated
S-parameters are shown in Figure 4.9. The coupling between the two ports is reduced to as
less as -30 dB at the operation frequency. The matching bandwidth for the measurement
of the return loss of less than -10 dB is around 350 MHz for the even mode and 65 MHz
for the odd mode. It was mentioned in Chapter 2 that the matching bandwidth is inversely
proportional to the quality factor. For the odd mode, the two antenna elements are out
of phase. Therefore, a virtual PEC plane can be assumed in the middle between the two
monopoles and the electric fields are partially confined by it. As a result, the quality factor
is very large and the matching bandwidth is limited. The pattern correlation is checked
with the simulated far field radiation patterns. The calculated result of equation (3.59) is
around 0.04 at 2.45 GHz.
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Figure 4.7: (a)The layout of the matching and decoupling network; (b) photograph of the
fabricated circuit.

4.2.3 Measurement Results for the Compact Monopole Array

The fabricated antenna array is shown in Figure 4.10. The measurements of the S-
parameters were carried out with a vector network analyzer (VNA) (Rohde & Schwarz ZVA
24) in the frequency range from 2 GHz to 3 GHz. The measured S-parameters are shown in
Figure 4.11. Compared to the simulation results, the operation frequency is slightly shifted.
This could be due to fabrication errors, e.g., the monopole length is a little bit shorter than
the desired value. The antenna far field radiation patterns were also measured for the two
ports by a full spherical scan with a step size of 1◦ vertically and 15◦ horizontally. The
measurements were carried out by ASTRIUM GmbH, Munich. The measurement results
in a vertical cut plane are shown in Figure 4.12. A gain measurement was also carried out,
where the result is plotted in Figure 4.13. The directivity can be calculated through the
measured 3D radiation patterns. Then, the measured radiation efficiencies at 2.45 GHz are
45% and 73% for the odd mode and the even mode, respectively.
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Figure 4.8: Electric field distribution from CST MWS at 2.45 GHz: (a) odd mode; (b) even
mode.

Figure 4.9: Simulated S-parameters for the array based on the eigenmode excitation method.
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Figure 4.10: Photograph of the fabricated two-element compact monopole array.

Figure 4.11: Measured S-parameters for the array based on the eigenmode excitation
method.

47



Figure 4.12: Normalized measured and simulated far field patterns of the array based on
the eigenmode excitation method for φ = 0◦ at 2.45 GHz: (a) even mode; (b) odd mode.

Figure 4.13: Measured antenna gain for the array based on the eigenmode excitation
method.
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4.3 Multiport Conjugate Matching Method

In this section, the second matching and decoupling approach named multiport conju-
gate matching is investigated. A decoupling network for the same compact monopole array
as presented in the last section is designed.

4.3.1 Introduction of the Multiport Conjugate Matching Method

For an M -port matching and decoupling network, the total input power equals the
scattered power plus the power loss in the network, which means

Ploss =Pin − Pout

=
1

2
~aH~a− 1

2
~bH~b

=
1

2
~aH~a− 1

2
~aHSHMSM~a

=
1

2
~aH(I− SHMSM )~a. (4.22)

If the network is lossless, Ploss = 0 and it is derived that SHMSM = I. For a 2N -port
network, this result is equivalent to the conditions [Wallace and Jensen, 2004]

SH11,NS11,N + SH21,NS21,N = I,

SH11,NS12,N + SH21,NS22,N = 0,

SH12,NS12,N + SH22,NS22,N = I.

(4.23)

If the multiport conjugate matching condition S22,N = SHant is achieved, the power is
maximally transferred. The proof of this statement is provided in Appendix B.

Alternatively, the operation principle of the multiport conjugate matching can be ex-
plained physically as follows. Assume a two-port system as shown in Figure 4.14. After
implementing the decoupling network, there are two parallel paths between the input ports
of the system. One is the direct path due to the network (path 1 shown in Figure 4.14)
and the other one is the mutual coupling contribution (path 2 in Figure 4.14) between the
radiation elements. The essence of implementing the decoupling network is to avoid any
signal flowing from port 1 into port 2. This means signals due to the two paths must be
destructively interfered. This can also be recognized as a neutralization technique.

In the following, low loss networks are assumed lossless for the first step estimation
based on the condition S22,N = SHant of the design and optimization procedures are applied
afterwards.

4.3.2 Design of a Matching and Decoupling Network with Multiport Conjugate
Matching for a Two-Element Monopole Antenna Array

With the assistance of computer simulation software such as CST MWS or based on
real array measurements, the scattering matrix of the compact antenna array can be ob-
tained. As a result, the corresponding conjugate transpose matrix of it can be calculated.
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Figure 4.14: The two possible paths between the two ports of coupled antennas with de-
coupling network.

Consequently, the matching and decoupling network can be designed according to this ma-
trix. In the last section, it was shown that the scattering matrix of the monopole array is
symmetric, so the decoupling network should be symmetric as well. Here, a fast approxi-
mation design method based on even-odd excitation analysis is proposed. Considering the
coupling and radiation properties of the array, an H-shaped schematic is utilized for design-
ing the decoupling network as shown in Figure 4.15, where the input ports are considered
as 50 Ω loads. The network consists of three two-port networks A, B and C. Initially, these
networks are assumed to be lossless. In order to avoid the losses and reduce manufacturing
complexity, the matching and decoupling network is realized with transmission lines.

When the network is excited in the odd mode on the right side of the decoupling
network, a virtual ground is expected in the middle of the network, of which the equivalent
one-port circuit is shown in Figure 4.15(b). On the other hand, if the even mode is excited,
a virtual open is found. The corresponding reflection coefficients of the odd mode ro and of
the even mode re can be expressed as{

ro = S∗11 − S∗12

re = S∗11 + S∗12,
(4.24)

where S11 and S12 are the elements of the array scattering matrix. For convenience, the
network is synthesized by equivalent admittances, which are calculated through

Yo,e = Y0
1− ro,e
1 + ro,e

= Y0yo,e, (4.25)

where Y0 is the reference admittance and yo,e are the admittances normalized by Y0. It is
noticed that the only difference of the equivalent one-port networks for the odd and even
modes is that the symmetry point is modeled differently, e.g. a virtual ground or a virtual
open. Because the network is lossless, the input admittance Yo,M and Ye,M at point M
should have the same real part. The difference in the imaginary part is controlled by the
network A and the virtual ground or open. The function of the two-port C realized by a

50



Figure 4.15: (a) H-shaped matching and decoupling network; (b) equivalent one-port circuit
models of the even and odd mode excitation.

transmission line with a certain length and characteristic impedance is to transform the
admittances Yo,M and Ye,M into the admittances Yo and Ye, respectively, which may have
different real parts due to different array configurations. The function of the two-port C is
mathematically described as

Re

[
1− roe2jφc

1 + roe2jφc

]
= Re

[
1− ree2jφc

1 + ree2jφc

]
, (4.26)

where φc is the electric length of the transmission line, Re[] is the real part of a complex
value. Figure 4.16 plots the calculated result of |Re[yo] − Re[ye]| based on the simulated
scattering parameters of the compact monopole array. It shows that the value is 0 around
2.5 GHz, which means that the network C is not required at this frequency. For convenience,
the design is proposed around 2.5 GHz.
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Figure 4.16: Calculated result of |Re[ye]− Re[yo]|.

Network B, which is realized as a quarter wavelength transformer, is used to transform
the 50 Ω port impedance into the desired real part of the admittance at point M as shown
in Figure 4.15(b). Network A is utilized to generate the required imaginary part of the
admittance. The configuration shown in Figure 4.17 with two pieces of transmission lines
is adopted to realize network A. The essence of the method is to transform the virtual
ground and the virtual open into the required imaginary parts. Based on the impedance
transformation formulas, the design parameters of network A can be determined from

Im

[
Z0(Z2+Z1

tan β2l2
tan β1l1

)

Z2(
Z1

j tan β1l1
+jZ2 tanβ2l2)

]
= Im

[
1−ree2jφc
1+ree2jφc

]

Im
[
Z0(Z2−Z1 tanβ2l2 tanβ1l1)
Z2(jZ1 tanβ1l1+jZ2 tanβ2l2)

]
= Im

[
1−roe2jφc
1+roe2jφc

]
,

(4.27)

where Z1,2 and l1,2 are the characteristic impedance and the length of the transmission lines
as shown in Figure 4.17, respectively, Im[] is the imaginary part of a complex value. The
propagation constants β1,2 can be calculated from the microstrip line structures. Solving
equation (4.27), the required values of the characteristic impedance and the line length are
obtained.

The substrate used in this design is the same as the one utilized in the design of the
array based on the eigenmode excitation method. The proposed matching and decoupling
network is shown in Figure 4.18(a), the fabricated circuit is shown in Figure 4.18(b). The
antenna array with the matching and decoupling network has been simulated in CST MWS.
The simulated electric field distribution is shown in Figure 4.19. When the upper port is
excited, it is found that the electric field is quite weak on the feeding line of the other
port. The simulated S-parameters are plotted in Figure 4.20, the achieved matching and
decoupling bandwidth is around 80 MHz (measurement of |S11| ≤-10 dB and |S21| ≤-15 dB).
The calculated pattern correlation is around 0.09 at 2.45 GHz.
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Figure 4.17: The approach for realizing network A.

4.3.3 Measurement Results for the Compact Monopole Array

The installation and measurements of the antenna array follow the same process as
for the array with eigenmode excitation in the last section. The measured S-parameters
are shown in Figure 4.21. Compared to the simulation results, the operation frequency is
about 80 MHz higher, which is due to the possible fabrication errors and the uncertainties
of FR 4. The measured far field radiation pattern is shown in Figure 4.22. The measured
gain is plotted in Figure 4.23 and the radiation efficiency is about 76% for both ports.

4.4 Design of a Four-Element Compact Antenna Array Based on Multi-
port Conjugate Matching

In this section, a four-element compact monopole array is presented based on the
multiport conjugate matching method. In [Coetzee and Yu, 2008], a four-element array is
designed based on the eigenmode excitation method and a multilayer feeding network is
adopted in order to excite the four radiation elements with corresponding modes, which
is quite complex for fabrication. Here, a much simpler solution which decouples the ports
by a single layer feeding network is introduced. The proposed four-element antenna array
is shown in Figure 4.24, the separations of the antenna element are l1 = 13 mm and
l2 = 16 mm.

4.4.1 Design of the Matching and Decoupling Network

Similar to the previous designs, FR 4 is utilized as the substrate for the decoupling
network. The design process follows the multiport conjugate matching method as discussed
in the last section. In the previous analysis, the even-odd excitation method has been
applied to synthesize the network. Since the four radiation elements are symmetrically
placed, the same method can be utilized as well, where more symmetry cut planes should
be considered. The realizing H-shaped network is again exploited for the design. However,
in this case, the network parameters are firstly approximated based on a two-element array
and then an optimization process is applied to finalize the design. The designed decoupling
network is shown in Figure 4.25(a) and the manufactured network is shown in Figure 4.25(b).
The simulated electric field distribution is plotted in Figure 4.26 in the case that port 2
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Figure 4.18: (a) The layout of the matching and decoupling network; (b) photograph of the
fabricated circuits.

is excited. The simulated S-parameters are shown in Figure 4.27. Due to the symmetry
properties, there are three independent parameters. S11 is the return loss of every input port.
S21 indicates the coupling coefficient between the neighboring elements while S31 shows the
coupling behavior between the elements which are center-symmetric. The achieved coupling
coefficient is below -18 dB at the operating frequency and the matching bandwidth is around
80 MHz.

4.4.2 Measurement Results for the Compact Monopole Array

The fabricated antenna array is shown in Figure 4.28 and the measured S-parameters
are plotted in Figure 4.29. Good agreement between the simulation and measurement is
obtained. The measured far field radiation pattern is shown in Figure 4.30, since all the
ports are centrosymmetric, only the radiation pattern of port 1 (indicated in Figure 4.28)
is shown. The measured maximum gain in the operation frequency band is 3 dBi and the
measured radiation efficiency is around 45%.
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Figure 4.19: Electric field distribution from CST MWS due to the upper port excitation of
the two-element array at 2.45 GHz.

Figure 4.20: Simulated S-parameters for the two-element array based on multiport conjugate
matching.
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Figure 4.21: Measured S-parameters for the two-element array based on multiport conjugate
matching.

Figure 4.22: Normalized measured and simulated far field patterns of the two-element array
based on multiport conjugate matching for φ = 0◦ at 2.55 GHz: (a) port 1; (b) port 2.
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Figure 4.23: Measured antenna gain for the two-element array based on multiport conjugate
matching.

Figure 4.24: Symmetrically arranged four-element compact monopole array.
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Figure 4.25: (a)The layout of the matching and decoupling network for the four-element
array; (b) photograph of the fabricated circuits.

Figure 4.26: Electric field distribution from CST MWS for the four-element array due to
the excitation of the port at the bottom at 2.45 GHz.
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Figure 4.27: Simulated S-parameters for the four-element array based on multiport conju-
gate matching.

Figure 4.28: Photograph of the fabricated four-element compact monopole array.
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Figure 4.29: Measured S-parameters for the four-element array based on multiport conju-
gate matching.

Figure 4.30: Normalized measured and simulated far field pattern of port 1 of the four-
element array based on multiport conjugate matching for φ = 0◦ at 2.45 GHz.
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4.5 Comparison of the Eigenmode Excitation Method and the Multiport
Conjugate Matching Method

The performance of monopole arrays with different matching and decoupling networks
has been demonstrated in the previous sections. In the following, comparisons between
the two approaches are performed. Firstly, in terms of the configuration, the feeding net-
work based on the eigenmode excitation method is more complicated as compared to the
one based on multiport conjugate matching. Very narrow matching microstrip lines and
a microstrip balun are required for the eigenmode excitation, whereas the multiport con-
jugate matching method is more favorable considering the fabrication. Secondly, for the
operation bandwidth, the maximum available matching and decoupling bandwidths of both
array types are less than 100 MHz for MIMO applications, but they are constrained due to
different facts. The compact array based on eigenmode excitation owns very good decou-
pling properties in a broad band while the matching bandwidth is limited by the odd mode
excitation. On the other hand, the bandwidth of the array based on multiport conjugate
matching is limited by both the matching and the decoupling. Thirdly, with respect to the
radiation efficiency, the odd mode of the array based on eigenmode excitation owns only
45% efficiency, which sometimes is not good enough especially for communication devices
which are power sensitive and the array based on multiport conjugate matching is more ad-
vantageous with regard to efficiency. Lastly, with respect to the far field radiation patterns,
the two modes of the eigenmode excitation array own patterns with irregular differences.
The radiation patterns of the two ports of the array based on multiport conjugate matching
are symmetric and the power patterns are almost orthogonal and this property is useful
to detect from which directions the electromagnetic waves come. Both types of arrays are
efficient in MIMO communications since the calculated pattern correlation coefficients of
the arrays are low enough. According to the above comparisons, the decoupling approaches
should be properly chosen for different practical applications. It should be also kept in
mind that the multiport conjugate matching method is more advantageous for the design of
compact arrays with more than two radiation elements due to the simplicity of the feeding
network.

In the following, the relationship between the two methods is investigated, where it
is proved that the modes generated by the network based on conjugate matching can be
decomposed into the eigenmodes.

From the previous discussions, the eigenvectors of the array scattering matrix are or-
thogonal. Therefore, the normalized eigenvectors can be chosen as basis vectors, which are

given as ~ve = [
√

2
2 ,
√

2
2 ]T and ~vo = [

√
2

2 ,−
√

2
2 ]T . For the array based on multiport conjugate

matching, when the ith port is excited, the input vector of the antenna array shown in
Figure 4.2 is marked as ~vi. Due to the symmetric arrangement of the decoupling network,
the vectors can be written in form of{

~v1 = x~ve + y~vo

~v2 = x~ve − y~vo,
(4.28)

where x and y are complex constants. The ratio between them indicates which eigenmode
is dominant. As discussed before, if the input ports are matched and decoupled by a lossless
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network and assuming the antennas are also lossless, the radiated power by the antenna
array can be written in the form of

Prad =
1

2
~vH~v − 1

2
~vHSHantSant~v

=
1

2Zs

∫
| ~E(θ, φ)|2dΩ, (4.29)

where Zs is the free space impedance. Based on this, the following group of equations can
be found: 

1
2~v

H
1 ~v1 − 1

2~v
H
1 SHantSant~v1 = 1

2Zs

∫
| ~E1(θ, φ)|2dΩ,

1
2~v

H
2 ~v2 − 1

2~v
H
2 SHantSant~v2 = 1

2Zs

∫
| ~E2(θ, φ)|2dΩ,

1
2(~v1 + ~v2)H(~v1 + ~v2)− 1

2(~v1 + ~v2)HSHantSant(~v1 + ~v2)

= 1
2Zs

∫
| ~E1(θ, φ) + ~E2(θ, φ)|2dΩ.

(4.30)

Calculated from the simulated patterns, the radiation pattern correlation is zero, which
means ∫

~E∗1(θ, φ) · ~E2(θ, φ)dΩ = 0. (4.31)

Together with equation (4.30), it is derived that

~vH1 ~v2 − ~vH1 SHantSant~v2 = 0. (4.32)

Then, putting equation (4.28) into equation (4.32) and applying the conditions that ~vHe ~vo =
0, ~vHe ~ve = 1, ~vHo ~vo = 1, Sant~ve = λe~ve and Sant~vo = λo~vo, where λe and λo are the
corresponding eigenvalues, equation (4.32) is simplified as

(1− |λe|2)|x|2 = (1− |λo|2)|y|2. (4.33)

Then, the ratio of |y| and |x| is

|y|
|x|

=

√
1− |λe|2
1− |λo|2

. (4.34)

Since λe = S11 + S21 and λo = S11 − S21, equation (4.34) can be represented through

|y|
|x|

=

√
1− |S11 + S21|2
1− |S11 − S21|2

. (4.35)

For example, for the two-element compact array utilized in the previous sections, is was
found that S11 = 0.17 + 0.20j and S21 = 0.02 − 0.47j at 2.45 GHz. From this, it was
calculated that |y||x| = 1.3, which means the decoupling network generates a stronger odd
mode component. The above analysis based on the assumption of ideally uncorrelated
patterns gives a general understanding of how the two methods are related.

62



4.6 Estimation of the Signal Correlation of Compact Arrays Through
Scattering Parameters

It was discussed in Chapter 3 that the received signal correlation among the receiving
ports of an antenna array, which is an important parameter for evaluating the MIMO system
performance, can be estimated from the far field radiation pattern correlation. Through the
power conservation law, it is reported in [Blanch et al., 2003] that it is possible to approxi-
mate the radiation pattern correlation coefficient from the scattering parameters for lossless
antenna arrays. However, for lossy antenna arrays with decoupling networks, the scattering
parameters are not sufficient to make the approximation, which in this case should be a mat-
ter of the power loss as well. For lossy arrays, results presented in [Hallbjörner, 2005] and
[Stjernman, 2005] indicate why S-parameters are not sufficient for calculating the pattern
correlation coefficient, but exact expressions for the pattern correlation were not provided.
In [Li et al., 2013], the equivalent circuit model is applied to characterize the effects of the
power loss, but this method is not applicable for arrays with matching and decoupling net-
works. In this section, the relationship between the scattering parameters, loss power and
pattern correlation is analyzed and a set of equations are derived. Then, a more accurate
and relatively simple estimation procedure for predicting the pattern correlation of arrays
is presented, which is also applicable for arrays with lossy feeding networks. The previ-
ous two two-element compact monopole arrays with different decoupling networks, which
are considered lossy, are investigated as examples. Good agreement between the proposed
method and simulation results is achieved.

Before the theoretical study is carried out, a simple example is shown to demonstrate
that the scattering parameters are not sufficient for calculating the pattern correlation.
The example is shown in Figure 4.31, where the decoupling network for an array with two
closely placed antennas is a lossy Wilkinson divider [Pozar, 2011]. Assuming the input
impedance of the antenna array at point F is 50 Ω, the two input ports of the array are
conjugate matched and the maximum power is transmitted into the system including both
the radiation elements and the decoupling network. In this example, the input ports are well
decoupled and matched, but the patterns are fully correlated (identical radiation patterns
for the two ports). However, not all decoupling networks perform like such a Wilkinson
divider. From this example it shows that S-parameters are not sufficient for calculating
the patter correlation of lossy antenna arrays, the exact expression of pattern correlation is
derived and complex decoupling networks are also considered in the analysis.

4.6.1 Mathematical Analysis

The derivation of the formula indicating the relationship between the S-parameters
and the pattern correlation is based on the power conservation law [Hallbjörner, 2005,
Stjernman, 2005]. Take a two-port antenna array as an example, the total input power can
be written in the form of

Pin = Prad + Ploss + P1 + P2, (4.36)
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Figure 4.31: Two-element antenna array with a Wilkinson divider.

with

Pin =
1

2
|a1|2 +

1

2
|a2|2, (4.37)

P1 =
1

2
|S11a1 + S12a2|2, (4.38)

P2 =
1

2
|S21a1 + S22a2|2, (4.39)

Prad =
1

8

∫
|
√
G1(1− |S11|2 − |S21|2)~F1(θ, φ) +

√
G2(1− |S22|2 − |S12|2)~F2(θ, φ)|2dΩ,

(4.40)

Ploss = Ploss(|a1|2) + Ploss(|a2|2) + Ploss(a1a
∗
2) + Ploss(a2a

∗
1). (4.41)

In the above equations, a1 and a2 are the input wave amplitudes of the two input ports,
which are defined according to equation (2.29). G1 and G2 are the corresponding antenna
gains for the two input ports. ~F1(θ, φ) and ~F2(θ, φ) are the normalized far field radiation
patterns of the ports. It should be noticed that the radiation patterns can be different for
different applications and scenarios, e.g., if the received signal is a measurement of the open
circuit voltage, the pattern of one port should be measured while the other port is open
circuit; if the received signal is a measurement of the received wave or if the transmitted
signal correlation is considered, the far field pattern of one port should be measured with
the other port loaded with 50 Ω. In this section, the use of the S-parameters to determine
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the pattern correlation follows the second situation. Equation (4.36) means that the total
input power Pin delivered to the ports should be the sum of the radiated power Prad, the
dissipated power losses Ploss in the decoupling network and radiation elements and the
reflected powers at port 1, P1, as well as port 2, P2. The following analysis requires to
write the loss power in the form of equation (4.41). Ploss(|a1|2) and Ploss(|a2|2) are the
loss power contributions including only the contribution of |a1|2 and |a2|2, respectively. The
term Ploss(a1a

∗
2) is named the coupling loss including only the loss power from the product

a1a
∗
2 and a similar definition is used for Ploss(a2a

∗
1).

Based on the above equations, the connections of radiation patterns, S-parameters and
power loss can be found and expressed in the form of

1

4π
G1

(
1− |S11|2 − |S21|2

) ∫
|~F1(θ, φ)|2dΩ = 1− |S11|2 − |S21|2 −

Ploss(|a1|2)
1
2 |a1|2

, (4.42)

1

4π
G2

(
1− |S22|2 − |S12|2

) ∫
|~F2(θ, φ)|2dΩ = 1− |S22|2 − |S12|2 −

Ploss(|a2|2)
1
2 |a2|2

, (4.43)

1

4π

√
G1(1− |S11|2 − |S21|2)

√
G2(1− |S22|2 − |S12|2)

∫
~F1(θ, φ) · ~F ∗2 (θ, φ)dΩ

= S∗12S11 + S∗22S21 +
Ploss(a1a

∗
2)

1
2a1a∗2

. (4.44)

Then, the pattern correlation calculated from equation (3.59) can be expressed in the way

ρ =

∫
~Fi(θ, φ) · ~F ∗j (θ, φ)dΩ√∫

|~Fi(θ, φ)|2dΩ
∫
|~Fj(θ, φ)|2dΩ

=
S∗12S11 + S∗22S21 +

Ploss(a1a∗2)

1
2
a1a∗2√(

1− |S11|2 − |S21|2 −
Ploss(|a1|2)

1
2
|a1|2

)(
1− |S22|2 − |S12|2 −

Ploss(|a2|2)

1
2
|a2|2

) , (4.45)

so that the radiation pattern correlation can be calculated through the S-parameters and
the power loss. In the lossless case, the relation shows that S-parameters are sufficient for
the calculation. As discussed before, one of the design targets is to have maximum power
transfer which means that the input ports are matched and decoupled. When the reflection
coefficient and the coupling coefficient are relatively small, the magnitude of the pattern
correlation can be approximated by

|ρ| =

∣∣∣∣∣Ploss(a1a
∗
2)

1
2a1a∗2

∣∣∣∣∣ 1
√
η1η2

(4.46)
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where η1 and η2 are the radiation efficiencies of the two ports, respectively. If Ploss(a1a
∗
2)

is 0, the patterns are uncorrelated, but if not, η should also be considered during the
calculation of the correlation coefficient.

The example shown in Figure 4.31 can be explained with the previous discussions.
According to the Kirchhoff laws, the power dissipated in the resistor can be written in the
form of

Ploss =
1

2R

∣∣∣a1

√
Z0 − a2

√
Z0

∣∣∣2 , (4.47)

where R = 2Z0. By solving the above equation, it is found that Ploss(a1a
∗
2) = 0.25a1a

∗
2,

assuming the radiation elements are lossless. The radiation efficiency of such a system with
a Wilkinson divider is, however, 50%, and the result of equation (4.46) becomes 1, which
matches well with the conclusion of ’full correlation’.

In order to achieve an accurate value for |ρ|, in the following subsections, an analysis of
the losses of the radiation elements and of the decoupling networks of the compact monopole
antenna arrays from the previous sections is performed. It should be noticed that in order
to emphasize the significance of the loss effect, the value of tan δ is chosen as 0.025 for the
substrate in the simulations carried out in CST MWS. Finally, an analytical estimation
method for the coupling loss based on S-parameters is proposed. With this method, it is
possible to perform the pattern correlation approximation based on S-parameters only for
lossy arrays with lossy matching and decoupling networks.

4.6.2 Loss Mechanism Analysis

The loss mechanisms of compact antenna arrays with matching and decoupling net-
works should contain the Ohmic losses of lumped elements such as capacitors and inductors,
losses from transmission lines and radiation element losses. As a result, the coupling loss
contribution in all involved components should be analyzed.

Firstly, the power loss in the radiation elements is investigated. It is known that the
power loss of the monopoles is influenced by the skin effect. The following steps are utilized
to derive the mathematical expression of the power loss. The skin depth is

t =

√
2

µωκ
, (4.48)

where µ is the permeability, κ is the conductivity of the material and ω = 2πf is the angular
frequency. Then, the average resistance per unit length of the monopole is

R′ =
1

κπ(D − t)t
, (4.49)

where D is the diameter of the rod.

The loss of the ground plane is relatively small compared with the loss of the rod because
the current density on the rod is much higher. In order to relate the power loss to the S-
parameters, the following assumptions and approximations are made. On the monopole,
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the current is a standing wave of which the amplitude distribution can be approximated by
a sinusoidal function as shown in Figure 4.32 and the current is assumed evenly distributed
on the rod. The two monopoles should own similar current distributions with differences
in amplitude which can be characterized through the S-parameters. For example, assume
that port 1 is excited and port 2 is loaded. Through the relationship discussed in equation
(2.29), the current amplitude on monopole 1 is

I1(z) = (1− S11)
a1√
Z0

cos

(
2π

λ
z

)
, (4.50)

where z is the the distance from the feeding point to the antenna, z ∈ [0, l]. The current on
the other monopole, of which the port is not excited, can be approximated by

I2(z) = S21
a1√
Z0

cos

(
2π

λ
z

)
. (4.51)

The ratio between the current distributions of the excited monopole and the parasitic
monopole is

τ1,2 =
I1,2

I2,1
=

S21,12

1− S11,22
. (4.52)

Based on the above equations, when both ports are excited, the dissipated power on the
rods is

Ploss =

∫ l

0

1

2
Isum1 (z)R′Isum∗1 (z)dz +

∫ l

0

1

2
Isum2 (z)R′Isum∗2 (z)dz

=
1

8Z0
πR′|(1− S11)a1 + S12a2|2 +

1

8Z0
πR′|(1− S22)a2 + S21a1|2, (4.53)

where Isumi (z) is the overall current on the ith rod due to the excitation of both ports, l is
the length of the monopoles. The loss power Ploss is now expressed by the S-parameters and
the input wave amplitudes. Consequently, the pattern correlation components consisting
of the coupling loss contribution Ploss(a1a

∗
2) can be calculated by further evaluation of the

above equations.

In the above considerations, the power loss of the radiation elements has been inves-
tigated. In the following, the losses in the matching and decoupling network are analyzed.
Generally, the matching and decoupling network contains both lumped elements and trans-
mission lines, the loss in lumped elements can be simply analyzed by following the Kirchhoff
laws as discussed in the example with the Wilkinson divider. The loss in a transmission
line can be shown in the following form. It is well known that the loss in transmission lines
is due to the loss on the conducting layers such as the strips and ground of microstrip lines
and the loss in the substrate. The transmission loss is characterized by the attenuation
constant α. Now consider the situation shown in Figure 4.33, where a1 and a3 are the wave
amplitudes at the left end for waves with the propagation direction from left to right, while
a2 is a wave amplitude at the right end of a wave which propagates towards the opposite
direction. Then, the loss of this piece of transmission line is

Ploss =
1

2
(1− e−2αl)|a1 + a3|2 +

1

2
(1− e−2αl)|a2|2. (4.54)
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Figure 4.32: The current distribution of two compactly placed monopole antennas.

Figure 4.33: Three wave amplitudes on a lossy transmission line.

It can be noticed that the loss which is caused by signals propagating towards different
directions on the transmission line does not contribute to the coupling loss. On the other
hand, only the wave amplitudes propagating towards the same direction should be taken
into account for the coupling loss calculation. In the following analysis of the coupling loss,
a1 might be due to the excitation of one port in the feeding network while a3 might be the
wave amplitude due to the excitation of the other port in the same transmission line.

The loss mechanisms from the radiation elements and the feeding networks have been
analyzed above. For the purpose of calculating the coupling loss, it is required to find the
wave amplitudes on each transmission line in the matching and decoupling network and
the current distributions on the rods corresponding to the input wave amplitudes. In the
following subsections, the two-element compact monopole arrays are investigated.

4.6.3 Analysis of Coupling Loss for the Compact Array Based on Eigenmode
Excitation

The operating principle of the eigenmode excitation method has been demonstrated in
Section 4.2. The two input ports generate two orthogonal modes of the array, which are the
eigenvectors of the array scattering matrix. If the two radiation elements are symmetrically
placed, the modes are even and odd. The feeding network only contains transmission lines
and a microstrip balun is utilized for creating the odd mode. The matching is achieved by
individual matching circuits at each port. In this subsection, the input wave amplitudes
at the feed are expressed in the form of aeven and aodd, which stand for the even and odd
mode, respectively. Due to the symmetry property, the currents on the two antennas I1
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and I2 can be written in the form{
I1(z) = (c1aeven + c2aodd) cos( λ2πz),

I2(z) = (c1aeven − c2aodd) cos( λ2πz),
(4.55)

where c1 and c2 are complex constants indicating the relationship between the current at
the antenna feeding points and the excitation wave amplitudes. Based on equation (4.53),
the power loss on the monopoles is

Ploss =

∫ l

0

1

2
(c1aeven + c2aodd)R

′(c1aeven + c2aodd)
∗ cos2

(
λ

2π
z

)
dz+∫ l

0

1

2
(c1aeven − c2aodd)R

′(c1aeven − c2aodd)
∗ cos2

(
λ

2π
z

)
dz. (4.56)

By evaluating this equation, it is simply found that the coefficient of the component contain-
ing the product aevena

∗
odd is 0. This means, the losses in the monopoles do not contribute

to the coupling loss.

Next, the losses in the transmission lines are analyzed. Firstly, the matching and
decoupling network should be modeled and simplified. As mentioned before, the joint points
A and B in Figure 4.7 are modeled as virtual ground with respect to different excitations,
which is an important property during the simplification procedure of the network. As a
result, the matching circuits behind the points A and B do not contribute to the coupling
loss. Then, the feeding network consisting of several transmission lines are modeled and
numbered as shown in Figure 4.34. The parameters of the feeding network are given in
Table 1.

Table 1: Parameters of the decoupling network shown in Figure 4.34
Transmission line Characteristic impedance Loss constant Length

TL 1 45 Ω 1.09 m−1 16.5 mm
TL 2 45 Ω 1.09 m−1 16.5 mm
TL 3 45 Ω 1.09 m−1 16.5 mm
TL 4 45 Ω 1.09 m−1 49.5 mm
TL 5 128 Ω 1.04 m−1 9.4 mm
TL 6 95 Ω 1.05 m−1 21.3 mm
TL 7 50 Ω 1.09 m−1 6.3 mm

In order to simplify the analysis, the following approximation is made. It is assumed
that the power is evenly distributed at the antenna feeding points. On each transmission
line, the waves, which are mostly standing waves, can be expressed by the summation of two
waves propagating towards different directions. These wave amplitudes on the transmission
lines are marked as aje,o and bje,o, where a is the wave which propagates from the left to
the right while b indicates the wave propagating from right towards left. Here, j is the
number of the transmission line and Zj is the characteristic impedance of TL j, which
is approximated by its real value according to the lossless case [Pozar, 2011]. e and o
demonstrate the corresponding excitations for the even and odd ports, respectively. It
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Figure 4.34: Simplified model of the transmission lines for the network based the eigenmode
excitation method.

should be also mentioned that aje,o are the wave amplitudes defined at the starting point
of a transmission line, which is assumed at the end close to the exciting port. For example,
a1e is the wave amplitude defined at the left end of TL 1 which is due to the excitation
of the even port and b2o is the wave amplitude at the right end of TL 2 which is due to
the excitation of the odd port. In order to characterize the coupling loss, the relationship
between wave amplitudes on transmission lines and the input wave amplitudes aeven and
aodd should be calculated. Their relationships are given by the coefficients in

ya1e = ya2e = xa3e = ga4e = aeven,

y′b1e = y′b2e = x′b3e = g′b4e = aeven,

nb1o = −nb2o = mb3o = hb4o = aodd,

n′a1o = −n′a2o = m′a3o = h′a4o = aodd,

(4.57)

where y, x, y′, x,m, n,m′, n′, g, h, g′, h′ are complex coefficients. The power loss in the trans-
mission lines can be calculated according to equation (4.54). Similar to the calculation of
the loss in the monopoles, the sum of the coupling losses in TL 1 and TL 2 equals zero,
which means only the loss powers in TL 3 and TL 4 need to be calculated in order to
approximate the coupling loss. Then, the coupling loss contributions are

Ploss(aevena
∗
odd)

1
2aevena

∗
odd

= ejψ
(

(1− e−2α4l4)(
1

gh′∗
+

1

g′h∗
) + (1− e−2α3l3)(

1

xm′∗
+

1

x′m∗
)

)
,

(4.58)

where ψ is an arbitrary value related to the phase shifts of the transmission lines.

To calculate these coefficients, the wave amplitudes on each transmission line are esti-
mated by the following approach. The proposed method is based on a step-wise analysis of
the voltage and current continuity relationships such as Vm,n and Im,n in Figure 4.35 at the
nodes between different transmission lines, where Vm,n and Im,n are the voltage and current
between the mth and the nth transmission line. The voltage corresponds to the sum of the
forward and backward propagating waves and the current corresponds to the subtraction
of them. At all the nodes, the voltages and currents satisfy Kirchhoff laws. For example,
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Figure 4.35: Schematic for analyzing wave amplitudes on transmission lines.

the relationships can be written in the form
Vm,n = (ame

−γmlm + bme
γmlm)

√
Zm = (an + bn)

√
Zn,

Im,n = (ame
−γmlm − bmeγmlm) 1√

Zm
= (an − bn) 1√

Zn
,

V0,1 = (a0 + ra0)
√
Z0,

I0,1 = (a0 − ra0) 1√
Z0
,

(4.59)

where γm = αm + jβm, V0,1 and I0,1 are the voltage and the current at the input ports of
the system, Zm is the characteristic impedance of TL m. V0,1 and I0,1 can be determined by
the reflection coefficient r, which can be obtained by either simulations or measurements.
Consequently, the wave amplitudes on the following transmission lines can be calculated
step by step through the above equations. The nodes between neighboring transmission
lines with shunt connections should be analytically solved by Kirchhoff laws, such as the
node between TL 2 and TL 4 in Figure 4.34. The other important consideration is the use
of the virtual grounds. In consequent continuation of the above considerations, for example,
the circuit model of the even mode excitation is simplified in the configuration shown in
Figure 4.36, where Ze is the equivalent even mode impedance of the array. This equivalent
impedance can be solved from

Ze,o = Z0
1 + re,o
1− re,o

, (4.60)

where re,o is the corresponding equivalent even or odd mode reflection coefficient, which
can be calculated through {

ro = S11 − S12

re = S11 + S12,
(4.61)

where S11 and S12 are the elements of the array S-parameters. Since Ze,o is obtained
from the antenna array S-parameters, the current distribution between TL 2 and TL 4 is
calculated and the calculation can be continued. Similarly, the wave amplitudes of the odd
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Figure 4.36: Simplified analysis model for the even mode excitation.

port excitation can be found through creating a similar simplified model and by performing
the step-wise calculations.

The wave amplitudes on TL3 and TL 4 are solved through the discussed approach.
Based on these amplitudes according to equation (4.57), the radiation pattern correlation
coefficient is calculated through equation (4.45) together with the simulated S-parameters
from CST MWS. The estimation results within the frequency range 2.42 GHz to 2.52 GHz
are shown in Figure 4.37. For comparison, the results directly obtained from the simulated
far field patterns through equation (3.59) and calculated results using only S-parameters
are also plotted. It can be noticed that good agreement between the calculation based on
the far field patterns, which is used as a reference, and the proposed approach is found.
The conventional method based on S-parameters only owns low accuracy when the antenna
array and the matching and decoupling network are lossy.

4.6.4 Analysis of Coupling Loss for the Compact Array Based on Multiport
Conjugate Matching

In Section 4.3, the theoretical basics and the operation principle of the matching and
decoupling network based on multiport conjugate matching have been introduced. There
is also an equivalent virtual ground point formed when one of the ports is excited. The two
virtual ground points are located at the antenna feeding points as shown in Figure 4.18.
The matching networks are located between the input ports and the antenna feeding points
and they do not contribute to the coupling loss, similar to the case of the network based on
the eigenmode excitation method.

Firstly, the loss contribution consisting of the losses of the radiation elements is an-
alyzed. The current distribution is estimated by equation (4.53), where the power loss is
expressed by the input wave amplitudes and the S-parameters. To relate the loss with the
input wave amplitudes, the relationship

~v =

[
v1

v2

]
= (I− S22,NSant)−1S21,N

[
a1

a2

]
(4.62)
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Figure 4.37: Pattern correlation coefficient of the array based on the eigenmode excitation
method calculated with different approaches.

is utilized, where a1 and a2 are wave amplitudes at the input ports, v1 and v2 are the
input wave amplitudes of the antenna array. Since the rods consist of copper of which
the conductivity is 5.8e7 S/m, the calculated coupling loss contribution from the radiation

elements
Ploss(a1a∗2)

1
2
a1a∗2

is found to be 0.038%, which is negligible.

The other contribution to the coupling loss is from the matching and decoupling net-
work, which is simplified to the configuration shown in Figure 4.38, where the virtual ground
point is used for simplification. The step-wise analysis approach discussed in the previous
subsection is again utilized in the analysis of the wave amplitudes on the transmission lines.
Then, the coupling loss power Ploss(a1a

∗
2) is calculated. The calculated radiation pattern

correlation coefficients between 2.42 GHz and 2.52 GHz from equation (4.45), from the
direct calculation with the simulated far field patterns and from the approximation results
with S-parameters only are plotted in Figure 4.39. Very good agreement is achieved be-
tween the proposed estimation method and the reference (direct calculation through the
simulated far field patterns). Without consideration of the coupling loss, the calculated
result is quite inaccurate. For example, at 2.48 GHz the calculated correlation coefficient is
almost 0 based on S-parameters only, while the actual value is around 14%. Additionally,
at this frequency, the results based on the proposed method and the reference show the best
agreement, which is due to the fact that good approximation accuracy of the virtual ground
is achieved at this frequency (lowest coupling coefficient S21 at this frequency). This also
explains why the estimation results for the array with the eigenmode excitation method
own better accuracy in a broad bandwidth.
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Figure 4.38: Simplified model of the transmission lines for the network based on the multi-
port conjugate matching.

4.6.5 Discussion

The proposed analysis approach based on simplified network modeling with the usage
of virtual ground points and a step-wise analysis of transmission lines shows good efficiency
and accuracy. Even though, it might be more convenient to perform the array simulation
and use the simulated far field pattern to make the corresponding correlation computation
directly, the presented method is still important due to the following facts. The method can
be used to perform first step estimations, e.g., to decide which type of decoupling network
should be implemented and in order to estimate the loss tolerance during choosing the
substrate for the decoupling network. This analysis procedure is also helpful to gain insight
into the physics of the problem. For the two monopole arrays, the analysis method makes it
directly clear, why the array with eigenmode excitation, of which the coupling loss is quite
low, has considerably lower pattern correlation than the array with multiport conjugate
matching network.

To sum up, for compact lossy antenna arrays with lossy matching and decoupling
networks, the pattern correlation cannot be simply approximated through the S-parameters.
It was proved that the previous conclusions are not applicable for compact arrays with
decoupling network. For the array based on the eigenmode excitation method, for instance
the patterns of two ports can be uncorrelated even with very low radiation efficiencies, if
the microstrip balun is replaced by a lossless balun. It was proved that it is of significance
to analyze the coupling losses in the feeding network of compact antenna arrays. If low
loss materials are used in the design, the influence from the coupling loss would be further
reduced. The proposed analysis concept can also simply be implemented for decoupling
networks including lumped elements or other techniques.
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Figure 4.39: Pattern correlation coefficient of the array based on the multiport conjugate
matching calculated with different approaches.

4.7 Beamforming Applications of Compact Monopole Arrays

MIMO systems would benefit considerably if compact antenna arrays would provide
the function of beamforming, too [Li et al., 2010a, Zhang et al., 2012]. The previous
sections proved that compact antenna arrays with certain decoupling techniques can achieve
good power matching. In this section, studies with respect to beamforming applications of
compact monopole arrays with decoupling networks are performed.

4.7.1 Decoupling Network for a Linearly Arranged Monopole Array

In Section 4.3, it was shown that the condition for multiport conjugate matching is
S22,N = SHant. However, for linearly arranged compact monopole arrays with more than two
radiation elements, the admittance matrix appears to be more convenient in the design as
compared to the scattering matrix. According to the transformations in equation (2.33), the
multiport conjugate matching condition is equivalent to Y22,N = YH

ant. In order to design
the decoupling network, the antenna array should be firstly modeled correspondingly. For
a three-element monopole array, which is linearly aligned, the model shown in Figure 4.40
is utilized, where C1 and C2 are two-port networks, which indicate the coupling properties
between the radiation elements. S1 and S2 are one-port networks. Actually, for such a
three-element monopole array, C2 can be neglected. This property can be explained as the
fact that the direct coupling from monopole 1 to monopole 3 is quite weak.

Based on this model, the proposed configuration of the decoupling network is shown
in Figure 4.41. Network D1 is a two-port network which is used to neutralize the coupling
effect from C1. To achieve this objective, the following conditions must be fulfilled by C1
and D1:
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Figure 4.40: Model of a three-element compact monopole array.

Figure 4.41: Matching and Decoupling approach for the network model shown in Figure
4.40.

• Network D1 must be lossless to satisfy the preliminary requirement of the multiport
conjugate matching method.

• The real part of C1 should be 0 (Re[Y21,C1] = 0), because D1 is lossless. This can be
achieved by adding transmission lines at the antenna feed (similar to network C in
Figure 4.15). Another choice is to modify the monopole length.

• The summation of the imaginary part of the admittance of C1 and D1 should be 0,

Im[Y21,C1] + Im[Y21,D1] = 0,

which can be achieved by properly designing the decoupling network.

The function of the networks M1 and M2 is to match the three individual input ports.
In the following, the realization of network D1 is discussed.

Once the coupling due to C1 has been neutralized by network D1, the joint point at
the one side is equivalent to a virtual ground when the network is excited at the other
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Figure 4.42: Realization of network D1: (a) schematic of the network; (b) realized with 1
piece of transmission line; (c) realized with 3 pieces of transmission lines.

side as shown in Figure 4.42(a). In this design, network D1 is realized with transmission
lines. By definition, the mutual admittance is the ratio between the short circuit current
on one port and the voltage on the other port. For a piece of transmission line as shown in
Figure 4.42(b), the mutual admittance is expressed as

Y21,D1 =
I2

U1
= − 1

Z1 sinφ1
j, (4.63)

where Z1 is the characteristic impedance of this transmission line and φ1 is the electric
length. As a result, by properly choosing the width and length of the microstrip lines,
the decoupling can be achieved. It should be noticed that the value of φ1 should avoid
integer multiples of π. Otherwise, the transmission line would transform the virtual ground
directly to the input and cause difficulties for the matching. The value of φ1 should be close
to (2n + 1)π4 and in this case, Y21,D1 ≈

1
Z1
j. Now, the mutual admittance depends only

on the characteristic impedance, but extremely large or small values are possibly required,
which cannot be fabricated due to a very large or very narrow line width. As a result,
multi-section transmission lines are implemented such as the one shown in Figure 4.42(c).
For this configuration, the mutual impedance can be expressed in the form of

Y21,D1 =
I2

U1

=
1

−Z1 cos2 φ2 sinφ1 +
Z2
2
Z1

sin2 φ2 sinφ1 − 2Z2 cosφ2 sinφ2 cosφ1

j. (4.64)

By choosing φ1 = φ2 ≈ π
4 , the mutual admittance becomes Y21,D1 ≈

Z1

Z2
2
j. Now, the

admittance value is determined by both Z1 and Z2. By properly adjusting the ratio between
them, the required mutual admittance can be generated and extremely wide or narrow
microstrip lines are avoided.
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Figure 4.43: (a) Five-element compact monopole array; (b) decoupling network for this
array.

Based on the above equations and the optimization process, a decoupling network for a
five-element compact monopole array has been designed as shown in Figure 4.43. The center
to center distance between the neighboring elements in the array is 25 mm. The transmission
lines close to the antenna feeding points at the ports 2, 3 and 4 are coupled lines. During
the design process, the network C2 shown in Figure 4.40 is neglected. However, there are
still some direct couplings. To obtain better decoupling, the coupled lines are optimized
to neutralize the effect as for C2. This decoupling network is built on a low loss substrate
Rogers 4350. The simulated S-parameters in CST MWS are plotted in Figure 4.44. The
matching bandwidth is quite limited for the ports connected with the radiation elements in
the middle. The minimum bandwidth is around 16 MHz for -10 dB return loss measurement
and 29 MHz for -6 dB return loss measurement. The coupling is below -12 dB between the
input ports. In the following, the beamforming property of this array is investigated.

4.7.2 Beamforming Applications of Linearly Arranged Monopole Array

Based on the Huygens’ Principle, the far field radiation pattern can be calculated
through the equivalent electric and magnetic currents corresponding to the tangential mag-
netic and electric fields on a closed surface enclosing the antenna elements [Rumsey, 1959].
For antennas made from PEC, on the Huygens’ surface the tangential component of the
electric fields is 0 and only the electric current density ~J is taken into account for calculating
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Figure 4.44: Simulated S-parameters of the five-element compact monopole array with
matching and decoupling networks as shown in Figure 4.43.

the far fields (the feeding gap is neglected). The vector potential ~A is applied to find the
far fields, and it is defined via

~H =
1

µ
∇× ~A, (4.65)

where ~H is the magnetic field due to the corresponding electric current source and µ is the
permeability of the environment. By solving the Maxwell equations, the electric field is
written in the form of [Balanis, 2005]

~E = −jω ~A− j 1

ωµε
∇(∇ · ~A), (4.66)

where ε is the environment permittivity and ω is the angular frequency. Once the vector
potential ~A has been found, the electromagnetic fields due to certain electric current sources
can be derived. ~A is calculated through

~A =
µ

4π

∫∫∫
V

e−jkR

R
~JdV ′, (4.67)

where k = ω
√
µε and R is the distance between the corresponding current source point and

the observation point.

The currents on the monopoles are assumed to be standing waves and distributed
in a sinusoidal form as shown in Figure 4.31. It is also assumed that the currents are
evenly distributed on the rods. In order to generate the beamforming patterns for such a
linearly aligned monopole array, certain current distributions at the antenna feeds should
be generated.
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The currents at the feeding points can be expressed in the form of ~I = [I1, I2, I3, I4, I5]T .
Based on the previous knowledge, the current vector can be calculated through

~I =
1√
Z0

(I− Sant)~v, (4.68)

where ~v is the input wave vector at the array feeding, which is expressed as

~v = (I− S22,NSant)−1S21,N~a, (4.69)

where ~a is the input vector of the system with decoupling network. According to the above
equations, the relationship between the current vector at the monopole feeds and the input
vector can be found as

~a =
√
Z0S

−1
21,N (I− S22,NSant)(I− Sant)−1~I. (4.70)

The current vector is calculated through the required beamforming directions, e.g., if the
beamforming at broadside is desired, the currents should be equal in both amplitude and
phase. In consequence, the required input wave amplitudes can be calculated. In the
receiving mode, it is also applicable to estimate the directions of the incoming signals. By
summing up the received signals with certain weights, the signal from a certain direction
can be obtained. It is calculated through

y(t) =
N∑
i=1

wiui(t), (4.71)

where wi is the ith element of the normalized required input vector for a certain beamform-
ing direction obtained from equation (4.70).

The beamforming applications for compact antenna arrays need to be specially treated
due to the following aspect. In equation (2.28), the array factor of linearly arranged antennas
has been derived. Here, by setting ψ = −2π

λ d cosα, the array factor is written in the form
of

FA(ψ) =
N∑
i=1

ej(N−1)(ψ+4β). (4.72)

In the first example, the radiation elements are considered to be excited in phase
(4β = 0). It is noticed that FA(ψ) is periodic and one period is 2π. The range of ψ
is called the visible region, which is [−2π

λ d,
2π
λ d]. The visible region depends on the ratio

between the antenna spacing d and the wavelength λ. When d
λ = 0.5 the visible region is

exactly one period of FA(ψ). For compact antenna arrays, the value of d
λ is very small,

so that the visible region is quite limited, which means that the antenna array might not
achieve the desired beamforming directivity for in-phase excitation. For example, FA(ψ)
is plotted in Figure 4.45 for a five-element antenna array with 25 mm element separation
and for a three-element antenna array with 50 mm element separation at 2.4 GHz. The
area with dashed lines indicates the visible region. With reducing the distance between
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Figure 4.45: Amplitude of FA(ψ) for the arrays with three and five elements, the dashed
lines indicate the corresponding visible region.

the antenna element, FA(ψ) in the visible region becomes more flat and the beamforming
performance degrades. When the element spacing becomes 0, the directivity of the isotropic
antenna array becomes 0 dB. To illustrate this mathematically, the directivity of the array
can be expressed by FA(ψ). In equation (2.26), the radiated electric field is written as a
function of α within the plane C in parallel with the array alignment. In the following,
the directivity is referred to a 2D directivity D′ in a certain plane C. The radiated power
density in direction to the angle α is

S(α,C) =
1

2Zs
| ~E1(α,C)|2|FA(α)|2, (4.73)

where ~E1(α, P ) is the radiated electric field of the first element. Then, D′ is calculated
through

D′(C) =
2π max (S(α,C))∫

α S(α,C)dα
. (4.74)

If the radiation pattern of the elements is assumed isotropic, based on the above equations,
the direcitvity can be written in the form of

D′(C) =
4ψmax(|FA(ψ)|2)∫

ψ |FA(ψ)|2dψ
, (4.75)

where 4ψ is the range of ψ. The calculated result of the above equation for the five-
element compact array with 25 mm spacing is 2.2 for the broadside direction. The result
of a three-element array with 50 mm spacing between the elements is around 2.5, which is
higher than the case with five elements. As a result, for a linearly aligned antenna array,
more excited radiation elements in the array might lead to a lower directivity when the
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elements are compactly placed. For validation, simulations have been performed by utilizing
the post processing calculation function named ’far field array’ in CST MWS, which is a
purely mathematical tool for array far field calculations based on a single element, where
the mutual coupling between elements is not considered. Figure 4.46 shows the simulated
results of two different scenarios, for the same length of 100 mm of the array. With three
radiation elements the achieved directivity is found 0.76 dB higher than in the case of
five elements. To sum up, in equation (4.68), the required current vector for broadside
beamforming should be ~I = [1, 0, 1, 0, 1]T . Similarly, when beam steering is utilized, the
same procedure should be applied and the corresponding current vector for beamforming
at a particular direction should be achieved. In Figure 4.47, some beamforming results
from simulations are plotted based on the designed five-element monopole array and the
above discussed method. Very good beamforming performance is demonstrated. Recently,
compact antenna arrays are widely utilized for the design of the ’super directive’ antennas,
of which the beamforming at end-fire direction is realized [Ivrlac and Nossek, 2010].
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Figure 4.46: Beamforming directivity at broadside: (a) five radiation elements; (b) three
radiation elements.
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Figure 4.47: Simulated 3D far field radiation patterns of the beamforming results for dif-
ferent directions.
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5 Design of Compact Printed Antenna Arrays

In the previous chapter, matching and decoupling networks for designing compact an-
tenna arrays have been introduced. The advantage of this decoupling approach is that in
theory it is applicable for all types of antenna arrays, of which analytical solutions are ob-
tained based on the scattering matrix of the antenna array. However, the implementation of
the additional network requires more space, which is often not available in modern commu-
nication devices such as smart phones. For low profile antenna designs, planar technologies
are often deployed. Therefore, in this chapter, several novel approaches for designing com-
pact printed antenna arrays are investigated. Through these methods, compact printed
antenna arrays are designed and excellent performance such as broad matching and de-
coupling bandwidth is achieved. Some of the results obtained in this chapter have been
published in [Wang et al., 2014a,c,d, 2015b,c].

5.1 Compact Two-Element Printed Monopole Array with Partially Ex-
tended Ground Plane

In this section, according to the particular features of printed monopoles, novel de-
coupling and matching strategies for two-element compact printed monopole arrays are
investigated, of which the obtained operation bandwidth is much broader as compared to
other decoupling methods and the antenna elements as well as the decoupling structure are
quite simple for fabrication. The proposed antenna array operates around 6 GHz.

5.1.1 Basic Design Concept

The substrate Rogers 4350 is utilized for all the printed antenna designs. As mentioned
before, the dielectric constant of such a material is 3.66, tan δ = 0.004, the thickness is
0.762 mm, and the metallization thickness is 0.018 mm.

The proposed decoupling structure for the printed monopole array is realized as a
partially extended ground (PEG) plane as shown in Figure 5.1, which is extended from the
middle of the ground layer. In order to illustrate its function, simulations with and without
the PEG structure have been carried out in CST MWS. The simulation results are plotted
in Figure 5.2. It shows that in the operation band, the coupling coefficient between the
monopoles is reduced from -9 dB to -20 dB by implementing the PEG structure. In the
following, the PEG operation principle is analyzed.

Since the monopoles are symmetrically placed, the even and odd mode excitation anal-
ysis is utilized. The equivalent one-port model for the analysis is shown in Figure 5.3. The
equivalent reflection coefficients for the two modes are given in equation (4.61). When the
two ports are excited with the same amplitude in phase, in the symmetry plane a PMC wall
is formed as shown in Figure 5.3(b). On the other hand, if the two ports are excited with
the same amplitude out of phase, a PEC wall is formed. If the two ports are decoupled,
S21 = 0, the one-port equivalent reflection coefficients of the even and odd modes should
be equal, i.e., re = ro. The only difference of the even and odd equivalent circuits is the
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Figure 5.1: Printed two-port monopole array with decoupling structure: l1 = 25, l2 =
15, l3 = 11.5, l4 = 9, w1 = 35, w2 = 1.6, w3 = 4, w4 = 10.4, unit: mm.

Figure 5.2: Simulated S-parameters of the model shown in Figure 5.1 with (w) and without
(wo) the PEG structure.

PMC and PEC wall in the symmetry plane. The monopoles with the ground plane and the
PEC or PMC wall can be treated as lossy transmission lines, where the losses are due to
the radiation. If the substrate height, which is marked as h in Figure 5.3, is much smaller
than the distance from the inner edge of the monopole to the symmetry plane, which is
marked as d in Figure 5.3, the electric fields are mostly confined around the edge of the
PEG and the PEC or PMC plane should have less effect on the field distributions. Then,
the even and odd mode equivalent circuits are equivalent and re ≈ ro is obtained, so that
the ports are decoupled by the PEG structure. The distance from the edge of the PEG to
the monopole inner edge is marked as c as shown in Figure 5.3(b). Simulations are carried
out with different values of d when the values of h and c are fixed. The simulated coupling
coefficient is plotted in Figure 5.4. With increasing d, the coupling between the ports is
reduced. Similar simulations have been performed by changing c with fixing h and d. The
simulation results are plotted in Figure 5.5. With increasing c, the coupling coefficient
increases. As a result, for a certain substrate thickness h and antenna spacing 2d, c should
be as small as possible in order to obtain better decoupling between the ports. However, if
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Figure 5.3: (a) Top view and side view of the printed monopole array with PEG; (b)
equivalent structure with PMC and PEC wall for even and odd mode excitation.

c is too small, most of the electric field is bound around the PEG and the radiated power is
reduced, which leads to a relatively high quality factor and in consequence a low operation
bandwidth. Therefore, a certain distance should be maintained between the monopoles
and the PEG. In addition, the input matching is achieved without extra networks. The
monopole and the PEG together with the gap between them form a piece of transmission
line. It transforms the open circuit to an inductive reactance at the antenna input, which
compensates the parasitic capacitance at the radiation aperture located on the side of the
monopole without the PEG.
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Figure 5.4: Coupling coefficient between the two monopoles with different values of d/h.

Figure 5.5: Coupling coefficient between the two monopoles with different values of c/d.

5.1.2 Design and Measurement of a Compact Printed Monopole Array with
PEG Structure

In Figure 5.2, the matching bandwidth is reduced after implementing the PEG struc-
ture, resulting in around 300 MHz centered at 6 GHz. It is found that increasing the length
of the substrate is an efficient approach for improving the matching bandwidth. For exam-
ple, if l1 is increased up to 60 mm, much broader matching bandwidth is achieved. The
reason is that the monopole excites surface wave propagation along the edge of the ground,
which becomes part of the radiation aperture. Therefore, the more power is radiated, the
larger bandwidth is obtained. Based on the above discussions, the manufactured antenna
array with long substrate is shown in Figure 5.6 and the measured S-parameters are shown
in Figure 5.7. The matching bandwidth is enhanced by a factor of 5 (up to 1.5 GHz).
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However, the antenna array now is dependent on the substrate dimensions and the far field
radiation pattern becomes irregular due to the long substrate. For example, the simulated
3D far field radiation patterns at 6 GHz are shown in Figure 5.8(a) and 5.8(b) for the
arrays with short and long substrate, respectively. In Figure 5.8(a), the direction of the
main lobe of the far field pattern is almost perpendicular to the monopole axis, which is
similar to the patterns of general printed monopoles. On the other hand, in Figure 5.8(b),
the main lobe is shifted towards the rear side of the board, which might not be desirable.
As a result, in order to maintain the large matching bandwidth and to obtain a desired far
field radiation pattern together with a compact size, the structure shown in Figure 5.9 is
exploited. Two cutting slots are implemented at the two edges of the ground plane. The
function of these slots is to increase the effective electric length of the ground plane and
in consequence increases the matching and decoupling bandwidth. Meanwhile, a U-shaped
slot is implemented close to the edge of the PEG in order to enhance the decoupling between
the two monopoles [Lin et al., 2013]. The manufactured prototype is shown in Figure 5.10
and the measured S-parameters are shown in Figure 5.11. The measured matching band-
width remains broad which is from 5.1 GHz to 6.6 GHz and the coupling is further reduced,
which is below -30 dB at 6 GHz. The simulated 3D far field radiation pattern is plotted
in Figure 5.8(c). Compared to Figure 5.8(b), the pattern main lobe is no longer too much
shifted to the rear part. The calculated result of the radiation pattern correlation coeffi-
cient between the two ports is 0.079 and 0.059 for 5.35 GHz and 6 GHz, respectively. So,
it can be concluded that very promising MIMO performance is obtained. The simulated
radiation efficiency in the operation band is above 92%, since low loss material is utilized
as the substrate in this design. The simulated antenna gain is 4.55 dBi and 4.26 dBi at
5.35 GHz and 6 GHz, respectively.

In order to check the degree of agreements between the simulation and the measure-
ment results, the antenna far field radiation pattern has been measured in the antenna
measurement chamber at the chair of High-Frequency Engineering at Technische Univer-
sität München. In Figure 5.10, two SMA connectors have been implemented in order to
connect the measurement devices to the proposed monopole array. Because the dimension
of the antenna array is small compared to the mounting facilities in the measurement, the
radiation patterns are distorted by all these components. As a result, for the comparisons
between simulation and measurement results, a particular simulation model in which the
SMA connectors and coaxial cables are considered as shown in Figure 5.12, has been cre-
ated and simulated as a reference instead of the previous model. The far field patterns in
certain cuts from the measurements and the simulation results at 5.35 GHz are shown in
Figure 5.13(a) and 5.13(b), the coordinates are defined in Figure 5.9. Figure 5.13(c) and
5.13(d) depict the far field patterns at 6 GHz. Good agreement between the measurement
and simulation results is found. The differences in the patterns can be due to the reflec-
tions from the feeding cable and mounting components as well as the shadowing area due
to the carrier platform. According to the symmetric alignment of the radiation elements
in the array, the other port shows a similar far field radiation pattern which is the image
of the pattern shown in Figure 5.12 corresponding to the yoz plane. In real application
environments, the array would operate much more similar to the simulation model shown
in Figure 5.9, since there would be no additional components such as the ones used for the
measurements.
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Figure 5.6: Photograph of the fabricated printed monopole antenna array with long sub-
strate.

Figure 5.7: Measured S-parameters of the printed monopole antenna array with long sub-
strate.

Figure 5.8: Simulated 3D far field radiation patterns at 6 GHz with left port excited.
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Figure 5.9: Compact two-element printed monopole array with the PEG structure and short
substrate: l1 = 25, l2 = 15, l3 = 11.5, l4 = 9, w1 = 35, w2 = 1.6, w3 = 4, w4 = 10.4, unit:
mm.

Figure 5.10: Photograph of the fabricated monopole antenna array with short substrate.

Figure 5.11: Measured S-parameters of the printed monopole antenna array with short
substrate.
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Figure 5.12: Simulation model with the SMA connectors and coaxial cables.

Figure 5.13: Measured and simulated far field patterns. (a) and (b): 5.35 GHz; (c) and (d):
6 GHz. (a) and (c): θ = 90◦ cut; (b) and (d): φ = 30◦ cut.
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5.2 Compact Three-Element Printed Antenna Array

In this section, a compact three-element printed antenna array size is designed, manu-
factured and measured. By combining two different types of the radiation elements, broad
matching and decoupling bandwidth is achieved and good MIMO performance is obtained.

5.2.1 Design of the Radiation Elements

In the previous section, a two-element compact printed monopole array was introduced
and the PEG structure shows promising performance for the purpose of decoupling. How-
ever, it is difficult to realize a three-element compact printed antenna array with a similar
method by inserting a third antenna in the middle and using two PEG structures as shown
in Figure 5.14. For the monopole in the middle quite little power can be radiated to the
space, due to the existence of the two PEG structures which constrain most of the fields.
Consequently, the input impedance of this monopole is located almost at the outer bound
in the Smith Chart and its matching is difficult. Although it is possible to match it at
a certain frequency, the operation bandwidth is limited. Considering the main radiation
directions of the monopoles which are perpendicular to the monopole axis, there is still one
direction left for the third radiation element, which is the direction of the monopole axis.
The planar quasi-Yagi antenna is a suitable candidate for the third radiation element in
this configuration [Deal et al., 2000]. Generally, the planar quasi-Yagi antenna contains a
radiation driven dipole, planar directors, a microstrip balun and the matching transmission
line. However, these components occupy considerable space, which is not suitable for com-
pact array designs. Therefore, the structure in the middle of the array shown in Figure 5.15
is exploited to reduce the space occupation. The radiation driven dipole is formed by two
pieces of strip lines on the top and bottom layers which are fed by the feeding strip line
on the top and a strip line extended from the ground plane, respectively. Then, the bulky
microstrip balun is avoided. The two ends of the driven dipole are bent up in order to
further reduce the lateral dimension. Above the dipole, two pieces of strip directors are
implemented on the top and bottom layers of the substrate, respectively. However, the
drawback of utilizing this configuration is that the achieved matching bandwidth is less
than in conventional designs of the planar quasi-Yagi antenna. Since the quasi-Yagi an-
tenna occupies much space in lateral direction, the overall size of the monopole element
should be reduced as well. For this purpose, the monopoles are placed much closer to the
PEG. However, this brings problems for the antenna input matching. As discussed before,
the monopole and the PEG form a guiding structure which is longer than a quarter of the
effective wavelength. It transforms the open circuit to an equivalent inductor, which is in
parallel with the equivalent input admittance due to the radiation slot at the antenna input.
The characteristic impedance of a transmission line is calculated through [Pozar, 2011]

Zc =

√
R′ + jωL′

G′ + jωC ′
, (5.1)

where R′ is the series resistance due to the finite conductivity, G′ is the shunt conductance
due to the dielectric loss, L′ is the self inductance of the conductors and C ′ is the shunt
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Figure 5.14: Three-element compact printed monopole array with two PEG structures and
the simulated input impedance of the middle port shown in a Smith Chart.

capacitance between the conductors. Normally, the loss in transmission lines is quite low, so

that the characteristic impedance can be approximated by
√

L′

C′ . L
′ and C ′ depend on the

dimension of the guided structure, e.g., if the distance between the conductors is becoming
shorter, C ′ increases. Then, the characteristic impedance is smaller. In consequence, the
equivalent inductance transformed from the open circuit is also decreased according to the
impedance transformation technique. Generally, the small inductance in shunt leads to
poor matching. As a result, the modified monopoles, of which the length is reduced while
the width is increased, are utilized at the two sides of the array as shown in Figure 5.15.
Increasing the width of the monopole enlarges the parasitic capacitance around the feed of
the monopoles, which compensates the equivalent inductance and improves the matching.
Another observation is that a shorter monopole length is beneficial for reducing the mutual
coupling between the radiation elements.
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Figure 5.15: Printed three-port compact antenna array with decoupling structures: l1 =
30, l2 = 15, l3 = 14.5, l4 = 6.5, l5 = 6, l6 = 5, l7 = 1.5, w1 = 40, w2 = 3.25, w3 = 13.9, w4 =
7.875, w5 = 3.3, w6 = 1.6, w7 = 1.25, w8 = 1, w9 = 10, w10 = 2w11 = 11.5, unit: mm.

Figure 5.16: Photograph of the fabricated printed three-port compact antenna array.

5.2.2 Simulations and Measurements

The input matching of the three ports has been enhanced by optimizing the dimensions
of all the radiation elements and no additional matching circuit has been implemented. As
a result, the effective radiation area only occupies 40 mm × 15 mm. The photograph of
the manufactured antenna array is shown in Figure 5.16. The measured S-parameters are
plotted in Figure 5.17. The obtained operation bandwidth is around 1 GHz (from 5.4 GHz
to 6.4 GHz). The coupling coefficients between the input ports are less than -15 dB. The
simulated 3D far field radiation pattern at 6 GHz in CST MWS is shown in Figure 5.18.
The radiation pattern of port 1 is plotted in Figure 5.18(a), while Figure 5.18(b) and 5.18(c)
indicate the patterns for port 2 and 3, respectively. Good pattern diversity is obtained, since
the antennas radiate towards different directions. The simulated radiation efficiencies for
all the ports are more than 95% and the simulated antenna gains are 4.34 dBi, 5.41 dBi and
5.37 dBi for port 1, 2 and 3, respectively. The calculated pattern correlation coefficients
are 0.15 between ports 1 and 2 (ports 1 and 3) and 0.07 between ports 2 and 3.
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Figure 5.17: Measured S-parameters of the fabricated printed three-port compact antenna
array.

Figure 5.18: Simulated 3D far field radiation patterns at 6 GHz of the printed three-port
compact antenna array.
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5.3 Contour Integrated Dual Band Compact Antenna Elements and Ar-
rays for Low Profile Mobile Terminals

Compact antenna arrays with printed radiation elements have been designed in the
previous sections. In this section, radiation elements for modern wireless communication
devices such as mobile phones are studied. The antennas in smart devices should not only
be small in size but also able to support multiple frequency bands with respect to different
applications. As a result, the antenna arrays designed in the last sections are not applicable
for mobile terminals, because the printed monopoles are of large space occupation. In order
to achieve a size reduction of antennas, several successful techniques have been investigated
and published. For example, the planar inverted F antenna (PIFA) has become one of
the most popular candidates for mobile phone antenna designs [Lee and Wong, 2009, Nepa
et al., 2005, Rowell and Murch, 1997, 1998, Wang et al., 2007]. However, in general, there
is still a certain area which is required for mounting the PIFAs in mobile terminals, e.g.,
9 mm extended length from the ground plane is required for a PIFA for WLAN applica-
tions as presented in [Wang et al., 2007]. Commonly, this extended area brings additional
difficulties when realizing antennas in mobile devices due to the limited available space.
This issue would even be more problematic in future, since the thickness of up-coming
smart phone generations is becoming smaller and smaller and this leads to further reduced
available space inside the phones, e.g., the thickness of a smart phone can be as small as
1 mm in the future. As a result, it is quite challenging to utilize the common antenna types
such as PIFA in future phone designs. Following the theme of this dissertation, multiple
antenna systems have become very attractive. However, only a few of the previously pub-
lished designs of MIMO arrays support multiband applications [Karimian et al., 2013, Lin
et al., 2012, Sharawi et al., 2013, 2012, Wong et al., 2013, Zhou et al., 2012]. In [Sharawi,
2013], a number of successful approaches for designing multiband compact printed antenna
arrays are summarized. However, it seems that all of these solutions cannot satisfy the
size requirements for low profile mobile devices. Recently, some promising solutions have
been published in literature for decreasing the overall dimension of radiation elements. For
example, in [Martens et al., 2011], according to the characteristic mode theory, certain chas-
sis modes can be created through inductive and capacitive couplings by current loops and
capacitive elements, which occupy a little space. However, it is quite difficult to design an
excitation source, which can generate the characteristic modes in multiple frequency bands
through this method. Additionally, the design is dependent on the chassis structure. In
[Anguera et al., 2013], low profile monopole pads have been utilized for different frequency
bands. For this approach, the size of the pads itself is minimized, but it is still required
that the remaining extended area containing the pads must not be metallic. Furthermore,
it is also difficult to implement decoupling strategies with less space occupation for compact
MIMO arrays of which the radiation elements are the low profile monopole pads.

In this section, a novel approach for designing low profile radiation elements occupying
little space is investigated. The proposed antennas can be integrated at the contour of mo-
bile devices and only very little space along the contour of the device is required. Also, the
designed antennas operate independently from the particular shape of the chassis. Promis-
ing antenna performance is obtained by combining several novel and previously published
techniques. In order to make such antennas applicable, bandwidth enhancement strategies
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are carried out. Appropriate operation bandwidth is achieved through realizing novel mul-
tiple resonances structures. Following the same concepts, a two-element compact MIMO
array is also designed and a novel decoupling concept especially for arrays with radiation
elements with two radiation apertures, named self-neutralization, is introduced as well. The
proposed antenna elements and the compact array operate at two frequency bands around
2.4 GHz and 5.5 GHz and support WLAN and LTE 2300 applications. Three prototypes
have been manufactured and measured to prove the design concepts.

5.3.1 Operation Principle of the Contour Integrated Antenna

A 3D model of the first proposed design concept is shown in Figure 5.19, where a
radiation element occupying only Ws×2.5×0.762 mm3 extended area is integrated at the
contour of the chassis and Ws is the width of the chassis. Strips are mounted on the top
and bottom layers of the substrate, which are close to the ground plane (the chassis of the
mobile device). In order to realize resonant antennas, the lengths of these strips should be
integer multiples of half the effective wavelength λeff at the desired frequencies.

A. Antenna Design Around 2.45 GHz

The investigation of all prototypes in this section is still based on the substrate Rogers
4350 with a thickness of 0.762 mm. For the first prototype, Ws is chosen as 58 mm and
the length of the chassis Ls=50 mm (the real chassis for mobile devices is normally longer).
For designing the lower frequency band resonator antenna, the strip on the bottom layer
is implemented as a half wavelength resonator together with the ground plane as shown
in Figure 5.20(a). The effective wavelength in such a resonator structure is approximately
86 mm at 2.45 GHz. The quality factor Q for such a resonator is high because of the limited
size of the radiation apertures at the two open ends and the usage of low loss material.
According to the previous knowledge, this high Q leads to small operation bandwidth.
To increase the bandwidth, multiple resonance structures are promising solutions and are
commonly exploited such as for the E-shaped and U-shaped patch antennas [Huynh and
Lee, 1995, Wong and Hsu, 1997, 2001, Yang et al., 2001]. It is obvious that the E-shaped
structure cannot be applied to the proposed resonator antenna, since one of the conductor
layers is just a piece of strip. Therefore, a novel structure as shown in Figure 5.20(b) to
obtain multiple resonances is utilized. As illustrated in the figure, the floating strip and
the ground are connected in the middle through another short strip. Without this short
strip, the resonance occurs when λeff,1 = 2Lst (the fringe fields effects are neglected in this

analysis), where Lst is the strip length. The short strip has no effect on this resonance
mode, because for such a half wavelength resonator with open ends at the two sides, as
shown in Figure 5.20(a), there is a virtual short (null electric field) in the middle and any
PEC structure at this virtual short does not influence the field distribution of the resonance
mode. When the strip in the middle is considered, currents can flow through it and the
second resonance occurs when λeff,2 = 2(Lst +4L), where 4L is the length of the inserted
short strip. Consequently, two resonance modes are created by the proposed structure. The
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Figure 5.19: 3D view of the proposed antenna structure.

frequency of the second resonance is lower than the first one by the amount of

4f = f1 − f2 =
c

2
√
εeff

(
1

Lst

1

Lst +4L
), (5.2)

where c is the speed of light, εeff is the effective permittivity of the structure. The operation
of the two modes are demonstrated through the current flows in Figure 5.21. Meanwhile, the
simulated surface currents in x -direction (coordinates are defined in Figure 5.20) from CST
MWS at 2.35 GHz and 2.5 GHz are shown in Figure 5.22 and the results agree well with the
estimations. In order to enlarge the matching bandwidth, both two resonance modes should
be excited through the same feeding point. Since proximity coupled feeds are promising
solutions for input matching and bandwidth enhancement [Kim et al., 2011], a feeding strip
on the top layer of the substrate is utilized as shown in Figure 5.20(c) according to the feed
position shown in Figure 5.21(b). Figure 5.23 shows the simulation results for the return
loss with different structures. It can be seen that the matching bandwidth is improved
from 50 MHz to 260 MHz through implementing the proposed bandwidth enhancement
strategies, where it is beneficial for the bandwidth to shape the short strip in the middle of
the resonator as an ’H’, which is illustrated in the inset of Figure 5.20(b). The electric field
distribution of the two modes at the radiation apertures is different. For instance, for the
first mode resonating at the higher frequency, the electric field components in x direction
Ex at the two radiation slots are in phase while the components in y direction Ey are out of
phase. Oppositely, for the second mode resonating at the lower frequency, at the radiation
slots, Ex are out of phase and the components Ey are in phase. As a result, the far field
radiation pattern is different for the two modes. The simulated radiation patterns in the
plane xoy at the two resonance frequencies are shown in Figure 5.24 and the differences in
the patterns can be clearly noticed.
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Figure 5.20: Contour integrated resonator antenna: (a) Basic structure; (b) with H-shape
shorting strip in middle; (c) with coupling feed on the top layer. Ws = 58, Lst = 43,W1 =
1,W2 = 1.15,W3 = 1.5,W4 = 0.75,W5 = 14.5,W6 = 13.75,W7 = 1.5, unit: mm.

B. Antenna Design Around 5.5 GHz

Figure 5.25 presents the proposed antenna structure for the higher frequency band
which is around 5.5 GHz. The strip for this frequency band is located on the top layer
while the radiation structure for 2.45 GHz is located on the bottom layer. A one effective
wavelength long resonator is created by the strip on the top layer together with the strip
on the bottom layer. It can be noticed in the figure that an interdigital printed capacitor
is inserted. There are two reasons for implementing this capacitor. The first reason is to
minimize the influence from the top strip to the lower frequency band resonator antenna
and to maintain the functionality of the proximity coupled feeding. For this purpose, the
capacitor performs as a high-pass filter, where the 2.4 GHz should be located in the stop
band while the 5.5 GHz is in the pass band. Otherwise, the proximity coupled feeding would
not be functional with a too long strip on the top layer. The second reason for utilizing this
capacitor is to create an additional resonance mode. Without the capacitor, a regular one
wavelength resonator is formed. In this case, a virtual open (null magnetic field) exists in
the center of the strip. Therefore, the inserted capacitor is not functional at this resonant
frequency. For the second resonance mode, an equivalent circuit model with the capacitor
is illustrated in Figure 5.26. According to the theory of transmission lines, when the line
length is longer than a quarter effective wavelength but shorter than half a wavelength, the
open circuit would be transformed into an equivalent inductor. Therefore, in order to create
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Figure 5.21: Surface current propagation of two modes: (a) higher frequency mode; (b)
lower frequency mode.

the second resonance, the condition

1

jωC
+ 2jωL = 0. (5.3)

should be fulfilled. In consequence, the second resonance mode is formed at a little lower
frequency. Similarly, if an inductor is inserted instead of the capacitor in the middle, an
additional resonance mode at a higher frequency can be realized. Figure 5.27 illustrates the
two modes by plotting the electric field distributions at a time instance where the maximum
exists at the two ends. For the second resonance mode, the electric field is inverted at
the two sides of the capacitor. After the optimization process of the positions of all the
strips, both resonance modes can be excited through one feeding point. The simulated Ey
distribution in CST MWS is plotted in Figure 5.28(a) and 5.28(b) for the two resonance
modes, respectively, which matches well with the analysis. The simulated return loss is
shown in Figure 5.29 and the matching bandwidth is enlarged from 90 MHz to 370 MHz
through inserting the capacitor. Similar to the two resonance modes around 2.45 GHz, the
two modes around 5.5 GHz possess different electric field distributions as well. As a result,
the far field radiation patterns of the two modes are different, e.g., the simulated radiation
patterns in the plane xoy at the two resonance frequencies are shown in Figure 5.30.

5.3.2 Antenna Design and Measurements

The first antenna prototype is manufactured according to the discussions in the last
subsection. The photograph of the fabricated antenna is shown in Figure 5.31. The mea-
sured S-parameters together with the simulation results are plotted in Figure 5.32, where the
obtained matching bandwidths are around 250 MHz (2.27 GHz to 2.52 GHz) and 300 MHz
(5.45 GHz to 5.75 GHz). Some discrepancies between the simulation and measurement
results in the high frequency band are observed. This could be due to the errors during
the manufacturing process. As shown in equation (5.3), the second resonance frequency is
quite sensitive to the capacitance value. Very small modifications of the capacitance can
lead to a frequency shift. The measured and simulated far field radiation patterns in certain
cut planes are indicated in Figure 5.33 at 2.45 GHz and 5.5 GHz. Good agreement among
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Figure 5.22: Simulated surface current distribution in x direction for two modes: (a) higher
frequency mode; (b) lower frequency mode.

Figure 5.23: Simulated return loss of three different structures.

the measured and simulated results is obtained. The simulated antenna gains are 1.65 dBi
and 4.43 dBi and the simulated efficiencies are 92% and 89% at 2.45 GHz and 5.5 GHz,
respectively. At 2.45 GHz, the radiation pattern contains the features from both of the two
resonance modes in this band. For example, the pattern main lobes of the lower frequency
mode are found in directions of +z and −z. The main polarization of the electric field
in the far field is the φ component. For the other resonance mode around 2.45 GHz, the
pattern main lobe is located in the direction of +y and the major polarization of the electric
field in the far field is still the φ component. In the higher frequency band, the pattern at
5.5 GHz contains the features of the two resonance modes as well. The radiation of the
lower frequency mode directs towards the +y direction, where it should be noticed that
after optimizing the strip positions, the main lobe is tilted a little towards the direction of
−x. The major polarization in the far field is the φ component. On the other hand, for the
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Figure 5.24: Normalized simulated radiation pattern in the plane xoy at the two resonance
frequencies around 2.45 GHz.

higher frequency resonance mode, the main radiation direction is towards +z and the main
polarization in the far field is the θ component.

The proposed antenna can be integrated at one of the edges of a mobile terminal.
However, not all devices can offer an edge with a width of more than 50 mm and this antenna
prototype is also not convenient to be utilized for designing compact MIMO antenna arrays
in mobile devices. As a result, some modifications should be carried out to make the antenna
more universal for a wide variety of applications. The modified antenna prototype is shown
in Figure 5.34, where the strips are shifted and bent. Then, the antenna is convenient to be
integrated at the corner of the mobile device (width Ws=50 mm, length Ls=50 mm) due to
its L-shape. Compared with the previous prototype, some parameters such as the length of
the strip and the width of the slot for the coupled lines need to be changed slightly through
the optimization to compensate parasitic effects caused by the bending of the strips. For
example, W4 in Figure 5.26 is modified from 0.275 mm to 0.25 mm. The photograph of
the fabricated antenna is shown in Figure 5.35. The measured and simulated S-parameters
are plotted in Figure 5.36. The obtained matching bandwidths are 250 MHz (2.27 GHz to
2.52 GHz) and 240 MHz (5.29 GHz to 5.53 GHz). The normalized measured and simulated
far field radiation patterns are shown in Figure 5.37 for different cut planes at 2.45 GHz
and 5.5 GHz. It is noticed that in Figure 5.37(b), it is different between the simulated and
measured results at around φ = 270◦. This is because the feeding and mounting facilities
for the far field measurements are implemented around this angle, which is also called the
shadow area of the measurement. According to the simulation, the gains are 2.5 dBi and
4.1 dBi and the efficiencies are 93% and 85% at 2.45 GHz and 5.5 GHz, respectively. With
respect to the far field radiation pattern, compared to the previous antenna, the L-shaped
antenna owns the following features. The radiation patterns of the two resonance modes
around 2.45 GHz are similar. The main lobe of both modes is towards the directions of +z
and −z and the major polarization of the electric field in the far field is the φ component.
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Figure 5.25: Contour integrated resonator antenna with dual operation band: (a) top layer;
(b) ground plane. W1 = 32.5,W2 = 2.5,W3 = 2.35,W4 = 0.275,W5 = 0.125, unit: mm.

In the 5.5 GHz band, the two resonant modes radiate towards different directions. For
example, the main lobe of the lower frequency mode is located in the direction between +x
and +y, and the φ component is the dominant polarization in the far field. The main lobe
of the higher frequency mode is in the direction of +z with some tilts towards −x and −y.
The θ component is the main polarization in the far field. The pattern at 5.5 GHz is a
combination of the patterns of the two resonance frequencies.

5.3.3 Two-Element Compact Antenna Array

In this subsection, a two-element compact antenna array is designed according to the
L-shaped corner integrated dual band antenna. In this design, the shortest edge to edge
distance between the radiation elements is around 0.22λeff and λeff is the effective wave-
length at 2.45 GHz. The proposed compact antenna array is shown in Figure 5.38, where
the two radiation elements are integrated at the two corners on an edge of the chassis (width
Ws=50 mm, length Ls=110 mm). For this configuration, the two radiation elements are
close to each other and strong mutual coupling exists. As a result, for decoupling the input
ports, several decoupling strategies are utilized. A novel decoupling concept which is named
self-neutralization is exploited. The proposed approach is quite effective for antenna arrays
with radiation elements owning two radiation apertures. It is shown in Figure 5.38 that
there are two possible coupling paths from antenna 1 to antenna 2: the first one is the direct
coupling through path 1; the second coupling is due to the excited surface wave propagat-
ing along the edges of the chassis, which is marked as path 2. The simulated distributions
of surface currents from CST MWS at 2.45 GHz are shown in Figure 5.39. The currents
are mainly distributed along the edges of the substrate and the currents on the center of
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Figure 5.26: Principle of generating the additional resonance mode by the capacitor.

the chassis are very small and thus negligible. In order to realize the port decoupling, the
equation

c1a1 + c2a1 = 0 (5.4)

should be fulfilled, where ci is the propagation coefficient due to the ith path and a1 is the
input wave amplitude at antenna 1. For this configuration, the magnitude of c1 should be
larger than the magnitude of c2. In Figure 5.40, the ratio between the simulated magnitudes
of c2 and c1 in CST MWS is illustrated with different substrate length Ls at 2.36 GHz and
5.4 GHz, respectively. In the higher frequency band, since |c2| << |c1|, the concept of self-
neutralization is not functional. At the lower frequency band, for minimizing the magnitude
of c1+c2, destructive interference of coupled waves due to the two paths is expected. Assume
coefficient c1 is fixed, the magnitude and phase of coefficient c2 depend on the length of
the chassis. As a result, an investigation is carried out for the relationship between the
maximum coupling coefficient at the lower frequency band and the length of the chassis.
Figure 5.41 depicts the results from simulations. The maximum coupling coefficient in the
lower frequency band varies from -8 dB to -15 dB with different substrate length. Based
on the simulation results, for minimizing the coupling, the substrate length in the design is
chosen as 110 mm. For further reducing the coupling, two U-shaped strips are implemented
at the radiation slots on the bottom layer as shown in Figure 5.42. These U-shaped strips
reduce the radiated power at these radiation apertures and then decrease the magnitude
of c1. However, the drawback is that they lead to a reduction of the matching bandwidth.
In real application environments, the sizes of the chassis are always fixed in general. The
self-neutralization can then be achieved by properly positioning the arms of the L-shaped
radiation elements. Path 1 is dominant for the mutual coupling at the higher frequency
band. Cutting slots is a quite efficient solution for reducing the mutual coupling, e.g., a T-
shaped slot in [Wang and Du, 2014a] leads to very good results. For isolating the presented
radiation elements around 5.5 GHz, in Figure 5.42, a T-shaped slot is exploited. By inserting
this T-shaped slot, discontinuities of the electric field in the propagation path along the edge
are created and then the maximum coupling coefficient is reduced from -14 dB to -22 dB
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Figure 5.27: The electric field distribution of the two modes in the 5.5 GHz band: the upper
one is for the higher frequency mode and the one below it is for the lower frequency mode.

in the higher frequency band as shown in Figure 5.43. However, after implementing the
T-shaped slot, the value of c1 at 2.36 GHz changes from 0.27e−66◦j to 0.26e−75◦j . c1 changes
in phase by 9◦ and this 9◦ phase shift should be compensated by re-selecting the length of
the substrate. However, the required change of the substrate length is only 1.1 mm and it
is negligible.

The proposed antenna is manufactured as shown in Figure 5.44. The simulated and
measured S-parameters are shown in Figure 5.45, where the simulated coupling coefficient is
as low as -17 dB at the lower frequency band. However, the measured coupling coefficient at
the lower frequency band is higher than the value in the simulation. This is due to the fact
that the connecting coaxial cables for the measurement devices block path 2 and this effect
degrades the performance of the self-neutralization. The obtained matching bandwidths
from the measurement of the proposed compact array are 160 MHz (from 2.34 GHz to
2.5 GHz) and 320 MHz (from 5.18 GHz to 5.5 GHz). The measured far field radiation
patterns are shown in Figure 5.46 and 5.47 at 2.45 GHz and at 5.5 GHz. Good agreement is
found between the simulation and the measurement results except for some mismatches in
the measurement shadow area. The radiated power at 2.45 GHz of antenna 1 is distributed
on the half sphere around +x and the main polarization in the far field is the φ component.
The radiated power at 5.5 GHz of antenna 1 is mainly directed towards the direction of
+z and the electric field is polarized in φ direction. Due to the symmetry alignment, the
far field radiation patterns of antenna 2 are the images of the patterns of antenna 1 with
respect to the yoz plane. In the simulation, the gains are 1.5 dBi and 3.0 dBi, the radiation
efficiencies are 92% and 76% at 2.45 GHz and 5.5 GHz, respectively. The pattern correlation
coefficients between the two antennas are below 0.2 and 0.15 in the low and high frequency
band, respectively.
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Figure 5.28: Simulated Ey in CST MWS: (a) lower frequency mode; (b) higher frequency
mode.

5.3.4 Discussion

The designed contour integrated antennas and the two-element array show advanta-
geous performance in space occupation and broad operation bandwidth. To better illustrate
the advantage, a common PIFA array occupying similar space has been simulated in CST
MWS for comparison. The two PIFAs realized with virtual inductors have been imple-
mented around the edges at the two sides of the chassis with 2.5 mm extended area. The
simulation results of the S-parameters for such a PIFA array are shown in Figure 5.48.
The PIFA array achieves good matching and decoupling results at 2.4 GHz. The radiation
efficiency at 2.4 GHz is about 88% for both ports. However, this two-element conventional
PIFA array operates only in one frequency band and the bandwidth is around 120 MHz.
Thus, it can be concluded that the performance of the new array is considerably better.
The second advantage of the proposed array is that the operation is chassis independent.
For example, in Figure 5.49, the simulated S-parameters of an antenna array with defected
chassis are shown. Compared to the S-parameters shown in Figure 5.45, there are only small
variations caused by the defect chassis. This feature makes the introduced design concept
suitable for a wide variety of applications where only metallic contours are needed. As a
result, compared to the small antenna designs based on the characteristic mode excitation
method, the proposed design gives much more freedom in selecting the shape of the chassis.
If materials with higher permittivity are utilized as a substrate, the operation frequency of
the antenna can be reduced slightly. According to simulations, the proposed method works
properly with materials with relative permittivity smaller than 10 and the lower band oper-
ation frequency can be as low as 1.6 GHz. However, for even lower frequencies, the proposed
approach encounters the problem that the obtained matching bandwidth becomes small.
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Figure 5.29: Simulated return loss for the cases with and without the capacitor.

Figure 5.30: Normalized simulated radiation patterns in the plane xoy for the two resonance
frequencies around 5.5 GHz.

108



Figure 5.31: Photograph of the manufactured antenna.

Figure 5.32: Measured and simulated S-parameters of the proposed antenna which is shown
in Figure 5.31.
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Figure 5.33: Normalized measured and simulated radiation patterns in cut planes: (a) xoz
at 2.45 GHz; (b) xoy at 2.45 GHz; (c) xoz at 5.5 GHz; (d) xoy at 5.5 GHz.
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Figure 5.34: Corner integrated L-shape dual band antenna: W1 = 13.15,W2 = 22.7,W3 =
17.5,W4 = 28.5, unit: mm.

Figure 5.35: Photograph of the manufactured antenna based on the model which is shown
in Figure 5.34.
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Figure 5.36: Measured and simulated S-parameters of the proposed antenna which is shown
in Figure 5.35.

Figure 5.37: Normalized measured and simulated radiation patterns in cut planes: (a) xoz
at 2.45 GHz; (b) xoy at 2.45 GHz; (c) xoz at 5.5 GHz; (d) xoy at 5.5 GHz.

112



Figure 5.38: Schematic of the two-element compact antenna array.

Figure 5.39: Simulated surface current distribution at 2.45 GHz in CST MWS.
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Figure 5.40: The ratio of |c2| and |c1| with different substrate lengths at different frequencies.

Figure 5.41: Simulated maximum coupling coefficient in the lower frequency band between
the two antennas with different substrate lengths.

Figure 5.42: Modified ground plane for decoupling the two antennas: W1 = 17.5,W2 =
2.5,W3 = 3.5,W4 = 2.5,W5 = 14.5,W6 = 0.175,W7 = 0.9,W8 = 1.75, unit: mm.
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Figure 5.43: Simulated coupling coefficients in the higher frequency band between the two
antennas with and without the T-shape slot.

Figure 5.44: Photograph of the manufactured two-element MIMO antenna array.

Figure 5.45: Measured and simulated S-parameters of the proposed antenna which is shown
in Figure 5.44.
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Figure 5.46: Normalized measured and simulated radiation patterns in cut planes: (a) xoz
at 2.45 GHz of antenna 1; (b) xoy at 2.45 GHz of antenna 1; (c) xoz at 2.45 GHz of antenna
2; (d) xoy at 2.45 GHz of antenna 2.
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Figure 5.47: Normalized measured and simulated radiation patterns in cut planes: (a) xoz
at 5.5 GHz of antenna 1; (b) xoy at 5.5 GHz of antenna 1; (c) xoz at 5.5 GHz of antenna
2; (d) xoy at 5.5 GHz of antenna 2.
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Figure 5.48: Simulated S-parameters of a PIFA antenna array.

Figure 5.49: Simulated S-parameters of the proposed antenna array with defect chassis.
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6 Evaluation of the Channel Capacity for Compact Multiple
Antenna Systems

It has been proved in Chapter 3 that MIMO systems are beneficial for pursuing large
channel capacities. With certain SNR and bandwidth at the receiver, the channel capacity
only depends on the channel matrix. In this chapter, the channel characteristics of MIMO
wireless communication systems are investigated. Both statistical and deterministic channel
models for different circumstances are utilized for the study. The channel capacities of
MIMO systems realized with the two-element compact monopole antenna arrays designed
in Chapter 4 are evaluated. For different decoupling strategies, the obtained results are
different as well. For the deterministic model of indoor communication systems, a ray
tracing method is exploited to track the channel matrix. Following the same procedures,
the antenna arrays designed in Chapter 5 can be evaluated as well.

6.1 Channel Capacity Analysis for Outdoor Wireless Communication
Systems with Rich Scattering Environment

An outdoor communication environment contains commonly rich and random scatter-
ing objects, where line of sight (LOS) transmission between the transmitter and receiver
does not exist. Generally, Rayleigh fading channels are exploited for investigations [Biglieri
et al., 1998, Chizhik et al., 2003]. Statistically, if the channels are all uncorrelated, the
channel matrix H is a random matrix with complex, zero-mean, independent, identically
Gaussian distributed entries. According to [Telatar, 1999], the real and imaginary parts of
each entry in the matrix should also be Gaussian, zero-mean and independent from each
other, where the variance of them should be identical and equal to half of the variance of
the magnitude of each entry in H. Once the channel matrix has been found, the channel
capacity can be evaluated. In the following analysis, it is assumed that a large number of
scattering objects exist around both the transmitter and the receiver. Signals transmitted
to all directions from the TX array can be received by the RX antennas from random in-
coming directions. Based on these assumptions, a modeling method including the far field
radiation patterns of the antennas is developed for characterizing the channel capacity.

6.1.1 Description of the Modeling Approach

Within the proposed method, the channels need to be represented by sub-channels
between sub-transmitters and sub-receivers, which are related to the far fields of the TX and
RX array elements. One sub-transmitter is assumed to transimit its signal to a single fixed
direction in the far field and the sum of the transmitted powers by all the sub-transmitters is
equal to the radiated power of the corresponding antenna. A similar definition is applied to
the sub-receivers. This assumption physically is not possible for individual measurements,
but it can be utilized for the statistical analysis. Without considering noise, the sub-channel
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matrix can be represented in the form of

~r =
1√
XY

√
gHs~t, (6.1)

where ~r is the vector containing the sub-receivers, ~t is the vector containing the sub-
transmitters, Hs is the corresponding random channel matrix, g is the average channel
gain, X and Y are the numbers of the sub-transmitters or sub-receivers in the φ and θ cut
planes, and XY is the total number of the sub-transmitters or sub-receivers. In this case,
the average channel gain depicts the relationship between the transmitted power in each
sub-transmitter and the power density of the incident plane wave at the RX antennas. The
expectation of the magnitude of the entries of Hs should be unity. The entries of Hs are
identically distributed and independent from each other, which means the sub-channels are
uncorrelated. The sub-transmitter vector is directly derived from the far field pattern, e.g.,
the one for the ith element in the TX array is calculated through

~ti = ai

√
Gi(1−

∑
k |Ski,T |2)

8π


Fi(θ1, φ1)

√
4Ω(θ1, φ1)

Fi(θ1, φ2)
√
4Ω(θ1, φ2)

...

Fi(θX , φY )
√
4Ω(θX , φY )

 , (6.2)

with

4Ω(θx, φy) =
π

X

2π

Y
sin(θx), (6.3)

where ai is the ith input wave amplitude of the TX array, Fi(θ, φ) is the normalized radiation
pattern of the ith port, Ski,T are the S-parameters of the TX elements, Gi is the gain of
the ith port and 4Ω is the sampling interval in the far field. It should be noticed that
the polarization is not considered and it will be discussed later. On the receiver side, the
received wave amplitude of the jth port for the sub-receiver can be written in the form of

bj =

√
Gjλ2(1−

∑
k |Skj,R|2)

2π


Fj(θ1, φ1)

√
XY
4π 4Ω(θ1, φ1)

Fj(θ1, φ2)
√

XY
4π 4Ω(θ2, φ2)
...

Fj(θN , φM )
√

XY
4π 4Ω(θX , φY )



T

~rj , (6.4)

where λ is the wavelength of the desired frequency in free space and Skj,R are the S-
parameters of the RX elements. Then, the channel coefficient between the ith TX port and
the jth RX port, which is the element of the channel matrix H is calculated through

hji =
bj
ai
. (6.5)

In consequence, the channel matrix is generated. The channel capacity is calculated through
equation (3.25). After adequate individual simulations with different realizations of H, the
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average channel capacity is expressed as

C ′ = E

[
log2

∣∣∣∣IN +
PTX
MPn

HHH

∣∣∣∣] , (6.6)

where it is assumed that the power is evenly distributed at the TX ports.

However, the polarization properties have not been considered so far, which also plays
an important role during the channel characterization. For this modeling approach, two
orthogonal polarizations are treated separately. For example, the sub-transmitters are di-
vided into two parts, ~tθ and ~tφ according to the far field components of θ and φ, together
with four channel matrices Hs,θθ, Hs,θφ, Hs,φθ and Hs,φφ, which are independent from each
other. The same decomposition is also applied to the sub-receivers. With polarization
characteristics, the sub-receiver vector becomes~rθ = 1√

XY

√
g
2(Hs,θθ~tθ + Hs,θφ~tφ)

~rφ = 1√
XY

√
g
2(Hs,φθ~tθ + Hs,φφ~tφ).

(6.7)

The corresponding received wave amplitudes can be calculated through equation (6.4). To
sum up, the generation process of the channel matrix can be concluded as: a) calculate the
sub-transmitter for every TX port according to the far field pattern and gain for different
polarizations; b) generate Gaussian complex random matrices with zero-mean independent
entries; c) calculate the channel matrix between the transmitter and receiver through the
relevant equations and calculate the channel capacity; d) repeat step a) to c) often enough
and calculate the mean value of the channel capacity. Afterwards, the channel capacity can
be obtained.

6.1.2 Channel Capacity Evaluation for 2×2 MIMO Systems with Compact
Monopole Arrays

In this subsection, the channel capacities for MIMO systems with the antenna arrays
discussed in Chapter 4 are investigated. Here, four 2×2 communication systems are eval-
uated for comparison. For each of them, the same type of array is utilized for the TX
and RX arrays. The four types of arrays are the compact array with eigenmode excitation
method (CEM) of 0.1λ separation, the compact array with multiport conjugate matching
method (CCM), the compact monopole array with no decoupling network (CNDN), and an
additional sparse array without decoupling network (SNDN) of around 0.3λ separation. All
of the antenna arrays operate at the same frequency around 2.45 GHz.

Firstly, the influence on the channel capacity from the radiation patterns is studied.
To make fair comparisons, the effects from power matching and radiation efficiency should
be eliminated. This is achieved through a mathematical power regulation, e.g., in the TX
mode, if one antenna is mismatched, more power should be delivered to this port to ensure
that all the antennas transmit the same amount of power. For the RX mode, the directivity
pattern should be applied instead of the gain pattern and all the RX ports are assumed
to be matched. Based on the above discussions, simulations have been performed with
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Figure 6.1: The average channel capacity of different MIMO systems for the outdoor sta-
tistical model, where only the influence from the radiation patterns is considered.

the MATLAB software [MathWorks, 2011]. Each simulation was carried out dependent on
the ratio of the total transmitted power and the noise power at the receiving port. In the
following investigations, the channel gain g is assumed to be -70 dB and the sampling step
in the far field is 5◦ for both θ and φ. For one round, 1000 simulations were performed and
the mean value of the average channel capacity was calculated.

The simulated average channel capacity is plotted in Figure 6.1. For comparison, the
simulation results of a 2×2 MIMO system with independent identically distributed (i.i.d.)
channels are also plotted as a reference, of which H is a 2×2 matrix with i.i.d. entries [Cover
et al., 1980]. Particularly for the proposed modeling approach, the channel coefficient of
the i.i.d. channel satisfies

E[|hi.i.d.|2] =
1

2

λ2gPTX
4πM

. (6.8)

The reason for multiplying 1
2 is that the monopole antenna is linearly polarized and statis-

tically the average probability of polarization matching between the TX and RX antennas
is 50%. It is noticed that the i.i.d. channel shows the best performance of the channel
capacity. The MIMO systems based on compact antenna arrays with decoupling networks
show similar performance as compared to the system with the array with larger element
spacing, which are quite close to the performance of the system with i.i.d. channel. The
system with CNDN arrays shows the worst results.

It is reported in [Chiani et al., 2003, Louie et al., 2008, Shiu et al., 2000] that the
channel correlation is influential on the statistical channel capacity and in most cases with-
out additional signal processing techniques, the channel correlation degrades the channel
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Figure 6.2: The average channel correlation coefficient of different MIMO systems, where
only the influence from radiation patterns is considered.

capacity. The channel correlation coefficient is calculated through

ρji,nm =
E[hjih

∗
nm]√

E[hjih∗ji]E[hnmh∗nm]
. (6.9)

Then, the average channel correlation coefficient is calculated through

ρave =
2
∑

i,j,m,n |ρji,nm|
(M +N)(M +N − 1)

∣∣∣∣ for j 6= n and i 6= m, (6.10)

which is the mean value of the magnitude of the channel correlation coefficient between all
different channels. The results of the average channel correlation coefficient for different
arrays are plotted in Figure 6.2 versus the ratio between the transmitted power and the
noise power. The channel correlation for the compact arrays with decoupling networks is
much lower than the compact array without decoupling networks. Therefore, it is proved
that channel correlations reduce the channel capacity in Rayleigh like channels.

What should also be checked in the simulation is the SNR at the receiving ports. The
SNR at each RX port is calculated through

SNRrj =

∑
iE[|hji|2]PTX

MPn
, (6.11)

where SNRrj is the average SNR at the jth receiver port. Figure 6.3 plots the simulation
results. Since the mismatch and loss are not considered, the RX ports of all the arrays should
own the same SNR. The simulation results show good agreement with this expectation.
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Figure 6.3: The SNR at each RX port of different MIMO systems, where only the influence
from radiation patterns is considered.

In the above, the effects of antenna radiation patterns on channel capacity for Rayleigh
like channel models have been investigated. In the following, the power matching and losses
are considered as well. The power is still assumed to be evenly allocated over the TX ports.
After the same simulation process, the simulation results are plotted in Figure 6.4. It is
noticed that the channel capacity of the MIMO system with the CEM array is just a little bit
higher than for the system with the CNDN array. This is due to the fact that the radiation
efficiency of the odd mode port of the CEM array is as low as 53% in the simulation, while
it is almost 100% for the CNDN array. So, the benefits from the uncorrelated channels are
lost due to the low radiation efficiency. In order to describe this in a clearer manner, the
MIMO average transmission efficiency is utilized, which is defined as

ηMIMO =

∑
i ηt,T i

∑
j ηt,Rj

MN
, (6.12)

where ηt,T i is the total efficiency for the jth TX antenna and it can be calculated through

ηt,T j = (1−
∑
k

|Skj,T |2)ηr,T j , (6.13)

where Skj,T is the S-parameter between the kth and the jth TX port, ηr,T j is the radia-
tion efficiency of the jth TX port. The same definition is applied for the RX ports. For
comparison, the average MIMO efficiency together with the S-parameters and the radiation
efficiency for different MIMO systems are shown in Table 2. Here, the system with i.i.d.
channel is assumed to be matched and decoupled and the radiation elements own 100%
radiation efficiency, of which the result can be understood as the upper bound of the chan-
nel capacity of a 2×2 MIMO system. The simulated SNR at the receiver side is plotted in
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Table 2: The average MIMO efficiency together with the S-parameters and radiation effi-
ciency

Array type |S11| |S21| |S22| ηr,1 ηr,2 ηMIMO

CNDN 0.27 0.54 0.27 100% 100% 40.5%
SNDN 0.11 0.29 0.11 100% 100% 81.6%
CEM 0.09 0.03 0.17 53% 75% 40.3%
CCM 0.09 0.12 0.09 80% 80% 61.15%
i.i.d. 0 0 0 100% 100% 100%

Figure 6.4: The average channel capacity of different MIMO systems for outdoor statistical
model.

Figure 6.5. For the system with CEM arrays, the results of both ports are indicated due
to its asymmetric configuration. As expected, the SNR at the odd mode port of the CEM
array in the RX array is the lowest among all the systems. In this case, it is concluded
that the multiport conjugate matching method shows the best performance for the MIMO
systems with compact arrays. However, if low loss materials are utilized instead of FR 4,
the channel capacity performance of the CEM array can be further improved. It can also be
concluded that it is significant to implement matching and decoupling strategies to increase
the average MIMO efficiency.

6.1.3 Simulation Simplification Based on Channel Correlation

It is reported in [Hui and Wang, 2010, Oestges, 2006] that it is possible to simplify the
system simulation if the channel correlation is known. It is known that a random matrix
with correlated entries can be generated by another random matrix with uncorrelated entries
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Figure 6.5: The SNR at each RX port of different MIMO systems.

through

vec(H) = R
1
2 vec(Hu), (6.14)

R = E[vec(H)vec(HH)], (6.15)

where vec() is an operator which stacks the matrix into a vector column by column, Hu is
a random matrix with uncorrelated entries, R is a (M ×N)× (M ×N) matrix of which the
entries are the correlation coefficients between the entries of H, e.g., R(1, 2) is the correlation
coefficient of h11 and h21. As a result, once the channel correlation has been calculated,
the normalized channel matrix can be derived in a simpler way. Then, by multiplying the
relevant coefficients such as the channel gain, the channel matrix representing a certain
communication system is generated and the channel capacity can be evaluated afterwards.
This simplified modeling process is named as the Kronecker model.

Next, the channel correlation should be derived from the channel environment and
the antenna radiation property. It is shown in Appendix C that the channel correlations
can be approximated by the pattern correlations. The channel correlation coefficient is the
multiplication of the far field radiation pattern correlation coefficient of the TX antennas
and RX antennas, of which the amplitude is

|ρji,nm| = |ρ′jn||ρ′im|, (6.16)

where ρ′jn is the pattern correlation coefficient between the jth and nth RX port and
ρ′im is the pattern correlation coefficient between the ith and mth TX port. The channel
correlation between the channels with no TX and RX ports in common is the minimum
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Figure 6.6: The average channel capacity of different MIMO systems based on the Kronecker
model.

such as ρ11,22 and ρ12,21. However, the expectations of the obtained magnitude of all the
channels according to equation (6.14) are unique, in order to show the influence from the
MIMO transmission efficiency, the coefficients with respect to the port total efficiency and
the channel gain should be multiplied with the channel coefficient according to equation
(6.8),

h′ji =
1

2

√
gλ2

4π

√
ηt,T iηt,Rjhji. (6.17)

Afterwards, the channel capacity can be estimated by equation (6.6). In order to show
the accuracy of this method, the channel capacity of different MIMO systems of which the
results are shown in Figure 6.4 is analyzed again with the Kronecker model and the results
are shown in Figure 6.6. Good agreement is found between the results of the two methods.

6.1.4 Embedded Keyhole Effect of Antenna Radiation Patterns

When the channel capacity is evaluated based on statistical models, it is not always
true that low channel correlation leads to high channel capacity. For example, the keyhole
effect was investigated in [Almers et al., 2006, Loyka and Kouki, 2002]. The keyhole effect
means that the channel capacity is less than the expected result based on the Kronecker
model, when the channels are of low correlation but with low degrees of freedom. In order
to demonstrate the keyhole effect, the following situation is analyzed. For a particular com-
munication environment of a MIMO system, it is assumed that the channel coefficients are
always equal in magnitude and satisfy the Rayleigh distribution, while the phases of them
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Figure 6.7: The average channel capacity of an i.i.d. model and a c.i.i.d model.

are random and independent from each other. So, mathematically, the channel coefficient
can be expressed as

hji = |hm|ejψji , (6.18)

where ψji is a random phase constant from 0 to 2π and |hm| is the magnitude of all channel
coefficients. Then, the condition

E[hjih
∗
nm] = E[|hm|2]E[ejψjie−jψnm ] = 0 (6.19)

exists. This channel property is named as conditional i.i.d. (c.i.i.d.). The simulated results
of the corresponding 2×2 MIMO systems in MATLAB are plotted in Figure 6.7, where it is
obvious that the channel capacity of the c.i.i.d. channel is lower than the i.i.d. channel. As
a result, the conclusion is drawn that the previous Kronecker model might be inaccurate,
because it is not able to extract the magnitude correlation from the channel correlation
coefficient. This keyhole effect can be embedded in the radiation patterns, i.e., the power
patterns of tow ports can be identical while the phase patterns of them are orthogonal.

6.2 Channel Capacity Analysis for Indoor Wireless Communications Based
on a Statistical Model

In this section, the statistical MIMO channel capacity of indoor communication envi-
ronments is evaluated. The approach exploited for the evaluation is based on the Saleh-
Valenzuela (SV) model [Saleh and Valenzuela, 1987]. The capacity of 2×2 MIMO systems
with different arrays is compared and a general method for performance prediction according
to radiation patterns is addressed.
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6.2.1 Introduction of the Saleh-Valenzuela Channel Model

The SV model was firstly proposed in [Saleh and Valenzuela, 1987], where a statistical
model for an indoor multipath environment was introduced based on clustering assumptions.
In [Saleh and Valenzuela, 1987], it is assumed that the received signals arrive in different
time periods, which are recognized as different clusters. Each cluster can be understood as
an arrival due to one of the multipaths. In one cluster, there are a certain number of rays
due to scattering effects. It was observed in the experiments in [Saleh and Valenzuela, 1987]
that the average received power decays exponentially with the time between the clusters
and within one cluster. The impulse response of such a channel with L clusters and K rays
in each cluster can be written in the form of

h(t) =
L∑
l=1

K∑
k=1

gklδ(t− Tl − τkl), (6.20)

with

δ(x) =

{
1, x = 0

0, x 6= 0,
(6.21)

where gkl is the complex amplitude of the channel coefficient of the kth ray in the lth cluster,
Tl is the time delay of the lth cluster and τkl is the time delay of the kth ray in the lth
cluster with the assumption of T0 = 0 and τ0l = 0. The magnitude of gkl is assumed to be
Rayleigh distributed and the average received signal power is expressed in the form of

Pave,kl = E[|gkl|2] = E[|g00|2]e−Tl/Γe−τkl/γ , (6.22)

where Γ and γ are defined as the cluster arrival decay time constant and the ray arrival
decay time constant. Both of these two constants are closely related to the surrounding
environment of the communication systems. The number of clusters depends on the number
of multipaths, e.g., in a complex indoor environment with lots of scatterers, the average
number of clusters should be more than the one in a simpler environment such as an empty
office. The arrival of the rays and clusters can be treated as two independent Poisson
processes with cluster arrival rate R and ray arrival rate r.

However, from the aspect of antenna designs, the models containing the spatial in-
formation are more attractive. In [Spencer et al., 2000], the spatial properties of indoor
communication environments were investigated and a model expanded from [Saleh and
Valenzuela, 1987] including both time and spatial information was shown. In the new
model, the angle of arrival (AOA) and angle of departure (AOD) are considered and it was
named as the SVA model in [Wallace and Jensen, 2002]. Then, the channel response can
be rewritten as

h(t) =

L∑
l=1

K∑
k=1

gklδ(t− Tl − τkl)δ
(
(θ, φ)− (θl, φl)− (θ′kl, φ

′
kl)
)
, (6.23)

where (θl, φl) is the mean angle of the lth cluster and (θ′kl, φ
′
kl) is the angle referred to

(θl, φl) of the kth ray in the lth cluster, of which the relationship is plotted in Figure 6.8.
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Figure 6.8: Indication of the clustering theory for the SVA model.

In [Spencer et al., 2000], it was proved through measurements that the received power
from the transmitter is mostly confined in the paths in the horizontal plane if the RX
and TX antennas are aligned with similar height, which reduces the complexity during
the modeling. Assuming the xoy plane represents the horizontal plane, the AOA can be
recognized as (π/2, φl) and (π/2, φ′kl). From the experimental observations in [Spencer et al.,
2000], φ′kl is a random value statistically satisfying the Laplacian distribution with zero
mean and standard deviation σ. The value of σ depends on the particular communication
environments as well.

6.2.2 Implementation of the Saleh-Valenzuela Channel Model with Angle In-
formation

Based on the above introduction, narrow band evaluations of the channel performance
are carried out. Since flat fading is assumed, the time domain expansion of the signal is
neglected. Then, the channel response is

h(θ, φ) =

L∑
l=1

K∑
k=1

gklδ
(
(θ, φ)− (θl, φl)− (θ′kl, φ

′
kl)
)
. (6.24)

Because the AOA is independent from the time of arrival, the power of the rays from
different angles is also different. It is suggested in [Wallace and Jensen, 2002] that the ray
power in every cluster should satisfy the Rayleigh distributed. The rule for the exponential
decay still holds between clusters. However, equation (6.24) only contains the information
of the RX array. In order to form the transmission matrix, it is assumed that the AOD

130



owns an identical distribution as the AOA and the transmission coefficient becomes

h =

L∑
l=1

K∑
k=1

gklδ
(
(θT , φT )− (θTl , φ

T
l )− (θ′Tkl , φ

′T
kl )
)
δ
(
(θR, φR)− (θRl , φ

R
l )− (θ′Rkl , φ

′R
kl )
)
,

(6.25)

where T and R denote the transmitting and receiving cases, respectively. The mean angle
of each cluster is assumed to be independent and uniformly distributed in space. In order
to obtain the channel matrix, equation (6.25) should be further calculated together with
the antenna radiation properties.

Similar to equation (6.2), the transmitted signal of a ray from the ith TX antenna in
the horizontal plane with a beamwidth 4Ω(π/2, φi) is defined as

ti,p(π/2, φi) = ai

√
(1−

∑
k |Ski,T |2)

8π

√
4Ω(π/2, φi)(

√
Gi,pFi,p(π/2, φi)), (6.26)

where p denotes two orthogonal polarization components, 1 and 2, and Fi,p is again the
normalized radiation pattern. The received signal of a ray for the jth RX element is

bj,p1 =√
λ2(1−

∑
k |Skj,R|2)

2π

(√
Gj,p1Fj,p(π/2, φj)

)
(cos(ψ1)hij,p1(φi, φj)ti,p1 + sin(ψ2)hij,p2(φi, φj)ti,p2) ,

(6.27)

bj,p2 =√
λ2(1−

∑
k |Skj,R|2)

2π

(√
Gj,p2Fj,p(π/2, φj)

)
(sin(ψ1)hij,p1(φi, φj)ti,p1 + cos(ψ2)hij,p2(φi, φj)ti,p2) ,

(6.28)

where hij,p(φi, φj) is the transmission coefficient between the ray of departure and the ray
of arrival, which is assumed to be Rayleigh distributed in magnitude. ψ1 and ψ2 are two
independent random values uniformly distributed from 0 to 2π, which are used to represent
the polarization mismatch. Considering the indoor environment, two physical effects are
dominant during the wave propagation, reflection and diffraction, as shown in Figure 6.9.
For most of the materials, the power reflection coefficient and the diffraction loss are not
polarization dependent, but the phase change after reflection or diffraction is quite sensitive
to polarization [Balanis, 1989]. Under these circumstances, it is defined in the simulation
that |hij,p1| = |hij,p2|. However, the phase difference between the two coefficients is random
and uniformly distributed from 0 to 2π. Considering the power conservation, two arrival
rays from the same cluster or different clusters might be from the same departure ray. If so,
the ray power should be normalized by a factor X, which is the number of the occurrences
of a transmitted ray at the receiver.

As discussed before, multipath transmissions are mainly distributed in the horizontal
plane, so in equation (6.25) the calculation is based on the global coordinates, in which
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Figure 6.9: Two possible physical effects on the wave propagation channel:(a) reflection;
(b) diffraction.

the xoy plane is the horizontal plane. However, in reality, the antenna arrays can be
randomly rotated. Therefore, certain transformations from the antenna radiation pattern
local coordinates to the global coordinates should be carried out.

According to the above discussions, the simulation process of an SVA indoor channel
model can be summarized as follows: a) choose the basic parameters such as frequency, mean
cluster number, mean ray number, exponential decay constant, the standard deviation of
the AOA and AOD and so on; b) randomly select a cut plane of the radiation pattern of the
antennas for the TX and RX array, respectively; c) set up the cluster and ray distributions
according to the Poisson process; d) generate the channel matrix according to equations
(6.24) to (6.28); e) repeat step b) to d) with adequate runs to obtain the statistical result
of the channel capacity.

6.2.3 Simulation Results of the Saleh-Valenzuela Channel Model with Angle
Information

In this subsection, the channel performances of the MIMO systems with the two-
element compact antenna arrays operating at 2.45 GHz are evaluated and compared based
on the SVA model. The significance of the power matching has already been addressed
in the previous section. Therefore, in this part, the effects on the channel capacity from
antenna radiation patterns are investigated, where the influences from the power mismatch
and losses are extracted.

For the first simulation, the mean cluster number is chosen as 3 and the mean ray num-
ber in each cluster is chosen as 10. The standard deviation of the ray angular distribution
is 26◦, the beamwidth of a ray direction is chosen as 5◦ in elevation and 1◦ in azimuth. The
average path gain of the first cluster is assumed to be -30 dB and the decay rate is 2 (fast
decay) which is the ratio between the cluster arrival period and the cluster decay constant.
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Figure 6.10: The average channel capacity for the indoor statistical model, of which the
decay rate is 2 and the mean cluster number is 3.

The power is set to be evenly allocated among the ports in the TX array. The simulated
channel capacity is shown in Figure 6.10 with the ratio between the total transmitted power
and the noise power at one RX port. It is noticed that the results are quite close between the
systems based on different arrays. The slight differences are discussed later in the following
subsection.

The second simulation was performed by changing the mean cluster number to 10 and
the mean ray number in one cluster to 20, and the decay rate to 1 (slow decay). The
simulation results are shown in Figure 6.11 and the performances of the three systems are
still similar. However, compared to the first simulation, it is found that the channel capacity
is increased. One reason is that the decay rate is reduced and more power can be received
by the RX array. The second reason could be due to the increase of the cluster and ray
numbers. For proving this, a third simulation was performed, of which both the mean
cluster number and the mean ray number were increased to 30, while the rest parameters
are the same as in the second simulation. For instance, the change of the channel capacity
for the system based on the CEM array is plotted in Figure 6.12, where a 1 bit/s/Hz increase
is seen.

6.2.4 Evaluation of the Channel Capacity Performance Based on Radiation
Patterns

The channel correlation is related to the statistical capacity performance according
to the discussion in the previous section. For a fixed cluster distribution, the channel
correlation can be obtained through calculating the sum of the weighted ray correlations
[Wallace and Jensen, 2002]. In this subsection, the average channel correlation due to a
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Figure 6.11: The average channel capacity for indoor statistical model, of which the decay
rate is 1 and the mean cluster number is 10.

larger number of experiments is evaluated.

Since the mean angles of different clusters are uniformly distributed, the channel cor-
relation between the channels with different TX ports (port i and k) but the same RX
element (port j) ρji,jk can be expressed as

ρji,jk =

∑L
n=1 e

− (L−1)
ΓΛ E[( ~Fi(θn, φn) · ~h(θn, φn))( ~Fk(θn, φn) · ~h(θn, φn))∗]√∑L

n=1 e
− (L−1)

ΓΛ E[| ~Fi(θn, φn) · ~h(θn, φn)|2]

√∑L
n=1 e

− (L−1)
ΓΛ E[| ~Fk(θn, φn) · ~h(θn, φn)|2]

,

(6.29)

where (θn, φn) is the mean angle of the nth cluster, ~h(θn, φn) is the channel coefficient to
the direction of (θn, φn). ~h(θn, φn) contains two orthogonal polarization elements and it is
expressed in the form of

~h(θn, φn) = hθ(θn, φn)~eθ + hφ(θn, φn)~eφ. (6.30)

As discussed before, the channel is Rayleigh like and independent from the choice of the
mean angle of a cluster, so that the condition

E[(~Fi(θn, φn) · ~h(θn, φn))( ~Fk(θn, φn) · ~h(θn, φn))∗]

=E[~Fi(θn, φn) · ~Fk
∗
(θn, φn)]E[|~h(θn, φn)|2] (6.31)

exists. It is obvious that E[|~h(θn, φn)|2] is constant for all directions. For all the clusters,
it is found that

E[~Fi(θn, φn) · ~Fk
∗
(θn, φn)] = E[

∑M
m=1

~Fi(θn,mφn,m) · ~Fk
∗
(θn,m, φn,m)

M
] ≈

∫
1

4π
~Fi · ~Fk

∗
dΩ,

(6.32)
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Figure 6.12: The increase of the average channel capacity of the MIMO system based on
CEM array for different cluster numbers.

where (θn,m, φn,m) is the direction of the mth ray in the nth cluster. By utilizing the above
equations and relationships, equation (6.29) is further simplified as

ρij,kj =

∫
~Fi · ~Fk

∗
dΩ√∫

|~Fi|2dΩ
√∫
| ~Fk|2dΩ

, (6.33)

which is actually the pattern correlation coefficient of the TX antennas. Therefore, for
statistical indoor channel models, the channel correlation can be estimated through the
radiation pattern correlation as well. However, different from the outdoor case, the channel
correlation is not adequate for evaluating the channel performance due to a limited number
of clusters. For example, if there is only 1 cluster at a particular direction, the radiated
power from one element in the TX array might be very low. In such a case, the multiple
output becomes a single output for a 2×2 MIMO communication system, which degrades
the channel capacity. To describe this mathematically, in this thesis, a parameter named
average ’on-off’ ratio of the pattern is utilized. The ’on-off’ ratio is defined as

rik =

∫
1

4π

||~Fi| − | ~Fk||
|~Fi|+ | ~Fk|

dΩ. (6.34)

The maximum value of r is 1, which means, for all directions when one antenna is ’on’
(radiating), the other one is ’off’ (no radiation). If the cluster number is larger than 1,
the probability of complete ’on-off’ is reduced by 1

2(L−1) . Therefore, the ’on-off’ ratio is
redefined by considering the effect of the number of clusters,

rik =
1

2(L−1)

∫
1

4π

||~Fi| − | ~Fk||
|~Fi|+ | ~Fk|

dΩ. (6.35)
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Figure 6.13: The probability density distribution of the average channel capacity for MIMO
systems with different arrays.

According to the above discussions, a more general parameter for evaluating the indoor
statistical channels based on the radiation patterns is defined as

ξ = ρTρR + rT rR, (6.36)

where T and R stand for the TX and RX array, respectively.

In order to verify the derivations, an investigation is carried out based on the first
simulation in the last subsection and the following parameters are modified, i.e., the number
of clusters is set to 1 and the decay rate is chosen as 1. Other than the systems with the above
mentioned three antenna arrays, a system based on compact arrays with a large ground
plate in the middle between the two elements (CLG), is also simulated. The dimension
of the inserted ground plane is 150 mm × 150 mm as shown in Figure 6.14. The CLG
array represents the case with high on-off ratio but low pattern correlation. The simulated
probability density is shown in Figure 6.13 at PTX/Pn = 113 dB. The system with the
CEM array shows the best performance and the one with the CLG array is the worst. For
details, the related parameters are described in Table 3. In consequence, the results of the
simulation with 3 clusters are shown in Table 4. The results show good agreement with the
evaluation parameters derived in equation (6.36).

6.3 Channel Capacity Analysis for Indoor Wireless Communications Based
on Ray Tracing

In this section, the channel capacities of the MIMO systems with different arrays are
analyzed based on the ray tracing method.

136



Table 3: Parameters for evaluating the channel capacity performance with 1 cluster
Array Type Channel Capacity Correlation Coefficient On-Off Ratio ξ

CNDN 11.2 bit/s/Hz 0.39 0.09 0.16
CEM 11.6 bit/s/Hz 0.04 0.2 0.04
CCM 11.2 bit/s/Hz 0.12 0.32 0.12
CLG 10.9 bit/s/Hz 0.03 0.58 0.33

Table 4: Parameters for evaluating the channel capacity performance with 3 clusters
Array Type Channel Capacity Correlation Coefficient On-Off Ratio ξ

CNDN 13.6 bit/s/Hz 0.39 0.05 0.15
CEM 14.1 bit/s/Hz 0.04 0.1 0.01
CCM 13.9 bit/s/Hz 0.12 0.16 0.04
CLG 14.0 bit/s/Hz 0.03 0.27 0.08

Figure 6.14: Two-element compact monopole array with a large ground plane in the middle.

6.3.1 Introduction to the Ray Tracing Method

Ray tracing is a convenient simulation and modeling tool to approximate electromag-
netic wave propagation [McKown and Hamilton, 1991]. The ray tracing method is able to
solve forward propagation problems in a more efficient manner as compared to conventional
computational electromagnetics methods and the achieved accuracy is promising as well.
The basic theories for realizing electromagnetic ray tracing are Geometrical Optics (GO),
Geometrical Theory of Diffraction (GTD) and Uniform Geometrical Theory of Diffraction
(UTD) which is an improved version of GTD. GO is deployed to model the propagation of
locally plane electromagnetic waves in the form of optical rays. In homogeneous medium,
the ray should be straight forward with a certain direction. When the ray travels from
one medium to another, effects such as reflection, transmission and refraction take place.
Physical theories such as the Fresnel equations are applied in the simulation tools. How-
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ever, GO is not able to treat diffraction problems, which are caused by the discontinuity
of scattering structures such as edges. One ray can be diffracted into several rays and this
can be solved through GTD and UTD. Besides, UTD is able to calculate the fields at the
shadow boundaries, which cannot be obtained through GTD [Fuertes Pals, 2014].

The ray tracing software exploited in this section has been developed by the Chair
of High-Frequency Engineering, Chair of Robotics and Embedded Systems at Technische
Universität München together with AUDI AG Ingolstadt [Mocker et al., 2015]. The com-
putation process of this ray tracing software is carried out on Graphics Processing Units
(GPUs). Compared to previous programs based on Central Processing Units (CPUs), the
new technique is much more efficient since the GPU is quite advantageous in parallel com-
putations. In this software, a certain number of rays is launched from the transmitter with
random directions according to the Shooting and Bouncing Rays (SBR) method. The rays
from the TX antenna are utilized by the radiation pattern of the antenna, e.g., the power
density of the ray is referred to the radiated electric field from an antenna at a certain
distance from the phase center. The rays hit the scattering objects and they are reflected,
refracted and diffracted. Most of the rays meet a power attenuation constraint and termi-
nate then. Some of the rays are received by the RX antennas. Considering the receiving
process, a sphere with a certain radius is utilized as the effective receiving area. The rays
hitting this sphere are considered as rays to be received. The size of the sphere should be
neither too large nor too small due to the matter of accuracy. The choice of the radius
of the sphere is based on certain rules described in [Fuertes Pals, 2014], which depend on
the angular sampling rate of the rays and the distance between the TX and RX antennas.
However, only one ray among the rays from the same wave front should be considered in
the RX sphere. Generally, the one closest to the RX phase center is taken into account.

In the following simulations, the far field radiation patterns from CST MWS are ex-
ported as the one of the source files. The simulation configuration is constructed in Blender
software [Blender, 2015]. 100000 rays are set to be launched from the TX antenna. In the
configuration, concrete is selected as the material for the reflectors (walls), of which the
complex relative permittivity is 5 − 0.1j. The reflection and diffraction orders are chosen
according to different scenarios, which means that after certain numbers of reflections or
diffractions, the rays are no longer considered in the simulation.

6.3.2 Simulation Results Based on the Ray Tracing Method

The MIMO systems with different monopole antenna arrays such as the compact array
without decoupling network (CNDN), the compact array based on eigenmode excitation
(CEM), and the compact array based on conjugate matching (CCM), are investigated for
the indoor environments based on the ray tracing software.

A. Room Scenario

In this part, a scenario for an empty room is utilized for investigation. The room is
modeled as a cuboid, which is 6 m wide, 8 m long and 4 m high. The center of the cuboid
is selected as the origin point of the coordinate system. The range of the cuboid on the
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x, y, z axis is [-3, 3], [-4, 4], [-2, 2], respectively, of which the units are meter. Figure 6.15
indicates the simulation model. The TX antenna array is fixed at the position (0, -3, 0).
The RX array is positioned in the xoy plane and moves along two trails. One of the trails
is defined along the y axis from (0, 0, 0) to (0, 2.4, 0). The other one is along the x axis
from (-2.3, 1.5, 0) to (2.3, 1.5, 0).

Similar to the last sections, only the effect from the radiation patterns is considered in
the simulation, while the influences from power mismatch and losses are extracted in the
post processing. The radiation elements of the arrays are aligned in parallel with the x
axis in Figure 6.15. This is reasonable for obtaining the optimal total transferred power.
The movement step along the trails is chosen as 0.1 m. In this model, the limitation of the
reflection numbers are chosen as 2. For calculating the channel capacity, it is assumed that
the ratio between the total transmitted power and the noise power at each port is 100 dB.

Figure 6.16 shows the ray tracing result for a certain RX position. All the rays received
by the RX sphere are indicated in this figure. The yellow lines denote the launched rays
and the green lines around the RX sphere are the received rays due to the direct path
and due to reflections. According to the Friis equation and the phase of the propagation,
the complex transmission coefficient of each ray is calculated and then by summing up all
the transmission coefficients, the channel coefficient is obtained. The channel capacity is
evaluated consequently.

The calculated channel capacity for the RX array in the trail along the y axis is plotted
in Figure 6.17. It is noticed that when the RX array is located at (0, 0, 0), the systems with
the CEM array and the CCM array show similar performance. However, with increasing
the distance between the TX and RX arrays, the channel capacity of the system with the
CEM array decays much faster than the one with the CCM array. The system with the
CNDN array shows the lowest capacity. On the other hand, for the case that the RX array
moves on the trail along the x axis, the channel capacity is plotted in Figure 6.18. Along
the trail, the system with the CCM array shows the highest channel capacity and the curve
in the figure is quite flat. The system with the CEM array also owns good performance, but
it varies a lot for different positions. The obtained channel capacity of the system with the
CNDN array is again much lower. It is concluded that in such a room scenario the CCM
array is the best candidate for realizing MIMO systems with high channel capacity. The
possible explanation for this is that the radiation patterns of the elements of the CCM array
own good angular diversity, e.g., the monopole on the left radiates mostly towards the left.
As a result, the channel matrix due to the first order reflection, which is the strongest signal
path other than the direct path in the room scenario, is always diagonal and it ensures good
MIMO performance according to the knowledge in Chapter 3.

B. Corridor Scenario

In this part, a corridor scenario is investigated, which is more complicated compared to
the room scenario due to multiple reflections and diffraction. The corridor model exploited
for the simulation is shown in Figure 6.19. The corridor is formed by two cuboids centered
at the same point. The dimension of the inner cuboid is 8 m in length and width and 4 m
in height, while the dimension of the outer one is 12 m in length and width and 4 m in
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Figure 6.15: The model of the room scenario utilized for the ray tracing software.

height. Then, the 2 m wide and 4 m high corridor is formed. The TX array is located at
(0, -5, 0) and the RX array is set to move along the trail as shown in Figure 6.19. The trail
starts from the point (-5, -3.5, 0) and ends at the point (-5, 3.5, 0). For the TX array, the
monopoles are aligned in parallel with the y axis and for the RX array, they are aligned
along the x axis.

In the corridor model, the transmitted signal experiences more reflections until it
reaches the receiver, so that the maximum number of reflections is set to 8 in the ray
tracing software. The four edges along the z axis of the inner cuboid can diffract the rays,
so diffraction effects are considered as well and the maximum number of the diffractions
is set to 1. The ray tracing result is plotted in Figure 6.20, where the pink lines denote
the diffracted rays and the edges in the orange color are the diffraction edges. In conse-
quence, the channel coefficients are obtained through simulations. Figure 6.21 depicts the
calculated channel capacity for the systems with different arrays. The ratio between the
total transmitted power and the noise power at each port is 100 dB. All the systems show
very fast decay when the RX array moves further away from the TX array, e.g., after point
(-5, 0, 0) the channel capacity becomes almost 0. However, the MIMO system based on
the CCM array still shows better performance, while the systems based on the CEM array
and the CNDN array obtain comparable results. Therefore, the radiation patterns of the
CCM array are more advantageous in terms of channel capacity for both room and corridor
scenarios according to the results from the ray tracing method. This is because the patterns
of the two ports of the CCM array are symmetric and with good angular diversity, while
the pattern of the odd mode of the CEM array is quite directive. As a result, the CCM
array performs better than the CEM array for indoor MIMO systems.
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Figure 6.16: Ray tracing result for the room scenario.

Figure 6.17: The calculated average channel capacity for the room scenario with the RX
trail along the y axis.
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Figure 6.18: The calculated average channel capacity for the room scenario with the RX
trail along the x axis.

Figure 6.19: The model of the corridor scenario utilized within the ray tracing software.
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Figure 6.20: Ray tracing result for the corridor scenario.

Figure 6.21: The calculated average channel capacity for the room scenario with the RX
trail along the y axis.
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7 Summary and Outlook

In this thesis, detailed investigations and performance improvements of multiple input
multiple output antenna arrays were carried out. Several types of novel compact antenna
arrays were analyzed, designed, manufactured, measured and evaluated. Through the prop-
erly designed matching and decoupling approaches, very good MIMO performance has been
obtained. In the following, all the chapters are briefly summarized. Afterwards, a short
outlook of the relative work in this field is presented.

The background of this thesis was discussed in Chapter 1 and the overview of the thesis
was also described.

In Chapter 2, the relevant antenna basics were introduced. The antenna development
history was shortly summarized. Later on, basic and important parameters for antennas
such as gain and radiation efficiency, which are required for this thesis, were illustrated and
some of them were derived as well.

The discussions with respect to the purposes and advantages of utilizing multiple ra-
diation elements in wireless communication systems were carried out in Chapter 3. The
channel capacity was counted as an evaluation standard for wireless communication sys-
tems. It was proved mathematically that multiple antennas are beneficial in obtaining large
capacity within a limited frequency band. Based on the mathematical descriptions of chan-
nel capacity, matching and decoupling were found important for compact array designs.
Meanwhile, it was also proved that the pattern correlation should be kept as low as possible
to ensure the diversity performance of the antenna array.

Chapter 4 was dedicated to the study of compact monopole antenna arrays with
matching and decoupling networks. Two two-element compact monopole arrays and a
four-element array were designed based on two theories, the eigenmode excitation and the
multiport conjugate matching, which were mathematically derived as well. These two meth-
ods were compared and discussed and interesting conclusions were drawn. The relationship
between them was investigated and it was found that the antenna excitation through the
multiport conjugate matching can be decomposed by even and odd modes. The connec-
tion between the radiation pattern correlation coefficient and the scattering matrix were
proved and a new approach with good accuracy for estimating the pattern correlation was
developed, which is in particular suitable for the arrays with lossy matching and decoupling
networks. Beamforming applications of compact arrays were also studied. It was shown
that beamforming for compact arrays can be different compared to conventional arrays,
e.g., for a certain array size, exciting three elements shows better directivity than the case
of five elements in the broadside direction of the array.

In Chapter 5, decoupling approaches for printed antennas were investigated. Firstly,
printed monopole arrays were studied. The partially extended ground plane was found
an simple and efficient solution for reducing the coupling. Some additional ground plane
modifications were also carried out to regularize the radiation pattern of the monopoles.
Based on this, a three-element compact printed antenna array with combined antenna types
was designed as well. Later on, a novel approach for designing compact antennas occupying
little space was developed. The designed antennas can be integrated at the contour of
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mobile devices. Several novel approaches for matching and decoupling were addressed. All
the antenna elements and arrays show promising performance.

The evaluation of the compact array performance based on channel capacity was per-
formed in Chapter 6. The statistical models for outdoor and indoor communications were
exploited firstly. It was shown that the power matching is of great significance for achieving
high channel capacity. Afterwards, the power was normalized for all the arrays and the
effects of the radiation patterns were investigated. For statistical models, it was found that
the pattern correlation is directly related to the average capacity. For the indoor commu-
nications it was derived that a parameter named pattern on-off ratio is also influential.
Finally, ray tracing method was deployed for analyzing the deterministic channel capacity
for room and corridor scenarios.

With the development of wireless communications, more and more studies and investi-
gations in this field are required. Here, a short outlook is presented. Firstly, implementing
more antenna elements in small mobile terminals for lower frequency bands such as the
LTE 700 MHz is still quite challenging. Secondly, the antenna array designs for Massive
MIMO applications are also difficult, since it requires more effort to achieve matching and
decoupling for a great number of radiation elements within a limited available area [Hoydis
et al., 2013, Larsson et al., 2014]. Last but not least, for the coming generation of wire-
less communications, millimeter wave antennas are highly demanded, so that consequent
researches for millimeter wave antenna arrays should be carried out. For example, proper
antenna arrays for enhancing the receiving power with a wide receiving angular range are
currently designed at the Chair of High-Frequency Engineering at Technische Universität
München [Wang et al., 2015d].
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Appendix A

Gain and Efficiency for Compact Antenna Arrays

For an N -port MIMO antenna array, the accepted power by the array from the ith
port is defined as

Pac,i = Pin,i −
N∑
j=1

|Sji|2Pin,i, (A.1)

where Pin,i is the input power of the ith port. Due to the mutual coupling, a multiport
matching efficiency is defined as the ratio between the accepted power and the input power,

ηM,i =
Pac,i
Pin,i

= 1−
N∑
j=1

|Sji|2. (A.2)

The radiation efficiency is still defined as the ratio of the radiated power and the accepted
power, which is

ηr,i =
Prad,i
Pac,i

, (A.3)

with

Pac,i = Prad,i + Ploss,i. (A.4)

Ploss,i is the power loss in the antenna array when the ith port is excited and the remaining
ports are loaded with the port impedance. It should be noted that if other ports are
terminated with other impedances, the power losses can be different. As a result, in this
definition, it is required that the remaining ports are loaded with 50 Ω. Based on the above
equations, the total efficiency is defined as the ratio between the radiated power and the
input power as

ηt,i =
Prad,i
Pin,i

= ηM,iηr,i. (A.5)

The radiation pattern of one port of the MIMO array is obtained with all the other ports
loaded. Under such conditions, the gain of the ith port is defined as

Gi(θ, φ) = Di(θ, φ)ηr,i, (A.6)

where Di(θ, φ) is the directivity of the ith port. However, during the antenna measurement
of the gain of MIMO arrays, when the other ports are terminated, the directly measured
value is not the desired result. The actual value for the so called IEEE gain can be calculated
through

Gi(θ, φ) = Gm,i(θ, φ)
1− |Sii|2

1−
∑N

j=1 |Sji|2
, (A.7)

where Gm,i(θ, φ) is the directly measured result.
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Appendix B

Provement of Multiport Conjugate Matching

Based on SVD, the scattering matrix of a 2N -port can be decomposed as

Sij,N = Uij,NDij,NVH
ij,N . (B.1)

As described in Chapter 3, U and V are unitary matrices of which the columns are the
eigenvectors of SSH and SHS, respectively. D is a diagonal matrix of which the entries
are the square root of the eigenvalues of SSH in descent order. Then, the first condition in
equation (4.23) can be written in the form of

V11,NDH
11,NUH

11,NU11,ND11,NVH
11,N + V21,NDH

21,NUH
21,NU21,ND21,NVH

21,N = I. (B.2)

Since UH
ij,NUij,N = I and it is assumed that DH

ij,NDij,N = Λij,N , where Λij,N is diagonal
and real, the above equation can be expressed as

V11,NΛ11,NVH
11,N + V21,NΛ22,NVH

21,N = I. (B.3)

If VH
11,N and V11,N are multiplied from the left and right, respectively, the above equation

becomes

VH
11,NV11,NΛ11,NVH

11,NV11,N + VH
11,NV21,NΛ21,NVH

21,NV11,N = VH
11,NV11,N . (B.4)

This leads to

Λ11,N + TΛ21,NTH = I, (B.5)

where T = VH
11,NV21,N and TTH = I. This equation is equivalent to

T = (I− Λ11,N )TΛ−1
21,N . (B.6)

A certain mode should be generated at the antenna array through the decoupling network
by a certain excitation, so it can be assumed that S21,N = ST12,N is full rank. It is noticed

that (I − Λ11,N ) and Λ−1
21,N are diagonal and equation (B.6) holds for arbitrary Λ11,N and

Λ21,N . Then, the matrix T must be diagonal. Since TTH = I, it can be concluded that T
is diagonal and the entries are complex values with unit magnitude. As a result, equation
(B.5) is equivalent to Λ11,N + Λ21,N = I. Based on the same method, the third condition
in equation (4.23) leads to Λ22,N + Λ12,N = I and G = VH

22,NV12,N , where G is diagonal
and the entries are complex values with unit magnitude. The second condition in equation
(4.23) leads to

DH
11,NUH

11,NU12,ND12,N = −TDH
21,NUH

21,NU22,ND22,NG. (B.7)

If S22,N = SHant, the the scattering matrix of the system becomes

Ssys = S11,N + S12,NSH22,N (I− S22,NSH22,N )−1S21,N . (B.8)
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In this case, it is assumed that (I − S22,NSH22,N ) is invertible. Based on the SVD, it is
calculated that

(I− S22,NSH22,N )−1 =(I−U22,NΛ22,NUH
22,N )−1

=(U22,N (I− Λ22,N )UH
22,N )−1

=(U22,NΛ12,NUH
22,N )−1

=U22,NΛ−1
12,NUH

22,N . (B.9)

The system matrix can then be expressed in the form of

Ssys =U11,ND11,NVH
11,N+

U12,ND12,NVH
12,NV22,NDH

22,NUH
22,NU22,NΛ−1

12,NUH
22,NU21,ND21,NVH

21,N

=U11,ND11,NVH
11,N + U12,ND12,NGHDH

22,NΛ−1
12,NUH

22,NU21,ND21,NVH
21,N

=(U11,ND11,N + U12,ND12,NGHDH
22,NΛ−1

12,NUH
22,NU21,ND21,NTH)VH

11,N .

(B.10)

Based on equation (B.7), the product of U11,ND11,N can be expressed in the way of

U11,ND11,N = −U12,NDH −1
12,N GHDH

22,NUH
22,NU21,ND21,NTH . (B.11)

Plugging the above results in equation (B.10), results in

Ssys =
(
U12,N (−DH −1

12,N GHDH
22,N + D12,NGHDH

22,NΛ−1
12,N )UH

22,NU21,ND21,NTH
)

VH
11,N .

(B.12)

It is known that for diagonal matrix multiplications, changing the multiplication order of
the diagonal matrices will not change the result. So the following term in equation (B.12)
can be reordered and calculated as

−DH −1
12,N GHDH

22,N + D12,NGHDH
22,NΛ−1

12,N

=−DH −1
12,N GHDH

22,N + Λ−1
12,ND12,NGHDH

22,N

=−DH −1
12,N GHDH

22,N + DH −1
12,N GHDH

22,N

=0, (B.13)

which means Ssys = 0 and the input ports are matched and decoupled with S22,N = SHant.
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Appendix C

Channel Correlation and Radiation Pattern Correlation

In this appendix, the channel correlation is derived for the Rayleigh like channel model.
According to equations (6.2) to (6.4) and considering the polarizations in equation (6.8),
the channel coefficient can be summarized in the form of

hji =

√
Gi,θ(1−

∑
k |Ski,T |2)

8π

√
Gj,θλ2(1−

∑
k |Skj,R|2)

2π

√
g

8π
Fj,θ(θ1, φ1)

√
4Ω(θ1, φ1)

Fj,θ(θ1, φ2)
√
4Ω(θ2, φ2)

...

Fj,θ(θN , φM )
√
4Ω(θX , φY )


T

Hs,θθ


Fi,θ(θ1, φ1)

√
4Ω(θ1, φ1)

Fi,θ(θ1, φ2)
√
4Ω(θ1, φ2)

...

Fi,θ(θX , φY )
√
4Ω(θX , φY )


+√

Gi,φ(1−
∑

k |Ski,T |2)

8π

√
Gj,θλ2(1−

∑
k |Skj,R|2)

2π

√
g

8π
Fj,θ(θ1, φ1)

√
4Ω(θ1, φ1)

Fj,θ(θ1, φ2)
√
4Ω(θ2, φ2)

...

Fj,θ(θN , φM )
√
4Ω(θX , φY )


T

Hs,θφ


Fi,φ(θ1, φ1)

√
4Ω(θ1, φ1)

Fi,φ(θ1, φ2)
√
4Ω(θ1, φ2)

...

Fi,φ(θX , φY )
√
4Ω(θX , φY )


+√

Gi,θ(1−
∑

k |Ski,T |2)

8π

√
Gj,φλ2(1−

∑
k |Skj,R|2)

2π

√
g

8π
Fj,φ(θ1, φ1)

√
4Ω(θ1, φ1)

Fj,φ(θ1, φ2)
√
4Ω(θ2, φ2)

...

Fj,φ(θN , φM )
√
4Ω(θX , φY )


T

Hs,φθ


Fi,θ(θ1, φ1)

√
4Ω(θ1, φ1)

Fi,θ(θ1, φ2)
√
4Ω(θ1, φ2)

...

Fi,θ(θX , φY )
√
4Ω(θX , φY )


+

cos(ψ)

√
Gi,φ(1−

∑
k |Ski,T |2)

8π

√
Gj,φλ2(1−

∑
k |Skj,R|2)

2π

√
g

8π
Fj,φ(θ1, φ1)

√
4Ω(θ1, φ1)

Fj,φ(θ1, φ2)
√
4Ω(θ2, φ2)

...

Fj,φ(θN , φM )
√
4Ω(θX , φY )


T

Hs,φφ)


Fi,φ(θ1, φ1)

√
4Ω(θ1, φ1)

Fi,φ(θ1, φ2)
√
4Ω(θ1, φ2)

...

Fi,φ(θX , φY )
√
4Ω(θX , φY )

 . (C.1)

where Gθ and Gφ are the maximum gain of the θ and φ component, respectively. Then, the
channel correlation is calculated by further derivation of the above equation. During the
calculation, the following conditions are applied for the simplification, E[hij,s,θh

∗
kl,s,φ] = 0
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for any i, j, k and l, E[hij,s,θh
∗
ij,s,θ] = E[hij,s,φh

∗
ij,s,φ] = 1 for any i and j, E[hij,s,θh

∗
kl,s,θ] =

E[hij,s,φh
∗
kl,s,φ] = 0 for any ij 6= kl. It is also realistic to assume that the polarization mis-

match is independent from the Rayleigh like channel distributions. As a result, such results
can be implemented in the following calculations. Consequently, by further evaluating the
above equation of different channel coefficients, the following expression is obtained,

E[hjih
∗
nm] =

g2

128π3

√
(1−

∑
k

|Ski,T |2)(1−
∑
k

|Skj,R|2)(1−
∑
k

|Skm,T |2)(1−
∑
k

|Skn,R|2)

(
A
∑
x,y

Fj,θ(θx, φy)F ∗
n,θ(θx, φy)4Ω(θx, φy)

∑
u,v

Fi,θ(θu, φv)F
∗
m,θ(θu, φv)4Ω(θu, φv)

+

B
∑
x,y

Fj,θ(θx, φy)F ∗
n,θ(θx, φy)4Ω(θx, φy)

∑
u,v

Fi,φ(θu, φv)F
∗
m,φ(θu, φv)4Ω(θu, φv)

+

C
∑
x,y

Fj,φ(θx, φy)F ∗
n,φ(θx, φy)4Ω(θx, φy)

∑
u,v

Fi,θ(θu, φv)F
∗
m,θ(θu, φv)4Ω(θu, φv)

+

D
∑
x,y

Fj,φ(θx, φy)F ∗
n,φ(θx, φy)4Ω(θx, φy)

∑
u,v

Fi,φ(θu, φv)F
∗
m,φ(θu, φv)4Ω(θu, φv)

)
,

where

A =
√
Gi,θGj,θGm,θGn,θ,

B =
√
Gi,φGj,θGm,φGn,θ,

C =
√
Gi,θGj,φGm,θGn,φ,

D =
√
Gi,φGj,φGm,φGn,φ. (C.2)

When 4Ω is smaller enough, the discrete summation is equivalent as∑
x,y

Fj,φ(θx, φy)F
∗
n,φ(θx, φy)4Ω(θx, φy) =

∫
Fj,φ(θ, φ)F ∗n,φ(θ, φ)dΩ. (C.3)

According to the knowledge from Chapter 2, the far field gain pattern can be written in the
form

√
G~F (θ, φ) =

√
GθFθ(θ, φ)~eθ +

√
GφFφ(θ, φ)~eφ. (C.4)

Then, the following expression can be used for shortening equation (C.2),∫ √
Gi,θGm,θFi,θ(θ, φ)F ∗m,θ(θ, φ)dΩ +

∫ √
Gi,φGm,φFi,φ(θ, φ)F ∗m,φ(θ, φ)dΩ

=

∫ √
GiGm ~Fi(θ, φ) · ~F ∗m(θ, φ)dΩ. (C.5)

Finally, the channel correlation coefficient in equation (6.9) can be summarized as

ρji,nm =

∫
~Fi(θ, φ) · ~F ∗m(θ, φ)dΩ√∫

|~Fi(θ, φ)|2
∫
|dΩ~Fm(θ, φ)|2dΩ

×
∫
~Fj(θ, φ) · ~F ∗n(θ, φ)dΩ√∫

|~Fj(θ, φ)|2
∫
|dΩ~Fn(θ, φ)|2dΩ

. (C.6)
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Wang, K., Wächter, T. J., Hartmuth, H., Fei, H., Hamberger, G. F., and Eibert, T. F.
(2015d). Self-mixing antenna arrays with wide receiving angular range. IEEE Interna-
tional Symposium on Antennas and Propagation, Vancouver, Canada.

Wang, Y. and Du, Z. (2014a). A wideband quad-antenna system for mobile terminals. IEEE
Antennas and Wireless Propagation Letters, 13:1521–1524.

Wang, Y. and Du, Z. (2014b). A wideband printed dual-antenna with three neutralization
lines for mobile terminals. IEEE Transactions on Antennas and Propagation, 62(3):1495–
1500.

Wang, Y.-S., Lee, M.-C., and Chung, S.-J. (2007). Two PIFA-related miniaturized dual-
band antennas. IEEE Transactions on Antennas and Propagation, 55(3):805–811.

Wikipedia (2015a). Parabolic antenna. www.wikipedia.org.

Wikipedia (2015b). Planar inverted F antenna. www.wikipedia.org.

Wikipedia (2015c). Yagi-Uda antenna. www.wikipedia.org.

Wong, K. L. and Hsu, W. H. (1997). Broadband triangular microstrip antenna with U-
shaped slot. Electronics Letters, 33(25):2085–2087.

Wong, K. L. and Hsu, W. H. (2001). A broad -band rectangular patch antenna with a pair
of wide slits. IEEE Transactions on Antennas and Propagation, 49(9):1345–1347.

159



Wong, K. L., Jiang, H. J., and Kao, Y. C. (2013). High-isolation 2.4/5.2/5.8 GHz WLAN
MIMO antenna array for laptop computer application. Microwave and Optical Technology
Letters, 55(2):382–387.

Yaghjian, A. D. and Best, S. R. (2005). Impedance, bandwidth, and Q of antenna. IEEE
Transactions on Antennas and Propagation, 53(4):1298–1324.

Yagi, H. (1928). Beam transmission of ultra short waves. Radio Engineers, Proceedings of
the Institute of, 16(6):715–740.

Yang, F. and Rahmat-Samii, Y. (2003a). Microstrip antennas integrated with electromag-
netic band-gap (EBG) structures: a low mutual coupling design for array applications.
IEEE Transactions on Antennas and Propagation, 51(10):2936–2946.

Yang, F. and Rahmat-Samii, Y. (2003b). Reflection phase characterizations of the EBG
ground plane for low profile wire antenna applications. IEEE Transactions on Antennas
and Propagation, 51(10):2691–2703.

Yang, F., Zhang, X. Z., and Rahmat-Samii, Y. (2001). Wideband E-shaped patch an-
tennas for wireless communications. IEEE Transactions on Antennas and Propagation,
49(7):1094–1100.

Younkyu, C., Seong-Sik, J., Ahn, D., Jae-Ick, C., and Itoh, T. (2004). High isolation dual-
polarized patch antenna using integrated ground structure. IEEE Microwave Wireless
Componoents Letters, 14(1):4–6.

Yu, K., Bengtsson, M., Ottersten, B., McNamara, D., Karlsson, P., and Beach, M. (2004).
Modeling of wide-band MIMO radio channels based on NLoS indoor measurements. IEEE
Transactions on Vehicular Technology, 53(3):655–665.

Yu, Y. and Hui, H. T. (2011). Design of a mutual coupling compensation network for a small
receiving monopole array. IEEE Transactions on Microwave Theory and Technology,
59(9):2241–2245.

Yu, Y., Lui, H.-S., Niow, C. H., and Hui, H. T. (2011). Improved DOA estimations using the
receiving mutual impedances for mutual coupling compensation an experimental study.
IEEE Transactions on Wireless Communications, 10(7):2228–2233.

Zhang, L., Li, Y., and Cimini, L. (2012). Statistical performance analysis for MIMO beam-
forming and STBC when co-channel interferers use arbitrary MIMO modes. IEEE Trans-
actions on Communications, 60(10):2926–2937.

Zhang, X. and Sarris, C. D. (2014). A high-accuracy ADI scheme for the vector parabolic
equation applied to the modeling of wave propagation in Tunnels. IEEE Antennas and
Wireless Propagation Letters, 13:650–653.

Zhou, X., Quan, X., and Li, R. L. (2012). A dual-broadband MIMO antenna system
for GSM/UMTS/LTE and WLAN handsets. IEEE Antennas and Wireless Propagation
Letters, 11:551–554.

160



Zhu, F.-G., Xu, J.-D., and Xu, W. (2009). Reduction of mutual coupling between closely-
packed antenna elements using defected ground structure. Electronics Letters, 45(12):601–
602.

161





List of Supervised Student Projects

Bachelor Thesis

• Alexander Paulus, Novel Decoupling Structure for Patch Antennas of a Compact
Radar Transceiver, Technische Universität München, 2013.

• Hyazinth Hartmuth, Entwurf und Realisierung eines rauscharmen Verstärkers für den
Frequenzbereich 8 GHz bis 12 GHz, Technische Universität München, 2014.

Master Thesis

• Hong Fei, Single Element Design for Sparse Antenna Array with Large Effective Re-
ceiving Area, Technische Universität München, 2013.

163





List of Publications of the Author

Wang, K., Li, L., Schmidt, C., Bonerz, S., Siart, U., and Eibert, T. F. (2012). A coaxial
line based propagation channel for wireless communication between rotating machine
components. 10th International Symposium on Antennas, Propagation, and EM Theory,
Xian, China.

Wang, K., Li, L., and Eibert, T. F. (2013a). A highly compact four-element monopole
array with one-layer decoupling and matching network. IEEE International Symposium
on Antennas and Propagation, Orlando, USA.

Wang, K., Li, L., and Eibert, T. F. (2013b). Comparison of compact monopole antenna
arrays with Eigenmode excitation and multiport conjugate matching. IEEE Transactions
on Antennas and Propagation, 61(8):4054–4062.

Wang, K., Li, L., Eibert, T. F., and Tooni, S. (2013c). Equivalent circuits of compact
monopole arrays based on scattering parameters. European Conference on Antennas and
Propagationn, Gothenburg, Sweden.

Li, L., Wang, K., and Eibert, T. F. (2014a). A new radial-angular-R2 transformation for sin-
gular integrals on triangular meshes. European Conference on Antennas and Propagation,
The Hague,S Netherlands.

Li, L., Wang, K., and Eibert, T. F. (2014b). A projection height independent adaptive
radial-angular-R2 transformation for singular integrals. IEEE Transactions on Antennas
and Propagation, 62(10):5381–5386.

Li, L., Wang, K., Li, H., and Eibert, T. F. (2014c). Analytical finite element matrix elements
and global matrix assembly for hierarchical 3D vector basis functions within the hybrid
finite element boundary integral method. Advances in Radio Science, 12:1–11.

Wang, K., Li, L., and Eibert, T. F. (2014a). A decoupling technique based on partially
extended ground plane for compact two-Port printed monopole antenna arrays. German
Microwave Conference, Aachen, Germany.
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