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Abstract

We address the consistent numerical simulation of quasi-static evolutions of critical
points of nonconvex and nonsmooth energy functionals.
We focus on the reliable numerical simulation of linearly constrained nonsmooth and
nonconvex optimizations. We use these tools as building blocks for the construction of
quasi-static evolutions. We apply the machinery on a model of cohesive fractures, giving
an alternative and constructive proof of existence.
We consider models of brittle fractures and their adaptive anisotropic numerical approx-
imations.
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1. Introduction to fracture mechanics

Why does a dish used hundreds of times decide to break instantaneously despite it did
not seem to be damaged? Why does a fracture start propagating in a glass or in a
car’s windscreen apparently without any accidental reason? Why did in 1967 the silver
bridge connecting Point Pleasant, West Virginia with Kanauga, Ohio collapse [47]? How
is it possible that the fuselage of an aircraft after years of safe flights suddenly breaks
[62, 138, 212]? What is the reason behind the unexpected hull cracks of the US army SS
John P. Gaines Liberty ship which sank on 24 November 1943 with the loss of 10 lives
[145]?
Everyone, reading the first two questions, may have though: “well, it may happen.
Eventually, you need to go to the shop and buy a new glass or dish”. But the last three
queries raise different emotions and we all hope that the next bridge, aircraft, or ship we
may take have been built in a better manner than the ones that were involved in those
catastrophic events.
Despite the apparent heterogeneity of the problems, they actually present an underlying
phenomenon which is the direct responsible of all these failures: the appearance of a
fracture in the material. Therefore, a study which aims to predict how a crack initiates
and evolves in a body can be not only interesting for the design of more resistant every-
day products, but can also help in reducing the possibility that a tragedy happens and
thus saving also human lives.
The first studies about fractures date back to the 1920s, when the British Royal Air-
craft Establishment commissioned to the engineer A. A. Griffith an investigation on
the correlation between the metal surface treatments and structural failures of aircraft’s
bodies experienced during the World War I. This can be considered as the birth of a
new branch of continuum mechanics: the fracture mechanics. Since then, many different
models raised to predict when and where a fracture may appear and grow.
The multitude of models explaining the crack formation, may be distinguished and clas-
sified as follows.

• Quasi-static evolution: The external forces acting on the system is slowly changing
in time and the body is assumed to be instantaneously at an equilibrium configu-
ration ([78, 109, 110]).

• Dynamic evolution: The external action which causes the fracture is rapidly chang-
ing in time. The system is not in an equilibrium configuration and we may also
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1. Introduction to fracture mechanics

observe a wave propagation in the material due to the extreme variations of the
forcing term ([44, 75, 150, 151, 153]).

• Brittle fractures: The specimen breaks instantaneously without any premonitory
sign. After the deformation driven by the external force, the molecular bonds
break at once and the two parts of the fractured body do not interact any more
([77, 78, 109, 110, 124, 175]).

• Ductile fractures: it can be observed a progressive weakening, up to the failure of
the specimen, presenting a damaged area around the crack surface ([89, 115]).

• Cohesive fractures: A subclass of the family of brittle fractures, the crack forms
in three phases. A deformation without fracture, a pre-fractured state in which a
bridging force attracts the two lips of the crack, and the fractured phase ([26, 51,
52, 80, 96]).

• Plastic deformation: When an external force acts on the specimen, it deforms
its shape irreversibly. In this case, not every deformation implies a loss of the
structural integrity ([134, 156, 203]).

• Microstructure-fractures: The applied deformation creates a multitude of fractures
on a molecular level and therefore invisible at the human eye. Despite the shape
and the condition of the specimen seems to be perfect, the structural properties of
the system is irreversibly compromised ([92, 93, 186]).

• Thermal-fracturing: The fracture is not caused by a force acting on the system
but by a thermal shock. A fragile body immersed in a fluid at a very different
temperature is subject to internal stress that may cause its fracturing. ([45, 187,
197, 205])

• Fatigue: The material is weakened by repeatedly applied loads. In this case the
damage is progressive and localized and it occurs when a material is subjected to
cyclic loading. The failure may appear also when the applied load is less than the
maximum load the system was designed for ([35, 36, 144, 168, 206]).

The list above, although it does not pretend to give a complete overview of the different
ways a body can break, gives an idea of the variety and complexity of the phenomena
that fracture mechanics studies.
In this work, we focus on quasi-static evolutions and consider brittle and cohesive modes
of fracture, with the specific aim of developing efficient algorithms to generate reliable
numerical simulations of the crack initiation and propagation. In particular, the main
challenges we deal with are: 1) retrieve a physically sound quasi-static evolution of the
system, and 2) obtain a deformation of the specimen which is not biased by the nu-
merical procedure and discretization adopted. The issues related to these points are
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1. Introduction to fracture mechanics

intrinsically connected with the nature of the problem, since, in general, we have to deal
with the minimization of functionals that are nonconvex and present singularities.
To discuss the challenges of point 1), we observe that, in nature, often evolutions of
physical phenomena proceed along energy local minimizers. Therefore, we designed a
constructive procedure, an iterative algorithm, computing and selecting critical points,
balancing proximity to the initial iteration and energy level. Used as a building block in
quasi-static evolutions our algorithm promotes relatively smooth trajectories of critical
points and physically sound solutions.
Point 2) is conversely strictly related to the second characteristic of the fracture problem:
the presence of singularities. Aiming to correctly detect a fracture path is indeed a non
trivial problem from a numerical point of view, as we need to locate the place and the
time, where and how a singularity appears and evolves in the domain. If, for example, we
knew in advance where the crack may form, we could properly define the discretization
of the domain in order to handle at best the singularity. Unfortunately, being interested
in the case in which the fracture is free to form and evolve in the specimen, creating
a discretization scheme which is both accurate and efficient is definitively a non trivial
task.

With the present work, which is representing a self-contained scientific compendium of
our papers [13, 14, 16, 15, 18, 19, 20], we make an attempt toward efficient and reliable
methods which are able to capture and describe the quasi-static evolution of fractures,
being aware that all the topics and arguments here presented can be extended in the
future.
In the next sections of this chapter we introduce the reader to fracture mechanics. We
first discuss linear elasticity which describes, in our setting, the deformation of the body
in the unbroken part. After that, we give a historical overview of fracture models. Fi-
nally, we introduce the specific models that we will study in the next chapters.
Chapter 2 (see also [19]) deals with the general problem of linearly constrained minimiza-
tion of nonconvex and non smooth objective functionals. We introduce two algorithms,
being the second a generalization of the first one. Despite the very mild assumptions on
the regularity of the functional, we prove unconditional convergence of the method to
critical points.
Examples of a wide range of applications, even beyond fracture mechanics, in which
these algorithms may be successfully used are reported in Chapter 3 (see also [18, 19]),
where problems such as image denoising and reduction of the noise-folding phenomenon
in compressive sensing are addressed.
Next, in Chapter 4 (see also [13, 20]), we start working with fracture models. In partic-
ular, we focus first on cohesive fractures. In the first part of the chapter, we show that
the first algorithm presented in Chapter 2 not only can be effectively used as a building
block to simulate reliably also this kind of problems, but also we show that it is possible
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1. Introduction to fracture mechanics

to retrieve a quasi-static evolution which corresponds to a physically admissible process
and also converges to the continuous problem.
The second part is then devoted to the computational efficiency. Indeed, one of the
drawback of the considered algorithm is that the computational times tend to be huge
also for relatively simple problems. Therefore, we revise two well-known algorithms for
convex optimization, the Split Bregman Iteration and the Primal Dual Active Set, and
we show how they can be adjusted to solve our problem efficiently as well, despite the
nonconvexity. The convergence of these new algorithms is still an open problem. How-
ever, we never experienced in the numerical simulation any failure of the convergence
and we obtained agreement with the physical predictions.
The last chapter, Chapter 5 (see also [14, 16, 15]), is focused on brittle fractures, and
faces the second aim of the project: how to discretize the domain in an efficient and reli-
able fashion, in order to detect the crack path in a quasi-static evolution. In particular,
resolving to consider an anisotropic mesh adaptation scheme, we propose a procedure
which not only correctly detects the crack path, but also produces a domain discretiza-
tion with a minimal amount of degree of freedom.
We have also added two appendixes. In Appendix A we report some definitions which
are fundamental for a deep understanding of the concepts described in the following but
that we decided to isolate from the text to ease the reading of the individual chapters.
Appendix B is an extension of Chapter 5. In particular, we obtain similar a posteriori
error estimates for a different setting with respect to the one described in the chapter.
Since the techniques adopted are actually really similar, we decided to move this com-
putation to this appendix.
We additionally remark that all the chapters and the theoretical results are always sup-
ported by sections reporting numerically experiments designed to validate and challenge
the introduced procedures.
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1. Introduction to fracture mechanics

1.1. Linear elasticity

Any physical body in a rest position, i.e., it does not interact with the external world,
has a specific shape. As soon as some force starts interacting with it, its physical
characteristics are consequently modified. These forces, which deform the specimen,
may be distinguished in two categories: volume or body forces, like the gravity, which
act on each particle of the specimen, and surface or contact forces, for example a load
applied on a side of the body, which have a direct influence only on the surface of the
mass.
The deformation the system undergoes may vary according to the material properties
and the strength and the type of the action. Indeed, the body may break into parts,
getting fractured; deform irreversibly, keeping the deformed shape also after the external
action has ended; or deform reversibly, returning to its rest shape as soon as the force is
removed. In particular, we define a material to be elastic if the last deformation occurs.
In this section, we give some information on linear elasticity which are fundamentals for
a better understanding of the work, since the theory of fracture mechanics prescribes
that the body behaves elastically before its failure. We refer to [122, 125, 148, 198, 208]
for more extended treatises on linear elasticity. For a wider overview on elasticity, we
mention [24], where the reader can find references and open problems, and [111, 166]
and references within for a treatise on non-linear elasticity.
Let us suppose that our specimen is descibed by a simply connected domain Ω ⊂ Rd,
with d ∈ {1, 2, 3}, whose boundary ∂Ω, is Lipschitz continuous. We call f : Ω → Rd,
the force deforming the body. The shape and the internal stresses of the domain will
be modified, according to external force f, until the system finds an equilibrium state.
To describe the deformation of the body, we introduce the displacement vector field
u : Ω→ Rd mapping the domain to its configuration. For the moment we do not allow for
jumps in the displacement and therefore we assume u to be continuous and continuously
differentiable and det(∂xi/∂yj)) > 0 for all i, j ∈ {1, . . . , d}, where yi = u(xi). Moreover,
denoting with x = (x1, . . . , xd) the Lagrangian coordinates of the points of the body in
the initial configuration and with y the point coordinates of the deformed one, we have
that

y = x + u(x).

Now, consider an infinitesimal volume dV . The action of the displacement u either
moves the volume from x to y rigidly, or deforms it. We may distinguish two different
kinds of deformations an elastic body can undergo: stress and shear. The first describes
deformations orthogonal to the faces of dV , like compression and elongation. The second
one entails distortions parallel to the faces, with a consequent modification of the right
angles of the body, like torsion.
Additionally, let us assume stresses and strains to be small compared to the dimension
of the specimen. This apparently strong assumption can be understood in the sense
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1. Introduction to fracture mechanics

of infinitesimal volume deformation analysis. Indeed, let us imagine to draw a straight
line on Ω. Once the displacement u is applied, the straight line may be mapped into a
smooth curve with radius of curvature k. If we take on the line a segment dx such that
its length is way smaller than k, its deformed corresponding segment dy will be almost
straight. Thus, independently of the nature of the deformation the body is subject to,
we neglect all the deformations of higher order. We refer to [111, 183] and references
within for a complete description of non-linear elasticity, where this assumption is not
considered.
Now, we analyze in detail how the dimension of the infinitesimal volume dV is modified
with respect to a given direction e ∈ Rd. Denoting with xδ := x + δe and consequently
yδ := x + δe + u(x + δe) we have

de(x) := lim
δ→0

‖y− yδ‖ − ‖x− xδ‖
‖x− xδ‖

= lim
δ→0

‖x + u(x)− (x + δe + u(x + δe)‖
δe − 1

= lim
δ→0

‖δe + u(x + δe)− u(x)‖
δe − 1 = ‖e +∇u(x) · e‖ − 1

= (1 + et(∇u(x) +∇u(x)t +∇u(x)t · ∇u(x))e)1/2 − 1,

(1.1)

where ‖ · ‖ represents the Euclidean norm. We define the strain tensor as

ε(u) := 1
2
(
∇u +∇ut +∇ut · ∇u

)
. (1.2)

Considering (1.1) with respect to the canonical directions ej , with j = 1, . . . , d, we obtain
a physical interpretation of the diagonal components of ε by the following identity

dej = (1 + 2etj · ε(u) · ej)1/2 − 1 = (1 + 2εjj(u))1/2 − 1.

Thanks to the first order assumption made above, we can drop the quadratic term in
(1.2) introducing the linearized strain tensor ε : Rd → Rd × Rd defined by

ε(u) := 1
2(∇ut +∇u)

So far we studied the deformation described by a displacement u and we introduced
a force f : Ω → Rd, which deforms the body, but without specifying the relation that
connects them. This coupling is given by the Hooke’s constitutive law that governs the
connection between the internal stresses of the body σ ∈ Rd × Rd, generated by f, and
the displacement u, describing the body deformation.

Definition 1.1 (Hooke’s law). Let σ be the tensor of the internal stresses of the body,
and ε the linearized strain tensor. There exists a four-dimensional tensor C ∈ Rd×Rd×
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1. Introduction to fracture mechanics

Rd × Rd, called stiffness tensor, containing all the information of the material elastic
properties and such that

σ = C : ε. (1.3)

The above identity is called Hooke’s law.

Remark 1.2. The diagonal components σii represent the stress in the i − th direction
while the off-diagonal components give us the shear. Further, since we are considering
only static equilibrium states, the sum of all the stress components acting on the d-
directions with the total moment must be zero, implying the symmetry of the stress
tensor. Therefore, if we consider the case d = 3, σ can be fully described by three
components for the directional stress and only three components for the shear.

Remark 1.3. The structure of C may look complicated as it is a four-dimensional
tensor, but it simplifies sensibly if we consider an isotropic material, that is a material
with uniform properties in all directions. Indeed, in this case, the stiffness tensor is fully
described only by two parameters, λ and µ, called Lamé constants. Thus, the Hooke’s
law (1.3) reduces to

σ = λItr(ε) + 2µε, (1.4)

where I is the identity matrix and tr(ε) is the trace operator. For sake of simplicity,
unless for some generalized case, we will consider only isotropic materials.

Let us consider V ⊆ Ω a small volume contained in Ω and let f|V the restriction of f to V .
This force generates a reaction inside the medium which can be observed by measuring
the stress on the boundary ∂V . Recalling that we are analyzing only static situations
and therefore the forces acting on the system must be balanced, we obtain∫

V
f dx = −

∫
∂V

σ · n dS,

where n is the outer unit normal vector to ∂V . Applying the Green’s Theorem we get∫
V
f dx +

∫
V
div(σ) dx = 0. (1.5)

Since (1.5) is valid for any choice of V ⊆ Ω, we deduce that f = −div(σ) almost
everywhere.
This last equation, together with the Hooke’s law (1.3) and additional boundary terms,
gives us the following differential system:

div(C : ε(u)) = −f on Ω
(C : ε(u)) · n = σn · n on ∂ΩN ⊆ ∂Ω

u = g on ∂ΩD ⊆ ∂Ω
(1.6)

where σn is an external stress applied on ∂ΩN , on which we impose Neumann boundary
conditions, g is an assigned displacement acting on ∂ΩD, on which we impose Dirichlet
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1. Introduction to fracture mechanics

conditions, ∂ΩD ∩ ∂ΩN = ∅, and ∂ΩD ∪ ∂ΩN = ∂Ω.
In the next section, we introduce a variational approach to define stable configurations of
the body. Indeed, instead of solving a differential problem, we consider the energetic level
of the system and look for its minimum. In particular, this approach will be fundamental
for fracture mechanics problems.

1.1.1. Equilibrium configuration

A body subject to an elastic deformation accumulates an elastic potential energy which
can be expressed in terms of the displacement function

Ee(u) :=
∫

Ω
W (ε(u)) dx (1.7)

where W (·) is the energy density. We assume that the function W : Rd × Rd → R+ is
strictly convex, non-negative, C1, and homogeneous of degree p > 1. Moreover, being
α, β > 0, we require that W satisfies

α|ε(u)|p ≤W (ε(u)) ≤ β(|ε(u)|p + 1).

In particular, for linear elasticity, we may consider p = 2 and the elastic energy density
can be explicitly written as

W (ε(u)) = 1
2 |(C : ε(u)) · ε(u)|. (1.8)

For sake of simplicity, we assume from now on the volume force f and the surface stress σn

to be zero. Therefore, the deformation of the medium is driven uniquely by the Dirichlet
boundary conditions on the displacement. In the following we introduce the concept of
equilibrium configuration. We refer to [90] for an easy one dimensional problem which
may help for a better understanding of the setting.
We first define the space of admissible configurations. Defining D ⊆ Rd the set of
admissible applicable displacement data, and being g : Rd → D, we also introduce the
set of all possible admissible configuration as

U := {u : u(x) ∈ D, for all x ∈ ∂ΩD},

while for a given datum g the space of admissible configurations is Ug := {u : u(x) =
g(x), for all x ∈ ∂ΩD}.

Definition 1.4 (Equilibrium configuration). Let g : Rd → D. We say that u ∈ Ug is an
equilibrium configuration if the first variation of Ee

δEe(u, ξ) = lim
ε→0

1
ε

(Ee(u + εξ)− Ee(u)) (1.9)

is non-negative for all the perturbations ξ ∈ U0.
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Expanding the quantity in brackets in the right hand side of (1.9)

Ee(u + εξ)− Ee(u) = ε

∫
Ω
W ′(ε(u)) · ε(ξ) dx + o(ε) ≥ 0.

Since the above inequality must be satisfied for every perturbation ξ ∈ U0, if it holds
true for ξ̄ ∈ U0 also −ξ̄ must be admissible, and therefore we deduce that the above
integral must be zero at an equilibrium point. Note that by the definition of the energy
density (1.8), we have ∫

Ω
(C : ε(u)) · ε(ξ) dx = 0,

which corresponds to the weak formulation of the first equation of (1.6).
Additionally, we say that ū is a global minimizer of Ee, if

Ee(ū + ξ)− Ee(ū) ≥ 0,

for all the perturbations ξ ∈ U0. Combining this definition with (1.9) and the strict
convexity of (1.7), we deduce that a global minimizer of the energy functional is the
only equilibrium configuration of the system.
Thus, we can conclude that the following minimization problem

arg min
u∈Ug

Ee(u) (1.10)

is equivalent to solve the weak formulation of the differential system (1.6).

Remark 1.5. After the introduction of the elasticity equilibrium system (1.6), we defined
g as a function with values on the entire domain. Despite we merely need the external
displacement to exist only on ∂ΩD to write (1.6) and (1.10), the characterization of the
energy inequality (1.11), which is fundamental to check and characterize the evolution of
the system, needs the external displacement to be formally defined on the whole domain
Ω.

1.1.2. Quasi-static evolution

So far the assigned displacement g has been considered as a fixed quantity. We now
introduce the concept of time evolution in the deformation process, starting with the
definition of load process, which is a continuous function g : [0, T ]×Ω→ D, where the in-
terval [0, T ] ⊂ R is not necessarily identified with a physical time interval. Alternatively,
we can say that the process which is deforming the specimen is rate-independent and
phenomena like inertia and viscous dissipation are negligible in the following analysis.
For a given load process t 7→ g(t) =: gt, we say that the continuous map t 7→ u(t) =:
ut ∈ Ugt is a deformation process associated to g, if it satisfies the following growth
condition for all t ∈ [0, T ]

Ee(u(t)) ≤ Ee(u(0)) +
∫ t

0

∫
Ω

ε(u(τ)) · ε(ġ(τ)) dx dτ, (1.11)

16



1. Introduction to fracture mechanics

where the superimposed dot denotes the differentiation with respect to t. The integral in
(1.11) represents the work supplied by the external displacement to the system. Indeed,
by the energy balance and Clausius–Duhem inequality [126, Eq. 81.7], it is not possible
that the potential energy of the body at a time t is larger than the initial potential energy
plus the energy contribution given by the force modeling the specimen. Alternatively,
we say that inequality (1.11) regulates the energy growth of the system avoiding that,
for any ε > 0 and any time interval (t, t + ε), the variation of the energy exceeds the
power supplied from the outside during the same time interval.
A given configuration ũ is said to be accessible if there exists a deformation process
driven by a load process t 7→ gt such that ũ ∈ Ugt for some t, and inequality (1.11) is
called accessibility condition.

Definition 1.6 (Quasi-static evolution). Let g : [0, T ]× Ω→ D be a load process. The
deformation process t 7→ ut describes a quasi-static evolution if every configuration ut
is also an equilibrium configuration.

Remark 1.7. Note that, since the energy functional (1.7) is strictly convex by definition,
it is sufficient to solve, for each time t ∈ [0, T ], the convex minimization problem (1.10).

The definition of a quasi-static evolution effectively reflects the idea that a body subject
to a varying external load, without any viscous and inertial effect, changes its shape
following the path of least energy.

1.2. Fracture mechanics

Linear elasticity, thanks to its simplicity and regularity, is the most advocated model to
describe the deformations that an elastic body undergoes when it is subject to a load
process. A significant limitation of this model is that, to get a reliable description of
the evolution, the external forces must be carefully calibrated so that the specimen will
not break in the tests, since the model does not allow for failures. Indeed, if we pull
a beam at both the extremities with constantly increasing force, we will observe the
system energy growing as predicted by (1.7), but we will not be able to forecast at which
instant the specimen will break. Unfortunately, there is no way to describe the rupture
of the domain using only the theory introduced so far and therefore we look for a new
model accounting for the formation of a fracture.
In real life problem, as we have already described at the beginning of the chapter,different
kinds of material deformation can be observed. In particular, a crack may form in a brit-
tle fashion, i.e. the material elongates elastically until, without any premonitory sign,
breaks forming a sharp fracture surface, or, alternatively, ductile fractures can be ob-
served after a progressive weakening of the specimen, resulting in a damaged area around
the crack surface. In nature, many material have an intermediate behavior and they are
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called ductile-brittle. In this case their rupture happens suddenly but only after a weak-
ening ductile phase.
In particular, in this work we focus here on the first fracturing mode which is, due to its
catastrophic character, the most fascinating and studied in fracture mechanics.
Looking at the deep origins of fracture mechanics, the first treaty on ruptures and ma-
terial failure dates back to the seventeenth century, when Galileo Galilei wrote the book
Discorsi e dimostrazioni matematiche intorno a due nuove scienze [114]. However, the
appearance of a mathematical model describing the phenomenon of body fracture comes
only in the beginning of the last century thanks to A. A. Griffith. The aeronautical engi-
neer was commissioned during the World War I by the Royal Aircraft Establishment to
study whether the surface treatment operations done on the body of the aircraft could
influence the structural failure observed in the fleet. The result of this investigation was
published in [124], where the very first theorem describing how a preexisting fracture in
a body could spread and evolve appeared. Despite its innovation, the theory was still
not complete and it had some limiting aspects that made this work not so popular for
years, and in the meanwhile parallel new theories arose.
The main characteristic that A. A. Griffith and the later literature did not take into
account was a proper description of the crack initiation, i.e. how does it happen that a
fully intact material at some point starts breaking. This problem remained unsolved for
almost eighty years till the 1998 when, in [110], G. Francfort and J.–J. Marigo, inspired
by the image segmentation theory (see e.g. [31, 137]), proposed a model based on the
Mumford–Shah functional [169] to overcome this issue.
An alternative modeling approach, was proposed by D. S. Dugdale [96] and, indepen-
dently, a few years later by G. I. Barenblatt [26]. These and the subsequent models,
called cohesive fracture models, introduce an intermediate phase in the evolution be-
tween the elastic elongation and the catastrophic failure, called indeed cohesive phase.
The idea comes from the molecular attraction that tends to keep close to each other
the lips of the growing crack, but does not introduce any permanent deformation in the
material that returns to the rest configuration as soon as the cohesive force disappears.
In the next sections, we explore these models. First we start with the father of modern
fracture mechanics theory, then we continue with an introduction to the Francfort–
Marigo model, and finally we deal with cohesive fracture models.

1.2.1. Griffith’s Theory

At the beginning of the twentieth century A. A. Griffith found the inspiration for devising
the first fracture model from the Theorem of Minimum Energy:

“The equilibrium state of an elastic body, deformed by specified external
forces, is such that the potential energy of the whole system is a minimum.”
[191]
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This theorem, which has actually also inspired Definition 1.6 of quasi-static evolution,
does not deal with any criterion for the formation of a fracture. A. A. Griffith added
a statement which introduces the possibility of a crack formation with the idea that,
if an equilibrium is possible, it must be the one in which the medium is broken, if the
system can pass from the unbroken status to the broken one via a continuous decrease of
the potential energy. In other words, we say that a fracture appears if breaking is more
convenient than increasing the elastic energy. This idea describes actually an evolution
along global minimizers of the energy functional, which is the most studied approach,
but, as we will comment later, recently the community seems to be in favor of evolutions
along local and more physically sound minimizers.
How to design a principle which describes the opening of a fracture? How to describe the
energy of a fracture? And, in particular, does a match between the criterion introduced
and the physical phenomenon exist? The solution came thinking at a molecular level.
Indeed, we know that each particle is linked to the neighboring ones by atomic bonds.
In order to break these bonds, we need to spend some energy, which can be expressed as
a fictitious surface energy in the continuous setting. We used the word fictitious because
the fracture energy is not a physical quantity but just an artifact to describe the process.
Once a body gets damaged, the fracture surface is traction free except for a very small
area around the crack tip, where the atoms can still interact each others. Thus, the
assumption that the failure is a traction free surface of the domain can be reasonable.
All these reasoning can be summarized by the Griffith’s Theorem [124]:

Theorem 1.8 (Griffith’s Theorem). In an elastic solid body deformed by specified forces
applied at its surface, the sum of the potential energy on the applied forces and the strain
energy of the body is diminished or unaltered by the introduction of a crack whose surfaces
are traction free.

Hence, according to this Theorem, we can characterize the energy functional of an elastic
body which allows for fractures as the sum of the elastic energy Ee introduced in (1.7)
and a surface fracture energy Ef defined on the (d−1)-dimensional hypersurface Γ ⊂ Ω.
This hypersurface, which is actually a surface if d = 3, a line when d = 2 and a point if
d = 1, is traction free and reduces the internal stresses σ of the body:

E(u,Γ) = Ee(u) + Ef (u,Γ). (1.12)

As we already commented, the fracture energy measures the energy spent to break the
molecular bonds, but since single particles are not taken into account, it is necessary
to establish an alternative criterion to measure this quantity. The original idea was to
relate the energy contribution given by the spreading of the crack to the surface of the
fracture.
In the following section we redefine the concept of equilibrium state for the energy
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functional (1.12), then we add some condition on the crack set Γ in order to extend the
concept of accessible state to the empirical experience on fractures.

1.2.2. Equilibrium configuration and accessibility condition

Recalling Definition 1.9 we have that the first variation of the energy functional

δE
(
(u,Γ), (ξ,Ξ)

)
:= lim

ε→0

1
ε

[
Ee(u + εξ)−Ee(u) +Ef (u + εξ,Γ ∪ Ξ)−Ef (u,Γ)

]
(1.13)

must be non-negative for any admissible perturbation pair (ξ,Ξ). In particular, Ξ may
also not be related to the crack set Γ and add a fracture to the domain. Since now the
domain can be fractured, we need to add an non-interpenetration condition

[[u]](x̃) + [[ξ]](x̃) ≥ 0 (1.14)

for all the newly created fracture points x̃, where we denote with [[·]] the jump amplitude
between the lips of the fracture. We also recall that a perturbation, to be admissible,
must not deform the domain∫

Ω\Ξ
ε(ξ) dx +

∫
Ξ

[[ξ]] dHd−1(Ξ) = 0,

where Hd−1(Ξ) is the (d − 1)-dimensional Hausdorff measure (see Appendix A). In
Section 1.1.1 we observed that the global solution of the minimization problem (1.10)
coincides with the unique equilibrium configuration of the purely elastic system. Unfor-
tunately, in this new setting, condition (1.13) does not trivially coincide any more with
the global minimum. Indeed, despite the elastic energy is convex, the fracture energy
is in general nonconvex and nonsmooth and therefore it may exist more than one pair
(u,Γ) satisfying the equilibrium condition and not necessarily coinciding with the global
minimizer of the energy functional (we refer to [90] for a one dimensional example clar-
ifying this point).
For this reason, the definition of quasi-static evolution given in Section 1.1.2, which
characterizes this phenomenon as an equilibrium process evolving exclusively along en-
ergy functional’s global minimizers may not apply any longer. Indeed, due to the non
uniqueness of the solution of the energy minimization problem, we need to redefine the
concept of quasi-static evolution as a stable equilibrium process which is an equilibrium
process whose configurations are stable.

Definition 1.9 (Stable configuration). Let g : [0, T ] × Ω → D, u one of its admissible
configuration and Γ ⊂ Ω the subset of the domain Ω where the displacement function
is discontinuous. We say that the pair (u,Γ) is a stable configuration if the following
identity is satisfied

δE
(
(u,Γ), (ξ,Ξ)

)
= 0 for all admissible perturbations (ξ,Ξ) (1.15)
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Now, considering that the energy functional is nonconvex both for brittle and cohesive
fracture models, the most struggling question related to the problem (1.15) is “Which
one of the several critical points should be chosen?”
Unfortunately, we are far from having a definitive and unique answer. As already men-
tioned, most of the studies followed Griffith’s idea of minimum energy, selecting the
global minimizer, see for example [76, 78, 109, 119, 158], [73] for the nonlinear elasticity
case, and [74] for some qualitative observations.
But following the global minimizers does not agree with the physical evidences beyond
elasticity theory. Indeed sometimes these evolutions require the crossing of energetic
barriers which in reality are unfeasible. Therefore, more recently, a second point of view
has been developed and it considers evolutions along critical points where a body should
not move from its stable configuration if this implies the crossing of a relevant energetic
barrier, see [77, 142, 143, 144, 154, 155, 209]. A comparison of these two philosophies has
been done in [173]. Unfortunately, the theory of existence of such evolutions as well as
their mathematical study is not so well established like for global minimizer evolution.
Additionally, we need to sightly modify the definition of deformation process adding a
crack irreversibility criterion in order to avoid healing of the fracture. To proceed, we
introduce the notion of compatible configuration.

Definition 1.10 (Compatible configuration). We say that a configuration (v,Φ) is com-
patible with (u,Γ) if there exists a perturbation (ξ,Ξ) such that

(v,Φ) = (u + ξ,Γ ∪ Ξ).

This definition tells us that in order to be compatible, the fracture set Γ must be a subset
of Φ.
Now, given a load process t 7→ gt, the map t 7→ (ut,Γt) is a deformation process if the
two following conditions are satisfied:

i) given an initial configuration (u0,Γ0) = (u(0),Γ(0)), for all t ∈ [0, T ] it holds

E(u(t),Γ(t)) ≤ E(u(0),Γ(0)) +
∫ t

0

∫
Ω\Γ(τ)

ε(u(τ)) · ε(ġ(τ)) dx dτ ; (1.16)

ii) for all τ > t, (u(τ),Γ(τ)) is compatible with (u(t),Γ(t)).

Notice that point ii) is equivalent to require that Γ(t) ⊆ Γ(τ) for every τ > t, which
means that once the crack is created, it cannot heal in future times. This concept is
defined as irreversibility of fracture, but it is also addressed in the literature with the
name unilateral condition by some authors [43, 61, 149, 158], and it is fundamental for all
the studies which does not consider a strictly increasing external displacement. Indeed,
in [51, 52], where the applied load constantly increasing in time, this condition can be
omitted.
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1.2.3. Francfort–Marigo brittle fracture model

Griffith’s model and the studies that followed, despite giving a sensible contribution for a
better understanding of fracture evolution, still lacked the modeling the crack initiation.
Some previously appeared studies [152, 193] made an attempt to overcome the problem,
but the final solution was found only in 1998 when G. Francfort and J.–J. Marigo,
presented a new model asserting that the work [124] was

“an unreliable instrument to predict crack initiation, crack path, and eventual
crack jumps along the crack path.” [110]

In this section, we recall the arguments that the two authors proposed in [110] to intro-
duce their model for brittle fracture, highlighting the limitations of the previous one.
Let us consider a domain Ω ⊂ R2 with a straight fracture Γ of length H1(Γ) = `. Pulling
apart the plate with an external displacement gt, Griffith’s model prescribes a crack
growth only if the internal stresses are of the order 1/

√
`. Since we are interested in the

crack initiation, we let `→ 0 and we observe that the stress needed to start the fracture
grows to infinity, despite the evidence that this occurs at finite stress.
To resolve this inconsistency, the authors were inspired by the apparently unrelated field
of image segmentation, but keeping Griffith’s idea of energy balance between the elastic
energy and a fictitious fracture energy. Thus, let us start introducing the two compo-
nents of the energy functional: elastic and fracture energies. The elastic part is defined
in (1.7), evaluating the energy density function in all the points of the domain except for
the ones of the fracture set Γ. In general, any function W with the properties described
in Section 1.2.2 can be chosen, but we stick to linear elasticity and isotropic materials
for sake of simplicity. In particular, if the applied displacement on the boundary ∂ΩD

is on plane, the elastic energy density has the form (1.8), that for isotropic materials is

W (ε(u)) := 1
2(C : ε(u)) · ε(u) = 1

2(λI tr(ε(u)) + 2µε(u)) · ε(u). (1.17)

Alternatively, if we consider an off-plane displacement, i.e. in a two-dimensional plate
the deformation is orthogonal to the domain’s plane, the elastic energy density simplifies
to

W (u) := 1
2 |∇u|

2, (1.18)

where the displacement u : Ω→ R is now a scalar function.
The second element to introduce is the fracture energy. Similarly to Griffith, the authors
considered a surface-like quantity proportional to the (d − 1)-Hausdorff measure of the
fracture set Γ

Ef (Γ) := κHd−1(Γ), (1.19)

where κ > 0 a material parameter. The peculiar property of this model is that the crack
can assume any shape and extension. In particular, we look for fracture sets which are
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contained in K ⊂ Ω, where

K := {Γ ⊂ Ω : Γ has at most m ≥ 1 connected components,Hd−1(Γ) <∞}.

Indeed, despite the fracture set can assume any shape and thickness, the creation of a
d-dimensional fracture set requires an infinite amount of energy if measured with the
(d−1)-dimensional Hausdorff measure. Hence the properties of the fracture energy make
the formation of a thick fracture extremely unlikely.
Adding the elastic and fracture energy together, we finally obtain the total energy

E(u,Γ) := 1
2

∫
Ω\Γ
|∇u|2 + κHd−1(Γ) (1.20)

that is, under proper boundary conditions, the quantity we need to minimize at each
time t ∈ [0, T ] to get a quasi-static evolution.
This energy functional, despite being never used in continuum mechanics before [110],
was not completely new. Indeed, it already appeared in the field of image segmentation
[169]. Moreover, this minimization problem was already shown in [86] to be equiva-
lent to a well-posed one-field minimization problem on SBV (Ω), the space of special
bounded variation functions [7], and, thanks to other works in relatively broad fields
[5, 73, 78, 109], this brittle fracture model was shown to have the desired properties in a
pretty general setting, filling the gap between the seminal work and the theory of quasi-
static fracture evolution. The situation is more involved if we consider the plane elastic
energy density (1.17). In this case, the arguments used to show the well-posedness of
the problem for the Mumford–Shah functional (1.20) are not valid and the displacement
function u must be defined in a SBD space (see Appendix A for the definition of these
function spaces).
Following the model (1.20), focusing for simplicity only on the off-plane case, and re-
calling that the distributional derivative can be decomposed as in (A.3), we denote with
∇u its absolutely continuous part and with J(u) the set where the displacement is dis-
continuous and presents jumps. Notice that, we did not enforce Γ and the jump set of
the displacement J(u) to coincide. Thus, assuming u ∈ SBV (Ω) we formally redefine
the energy functional as follows

E(u,Γ) =


1
2

∫
Ω
|∇u|2 + κHd−1(Γ) if Hd−1(J(u) \ Γ) = 0,

+∞ otherwise.

We say that a given load process g ∈ L∞(0, T ;W 1,∞(Ω)) ∩W 1,1(0, T ;H1(Ω)) acting on
ΩD ⊂ Ω is admissible if, for a given fracture set Γ, it verifies the conditions as defined
in Section 1.2.2 and additionally:

• g(x) ∈ D for all x ∈ ΩD;
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• on Ω ∩ Γ no boundary condition and no external displacement is imposed;

• on Ω \ ΩD no boundary condition is imposed on the displacement u.

Consequently, the set of all admissible configuration is

U := {u ∈ SBV (Ω) : u|ΩD : ΩD → D},

while at a time t ∈ [0, T ] and for a given admissible applied displacement g(t) the
admissible configurations are characterized by

Ug(t) := {u ∈ SBV (Ω) : u|ΩD = g(t)|ΩD}.

Thus, for every time t ∈ [0, T ] we need to find a globally minimizing pair for the energy
functional

(u∗(t),Γ∗(t)) ∈ arg min
u∈Ug(t)

Γ⊇
⋃
s<t

Γ(s)

E(u,Γ). (1.21)

The proof that the above problem has a solution which is a quasi-static evolution has
been given in [78], where the mathematical properties of the model have been explored.
Notice that for the moment we limit ourselves to evolutions along global minimizers in
(1.21). In the following, we report the main result of that paper, providing all the feature
of a quasi-static evolution for (1.21).

Theorem 1.11 (see [78]). Let g ∈ L∞(0, T ;W 1,∞(Ω)) ∩ W 1,1(0, T ;H1(Ω)) and let
Γ(0) = Γ0 ∈ K. Then there exists a function Γ : [0, T ]→ K such that

a) Γ0 ⊂ Γ(s) ⊂ Γ(t) for 0 ≤ s ≤ t ≤ T ;

b) E(u(0),Γ(0)) ≤ E(u(0),Γ), for all Γ ∈ K with Γ ⊃ Γ0;

c) for 0 ≤ t ≤ T , E(u(t),Γ(t)) ≤ E(u(t),Γ) for all Γ ∈ K with Γ ⊃
⋃
s<t

Γ(s);

d) t 7→ E(u(t),Γ(t)) is absolutely continuous in [0, T ];

e) d

ds
E(u(t),Γ(s))

∣∣∣∣
s=t

= 0, for almost every t ∈ [0, T ].

Moreover, for every function Γ : [0, T ]→ K, such that (a)− (e) hold true, the following
identity is satisfied

d

dt
E(u(t),Γ(t)) = 2

∫
Ω\Γ(t)

∇u(t)∇ġ(t) dx

for almost every t ∈ [0, T ], where u(t) is a solution of the minimum problem (1.21) for
Γ given, and ġ(t) is the time derivative of the function g(t).
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We mention that to achieve the result the authors introduce a time discretization step
δ, find the pair (uδ(tk),Γδ(tk)) for every ti, with 0 ≤ k ≤ NT , such that tk − tk−1 = δ,
and then they proved the convergence for δ → 0 to the continuous in time solution
(u(t),Γ(t)). Moreover, we also remark that the assumption that the fracture set has
at most m connected component was crucial for the proof of convergence by means of
homogenization technique [22, 69, 81, 141, 170], despite G. Dal Maso and R. Toader
observed that this assumption is sufficient only for d ≤ 2.
A similar existence result, but for evolutions along critical point has appeared in [77]. In
the paper, the authors consider at each time step, in the discrete-time formulation, local
minimizers of the energy functional which are sufficiently close to the approximate solu-
tion obtained in the previous step. This has been done by introducing in the variational
problem an additional term which penalizes the L2-distance between the approximate
solutions at two consecutive times. We mention here that in Chapter 4 we follow this
balancing principle between proximity and energy minimization to define quasi-static
evolutions in greater generality.

1.2.4. Cohesive fracture models

Griffith’s model together with the new ideas of G. Francfort and J.–J. Marigo is not the
unique approach to deal with brittle fractures. Indeed, in the second half of the last
century, on both sides of the Atlantic ocean, during the cold war, two scientist, D. S.
Dugdale in America [96] and G. I. Barenblatt in Russia [26], independently developed
alternative models. Indeed, two molecules separated by a fracture but still sufficiently
close each others present an attractive force, which is called cohesive force. The lack of
this aspect in Griffith’s theory motivated the authors to conceive new models. Hence, the
elastic energy is not released instantaneously but more gradually as long as the distance
between the lips of the fracture grows and the atomic attraction get weaker.
Even if the models are different, quasi-static evolutions of cohesive fractures require the
minimization of the energy functional, which has once again two components: the elastic
energy Ee and the cohesive fracture energy Ef . Thus, the equilibrium configuration that
the body assumes at each time is given by a proper balance of these two terms. Despite
the structural similarity, as already mentioned, models of cohesive fractures differ from
the one described in [110, 124] by the crack formation process. The fracture is now
described by a function depending on the amplitude of the jump of the displacement,
denoted by [[u]].
Considering the non-interpenetration condition (1.14) the cohesive fracture function θ :
R+ → R+ is restricted only to the positive half-plane and is required to be monotonic
and non decreasing. Moreover the following limits

θa = lim
[[u]]→0+

θ([[u]]) θr = lim
[[u]]→+∞

θ([[u]])
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define the activation energy θa and the rupture energy θr, where θa ≤ θr. The activation
energy is the energy needed to weaken the molecular bonds and initiate the fracture,
while the rupture energy is spent to destroy all the connection between the two lips of
the fracture, and the body can be considered broken. We additionally define [[u]]r the
minimal jump high needed to reach the rupture energy.
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Figure 1.1.: The cohesive fracture energy functions of the two pioneering models: in
green Dugdale function and in blue Barenblatt’s

In the brittle fracture model θa = θr and therefore we could distinguish the points of
the domain into two class, fracture and non-fracture points. Conversely we now need
to introduce the intermediate state called bridging phase, which describes the transition
of the body between the elastic deformation and the rupture. Non-fracture points are
all the point x ∈ Ω such that [[u]] = 0, then, pre-fracture points are all the points where
the bridging force is still acting, and finally fracture points are only the points x ∈ Ω
where [[u(x)]] > [[u]]r and a fracture in the sense of Griffith is created. Additionally,
by setting θa = 0, as D. S. Dugdale and G. I. Barenblatt did, every pre-fracture point
with jump amplitude 0 is also a non-fracture point. Thus, we do not make a mistake
calling pre-fractured status every configuration in which the domain is not completely
fractured.
In Figure 1.1, we report the cohesive fracture energy functions for the two pioneering
models. For both the models the activation energy is set to zero. The main difference
between the two models lies in the regularity of the function θ. Dugdale’s function (in
green) is piecewise linear, the cohesive force keeps constant during the bridging phase,
while drops instantly to zero as soon as the critical value [[u]]r is reached. Barenblatt’s
cohesive force derivative is instead continuous and monotonically decreasing; this implies
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1. Introduction to fracture mechanics

that the attraction between the two lips gets weaker the bigger their separation. It is
also possible to design Barenblatt-like cohesive forces such that the critical value for the
final rupture is set to infinity and therefore the bridging between the molecules of the
body never disappears.

Remark 1.12. Griffith’s model can be seen as a discontinuous limit of a cohesive frac-
ture model. Indeed, if we let [[u]]r → 0 we have that, in the limit, the activation energy
coincides with the rupture energy, θa = θr. Consequently, the cohesive transition phase
vanishes and the brittle behavior of Griffith’s model described in Section 1.2 is recovered.
Thus, cohesive fracture models are often interpreted has a regularization approach to
Griffith’s brittle fracture model.
As we will describe in Chapter 5, a direct minimization of the energy functional (1.20) on
a continuous domain Ω is extremely complicated and therefore most of the literature con-
sidering the Francfort–Marigo model introduces a smooth phase field approximation via
the Ambrosio–Tortorelli functional [9] which Γ-approximates the Mumford–Shah func-
tional [39, 40, 42, 48, 176] (see Appendix A for a definition of Γ-convergence). Despite
this approach has been widely studied, the purely mathematical introduction of a phase
field leaves open questions for a practical point of view: what is the physical meaning
of the phase field function in the intermediate state? Where is the exact location of the
fracture since width of the damaged area depends on the steepness of the phase field?
Conversely, the approximation of brittle fractures via cohesive energy functionals of-
fers not only a vast scenario of possible cohesive fracture functions which correspond to
different bridging behavior, but also give a physical interpretation to the regularization
introduced.

Finally, to describe a quasi-static evolution, we need to solve for each time step the
following minimization problem. Given a domain Ω ⊂ Rd and a prescribed fracture set
Γ ⊂ Rd−1, a cohesive function θ : R+ → R+, a time interval [0, T ], and a time dependent
load process g ∈ L∞(0, T ;W 1,∞(Ω)) ∩W 1,1(0, T ;H1(Ω)) acting on ΩD ⊂ Ω in the set
of admissible displacements D, we need to solve, for each time t ∈ [0, T ] the following
minimization problem:

u(t) ∈ arg min
u=g(t) on ΩD

∫
Ω\Γ

(∇u)2 dx + κ

∫
Γ
θ([[u]]) dHd−1(Γ), (1.22)

where κ is a material parameter as in (1.19). Notice that, for technical difficulties, we
decided to fix the fracture set Γ. We may justify this assumption supposing that the
specimen we are deforming was broken in Γ and then repaired. Hence, all the points in
Ω \ Γ may be only non-fracture points, while the ones in Γ are either to pre-fracture or
fracture points.
Although this minimization problem may appear easier than (1.21), it is far from be-
ing trivial. Indeed, the functional is still nonconvex and additionally issues regarding

27



1. Introduction to fracture mechanics

the choice of the minimization algorithm may raise depending on the regularity of the
function θ.
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2. Linearly constrained minimization of
nonconvex and nonsmooth functionals

The quasi-static evolution of fractures requires, as already described in the previous
chapter, the minimization of an energy functional E (examples have been presented in
the Introduction) at any time step tk, with k = 1, . . . , NT , of a proper time discretization
scheme of the time window [0, T ]. Let us stress that in the first part of this chapter we
report the theoretical results published in [19], while the second part contains unpub-
lished results.
In the literature one can find efficient algorithmic solutions for linearly constrained con-
vex and nonsmooth minimization, e.g., augmented Lagrangian methods [30, 112, 137,
185, 190], and for linearly constrained nonconvex minimization, such as sequentially
quadratic programming (SQP) or (semi-smooth) Newton methods [182]. Unfortunately,
in the latter cases only smooth objective energies, usually at least C2 functionals, can
be addressed by algorithms, which are then guaranteed to converge only locally around
the expected critical point. A more general setting is the one considered in [21], where
a remarkable analysis of the convergence properties of descent methods for nonconvex
optimization, also with constraints, has been carried out. A key role in the construction
of the algorithm is played by a special condition, the so-called Kurdyka-Łojasiewicz in-
equality (see for instance [34]) allowing for a general convergence result in a nonsmooth
nonconvex setting, but again under the assumption of a good initial guess. A certain
smoothness, namely, global C1,1 regularity, is needed to remove the latter very restrictive
assumption. Let us also stress that, although quite a mild condition from the point of
view of the applications, the Kurdyka-Łojasiewicz inequality could not be verified even
in the case of convex functions, as shown again in [34].
The above mentioned limitations of the currently available literature lead us to the mo-
tivation of this chapter, where we introduce two novel algorithms which aim to minimize
nonconvex and nonsmooth linearly constrained functionals with minimal regularity as-
sumptions. In order to guarantee the convergence of the algorithms to critical points of
the objective functional we need to restrict ourselves to a discrete setting, introducing
the Euclidean spaces E ' Rn and F ' Rm for m ≤ n. This restriction may seem signifi-
cant at a first look, but we may also consider among the spectra of possible application
also discretization of infinite dimensional problems. Indeed, in such situations, the map
u can be interpreted as an evolution of a physical system which can assume a contin-
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2. Linearly constrained minimization of nonconvex and nonsmooth functionals

uum of states and we first reduce the problem to an approximation where the evolution
assumes at most a finite number n of states instead. In this setting falls exactly the
discretization of continuum mechanics models as, for example, the fracture models in-
troduced in Chapter 1. Besides continuum models, there are also physical systems, e.g.,
quantum systems [101, 113, 133, 146, 159, 204], that can indeed assume only a finite
number of states and no approximation to a continuum of states is at all considered in
first place. Moreover, if we allow ourselves to consider more general or abstract systems,
perhaps related to social dynamics, u can easily model situations where a finite number
of interacting agents are changing their states according to a socio-economical principle
represented by a cost function J and are simultaneously bounded by certain linear rules
encoded in the constraint pair (A, f) [1, 37, 56, 70, 188].
In the next sections we introduce the two algorithms (the first is also proposed in [19])
and their convergence properties. In Chapter 3 we show different application fields where
such problem often occurs. Indeed, among the models that fit the general optimization
problem, we present the Mumford–Shah functional in image processing, a new decoding
strategy for reducing the noise-folding phenomenon in compressive sensing, and, natu-
rally, the energy functionals driving the quasi-static evolution of fractures. In particular,
we dedicate the entire Chapter 4 to the analysis of cohesive models [51, 52, 80]. This list
is far from being complete, as we actually expect that the algorithms studied can have
significant further numerical applications also in other problems involving nonsmooth
and nonconvex energies with additional linear (boundary) conditions, like elasto-plastic
evolutions [79, 165], atomic structure computations [23], and inverse gravimetric prob-
lems [29, 201].
An interesting feature of the proposed algorithms to linearly constrained nonsmooth and
nonconvex minimization problems involving truncated polynomial energy terms is that
the inner loop can be realized by means of an iterative thresholding algorithm. This
technique has been firstly proposed in [108] to solve inverse free-discontinuity problems
in one dimension, where no approximate smoothing of the energy was used, contrary to
other previous approaches, e.g., based on graduated nonconvexity [31, 179, 177]. The
extension we provide allows us now to similarly address problems, which are defined in
any dimension, thanks to the appropriate handling of corresponding linear constraints
and an eventual very mild smoothing.
Thresholding algorithms have by now a long history of successes, based on their ex-
tremely simple implementation, statistical properties, and, in the iterative case, strong
convergence guarantees. We retrace briefly some of the relevant developments, without
the intention of providing an exhaustive mention of the many contributions in this area.
The terminology “thresholding” comes from image and signal processing literature, es-
pecially related to damping of wavelet coefficients in denoising problems, however the
associated mathematical concept is the Moreau proximity map [68], well-known from
convex optimization. The statistical theory of thresholding has been pioneered by D.
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2. Linearly constrained minimization of nonconvex and nonsmooth functionals

Dohono and I. Johnstone [95] in signal and image denoising and further and extensively
explored in other work, e.g., [60]. Iterative soft-thresholding algorithms to numerically
solve the minimization of convex energies, modeling inverse problems and formed by
quadratic fidelity terms and `p-norm penalties, for p ≥ 1, have been first proposed in
[102]. Their strong convergence has been proven in the seminal work of I. Daubechies,
M. Defrise, and C. De Mol [82]. The recent theory of compressed sensing, i.e., the
universal and nonadaptive compressed acquisition of data [54, 94], stimulated also the
research of iterative thresholding algorithms for nonconvex penalty terms, such as the
`p-quasi-norms for 0 < p < 1 (see e.g. [18]). Variational and convergence properties of
iterative firm-thresholding algorithms, in particular the iterative hard-thresholding, have
been recently studied in [33, 106]. Partially inspired by these latter achievements and the
work of M. Nikolova [178] on the relationships between certain thresholding operators
and discrete Mumford–Shah functionals, the results in [108] should be also considered
as a contribution to the theory of thresholding algorithms in the new context of linearly
constrained nonsmooth and nonconvex optimization.

This chapter is organized as follows. In the next section we introduce the general setting
in which the algorithms are designed. The generality of this chapter is mainly motivated
by giving the reader the largest overview of the potential of the algorithms, without lim-
iting them to the case of fracture mechanics. Each of the two main Sections, 2.1 and 2.2,
treats a different algorithm. In particular, the second algorithm can be considered a
variation of the first one, appeared in [19], which can be convenient in some specific situ-
ations. For each algorithm, we proceed first analyzing its correspondent version created
and successfully employed for convex problems, then we modify it in order to be able to
deal with nonconvex functionals. Finally we prove its convergence to critical points of
the nonconvex objective functional.

2.0.5. General setting

As already remarked, the algorithms can be applied not only to fracture mechanics
problem and therefore we introduce the general setting in which the algorithm can be
understood.
Let J : E → R a lower semicontinuous nonconvex functional which we assume to be
bounded from below. Notice that we may require in some section the convexity of the
objective functional that will be denoted by J̃ to avoid any confusion. Since we will
be concerned with the search of critical points, without any loss of generality we should
suppose from now on that J (u) ≥ 0, for all u ∈ E . We further consider a linear operator
A : E → F . Both the spaces E and F are endowed with an Euclidean norm, which we will
denote in both cases by ‖ ·‖, since it will be always clear from the context in which space
we are taking the norm. Dealing with finite dimensional spaces, it remains understood
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that the only notion of convergence that we will use is the strong convergence in norm,
since weak and strong topologies are in this case equivalent.
About the operator A, we should assume that it has nontrivial kernel, and is surjective.
We should denote by A∗ : F → E the adjoint operator of A. By our assumptions, for
every w ∈ F we have that there exists δ > 0 such that

‖A∗w‖ ≥ δ‖w‖ . (2.1)

We consider f ∈ F and we are concerned with the problem of finding constrained
critical points of J on the affine space A(f) := {v ∈ E : Av = f}. Since we deal with
nonsmooth functionals, as usual, the notion of critical point is defined via the use of
subdifferentiation, see Section A.1.1.
We recall, for sake of completeness, the definition of critical point.

Definition 2.1 (Critical point). Let E be an Euclidean space, J : E → R a lower semi-
continuous functional, and v ∈ E. We say that v is a critical point of J if

0 ∈ ∂J (v) .

In the convex case this condition is sufficient to assure global minimality of v, otherwise
it is only a necessary condition for local minimality.
In the following definition of constrained critical point the usual shorthand J (w+ ·) is
used to denote the functional ξ 7→ J (w + ξ).

Definition 2.2 (Critical point on an affine space). Given a linear operator A : E → F
with nontrivial kernel, and f ∈ F , we say that w is a critical point of J on the affine
space A(f) = {v ∈ E : Av = f} if Aw = f and 0 is a critical point for the restriction to
kerA of the functional J (w + ·).

For J being a C1-perturbation of a convex function (in particular, with nonempty subdif-
ferential at every point), the nonsmooth version of Lagrange multiplier Theorem assures
that w is a critical point of J on the affine space A(f) if and only if Aw = f and

∂J (w) ∩ ran(A∗) 6= ∅ , (2.2)

where ran(A∗) is the range of the operator A∗, which is known to be the orthogonal
complement of kerA in E .
From now, about the function J , we will make the following more specific assumptions:

(A0) the functional v 7→ J (v) + |Av|2 is coercive;

(A1) J is ω-semi-convex, that is there exists ω > 0 such that J (·) + ω‖ · ‖2 is convex;
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2. Linearly constrained minimization of nonconvex and nonsmooth functionals

(A2) the subdifferential of J satisfies the following growth condition: there exist two
nonnegative numbers K, L such that, for every v ∈ E and ξ ∈ ∂J (v)

‖ξ‖ ≤ KJ (v) + L . (2.3)

Remark 2.3. We observe that

(a) condition (A1) is in fact met, for instance, by any C1 function in finite dimension
with piecewise continuous and bounded second derivatives. However, let us stress
that, conversely, ω-semi-convexity does not give any information on the smoothness
of the function, other than local Lispchitzianity, hence, in finite dimension, its
Fréchet-differentiability almost everywhere, by Rademacher’s Theorem. We also
recall that an ω-semi-convex function is a C1-perturbation of a convex function,
therefore it has nonempty (and locally bounded) subdifferential at every point. If
the subdifferential is uniformly bounded, then (2.3) is trivially satisfied;

(b) an ω-semi-convex function in finite dimension has a Fréchet differential almost ev-
erywhere, and, if (2.3) is satisfied only at points of differentiability, then it holds
everywhere. This is true since it can be shown that the Fréchet subdifferential is
contained in the so-called Clarke subdifferential, which is known to be at every
v ∈ E the convex hull of limit points of differentials of J along sequences vn → v

(for these notions, see for instance [65, Chapter 2]). Therefore one needs not to
calculate the subdifferential of J at non-differentiability points (which is in general
quite a hard task) to check if the hypothesis is satisfied everywhere.

Given ω > 0, and u ∈ E we will denote

Jω,u(v) := J (v) + ω‖v − u‖2 (2.4)

Notice that Jω,u is coercive whenever J is bounded from below. Thus assumption (A0)
is guaranteed without any further restriction and it could be omitted. However, we leave
it explicitly just to make clearer the requirement. We additionally observe that, if J
satisfies (A1) we can always assume that ω is chosen in such a way that Jω,u is also
ν-strongly convex with ν depending on J and ω, but not on u. Analogously, if (A1)
and (A2) are satisfied, by using (A.8) it is easy to see that Jω,u satisfies (2.3) with two
constants K̃, L̃ depending again on J and ω, but not on u.

2.1. Nonconvex Augmented Lagrangian algorithm

In this section we propose a very general and simple iterative algorithm to solve nons-
mooth and nonconvex optimization problems with linear constraints that first appeared
in [19]. In particular, for nonsmoothness we mean that we require our objective function
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to be in general only a locally Lipschitz function, contrary to the much more restrictive
C2, or C1,1 regularity requested by most of the above mentioned known methods for
providing convergence guarantees, as in [21].
One of the most relevant features of our iteration is its unconditionally guaranteed con-
vergence. By this we mean that the initial state does not need to be in a small neighbor-
hood of a critical point which may not necessarily be the global minimum. Our algorithm
may in fact be viewed as an appropriate combination of different techniques, resulting
in a nested double loop iteration, where in the inner loop an augmented Lagrangian
algorithm, or Bregman iteration, performs an adaptive finite number of iterations on a
fixed local quadratic perturbation of the objective energy around the previous iteration,
while the external loop performs an adaptation of the quadratic perturbation, similarly
to SQP. Our analysis of convergence is confined to the setting of finite dimensional Eu-
clidean spaces. Nevertheless, most of it could be done in the more general framework
of (possibly infinite dimensional) Hilbert spaces since the only point where finite dimen-
sionality is actually needed, is to recover strong compactness in the proof of Theorem
2.8.

2.1.1. Augmented Lagrangian algorithm for convex problems

We now recall some basic facts about Augmented Lagrangian iterations for constrained
minimization of convex functionals. Here, we are given a coercive convex functional J̃ .
Then, for every k ∈ N, k ≥ 1, we define:

Algorithm 2.1 Augmentel Lagrangian algorithm for convex functionals
1: Take q0 ∈ F ;
2: Initialize k = 0;
3: while ‖Avk − f‖ 6= 0 do
4: vk+1 ∈ arg minv∈E(J̃ (v)− 〈qk, Av〉+ λ‖Av − f‖2);
5: qk+1 = qk + 2λ(f −Avk+1);
6: k ← k + 1;
7: end while

Convergence of the algorithm has been proved in [185], where it was called Bregman
Iteration, and also in [112], being equivalent to the Augmented Lagrangian Method [137].
Precisely it has been shown that ‖Avk − f‖ decreases to 0 as k tends to +∞, that
the sequence vk is compact and any limit point is a global minimum of J̃ under the
constraint Av = f . Moreover, for every k ≥ 1, A∗qk ∈ ∂J (vk). When J̃ is ν-strongly
convex for some ν > 0 we have also a quantitative estimate of the convergence of vk
to the unique (due to strict convexity) minimizer of the problem. We give a precise
statement and a proof of this additional property, as it will be very useful later in the
nonconvex case as well.
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Proposition 2.4. Assume that J̃ is ν-strongly convex, let vk and qk the sequences
generated by Algorithm 2.1, and let v̄ the unique global minimizer of J̃ on the affine
space {v ∈ E : Av = f}. Then:

(i) (‖Avk − f‖)k∈N is a decreasing sequence;

(ii) lim
k→+∞

‖Avk − f‖ = 0;

(iii) ‖vk − v̄‖2 ≤
1
ν
‖q0 − q̄‖ ‖Avk − f‖, for all k ∈ N,

for every q̄ ∈ F such that A∗q̄ ∈ ∂J̃ (ū).

Proof. Properties (i) and (ii) are proved in [185]. For the property (iii), we first observe
that such a q̄ surely exists by (2.2). We define for all k ≥ 1 the discrepancy ∆qk := qk− q̄,
and we prove that ‖∆qk‖ is decreasing. We actually have, by elementary computations
and using Algorithm 2.1, that

‖∆qk‖2 − ‖∆qk−1‖2 ≤ 2〈qk − qk−1, qk − q̄〉
= 4λ〈f −Avk, qk − q̄〉
= 4λ〈v̄ − vk, A∗qk −A∗q̄〉 .

Since A∗qk ∈ ∂J̃ (vk) and A∗q̄ ∈ ∂J̃ (ū), the last term in the inequality is nonpositive by
(A.10), therefore the claim follows. In particular

‖qk − q̄‖ ≤ ‖q0 − q̄‖ , (2.5)

for all k ≥ 1. Now, by (A.11), we have also

ν‖vk − v̄‖2 ≤ 〈A∗qk −A∗q̄, vk − v̄〉 = 〈qk − q̄, Avk − f〉 ,

so that we conclude by the Cauchy-Schwarz inequality and (2.5).

Replacing J̃ with Jω,u defined by (2.4), with an appropriate choice of ω, by the previous
result, (2.1), and (2.3), we get the following corollary, whose rather immediate proof is
therefore omitted.

Corollary 2.5. Consider the function Jω,u defined by (2.4), where ω is chosen in such
a way that Jω,u is ν-strongly convex with ν not depending on u. Let v̄u be the unique
global minimizer of Jω,u on the affine space {v ∈ E : Av = f}. Then there exist two
positive constants C1 and C2 depending on A∗, J , and ω, but not on u, such that

‖vk,u − v̄u‖2 ≤ [C1(1 + ‖q0‖) + C2Jω,u(v̄u)] ‖Avk,u − f‖ , (2.6)

where vk,u := vk is defined accordingly to Algorithm 2.1 for J̃ = Jω,u.
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2.1.2. The algorithm in the nonconvex case

We now present the new algorithm for linearly constrained nonsmooth and nonconvex
minimization, and discuss its convergence properties. We pick initial v0 ∈ E and q0 ∈ F .
Notice that there is no restriction to any specific neighborhood for the choice of the
initial iteration. For a fixed scaling parameter λ > 0, and an adaptively chosen sequence
of integers (L`)`∈N, for every integer ` ≥ 1 we set (with the convention L0 = 0):

Algorithm 2.2 Bregman Iteration for nonconvex functionals
1: Take v0 ∈ E , q0 ∈ F ;
2: Initialize ` = 1;
3: while ‖v` − v`−1‖ 6= 0 do
4: Set v(`,0) = v`−1, q(`,0) = q`−1;
5: Compute L`;
6: for k = 1, . . . , L` do
7: v(`,k) = arg min

v∈E

(
Jω,v`−1(v)− 〈q(`,k−1), Av〉+ λ‖Av − f‖2

)
;

8: q(`,k) = q(`,k−1) + 2λ(f −Av(`,k));
9: k ← k + 1;

10: end for
11: v` := v(`,L`), q` := q(`,L`);
12: `← `+ 1;
13: end while

Here, thanks to condition (A1), ω is chosen in such a way that Jω,v`−1 is ν-strongly
convex, with ν independent of v`−1, and the finite number of inner iterates L` calculated
in line 5 of the algorithm is defined by the condition

(1 + ‖q`−1‖)‖Av(`,L`) − f‖ ≤
1
`α
, (2.7)

for a given parameter α > 1.
Since the inner loops are simply the Augmented Lagrangian iterations for the functional
Jω,v`−1 , by Proposition 2.4 (ii) and (2.5) such an integer L` always exists. We also
remark that by construction, for every ` ≥ 1 and k = 1, . . . , L`, we have

A∗q(`,k) ∈ ∂Jω,v`−1(v(`,k)) . (2.8)

Moreover, for every ` ≥ 1, again by Proposition 2.4, ‖Av(`,k) − f‖ is nonincreasing in k.
Let us also remark that Algorithm 2.2, which can also be viewed as an implementation
of an implicit gradient descent with step 1/ω, is actually a natural generalization of
Algorithm 2.1. Indeed, if J = J̃ were actually convex, we could in fact choose ω = 0,
and Algorithm 2.2 would simply reduce to Algorithm 2.1.
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2.1.3. Analysis of convergence

We now want to analyse the convergence properties of the Algorithm 2.2. To do that
we will use the following basic calculus lemma.

Lemma 2.6. Let (a`)`∈N a sequence of positive numbers, and let (δ`)`∈N a positive
decreasing sequence such that

∞∑
`=0

δ` < +∞ .

If a` satisfies for every ` the inequality

a` ≤ (1 + δ`−1)a`−1 + δ`−1 , (2.9)

then (a`)`∈N is a convergent sequence.

Proof. By the recurrence relation (2.9) we deduce

a` ≤
[
`−1∏
k=0

(1 + δk)
]
a0 +

`−1∑
`′=0

 `−1∏
k=`′+1

(1 + δk)

 δ`′ . (2.10)

Notice that

log
[ ∞∏
k=0

(1 + δk)
]

=
∞∑
k=0

log(1 + δk)

=
∞∑
k=0

(
δk −

1
2ξk

δ2
k

)
<∞, (2.11)

for suitable ξk ∈ (1, 1 + δk), for k ∈ N, hence
∞∏
k=0

(1 + δk) <∞,

and, together with (2.10), we deduce that (a`)`∈N is actually uniformly bounded. Now,
again by the recurrence relation (2.9), for k′ ≤ k, we obtain

ak = ak′ +
k∑

`=k′+1
(a` − a`−1) ≤ ak′ +

k∑
`=k′+1

δ`−1a`−1 +
k∑

`=k′+1
δ`−1.

Taking first the lim sup as k → +∞ and then the lim inf as k′ → +∞ in the previous
inequality, we conclude from the boundedness of (a`)`∈N and the convergence of the

series
∞∑
`=0

δ` that lim sup
k→+∞

ak ≤ lim inf
k′→+∞

ak′ , which implies the conclusion.

In the following theorem we analyse the convergence properties of the proposed algo-
rithm.
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Theorem 2.7. Assume that J satisfies (A1) and (A2), and let (v`)`∈N be the sequence
generated by Algorithm 2.2. Then,

(a) (Av` − f)→ 0 as `→∞;

(b) (v` − v`−1)→ 0 as `→∞.

If in addition J is coercive on the affine space {v ∈ E : Av = f}, then v` is bounded
and (J (v`))`∈N is a convergent sequence. More in general, if J only satisfies (A1) and
(A2), the following implication holds:

if (v`)`∈N is a bounded sequence, then (J (v`))`∈N is convergent. (2.12)

Proof. Part (a) of the statement is a direct consequence of the construction of v` and
Proposition 2.4 (ii). We now set for every `

v̄` := arg min
Av=f

Jω,v`−1(v) . (2.13)

Notice that by definition v̄` coincides with the element v̄u considered in Corollary 2.5
when u = v`−1. Similarly the element v` given by Algorithm 2.2 coincides with the
element vk,u considered in Corollary 2.5 when k = L` and u = v`−1. Therefore (2.6)
with q0 = q(`,0) and (2.7) imply there exist two positive constants C1 and C2 independent
of `, such that

‖v` − v̄`‖2 ≤ [C1 + C2Jω,v`−1(v̄`)]
1
`α
. (2.14)

By this latter estimate and the minimality of v̄`+1 we get

Jω,v`(v̄`+1) = J (v̄`+1) + ω‖v` − v̄`+1‖2 ≤ J (v̄`) + ω‖v` − v̄`‖2

≤ J (v̄`) + C1ω

`α
+ C2ω

`α
Jω,v`−1(v̄`) (2.15)

≤ C1ω

`α
+
(

1 + C2ω

`α

)
Jω,v`−1(v̄`) .

By Lemma 2.6 we eventually deduce that (Jω,v`−1(v̄`))`∈N is a convergent sequence, in
particular it is bounded. Therefore, there exists a constant C independent of ` such
that, by (2.14),

‖v`+1 − v̄`+1‖2 ≤
C

(`+ 1)α , (2.16)

and, by (2.15), we have also

J (v̄`+1) ≤ J (v̄`+1) + ω‖v` − v̄`+1‖2 ≤ J (v̄`) + C

`α
. (2.17)

Again Lemma 2.6 entails now that

J (v̄`) is a convergent sequence , (2.18)
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so that, by (2.17) we get that (v` − v̄`+1) → 0 as ` goes to +∞, and this vanishing
convergence, combined with (2.16), gives part (b) of the statement.
Being J locally Lipschitz as it is an ω-semi-convex function, if v` is uniformly bounded,
by (2.16) and (2.18) we immediately conclude that (J (v`))`∈N is a convergent sequence.
Moreover, if J is coercive on the affine space {v ∈ E : Av = f}, then v̄` is bounded by
(2.18), and so is also (v`)`∈N by (2.16), as required.

As a consequence we get our main result of this section. Whenever v` is bounded, every
cluster point is a constrained critical point of J on the affine space {v ∈ E : Av = f}.
We again recall that boundedness of v` is guaranteed by Theorem 2.7 when J is assumed
to be coercive on the above affine space.

Theorem 2.8. Assume that J satisfies (A1) and (A2), and let (v`)`∈N be the sequence
generated by Algorithm 2.2. If (v`)`∈N is bounded, every of its limit points is a constrained
critical point of J on the affine space {v ∈ E : Av = f}.

Proof. Let (q`)`∈N be the sequence defined by Algorithm 2.2, and let p` := A∗q`, and
p̂` := p` − 2ω(v` − v`−1). By (A.8) and (2.8), we have

p̂` ∈ ∂J (v`) , (2.19)

and by the boundedness of (v`)`∈N, (2.12), and (A2), we then get that p̂` is bounded
too. By Theorem 2.7, part (b), we deduce that p` − p̂` → 0, which in particular gives

lim
`→+∞

dist(p̂` , ran(A∗)) = 0 . (2.20)

Now, if a subsequence v`j → v ∈ E , possibly taking a further subsequence we may assume
that p̂`j → p̂ ∈ ∂J (v), where the last inclusion follows from (A.9) and (2.19). Moreover,
since in finite dimension ran(A∗) is closed, by (2.20) p̂ ∈ ran(A∗). Since Av = f by part
(a) of Theorem 2.7, (2.2) yields now the desired conclusion.

2.2. Nonconvex Split Bregman Iteration

An alternative algorithm to which the strategy described above can be applied is known
as Split Bregman Iteration and it was introduced in [53]. In particular, this procedure
has been designed to minimize convex functionals subject to linear constraints or being
the combination of two convex term. Note that functional such as the ones considered
in the previous section fall into this class of functionals. The idea of this method is to
introduce a new variable and then perform the minimization of the functional in two
separate instances, dealing either with the linear system or with the convex component.
This ansatz can be computationally convenient in case the solution of the two separated
problems can be performed more efficiently than a direct approach. This algorithm has
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been already successfully applied to different problems, see e.g. [121, 189, 196, 213, 216],
among them image processing, denoising, and segmentation [53, 120, 215], which actually
was the problem that inspired the development of the algorithm.
In this section, following the scheme of Section 2.1, we introduce an extension of the
Split Bregman Iteration via a vanishing quadratic regularization process as the one used
by Algorithm 2.2. We additionally show that, if the functional J to be minimized is a
C1 perturbation of a convex functional, i.e., it can be rewritten as J = J1 + J2, being
J1 is lower semicontinuous, and J2 a C1 regular, and is endowed with assumption (A1)
and (A2), then the procedure we propose converges to a critical point of J .

2.2.1. Split Bregman Iteration for convex functionals

In this section we introduce the Split Bregman Iteration for convex linearly constrained
minimization problem in order to set all the preliminaries needed for a full understanding
of the nonconvex case.
As before, we denote by J̃ a convex and coercive functional (to be distinguished from
the nonconvex J ), by A : E → F the linear operator, and by f ∈ F the fidelity term that
must be matched by Av, with v ∈ E . Now, following [53], we modify the minimization
problem in Line 4 of Algorithm 2.1 adding a variable d as follows

arg min
v,d∈E
d=v

(
J̃ (v)− 〈q, Ad〉+ λ‖Ad− f‖2

)
. (2.21)

Notice that the minimization problem (2.21) can now be naturally separated in two
different subproblems since the convex term does not depend on d and, similarly, the
variable v does not appear in the linear part. Moreover, since we added the constraint
v = d the two variable are effectively forced to coincide and, any solution of the new
minimization problem is also a solution of the original one.
Using once again the Augmented Lagrangian approach, see [112, 137], given two con-
stants 0 < µ ≤ 1, λ > 0, we rewrite (2.21) as an unconstrained minimization problem:

arg min
v,d∈E

(
J̃ (v)− 〈q, Ad〉+ λ‖Ad− f‖2 − 〈b, d− v〉+ µ‖u− d‖2

)
, (2.22)

where b ∈ E∗, with E∗ the dual space of E , is the Lagrangian multiplier related to the
constraint v = d.
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Now, fixed the constant 0 < δq < 2, we can finally write the Split Bregman Iteration for
convex functionals

Algorithm 2.3 Split Bregman Iteration for convex functionals
1: Take q0 ∈ F , b0 ∈ E∗, v0 ∈ E ;
2: Initialize k = 1;
3: while ‖Avk−1 − f‖ 6= 0 do
4: dk = arg min

d
λ‖Ad− f‖2 − 〈qk−1, Ad〉+ µ‖d− vk−1‖2 + 〈bk−1, d− vk−1〉;

5: vk = arg min
v
J̃ (v) + µ‖v − dk‖2 + 〈bk−1, dk − v〉;

6: bk = bk−1 + µ(dk − vk);
7: qk = qk−1 − δq(Adk − f);
8: k − 1← k;
9: end while

We now report the convergence result for the above algorithm presented in [53]. We
additionally report the proof of the result, despite it has no new mathematical contribu-
tion, with the sole scope of specializing the notation to our specific setting of ν-convex
functionals and with the idea of giving a complete and clear overview of the whole
procedure.

Theorem 2.9. Given v̄ solution of the minimization problem (2.13), where J = J̃ . a
ν−strongly convex and coercive functional, and that µ, λ > 0, and 0 < δq < 2λ. Then,
the following properties for Algorithm 2.3 hold:

lim
k→+∞

‖Avk − f‖ = 0, lim
k→+∞

J̃ (vk) = J̃ (v̄).

Furthermore,
lim

k→+∞
‖vk − v̄‖ = 0 lim

k→+∞
‖dk − d̄‖ = 0

whenever (2.13) has a unique solution.

Proof. First order optimality conditions give us the following:

0 = λAT (Adk − f)−AT qk−1 + µ(dk − vk−1) + bk−1

0 = bk + µ(vk − dk)− bk−1, with bk ∈ ∂J̃ (vk)
bk = bk−1 + µ(dk − vk)
qk = qk−1 − δq(Adk − f).

(2.23)
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Moreover, the above condition in the fixed point of (2.3) is

0 = λAT (Ad̄− f)−AT q̄ + µ(d̄− v̄) + b̄

0 = b̄+ µ(v̄ − d̄)− b̄, with b̄ ∈ ∂J̃ (v̄)
b̄ = b̄+ µ(d̄− v̄)
q̄ = q̄ − δq(Ad̄− f).

(2.24)

Let us now denote the errors by

vek = vk − v̄ dek = dk − d̄ qek = qk − q̄ bek = bk − b̄.

Subtracting the first equation of (2.23) to the first (2.24), we obtain

0 = λAT (Adek)−AT qek−1 + µ(dek − vek−1) + bek−1.

Now, taking the inner product of the left- and right-hand sides with respect to dek, we
have

0 = λ‖Adek‖2 + µ‖dek‖2 − 〈qek−1, Ad
e
k〉 − µ〈vek−1, d

e
k〉+ 〈bek−1, d

e
k〉. (2.25)

By doing the same operation on the second equations of (2.23) and (2.24), we get

0 = µ‖vek‖2 + 〈bek, vek〉 − µ〈dek, vek〉 − 〈bek−1, v
e
k〉. (2.26)

The sum of (2.25) with (2.26) gives us

0 = λ‖Adek‖2 + 〈bek, vek〉−〈qek−1, Ad
e
k〉+ 〈bek−1, d

e
k−vek〉+µ(‖dek‖2 +‖vek‖2−〈dek, vek+vek−1〉)

(2.27)
Subtracting the third and fourth equations of (2.23) and (2.24) and squaring their norm
we obtain respectively

〈bek−1, d
e
k − vek〉 = 1

2µ(‖bek‖2 − ‖bek−1‖2)− µ

2 ‖d
e
k − vek‖2 (2.28)

−〈qek−1, Ad
e
k〉 = 1

2δq
(‖qek‖2 − ‖qek−1‖2)− δq

2 ‖Ad
e
k‖2. (2.29)

Now, we plug the last two equation into (2.27) and we get
1

2δq
(‖qek−1‖2 − ‖qek‖2) + 1

2µ(‖bek−1‖2 − ‖bek‖2) =
(
λ− δq

2

)
‖Adek‖2 + 〈bek, vek〉

+µ(‖dek‖2 + ‖vek‖2 − 〈dek, vek + vek−1〉 −
1
2‖d

e
k − vek‖2).

(2.30)

We now sum from 1 to K and with some algebraic operation we obtain

1
2δq

(‖qe0‖2 − ‖qeK‖2) + 1
2µ(‖be0‖2 − ‖beK‖2) =

K∑
k=1

[(
λ− δq

2

)
‖Adek‖2 + 〈bek, vek〉

]

+µ

2

K∑
k=1
‖dek − vek−1‖2 + µ

2
(
‖veK‖2 − ‖ve0‖2

)
.

(2.31)
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After some algebraic operations, we get

1
2δq
‖qe0‖2+ 1

2µ‖b
e
0‖2+µ

2 ‖v
e
0‖2 ≥

K∑
k=1

[(
λ− δq

2

)
‖Adek‖2+〈bk − b̄, vk − v̄〉+

µ

2 ‖d
e
k − vek−1‖2

]
.

(2.32)
Thanks to this latter inequality and the hypothesis made on λ and δq, we obtain

lim
k→∞

‖Adk − f‖ = 0. (2.33)

lim
k→∞
〈bk − b̄, vk − v̄〉 = 0 (2.34)

We now recall that bk ∈ ∂J̃ (vk) for k ≥ 0, b̄ ∈ ∂J̃ (v̄), and the functional J̃ is ν-convex,
i.e.,

〈bk − b̄, vk − v̄〉 ≥ ν‖vk − v̄‖2,

which combined with (2.34) implies

lim
k→∞

‖vk − v̄‖2 ≥ 0 (2.35)

The latter limit and the convergence result stemmed from the last summand of inquality
(2.32), together with the equality d̄ = v̄, give us

lim
k→∞

‖dk − vk−1‖ = 0. (2.36)

The limit lim
k→∞

‖dk − vk‖ = 0 is easily achieved combining (2.35) with (2.36).

We now focus on the convergence of J̃ (vk) to J̃ (v̄) for k going to infinity. Recall that,
for any convex function J̃ , the Bregman distance B·J̃ (·, ·) satisfies

Bp

J̃ (u, z) +Bq

J̃ (z, u) = 〈q − p, u− z〉 ∀p ∈ ∂J̃ (z),∀q ∈ ∂J̃ (u).

This, together with (2.34), (2.36), and the nonnegativity of the Bregman distance, leads
to

lim
k→∞

J̃ (vk)− J̃ (v̄)− 〈vk − v̄, b̄〉 = 0. (2.37)

Since lim
k→∞

‖vk − v̄‖ = 0 we get the limit

lim
k→∞

J̃ (vk) = J̃ (v̄)

and this conclude the proof.

This theorem gives us not only a proof of convergence of the Split Bregman iteration to
a global minimizer of the ν-strongly convex functional J̃ , but we can also derive further
convergence properties which will be useful for the nonconvex case.
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Corollary 2.10. Given v̄ solution of the minimization problem (2.13), where J = J̃ .
a ν−strongly convex and coercive functional, and that µ, λ > 0, and 0 < δq < 2λ. If
{vk}k, {bk}k, {dk}k, and {qk}k is the sequence generated by Algorithm 2.3, we have the
following properties:

(i) lim
k→+∞

‖dk − vk‖ = 0

(ii) lim
k→+∞

‖bk − bk−1‖ = 0

(iii) lim
k→+∞

‖qk − qk−1‖ = 0

Proof. The proof of (i) follows immediately combining (2.36) with (2.35). (ii) is given
by the third equation of (2.23) and (i), while (iii) is derived from the fourth equation of
(2.23) and (2.33).

Analysis of convergence

One of the biggest drawback of the splitting approach is that we do not have anymore
the following property:

vk ∈ ran(A∗) ∀k ∈ N

which had been used in [19] to prove a speed of convergence of the inner loop of Al-
gorithm 2.2 and hence to determine a concrete stopping criterion for the loop solving
the convex minimization problem. Here, we give an alternative result relative to Algo-
rithm 2.3 which is the first step towards a stopping criterion for the nonconvex Split
Bregman iteration.

Proposition 2.11. Let J be a ν−convex functional and v̄ the solution of the problem
(2.13). Then, being {vk}k, {bk}k, {dk}k, and {qk}k the sequences generated by Algo-
rithm 2.3, we have

(ν − µ)‖vk − v̄‖2 ≤ λ‖qk−1 − q̄‖‖Adk − f‖+ µ‖dk − d̄‖‖vk − vk−1‖
+ ‖dk − vk‖(‖bk − b̄‖+ µ‖vk − v̄‖+ µ‖dk − d̄‖).

Proof. Thanks to the ν−convexity and by the fact that v̄ = d̄ we obtain

ν‖vk − v̄‖2 ≤ 〈vk − v̄, bk − b̄〉 = 〈vk − dk, bk − b̄〉+ 〈dk − d̄, bk − b̄〉

= 〈vk − dk, bk − b̄〉+ 〈dk − d̄, bk − bk−1〉+ 〈dk − d̄, bk−1 − b̄〉.
(2.38)
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We now plug (2.25) in (2.38) getting

ν‖vk − v̄‖2 ≤ 〈vk − dk, bk − b̄〉+ 〈dk − d̄, bk − bk−1〉 − λ‖Adk − f‖2

+λ〈qk−1 − q̄, Adk − f〉+ µ〈vk−1 − v̄, dk − d̄〉 − µ‖dk − d̄‖2

≤ 〈vk − dk, bk − b̄〉+ 〈dk − d̄, bk − bk−1〉+ λ〈qk−1 − q̄, Adk − f〉

+µ〈vk−1 − v̄, dk − d̄〉

= 〈vk − dk, bk − b̄〉+ 〈dk − d̄, bk − bk−1〉+ λ〈qk−1 − q̄, Adk − f〉

−µ〈vk − vk−1, dk − d̄〉+ µ〈vk − v̄, dk − d̄〉.

(2.39)

Now, we repeat the former procedure plugging (2.26) into (2.39), then we consider the
third equation of (2.23) and we apply the Chauchy-Schwarz inequality obtaining

(ν − µ)‖vk − v̄‖2 ≤ 〈vk − dk, bk − b̄〉+ µ〈dk − d̄, dk − vk〉+ λ〈qk−1 − q̄, Adk − f〉

−µ〈vk − vk−1, dk − d̄〉+ µ〈dk − vk, vk − v̄〉

≤ λ‖qk−1 − q̄‖‖Adk − f‖+ µ‖dk − d̄‖‖vk − vk−1‖

+‖dk − vk‖(‖bk − b̄‖+ µ‖vk − v̄‖+ µ‖dk − d̄‖)
(2.40)

which completes the proof.

Remark 2.12. From inequality (2.40) we deduce that it is necessary to assume ν > µ.
Luckily, this assumption does not affect the validity of the results in the nonconvex case.

Notice that each summand of the right-hand side of (2.40) is given by the product of
an element which by Theorem 2.9 goes to zero and a term which is bounded by the
following

Corollary 2.13. Let J be a ν−strongly convex functional and v̄ the solution of the
problem (2.21). Then, being {vk}k, {bk}k, {dk}k, and {qk}k the sequences generated by
Algorithm 2.3 and assuming 0 < µ < ν, we have

(i) ‖bk − b̄‖2 ≤ C11‖qe0‖2 + C21‖be0‖2 + C31‖ve0‖2 = Kb(q0, b0, v0)2

(ii) ‖qk − q̄‖2 ≤ C12‖qe0‖2 + C22‖be0‖2 + C33‖ve0‖2 = Kq(q0, b0, v0)2

(iii) ‖dk − d̄‖2 ≤ C13‖qe0‖2 + C23‖be0‖2 + C33‖ve0‖2 = Kd(q0, b0, v0)2

Proof. We start from (i) and (ii) which can be proved using similar arguments. Let us
take the third and the fourth equations of (2.23). The terms bk and qk can be rewritten
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as

bk = bk−1 + µ(dk − vk) = b0 + µ
k∑
i=1

(di − vi)

qk = qk−1 − δq(Adk − f) = q0 + δq

k∑
i=1

(f −Adi).

Therefore, using the triangle inequality and (2.32) we obtain

‖bk − b̄‖2 ≤ ‖b0 − b̄‖2 + µ
k∑
i=1
‖di − vi‖2 ≤ C11‖qe0‖2 + C21‖be0‖2 + C31‖ve0‖2

‖qk − q̄‖2 ≤ ‖q0 − q̄‖2 + δq

k∑
i=1
‖Adi − f‖2 ≤ C12‖qe0‖2 + C22‖be0‖2 + C32‖ve0‖2.

A little bit of manipulation is needed to prove (iii). Let us take (2.31), using (i) and
(ii), applying Cauchy-Schwarz inequality, we obtain

µ‖dk − d̄‖2 ≤
1

2δq
(‖qek−1‖2−‖qek‖2) + 1

2µ(‖bek−1‖2−‖bek‖2)−
(
λ− δq

2

)
‖Adek‖2 − 〈bek, vek〉

− µ(‖vek‖2 − 〈dek, vek + vek−1〉 −
µ

2µ‖d
e
k − vek‖2)

≤ 1
2δq
‖qek‖2 + 1

2µ‖b
e
k‖2

+ µ〈dk − vk, vek + vek−1〉+ µ〈vk − v̄, vek + vek−1〉+ µ

2 ‖dk − vk‖
2

≤ Kq(q0, b0, v0)2 +Kb(q0, b0, v0)2 + µ|〈dk − vk, vek〉|+ µ|〈dk − vk, vek−1〉|

+ µ〈vk − v̄, vek〉+ µ〈vk − v̄, vek−1〉+ µ

2 ‖dk − vk‖
2

≤ Kq(q0, b0, v0)2 +Kb(q0, b0, v0)2 + µ
(
‖dk − vk‖‖vk − v̄‖

+ ‖dk − vk‖‖vk−1 − v̄‖+ ‖vk − v̄‖2 + ‖vk − v̄‖‖vk−1 − v̄‖+ 1
2‖dk − vk‖

2).
Now, notice that every normed term in the inequality above is present also in (2.32),
thus there exists three constants C13, C23, and C33 such that

‖dk − d̄‖2 ≤ C13‖qe0‖2 + C23‖be0‖2 + C33‖ve0‖2

These results, together with Theorem 2.9 and the ν−convexity property, tell us that
there exist two constants K1,K2 > 0 such that

‖vk − v̄‖2 ≤ (K1‖qe0‖2 +K2‖be0‖2)(‖vk − dk‖+ ‖vk − vk−1‖+ ‖Adk − f‖). (2.41)

Remark 2.14. To obtain the latter inequality we used the ν−convexity as follows

ν‖v0 − v̄‖2 ≤ 〈v0 − v̄, b0 − b̄〉 ≤ ‖v0 − v̄‖‖b0 − b̄‖.
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2.2.2. Split Bregman Iteration for nonconvex functionals

Similarly to what we did for Algorithm 2.2, we now introduce the modification of Algo-
rithm 2.3 to address problems of the type (2.13), where the functional J is as described
at the beginning of the section. Recalling the technique used in Section 2.1, the algorithm
nests the structure of the Split Bregman Iteration in a regularizing loop which updates
a quadratic perturbation added to the functional. We prove not only that the perturba-
tion term vanish at convergence, but also that the algorithm converges to critical points
of J .

Algorithm 2.4 Split Bregman Iteration for nonconvex functionals
1: Take q0 ∈ F , b0 ∈ E∗, v0 ∈ E ;
2: Initialize ` = 1;
3: while ‖v` − v`−1‖ 6= 0 do
4: Set v(`,0) = v`−1, q(`,0) = q`−1;
5: Set d(`,0) = d`−1, b(`,0) = b`−1;
6: Compute L`;
7: for k = 0, . . . , L` do
8: d(`,k+1) = arg min

d
λ‖Ad−f‖2−〈q(`,k), Ad〉+µ‖d−v(`,k)‖2 + 〈b(`,k), d−v(`,k)〉;

9: v(`,k+1) = arg min
v
Jω,v`−1(v) + µ‖v − d(`,k+1)‖2 + 〈b(`,k), d(`,k+1) − v〉;

10: b(`,k+1) = b(`,k) + µ(d(`,k+1) − v(`,k+1));
11: q(`,k+1) = q(`,k) − δq(Ad(`,k+1) − f);
12: k ← k + 1;
13: end for
14: v` := v(`,L`), q` := q(`,L`);
15: d` := d(`,L`), b` := b(`,L`);
16: `← `+ 1;
17: end while

In the Algorithm, the functional

Jω,v`−1(·) = J (·) + ω‖ · −v`−1‖2 ∀` ∈ N (2.42)

is ν−strongly convex for a proper choice of ω independent from v`−1. Notice that this
choice is always possible thanks to property (A1).
The adaptive finite number of iteration L` is determined upon the following condition:

K̄(‖q`−1‖2 +‖b`−1‖2 +1)(‖v(`,k)−d(`,k)‖+‖v(`,k)−v(`,k−1)‖+‖Ad(`,k)−f‖) ≤
1
`α

(2.43)

for a given parameter α and a constant K̄.
Since the inner loops are the Split Bregman Iteration for the convex functional Jω,v`−1(·),
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the results of Theorem 2.9, Proposition 2.11, and (2.41) tell us that such integer L` always
exists.

Remark 2.15. Notice that by construction, for every ` ≥ 1 and k = 0, . . . , L`, we have

b(`,k) ∈ ∂Jω,v`−1(v(`,k)).

Additionally, let us consider the first equation of (2.24) for the convexified problem in
the inner loop of Algorithm 2.4

0 = λAT (Ad̄− f)−AT q̄ + µ(d̄− v̄) + b̄.

Thanks to the results of Theorem 2.9 we get AT q̄ + b̄ = 0 and since b̄ ∈ ∂Jω,v`−1, we
deduce

AT q̄ ∈ ∂Jω,v`−1 . (2.44)

We now introduce an estimate which is fundamental for the proof of convergence of the
algorithm:

Corollary 2.16. Consider the functional Jω,u defined by (2.42), where ω is chosen in
such a way that the functional is ν−strongly convex with ν not depending on u. Let v̄u
be the unique global minimizer of Jω,u on the affine space {v ∈ E : Av = f}. Then there
exist two positive constants K̄1 and K̄2 depending on AT , J , and ω such that

‖vk,u − v̄u‖2 ≤
[
(K̄1

(
1 + ‖q0‖2 + ‖b0‖2

)
+ K̄2Jω,u(v̄u)

]
(‖vk − dk‖+ ‖vk − vk−1‖+ ‖Adk − f‖) ,

where vk,u := vk is defined accordingly to (2.3) for J̃ = Jω,u.

The proof of this Corollary can be easily achieved using the triangle inequality, property
(A2), property (2.1), and Remark 2.15.

2.2.3. Analysis of convergence

In this section, we analyze the convergence properties of Algorithm 2.4 and we give
a proof of convergence to critical point of the nonconvex functional J introduced in
Section 2.2.
Recalling Lemma 2.6 and Theorem 2.7, we can now state the result which guarantees
that, if v` is bounded, then the algorithm converges to a constrained critical point of
the functional J on the affine space {v ∈ E : Av = f}. Moreover, we stress that the
boundedness of v` can be achieved adding an hypothesis of coercivity on J .

Theorem 2.17. Let J be a C1 perturbation of a convex functional satisfying (A1) and
(A2). Additionally, let {v`}` be the sequence generated by Algorithm 2.4. Then, each of
its limit point is a constrained critical point in J on the affine space A(f) := {v ∈ E :
Av = f}.
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2. Linearly constrained minimization of nonconvex and nonsmooth functionals

Proof. Let us consider the first equation of the optimality conditions of our problem:

0 = λAT (Ad` − f)−AT q(`,L`) + µ(d` − v(`,L`)) + b(`,L`).

By substituting respectively q(`,L`) and b(`,L`) with q` and b` given by Algorithm 2.4, we
have

0 = λAT (Ad` − f)−AT q` − δqAT (Ad` − f) + µ(d` − v(`,L`)) + b` − µ(d` − v`)
= (λ− δq)AT (Ad` − f)−AT q` + b` + µ(v` − v(`,L`)).

Using the stopping criterion (2.43) of the inner loop of the algorithm we obtain

‖AT q` − b`‖ ≤
C

`α

Therefore, we deduce that
lim
`→∞

dist(b`, ran(A∗)) = 0. (2.45)

Then, let us define b̂` := b`−ω(v`−v`−1). By the definition of subgradient, the particular
choice of J as a C1 perturbation of a convex functional, and b` ∈ ∂Jω,v`−1(v`) we have

b̂` ∈ ∂J (v`). (2.46)

Since v` is bounded, {J (v`)}` converges, and (A2) holds, we also have that b̂` is bounded.
By Theorem 2.7 part (b), we deduce that ‖b̂` − b`‖ −→ 0 and in particular, by (2.45),

lim
`→∞

dist(b̂`, ran(A∗)) = 0.

Consider now take a subsequence v`j → v ∈ E . It is possible to extract a further
subsequence such that b̂`j → b̂ ∈ ∂J (v), where the last inclusion comes again from
Remark A.9 and (A.8). Moreover, since in finite dimension the range of A∗ is closed,
we deduce that b̂ ∈ ran(A∗). By part (a) of Theorem 2.7 which tells us Av = f and by
the definition of critical point of J on the affine space {v ∈ E : Av = f} the proof is
concluded.

We may now conclude that we have theoretical guarantees that the two algorithms pro-
posed in this chapter converge to critical points of the linearly constrained nonconvex
and nonsmooth minimization problem. In the next chapter we introduce some of the
application where these procedures can be applied supported by some numerical exper-
iments supporting the validity of the algorithms. The list of applications is far from
being complete and we just aim to show that completely different problems from the
most diverse disciplines can have common properties and can be addressed using the
same ansatz opportunely tuned.
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3. Some applications of the algorithm

Despite we are interested in applying Algorithms 2.2 and 2.4 in the specific field of
fracture mechanics, we should not forget that they may be useful in many different fields.
Therefore, we additionally tested the first of the two algorithms in different problems
other than cohesive and brittle fractures. In this chapter we collect some of these tests
that also appeared in [18, 19].
Let us first recall the general setting of the problem that will be then detailed for each
test case. We consider two finite dimensional Euclidean spaces E ' Rn and F ' Rm,
with n,m ∈ R, m ≤ n, and a surjective linear constraint map A : E → F . In addition
let K a third finite dimensional Euclidean space and T : E → K a linear operator. For
fixed g ∈ K and f ∈ F , we consider functionals of the type

J (v) = ‖Tv − g‖2 + γ
n∑
k=1

Uk(vk), (3.1)

of which we seek the critical points, subject to a linear constraint Av = f , where γ > 0
is a positive regularization parameter. Here (vk)nk=1 are the components of the vector
v with respect to a fixed basis in the space E , and Uk : R → R+, for k = 1, . . . , n, are
scalar nonconvex maps.
Specifying each time the form of the operator, we introduce in the next section some
of the problems, in which the algorithm can be efficaciously applied, divided in two
main categories: free-discontinuity problems (Section 3.1) and truncated polynomial
minimization (Section 3.2). In Section 3.3 we illustrate the different numerical issue
we need to face in order to correctly and efficiently apply Algorithm 2.2. Finally in
Section 3.4 we present the numerical experiments we implemented and comment the
result obtained with the first of the two algorithms illustrated in the previous chapter.

3.1. Free-discontinuity problems

The terminology “free-discontinuity problem” was introduced by E. De Giorgi [84] to
indicate a class of variational problems which consists in the minimization of a functional,
involving both volume and surface energies, depending on a closed set K ⊂ Rd, and a
function u on Rd usually smooth outside of K. In particular,

• K is not fixed a priori and is an unknown of the problem;
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3. Some applications of the algorithm

• K is not a boundary in general, but a free-surface inside the domain of the problem.

3.1.1. The Mumford–Shah functional in image processing

The best-known example of a free-discontinuity problem is the one modeled by the
Mumford–Shah functional [169], which in the general case is defined by

J (u,K) :=
∫

Ω\K

[
|∇u(x)|2 + α(u(x)− g(x))2

]
dx+ βHd−1(K ∩ Ω).

The set Ω is a bounded open subset of Rd, α, β > 0 are fixed constants, and g ∈ L∞(Ω).
Inspired by image processing applications the dimension of the underlying Euclidean
space Rd shall be d = 2, although in principle the analysis can be conducted in any
dimension. In fact, in the context of visual analysis, g is a given noisy image that
we want to approximate by the minimizing function u ∈ W 1,2(Ω \ K); the set K is
simultaneously used in order to segment the image into connected components. For a
more specific overview on free-discontinuity problems, their analysis, and applications,
we refer to [7].
Historically, one can think at the Mumford–Shah functional as the continuous version
of a previous discrete formulation of the image segmentation problem proposed by D.
Geman and S. Geman in [116]; see also the work of A. Blake and A. Zisserman in [31].
Let us recall this discrete approach.
Let d = 2, Ω = [0, 1]2, and let ui,j = u(hi, hj) be a discrete function defined on Ωh :=
Ω ∩ hZ2, for h > 0. Define W 2

r (t) := min
{
t2, r2}, r > 0, to be the truncated quadratic

potential, and

Jh(u) := h2 ∑
(hi,hj)∈Ωh

[
W 2√

β
h

(
ui+1,j − ui,j

h

)
+W 2√

β
h

(
ui,j+1 − ui,j

h

)
+ α(ui,j − gi,j)2

]
.

(3.2)
We shall now reformulate the minimization of this finite dimensional discrete problem
into a linearly constrained minimization of a nonconvex functional of the discrete deriva-
tives. For this purpose, we consider the derivative matrix Dh : Rn2 → R2n(n−1) that
maps the vector (uj+(i−1)n) := (ui,j) to the vector composed of the finite differences in
the horizontal and vertical directions ux and uy respectively, given by

Dhu :=
[
ux
uy

]
,


(ux)j+n(i−1) := (ux)i,j := ui+1,j − ui,j

h
, i=1,...,n−1

j=1,...,n

(uy)j+(n−1)(i−1) := (uy)i,j := ui,j+1 − ui,j
h

, i=1,...,n
j=1,...,n−1

.

Note that its range ran(Dh) ⊂ R2n(n−1) is a (n2 − 1)-dimensional subspace because
Dhc = 0 for constant vectors c ∈ Rn

2 . It is not difficult to show the representation of
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3. Some applications of the algorithm

any vector u ∈ Rn
2 in terms of the following differentiation-integration formula, given

by
u = D†hDhu+ c,

where D†h is the pseudo-inverse matrix of Dh (in the Moore–Penrose sense); observing
that D†h maps ran(Dh) injectively into Rn

2 . Also, c is a constant vector that depends
on u, and the values of its entries coincide with the mean value h2 ∑

(hi,hj)∈Ωh

ui,j of u.

Therefore, any vector u is uniquely identified by the pair (Dhu, c).
Since constant vectors comprise the null space of Dh, the orthogonality relation

〈D†hDhu, c〉 = 0 (3.3)

holds for any vector u and any constant vector c. Here the scalar product 〈u, u′〉 =∑
(hi,hj)∈Ωh

ui,ju
′
i,j is the standard Euclidean scalar product on Rn

2 , which induces the

Euclidean norm ‖ · ‖.
Using the orthogonality property (3.3), denoting the mean value of g by cg, we have that

‖u− g‖2 = ‖D†hDhu−D†hDhg + (c− cg)‖2 = ‖D†hDhu−D†hDhg‖2 + ‖c− cg‖2 (3.4)

Hence, with a slight abuse of notation, we can reformulate the original discrete functional
(3.2) in terms of derivatives, and mean values, by

Jh(v, c) = h2

α‖D†hv − g̃‖2 + α‖c− cg‖2 +
∑
i,j

min
{
|vi,j |2,

β

h

} .
where v = Dhu ∈ R2n(n−1), and g̃ = D†hDhg ∈ Rn

2 . We assume that c = cg at any
minimizer u, since the corresponding term in Jh does not depend on v. Additionally,
we must minimize Jh(v, c) subject to the constraint (DhD

†
h− I)v = 0 in order to obtain

vectors in R2n(n−1) corresponding to derivatives of elements in Rn
2 . This 2n(n − 1)

linearly independent constraints actually correspond to a discrete curl-free condition on
the vector v.
To summarize, we need to solve the following constrained optimization problem:

Minimize Jh(v) = h2[α‖Tv − g̃‖2 +
∑
i,j

W 2√
β
h

(vi,j)
]

subject to Av = 0, (3.5)

for T = D†h and A = I −DhD
†
h. Actually the explicit use of the pseudo-inverse matrix

D† is only needed for determining the operator T , while the linear constraint Av = 0
is equivalent to a discrete curl-free condition on the vectors v, see [108] for details.
Therefore it can simply be expressed in terms of a sparse linear system corresponding to
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3. Some applications of the algorithm

the discretization of the curl operator. Once the minimal derivative vector v is computed,
we can assemble the minimal u by incorporating the mean value cg of g as follows:

u = D†hv + cg.

We stress that when v is curl-free, a primitive u can be easily recovered, up to an
arbitrary constant, by performing a line integration, so again this process does not
require the explicit form of D†h, see the details of (3.9) and (3.10) in next paragraph.
Notice that the objective functional in the optimization problem (3.5) is precisely of
the form (3.1), with the maps Uk = h2W 2√

β
h

for all k = (i, j). As we shall discuss in
Section 3.3, the functional Jh in (3.5) is in general neither coercive nor ω-semi-convex
as required by the conditions of applicability of Algorithm 2.2. Nevertheless we show in
Section 3.3.1 that manipulating the functional adding a mild regularization allows us to
treat efficiently this family of problems. We provide in Remark 3.20 a possible guideline
on the efficient implementation of the pseudoinverse matrix D†h and its adjoint (D†h)∗,
as it appears in the iterations of the inner loop of Algorithm 2.2 when applied to the
minimization of the Mumford–Shah functional.

3.1.2. Quasi-static evolution of brittle fractures

Among the functionals that can be minimized through Algorithm 2.2 we find also energy
functionals described by Griffith’s Theorem 1.8. Thus, beside static models such as the
Mumford–Shah functional minimization for image deblurring and denoising, quasi-static
evolutions of brittle fractures modeled by (1.21)

(u∗(t),Γ∗(t)) ∈ arg min
u∈Ug(t)

Γ⊇
⋃
s<t

=Γ(s)

E(u,Γ) : 1
2

∫
Ω\Γ
|∇u|2 + κHd−1(Γ),

can be addressed.
Following a similar discretization in space for d = 2 as done before, let ui,j = u(hi, hj)
be a discrete function defined on Ωh := Ω ∩ hZ2, for h > 0. Define

Eh(u) := h2 ∑
(hi,hj)∈Ωh\Γh

[
W 2√

β
h

(
ui+1,j − ui,j

h

)
+W 2√

β
h

(
ui,j+1 − ui,j

h

)]
, (3.6)

where Γh is the current fracture. Up to considering appropriate domain decompositions
and without loss of generality we can assume Γh = ∅ and Ωh be the reference domain
for the optimization. Defining

vi,j =
(
ui+1,j − ui,j

h︸ ︷︷ ︸
:=(vi,j)1

,
ui,j+1 − ui,j

h︸ ︷︷ ︸
:=(vi,j)2

)
,
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3. Some applications of the algorithm

we have that v = (vi,j)(hi,hj)∈Ωh fulfills again a curl-free condition as well as several
linear constraints given by the discretization of the compatibility condition u ∈ Ug(t).
In particular, if we assume that g is locally constant with a jump at a given interface
ΓD ⊂ Ω, we may have, as in the example shown in Figure 5.2, that

vi,j = 0, for all (hi, hj) ∈ int(ΩD)h \ (ΓD)h ∩ (ΩD)h,
(vi,j)2 = gi,j+1 − gi,j

h
, for all (hi, hj) ∈ (ΓD)h ∩ (ΩD)h,

(vi,j)2 = 0, for all (hi, hj) ∈ (∂(ΩD)h ∩ Ωh) \ (ΓD)h.
(3.7)

Then, we can rewrite the functional Eh, with a slight abuse of notation, as

Eh(v) := h2∑
i,j

W 2√
β/h

(vi,j) (3.8)

to be minimized with respect to v under the constraint (3.7), which we compactly rewrite
as Av = f . Let us stress now that g is actually a boundary datum, and provided the
derivative field v of u we can recover u simply by line integration.
For a suitable coordinate system on the discrete domain, we define according to the line
integration operator

ui,j =
j∑

m=0
vi,m + g0,m, for all (hi, hj) ∈ Ωh, (3.9)

which can be expressed in the compact form by

u = Bv + g. (3.10)

Notice that, while for the imaging problem we needed to consider the pseudo-inverse
matrix D† of the discrete differentiation operator D within the fidelity term ‖Tv − g̃‖,
here the D† is of no use. We also mention that the minimization of (3.8) is again of the
general type (3.1) for the choice of the maps Uk = h2W 2√

β/h
for all k = (i, j). The issue

of the coercivity of Jh on the affine space {Av = f} is addressed in the work [13] on
discrete rate-independent evolutions.
We shall show in Section 3.4 an application of our Algorithm 2.2 where we actually
perform a simulation of a fracture in a one dimensional model, evolving through critical
points, being a numerically robust and physically sound description of the happening of
the fracture.

3.2. Truncated polynomial minimization

We should mention that, independently of the choice of the linear operators T and A,
by [108, Theorem 2.3], the constrained minimization problem

Minimize Jp(v) := ‖Tv − g‖2 + γ
n∑
i=1

W p
r (vi), Subject to Av = f, (3.11)
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3. Some applications of the algorithm

where W p
r (v) := min{vp, rp}, has always global minimizers. Notice that the proof of

existence of minimizers is far from being trivial (see Remark 3.1 below), since the problem
is in general not coercive. Concerning uniqueness and stability of minimizers, we refer
instead to the work of S. Durand and D. Nikolova [97, 98], about cases where T is
injective on kerA.

Remark 3.1. The proof of existence of solutions of (3.11) is based on a special orthog-
onal decomposition of certain convex sets, see [108, Appendix, Section 8.1].

Define J̄p(v) = ‖Tv− g‖2 +γ
n∑
i=1

ci|vi|p for c1, . . . , cm scalars; notice that we allow some

of them to be negative or zero, as soon as J̄p(v) ≥ Cinf > −∞ for all v ∈ E. Then for
any constant C > 0 and any polyhedral convex set X ⊂ E, there exists a linear subspace
V = VX,C ⊂ E, such that the orthogonal projection X⊥ of X onto V⊥ has the properties

• X = {x = x⊥ ⊕ tv : x⊥ ∈ X⊥, v ∈ V, t ∈ R+},

• MC = X⊥ ∩ {v ∈ E : J̄p(v) ≤ C} is compact, and

• J̄p(ξt) is constant along rays ξt = x⊥ ⊕ tv, where x⊥ ∈MC , v ∈ V, and t ∈ R+.

For I0 ⊂ I and UI0 := {v ∈ E : |vi| ≤ r, i ∈ I0 and |vi| > r, i ∈ I \ I0}, in particular this
result applies on X = F(f) ∩ UI0, hence

Minimize J̄p(v) = ‖Tv − g‖2 + γ
n∑
i=1

ci|t|p, Subject to Av = f and v ∈ UI0 , (3.12)

has solutions in E, actually in the compact set MJ̄p(v0) = X⊥∩{v ∈ E : J̄p(v) ≤ J̄p(v0)},
for any v0 ∈ E.

3.2.1. Compressive sensing

Among the class of truncated polynomial minimization problem, we can find the decod-
ing for compressed signals introduced in [18], in particular if the signal is corrupted by
the noise. The main authorship of the cited work is S. Peter. We include in the following
sections exclusively the parts of the paper where the author of this thesis played the role
of main contributor.
Compressive sensing focuses on the robust recovery of nearly sparse vectors from the
minimal amount of measurements obtained by a randomized linear process. So far, a
vast literature appeared considering problems where deterministic or random noise is
added after the measurement process, while it is not strictly related to the signal. One
typically considers model problems of the type

y = Ax+ w (3.13)
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where x ∈ RN is a nearly sparse vector, A ∈ Rm×N is the linear measurement matrix,
y ∈ Rm is the result of the measurement, and w is a white noise vector affecting the
measurements. However, in practice it is very uncommon to have a signal detected by
a certain device, totally free from some external noise. Therefore, it is reasonable to
consider the more realistic model

y = A(x̄+ n) + w,

instead of (3.13) where x̄ ∈ RN is the noiseless signal and n ∈ RN is the noise on the
original signal.
The recent work [12, 210] shows how the measurement process actually causes the noise-
folding phenomenon, which implies that the variance of the noise on the original signal
is amplified by a factor of N/m, additionally contributing to the measurement noise,
playing to our disadvantage in the recovery phase. More formally, if we add to the signal
x̄ a noise vector n composed by random entries with normal distribution N (0, σn), the
measurement y given by

y = A(x̄+ n), (3.14)

can be considered equivalently obtained by a measurement procedure of the form (3.13)
where now the vector w is composed by i.i.d. Gaussian entries with normal distribution
N (0, N

m
σ2
n). There are actually many different real life situations where the noise-folding

phenomenon occurs and we report two examples in the following. In [12] it is described
how the use of compressed sensing in the design of sub-Nyquist A/D converters may
be affected by noise-folding. A second situation where noise-folding affects a real life
application can be found in [3]. In this paper, the authors illustrate how the multitude
of wireless communication standards such as cellular, digital radio and television broad-
casting, GPS, WIFI, and Bluetooth may be affected by noise-folding if the decoding of
the signal is not correctly performed, for example using a sub-sampling technique.
An approach to control the noise-folding is proposed in [12]. In this case, one may
tune the linear measurement process in order to a priori filter the noise. However, this
strategy requires to have a precise knowledge of the noise statistics and to design proper
filters. Other related works [128, 129, 130] address the problem of designing adaptive
measurements, called distilled sensing, in order to detect and locate the signal within
white noise.
In [18] we perform a blind-to-statistic analysis of the signal reconstruction problem. Let
us define for r > η > 0, 1 ≤ k < m, and 1 ≤ p ≤ 2, the class of sparse vectors affected
by bounded noise,

Spη,k,r :=

x ∈ RN
∣∣#Sr(x) ≤ k and

∑
i∈(Sr(x))c

|xi|p ≤ ηp
 , (3.15)
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where Sr(x) := {i ∈ {1, . . . , N}| |xi| > r} is the index support of the large entries ex-
ceeding in absolute value the threshold r. This class contains all vectors with at most
1 ≤ k < m large entries exceeding the threshold r in absolute value, while the p-norm
of the remaining entries stays below a certain noise level. Notice that vectors x ∈ Spη,k,r
can be naturally decomposed in the noiseless (relevant) part x̄ = x|Sr(x) and the noise
n = x|Scr(x). We additionally refer to Appendix A.2 for the definition of Null-Space-
Property required to the linear operator A in the following

Theorem 3.2. Let A ∈ Rm×N have the (2k, γ2k)-Null-Space-Property, for γ2k < 1,
1 ≤ p ≤ 2, and x, x′ ∈ Spη,k,r such that Ax = Ax′, and 0 ≤ η < r. Then

#(Sr(x)∆Sr(x′)) ≤
(2γ2kκpη)p

(r − η)p , (3.16)

where

κp := κp(N, k) :=

1, p = 1,
q
√
N − k, 1 < p ≤ 2.

(3.17)

(Here we denote by “∆” the set symmetric difference) If additionally

r > η(1 + 2γ2kκp) (3.18)

then Sr(x) = Sr(x′).

Proof. As Ax = Ax′, then (x− x′) ∈ ker(A). By the (2k, γ2k)-NSP, Hölder’s inequality,
and the triangle inequality we have

‖(x− x′)|Sr(x)∪Sr(x′)‖`p ≤ ‖(x− x
′)|Sr(x)∪Sr(x′)‖`1 ≤ γ2k‖(x− x′)|(Sr(x)∪Sr(x′))c‖`1

≤ γ2kκp‖(x− x′)|(Sr(x)∪Sr(x′))c‖`p ≤ 2γ2kκpη. (3.19)

Now we estimate the symmetric difference of the supports of the large entries of x
and x′ in absolute value as follows: if i ∈ Sr(x)∆Sr(x′), then either |xi| > r and
|x′i| ≤ η or |xi| ≤ η and |x′i| > r. This implies that |x′i − xi| > (r − η). Thus we have
‖(x−x′)|Sr(x)∆Sr(x′)‖

p
ellp
≥
(
#(Sr(x)∆Sr(x′))

)
(r−η)p. Together with the non-negativity

of ‖(x− x′)|Sr(x)∩Sr(x′)‖`p , we obtain the chain of inequalities

(2γ2kκpη)p ≥ ‖(x− x′)|Sr(x)∪Sr(x′)‖
p
`p

≥ ‖(x− x′)|Sr(x)∩Sr(x′)‖
p
`p

+ ‖(x− x′)|Sr(x)∆Sr(x′)‖
p
`p

≥
(
#(Sr(x)∆Sr(x′))

)
(r − η)p,

and therefore we obtain (3.16).
Notice now that (3.16) and (3.18) imply N 3 #(Sr(x)∆Sr(x′)) < 1 and Sr(x)∆Sr(x′) =
∅.
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Unfortunately, none of the well known and commonly advocated decoder in this field
can guarantee the decoded signal to be in the class Spη,k,r. Therefore, to overcome the
shortcomings of methods based exclusively on `1-minimizations in damping the noise-
folding, and having a stable support recovery, we design a new decoding procedure
with output in Spη,k,r, which consequently allows us to have both these very desirable
properties. Let us first introduce the following functional.

Definition 3.3 (Regularized selective p-potential). We define the regularized truncated
p-power function W p,ε

r : R→ R+
0 by

W p,ε
r (t) =


tp 0 ≤ t < r − ε,
πp(t) r − ε ≤ t ≤ r + ε,

rp t > r + ε,

t ≥ 0, (3.20)

where 0 < ε < r, and πp(t) is the third degree interpolating polynomial defined in
Lemma 3.4 below. Moreover, we setW p,ε

r (t) = W p,ε
r (−t) for t < 0. We call the functional

SPp,εr : RN → R+
0 ,

SPp,εr (x) =
N∑
j=1

W p,ε
r (xj), r > 0, 1 ≤ p ≤ 2, (3.21)

the regularized selective p-potential functional.

Lemma 3.4. Let 0 < s1 < s2 and assume that

π(t) := A(t− s2)3 +B(t− s2)2 + C,

is a third degree polynomial. Given γ1, γ2, γ3 ∈ R and by setting
C = γ3,

B = γ1
s2 − s1

− 3(γ3 − γ2)
(s2 − s1)2 ,

A = γ1
3(s2 − s1)2 + 2B

3(s2 − s1) ,

(3.22)

then we have the following interpolation properties{
π(s2) = γ3, π(s1) = γ2,

π′(s2) = 0, π′(s1) = γ1.
(3.23)

Proof. The equalities related to s2 are straightforward, the others related to s1 follow
by simple direct computations:

π(s1) =− γ1
3 (s2 − s1)− 2

3B(s2 − s1)2 +B(s2 − s1)2 + γ3

=− γ1
3 (s2 − s1) + B

3 (s2 − s1)2 + γ3

=− γ1
3 (s2 − s1) + γ1

3 (s2 − s1)− (γ3 − γ2) + γ3 = γ2,
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and

π′(s1) = 3A(s1 − s2)2 + 2B(s1 − s2) = γ1 − 2B(s1 − s2) + 2B(s1 − s2) = γ1.

Given 0 < ε < r for every t ∈ [r − ε, r + ε] we define πp(t) = π(t) as in Lemma 3.4 for
s1 = (r− ε), s2 = (r+ ε), γ1 = p(r− ε)p−1, γ2 = (r− ε)p, and γ3 = rp. For example, for
p = 2, we have

π2(t) = [t+ (r − ε)][ε(r + t)− (r − t)2]
4ε , t ∈ R.

In the following, we state the main result of [18], which gives the guarantee that the
result of the decoding process via the regularized selective p-potential is effectively an
element of the class Spη,k,r implying that Theorem 3.2 holds.

Theorem 3.5. Let A ∈ Rm×N have the (2k, γ2k)-NSP, with γ2k < 1, and 1 ≤ p ≤ 2.
Furthermore, we assume x ∈ Spη,k,r+ε, for ε > 0, 0 < η < r + ε, with the property of
having the minimal #Sr+ε(x) within F(y), where y = Ax is its associated measurement
vector, i.e.,

#Sr+ε(x) ≤ #Sr+ε(z) for all z ∈ F(y). (3.24)

If x∗ is such that
SPp,εr (x∗) ≤ SPp,ε(x), (3.25)

and
|x∗i | < r − ε, (3.26)

for all i ∈ (Sr+ε(x∗))c, then also x∗ ∈ Spη,k,r+ε, implying noise-folding damping. More-
over, we have the support stability property

#(Sr+ε(x)∆Sr+ε(x∗)) ≤
(2γ2kκpη)p

(r + ε− η)p . (3.27)

Proof. Notice that we can equally rewrite the SPp,εr functional as

SPp,εr (z) = rp#Sr+ε(z) +
∑

i∈(Sr+ε(z))c
|zi|pε ,

where |t|pε := W p,ε
r (t) for |t| ≤ r + ε. Here, by construction, we have |t|pε ≤ |t|p. By the

assumptions (3.25) and x ∈ Spη,k,r+ε, we obtain the estimates

rp#Sr+ε(x∗) ≤ SPp,εr (x∗) ≤ SPp,εr (x) = rp#Sr+ε(x) +
∑

i∈(Sr+ε(x))c
|xi|pε

≤ rp#Sr+ε(x) +
∑

i∈(Sr+ε(x))c
|xi|p ≤ rp#Sr+ε(x) + ηp,
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and thus #Sr+ε(x∗) ≤
(
η

r

)p
+ #Sr+ε(x). As η

r
< 1 by assumption, the minimality

property (3.24) yields immediately

#Sr+ε(x∗) = #Sr+ε(x) ≤ k. (3.28)

Assumption (3.26) and again (3.25) yield

rp#Sr+ε(x∗) +
∑

i∈(Sr+ε(x∗))c
|x∗i |p = rp#Sr+ε(x∗) +

∑
i∈(Sr+ε(x∗))c

|x∗i |pε

≤ rp#Sr+ε(x) +
∑

i∈(Sr+ε(x))c
|xi|pε ≤ rp#Sr+ε(x) +

∑
i∈(Sr+ε(x))c

|xi|p.

By this latter inequality and (3.28) we obtain∑
i∈(Sr+ε(x∗))c

|x∗i |p ≤
∑

i∈(Sr+ε(x))c
|xi|p ≤ ηp,

which implies x∗ ∈ Spη,k,r+ε. We conclude (3.27) by an application of Theorem 3.2.

Remark 3.6. The best candidate x∗ to fulfill condition (3.25) would be actually

x∗ := arg min
z∈F(y)

SPp,εr (z) (3.29)

because this will make (3.25) automatically true, whichever x is. However (3.29) is
a highly nonconvex problem whose solution is in general NP-hard [2]. The way we
circumvent this drawback is computing x∗ by means of a local minimization of SPp,εr in
F(y) around a given vector x0 which is considered as starting point for Algorithm 2.2.
Ideally, the best choice for x0 would be x itself, so that (3.25) may be fulfilled. As we do
not dispose of the original vector x yet, a heuristic rule, which we will show to be very
robust in our numerical simulations, is to choose the solution of the decoding process via
the `1-minimization as x0.

3.3. Numerical issues: smoothing and iterative thresholding
procedures

Due to their nonsmoothness and nonconvexity, for some problems, as for the Mumford–
Shah functional Jp applied to image denoising, the linearly constrained minimization
(3.11) was so far an open problem. Indeed, standard methods, such as SQP and Newton
methods, do not apply, unless one provides a C2-regularization of the problem. In partic-
ular, it would be desirable that an appropriate algorithm performing such an optimiza-
tion could retain both the simplicity of the thresholding iteration and its unconditional
convergence properties, as given by [108, Theorem 4.8] in the case of unconstrained
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minimization of the functional Jp. Certainly the method of Algorithm 2.2 is a strong
candidate, as the iterations of its inner loop actually requires only a unconstrained mini-
mization, which can be again addressed by iterative thresholding, see Section 3.3.3 below.
However, we encounter two major bottlenecks to the direct application of this algorithm
to (3.11). The first problem is that Jp does not satisfy our main assumption (A1), i.e.,
it is not ω-semi-convex, as it is not a C1-perturbation of a convex functional. In fact the
term W p

r is too rough at the kink where the truncation applies. The second issue comes
by the lack of coerciveness of Jp on the affine space A(f) in general, for a generic choice
of T . A general convergence result (Theorem 3.14) will be therefore available only under
an additional condition on T .

3.3.1. A smoothing procedure

In order to overcome the first of the two bottleneck described above, our analysis re-
quires a smooth perturbation technique which is reminiscent of previous methods of
continuation-based deterministic relaxation, such as the graduated nonconvexity (GNC)
pioneered by A. Blake and A. Zisserman [31] in the context of the Mumford–Shah model,
see also recent developments in [179, 177, 181, 180] and references therein. We briefly
mention how this latter technique works. For a suitable parameter ε ∈ [0, 1], one con-
siders a continuous family of smoother objectives J ε such that lim

ε→1
J ε = J (at least

pointwise), where J is the nonconvex energy to be minimized. Then one addresses the
global minimization of J by iterated local minimizations along J ε when ε is increasing
from 0 to 1 with a strictly convex initial J 0. More formally, we consider an increasing
sequence (εn)n∈N, with ε0 = 0 and lim

n
εn = 1 and the iterative algorithm

vn+1 = arg min
v∈Nεn (vn)

J εn(v), (3.30)

where Nεn(vn) is a suitable neighborhood of the previous iteration vn of size possibly
depending on εn. While such semi-heuristic algorithms perform very well in practice,
they usually do not provide any guarantee for global convergence and their applicability
highly depends on the appropriate design of the approximating family {J ε : ε ∈ [0, 1]},
depending on the particular application and form of J . Our algorithm has instead more
general applicability and stronger convergence guarantees, providing as a byproduct also
some rigorous justification to those semi-heuristic methods.
In particular, in this section we show that the regularized truncated p-power introduced
in Definition 3.3 can be considered as a smooth approximation of W p

r and thus used
to construct an appropriate perturbation J εp of Jp, which allows eventually for ω-semi-
convexity, but does not modify essentially the minimizers of (3.11). Such modification
does not affect the possibility of using thresholding functions in the numerical setting,
although instead of the hard-type discontinuous thresholding encountered in the un-
constrained case, as in [108, Proposition 4.3] and [108][Figure 2], our new thresholding
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function will be a Lipschitz one, as an effect of the introduced regularization, in depen-
dence of the choice of the parameters γ, ε, r, ω in appropriate ranges. We will see in
Section 3.3.3 the usefulness of this feature in terms of guaranteed exponential conver-
gence from the beginning of the iterations.
Recalling the notion of the regularized truncated p-power in Definition 3.3, we observe
that the functional W p,ε

r is actually a C1-function of R, for all 0 < ε < r, and it can
be considered as our desired smooth approximation of the function W p

r for ε sufficiently
small. The graphs of W p

r and W p,ε
r are shown in Figure 3.1 for p = 2, r = 1, and ε = 0.4.

−2 −1.4 −1 −0.6 0 0.6 1 1.4 2
−0.5

0

1.5

Figure 3.1.: Truncated quadratic potential W p
r and its regularization W p,ε

r , for p = 2,
r = 1, and ε = 0.4.

Thus, we have

J εp (v) = ‖Tv − g‖2 + γ
n∑
i=1

W p,ε
r (vi). (3.31)

About the existence of constrained minimizers of J εp we have the following abstract
result. We stress that the result holds for all inverse free-discontinuity problems, as it
requires no further assumptions on T .

Theorem 3.7. For 0 ≤ ε < r, the problem

Minimize J εp (v) = ‖Tv − g‖2 + γ
n∑
i=1

W p,ε
r (vi), Subject to Av = f, (3.32)

has solutions in E. Actually, such minimal solutions can be taken in a compact set
M ⊂ E independent of ε.

Proof. This proof uses a similar approach as for [108, Theorem 2.3]. Let us first consider
a partition P = {UIj0}

2n
j=1 of E indexed by all subsets Ij0 ⊂ I, as follows

UIj0 = {v ∈ E : |vi| ≤ r + ε, i ∈ Ij0 , |vi| > r + ε, i ∈ I \ Ij0}.
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The minimization of J εp over A(f) ∩ UIj0 can be reformulated as


Minimize J εp (v) = ‖Tv − g‖2 + γ

n∑
i=1

ciW
p,ε
r (vi), Subject to v ∈ A(f) ∩ UIj0 ,

ci = 0 if i ∈ I \ Ij0 and ci = 1 if i ∈ Ij0 ,
(3.33)

where

W p,ε
r (t) =


tp, t ≤ r − ε,
πp(t), r − ε ≤ t ≤ r + ε,

|t− ε|p t ≥ r + ε.

Showing that the minimization (3.33) has always a solution v(Ij0) for all j = 1, . . . , 2n,
and such a minimizer belongs to a compact set M j , independent of ε ≥ 0, then

v∗ = arg min
j=1,...,2n

J εp (v(Ij0)),

is actually a solution for (3.32) and it belongs to the compact set M = ∪2n
j=1M

j , inde-
pendent of ε ≥ 0. Hence, it is sufficient now to address (3.33). For that, we first show
the following technical observation: if x, v ∈ E are fixed and J εp is bounded above and
below on the ray Rx,v = {x + tv, t ≥ 0}, then J εp is actually constant on Rx,v. In fact,
let us consider the function

µ(t) = J εp (x+ tv).

By the boundedness of J εp (x + tv), without loss of generality, we can assume that 0 ≤
µ(t) ≤ 1. Hence there exists a sequence (tk)k ⊂ R+ of points tk → +∞ for k →∞ such
that µ(tk)→ η ∈ [0, 1] for k →∞. Moreover, by definition of W p,ε

r , for t > 0 sufficiently
large we have actually the general expression µ(t) = P (t)+γ

∑n
i=1 ci|xi−ε+ tvi|p, where

P is a polynomial of degree at most 2. Assume now, for instance, that 1 ≤ p ≤ 2. As
limk→∞

µ(tk)
t2
k

= 0 we deduce that all the coefficients in P of second degree are actually

vanishing. In turn, then 0 = limk→∞
µ(tk)
|tk|p has the implication that for each i one of

the coefficients ci or di must vanish as well. Following in the same manner, we conclude
that all linear coefficients in µ(t) also vanish, leaving only the possibility that µ(t) is a
constant function. A similar approach can be conducted to prove the observation also
for p > 2.
Notice now that J εp converges uniformly to J̄p on UIj0 for ε→ 0, as defined in (3.12), or

|J εp (v)− J̄p(v)| ≤ Γ(ε), for all v ∈ UIj0 , (3.34)

for a continuous function Γ(ε) = o(ε), ε → 0. By Remark 3.1, for X = A(f) ∩ UIj0 and
any v0 ∈ X, there exists a linear subspace V ⊂ E , such that the orthogonal projection
X⊥ of X onto V⊥ has the properties
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• X = {x = x⊥ ⊕ tv : x⊥ ∈ X⊥, v ∈ V, t ∈ R+},

• M j
C = X⊥ ∩ {v ∈ E : J̄p(v) ≤ C}, for C ≥ J εp (v0) + Γ(ε) is compact, and

• J̄p(ξt) is constant along rays ξt = x⊥ ⊕ tv, where x⊥ ∈M j
C , v ∈ V, and t ∈ R+.

By the uniform estimate (3.34) and the last property, we deduce that J εp (ξt) is bounded
from above and below by J̄p(x⊥) ± Γ(ε) on rays ξt = x⊥ ⊕ tv, where x⊥ ∈ MC , v ∈ V,
and t ∈ R+. Hence, we conclude that J εp (ξt) is also constant for t ≥ 0. From (3.34), the
set

X⊥ ∩ {v ∈ E : J εp (v) ≤ J εp (v0)},

is included in M j
C , and

inf
v∈A(f)∩U

Ij0

J εp (v) = inf
v∈Mj

C

J εp (v).

By compactness ofM j = M j
C and continuity of J εp we conclude the existence of minimiz-

ers in M j . As pointed out above, this further implies the existence of minimal solutions
in M = ∪2n

j=1M
j of the original problem (3.32). Notice further that, by continuity of

J εp (v0) + Γ(ε) with respect to ε, the sets M j = M j
C actually do not depend on 0 ≤ ε as

soon as C ≥ max
0<ε
J εp (v0) + Γ(ε) is large enough.

Remark 3.8. The previous result clarifies that, despite the fact that in general J εp are
not coercive functionals, up to restricting them to an appropriate compact set, indepen-
dent of ε, they can be considered equi-coercive.

Corollary 3.9. The net of functionals (J εp )0≤ε<r Γ-converges to Jp on A(f). Moreover,
if we consider the net of minimizers v∗ε of J εp in M for 0 ≤ ε < r, as constructed
in Theorem 3.7 (which are actually minimizers of J εp over A(f) as well), then the
accumulation points of such a net are minimizers of Jp.

Proof. As J εp converges uniformly to Jp on A(f), we deduce its Γ-convergence [72]. By
Theorem 3.7 and compactness of M we conclude the convergence of minimizers.

Proposition 3.10. For all 0 < ε < r, the functional J εp satisfies the properties (A1)
and (A2), i.e., it is ω-semi-convex, and (2.3) holds.

Proof. The ω-semi-convexity follows from the piecewise continuity and boundedness of
the second derivatives of J εp . Since W p,ε

r (t) ≥ 0 and |(W p,ε
r )′(t)| ≤ prp−1 for every t ∈ R,

by means of the elementary inequality a ≤ 1
2(a2 + 1) we obtain

‖∇J εp (v)‖ ≤ 2‖T ∗(Tv − g)‖+ γ‖((W p,ε
r )′(v1), . . . , (W p,ε

r )′(vn))‖

≤ 2‖T ∗‖‖Tv − g‖+ γn1/2prp−1 (3.35)

≤ ‖T ∗‖‖Tv − g‖2 + ‖T ∗‖+ γn1/2prp−1

≤ ‖T ∗‖J εp (v) + ‖T ∗‖+ γn1/2prp−1 .
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Hence, for K = ‖T ∗‖ and L = ‖T ∗‖+ γn1/2prp−1, we get that (2.3) holds for J εp .

3.3.2. The application of the algorithm to coercive cases

As we clarified in the previous section, functionals of the type J εp , for 0 < ε < r, satisfy
the assumptions (A1) and (A2) for the applicability of Algorithm 2.2. In particular,
when the algorithm is applied for J = J εp , then by Theorem 2.7 the sequence (v`)`∈N
generated by the algorithm has the properties

(a) (Av` − f)→ 0 as `→∞;

(b) (v` − v`−1)→ 0 as `→∞.

However J εp is unfortunately not necessarily coercive on A(f) = {v ∈ E : Av = f},
although it retains some coerciveness by considering suitable compact subsets M of
competitors, see Theorem 3.7. Such information does not help to satisfy condition (A0),
since there is no natural or simple way of restricting or projecting the iterations to
such compact sets M . Hence, in order to apply Theorem 2.8, we need to explore the
mechanism for which the iterations (v`)`∈N generated by the algorithm keep bounded.
We show that this is the case where T is injective on ker(A), since this retrieves the
coerciveness we need.
Let us first introduce some specific notation for the application of the Algorithm 2.2, in
particular we denote

Jω,u(v) := J εp,ω,u(v) = J εp (v) + ω‖v − u‖2. (3.36)

Lemma 3.11. For all 0 < ε < r, the sequence (‖∇J εp (v`)‖)`∈N is uniformly bounded,
where the iterations (v`)`∈N are generated by Algorithm 2.2.

Proof. As a consequence of (2.18) the sequence (‖T v̄`‖)`, where v̄` is defined in (2.13), is
uniformly bounded. From (2.16), we have also that (‖Tv`‖)` is uniformly bounded. As
pointed out in (3.35) of Proposition 3.10 actually we have ‖∇J εp (v`)‖ ≤ 2‖T ∗‖‖Tv` −
g‖+ γn1/2prp−1. Hence the sequence (‖∇J εp (v`)‖)`∈N is uniformly bounded.

The next lemma will be crucial to show the convergence of the algorithm in our case.

Lemma 3.12. For all 0 < ε < r, the sequence (A∗q`,L`−1)`∈N generated by Algorithm 2.2
for J = J εp is uniformly bounded.

Proof. By (2.8) we have

A∗q` ∈ ∇Jω,v`−1(v`) = ∇J εp (v`) + 2ω(v` − v`−1)

As, by Lemma 3.11, ∇J εp (v`) is uniformly bounded and (v` − v`−1)→ 0, for `→∞, we
obtain that also A∗q` is uniformly bounded. By (2.2), we have also

A∗q` = A∗q`,L`−1 − 2λA∗(Av` − f),
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from which, together with (Av` − f)→ 0 for `→∞, we eventually deduce the uniform
boundedness of A∗q`,L`−1 as well.

Lemma 3.13. Assume that T is injective on ker(A), or ker(T ) ∩ ker(A) = {0}. Then,
for all 0 < ε < r, the sequences (v`)` generated by Algorithm 2.2 for J = J εp are
uniformly bounded.

Proof. Notice that, by its definition in Algorithm 2.2, v` necessarily solves the following
linear system

(T ∗T + 1
2A
∗A)v` = 1

2A
∗(f + q`,L`−1) + ω(v`−1 − v`),

where the right-hand-side of this equality if uniformly bounded by Lemma 3.12 and
Theorem 2.7 (b). Moreover, as (Av` − f) → 0 for ` → ∞, we can write that v` is
solution of the system  (T ∗T + 1

2A
∗A)

A


︸ ︷︷ ︸

:=G

v` = w`,

where the right-hand-side w` is actually uniformly bounded with respect to `. Due to
our assumption ker(T ) ∩ ker(A) = {0}, we obtain that ker(G) = {0} and

v` = (G∗G)−1G∗w`, for all ` ∈ N,

hence the uniform boundedness of (v`)`.

We summarize this list of technical observations into the following convergence result.

Theorem 3.14. Assume that T is injective on kerA, or kerT ∩ kerA = {0}. Then, for
all 0 < ε < r, the sequences (v`)` generated by Algorithm 2.2 for J = J εp has at least
one accumulation point, and every accumulation point is a constrained critical point of
J εp on the affine space A(f) = {v ∈ E : Av = f}.

Proof. The result is obtained by a direct application of Theorem 2.8, after having recalled
the boundedness of (v`)`, which results from Lemma 3.13.

Remark 3.15. The previous convergence result actually applies for the case of the
Mumford–Shah functional, for which T = D†h and A = I − DhD

†
h, since D

†
h is in fact

injective on ran(Dh), see Section 3.1.1.
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3.3.3. Iterative thresholding algorithms revisited

As already mentioned an iterative thresholding algorithm can be used for identifying
local minimizers of the Jp, see [108] for details. This algorithm is actually very attractive
for its exceptional simplicity, and its ability of performing a separation of components
at a finite number of iterations, leading eventually to a contractive iteration and its
convergence.
In this section we design an iterative thresholding algorithm which can be applied also
for linearly constrained problems of the type (3.11): namely, it is a very simple and
efficient procedure for solving the inner loop minimization problems in our algorithm.
Differently from the unconstrained case, however, the thresholding function we can use
is a continuous one, so that we do not need to prove a result of separation of components
after a finite number of iterations, and we gain additionally contractivity, unconditionally
and from the beginning of the iteration.
For the sake of simplicity and without loss of generality, we consider the application of
Algorithm 2.2 for λ = 1/2, and we define now the ν-strongly convex functional

Jω,u(v, q) := J εp,ω,u(v, q) = Jω,u(v) + 1
2‖Av − (f + q)‖2. (3.37)

Requiring ν-strong convexity is equivalent to the following lower bound on ω.

Lemma 3.16. Define Jω,u(v, q) as in (3.37). According to the notation introduced in
Lemma 3.4, let B as in (3.22) for s1 = (r−ε), s2 = (r+ε), γ1 = p(r−ε)p−1, γ2 = (r−ε)p,
and γ3 = rp. Then, for

ω > γ|B| = γ

∣∣∣∣∣p(r − ε)p−1

2ε + 3
4ε2 [(r − ε)p − rp]

∣∣∣∣∣ , (3.38)

Jω,u(v, q) is a ν-strongly convex function of v.

Proof. It obviously suffices to show that Jω,u(v) is ν-strongly convex, and since

Jω,u(v) = ‖Tv − g‖2 + γ
n∑
i=1

W p,ε
r (vi) + ω

n∑
i=1

(vi − ui)2

it is enough to check that for every s ∈ R the real function

t→ γW p,ε
r (t) + ω

n∑
i=1

(t− s)2

is ν-strongly convex. But this function is piecewise C2 with bounded second derivatives,
thus we must only check that for every t such that |t| /∈ {r− ε, r+ ε}, there exists ν > 0
such that γ(W p,ε

r )′′(t) + 2ω ≥ ν > 0. By the explicit expression (3.20) of W p,ε
r (t), it all

reduces to check that for every t ∈ (r − ε, r + ε) one has

γπ′′p(t) + 2ω ≥ ν > 0 . (3.39)
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Now, in our case we have

B = p(r − ε)p−1

2ε + 3
4ε2 [(r − ε)p − rp], (3.40)

A = p(r − ε)p−1

12ε2 + B

3ε. (3.41)

Since (r − ε)p − rp ≤ −εp(r − ε)p−1 by convexity, we deduce from (3.40) that

B ≤ −p(r − ε)
p−1

4ε < 0, (3.42)

and therefore, from (3.41) we have also A ≤ 0. But then for all t ∈ (r − ε, r + ε), we
deduce from these negativity relationships and again (3.41) that

π′′p(t) = 6A(t− (r + ε)) + 2B ≥ 2B

so that (3.38) implies (3.39), with ν = 2(ω − γ|B|), as required.

We now define our thresholding function. We fix 0 < ε < r, and for W p,ε
r (t) as in (3.20),

B as in (3.40), and a positive parameter µ such that

µ|B| < 1, (3.43)

we consider
f ξµ,r(t) = (t− ξ)2 + µW p,ε

r (t) (3.44)

with ξ a real number. By (3.43), arguing as in the proof of Lemma 3.16, we get ν-strong
convexity of f ξµ,r(t), therefore we can define a function Sµp (ξ) through

Sµp (ξ) := arg min
s∈R

f ξµ,r(s) . (3.45)

Then Sµp (ξ) satisfies the following properties.

Lemma 3.17. For every ξ ∈ R and µ as in (3.43), the function Sµp (ξ) satisfies:

(a) Sµp (ξ) = t if and only if 2(t− ξ) + µ(W p,ε
r )′(t) = 0.

(b) Sµp (ξ) is a strictly increasing function.

(c) Sµp (ξ) is Lipschitz continuous with

Lip(Sµp ) ≤ 1
1− µ|B| . (3.46)
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Proof. Part (a) of the statement is obvious by (3.44), (3.45) and the ν-strong convexity
of f ξµ,r(t).
To prove part (b), fix ξ1 < ξ2 ∈ R and correspondingly, let t1 := Sµp (ξ1) and t2 := Sµp (ξ2).
We have 2(t1 − ξ1) + µ(W p,ε

r )′(t1) = 0. Assume by contradiction that t2 ≤ t1. Since
the function t 7→ 2(t − ξ1) + µ(W p,ε

r )′(t) is strictly increasing by strong convexity, we
get 2(t2 − ξ1) + µ(W p,ε

r )′(t2) ≤ 0. Now ξ1 < ξ2 yields 2(t2 − ξ2) + µ(W p,ε
r )′(t2) < 0, in

contradiction with part (a) of the statement.
To prove part (c), we fix ξ1 and ξ2 ∈ R, and we can suppose without loss of generality
that ξ1 < ξ2. Again, we define t1 := Sµp (ξ1), and t2 := Sµp (ξ2). From part (b), we have
t1 < t2 and from part (a) we get that

2(t1 − ξ1) + µ(W p,ε
r )′(t1) = 2(t2 − ξ2) + µ(W p,ε

r )′(t2),

that is, since ξ1 < ξ2 and t1 < t2,

|t2 − t1|+
µ

2 [(W p,ε
r )′(t2)− (W p,ε

r )′(t1)] = |ξ2 − ξ1| . (3.47)

Now (W p,ε
r )′(t) is piecewise C1 with bounded derivative. Moreover, given B as in (3.40),

arguing as in Lemma 3.16 we have (W p,ε
r )′′(t) ≥ 2B for every t such that |t| ∈ (r−ε, r+ε).

Since (W p,ε
r )′′(t) ≥ 0 when |t| /∈ [r − ε, r + ε] and B < 0, we get that (W p,ε

r )′′(t) ≥ 2B
for every t, with the only exceptions of the four points t = r − ε, t = −r − ε, t = r + ε,
and t = −r + ε. Since t1 < t2, by the fundamental theorem of calculus we have

[(W p,ε
r )′(t2)− (W p,ε

r )′(t1)] ≥ 2B(t2 − t1) = −2|B||t2 − t1| ,

since B < 0. Using (3.47), this gives

(1− µ|B|)|t2 − t1| ≤ |ξ2 − ξ1|,

which concludes the proof.

While this latter result states certain qualitative properties of Sµp for any 1 ≤ p < ∞,
its expression for p = 2 can be easily obtained by solving a second degree polynomial
equation:

Sµ2 (ξ) =



ξ

1 + µ
|ξ| < (r − ε)(1 + µ)

4ε
3µ

1 + µ

4ε(2ε+ r)−

√
Γ(ξ)

4

 (r − ε)(1 + µ) ≤ |ξ| ≤ r + ε

ξ |ξ| > r + ε

(3.48)

where
Γ(ξ) = 4

(
1 +

(
µ

4ε

)2
(2r + ε)2 + µ

2ε(r + 2ε)− 3µ
2ε ξ

)
.
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Figure 3.2.: The Lipschitz continuous thresholding functions Sµ1 , S
µ
3/2, and Sµ2 , with

parameters r = 1.5, µ = 5, ε = 0.3.

We further report in Figure 3.2 the graphics of the thresholding function Sµp for p ∈
{1, 3/2, 2}, and parameters r = 1.5, µ = 5, ε = 0.3.
We now get back to our functional Jω,u(v, q) defined in (3.37) and we further consider
the associated surrogate functional,

J surrω,u (v, q, w) := Jω,u(v, q) + (‖v − w‖2 − ‖Tv − Tw‖2) + (‖v − w‖2 − 1
2‖Av −Aw‖

2)

+ (‖v − w‖2 − ω‖v − w‖2). (3.49)

Up to rescaling of the intern parameter g, f, q, γ of Jω,u(v, q), we can assume without
loss of generality, that ‖T‖ < 1, 1√

2
‖A‖ < 1, and ω < 1, while still keeping the lower

bound on ω given by (3.38) which is necessary to ensure ν-strong convexity. Hence, we
have

J surrω,u (v, q, w) ≥ Jω,u(v, q), (3.50)

where the equality occurs if and only if w = v.
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Proposition 3.18. Let 0 < ε < r. Assume ‖T‖ < 1, 1√
2
‖A‖ < 1, ω < 1, and that ω

and γ satisfy (3.38). Then
v∗ = arg min

v∈E
Jω,u(v, q) (3.51)

if and only if v∗ satisfies the following component-wise fixed-point equation: for i =
1, . . . , n,

v∗i = Sp

(1
3

{
[(I − T ∗T ) + (I − 1

2A
∗A) + (1− ω)I]v∗

+ (T ∗g + 1
2A
∗(f + q) + ωu)

}
i

)
, (3.52)

where Sp is the thresholding function Sµp defined in Lemma 3.17 for µ = γ/3.

Proof. Assume that v∗ satisfies (3.51). From (3.50) we have the inequalities

J surrω,u (v∗, q, v∗) = Jω,u(v∗, q) ≤ Jω,u(v, q) = J surrω,u (v, q, v) ≤ J surrω,u (v, q, v∗).

Hence we obtain also
v∗ = arg min

v∈E
J surrω,u (v, q, v∗). (3.53)

We notice now by a direct computation that

1
3J

surr
ω,u (v, q, v∗) =

∥∥∥∥∥v −
(
b1 + b2 + b3

3

)∥∥∥∥∥
2

+ γ

3

m∑
i=1

W p,ε
r (vi) + C(b1, b2, b3, γ), (3.54)

where b1 = (I − T ∗T )v∗ + T ∗g, b2 = (I − 1
2A
∗A)v∗ + 1

2A
∗(f + q), b3 = (I − ωI)v∗ + ωu,

and C(b1, b2, b3, γ) is a term which does not depend on v. It now follows by the definition
(3.45) of Sp = Sµp that v∗ satisfies (3.52).
Conversely, by (3.54), if v∗ satisfies (3.52), then it also satisfies (3.53). It follows that

0 ∈ ∂J surrω,u (v∗, q, v∗) = ∂Jω,u(v∗, q)

where the last equality trivially follows from (3.49). By convexity of Jω,u, this implies
(3.51).

Looking at the fixed point equation (3.52), which characterizes the unique minimizer of
Jω,u(v, q), it is natural to wonder whether the corresponding fixed-point iteration

vk+1
i = Sp

(1
3

{
[(I − T ∗T ) + (I − 1

2A
∗A) + (1− ω)I]vk

+(T ∗g + 1
2A
∗(f + q) + ωu)

}
i

)
, (3.55)

generates a sequence (vk)k∈N which converges to v∗.
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Theorem 3.19. Let 0 < ε < r. Assume ‖T‖ < 1, 1√
2
‖A‖ < 1, ω < 1, and that ω and

γ satisfy (3.38). Let
v∗ = arg min

v∈E
Jω,u(v, q),

and consider the sequence vk defined by the iteration (3.55). Let δ := 3− ω
3− γ|B| , where

B is defined by (3.40). Then 2
3 < δ < 1 and for every n ∈ N one has

‖vk − v∗‖ ≤ δk

1− δ‖v
1 − v0‖ (3.56)

so that in particular vk → v∗ as n tends to +∞.

Proof. By the assumptions ω < 1 and (3.38), the bounds on δ are obvious. For every
k ≥ 0 one has vk+1 = U(vk), where U is an operator having component-wise action
defined by

[U(v)]i = Sp

(1
3

{
[(I − T ∗T ) + (I − 1

2A
∗A) + (1− ω)I]v

+(T ∗g + 1
2A
∗(f + q) + ωu)

}
i

)
, (3.57)

where Sp is the function Sµp defined in Lemma 3.17 for µ = γ/3. Using the hypotheses, it

is easy to show that
∥∥∥∥1

3[(I − T ∗T ) + (I − 1
2A
∗A) + (1− ω)I]

∥∥∥∥ ≤ 1− ω

3 , therefore, using
(3.46) for µ = γ/3 we get

Lip(U) ≤
(

1− ω

3

)( 1
1− γ/3|B|

)
= δ ;

in particular, U is a contraction mapping, and we conclude by Banach fixed point The-
orem.

3.4. Numerical Experiments

In this section we report the results of numerical experiments performed to validate the
behavior of the algorithm as predicted by our theoretical findings.
We first analyze the free discontinuity problems described in Section 3.1 as well as in
[19], i.e., the minimization of the discrete Mumford–Shah functional in dimension two,
and the discrete time quasi-static evolution of the Francfort–Marigo brittle fracture
model in one dimension. Then, we describe in the performances of the Algorithm 2.2 for
the minimization of the SLP-decoder introduced in [18] to recover compressed signals
corrupted by noise. In particular, we will compare the decoder with respect to other
well known techniques such as `1-minimization and its reweighted version.
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3.4.1. Mumford–Shah functional minimization for image denoising

In all the simulations we used the iterative thresholding algorithm (3.55) in order to
solve the convex optimizations of the inner loop. Our first experiment refers to the
implementation of the algorithm for competitors u, being two dimensional arrays, of
dimensions 25× 25. The parameters chosen are γ = 1.7× 10−1, r = 3.5, and ε = 4.5×
10−3. Notice that ω is always explicitely fixed according to the formula ω > γ

(1
4 + r

2ε

)
,

as one can easily derive by combining (3.38) and (3.40), for p = 2.
In Figure 3.3 we show the dynamics of the discrepancy ‖Av`‖ to the realization of the
linear constraint Av = 0, and of the energy Jp(v`), depending on the iterations v`,
for ` = 0, 1, 2, . . . . This simulation confirms that the algorithm tends to converge to
a stationary point with energy level lower than the initial guess, and for which the
constraint is numerically verified.
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Figure 3.3.: On the left subfigure we show the dynamics of the discrepancy ‖Av`‖ to the
realization of the linear constraint Av = 0, and on the right subfigure the
one of the energy Jp(v`), depending on the iterations v`, for ` = 0, 1, 2, . . .

For a qualitative evaluation of the behavior of the algorithm, we report below an ex-
periment on a denoising problem for an image of dimensions 125× 125, see Figure 3.4,
where the original image, the noisy version, and its denoised version after minimization
are reported respectively in the subfigures (a), (b), and (c). The numerical experiments
is conducted with 6% noise, and parameters γ = 1.4×10−1, r = 2.8, and ε = 3.5×10−3.

Remark 3.20. As mentioned at beginning of this section, our numerical experiments
are exclusively aimed at verifying the setting of the parameters and the convergence of
the Algorithm 2.2, with no claim of optimal implementation. However, for the sake of
completeness, we mention here how to treat the most demanding numerical issues. As
the algorithm requires the applications of the matrices D†h and (D†h)∗, one may won-
der whether such matrices can be efficiently, stably computed and applied. In princi-
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(a) (b)

(c)

Figure 3.4.: Application of Algorithm 2.2 with inner loop realized by iterative threshold-
ing (3.55) for a classical denoising problem.

ple, when enough memory is available there is no problem in computing such matrices
in advance, also symbolically, and obtaining an iteration at machine precision. If the
available memory is limited, one may avoid to attempt the explicit computation of such
(pseudo)inverses, as it is also a good practice in numerical analysis. Rather one should
use a preconditioned iterative method to approximate the results of their applications,
i.e., D†hv and (D†h)∗u. For any matrix X the following identities hold:

X∗XX† = X∗,

XX∗(X†)∗ = X.

In case of X = Dh the first identity gives us a method to compute D†hv, as it is conse-
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quently sufficient to solve the linear system(D∗hDh)u = D∗hv

c(u) = 0
, (3.58)

and set D†hv = u, where c(u) = cu is the mean value of u. In order to see that the discrete
system (3.58) can be efficiently and stably solved we need to highlight its relationships
with a corresponding continuous system. In fact (3.58) actually can be simply interpreted
as the discretization of the following continuous partial differential equation, which we
write in its weak form 

∫
Ω
∇u · ∇ϕ =

∫
Ω
v · ∇ϕ∫

Ω
u(x)dx = 0

for all ϕ ∈ H1(Ω). Such an elliptic partial differential equation can be approached
numerically very stably and efficiently by FEM or finite difference discretizations and
solved by suitable preconditioned iterations, for instance by means of multigrid methods
[127]. Similarly one can approach the computation of (D†h)∗u by defining the system{

(DhD
∗
h)v = Dhu,

Av = 0,
(3.59)

and setting (D†h)∗u = v, where A is again the discrete curl operator (notice that this
matrix is sparse!). The efficient solution of the system (3.59) is again subordinated to
the use of suitable preconditioners.
Concerning the overall computational cost one may wonder whether the solution of two
systems of (discretized) PDE such as (3.58) and (3.59) is indeed an exceedingly large
amount of effort. To this issue, let us respond that other well-known and established
methods for the minimization of Mumford–Shah functional require also the solution of
elliptic PDEs, for instance the L. Ambrosio and V. M. Tortorelli approach [9].
In general, one can still object that the operator T ∗T = (D†h)∗D†h as it appears in the
iteration (3.55) is likely to be ill conditioned and this might affect negatively the conver-
gence. However, as it is shown in Theorem 3.19, as soon as the operators T and A are
properly rescaled and the parameters ω and γ are suitably set, the inner-loop (3.55) is
guaranteed to converge with exponential rate.

3.4.2. Brittle fracture simulation

We show in the following the result of the discrete time evolution of the Francfort–
Marigo model for quasi-static brittle fracture evolution in one dimension adopting the
discretization scheme presented in Section 3.1.2. Here we assume that Ω is the interval
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[0, 1] and that the load is applied on the boundary ΩD = {0, 1}. The load corresponds
to a displacement g(t, 0) = −t and g(t, 1) = t at the boundary where t ≥ 0 is the time
variable. For the minimization of the functional (3.8) we again use Algorithm 2.2 with
parameters γ = 1, ε = 10−3, r = 2, and ω = 1

2

(1
2 + r

(N − 1)ε

)
, where N = 51 is the

number of space discretization points. The evolution proceeds with time steps of width
∆t = 0.01. At every new time step, the algorithm is reinitiated and the initial guess
correspond to the state of the gradient of the displacement at the previous time step.
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Figure 3.5.: Discrete time evolution of the Francfort–Marigo model of brittle fracture.
In the subfigure (a) we show four stages of the beam displacement at dif-
ferent times, starting with an elastic evolution until crack formation. In the
subfigure (b) we show the evolution of the energy (3.6), where the rupture
time is highlighted also by the elastic energy collapse.

In Figure 3.5(a) we show four stages of the displacement u at the time t = 0, 0.4, 0.8, 1.45.
As one can notice the beam is initially elastically deformed, then the crack appears at
multiple positions at time t = 0.9, being a more favorable critical point of the energy.
In Figure 3.5(b) we report the evolution of the energy (3.6) in time, where the failure
time is highlighted also by the elastic energy collapse.
As clarified in Section 3.1.2, let us again stress that for this model there is no need
of computing the action of the pseudoinverse matrix D†h. The simulation of the en-
tire evolution until the crack takes few minutes (a few seconds per time iteration) on a
MacBook Pro equipped with a 2.6GHz Intel Core i7 processor, 8GB of RAM, 1600MHz
DDR3 using a non optimized Matlab implementation.
In Figure 3.6 we show the computational time required at each discrete time and we
observe how the algorithm needs to search longer for the new critical point, as soon as
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Figure 3.6.: Computational time in seconds for each discrete time step.

the physical phase transition from elastic evolution to fracture happens. The numer-
ical results are consistent with the predicted analytic solution [18, 110], showing the
robustness of Algorithm 2.2 towards the simulation of physical models.

3.4.3. Damping noise-folding in compressive sensing

In Section 3.2.1 we provided a result on support identification and damping noise-folding
whose requirements cannot be unfortunately matched by standard decoders such has `1
and therefore we have introduced the regularized selective least p-powers (SLP) and this
section aims to numerically show the enhancement of the decoding performances. Unfor-
tunately, the numerical realization of the Algorithm 2.2 is computationally demanding
as soon as the dimension N gets large. Therefore, we tested also the well-known it-
erative hard thresholding [32], which shows similar support identification properties as
SLP while being very efficient in terms of computational time. Thus, with the following
numerical simulations we additionally provide empirical confirmation of the theoretical
observations in Section 3.2 and more widely analyzed in [18] and in the technical notes
[17]. In particular, we observe that SLP and IHT, initialized by the `1-minimizer, are
very robust and provide a significantly enhanced rate of recovery of the support of the
unknown sparse vector as well as a better accuracy in approximating its large entries,
with respect to the sole `1-minimization or its reweighted version, whenever limiting
noise, i.e., η ≈ r, is present on the signal. We refer to [18] for a generic overview of all
these decoding procedures and in particular to [32] for a detailed description of the IHT,
to [55, 171] for a in-depth analysis of the `1 decoders. We also consider as one of the test
methods `1-minimization, where we substituted the equality constraint Ax = y with an
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inequality constraint which takes into account the noise level

min ‖z‖`1 subject to ‖Az − y‖`2 ≤ ‖An‖`2 ≤ δ.

In the constraint we use the same parameter δ = σ2(m + 2
√

2m) as for the iteratively
re-weighted `1-minimization (IRW`1), indicated by the authors of [55, 171] as optimal.
The stability parameter that avoids the denominator to be zero in the weight updating
rule of IRW`1 seems not to have a strong influence, and it is set to 0.1 in our experiments.
We executed 8 iterations of IRW`1 as a reasonable compromise between computational
effort and accuracy. As we shall argue in detail below, the following numerical tests in-
dicate that `1+IHT is much faster and slightly more robust than `1+SLP, and that both
of them perform better than `1-minimization and IRW`1 in terms of support recovery
and accuracy in approximating the large entries in absolute value of the original signal.
In order to fulfill the assumptions of our theoretical results, we use for the numerical
experiments random matrices, satisfying the RIP with optimal constants with high prob-
ability. In particular all the tests presented in this section are realized with column-wise
normalized i.i.d. Gaussian encoding matrices.
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Figure 3.7.: Comparison of `1-minimizer and SLP-minimizer for one typical example.
The two decoders are intended to recover the original signal (o), starting
from the Gaussian randommeasurement of the noisy signal (o,·). The output
of `1- and SLP-minimization is represented by (×) and (+) respectively.

Advantages of SLP with respect to `1-minimization We shall start the discussion
on numerical experiments with a comparison between the `1-minimization and SLP-
minimization for one typical example reported in Figure 3.7. For this experiment, we
set N = 50, m = 25, k = 6, r = 0.6, η = 0.59, and choose the original noisy signal
in the set S2

0.59,6,0.6 with all 6 relevant entries above r = 0.6 and the total norm of the
noise ‖n‖`2 = 0.5 < η. Although the setting of the two methods is the same, the results
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are different: the SLP-minimizer consists of 6 relevant values above r = 0.6 in absolute
value and the norm of the remainder is 0.32 < η, thus it is also in the class S2

0.59,6,0.6.
The `1-minimizer consists of only 5 relevant entries above r = 0.6 in absolute value and
the norm of the remainder is 0.75. Thus it is not an element of S2

0.59,6,0.6. Furthermore,
it is evident that |x`1(4)| < |x`1(12)| gives a wrong information about the location of
the relevant entries, mismatching them with the noise. This phenomenon is due to the
sparsefication of the noise in the recovery process. However, in this particular example,
we were lucky to choose the right starting value for SLP. Due to its nonconvex character,
in general SLP is computing a local minimizer, which might be far away from the original
signal.

Choosing `1-minimization as a warm up As we mentioned, the Algorithm 2.2, which
can be used to minimize locally the nonconvex functional SPp,εr , finds only a critical
point, so the condition SP2,ε

r (x∗) ≤ SP2,ε
r (x) (3.25) used in the proof of Theorem 3.5

may not be always valid. In order to enhance the chance that the resulting output
of the algorithm satisfies this condition, the choice of an appropriate starting point is
crucial. As we know that the `1-decoder provides us a global minimizer with at least
some guarantees given by [18, Theorem 1], we use the result of this minimization process
as a warm up to select the starting point. In the following, we denote with SLP which
starts at x0 = 0 and with `1+SLP the one starting from the `1-minimizer.
In Figure 3.8 we illustrate the robustness of `1+SLP (bottom left subfigure) in compar-
ison to the `1-minimization based methods and SLP. Here SLP converged to a feasible
critical point, but it is quite evident that the decoding process failed since the large entry
at position 83 (signal) was badly recovered and even the entry at position 89 (noise) is
larger. If we look at the `1-minimization result (top left subfigure) or the `1-minimization
with inequality constraint (top right subfigure), the minimization process brings us close
to the solution, but the results still significantly lack accuracy. By `1+SLP (center left
subfigure) we obtain a good approximation of the relevant entries of the original signal
and we get a significant correction and an improved recovery. Also IRW`1 improves
the result of `1-minimization significantly, but still approximates the large entries worse
than `1+SLP. Although the difference is minor, we observe another important aspect
of IRW`1: the noise part is sparsely recovered, while `1+SLP distributes the noise in a
more uniform way in a much smaller stripe around zero. This drawback of IRW`1 can
be crucial when it comes to the distinction of the relevant entries from noise. Let us
stress once more that a correction after `1-minimization or IRW`1 is necessary, because
for these methods the noise part also is sparsely recovered. Indeed, these decoder has
been designed to recover sparse signals and therefore also the noise tends to be recovered
as a sparse contribution. Conversely, `1+SLP has been designed to distribute the noise
in a more uniform way in a much smaller stripe around zero.
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Figure 3.8.: The figure reports the results of five different decoding processes (+) of the
same problem where the circles (o) represent the original signal and the
points (·) represent the original signal corrupted by the noise.
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Empirical statistics by extended computations The previously presented specific ex-
amples in support of our new decoding strategies are actually typical. In order to support
this result with even more impressive and convincing evidences, we present some sta-
tistical data obtained by solving series of problems. We decided to fix the parameters
in order to have the most coherent data to be analyzed; in particular, we set N = 100,
m = 40, r = 0.8, k = 1, . . . , 7, and η = 0.75. The vector n is composed of random entries
with normal distribution and then it is rescaled in order to have ‖n‖`2 = η. Figures 3.9,
3.10, and 3.11 report the results obtained considering 30 different i.i.d. Gaussian en-
coding matrices. In the following we use x∗ generically for the decoded vector of any
method.
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Figure 3.9.: The columns refer to the different results of `1-minimization (dark blue),
SLP (blue), `1+SLP (cyan), `1-minimization with inequality constraint (yel-
low), IRW`1 (orange), and `1+IHT (brown). In the Noise error subfigure
the white column in the background represents the noise level. On the x-axis
the different values of k are displayed and each column is the mean of the
results given by 30 trials. The results were obtained by Gaussian matrices.

We start commenting the subfigures of Figure 3.9 clockwise. The first subfigure, on
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the upper-left, represents the mean value of the error between the exact signal and
the decoded one ‖x − x∗‖`2 . For `1+SLP, `1+IHT, and IRW`1 the absolute `2-norm
discrepancy between original and decoded vector is stable and independent of the (small)
number k of large entries. These methods outperform `1-minimization; IRW`1 performs
slightly better. We also observe that the choice of the starting point is crucial for SLP
and IHT.
The second subfigure is the mean value of the noise level |σk(x)`2 − σk(x∗)`2 | and we
can see exactly what we inferred looking at Figure 3.7: `1-minimization returns a larger
noise level with respect to all the other methods, except SLP; and IRW`1 has the best
noise reduction property.
The third is the mean computational time, presented in logarithmic scale. All tests were
implemented and run in Matlab in combination with CVX [71, 123], to solve the `1-
minimization with equality and inequality constraint, its iteratively re-weighted version,
and the QCQP on a MacBook Pro equipped with a 2.6GHz Intel Core i7 processor,
8GB of RAM, 1600MHz DDR3. We observe that SLP and `1+SLP are extremely slow.
However, in comparison, the good starting point for SLP provides an advantage in terms
of computational time. IHT has a computational complexity in between `1-minimization
and IRW`1.
The fourth plot reports the mean value of the discrepancy between noise level and the
large entries of the signal, thus min

i∈Sr(x)
|x∗i | − max

i∈Sr(x)c
|x∗i |. This plot shows how good the

small entries are distinguished from the large ones in absolute value. We see that `1+SLP
and `1+IHT perform best, which again is a result of their non-sparse noise recovery.
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Figure 3.10.: The subfigures represent the error on the relevant entries and the support
identification property by knowledge of k. For more details on the displayed
data we refer to the caption of Figure 3.9. The results were obtained by
Gaussian matrices.

In Figure 3.10 we report the histogram of the mean-value of the errors on the relevant
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3. Some applications of the algorithm

entries: the quantities on the left subfigure are computed as the mean values of ‖x|Sr(x)−
x|∗Sr(x)‖`2 where we suppose to know the number k of the nonzero entries of the original
sparse signal. The right subfigure shows how often the k largest entries of x∗ coincided
with Sr(x). Notice that there might be entries below the threshold r among the k
largest entries of x∗. We conclude that, knowing the number of large entries, IRW`1,
`1-minimization, `1+SLP, and `1+IHT recover the support with nearly 100% success.
In addition, `1+SLP approximates best the magnitudes of the relevant entries.
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Figure 3.11.: The subfigures represent the error on the relevant entries and the support
identification property by knowledge of r. For more details on the displayed
data we refer to the caption of Figure 3.9. The results were obtained by
Gaussian matrices.

In Figure 3.11 we compute again the mean-value of the relevant entries, but this time
without the knowledge of k but the knowledge of r and therefore Sr(x∗): the quantities
on the left subfigure are the mean values of ‖x|Sr(x∗)−x

∗|Sr(x∗)‖`2 . In the right subfigure
we attribute a positive match in case Sr(x∗) = Sr(x) so that the relevant entries of x∗

coincide with the ones of the original signal. By our theory, we expect `1+SLP and
`1+IHT to produce a high rate of success of correctly recovered support. Actually this
is confirmed by the experiments: both methods do a very accurate recovery, as they give
us almost always 100% of the correct result while the other methods perform worse.

Phase transition diagrams To give an even stronger support of the results in the pre-
vious paragraph, we extended the results of Figure 3.11 to a wider range of m and k. In
Figure 3.12 we present phase transition diagrams of success rates in support recovery for
`1-minimization, IRW`1, `1+SLP, and `1+IHT in presence of nearly maximally allowed
noise, i.e., 0.8 = r > η = 0.75.
To produce phase transition diagrams, we varied the dimension of the measurement vec-
tor m = 1, . . . , N with N = 100, and solved 20 different problems for all the admissible
k = #Sr(x) = 1, . . . ,m. We colored black all the points (m, k), with k ≤ m, which
reported 100% of correct support identification, and we gradually reduce the tone up to

83



3. Some applications of the algorithm

ℓ1-minimization

m

k

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

(a)

ℓ1+SLP

m

k

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

(b)

IRWℓ1

m

k

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

(c)

ℓ1+IHT

m

k

20 40 60 80 100

10

20

30

40

50

60

70

80

90

100

(d)

Figure 3.12.: Phase transition diagrams. The black area represents the couple (m, k) for
which we had 100% of support recovery. The results of (a) `1-minimization,
(b) `1+SLP, (c) IRW`1, and (d) `1+IHT are reported. Note that the area
for k > m is not admissible. The red line shows the level bound of 90% of
support recovery, and the magenta line 50% respectively.

white for the 0% result. The level bound of 50% and 90% is highlighted by a magenta
and red line respectively. A visual comparison of the corresponding phase transitions
confirms our previous expectations. In particular, `1+SLP and `1+IHT very signifi-
cantly outperform `1-minimization in terms of correct support recovery. The difference
of both methods towards IRW`1 is less significant but still important. In Figure 3.13 we
compare the level bounds of 50% and 90% among the four different methods. Observe
that the 90% probability bound indicates the largest positive region for `1+IHT, followed
by `1+SLP, and only eventually by IRW`1, while the bounds are much closer to each
other in the case of the 50% bound. Thus, surprisingly, `1+IHT works in practice even
better than `1+SLP for some range of m, and offers the most stable support recovery
results.
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Figure 3.13.: Comparison of phase transition diagrams for `1-minimization (dark blue,
dotted), `1+SLP (red), IRW`1 (green, dash-dotted), and `1+IHT (ma-
genta, dashed). The level bound of 50% and 90% as it is displayed in
Figure 3.12 is compared respectively in (a) and (b).
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4. Quasi-static evolution of cohesive
fracture models

In the previous chapter we have seen that the algorithms introduced in Chapter 2 can be
used to solve minimization problem of various nature, from image denoising to fracture
mechanics. The guarantee of convergence to critical points of the objective functional
given by Algorithm 2.2 and Algorithm 2.4, together with the very mild regularity as-
sumptions, is not only a purely mathematical achievement, but it may also have a
nontrivial relevance in real life problem. In this framework we can naturally find the
quasi-static cohesive fracture evolution introduced in Section 1.2.4.
In this chapter we present two different numerical approaches to the two classes of cohe-
sive fractures: Barenblatt and Dugdale. In Section 4.1 we focus on Barenblatt cohesive
energy functional and we show that by properly selecting the initial guess for Algo-
rithm 2.2 at each time step of a given time discretization scheme, we are able to retrieve
a physical evolution of a Barenblatt cohesive energy. Moreover, inspired by the semi-
nal work of [51], we prove that not only we are able to select the critical point, which
does not necessarily coincide with the global minimizer, that gives a physically sound
evolution of the system, but also that the numerical and discrete, in time and space,
solution obtained with the algorithm converges to the analytic and continuous, in time
and space, one. We further specify that this first section is extracted from the preprint
[13].
In the last part of the chapter, Section 4.2, we deal with a Dugdale energy with a partic-
ular focus on the computational efficiency. As we already observed for the compressive
sensing case, the computational time of Algorithm 2.2 may blow up as soon as the system
dimension grows. Therefore we propose alternative algorithms which perform efficiently
and retrieve as well a feasible solution. Unfortunately, the algorithms presented in this
section, despite being computationally very fast, do not have any convergence guarantee
so far and thus in some application the use of these procedure may fail even if we did
not experienced this undesired situation. Part of the material contained in this section
will also appear, with some extensions, in [20], which is still in preparation.
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4. Quasi-static evolution of cohesive fracture models

4.1. The simulation of quasi-static evolution of a Barenblatt
cohesive model

The reliability of a numerical simulation of a given process is based on the fact that
for a discretization step going to zero the simulation coincides with solution of the
continuous problem. In this section we analyze the discrete-to-continuous convergence
of a quasi-static simulation of a Barenblatt cohesive fracture model obtained by using
the Algorithm 2.2 presented in the Chapter 2. Since the convergence result is indeed
valid in a more general setting than the fracture mechanics, we introduce the theoretical
results considering the following assumptions. We additionally give advance notice that,
as already done in Chapter 2, we need to restrict the domain of the problem to a finite
dimensional space to guarantee the property of closure of the subdifferential of J , which
is indeed needed to prove Theorem 4.5, even if most of the results hold true also in a
continuous setting.
Let us recall the two Euclidean spaces E ' Rn and F ' Rm form ≤ n. We assume we are
given a functional J : E → [0,+∞), a linear operator A : E → F , and a time dependent
forcing or constraint absolutely continuous function f : [0, T ] → F , defined over a time
interval [0, T ] with finite time horizon T > 0. A linearly constrained evolution of critical
points relative to J and the linear constraint pair (A, f) is a bounded measurable time-
dependent map u : [0, T ]→ E , with the following properties

Au(t) = f(t), ran(A∗) ∩ ∂J (u(t)) 6= 0, for almost every t ∈ [0, T ], (4.1)

where ∂J is the subdifferential of J , there exists a bounded measurable function q :
[0, T ]→ F such that A∗q(t) ∈ ∂J (u(t)), and the inequality

J (u(t)) ≤ J (u(0)) +
∫ t

0
〈q(s), ḟ(s)〉Fds, for almost every t ∈ [0, T ], (4.2)

holds, where the scalar product 〈·, ·〉F is the Euclidean one on F . We additionally specify
that in this section we always specify the space in which the norm is understood to ease
the comprehension of the arguments.
We aim to set sufficiently general conditions on the functional J and the linear operator
A which allow to establish existence of linearly constrained evolution of critical points
u satisfying (4.1) and (4.2). For this reason we do not exclude that the convergence
result presented in this section might be also applied to different models than Barenblatt
cohesive fractures.
Beside the generality of the conditions on the energy function J and the linear operator
A which we shall impose to derive the existence of evolutions of critical points, two
additional features of our results should be emphasized:

(i) we stress that u(t) is supposed to visit at different times t critical points of the
cost function J over the affine space A(f(t)) := {v ∈ E : Av = f(t)}. This is
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4. Quasi-static evolution of cohesive fracture models

a rather general request compared to the more common requirement of being a
global minimizer of J over the affine space A(f(t)). Despite the more realistic and
physically sound modeling of evolution along critical points, actually their analysis
is usually more involved and may allow for solutions u measurable in time, but,
unfortunately, not necessarily having any sort of smoothness [51, 77, 154, 155, 209].
While we shall be content with the generality of our approach, we have to live with
the fact that our solutions may not be regular;

(ii) our approach for obtaining linearly constrained evolution of critical points u is
constructive. In particular, as we will emphasize later, the functional J may have
multiple feasible critical points at the same time t. Hence, in order to promote
uniqueness of evolution, or even just their measurability, we need to design a proper
selection principle. Accordingly, by properly choosing the starting guess of Algo-
rithm 2.2 in such a way that the closest - in terms of Euclidean distance - critical
point is selected to the one chosen at the previous instant of time, unless it is en-
ergetically convenient to perform a “jump” to another significantly different phase
of the system. This corresponds to a rather common and well-established behavior
of several physical (and non physical) systems [149, 184, 194, 195]. Summariz-
ing, our evolution u is the result of a constructive machinery, which is designed
to emulate physical principles, according to which a critical point is selected in
terms of a balance between neighborliness (accounting the Euclidean path length
between critical points) and energy convenience. In our view, this feature is re-
ally of great relevance, as it represents a blind black box out of which, through a
process implementable by a computer, physically sound solutions come out;

(iii) as an important remark, we stress that a priori all of the constants appearing
in the technical assumptions in Section 4.1.1 could depend on the dimension of
the considered Euclidean spaces. Thus, our results can be applied to physical
systems that can assume (a discrete or a continuum of) of infinitely many states,
provided all the relevant estimates obtained are dimension free. For this reason,
we explain very clearly which are the parameters that can affect the constants
that come into (see Remark 4.12). Applying the method to cohesive fractures, we
show how an infinite dimensional system can be studied with our method. This, in
particular, gives an alternative proof of the existence of evolution of critical points
for the cohesive fracture model firstly proven in [51]. In addition, we can provide
numerical simulations (see Section 4.1.5).

Let us stress that similar approaches appeared in the recent literature, for instance
[167, 174]. The main difference of the contribution of this chapter with respect to [174]
in that we are mainly concerned with nonsmooth setting, while the cited work consider
only functional with at least C1 regularity. Considering the abstract approach of [167],
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which also applies to infinite dimensions, we instead provide a strategy that is suitable for
numerical purposes and we investigate the relations between discretized and continuous
problems.

4.1.1. Preliminary assumptions

Let J : E → [0,+∞) be a (possibly nonconvex) functional. Consider the linear operator
A : E → F and assume that it has nontrivial kernel and it is surjective. In particular,
this implies that the adjoint operator A∗ : F → E satisfies

|A∗q|E ≥ γ|q|F ∀q ∈ F , (4.3)

for some γ > 0. Let us recall assumption (A0), (A1), and (A2) defined in Section 2.0.5

(A0) the functional v 7−→ J (v) + |Av|2F is coercive;

(A1) there exists ω > 0 such that v 7−→ Jω(v) := J (v) + ω|v|2E is strictly convex;

(A2) there exist K,L > 0 such that, for every v ∈ E , ξ ∈ ∂J (v) =⇒ |ξ|E ′ ≤ KJ (v) +L,

which we assume hold true in this context.

Remark 4.1. If J is globally Lipschitz continuous with Lipschitz constant L, then

ξ ∈ ∂J (v) =⇒ |ξ|E ′ ≤ L, (4.4)

for every v ∈ E.

Additionally, recall that in Remark 2.3 we observed that hypothesis (A1) implies that
J is a smooth perturbation of a convex function and it follows that it is at least Lips-
chitz continuous. Thus, J is differentiable at almost every point, and that its Fréchet
subdifferential is non empty at every point. Furthermore, it suffices to check condition
(A2) only at differentiability points of J , to ensure that it is satisfied at every point.
As an important remark, we stress that in principle all of the constants appearing in the
technical assumptions are allowed to be depending on the dimension of the considered
Euclidean spaces, and then so also the estimates we derive. A priori estimates when the
dimension tends to infinity are to be obtained with different considerations, as we will
show in the concrete example of Section 4.1.3.
We refer to Definition 2.2 for the notion of critical point. Additionally, it is well known
that this condition is necessary for local minimality and it implies the following varia-
tional condition:

0 ≤ lim inf
ε→0

J (v∗ + εw)− J (v∗)
ε

, ∀w ∈ ker(A). (4.5)
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Given ω > 0 such that (A1) holds, and u ∈ E , we denote, as before, by Jω,u : E → [0,∞)
the functional

Jω,u(v) = J (v) + ω|v − u|2E . (4.6)

The time evolution of our system is driven by the time dependent forcing term f :
[0, T ]→ F .
In order to prove the existence of an approximable discrete evolution (its definition
is given in details in Definition 4.4), we shall assume a technical hypothesis which can
replace in some cases requests of higher smoothness for the map J . We warn nevertheless
the reader that this requirement is automatically satisfied, for instance, when J ∈ C1,1,
independently of the given f . On the other hand, we will be able to retrieve this
hypothesis also in some concrete examples, where J /∈ C1,1 (see Section 4.1.3). The
hypothesis we make is then the following

(A3) There exists a positive constant CJ ,ω > 0. Given q1 and q2 such that

A∗qi ∈ ∂Jω,u(vi), i = 1, 2

then it holds

〈q1 − q2, Av1 −Av2〉F ≤ CJ ,ω|v1 − v2|E |Av1 −Av2|F (4.7)

for every v ∈ E .

Remark 4.2. If J ∈ C1,1, ∂J (v) is single valued at every v ∈ E, and it coincides with
the differential DJ (v). Then, denoting by L the Lipschitz constant of DJ and using
(4.3), one has

|q1 − q2|F ≤
1
γ
|A∗q1 −A∗q2|E = 1

γ
|DJ (v1)−DJ (v2)|E ′ ≤

L

γ
|v1 − v2|E .

At this point, (4.7) simply follows by the Cauchy-Schwarz inequality.

Before stating our main result, we give the notion of dicrete and approximable quasi-
static evolution, respectively.

Definition 4.3. Let v0 ∈ E be a critical point of J on the affine space A(f(0)), and
let δ > 0. A discrete quasi-static evolution with time step δ, initial condition v0, and
constraint f is a right-continuous function vδ : [0, T ]→ E such that

• vδ(0) = v0;

• vδ is constant in [0, T ] ∩ [iδ, (i+ 1)δ) for all i ∈ N0 with iδ ≤ T ;

• vδ(iδ) is a critical point of J on the affine space A(f(iδ)) for every i ∈ N with
iδ ≤ T .
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Definition 4.4. Let v0 ∈ E be a critical point of J on the affine space A(f(0)). A
bounded measurable function v : [0, T ] → E is said to be an approximable quasi-static
evolution with initial condition v0 and constraint f , if for every t ∈ [0, T ] there exists a
sequence δk → 0+ (possibly depending on t) and a sequence {vδk}k∈N of discrete quasi-
static evolutions with time step δk, initial condition v0, and constraint f , such that

lim
k→+∞

|vδk(t)− v(t)|E = 0. (4.8)

4.1.2. Existence of approximable quasi-static evolution

We are now ready to state our main result,

Theorem 4.5. Let (4.3), (A0), (A1), (A2), and (A3) be satisfied. Additionally, consider
f ∈W 1,2([0, T ];F), and let v0 be a critical point of J in the affine space A(f(0)). Then,
there exist bounded and measurable functions v : [0, T ]→ E and q : [0, T ]→ F such that:

(a) v is an approximable quasi-static evolution with initial condition v0 and constraint
f ;

(b) A∗q(t) ∈ ∂J (v(t)) for every t ∈ [0, T ];

(c) The function s 7→ 〈q(s), ḟ(s)〉F belongs to L1(0, T ) and for every t ∈ [0, T ] we have

J (v(t)) ≤ J (v0) +
∫ t

0
〈q(s), ḟ(s)〉F ds. (4.9)

In order to prove the theorem, we need some preliminary and auxiliary result. We start
by showing that, under suitable assumptions, an approximable quasi-static evolution is
automatically an evolution of critical points of the energy functional J .

Proposition 4.6. Suppose that (4.3), (A1), and (A2) are satisfied, and consider f ∈
W 1,2([0, T ];F). Let v0 ∈ E be a critical point of J on the affine space A(f(0)), and
let v : [0, T ]→ E be an approximable quasi-static evolution with initial condition v0 and
constraint f . Then, v(t) is a critical point of J on the affine space A(f(t)) for every
t ∈ [0, T ].

Proof. Let {vδk}k∈N be as in (4.8), and let t ∈ [0, T ] be fixed. For every k ∈ N, let ik ∈ N
be such that (to ease the notation, we do not stress the dependence of ik on t)

ikδk ≤ t < (ik + 1)δk.

From the definition of approximate quasi-static evolution we have Avδk(t) = f(ikδk).
Then, by continuity of f and (4.8) we obtain Av(t) = f(t).
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We thus need only to show that ∂J (v(t)) ∩ ran(A∗) 6= ∅. By definition of constrained
critical point, there exists qk ∈ F (note that also qk will, in general, depend on t) such
that

A∗qk ∈ ∂J (vδk(t)) for every k ∈ N. (4.10)

From (A1) it follows that J is locally bounded and therefore, by (4.8), we have

sup
k∈N
J (vδk(t)) < +∞ .

Last relation, together with (4.3), (4.10), and (A2), gives

sup
k∈N
|qk|F ≤

1
γ

sup
k∈N
|A∗qk|E ≤

1
γ

(K sup
k∈N
J (vδk(t)) + L) < +∞ .

Thus, there exists q ∈ F such that, up to subsequences,

lim
k→+∞

|qk − q|F = 0 . (4.11)

From (4.8), (4.10), and (4.11) we get, by the closure property of the subdifferential, that

A∗q ∈ ∂J (v(t)) ,

as required.

To construct an approximate quasi-static evolution, we first introduce an auxiliary min-
imum problem. Let δ ∈ (0, 1) be a fixed time step, and let i ∈ N with iδ ≤ T . Suppose
that vi−1 ∈ E is a critical point of J on the affine space A(f((i− 1)δ)). If property (A1)
is satisfied, we define the sequence {vij}j∈N0 by setting vi0 := vi−1 and

vij := arg min
Av=f(iδ)

{J (v) + ω|v − vij−1|2E : v ∈ E} for every j ∈ N. (4.12)

Remark 4.7. Note that (A1) guarantees that the above minimum is unique.

The following lemma gives some properties of the sequence {vij}j∈N.

Lemma 4.8. Let (4.3), (A0), (A1), and (A2) be satisfied, and let f ∈ W 1,2([0, T ];F).
Let δ ∈ (0, 1) and let i ∈ N with iδ ≤ T . Suppose that vi−1 is a critical point of J on
the affine space A(f((i− 1)δ)), and let {vij}j∈N0 be as in (4.12). Then:

1. {J (vij)}j∈N is a nonincreasing converging sequence;

2. {vij}j∈N is bounded and
lim

j→+∞
|vij − vij−1|E = 0; (4.13)
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3. any limit point of {vij}j∈N is a critical point of J on the affine space A(f(iδ)).

Proof. For every j ≥ 2 we have Avij = Avij−1 = f(iδ), and therefore vij−1 is a competitor
for the minimum problem in (4.12). Thus,

J (vij) ≤ J (vij−1)− ω|vij − vij−1|2E , for every j ≥ 2. (4.14)

In particular, the sequence {J (vij)}j∈N is nonincreasing. Since J ≥ 0, the limit

lim
j→∞

J (vij) =: C ≥ 0 (4.15)

exists and is nonnegative, and this shows 1.. Let now M ∈ N with M > 2. Summing up
relation (4.14) for j = 2, . . . ,M we obtain

M∑
j=2
|vij − vij−1|2E ≤

1
ω

(J (vi1)− J (viM )).

Sending M →∞ we then have
∞∑
j=2
|vij − vij−1|2E ≤

1
ω

(J (vi1)− C) <∞.

In particular, this shows that (4.13) holds true. Note now that, by (4.15), {J (vij)}j∈N
is bounded. Therefore, since |Avij |2F = |f(iδ)|2F for every j ≥ 1, the sequence {J (vij) +
|Avij |2F}j∈N is bounded. By (A0), we have that {vij}j∈N is also bounded, and this con-
cludes the proof of 2..
Let vi ∈ E be a limit point of {vij}j∈N. Up to subsequences, we can assume that

lim
j→∞

vij = vi, in E .

First of all, note that Avi = f(iδ). By (4.12), for every j ∈ N there exists qij ∈ F such
that

A∗qij ∈ ∂J (vij) + 2η(vij − vij−1),

where we used (A.8). The previous relation can also be written as

A∗qij = ξij + 2η(vij − vij−1), (4.16)

for some ξij ∈ ∂J (vij). Note that, since {vij}j∈N is bounded, by (A2) we also have
that {ξij}j∈N is bounded. Thanks to (4.13) and (4.3), this implies that {qij}j∈N is also
bounded. Thus, up to subsequences, we can assume that

lim
j→∞

ξij = ξi in E ′ and lim
j→∞

qij = qi in F ,
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for some ξi ∈ E ′ and qi ∈ F . Passing to the limit in (4.16), thanks to (4.13) we conclude
that

A∗qi = ξi.

By the closure property of subdifferentials we have ξi ∈ ∂J (vi), and thus ∂J (vi) ∩
ran(A∗) 6= ∅.

Remark 4.9. Suppose that vi and zi are two limit points of the sequence {vij}j∈N. By
property (1) of the previous lemma, even if vi 6= zi we have

J (vi) = J (zi).

We state now a direct consequence of the previous lemma.

Corollary 4.10. Let (4.3), (A0), (A1), and (A2) be satisfied, and f ∈ W 1,2([0, T ];F).
Let δ ∈ (0, 1) and let v0 be a critical point of J on the affine space A(f(0)). Set v0 := v0
and, for every i ∈ N with iδ ≤ T , let {vij}j∈N0 be defined by (4.12), and let vi be a limit
point of {vij}j∈N0. Then, the function vδ : [0, T ]→ E defined as

vδ(t) := vi for every t ∈ [0, T ] ∩ [iδ, (i+ 1)δ), for every i ∈ N0 with iδ ≤ T, (4.17)

is a discrete quasi-static evolution with time step δ, initial condition v0, and constraint
f .

A key property of the discrete quasi-static evolution above is that it satisfies an approx-
imate energy inequality, up to an error which vanishes with δ.

Theorem 4.11. Let (4.3), (A0), (A1), (A2), and (A3) be satisfied, and additionally
consider f ∈ W 1,2([0, T ];F). Let δ ∈ (0, 1) and let v0 be a critical point of J on the
affine space A(f(0)). Let vδ : [0, T ] → E be the discrete quasi-static evolution with
time step δ, initial condition v0, and constraint f given by (4.17). Then, there exist a
piecewise constant right-continuous function qδ : [0, T ] → F and positive constants C1,
C2 and C3, independent of δ, such that

(i) A∗qδ(t) ∈ ∂J (vδ(t)) for every t ∈ [0, T ];

(ii) |qδ(t)|E ≤ C1 and |vδ(t)|F ≤ C2 for every t ∈ [0, T ];

(iii) for every t ∈ [0, T ]

J (vδ(t)) ≤ J (v0) +
∫ t

0
〈qδ(s), ḟ(s)〉F ds+ C3

√
δ.
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Remark 4.12. More precisely, as it appears by a careful reading of the proof of Theorem
4.11, we have

C1 = C1(γ,K,L, ω,CJ ,ω, ‖ḟ‖L2((0,T );F)) and C3 = C3(γ,K,L, ω,CJ ,ω, ‖ḟ‖L2((0,T );F)).

Instead, concerning the constant C2,

C2 = C2(γ,K,L, ω,CJ ,ω, ‖f‖L∞((0,T );F), ‖ḟ‖L2((0,T );F),J ).

The dependence on J above has to be intended in the sense of the coercivity assumption
(A0). Therefore, if assumptions (4.3), (A1), (A2), and (A3) are satisfied by a family of
functions {Jκ}κ, (with the same A, f , γ, ω, and CJ ,ω for all κ) and, in addition, the
functonals v 7−→ Jκ(v) + |Av|2F are equicoercive, then the constant C2 is the same for
all the family {Jκ}κ.

Proof. Since vδ is a discrete quasi-static evolution, for every i ∈ N with iδ ≤ T there
exists qi ∈ F such that A∗qi ∈ ∂J (vδ(iδ)). Then, if we define qδ : [0, T ]→ F as

qδ(t) := qi for all t ∈ [0, T ] ∩ [iδ, (i+ 1)δ), for all i ∈ N0 with iδ ≤ T,

property (i) is satisfied. We now divide the remaining part of the proof into three steps.

Step 1: We show that there exists a constant M , depending only on ω and CJ ,ω, such
that

J (vδ(iδ)) ≤ J (vδ((i− 1)δ)) +
∫ iδ

(i−1)δ
〈qδ(s), ḟ(s)〉F ds+Mδ

∫ iδ

(i−1)δ
|ḟ(s)|2F ds, (4.18)

for every i ∈ N with iδ ≤ T .
To this aim, let i ∈ N with iδ ≤ T be fixed, and let {vij}j∈N be the sequence defined by
(4.12). By property (A1), the functional Jω,vi0 is strictly convex. Therefore, whenever
ξ ∈ ∂Jω,vi0(vi1), we have

Jω,vi0(v) ≥ Jω,vi0(vi1) + 〈ξ, v − vi1〉E ′,E for every v ∈ E .

In particular, choosing v = vi0 and recalling the definition of Jω,vi0 we have

J (vi0) ≥ J (vi1) + ω|vi1 − vi0|2E + 〈ξ, vi0 − vi1〉E ′,E for every ξ ∈ ∂Jω,vi0(vi1). (4.19)

By (4.12), vi1 is the global minimizer of Jω,vi0 on A(f(iδ)). Therefore, there exists ri ∈ F
such that A∗ri ∈ ∂Jω,vi0(vi1) so that, by (4.19),

J (vi0) ≥ J (vi1) + ω|vi1 − vi0|2E + 〈A∗ri, vi0 − vi1〉E ′,E .
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Therefore, by the absolute continuity of f , and recalling that qδ is constant in the interval
[(i− 1)δ, iδ), we have

ω|vi1 − vi0|2E + J (vi1)− J (vi0) ≤ 〈A∗ri, vi1 − vi0〉E ′,E
= 〈A∗ri −A∗qδ((i− 1)δ), vi1 − vi0〉E ′,E + 〈A∗qδ((i− 1)δ), vi1 − vi0〉E ′,E
= 〈ri − qδ((i− 1)δ), Avi1 −Avi0〉F + 〈qδ((i− 1)δ), Avi1 −Avi0〉F (4.20)

= 〈ri − qδ((i− 1)δ), Avi1 −Avi0〉F +
∫ iδ

(i−1)δ
〈qδ((i− 1)δ), ḟ(s)〉F ds,

where we used the fact that Avi1 = f(iδ) and Avi0 = f((i − 1)δ). Observe now that,
by definition of qδ, we have A∗qδ((i − 1)δ) ∈ ∂J (vδ((i − 1)δ)). Thus, recalling that
vδ((i− 1)δ) = vi−1 = vi0, we obtain

A∗qδ((i− 1)δ) ∈ ∂J (vi0) = ∂Jω,vi0(vi0).

Then, recalling that A∗ri ∈ ∂Jω,vi0(vi1), by property (A3) we achieve

〈ri − qδ((i− 1)δ), Avi1 −Avi0〉F ≤ CJ ,ω|vi1 − vi0|E |Avi1 −Avi0|F

which, together with (4.20), gives

ω|vi1 − vi0|2E + J (vi1)− J (vi0)

≤ CJ ,ω|vi1 − vi0|E |f(iδ)− f((i− 1)δ)|F +
∫ iδ

(i−1)δ
〈qδ(s), ḟ(s)〉F ds.

Using Young’s and Hölder’s inequality, we get

J (vi1) ≤ J (vi0) +M |f(iδ)− f((i− 1)δ)|2F +
∫ iδ

(i−1)δ
〈qδ(s), ḟ(s)〉F ds

= J (vi0) +M

∣∣∣∣∣
∫ iδ

(i−1)δ
ḟ(s) ds

∣∣∣∣∣
2

F
+
∫ iδ

(i−1)δ
〈qδ(s), ḟ(s)〉F ds (4.21)

≤ J (vi0) +Mδ

∫ iδ

(i−1)δ
|ḟ(s)|2F ds+

∫ iδ

(i−1)δ
〈qδ(s), ḟ(s)〉F ds,

for a suitable constant M > 0 (depending only on ω and CJ ,ω), where we also used the
fact that f ∈ W 1,2([0, T ];F). Recalling that J (vij) ≤ J (vi1) for all j ≥ 2, by (4.17) and
property (1) of Lemma 4.8, we have

J (vδ(iδ)) = J (vi) = lim
j→∞

J (vij) ≤ J (vi1).

Taking into account last inequality, and recalling that vi0 = vi−1 = vδ((i− 1)δ), relation
(4.21) gives (4.18).
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Step 2: We prove (ii). Let t ∈ [0, T ] be fixed, and let ı ∈ N be such that

ıδ ≤ t < (ı+ 1)δ.

Adding up relation (4.18) for i = 1, . . . , ı, and recalling that vδ(t) = vδ(ıδ), we obtain

J (vδ(t)) ≤ J (v0) +
∫ ıδ

0
〈qδ(s), ḟ(s)〉F ds+Mδ

∫ T

0
|ḟ(s)|2F ds. (4.22)

From (4.3) and (A2) we have

|qδ(s)|F ≤
1
γ
|A∗qδ(s)|E ≤

K

γ
J (vδ(s)) + L

γ
for all s ∈ [0, T ]. (4.23)

Therefore, (4.22) gives

J (vδ(t)) ≤ J (v0) + K

γ

∫ t

0
J (vδ(s))|ḟ(s)|F ds+ L

γ

∫ t

0
|ḟ(s)|F ds+Mδ

∫ T

0
|ḟ(s)|2F ds.

Thus, from Gronwall’s inequality

sup
δ∈(0,1)
t∈[0,T ]

J (vδ(t)) ≤ K1, (4.24)

for some positive constant K1 = K1(γ,K,L, ω,CJ ,ω, ‖ḟ‖L2((0,T );F)). Then, from (4.23)
and (4.24) we have

sup
δ∈(0,1)
t∈[0,T ]

|qδ(t)|F ≤ C1,

for some positive constant C1 = C1(γ,K,L, ω,CJ ,ω, ‖ḟ‖L2((0,T );F)). Thus,

sup
δ∈(0,1)
t∈[0,T ]

(
J (vδ(t)) + |Avδ(t)|2E

)
≤ sup

δ∈(0,1)
t∈[0,T ]

(
J (vδ(t)) + ‖f‖2L∞((0,T );F)

)
< K2,

for some positive constantK2 = K2(γ,K,L, ω,CJ ,ω, ‖ḟ‖L2((0,T );F), ‖f‖L∞((0,T );F)). Tak-
ing into account (A0), last inequality implies that

|vδ(t)|E ≤ C2, for every δ ∈ (0, 1) and t ∈ [0, T ],

with a constant C2 that also depends on the coercivity of the function v 7→ J (v)+ |Av|2E ,
see Remark 4.12.
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Step 3: We show (iii). From (4.22) and Hölder’s inequality, taking into account that
δ ∈ (0, 1)

J (vδ(t)) ≤ J (v0) +
∫ ıδ

0
〈qδ(s), ḟ(s)〉F ds+Mδ‖ḟ‖2L2((0,T );F)

= J (v0) +
∫ t

0
〈qδ(s), ḟ(s)〉F −

∫ t

ıδ
〈qδ(s), ḟ(s)〉F ds+Mδ‖ḟ‖2L2((0,T );F)

≤ J (v0) +
∫ t

0
〈qδ(s), ḟ(s)〉F + C1

√
δ‖ḟ‖L2((0,T );F) +M

√
δ‖ḟ‖2L2((0,T );F)

= J (v0) +
∫ t

0
〈qδ(s), ḟ(s)〉F +

√
δ
(
C1‖ḟ‖L2((0,T );F) +M‖ḟ‖2L2((0,T );F)

)
,

which gives (iii).

Before giving the proof of Theorem 4.5, we need the following result (see [74, Lemma
3.6]).

Lemma 4.13. Let X be a compact metric space. Let p : [0, T ]→ R, pk : [0, T ]→ R and
fk : [0, T ]→ X be measurable functions, for every k ∈ N. For every t ∈ [0, T ] let us set

I(t) := {x ∈ X : ∃ kj → +∞ such that x = lim
j→+∞

fkj (t) and p(t) = lim
j→∞

pkj (t)}.

Then

• I(t) is closed for all t ∈ [0, T ];

• for every open set U ⊆ X the set {t ∈ [0, T ] : I(t) ∩ U 6= ∅} is measurable.

We conclude this section with the proof of Theorem 4.5. We acknowledge F. Cagnetti
for being the main contributor to this result.

Proof of Theorem 4.5. We divide the proof into several steps.

Step 1: Proof of (a) and (b).

For every δ ∈ (0, 1), let qδ : [0, T ] → F and vδ : [0, T ] → E be given by Theorem 4.11.
Let Λ ⊂ [0, T ] be such that L1(Λ) = 0 and ḟ(t) is well defined for every t ∈ [0, T ] \ Λ.
We fix a sequence {δk}k∈N such that δk → 0+ and define

ηk(t) :=

〈qδk(t), ḟ(t)〉F for every t ∈ [0, T ] \ Λ,

0 for every t ∈ Λ,

and
η(t) := lim sup

k→∞
ηk(t) for every t ∈ [0, T ].
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By definition of θ, for every t ∈ [0, T ] we can extract a subsequence {δkj}j∈N (possibly
depending on t) such that

η(t) = lim
j→∞

ηkj (t) for every t ∈ [0, T ].

By (ii) of Theorem 4.11, we have

|qδ(t)|F ≤ C1, |vδ(t)|E ≤ C2, for every δ ∈ (0, 1) and t ∈ [0, T ].

Thus, for every t ∈ [0, T ] we can extract a further subsequence (not relabelled) such that

lim
j→∞

vδkj (t) = v(t) in E and lim
j→∞

qδkj (t) = q(t) in F ,

for some v(t) ∈ E and q(t) ∈ F with |q(t)|F ≤ C1 and |v(t)|E ≤ C2. Let us now show
that, for every t ∈ [0, T ], we can choose the subsequence {kj}j∈N in such a way that the
maps q : [0, T ]→ F and v : [0, T ]→ E are measurable.
Let us denote by BFC1 (BEC2) the closed ball of F (E) with center at the origin and radius
C1 (C2). Applying Lemma 4.13 with X = BFC1 × B

E
C2 , fk = (qδk , vδk) and pk = ηk, we

have that

• I(t) is closed for all t ∈ [0, T ],

• for every open set U ⊆ X the set {t ∈ [0, T ] : I(t) ∩ U 6= ∅} is measurable,

where the set I(t) is given by

I(t) := {(q(t), v(t)) ∈ BFC1 ×B
E
C2 : ∃ kj → +∞ such that

(q(t), v(t)) = lim
j→+∞

(qδkj (t), vδkj (t)) and η(t) = lim
j→∞

ηkj (t)}.

Thanks to [57, Theorem III.6], for every t ∈ [0, T ] we can select (q(t), v(t)) ∈ BFC1 ×B
E
C2

such that t → (q(t), v(t)) is measurable. Thus, (a) is proven. Finally, by repeating the
arguments used in the proof of Proposition 4.6 we obtain (b).

Step 2: Proof of (c). Observe that, for every t ∈ [0, T ] \ Λ,

η(t) = lim sup
k→∞

ηk(t) = lim
j→∞

ηkj (t) = lim
j→∞
〈qδkj (t), ḟ(t)〉F = 〈q(t), ḟ(t)〉F .

Let us now show that θ ∈ L1(0, T ). Since θ is the lim sup of measurable functions, we
deduce that it is measurable. Moreover, we have∫ T

0
|η(t)| dt =

∫ T

0
|〈q(t), ḟ(t)〉F | dt ≤ C1

∫ T

0
|ḟ(t)|F dt ≤ C1

√
T ‖ḟ‖L2((0,T );F).
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In order to get the energy inequality, recall that by (iii) of Theorem 4.11 we have, for
every j ∈ N,

J (vδkj (t)) ≤ J (v0) +
∫ t

0
〈qδkj (s), ḟ(s)〉F ds+ C3 δ

1/2
kj
.

Taking the lim sup in j of the previous expression, using Fatou’s Lemma

J (v(t)) = lim
j→∞

J (vδkj (t)) ≤ J (v0) + lim sup
j→∞

∫ t

0
〈qδkj (s), ḟ(s)〉 ds

≤ J (v0) + lim sup
k→∞

∫ t

0
〈qδk(s), ḟ(s)〉F ds ≤ J (v0) +

∫ t

0
lim sup
k→∞

〈qδk(s), ḟ(s)〉F ds

= J (v0) +
∫ t

0
〈q(s), ḟ(s)〉F ds,

so that (c) follows.

Remark 4.14. A careful inspection of the proof of Theorem 4.5 shows that

|q(t)|E ≤ C1 and |v(t)|E ≤ C2 for every t ∈ [0, T ],

where C1 and C2 are given by Theorem 4.11.

4.1.3. An application to a Barenblatt cohesive fracture model

In this section we introduce a specific Barenblatt cohesive fracture model that we use in
the following to numerically support the theoretical results on approximable quasi-static
evolution introduced in the previous section. In particular, we choose the fracture energy
introduced by F. Cagnetti in [51] and we restrict to the case of the antiplanar shear. In
the work cited above, the author studies the quasi-static evolution of the system along
critical points of the energy functional which may not coincide with the global minimizer.
Let us now introduce the setting and the notation we use in the following. The domain
Ω is a bounded open set in Rd with Lipschitz boundary. We denote as usual with
u : Ω→ R the displacement function and we assume that the crack path in the reference
configuration is contained in Γ ∩ Ω̄, where Γ ⊂ Rd is a Lipschitz closed set such that
0 < Hd−1(Γ ∩ Ω̄) < ∞ representing the prescribed crack path and Ω \ Γ = Ω+ ∪ Ω−,
with Ω+ and Ω− disjoint open connected sets with Lipschitz boundary. In the following
and exclusively for simplicity of definition of a space discretization, we shall consider
Ω to be a cube in Rd for d = 1 and d = 2. We shall also consider a time dependent
displacement g ∈ H1((0, T ), H1(Ω)) imposed on a fixed portion ∂DΩ of the boundary of
Ω, assumed to be well-separated from Γ and with intersections with ∂Ω+ and ∂Ω− of
positive (d− 1)-dimensional measure.
We recall that the energy of the system related to cohesive fracture models is of the type

E(u) = 1
2

∫
Ω\Γ
|∇u|2 dx+ κ

∫
Γ
θ(|u+ − u−|)dHd−1, (4.25)
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where κ is a material parameter and we set it to 1 in the following theoretical analysis.
In particular, the displacement function u ∈ H1(Ω\Γ), while u+ and u− denote the trace
on Γ of the restriction of u respectively to Ω+ and to Ω−, and θ : [0,∞)→ [0,∞) is the
cohesive fracture function. Notice that, to ease the notation, we substitute u+−u− with
the shorter form [[u]] if the quantity of interest is the jump amplitude. In particular, we
recall that Barenblatt models prescribe in general, θ to be a C1, nondecreasing, bounded,
concave fracture function with activation energy θa = 0 and σ := θ′(0+) ∈ (0,+∞). For
the specific model we choose, the function θ is defined as follows

θ(s) =


− s2

2R + s if 0 ≤ s < R,

R

2 if s ≥ R,
(4.26)

where R > 0 is a parameter which influences the crack formation mode.
Since we are interested in the study of a quasi-static evolution, we need to prove that an
evolution of the system along configurations, which are also critical points of the energy
functional, exists. One of the techniques used to prove its existence is called singular
perturbation method. Let us introduce a generic time-dependent function F (u, t) defined
for u in a Banach space X for t ∈ [0, T ]. An evolution of critical points is a function
u : [0, T ]→ X satisfying

0 ∈ ∂uF (u(t), t), for a.e. t ∈ [0, T ]. (4.27)

Such evolution exists if for every ε > 0 it is possible to introduce an ε-gradient flow

−εu̇ε ∈ ∂uF (uε(t), t) (4.28)

with initial datum uε(t) = u0 where u0 is a critical point of F (·, 0) and under suitable
regularity assumptions, as ε → 0, the solutions uε converge (in a sense to be specified)
to a function u such that (4.27).
This method specifies for the case of cohesive fracture models as follows. We shall apply
the previous scheme for X = L2(Ω) and

F (u, t) =
{
E(u) for u ∈ H1(Ω \ Γ), u = g(t) on ∂DΩ,
+∞ otherwise in L2(Ω),

where E is the functional in (4.25). We start observing that a minimizer of (4.25) at
the time t is a weak solution ([51, Proposition 3.2]) of

∆u(t) = 0 in Ω \ Γ,
u(t) = g(t) on ∂DΩ,
∂νu(t) = 0 on ∂Ω \ ∂DΩ,
∂νu

+(t) = ∂νu
−(t) on Γ,

|∂νu| ≤ 1 on Γ \ Ju(t),

∂νu = θ′([[u(t)]]) sign([[u(t)]]) on Ju(t),

(4.29)
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where ν denotes the inner unit normal to Ω, to Ω+, and to Ω−, and Ju := {x ∈
Γ : [[u(x)]] 6= 0}. Let u0 be a critical point of (4.25) at the time t = 0. It turns
out that a solution uε of (4.28) is given by a weak solution uε ∈ H1((0, T );L2(Ω)) ∩
L∞(((0, T );H1(Ω \ Γ)) of

∆uε(t) = εu̇ε(t) in Ω \ Γ,
uε(t) = g(t) on ∂DΩ,
∂νu

ε(t) = 0 on ∂Ω \ ∂DΩ,
∂νu

ε(t)|Ω+ = ∂νu
ε
|Ω+(t) on Γ,

|∂νuε| ≤ 1 on Γ \ Juε(t),
∂νu

ε = θ′([[uε(t)]]) sign([[uε(t)]]) on Juε(t).

(4.30)

The existence of a solution of (4.30) is proved ([51, Theorem 4.8]) by time discretization,
solving suitable incremental minimum problems. Uniqueness is proven for sufficiently
smooth θ. In [51, Proposition 4.13] it is shown that given a family {uε : ε ∈ (0, 1)}
of solutions of (4.30) with initial condition u0 and a boundary datum g, there exists
a bounded measurable u : [0, T ] → H1(Ω \ Γ) with u(0) = u0 such that the following
properties hold

• approximability: for every t ∈ [0, T ] there exists a sequence εn → 0 such that

uεn(t) ⇀ u(t) weakly in H1(Ω \ Γ);

• stationarity: for a.e. t ∈ [0, T ] the function u(t) is a critical point for E at the time
t, in particular, u(t) is weak solution of (4.29) in the following sense: u(t) = g(t)
on ∂DΩ and∫

Ω\Γ
∇u · ∇ψdx+

∫
Γ

(
[[ψ]]θ′(|[[u]]|) sign([[u]])1Ju(t) + |[[ψ]]|1Jc

u(t)

)
dHd−1 ≥ 0, (4.31)

for all ψ ∈ H1
0 (Ω \ Γ, ∂DΩ);

• energy inequality: for every t ∈ [0, T ]

E(u(t)) ≤ E(u(0)) +
∫ t

0

∫
Ω\Γ
∇u(s) · ∇ġ(s)dxds.

The discrete version of the model

In view of the applications of the theoretical results to the model just introduced, we
need a finite dimensional version of the energy functional E in (4.25). To focus on the
main ideas of our approach, we keep the formulation as clear as possible, considering a
very simple geometry.
Let d = 2 and ` > 0 be fixed, and define

Ω := (0, 2`)2, Ω− := (0, `)× (0, 2`), Ω+ := (`, 2`)× (0, 2`), Γ := {`}× [0, 2`].
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We will study a fracture evolution where the deformation is imposed on the set

∂DΩ := ({0} × [0, 2`]) ∪ ({2`} × [0, 2`]) .

Given a discretization parameter N ∈ N, we set h := `

N
, and we introduce a conform

triangulation Th of the set Ω \ Γ, as in Figure 4.1.

Γ

j = 0

j = 2N

i = 0 i = 2N

Figure 4.1.: Discrete geometry of the problem.

In particular, we define Eh as the finite dimensional space of continuous functions that
are affine on each triangle belonging to Th. More precisely, we set

Eh := {u ∈ C(Ω \ Γ) ∩H1(Ω \ Γ) : ∇hu = const. a.e. on T, for every T ∈ Th} ,

where the discrete gradient ∇h is computed with a first order finite difference scheme
[192]. Notice that the functions in the space Eh may be discontinuous in Γ and thus the
interface between Ω+ and Ω− must be opportunely designed attributing two degrees of
freedom to each point in Γ. Additionally, we define Eregh as the set of functions of Eh
that do not jump across Γ:

Eregh := Eh ∩H1(Ω).

We endow Eh with the induced norm of H1(Ω \ Γ)

|u|2Eh :=
∫

Ω
u2 dx+

∫
Ω\Γ
|∇u|2 dx u ∈ Eh,

and we denote with 〈u1, u2〉Eh the scalar product. Whenever we do not identify the dual
space Eh′ with Eh, we will use the notation 〈·, ·〉Eh′,Eh for the duality pairing. Throughout
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this section, we convene that the equality

ξ = v

where ξ ∈ Eh′ and v ∈ Eh, is meant in sense of the Riesz isometry. We define the discrete
version of the energy functionals E and Ee respectively by

Eh := E |Eh , Ee,h := Ee |Eh .

We denote by Ah the operator which associates to every function of Eh its trace on
∂DΩ, and we set Fh := Ah(Eh). Note that Fh is closed, since Eh is finite dimensional.
Therefore, Fh endowed with the induced scalar product 〈·, ·〉Fh is a Hilbert subspace of
H1/2(∂DΩ).
We finally observe that, applying [217, Lemma 4.1.3] to our setting, we obtain the
following version of Poincaré inequality:

‖u− uD‖L2(Ω) ≤ C‖∇u‖L2(Ω\Γ) for every u ∈ Eh,

where the constant C depends on Ω and ∂DΩ, and

uD :=
(
−
∫
∂DΩ

u2 dH1
)1/2

.

The previous inequality in particular implies that

‖u‖L2(Ω) ≤ uD + C‖∇u‖L2(Ω\Γ) ≤ C
(
|Ahu|Fh + ‖∇u‖L2(Ω\Γ)

)
for every u ∈ Eh,

(4.32)
where with C we denote different constants, all depending on Ω and ∂DΩ. We conclude
this subsection with an important remark that will be used later.

Remark 4.15. Let v ∈ Eh, w ∈ Ehreg, and let ξ ∈ ∂Eh(v). Then, from the definition of
subdifferential and direct computation, one can check that the action of ξ on w coincides
with the action of the Fréchet differential ∂Ee,h(v) on w. In formulas:

〈ξ, w〉Eh′,Eh = 〈∂Ee,h(v), w〉Eh′,Eh .

We show now that the functional Eh satisfies the assumptions of Theorem 4.5.

Assumptions (A0)–(A3) are satisfied by Eh and Ah

First of all, we start by observing that condition (A0) is satisfied, by using standard
arguments of calculus of variations.

Proposition 4.16. The functional

Eh 3 v 7−→ Eh(v) + |Ahv|2Eh

is coercive.
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Proof. Let C > 0 be fixed, and let {vk}k∈N ⊂ Eh be a sequence such that

Eh(vk) + |Ahvk|2Eh ≤ C.

Then, recalling the expression of Eh and thanks to Poincaré inequality (4.32), we have

|vk|2Eh ≤ C,

for some new constant, still denoted by C, depending on Ω, ∂DΩ. Then, there exists a
subsequence {vkj}j∈N and a function v ∈ Eh such that

vkj ⇀ v weakly in Eh.

Since Eh is finite dimensional, this implies that

vkj → v in Eh,

and this concludes the proof.

We now show that condition (A1) is satisfied.

Proposition 4.17. There exists ω > 0 such that the function

u 7−→ Eh(u) + ω|u|2Eh

is strictly convex.

Proof. We divide the proof into several steps.

Step 1. We show that there exists µ > 0 such that the function pµ : R→ R given by

pµ(s) := θ(|s|) + µs2, s ∈ R, (4.33)

is strictly convex. To this aim, we need to find µ such that the second distributional
derivative p′′µ of pµ is a positive Radon measure. Recalling the definition of θ, we have

pµ(s) =


|s|+

(
µ− 1

2R

)
s2 if 0 ≤ |s| < R,

R

2 + µs2 if |s| ≥ R,

The distributional derivative p′µ of pµ is given by

p′µ(s) =



−1 +
(

2µ− 1
R

)
s if −R < s < 0,

1 +
(

2µ− 1
R

)
s if 0 < s < R,

2µs if |s| ≥ R.
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Note that p′µ ∈ L1
loc(R). We can then calculate the second distributional derivative p′′µ

of pµ, which is the Radon measure in R given by

p′′µ =
(

2µ− 1
R

)
L1b(−R,R)+2µL1b(−∞,−R)∪(R,∞)+2δ0,

where δ0 represents the Dirac measure concentrated at the origin. Note that

p′′µ(B) ≥
(

2µ− 1
R

)
L1(B), for every Borel set B ⊂ R.

Thus, if we choose µ such that
µ >

1
2R, (4.34)

p′′µ is a positive Radon measure on R, and pµ is convex.

Step 2. We show that the functional Eh : Eh → [0,∞) given by

Eh(u) := Eh(u) + µ

∫
Γ
|[[u]]|2 dH1,

is convex. By the previous step, the function rµ : Gh → [0,∞) defined as

rµ([[u]]) :=
∫

Γ
θ(|[[u]]|) dH1 + µ

∫
Γ
|[[u]]|2 dH1

is convex, where Gh is the subset of L2(Γ) given by

Gh := {[[u]] : u ∈ Eh}.

Note now that
Eh(u) = Ee,h(u) + rµ(|[[u]]|),

where Ee is the elastic energy. From the fact that Ee,h : Eh → [0,∞) is convex, we then
obtain that also Eh : Eh → [0,∞) is convex.

Step 3: conclusion. By [51, Lemma 5.3], there exists a constant C > 0 such that∫
Γ
|[[u]]|2 dH1 ≤ C |u|2Eh . (4.35)

Taking ω > µC we have

Eh(u) + ω|u|2Eh = Eh(u) + µ

∫
Γ
|[[u]]|2 dx2︸ ︷︷ ︸

Eh(u)

+µ
(
C |u|2Eh −

∫
Γ
|[[u]]|2 dx2

)
︸ ︷︷ ︸

Ẽh(u)

+(ω − µC)|u|2Eh .

We have already proven that Eh is convex. On the other hand, Ẽh is a quadratic form
which is positive semidefinite by (4.35), and thus is convex. Since the remaining term
(ω − µC)|u|2Eh is strictly convex, this concludes the proof of (A1).
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Before passing to the proof of (A2) we need some preliminary results. First, we make
a few remarks on the regularity of the elastic part and on the crack part of the energy
functional.

Remark 4.18. Note that Ee,h ∈ C1,1(Eh). In particular, ∂Ee,h : Eh → E ′h is a single-
valued Lipschitz function with Lipschitz constant 1. Indeed, we have

〈∂Ee,h(w), v〉E ′
h
,Eh =

∫
Ω\Γ
∇w · ∇v dx for every w, v ∈ Eh. (4.36)

Then, for every w1, w2, v ∈ Eh

|∂Ee,h(w1)− ∂Ee,h(w2)|E ′
h

= sup
{∫

Ω\Γ
(∇w1 −∇w2) · ∇v dx, v ∈ Eh with |v|Eh = 1

}
≤ sup

{
‖∇w1 −∇w2‖L2(Ω\Γ)‖∇v‖L2(Ω\Γ), v ∈ Eh with |v|Eh = 1

}
≤ sup {|w1 − w2|Eh |v|Eh , v ∈ Eh with |v|Eh = 1}
≤ |w1 − w2|Eh .

Since ∂Ee,h(0) = 0, this implies

|∂Ee,h(w)|E ′
h
≤ |w|Eh , for every w ∈ Eh. (4.37)

Remark 4.19. From the previous remark, it also follows that

|∂Ee,h(w1)− ∂Ee,h(w2)|E ′
h
≤ ‖∇w1 −∇w2‖L2(Ω\Γ) for every w1, w2 ∈ Eh.

Remark 4.20. The functional Gh : Eh → [0,∞) defined as

Gh(v) :=
∫

Γ
θ(|[[v]]|) dH1.

is globally Lipschitz continuous. Indeed, for every v1, v2 ∈ Eh we have

|Gh(v1)−Gh(v2)| ≤
∫

Γ
|θ(|[[v1]]|)− θ(|[[v2]]|)| dH1 ≤

∫
Γ

∣∣|[[v1]]| − |[[v2]]|
∣∣ dH1

≤
∫

Γ

∣∣[[v1]]− [[v2]]
∣∣ dH1 =

∫
Γ

∣∣[[v1 − v2]]
∣∣ dH1

≤
(
H1(Γ)

)1/2
‖[[v1 − v2]]‖L2(Γ) ≤ C

(
H1(Γ)

)1/2
|v1 − v2|Eh ,

where C is given by (4.35), and we used the fact that ‖θ′‖L∞([0,∞)) = 1.

Next proposition shows condition (A2).

Proposition 4.21. Eh satisfies condition (A2).
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Proof. Note that
Eh(u) = Ee,h(u) +Gh(u),

where Gh : Eh → [0,∞) is defined in Remark 4.20. Let now v ∈ E . By (A.8), every
ξ ∈ ∂J (v) can be written as

ξ = ξ1 + ξ2,

where ξ1 ∈ ∂Ee,h(v), and ξ2 ∈ ∂Gh(v). By Remark 4.19 we have

|ξ1|E ′
h
≤ ‖∇v‖L2(Ω\Γ) ≤ 1 + ‖∇v‖2L2(Ω\Γ) ≤ 2(1 + Eh(v)).

On the other hand, thanks to Remark 4.20 Gh is globally Lipschitz continuous with
Lipschitz constant C

(
H1(Γ)

)1/2
. Therefore, by (4.4)

|ξ2|E ′
h
≤ C

(
H1(Γ)

)1/2
.

Thus,
|ξ|E ′

h
≤ |ξ1|E ′

h
+ |ξ2|E ′

h
≤ 2Eh(v) + 2 + C

(
H1(Γ)

)1/2
.

Next lemma will be used to prove (A3), and gives a bound on the norm of a regular
critical point, in terms of its trace on ∂DΩ.

Lemma 4.22. Let w ∈ Ehreg, let f ∈ Fh be such that Ahw = f , and suppose ∂Ee,h(w) ∈
ran(A∗). Then, there exists a positive constant C = C(Ω, γ) such that

|w|Eh ≤ C|f |Fh . (4.38)

Proof. By (4.32) and (4.36)

|w|2Eh = ‖w‖2L2(Ω) + ‖∇w‖2L2(Ω\Γ) ≤ C
(
|Ahw|2Fh + ‖∇w‖2L2(Ω\Γ)

)
(4.39)

= C
[
|f |2Fh + 〈∂Ee,h(w), w〉Eh′,Eh

]
, (4.40)

where C denotes different constants, depending only on Ω and ∂DΩ. Let now q ∈ Fh be
such that A∗hq = ∂Ee,h(w). Then,

|∂Ee,h(w)|E ′
h

= |A∗hq|Eh ≥ γ|q|Fh .

Thus, taking into account (4.37) we have

〈∂Ee,h(w), w〉Eh′,Eh = 〈A∗hq, w〉Eh = 〈q, Ahw〉Fh = 〈q, f〉Fh ≤ |q|Fh |f |Fh

≤ 1
γ
|∂Ee,h(w)|E ′

h
|f |Fh ≤

1
γ
|w|Eh |f |Fh .

Using (4.39), we obtain

|w|2Eh ≤ C
[
|f |2Fh + 1

γ
|w|Eh |f |Fh

]
.

From the previous relation, the thesis follows using Young inequality.
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We can finally prove (A3).

Proposition 4.23. Let v1, v2, v ∈ Eh and q1, q2, f1, f2 ∈ Fh be such that

Ahvi = fi, A∗hqi ∈ ∂(Eh)ω,v(vi), i = 1, 2,

where ω is given by Proposition 4.17. Then, there exists C > 0, depending only on Ω
and ∂DΩ such that

〈q1 − q2, Ahv1 −Ahv2〉Fh ≤ C|v1 − v2|Eh |Ahv1 −Ahv2|Fh .

Proof. Let w be the unique solution of the following minimization problem:

w = arg min
v∈Ereg

h

{Ee,h(v) : Ah(v) = f1 − f2} . (4.41)

By Remark 4.15 we have

〈ξi, w〉Eh′,Eh = 〈∂Ee,h(vi), w〉Eh′,Eh i = 1, 2.

Now, by definition of (Eh)ω,v and (A.8), there exist ξi ∈ ∂Eh(vi), with i = 1, 2 such that

A∗hqi − 2ω(vi − v) = ξi, i = 1, 2.

Subtracting term by term we obtain

A∗h(q1 − q2)− 2ω(v1 − v2) = ξ1 − ξ2.

Thus, thanks to Remark 4.18

〈q1 − q2, Ahv1 −Ahv2〉Fh = 〈q1 − q2, f1 − f2〉Fh = 〈q1 − q2, Ah(w)〉Fh
= 〈A∗h(q1 − q2), w〉Eh = 〈ξ1 − ξ2, w〉Eh′,Eh + 2ω〈v1 − v2, w〉Eh
= 〈∂Ee,h(v1)− ∂Ee,h(v2), w〉Eh′,Eh + 2ω〈v1 − v2, w〉Eh
≤ (1 + 2η)|w|Eh |v1 − v2|Eh ≤ C(1 + 2η)|f1 − f2|Fh |v1 − v2|Eh ,

where we also used the fact that w satisfies the assumptions of Lemma 4.22 with f =
f1 − f2.

4.1.4. Recovering an approximable quasi-static evolution

In this section, whose main contributors are F. Cagnetti and F. Solombrino, co-authors
of [13], we show now that the existence of a quasi-static evolution for the functional E, in
the sense of [51] and Section 4.1.3, can be recovered from a discrete quasi-static evolution
for Eh, when the parameter h controlling the mesh size tends to 0. More precisely we
can prove the following version of [51, Theorem 4.4], as a consequence of Theorem 4.5.

109



4. Quasi-static evolution of cohesive fracture models

Theorem 4.24. Let g ∈W 1,2([0, T ], H1(Ω)), and let u0 be a critical point of E at time
0 with u0 = g(0) on ∂DΩ. Then, there exists a bounded measurable function u : [0, T ]→
H1(Ω \ Γ) with u(0) = u0 such that the following properties are satisfied:

(a) approximability: for every t ∈ [0, T ] there exists a sequence hj → 0+ such that

uhj (t) ⇀ u(t) weakly in H1(Ω \ Γ)

where, for every j ∈ N, uhj is an approximable quasi-static evolution of Ehj with
initial condition u0 and constraint f ;

(b) stationarity: for a.e. t ∈ [0, T ] the function u(t) is a critical point of E at time t;

(c) energy inequality: for every t ∈ [0, T ]

E(u(t)) ≤ E(u(0)) +
∫ t

0

∫
Ω\Γ
∇u(s) · ∇ġ(s) dxds. (4.42)

Before proving Theorem 4.24, we need to introduce a finite dimensional setting. We set

D :=
{
h > 0 : h = `

N
for some N ∈ N

}
.

By [199], a sequence {gh}h∈D ⊂ W 1,2([0, T ], H1(Ω)) such that gh ∈ W 1,2([0, T ], Eh) for
every h ∈ D exists and

gh
h→0+
−→ g in W 1,2([0, T ], H1(Ω)). (4.43)

For every t ∈ [0, T ], we define fh(t) := Ahgh(t). Before applying Theorem 4.5 to Eh, we
need the following remark.

Remark 4.25. By a careful reading of Section 4.1.2, one can see that the proof of
Theorem 4.5 can be repeated even if the initial condition v0 is not a critical point of
the energy functional. Thus, we can apply Theorem 4.5 obtaining, for every h ∈ D, a
function uh : [0, T ]→ H1(Ω \ Γ) such that

uh(0) = u0, and uh(t) ∈ Eh for every t ∈ (0, T ], (4.44)

and all the other properties of Theorem 4.5 are satisfied. Condition (a’) of the next
theorem has to be intended in this sense.

We now apply Theorem 4.5 to Eh, obtaining the following result.

Theorem 4.26. Let h ∈ D be fixed, let gh ∈W 1,2([0, T ]; Eh) be given by (4.43), and let
u0 ∈ H1(Ω\Γ) be a critical point of E with boundary condition u0 = g(0) on ∂DΩ. Then,
there exists a measurable bounded mapping uh : [0, T ]→ H1(Ω\Γ) satisfying (4.44) such
that
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(a’) uh(·) is an approximable quasi-static evolution with initial condition u0 and con-
straint fh;

(b’) stationarity: for every t ∈ (0, T ] we have∫
Ω\Γ
∇uh·∇ψdx+

∫
Γ

(
[[ψ]]θ′(|[[uh(t)]]|) sign([[uh(t)]])1Juh(t) + |[[ψ]]|1Jc

uh(t)

)
dHd−1 ≥ 0,

(4.45)
for all ψ ∈ Eh with ψ = 0 on ∂DΩ.

(c’) energy inequality: The function s 7−→
∫

Ω\Γ
∇uh(s) · ∇ġh(s) dx belongs to L1(0, T )

and

Eh(uh(t)) ≤ E(u0) +
∫ t

0

∫
Ω\Γ
∇uh(s) · ∇ġh(s) dxds for every t ∈ [0, T ].

(d’) Uniform bound: There exists a constant C2, independent of h, such that

‖uh(t)‖Eh ≤ C2 for every t ∈ [0, T ]. (4.46)

Proof. As proven in the previous subsection, assumptions (A0)–(A2) are satisfied. There-
fore, properties (a)–(c) of Theorem 4.5 hold true. In particular, (a) implies (a’). By (b)
of Theorem 4.5, there exists a bounded measurable function qh : (0, T ]→ Fh such that

A∗qh(t) ∈ ∂Eh(uh(t)) for every t ∈ (0, T ]. (4.47)

Let now t ∈ (0, T ] be fixed. Thanks to (4.5), we have

0 ≤ lim inf
ε→0+

Eh(uh(t) + εw)− Eh(uh(t))
ε

for every w ∈ ker(A∗h).

A careful inspection of the proof of [51, Proposition 3.1] shows that last inequality implies
(b’). Let us now show (c’). From (c) of Theorem 4.5, the function s 7→ 〈qh(s), ḟh(s)〉Fh
belongs to L1(0, T ), and for every t ∈ [0, T ] we have

Eh(uh(t)) ≤ E(u0) +
∫ t

0
〈qh(s), ḟh(s)〉Fh ds.

Recalling that fh(s) = Ahgh(s) and that the linear operator Ah is independent of time,
we have

Eh(uh(t)) ≤ E(u0) +
∫ t

0
〈qh(s), ḟh(s)〉Fh ds

= E(u0) +
∫ t

0
〈qh(s), Ahġh(s)〉Fh ds

= E(u0) +
∫ t

0
〈A∗hqh(s), ġh(s)〉Eh ds.
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By (4.47), for every s ∈ (0, T ) we have A∗qh(s) ∈ ∂Eh(uh(s)). Since ġh(s) ∈ Ereg
h for

every s ∈ (0, T ), by Remark 4.15 we have

〈A∗hqh(s), ġh(s)〉Eh =
∫

Ω\Γ
∇uh(s) · ∇ġh(s) dx for every s ∈ (0, T ).

Therefore,

Eh(uh(t)) ≤ E(u0) +
∫ t

0

∫
Ω\Γ
∇uh(s) · ∇ġh(s) dx ds,

which gives (c). Finally, property (d’) directly follows from Remark 4.14 and Re-
mark 4.12.

We can now pass to the limit as h→ 0+.

Proof of Theorem 4.24. Let t ∈ [0, T ]. We will use argument similar to those used in
the proof of Theorem 4.5.

Step 1: Proof of (a) and (c).

First of all, we fix the subsequence {hk}k∈N given by

hk := `

2k , k ∈ N,

so that
Ehl ⊂ Ehm for every m > l. (4.48)

By (4.43), we have

ġhk → ġ strongly in L2([0, T ];H1(Ω)) as k →∞.

Thus, there exists a set Λ2 ⊂ [0, T ] with L1(Λ2) = 0 such that ġ(t) is well defined for
every t ∈ [0, T ] \ Λ and

ġhk(t)→ ġ(t) strongly in H1(Ω) for every t ∈ [0, T ] \ Λ as k →∞. (4.49)

For every h ∈ D, let uh : [0, T ]→ H1(Ω \ Γ) be given by Theorem 4.26. We define

ηk(t) :=


∫

Ω\Γ
∇uhk(t) · ∇ġhk(t) dx for every t ∈ [0, T ] \ Λ,

0 for every t ∈ Λ,

and
η(t) := lim sup

k→∞
ηk(t) for every t ∈ [0, T ].
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By definition of θ, for every t ∈ [0, T ] we can extract a subsequence {hkj}j∈N (possibly
depending on t) such that

η(t) = lim
j→∞

ηkj (t) for every t ∈ [0, T ].

By (4.46), for every t ∈ [0, T ] we can extract a further subsequence (not relabelled) such
that

uhkj (t) ⇀ u(t) weakly in H1(Ω \ Γ) as j →∞. (4.50)

for some u(t) ∈ H1(Ω \Γ) with ‖u(t)‖H1(Ω\Γ) ≤ C2. By repeating what was done in the
proof of Theorem 4.5, we can show that the subsequence {kj}j∈N can be chosen in such
a way that the map u : [0, T ]→ H1(Ω \ Γ) is measurable, and this shows (a).
Let us now show the energy inequality. By (4.49) and (4.50) we have that, for every
t ∈ [0, T ] \ Λ,

η(t) = lim sup
k→∞

ηk(t) = lim
j→∞

ηkj (t) = lim
j→∞

∫
Ω\Γ
∇uhkj (t)·∇ġhkj (t) dx =

∫
Ω\Γ
∇u(t)·∇ġ(t) dx.

In order to prove that θ ∈ L1(0, T ), we first observe that, θ is the lim sup of measurable
functions, it is measurable. Moreover, we have∫ T

0
|η(t)| dt =

∫ T

0

∣∣∣∣∣
∫

Ω\Γ
∇u(t) · ∇ġ(t) dx

∣∣∣∣∣ dt ≤
∫ T

0
‖∇u(t)‖L2(Ω\Γ)‖∇ġ(t)‖L2(Ω\Γ) dt

≤ C2

∫ T

0
‖∇ġ(t)‖L2(Ω\Γ) dt ≤ C2

√
T ‖ġ‖L2((0,T );H1(Ω)).

By (c’) of Theorem 4.26 we have, for every j ∈ N and for every t ∈ [0, T ]

E(uhkj (t)) = Ehkj (uhkj (t)) ≤ E(u0) +
∫ t

0

∫
Ω\Γ
∇uhkj (s) · ∇ġhkj (s) dxds

= E(u0) +
∫ t

0

∫
Ω\Γ
∇uhkj (s) · ∇ġhkj (s) dxds.

Note that the energy E(·) is lower semicontinuos w.r.t. weak convergence in H1(Ω \ Γ).
Therefore, taking the limsup in j of the previous expression and using Fatou’s Lemma

E(u(t)) ≤ lim inf
j→∞

E(uhkj (t)) ≤ E(u0) + lim sup
j→∞

∫ t

0

∫
Ω\Γ
∇uhkj (s) · ∇ġhkj (s) dxds

≤ E(u0) + lim sup
k→∞

∫ t

0

∫
Ω\Γ
∇uhk(s) · ∇ġhk(s) dxds

≤ E(u0) +
∫ t

0
lim sup
k→∞

∫
Ω\Γ
∇uhk(s) · ∇ġhk(s) dx ds

= E(u0) +
∫ t

0

∫
Ω\Γ
∇u(s) · ∇ġ(s) dx ds,
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so that (c) follows.
We finally prove the stationarity. Let ψ ∈ H1(Ω \ Γ) with ψ = 0 on ∂DΩ. Then [199],
we can find a sequence {ψhkj }j∈N such that

ψhkj → ψ strongly in H1(Ω \ Γ) as j →∞

and ψhkj ∈ Ehkj with ψhkj = 0 on ∂DΩ, for every j ∈ N. Note that, by (4.48), we have

ψhkl ∈ Ehkj with ψhkl = 0 on ∂DΩ for every j > l.

Therefore, by (4.45)∫
Ω\Γ
∇uhkj (t) · ∇ψhkl dx

≥
∫

Γ

(
−[[ψhkl ]]θ

′(|[[uhkj (t)]]|) sign([[uhkj (t)]])1Juhkj (t) − |[[ψhkl ]]|1Jcuhkj (t)

)
dHd−1,

(4.51)

for every j > l. By (4.50) we have

lim
j→∞

∫
Ω\Γ
∇uhkj (t) · ∇ψhkl dx =

∫
Ω\Γ
∇u(t) · ∇ψhkl dx. (4.52)

Define now, for every t ∈ [0, T ] and for every j > l, the function fj(t) : Γ→ R as

fj(t) := −[[ψhkl ]]θ
′(|[[uhkj (t)]]|) sign([[uhkj (t)]])1Juhkj (t) − |[[ψhkl ]]|1Jcuhkj (t)

.

We want to prove that for every t ∈ [0, T ]

lim inf
j→∞

fj(t) ≥ −[[ψhkl ]]θ
′(|[[u(t)]]|) sign([[u(t)]])1Ju(t) − |[[ψhkl ]]|1Jcu(t)

H1-a.e. in Γ.
(4.53)

Up to extracting a further subsequence, we can assume that

lim inf
j→∞

fj(t) = lim
j→∞

fj(t) H1-a.e. in Γ, (4.54)

and
lim
j→∞

[[uhkj (t)]] = [[u(t)]] H1-a.e. in Γ. (4.55)

Now, let us fix x ∈ Ju(t) such that (4.54) and (4.55) hold true. Then, for j ∈ N large
enough we have

x ∈ Juhkj (t) and sign([[uhkj (t)]](x)) = sign([[u(t)]](x)).
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Therefore,

lim inf
j→∞

fj(t)(x) = lim
j→∞

fj(t)(x)

= lim
j→∞

−[[ψhkl ]](x)θ′(|[[uhkj (t)]](x)|) sign([[uhkj (t)]](x))1Juhkj (t)(x)− |[[ψhkl ]](x)|1Jc
uhkj

(t)
(x)

= −[[ψhkl ]](x)θ′(|[[u(t)]](x)|) sign([[u(t)]](x))1Ju(t)(x)− |[[ψhkl ]](x)|1Jc
u(t)

(x) (4.56)

for H1-a.e. x ∈ Γ ∩ Ju(t). If, instead, x ∈ Jcu(t), then recalling that 0 ≤ θ′ ≤ 1 we have

lim inf
j→∞

fj(t)(x) = lim
j→∞

fj(t)(x)

= lim
j→∞

−[[ψhkl ]](x)θ′(|[[uhkj (t)]](x)|) sign([[uhkj (t)]](x))1Juhkj (t)(x)− |[[ψhkl ]](x)|1Jc
uhkj

(t)
(x)

≥ −|[[ψhkl ]](x)| = −|[[ψhkl ]](x)|1Jc
u(t)

(x). (4.57)

Combining (4.56) and (4.57) we obtain (4.53). Thanks to (4.52) and (4.53) we can pass
to the limit in (4.51), obtaining∫

Ω\Γ
∇u(t) · ∇ψhkl dx = lim

j→∞

∫
Ω\Γ
∇uhkj (t) · ∇ψhkl dx

≥ lim inf
j→∞

∫
Γ

(
−[[ψhkl ]]θ

′(|[[uhkj (t)]]|) sign([[uhkj (t)]])1Juhkj (t) − |[[ψhkl ]]|1Jcuhkj (t)

)
dHd−1

≥
∫

Γ
lim inf
j→∞

(
−[[ψhkl ]]θ

′(|[[uhkj (t)]]|) sign([[uhkj (t)]])1Juhkj (t) − |[[ψhkl ]]|1Jcuhkj (t)

)
dHd−1

≥
∫

Γ

(
−[[ψhkl ]]θ

′(|[[u(t)]]|) sign([[u(t)]])1Ju(t) − |[[ψhkl ]]|1Jcu(t)

)
dHd−1.

Finally, passing to the limit as l→∞ we have

∫
Ω\Γ
∇u(t) · ∇ψ dx ≥

∫
Γ

(
−[[ψ]]θ′(|[[u(t)]]|) sign([[u(t)]])1Ju(t) − |[[ψ]]|1Jc

u(t)

)
dHd−1,

and we conclude.

In our specific case, by Proposition 4.17 and direct calculation we have that

ω = 1
2R + max{4, 4

√
`}.

4.1.5. Numerical experiments

The scope of this section is to practically show that the procedure illustrated in the
previous sections can be effectively implemented and produces the desired quasi-static
evolution, according to the one described in [51]. We refer the reader to Section 4.1.3
for the notations used here.
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Numerical simulations in one dimension

We first analyze the results obtained for a one dimensional problem, when Ω ⊂ R.
Despite its simplicity, the one dimensional setting allows to give a detailed compari-
son between numerical results and analytic predictions, since in this case the explicit
solutions of (4.29) are known. We consider the following geometry:

Ω = [0, 2`], ` = 0.5, Γ = {`}, ∂DΩ = {0, 2`}.

We follow the evolution in the time interval [0, T ] = [0, 1], and the external load applied
to the endpoints ∂DΩ = {0, 2`} is given by

g(t)(x) = 2(x− `)t, for every x ∈ [0, 1] and t ∈ [0, 1].

We uniformly discretize the domain into 2N = 80 intervals, so that the spatial discretiza-
tion step is given by h = `/N . Finally, we choose a time step δ = 0.02, so that the total
evolution is concluded after 50 time steps. In our specific case, by Proposition 4.17 and
a direct calculation we have that the parameter η in condition (A1) can be taken as

ω = 1
2R + max{4, 4

√
`},

where the constant R is the one appearing in the definition of the function g, see (4.26).
From a practical viewpoint, the computational time needed to solve the minimization
problem (4.12) could grow without any control. Hence, for any i ∈ {0, . . . , 50} and
j ∈ N fixed, we stop the minimization loop as soon as ‖Av − g(iδ)‖ < 10−6. That is, vij
is chosen in such a way that ‖Avij − g(iδ)‖ < 10−6. Instead, we stop the external loop
(that is, the limit of vij as j →∞), as soon as ‖vij − vij−1‖ < 10−13. The main reason for
these choices is that the quasi-static evolution generated by the algorithm is extremely
sensitive to any perturbation. Thus, a larger time step δ, or a too badly approximated
critical point at each time step, could lead to nonphysical results.
We observe that the analytic evolutions discussed in [51, Section 9] depend on the size
of the parameter R. Therefore, in order to compare our results with those in [51], we
distinguish two cases.

Case R ≥ 2`. When R is chosen large with respect to the size 2` of the elastic body, the
evolution found by numerical simulations evolves along global minimizers of the energy,
and we can observe the three phases of the cohesive fracture formation: non-fractured,
pre-fractured (that is when the opening of the crack is smaller than R and cohesive forces
appear), and completely fractured (when the opening of the crack is larger than R and
the cohesive forces disappear), see Figure 4.2.
Note that in the time interval [0, 0.5] the evolution follows the elastic deformation. After
t = 0.5 a fracture appears, since the elastic deformation is not any more a critical point of
the energy functional (see [51, Section 9]). Then, the pre-fracture phase starts, showing
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Figure 4.2.: The evolution of the quasi-static cohesive fracture for R ≥ 2` at time in-
stances t = 0, 0.5, 0.52, 1.

a bridging force acting on the two lips of the crack. At time t = 1 the cohesive energy
reaches its maximum, and the body is completely fractured. It is worth observing that
this evolution coincides with the one analytically calculated in [51, Section 9].
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Figure 4.3.: The total, fracture, and elastic energy evolution of the quasi-static cohesive
fracture for R ≥ 2`.

We can also investigate what happens from the energy point of view, see Figure 4.3.
We have a smooth transition between the different phases, and the total energy has a
nondecresing profile. The beginning of the pre-fractured phase can be observed at the
25th time step (i.e. at time t = 0.5), when the elastic energy (in red) starts decreasing
and the crack energy (in blue) starts increasing. The final phase of complete rupture
is then attained at the final time step t = 1. Although we focused on the time interval
[0, 1], one could check that the three energy profiles remain constant for t > 1.
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Figure 4.4.: The evolution of the quasi-static cohesive fracture for R < 2` at time in-
stances t = 0, 0.5, 0.52, 1.

Case R < 2`. The evolution of the system changes radically when R < 2`. In this
case (see Figure 4.4) the failure happens instantaneously, without a bridging phase, and
thus the body exhibits what in literature is known as brittle behavior. More precisely,
in the time interval [0, 0.5] the evolution follows again the elastic deformation, and a
crack appears at t = 0.5. However, immediately after t = 0.5 the body is completely
fractured, and no cohesive forces appear. It is important to observe that in this case we
actually observe an evolution along critical points that are not global minimizers. Indeed,
the evolution is elastic until t = 0.5, although it would be energetically convenient to
completely break the body at some earlier time t < 0.5 (see [51, Section 9] for a detailed
description of all critical points). Thus, we see that the algorithm chooses the critical
point which is the closest to the initial configuration, even if other options are available,
which are more convenient from an energetic point of view. This evolution is particularly
supported by the idea that in nature a body does not completely change its configuration
crossing high energetic barriers if a stable configuration can be found with less energetic
effort.
Also in this case, we can observe the evolution from the energetic viewpoint, see Fig-
ure 4.5. At time t = 0.5, when the elastic deformation ceases to be a critical point,
the domain breaks and the total energy decreases up to the value of R/2, so that no
bridging force is keeping the two lips together. As we already observed, the evolution
along global minimizers would instead lead to a fracture way before the critical load is
reached.
Again, the evolution found with our numerical simulation coincides with that one given
in [51, Section 9]. In particular, our simulations agree with the crack initiation criterion
(see [51, Theorem 4.6]), which states that a crack appears only when the maximum
sustainable stress along Γ is reached. In this case, this happens at t = 0.5, when the
slope of the elastic evolution reaches the value θ′(0) = 1.
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Figure 4.5.: The total, fracture, and elastic energy evolution of the quasi-static cohesive
fracture for R < 2`.

Numerical simulations in two dimensions

Having a first analytic validation of the numerical minimization procedure, we can now
challenge the algorithm in the simulation of two dimensional evolutions. We now consider
the domain introduced in Section 4.1.3 setting ` = 0.5, 2N = 8, and κ = 1/2. Within
this choice, the crack initiation time is reduced exactly of a factor 1/2, allowing us to
speed up the failure process. Since all the computations are performed on a MacBook
Pro equipped with a 2.6GHz Intel Core i7 processor, 8GB of RAM, 1600MHz DDR3, the
two dimensional simulations are performed only for a qualitative purpose. Indeed, we are
mainly interested in showing that our algorithm produces physically sound evolutions
also in dimension 2, and when the external displacement g is non-trivial. The very
sparse discretization of the domain Ω is due to the fact that the minimization in (4.12)
requires a huge computational effort, both in terms of time and memory. Indeed, in order
to implement more realistic experiments, with a finer discretization, we would need to
modify the architecture of the minimization algorithm, in such a way that it may run
on parallel cores.
We perform two different series of experiments, one with boundary datum

g1(t)(x) = 2(x1 − `)t, for every t ∈ [0, 1] and x ∈ Ω,

see Figure 4.6, and the other one with boundary datum

g2(t)(x) = 2t cos
(

2x2 − `
`

)
(x1 − `), for every t ∈ [0, 1] and x ∈ Ω,

see Figure 4.7. Here, we denoted by x = (x1, x2) the generic point of Ω = (0, 1)× (0, 1).
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We now need to reduce the tolerance of the termination condition of the outer loop of the
Algorithm, setting it to 5 · 10−14. Indeed, we experimented that for bigger values of this
tolerance some instabilities in the solution were introduced, leading to an asymmetric
evolution, also in the case of g1 as external displacement, where we expect an invariant
behavior with respect to the space variable x2.

Figure 4.6.: The evolution of the quasi-static cohesive fracture for R ≥ 2` at time in-
stances t = 0, 0.24, 0.32, 0.5 with external displacement g1.

Figure 4.7.: The evolution of the quasi-static cohesive fracture for R ≥ 2` at time in-
stances t = 0.1, 0.24, 0.34, 0.5 with external displacement g2.

Case R ≥ 2`. In Figure 4.6 and 4.7 we report 4 different instances of the evolution
for the two different boundary data, when R ≥ 2`. When the external displacement
is g1, which is constant with respect to the second coordinate x2, we observe that the
evolution is also constant with respect to x2. For both boundary data, the failure of the
body undergoes the three phases of deformation, as it happened in the one dimensional
case.

Case R < 2`. When the boundary daum is g1, see Figure 4.8, the specimen breaks
in a brittle fashion, without showing any cohesive intermediate phase. This simulation
is actually an evidence that the algorithm still characterizes the correct critical points,
following the principle that the domain should not fracture as long as a non-fractured
configuration is still a critical point. We conclude commenting the simulation where the
boundary datum is g2 with R < 2`, see Figure 4.9. By setting a displacement highly
varying with respect to the x2 coordinate, we observe that the different phases of the
fracture formation can coexist. At time t = 0.24 the domain still presents no fracture,
as expected by the previous numerical experiments. Then, at t = 0.34, a pre-fracture
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appears, but only at those points where the external load is bigger, i.e. around x2 = `.
In fact, even at the final time t = 1, the domain is not completely fractured.
Note that, when the boundary datum is g1, the evolution coincides with the one obtained
analytically [51, Section 9]. In particular, the fracture appears at t = 0.25, when the
slope of the elastic evolution reaches the value κθ′(0) = 1/2 and thus the crack initiation
criterion is satisfied.

Figure 4.8.: The evolution of the quasi-static cohesive fracture for R < 2` at time in-
stances t = 0.04, 0.24, 0.26, 0.5 with external displacement g1.

Figure 4.9.: The evolution of the quasi-static cohesive fracture for R < 2` at time in-
stances t = 0.02, 0.22, 0.24, 0.5 with external displacement g2.

4.2. The simulation of quasi-static evolution of a Dugdale
cohesive model

In this section we focus on the cohesive fracture model proposed by D. S. Dugdale in
[96]. The model designed by the American scientist differs from the one proposed by G.
I. Barenblatt for the regularity of the cohesive function θ and consequently for the mode
of transition between the three phases of the cohesive fracture formation. By looking at
Figure 1.1 we notice that the main difference with the model considered in the previous
section is the evolution of the bridging force, which is given by θ′(|[[u]]|). In this case,
indeed, the cohesive attraction between the lips of the crack keeps constant with respect
to the jump amplitude until the rupture value θr is reached. At this point the bridging
force vanishes instantaneously and the domain becomes completely fractured.
Let us once again introduce all the elements that we need for the rest of the section.
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Ω ⊂ Rd, with d = 1, 2, is a Lipschitz domain and u : Ω → R, is the displacement
function, recalling that we are in a off-plane setting. The deformation of the domain
is driven by an external force which we express in term of an external displacement
function g : Ω× [0, T ]→ R. Notice that we defined the function g on the whole domain
since this property is required to check the energy inequality (1.16) and thus to prove
the existence of quasi-static solution, see [51], but from a practical viewpoint we require
that the displacement u coincides with the external deformation,

u|∂ΩD = g|∂ΩD ,

only on ∂ΩD, the subset of ∂Ω, on which Dirichlet boundary conditions are prescribed.
Also in this case we consider Γ ⊂ Ω to be the (d − 1)-dimentional hypersurface in Ω
prescribed crack path, assuming an a priori knowledge on where the specimen will break.
Accordingly, the admissible configurations of the system are functions inH1(Ω\Γ). Since
we are in a quasi-static setting, we introduce the usual time discretization 0 = t0 < t1 <

· · · < tT = T and look for the equilibrium configurations which also are minimizers of
the energy of the system. This means that for every i ∈ {0, . . . , T} we need to minimize
the energy of the system

E(u) := 1
2

∫
Ω\Γ
|∇u|2dx+ κ

∫
Γ
θ(|[[u]]|) dH1, (4.58)

with respect to a given boundary datum g

u∗ ∈ arg min
u=g(ti) on ∂ΩD

E(u) (4.59)

where κ > 0 is a material parameter.
In particular, the specific Dugdale cohesive fracture energy we choose is

θ(s) = min(s, 1). (4.60)

In the following sections we introduce two different discretization schemes which may
be adopted for a numerical implementation of the problem. We focus in particular only
on the one dimensional problem because, thanks to its simplicity, it is possible to have
a deeper and better understanding of the phenomenon we are describing. The modifi-
cation of the procedure to higher dimensional problems requires indeed the addition of
linear constraints and more complicated handling of the fracture set without increasing
significantly the mathematical issues of the problem. In Section 4.2.2 we present two dif-
ferent and efficient algorithms to describe the quasi-static evolution of the system along
minimizers of the energy functional. Finally, in Section 4.2.3 we present some numerical
experiments showing the resulting evolutions given by the two algorithm presented. We
will show that not only we obtain a physically sound solution, but also we outperform
the computational times that we would obtain with Algorithm 2.2 introduced before.
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4.2.1. Discretization schemes and optimality conditions

Let us assume that the one dimensional domain Ω is the segment [0, 2`], with ` > 0,
and that Γ = {`} is its midpoint. We need to discretize the domain subdividing it in
2N intervals of the same length to introduce a numerical scheme of the minimization of
the energy functional. The Dirichlet datum is applied on ΩD = {0, 2`} and the external
displacement driving the quasi-static evolution is defined by

g(x, t) = xt. (4.61)

As in the previous sections, we approximate the displacement function with a function
uh that is piecewise linear on Ω \ Γ and has two degrees of freedom on Γ to represent
correctly the two lips of the fracture, denoting with u−N the degree on Ω− := [0, `] and
u+
N the one on Ω+ := [`, 2`]. The discrete energy functional corresponding to (4.58) is

Eh(uh) = 1
2

2N∑
i=1

N

`
|ui − ui−1|2 + κθ(|[[uN ]]|), (4.62)

where if i ≤ N we identify uN = u−N while for i > N , uN = u+
N . Notice that the

jump of the displacement is not taken into account in the sum, and the gradient of u is
approximated with finite differences of the first order.
Hence, to obtain a quasi-static evolution for the Dugdale cohesive model we need to
solve the following minimization problem at each time step ti, with i ∈ {1, . . . , T},

u∗h ∈ arg min
u=g on ΩD

Eh(uh). (4.63)

In order to solve the problem above, we follow two different approaches. In the first we
make a change of variable rewriting the problem uniquely in terms of the displacement
derivative zh = ∇huh while the second approach deals with the problem (4.63). The first
ansatz eases sensibly the computation of the optimality conditions of problem (4.63) but,
as a drawback, as soon as we consider problems in more than one dimension, additional
linear constraints must be added to the minimization problem to guarantee the minimizer
z∗h corresponds to the derivative of a displacement functional uh. Conversely, the direct
approach requires a bigger effort from an analytic viewpoint, but avoids the numerical
issues arising in the first approach.
Let us discuss in detail the change of variable. We set

zi = ui+1 − ui, for 0 ≤ i < N

zN = u+
N − u

−
N (4.64)

zi = ui − ui−1, for N + 1 ≤ i ≤ 2N,
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where we consider uN = u−N in the first line and uN = u+
N in the third one. Notice that

the vector zh ∈ R2N+1 since uh ∈ R2(N+1) due to the presence of the two degrees of
freedom in Γ. The energy functional (4.62) becomes

Eh(zh) = 1
2

2N∑
i=0
i 6=N

N

`
|zi|2 + κθ(|zN |). (4.65)

We now rewrite the Dirichlet boundary conditions as a linear constraint depending on
the new variable. Observing that

g(2`, ·)− g(0, ·) = u2N − u0 =
2N∑
i=1

(ui − ui−1) + (u+
N − u

−
N ) =

2N∑
i=0

zi,

we can define the time dependent linear-constraint’s right-hand-side as f(t) := g(2`, t)−
g(0, t), and consequently the new minimization problem at time ti, with i ∈ {0, . . . , T},
becomes

z∗h ∈ arg min
atzh=f(ti)

Eh(zh), (4.66)

where a = (1 · · · 1)t is a vector in R2N+1. Unless differently specified, we work always
with a fixed time step and since all the procedures described do not depend on the time,
we drop the time dependence of the linear constraint f to ease the notation.
To enforce the linear constraint in the minimization process, we adopt the strategy of
adding it to the energy functional as a penalization term. Hence, the new unconstrained
minimization problem is

z∗h ∈ arg min
zh∈R2N+1

Eh,γ(zh) := 1
2‖Azh − fh‖

2 + κθ(|zN |), (4.67)

where the linear operator A : R2N+1 → R2N+1 is

A =
[
N

`
IN γa

]t
, (4.68)

where the matrix IN ∈ R2N+1×2N is the identity that has the N -th column removed.
The vector fh ∈ R2N+1 then defined has

fh =
(

0 · · · 0︸ ︷︷ ︸
2N

f
)t
.

We can now discuss the optimality conditions for the problem (4.67).
First, notice that for the components zi, with i 6= N , the fracture energy is not defined
and therefore, for these components, the minimization problem reduces to finding the
global minimizer of the elastic energy, which is convex and regular. Hence, we mainly
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focus on the N -th component of zh, where the fracture term plays a role and the func-
tional is both nonconvex and nonsmooth.
Let us suppose z̄h to be a solution of (4.67). Then, we define

f̄i := f −Az̄h +Aiz̄i i = 0, . . . , 2N

where Ai is the i-th column of the matrix A. Thanks to this definition, we can perform
a component-wise minimization

z∗i = arg min
zi∈R

Ei(zi) i = 0, . . . , 2N, (4.69)

where the function Ei : R→ R is defined as

Ei(zi) :=


1
2‖Aizi − f̄i‖

2 i 6= N

1
2‖ANzN − f̄N‖

2 + κθ(|zN |) i = N

Proposition 4.27. Let zh, Ai, Ei,f̄i, and θ as already defined, with i = 0, . . . , 2N .
Then, the optimality conditions for the problems (4.69) are

zi = Atif̄i
|Ai|2

i 6= N

zN = G(f̄N )
,

where

G(f̄N ) =



AtN f̄N
|AN |2

AtN f̄N ≥ |AN |2 + κ

2
AtN f̄N − κ
|AN |2

κ ≤ AtN f̄N ≤ |AN |2 + κ

2

0 AtN f̄N ≤ κ

.

Proof. In case i 6= N the optimality conditions follow from direct computation since
the functional for those components is differentiable and convex. Conversely, if i = N ,
the energy functional is nonconvex and not differentiable everywhere. Since Eh,γ(zN )
is not differentiable only for zN = 0, 1, we proceed computing (Eh,γ)′N = 0 where the
functional is regular:A

t
N (ANzN − f̄N ) = 0 zN > 1

AtN (ANzN − f̄N ) + κ = 0 0 < zN < 1
.

From this, we get the following solutions

zN =


AtN f̄N
|AN |2

AtN f̄N > |AN |2

AtN f̄N − κ
|AN |2

κ < AtN f̄N < |AN |2 + κ

.
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4. Quasi-static evolution of cohesive fracture models

Comparing the value of the energy functional in the points where the solution is not
unique and in the points of non-differentiability we get that the global minimum of the
energy functional in zN is given by G(f̄N ).

Remark 4.28. Notice that, thanks to the change of variable, we minimize the energy
of the system with respect to the gradient of the displacement. It is then necessary
to reconstruct by integration the variable uh. In case d > 1, not every solution of
(4.66) corresponds to a gradient of a displacement function uh. Therefore, an additional
linear constraint which guarantees that the result of the minimization problem is also
a derivative of a displacement vector must be added to the minimization problem. In
particular, a sufficient condition for a given function zh to be the discrete derivative of
a function uh is to be rotor-free, see [108] for details. Moreover, since on the fracture
set Γ the displacement function uh is non-regular, the above mentioned condition should
not be enforced between the two lips of the fracture set.

As we commented in Remark 4.28 and in the introduction of this section, it may be
in practice not convenient to perform the change of variable (4.64) for d > 1 and with
nontrivial geometries. Therefore, in the following we analyze the optimality condition
also of the problem (4.63), where we directly minimize the displacement function. We
reserve to the reader the possibility of choosing between the two approaches, accordingly
to the one that best fits to his setting.

First, we notice that we can enforce the boundary condition via direct assignation of the
values u0 = g(0) and u2N = g(2`). Then, introducing the finite difference operators De :
R2(N+1) → R2N+1 for the calculation of the discrete elastic energy andDf : R2(N+1) → R
to compute the jump between the two lips of the fracture, rescaling the first with respect
to discretization step `

N
, i.e. De := `

N
De, we can write the energy functional as

Eh(uh) = 1
2
N

`
‖Deuh − g̃‖2 + κθ(|Dfuh|), (4.70)

where g̃0 = g(0, ti), g̃2N = g(2`, ti), with i ∈ {0, . . . , T} (as before we drop the time
dependence in the notation), while the remaining components of g̃ are set to zero.
Now, we study the optimality conditions for the problem

u∗h ∈ arg min
uh∈R2(N+1)

1
2
N

`
‖Deuh − g̃‖2 + κθ(|Dfuh|). (4.71)

Let ūh be a solution of the problem above. Then we can define

ḡi = g̃ −Deūh + (De)iūi i = 0, . . . , 2N, i 6= N

ḡN− = g̃ −Deūh + (De)N− ū−N
ḡN+ = g̃ −Deūh + (De)N+ ū+

N
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where (De)i is the column of the matrix De which is coupled with ui in the scalar
product, and similarly (De)N± are the columns coupled respectively with u+

N and u−N .
Rewriting the problem (4.71) component-wise we obtain

u∗i =


min
ui

1
2
N

`
|(De)iui − ḡi|2 i 6= N,

min
ui

1
2
N

`
|(De)iui − ḡi|2 + κθ(|u+

N − u
−
N |) i = N.

(4.72)

Notice that, since we set two degrees of freedom on the fracture set Γ, we need to solve
in total 2N + 2 problems: 2N are given by the first line of (4.72) and the last two,
relative to the u−N and u+

N components are given by the second line on (4.72). To ease
the notation, we use the index N− to refer to the minimization problem to determine
u−N and N+ for the one relative to u+

N .

Proposition 4.29. Let u, (De)i, ḡi, with i = 0, . . . , 2N , and θ as already defined,
ΛN = (De)tN−(De)N− = (De)tN+(De)N+, and κ̃ = `

N
κ. Then, the optimality conditions

for the problem (4.72) are, for i 6= N±,

ui = (De)tiḡi
|(De)i|2

,

while for i = N±

ui = (De)tiḡi
ΛN

|(De)tN+ ḡN+ − (De)tN− ḡN− | > ΛN + κ̃,

uN− =
(De)tN− ḡN− + κ̃

ΛN
2κ̃ ≤ |(De)tN+ ḡN+ − (De)tN− ḡN− | ≤ ΛN + κ̃,

uN+ =
(De)tN+ ḡN+ − κ̃

ΛN
2κ̃ ≤ |(De)tN+ ḡN+ − (De)tN− ḡN− | ≤ ΛN + κ̃,

ui =
(De)tN+ ḡN+ + (De)tN− ḡN−

2ΛN
|(De)tN+ ḡN+ − (De)tN− ḡN− | < 2κ̃.

Proof. First, we focus on the case i 6= N±. Notice that for these indexes the fracture
energy is not defined and therefore the computation of the optimality conditions are
trivially obtained using convex optimization arguments. Thus, we analyze in detail only
the case where the functional is nonconvex, for i = N±.
In the following, we will assume u+

N ≥ u
−
N just for sake of simplicity. The same procedure

applies for u+
N < u−N by changing opportunely the signs.

Taking the first derivative with respect to u±N of the second equation of (4.72) where the
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energy functional is regular enough, we obtain that (u∗)±N satisfies
N

`

(
ΛN (u∗)±N − (De)tN± ḡN±

)
± κ = 0 if 0 < |Dfu

∗| < 1

ΛN (u∗)±N − (De)tN± ḡN± = 0 if |Dfu
∗| > 1

. (4.73)

Considering the first equation of (4.73) for u+
N we have

u+
N = 1

ΛN
(−κ̃+ (De)tN+ ḡN+). (4.74)

Similarly, for u−N we get
u−N = 1

ΛN
(κ̃+ (De)tN− ḡN−). (4.75)

Thus, we can compute the jump amplitude by subtracting (4.75) to (4.74), obtaining

Dfu = u+
N − u

−
N = 1

ΛN

(
−2κ̃+ (De)tN+ ḡN+ − (De)tN− ḡN−

)
.

We have that Dfuh ∈ (0, 1) if and only if

0 < 1
ΛN

(
−2κ̃+ (De)tN+ ḡN+ − (De)tN− ḡN−

)
< 1.

Doing some algebraic calculation we obtain

2κ̃ < (De)tN+ ḡN+ − (De)tN− ḡN− < ΛN + 2κ̃. (4.76)

Notice that (4.74) and (4.75) are not necessary conditions for a global minimum. Indeed,
they only characterize stationary points when (4.76) holds.
Doing the same steps for the second equation of (4.73), we find the following critical
points

uj =
(De)tj f̄j

ΛN
if (De)tN+ ḡN+ − (De)tN− ḡN− > ΛN j = N±. (4.77)

Now, we can proceed by direct comparison to select which one of the critical point is
actually a minimizer of the energy functional. Notice that

ũN± = 1
ΛN

(De)tN± ḡN±(De)N±

are respectively orthogonal projection of ḡN+ and ḡN− onto (De)N+ and (De)N− . Let
us now define

EN = 1
2
N

`
‖(De)N−u−N − ḡN−‖

2 + 1
2
N

`
‖(De)N+u+

N − ḡN+‖2 + κθ(|[[uN ]]|), (4.78)
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the contribution to the energy functional given by the components N±, and substitute
first u±N with the value of the critical points (4.74) and (4.75) determined by the first
equation of (4.73). We get

EN,1 = 1
2
N

`

(
2κ̃2

ΛN
+ ‖P⊥(De)N− ḡN−‖

2 + ‖P⊥(De)N+
ḡN+‖2

)

+ κ
1

ΛN

(
−2κ̃+ (De)tN+ ḡN+ − (De)tN− ḡN−

)
.

Now, analogously, we use the critical points (4.77) derived by the second equation of
(4.73) obtaining

EN,2 = 1
2
N

`

(
‖P⊥(De)N−1

f̄N−1‖2 + ‖P⊥(De)N f̄N‖
2
)

+ κ.

Thus, we can determine which critical point found for the interval

ΛN < (De)tN+ ḡN+ − (De)tN− ḡN− < ΛN + 2κ̃

is also a minimum of the energy functional by comparing EN,1 and EN,2. Therefore, we
can deduce that (4.74) and (4.75) are minimzers of the energy functional if and only if
EN,1 < EN,2, or equivalently

1
2
N

`

(
2κ̃2

ΛN
+ ‖P⊥(De)N− ḡN−‖

2 + ‖P⊥(De)N+
ḡN+‖2

)

+ κ
1

ΛN

(
−2κ̃+ (De)tN+ ḡN+ − (De)tN− ḡN−

)
<

1
2
N

`

(
‖P⊥(De)N− ḡN−‖

2 + ‖P⊥(De)N+
ḡN+‖2

)
+ κ.

Subtracting the terms P⊥· and recalling the definition of κ̃, we obtain

(De)tN+ ḡN+ − (De)tN− ḡN− < κ̃+ ΛN .

So far, we have not analyzed the case (De)tN+ ḡN+−(De)tN− ḡN− < 2κ̃ yet. The candidates
critical points of the energy functional are the points where the fracture energy is not
differentiable, i.e. |Dfuh| ∈ {0, 1}. Since, for |Dfuh| = 1, ∂Eh(uh) = ∅, we find that the
unique minimum is obtained for |Dfuh| = 0 and thus uN+ = uN− .

4.2.2. Two efficient minimization algorithms

In this section we first show how the splitting approach described in Section 2.2 can by
used for this specific problem. By adding a new variable we decompose the nonconvex
minimization problem (4.63) into the coupling of a convex minimization and a function
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assignment. This procedure not only finds the critical points we seek in a computation-
ally efficient way, but it is also preparatory for the second algorithm we propose.
Exploiting the properties of the Lagrangian multiplier, we introduce the second proce-
dure called Primal Dual Active Set (PDAS), see [135, 136, 139] for the general theory
in the convex case and the proof of convergence in some particular cases. This ansatz
removes the added variable keeping nonetheless the advantages of the splitting method
but reducing sensibly the computational times, as it is shown in Section 4.2.3.
Since the total energy Eh is composed by two summands, the elastic energy, which is
convex and smooth, and the fracture energy, which is a nonconvex and nonsmooth term,
the use of the Split Bregman Iteration could be advantageous from a computational
point of view. Indeed, since dealing with the convex term is not a demanding numerical
issue and many different and efficient techniques can be applied, a good strategy is to
isolate the nonconvex term and deal with it separately. For sake of simplicity we will
present the two strategies only for the problem (4.66), since the procedure is the same
also for (4.63), but, as we already have seen in the previous section, the notation might
become complicated and confusing. We refer to [20], which is still in preparation, for all
the details about the algorithms for problem (4.63).
Let us introduce the new variable v ∈ R which replaces zN in the fracture energy

Eh,γ(zh) = 1
2‖Azh − fh‖

2 + κθ(|v|).

Now, in order to enforce the new variable to coincide with the jump in the displacement,
we add a linear constraint to the minimization problem

(z∗h, v∗) ∈ arg min
v=zN

zh∈R2N+1,v∈R

1
2‖Azh − fh‖

2 + κθ(|v|). (4.79)

Additionally, for λ ∈ R, the Lagrangian equation associated to (4.79) is

L(zh, v, λ) = 1
2‖Azh − fh‖

2 + κθ(|v|) + AtNAN
2 |zN − v|2 + λ(zN − v). (4.80)

Since we are interested in finding critical points of the previous equation, we can proceed
introducing Algorithm 2.3 for our specific problem and adding the termination condition
zN = v. This condition guarantees that the critical point obtained is also a critical point
of the total energy Eh,γ . For a fixed time step ti, with i ∈ {0, . . . , T} the procedure is
the following

Algorithm 4.1 Split Bregman Iteration to find and equilibrium configuration of (4.79)
at time ti

1: λ0 ∈ R, v0 ∈ R, 0 = z0
h ∈ R2N+1;

2: Compute the forcing term fh according to g(ti);
3: Initialize k = 0;
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4: while ‖Azkh − fh‖ 6= 0 and |zkN − vk| 6= 0 do
5: zn+1

h = min
z
L(z, vn, λn);

6: vn+1 = min
v
L(zn+1, v, λn);

7: λn+1 = λn +AtNAN (zn+1
N − vn+1);

8: k ← k + 1;
9: end while

Proposition 4.30. The while-loop of Algorithm 4.1 can be equivalently written as

At(Azn+1
h − fh) + eN

(
|AN |2(zn+1

N − vn) + λn
)

= 0

vn+1 = φ(zn+1
N , λn)

λn+1 = λn + |AN |2(zn+1
N − vn+1)

(4.81)

where eN is the N -th vector of the canonical basis of R2N+1 and

φ(zN , λ) =



λ+ |AN |2zN
|AN |2

if λ+ |AN |2zN ≥ |AN |2 + κ

2 ,

λ+ |AN |2zN − κ
|AN |2

if κ < λ+ |AN |2zN < |AN |2 + κ

2 ,

0 if λ+ |AN |2zN < κ.

(4.82)

Proof. First, notice that the Lagrangian function is convex and smooth with respect to
the variable zh. Thus the problem of line 5 in Algorithm 4.1 has a unique solution given
by the first equation of (4.81). Now, we need to focus only on the second minimiza-
tion problem. Following the same approach to find the optimality conditions used in
Proposition 4.27, we compute the first derivative of (4.80) with respect to v and then,
by direct comparison, we can establish which of the critical points found is effectively a
minimum of the functional.

Remark 4.31. For the minimization of the energy functional Eh,γ, we decided to use a
more direct approach, avoiding the introduction of a quadratic perturbation as in Algo-
rithm 2.4. Indeed, for this specific Dugdale cohesive fracture functional, the functional
is not regular enough and we should have adopted a smoothing technique. As shown
in Proposition 4.30, v is explicitly determined by φ and therefore no regularization is
required. Although there is no proof of convergence for Algorithm 4.1 yet, we know that,
if it converges, we retrieve a critical point of the objective functional and it has been
successfully used in different applications [137].

In Section 4.2.3 we show that this algorithm not only is, in practice, always converging,
but also computationally really efficient. Despite the result already obtained would be
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satisfying, we can extract additional information from the procedure described above in
order to tackle the problem with an even more efficient approach: the PDAS.

Let us assume that Algorithm 4.1 converges and let v∗ and z∗h be its output. Since the
termination condition has been satisfied we have that v∗ = z∗N . Hence, we can substitute
zN with v in (4.82) obtaining

λ∗ = 0 if λ∗ + |AN |2z∗N ≥ |AN |2 + κ

2 ,

λ∗ = κ if κ < λ∗ + |AN |2z∗N < |AN |2 + κ

2 ,|λ
∗| ≤ κ

z∗N = 0
if λ∗ + |AN |2z∗N < κ,

(4.83)

while the first equation becomes

At(Az∗h − fh) + eNλ
∗ = 0. (4.84)

Now, the solution of the minimization problem (4.66) is given by the couple (z∗h, λ∗)
which is uniquely determined by solving (4.83) and (4.84). Notice that v∗ is indeed not
necessary to find the equilibrium configurations which describe the quasi-static evolution
of the system. Inspired by this observation we can write the Primal Dual Active Set
algorithm for to determine the quasi-static evolution of Dugdale cohesive fracture model.
For each time step ti, with i ∈ {0, . . . , T} do:

Algorithm 4.2 Primal Dual Active Set to find and equilibrium configuration of (4.66)
at time ti

1: λ0 ∈ R, 0 = z0
h ∈ R2N+1;

2: Compute the forcing term fh according to g(ti);
3: Initialize k = 0;
4: while (zn, λn) 6= (zn−1, λn−1) do
5: if λn + |AN |2znN < κ then
6: zn+1

N = 0;
7: Solve At(Azn+1 − fh) + eNλ

n+1 = 0 for zn+1
N fixed;

8: to compute λn+1 and the remaining 2N components of zn+1
h ;

9: else
10: if κ < λn + |AN |2znN < |AN |2 + κ

2 then
11: λn+1 = κ;
12: else
13: λn+1 = 0;
14: end if
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15: Solve At(Azn+1 − fh) + eNλ
n+1 = 0 for λn+1 fixed to compute zn+1

h ;
16: end if
17: k ← k + 1;
18: end while

Unfortunately, in our specific case does not exist a proof of convergence. Indeed, some
attempts have been done in [139], but convergence gurarantees are obtained only under
stronger regularity assumptions, which our energy functional does not fulfill. In Section
4.2.3 we present some numerical tests where we show that in practice Algorithm 4.2
always converged to a minimizer of (4.66) requiring much less computational times that
for Algorithm 4.1.

Remark 4.32. Despite in this section we only refereed to the one-dimensional setting,
the same procedure can be also applied in higher dimensions. Indeed, it is not strictly
necessary that the variable v is a scalar and thus we may consider also lines and surfaces
as fracture sets Γ respectively in the two and three-dimensional settings.

4.2.3. Numerical experiments

In this section we present numerical experiments to validate the algorithms proposed
in the last section. The characteristics that the procedures must exhibit in order to be
considered as reliable are:

• convergence of the algorithm to a minimizer of the energy functional;

• the quasi-static evolution corresponds with the expectation and the energy is mono-
tonically non decreasing in time;

• competitive computational times with respect to Algorithm 2.2.

Let us consider a pure shear off-plane deformation of a beam of length 2` = 1 with a
prescribed crack Γ = {0.5}. We discretize it by uniform partitioning into 2N intervals,
with N = 100. The time step in the time discretization of the time window [0, T ], with
T = 3, is set to dt = 0.01, and the external force g : R × [0, T ] → R monotonically
increasing in time

g(x, t) = xt.

The parameters of the energy functional Eh,γ are set to γ = 50, κ = 1, and the tolerance
for the stopping criterion of the algorithms is 10−15.
In Figure 4.10, 4.11, and 4.12 we report three time frames of the evolution obtained with
Algorithm 4.1.
The beam effectively evolves presenting the three phases that we expect from a cohesive
fracture model:

133



4. Quasi-static evolution of cohesive fracture models

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Diplacement derivative at time = 0.99

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

Diplacement at time = 0.99

Figure 4.10.: A time step of the evolution of the pure off-plane shear of a Dugdale cohe-
sive model for t = 0.99. On the left the gradient of the displacement ∇u
and on the right the displacement u.
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Figure 4.11.: A time step of the evolution of the pure off-plane shear of a Dugdale cohe-
sive model for t = 1.25. On the left the gradient of the displacement ∇u
and on the right the displacement u

• Figure 4.10: The beam is purely elastically deformed. Notice that the jump am-
plitude is zero and the gradient of the displacement is constant on Ω \ Γ;

• Figure 4.11: The beam presents a pre-fracture. The elastic deformation is still
present (the gradient of the displacement is constant and equal 1) but the two lips
of the fracture do not touch each-other any longer;

• Figure 4.12: The beam is fractured. The bridging force is vanished and the two
parts of the beam are free to move. The elastic energy is zero.

Looking at Figure 4.13, we can analyze the evolution of the energy. After a purely
elastic deformation where the energy grows quadratically, at time t = 1, following the
crack initiation principle as prescribed by [51], the pre-fractured phase starts. Since the
function θ grows linearly, the elastic energy keeps constant till the second significant
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Figure 4.12.: A time step of the evolution of the pure off-plane shear of a Dugdale cohe-
sive model for t = 1.50. On the left the gradient of the displacement ∇u
and on the right the displacement u

time, t = 1.5, when the bridging force instantaneously vanish. Compared with the
Barenblatt model, see Figure 4.3, the transition between the different evolution phases
is clearer in this case.
Comparing the energy evolution given by the two algorithms, see Figure 4.13, we notice
that there is no difference between the top and the bottom graph and we can state that
the quasi-static evolution simulated by the two algorithms coincides.
The last check to validate the procedures involves the computational efficiency. In Figure
4.14, we report the number of iteration needed for convergence of the algorithms at each
time step. It can be noticed that the PDAS (in red) requires in general two or three
iteration of the minimization loop, which is considerably less than the forty-five required
by Algorithm 4.1 (in blue). Naturally, the number of iteration has a direct influence on
the overall computational times. Indeed, the time required on a MacBook Pro equipped
with a 2.6GHz Intel Core i7 processor, 8GB of RAM, 1600MHz DDR3 to compute a
whole quasi-static evolution in the time window t ∈ [0, 3] with Algorithm 4.1 is 32.12
seconds, while we have a sensible reduction using Algorithm 4.2, which decreases the
time needed to 4 seconds.

4.3. Conclusions

In this chapter we analyzed the two different cohesive fracture models and we proposed
three different algorithms which are able to successfully retrieve quasi-static evolutions
for these models. In particular, thanks to the quadratic perturbation added the Baren-
blatt model, Algorithm 2.2 selects the critical points of the energy functional which
correspond to the ones of a physical quasi-static evolution. Additionally we proved that
the discrete in time and space solution we obtain from the algorithm converges to the
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Figure 4.13.: The energy evolution of the system. The evolution obtained with Algo-
rithm 4.1 (top) coincides with the one given by Algorithm 4.2 (bottom).
The green line is the total energy of the system, in red the fracture energy
and in blue the elastic one.

continuous in time and space analytic solution. Unfortunately the performances of the
method are not competitive for a real life application since a simulation of the one dimen-
sional problem showed in Section 4.1.5 requires more than one hour on a MacBook Pro
equipped with a 2.6GHz Intel Core i7 processor, 8GB of RAM, 1600MHz DDR3 while
the two dimensional problems needed circa twelve hours of computation to produce the
whole simulation.
This computational cost issue stimulated us to investigate two different procedures which
could have been more efficient. Facing the drawback of loosing the convergence guar-
antees, we focused on a model which prescribes evolution along local minimizers of the
energy functional. We showed that the algorithms always converge, in practice, for the
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Figure 4.14.: In blue (ALM) the number of iterations at each time step needed for the
convergence of Algorithm 4.1 while in red (PDAS) the ones needed for
Algorithm 4.2

experiments we considered and they produce quasi-static evolutions which follow the
expected course with computational times that are way smaller than the ones needed
for Algorithm 2.2. Even if more numerical tests should be performed, it might be possi-
ble to extend the convergence theory also to the class of nonconvex functionals studied
in this Chapter. An other interesting challenge would be to properly tune the efficient
algorithms in order to select the expected critical points also for Barenblatt problems
which do not necessarily the global minimizer of the energy function and thus creating
a competitive strategy for real life problems.
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5. Variational formulation of brittle
fractures: reliable numerical simulation
by anisotropic mesh adaptation

In Section 1.2.3 we introduced one of the most advocated models for quasi-static brittle
fracture evolution that was presented by G. Francfort and J.–J. Marigo in [110]. This
model is particularly relevant because it is able to predict complex crack paths, with-
out making a priori assumptions on their possible propagation. Despite the success of
this model for its mathematical well-posedness and, at the same time, its rather gen-
eral framework, mechanical engineers and physicists of solids tend to favor more realistic
models, where a smoother process towards fracture is considered and a minimal cohesion
between the surfaces of the crack is not negligible. From this perspective, the approxi-
mation made by L. Ambrosio and V. M. Tortorelli in [10] of the energy functional driving
the quasi-static evolution of the Francfort–Marigo model is very interesting because the
crack is identified by a smooth phase field v : Ω → [0, 1] instead of a sharp lower di-
mensional set. For this reason, in this chapter, as well as in [14, 16, 15], we consider
exclusively a numerical analysis and simulation of a quasi-static evolution based on the
Ambrosio–Tortorelli functional. In particular, our main focus is not on the detection
of the critical point of the energy functional, which was the main argument of the last
chapter, but on the proper fracture path detection, dropping the hypothesis of a pre-
scribed crack path.
In this chapter, for sake of simplicity, we focus only on the pure shear off-plane displace-
ment (1.18) if not differently specified. The analogous analysis relative to the alternative
deformation modes, (1.17), is moved to Appendix B and it can also be found in [16]. In
detail, we proceed as follows. In the next section we introduce the Ambrosio–Tortorelli
functional, then in Section 5.1.1 we introduce the specific finite element scheme that we
adopted. Section 5.2 is dedicated to the introduction of anisotropic domain discretiza-
tion and anisotropic finite elements. Indeed, to efficiently compute the crack path of the
quasi-static evolution we resolved to this particular technique that, as we show in the
numerical experiment in Section 5.4, guarantees not only a reliable simulation but also
advantages from a computational point of view. In order to guarantee the independence
of the result from the discretization we choose, in Section 5.2.2 we derive a posteriori
error estimator on which we base a mesh adaptation procedure illustrated in Section 5.3
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5. Variational formulation of brittle fractures

together with the algorithm to tackle the minimization of the Ambrosio–Tortorelli func-
tional. As anticipated, Section 5.4 reports several numerical experiments performed to
qualitatively validate the procedure proposed in this chapter. The test are divided in
three parts. The first intends to check whether the mesh adaptation process let the
fracture free to detect an expected physical path according to the properties of the do-
main. The second tests the parameter sensitivity of the algorithm analyzing the changes
in the output for different choices of the parameters. Finally the third one concerns
numerical experiments in the in-plane strain and shear. In this particular case, it can
be appreciated not only the crack initiation process, but also the extreme precision to
detect the correct angle of propagation of the fracture depending on the direction in
which the displacement is applied.

5.1. The Ambrosio–Tortorelli approximation of the
Mumford–Shah functional

In the specific off-plane case we split the set ΩD into two subsets ΩD+ and ΩD− such that
ΩD = ΩD+ ∪ ΩD− and ΩD+ ∩ ΩD− = ∅, and we define the external load g : [0, T ] → F
as

g(t) =


t on ΩD+

−t on ΩD−

0 elsewhere
.

The space of the admissible configuration is then

Ut := {u ∈ H1(Ω) : u|ΩD = g(t)|ΩD}

while the Ambrosio–Tortorelli energy functional Eε : H1(Ω) ×H1(Ω; [0, 1]) → R which
substitutes the Mumford–Shah functional in (1.21) is

Eε(u, v) =
∫

Ω
(v2 + η)|∇u|2 dx + κ

∫
Ω

[ 1
4ε(1− v)2 + ε|∇v|2

]
dx, (5.1)

where 0 < η � ε � 1, κ > 0, v ∈ H1(Ω; [0, 1]) = {v ∈ H1(Ω) : 0 ≤ v ≤ 1, a.e. in Ω},
and u ∈ Ut. The first integral of (5.1) accounts for the elastic energy Ee of the body
and the energy density coincides with the one defined in (1.18) except for a weighting
factor (v2 + η), while the second one substitutes the fracture energy defined in (1.19).

Remark 5.1. Let us observe that if v ≡ 1 the second integral vanishes and only the
elastic energy is contributing to the system energy, while the points of the fracture set are
identified by the subset of the domain where v is close to zero. Moreover, the transition
area 0 < v < 1 has thickness of order ε. This can be observed looking at the behavior
of the functional for ε → 0. The limit case requires v → 1 almost everywhere and
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5. Variational formulation of brittle fractures

thus the transition area reduces to a 0 and the set where v = 0 becomes a (d − 1)-
dimensional hypersurface. Thus, in practice, v can be considered as a phase field for the
crack interface [38, 164].

In [118] A. Giacomini proved that the evolution given by the minimization of this func-
tional Γ-converges in L1(Ω)×L1(Ω) to the quasi-static evolution of the Francfort–Marigo
model, as δ, ε → 0. The proof is built upon the original result of convergence made by
L. Ambrosio and V.M. Tortorelli in [9] for the approximation of the Mumford–Shah
functional [169]. Moreover, in [10], the proof of the existence of minimizers for (5.1) is
provided for all ε, η > 0. Alternative Γ-approximations results are addressed, e.g., in
[28, 103].
Now, to describe the quasi-static evolution for the time discretization introduced in the
previous section, we proceed as follows. At the first time step t = t0 we need to solve

(u(t0), v(t0)) ∈ arg min
u ∈ Ut0 ,

v ∈ H1(Ω; [0, 1])

Eε(u, v),

whereas, for subsequent times t = tk, for k = 1, . . . , NT , we seek a pair (u(tk), v(tk))
such that

(u(tk), v(tk)) ∈ arg min
u∈Utk ,

v∈H1(Ω;[0,1]),v≤v(tk−1)

Eε(u, v), (5.2)

where the condition v ≤ v(tk−1) enforces the irreversibility of the crack. Indeed, the
constraint of v being a non-increasing function in time and identifying the fracture set
with

CRk := {x ∈ Ω̄ | v(tk−1) < CRTOL}, (5.3)

where CRTOL is a small constant, it is naturally enforced the condition (a) of Theorem
1.11 that avoids healing of the crack in the future time steps.
The minimization process (5.2) requires minimizing a functional subject to constraints
on both u and v. Accordingly with the procedure proposed in [14, 16, 15], we propose a
minimization process where the constraints are relaxed through suitable penalty terms.
We made this choice in order to avoid the selection of special function spaces and simply
pose the problem as an unconstrained minimization in H1(Ω) for both u and v, with a
consequent simplification of the numerical implementation.
Before introducing the penalized functional, we exploit the definition of the crack set
(5.3) to write the inequality constraint

v(tk) ≤ v(tk−1), (5.4)

in an alternative way such that the fracture irreversibility is maintained and at the same
time expressed as an equality constraint. This change is done mainly because (5.4) is not
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5. Variational formulation of brittle fractures

easily implementable. In particular, we follow an alternative criterion, first introduced
by B. Bourdin in [39]. Let CRk−1 the fracture set as defined in (5.3) at time t = tk−1,
then we can enforce condition (a) of Theorem 1.11 also by the following condition

v(x, ti) = 0 ∀x ∈ CRk−1 and ∀i : k ≤ i ≤ NT . (5.5)

Moving from this idea, we propose minimizing the following penalized functional

Eγε,k(u, v) =
∫

Ω
(v2 + η)|∇u|2 dx + κ

∫
Ω

[ 1
4ε(1− v)2 + ε|∇v|2

]
dx

+ 1
γA

∫
ΩD

(g(tk)− u)2 dx + 1
γB

∫
CRk−1

v2 dx,
(5.6)

where γA and γB are the two (small) penalty constants. Hence, setting CR−1 = ∅, the
new optimization problem is

(u(tk), v(tk)) ∈ arg min
u∈H1(Ω),

v∈H1(Ω;[0,1])

Eγε,k(u, v), for k = 0, . . . , NT , (5.7)

where, differently from the previous models [39, 48], there is no more distinction between
the first minimization step and the following ones as the last penalty term vanishes at
t = 0. Notice that the function v must take values only in [0, 1] but this constraint is not
effectively enforced during the minimization process. Indeed, as shown in Proposition 5.4
using a truncation argument, any local minimizer (u, v) of (5.6) in the H1(Ω)×H1(Ω)
topology is such that 0 ≤ v ≤ 1 a.e. in Ω and thus there is no need for additional
constraints. Moreover, adding the penalty terms we do not affect the Γ-convergence
result of the functional. Being the additional terms clearly continuous, convex, and
always non-negative, the proof of the convergence of the minimizers of (5.7) to ones
fulfilling (5.5) instead of (5.4) in (5.2) for γA, γB → 0, follows from the Γ-convergence
theory [72].
In order to ease the notation, we assume from now on unless differently specified that
κ = 1 and we define α = (4ε)−1. Throughout the remaining part of this section, we
mimic the analysis in E. Süli et al. [48] by suitably modifying it to deal with functional
(5.6).
Thanks to the boundedness of v we can eventually restrict its space to L∞(Ω) ∩H1(Ω)
and introduce the following

Proposition 5.2. The functional Eγε,k is Fréchet-differentiable in H1(Ω) × (H1(Ω) ∩
L∞(Ω)).

Proof. The proof follows directly from Proposition 1.1 in [48]. In particular, the differ-
entiability of the additional penalty terms is trivial and thus the penalty terms does not
change the regularity of the functional Eγε,k.
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We introduce now the Fréchet derivative of Eγε,k(w, z) in the direction (ϕ,ψ), i.e.,

(Eγε,k)
′(w, z;ϕ,ψ) = 2

(∫
Ω

(z2 + η)∇w · ∇ϕdx + 1
γA

∫
ΩD

(w − g(tk))ϕdx
)

+2
(∫

Ω

[
zψ|∇w|2 + α(z − 1)ψ + ε∇z · ∇ψ

]
dx + 1

γB

∫
CRk−1

zψ dx
)

=: 2aγA(z;w,ϕ) + 2bγB (w; z, ψ),
(5.8)

where we have split the derivative in two parts; the first one, aγA , associated with
the derivative in the direction ϕ, and the second one, bγB , related to the direction ψ.
Accordingly, we can characterize the critical points of Eγε,k as follows

Definition 5.3. The pair (u, v) ∈ H1(Ω)× (H1(Ω) ∩ L∞(Ω)) is a critical point of Eγε,k
if (Eγε,k)

′(u, v;ϕ,ψ) = 0 for all ϕ ∈ H1(Ω) and for all ψ ∈ (H1(Ω) ∩ L∞(Ω)).

As anticipated above, thanks to the following proposition, we can get rid of the constraint
on v.

Proposition 5.4. If (u, v) ∈ H1(Ω)× (H1(Ω)∩L∞(Ω)) is a critical point of Eγε,k, then
0 ≤ v(x) ≤ 1 for a.e. x ∈ Ω.

Proof. Following the argument of Proposition 1.3 of [48], suppose that (u, v) is a critical
point of Eγε,k and that Ω1 and Ω2 are the two subsets of Ω such that Ω1 = {x ∈ Ω | v(x) >
1}, Ω2 = {x ∈ Ω | v(x) < 0}, and |Ω1 ∪ Ω2| > 0. Since (u, v) is a critical point of Eγε,k,
we have

bγB (u; v, ψ) = 0 ∀ψ ∈ H1(Ω) ∩ L∞(Ω).

Then, if we choose

ψ(x) =


1− v(x) x ∈ Ω1
−v(x) x ∈ Ω2
0 elsewhere,

we obtain

bγB (u; v, ψ) =
∫

Ω1

[
v(1− v)|∇u|2 − α(v − 1)2 − ε|∇v|2

]
dx

−
∫

Ω2

[
v2|∇u|2 + α(v − 1)v + ε|∇v|2

]
dx

− 1
γB

∫
CRk−1∩Ω2

v2 dx + 1
γB

∫
CRk−1∩Ω1

v(1− v) dx = 0.

(5.9)

The left-hand side of (5.9) consists of four negative terms, leading to a contradiction.
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5.1.1. The finite element discretization

In this section we introduce the discrete counterpart of the minimization problem (5.7)
in a finite element setting. Thus, fixing d = 2 and eventually restricting Ω to be a
polygonal domain, we denote with {Th}h>0 a family of meshes of the domain Ω, with
Nh the index set of the vertices of Th and eh the skeleton of Th. Henceforth we assume
that the boundary of ΩD coincides with the union of consecutive edges in eh. Finally, we
associate {Th}h>0 with the space Xh of the continuous piecewise linear finite elements
[63] and we denote by Eh,k(uh, vh) the discrete correspondent of Eγε,k(u, v) in (5.6),
defined as follows

Eh,k(uh, vh) =
∫

Ω

[ (
Ph(v2

h) + η
)
|∇uh|2 dx + αPh((1− vh)2) + ε|∇vh|2

]
dx

+ 1
γA

∫
ΩD

Ph
(
(gh(tk)− uh)2

)
dx + 1

γB

∫
CRk−1

Ph
(
v2
h

)
dx,

(5.10)

where Ph : C0(Ω)→ Xh is the Lagrangian interpolant onto the space Xh, and gh ∈ Xh

is a suitable discrete approximation of g. In particular, we pick gh(tk), for any k ∈
{0, . . . , NT }, such that∫

Ω
gh(tk)wh dx =

∫
Ω
g(tk)wh dx ∀wh ∈ Xh, (5.11)

i.e., gh(tk) is the L2(Ω)-projection of g(tk) onto Xh. Moreover, we point out that the
action of the operator Ph is equivalent to a mass lumping [207] and it allows us to extend
Proposition 5.4 to the critical points of Eh,k as well.
In the sequel, we assume that the off-diagonal entries of the stiffness matrix [kij ] associ-
ated with the space Xh be non-positive, i.e.,

kij :=
∫

Ω
∇ξi · ∇ξj dx ≤ 0 ∀i 6= j ∈ Nh, (5.12)

where {ξl}#Nhl=1 denotes the finite element basis ofXh. This condition is related to discrete
maximum principle as discussed, for instance, in [64, 147, 202].
We are now able to define the discrete analogue to (5.7) which is

(uh(tk), vh(tk)) ∈ arg min
ûh ∈ Xh,

v̂h ∈ Xh

Eh,k(ûh, v̂h), for k = 0, . . . , NT ,

while the discrete version of the Definition 5.3 of critical point is
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Definition 5.5. The pair (uh, vh) ∈ Xh ×Xh is a critical point of the discrete energy
functional Eh,k if (Eh,k)′(uh, vh;ϕh, ψh) = 0 for all (ϕh, ψh) ∈ Xh ×Xh, where

(Eh,k)′(uh, vh;ϕh, ψh) =2
(∫

Ω
(Ph(v2

h) + η)∇uh · ∇ϕh dx + 1
γA

∫
ΩD
Ph((uh − gh(tk))ϕh) dx

)

+ 2
(∫

Ω

[
Ph(vhψh)|∇uh|2 + αPh((vh − 1)ψh) + ε∇vh · ∇ψh

]
dx

+ 1
γB

∫
CRh

k−1

Ph (vhψh) dx
)

=: 2ahγA(vh;uh, ϕh) + 2bhγB (uh; vh, ψh).

Also Proposition 5.4 can be adapted to the discrete case, suitably relying on assumption
(5.12) and on the properties of Ph, as follows

Proposition 5.6. Let (uh, vh) ∈ Xh ×Xh be a critical point of Eh,k, then 0 ≤ vh ≤ 1
for all x ∈ Ω.

Proof. The proof generalizes Proposition 2.2 in [48], by properly including the term∫
CRk−1

Ph(v2
h) dx. By mimicking in a discrete setting the proof of Proposition 5.4, we

suppose, by contradiction, that there exist two index sets J1, J2 ⊂ Nh where vi > 1 for
all i ∈ J1 and vj < 0 for all j ∈ J2, where we let vi = vh(xi, tk).
Consider j ∈ J2 such that vj ≤ vi, for all i ∈ Nh and let ∆j be the patch of elements
associated with xj with Mj = {i ∈ Nh : xi ∈ ∆j}.
Now, if we choose as a test function the hat function ξj associated with xj , from the
equality bhγB (uh; vh, ψh) = 0 we have

ε

∫
∆j

∇vh · ∇ξj dx = −
∫

∆j

[Ph(vhξj)|∇uh|2 − αPh((vh − 1)ξj)] dx

− 1
γB

∫
CRk−1∩∆j

Ph (vhξj) dx

> −vj
∑
K∈∆j

|∇uh|K |2
|K|
3 − α(vj − 1) |∆j |

3 > 0,

(5.13)

where the last inequality is obtained considering that vj < 0 and that Ph (vhξj) is a
non-positive function on the set CRk−1 ∩∆j . Since vh =

∑
i∈Nh

viξi, and the sum of the

rows of the stiffness matrix is zero, we have

ε

∫
∆j

∇vh · ∇ξj dx = ε
∑
i∈Mj

kjivi = ε
∑
i∈Mj

kji(vi − vj) + ε
∑
i∈Mj

kjivj = ε
∑
i∈Mj

kji(vi − vj).

Thus, using assumption (5.12) and the hypothesis vj ≤ vi, we have that

ε

∫
∆j

∇vh · ∇ξj dx ≤ 0
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in contradiction with (5.13).
Similarly, we can proceed to contradict the existence of nodes in J1. Consider j ∈ J1
such that vj ≥ vi for all i ∈ Nh and let ∆j be the patch of elements associated with xj .
Now, choosing again as test function the hat function ξj associated with xj , from the
equality bhγB (uh; vh, ψh) = 0 we have

ε

∫
∆j

∇vh · ∇ξj dx = −
∫

∆j

[Ph(vhξj)|∇uh|2 − αPh((vh − 1)ξj)] dx

− 1
γB

∫
CRk−1∩∆j

Ph (vhξj) dx

< −vj
∑
K∈∆j

|∇uh|K |2
|K|
3 − α(vj − 1) |∆j |

3 < 0,

(5.14)

where the last inequality is obtained considering that vj > 1 and that Ph (vhξj) is a
positive function on the set CRk−1 ∩ ∆j . Following a similar reasoning as before and
thanks to the hypothesis vj ≥ vi, we have that ε

∫
∆j

∇vh · ∇ξj dx ≥ 0 in contradiction

with (5.14).

Remark 5.7. Following [48], we replace also the definition of the crack set (5.3) by a
discrete version

CRhk−1 =
⋃

e∈eCR
h

e, where eCRh := {e ∈ eh : vh(x, tk−1) ≤ CRTOL, ∀x ∈ e},

which enjoys one-dimensional features. Although this definition introduces an approx-
imation error whose study is beyond the scope of this work, the reason of introducing
such approximation is the avoidance of improper crack propagation. Indeed, as already
observed in [42], the choice of a too big CRTOL may cause a widening of the fracture. In
the same spirit, we consider to be crack edges only the ones which are entirely contained
in the crack set CRk−1 to avoid edges not aligned with the fracture to be considered part
of the crack set causing consequently the crack widening phenomenon.

5.2. Anisotropic finite element setting and error estimator

In this section we face the problem of designing an accurate, robust, and efficient mesh
adaptation procedure that, combined with a proper minimization algorithm, allows us
to successfully break the dilemma “the grid follows the fracture or the fracture follows the
grid” with a proper balance between accuracy and complexity. Indeed, previous accu-
rate numerical simulations of the Francfort–Marigo model have been performed either on
very fine ad hoc meshes [39, 42] or towards adaptive discretization of free-discontinuity
functionals of Mumford–Shah type [41, 48, 49, 59, 172].
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In particular, the strategy we propose in this section follows and combines both strategies
suggested in the papers [41, 48]; we merge the minimization of the Ambrosio–Tortorelli
model with an adaptive anisotropic discretization by exploiting the fact that the con-
sidered model exhibits solutions with very steep features close to the crack. Moreover,
being the crack a (d−1)-dimensional object evolving along a specific direction, the choice
of an anisotropic adaptation can be really advantageous compared with a more standard
isotropic approach.
Before introducing the a posteriori estimator for (Eh,k)′(uh, vh;ϕ,ψ), we lay down the
anisotropic background which is fundamental for a deep understanding of this chapter.

5.2.1. The anisotropic background

We shortly introduce the anisotropic setting described in [88, 161] that we will use for
our mesh adaptation. In these works, the directional anisotropic information is derived
from the spectral properties of the standard affine map TK : K̂ → K with

x = TK(x̂) = MK x̂ + tK

between the equilateral reference triangle K̂ inscribed in the unit circle and the generic
triangle K of the mesh Th, with MK ∈ R2×2, tK ∈ R2, x ∈ K, x̂ ∈ K̂.

K
^

1

1,K
λ

λ

K

r

2,K

1,K

2,K
r

TK

Figure 5.1.: Geometric quantities associated with the map TK

We introduce the polar decomposition of the Jacobian MK , i.e., MK = BKZK , where
BK , ZK ∈ R2×2 are respectively a symmetric positive definite and an orthogonal matrix.
The first matrix models the deformation of K, while ZK rotates it rigidly. Then we
consider the eigenvalue factorization of BK as BK = RTKΛKRK , with RTK = [r1,K , r2,K ]
and ΛK = diag(λ1,K , λ2,K). In particular, the eigenvectors r1,K , r2,K give the directions
of the semi-axes of the ellipse circumscribed toK, while the eigevalues λ1,K , λ2,K measure
the length of these semi-axes (see Figure 5.1). We also define the aspect ratio of the
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element K by sK = λ1,K/λ2,K . With a view to an anisotropic control of the mesh, we
introduce the quasi-interpolant Clément operator Ih : L2(Ω) → Xh [66]. We recall the
following anisotropic estimate for the interpolation error.

Lemma 5.8. Let w ∈ H1(Ω). If the cardinality #∆K ≤ N for some N ∈ N, and
diam(T−1

K (∆K)) ≤ C∆ ' O(1), where ∆K = {T ∈ Th : T ∩ K 6= ∅}, then there exist
constants Cs = Cs(N , C∆), with s = 0, 1, 2, such that, for any K ∈ Th, it holds

‖w − Ih(w)‖Hs(K) ≤ Cs

(
1

λ2,K

)s [ 2∑
i=1

λ2
i,K(rTi,KG∆K

(w)ri,K)
]1/2

, (5.15)

with s = 0, 1, and

‖w − Ih(w)‖L2(∂K) ≤ C2

(
hK

λ1,Kλ2,K

)1/2 [ 2∑
i=1

λ2
i,K(rTi,KG∆K

(w)ri,K)
]1/2

, (5.16)

where hK = diam(K),
G∆K

(w) =
∑

T∈∆K

GT (w) (5.17)

is a symmetric positive semi-definite matrix with

GT (w) :=


∫
T

(
∂w

∂x1

)2
dx

∫
T

∂w

∂x1

∂w

∂x2
dx

∫
T

∂w

∂x1

∂w

∂x2
dx

∫
T

(
∂w

∂x2

)2
dx

 , (5.18)

for any T ∈ Th.

Proof. See [104, 105] for the details.

We observe that the geometrical hypotheses in Lemma 5.8 do not limit explicitly the
anisotropic features (stretching factor and orientation) of each element, but rather they
ensure some smoothness in the variation of the anisotropic features [163].
Let us recall an equivalence result between the standard H1(∆K)-seminorm and its
anisotropic correspondent:

Lemma 5.9. Let w ∈ H1(Ω) and K ∈ Th. For any β1, β2 > 0, it holds

min{β1, β2} ≤
β1(rT1,KG∆K

(w)r1,K) + β2(rT2,KG∆K
(w)r2,K)

|w|2H1(∆K)
≤ max{β1, β2}, (5.19)

where G∆K
(·) is defined as in (5.17).

Proof. See [160] for the details.
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5.2.2. An a posteriori error estimator

We can now state the main result of this section which represents the anisotropic ana-
logue of Proposition 3.1 in [48].

Proposition 5.10. Let (uh, vh) ∈ Xh × Xh be the critical point of Eh,k according to
Definition 5.5. Then it holds

|(Eγε,k)
′(uh, vh;ϕ,ψ)| ≤ C

∑
K∈Th

{
ρAK(vh, uh)ωK(ϕ)+ρBK(uh, vh)ωK(ψ)

}
∀ϕ,ψ ∈ H1(Ω),

(5.20)
where C = C(N , C∆), while

ρAK(vh, uh) = 1
2‖[[∇uh]]‖L∞(∂K) ‖v2

h + η‖L2(∂K)

(
hK

λ1,Kλ2,K

) 1
2

+ ‖2vh(∇vh · ∇uh)‖L2(K) + δK,ΩD
γA

(
‖uh − gh(tk)‖L2(K)

+‖gh(tk)− g(tk)‖L2(K)

)
+ 1
λ2,K

[
‖v2
h − Ph(v2

h)‖L∞(K) ‖∇uh‖L2(K)

+ |K|
1/2 h2

K

γA
|uh − gh(tk)|W 1,∞(K)

]

ρBK(uh, vh) = ‖(|∇uh|2 + α)vh − α‖L2(K) + ε

2 ‖[[∇vh]]‖L2(∂K)

(
hK

λ1,Kλ2,K

)1/2

+
δK,CRk−1

γB
‖vh‖L2(K) + h2

K

λ2,K

[
‖ |∇uh|2 + α‖L2(K)

+
|K|1/2 δK,CRk−1

γB

]
|vh|W 1,∞(K)

ωK(w) =
[ 2∑
i=1

λ2
i,K(rTi,KG∆K

(w)ri,K)
]1/2

∀w ∈ H1(Ω),

where

[[wh]] :=


∣∣[∇wh · ν]

∣∣ on eh∣∣∇wh · ν∣∣ on eh ∩ ∂Ω
(5.21)

denotes the absolute value of the jump of the normal derivative, with ν the unit normal
vector to the generic edge in eh, gh is chosen as in (5.11) and δK,$ is such that δK,$ = 1
if K ∩$ 6= ∅ and δK,$ = 0 otherwise.

Proof. Since (uh, vh) is a critical point of Eh,k, we have

ahγA(vh;uh, ϕh) = 0 ∀ϕh ∈ Xh, bhγB (uh; vh, ψh) = 0 ∀ψh ∈ Xh. (5.22)
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Moreover, from (5.8), for any pair (ϕ,ψ) ∈ H1(Ω)×H1(Ω), it holds

|(Eγε,k)
′(uh, vh;ϕ,ψ)| ≤ 2|aγA(vh;uh, ϕ)|+ 2|bγB (uh; vh, ψ)|. (5.23)

Let us deal with the two terms above, separately. We start from |aγA(vh;uh, ϕ)|. Thanks
to (5.22), we have

|aγA(vh;uh, ϕ)| ≤ |aγA(vh;uh, ϕ− ϕh)|

+ |aγA(vh;uh, ϕh)− ahγA(vh;uh, ϕh)| ∀ϕ ∈ H1(Ω), ∀ϕh ∈ Xh.

(5.24)
Concerning the first term on the right-hand side of (5.24), we get∣∣aγA(vh;uh, ϕ− ϕh)

∣∣
=

∣∣∣ ∑
K∈Th

{∫
K

(v2
h + η)∇uh · ∇(ϕ− ϕh) dx + 1

γA

∫
K

(uh − g(tk))(ϕ− ϕh)χΩD dx
}∣∣∣

=
∣∣∣ ∑
K∈Th

{∫
K
−2vh(∇vh · ∇uh)(ϕ− ϕh) dx +

∫
∂K

(v2
h + η)∇uh · ν(ϕ− ϕh)ds

+ 1
γA

∫
K

[
(uh − gh(tk)) + (gh(tk)− g(tk))

]
(ϕ− ϕh)χΩD dx

}∣∣∣
≤

∑
K∈Th

{
‖2vh(∇vh · ∇uh)‖L2(K) ‖ϕ− ϕh‖L2(K) + 1

2

∫
∂K

[[∇uh]] |v2
h + η| |ϕ− ϕh|ds

+ 1
γA

(
‖(uh − gh(tk))χΩD‖L2(K)+‖(gh(tk)− g(tk))χΩD‖L2(K)

)
‖(ϕ− ϕh)χΩD‖L2(K)

}
≤

∑
K∈Th

{
‖2vh(∇vh · ∇uh)‖L2(K) ‖ϕ− ϕh‖L2(K)

+1
2‖[[∇uh]]‖L∞(∂K)‖v2

h + η‖L2(∂K)‖ϕ− ϕh‖L2(∂K)+ 1
γA

(
‖(uh − gh(tk))χΩD‖L2(K)

+‖(gh(tk)− g(tk))χΩD‖L2(K)
)
‖(ϕ− ϕh)χΩD‖L2(K)

}
,

(5.25)
after splitting the integrals on the mesh elements, exploiting integration by parts, Hölder
and Cauchy–Schwarz inequalities, and definition (5.21). Hereafter, χ$ denotes the char-
acteristic function of the set $. Picking ϕh = Ih(ϕ) and thanks to Lemma 5.8 with
s = 0, we obtain∣∣aγA(vh;uh, ϕ− ϕh)

∣∣
≤ C

∑
K∈Th

{
‖2vh(∇vh · ∇uh)‖L2(K)+ 1

2‖[[∇uh]]‖L∞(∂K)‖v2
h + η‖L2(∂K)

(
hK

λ1,Kλ2,K

) 1
2

+δK,ΩD
γA

(
‖uh − gh(tk)‖L2(K)+ ‖gh(tk)− g(tk)‖L2(K)

)}[ 2∑
i=1

λ2
i,K(rTi,KG∆K

(ϕ)ri,K)
] 1

2

.

(5.26)
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Let us now deal with the second term on the right-hand side of (5.24). We anticipate
the auxiliary result

|whϕh|H2(K) ≤ 2 |wh|W 1,∞(K) ‖∇ϕh‖L2(K) ∀wh, ϕh ∈ Xh, ∀K ∈ Th, (5.27)

which can be proved by straightforward calculus. Now, employing standard inequali-
ties (Hölder, Cauchy–Schwarz) together with the definition of gh(tk) and the standard
isotropic estimate for the L2-norm of the interpolation error associated with Ph, we get

|aγA(vh;uh, ϕh)− ahγA(vh;uh, ϕh)| ≤
∣∣∣ ∫

Ω

[
v2
h − Ph(v2

h)
]
∇uh · ∇ϕh dx

∣∣∣
+ 1
γA

∣∣∣ ∫
ΩD

[
(uh − gh(tk))ϕh − Ph((uh − gh(tk))ϕh)

]
dx
∣∣∣

+ 1
γA

∣∣∣ ∫
ΩD

(
gh(tk)ϕh − g(tk)ϕh

)
dx
∣∣∣

≤ C
∑
K∈Th

{
‖v2
h − Ph(v2

h)‖L∞(K) ‖∇uh‖L2(K) ‖∇ϕh‖L2(K)

+ |K|
1/2 h2

K

γA
|(uh − gh(tk))ϕh|H2(K)

}
,

(5.28)

where the constant C does not depend on the aspect ratio sK of K. Then we employ
(5.27) together with estimate (5.15) with s = 1 and Lemma 5.9 with β1 = λ2

1,K , β2 =
λ2

2,K , to obtain

|aγA(vh;uh, ϕh)− ahγA(vh;uh, ϕh)|

≤ C
∑
K∈Th

{
‖v2
h − Ph(v2

h)‖L∞(K) ‖∇uh‖L2(K) ‖∇ϕh‖L2(K)

+ |K|
1/2 h2

K

γA
|uh − gh(tk)|W 1,∞(K) ‖∇ϕh‖L2(K)

}
≤ C

∑
K∈Th

{(
‖v2
h − Ph(v2

h)‖L∞(K) ‖∇uh‖L2(K) + |K|
1/2 h2

K

γA
|uh − gh(tk)|W 1,∞(K)

)
(
‖∇ϕh −∇ϕ‖L2(K) + ‖∇ϕ‖L2(K)

)}
≤ C

∑
K∈Th

{(
‖v2
h − Ph(v2

h)‖L∞(K) ‖∇uh‖L2(K) + |K|
1/2 h2

K

γA
|uh − gh(tk)|W 1,∞(K)

)
1

λ2,K

[ 2∑
i=1

λ2
i,K(rTi,KG∆K

(ϕ)ri,K)
]1/2}

.

(5.29)
Therefore, collecting (5.26) and (5.29), we are able to bound the first term on the right-
hand side of (5.23), as

|aγA(vh;uh, ϕ)| ≤ C
∑
K∈Th

ρAK(vh, uh)ωAK(ϕ).
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Let us consider now the second term on the righ-hand side of (5.23). In the same way
as in (5.24) and thanks to (5.22), we have

|bγB (uh; vh, ψ)| ≤ |bγB (uh; vh, ψ − ψh)|

+|bγB (uh; vh, ψh)− bhγB (uh; vh, ψh)| ∀ψ ∈ H1(Ω), ∀ψh ∈ Xh.

(5.30)
We tackle the first term |bγB (uh; vh, ψ − ψh)|. Rewriting the integrals on Ω over the
mesh elements, integrating by parts, and thanks to the Cauchy–Schwarz inequality and
definition (5.21), we obtain∣∣bγB (uh; vh, ψ − ψh)

∣∣
=

∣∣∣∣∣ ∑
K∈Th

{∫
K

[(
(|∇uh|2 + α)vh − α

)
(ψ − ψh) + ε∇vh · ∇(ψ − ψh)

]
dx

+ 1
γB

∫
K
vh(ψ − ψh)χCRk−1 dx

}∣∣∣∣∣
≤

∑
K∈Th

{
‖(|∇uh|2 + α)vh − α‖L2(K)‖ψ − ψh‖L2(K) +

∣∣∣ε ∫
∂K

(ψ − ψh)∇vh · ν ds
∣∣∣

+ 1
γB
‖vh χCRk−1‖L2(K) ‖(ψ − ψh)χCRk−1‖L2(K)

}
≤

∑
K∈Th

{
‖(|∇uh|2+α)vh−α‖L2(K)‖ψ−ψh‖L2(K)+ ε

2 ‖[[∇vh]]‖L2(∂K)‖ψ−ψh‖L2(∂K)

+ 1
γB
‖vh χCRk−1‖L2(K) ‖(ψ − ψh)χCRk−1‖L2(K)

}
.

(5.31)
We now choose ψh = Ih(ψ) and use Lemma 5.8 to get∣∣bγB (uh; vh, ψ − ψh)

∣∣
≤ C

∑
K∈Th

{
‖(|∇uh|2 + α)vh − α‖L2(K) + ε

2 ‖[[∇vh]]‖L2(∂K)

(
hK

λ1,Kλ2,K

)1/2

+
δK,CRk−1

γB
‖vh‖L2(K)

}[ 2∑
i=1

λ2
i,K(rTi,KG∆K

(ψ)ri,K)
]1/2

.

(5.32)

We estimate now the second term on the right-hand side of (5.30). By mimicking the
arguments employed in (5.28)–(5.29), we obtain the following bound:∣∣bγB (uh; vh, ψh)− bhγB (uh; vh, ψh)

∣∣
≤
∣∣∣ ∫

Ω
(vhψh − Ph(vhψh))(|∇uh|2 + α) dx

∣∣∣+ 1
γB

∫
CRk−1

(vhψh − Ph(vhψh)) dx
∣∣∣
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≤ C
∑
K∈Th

{
‖vhψh − Ph(vhψh)‖L2(K)

[
‖ |∇uh|2 + α‖L2(K) +

|K|1/2 δK,CRk−1

γB

]}
≤ C

∑
K∈Th

{[
‖ |∇uh|2 + α‖L2(K) +

|K|1/2 δK,CRk−1

γB

]
h2
K |vhψh|H2(K)

}
≤ C

∑
K∈Th

{[
‖ |∇uh|2 + α‖L2(K) +

|K|1/2 δK,CRk−1

γB

]
h2
K |vh|W 1,∞(K)‖∇ψh‖L2(K)

}
≤ C

∑
K∈Th

{[
‖ |∇uh|2 + α‖L2(K) +

|K|1/2 δK,CRk−1

γB

]
h2
K |vh|W 1,∞(K)

1
λ2,K

[ 2∑
i=1

λ2
i,K(rTi,KG∆K

(ψ)ri,K)
]1/2}

.

(5.33)
Inequalities (5.32) and (5.33) allow us to control the second term on the right-hand side
of (5.23), i.e.,

|bγB (uh; vh, ψ)| ≤ C
∑
K∈Th

ρBK(uh, vh)ωBK(ψ).

Estimate (5.20) now follows in a straightforward way.

Remark 5.11. To link result (5.20) to the theory in [48], we seek a bound of the
dual norm ‖(Eγε,k)

′(uh, vh)‖(H1(Ω)×H1(Ω))∗, where (H1(Ω) × H1(Ω))∗ is the dual space
of H1(Ω)×H1(Ω). Thanks to Lemma 5.9 and the discrete Cauchy–Schwarz inequality,
we have

‖(Eγε,k)
′(uh, vh)‖(H1(Ω)×H1(Ω))∗ = sup

(ϕ,ψ)∈H1(Ω)×H1(Ω)

|(Eγε,k)′(uh, vh;ϕ,ψ)|[
‖ϕ‖2H1(Ω) + ‖ψ‖2H1(Ω)

]1/2
≤ C

[( ∑
K∈Th

λ2
1,K
(
ρAK(vh, uh)

)2)1/2
+
( ∑
K∈Th

λ2
1,K
(
ρBK(uh, vh)

)2)1/2]
[ (
‖ϕ‖H1(Ω) + ‖ψ‖H1(Ω)

)
(‖ϕ‖2H1(Ω) + ‖ψ‖2H1(Ω))1/2

]
,

i.e.,

‖(Eγε,k)
′(uh, vh)‖(H1(Ω)×H1(Ω))∗

≤ C
[( ∑

K∈Th

λ2
1,K
(
ρAK(vh, uh)

)2)1/2
+
( ∑
K∈Th

λ2
1,K
(
ρBK(uh, vh)

)2)1/2]
,

(5.34)

with C = C(N , C∆). Nevertheless, the right-hand side of (5.34) turns out to be a very
poor error estimator in terms of driving efficient anisotropic mesh adaptation. Thus we
cannot pursue the approach in [48] and use an error estimator completely independent
of the choice of directions ϕ and ψ.
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Since estimate (5.20) holds for any pair of test functions (ϕ,ψ) ∈ H1(Ω) × H1(Ω), we
make a specific choice, which allows us to write the left-hand side of (5.20) in terms of
an energy estimate.

Corollary 5.12. We have that

Eγε,k(u, v)− Eγε,k(uh, vh) = 1
2(Eγε,k)

′(uh, vh;u− uh, v − vh) +R,

with R a third-order remainder in u− uh, v − vh.

Proof. The result follows by picking ϕ = u−uh and ψ = v−vh and using the arguments
in Proposition 2.1 in [27].

As a consequence, the error estimator that we propose is

η(uh, vh) =
∑
K∈Th

ηK(uh, vh), (5.35)

with ηK(uh, vh) = ρAK(vh, uh)ωRK(u− uh) + ρBK(uh, vh)ωRK(v − vh), where

ωRK(z) =
[ 2∑
i=1

λ2
i,K(rTi,KGR∆K

(z)ri,K)
]1/2

with z = u− uh, v − vh,

with GR∆K
(z) the matrix G∆K

defined as in Lemma 5.8 applied to the recovered gradient
from zh [218, 161, 162]. In particular, due to the dependence of the weights ωRK on
the first-order derivatives of the error, we approximate the entries of matrix (5.18) by
computable quantities, resorting to the well-known Zienkiewicz–Zhu recovery procedure,
as detailed in [88, formula (33) and Remark 9].

5.3. The numerical procedure

The introduction of the Ambrosio–Tortorelli approximation of the functional (1.20) sim-
plified the issue of performing a numerical simulation of the quasi-static evolution of a
brittle fracture substituting the minimization on the set Γ with its phase field v. Al-
though this approach eases the process, it is far from being trivial. Indeed, the functional
(5.6) is nonconvex due to the presence of the term v2|∇u|2. Therefore, it is not possible,
in general, to construct an algorithm with polynomial complexity guaranteeing conver-
gence to the global minimizers. Indeed, the methods in the literature in general only
ensure convergence to local minima (see [19] and references therein) and we cannot aim
for better numerical results.
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5.3.1. The minimization algorithm

The algorithm we resolve to minimize (5.6) is the alternate minimization algorithm
proposed in [42]. The idea for designing this procedure is to exploit the convexity of
the functional with respect to the two separate variables. Indeed, finding a minimizer of
the energy functional with respect either to u or to v, keeping the other variable fixed,
is relatively trivial and any convex minimization strategy can be adopted. Thus for a
given a termination tolerance 0 < VTOL � 1, the algorithm is the following:

Algorithm 5.1 The alternate minimization algorithm proposed in [42]

1. Set k = 0;
2. If k = 0, set v1 = 1; else v1 = v(tk−1).
3. Set i = 1; err = 1;
while err ≥ VTOL do

4. ui = arg min
z∈H1(Ω)

Eγε,k(z, v
i);

5. vi+1 = arg min
z∈H1(Ω)

Eγε,k(u
i, z);

6. err = ‖vi+1 − vi‖L∞(Ω);
7. i← i+ 1;

end while
8. u(tk) = ui−1; v(tk) = vi;
9. k ← k + 1;
10. if k > F , stop; else goto 2.

Notice that Steps 4. and 5. involve respectively the convex minimizations in the vari-
ables u and v. In the literature, several examples of implementations of this algorithm
are available (see, e.g., [39, 40, 42, 48]), while the first proof, although incomplete, of
convergence of the algorithm to a local minimizer of the objective functional appeared
in [39, Theorem 1]. The proof was then completed only a few years later in the work
[48, Theorems 4.1 and 4.2].
With a view to the numerical implementation, we will consider the discrete counterpart
of Algorithm 5.1. Since, in general, we expect the crack propagation to be a strongly
anisotropic process, characterized by very steep gradients of both the fields u and v,
we will resort to a finite element discretization based on anisotropic adapted meshes,
driven by the a posteriori error estimator derived in Proposition 5.10. The challenge is
to properly merge the minimization algorithm with an anisotropic adaptive procedure,
as shown in the next section.
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5.3.2. The mesh adaptive procedure

Following [160, 161, 162], we use a metric-based mesh adaptive approach (see, e.g., [117]).
In particular, for a fixed accuracy tolerance ADTOL, we “predict” the optimal mesh with
the least number of elements.
A metric is a symmetric positive-definite tensor field M : Ω → R2×2 which, for any
x ∈ Ω, provides the sizes that the optimal mesh should have along all the directions
around x. In practice, we approximate M via a piecewise constant metric on a given
mesh Th, i.e.,M|K =MK = RTKL−2

K RK , for any K ∈ Th, where the matrices RK and
LK share the same structure as RK and ΛK in Section 5.2, respectively.
Actually, there exists a strict link between metrics and meshes. We can associate with
an assigned mesh Th, a corresponding piecewise-constant metric identified by MK =
RTKΛ−2

K RK , for any K ∈ Th, where matrices RK and ΛK are exactly the same as in
Section 5.2.1. Vice versa, for a given metricM, we can build a mesh, say TM, such that
MK ≡ MK , for any K ∈ TM (for all the details, we refer, for instance, to [160, 161]).
The procedure we follow is first to derive a metric moving from the a posteriori error
estimator (5.35) and then to generate the new mesh induced by this metric via a metric-
based mesh generator. In particular, we exploit the function adaptmesh in FreeFem++
[132].
In the spirit of a standard predictive approach, the metricM is obtained via an iterative
procedure. At each iteration, say i, we deal with three quantities:

i) the actual mesh T (i)
h ;

ii) the new metricM(i+1) computed on T (i)
h ;

iii) the updated mesh T (i+1)
h induced byM(i+1).

The most tricky step is the prediction of the new metric out of the estimator η(uh, vh) :=
C
∑
K∈Th

{
ρAK(vh, uh)ωK(u− uh) + ρBK(uh, vh)ωK(v − vh)

}
. For this purpose, we suitably

rewrite the local estimator as

ηK(uh, vh) := µK
{
ρAK(vh, uh)ωRK(u− uh) + ρBK(uh, vh)ωRK(v − vh)

}
, (5.36)

where µK = |K̂|
(
λ1,Kλ2,K

)3/2 gathers all the area |K| information,

ρAK(vh, uh) = ρAK(vh, uh)(
|K̂|λ1,Kλ2,K

)1/2 , ρBK(vh, uh) = ρBK(vh, uh)(
|K̂|λ1,Kλ2,K

)1/2 ,
are approximately pointwise values (at least for a sufficiently fine mesh), while the new
weights

ωRK(z) =
[
sK rT1,K G

R
∆K

(z) r1,K + 1
sK

rT2,K G
R
∆K

(z) r2,K
]1/2

with z = u− uh, v − vh,
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collect the anisotropic information associated with K, with

G
R
∆K

(·) = GR∆K
(·)/(|K̂|λ1,Kλ2,K).

Following [162, Section 4], we properly merge the two terms in (5.36) to deal with a
single metric. This yields

ηK(uh, vh) = µKΥK

with
ΥK =

[
sK rT1,K ΓK r1,K + 1

sK
rT2,K ΓK r2,K

]1/2
, (5.37)

where the local matrix

ΓK =
[
ρAK(vh, uh)

]2
G
R
∆K

(u− uh) +
[
ρBK(vh, uh)

]2
G
R
∆K

(v − vh) (5.38)

merges the anisotropic information provided by u and v suitably weighted via the local
residuals. In this way, we are able to grasp all the directional features induced by u and
v, thus avoiding the metric intersection issue.
Now to minimize the number of mesh elements, we equivalently maximize the area of
each element K with the equidistribution constraint, i.e., for each element K ∈ T (j+1)

h ,
ηK(uh, vh) = µK ΥK = TOL/#T (j)

h , where TOL and #T (j)
h are the fixed global tolerance

and the number of mesh elements in T (j)
h , respectively. The maximization is achieved

by minimizing the quantity ΥK with respect to sK and r1,K , i.e., by solving elementwise
the constrained minimization problem

min
sK≥1,ri,K ·rj,K=δij

ΥK(r1,K , sK), (5.39)

δij being the Kronecker symbol. Notice that all the quantities involved in (5.38) are
computed on the background grid T (j)

h . On the other hand, the aspect ratio sK and the
unit vectors ri,K in (5.37) represent our actual unknowns.
According to [162, Proposition 4.2], we can state the desired minimization result as

Proposition 5.13. Let {γi,K , gi,K} be the eigenvector-eigenvalue pair of ΓK with g1,K ≥
g2,K > 0. Then the minimum (5.39) is obtained for the choices

r1,K = γ2,K and sK =
(
g1,K
g2,K

)1/2
, (5.40)

yielding the value
(
2√g1,Kg2,K

)1/2 for ΥK .

Notice that the minimization problem (5.39) is not a computational overhead, since it
can be solved analytically via (5.40). Moreover, we observe that the optimal weight ΥK

does not depend any more on the aspect ratio.
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Finally, the optimal metric M(j+1) is obtained by exploiting the equidistribution con-
straint, i.e., by solving the equations

|K̂|
(
λ1,Kλ2,K

)3/2 (2√g1,Kg2,K
)1/2 = TOL

#T (j)
h

and λ1,K
λ2,K

= sK =
(
g1,K
g2,K

)1/2
. (5.41)

System (5.41) provides us with the distinct values

λ1,K =
( 1
|K̂|
√

2

(
g1,K
g2

2,K

)1/2 TOL

#T (j)
h

)1/3
, λ2,K =

( 1
|K̂|
√

2

(
g2,K
g2

1,K

)1/2 TOL

#T (j)
h

)1/3
.

(5.42)
Eventually, the optimal metricM(j+1) is characterized by r1,K in (5.40), λ1,K and λ2,K
in (5.42), with r2,K ⊥ r1,K .

5.3.3. The whole adaptive procedure

The next step is to design a strategy to efficiently combine the discrete counterpart
of Algorithm 5.1 with the mesh adaptive procedure. In particular, we propose two
algorithms, which are different in the way the minimization and the mesh adaptivity are
interlaced. For both algorithms, we denote by Th the mesh used to start up the mesh
adaptive procedure.
The first algorithm, which is a variant of [48, ALGORITHM 1], applies the mesh adaptation
after convergence of the minimization algorithm on both uh and vh. In particular, after
fixing a termination tolerance VTOL � 1 for the minimization algorithm, a relative
tolerance MESHTOL � 1 on the change of the mesh cardinality, and ADTOL � 1 which
fixes the accuracy on the functional (5.20), the algorithm is the following:

Algorithm 5.2 Optimize-then-Adapt
1: Set k = 0, j = 0, T (0)

h = Th ;
2: If k = 0, set v1

h = 1; else v1
h = vh(tk−1);

3: Set j = 0; errmesh= 1;
4: while errmesh ≥ MESHTOL do
5: Set i = 1; err = 1;
6: while err ≥ VTOL do
7: uih = arg min

zh∈X
(j)
h

Eh,k(zh, vih);

8: vi+1
h = arg min

zh∈X
(j)
h

Eh,k(uih, zh);

9: err = ‖vi+1
h − vih‖L∞(Ω);

10: i← i+ 1;
11: end while
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12: Compute the new metricM(j+1) based on ui−1
h and vih with TOL = ADTOL;

13: Build the adapted mesh T (j+1)
h ;

14: errmesh = |#T (j+1)
h −#T (j)

h |/#T
(j)
h ;

15: Set v1
h = Πj→j+1(vih);

16: j ← j + 1;
17: end while
18: uh(tk) = Πj−1→j(ui−1

h ); vh(tk) = Πj−1→j(vih); T kh = T (j)
h ;

19: Set T (0)
h = T kh ;

20: k ← k + 1;
21: if k > F , stop; else goto 2.

The convergence of the mesh adaptivity is checked by monitoring the variation of the
number of elements during the adaptivity process. Although this check is not rigorously
sound, in practice it provides an effective stopping criterion.
An interpolation step between two successive adapted meshes is also employed before
restarting any new optimization or time loop. This is carried out by a suitable interpo-
lation operator, Πn→n+1(wh), which maps a finite element function wh defined on T nh
onto the new mesh T n+1

h .
This algorithm performs well if the tip of the fracture moves sufficiently slow in time.
Indeed, since the coupling between optimization and adaptation is not so tight, a time-
adaptivity could be desirable to restrain a fast fracture evolution. Nevertheless, time
adaptivity is not able to contain the final evolution steps when the actual fracture lead
to a sudden failure of the material which splits it into two separate parts. This limit can
be ascribed also to the deficiency of the employed quasi-static model, which clearly fails
in describing very fast dynamics.
To dampen the crack propagation, we propose a second algorithm, which introduces a
tighter alternation of the optimization and mesh adaptation phases. The meaning of all
the involved parameters is the same as in Algorithm 5.2.

Algorithm 5.3 Optimize-and-Adapt
1: Set k = 0, T (1)

h = Th ;
2: If k = 0, set v1

h = 1; else v1
h = vh(tk−1);

3: Set j = 0; errmesh= 1; err= 1;
4: while errmesh ≥ MESHTOL | err ≥ VTOL do
5: Set i = 1; err=1;
6: while err ≥ VTOL & i ≤ nMIN do
7: uih = arg min

zh∈X
(j)
h

Eh,k(zh, vih);
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8: vi+1
h = arg min

zh∈X
(j)
h

Eh,k(uih, zh);

9: err = ‖vi+1
h − vih‖L∞(Ω);

10: i← i+ 1;
11: end while
12: Compute the new metricM(j+1) based on ui−1

h and vih;
13: Build the adapted mesh T (j+1)

h ;
14: errmesh = |#T (j+1)

h −#T (j)
h |/#T

(j)
h ;

15: Set v1
h = Πj→j+1(vih);

16: j ← j + 1;
17: end while
18: uh(tk) = Πj−1→j(ui−1

h ); vh(tk) = Πj−1→j(vih); T kh = T (j)
h ;

19: Set T (0)
h = T kh ;

20: k ← k + 1;
21: if k > F , stop; else goto 2.

The main difference with respect to the Algorithm 5.2 is that, through nMIN, the mini-
mizer of the energy functional Eh,k is not necessarily found after the inner while loop
and which can be recovered by setting nMIN = ∞. Alternatively setting nMIN = 1, we
alternate optimization and mesh adaptation in only one while loop but, in such a case,
the crack evolution may be biased by the mesh which is adapted to too badly optimized
fields, uh, vh. These values of nMIN represent two extreme choices. In general, we may
pick any intermediate value, e.g., nMIN = 7 in the section below.

5.4. Numerical experiments

Goal of this section is to assess the robustness of the algorithms proposed in the previ-
ous section on some benchmark problems. In particular, to have a comparison solution,
we choose the test-cases proposed in the literature. The next section is devoted to the
comparison with the two experiments appeared in [48], while the next one reports a
study made on the parameter sensitivity of the two algorithm appeared in [14]. The
last section of the numerical experiments addresses the plane strain scenario described
in Appendix B. In particular, we challenged the algorithms and the mesh adaptation
strategy with the benchmark tests published in [39].
Compared with previous attempt of simulating quasi-static brittle fracture evolution,
our works are innovative under various aspect. Although in the literature adaptive
anisotropic meshes are considered (see [41]), on the one hand, we deal with the Ambrosio–
Tortorelli functional instead of the Mumford–Shah functional, and on the other hand,
while in [41] a heuristic Hessian-based approach is employed to drive the mesh adapta-
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tion, we resort to a metric-based procedure hinging on a sound error estimator. More-
over, the main improvements with respect to [48] are both in considering anisotropic
meshes, in contrast to exclusively isotropic refinement, and the design of a different
algorithm which adapts the mesh at each minimization step. These apparently minor
changes lead to considerable improvements both in terms of accuracy and computa-
tional costs as shown in the next section. In particular, the proposed a posteriori error
estimator has two main properties: the automatically generated meshes are very fine
and strongly anisotropic in a thin neighborhood of the crack, whereas they show highly
isotropic behavior in a neighborhood of the crack tip. As a consequence, the resulting
discretization follows very closely the propagation of the fracture, which is not signifi-
cantly influenced by the discretization, delivering a physically sound prediction of the
crack path, with a reasonable computational effort. These features resulted to be funda-
mental for the success in the plane strain experiments. Indeed, in this setting, one of the
two experiments has been designed to test the capability of the algorithms to detect the
proper direction of the propagation by direct comparison with theoretical predictions.

5.4.1. The antiplane experiments

Let us identify a brittle material of rectangular shape, Ω = (0, 2)× (0, 2.2), containing a
slit along {1}× [1.5, 2.2] (see Figure 5.2, left), that we approximate with a very thin gap
2 ·10−5 thick. We apply the antiplane displacement g(t) = −t on ΩD− = (0, 1)× (2, 2.2),
g(t) = t on ΩD+ = (1, 2) × (2, 2.2). We perform two test cases to assess whether the
fracture changes direction if the domain exhibits a weak inset, such as a hole. Indeed,
for both the experiments the computational domain is the same and they differ only for
the presence of a circular hole of radius 0.2, centered at (0.3, 0.3) (see Figure 5.2, right).
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Figure 5.2.: Domain and initial mesh for the straight crack (left pair), and for the curved
crack (right pair)
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The straight crack

Let us start the analysis of the numerical test cases with the domain without the hole.
In this circumstances, due to the perfect symmetry of this problem, we expect that the
fracture does not bend but that it goes straight down starting from the tip of the slit.
As an initial grid, we pick the uniform unstructured mesh in Figure 5.2, left. We consider
a time window [0, 1.5] sufficiently wide to contain the whole phenomenon. Concerning
the parameters involved in both the algorithms, we choose the ones in Table 5.1.

Table 5.1.: The straight crack: parameters involved in Algorithms 5.2 and 5.3

ε = 2 · 10−2 η = 10−5 γA = γB = 10−5 ∆t = 10−2

CRTOL= 3 · 10−4 VTOL= 2 · 10−3 MESHTOL= 10−2 ADTOL= 10−2

Figure 5.3 compares the crack path yielded by the two algorithms. Notice that the final
part of the crack delivered by Algorithm 5.3 is slightly straighter and more regular. This
is likely due to the fact that Algorithm 5.2 is more sensitive to the possible coarseness
of the mesh ahead of the tip. As a consequence, when the crack reaches the final stage,
it tries to enter a region where the mesh has not been modified yet. Conversely, the
tighter interplay between optimization and mesh adaptation in Algorihm 5.3 lets the
crack find an already properly adapted mesh. An additional difference is the time when
the breakdown is detected, i.e., t = 1.36 for Algorihm 5.2 and t = 1.33 in the case of
Algorihm 5.3, compared with t = 1.24 in [48]. Indeed, since in the first algorithm we
do not update the mesh during the minimization process, it can happen that the crack
growing is slowed down in order to find a good compromise between the actual mesh
and the fracture evolution. We additionally observe that for both Algorithms 5.2 and
5.3, the time of initiation of the fracture actually occurs later, i.e., at time t = 0.35, than
the experiments in [48], where t = 0.25. We ascribe this discrepancy to the finite-width
representation of the initial crack path via the vertical slit, while in [48] this is modeled
via an actual one-dimensional manifold. Concerning the computational effort, the run
time of Algorithms 5.2 and 5.3 is respectively 1, 541.30s and 1, 639.29s.
Figure 5.4 shows the adatpted mesh T algo2h and T algo3h obtained by the two algorithms
at the final time. The meshes, consisting of 38, 299 and 33, 927 elements respectively,
exhibit really stretched elements which closely follow the crack path, whereas the mesh
is very coarse in the unfractured domain, i.e., where vh ' 1. The maximum aspect ratio
is sK = 2, 154.3 for T algo2h and sK = 1, 891.5 for T algo3h . The close up in Figure 5.4 at
time t = 1.21 highlights the strongly anisotropy of the mesh far from the crack tip. We
observe instead that the triangles closer to the tip are still rather isotropic. This should
guarantee that the next advancing step of the crack is not biased by the directionality
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Figure 5.3.: The straight crack: v-field at the final time yielded by Algorihm 5.2 (left)
and Algorihm 5.3 (right)

of the elements. After [41, 59], there has been the perception that anisotropic mesh
adaptation may influence the propagation of the fracture, in particular its initiation
[58]. However, it seems that the numerical procedure that we propose is in practice
robust and stable thanks to its automatic capability of yielding a rounded tip.
Figure 5.5 provides the v-field and the final adapted mesh for an isotropic adaptation,
obtained by enforcing sK = 1 for all K ∈ Th in Algorithm 5.2. The crack is detected
also in this case even though the required number of elements is far larger, i.e., 78, 025
triangles versus 38, 299. Moreover, a slightly wavier path is exhibited with respect to
Figure 5.3, left.

The curved crack

In this section we analyze the behavior of the crack in case of an asymmetric domain.
The presence of the hole introduces an element of weakness in the material. As a con-
sequence, due to energy arguments, we expect that the fracture bends its path towards
the hole instead of proceedings along a straight line. As observed in [48], this test case
is more challenging than the previous one. Therefore, we choose a tighter tolerance, i.e.,
REFTOL = 10−3. The simulated crack path is very stable with respect to the choice of
the parameters, as long as they are not larger than those in Table 5.1. These parameters
have been properly tuned thanks to an extensive sensitivity analysis reported in Section
5.4.2 and appeared in [14].
In Figure 5.6 we show the v-field at the final time yielded by the two algorithms. In
both cases, the crack enters the hole. As already observed in the previous test case,
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Figure 5.4.: The straight crack: final anisotropic adapted mesh provided by Algo-
rithm 5.2 (left); final anisotropic adapted mesh (center) and zoom in (right)
delivered by Algorithm 5.3

Algorithm 5.2 leads a more “bumpy” crack path ahead of the hole (compare Figure 5.6,
left with Figure 5.6, center, and the corresponding zooms in).
Figure 5.7 displays the u-field superposed to the adapted meshes at t = 1.37 (left) and at
t = 1.43 (right) in the case of Algorithm 5.3. A very steep ridge is evident where the tear-
ing apart is exerted. The mesh in both cases follows very closely the crack propagation.
A top view of the final adapted meshes generated via Algorithm 5.2 and 5.3 is provided
in Figure 5.8, together with a detail of the second mesh. Notice that the anisotropic
adaptive procedure is able to detect the presence of a very fine structure inside the crack
in correspondence with the ridges. Moreover, the cardinality of the two meshes is very
different: Algorithm 5.2 employs 48, 599 elements in contrast to Algorithm 5.3 which
demands only 15, 987 triangles. The maximum aspect ratio is sK = 1, 525.3 for T algo2h

and sK = 1, 469.9 for T algo3h .
Figure 5.9 shows four snapshots close to the material failure by comparing four suc-
cessive iterations of Algorithm 5.2 (top) with Algorithm 5.3 (bottom). In the case of
Algorithm 5.2, the crack, after entering the hole, reaches a region where the mesh is
still coarse. Afterwards, the grid is correctly refined. On the contrary, the strategy
optimize-and-adapt detects a sharper path already on entering the hole. Moreover, be-
fore converging to the failure of the material, two possible paths, energetically equivalent,
pop out past the hole.
Figure 5.10, left provides the time evolution of the energy, Ee +Ef in (5.1). The energy
constantly increases. During the very first phase, when the crack has not started yet,
the dominant contribution to the energy is Ee. Successively, after the onset of the
crack propagation at t = 0.35, the fictitious energy Ef contributes to the whole energy.
After the breakdown of the material (t = 1.43), the energy decreases suddenly since
the elastic energy abruptly vanishes. On physical grounds we would expect the energy
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Figure 5.5.: The straight crack: v-field (left), final adapted mesh (center), and zoom in
(right) at the final time in the case of the isotropic counterpart of Algorithm
5.2.

Figure 5.6.: The curved crack: v-field at the final time provided by Algorithm 5.2 (left)
and by Algorithm 5.3 (center); zooms in around the hole for Algorithm 5.2
(top-right) and for Algorithm 5.3 (bottom-right)

to go to zero after the breakdown. However, the fictitious energy leaves a trace which
never disappears. In Figure 5.10, right, we compare the trend of the cardinality of the
anisotropic meshes associated with the two adaptive algorithms along with the isotropic
counterpart of Algorithm 5.3. It is evident the saving brought by Algorithm 5.3 and the
strong increase exhibited by Algorithm 5.2 in the very final phase.
Moreover, the isotropic variant of Algorithm 5.3 generates a larger number of elements
throughout all the time evolution. In particular, at the final time, the isotropic mesh
consists of 131, 367 triangles, i.e., about a factor 8 with respect to Algorithm 5.3.
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Figure 5.7.: The curved crack: u-field and adapted mesh at t = 1.37 (left) and at t = 1.43
(right) provided by Algorithm 5.3
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Figure 5.8.: The curved crack: final anisotropic adapted mesh provided by Algorithm 5.2
(left); final anisotropic adapted mesh (center) and zoom in (right) delivered
by Algorithm 5.3

Finally in Figure 5.11 we collect the results obtained through Algorithm 5.3 when we
enforce an isotropic mesh adaptation, i.e., sK = 1 for all K ∈ Th. We first recognize the
different path undertaken by the crack, namely, the crack leaves the hole on the bottom
instead on the left. However this different path could be plausible from a physical point
of view since both the paths are energetically equivalent. On the other hand, physical
experiments select the one in Figure 5.6 as the most likely (see [42, 172, 48]). The
alternative path in Figure 5.11 suggests that a more thorough numerical investigation
should be carried out in order to properly calibrate the algorithm parameters for isotropic
meshes.
As a last check, we quantify the computational performance of the two proposed algo-
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Figure 5.9.: The curved crack: successive iterations of Algorithm 5.2 (top) and Algo-
rithm 5.3 (bottom) in the breakdown phase

rithms with respect to isotropic adaptation. In particular, for both Algorithm 5.2 and
5.3, we report the CPU times, in seconds, at each time level, associated with the op-
timization and adaptation phases (see Fig. 5.12 and Table 5.2). The CPU times have
been recorded by using a MacBook Pro equipped with a 2.6GHz Intel Core i7 processor,
8GB of RAM, 1600MHz DDR3. As expected, the isotropic procedure is more demand-
ing, requiring more than twice the time for the anisotropic adaptation. Concerning the
computational effort characterizing the two phases, while in Algorithm 5.2 they are quite
comparable, the adaptation phase of Algorithm 5.3 is about 1.8 times more expensive
than the optimization phase. Algorithm 5.2 slightly outperforms Algorithm 5.3 in the
anisotropic case, while the two algorithms take about the same total CPU time. Quali-
tatively, the trend of the bars is more varying in the adaptation phase of Algorithm 5.3.

Table 5.2.: The curved crack: cumulative CPU time [s] involved in the minimization and
adaptation phases for both Algorithms 5.2 and 5.3

Algorithm 2 Algorithm 3
Minimization Adaptation Total Minimization Adaptation Total

Aniso 217 245 462 192 344 536
Iso 646 605 1,251 452 765 1,217

Remark 5.14. Condition (5.12) essentially ensures a discrete min-max principle for
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Figure 5.10.: The curved crack: energy (left) and cardinality (right) evolution for the
anisotropic meshes yielded by the two Algorithms and for the isotropic
counterpart of Algorithm 5.3
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Figure 5.11.: The curved crack: v-field (left) at the final time, final adapted mesh (center)
and zoom in (right) on the hole in the case of the isotropic counterpart of
Algorithm 5.3

vh, i.e., 0 ≤ vh ≤ 1. According to [211], a sufficient condition to guarantee (5.12) is
that the mesh Th is of Delaunay type (plus an additional constraint on the boundary
elements).
In general, this is not the case of an anisotropic grid. For this reason, we have nu-
merically checked the possible violation of relation 0 ≤ vh ≤ 1. The minimum value is
4.68 · 10−7, whereas the maximum value 1.00155 is reached only at a single time level.
The average of the maximum values of vh over the time levels is 1.0001. Likely, this
value can be related to the selected tolerances.
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Figure 5.12.: The curved crack: CPU time [s] involved in the minimization and adap-
tation phases at each time level, for both Algorithms 5.2 (left) and 5.3
(right)

5.4.2. Parameter sensitivity

In this section we carry out a sensitivity analysis of the parameters characterizing the
Algorithms introduced in Section 5.3 according to [14]. In particular, we refer only to
the Algorithm optimize-and-adapt for sake of synthesis since the numerical results we
achieved are similar. To test the change in the response of the algorithm depending on its
main parameters, we considered the most challenging of the two experiments presented
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in the previous section, i.e. the one in which the domain is weakened by a hole (see
Figure 5.2 right). For the rest of the section, we refer to the values of Table 5.1 as
default parameters which yield to the crack path reported in Figure 5.6 and the mesh
described in Figure 5.8.

Figure 5.13.: Sensitivity to the penalty constants: colour plot of the vh-field for γA =
γB = 10−4 (left), γA = γB = 5 · 10−5 (center), γA = γB = 10−5 (right)

The first series of tests check on the sensitivity to the penalty constants γA = γB, by
choosing three pairs of values, i.e., 10−4, 5 · 10−5, 10−5. From Figure 5.13, it is evident
that the higher the values of these constants, the larger is the deviation of the crack path
with respect to the one assumed as default. In particular, with the first two choices the
crack even misses the hole. The two meshes yielding the straight path consist of fewer
elements (12, 027 and 12, 628) than the default mesh in Figure 5.6.

Figure 5.14.: Sensitivity to REFTOL: colour plot of the vh-field for REFTOL= 10−1 (left),
REFTOL= 10−3 (center), REFTOL= 10−4 (right)

The second trial of checks deals with the sensitivity to the tolerance REFTOL involved
in the mesh adaptation procedure. We choose both a larger and a smaller value with
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respect to the default, namely REFTOL= 10−1 and REFTOL= 10−4. The associated vh-field
are displayed in Figure 5.14. The largest value leads to a wrong path detection with only
8, 547 triangles, whereas the choice REFTOL= 10−4 identifies essentially the same path
as the default one, but with an excessive number of elements (23, 521). Thus, it seems
that a too small tolerance just increases the computational effort without improving the
crack path tracking.

Figure 5.15.: Colour plot of the vh-field for REFTOL= 10−1 (left), REFTOL= 10−2 (center),
and adapted mesh for t = 1.43 and REFTOL= 10−2 (right)

The last batch of tests assesses the behavior of the optimize-and-adapt algorithm for
a different value of ε, i.e., ε = 5 · 10−2. We observe that ε controls the width of the
crack. As expected, the larger value of ε widens the crack boundaries (compare the
thickness of the crack in Figures 5.14 and 5.15). Moreover, also the crack trajectory
changes considerably. For ε = 5 ·10−2 the crack suddenly turns left entering directly the
hole, independently of the two chosen tolerances REFTOL= 10−1, 10−2. Although from
a physical viewpoint the behavior seems correct, the bending of the actual path occurs
too early and the crack leaves the hole downward instead to the left. A cross-comparison
between Figures 5.14 and 5.15 leads to argue that for ε = 5 · 10−2 the value of REFTOL
is not so crucial in identifying the actual path of the crack.
The assessment above seems to confirm that there is an actual sensitivity of the crack
behavior to the parameters involved in both the energy functional Eh,k and in the algo-
rithms.

5.4.3. The plane experiments

The last tests we challenged the mesh adaptation strategy for the detection of the fracture
crack path described in Section 5.3 are inspired by [42, 91] where the plane displacement
is considered. In this case, the energy density has the form (1.17) and therefore the a
posteriori error estimators must be adapted to this different setting. In particular, we
have to deal with three different residuals: two are given by the displacement vector u
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(one for each component) and the last is given by the phase field v. This analysis has
appeared in [16] and reported, for sake of completeness, in Appendix B. These tests
play a key role in validating the reliability and the applicability of anisotropic mesh
adaptation in the context of quasi-static crack path detection. Indeed, for assessing the
quality of our results we can count on previous precise studies of the behaviour of the
fracture, both from numerical and physical viewpoints [11, 42].
The numerical experiments in the following show that the proposed method is very
stable and it allows us to reproduce all the previously obtained predictions on fracture
development, in particular its directionality features. Additionally, we expect that our
method, based on an extremely careful tuning of the anisotropic adaptation, outperforms
significantly the ones used to achieve similar degrees of accuracy in previous studies.
Unfortunately, in B. Bourdin et al., A. Chambolle et al., G. Del Piero et al. [42, 59,
91], where these benchmark test case are presented, there is no accurate description
of the computational results and therefore we are obliged to extrapolate our positive
expectation from the very fine meshes showed in the corresponding numerical sections.

Traction of a Fiber-Reinforced Matrix

We consider the rectangular domain Ω = (0, 3) × (0, 3.5) in Fig. 5.16, comprising a
nonelastic circular fiber of radius 0.5 centered at (1.5, 1.5), denoted by ΩF , and in the
time span t ∈ [0, 0.5], uniformly partitioned with a total number of F = 50 time steps.

Figure 5.16.: Geometric configurations for the traction of a fiber-reinforced matrix

On the subdomain ΩD = (0, 3)× (3, 3.5) we enforce the load g, with g|ΩD = (0, t)T . The
fiber ΩF is held fixed, i.e. uh ≡ 0, a uniform vertical displacement is induced by g|ΩD
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on the top side of the matrix while the rest of the domain Ω \ ΩD is traction-free. As
a function of time, at the beginning the matrix behaves elastically; then an asymmetric
crack suddenly develops and eventually cuts the matrix in two parts. The parameters
involved in (B.3) are set to

ε = 10−1, η = 10−3, γA = γB = 10−7, λ = Eν
(1 + ν)(1− 2ν) µ = E

2(1 + ν) ,

where E = 30 is Young’s modulus and ν = 0.18 is the Poisson coefficient.
The values of the tolerances required by Algorithm 5.3 are

VTOL = 5 · 10−3, CRTOL = REFTOL = 10−3, MESHTOL = 10−2.

Figure 5.17 shows the vh-field at three time levels as well as the associated anisotropic
adapted mesh. At time t = 0.25 a crack on top of the fiber is created, and starts
propagating slowly and symmetrically with respect to the fiber. At time t = 0.35 the
symmetry is broken and the crack splits the matrix on one side only. Afterwards, at
time t = 0.39, the domain is thoroughly split into two parts.
This behavior is not essentially affected by ε. Actually a reduction of this parameter by
one order of magnitude yields the results in Fig. 5.18, which shares the same pattern as
in Fig. 5.17, although with a sharper crack. In all cases the adapted meshes are very fine
close to the fracture and in the area of higher stress. Moreover the correct path of the
crack is detected in a very efficient way, i.e., with quite few elements. In particular, in
Fig. 5.17 and 5.18 (bottom-right), the meshes consist only of 1, 810 and 12, 381 elements,
respectively. The maximum aspect ratio of the three meshes in Fig. 5.17 is 16, 32 and
109.
Figure 5.19 shows the time evolution of the energy. The dashed line is associated with
the elastic energy, while the dash-dotted line represent fictitious crack energy. The black
line is the sum of these two contributions. Theoretically, we expect the elastic energy to
disappear after the collapse of the domain. On the contrary, a residual energy remains,
due to the regularization parameter η in the model. Moreover, three sudden increases
of the crack energy occur: the first at time t = 0.24, when a finite-length crack appears
on top of the fiber; the second at time t = 0.37, when the domain breaks on one side;
and the last takes place when the domain breaks down, at t = 0.39. This behavior
is qualitatively comparable with the ones in Fig. 4 in [91] and in Fig. 3 in [42]. This
corroborates the fact that anisotropic meshes do not affect the crack dynamics.
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5. Variational formulation of brittle fractures

Figure 5.17.: Traction of a fiber-reinforced matrix. Time evolution of the vh-field (left):
t = 0.25 (top), t = 0.35 (center), and t = 0.39 (bottom); corresponding
adapted meshes (right) with ε = 10−1
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Figure 5.18.: Traction of a fiber-reinforced matrix. Time evolution of the vh-field (left):
t = 0.30 (top), t = 0.38 (center), and t = 0.40 (bottom); corresponding
adapted meshes (right) with ε = 10−2
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Figure 5.19.: Traction of a fiber-reinforced matrix. Time evolution of the energy

Crack Branching

The domain for the second test case is the cracked rectangular elastic sample shown in
Fig. 5.20.

Figure 5.20.: Geometric configurations for the crack branching of the directional detec-
tion test

The initial crack is horizontal and parallel to the upper end lower sides of the sample,
while a displacement field of increasing magnitude and fixed orientation, θ, to the x1-
axis, is applied to the horizontal sides. The later crack evolution is monitored for several

175



5. Variational formulation of brittle fractures

values of θ. The final time is set to T = 0.2, and the total number of uniform time
steps is F = 20. The final time is chosen when the crack is about to turn towards
the bottom right corner of the domain. The key issues of this problem is the correct
prediction of the actual branching angle of the crack, in particular when the applied
displacement field is not orthogonal to the domain border. For this purpose we resort
to a suitable mesh adaptation strategy. In particular, we identify Ω with the square
domain (−1.5, 1.5)2, ΩD = ΩD− ∪ ΩD+ with ΩD− = (−1.5, 1.5) × (−1.5,−1.3) and
ΩD+ = (−1.5, 1.5)× (1.3, 1.5), and the external displacement g is

g(t) =


(t cos(θ), t sin(θ)) on ΩD+

(−t cos(θ),−t sin(θ)) on ΩD−

0 elsewhere

(5.43)

and the model parameters are

ε = 10−2, η = 10−5, γA = γB = 10−5, λ = Eν
(1 + ν)(1− 2ν) , µ = E

2(1 + ν) ,

with E = 45 and ν = 0.18. The tolerances of Algorithm 5.3 are

VTOL = 10−4, CRTOL = 3 · 10−4, REFTOL = 10−3, MESHTOL = 10−2.

Figure 5.21 gathers the vh-field and the corresponding anisotropic adapted mesh at the
final time, for several orientations θ. The cardinality of the meshes in Fig. 5.21 is 2, 941,
1, 268, 1, 652, 1, 302, 1, 570, 3, 804, in top-down order. Notice that the mesh adaptive
procedure identifies the configurations associated with θ = π/2 and θ = 0 as being the
most challenging. In all cases the mesh closely matches the crack path, with a very thin
thickness of the adapted area. The anisotropic features of the meshes are highlighted by
the values of the maximum aspect ratio, which varies between 28, for θ = π/20, and 384,
for θ = 0. Moreover, when θ = 0, in contrast to [42], where it appears an unphysical
symmetric crack branching, we obtain a crack which moves straight a very short distance,
before turning downwards but with a slightly smaller angle than expected. In practice,
we are able to predict reliably the crack branching for θ & 3◦.
Figure 5.22 shows the branching angle as a function of the orientation θ. This angle has
been computed by picking the angle at which the distribution of the unit vectors, r1,K ,
gathered in bins of 20 angles each, over the rectangle [0, 0.08]× [−0.08, 0] is a maximum.
On comparing our results with the ones in [42], we observe a good agreement, with the
additional capability of correctly simulating the physical behavior for 3◦ . θ . 7◦, by
enlarging the range of reliability of the numerical tool in [42] where θ & 7◦.
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5. Variational formulation of brittle fractures

Figure 5.21.: Crack branching. Distribution of the vh-field around the tip of
the initial crack (left) and final adapted mesh (right) for θ =
π/2, π/4, π/6, π/20, π/60, 0, top-down
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Figure 5.22.: Crack branching. Branching angle as a function of the impressed displace-
ment orientation

5.5. Conclusions

In this chapter as well as in [14, 16, 15], we have shown that the proposed Algorithm
5.2 and 5.3 correctly identify the physical crack path, under reasonable choices of the
physical and algorithmic parameters, aware also of the theoretical limits of the adopted
mechanical model.
The first two experiments performed successfully the test on the crack path identification
with the correct detection of the expected crack path, where the weakness and the char-
acteristics of the domain influence the fracture evolution. The second set of numerical
test showed also the stability of the algorithms with respect to the parameters proposed
and confirmed that the values used for the different challenges are optimal in the sense
of efficiency and accuracy of the results. The third group of experiments, in particular
in the crack branching test case, additionally confirmed that the mesh adaptation pro-
cedure does not bias the crack propagation.
We can therefore conclude that the proposed anisotropic mesh adaptation is able to
properly detect the expected behavior of the crack path and additionally turns out to
be a stable, robust and efficient numerical procedure.
Finally, although in this work we deal with a specific case of linear elasticity constitutive
law, we do believe that it is possible to extend the a posteriori analysis to a more general
model, for instance, the one recently introduced in [50].
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In this section we collect definitions and notions which are necessary for the complete
understanding of all the arguments of the work. However, since the content of this
appendix lies outside the purpose of this work, we prefer to collect it here.
In the next section we define the functional spaces in which we generally define the
displacement function. Additionally we define the concepts of Hausdorff measure, Γ-
convergence, and ν-convexity.
Section A.2 introduces the fundamental notions of compressive sensing. Here we define
the Null Space Property and Restricted Isometry Property on which the results described
in Section 3.2.1 are based.

A.1. Functional spaces and auxiliary definitions

The Hausdorff measure

The concept of Hausdorff measures was first introduced by F. Hausdorff in [131], and it
is used for a class of outer measures on subsets of a generic metric space (X, d), or for
their restrictions to the corresponding measurable sets.

Definition A.1. Let (X, d) be a metric space. For any Λ ⊂ X, δ ∈ (0,∞] and α ∈
[0,∞), we consider the outer measure

Hαδ (Λ) := ωα inf
{ ∞∑
i=1

(diam Λi)α : Λ ⊂
⋃
i

Λi and diam(Λi) < δ

}
, (A.1)

where ωα > 0 is a positive factor.
The map δ 7→ Hαδ (Λ) is monotone nonincreasing. We can define the Hausdorff α-
dimensional measure of Λ as

Hα(Λ) := lim
δ→0
Hαδ (Λ). (A.2)

Remark A.2. If α = d ∈ N, the normalization constant ωd coincides with the Lebesgue
measure of the unit ball in Rd. With this choice the d-dimensional Hausdorff measure
on the euclidean space Rd coincides with the Lebesgue measure. In particular, if d = 1,
H1(Λ) measure the length of the set Λ.
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BV, SBV and SBD function spaces

The concept of Bounded Variation function and the space of Bounded Variation was
first introduced by C. Jordan in [140]. Since the theory on BV functions is pretty vast,
we refer to [100, Chapter 5] for the general theory.

Definition A.3. BV (Ω) is the space of all scalar functions with bounded variation on
Ω ⊂ Rd, i.e., the space of all u : Ω→ R whose distributional derivative Du is (represented
by) a measure inM(Ω,Rd).

If we consider a function u ∈ BV (Ω), recalling Radon–Nykodym decomposition and
considering that |Du| cannot charge any (d − 1)-negligible set, we can decompose Du
into the sum of three mutually singular measures, see [4],

Du = ∇u+Dcu+DJu.

In particular, ∇u is the absolutely continuous part of Du with respect to Lebesgue
measures, DJu is the jump part of Du, and Dcu is the Cantor part. The jump part
of the distributional derivative is a singular measure of the form DJu = fHd−1(J(u))
where f ∈ L1(Ω|J(u),Rd).
Thus the distributional derivative may be rewritten as

Du = ∇uL(Ω) +Dcu+ [[u]]Hd−1(J(u)), (A.3)

where L(Ω) is the Lebesgue measure of Ω.
The space of the Special Bounded Variation functions (SBV (Ω)) was introduced by E. De
Giorgi and L. Ambrosio [85] to provide a weak formulation for some variational problems
with free discontinuity. The theory has been developed by L. Ambrosio in [4, 5, 6] to
find solution of a large class of problems, using compactness and lower semicontinuity
results.

Definition A.4. The space SBV (Ω) of special functions with bounded variation is de-
fined as the subspace of all u ∈ BV (Ω) without Cantor part, i.e., the space of all u such
that Dcu = 0. Then for every u ∈ SBV (Ω), (A.3) becomes

Du = ∇uL(Ω) + [[u]]Hd−1(J(u)), (A.4)

where L(Ω) is the Lebesgue measure of Ω.

In the context of fracture mechanics, the spaces of Bounded Deformation (BD(Ω)) and
Special Bounded Deformation (SBD(Ω)) have been introduced, see [110, 203] and we
may heuristically say that these spaces are the equivalent of BV and SBV for vector
valued functions. More precisely:
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Definition A.5. BD(Ω) is the space of all scalar functions with bounded deformation
on Ω ⊂ Rd, i.e., the space of all u : Ω → Rn whose symmetrized gradient ε(u) is
(represented by) a Radon measure.

As before, we can decompose the symmetrized gradient into three parts, an absolutely
continuous part εa(u), a jump part [[u]]Hd−1(J(u)), and a Cantor part εc(u), and, simi-
larly to Definition A.4, we have that

Definition A.6. The space SBD(Ω) of special functions with bounded deformation is
defined as the subspace of all u ∈ BD(Ω) without Cantor part, i.e., the space of all u
such that εc(u) = 0. Then, for every u ∈ SBD(Ω), the symmetrized gradient can be
written as

ε(u) = εa(u)L(Ω) + [[u]]Hd−1(J(u)). (A.5)

Γ-convergence

The notion of Γ-convergence has been introduced by E. De Giorgi and T. Franzoni in
[87], and it is intrinsically connected with applications to problems in the calculus of
variations, see [46, 72] for a comprehensive introduction to the subject. Here we give a
particularly general definition of Γ-convergence in a metric space.

Definition A.7. Let X = (X; d) be a metric space, and for every h ∈ N let Fh : X →
[0; +∞] be a function defined on X. We say that the sequence {Fh}h Γ-converges in
x0 ∈ X to the value r ∈ [0; +∞] (and we write r = Γ-lim

h
Fh(x0)) if we have:

(i) for every sequence {xh}h such that d(xh;x0)→ 0 we have

r ≤ lim inf
h

Fh(xh);

(ii) there exists a sequence {x̄h}h such that d(x̄h;x0)→ 0, and we have

r ≥ lim sup
h

Fh(xh).

If the Γ-limit Γ-lim
h
Fh(x) exists for all x ∈ X, and the function F : X → [0; +∞] satisfies

F (x) = Γ-lim
h
Fh(x) for all x ∈ X, then we say that the sequence {Fh}hΓ-converges to

F (on X) and we write F = Γ-lim
h
Fh.

A.1.1. Subdifferential and ν-convexity

The subdifferential may be seen as the generalization of the notion of differential for
non-regular function. Indeed, the subdifferential of a given functional J is single-valued
precisely at (Fréchet) differentiability points, where it coincides with the differential,
but can be in general multivalued, or even empty. It is well-known (see, for instance [8,
Chapter 1]) that it is a closed convex set.
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Definition A.8. Let E be an Euclidean space, J : E → R a lower semicontinuous func-
tional, and v ∈ E. We say that ξ ∈ E ′ ' E belongs to the subdifferential ∂J (v) of J at
v if and only if

lim inf
w→v

J (w)− (J (v) + 〈ξ, w − v〉)
‖w − v‖

≥ 0 . (A.6)

In the special case of a convex functional J̃ , it is nonempty at every point and it can be
shown (see [8, Proposition 1.4.4]) that Definition A.8 of subdifferential coincides with
the more classical one, generally found on convex nonsmooth analysis:

ξ ∈ ∂J̃ (v) if and only if J̃ (w)− (J̃ (v) + 〈ξ, w − v〉) ≥ 0 (A.7)

for every w ∈ E .
In the case of a C1 perturbation of a lower semincontinuous functional, that is J = J1+J2
where J1 is lower semicontinuous, and J2 is of class C1, it follows from the definition
that if ∂J1(v) is nonempty, then ∂J (v) 6= ∅ and the decomposition

∂J (v) = ∂J1(v) +DJ2(v) , (A.8)

holds true. Here D denotes the Fréchet differential of J2 at v. In particular, C1-
perturbations of lower semicontinuous convex functionals have nonempty subdifferen-
tial at every point. We collect in the following remark some useful properties of the
subdifferential that are used in Chapter 2.

Remark A.9. If J is a C1-perturbation of a convex function, it can be proved that the
subdifferential enjoys the following closure property:

ξn ∈ ∂J (vn), vn → v, ξn → ξ implies ξ ∈ ∂J (v) and J (vn)→ J (v) . (A.9)

The subdifferential of a convex function J̃ is known to be a monotone operator [99], that
is, for every v and w ∈ E

ξ ∈ ∂J̃ (v) and ω ∈ ∂J̃ (w) implies 〈ξ − ω, v − w〉 ≥ 0 . (A.10)

We conclude this section introducing the concecpt of ν-strongly convex function.

Definition A.10. A function is ν-strongly convex if there exists ν > 0 such that

ξ ∈ ∂J̃ (v) and ω ∈ ∂J̃ (w) implies 〈ξ − ω, v − w〉 ≥ ν‖v − w‖2 . (A.11)

It is well-known that this is equivalent to saying that J̃ (·)− ν

2‖ · ‖
2 is convex.
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A.2. Some notions about compressive sensing

In this section we report some definitions in the context of compressive sensing that can
be useful for a better comprehension of Section 3.2.1.
In compressive sensing, we call the rank m matrix A the encoder which maps the N -
dimensional signal x into the measurement vector y ∈ Rm of dimension m � N . In
practice, we do not know x and wonder if it is possible to recover it somehow robustly
by an efficient nonlinear decoder ∆: Rm → RN . The theory only works under the
assumption that the signal x is sparse or at least compressible. Let us explain formally
this terminology.

Definition A.11 (k-sparse vector). Let k ∈ N+, k ≤ N . We call the vector x ∈ RN k-
sparse if x ∈ Σk :=

{
z ∈ RN |# supp(z) ≤ k

}
, where supp(z) := {i ∈ {1, . . . , N}|zi 6= 0}

denotes the support of z.

In applications, signals are often not exactly sparse but at least compressible, see,
e.g., [157]. We define compressibility in terms of the best k-term approximation error
with respect to the `p-norm, given by

‖x‖`p =
(

N∑
i=1
|xi|p

)1/p

, 1 ≤ p <∞.

Definition A.12 (Best k-term approximation). Let x be an arbitrary vector in RN . We
denote the best k-term approximation of x by

x[k] := arg min
z∈Σk

‖x− z‖`p , 1 ≤ p <∞,

and the respective best k-term approximation error of x by

σk(x)`p := min
z∈Σk

‖x− z‖`p =
∥∥∥x− x[k]

∥∥∥
`p
.

Remark A.13. The best k-term approximation error is the minimal distance of x to a
k-sparse vector. Informally, vectors having a relatively small best k-term approximation
error are considered to be compressible.

A desirable property of an encoder/decoder pair (A,∆) is given by the following stability
estimate, called instance optimality:

‖x−∆(Ax)‖`p ≤ Cσk(x)`p , (A.12)

for all x ∈ RN , with a positive constant C independent of x, and k the closest possible
to m [67]. This would in particular imply that by means of ∆ we are able to recover a
k-sparse signal x exactly, since in this case σk(x)`p = 0. It turns out that the existence
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of such a pair restricts the range of k to be maximally of the order of m

log N
m + 1

. We

refer to [25, 67, 94] for more details. Actually, the above mentioned condition (A.12)
can be realized in practice, at least for p = 1, by pairing the `1-minimization (see (A.13)
below) as the decoder with an encoder A, which has the so-called Null Space Property
of optimal order k. (For realizations of the instance optimality in other `p-norms, for
instance for p = 2, one needs more restrictive requirements, see [214].)

Definition A.14 (Null Space Property). A matrix A ∈ Rm×N has the Null Space
Property of order k and for positive constant γk > 0 if ‖z|Λ‖`1 ≤ γk‖z|Λc‖`1 , for all
z ∈ ker(A) and all Λ ⊂ {1, . . . , N} such that #Λ ≤ k. We abbreviate this property with
the writing (k, γk)-NSP.

The Null Space Property states that the kernel of the encoding matrix A contains no
vectors where some entries have a significantly larger magnitude with respect to the
others. In particular, no compressible vector is contained in the kernel. This is a natural
requirement since otherwise no decoder would be able to distinguish a sparse vector from
zero.

Lemma A.15. Let A ∈ Rm×N have the (k, γk)-NSP, with γk < 1, and define F(y) :=
{z ∈ RN |Az = y}, the set of feasible vectors for the measurement vector y ∈ Rm. Then
the decoder

∆1(y) := arg min z∈F(y)‖z‖`1 , (A.13)
which we call `1-minimization, performs

‖x−∆1(y)‖`1 ≤ Cσk(x)`1 , (A.14)

for all x ∈ F(y) and the constant C := 2(1 + γk)
1− γk

.

This result is by now well-known, see, e.g., [200] for a proof. Unfortunately the NSP
is hard to verify in practice. Therefore one can introduce another property, called the
Restricted Isometry Property, which implies the NSP, see [83] for a proof of this latter
statement. Being a spectral concentration property, the Restricted Isometry Property
is particularly suited to be verified with high probability by certain random matrices.

Definition A.16 (Restricted Isometry Property). A matrix A ∈ Rm×N has the Re-
stricted Isometry Property (RIP) of order K with constant 0 < δK < 1 if

(1− δK)‖z‖`2 ≤ ‖Az‖`2 ≤ (1 + δK)‖z‖`2 ,

for all z ∈ ΣK . We refer to this property by (K, δK)-RIP.

Lemma A.17. Let k, h ∈ N+ and K = k+h. Assume that A ∈ Rm×N has (K, δK)-RIP.

Then A has (k, γk)-NSP, where γk :=

√
k

h

1 + δK
1− δK

.

The proof of this latter result can be found, for instance, in [107].
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B. A posteriori anisotropic error estimator
of the plane displacement

In this chapter we develop a reliable a posteriori anisotropic first order estimator for the
numerical simulation of the Ambrosio–Tortorelli functional in case of brittle material
subject to plane-strain. The numerical simulation of fracture initiation and evolution
in this framework has been first addressed by B. Bourdin et al. [42]. In this work the
authors used an extremely fine discretization to be able to capture the fracture path
and its expected directional developments independently of the intrisic anisotropies of
the a priori prescribed mesh. Despite the reliability of the result they obtained, the
cost of an extremely fine discretization to render the material numerically homogenous
is enormous, leading to the quest for possible alternative techniques based on adaptive
strategies, which can break the ambiguity of “the crack following the mesh or the mesh
following the crack”, as already pointed out in the previous chapters.

B.1. The mathematical model of plane-strain fracture

Recalling the content of Chapter 5, the correspondent of (5.1) for plane displacements
is

EP
ε,k(u, v) = 1

2

∫
Ω

(v2 + η)W (ε(u)) dx + 1
2

∫
Ω

[
α(1− v)2 + ε|∇v|2

]
dx, (B.1)

where Ω ⊂ R2, and0 < η � ε � 1 and α = 1/(4ε) are the regularizing constants.
In setting, the energy density function W is given by (1.17) and thus we consider only
isotropic elastic material characterized by the Lamé constants λ and µ.
Introducing the time partitioning 0 = t0 < · · · < tNT = T of the time window [0, T ] as
before, let g : Ω× [0, T ]→ E be the displacement assigned over a subset ΩD ⊂ Ω which
drives the fracture onset, i.e.,

g(x, t) =

 gD(t) if x ∈ ΩD,

0 elsewhere .

As usual, we denote by Uk(g) = {u ∈ [H1(Ω)]2 : u(x) = g(x, tk) ∀x ∈ ΩD} the space of
the admissible configuration at time t = tk.
As in Section 1.2.2, to describe the quasi-static approximation, we need to minimize the
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energy functional EP
ε,k in (B.1), finding the pair (u(tk), v(tk)) such that

(u(tk), v(tk)) ∈ arg min
u∈Uk(g)

v∈H1(Ω;[0,1]),v|CRk−1=0

EP
ε,k(u, v), (B.2)

where CRk−1 = {x ∈ Ω : v(tk−1) < CRTOL} as defined in (5.3). For simplicity we denote
hereafter g(x, t) with g(t).
Following Chapter 5, we relax the constraint in (B.2) with two penalization terms which
lead us to rewrite the plane-strain Ambrosio–Tortorelli elasticity functional as

EP,γ
ε,k (u, v) = 1

2

∫
Ω

(v2 + η)W (ε(u)) dx + 1
2

∫
Ω

[
α(v − 1)2 + ε|∇v|2

]
dx

+ 1
2γA

∫
ΩD
|u− g(tk)|2 dx + 1

2γB

∫
CRk−1

v2 dx,
(B.3)

where γA and γB are the penalty constants. Henceforth we always deal with this func-
tional instead of (B.1). We are dealing now with an unconstrained minimization process.
At each time level we seek the pair (u(tk), v(tk)) such that

(u(tk), v(tk)) ∈ arg min
(u,v)∈[H1(Ω)]2×H1(Ω;[0,1])

EP,γ
ε,k (u, v). (B.4)

Since the penalized constraints are clearly continuous, convex, and always non-negative,
the proof of the convergence of the minimizers of (B.4) to the minimizers of (B.2), for
γA, γB → 0, follows from Γ-convergence arguments (see [72]).
Mimicking the proof in [48] for the anti-plane case, we can prove that the functional
EP,γ
ε,k is Fréchet-differentiable in [H1(Ω)]2× (H1(Ω)∩L∞(Ω)). In particular, the Fréchet

derivative of EP,γ
ε,k along direction (w, z) is

(
EP,γ
ε,k (u, v;w, z)

)′ =
∫

Ω
(v2 + η)σ(u) : ε(w) dx + 1

γA

∫
ΩD

(u− g(tk)) ·w dx︸ ︷︷ ︸
=a(v;u,w)

+
∫

Ω

[
v zσ(u) : ε(u) + α(v − 1)z + ε∇v · ∇z

]
dx + 1

γB

∫
CRk−1

v z dx,︸ ︷︷ ︸
=b(u;v,z)

(B.5)
where we substituted the elastic energy density with its explicit form W (ε(u)) = σ(u) :
ε(u), where σ is the stress tensor defined by the Hooke’s law (1.4) for isotropic materials.
We recall the definition of critical points of EP,γ

ε,k :

Definition B.1. The pair (u, v) ∈ [H1(Ω)]2 × (H1(Ω) ∩ L∞(Ω)) is a critical point of
EP,γ
ε,k if

(
EP,γ
ε,k (u, v; w, z)

)′ = 0 for all w ∈ [H1(Ω)]2 and for all z ∈ (H1(Ω) ∩ L∞(Ω)).

Following Proposition 5.4, we can prove that condition 0 ≤ v ≤ 1 is automatically
guaranteed for any critical point.
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B.2. A posteriori anisotropic error analysis

This section provides the discrete approximation of the functional EP,γ
ε,k and, using tools

of the anisotropic theory introduced in Section 5.2.1, we derive a posteriori error esti-
mator to drive the anisotropic mesh adaptation described in Section 5.3.

Discretization of EP,γ
ε,k

We introduce the discrete counterpart of the minimization problem (B.4) in a finite
element setting. Thus, we denote by {Th}h>0 a family of conforming meshes of Ω, and
let Nh be the index set of the vertices of Th, and eh the skeleton of Th. Henceforth, we
assume that the boundary of ΩD coincides with the union of consecutive edges in eh.
We associate with Th the space Xh of continuous piecewise linear finite elements [63].
We denote by EP

h,k(uh, vh) the discrete correspondent of EP,γ
ε,k (u, v) in (B.3), with uh =

(uh,1, uh,2)T ∈ [Xh]2 and vh ∈ Xh, given by

EP
h,k(uh, vh) = 1

2

∫
Ω

[ (
Ph(v2

h) + η
)
σ(uh) : ε(uh) + αPh((vh − 1)2) + ε|∇vh|2

]
dx

+ 1
2γA

2∑
i=1

∫
ΩD

Ph
(
(uh,i − gh,i(tk))2

)
dx + 1

2γB

∫
CRk−1

Ph
(
v2
h

)
dx,

(B.6)
where Ph : C0(Ω)→ Xh is the Lagrangian interpolant onto the space Xh, with gh(tk) =
(gh,1(tk), gh,2(tk))T ∈ [Xh]2 a suitable discrete approximation of g(tk). In particular we
pick gh(tk) such that∫

ΩD
gh(tk) ·wh dx =

∫
ΩD

g(tk) ·wh dx ∀wh ∈ [Xh]2, (B.7)

i.e., gh(tk) is the L2(ΩD)-projection of g(tk) onto [Xh]2. The action of the operator Ph
is equivalent to a mass lumping [207].
The discrete analogue to (B.4) consists of finding the pair (uh(tk), vh(tk)) such that

(uh(tk), vh(tk)) ∈ arg min
(uh,vh)∈[Xh]2×Xh

EP
h,k(uh, vh).

Definition B.1 can be also provided in the discrete case.

Definition B.2. The pair (uh, vh) ∈ [Xh]2 × Xh is a critical point of EP
h,k if, for all
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(wh, zh) ∈ [Xh]2 ×Xh,
(
EP
h,k(uh, vh; wh, zh)

)′ = 0, where(
EP
h,k(uh, vh; wh, zh)

)′ =
∫

Ω
(Ph(v2

h) + η)σ(uh) : ε(wh) dx + 1
γA

2∑
i=1

∫
ΩD

Ph ((uh,i − gh,i(tk))wh,i) dx︸ ︷︷ ︸
=ah(vh;uh,wh)

+
∫

Ω

[
Ph(vhzh)σ(uh) : ε(uh) + αPh

(
(vh − 1)zh

)
+ ε∇vh · ∇zh

]
dx + 1

γB

∫
CRk−1

Ph(vhzh)dx︸ ︷︷ ︸
=bh(uh;vh,zh)

is the Fréchet derivative of EP
h,k.

Thanks to the mass lumping associated with Ph and to the assumption

kij =
∫

Ω
∇ξi · ∇ξj dx ≤ 0 ∀i 6= j ∈ Nh,

about the stiffness matrix K, with {ξl}#Nhl=1 the basis of Xh, the property 0 ≤ vh ≤ 1,
related to the discrete maximum principle (see, e.g., [64, 147, 202]), can be assessed for
any critical point vh of (B.6).

A posteriori error estimator

The following proposition provides a variant on the anti-plane case addressed in Chap-
ter 5

Proposition B.3. Let (uh, vh) ∈ [Xh]2 × Xh be a critical point of EP
h,k according to

Definition B.2. Then, for any pair of functions (w, z) ∈ [H1(Ω)]2 × H1(Ω), with w =
(w1, w2)T , it holds

∣∣(EP,γ
ε,k (uh, vh; w, z)

)′∣∣ ≤ C ∑
K∈Th

{ 2∑
i=1

ρAi,K(vh,uh)ωK(wi) + ρBK(uh, vh)ωK(z)
}
, (B.8)

where C = C(N , C∆), the residuals ρAi,K(vh,uh) and ρBK(uh, vh) are

ρAi,K(vh,uh) = ‖2vhσi(uh) · ∇vh‖L2(K) + 1
λ2,K

‖v2
h − Ph(v2

h)‖L∞(K) ‖σi(uh)‖L2(K)

+1
2‖[[σi(uh)]]‖L∞(∂K) ‖v2

h + η‖L2(∂K)

(
hK

λ1,Kλ2,K

)1/2

+ |K|
1/2 h2

K

λ2,K γA
|uh,i − gh,i(tk)|W 1,∞(K)

+δK,ΩD
γA

(
‖uh,i − gh,i(tk)‖L2(K) + ‖gh,i(tk)− gi(tk)‖L2(K)

)
,
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ρBK(uh, vh) = ‖(σ(uh) : ε(uh) + α)vh − α‖L2(K) + ε

2 ‖[[∇vh]]‖L2(∂K)

(
hK

λ1,Kλ2,K

)1/2

+
δK,CRk−1

γB
‖vh‖L2(K)+ h2

K

λ2,K

[
‖σ(uh) : ε(uh) + α‖L2(K) +

|K|1/2δK,CRk−1

γB

]
|vh|W 1,∞(K),

with uh = (uh,1, uh,2)T , the weights are

ωK(ξ) =
[ 2∑
i=j

λ2
j,K(rTj,KG∆K

(ξ)rj,K)
]1/2

∀ξ ∈ H1(Ω),

where

[[σi(uh)]] =

 [σi(uh) · n]e e ∈ eh ∩ Ω

2(σi(uh) · n)|e e ∈ eh ∩ ∂Ω
, [[∇vh]] =

 [∇vh · n]e e ∈ eh ∩ Ω

2(∇vh · n)|e e ∈ eh ∩ ∂Ω
(B.9)

denote the generalized jump of the i-th component of the normal Cauchy stress tensor
and of the normal derivative of vh, respectively, with [·]e the standard jump across e,
n the unit normal vector to the generic edge in eh, σi(uh) the i-th column of σ, gh is
chosen as in (B.7), and δK,$ = 1 if K ∩$ 6= ∅ and δK,$ = 0 otherwise, with $ ⊂ Ω.

Proof. Since (uh, vh) is a critical point of EP
h,k, we have that

ah(vh;uh,wh) = 0 ∀wh ∈ [Xh]2, bh(uh; vh, zh) = 0 ∀zh ∈ Xh. (B.10)

Moreover, from (B.5), for any pair (w, z) ∈ [H1(Ω)]2 ×H1(Ω), it holds

|
(
EP,γ
ε,k (uh, vh;w, z)

)′| ≤ |a(vh;uh,w)|+ |b(uh; vh, z)|. (B.11)

Now we analyze the two terms in (B.11) separately, starting from |a(vh;uh,w)|. Thanks
to (B.10), for any w ∈ [H1(Ω)]2 and wh ∈ [Xh]2, we have that

|a(vh;uh,w)| ≤ |a(vh;uh,w−wh)|+ |a(vh;uh,wh)− ah(vh;uh,wh)|. (B.12)

Let us focus on the first term on the right-hand side of (B.12). After splitting the
integrals on the mesh elements, and by exploiting integration by parts, we get

∣∣a(vh;uh,w−wh)
∣∣ =

∣∣∣ ∑
K∈Th

{∫
K

(v2
h + η)σ(uh) : ε(w−wh) dx

+ 1
γA

∫
K

(uh − g(tk)) · (w−wh)χΩD dx
}∣∣∣

=
∣∣∣ ∑
K∈Th

{∫
K
−2vh σ(uh) (w−wh) · ∇vh dx +

∫
∂K

(v2
h + η)σ(uh) (w−wh) · n ds

+ 1
γA

∫
K

[
(uh − gh(tk)) + (gh(tk)− g(tk))

]
· (w−wh)χΩD dx

}∣∣∣,
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where χ$ denotes the characteristic function of the generic set $ ⊂ Ω. To preserve the
directional information, we now deal with the terms on the right-hand side component-
wise. For this purpose, we define

a(vh;uh,w−wh) =
2∑
i=1

ai(vh;uh, wi − wh,i),

with wh = (wh,1, wh,2)T , and

ai(vh;uh, wi − wh,i) =∑
K∈Th

{∫
K
−2vhσi(uh) · ∇vh(wi − wh,i) dx +

∫
∂K

(v2
h + η)σi(uh) · n(wi − wh,i) ds

+ 1
γA

∫
K

[
(uh,i − gh,i(tk)) + (gh,i(tk)− gi(tk))

]
(wi − wh,i)χΩD dx

}
.

Thanks to Hölder and Cauchy–Schwarz inequalities and definition (B.9), we obtain∣∣ai(vh;uh, wi − wh,i)| ≤
∑
K∈Th

{
‖2vhσi(uh) · ∇vh‖L2(K) ‖wi − wh,i‖L2(K)

+1
2‖[[σi(uh)]]‖L∞(∂K)‖v2

h + η‖L2(∂K) ‖wi − wh,i‖L2(∂K) + 1
γA
‖(wi − wh,i)χΩD‖L2(K)(

‖(uh,i − gh,i(tk))χΩD‖L2(K) + ‖(gh,i(tk)− gi(tk))χΩD‖L2(K)
)}
.

Picking wh,i = Ch(wi) and thanks to Lemma 5.8, we obtain∣∣ai(vh;uh, wi − wh,i)
∣∣ ≤ C ∑

K∈Th

{
‖2vhσi(uh) · ∇vh‖L2(K)

+1
2‖[[σi(uh)]]‖L∞(∂K)‖v2

h + η‖L2(∂K)

(
hK

λ1,Kλ2,K

)1/2

+ δK,ΩD
γA

(
‖uh,i − gh,i(tk)‖L2(K) + ‖gh,i(tk)− gi(tk)‖L2(K)

)} 2∑
j=1

λ2
j,K(rTj,KG∆K

(wi)rj,K)

1/2

.

(B.13)
Now we deal with the second term on the right-hand side of (B.12), that we bound as

|a(vh;uh,wh)− ah(vh;uh,wh)| ≤
∣∣∣ ∫

Ω

[
v2
h − Ph(v2

h)
]
σ(uh) : ε(wh) dx

∣∣∣
+ 1
γA

∣∣∣ ∫
ΩD

(I − Ph)
(
(uh − gh(tk)) ·wh

)
dx
∣∣∣+ 1

γA

∣∣∣ ∫
ΩD

(
gh(tk)− g(tk)

)
·wh dx

∣∣∣.
(B.14)

We anticipate the auxiliary result which is based on the equivalence of norms on a
finite-dimensional space,

|ϕhψh|H2(K) ≤ 4 |ϕh|W 1,∞(K) ‖∇ψh‖L2(K) ∀ϕh, ψh ∈ Xh, ∀K ∈ Th, (B.15)
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which follows by straightforward calculus. Using the definition (B.7) of gh(tk), the last
term in (B.14) turns out to be zero. Considering again (B.14) componentwise, employing
Hölder and Cauchy–Schwarz inequalities together with the standard isotropic estimate
for the L2-norm of the interpolation error associated with Ph, we get

|ai(vh;uh,wh)− ai,h(vh;uh,wh)| ≤ C
∑
K∈Th

{ |K|1/2 h2
K

γA
|(uh,i − gh,i(tk))wh,i|H2(K)

+‖v2
h − Ph(v2

h)‖L∞(K) ‖σi(uh)‖L2(K) ‖∇wh,i‖L2(K)
}
,

where the constant C does not depend on the aspect ratio sK of K. Then, we employ
(B.15) together with estimate (5.15) and Lemma 5.9 with β1 = λ2

1,K , β2 = λ2
2,K , to

obtain

|ai(vh;uh,wh)− ai,h(vh;uh,wh)| ≤ C
∑
K∈Th

{( |K|1/2 h2
K

γA
|uh,i − gh,i(tk)|W 1,∞(K)

+‖v2
h − Ph(v2

h)‖L∞(K) ‖σi(uh)‖L2(K)
)
‖∇wh,i‖L2(K)

}
≤ C

∑
K∈Th

{( |K|1/2 h2
K

γA
|uh,i − gh,i(tk)|W 1,∞(K) + ‖v2

h − Ph(v2
h)‖L∞(K) ‖σi(uh)‖L2(K)

)
(
‖∇wh,i −∇wi‖L2(K) + ‖∇wi‖L2(K)

)}
≤ C

∑
K∈Th

{( |K|1/2 h2
K

γA
|uh,i − gh,i(tk)|W 1,∞(K) + ‖v2

h − Ph(v2
h)‖L∞(K) ‖σi(uh)‖L2(K)

)
1

λ2,K

[ 2∑
j=1

λ2
j,K(rTj,KG∆K

(wi)rj,K)
]1/2}

.

(B.16)
Therefore, collecting (B.13) and (B.16), we are able to bound componentwise the first
term on the right-hand side of (B.11), as

|a(vh;uh,w)| ≤ C
∑
K∈Th

2∑
i=1

ρAi,K(vh,uh)ωAK(wi).

The estimate of the second term on the right-hand side of (B.11) can be carried out
exactly as the corresponding one in the proof of Proposition 5.10, after replacing |∇uh|2

with σ(uh) : ε(uh). This yields

|b(uh; vh, z)| ≤ C
∑
K∈Th

ρBK(uh, vh)ωK(z).

To make estimate (B.8) useful in practice, we have to pick the pair of functions (w, z).
Mimicking the considerations in Section 5.2.2 , we choose w = u − uh and z = v − vh.
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This leads us to define the error estimator

η =
∑
K∈Th

ηK(uh, vh),

with

ηK(uh, vh) =
2∑
i=1

ρAi,K(vh,uh)ωK(ui − uh,i) + ρBK(uh, vh)ωK(v − vh), (B.17)

where

ωRK(z) =
[ 2∑
i=1

λ2
i,K(rTi,KGR∆K

(z)ri,K)
]1/2

with z = u1 − uh,1, u2 − uh,2, v − vh,

Remark B.4. The numerical procedure to deal with this problem coincides with the one
presented in Chapter 5. The sole difference with respect to the previously introduced
strategy is relative to the re-arranged local estimator, that in this case is

ηK(uh, vh) = µK
{ 2∑
i=1

ρAi,K(vh,uh)ωK(uh,i) + ρBK (uh, vh)ωK(vh)
}
. (B.18)

Notice that, since the displacement has two components, the information for the local es-
timator is retrieved by three residuals equally considered: two related to the displacement
(one for each direction) and one to the phase field variable.

We refer to Section 5.4.3 for some numerical experiments performed on benchmark test
cases appeared in [42].
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