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Abstract

This thesis is devoted to the analysis of shape optimization problems which
are constrained by partial di�erential equations and subject to point-wise geometric
constraints. We rigorously develop and analyze suitable optimization methods, in
particular Newton-type strategies. Furthermore, we establish a close relation to
optimization on manifolds. For a class of elliptic model problems we investigate an
approximation of the Hessian via its operator symbol, and use it for preconditioning.
The second focus of this thesis are point-wise geometric constraints, and their
algorithmic treatment in function space. For a special class of constraints we extend
the theory of Moreau-Yosida regularization in the field of optimal control, and show
its applicability in shape optimization. A more general situation is addressed with a
specialized projected descent method. The proposed methods are applied to several
model problems and substantiated with numerical tests.

Zusammenfassung

Diese Arbeit beschäftigt sich mit der Analyse von Shape Optimierungsprob-
lemen, die durch partielle Di�erentialgleichungen sowie punktweise geometrische
Bedingungen restringiert sind. Wir entwickeln und analysieren geeignete Opti-
mierungsmethoden, insbesondere Newton-artige Verfahren. Eine enge Verbindung
zur Optimierung auf Mannigfaltigkeiten wird hergestellt. Des Weiteren untersuchen
wir eine Approximation der Hesse anhand ihres Operatorsymbols für eine Klasse von
elliptischen Modellproblemen, und verwenden sie als Vorkonditionierer.
Der zweite Fokus dieser Arbeit liegt auf punktweisen geometrischen Nebenbedingun-
gen und ihrer algorithmischen Behandlung im Funktionenraum. Wir erweitern die
Theorie der Moreau-Yosida Regularisierung im Bereich der Optimalsteuerung für
eine bestimmte Klasse von Nebenbedingungen, und zeigen ihre Anwendbarkeit in
der Shape Optimierung. Für eine allgemeinere Problemstellung verwenden wir ein
spezialisiertes projiziertes Abstiegsverfahren. Die vorgestellten Methoden werden auf
diverse Modellprobleme angewandt und durch numerische Tests untermauert.
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1. Introduction

The broad field of shape optimization treats optimization problems which involve an objective
functional depending on the ‘shape’ of some object. The extent to which the shape may
be modified ranges from problems depending only on a few shape parameters, to problems
where even the topology of the object is not specified a priori. While there is a rich literature
discussing abstract and academic topics in shape optimization, this field of research has also
been greatly influenced by many practical applications of shape optimization problems. For
example, in engineering one is often interested in finding the optimal shape of some device or
component. Usually, the function measuring optimality, i.e., the objective of the optimization
problem, does not only depend directly on the shape of the considered objects, but also on
the state of some shape-dependent physical quantities. These quantities might comprise the
temperature distribution in the object, a flow through, or around the object, a wave field
interacting with the object, its mechanical properties, or other shape-dependent variables. Two
generic examples of shape optimization problems, which have received a lot of attention, are the
drag minimization of some body traveling in a fluid, and the maximization of the mechanical
sti�ness of some elastic device. Typically, mathematical models of such physical quantities are
based on partial di�erential equations. Another important aspect of shape optimization are
restrictions on the shape of the objects posed by additional constraints. These may specify
smoothness requirements, or global properties like the topology and the volume. We are
specifically interested in point-wise geometric constraints enforcing, for example, forbidden
regions. There are many more aspects of shape optimization one could highlight here. However,
already now it should become clear that giving a full account of this rich field of research is
beyond the scope of this thesis. Instead, we will focus on the two topics alluded to above.
For a more comprehensive exposition of the broad field of shape optimization we mention the
monographs [All02, All07, Ben95, DZ11, HM03, HP05, MP01, Pir84, SZ92].

This work is devoted to the study of shape optimization problems governed by partial di�erential
equations (PDEs). In particular, we are motivated by situations which model a flow or waves.
In this context, we expect that a physical optimal solution will have some regularity, such that
the modeling assumptions are satisfied. For this reason, the shape optimization framework
presented in this thesis does not allow for degenerate solutions, micro structures, or similar
generalized solution concepts. We suppose furthermore, that the topology of the shapes under
consideration is given a-priori. Following the standard approach of shape calculus we consider
families of domains given as images of an initial domain with respect to at least Lipschitz
continuous transformations. At the beginning of Chapter 2 we summarize some aspects of
shape optimization and specify our setting in detail.

The high computational costs of PDE-constrained optimization motivate us to study in detail
the convergence properties of shape optimization algorithms. In particular, second order
methods, which o�er the potential for fast local convergence, are of interest. However, shapes
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1. Introduction

represent a particularly intricate field of optimization. This is due to the fact that, in general,
shape spaces are nonlinear. The situation rather resembles the setting of optimization on
manifolds. While this has been known for years, only recently one has begun to transfer
well established ideas from optimization on manifolds to shape optimization, cf., e.g., [RW12,
Fre12, Sch14]. However, so far these approaches have either been focussed on the Riemannian
manifold point of view, requiring a lot of smoothness, or they have been restricted to rather
formal considerations. We explore in Section 2.7 the connection between these two worlds in
the usual setting of shape calculus, i.e., using transformations which might only be Lipschitz
continuous. Still, we observe that many important concepts from optimization on manifolds
have natural counterparts in shape calculus. Some of these findings seem to be original. We
emphasize that there is a natural expression for the second covariant derivative. This concept
is used in optimization on manifolds in lieu of the second Eulerian derivative, which is usually
studied in shape optimization. Another important aspect in optimization on manifolds are
retractions, i.e., mappings from the tangent space in some point back to the manifold. In shape
optimization the tangent space consists of vector fields in a suitable Banach space. There
exist the competing concepts of transformations determined as flows of a vector field, or as
perturbations of the identity. We discuss the merits and drawbacks of these concepts from
the point of view of optimization on manifolds. In our opinion it is, at least in the context of
second order methods, preferable to work with perturbations of the identity in the role of a
retraction.

Based on those observations, we develop and analyze suitable algorithms. One possibility to
cope with the special challenges of shape optimization is to assume that the initial domain is
already close to a solution. In many practical applications this is a reasonable assumption, since
one is tasked to improve a previous, or expert design, which is already good. In that case, the
shape optimization problem may be reformulated on a fixed reference domain, and it su�ces
to operate only in the unit ball of the corresponding tangent space. This well established
approach yields a nonlinear optimization problem in a Banach space setting, where standard
optimization techniques can be applied, cf. Section 2.12. In most of this thesis, we consider
such a setting, more precisely, we describe the admissible family of domains via perturbations
of a reference boundary. These are then related to transformations of the whole domain with
the help of suitable extension operators, e.g., via linear elasticity. If one wants to explore
a larger family of admissible domains, one has to address the manifold-like nature of shape
optimization. Inspired by linesearch methods along retractions, we develop a framework for a
globally convergent linesearch descent method in Section 2.8. To the best of our knowledge
such a rigorous and general analysis has not been presented before. It is related to the previous
approach by considering a sequence of functionals defined in the unit ball of the current tangent
space. It needs to be emphasized that, although our approach was motivated by optimization
methods on Riemannian manifolds, we do not require results from that area. In particular, we
do not require CŒ-smoothness, as it is usually done for Riemannian manifolds. Indeed, our
results could be presented without any reference to optimization on manifolds. We feel however,
that this perspective greatly helps to understand the special challenges of shape optimization.
We further extend the available theory by discussing generalized Newton methods in this
framework, cf. Section 2.9. These new algorithms are demonstrated on a simple showcase
problem, cf. Section 2.10. Since they were developed only recently, and are still the subject of
ongoing research, we do not present more involved applications in this thesis.
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Interestingly, the analysis of shape optimization methods in the continuous setting has not
received much attention so far. In contrast, there is a vast amount of literature concerned
with existence of solutions of shape optimization problems, cf., e.g., [AH01, DZ11, HM03]
and the references therein, as well as first and second order optimality conditions. For
instance, Eppler and Harbrecht discuss in a series of papers second order necessary and
su�cient conditions for shape optimization problems with smooth star-shaped domains, cf.,
e.g., [Epp00, EHS07, EH12]. In [EHS07] the second order su�cient conditions are exploited
to obtain convergence of discrete solutions to a solution of the continuous problem. However,
an analysis of the proposed Newton method is not carried out. Regarding the topic of global
convergence of a general descent method we are aware of the paper [Hin05] by Hintermüller. He
analyzes a linesearch descent method where the admissible transformations are given as the flow
maps of ‘su�ciently smooth’ vector fields in an appropriate Hilbert space. However, several
details are left unspecified. Usually, convergence of descent methods for shape optimization
is, if at all, treated on the discrete level, cf., e.g., [ABV13, HM03, HLA08]. There are also
contributions which discuss convergence of Newton-type methods for particular applications,
cf., e.g., [Bur04, HR04, Hin07, Lau00]. However, conditions for fast local convergence are
not discussed. Solvability of the Newton equation is either assured by the addition of a
regularization term to the objective, or by a suitable modification of the unregularized Hessian.
In a recent work of Schulz [Sch14] a connection between shape optimization and optimization
on Riemannian manifolds is drawn. The author also studies the convergence of a Riemannian
Newton method. Unfortunately, his analysis borrows heavily from the theory of CŒ-smooth
infinite dimensional manifolds, and is not directly applicable to less restrictive situations. In
[SSW14] an extension to a Lagrange-Newton approach for shape optimization with PDEs via
Riemmanian vector space bundles is described. Finally, we would like to mention the thesis of
Frey [Fre12]. It presents an interesting connection between state constrained optimal control
with PDEs and shape optimization which is motivated by the study of state constrained
optimal control of ordinary di�erential equations. Furthermore, very similar to our approach,
the author draws a connection between shape optimization and optimization on Riemannian
manifolds. However, most of his analysis is carried out on a formal level. In particular, he
does not discuss convergence properties of his developed algorithms.

Obtaining shape derivatives of functionals which depend on the solution of a shape dependent
PDE is a delicate issue. It usually plays a central role in publications from that field. Most
strategies fall either in the category of function space embedding methods or in the category
of function space parametrization methods, cf., e.g., [SZ92, DZ11]. We focus on the latter,
and show how shape derivatives can be obtained in a general, systematic way in Section 2.14.
Furthermore, we provide a convenient link to the proposed shape optimization methods. The
approach is exemplified for several model problems. In particular, we describe it in detail for
the example of potential flow pressure matching, see Chapter 3.

In PDE-constrained optimization it is prohibitive to assemble the full Hessian. Hence, matrix-
free solution strategies like the method of conjugate gradients have to be employed to solve the
Newton equation. The e�ciency of these methods is highly dependent on the availability of good
preconditioners, i.e., approximations of the Hessian. In the context of shape optimization, the
Hessian is often characterized via its operator symbol, cf., e.g., [AT96, AV99, ESSI09, Sch10].
In Chapter 4 we derive exemplarily such an approximation using the symbol of the Hessian
for an application in potential flow pressure matching. The approximation can either be used
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1. Introduction

instead of the Hessian in a Newton-type method, or as a preconditioner for the true Hessian.
We verify numerically the accuracy of the approximation. Our numerical experiments indicate
that this approach has the potential for significant savings in computational costs.

Besides the analysis of second order methods, the second focus of this thesis are point-wise
geometric constraints which restrict the admissible shapes to be located inside or outside some
given regions. We consider two quite di�erent approaches to handle such situations.

In the special case where the free part of the boundary is required to be located inside
some convex set, the situation resembles an optimal control problem with control constraints.
However, due to the smoothness of the control, i.e., the transformations, similar problems as in
state constrained optimal control arise. Basically three approaches have been proposed in the
literature on state constraints to deal with the associated di�culties. Inexact primal-dual path
following techniques based on Moreau-Yosida regularization were first investigated in [IK03,
HK06a, HK06b], Lavrentiev regularization methods were proposed in [Trö05, MRT06, PTW08],
and barrier methods were studied in [Sch09, SG11, Kru14]. The Lavrentiev regularization
concept relaxes the state constraints to mixed control and state constraints, which feature
Lagrange multipliers with higher regularity. However, in our setting the smoothness of the
control causes the problems. The theory of barrier methods is only available for convex optimal
control problems. Since our optimization problem contains a highly nonlinear state equation,
we decide to follow the approach taken in [HK06a]. We published our findings in the context
of shape optimization in [KU15]. However, our analysis is applicable in the more general
framework of a nonlinear optimal control problem satisfying certain conditions. We present
our results in Chapter 5 in this general framework since it may be useful also in other settings,
cf., e.g., [BU15] for an application in seismic tomography. We introduce a Moreau-Yosida
type penalty term and study the properties of the solutions to the associated subproblems.
Facing a nonlinear problem we assume a strong second order condition to hold. We show local
Lipschitz continuity of the regularized solutions, and prove convergence rate estimates similar
to [HSW14]. The subproblems can be solved e�ciently by a semismooth Newton method
[Ulb11]. We demonstrate the applicability of the developed theory to shape optimization
problems on the example of potential flow pressure matching.

We also consider more general geometric constraints in the form of some regions which should
be contained, or which should not be contained in the optimal domain. In contrast to the
Moreau-Yosida approach, we enforce the geometric constraints strictly, and propose a special
variant of a projected descent method in Section 2.13. Since projecting shapes is a delicate issue,
we instead project the search directions, i.e., the vector fields determining the transformations,
onto a suitable admissible subspace. This can be implemented e�ciently, and ensures feasibility
of the generated iterates. However, in general, we can only expect to obtain a minimum with
respect to a subset of the admissible family of domains.

The proposed approaches of handling point-wise geometric constraints in shape optimization
are demonstrated further with the help of two model problems.

In Chapter 6 we consider the problem of minimizing the drag of a body traveling in a Stokes fluid.
We derive first and second order derivatives of the reduced objective. The drag minimization
problem is usually subject to constraints regarding the volume and the center of mass of the
immersed body. We treat those in an Augmented Lagrangian framework. For the arising
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subproblems we apply a trust-region globalized Newton method. The search directions are
determined with the truncated conjugate gradients method. Subsequently, we add geometric
constraints to the problem setting, and employ the Moreau-Yosida path following strategy in
combination with a trust-region globalized semismooth Newton method.

Finally, in Chapter 7, we minimize the resonance of the harbor basin with respect to long range
ocean waves. For this we may modify the shape of the breakwaters which protect the harbor.
The simplified physical model is described by the Helmholtz equation. In this application
several geometric constraints appear naturally. We describe the varying domains with the level
set approach, and apply the proposed projected descent method. Furthermore, we experiment
with some heuristic extensions of our method. Note that this application and the employed
optimization strategy were already described in our paper [KK15].

A short conclusion and outlook is given in Chapter 8.
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2. Aspects of shape optimization

In this chapter we lay the theoretical foundation of this thesis. Let us give a brief outline.

We introduce some notations and definitions which will be used throughout this thesis in the
first section. Sections 2.2–2.6 mainly summarize selected, well established concepts and results
in shape optimization. For readers which are familiar with the material it should su�ce to
browse through these sections. As described briefly in Section 2.2, there are several possibilities
to construct a metric on certain families of sets. We focus on families of sets obtained as
transformations of an initial set œ

0

µ Rd. The admissible transformations are obtained as
perturbations of the identity. This is the standard setting of shape calculus. In Section 2.3 we
draw the connection to the velocity method, where the transformations are obtained as the
flow of some vector field. We proceed by treating continuity of shape functionals in Section 2.4
before deriving appropriate first and second order derivative concepts for shape functionals
in Section 2.5 and 2.6. Our presentation mainly follows the excellent treatment of general
shape optimization problems by Delfour and Zolésio in [DZ11]. For a more encompassing view
of shape optimization we refer to the monographs [All02, All07, Ben95, HM03, HP05, MP01,
Pir84, SZ92].

Sections 2.7–2.14 contain some of the core concepts of this thesis. In particular, we discuss
di�erent shape optimization algorithms and their convergence properties. In Section 2.7
we introduce some notions from the theory of Riemannian manifolds, and show that these
have their natural counterparts in shape calculus. Inspired by this analogy, we translate
the concept of a linesearch method along retractions into a globally convergent linesearch
descent shape optimization algorithm in Section 2.8. We proceed by discussing a related
class of second order methods in Section 2.9. The developed algorithms work directly with
transformations of the whole domain, and are demonstrated on a simple showcase problem in
Section 2.10. Some alternative characterizations of shapes are summarized in Section 2.11. In
particular, we may describe shapes as transformations of a reference boundary or via the level
set method. In Section 2.12 we present the established framework of shape optimization in
terms of transformations of a reference boundary. Assuming that we start close to a solution,
we obtain an optimization problem in a Banach space framework, and can apply standard
techniques. We start our discussion of point-wise geometric constraints in Section 2.13, and
propose a special version of a projected descent method. Finally, Section 2.14 is devoted to
the special challenges of PDE-constrained shape optimization. Assuming the existence of a
design-to-state operator, we draw the connection to the developed methodology using the
function space parametrization approach.
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2. Aspects of shape optimization

2.1. Some notations and definitions

Most of our notation should be standard in the field of shape optimization problems with PDEs.
Nevertheless, in this section we introduce some notations and recall some basic definitions.

• We denote the interior of a subset A µ Rd by int A and the closure by A.

• The complement of A in Rd is Ac := {x œ Rd | x /œ A} and the boundary of A is defined
by ˆA := A fl Ac.

• We denote the power set of a nonempty set D by P(D) := {A | A µ D}.

• œ will usually be a bounded open subset of Rd.

• For some normed space X we denote the unit ball in X around 0 œ X with BX(0, 1).

• L(X, Y ) denotes the space of bounded linear functionals from X to Y .

• The dual of X is denoted by Xú := L(X,R), and the dual pairing by È·, ·ÍX
ú
,X .

• Partial derivatives of an operator E : X ◊ Y æ Z are denoted by Ex(x, y), Ey(x, y), etc.

• Df denotes the (weak) Jacobian matrix of a function f : Rd æ Rm.

• If f : R æ Rm is a (pseudo-) time dependent function we usually write ˆtf .

• Similarly if f : R ◊ Rd æ Rm the partial (pseudo-) time derivative is denoted by
ˆtf(t, x) := lims√0

s≠1 (f(t + s, x) ≠ f(t, x)) and Df(t, x) := Df(t)(x) is the Jacobian
with respect to the spacial variable. Here and in the following we sometimes write, with
a slight abuse of notation, f(t) := f(t, ·) : Rd æ Rm for t œ R.

• The letters U, V, W will be reserved for vector fields mapping a domain œ µ Rd, or the
whole Rd to Rd. In contrast, u, v, w are vector fields mapping from some boundary to
Rd.

We adopt the usual definitions and terminology of spaces of continuous and continuously
di�erentiable functions, C(œ), Ck(œ), k œ N, as well as the Lebesgue spaces Lp(œ), 1 Æ p Æ Œ,
and the Sobolev spaces W k,p(œ), 1 Æ k, p Æ Œ. The space of all k-times continuously
di�erentiable functions with compact support in the open set œ is denoted by Ck

c (œ). A
function which is bounded and uniformly continuous on œ can be extended uniquely and
continuously to the closure œ. We write f œ Ck(œ) if all partial derivatives of a function f up
to order k are bounded and uniformly continuous on œ. If Ck(œ) is endowed with the norm

ÎfÎ
C

k

(œ)

:= max
0Æ|–|Æk

sup
xœœ

|ˆ–f(x)|

we obtain a Banach space. In particular, this holds for Ck(Rd) ( Ck(Rd). A function is
(k, l)-Hölder continuous in œ if k œ N, l œ (0, 1], and

’–, 0 Æ |–| Æ k, ÷c– > 0: ’x, y œ œ, |ˆ–f(x) ≠ ˆ–f(y)| Æ c–|x ≠ y|l. (2.1)
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2.2. Metrics on families of sets

The space of (k, l)-Hölder continuous functions is denoted by Ck,l(œ) and the corresponding
subset of the space Ck(œ) by Ck,l(œ). Note that also

Ck,l(Rd) ( Ck,l(Rd). (2.2)

We obtain a Banach space if we endow Ck,l(œ) with the norm

ÎfÎ
C

k,l

(œ)

:= max
1

ÎfÎ
C

k

(œ)

, max
0Æ|–|Æk

c–

2
,

where c– is the smallest constant provided by (2.1). Spaces of vector valued functions will be
denoted by Lp(œ,Rm), Ck(œ,Rm), etc. Finally (0, 1)-Hölder continuity is known as Lipschitz
continuity. Let us particularly emphasize the following identity.

Lemma 2.1. Let œ be a bounded, open, path-connected, and Lipschitzian subset of Rd. Then
there holds

W k+1,Œ(œ) = Ck,1(œ)

both algebraically and topologically for all integers k Ø 0.

Proof. We refer to Theorem 2.2.6 and the following Corollary in [DZ11].

Remark 2.2. In view of this result we denote by Df the weak derivative of f œ C0,1(œ) for
suitable œ.

We call a set œ µ Rd with ˆœ ”= ÿ Lipschitzian if it is a C0,1 epigraph and equi-Lipschitzian if
it is an equi-C0,1epigraph, see [DZ11, Definition 2.5.2 ] for a precise definition. If ˆœ is compact
the notions coincide, cf. [DZ11, Theorem 2.5.3]. Furthermore a set œ is equi-Lipschitzian if
and only if œ satisfies the uniform cone condition. We refer to [DZ11, Section 2.6.4.1] for a
precise definition and the equivalence result.

Before we can start our discussion of shape optimization problems we need to answer the
question how one can quantify the di�erence of two sets. In other words, given two sets we
want to have a measure of the distance between those sets. This is the topic of the next section,
where we formalize the distance between two admissible sets in the notion of a metric.

2.2. Metrics on families of sets

In this section we give an overview of the construction of some metrics on certain families of
sets. We begin with the intuitive notion of deforming a fixed reference subset by a family of
transformations. This is the basis of the classical shape calculus.

9



2. Aspects of shape optimization

2.2.1. Images of a set

Apparently Micheletti [Mic72] was one of the first to introduce a complete metric topology on a
family of domains of class Ck which she obtained as the images of Ck-di�eomorphisms of a fixed
open domain. In particular, she studied the quotient group with respect to reparametrizations
of the initial domain. She coined the term Courant metric for the quotient metric. The
following exposition is based on [DZ11, Chapter 3].

For a normed vector space ⇥ of maps from Rd to Rd we consider the family of transformations

F(⇥) := {· : Rd æ Rd | · = Id + U, U œ ⇥, · bijective and ·≠1 ≠ Id œ ⇥}. (2.3)

Under suitable assumption on ⇥ one can show that the family F(⇥) together with the
composition (F ¶ G)(x) := F (G(x)) for F, G œ F(⇥) is a group. There exist several equivalent
right-invariant metrics on F(⇥). A metric d is right-invariant if d(F, G) = d(F ¶ H, G ¶ H) for
all H. One of these metrics is defined by

dF (Id, F ) := inf
F =F1¶···¶F

n

F
i

œF(⇥)

nÿ

i=1

ÎFi ≠ IdÎ⇥ + ÎF ≠1

i ≠ IdÎ⇥, (2.4)

and extended to all F, G œ F(⇥) via dF (F, G) := dF (Id, G ¶ F ≠1). Completeness follows from
some additional requirements on ⇥. The family of images of a set œ

0

µ Rd associated with
F(⇥) is given by

O⇥(œ
0

) := {F (œ
0

) | F œ F(⇥)}. (2.5)

Note however, that two di�erent transformations in F(⇥) might generate the same image
set. To obtain an isomorphism between the group of transformations F(⇥) and the family
of images O⇥(œ

0

) the quotient group F(⇥)/G(œ
0

) may be studied, where G(œ
0

) denotes the
subgroup of transformations which retain œ

0

, i.e.,

G(œ
0

) := {F œ F(⇥) | F (œ
0

) = œ
0

}.

Given a subgroup G the equivalence class of F in the quotient group F/G is given by [F ] := F ¶G.
The quotient metric is defined as the infimum of the distance between all members of two
equivalence classes

dG([F ], [H]) := inf
G, ˜GœG

dF (F ¶ G, H ¶ G̃) = inf
GœG

dF (F, H ¶ G). (2.6)

For the choice G = G(œ
0

) the quotient metric is called the Courant metric. We will not go into
the details here, but we point out that the following theorem applies also to other spaces not
considered in this thesis. Recall from (2.2) that Ck(Rd) ( Ck(Rd) and Ck,l(Rd) ( Ck,l(Rd).

Theorem 2.3. [DZ11, Theorem 3.2.9] Let k Ø 0 and ⇥ be equal to Ck(Rd,Rd) or Ck,1(Rd,Rd).

(i) The group (F(⇥), dF ) is a complete right-invariant metric space. For ⇥ equal to
Ck(Rd,Rd) it is also a topological group.

10



2.2. Metrics on families of sets

(ii) For any closed subgroup G of F(⇥), the function dG : F(⇥) ◊ F(⇥) æ R defined in (2.6)
is a right-invariant metric on F(⇥)/G, and the space (F(⇥)/G, dG) is complete. The
topology induced by dG coincides with the quotient topology of F(⇥)/G.

(iii) If œ
0

µ Rd is nonempty and either closed or satisfies œ
0

= int œ
0

, then G(œ
0

) is a closed
subgroup of F(⇥).

Remark 2.4. Murat and Simon [MS76] followed a similar approach in 1976. They studied
spaces which are equivalent to either Ck+1(Rd,Rd) or Ck,1(Rd,Rd), and constructed a metric
via the semimetric d

0

(I, F ) := ÎF ≠ IdÎ⇥ + ÎF ≠1 ≠ IdÎ⇥.

Obviously we have F(⇥) ( Id + ⇥. For su�ciently small perturbations U œ ⇥ of the identity
there holds also (Id + U) œ F(⇥), and the map t ‘æ Id + tU defines a C1-path in F(⇥).

Theorem 2.5. [DZ11, Theorem 3.2.14 and 3.2.17] Let k Ø 0 and ⇥ be equal to Ck+1(Rd,Rd)
or Ck,1(Rd,Rd).

(i) The map U ‘æ Id + U : B⇥(0, 1) µ ⇥ æ F(⇥) is well defined and continuous.

(ii) For all F œ F(⇥) the tangent space to F(⇥) in F is given by ⇥.

Sketch of the proof. (i) The invertibility of Id + U is obtained by showing that for every y œ Rd

the map x ‘æ y ≠ U(x) has a fixed-point. The implicit function theorem is employed to show
that (Id+U)≠1 ≠Id œ ⇥. Via the estimate Î(Id + U)≠1 ≠ IdÎ⇥ Æ c Î(Id + U) ≠ IdÎ⇥ = c ÎUÎ⇥
the continuity property is established.
(ii) Every tangent element to F(⇥) µ Id + ⇥ will be contained in ⇥. On the other hand, for
any U œ ⇥ and F œ F(⇥), the map t ‘æ (Id + tU) ¶ F defines a continuous path in F(⇥) for
small t Ø 0. In particular the tangent vector to this path is U .

Remark 2.6. Let us stress the importance of the second item in the above theorem. Knowledge
of the appropriate tangent space will be the key to defining derivatives of functionals which
depend on a shape. This sets the group F(⇥) apart from its quotient groups and other
groups of shapes. Although these may have desirable attributes, to the best of our knowledge
there is so far no rigorous characterization of their tangent spaces available. For the quotient
group F(⇥)/G(œ

0

) the natural conjecture is that the tangent space consists of all vector fields
which are normal to the boundary. This guess is based on the structure theorem of shape
optimization, see Theorem 2.78 or [DZ92, Theorem 3.2]. This conjecture is true in the case of
the Riemannian manifold given by the quotient group of all CŒ-embeddings of the unit circle
in the plane, where the equivalence classes are specified by reparametrizations of the circle, cf.
[MM06]. See also the discussion in [Fre12, Section 2.6.2].

Theorem 2.5 states in particular that (Un) æ 0 in ⇥ implies dF (Id, Id + Un) æ 0. We also
have the opposite implication.

Lemma 2.7. Let k Ø 0 and ⇥ be equal to Ck+1(Rd,Rd) or Ck,1(Rd,Rd). For every sequence
(Fn) µ F(⇥) which satisfies dF (Id, Fn) æ 0 for n æ Œ, it holds

ÎFn ≠ IdÎ⇥ æ 0.

11



2. Aspects of shape optimization

Proof. It su�ces to show that there exists a constant c(⇥) > 0 such that, for any sequence
(Fn) µ F(⇥) with dF (Id, Fn) < Án < 1 and Án æ 0, we have the bound ÎFn ≠ IdÎ⇥ < Ánc(⇥).
Let such a sequence be given. For every n there exists a finite factorization Fn = F n

1

¶ · · · ¶ F n
‹

such that

‹ÿ

i=1

ÎF n
i ≠ IdÎ⇥ + Î(F n

i )≠1 ≠ IdÎ⇥ Æ d(Id, Fn) + Án Æ 2Án.

The existence of a constant c(⇥) > 0 such that ÎFn ≠ IdÎ⇥ < Ánc(⇥) is now provided by
[DZ11, Assumption 3.2.2]. It is satisfied for the considered spaces, see [DZ11, Sections 2.5,
2.6].

Whereas transformations in F(C1(Rd,Rd)) conserve Lipschitz domains, this is in general not
true for F(C0,1(Rd,Rd)), see [DZ11, Example 2.5.1]. Nevertheless, the next result shows that
the regularity is preserved for small Lipschitz transformations.

Lemma 2.8. [BFCLS97, Lemma 3] Let œ µ Rd be a bounded Lipschitz domain. Then there
exists a constant 0 < c(œ) < 1 such that

·(œ) is a bounded Lipschitz domain for all · = Id + U,

satisfying U œ ⇥ := C0,1(Rd,Rd) and ÎUÎ⇥ Æ c(œ).

Finally, we recall the following classical result of Ne�as, see also [MS76, Lemma 4.1].

Lemma 2.9. [Ne�12, Section 2.3.1] Let œ µ Rd be a bounded open domain, 1 Æ p Æ Œ, and
F œ F(C0,1(Rd,Rd)). Then

(i) f œ Lp(F (œ)) … f ¶ F œ Lp(œ).

(ii) f œ W 1,p(F (œ)) … f ¶ F œ W 1,p(œ).

(iii) f œ W 1,p
0

(F (œ)) … f ¶ F œ W 1,p
0

(œ), if 1 < p < Œ.

2.2.2. Other groups of sets and associated metrics

Considering only images of a fixed set œ
0

is convenient, but also quite restrictive. We give a
brief overview of alternative constructions. It is out of the scope of this thesis to cover these in
more detail. As already mentioned, the reason why we focus on O⇥(œ

0

) is that we know the
tangent space of F(⇥).

12



2.2. Metrics on families of sets

Metrics via characteristic functions

A much larger class of sets than the one considered in section Section 2.2.1 is the class of
Lebesgue measurable sets. They are identified with their characteristic function

‰œ(x) :=
I

1, if x œ œ,

0, if x /œ œ.

Generalizing the notion of the perimeter of a set provides us with a compactness result. We
summarize some results from [DZ11, Chapter 5], where this approach is treated in more
detail.

In this paragraph we consider a nonempty holdall D µ Rd which is measurable and bounded.
The space of characteristic functions on D is denoted by

X (D) := {‰œ | œ µ D Lebesgue measurable} µ LŒ(D).

Define

A∆B := (A fl Bc) fi (B fl Ac), and ‰A∆‰B := |‰A ≠ ‰B| = ‰A∆B.

If X (D) is endowed with the symmetric set di�erence ∆ as multiplication, and the neutral
multiplicative element ‰ÿ, then X (D) is an Abelian group. One may introduce equivalence
classes of Lebesgue measurable sets, by identifying them with the Lp-equivalence class of their
characteristic functions

[A] ¡ ‰A œ Lp(D).

The function dX ,p([A
2

], [A
1

]) := Î‰A2 ≠ ‰A1ÎL
p

(D)

defines a complete metric structure on
X (D), that makes it a topological Abelian group for 1 Æ p < Œ, cf. [DZ11, Theorem 5.2.2].
The topologies induced by Lp(D) on X (D) are all equivalent for 1 Æ p < Œ, cf. [DZ11,
Theorem 5.2.3]. A sequence is said to be strongly convergent if it is strongly convergent in
Lp(D) for some p œ [1, Œ). One can approximate an arbitrary Lebesgue measurable subset of
Rd by a strongly convergent sequence of open CŒ-domains, see [DZ11, Theorem 5.3.1].

We extend now the notion of the perimeter of a set to X (D) and state the announced com-
pactness property. Recall the space of (vectorial) bounded measures M1(D,Rd) = Cc(D,Rd)ú,
and the space of functions of bounded variation BV (D) := {f œ L1(D) | Òf œ M1(D,Rd)}
with the norm ÎfÎBV (D)

= ÎfÎ
L

1
(D)

+ ÎÒfÎ
M

1
(D,R

d

)

.

Definition 2.10. Let œ be a Lebesgue measurable subset of Rd. The perimeter of œ with
respect to an open subset D of Rd is given by

pD(œ) := ÎÒ‰œÎ
M

1
(D,R

d

)

.

We set BX (D) := { ‰œ œ X (D) | ‰œ œ BV (D)}. We say that a set œ has finite perimeter if
‰œ œ BX (Rd). Sets of finite perimeter are also called Caccioppoli sets.
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2. Aspects of shape optimization

Theorem 2.11. [DZ11, Theorem 5.6.3] Assume that D is a bounded open domain in Rd with
a Lipschitzian boundary. Let {œn} be a sequence of measurable domains in D with uniformly
bounded perimeter pD(œn) Æ c for some c > 0. Then there exists a measurable set œ µ D and
a subsequence {œn

k

}, such that

‰œ
n

k

æ ‰œ in L1(D) as k æ Œ, and pD(œ) Æ lim inf
kæŒ

pD(œn
k

) Æ c.

Moreover limkæŒÈÒ‰œ
n

k

, ÏÍ
M

1
(D,R

d

),C
c

(D,R
d

)

æ ÈÒ‰œ, ÏÍ
M

1
(D,R

d

),C
c

(D,R
d

)

’Ï œ Cc(D,Rd).

In particular the following family of sets has uniformly bounded perimeter.

Theorem 2.12. [DZ11, Theorem 5.6.11] Let D be a bounded open set in Rd with uniformly
Lipschitzian boundary. The family of characteristic functions of all Lebesgue measurable subsets
of D which satisfy the uniform cone property [DZ11, Section 2.6.4.1] with the same constant
parameters is compact in Lp(D) for all p œ [1, Œ).

Remark 2.13. (i) It is a standard technique in optimization to show the existence of an
optimal solution by combining compactness of the admissible set with lower semicontinuity
of the objective. The above results make it possible to apply this line of reasoning also
to shape optimization.

(ii) Let us stress, that in contrast to F(⇥), it is not at all clear what the tangent space to
the group X(D) is, see also [DZ11, Remark 5.2.3].

(iii) If one wants to guarantee the conditions of Theorem 2.12 one needs to impose strong
smoothness conditions on the admissible domain deformations. Instead, one often adds
a perimeter penalty to the objective functional to obtain the existence of a solution.

(iv) Shape calculus, and hence shape optimization, is usually based on the group F(⇥) and
not the group X (D). This is due to (ii). Hence there is a deplorable gap between the
standard analysis of existence of solutions, and the standard optimization framework
which tries to find those solutions. In most of this thesis we will not concern ourselves
with the question of existence of solutions. Instead, we suppose that solutions exist, and
focus on the question how to find one.

Metrics via the distance or oriented distance functions

One can also construct a metric on the family of all distance functions of subsets of D, where
the distance function from a point x to the set A µ Rd is given by

dA(x) :=
I

infyœA|y ≠ x|, A ”= ÿ,

+Œ, A = ÿ.
(2.7)

This metric is equivalent to the Pompéiu-Hausdor� metric. We refer to [DZ11, Chapter 6] for
more details regarding this subject as well as the Hausdor� complementary metric.
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2.3. Transformations generated by velocities

Another possibility is to study the oriented distance function from x œ Rd to A µ Rd

bA(x) := dA(x) ≠ dA
c(x).

The oriented distance functions are a fascinating subject to study. They are intrinsically
linked to various geometric properties of their associated set, like smoothness of the boundary,
convexity of the set, or the unit outward normal on the boundary of the set. Furthermore,
they can be used to construct a uniform metric topology on suitable equivalence classes of
sets. We will revisit the oriented distance function in Section 2.11.3. A thorough exposition
covering these and many more aspects can be found in [DZ11, Chapter 7].

2.3. Transformations generated by velocities

Recall that the tangent space of the group of transformations F(⇥) is given by ⇥, cf. The-
orem 2.5. We will now discuss a special class of transformations, which describe the flow
associated with some vector field over an artificial time interval [0, 1] with values in ⇥. This
approach is termed velocity or speed method, and goes back to Zolésio [Zol73, Zol79]. Besides
shape optimization, this approach finds a lot of applications in the wide field of imaging and
motion capturing. We refer to [You10] for an introduction to this point of view. The current
section is mainly based on [DZ11, Chapter 4], and there the reader may find also a more
detailed overview and further references.

2.3.1. The subgroup of flow maps

In this paragraph we assume that the tangent space is given by ⇥ = C0,1(Rd,Rd). We consider
velocity fields V : [0, 1] ◊Rd æ Rd, and writing V (t) := V (t, ·) we define

ÎV Î
L

1
([0,1],⇥)

:=
⁄

1

0

ÎV (t)Î⇥ dt, and

L1([0, 1],⇥) := {V : [0, 1] ◊Rd æ Rd | ÎV Î
L

1
([0,1],⇥)

< Œ}.

For a velocity field V œ L1([0, 1],⇥) and every x
0

œ Rd the di�erential equation

ˆtx(t) = V (t, x(t)), x(0) = x
0

, (2.8)

has a unique solution denoted by xV (·; x
0

) in W 1,1((0, 1),Rd) µ C([0, 1],Rd), cf. [DZ11,
Section 4.2.1] and [You10, Appendix C].

Definition 2.14. For Ë > 0 and V œ L1([0, Ë],⇥) the flow or flow map TV associated with
V is given by

TV : [0, Ë] ◊Rd æ Rd, (t, x
0

) ‘æ TV (t, x
0

) := xV (t; x
0

). (2.9)

Furthermore, we abbreviate TV (t) := TV (t, ·) and define UV (t) := TV (t) ≠ Id. For an au-
tonomous vector field V (t, x) © V (x) we write TV .
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2. Aspects of shape optimization

Theorem 2.15. [DZ11, Theorem 4.2.1] The set

G⇥ := {TV (1) | V œ L1([0, 1],⇥)}

is a subgroup of F(⇥), and for every V œ L1([0, 1],⇥) it holds

sup
0ÆtÆ1

ÎUV (t)Î⇥ Æ ÎV Î
L

1
([0,1],⇥)

exp
1
2 + 2 ÎV Î

L
1
([0,1],⇥)

2
. (2.10)

In particular, for all t œ [0, 1] and every V œ L1([0, 1],⇥), it holds TV (t) œ F(⇥), and the map
t ‘æ TV (t) : [0, 1] æ F(⇥) defines a continuous path in F(⇥).

Sketch of the proof. To show that G⇥ is closed under composition, i.e., TV1(1) ¶ TV2(1) œ G⇥

one constructs a suitable concatenation of V
1

and V
2

which is in L1([0, 1],⇥). To realize that
each TV (1) has an inverse in G⇥ one verifies that for V ≠(t, x) := ≠V (1 ≠ t, x) it holds

T
V

≠(1) = (TV (1))≠1 . (2.11)

Finally, one needs to check G⇥ µ F(⇥). This is done via (2.10), which is obtained after some
estimations and exploiting the choice ⇥ = C0,1(Rd,Rd).

Remark 2.16. (i) Note that TV (Át) = TÁV (t) for Á > 0 and all V œ ⇥. In particular,
for any autonomous velocity field V œ ⇥ and any T > 0 the associated flow satisfies
TV (T ) œ F(⇥).

(ii) An attractive property of the flow map is the characterization (2.11), i.e., its inverse is
easily obtained by inverting the time and the direction of the associated velocity field.

One can construct a metric on G⇥ that is of geodesic type.

Theorem 2.17. [DZ11, Theorem 4.2.2] Let k Ø 0, and ⇥ be equal to Ck,1(Rd,Rd) or
Ck+1(Rd,Rd). Then the function dG⇥

: G⇥ ◊ G⇥ æ R, given by

dG⇥
(Id, TV (1)) := inf

;⁄
1

0

ÎW (t)Î⇥ dt

---- W œ L1([0, 1],⇥), TW (1) = TV (1)
<

dG⇥
(TV (1), TW (1)) := dG(Id, TV (1) ¶ TW (1)≠1),

defines a right-invariant metric on G⇥.

Sketch of the proof. By construction dG⇥
is non-negative, symmetric, and right-invariant. The

triangle inequality is verified by considering a suitable concatenation of velocity fields. Finally,
the identity of indiscernibles is checked with the help of Theorem 2.15.

Unfortunately, the completeness of (G⇥, dG⇥
) and related questions are still open, we refer to

the discussion in [DZ11, Section 4.4.2].
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2.3. Transformations generated by velocities

2.3.2. Equivalence between transformations and velocities

There is a close connection between a velocity and its associated transformation. We summarize
here the results in the case of a region of interest ÿ ”= D µ Rd. Of course this includes the
choice D = Rd. We recall the following characterization of the closed and convex Clarke
tangent cone CD(x) to D at x œ D.

Definition 2.18. [Cla90, Theorem 2.4.5] A vector v œ Rd belongs to the Clarke tangent cone
CD(x) at x œ D if and only if, for every sequence (xn) µ D converging to x and every sequence
(tn) µ (0, Œ) decreasing to 0, there exists a sequence (vn) µ Rd converging to v such that
xn + tnvn œ D for all n.

We require the following for a vector field V : [0, Ë] ◊ D æ Rd, cf. [DZ11, Section 4.5.1].

Assumption 2.1. There exists a Ë > 0 and a vector field V : [0, Ë] ◊ D æ Rd such that

’x œ D, V (·, x) œ C([0, Ë],Rd),
÷c > 0, ’x, y œ D, ÎV (·, x) ≠ V (·, y)Î

C([0,Ë],R
d

)

Æ c|x ≠ y|,

’t œ [0, Ë], ’x œ D, V (t, x) œ {≠CD(x) fl CD(x)}.

Recall the short notation V (t) := V (t, ·). In particular, the above conditions imply that
V (·) œ C([0, Ë], C(D,Rd)) for an open, bounded holdall D µ Rd. On the other hand we may
require the following for a transformation T : [0, Ë] ◊ D æ Rd.

Assumption 2.2. There exists a Ë > 0, and a map T : [0, Ë] ◊ D æ Rd such that

’x œ D, T (·, x) œ C1([0, Ë],Rd)
÷c

1

> 0, ’x, y œ D, ÎT (·, x) ≠ T (·, y)Î
C

1
([0,Ë],R

d

)

Æ c
1

|x ≠ y|, (2.12)

’t œ [0, Ë] the map Tt : D æ D given by Tt(x) := T (t, x) is bijective, (2.13)

’x̃ œ D, T ≠1(·, x̃) œ C([0, Ë],Rd)
÷c

2

> 0, ’x̃, ỹ œ D,
...T ≠1(·, x̃) ≠ T ≠1(·, ỹ)

...
C([0,Ë],R

d

)

Æ c
2

|x̃ ≠ ỹ|, (2.14)

where we define T ≠1(t, x̃) := T ≠1

t (x̃).

We have the following equivalence result available.

Theorem 2.19. [DZ11, Theorems 4.5.1 and 4.5.2]

(i) If Assumption 2.1 is satisfied for V , then Assumption 2.2 holds for the flow map TV

from Definition 2.14.
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2. Aspects of shape optimization

(ii) If Assumption 2.2 is satisfied for a map T , then the map

V : [0, Ë] ◊ D æ Rd, (t, x) ‘æ V (t, x) := ˆtT
1
t, T ≠1

t (x)
2

satisfies Assumption 2.1. If additionally T (0, ·) = Id, then the solution of (2.8) for that
V is given by T (·, x

0

).

(iii) Given a Ë > 0 and a map T : [0, Ë] ◊ D æ D, with T (0, ·) = Id, satisfying the conditions
(2.12) and (2.13), there exists a Ë̃ > 0 such that the conclusions of part (ii) hold on the
intervall [0, Ë̃].

Sketch of the proof. (i) Existence and uniqueness of viable solutions of (2.8) is shown via a
special version of Nagumo’s theorem. Bijectivity is obtained by considering the reverse flowmap.
The condition (2.14) is then easily checked.
(ii) The continuity properties of V are verified directly using Assumption 2.2. The condition
V (t, x) œ {≠CD(x) fl CD(x)} is proven in two steps with an elemental Á - ” argument.
(iii) Choosing Ë̃ = min{Ë, 1/(2c2

1

)} one can verify (2.14) and hence apply (ii).

Remark 2.20. (i) In particular, the flow map TV (t) : D æ D is a homeomorphism which
maps interior points onto interior points and boundary points onto boundary points if
Assumption 2.1 is satisfied, cf. [DZ11, Remark 4.5.1].

(ii) The theorem can be extended to smoother mappings. In [DZ11, Section 4.4.3] this is
done for the choice D = Rd.

2.4. Continuity of shape functionals

In this section we introduce a concept of continuity of a functional with regard to shape
changes. More precisely we introduce continuity with respect to the metric dF from (2.4). It
can be shown that notion is equivalent to continuity along velocity fields. Recall the group
of transformations F(⇥) from (2.3), and the corresponding images O⇥(œ

0

) of a set œ
0

from
(2.5).

Definition 2.21. [DZ11, Definition 4.3.1] Let ÿ ”= D µ Rd be given with O µ P(D) and let B
be a topological space. It is common to call O the admissible family of sets. A shape functional
is a map

j : O æ B.

Note that a shape functional can not discern between to di�erent members of the group
of transformations F(⇥) which describe the same set. To be more precise let œ

0

µ Rd,
œ œ O⇥(œ

0

), and j : O⇥(œ
0

) æ B be a shape functional into some topological space B. Then
for all F, H œ F(⇥) with œ = F (œ

0

) = H(œ
0

) it holds

j(œ) = j(F (œ
0

)) = j(H(œ
0

)).
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2.4. Continuity of shape functionals

Remark 2.22. (i) This constancy of a shape functional with respect to the members of
an equivalence class of F(⇥)/G(œ

0

) motivates the investigation of the quotient group.
It would be a very interesting and worthwhile endeavor to extend the analysis of this
chapter also to F(⇥)/G(œ

0

), but this is beyond the scope of this thesis.

(ii) In practice one usually has no problems when using F(⇥) in a derivative based opti-
mization algorithm since a linesearch along a descent direction will leave the current
equivalence class. The situation is more delicate when considering Newton’s method, as
the Hessian will always have a nontrivial kernel consisting of directions which do not
change the shape of the domain. We discuss this issue in more detail in Section 2.9.

One may define the continuity of a shape functional in quite general terms if one has a suitable
metric structure associated with O. However, for the sake of brevity, we present only the
setting for F(⇥). This su�ces for the purposes of this thesis.

Definition 2.23. Consider a nonempty set œ
0

µ Rd, and let ⇥ be equal to Ck+1(Rd,Rd) or
Ck,1(Rd,Rd) for k Ø 0. A shape functional j : O⇥(œ

0

) æ B, mapping into some Banach space
B, is continuous at F œ F(⇥) with respect to dF , if for all Á > 0 there exists a ” > 0, such
that

’G œ F(⇥), with dF (F, G) < ”, it holds Îj(G(œ
0

)) ≠ j(F (œ
0

))ÎB < Á.

It may be easier to check the continuity only along velocity fields. The next result shows that
this is enough to guarantee continuity with regard to dF . Let – be a multiindex and ˆ–G be
the corresponding partial derivative of a function G : Rd æ Rd. We define

Lip(G) := sup
y ”=x

|G(y) ≠ G(x)|
|y ≠ x| and ’k Ø 0 : Lipk(G) :=

ÿ

|–|=k

Lip(ˆ–G).

Theorem 2.24. Let œ
0

be a nonempty, open subset of Rd satisfying ˆœ
0

\ˆœ
0

= ÿ, B
be a Banach space, and ⇥ = Ck,1(Rd,Rd) for some k Ø 0. Consider a shape functional
j : O⇥(œ

0

) æ B. Then j is continuous at Id for the metric dF if and only if

lim
t√0

j(TV (t, œ
0

)) = j(œ
0

),

for all V œ C([0, Ë], Ck(Rd,Rd)) satisfying the uniform Lipschitz condition Lipk(V (t)) Æ L
for some constant L > 0 independent of t œ [0, Ë].

Sketch of the proof. One can directly apply the proof of [DZ11, Theorem 4.6.3]. It is su�cient to
show the theorem for a real-valued shape functional. Otherwise one can work with the auxiliary
functional j(F ) := Îj(F (œ)) ≠ j(œ)ÎB. If j is dF -continuous we can combine Theorem 2.19
and the inequality

dF (TV (t), Id) Æ ÎTV (t)≠1 ≠ IdÎ⇥ + ÎTV (t) ≠ IdÎ⇥
to obtain the claim. Conversely, given a sequence (Fn) µ F(⇥ with dF (Fn, Id) æ 0, one
constructs a velocity V satisfying Assumption 2.1 and again employs Theorem 2.19 to show
that j is dF -continuous. The velocity V is obtained by considering a suitable interpolation of
the sequence Fn.
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2. Aspects of shape optimization

Remark 2.25. In [DZ11, Theorem 4.6.3] this result is shown for the Courant metric on
F(Ck,1(Rd,Rd))/G(œ). A similar result applies for Ck+1(Rd,Rd), cf. [DZ11, Theorem 4.6.2].
A set œ satisfying the condition ˆœ\ˆœ = ÿ is called crackfree.

2.5. First order derivatives

Following the presentation in [DZ11] we develop now the notions of shape semiderivatives and
derivatives. Compared to optimization problems posed in a linear vector spaces this is a more
delicate issue. One has to work with di�erence quotients along paths instead of the usual
directional derivatives. We consider here an admissible set of domains O µ P(Rd). Most of the
concepts developed in this and the next section can be carried over to the setting O µ P(D)
for some D µ Rd, cf., e.g., [DZ92].

Definition 2.26. [DZ11, Definition 9.3.2] Consider a shape functional j : O æ R on some
admissible set O µ P(Rd).

(i) Let V be a velocity field satisfying Assumption 2.1 with TV (t, œ) œ O for all t œ [0, Ë].
The shape functional j has an Eulerian semiderivative at œ œ O in the direction V if the
limit

dj(œ; V ) := lim
t√0

1
t

(j(TV (t, œ)) ≠ j(œ))

exists. If V (t, x) = V (x) is an autonomous velocity field we will also write dj(œ; V ).

(ii) Let ⇥ µ C0,1(Rd,Rd) be a Banach space and O = O⇥(œ) for some œ µ Rd. The shape
functional j has a Hadamard semiderivative at œ in the direction V œ ⇥ if, for some
Ë > 0 and all V œ C0([0, Ë],⇥) satisfying V (0) = V the limit

dH j(œ; V ) := lim
t√0

1
t

(j(TV (t, œ)) ≠ j(œ))

exists, depends only on V , and is independent of the choice of V satisfying Assumption 2.1.
If the Hadamard semiderivative exists there holds obviously dH j(œ; V ) = dj(œ; V ).

(iii) Let ⇥ µ C0,1(Rd,Rd) be a Banach space and O = O⇥(œ) for some œ µ Rd. The shape
functional j has a Hadamard derivative at œ with respect to ⇥ if it has a Hadamard
semiderivative in every directions V œ ⇥, and if the map

dj(œ; ·) : ⇥ æ R, V ‘æ dj(œ; V )

is linear and continuous. The Hadamard derivative will be denoted by jÕ(œ) œ ⇥ú.

Lemma 2.27. [DZ11, Theorem 9.3.1] Let ⇥ be a Banach subspace of C0,1(Rd,Rd), j : O æ R

be a shape functional, œ µ O and Ë > 0. Suppose that the Eulerian semiderivative dj(œ; V )
exists for all V œ C([0, Ë],⇥), and the map

C([0, Ë],⇥) æ R, V ‘æ dj(œ; V ),

is continuous. Then the Hadamard semiderivative with respect to ⇥ exists at œ for all
V œ C([0, Ë],⇥) in the direction V (0). Furthermore, it holds dj(œ; V ) = dH j(œ; V (0)).
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2.5. First order derivatives

Due to Theorem 2.24, Hadamard semidi�erentiability is enough to obtain continuity with
respect to dF :

Corollary 2.28. Let k Ø 0, ⇥ be equal to Ck,1(Rd,Rd) or Ck+1(Rd,Rd), and let œ be
nonempty, open, and satisfy ˆœ\ˆœ = ÿ. If a shape functional j : O⇥(œ) æ R is Hadamard
semidi�erentiable at œ for all V œ ⇥, then it is continuous in Id with respect to dF .

Proof. The claim follows directly from the definition of Hadamard semidi�erentiability and
Theorem 2.24.

In [DZ11, Theorem 9.3.3] the assertion of Corollary 2.28 is formulated for the Courant metric.
Recall from Theorem 2.5 that the map U æ Id + U : B⇥(0, 1) æ F(⇥) is well defined and
continuous. Hence we can relate a shape functional j : O⇥(œ

0

) æ R locally to a functional
defined on the unit ball in the tangent space ⇥.

Definition 2.29. Let k Ø 0, ⇥ be equal to Ck+1(Rd,Rd) or Ck,1(Rd,Rd), and consider a
shape functional j : O⇥(œ) æ R for some nonempty set œ µ Rd. We abbreviate

·U := Id + U for U œ ⇥,

and define

jœ : B⇥(0, 1) µ ⇥ æ R, jœ(U) := j(·U (œ)).

If j is continuous in œ for the metric dF on F(⇥), then jœ is continuous in U = 0. For the
localized functional jœ we have the usual notions of Gâteaux and Fréchet derivatives available

Definition 2.30. [DZ11, Definition 9.3.3] Let the conditions of Definition 2.29 be satisfied.

(i) The functional jœ is said to have a Gâteaux semiderivative at U œ B⇥(0, 1) in the
direction V œ ⇥ if the following limit exists and is finite:

djœ(U ; V ) := lim
t√0

1
t

(jœ(U + tV ) ≠ jœ(U)) .

(ii) The functional jœ is said to be Gâteaux di�erentiable at U if it has a Gâteaux semideriva-
tive in all directions V œ ⇥, and the map

djœ(U ; ·) : ⇥ æ R, V ‘æ djœ(U ; V )

is linear and continuous. This map will be denoted by jÕœ(U) œ ⇥ú.

(iii) If the functional jœ is Gâteaux di�erentiable at U and

lim
ÎV Î⇥æ0

|jœ(U + V ) ≠ j(U) ≠ ÈjÕœ(U), V Í⇥ú
,⇥|

ÎV Î⇥
= 0,

then we speak of Fréchet di�erentiability of jœ at U .
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2. Aspects of shape optimization

As usual, if jœ is Gâteaux di�erentiable and the map U ‘æ jÕœ(U) is continuous, then jœ is
Fréchet di�erentiable. Let us emphasize the following important connection between the
di�erentiability concepts of j and jœ.

Theorem 2.31. [DZ11, Theorem 9.3.4] Let the conditions of Definition 2.29 be satisfied and
consider some U œ B⇥(0, 1).

(i) If j has a Hadamard semiderivative at ·U (œ) in the direction V ¶ ·≠1

U , then jœ has a
Gâteaux semiderivative at U in the direction V and it holds

djœ(U ; V ) = dH j(·U (œ); V ¶ ·≠1

U ).

Conversely, if jœ has a Gâteaux semiderivative at U in the direction V ¶ ·U , then j has a
Hadamard semiderivative at ·U (œ) in the direction V .

(ii) If either djœ(U ; ·) or dj(œ; ·) is linear and continuous with respect to all V œ ⇥ so is the
other, and for all V œ ⇥ it holds

ÈjÕœ(U), V Í⇥ú
,⇥ = ÈjÕ(·U (œ)), V ¶ ·≠1

U Í⇥ú
,⇥,

ÈjÕ(·U (œ)), V Í⇥ú
,⇥ = ÈjÕœ(U), V ¶ ·U Í⇥ú

,⇥.

Sketch of the proof. Realizing that the respective di�erential quotients of djœ(U ; V ) and
dH j(·U (œ); V ¶ ·≠1

U ) are equal the claim follows.

Remark 2.32. The element V ¶ ·≠1

U œ ⇥ corresponds to the parallel transport of V œ ⇥
from the tangent space at œ œ O to the tangent space at ·U (œ) œ O. We will discuss this
interpretation and its connection to the theory of manifolds in Section 2.7.

It is common to define the shape derivative as a vector distribution [DZ11, Definition 9.3.4].

Definition 2.33. Let j : O µ P(Rd) æ R be a shape functional and œ œ O.

(i) The functional j is said to be shape di�erentiable at œ if it is Hadamard di�erentiable
with respect to ⇥ = CŒ

c (Rd,Rd).

(ii) The map jÕ(œ) œ CŒ
c (Rd,Rd)ú is called the shape derivative of j at œ.

(iii) If there exists some finite k Ø 0, such that jÕ(œ) is continuous for the Ck
c (Rd,Rd)-topology,

then we say that the shape derivative is of order k.

Remark 2.34. (i) The Hadamard-Zolésio structure theorem (cf. [DZ11, Theorem 9.3.6])
shows that the support of the vector distribution jÕ(œ) œ CŒ

c (Rd,Rd)ú is contained in
ˆœ. Furthermore, the distribution is normal to ˆœ fl D in an appropriate sense. In
particular, assuming enough smoothness one may obtain a representation of the form

ÈjÕ(œ), V Í⇥ú
,⇥ =

⁄

ˆœflD
g V T n dS,

where n denotes the unit exterior normal. In Section 2.9.2 we discuss the structure
theorem and its implications in more detail, in particular with regard to solvability of
the Newton equation.
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2.6. Second order derivatives

(ii) As we will see in Section 2.14 a shape functional which depends on a shape dependent
solution of a PDE can be conveniently related to jœ. Hence, one can exploit Theorem 2.31
to obtain the shape derivative. Often the corresponding directional derivative has a
natural representation as a volume integral. If the boundary ˆœ is smooth enough, this
expression can be related via the Gauß divergence theorem to a boundary representation
in accordance with the structure predicted by the Hadamard-Zolésio theorem.

(iii) If the boundary ˆœ is compact then there exist k, s Ø 0 such that jÕ(œ) is continuous for
the Ck

c (Rd,Rd)-topology and jÕ(œ) œ H≠s(Rd,Rd), cf. [DZ11, Remark 9.3.1].

(iv) The derivative jÕ(œ) œ CŒ
c (Rd,Rd)ú is often called the shape gradient. We think that the

terms derivative and gradient should be clearly separated. The derivative is an element
of the dual space of some vector space. In our terminology the gradient is the Riesz
representative of the derivative with respect to some scalar product. So if jÕ(œ) œ Hú for
some Hilbert space H the gradient Òj(œ) with respect to the H-scalar product is given
by

(Òj(œ), V )H = ÈjÕ(œ), V Í⇥ú
,⇥, ’V œ H.

2.6. Second order derivatives

We begin this section by defining the Eulerian semiderivative of the shape derivative. This is
the traditional way of introducing second order derivatives of shape functionals. As was shown
by Delfour and Zolésio, under certain conditions, the second order Eulerian semiderivative
can be decomposed into a canonical symmetric part plus the shape derivative in some specific
direction. We call this symmetric part the shape Hessian. In Section 2.7 we will show that this
term corresponds to the second covariant derivative as it is known in the theory of manifolds.
Recall the notion of a flowmap TV from Definition 2.14.

Definition 2.35. [DZ11, Definition 9.6.1] Let j : O µ P(Rd) æ R be a shape functional and
œ œ O. Consider velocity fields V and W satisfying Assumption 2.1 for Ë > 0. Suppose
that dH j(TW (t, œ); V (t)) exists for all t œ [0, Ë]. We say that j has a second order Eulerian
semiderivative at œ in the direction (V , W ) if the following limit exists

d2j(œ; V ; W ) := lim
t√0

1
t

(dj(TW (t, œ); V (t)) ≠ dj(œ; V (0))) . (2.15)

The definition is compatible with the second order expansion of the function f(t) := j(TV (t, œ))
at t = 0. If V = V and W = W are autonomous vector fields we write d2j(œ; V ; W ). Under
suitable conditions the second order Eulerian semiderivative depends only on V (0), W (0), and
ˆtV (0). For convenience we introduce the following spaces. For integers m, k Ø 0, and some
Ë > 0, we choose either ⇥ = Ck,1(Rd,Rd) or ⇥ = Ck+1(Rd,Rd) and define the spaces

V m,k := Cm
1
[0, Ë],⇥

2
, and V k := ⇥. (2.16)
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2. Aspects of shape optimization

Clearly for any m, k Ø 0, every vector field V œ V m,k satisfies Assumption 2.1 for the choice
D = Rd. The definition of V k may seem superfluous, but allows us to conveniently express a
higher smoothness assumption. Note that in [DZ11, Section 9.3] the notations V m,k, V k are
used in a slightly di�erent context, since they allow for tangent spaces ⇥ which are not Banach
spaces.

In analogy to Definition 2.26 we introduce the notion of twice Hadamard di�erentiability.

Definition 2.36. Let k Ø 0, ⇥ be equal to Ck,1(Rd,Rd) or Ck+1(Rd,Rd), and consider a
shape functional j : O⇥(œ

0

) æ R for some nonempty set œ
0

µ Rd. Suppose furthermore that
the functional j is Hadamard di�erentiable with respect to ⇥.

(i) We say that the functional j has a second order Hadamard semiderivative at œ œ O⇥(œ
0

)
in the direction (V, W ) œ ⇥ ◊ ⇥, if there exists a Ë > 0 such that for any V , W œ V 1,k

satisfying V (0) = V , W (0) = W , the second order Eulerian semiderivative d2j(œ; V ; W )
exists and satisfies

d2j(œ; V ; W ) ≠ dj(œ; ˆtV (0)) = d2j(œ; V ; W ),

where we used again the notation ˆtV (t)(x) = ˆtV (t, x). The second order Hadamard
semiderivative is denoted by d2j(œ; V ; W ).

(ii) We say that the functional j is twice Hadamard di�erentiable at œ œ O⇥(œ
0

) with respect
to ⇥, if it has a second order Hadamard semiderivative d2j(œ; V ; W ) for all V, W œ ⇥,
and if the map

d2j(œ; ·; ·) : ⇥ ◊ ⇥ æ R

is bilinear and continuous.

As for first order derivatives we have a simple continuity condition available which implies
twice Hadamard di�erentiability.

Theorem 2.37. [DZ11, Theorem 9.6.2] Let k Ø 0, ⇥ be equal to Ck,1(Rd,Rd) or Ck+1(Rd,Rd),
and consider a shape functional j : O⇥(œ

0

) æ R for some nonempty set œ
0

µ Rd. Suppose
that for œ œ O⇥(œ

0

) and Ë > 0

(i) the Eulerian semiderivative d2j(œ; V ; W ) exists for all V œ V 1,k and W œ V 0,k,

(ii) ’W œ V 0,k, ’t œ [0, Ë], the functional j is Hadamard di�erentiable with respect to ⇥ at
TW (t, œ) œ O⇥(œ

0

),

(iii) ’V œ V k, the map V 0,k æ R, W ‘æ d2j(œ; V ; W ) is continuous.

Then we can decompose the second order Eulerian semiderivative for all V œ V 1,k and
W œ V 0,k into

d2j(œ; V ; W ) = d2j(œ; V (0); W (0)) + dj(œ; ˆtV (0)).

In particular, j has a second order Hadamard semiderivative d2j(œ; V ; W ) for all V, W œ ⇥.
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2.6. Second order derivatives

Sketch of the proof. The di�erential quotient (2.15) can be split into

1
t

1
dj(TW (t, œ); V (0)) ≠ dj(œ; V (0))

2
+ 1

t

1
dj(TW (t, œ); V (t)) ≠ dj(TW (t, œ); V (0))

2
.

Combining conditions (i) and (iii) with a suitable auxiliary sequence of velocities (Wn)
satisfying d2j(œ; V (0); Wn) = d2j(œ; V (0); W ) one shows that the first term converges to
d2j(œ; V (0); W ) = d2j(œ; V (0); W (0)). For the second term one considers the vector field
Ṽ (t) = 1

t (V (t) ≠ V (0)). Exploiting the linearity of the Hadamard derivative one may then
show that the second term converges to dj(œ; ˆtV (0)). The last assertion follows directly from
Definition 2.36.

Remark 2.38. The term d2j(œ; V (0); W (0)) is in general not symmetric. The following result
tells us more about its structure.

Theorem 2.39. [DZ11, Theorem 9.6.5] Let k Ø 0, ⇥ be equal to Ck,1(Rd,Rd) or Ck+1(Rd,Rd),
and consider a shape functional j : O⇥(œ

0

) æ R for some nonempty set œ
0

µ Rd. Furthermore
let œ œ O⇥(œ

0

), U œ B⇥(0, 1), and recall jœ : B⇥(0, 1) æ R from Definition 2.29.

(i) Given V, W œ ⇥, assume that there exists a Ë > 0 such that

’t œ [0, Ë] the derivative djœ(U + tW ; V ) exists.

Then the second Gâteaux semiderivative at U œ B⇥(0, 1)

d2jœ(U ; V ; W ) := lim
t√0

1
t

1
djœ(U + tW ; V ) ≠ djœ(U ; V )

2

exists if and only if d2j(·U (œ); VV ; WW ) exists for the velocity fields

VV (t) := V ¶ (Id + U + tW )≠1, and WW (t) := W ¶ (Id + U + tW )≠1.

In this case it holds d2jœ(U ; V ; W ) = d2j(·U (œ); VV ; WW ).

(ii) If U œ V k+1 and j is twice Hadamard di�erentiable at ·U (œ) with respect to ⇥, then the
second derivatives of j and jœ are related by

d2jœ(U ; V ; W ) = d2j(·U (œ); V ¶ ·≠1

U ; W ¶ ·≠1

U ) ≠ dj(·U (œ); D(V ¶ ·≠1

U )(W ¶ ·≠1

U )),
d2j(·U (œ); V ; W ) = d2jœ(U ; V ¶ ·U ; W ¶ ·U ) + dj(·U (œ); DV W ),

for all V œ V k+1 and W œ ⇥. In particular, this implies that jœ has a second order
Gâteaux derivative at U with respect to V k+1.

(iii) If V œ V 1,k+1, W œ V 0,k, and j has a second order Hadamard semiderivative in the
direction (V (0), W (0)), then

d2j(œ; V ; W ) = d2jœ(0; V (0); W (0)) + dj(œ; DV (0)W (0) + ˆtV (0)).
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2. Aspects of shape optimization

Sketch of the proof. (i) Due to Theorem 2.31 it holds djœ(U+tW ; V ) = dj(·U+tW (œ); V ¶·≠1

U+tW ).
It can be easily verified, that ·U+tW corresponds to the transformation given by the flowmap
TW

W

(t) where WW is defined above. Furthermore VV (t) = V ¶ ·≠1

U+tW . Hence it holds
djœ(U + tW ; V ) = dj(TW

W

(t, ·U (œ)); VV (t)) and djœ(U ; V ) = dj(·U (œ); VV (0)). Thus the
di�erential quotients of d2jœ(U ; V ; W ) and d2j(·U (œ); VV ; WW ) coincide

1
t

1
djœ(U + tW ; V ) ≠ djœ(U ; V )

2
= 1

t

1
dj(TW

W

(t, ·U (œ)); VV (t)) ≠ dj(·U (œ); VV (0))
2

.

In particular, if either d2jœ(U ; V ; W ) or d2j(·U (œ); VV ; WW ) exists, so does the other and the
terms are equal.
(ii) Noting that ˆtVV (0) = ≠D(V ¶ ·≠1

U )(W ¶ ·≠1

U ) the assertion follows from (i) and the
definition of twice Hadamard di�erentiability since

d2j(·U (œ); V ¶ ·≠1

U ; W ¶ ·≠1

U ) = d2j(·U (œ); VV (0); WW (0))
= d2j(·U (œ); VV ; WW ) ≠ dj(·U (œ); ˆtVV (0))
= d2jœ(U ; V ; W ) + dj(·U (œ); D(V ¶ ·≠1

U )(W ¶ ·≠1

U )).

(iii) This is a direct consequence of (ii) and Definition 2.36.

Analogously to Definition 2.33 a shape functional is called twice shape di�erentiable if the
second order Eulerian semiderivative is a vector distribution. We give the definition from [DZ11]
for completeness, but will usually work with Hadamard di�erentiability with respect to some
suitable Banach space ⇥.

Definition 2.40. [DZ11, Definition 9.6.2 (i)] Let j : O µ P(Rd) æ R be a shape functional.
The functional j is called twice shape di�erentiable at œ œ O, if for all V, W œ CŒ

c (Rd,Rd)
the second order Eulerian semiderivative d2j(œ; V ; W ) exists, and if the mapping

CŒ
c (Rd,Rd) ◊ CŒ

c (Rd,Rd) æ R : (V, W ) ‘æ d2j(œ; V ; W )

is bilinear and continuous. If it is continuous for all V, W œ Ck
c (Rd,Rd) for some finite k Ø 0,

then d2j(œ; ·; ·) is of order k.

Remark 2.41. (i) The associated distribution in (CŒ
c (Rd,Rd) ◊ CŒ

c (Rd,Rd))ú is usually
termed the shape Hessian, cf. [DZ11, Definition 9.6.2 (ii)]. We will use this term in
a slightly di�erent context, since we know from Theorem 2.39, that d2j(œ; V ; W ) is
in general not symmetrical. We are inspired by the theory of second derivatives on
manifolds, cf. Section 2.7.

(ii) There is an analogue of the structure theorem for the second shape derivative. It
states that the support of the associated distribution is a subset of ˆœ ◊ ˆœ and the
distribution is normal to the boundary in an appropriate sense. Compare Theorem 2.79
in Section 2.9.2.

(iii) If the boundary of œ is smooth enough, one can again derive a boundary representation
of the second shape derivative, cf. [DZ11, Theorem 9.6.4]. We will not pursue this
further.
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2.6. Second order derivatives

Definition 2.42. Let the conditions of Definition 2.40 be satisfied. We define the shape
Hessian of j at œ œ O as

Ò2 j(œ) : CŒ
c (Rd,Rd) ◊ CŒ

c (Rd,Rd) æ R, Ò2 j(œ)[V, W ] := d2j(œ; V ; W ) ≠ dj(œ; DV W ).

Obviously this definition is motivated by Theorem 2.39. The next result shows that we can
expect symmetry of the shape Hessian.

Corollary 2.43. Let k Ø 0, ⇥ be equal to Ck,1(Rd,Rd) or Ck+1(Rd,Rd), and consider a
shape functional j : O⇥(œ

0

) æ R for some nonempty set œ
0

µ Rd. Suppose that j is twice
Hadamard di�erentiable with respect to ⇥ at œ œ O⇥(œ

0

). Then

Ò2 j(œ)[V, W ] = d2jœ(0; V ; W )

for all V œ V k+1 and W œ ⇥. In particular, the shape Hessian is symmetric if jœ is twice
Fréchet di�erentiable at 0 with respect to V k+1.

Proof. The identity follows directly from Theorem 2.39 and the definition of Ò2 j. Symmetry
of the second Fréchet derivative for real-valued functionals is well known.

It is common in the theory of Riemannian manifolds to define the Riemannian Hessian as
the linear mapping from the tangent space into itself which is obtained if the Riemannian
connection is applied to the Riemannian gradient. Here the Riemannian gradient is the
Riesz representative of the derivative with respect to the Riemannian metric. We explain
these notions in Section 2.7. In [Sch14] such a construction was used in the context of shape
optimization and called the Riemannian shape Hessian. He considered the manifold of all
equivalence classes of CŒ-embeddings of the unit circle into the plane R2, where the equivalence
relation is defined by the set of all CŒ-reparametrizations of the unit circle. However, it needs
to be emphasized that this construction works only if a Riemannian metric and the associated
Riemannian connection are available. On infinite dimensional manifolds the choice of a suitable
Riemannian metric is a delicate issue, cf. [BBM14, Mic15]. A more general construction is the
second covariant derivative. We will see in the next section that it corresponds to our choice
of the shape Hessian. Although we use the theory of Riemannian manifolds to motivate this
choice, it is not necessary for its definition, and this term has already been used for practical
computations by many authors, see for example [NR95].

In practice, at least in the context of PDE-constrained optimization, it is usually prohibitive
to compute the whole Hessian Ò2 j. Rather one is interested in evaluating V ‘æ Ò2 j[V, ·], e.g.,
during an iterative solution strategy for Newton’s equation. Thus, we also introduce the map

jÕÕœ(U) œ L(⇥,⇥ú) : ÈjÕÕœ(U)V, W Í⇥ú
,⇥ := d2jœ(U ; W ; V ) for all V, W œ ⇥, (2.17)

which is self-adjoint if jœ is twice Fréchet di�erentiable.
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2. Aspects of shape optimization

2.7. Relation to Riemannian manifolds

We will discuss now the connection between shape optimization on F(⇥) and the theory
of optimization on Riemannian manifolds. We refer to the monograph [AMS08] for a nice
introduction to optimization on finite dimensional manifolds, and to [RW12, Sch14] for opti-
mization on infinite dimensional manifolds and applications to shape spaces. The theory of
infinite dimensional shape spaces as Riemannian manifolds is intricate, we refer to the surveys
[BBM14, Mic15] and the references therein.

Despite the fact that F(⇥) is not a Riemannian manifold in the traditional sense (in particular
it is not CŒ-smooth), we will introduce now some notions from the theory of optimization on
manifolds, and discuss their connection to the usual terminology of shape optimization. Of
course, we are not the first to note the correlation between shape optimization and Riemannian
manifolds, for example there are several such remarks in [DZ11], and the paper [Sch14] is
based on this insight. However, to the best of our knowledge, the thesis of Frey [Fre12] is
so far the only work which translates the setting of Riemannian manifolds directly into the
theory of shape optimization. Unfortunately, many considerations are only carried out on a
formal level. Furthermore, we believe that some notions should be interpreted from a slightly
di�erent perspective. Hence, while the general ideas presented in [Fre12] are very similar to
our presentation here, we emphasize that several details di�er. In particular, his notion of a
retraction in shape optimization deviates from our interpretation.

For convenience we will first recall some traditional concepts of optimization on manifolds
before drawing the connection to shape optimization. We will mainly follow [AMS08, RW12]
and summarize only some important ideas. A more comprehensive introduction to infinite
dimensional Riemannian geometry is given, for instance, in [Kli11].

Brief introduction to Riemannian manifolds

We denote with M a geodesically complete Riemannian manifold which is locally homeomorphic
to some separable Hilbert space, cf. [Kli11, Section 1.1]. The vector space of all smooth
real-valued functions on M is denoted by CŒ(M). A curve in M is a smooth mapping
“ : R – t ‘æ “(t) œ M.

Definition 2.44. (i) A tangent vector ›x to the manifold M at a point x œ M is a linear
operator ›x : CŒ(M) æ R such that there exists a curve “ : [0, 1] æ M with “(t

0

) = x,
t
0

œ (0, 1), satisfying

›xf = “̇(t
0

)f := ˆt (f ¶ “) (t
0

) ’f œ CŒ(M).

For a tangent vector ›x there exist infinitely many curves satisfying ›x = “̇(t
0

).

(ii) The set of all tangent vectors ›x is called the tangent space TxM to M at x œ M.

(iii) The set of all tangent vectors to M is called the tangent bundle

TM := fixœMTxM

to M. It can be shown that TM is again a manifold.
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2.7. Relation to Riemannian manifolds

(iv) A vector field › is a smooth mapping from M to the tangent bundle TM that assigns to
each point x œ M a tangent vector ›x œ TxM. We introduce the vector field f› + g’ as

(f› + g’)x := f(x)›x + g(x)’x œ TxM

for all x œ M, f, g œ CŒ(M), and vector fields ›, ’. The set of smooth vector fields will
be denoted by X(M).

For every x œ M the tangent space TxM is a vector space. Since we are dealing with a
Riemannian manifold, it can be equipped with an inner product

gx(·, ·) : TxM ◊ TxM æ R.

This inner product is called the Riemannian metric, and varies smoothly with x. It induces
a norm on TxM, which is denoted by Î·Îx. Given two vector fields ›, ’ œ X(M) the map
g(›, ’) : x ‘æ gx(›x, ’x) is an element of CŒ(M). One can now define the length of a curve
and geodesics, i.e., shortest curves connecting two given points on M, but since we will not use
these concepts we omit them here for brevity. Let us only point out that in infinite dimensions
the choice of a suitable Riemannian metric is delicate. There are examples where the geodesic
distance vanishes for distinct points on M, i.e., the geodesic distance is not point separating,
cf. [BBM14, Mic15] and the references cited therein.

The dual space T ú
x M of TxM is called the cotangent space of M at x, its elements are the

covectors. A smooth map x ‘æ µx œ T ú
x M is called a covector field, and for a vector field

› œ X(M) the function x ‘æ (Èµ, ›ÍX(M)

ú
,X(M)

)x := Èµx, ›xÍT
x

Mú
,T

x

M is an element of CŒ(M).
The di�erential of a function f œ CŒ(M) defined by

f Õ(x) œ L(TxM,R), Èf Õ(x), ›xÍT
x

Mú
,T

x

M := ›xf(x) ’› œ X(M)

is a covector. More generally, the di�erential of a smooth map F : M æ N between manifolds
at x œ M is a linear map, cf. [AMS08, Section 3.5.6]

F Õ(x) œ L(TxM, TF (x)

N ), (F Õ(x)[›x])f(F (x)) := ›x(f ¶ F )(x) ’f œ CŒ(N ).

Let us now generalize the notion of the directional derivative of a vector field.

Definition 2.45. (i) An a�ne connection H on a manifold M is an operator

H : X(M) ◊ X(M) æ X(M), (÷, ›) ‘æ H÷ ›,

satisfying

Hf÷+g’ › = f H÷ › + g H’ › ’÷, ’, › œ X(M) and f, g œ CŒ(M),
H÷(a› + b’) = aH÷ › + bH› ’ ’÷, ’, › œ X(M) and a, b œ R,

H÷(f›) = (÷f)› + f H÷ › ’÷, › œ X(M) and f œ CŒ(M).

(ii) For two vector fields ›, ÷ œ X(M) the Lie bracket [›, ÷] œ X(M) is a vector field
characterized by

[›, ÷]f := ›(÷f) ≠ ÷(›f) ’f œ CŒ(M).
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2. Aspects of shape optimization

(iii) The a�ne connection which satisfies

[›, ÷] = H› ÷ ≠ H÷ › ’›, ÷ œ X(M), (2.18)
÷g(›, ’) = g

!
H÷ ›, ’

"
+ g

!
›,H÷ ’

"
’›, ÷, ’ œ X(M), (2.19)

is called the Levi-Civita connection or Riemannian connection and will be denoted by H̃.

Remark 2.46. We summarize: an a�ne connection is CŒ(M)-linear in ÷, R-linear in
›, and satisfies Leibniz’ law, i.e., the product rule. The Riemannian connection has the
additional properties of symmetry (2.18), also called absence of torsion, and preservation of
the Riemannian metric (2.19).

To introduce second order derivatives on manifolds one needs to be able to transport a tangent
vector ›x from the tangent space TxM into some other tangent space TyM. In particular one
is interested in parallel transport. The specific parallel transport along a curve “ : [0, 1] æ M
depends on the chosen a�ne connection, and is the solution ›(t) œ T“(t)M of the initial value
problem

H“̇(t) ›(t) = 0, ›(0) = ›
0

œ T“(0)

M. (2.20)

If two vectors are transported parallel with respect to the Riemannian connection along a
curve “ the inner product g“(t)(›(t), ’(t)) is constant.

Finally, we want to be able to move on M from a point x œ M in a direction ›x œ TxM. This
is achieved via retractions.

Definition 2.47. A retraction is a smooth mapping Rx : TxM æ M, satisfying Rx(0) = x and
RÕ

x(0) = idx. Here idx denotes the identity mapping on TxM, and RÕ
x(›x) : TxM æ TR

x

(›
x

)

M
is the di�erential of Rx.

For any x œ M and ›x œ TxM the map R – t ‘æ Rx(t›x) œ M defines a smooth curve. We
can use a retraction to obtain the pullback f̂x := f ¶ Rx of a function f œ CŒ(M) onto the
tangent space TxM. Note that f̂x is defined on a standard vector space, and the usual concepts
of derivatives, etc. can be used. In particular, by the chain rule it holds that

f̂ Õ
x(0) = f Õ(x).

We speak of a second order retraction if the zero initial acceleration condition

H
˙R

x

(t›
x

)

Ṙx(t›x)
---
t=0

= 0, ’›x œ TxM (2.21)

is satisfied. It will become clear in a moment why second order retractions are of interest.

On Riemannian manifolds it is common to define the Riemannian gradient of a function
f œ CŒ(M) as the Riesz representative of the di�erential f Õ with respect to the Riemannian
metric, i.e.,

gx(grad f(x), ›x) = Èf Õ(x), ›xÍT
ú
x

M,T
x

M, ’›x œ TxM and x œ M.
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2.7. Relation to Riemannian manifolds

The Riemannian Hessian of a function f œ CŒ(M) is then defined by

Hess f(x) œ L(TxM, TxM), Hess f(x)[›x] := H̃›
x

grad f(x).

The Riemannian Hessian is symmetric with respect to g(·, ·), and it holds

g(Hess f [›], ÷) = ›(÷f) ≠ (H̃›÷)f.

It needs to be emphasized, that this construction works only, if a Riemannian metric, and the
associated Riemannian connection are available. A more general construction is the second
covariant derivative, cf. [AMS08, Section 5.6], which only requires an a�ne connection. It is a
generalization of the second Fréchet derivative. Consider a functional f œ CŒ(M). Recall
that the map x ‘æ Èf Õ(x), ›xÍT

x

Mú
,T

x

M = ›xf(x) is an element of CŒ(M). We introduce for
its di�erential the short notation x ‘æ (›f)Õ

x œ T ú
x M. The covariant derivative of the covector

f Õ(x) œ T ú
x M in the direction ›x œ TxM is again a covector denoted by H›

x

f Õ œ T ú
x M, and

defined for all ÷ œ X(M) via

ÈH›
x

f Õ(x), ÷xÍT
ú
x

M,T
x

M := È(›f)Õ
x, ›xÍT

ú
x

M,T
x

M ≠ Èf Õ(x),H›
x

÷xÍT
ú
x

M,T
x

M.

The second covariant derivative of f at x œ M is then defined by

H2 f(x) : TxM ◊ TxM æ R, H2 f(x)[›x, ÷x] := ÈH›
x

f Õ(x), ÷xÍT
ú
x

M,T
x

M. (2.22)

For any second order retraction R it holds for all x œ M

H2 f(x) = (f ¶ Rx)ÕÕ(0), (2.23)

where (f ¶ Rx)ÕÕ(0) is the second Fréchet derivative of f ¶ Rx : TxM æ R at 0 œ TxM. If x is a
critical point of f , i.e., f Õ(x) = 0 then the above identity holds for any retraction R. Finally, if
we have a Riemannian metric available, and H̃ is the Riemann connection, then there holds

H̃2f(x)[›x, ÷x] = gx(Hess f(x)[›x], ÷x) .

Translation to shape optimization

We will now introduce some concepts in the framework of shape optimization which are inspired
by their counterparts from Riemannian manifolds. However, the situation is a little bit more
complicated, since we have on the one hand the group F(⇥) where we know the tangent space,
and on the other hand the group O⇥(œ

0

) on which shape functionals are defined. We work in
the following always with the tangent space ⇥ of mappings from Rd to Rd. Since the images
of a domain œ are uniquely determined by the restrictions (F ≠ Id)|œ for some F œ F(⇥) it
would be interesting to see whether one could also work with ‘local’ tangent spaces ⇥œ. We
leave this question for future research.

We consider the following setting.

Assumption 2.3. It holds k Ø 0, ⇥ is equal to Ck+1(Rd,Rd) or Ck,1(Rd,Rd), and œ
0

µ Rd

is a nonempty, bounded set that is either closed or satisfies œ
0

= int œ
0

. It holds O = O⇥(œ
0

).
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2. Aspects of shape optimization

Due to Theorem 2.5 we know that we can identify the tangent space ⇥F to F(⇥) at some
F œ F(⇥) with ⇥. Still we often prefer to make the dependence on the point F explicit. Recall
the definition of L1([0, 1],⇥) in Section 2.3.1. Given some path [0, 1] – t ‘æ F (t) =: Ft œ F(⇥),
a velocity field V œ L1([0, 1],⇥) with V (t) œ ⇥F

t

will be our notion of a tangent vector field
along Ft. More generally, we want to characterize the smoothness of a tangent vector field
defined on the tangent bundle of F(⇥). Recall the definition of the spaces V m,k from (2.16),
and that ⇥ = V k.

Definition 2.48. Let Assumption 2.3 be satisfied. We call a map

V : F(⇥) – F ‘æ VF œ ⇥F

a tangent vector field. A tangent vector field V is said to be (m, k)-smooth if, for any path
[0, Ë] – t ‘æ Ft œ F(⇥) such that the map t ‘æ ˆtFt is in V m,k, the mapping t ‘æ VF

t

is also
in V m,k. Furthermore, given shape functionals f, g : O⇥(œ

0

) æ R, and tangent vector fields
V , W , we define a new tangent vector field by

(fV + gW )F := f(F (œ
0

))VF + f(F (œ
0

))WF for all F œ F(⇥).

Given a tangent vector V œ ⇥F for some F there are many possibilities to define the vector
transport of V along a path Ft with F

0

= F . One of them is to define

V (t) := V ¶ F
0

¶ F ≠1

t . (2.24)

Here and in the following ‘¶’ always denotes the composition of two mappings from Rd to Rd.
This choice is motivated by Theorem 2.31. Our definition of an inner product gF (·, ·) on the
tangent spaces ⇥F is closely related to (2.24).

Definition 2.49. Let Assumption 2.3 be satisfied. For any F œ F(⇥) we define the inner
product

gF (·, ·) : ⇥F ◊ ⇥F æ R, (V, W ) ‘æ gF (V, W ) := (V ¶ F, W ¶ F )
L

2
(œ0,R

d

)

.

Remark 2.50. Note that the norm induced by gF (·, ·) is weaker than Î·Î⇥. In fact, the choice
of the L2(œ

0

,Rd)-scalar product is a bit arbitrary. In the following we will only use the fact
that it is a bounded bilinear form for all F œ F(⇥) and V, W œ ⇥.

Lemma 2.51. Let Assumption 2.3 be satisfied and let Ft : [0, 1] æ F(⇥) be a path in F(⇥).
Consider two tangent vector fields V ¶ F

0

¶ F ≠1

t , W ¶ F
0

¶ F ≠1

t transported along the path, where
V, W œ ⇥F0. Then we have the identity

’t œ [0, 1] : gF
t

1
V ¶ F

0

¶ F ≠1

t , W ¶ F
0

¶ F ≠1

t

2
= gF0 (V, W ) .

Proof. This is satisfied by the definition of gF (·, ·).

We will now show that the inner product of two smooth tangent vector fields along a smooth
path Ft varies smoothly.
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2.7. Relation to Riemannian manifolds

Lemma 2.52. Let Assumption 2.3 be satisfied and let Ft : [0, 1] æ F(⇥) be a path in F(⇥) such
that t ‘æ ˆtFt œ V 1,1. Then, for any (1,1) tangent vector fields V , W there exists Ṽ , W̃ œ V 1,1

such that Ṽ (t) = VF
t

and W̃ (t) = WF
t

. Furthermore, the map

[0, 1] – t ‘æ gF
t

1
VF

t

, WF
t

2
= gF

t

1
Ṽ (t), W̃ (t)

2
œ R

is continuously di�erentiable for all t œ (0, 1).

Proof. The first assertion is true by the definition of a (1,1) tangent vector field. Now consider

gF
t

1
Ṽ (t), W̃ (t)

2
=

1
Ṽ (t) ¶ Ft, W̃ (t) ¶ Ft

2

L
2
(œ0,R

d

)

.

For every x œ Rd the derivative of t ‘æ Ṽ (t) ¶ Ft = Ṽ (t, Ft(x)) is given by

ˆtṼ (t, Ft(x)) + DṼ (t, Ft(x))ˆtFt(x).

An analogous computation holds for W . Hence the derivative of gF
t

1
Ṽ (t), W̃ (t)

2
is given by

1
ˆtṼ (t) ¶ Ft + (DṼ (t) ¶ Ft)ˆtFt, W̃ (t) ¶ Ft

2

L
2
(œ0,R

d

)

+
1
Ṽ (t) ¶ Ft, ˆtW̃ (t) ¶ Ft + (DW̃ (t) ¶ Ft)ˆtFt

2

L
2
(œ0,R

d

)

.
(2.25)

Due to our assumptions on F, V , and W this expression is continuous with respect to t.

We now present our choice of a connection. We begin with an extension of the Eulerian
semiderivative to tangent vector fields. Recall the notion of the flow map TU (t) from Defini-
tion 2.14.

Lemma 2.53. Let Assumption 2.3 be satisfied and m, k Ø 0. Consider a (m + 1, k) tangent
vector field W . Then the Eulerian semiderivative of W at F œ F(⇥) in the direction U œ ⇥
given by

dW (F ; U) := lim
s√0

1
s

1
WT

U

(s)¶F ≠ WF

2

exists, and satisfies dW (F ; U) œ ⇥.

Proof. The path s ‘æ Gs := TU (s)¶F satisfies ˆsGs = U ¶F œ ⇥ for all s, hence s ‘æ ˆsGs is in
V Œ,k. Thus, by the definition of a (m+1, k) tangent vector field the map t ‘æ W̃ (t) := WT

U

(s)¶F

is in V m+1,k. In particular, it holds

dW (F ; U) = lim
s√0

1
s

1
W̃ (s) ≠ W̃ (0)

2
= ˆsW̃ (0) œ ⇥.
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2. Aspects of shape optimization

Definition 2.54. Let Assumption 2.3 be satisfied and m, k Ø 0. Given two (m + 1, k + 1)
tangent vector fields V , W , we define

(HV W )F := dW (F ; VF ) + DWF VF , for F œ F(⇥).

In particular, it holds that (HV W )F œ ⇥.

Theorem 2.55. Let Assumption 2.3 be satisfied and U , V , W be (m + 1, k + 1) vector fields,
m, k Ø 0. Then the following properties hold for all F œ F(⇥), a, b œ R, and su�ciently
smooth shape functionals f, g : O⇥(œ

0

) æ R.

(i)
!
HfV W

"
F

= f(F (œ
0

)) (HV W )F ,

(ii) (HU (aV + bW ))F = a (HU V )F + b (HU W )F ,

(iii) (HV (fW ))F = df(F (œ
0

); VF )WF + f(F (œ
0

)) (HV W )F .

If additionally dW (F ; U + V ) = dW (F ; U) + dW (F ; V ), then we have also

(iú)
!
HfV +gU W

"
F

= f(F (œ
0

)) (HV W )F + g(F (œ
0

)) (HU W )F ,

i.e., H corresponds to an a�ne connection.

Proof. (i) If f̃ = f(F (œ
0

)) œ R is zero then the equality is trivially satisfied. Hence, suppose
f̃ ”= 0. Recall that TÁV (t) = TV (Át) for Á > 0, and define TV (≠t) = T≠V (t). Then

dW (F ; f̃VF ) = lim
s√0

1
s

3
WT

f̃V
F

(s)¶F ≠ WF

4
= lim

s√0

1
s

3
WTV

F

(

˜fs)¶F ≠ WF

4

= f̃ lim
s√0

1
f̃ s

3
WTV

F

(

˜fs)¶F ≠ WF

4
= f̃dW (F ; VF ),

hence the first assertion follows. Property (iú) is now implied by the stipulated linearity
of dW (F ; ·).

(ii) The second claim is satisfied since d(aV + bW )(F ; U) = a(dV (F ; U)) + b(dW (F ; U)).

(iii) We now verify that

d(fW )(F ; U) = df(F (œ
0

); U)WF + f(F (œ
0

))dW (F ; U),

which implies the third assertion. Recall that (fW )F = f(F (œ
0

))WF . Hence

d(fW )(F ; U) = lim
s√0

1
s

1
f((TU (s) ¶ F )(œ

0

))WT
U

(s)¶F ≠ f(F (œ
0

))WF

2

= lim
s√0

1
s

1
(f((TU (s) ¶ F )(œ

0

)) ≠ f(F (œ
0

))) WT
U

(s)¶F + f(F (œ
0

))
1
WT

U

(s)¶F ≠ WF

22

= df(F (œ
0

); U)WF + f(F (œ
0

))dW (F ; U).
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2.7. Relation to Riemannian manifolds

Remark 2.56. For the choice WF = W ¶ F ≠1 it holds

dW (F ; U) = ˆs

1
W ¶ F ≠1 ¶ TU (s)≠1

2---
s=0

=
1
D(W ¶ F ≠1) ¶ TU (s)≠1

2
ˆsTU (s)≠1

---
s=0

= D(W ¶ F ≠1)(≠U),

and hence indeed dW (F ; U + V ) = dW (F ; U) + dW (F ; V ), as required for (iú).

In an appropriate sense the connection is also symmetric. To formulate this we first need to
make sense of the second Eulerian semiderivative of a shape functional with respect to tangent
vector fields V , W : F(⇥) æ ⇥. Recall the usual definition in shape optimization from (2.15)
and its characterization in Theorem 2.39. We obtain a compatible expression by defining for
some F œ F(⇥) the vector field Ṽ œ V1,k by Ṽ (t) = VTW

F

(t)¶F , and setting

d2f(F (œ
0

); V ; W ) := d2f(F (œ
0

); Ṽ ; WF )

= lim
t√0

1
t

1
df(TW

F

(t, F (œ
0

)); Ṽ (t)) ≠ df(F (œ
0

); Ṽ (0))
2

.

Note that dV (F ; WF ) = ˆtṼ (0), hence we obtain from Theorem 2.39 for a shape functional f
which is twice Hadamard di�erentiable that

d2f(F (œ
0

); V ; W ) = d2fF (œ0)

(0; VF ; WF ) + df(F ; DVF WF + dV (F ; WF )). (2.26)

We obtain now immediately the following symmetry result.

Theorem 2.57. Let the conditions of Theorem 2.55 be satisfied. For any shape functional
f : O⇥(œ

0

) æ R which is twice Hadamard di�erentiable with respect to ⇥, and has the property
that fF (œ0)

is twice Fréchet di�erentiable at 0, it holds

df(F (œ
0

); (HV W )F ≠ (HW V )F ) = d2f(F (œ
0

); W ; V ) ≠ d2f(F (œ
0

); V ; W ),

i.e., the connection is symmetric.

Proof. This follows directly from the characterization (2.26), the symmetry of the second
Fréchet derivative, and the linearity of the derivative df(F ; ·).

Finally, we show that our notions of a scalar product and a connection fit together.

Theorem 2.58. Let the conditions of Theorem 2.55 be satisfied and consider the functional
Â : F(⇥) æ R

Â(F ) := gF (VF , WF ), for F œ F(⇥).

Then it holds for the Eulerian derivative of Â at F œ F(⇥) in the direction U = UF œ ⇥ that

dÂ(F ; UF ) = gF ((HU V )F , WF ) + gF (VF , (HU W )F ) ,

i.e., H corresponds to the Levi Cevita connection for the metric gF (·, ·).
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2. Aspects of shape optimization

Proof. The Eulerian derivative of Â at F œ F(⇥) in the direction U œ ⇥ is given by

dÂ(F ; U) = ˆtÂ(TU (t) ¶ F )|t=0

.

Note that TU (t) ¶ F is a path satisfying the conditions of Lemma 2.52. Furthermore, it holds
TU (0) ¶ F = F , and ˆtTU (0) ¶ F = U ¶ F . Hence, we obtain from (2.25) that

dÂ(F ; U) =ˆtÂ(TU (t) ¶ F )|t=0

= (dV (F ; U) ¶ F + (DVF ¶ F )U ¶ F, WF ¶ F )
L

2
(œ0,R

d

)

+ (VF ¶ F, dW (F ; U) ¶ F + (DWF ¶ F )U ¶ F )
L

2
(œ0,R

d

)

= gF ((HU V )F , WF ) + gF (VF , (HU W )F ) .

While these findings are already of interest by themselves, we would like to emphasize especially
the following observation. Comparing our notion of the shape Hessian from Definition 2.42,
with the second covariant derivative (2.22), as it is known from the theory of manifolds, we
realize that they are the same for our choice of a connection.

H2 j(œ)[V, W ] = ÈHV jÕ(œ), W Í⇥ú
,⇥ := d2j(œ; W ; V ) ≠ dj(œ;HV W ) = Ò2j(œ)[V, W ].

We would also like to stress the identity

Ò2 j(œ)[V, W ] = d2jœ(0; V ; W )

from Corollary 2.43. As we will see now it is the analog of (2.23) in shape optimization.

We have so far encountered two constructions in shape optimization which can serve in the role
of a retraction, i.e., a map from the tangent space to the group of shapes. One of them is the
perturbation of identity ·U = Id + U , the other the flow map TU associated with a vector field
U œ ⇥. We start our discussion of the merits and drawbacks of those two with the latter.

Due to Theorem 2.15 we know that TU (1) œ F(⇥) for all U œ ⇥. Hence the mapping

RF : ⇥F æ F(⇥) : U ‘æ RF (U) := TU (1) ¶ F

is well defined for all F œ F(⇥). It can be interpreted as an retraction. Indeed, it holds
RF (0) = F , and its derivative is a mapping from ⇥F to ⇥R

F

(U)

. It follows from [You10,
Theorem 8.10] that, for U, V œ C1(Rd,Rd) with support in some bounded D µ Rd, we have

(RÕ
F (U)V )(x) =

⁄
1

0

DTU (1 ≠ t, TU (t, x))V (TU (t, x)) dt.

In particular, RÕ
F (0)V = V for all V , and hence RÕ

F (0) = id⇥
F

as required for a retraction.
This can also be verified for other tangent spaces ⇥ not covered by [You10, Theorem 8.10].
Unfortunately, R is not a second order retraction for H. The tangent vector field to the path
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RF (tU) = TtU (1) = TU (t) for some U œ ⇥F is given by ˆtRF (tU) = ˆtTU (t) © U . Thus, in
general, the zero initial acceleration condition (2.21) is not satisfied

Hˆ
t

R
F

(tU)

ˆtRF (tU)
---
t=0

= DUU ”= 0.

An alternative is the mapping
R : B⇥(0, 1) µ ⇥ æ F(⇥) : U ‘æ ·U = Id + U, (2.27)

which we already used in Definition 2.29. A clear disadvantage compared to R is, that the
domain of R is only the unit ball in ⇥, whereas R is defined on the whole space. In that sense
R does not satisfy the requirements of a retraction. Its advantage is, that the computation of
derivatives of ·U and the composed function jœ(U) = j(·U (œ)) is straightforward. Furthermore,
the tangent vector to the path t ‘æ R(tU) = Id + tU for some U œ ⇥ at t is given by
ˆtR(tU) = U ¶ ·≠1

tU . Here ·≠1

tU : Rd æ Rd is the inverse of the mapping R(tU) = ·tU : Rd æ Rd,
and given by

·≠1

tU (x̃) = (Id ≠ tU ¶ ·≠1

tU )(x̃).
We conclude

D·≠1

tU (x̃) = I ≠ tDU ¶ ·≠1

tU (x̃)D·≠1

tU (x̃) ∆

D·≠1

tU (x̃) =
1
I + tDU ¶ ·≠1

tU (x̃)
2≠1

,

and for the path t ‘æ ·≠1

tU (x̃) it holds
ˆt·

≠1

tU (x̃) = ≠U ¶ ·≠1

tU (x̃) ≠ tDU ¶ ·≠1

tU (x̃)ˆt·
≠1

tU (x̃) ∆

ˆt·
≠1

tU (x̃) = ≠
1
I + tDU ¶ ·≠1

tU (x̃)
2≠1

U ¶ ·≠1

tU (x̃).

With the help of these formulas we calculate for some V (t) := V ¶ ·≠1

tU that
Hˆ

t

R(tU)

V (t) = DV ¶ ·≠1

tU ˆt·
≠1

tU + DV ¶ ·≠1

tU D·≠1

tU U ¶ ·≠1

tU

= ≠ DV ¶ ·≠1

tU (I + tDU ¶ ·≠1

tU )≠1U ¶ ·≠1

tU

+ DV ¶ ·≠1

tU (I + tDU ¶ ·≠1

tU )≠1U ¶ ·≠1

tU

= 0.

Hence V (t) = V ¶ ·≠1

tU is the parallel vector transport of V œ ⇥
Id

along the path t ‘æ R(tU) =
Id + tU , cf. (2.20). We have already seen in Lemma 2.51 that the inner product of two such
transported vectors is constant. Furthermore, we can conclude from ˆtR(tU) = U ¶ ·≠1

tU , that

Hˆ
t

R(tU)

ˆtR(tU)
---
t=0

= 0,

hence R corresponds to a second order retraction for our choice of a connection, cf. (2.21).
This fits nicely together with the observation from above, i.e.,

H2 j(œ)[V, W ] = Ò2 j(œ)[V, W ] = d2jœ(0; V ; W ),
which is exactly the analog of (2.23).

From the above discussion, and considering the results of the Section 2.5 and 2.6, we are lead
to the conclusion that it might be preferable to use R to map an element U of the tangent
space to ·U œ F(⇥). The theory of the next two sections is based on this choice.
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2. Aspects of shape optimization

2.8. A globally convergent linesearch method on the group of
transformations

In this section we extend some basic concepts of optimization to the O⇥(œ
0

) framework, cf.
Section 2.2.1. In particular, we show global convergence of a suitable linesearch descent method.
We consider the following setting.

Assumption 2.4. Let k Ø 0, ⇥ be equal to Ck+1(Rd,Rd) or Ck,1(Rd,Rd), and let the
nonempty set œ

0

µ Rd be closed or satisfy œ
0

= int œ
0

. The family of admissible sets is given
by O = O⇥(œ

0

) and j : O⇥(œ
0

) æ R is a shape functional which is Hadamard di�erentiable
with respect to ⇥ at every œ œ O⇥(œ

0

).

We will work with the following concept of a ball with radius r > 0 around œ œ O = O⇥(œ
0

).

BO(œ, r) := {·U (œ) | ·U = Id + U, U œ B⇥(0, r)}. (2.28)

The following identity shows that this makes sense.

Lemma 2.59. Let Assumption 2.4 be satisfied. Then for every œ œ O⇥(œ
0

) it holds

O⇥(œ) = O⇥(œ
0

), and BO(œ, r) µ O = O⇥(œ
0

) for all r œ (0, 1).

Proof. The first assertion follows directly from the group property of F(⇥) for the composition.
Indeed let œ = F (œ

0

) œ O⇥(œ
0

). Then for all G œ F(⇥) we have G ¶ F œ F(⇥) and hence
G(œ) = G¶F (œ

0

) œ O⇥(œ
0

). The second assertion follows from the first and Theorem 2.5.

Remark 2.60. We will in the following work with the above topology generated by the open
balls BO(·, ·) on O = O⇥(œ

0

). It is equivalent to the topology defined by the metric dF
from (2.4). Recall that dF (Id, F ) < ” implies ÎF ≠ IdÎ⇥ < ”c, where c > 0 depends only on
⇥, cf. Lemma 2.7 and its proof. Conversely for every Á > 0 there exists ” > 0 such that
ÎF ≠ IdÎ⇥ < ” implies dF (Id, F ) < Á, cf. Theorem 2.5.

Definition 2.61. Let Assumption 2.4 be satisfied, and let (œn) µ O⇥(œ
0

) be a sequence. The
sequence has an accumulation point œú in O⇥(œ

0

), if œú œ O⇥(œ
0

), and for every r œ (0, 1)
there are infinitely many œn satisfying œn œ BO(œú, r).

This is equivalent to the existence of a convergent subsequence (œn
k

) satisfying œn
k

= Fn
k

(œú),
Fn

k

œ F(⇥), and ÎFn
k

≠ IdÎ⇥ æ 0.

Definition 2.62. Let Assumption 2.4 be satisfied. We call œú œ O = O⇥(œ
0

) a local solution
of the shape optimization problem

min
œœO

j(œ) (2.29)

if there exists an r œ (0, 1) such that

j(œú) Æ j(œ), for all œ œ BO(œú, r).

Analogously we speak of a strict local solution if ‘<’ holds in the above formula for all
œ œ BO(œú, r)\œú, and of a (strict) global solution if we can replace BO(œú, r) by O.
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2.8. A globally convergent linesearch method on the group of transformations

As usual a strict local solution is not necessarily isolated since it might be the accumulation
point of a series of local minima. We have the following characterization of a local minimum.

Lemma 2.63. Let Assumption 2.4 be satisfied. If œú œ O is a local solution of (2.29), then
the following necessary optimality condition holds:

ÈjÕ(œú), V Í⇥ú
,⇥ = 0 holds for all V œ ⇥.

If jœú : B⇥(0, 1) æ R (cf. Definition 2.29) is twice Gâteaux di�erentiable, then additionally

Ò2 j(œú)[V, V ] = d2jœú(0; V ; V ) Ø 0 holds for all V œ ⇥.

Proof. By premise j(œ) ≠ j(œú) Ø 0, ’œ œ BO(œú, r) for some r > 0. For any V œ ⇥ it holds
TV (t) ≠ Id œ B⇥(0, Ë) for small enough t > 0. Dividing by t and taking the limit t √ 0 shows
dj(œ; V ) Ø 0. Inserting V and ≠V yields the first claim. The second order necessary condition
can be verified with the standard technique for Banach spaces via a Taylor expansion.

We study now linesearch methods along paths on O⇥(œ
0

). As we have seen, shape optimization
has a lot of similarities to optimization on manifolds, and thus our analysis is inspired by
[RW12]. Most results are obtained by studying the localized functionals jœ : B⇥(0, 1), which
places us in a standard Banach space framework, cf., e.g., [HPUU09]. Algorithm 2.1 is adapted
from the linesearch minimization algorithm on manifolds of [RW12]. Recall the notations
·U := Id + U and jœ

k

: B⇥(0, 1) æ R for œk œ O⇥(œ
0

) from Definition 2.29.

Algorithm 2.1: Monotone linesearch minimization on O⇥(œ
0

)

Require: let Assumption 2.4 be satisfied for œ
0

µ Rd and j : O⇥(œ
0

) æ R

1: set the iteration index to k = 0
2: repeat

3: choose a descent direction Sk œ ⇥, i.e., satisfying dj(œk; Sk) < 0
4: choose a step length ‡k > 0 such that Î‡kSkÎ⇥ < 1 and j(·‡

k

S
k

(œk)) < j(œk)
5: set œk+1

= ·‡
k

S
k

(œk)
6: increment k
7: until ÎjÕ(œk)Î⇥ú = 0

Remark 2.64. Recall that, due to Theorem 2.31, Hadamard di�erentiability of j implies
Gâteaux di�erentiability of jœ

k

for all k. In particular it holds jÕœ
k

(0) = jÕ(œk).

As usual, to ensure convergence of the linesearch method, one needs to impose quality
requirements on the choice of descent direction and step length. We employ the notion of
admissible search directions and admissible step lengths:

Definition 2.65. (i) The sequence of search directions (Sk) µ ⇥œ
k

is admissible if

djœ
k

(0; Sk)
ÎSkÎ⇥

kæŒ≠≠≠æ 0 implies ÎjÕœ
k

(0)Î⇥ú
kæŒ≠≠≠æ 0.
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2. Aspects of shape optimization

(ii) The sequence of step sizes (‡k) is admissible if

jœ
k

(‡kSk) < jœ
k

(0) ’k Ø 0, and

jœ
k

(‡kSk) ≠ jœ
k

(0) kæŒ≠≠≠æ 0 implies
djœ

k

(0; Sk)
ÎSkÎ⇥

kæŒ≠≠≠æ 0.

These conditions are enough to ensure global convergence of the algorithm in the following
sense.

Theorem 2.66. Let Assumption 2.4 be satisfied. Consider Algorithm 2.1 and the corresponding
sequences (œk), (Sk), (‡k). Suppose that the sequence (j(œk)) µ R is bounded from below, and
that the search directions and step lengths are admissible. Then it holds

lim
kæŒ

jÕ(œk) = 0 in ⇥ú.

If œú œ O is an accumulation point of the sequence (œk) µ O, and the functional jœú is
continuously Fréchet di�erentiable at 0, then œú is a stationary point of j.

Proof. For the convenience of the reader we recapitulate the proof of [HPUU09, Theorem
2.2] for the sequences (jœ

k

), (œk), (Sk), and (‡k). Setting jú = infkØ0

j(œk) it follows from
j(œk+1

) < j(œk) that j(œk) æ jú, and

j(œ
0

) ≠ jú =
Œÿ

k=0

(j(œk) ≠ j(œk+1

)) =
Œÿ

k=0

|jœ
k

(‡kSk) ≠ jœ
k

(0)|.

Thus jœ
k

(‡kSk) ≠ jœ
k

(0) æ 0, admissibility of the step lengths guarantees

djœ
k

(0; Sk)
ÎSkÎ⇥

kæŒ≠≠≠æ 0, and hence ÎjÕœ
k

(0)Î⇥ú
kæŒ≠≠≠æ 0,

since the sequence of search directions is also admissible. For the second assertion suppose
that œú œ O is an accumulation point of (œk) satisfying the di�erentiability condition.
Then there exists a convergent subsequence (œk)K satisfying œk = Fk(œú), Fk œ F(⇥), and
ÎFk ≠ IdÎ⇥ æ 0 for all k œ K. For k large enough it holds Uk := Fk ≠ Id œ B⇥(0, 1), and hence

ÈjÕœú(Uk), V Í⇥ú
,⇥ = ÈjÕ(œk), V ¶ F ≠1

k Í⇥ú
,⇥, ’V œ ⇥,

cf. Theorem 2.31. Since jœú is continuously Fréchet di�erentiable the claim follows now from
the first part.

As shown in [HPUU09, Lemma 2.1] admissibility of the search directions can be ensured by
the simple angle condition

ÈjÕœ
k

(0), SkÍ⇥ú
,⇥ Æ ≠‹ÎjÕœ

k

(0)Î⇥ú ÎSkÎ⇥ for all k Ø 0.

We focus on the well known Armijo rule to select the step length ‡k. It chooses the largest
value ‡k œ {—n | n œ N}, — œ (0, 1) which satisfies ‡kSk œ B⇥(0, 1) and

j(·‡
k

S
k

(œk)) ≠ j(œk) Æ “‡kdj(œk; Sk),
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2.8. A globally convergent linesearch method on the group of transformations

for some “ œ (0, 1). Note that the condition is equivalent to

jœ
k

(‡kSk) ≠ jœ
k

(0) Æ “‡kÈjÕœ
k

(0), SkÍ⇥ú
,⇥.

One can formulate conditions which guarantee the existence of Armijo step sizes.
Lemma 2.67. [HPUU09, Lemma 2.2] Let Assumption 2.4 be satisfied, and choose some
“ œ (0, 1). Suppose that for all k œ N, œk œ O and jœ

k

is Lipschitz continuously Fréchet
di�erentiable on B⇥(0, 1) for some Lipschitz constant that is independent of k. Then, for every
Á > 0, there exists a 0 < ” < 1 such that, for all œk and all Sk œ ⇥(œk) which satisfy

ÈjÕœ
k

(0), SkÍ⇥ú
,⇥ Æ ≠Á ÎSkÎ⇥ ,

there holds

jœ
k

(‡Sk) ≠ jœ
k

(0) Æ “‡ÈjÕœ
k

(0), SkÍ⇥ú
,⇥, ’‡ œ [0, ”/ ÎSkÎ⇥].

Proof. Since ⇥ is a Banach space the result [HPUU09, Lemma 2.2] can be applied. We omit
it here for brevity.

One could combine the Armijo condition, which guarantees su�cient decrease, with a curvature
condition in the spirit of the Powell-Wolfe conditions. But since we only consider trial steps
with Î‡kSkÎ⇥ < 1 we would need to impose strong assumptions to guarantee the existence of
such step lengths. Instead, we require that the descent directions are selected such that they
are not too short in the following sense.
Lemma 2.68. [HPUU09, Lemma 2.3] Let Assumption 2.4 be satisfied, and (œk), (Sk), (‡k)
be generated by Algorithm 2.1. Suppose that, for all k œ N, jœ

k

is Lipschitz continuously
Fréchet di�erentiable on B⇥(0, 1) for some Lipschitz constant that is independent of k. Let the
sequence (‡k) be chosen in accordance with the Armijo rule, and let the sequence (Sk) satisfy

ÎSkÎ⇥ Ø Õ

A

≠
ÈjÕœ

k

(0), SkÍ⇥ú
,⇥

ÎSkÎ⇥

B

,

where Õ : [0, Œ) æ [0, Œ) is monotonically increasing and fulfills Õ(s) > 0 for all s > 0. Then
the step lengths (‡k) are admissible.

Proof. For the convenience of the reader we recapitulate the proof of [HPUU09, Lemma 2.3].
The strict monotonicity property is guaranteed by the Armijo rule. For the second condition
of admissibility we carry out an indirect proof. Hence, suppose that there exists an infinite set
K and an Á > 0 such that

ÈjÕœ
k

(0), SkÍ⇥ú
,⇥ Æ ≠Á ÎSkÎ⇥ , for all k œ K.

Then ÎSkÎ⇥ Ø Õ(Á) > 0 for all k œ K. Due to Lemma 2.67 we have either ‡k = 1 or
‡k Ø ”/(2 ÎSkÎ⇥) for all k œ K. Thus ‡k ÎSkÎ⇥ Ø min{”/2, Õ(Á)} for all k œ K. Combining
the Armijo rule and the contradictory premise we conclude

jœ
k

(‡Sk) ≠ jœ
k

(0) Æ “‡ÈjÕœ
k

(0), SkÍ⇥ú
,⇥

ÎSkÎ⇥
ÎSkÎ⇥

Æ ≠“Á min{”/2, Õ(Á)} for all k œ K,

and hence jœ
k

(‡kSk) ≠ jœ
k

(0) ”æ 0.
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Remark 2.69. (i) Let us briefly comment on how the conditions on the sequence of func-
tionals jœ

k

can be related to properties of the functional j. Due to Theorem 2.31 we
know that jÕ(œ) = jÕœ(0) if j is Hadamard di�erentiable. Thus continuous di�erentiability
of j could be related to jœ. However, to formulate continuity properties of the shape
derivative, we need to have a suitable concept of transport from one tangent space to
another. As we have seen in section Section 2.7, the canonical choice of transport leads
exactly to the definition of the functionals jœ. Hence, we refrain here from stating explicit
conditions on j which guarantee properties like the Lipschitz continuous di�erentiability
of jœ

k

for all k œ N.

(ii) For all the concrete shape functionals considered in this thesis we check directly the
continuous Fréchet di�erentiability of jœ for all œ œ O. This is possible due to the
function space parametrization approach described in Section 2.14.

(iii) We worked here with a space ⇥ of vector fields defined on the whole Rd. However,
due to the structure theorem, the support of the shape derivative jÕ(œ) is concentrated
only on the boundary of œ. Furthermore, a transformed domain ·(œ) can already be
determined if the transformation · œ ⇥ is only known on œ. Thus, in practice, one will
often determine the search direction Sk only on œk, and work with varying spaces ⇥k

of vector fields defined only on œk. This could be related to the presented theory if
suitable extension and restriction operators exist. We do not pursue this further, but
note that, for example in the case of Lipschitz vector fields, the Kirszbraun-Valentine
theorem [Sch69, Theorem 1.31] states that, for any set œ µ Rd there exists an extension
operator which preserves the Lipschitz constant of a vector field V : œ æ Rd.

(iv) In fact, it might be desirable to work always only on the tangent spaces ⇥k of vector
fields defined on œk and the associated variable norms Î·Î⇥

k

. Considering the results of
the previous sections, we believe that it is possible to carry our analysis of optimization
methods on the group of transformations over to such a localized setting. However, we
leave this as subject of future research.

2.9. Second order methods on the group of transformations

It is well known that, in general, steepest descent methods exhibit slow convergence properties.
This motivates us to study second order methods, i.e., Newton-type methods, which have
the potential of fast local convergence. We proceed as follows. We begin by considering an
auxiliary generalized Newton method in the vicinity of a stationary point of j and check fast
local convergence of the generated iterates under certain assumptions. Since it requires the
a-priori knowledge of the stationary point this method is not applicable in practice. However,
it serves as a convenient tool for the theoretical convergence analysis. By relating the iterates
of this auxiliary method to the Newton steps obtained from Newton’s equation for jœ

k

at 0 we
obtain an equivalent method which can be used in practice.

The usual assumption for the convergence analysis of Newton’s method is continuous invertibility
of the Hessian in a stationary point. Unfortunately, the shape Hessian features a nontrivial
kernel, and hence the standard argument fails. Although a complete analysis of Newton’s
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2.9. Second order methods on the group of transformations

method and second order su�cient conditions in this context is beyond the scope of this thesis,
we shed some light on the issues involved. We begin by studying the shape derivative and
the shape Hessian more closely with the help of the Hadamard-Zolésio structure theorem.
It provides us with a candidate for the kernel of the Hessian. Since the shape gradient is
orthogonal to this candidate subspace there is still some hope that Newton’s equation can be
solved. We sketch some possible strategies which ensure the solvability, and might lead to
superlinear convergence of Newton’s method despite the presence of a nontrivial kernel of the
Hessian. We end this section by recalling the method of conjugate gradients (CG), which is
the standard tool for the iterative solution of Newton’s equation, and operates naturally only
on the orthogonal complement of the kernel of a self-adjoint bounded linear operator. Thus,
under appropriate assumptions, it can be used to solve a linear equation even if the involved
linear operator has a nontrivial kernel.

The presented approach is based on the generalized Newton method in Banach space as
developed for example in [HPUU09]. The authors in [RW12] take a slightly di�erent approach
to second order methods.

2.9.1. Generalized Newton’s method

If we have given a stationary point œú of j, we can analyze a generalized Newton’s method
for the functional jœú around 0 in a Banach space setting. Consider Algorithm 2.2. The
non-standard termination criterion is taken from [Ulb11, Algorithm 3.10].

Algorithm 2.2: Generalized Newton’s method for the functional jœú

Require: let Assumption 2.4 be satisfied for œ
0

µ Rd and j : O⇥(œ
0

) æ R. Consider
a stationary point œú of j and choose U

0

œ B⇥(0, 1)
1: set the iteration index to k = 0
2: repeat

3: choose an invertible operator Mk œ L(⇥,⇥ú)
4: find a solution Pk œ ⇥ of

MkPk = ≠jÕœú(Uk) in ⇥ú

5: set Uk+1

= Uk + Pk

6: increment k
7: until Uk+1

= Uk

Noting that

MkUk+1

= Mk(Uk + Pk) = MkUk ≠ jÕœú(Uk) + jÕœú(0),

one realizes that the sequence (Uk) œ ⇥ converges q-superlinearly to 0 if and only if ÎUkÎ⇥ æ 0
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2. Aspects of shape optimization

and

for all ÷ œ (0, 1) there exists a ”÷ such that: ’k with ÎUkÎ < ”÷ there holds...M≠1

k (jÕœú(Uk) ≠ jÕœú(0) ≠ MkUk)
...
⇥

Æ ÷ ÎUkÎ⇥ .
(2.30)

Often this requirement on the choice of the operator Mk is split into two stronger conditions.

Assumption 2.5. The operators Mk œ L(⇥,⇥ú) satisfy

(i) Regularity condition: There exists C > 0 such that

ÎM≠1

k ÎL(⇥
ú
,⇥)

Æ C ’k Ø 0.

(ii) Approximation condition: For all ÷ œ (0, 1) there exists a ”÷ such that

ÎjÕœú(Uk) ≠ jÕœú(0) ≠ MkUkÎ⇥ú Æ ÷ ÎUkÎ⇥ ’k with ÎUkÎ < ”÷.

Theorem 2.70. [HPUU09, Theorem 2.9] Let Assumption 2.4 be satisfied, œú be a stationary
point of j, and consider Algorithm 2.2. If ÎU

0

Î⇥ is small enough, and either (2.30) or
Assumption 2.5 holds, then the algorithm either terminates with Uk = 0 or generates a sequence
(Uk) which converges q-superlinearly to 0.

Proof. Choosing some ÷ œ (0, 1) and ÎU
0

Î⇥ < ”÷ one may verify ÎUk+1

Î⇥ Æ ÷ ÎUkÎ⇥ induc-
tively for all k Ø 0. If Uk+1

= Uk then necessarily Uk = 0. If the algorithm generates an infinite
sequence, then ÎUkÎ⇥ < ”÷ for all k Ø 0. Due to (2.30) the sequence converges q-superlinearly
to 0. Note that Assumption 2.5 implies (2.30).

Remark 2.71. (i) Of course one can not use Algorithm 2.2 in practice, since it requires
the a-priori knowledge of the stationary point œú. Fortunately, we can relate jœú and its
derivatives with jœ

k

. This will lead us to a realizable method.

(ii) We consider in the following analysis only the classical Newton method. Observe that for
the superlinear convergence result we merely need to satisfy (2.30). Hence an extension
to semismooth Newton methods (cf., e.g., [Ulb11]), or quasi-Newton methods like the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm (cf., e.g., [RW12] for BFGS on
manifolds) seems possible. An essential ingredient will be the proper choice of transport
between the tangent spaces.

In particular, the above result implies fast local convergence of the classical Newton’s method
under certain assumptions on jœú .

Corollary 2.72. [HPUU09, Corollary 2.1] Let Assumption 2.4 be satisfied, and œú be a
stationary point of j. Assume that jœú is twice continuously di�erentiable on B⇥(0, 1), and that
(2.30) is satisfied for the choice Mk = jÕÕœú(Uk). Then Newton’s method, i.e., Algorithm 2.2 with
the choice Mk = jÕÕœú(Uk) for all k, converges q-superlinearly if ÎU

0

Î⇥ is small enough. If jœú

is twice Lipschitz-continuously di�erentiable near 0, then the order of convergence is quadratic.

Proof. The superlinear convergence result follows directly from Theorem 2.70. For the quadratic
convergence we refer to [HPUU09, Corollary 2.1].
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2.9. Second order methods on the group of transformations

Remark 2.73. Usually (2.30) is ensured by supposing that the Hessian is continuously
invertible in the stationary point. In shape optimization such an assumption is unrealistic. We
will discuss this issue in the next subsection.

We begin by translating Algorithm 2.2 with the choice Mk = jÕÕœú(Uk) into an algorithm which
does not require the knowledge of the solution œú. We will show that Algorithm 2.3 generates
the same sequence of domains as Algorithm 2.2.

Algorithm 2.3: Newton’s method for the functional jœ
k

Require: let Assumption 2.4 be satisfied for œ
0

µ Rd and j : O⇥(œ
0

) æ R

1: set the iteration index to k = 0
2: repeat

3: find a solution Sk œ ⇥ of

jÕÕœ
k

(0)Sk = ≠jÕœ
k

(0) in ⇥ú

4: set œk+1

= ·S
k

(œk)
5: increment k
6: until Sk = 0

Relating jÕÕœ
k

(0) to jÕÕœú(Uk) we verify now that under the conditions of Corollary 2.72 this
algorithm is well defined.

Lemma 2.74. Let Assumption 2.4 be satisfied and suppose that for some œú œ O⇥(œ
0

) the
functional jœú : B⇥(0, 1) æ R is twice Gâteaux di�erentiable with respect to ⇥. Then, for any
œ = ·U (œú) œ BO(œú, 1), the functional jœ : B⇥(0, 1) æ R is twice Gâteaux di�erentiable at
0. Moreover, for all V, W œ ⇥ it holds

ÈjÕÕœ(0)V, W Í⇥ú
,⇥ = ÈjÕÕœú(U)V ¶ ·U , W ¶ ·U Í⇥ú

,⇥.

Proof. Let œ = ·U (œú) œ BO(œú, 1). By definition we have for all V, W œ ⇥

ÈjÕÕœ(0)V, W Í⇥ú
,⇥ = lim

t√0

1
t

1
ÈjÕœ(tV ), W Í⇥ú

,⇥ ≠ ÈjÕœ(0), W Í⇥ú
,⇥

2
.

Due to Hadamard di�erentiability of j and Theorem 2.31 it holds

ÈjÕœ(0), W Í⇥ú
,⇥ = ÈjÕ(œ), W Í⇥ú

,⇥ = ÈjÕœú(U), W ¶ ·U Í⇥ú
,⇥,

and similarly for t small enough

ÈjÕœ(tV ), W Í⇥ú
,⇥ = ÈjÕ(·tV (œ)), W ¶ ·≠1

tV Í⇥ú
,⇥ = ÈjÕ(·tV ¶ ·U (œú)), W ¶ ·≠1

tV Í⇥ú
,⇥

= ÈjÕœú(U + tV ¶ ·U ), (W ¶ ·≠1

tV ) ¶ (·tV ¶ ·U )Í⇥ú
,⇥

= ÈjÕœú(U + tV ¶ ·U ), W ¶ ·U Í⇥ú
,⇥.
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2. Aspects of shape optimization

Since

ÈjÕÕœú(U)V, W Í⇥ú
,⇥ = lim

t√0

1
t

1
ÈjÕœú(U + tV ), W Í⇥ú

,⇥ ≠ ÈjÕœú(U), W Í⇥ú
,⇥

2
,

we conclude that ÈjÕÕœú(U)V ¶ ·U , W ¶ ·U Í⇥ú
,⇥ = ÈjÕÕœ(0)V, W Í⇥ú

,⇥. In particular, twice Gâteaux
di�erentiability of jœú implies twice Gâteaux di�erentiability of jœ at 0.

Remark 2.75. By the same reasoning one could relate twice Fréchet di�erentiability of jœú

on B⇥(0, 1) and twice Fréchet di�erentiability of jœ at 0.

Theorem 2.76. Let Assumption 2.4 and the conditions of Corollary 2.72 be satisfied. Consider
Algorithm 2.2 with Mk = jÕÕœú(Uk) for ÎU

0

Î⇥ small enough, and Algorithm 2.3 with initial
choice œ

0

= ·U0(œú). Then the algorithms generate the same iterates, i.e., for all k Ø 0 it
holds

œk = ·U
k

(œú) and Sk = Pk ¶ ·≠1

U
k

.

In particular, the algorithms exhibit q-superlinear convergence ÎUkÎ⇥ æ 0.

Proof. Considering Lemma 2.74, and recalling from Theorem 2.31 that for œ = ·U (œú)

ÈjÕœ(0), W Í⇥ú
,⇥ = ÈjÕœú(U), W ¶ ·U Í⇥ú

,⇥,

we realize that P
0

solves
jÕÕœú(U

0

)P
0

= ≠jÕœú(U
0

),

if and only if S
0

= P
0

¶ ·≠1

U0
solves

jÕÕœ0(0)S
0

= ≠jÕœ0(0).

In particular,

œ
1

= ·S0(œ
0

) = ·
P0¶·

≠1
U0

(œ
0

) = (·U0 + P
0

) ¶ ·≠1

U0
(œ

0

) = ·U0+P0(œú) = ·U1(œú),

and since ÎU
1

Î⇥ < ÎU
0

Î⇥ it holds again œ
1

œ BO(œú, ÎU
0

Î⇥). Hence the claimed equalities
follow by induction. The superlinear convergence property was asserted in Corollary 2.72.

Remark 2.77. Newton’s method is only locally convergent and needs to be globalized. It
is straightforward to combine it with the globally convergent linesearch descent method
Algorithm 2.1. In each step one tries to determine the Newton direction. If this is successful
and the angle condition is satisfied then the Newton direction is admissible. Otherwise, the
direction of steepest descent may be chosen. In combination with admissible step sizes this
yields a globally convergent method, and transition to fast local convergence can be expected
under appropriate conditions. However, we leave a rigorous discussion of this strategy, as well
as other possible globalization techniques via trust-regions or filters to future research.
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2.9. Second order methods on the group of transformations

2.9.2. Solving the Newton equation

Let us study the Newton equation in more detail, i.e., for some œ = ·U (œ
0

) consider

jÕÕœ(0)S = ≠jÕœ(U).

As already mentioned, the fact that j is constant along directions which leave the shape of the
domain unchanged, entails a nontrivial kernel of the Hessian. Let us be more precise. Recall
the definition of V k in Section 2.6 and Clarke’s tangent cone Cœ(x) from Definition 2.18. As
in [DZ11] we introduce for a set œ µ Rd and an integer k Ø 0 the spaces

Lk
œ := {V œ V k | V (x) œ (≠Cœ(x)) fl Cœ(x) ’x œ œ},

Nk
ˆœ := {V œ V k | ˆ–V = 0 on ˆœ, ’– with |–| Æ k} µ Lk

œ.

The Hadamard-Zolésio structure theorem provides some insight into the behavior of jÕ(œ).

Theorem 2.78. [DZ11, Theorem 9.3.6] Let j be a real-valued shape functional which is shape
di�erentiable at œ µ Rd. Then the following holds.

(i) The support of the shape derivative is contained in ˆœ.

(ii) If œ is open or closed in Rd and the shape derivative is of order k Ø 0, then there exists
[jÕ(œ)] œ (V k/Lk

œ)ú such that for all V œ V k

dj(œ; V ) = È[jÕ(œ)], qLV Í
(V k

/L
k

œ

)

ú
,(V k

/L
k

œ

)

,

where qL : V k æ V k/Lk
œ is the canonical quotient surjection. Moreover

jÕ(œ) = qú
L[jÕ(œ)],

where qú
L denotes the dual of the linear map qL.

There exists a similar result for the second shape derivative.

Theorem 2.79. [DZ11, Theorem 9.6.3] Let j be a real-valued shape functional which is twice
shape di�erentiable at œ µ Rd. Then the following holds.

(i) The vector distribution associated with d2j(œ; ·; ·) has support in ˆœ ◊ ˆœ.

(ii) If œ is an open or closed domain in Rd and d2j(œ; ·; ·) is of order k Ø 0, then there
exists a continuous bilinear form

[H(œ)] : (V k/Nk
ˆœ) ◊ (V k/Lk

œ) æ R,

such that for all V, W œ V k,

d2j(œ; V ; W ) = [H(œ)](qN V, qLW ),

where qN : V k æ V k/Nk
ˆœ, and qL : V k æ V k/Lk

œ are the canonical quotient surjections.
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2. Aspects of shape optimization

We are specifically interested in the second Gâteaux derivative of jœ. Recall that, under
appropriate assumptions, Theorem 2.39 provides the identity

d2jœ(0; V ; W ) = d2j(œ; V ; W ) ≠ dj(œ; DV W ),

for V œ V k+1 and W œ V k. In particular, it holds for V œ Nk+1

ˆœ and arbitrary W œ V k

that DV W œ Nk
ˆœ µ Lk

œ and hence d2jœ(0; V ; W ) = 0. On the other hand, if W œ Lk
œ and

V œ V k+1, then d2jœ(0; V ; W ) = ≠dj(œ; DV W ) is, in general, not zero. The reason for this is
that ·tV (œ) ”= œ for a tangential displacement field V , no matter how small we choose t > 0.
This is a notable di�erence to the flow TV (t). Thus, in general,

Nk+1

ˆœ µ Ker(jÕÕœ(0)), but Lk
œ ”µ Ker(jÕÕœ(0)).

However, in a critical point œú the Hadamard derivative vanishes, and we conclude

Lk+1

œ
ú µ Ker(jÕÕœú(0)).

In any case, the shape Hessian has a nontrivial kernel, and is not invertible if considered as
an operator from V k to (V k)ú. However, the fact that jÕœ(0) = jÕ(œ) = qú

L[jÕ(œ)], feeds the
hope that one can still solve the Newton equation and somehow ensure (2.30). A thorough
treatment of this issue is very much beyond the scope of this thesis. In the following we only
discuss some immediate observations which might point the way for future research.

Perhaps the most obvious solution to the problem is to add a coercive correction term to the
Hessian. Since the Hessian is positive semidefinite in a local minimum (cf. Lemma 2.63) a
strong enough correction term would provide solvability of the Newton equation in the vicinity
of the minimum. To ensure superlinear convergence of such a modified Newton method, the
correction may not be too strong. An investigation of this strategy will likely be based on the
famous Dennis-Moré condition, cf. [DM74]. However, additional complications occur since
we do not have the invertibility of the Hessian in the minimum available. Alternatively, one
might add a suitable Tikhonov regularization term to the objective as is often done in optimal
control with PDEs. This idea was already applied for specific examples in shape optimization,
we mention, for instance, [Bur04, KU15, Lau00]. However, the solutions of the regularized
problem will usually not coincide with the solutions of the original problem. Thus, one may
then have to decrease the regularization parameter iteratively. These two approaches are very
attractive, especially in terms of improving the reliability of the corresponding algorithms.

Alternatively, one might suppose that the Hessian is at least coercive on a suitable subspace.
This line of reasoning could be combined with the study of suitable second order su�cient
conditions. To fix some ideas, we specialize now to a Hilbert space setting. In particular, we
would like to employ the method of conjugate gradients to solve the Newton equation. Note
that second order su�cient conditions and associated quadratic growth conditions, might also
be studied by considering suitable quotient spaces of ⇥.

Assumption 2.6. Assumption 2.4 is satisfied, in particular it holds ⇥ = V k. Furthermore,
H is a Hilbert space of mappings Rd æ Rd which is densely embedded into ⇥:

H Òæ ⇥ densely,

with scalar product (·, ·)H, associated norm Î·ÎH, and Riesz isomorphism R : Hú æ H.
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2.9. Second order methods on the group of transformations

Remark 2.80. The Sobolev imbedding theorem [AF03, Theorem 4.12] states conditions on
m, p such that Assumption 2.6 is satisfied for the Sobolev spaces W m,p(Rd,Rd).

Now consider some domain œ œ O⇥(œ
0

). The structure theorem states that ÈjÕœ(0), W Í⇥ú
,⇥ = 0

for all W œ Lk
œ. Let us abbreviate Y = Lk

œ fl H. Then the gradient RjÕœ(0) satisfies
RjÕœ(0) œ Y ‹

R , where Y ‹
R µ H denotes the orthogonal complement of Y with respect to R.

Thus, if we suppose that the Hessian is H-coercive on Y ‹
R we could find a solution of the

Newton equation restricted to Y ‹
R . Note however, that this is usually not a solution of the

Newton equation with respect to the full space H if Lk
œ ”= Ker(jÕÕœ(0)). Furthermore, verifying

the superlinear convergence of a suitably modified version of Algorithm 2.3, respectively
Algorithm 2.2 is challenging. A related question is whether one can conclude from coercivity of
jÕÕœú(0) in (Lk

œ
ú fl H)‹

R the coercivity of jÕÕ·(œ
ú
)

(0) with respect to (Lk
·(œ

ú
)

fl H)‹
R . Observe that,

at least if enough smoothness is assumed, the unit normal fields n , ñ of œ, ·(œ) are related
by

ñ ¶ · = D·≠T n
|D·≠T n |

, and hence Lk
·(œ)

¶ · = D·Lk
œ.

A coercivity assumption with respect to the norm Î·ÎR might often be too restrictive. In
the next section we will see an example where this is the case. We suspect that a quadratic
growth condition could be obtained if, instead of an embedded Hilbert space H Òæ ⇥, one
works with the energy space of the Hessian. This is the weakest Hilbert space H̃ with ⇥ Òæ H̃
for which the Hessian constitutes a continuous bilinear form, cf. [EHS07]. They showed that,
in the case of smooth star-shaped domains, the coercivity of the Hessian with respect to the
weaker norm Î·Î

˜H may serve as a second order su�cient condition. We refer to the survey
[CT15] for an overview of second order su�cient conditions in PDE-constrained optimization
and their many uses. For instance, they are employed to ensure stability of the minimum
with respect to perturbations in the data of the problem, cf., e.g., [MT99, Gri06], or for finite
element error analysis, we refer to the surveys [HR12, HT10] and the references therein. In
[EHS07] the second order conditions are exploited to obtain convergence of discrete solutions
to a solution of the continuous problem. However, analyzing Newton’s method in such a setting
is an ambitious task.

We conclude this section with a brief discussion of the method of conjugate gradients in a
Hilbert space. It is the method of choice for solving Newton’s equation. We would like to
especially point out that it can also be applied if the involved linear operator has a nontrivial
kernel. It su�ces if the operator is coercive on the orthogonal complement of its kernel.

The method of conjugate gradients

Note, that the following properties of the equation (2.31) and the method of conjugate gradients
are well known in the community. However, we provide them here for completeness and the
convenience of the reader. Let us begin with a brief discussion of the linear equation

Ax = b in Xú, (2.31)
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2. Aspects of shape optimization

where X is some Hilbert space with some scalar product (·, ·)R, and A œ L(X, Xú), b œ Xú.
The Riesz isomorphism R œ L(Xú, X) associated with (·, ·)R satisfies

(Rz, x)R = Èz, xÍX
ú
,X for all x œ X, z œ Xú.

The dual space Xú together with the scalar product (y, z)
R

≠1 := (Ry, Rz)R is also a Hilbert
space. The kernel and range of A are given by

Ker(A) := {x œ X | Ax = 0},

Ran(A) := {z œ Xú | ÷x œ X with Ax = z}.

We have the following obvious relations between Ker(A) and Ran(A):

Lemma 2.81. Let A œ L(X, Xú) be self-adjoint, i.e., ÈAx, yÍX
ú
,X = ÈAy, xÍX

ú
,X for all

x, y œ X. Then there holds

RRan(A) = Ker(A)‹
R and Ker(A) = R Ran(A)‹

R

≠1 ,

where Ker(A)‹
R denotes the set of all orthogonal elements of X to Ker(A) with respect to R,

and similarly Ran(A)‹
R

≠1 for the scalar product (·, ·)
R

≠1 on Xú.

Proof. Let x̃ œ R Ran(A) and y œ Ker(A). Then there exists a x œ X such that x̃ = RAx and

(x̃, y)R = (RAx, y)R = ÈAx, yÍX
ú
,X = ÈAy, xÍX

ú
,X = 0,

which implies R Ran(A) µ Ker(A)‹
R and hence Ker(A) µ R Ran(A)‹

R

≠1 . Conversely consider
z œ Ran(A)‹

R

≠1 and y œ X. Then

ÈARz, yÍX
ú
,X = ÈAy, RzÍX

ú
,X = (Ay, z)

R
≠1 = 0,

hence R Ran(A)‹
R

≠1 µ Ker(A). From this we conclude

R≠1 Ker(A) µ
1
Ran(A)‹

R

≠1
2‹

R

≠1 = Ran(A).

Furthermore, decomposing X = Ker(A)üKer(A)‹
R we observe that A Ker(A)‹

R = Ran(A).

Let us now discuss a method to find a solution of (2.31). Clearly there exists a solution if and
only if b œ Ran(A). We want to solve the equation iteratively with the method of conjugate
gradients (CG), which goes back to [HS52]. The convergence properties of CG in Hilbert spaces
seem to go back to [Hay54], and were recently summarized and extended in [HS15]. The CG
method is a very popular choice for self-adjoint problems of the form (2.31), and arguably the
best-understood iterative method for this problem class. Usually, the CG method is studied
in combination with a coercivity assumption on A, or a special block structure which arises
from saddle point problems, cf. e.g., [SZ07]. We require the coercivity of A only with respect
to Ker(A)‹

R . Algorithm 2.4 summarizes the CG method in a Hilbert space as discussed in
[GHS14].
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Assumption 2.7. The operator A œ L(X, Xú) is self-adjoint and b œ Ran(A). Furthermore,
A is R-coercive on Ker(A)‹

R , i.e., there exists a – > 0 such that

ÈAx, xÍX
ú
,X Ø –

...P‹
R

x
...

2

R
for all x œ X,

where P‹
R

: X æ X denotes the projection onto Ker(A)‹
R with respect to Î·ÎR.

Remark 2.82. Observe that this is equivalent to the condition ÈAx, xÍX
ú
,X Ø – ÎxÎ2

R for all
x œ Ker(A)‹

R , since for every x œ X it holds ÈAx, xÍX
ú
,X = ÈAP‹

R

x, P‹
R

xÍX
ú
,X .

Algorithm 2.4: CG method in a Hilbert space

Require: let Assumption 2.7 be satisfied and choose x
0

= 0 œ Ker(A)‹
R

1: set r
0

= b ≠ Ax
0

œ Xú

2: set p
0

= Rr
0

œ X
3: set k = 0
4: repeat

5: set –k =
Èrk, RrkÍX

ú
,X

ÈApk, pkÍX
ú
,X

6: set xk+1

= xk + –kpk

7: set rk+1

= rk ≠ –kApk

8: set —k+1

=
Èrk+1

, Rrk+1

ÍX
ú
,X

Èrk, RrkÍX
ú
,X

9: set pk+1

= Rrk+1

+ —k+1

pk

10: set k = k + 1
11: until converged

Due to Lemma 2.81 we obtain inductively for all k Ø 1 that

pk≠1

œ span{Rr
0

, (RA)Rr
0

, . . . , (RA)k≠1Rr
0

} µ Ker(A)‹
R ,

xk œ x
0

+ span{Rr
0

, (RA)Rr
0

, . . . , (RA)k≠1Rr
0

} µ Ker(A)‹
R ,

rk œ r
0

+ span{(AR)r
0

, . . . , (AR)kr
0

} µ Ran(A).

Hence the CG method operates naturally only on Ker(A)‹
R , and Assumption 2.7 su�ces to

carry known results concerning convergence, etc. over to our indefinite setting. We refer to
[HS15] for a nice overview of q- and r-linear as well as q- and r-superlinear convergence results.
Superlinear convergence of CG in Hilbert spaces was already obtained by [Hay54]. Note that
the choice of R corresponds to the choice of a preconditioner, cf. [GHS14].

2.10. Interlude: application to a showcase problem

In this section we demonstrate how the theory of Section 2.8 and 2.9 can be applied to a
concrete problem and present some numerical experiments. We consider two of the most simple
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properties of a shape in two dimensions: the area and the circumference. We are looking for
a domain for which these two quantities are equal. Of course this problem does not have
a unique solution, for example, the circle with radius 2, and the square with side length 4,
both satisfy this condition. However, no other circle or square is a solution of the problem.
Let us be more precise in formulating and analyzing the shape optimization problem under
consideration.

Assumption 2.8. Let œ
0

µ R2 be a bounded Lipschitz domain and consider ⇥ := C1(R2,R2).
Furthermore set O = O⇥(œ

0

).

Remark 2.83. Although this problem could easily be considered in a more general setting
we restrict ourselves here to Lipschitz domains for the sake of simplicity.

We denote the area of a domain œ œ O by

area(œ) :=
⁄

œ
1 dx,

the circumference of œ œ O by

circ(œ) :=
⁄

ˆœ
1 dS,

and introduce the shape functional

j : O æ R, j(œ) = 1
2

3area(œ)
circ(œ) ≠ 1

4
2

.

The showcase shape optimization problem is given by

minimize j(œ) such that œ œ O. (2.32)

2.10.1. Shape derivatives

We want to apply the linesearch minimization Algorithm 2.1 for this problem. As we have
seen in Section 2.8, it su�ces to consider at the current iterate œk œ O the functional

jœ
k

: B⇥(0, 1) æ R, jœ
k

(U) = j(·U (œk)).

Recall that ·U = Id + U . Before determining the derivatives of jœ
k

, it is advantageous to derive
an explicit representation in terms of U œ ⇥. Consider some œ œ O. Noting that

area(·U (œ)) =
⁄

œ
det(D·U ) dx =: Aœ(U),

and

circ(·U (œ)) =
⁄

ˆœ
|D·U t | dS =: Cœ(U),
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where t denotes the unit tangent vector field to ˆœ, we obtain

jœ(U) = 1
2

3
Aœ(U)
Cœ(U) ≠ 1

4
2

.

The following well known result is very helpful for the computation of derivatives in shape
optimization.

Lemma 2.84. (i) The mapping

W 1,Œ(Rd,Rd) æ LŒ(Rd) : U ‘æ det(D(Id + U)) = det(D·U )

is di�erentiable and the derivative in direction V œ W 1,Œ(Rd,Rd) is given by

tr(D·≠1

U DV ) det(D·U ).

(ii) The mapping

W 1,Œ(Rd,Rd) æ LŒ(Rd,Rd◊d) : U ‘æ D(Id + U)≠1 = D·≠1

U

is di�erentiable and the derivative in direction V œ W 1,Œ(Rd,Rd) is given by

≠D·≠1

U DV D·≠1

U .

Proof. This is for example proved by Murat and Simon. Assertion (i) is implied by [MS76,
Lemma 4.2] and (ii) by [MS76, Lemma 4.3].

Remark 2.85. Certainly, the above rules of di�erentiation hold also for C1 vector fields.
One could even work with Lipschitz continuous vector fields if one is only interested in the
restriction of U, V, W to a bounded domain and we have Lemma 2.1 available. Note that
W 1,Œ(Rd) ”= C0,1(Rd).

In particular, the functionals U ‘æ Aœ(U) and U ‘æ Cœ(U) are twice continuously Fréchet
di�erentiable. We state both the first and second derivatives since we will also present the
application of second order methods. We obtain directly from Lemma 2.84

AÕ
œ(U)V =

⁄

œ
tr(D·≠1

U DV ) det(D·U ) dx,

AÕÕ
œ(U)(V, W ) =

⁄

œ
tr(D·≠1

U DW ) tr(D·≠1

U DV ) det(D·U ) dx

+
⁄

œ
tr(≠D·≠1

U DWD·≠1

U DV ) det(D·U ) dx,

and noting that Cœ(U) =
s

ˆœ(tT D·T
U D·U t)1/2 dS it holds

CÕ
œ(U)V =

⁄

ˆœ
(tT D·T

U D·U t)≠1/2(tT D·T
U DV t) dS,

CÕÕ
œ(U)(V, W ) =

⁄

ˆœ
(tT D·T

U D·U t)≠1/2(tT DW T DV t) dS

≠
⁄

ˆœ
(tT D·T

U D·U t)≠3/2(tT D·T
U DW t)(tT D·T

U DV t) dS.
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In fact, we only require the derivatives at U = 0, where these expressions simplify to

AÕ
œ(0)V =

⁄

œ
div(V ) dx,

AÕÕ
œ(0)(V, W ) =

⁄

œ
div(W ) div(V ) dx ≠

⁄

œ
tr(DWDV ) dx,

CÕ
œ(0)V =

⁄

ˆœ
tT DV t dS,

CÕÕ
œ(0)(V, W ) =

⁄

ˆœ
tT DW T DV t dS ≠

⁄

ˆœ
(tT DW t)(tT DV t) dS.

The derivatives of jœ can now easily be determined with the chain rule. It holds

ÈjÕœ(0), V Í⇥ú
,⇥ =

3
Aœ(0)
Cœ(0) ≠ 1

4
Cœ(0)AÕ

œ(0)V ≠ Aœ(0)CÕ
œ(0)V

Cœ(0)2

,

and

ÈjÕÕœ(0)V, W Í⇥ú
,⇥ = Cœ(0)AÕ

œ(0)V ≠ Aœ(0)CÕ
œ(0)V

Cœ(0)2

Cœ(0)AÕ
œ(0)W ≠ Aœ(0)CÕ

œ(0)W
Cœ(0)2

+
3
Aœ(0)
Cœ(0) ≠ 1

4
Cœ(0)AÕÕ

œ(0)(V, W ) ≠ Aœ(0)CÕÕ
œ(0)(V, W )

Cœ(0)2

≠
3
Aœ(0)
Cœ(0) ≠ 1

4 (Cœ(0)AÕ
œ(0)V ≠ Aœ(0)CÕ

œ(0)V )2CÕ
œ(0)W

Cœ(0)3

.

Combining Assumption 2.8 with Assumption 2.6 we can either apply a steepest descent method
or a Newton descent method to (2.32). In the first case we choose the negative gradient with
respect to (·, ·)R as search direction Sk in line 2 of Algorithm 2.1. This ensures that the search
directions are admissible, and in combination with the Armijo rule guarantees also admissible
step sizes. Hence, the global convergence result Theorem 2.66 is applicable. Alternatively
we can employ the Newton method as described in Algorithm 2.3. However, since Newton’s
method is only locally convergent the need for globalization arises, cf. Remark 2.77. We do not
go into detail here, but refer to Section 2.12 where we discuss a globalized Newton’s method
in a di�erent setting.

Since the derivatives in this simple example are explicitly known, we can investigate the nature
of the Hessian in more detail. For smooth enough domains, the directional derivatives of Aœ

and Cœ can be characterized as

AÕ
œ(0)V =

⁄

ˆœ
V T n dS, and CÕ

œ(0)V =
⁄

ˆœ
ŸV T n dS,

where Ÿ denotes the curvature of ˆœ, cf. [DZ11, Section 9.4]. Hence we obtain for the circle
with radius 2 that Aœ(0) = Cœ(0) = 4fi, Ÿ = 1

2

, and thus

ÈjÕÕœ(0)V, V Í⇥ú
,⇥ = (2fi)2

(4fi)4

3⁄

ˆœ
V T n dS

4
2

Ø 0. (2.33)

The positive semidefiniteness is not surprising, cf. Lemma 2.63. However, coercivity with
respect to a Hilbert space which embeds into ⇥ can not be expected. Indeed, we observe
in our numerical experiments that a suitable coercive correction term is necessary to ensure
solvability of the Newton equation and fast convergence of Newton’s method.
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2.10. Interlude: application to a showcase problem

2.10.2. Numerical examples

We implemented the proposed algorithms for this example in MATLAB [TM15]. For the dis-
cretization of the initial domain, the generation of the mesh, and the assembly of mass and
sti�ness matrices, we use the Partial Differential Equation Toolbox of Matlab with
linear finite elements. Note that, for simplicity, we work on œk instead of Rd, see the discussion
at the end of section Section 2.8. Furthermore, we work with linear finite elements, and choose
in each iteration the Hilbert space induced by the scalar product

(·, ·)R ¥ (·, ·)
H

1
(œ

k

)

+ w (�·, �·)
L

2
(œ

k

)

,

with w = 10≠1. Here we approximate the discrete bi-Laplacian scalar product matrix by
KM≠1K, where K denotes the sti�ness matrix, and M is the lumped mass matrix. In
particular Assumption 2.6 is not satisfied for this choice of scalar product. However, as we will
see, one can still obtain good results in practice.

The current domain is represented by the nodal coordinates of the current mesh. Once a
search direction (displacement field) has been determined, we obtain the new coordinates of
the nodes by displacing them according to the displacement field. Note that the topology of
the mesh is not changed during the optimization. In our experiment we start with a square
with side length 2. The corresponding initial mesh can be seen on the left side of Figure 2.1.
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Figure 2.1.: The initial domain of the showcase example (left) and the result of the
steepest descent method (right)

We begin by demonstrating the steepest descent method. On the left hand side of Table 2.1
we present the first and last steps in the progression of the algorithm. The first column shows
the iteration number, the second the objective value, and the third the norm of the derivative.
We observe the typical behavior of a steepest descent method which slowly drives the norm of
the derivative towards zero. The result of the optimization is displayed on the right hand side
of Figure 2.1. The final domain is close to the optimal circle of radius 2. As one can see from
the figure, the quality of the final mesh is quite good.
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Table 2.1.: Comparison of steepest descent (left) and globalized Newton (right)
k j(œk)

..jÕœk
(0)

..
R

≠1

0 1.25·10≠1 7.84·10≠2

1 1.19·10≠1 1.10·10≠1

2 1.08·10≠1 9.39·10≠2

3 9.92·10≠2 8.45·10≠2

...
...

...
...

...
...

565 2.96·10≠11 1.05·10≠6

566 2.84·10≠11 1.03·10≠6

567 2.75·10≠11 1.01·10≠6

568 2.65·10≠11 9.93·10≠7

k j(œk)
..jÕœk

(0)
..

R
≠1 step # CG iter

0 1.25·10≠1 7.84·10≠2 gradient 20
1 1.19·10≠1 1.10·10≠1 gradient 20
...

...
...

...
...

14 5.19·10≠2 5.14·10≠2 Newton 19
15 2.93·10≠2 3.62·10≠2 Newton 6
...

...
...

...
...

19 1.06·10≠4 2.00·10≠3 Newton 3
20 1.47·10≠6 2.34·10≠4 Newton 3
21 3.53·10≠10 3.62·10≠6 Newton 2
22 2.10·10≠17 8.84·10≠10 - -

The typical slow convergence of the steepest descent method motivates us to employ Newton’s
method. Not surprisingly the unmodified Newton’s method diverges for the given initial
domain. Thus we include an angle test and in case of failure choose the negative gradient.
Furthermore, we allow a maximum of 20 CG iterations, and add the coercive correction term

ÎjÕ(œk)Î
R

≠1 (·, ·)R

to the Hessian. Finally, we choose a steps size according to the Armijo rule. On the right hand
side of Table 2.1 we present the first and last steps in the progression of the corresponding
algorithm. Again the first column shows the iteration number, the second the objective value,
and the third the norm of the derivative. Furthermore, the fourth column indicates which kind
of step was taken, and the last column shows the number of CG iterations. After a sequence of
gradient steps the Newton method takes over and we clearly observe superlinear convergence.
Compared to the runtime of the gradient descent method the overall speed up factor is 4.5,
although each Newton iteration is much more expensive than a steepest descent iteration. The
result of the optimization is displayed on the left hand side of Figure 2.2. Again the optimal
circle of radius 2 is identified, and the quality of the final mesh is quite good.

The observed behavior in Table 2.1 is quite characteristic for the globalized Newton method
that we described here. This suggests a simple improvement. We start with a robust steepest
descent method and switch to the globalized Newton method once the norm of the derivative
drops below a certain threshold. In Table 2.2 we present the last steps in the progression of the
corresponding algorithm, where we chose as threshold 10≠2. As above we added the coercive
correction term to the Hessian. We observe again fast local convergence. Compared to the
gradient method the speed up factor is 5.5. The final domain is very similar to the one found
by the globalized Newton’s method.

If we do not modify the Hessian the situation is very di�erent. In all but the very last iterations,
the CG method terminates due to negative curvature of the discrete Hessian. Only once we
are very close to the solution (ÎjÕœ

k

(0)Î
R

≠1 = 6.98·10≠5) the Newton equation can be solved,
and a considerable reduction of the objective and the norm of the derivative is achieved. This
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Figure 2.2.: The result of the globalized Newton method (left) and the Gauss-
Newton method (right)

Table 2.2.: Progression of the Newton accelerated steepest descent method with
Hessian modification

k j(uk)
..jÕ(uk)

..
R

≠1 step # CG iter
...

...
...

...
...

83 2.59·10≠2 1.01·10≠2 gradient -
84 2.49·10≠2 9.91·10≠3 Newton 5
85 3.82·10≠4 3.81·10≠3 Newton 5
86 1.56·10≠5 7.63·10≠4 Newton 3
87 3.70·10≠8 3.71·10≠5 Newton 3
88 2.29·10≠13 9.24·10≠8 - -

is of course not yet conclusive, but it seems that the finite dimensionality of the discretized
Hessian plays a role here.

Finally, we note that our objective is of least-squares type. This motivates us to briefly explore
a Gauss-Newton method, cf., e.g., [NW06, Section 10.3], for the showcase problem. The idea of
Gauss-Newton is to neglect all the terms in the second derivative which feature the term

3
Aœ(0)
Cœ(0) ≠ 1

4
.

If the objective is close to zero this term is very small and does not noticeably influence the
Hessian of the objective. Hence, in such cases, the Gauss-Newton method mimics a Newton’s
method quite good, and usually displays also fast local convergence. It has two distinct
advantages. For once we do not need to compute second derivatives of Aœ and Cœ, hence
we save computational e�ort. Furthermore, the Gauss-Newton approximation of the second
derivative is always positive semi-definite, even far away from a solution. Thus, the CG method
can usually solve the Gauss-Newton equation, and the Gauss-Newton method is more robust
than Newton’s method. For the example under consideration the benefit of Gauss-Newton
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2. Aspects of shape optimization

is tremendous. In Table 2.3 we present the progress of the corresponding algorithm. The
method converges in three iterations and requires a total of 6 CG iterations. The speed up
compared to the gradient method is a factor of 49. Of course, such a performance can not be
expected in general. Still, it is a reminder that it often pays o� to take, as much as possible,
the structure of the concrete problem into account. Let us note that there is an abundance
of alternative and very sophisticated optimization methods available which we did not touch
upon. Interestingly, the mesh in the final domain is not as uniform as in the other examples.
It is depicted on the right hand side of Figure 2.2.

Table 2.3.: Progression of the Gauss-Newton method
k j(uk)

..jÕ(uk)
..

R
≠1 # CG iter

0 1.25·10≠1 7.84·10≠2 2
1 1.67·10≠3 8.06·10≠3 2
2 1.38·10≠8 2.26·10≠5 2
3 3.95·10≠20 3.83·10≠11 -

2.11. Alternative characterizations of shapes

So far we have encoded shapes, i.e., sets œ µ Rd, mainly as images of some reference set œ
0

. It
is intuitively clear that, in fact, we only need the image of the boundary of the reference set to
specify the shape œ. In particular, only changes of the boundary lead to changes in the value of
associated shape functionals. This is the essence of the Hadamard- Zolésio structure theorem, cf.
Theorem 2.78. Hence, many contributions in the literature encode shapes via some boundary
representation. In analogy to the setting so far, one can characterize varying boundaries as
transformations of the boundary of some initial set. But there are also alternatives. The
boundaries might be parametrized, e.g., by splines, cf. [NZP04, BLUU09, Lin12]. From the
optimization point of view this reduces the problem to a small number of design parameters. At
the same time, this approach restricts the set of possible shapes considerably. Furthermore, the
value of the shape functional usually depends in a highly implicit way on the design parameters.
For these reasons more and more contributions consider parametrization-free characterizations
of the boundary. Depending on the application, the boundary might be described locally
as the graph of a function, cf., e.g., [HM03, Lau00]. Closely related approaches consider
star-shaped domains, cf., e.g., [EHS07, Kin15], or describe shapes as normal perturbations
of some reference boundary, cf., e.g. [Sch10]. Usually, a change in the boundary needs to
be related first to a transformation of the whole domain before the new value of the shape
functional can be obtained. An alternative approach is to work only with the boundary without
explicitly deforming the whole domain, as in the boundary elements method. We refer to the
survey [Har08] and the references therein. However, this approach is only straightforward if
Green’s function can be calculated for the state equation. There are also more indirect ways
to characterize shapes. For instance, in the pseudo-solid approach a shape is determined via
artificial forces acting on the elastic reference boundary, cf., e.g., [THM08, Lin12]. Here a
change of the design variables is directly related to a transformation of the domain without an
intermediate step. A very di�erent philosophy is followed with the homogenization approach,
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cf., e.g., [All02], the fictitious domain approach, cf., e.g., [EHM08], or the phase-field approach,
cf., e.g., [BGHFSS14], and the references cited in those. These methods have in common
that the actual domain is not explicitly meshed, thus saving computational e�ort by avoiding
remeshing or mesh movement procedures. Furthermore they allow for easy topology changes
and are thus quite popular in structural optimization. On the other hand, compared to
approaches which work with an explicit domain, these techniques su�er from an intrinsic loss
of accuracy since the domain is never exactly resolved. A related and very popular approach
of encoding shapes is the level set method, which goes back to [OS88].

In the rest of this thesis we concentrate mostly on the characterization of domains via
transformations of a reference boundary. Assuming that the initial domain is close to a
solution of the shape optimization problem, the problem can be transformed into a standard
optimization problem posed in Banach spaces. Thus, all the sophisticated machinery of optimal
control with PDEs is available. For instance, with a little care, exact discrete derivatives can
be obtained via the continuous adjoint approach, i.e., optimization and discretization commute.
We describe this approach in more detail in the next paragraph, and discuss corresponding
shape optimization algorithms in Section 2.12. However, sometimes a good initial guess is
not available. In particular, it might be the case that the topology of the optimal domain
is not known a-priori. The level set method combines nicely an exact shape representation
with the possibility of describing elegantly topologic changes of the underlying domain. We
briefly recall some of its properties in Section 2.11.3 and apply it in Chapter 7 to minimize the
resonance of a harbor basin.

2.11.1. Extension of boundary displacements to domain displacements

Let us describe how a transformation of the boundary can be related to a transformation of
the domain. We focus only on transformations given as perturbations of the identity. So far we
studied for a suitable Banach space ⇥ the group of transformations F(⇥), and the set of images
O⇥(œ) of some domain œ µ Rd. The transformations · = Id + U œ F(⇥) are determined
by vector fields in the tangent space ⇥. Analogously, we can consider transformations of the
boundary ˆœ, with an underlying tangent space U of vector fields ˆœ æ Rd. A transformed
boundary is obtained as ·(ˆœ), where · = id + u : ˆœ æ Rd, u œ U , and id is the identity
mapping from ˆœ µ Rd to Rd, i.e., id(x) = x œ Rd for all x œ ˆœ. To connect this approach
with the results we have obtained so far for F(⇥), we need to extend u œ U to some vector
field U œ ⇥. This is done by introducing a suitable extension operator

T : U æ ⇥, u ‘æ T (u).

While it is of course possible to consider nonlinear extension operators, the common choice are
linear ones. Most of the theory we present works for a general smooth extension operator T ,
but we have in mind a linear operator. As already mentioned in Remark 2.69, in practice one
usually works with transformations which are not defined on the whole Rd, but only on the
current domain œ. Thus the extension operator has to relate a displacement of the boundary
ˆœ to a displacement of the domain œ in some Banach space ⇥(œ).

Remark 2.86. One has to balance between requirements posed on the spaces U ,⇥, and the
choice of the operator T : U æ ⇥. Vector fields in ⇥ have to be smooth enough to properly
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model the specific problem. In particular, they should ensure a certain regularity of the
transformed domains. On the other hand one wants to pose as few restrictions as possible on
the design space U . Finally, T is supposed to transport a displacement from U to ⇥, while
being as cheap as possible for the actual implementation. Despite the delicacy of these choices,
the introduction of T also o�ers some opportunities. One might, for example, consider only
normal perturbations of the boundary, thus obtaining a one-to-one correspondence between
perturbations and domains. Another possibility is to gain a compactness property by choosing
an extension operator which is completely continuous, see Section 2.11.2 for an example and
Section 5.9 for an application.

In simple situations, it may be possible to construct an explicit extension operator with
desirable properties. In more complex settings, one chooses T usually as the solution operator
of some linear elliptic PDE. An intuitive idea is to consider the domain as an elastic body
deformed by the prescribed boundary displacement. Other popular choices for T are the
solution operators of the Laplace equation �y = 0, or the bi-Laplace equation �2y = 0. One of
the main concerns influencing the choice of the extension operator is the quality of the deformed
mesh used for the discretization of a PDE constraint. We refer to the recent contribution of
Wick and Wollner [WW14], where these three extension operators were compared in the context
of fluid-structure interaction. Their comparison indicates that the bi-Laplacian extension
operator is the best suited one, followed by the elasticity based operator. They concluded
that for large deformations it might be worthwhile to invest in the additional computational
e�ort required for the bi-Laplacian extension operator. In this thesis we always work with the
solution operator of the linear elasticity equation, which o�ers a good compromise between
computational costs and mesh quality.

2.11.2. Example: extension via linear elasticity

Let us consider a domain œ œ O. We allow for the possibility that only a part of the boundary
ˆœ is allowed to be transformed, and denote this design boundary by ≈B. Of course, the case
≈B = ˆœ is included. We want to relate a boundary displacement u : ≈B æ Rd to a domain
displacement U : œ æ Rd. The idea is to prescribe u as boundary data of the linear elasticity
equation without volume forces, i.e.

(⁄ + µ)(Ò div U)T + µ�U = 0 in œ,
U = u on ≈B,
U = 0 on ˆœ\≈B.

(2.34)

Here ⁄ = ‹E
(1+‹)(1≠2‹)

> 0, µ = E
2(1+‹)

> 0 are the Lamé parameters, where E is Young’s
modulus and ‹ the Poisson ratio. For given boundary datum u we denote the solution of (2.34)
by Uu.

To embed the boundary displacement approach into the developed theory we have to ensure
at least that Uu œ C0,1(œ,Rd), or is even smoother. It is well known that the regularity of a
solution of the linear elasticity equation depends on the domain œ and the regularity of the
boundary data. The theory is particularly intricate in the case of Lipschitz domains where
corner singularities may appear. It is beyond the scope of this thesis to discuss the necessary
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conditions in general. Instead, we demonstrate in the following exemplarily the necessary steps
for a concrete setting in R2. Note that an operator T between Banach spaces X, Y is called
completely continuous if xn Ô x in X implies T (xn) æ T (x) in Y . We will use that property
extensively in Chapter 5.

Theorem 2.87. Suppose that œ is convex with polygonal boundary ˆœ and ≈B is one of its
edges. We denote the largest interior angle by Ê œ (0, fi). It is possible to choose q < 2 such,
that the equation

sin2 (zÊ) = (⁄ + µ)2

(⁄ + 3µ)2

z2 sin2(Ê) (2.35)

has no complex roots in the strip 0 < Re(z) Æ 2

q . Now we set p = q
q≠1

, and consider a space of
boundary displacements U Òæ W

2≠1/p,p
0

(≈B,R2). We study for 0 < – < 1 ≠ 2

p the operator

T : U æ C1,–(œ,R2), T (u) = Uu,

where Uu solves (2.34). Then T is well defined, linear, and completely continuous.

Proof. The elliptic equation (2.34) admits a unique solution Uu œ H1(œ,R2). A classical
result of Grisvard [Gri89, Theorem 6.1] states that for u œ W

2≠1/p,p
0

(≈B,R2) the solution has
the additional regularity Uu œ W 2,p(œ,R2), if the characteristic equation (2.35) has no roots
in the strip 0 < Re(z) Æ 2

q , where 1

p + 1

q = 1. From [Gri92, Lemma 3.3.1] we know that (2.35)
has no roots in 0 < Re(z) Æ 1, hence we can choose a q < 2 with the desired properties. Thus
the auxiliary operator

T̂ : U æ W 2,p(œ,R2), T̂ (u) = Uu,

is well defined. Furthermore, it is linear and, as we will now demonstrate, continuous. For this
we use the closed graph theorem. If the graph

(U , T̂ (U)) µ W 2≠1/p,p(≈B,R2) ◊ W 2,p(œ,R2)

is closed then the operator T̂ is continuous. Hence, consider a sequence (un) µ U with

(un, T̂ (un)) æ (u, U) œ W 2≠1/p,p(≈B,R2) ◊ W 2,p(œ,R2).

It is clear that

(⁄ + µ)(Ò div U)T + µ�U = lim
næŒ

(⁄ + µ)(Ò div T̂ (un))T + µ�T̂ (un) = 0.

Denote by

g : W 2,p(œ,R2) æ W 2≠1/p,p(≈B,R2)

the trace operator. It remains to show

Îg(U) ≠ uÎ
W

2≠1/p,p

(≈
B

,R
2
)

= 0.
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Due to [Gri85, Theorem 1.5.2.1] we know that g is continuous. Furthermore

Îg(U) ≠ uÎ
W

2≠1/p,p

(≈
B

,R
2
)

Æ
...g(U) ≠ g(T̂ (un))

...
W

2≠1/p,p

(≈
B

,R
2
)

+
...g(T̂ (un)) ≠ u

...
W

2≠1/p,p

(≈
B

,R
2
)

.

By the continuity of g the first term goes to zero for n æ Œ. Since g(T̂ (un)) = un the same
holds for the second term. Hence

T̂ œ L
1
W 2≠1/p,p(≈B,R2), W 2,p(œ,R2)

2
.

With the well known compact imbedding

W 2,p(œ,R2) Òæc C1,–(œ,R2)

for p > 2 and 0 < – < 1 ≠ 2

p [Gri85, section 1.4.4.] we conclude

T œ L
1
W 2≠1/p,p(≈B,R2), C1,–(œ,R2)

2
.

In particular, due to linearity, un Ô u implies T̂ (un) Ô T̂ (u) in W 2,p(œref ,R2). The compact
imbedding finally provides T (un) æ T (u) in C1,–(œ,R2), which shows that T is completely
continuous.

Remark 2.88. (i) In particular, the choice U = H2(≈B,R2) is possible, since the Sobolev
imbedding theorem, cf., e.g., [HPUU09, Theorem 1.14], states that

H2(≈B,R2) Òæ W 2≠1/p,p(≈B,R2), for 2 < p Æ 4.

(ii) Although the extension operator T maps the whole space U to ⇥(œ) = C1,–(œ,R2),
the associated transformation Id + Tu is not necessarily a homeomorphism if u, and
hence T (u), is to large. We will discuss this issue in more detail in more detail in
Section 2.12. In numerical computations a domain displacement which is to large may
lead to a corrupted mesh.

We proceed by introducing a very di�erent philosophy of encoding shapes.

2.11.3. Level set representation of the shape

An alternative to the approaches introduced so far, is the representation of a domain œ µ Rd

as the sub-zero level set of some function Õ : Rd æ R. This is the essence of the level set
method. It was introduced in [OS88], and is widely used to describe propagating fronts, moving
interfaces, image segmentation, morphing bodies and similar quantities. We refer to the
monographs [FO03, Set99] for a detailed presentation of this rich topic.

Since the introduction of the level set method to shape optimization at the turn of the
century, it has developed into one of the most powerful techniques in this area. Some early
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2.11. Alternative characterizations of shapes

works are [AJT02, AJT04, OS01, SW00, WWG03]. Many publications deal with structural
optimization. Usually the Ersatz material approach in a hold-all domain D is used to compute
the mechanical properties of the structure and the domain œ is never explicitly resolved.
But there are also approaches where the domain is exactly meshed, consult for instance
[ADF14, HC08, Per04, XSLW12] and the references therein. The literature is extensive, we
refer to the review paper [vDMLvK13] for an overview of level set based methods in structural
topology and shape optimization. The survey [BO05] presents the level set method from the
perspective of inverse problems and optimal design.

The most appealing aspects of the level set description of a shape are

(i) the easy global description of the geometry,

(ii) the possibility to encode also geometries of low regularity,

(iii) and the possibility to describe shape and/or topology changes of the geometry under
consideration, by manipulating the corresponding level set function.

In particular the ability to handle topology changes in a natural and easy way distinguishes
the level set method from many other approaches of encoding shapes.

Let us fix the notation of the sub-zero level set and the zero level set.

Definition 2.89. Let Õ : Rd æ R be a continuous function. We denote

œÕ := {x œ Rd | Õ(x) < 0}, and ≈ Õ := {x œ Rd | Õ(x) = 0}.

Obviously, œÕ is an open set, and ≈ Õ ∏ ˆœÕ is closed. On the other hand the inclusion
≈ Õ µ ˆœÕ is not necessarily true, this e�ect is referred to as fattening. Whereas we can
associate unique sets œÕ, ≈ Õ with a given function Õ, any set A µ Rd admits arbitrarily many
level set functions. Of those we want to especially point out the oriented distance function,

bA := dA ≠ dA
c , (2.36)

which was introduced in Section 2.2.2. Often it is also called the signed distance function,
but we follow here the terminology of [DZ11]. The oriented distance function features many
interesting properties, and is closely linked to several geometric properties of the underlying
set. We collect only a few results here, and refer to [DZ11, Chapter 7] for a more detailed
presentation of this topic. Let us introduce the notion of the set of projections of x onto ˆA

 ˆA(x) := {z œ ˆA | dˆA(x) = |z ≠ x|},

and the skeleton of ˆA

Sk(ˆA) := {x œ Rd |  ˆA(x) is not a singleton} = {x œ Rd | @Òd2

ˆA(x)}.

Theorem 2.90. [DZ11, Theorem 7.2.1 and 7.3.1] Let A be a subset of Rd with ˆA ”= ÿ. Then
the following hold:
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2. Aspects of shape optimization

(i) the function bA is uniformly Lipschitz continuous on Rd and

’x, y œ Rd : |bA(x) ≠ bA(y)| Æ |x ≠ y|.

Moreover, bA is Fréchet di�erentiable almost everywhere, and

|ÒbA(x)| Æ 1 a.e. in Rd.

(ii) We have the following chain of equivalences: b2

A is Fréchet di�erentiable at x …
b2

A is Gâteaux di�erentiable at x …  ˆA(x) is a singleton.

There is a close link between the regularity of the set A and the regularity of bA.

Theorem 2.91. [DZ11, Theorem 7.8.2] Let A µ Rd, ˆA ”= ÿ, let k Ø 1 be an integer, and let
0 Æ l Æ 1 be a real number. Denote the ball in Rd with center x and radius fl by BR(x, fl).
Then we have the following characterizations.

(i) k = 1, 0 Æ l < 1: A is of class C1,l and ˆA fl Sk(ˆA) = ÿ, if and only if

meas(ˆA) = 0 and ’x œ ˆA, ÷fl > 0 such that bA œ C1,l(BR(x, fl)).

(ii) k = l = 1 or k = 2, 0 Æ l Æ 1: A is of class Ck,l, if and only if

meas(ˆA) = 0 and ’x œ ˆA, ÷fl > 0 such that bA œ Ck,l(BR(x, fl)).

Moreover, in all cases, ÒbA = n ¶ PˆA in BR(x, fl), where n is the unit exterior normal to A
on ˆA, PˆA denotes the projection onto ˆA, and ˆA is a Ck,l-submanifold of dimension d ≠ 1.

Observe that, due to Theorem 2.90, we can not infer any regularity of A from a Lipschitz
continuous bA.

Let us briefly discuss the connection between the transformation of a domain and the change
in the associated level set function. Since we are mainly interested in situations where the
domains under consideration are at least Lipschitz we restrict ourselves here to this case. Note
that it is possible to handle much more general situations in the level set framework, cf., e.g.,
[Kra15a] and the references cited therein. In the setting of the level set method it is more
natural to work with the flowmap T than the perturbation of the identity · . The reason for
this is revealed by the following deliberation.

Consider a Lipschitz domain œ with associated oriented distance function bœ. Furthermore,
let ⇥ be equal to Ck,1(Rd,Rd) or Ck+1(Rd,Rd) with k Ø 0. For any V œ ⇥ and any T > 0
the associated flow satisfies TV (T ) œ F(⇥). Setting

Õ : [0, T ] ◊Rd æ R, Õ(t, x) := bœ ¶ TV (t)≠1(x),

it holds TV (t)(œ) = {x œ Rd | Õ(t, x) < 0}, and TV (t)(ˆœ) = {x œ Rd | Õ(t, x) = 0}. Thus, Õ
describes a family of level set functions encoding the evolution of œ through TV . Furthermore,
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2.12. Shape optimization on a reference domain

for x
0

œ Rd with bA(x
0

) = c œ R, denote the associated trajectory by x(t) = TV (t)(x
0

).
Obviously it holds Õ(t, x(t)) = c, for all t œ [0, T ]. Di�erentiating this equation with respect
to t yields

ˆtÕ(t, x(t)) + ÒÕ(t, x(t))T V (x(t)) = 0, ’t œ (0, T ).

Indeed, it is a classical result that a solution of the transport equation

ˆtŒ + ÒŒT V = 0 with initial condition Œ(0, x) = bœ(x), (2.37)

where ÒŒT V is meant in the weak sense, satisfies for a.e. x œ Rd and all t œ [0, T ]

Œ(t, x) = bœ ¶ TV (t)≠1(x),

cf. [AC08, Proposition 3.3]. Note that this result is due to the regularity of V . In general
the transport equation may lead to shocks and discontinuous solutions. Special solution
concepts are required, we point out in particular the concept of viscosity solutions, cf. e.g.,
[Gig06, CIL92]. This is also the usual framework to handle the classical level set equation

ˆtÕ(t, x) + F (x)|Õ(t, x)| = 0.

It is obtained by inserting the velocity field V = FÒÕ/|ÒÕ|, which points in normal direction
with respect to ˆœ, into (2.37). The level set equation was already employed in [OS88] and is
very often used to describe the evolution of the level set function. The use of velocity fields
which point in normal direction is motivated by the Hadamard-Zolésio structure theorem, cf.
Theorem 2.78. Note that, in contrast to (2.37), Lipschitz continuity of the speed field F is not
enough to guarantee well-posedness of the level set equation in the classical sense. Instead,
one has to resort to generalized solution concepts like the mentioned viscosity solutions. If
one relaxes the regularity of V in (2.37), or uses the classical level set equation, one can also
describe topological changes of the underlying family of domains.

Summarizing, we can describe domains as sub-zero level sets of suitable functions Õ. In
particular, once a suitable descent direction V œ ⇥ is chosen, it is possible to obtain the
associated family of transformed domains via the solution of the transport equation (2.37).
We employ the level set approach to shape optimization in Chapter 7 to optimize the shape of
a breakwater. In particular, we will describe a numerical implementation of the method.

2.12. Shape optimization on a reference domain

For simplicity we suppose now that our initial domain œ
0

is close to a solution of the shape
optimization problem under consideration. That allows us to restrict our attention to a fixed
reference domain. In many applications this is a valid assumption, since one is tasked to
improve an expert design which is already good. Denote the design boundary by ≈B µ ˆœ

0

.
We specify the setting of this section in the following condition.
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2. Aspects of shape optimization

Assumption 2.9. ⇥̃ is given by Ck+1(Rd,Rd) or Ck,1(Rd,Rd) for some k Ø 0. The set
œ

0

µ Rd is nonempty, bounded, and either closed, or satisfies int œ
0

= œ
0

. The shape functional
j : O⇥(œ

0

) æ R is Hadamard di�erentiable with respect to ⇥ = {U œ ⇥̃ | U = 0 on ˆœ
0

\≈B}.
There exists a solution œú of the shape optimization problem minœœO⇥(œ0)

j(œ) which satisfies

œú œ BO(œ
0

, 1) = {·U (œ
0

) | ·U = Id + U, U œ B⇥(0, 1)}.

The functional jœ0 : B⇥(0, 1) æ R from Definition 2.29 may be used instead of j on BO(œ
0

, 1).
Since we need to consider only transformations of œ

0

we can restrict the tangent space to
⇥(œ

0

) =: ⇥
0

. Thus it su�ces to study the localized problem

min
Uœ⇥0

jœ0(U) s.t. ÎUÎ⇥0
< 1.

In fact, we would like to consider only the displacement of the design boundary as our control.
We suppose that we have a suitable linear extension operator available.

Assumption 2.10. Assumption 2.9 is satisfied. Moreover, U is a Hilbert space of vector fields
≈B æ Rd, and there exists a continuous linear operator T : U æ ⇥

0

satisfying

BO(œ
0

, 1) µ {·(œ
0

) | · = Id + Tu, u œ U}.

Introducing the set of feasible boundary displacements

Ufeas := {u œ U | ÎTuÎ⇥0
< 1},

we can now consider the functional

j : Ufeas æ R, j(u) = jœ0(Tu).

One may extend j to the whole space U by setting j(u) = Œ for all u /œ Ufeas. Clearly the set
Ufeas is open. In particular, j is di�erentiable at every u œ Ufeas. This is due to Theorem 2.31
and the Hadamard di�erentiability of j. The derivative of j is given by

jÕ(u) = T újÕœ0(Tu) œ Uú,

where T ú œ L(⇥ú
0

, Uú) is the dual operator of T . If T ú is not available in closed form it can
be evaluated with the help of some additional adjoint equations. This is briefly described in
Section A.2, see also [BLUU09, Lin12]. If jœ0 is twice continuously Fréchet di�erentiable, then
so is j. Its second derivative can also be obtained via the adjoint approach.

Remark 2.92. In many publications a di�erent approach is chosen to determine the derivatives
of j. It relies on the structure theorem of shape optimization Theorem 2.78, which states
that only the normal component of the boundary displacement a�ects the shape derivative.
In particular, assuming enough smoothness, the shape derivative can be reformulated as a
boundary integral which contains only the normal of the boundary displacement. Thus one
can bypass the evaluation of T ú. However, we favor the described approach via the extension
operator. The reason for this is that the mentioned reformulation of the shape derivative is
not valid for a Lipschitz domain. In particular, while such a reformulation may be possible on
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2.12. Shape optimization on a reference domain

the continuous level, it is usually not justified for a finite element discretization of the problem.
Moreover, the volume expression of the shape derivative requires less regular finite element
functions. In our experience it is also numerically more stable than the Hadamard form. This
assessment is shared in the recent papers [HPS15, LS13].

We know from Assumption 2.9 that there exists a solution of

min
uœU

j(u) (2.38)

in the open set Ufeas, in particular, a necessary optimality condition for a local minimum
is jÕ(uú) = 0. Furthermore, a descent method will not leave Ufeas since j(u) = Œ for all
u /œ Ufeas. Hence, as long as we start with a feasible point, e.g., u

0

= 0, we do not have to
incorporate this constraint explicitly in our optimization algorithm.

Remark 2.93. We restrict ourselves here to the open ball B⇥0(0, 1). More generally one
might consider T : U æ ⇥ and Ufeas := {u œ U | Id + T (u) œ F(⇥)}. Since the set
{U œ ⇥ | ·U œ F(⇥)} is open in ⇥, cf. [MS76, Lemma 2.4], the set Ufeas is also open.

The linesearch descent method specified in Algorithm 2.5, with the two variants globalized
Newton method (Algorithm 2.6), or Newton-type method (Algorithm 2.7), is standard. We
refer, to [HPUU09] for the analysis of these methods in a Banach space framework. Note that
the choice R = A in Algorithm 2.7 corresponds to the classical steepest descent method. In
the execution of Newton’s method the CG method is terminated early if we encounter negative
curvature.

Algorithm 2.5: Monotone linesearch minimization on U

Require: a Riesz isomorphism A : Uú æ U with associated dual norm Î·ÎA≠1

1: set u
0

= 0
2: set the iteration index to k = 0
3: repeat

4: choose a descent direction vk œ U , i.e., ÈjÕ(uk), vkÍUú
,U < 0

5: employ the Armijo rule (cf. Lemma 2.67) to select a step length ‡k > 0
6: set uk+1

= uk + ‡kvk

7: increment k
8: until ÎjÕ(uk)ÎA≠1 = 0

We conclude this section with a few remarks regarding the practical implementation of these
algorithms in the setting of shape optimization.

Remark 2.94. In the algorithms of this section we require the evaluation of j(u), jÕ(u), and
jÕÕ(u). These are determined by the functional jœ0 . In many situations, the derivatives of
jœ0 can be calculated explicitly at every U œ B⇥(0, 1). We describe in Section 2.14 a quite
general technique for this, and exemplify it in Section 3.1 for an elliptic model problem.
See also Section 6.1 for an application to drag minimization in Stokes flow. Utilizing those
expressions one can work on the fixed reference domain. We refer to [KV13], where this is

67



2. Aspects of shape optimization

Algorithm 2.6: Computing a globalized Newton direction

Require: a point u œ U and Riesz isomorphisms A : Uú æ U , R : Uú æ U
1: try to solve Newton’s equation

jÕÕ(u)v = ≠jÕ(u) in Uú

with the CG method (Algorithm 2.4) using the preconditioner R
2: if the CG method exited successfully and

ÈjÕ(u), vÍUú
,U Æ ≠‹ÎjÕ(u)ÎA≠1 ÎvÎA

then

3: return v œ U
4: else

5: return v = ≠AjÕ(u) œ U

Algorithm 2.7: Computing a Newton-type direction

Require: a point u œ U and a Riesz isomorphism R : Uú æ U
1: set v = ≠RjÕ(u) œ U
2: return v œ U

done for an elliptic model problem. However, even in such a ‘simple’ situation the transformed
state equation, as well as the other equations which determine the reduced derivative of the
objective, are highly nonlinear with respect to the displacement U , and require specialized
solution techniques. For more complex state equations, e.g., the instationary Navier-Stokes
equation, this may be very tedious. Fortunately, it is not necessary to do this. Instead, the
objective and its derivatives may be evaluated on the current domain œ = (Id + Tuk)(œ

0

).
With the help of the relations provided by Theorems 2.31 and 2.39, respectively Lemma 2.74,
these can then be transported to the reference domain œ

0

. We explain this in more detail in
Section 3.4.

Remark 2.95. Of course the question arises, whether Newton’s method exhibits fast local
convergence, i.e., whether the Hessian is continuously invertible near the optimum. Compared
with Newton’s method in terms of the domain displacement, cf. Section 2.9, we have now
excluded the pathological situation of a displacement field U which is zero on the boundary.
However, if we allow for free boundary displacements, vector fields which are tangential to
the boundary may still cause problems. We refer to the discussion in Section 2.9.2. One
possible remedy is to consider only normal displacements of the boundary. This restriction
can be easily combined with the approach described in the section at hand. While such a
restriction may yield a positive definite Hessian in the optimum, the coercivity of the Hessian
with respect to U is still not ensured. As it is often the case in PDE- constrained optimization,
it might even be unrealistic in many situations. In Chapter 4 we analyze the Hessian of a
model problem in detail. We conclude that it corresponds roughly to a di�erential operator
of order one, which is positive but not even H1(≈B)-coercive. See also [EHS07] for a related
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2.13. Point-wise geometric constraints and a projected descent method

discussion involving smooth star-shaped domains. Many optimal control problems feature
a term —

2

ÎuÎ2

U , which provides a coercive contribution to the Hessian and is either termed
control cost or Tikhonov regularization. In particular, usage of such a term avoids problems
with tangential displacements. In Section 3.4 we combine normal boundary displacements with
such a regularization term, while in Section 6.3 we work with free boundary displacements
and a similar regularization term.

2.13. Point-wise geometric constraints and a projected descent
method

In this section we start our discussion of possible approaches to incorporate point-wise geometric
constraints into the shape optimization procedure, i.e., constraints of the form

A µ œ, or L fl œ = ÿ.

Here A, L µ Rd describe some region which should be contained in œ, or which is forbidden.
These are point-wise constraints, in the sense that they have to be satisfied for every point
of the admissible domains. In contrast, restrictions on, e.g., the volume, or the boundary
smoothness, are more global constraints which we do not address here. Sometimes the term
geometric constraints is also used to describe constraints like minimum/maximum thickness
of shapes, cf., e.g., [Mic14] and the references therein. However, these are not point-wise
properties of the shape, but local properties.

Point-wise geometric constraints appear frequently in practical applications. They may be
part of the model to obtain a sensible solution. For example, in Chapter 7 we consider a
shape optimization problem involving a harbor breakwater. Naturally, it is not a feasible
solution to completely enclose the harbor basin, hence the harbor basin and the harbor
approach are forbidden regions for the breakwater. In other applications the geometric
constraints may have nothing to do with the physical model described in the shape optimization
problem. Instead, they may be outside restrictions on the available space of the component
to be optimized, or one might, for instance, want to find a body with prescribed volume
and minimum drag which can be stored in a certain box. One can think of many more
examples. Such design constraints have been considered in various publications. However,
usually they are either only considered with regard to some particular parametrization, e.g.,
constraints on the control points of some Bézier curve, or discretization, see for example
[ABV13, BLUU09, BLUU11, Bra11, Lin12, HLA08, NZP04], or they are tacitly assumed to
be inactive in the solution, see for example [Lau00, KV13].

If we consider the admissible family of domains to be transformations of an initial reference
domain, then the point-wise geometric constraints can be considered as constraints on the
transformations. We will pursue this line of reasoning in Section 5.9 for geometric constraints
of the form ·(≈B) µ C, where ≈B is the design part of the boundary, and C µ Rd some closed,
convex set. In this section we consider the more general situation of a family of admissible
domains given by

Oad := {œ œ O | A µ œ, L fl œ = ÿ},
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2. Aspects of shape optimization

for some A, L µ Rd.

A very natural idea for solving the constrained optimization problem

min
œœO

j(œ) s.t. œ œ Oad, (2.39)

is to use appropriate projections. The projected descent method is the prototypical example of
an algorithm which always stays feasible with regard to the constraints. The idea is to take a
step in an appropriately chosen descent direction, and afterwards to project onto the admissible
set. The method is classical in the context of optimization in Hilbert spaces, cf., e.g., [HPUU09,
Section 2.2.2], and has recently also been generalized to the Banach space context, cf. [BR15].
Unfortunately, an extension to the shape optimization framework is not straightforward. It
is in principle possible to define projections in the di�erent metric shape spaces. However,
the practical realization of such a projection with respect to the metric dF is a challenging
topic. We leave this option open and note that it would be a very interesting topic for further
research. On the other hand, realizing the projection, for instance, with respect to the distance
induced by the measure of the symmetric set di�erence or the Hausdor� metric is possible
[Kra15b]. Unfortunately, there is no intrinsic notion of an appropriate general tangent space
available. Hence the computation of derivatives which are compatible with these metrics can
only be done in specific situations, but not in a canonical way.

Due to the mentioned di�culties associated with the classical projected descent method we
propose to use an alternative approach. We choose again O = O⇥(œ

0

) for some initial domain
œ

0

µ Rd and suitable Banach space ⇥. Suppose furthermore that œ
0

satisfies the geometric
constraints. The idea of our iterative scheme is the following. After having determined a
descent direction at the current iterate, we project the descent direction onto a suitable set of
vector fields which keep the deformed domain in the admissible set. The easiest way to ensure
this is to define

Vfeas := {V œ ⇥ | V |AfiL = 0}.

Obviously, if œ œ Oad and V œ Vfeas, then TV (t)(œ) œ Oad for all t > 0. The same is true for
small enough perturbations of the identity.

There is some freedom in defining the descent direction and the associated projection. Note
however, that it is important to derive these two quantities with respect to the same scalar
product. Otherwise one can not guarantee that the projected direction is a descent direction.
There are already easy examples of linear-quadratic constrained optimization problems in two
dimensions showing that the projected Newton direction is not necessarily a descent direction,
cf., e.g., [HPUU09, Example 2.2]. We consider the following setting.

Assumption 2.11. Assumption 2.4 is satisfied. H is a Hilbert space with H Òæ ⇥ densely.
Furthermore, a(·, ·) : H ◊ H æ R is a symmetric, continuous, and coercive bilinear form with
associated norm Î·Îa.

Remark 2.96. (i) We work here with an imbedded Hilbert space instead of the Banach
space ⇥. It might be interesting to see whether one can transfer the results of [BR15] also
to ⇥. Since we have to require ⇥ to be at least C0,1(Rd,Rd) this is not straightforward.
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2.13. Point-wise geometric constraints and a projected descent method

(ii) One may generalize the fixed bilinear form a(·, ·) to a variable one, and retain convergence
of the corresponding algorithm under suitable uniformness requirements, cf., e.g., [BR15].
Thus it is possible to consider second order information in the bilinear form.

Definition 2.97. Let Assumption 2.11 be satisfied, and denote Vad := H fl Vfeas. Define the
projection onto Vad with respect to a(·, ·) as

Pa : H æ H : Pa(U) œ Vad, and a(U ≠ Pa(U), W ) = 0 ’W œ Vad.

For œk œ O we denote with Vk the direction

Vk œ H : a(Vk, V ) = ÈjÕ(œk), V ÍHú
,H ’V œ H.

Remark 2.98. We will in the following refer to Vk as gradient, since it is the Riesz represen-
tative of jÕ(œk) with respect to a(·, ·). In particular ≠Vk is the direction of steepest descent
w.r.t. Î·Îa. Note again, that with a suitable choice of the bilinear form one could also obtain
a Newton-type direction.

Since Vad is a linear subspace the projection can be implemented e�ciently. In fact, instead of
first computing the gradient Vk and then projecting it, we can directly compute the gradient
with respect to the subspace and obtain the same vector field.
Proposition 2.99. [KK15, Lemma 5.5] Let Assumption 2.11 be satisfied and œk œ O. The
element Uk œ Vad satisfies

a(Uk, W ) = ÈjÕ(œk), W ÍHú
,H ’W œ Vad (2.40)

if and only if there holds Uk = Pa(Vk).

Proof. By definition of the gradient it holds for all W œ H
a(Vk ≠ Uk, W ) = a(Vk, W ) ≠ a(Uk, W ) = ÈjÕ(œk), W ÍHú

,H ≠ a(Uk, W ) .

Considering W œ Vad shows the equivalence of the statements.

We have the following result concerning the optimality of the current iterate œk.
Proposition 2.100. [KK15, Lemma 5.6] Let Assumption 2.11 be satisfied and œk œ O.

(i) If Pa(Vk) = 0, then it holds ÈjÕ(œk), W ÍHú
,H = 0 for all W œ Vad.

(ii) If Pa(Vk) ”= 0, then Pa(≠Vk) is a descent direction, i.e.

ÈjÕ(œk), Pa(≠Vk)ÍHú
,H = ≠ ÎPa(≠Vk)Î2

a < 0.

Proof. This follows directly from the definitions, respectively from the above equivalence.

Remark 2.101. Note that Proposition 2.100 does not guarantee us, that œk is a local solution
of (2.39) if Pa(Vk) = 0. We can only expect to obtain a local solution of the restricted problem

min
œœO

j(œ) s.t. œ œ OV
ad

(œ
0

).

In fact, Pa(≠Vk) is an admissible descent direction with respect to the space Vad. Combined
with the Armijo linesearch we obtain global convergence with respect to Vad of the projected
descent method, cf. Theorem 2.66.
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2.14. Shape optimization with a PDE-constraint

So far we did not specify how the shape functional j depends on the shape œ. From now on we
focus on situations where the shape functional involves the solution of some state equation. We
develop the theory for a state equation in abstract Banach spaces, but usually we have in mind
partial di�erential equations (PDEs). Shape optimization problems involving PDEs which
model some physical phenomena are of great practical importance. Thus, there exists a rich
literature, varying from thoroughly investigated mathematical model problems, to heuristically
motivated engineering applications. The solution of the state equation, called the state, is a
dependent variable of the domain. This is similar to the situation in optimal control theory,
where the state depends on some control. In many situations it is advantageous to exploit
this dependency and a lot of the concepts of optimal control have been transferred to shape
optimization. However, additional di�culties occur, since the state space also depends on the
domain.

A shape optimization problem with a state equation can be formulated abstractly as

Find œú œ O and ỹú œ Y(œú) such that

J̃(œú, ỹú) = inf
Ó

J̃(œ, ỹ) | œ œ O, ỹ œ Y(œ), and Ẽ(œ, ỹ) = 0
Ô

, (2.41)

where Y(œ), Z(œ) are Banach spaces for all œ œ O, and

J̃ : {(œ, ỹ) | œ œ O, ỹ œ Y(œ)} æ R,

Ẽ : {(œ, ỹ) | œ œ O, ỹ œ Y(œ)} æ {z̃ | œ œ O, z̃ œ Z(œ)},

with Ẽ(œ, ỹ) œ Z(œ) ’œ œ O. If the state equation

find ỹ œ Y(œ) such that Ẽ(œ, ỹ) = 0 in Z(œ),

admits a unique solution for every œ œ O, we can introduce the design-to-state operator

S̃ : O æ {ỹ | œ œ O, ỹ œ Y(œ)}, with Ẽ(œ, S̃(œ)) := 0 ’œ œ O.

In that case one can study the reduced problem, where the dependence on the state equation is
hidden in the design-to-state operator, i.e., one can introduce the reduced objective functional

j : O æ R, j(œ) := J̃(œ, S̃(œ)).

In order to analyze the reduced objective one needs to study the continuity and di�erentiability
properties of S̃. Let us note, that the existence of a unique design-to-state mapping is not
a necessary condition for the shape di�erentiability of J̃ . In [DZ11, Section 10.5] a saddle-
point formulation of the Lagrangian is used. It is combined with a result concerning the
di�erentiability of a saddle-point with respect to a parameter [DZ11, Theorem 10.5.1], which
goes back to Correa and Seeger. In [LS13, Theorem 2.4] a di�erentiability result without
saddle-point assumptions is presented. Nevertheless, in this thesis we will focus on situations
where a design-to-state mapping is available. In fact, we only considered state equations in
which the state enters linearly. We believe that the reduced approach o�ers more advantages
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2.14. Shape optimization with a PDE-constraint

for such equations. However, in the case of nonlinear state equations, the e�ort of evaluating
the reduced objective increases dramatically, and a Lagrange-Newton method might be better
suited. The connection to optimization problems on manifolds, or rather to optimization over
vector bundles, may point the way to suitable algorithms. A first step in this direction is taken
in [SSW14].

The di�erentiability of J̃ , Ẽ is delicate, as is already evident by the rather cumbersome notation.
The domain, and in the case of Ẽ also the range, of these operators consist of function spaces
which depend again on the shape. In principal there are two methods available to circumvent
this di�culty: the function space embedding approach, and the function space parametrization
approach. In the function space embedding method the variable function spaces are extended
from œ to a larger fixed holdall domain D, and the computations are carried out in the
extended framework. The function space parametrization approach transports functions living
on varying domains to some fixed reference domain, where they can be compared. We will
focus on the latter approach, since it fits nicely into our framework of shape optimization.
For an introduction to the function space embedding technique we refer to [DZ11] and the
references therein.

For convenience of presentation we will focus on transformations given as perturbations of
the identity · . The idea of function space parametrization can also be combined with other
concepts like the flow map T , cf., e.g., [SZ92, DZ11].

2.14.1. Function space parametrization

The idea of function space parametrization is to transport a function ỹ œ Y(œ) defined on
œ = ·(œ

0

) to a function y := ỹ ¶ · , known as pull-back of ỹ, which is defined on a fixed
reference domain œ

0

. Let us formalize this argument. Recall the notation ·U = Id + U .

Assumption 2.12. The set œ
0

µ Rd is nonempty, O = O⇥(œ
0

) for some suitable Banach
space ⇥, and Y(œ), Z(œ) are Banach spaces ’œ œ O. There exists a r > 0, such that for all
U œ B⇥(0, r)

Y(œ
0

) = {ỹ ¶ ·U | ỹ œ Y(·U (œ
0

))}, and Z(œ
0

) = {z ¶ ·U | z̃ œ Z(·U (œ
0

))}.

Furthermore, the mappings

Y(·U (œ
0

)) – ỹ ‘æ y := ỹ ¶ ·U œ Y(œ
0

), and Z(·U (œ
0

)) – z̃ ‘æ z := z̃ ¶ ·U œ Z(œ
0

),

are homeomorphisms.

Remark 2.102. From Lemma 2.9 it follows, that Assumption 2.12 is satisfied for the choice
⇥ = C0,1(Rd,Rd), r = 1, and the domain and range spaces usually encountered in the context
of PDEs, i.e., Lp, W 1,p, W 1,p

0

.

Definition 2.103. Let Assumption 2.12 be satisfied. The transformed state equation operator
is given by

E : B⇥(0, r) ◊ Y(œ
0

) æ Z(œ
0

), E(U, y) := Ẽ(·U (œ
0

), y ¶ ·≠1

U ) ¶ ·U .

73



2. Aspects of shape optimization

The transformed objective functional is given by

J : B⇥(0, r) ◊ Y(œ
0

) æ R, J(U, y) := J̃(·U (œ
0

), y ¶ ·≠1

U ).

Corollary 2.104. Let Assumption 2.12 be satisfied and assume that the design-to-state operator
S̃ is well defined for all ·U (œ

0

), U œ B0(r,). Then the transformed design-to-state operator

S : B⇥(0, r) æ Y(œ
0

), S(U) := S̃(·U (œ
0

)) ¶ ·U ,

satisfies

E(U, S(U)) = 0, ’U œ B⇥(0, r).

Proof. Clearly E(U, S(U)) = Ẽ(·U (œ
0

), S̃(·U (œ
0

)) ¶ ·U ¶ ·≠1

U ) ¶ ·U = 0 ¶ ·U = 0.

We refer to Section 3.1, where the derivation of the transformed state equation operator and
the transformed objective functional is described in detail for an concrete example. The main
ingredient is usually the application of the transformation rule for integrals.

The importance of the transformed quantities J, E, and S is made clear by the following
characterization.

Corollary 2.105. Let Assumption 2.12 be satisfied, and suppose that S̃ is well defined on
BO(œ

0

, r) = {·U (œ
0

) | U œ B⇥(0, r)}. Recall from Definition 2.29 the functional

jœ0 : B⇥(0, Ë) æ R, jœ0(U) := j(·U (œ
0

)).

Then, for all U œ B⇥(0, Ë), it holds

jœ0(U) = J(U, S(U)). (2.42)

Proof. We have jœ0(U) = j(·U (œ
0

)) = J̃(·U (œ
0

), S̃(·U (œ
0

))) = J(U, S(U)).

Thus derivatives of jœ0 can be obtained via J, E, and S. In general one is interested in
di�erentiability of the design-to-state map S̃. Since S̃ is not given with respect to a fixed
domain and range space, there exists no canonical choice for the derivative. As usual in shape
optimization there are di�erent di�erentiability concepts available. First we recall the notion
of a material derivative, cf. [SZ92, Definition 2.71].

Definition 2.106. Let Assumption 2.12 be satisfied and let F̃ : O æ {ỹ | ỹ œ Y(œ)} be some
operator. The transformed operator F (U) := F̃ (·U (œ

0

)) ¶ ·≠1

U maps B⇥(0, r) to Y(œ
0

). We
say that F̃ has a strong (weak) material derivative in the direction V œ ⇥, if the limit

˙̃F (œ
0

; V ) := lim
t√0

1
t

(F (tV ) ≠ F (0)) œ Y(œ
0

),

exists in the strong (weak) topology of the Banach space Y(œ
0

).
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2.14. Shape optimization with a PDE-constraint

Remark 2.107. We stayed here close to [SZ92, Definition 2.71]. Since F is an operator
between the Banach spaces ⇥ and Y(œ

0

) one can also define the Gâteaux derivative of F . We
work in the following with the Gâteaux respectively the Fréchet derivative of the transformed
design-to-state operator S.

It is quite common in shape optimization to consider also the local shape derivative of an
operator F̃ . We state it here for completeness. Let Y(œ

0

) be an appropriate Sobolev space. If
it exists, the local shape derivative of F̃ is defined as the element F̃ Õ(œ

0

; V ) œ Y(œ
0

), that
satisfies

F̃ Õ(œ
0

; V ) = ˙̃F (œ
0

; V ) ≠ DF̃ (œ
0

)V.

It is motivated by the fact that, under appropriate assumptions,

F̃ Õ(œ
0

; V )(x) = lim
t√0

1
t

1
F̃ (·tU (œ

0

)) ≠ F̃ (œ)
2

(x), for x œ int(œ
0

).

The material derivative corresponds to a Lagrangian description of the deformation process,
whereas the local shape derivative corresponds to an Eulerian description, i.e., a stationary
observer.

2.14.2. Di�erentiating the reduced objective functional

Let us now turn to the subject of calculating derivatives of j and jœ0 . Our approach is based on
the identity in Corollary 2.105. Usually, we are only interested in the derivatives of jœ0 , however
recalling the connections between the derivatives of j and jœ0 , we can use the characterization
(2.42) to obtain also the derivatives of j via the derivatives of J, E and S. These are defined
in a standard Banach space framework on ⇥, Y(œ

0

), Z(œ
0

), and the usual results concerning
di�erentiability properties apply. For example, the implicit function theorem provides us with
su�cient conditions for the existence and di�erentiability of S.

Assumption 2.13. Assumption 2.12 is satisfied. Furthermore

(i) E : B⇥(0, r) ◊ Y(œ
0

) æ Z(œ
0

) is continuously Fréchet di�erentiable.

(ii) There exists a y œ Y(œ
0

) such that E(0, y) = 0 and Ey(0, y) œ L(Y(œ
0

), Z(œ
0

)) has a
bounded inverse.

Corollary 2.108. Let Assumption 2.13 be satisfied. Then there exists an open neighborhood
N⇥(0) ◊ NY(œ0)

(y) µ B⇥(0, r) ◊ Y(œ
0

) of (0, y), and a unique operator S : N⇥(0) æ Y(œ
0

),
such that S(0) = y. For all U œ N⇥(0) there exists exactly one y œ NY(œ0)

(y) with E(U, y) =
0, namely y = S(U). Moreover, the operator S : N⇥(0) æ Y(œ

0

) is continuously Fréchet
di�erentiable, with derivative

SÕ(U) = ≠Ey(U, S(U))≠1EU (U, S(U)).

If E is m-times continuously Fréchet di�erentiable, then so is S.

Proof. This is exactly the implicit function theorem, cf., e.g., [HPUU09, Theorem 1.41].
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2. Aspects of shape optimization

We verify for all the concrete examples considered in this thesis that Assumption 2.13 is
satisfied. Note that Ey(0, y) = Ẽy(œ

0

, y), hence continuous invertibility of Ẽy(œ
0

, y) implies
the same for the transformed operator at U = 0. The chain rule yields now di�erentiability of
the functional jœ0 .

Corollary 2.109. Let Assumption 2.13 be satisfied, and J : B⇥(0, Ë) ◊ Y(œ
0

) æ R be contin-
uously Fréchet di�erentiable. Then jœ0 : N⇥(0) æ R is continuously Fréchet di�erentiable. If
E and J are m-times continuously Fréchet di�erentiable, then so is jœ0.

Proof. This follows directly from the characterization jœ0(U) = J(U, S(U)).

Remark 2.110. It is well known that the representation

jÕœ0(0)(U) = JU (U, S(U)) + Jy(U, S(U))SÕ(U),

is not suitable for e�cient numerical implementations of optimization algorithms. Instead, an
equivalent formulation is used which is derived via the adjoint approach. The same holds for
the second derivative of jœ0 . We refer to Section A.1 for a brief recapitulation of the adjoint
approach.
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3. Model problem

In this chapter we consider a model shape optimization problem and demonstrate some of the
results and techniques of Chapter 2. The model problem is inspired by potential flow pressure
matching in inverse aerodynamic design. The task is to find a geometry which matches a given
desired pressure distribution. This is amenable to an approach via potential flow, because the
pressure can be linked via Bernoulli’s law to the velocity of the flow. The potential flow is a
simplified model for a frictionless, irrotational, and incompressible flow, where the gradient
of the potential corresponds to the velocity of the flow [CK08]. Although potential flow fails
to describe many physical properties of real fluids there are still several applications where it
provides a reasonable approximation of the behavior of the flow. Due to its comparatively low
computational costs, it is still in use in early design stage simulations, or as an approximation
in regions far away from boundary layers. Potential flow pressure matching was used to fit a
known good flight characteristic to a new wing design. In practice, aerodynamic panel methods
are employed to simulate the potential flow around a wing or airplane, cf. [KP91]. Problems
with a potential flow state equation are often used as a test case in shape optimization, cf.,
e.g., [Pir82, Ang83, Pir84, But93, MP01, ESSI09].

We consider the following shape optimization problem in two dimensions

min
œœO,ỹœY(œ)

1
2

⁄

≈
B

(ÒỹT t ≠ pd)2 dS

subject to the potential flow equation

≠�ỹ = 0 in œ

ÒỹT n = 0 on ≈B

ÒỹT n = 0 on ≈N

ỹ = y
0

on ≈D,

where the boundary of the flow domain decomposes into ˆœ = ≈B fi ≈N fi ≈D. The design
boundary is denoted by ≈B, ≈N is some far away boundary, and ≈D contains the inflow and
outflow boundaries. Furthermore, n denotes the unit (outward) normal, and t the tangent
vector oriented in flow direction. Finally, y

0

induces some potential di�erence between in- and
outflow and pd encodes the desired pressure distribution. Figure 3.1 shows two possible typical
configurations.
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(a) A body immersed in a potential flow (b) Potential flow through a channel

Figure 3.1.: Two possible configurations in potential flow pressure matching

This chapter is structured as follows. We begin with specifying the problem setting in more
detail, before showing how the function space parametrization approach can be employed
to obtain shape derivatives of the reduced cost functional. To this end we characterize
the functional jœ in Section 3.1. In Section 3.2 we introduce the necessary ingredients for
deriving the shape derivatives in Section 3.3. At the end of the chapter we discuss a possible
implementation of the model problem and present numerical experiments.

3.1. Function space parametrization

Recall the general shape optimization problem with state equation (2.41):

Find œú œ O and ỹú œ Y(œú) such that

J̃(œú, ỹú) = inf
Ó

J̃(œ, ỹ) | œ œ O, ỹ œ Y(œ), and Ẽ(œ, ỹ) = 0
Ô

.

We will embed the potential flow pressure matching problem in this framework and use then
the function space parametrization approach, see Section 2.14. Let us specify the problem
setting of this chapter in detail.

We consider a bounded, nonempty Lipschitz domain œ
0

µ R2. Only a part of the boundary of
œ

0

is allowed to be deformed. It is denoted by ≈B . The other two parts, ≈D and ≈N are fixed.
Hence, given a disjoint decomposition ˆœ

0

= ≈B fi ≈N fi ≈D, we set

O := {·(œ
0

) | · œ F(B), ·(≈D) = ≈D, ·(≈N ) = ≈N }
= {·(œ

0

) | · œ F(⇥)},

where B = C1(R2,R2), and ⇥ := {U œ B | U = 0 on ≈D fi ≈N }. For all œ œ O the design part
of the boundary ˆœ is given by ·(≈B) = ˆœ\(≈D fi ≈N ). For every œ œ O we define the space
H1

D(œ) as the space of all functions ỹ œ H1(œ) with trace tr(ỹ) = 0 on ≈D. Note that, due to
B Òæ C1(R2,R2), the images of œ

0

are again Lipschitz domains, so the trace is well defined.
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3.1. Function space parametrization

We set Y(œ) = H1

D(œ) and Z(œ) = Y(œ)ú. Given some smooth extension ỹ
0

of the Dirichlet
datum y

0

onto œ, we introduce

ÈẼ(œ, ỹ), Ï̃ÍY(œ)

ú
,Y(œ)

:= (Ò(ỹ + ỹ
0

), ÒÏ̃)
L

2
(œ)

for ỹ œ Y(œ), Ï̃ œ Y(œ).

Hence, the state equation in variational form can be written as

find ỹ œ Y(œ) such that ÈẼ(œ, ỹ), Ï̃ÍY(œ)

ú
,Y(œ)

= 0 ’Ï̃ œ Y(œ).

Finally, we arrive at the setting of (2.41) by choosing

J̃(œ, ỹ) := 1
2

⁄

ˆœ\(≈
D

fi≈
N

)

1
tT Ò(ỹ + ỹ

0

) ≠ pd

2
2

dS, (3.1)

where pd œ L2(≈B) encodes the desired pressure distribution which is transformation invariant,
i.e., pd(·(x)) = pd(x) for all x œ ≈B. In fact, it is reasonable that the desired pressure
distribution does not depend on the shape of the design boundary. In the concrete example
later in this chapter this is achieved by choosing a function pd which depends only on the
x

1

-coordinate, and is constant in x
2

-direction.

For every œ œ O the state equation admits a unique solution, hence we can define a design-to-
state operator S̃ such that Ẽ(œ, S̃(œ)) = 0. The reduced objective is given by

j(œ) := J̃(œ, S̃(œ)).

Let us now demonstrate how one can compute the derivatives of the shape functional j at some
œref œ O. As proposed in Section 2.14, we will do this via the localized functional jœ

ref

. Once
we have the derivatives of jœ

ref

available, we can use the results from Theorems 2.31 and 2.39
to compute the shape derivatives of j. However, as discussed in Section 2.8, 2.9 and 2.11, from
an algorithmic point of view we are mainly interested in the derivatives of jœ

ref

. Recall from
Corollary 2.105 that there exists an r > 0 such that

jœ
ref

(U) = J(U, S(U)) for all U œ B⇥(0, r),

if the function space parametrization approach is applicable. In fact, due to Lemma 2.9, the
space Y := Y(œref ) is equal to {ỹ ¶ · | ỹ œ Y(·(œref ))}, and the mapping

Y(·(œref )) – ỹ ‘æ y := ỹ ¶ · œ Y

is a homeomorphism for all · œ F(⇥). We now transform Ẽ and J̃ to œref as described
in Definition 2.103. Let us circumstantiate this process in detail for the state equation.
The transformed obejctive can be obtained with an analogous procedure. We employ the
transformation rule for integrals, i.e.,

⁄

·(œ
ref

)

f̃(x̃) dx̃ =
⁄

œ
ref

f̃(·(x))|det(D·(x))| dx.

Since we only work with transformations close to the identity, i.e., Î· ≠ IdÎ⇥ < 1, it holds
det(D·) > 0, and we can drop the absolute value in the following. Furthermore, we deduce
from y = ỹ ¶ · , that

yÕ(x) = ỹÕ(·(x))D·(x) ∆ Òỹ(x̃) = D·≠T (·≠1(x̃))Òy(·≠1(x̃)),
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and similarly for Ï = Ï̃ ¶ · and y
0

= ỹ
0

¶ · . We conclude

(Ò(ỹ + ỹ
0

), ÒÏ̃)
L

2
(·(œ

ref

))

=
1
(D·≠T ¶ ·≠1)Ò(y ¶ ·≠1 + y

0

¶ ·≠1), (D·≠T ¶ ·≠1)Ò(Ï ¶ ·≠1)
2

L
2
(·(œ

ref

)

=
1
D·≠T Ò(y + y

0

), D·≠T ÒÏ det(D·)
2

L
2
(œ

ref

)

.

Hence, we study the transformed state equation operator

E : B⇥(0, 1) ◊ Y æ Yú, ÈE(U, y), ÏÍYú
,Y =

1
det(D·U )D·≠1

U D·≠T
U Ò(y + y

0

), ÒÏ
2

L
2
(œ

ref

)

.

For J̃ we use the transformation rule for boundary integrals, and note that, if t is the tangent
vector to ≈B, then the tangent vector to ·(≈B) is given by |D· t |≠1D· t . We obtain the
transformed objective functional

J : B⇥(0, 1) ◊ Y æ R, J(U, y) = 1
2

⁄

≈
B

A
tT Ò(y + y

0

)
|D·U t | ≠ pd

B
2

|D·U t | dS,

where ≈B now denotes the design boundary of œref .

From the results of Section 2.14 we conclude that the transformed design-to-state operator
S(U) = S̃(·U (œref )) ¶ ·U satisfies E(U, S(U)) = 0, and that

jœ
ref

(U) = J(U, S(U)).

With the help of the implicit function theorem we can now derive a formula for the derivatives
of jœ

ref

. For this we need the partial derivatives of E and J .

3.2. Partial derivatives

Recall the di�erentiation rules of Lemma 2.84, which we restate here for the convenience of
the reader.

Lemma 3.1. (i) The mapping

W 1,Œ(Rd,Rd) æ LŒ(Rd) : U ‘æ det(D(Id + U)) = det(D·U )

is di�erentiable and the derivative in direction V œ W 1,Œ(Rd,Rd) is given by

tr(D·≠1

U DV ) det(D·U ).

(ii) The mapping

W 1,Œ(Rd,Rd) æ LŒ(Rd,Rd◊d) : U ‘æ D(Id + U)≠1 = D·≠1

U

is di�erentiable and the derivative in direction V œ W 1,Œ(Rd,Rd) is given by

≠D·≠1

U DV D·≠1

U .
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3.2. Partial derivatives

By the above lemma the derivative of the mapping

U ‘æ A(U) := D·≠1

U D·≠T
U det(D·U ) (3.2)

in the direction V is given by

MV (U) := D·≠1

U

1
≠DV D·≠1

U ≠ D·≠T
U DV T + I tr(D·≠1

U DV )
2

D·≠T
U det(D·U ), (3.3)

where I denotes the identity matrix in Rd◊d. For a clear presentation, we will employ in the
following formulas the short notation

ÏúE(U, y) := ÈE(U, y), ÏÍYú
,Y .

Corollary 3.2. Consider the operator

E : B⇥(0, 1) ◊ Y æ Yú, ÈE(U, y), ÏÍYú
,Y = ÏúE(U, y) = (A(U)Ò(y + y

0

), ÒÏ)
L

2
(œ

ref

)

.

The operator E is twice continuously Fréchet di�erentiable. The partial derivatives in the
directions z œ Y, respectively V œ ⇥, are given by

ÏúEy(U, y)z = (A(U)Òz, ÒÏ)
L

2
(œ

ref

)

,

ÏúEU (U, y)V =
1
MV (U)Ò(y + y

0

), ÒÏ
2

L
2
(œ

ref

)

.

The partial second derivatives in the directions z œ Y and V, W œ ⇥ are given by

ÏúEyy(U, y) = 0,

ÏúEUy(U, y)(V, z) =
1
MV (U)Òz, ÒÏ

2

L
2
(œ

ref

)

,

ÏúEyU (U, y)(z, V ) = ÏúEUy(U, y)(V, z),

and

ÏúEUU (U, y)(V, W ) = ≠
1
D·≠1

U DWMV (U)Ò(y + y
0

), ÒÏ
2

L
2
(œ

ref

)

≠
1
MV (U)DW T D·≠T

U Ò(y + y
0

), ÒÏ
2

L
2
(œ

ref

)

+
1
MV (U) tr(D·≠1

U DW )Ò(y + y
0

), ÒÏ
2

L
2
(œ

ref

)

+
1
D·≠1

U DV D·≠1

U DWA(U)Ò(y + y
0

), ÒÏ
2

L
2
(œ

ref

)

+
1
A(U)DW T D·≠T

U DV T D·≠T
U Ò(y + y

0

), ÒÏ
2

L
2
(œ

ref

)

≠
1
A(U) tr(D·≠1

U DWD·≠1

U DV )Ò(y + y
0

), ÒÏ
2

L
2
(œ

ref

)

.

Proof. With Lemma 3.1 the di�erentiability of E is clear, and the first derivatives can be
calculated in a straightforward manner. Since these are again composed of di�erentiable
operators the second derivatives can be obtained by the chain rule.
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Usually we are only interested in the derivatives at U = 0. It holds

A(0) = I, and
MV (0) = (I div(V ) ≠ DV ≠ DV T ),

hence the above expressions simplify to

ÏúEy(0, y)z = (Òz, ÒÏ)
L

2
(œ

ref

)

ÏúEU (0, y)V =
1
(I div(V ) ≠ DV ≠ DV T )Ò(y + y

0

), ÒÏ
2

L
2
(œ

ref

)

ÏúEUy(0, y)(V, z) =
1
(I div(V ) ≠ DV ≠ DV T )Òz, ÒÏ

2

L
2
(œ

ref

)

,

and

ÏúEUU (0, y)(V, W ) = ≠
1
DW (I div(V ) ≠ DV ≠ DV T )Ò(y + y

0

), ÒÏ
2

L
2
(œ

ref

)

≠
1
(I div(V ) ≠ DV ≠ DV T )DW T Ò(y + y

0

), ÒÏ
2

L
2
(œ

ref

)

+
1
(I div(V ) ≠ DV ≠ DV T ) div(W )Ò(y + y

0

), ÒÏ
2

L
2
(œ

ref

)

+ (DV DWÒ(y + y
0

), ÒÏ)
L

2
(œ

ref

)

+
1
DW T DV T Ò(y + y

0

), ÒÏ
2

L
2
(œ

ref

)

≠ (tr(DWDV )Ò(y + y
0

), ÒÏ)
L

2
(œ

ref

)

.

Rewriting the objective as

J(U, y) = 1
2

⁄

≈
B

A
tT Ò(y + y

0

)
|D·U t | ≠ pd

B
2

|D·U t | dS

= 1
2

⁄

≈
B

1
tT Ò(y + y

0

)
2

2

(tT D·T
U D·U t)≠1/2 dS

≠ 1
2

⁄

≈
B

2tT Ò(y + y
0

)pd dS

+ 1
2

⁄

≈
B

p2

d(tT D·T
U D·U t)1/2 dS,

the following result is obtained by straightforward calculations.

Corollary 3.3. Consider the functional

J : B⇥(0, 1) ◊ Y æ R, J(U, y) = 1
2

⁄

≈
B

A
tT Ò(y + y

0

)
|D·U t | ≠ pd

B
2

|D·U t | dS.
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3.2. Partial derivatives

The functional J is twice continuously Fréchet di�erentiable. The partial derivatives in the
directions z œ Y, respectively V œ ⇥, are given by

ÈJy(U, y), zÍYú
,Y =

⁄

≈
B

1
tT Ò(y + y

0

)
2 1

tT Òz
2

(tT D·T
U D·U t)≠1/2 ≠

1
tT Òz

2
pd dS,

ÈJU (U, y), V Í⇥ú
,⇥ = ≠ 1

2

⁄

≈
B

1
tT Ò(y + y

0

)
2

2

(tT D·T
U D·U t)≠3/2(tT D·T

U DV t) dS

+ 1
2

⁄

≈
B

p2

d(tT D·T
U D·U t)≠1/2(tT D·T

U DV t) dS.

The partial second derivatives in the directions z, Ï œ Y and V, W œ ⇥ are given by

ÈJyy(U, y)z, ÏÍYú
,Y =

⁄

≈
B

1
tT ÒÏ

2 1
tT Òz

2
(tT D·T

U D·U t)≠1/2 dS,

ÈJUy(U, y)U, zÍYú
,Y = ≠

⁄

≈
B

1
tT Ò(y + y

0

)
2 1

tT Òz
2

(tT D·T
U D·U t)≠3/2(tT D·T

U DV t) dS,

ÈJyU (U, y)z, V Í⇥ú
,⇥ = ÈJUy(U, y)U, zÍYú

,Y ,

and

ÈJUU (U, y)V, W Í⇥ú
,⇥ =

+ 3
2

⁄

≈
B

1
tT Ò(y + y

0

)
2

2

(tT D·T
U D·U t)≠5/2(tT D·T

U DV t)(tT D·T
U DW t) dS

≠ 1
2

⁄

≈
B

1
tT Ò(y + y

0

)
2

2

(tT D·T
U D·U t)≠3/2(tT DW T DV t) dS

≠ 1
2

⁄

≈
B

p2

d(tT D·T
U D·U t)≠3/2(tT D·T

U DV t)(tT D·T
U DW t) dS

+ 1
2

⁄

≈
B

p2

d(tT D·T
U D·U t)≠1/2(tT DW T DV t) dS.

Proof. Di�erentiability follows from Lemma 3.1. The stated formulas may be verified by
straightforward calculations.

These expressions also simplify at U = 0. It holds

ÈJy(0, y), zÍYú
,Y =

⁄

≈
B

11
tT Ò(y + y

0

)
2

≠ pd

2 1
tT Òz

2
dS,

ÈJU (0, y), V Í⇥ú
,⇥ = 1

2

⁄

≈
B

3
p2

d ≠
1

tT Ò(y + y
0

)
2

2

4
(tT DV t) dS,

ÈJyy(0, y)z, ÏÍYú
,Y =

⁄

≈
B

1
tT ÒÏ

2 1
tT Òz

2
dS,

ÈJUy(0, y)U, zÍYú
,Y =

⁄

≈
B

1
tT Ò(y + y

0

)
2 1

tT Òz
2

(tT DV t) dS,
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and

ÈJUU (0, y)V, W Í⇥ú
,⇥ = + 3

2

⁄

≈
B

1
tT Ò(y + y

0

)
2

2

(tT DV t)(tT DW t) dS

≠ 1
2

⁄

≈
B

1
tT Ò(y + y

0

)
2

2

(tT DW T DV t) dS

≠ 1
2

⁄

≈
B

p2

d(tT DV t)(tT DW t) dS

+ 1
2

⁄

≈
B

p2

d(tT DW T DV t) dS.

3.3. Shape derivatives

Recall that we would like to employ the implicit function theorem to show di�erentiability of
S(U) and hence of

jœ
ref

(U) = J(U, S(U)).

The implicit function theorem requires Ey(U, y) œ L(Y, Yú) to be continuously invertible, cf.
Section 2.14.2. We verify this now with the help of Lax-Milgram.

Lemma 3.4. For every U œ B⇥(0, 1) the linear operator Ey(U, y) œ L(Y, Z) is continuously
invertible.

Proof. Let U œ B⇥(0, 1) be arbitrary but fixed. Recall Z = Yú. Define the bilinear form

b(·, ·) : Y ◊ Y æ R, b(z, Ï) := ÏúEy(U, y)z = (A(U)Òz, ÒÏ)
L

2
(œ

ref

)

.

Since B = C1(R2,R2) this is a bounded and coercive bilinear form. Hence, for any f œ Yú

Lax-Milgram provides us with a unique solution z œ Y of the variational equation

b(z, Ï) = Èf, ÏÍYú
,Y ’Ï œ Y.

Thus, the linear map f ‘æ z is the inverse of Ey(U, y). Boundedness of the inverse operator is
again provided by Lax-Milgram.

Hence, all prerequisites of the implicit function theorem are satisfied and we obtain the
announced result.

Corollary 3.5. The functional

jœ
ref

: B⇥(0, 1) æ R, jœ
ref

(U) = J(U, S(U))

is twice continuously Fréchet di�erentiable.

Proof. Combining Corollaries 3.2 and 3.3 with Lemma 3.4, we see that all the conditions of
Corollary 2.109 are satisfied which provides the claimed result.
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3.3. Shape derivatives

We conclude this section by showing how the derivatives of jœ
ref

can be computed. For this we
choose the sensitivity approach where the derivatives of S are used explicitly. Note that the
sensitivity approach is not recommended for practical implementations. Instead, the equivalent
representation of the derivatives via the adjoint approach is usually to be preferred. The
adjoint approach is briefly recapitulated in Section A.1, we refer to [HPUU09, Section 1.6]
for a more detailed discussion of the two approaches and their merits. We present here the
sensitivity approach since we will use it in Chapter 4 to derive the symbol of the Hessian for
our model problem.

By the chain rule the derivatives of jœ
ref

in the directions V, W œ ⇥ are given by

ÈjÕœ
ref

(U), V Í⇥ú
,⇥ = ÈJU (U, S(U)), V Í⇥ú

,⇥ + ÈJy(U, S(U)), SÕ(U)V ÍYú
,Y ,

ÈjÕÕœ
ref

(U)V, W Í⇥ú
,⇥ = ÈJUU (U, S(U))V, W Í⇥ú

,⇥

+ ÈJUy(U, S(U))V, SÕ(U)W ÍYú
,Y

+ ÈJyU (U, S(U))SÕ(U)V, W Í⇥ú
,⇥

+ ÈJyy(U, S(U))SÕ(U)V, SÕ(U)W ÍYú
,Y

+ ÈJy(U, S(U)), SÕÕ(U)(V, W )ÍYú
,Y .

The derivatives of S are given by the implicit function theorem, cf. Corollary 2.108. Let us
demonstrate this for the choice U = 0.

Definition 3.6. For every V œ ⇥ we denote by zV œ Y the solution of

ÈEy(0, S(0))z, ÏÍYú
,Y = ≠ÈEU (0, S(0))V, ÏÍYú

,Y ’Ï œ Y
i.e., (Òz, ÒÏ)

L
2
(œ

ref

)

= ≠
1
(I div(V ) ≠ DV ≠ DV T )Ò(S(0) + y

0

), ÒÏ
2

L
2
(œ

ref

)

’Ï œ Y.

(3.4)

This equation is known as the linearized state equation and it holds

zV = SÕ(0)V.

Definition 3.7. For all V, W œ ⇥ we denote by µV W œ Y the solution of

ÈEy(0, S(0))µ, ÏÍYú
,Y = ≠ÈEUU (0, S(0))(V, W ), ÏÍYú

,Y
≠ÈEUy(0, S(0))(V, zW ), ÏÍYú

,Y
≠ÈEyU (0, S(0))(zV , W ), ÏÍYú

,Y

(3.5)
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for all Ï œ Y. Inserting the concrete formulas yields

(Òµ, ÒÏ)
L

2
(œ

ref

)

= +
1
DW (I div(V ) ≠ DV ≠ DV T )Ò(S(0) + y

0

), ÒÏ
2

L
2
(œ

ref

)

+
1
(I div(V ) ≠ DV ≠ DV T )DW T Ò(S(0) + y

0

), ÒÏ
2

L
2
(œ

ref

)

≠
1
MV (U) div(W )Ò(S(0) + y

0

), ÒÏ
2

L
2
(œ

ref

)

≠ (DV DWÒ(S(0) + y
0

), ÒÏ)
L

2
(œ

ref

)

≠
1
DW T DV T Ò(S(0) + y

0

), ÒÏ
2

L
2
(œ

ref

)

+ (tr(DWDV )Ò(S(0) + y
0

), ÒÏ)
L

2
(œ

ref

)

≠
1
(I div(V ) ≠ DV ≠ DV T )ÒzW , ÒÏ

2

L
2
(œ

ref

)

≠
1
(I div(W ) ≠ DW ≠ DW T )ÒzV , ÒÏ

2

L
2
(œ

ref

)

for all Ï œ Y.

The solution satisfies

µV W = SÕÕ(0)(V, W ).

Hence, if we want to evaluate the derivatives of jœ
ref

(0) in directions V, W œ ⇥, we can do
this by solving (3.4), (3.5) for zV , zW , and µV W and inserting these into the formulas above.
For example, it holds

ÈjÕ(œref ), V Í⇥ú
,⇥ = ÈjÕœ

ref

(0), V Í⇥ú
,⇥ = 1

2

⁄

≈
B

3
p2

d ≠
1

tT Ò(S(0) + y
0

)
2

2

4
(tT DV t) dS

+
⁄

≈
B

11
tT Ò(S(0) + y

0

)
2

≠ pd

2 1
tT ÒzV

2
dS.

Remark 3.8. (i) Note that for U = 0 the linearized state equation, as well as the equation
for the second derivative of S, are again Poisson equations, and can be solved with
standard methods. This is a general property of the function space parametrization
approach. For every operator Ẽ(œ, ỹ), the linearized state equation, as well as the
adjoint equation, and the equations characterizing higher order derivatives at U = 0,
correspond to the standard linearized state equation, adjoint equation, etc., but with
a nonstandard right-hand side. This has the advantage that one can use established
and e�cient solution methods to solve these equations. See [BLUU09, BLUU11] for an
application to shape optimization with the instationary Navier-Stokes equation.

(ii) It is also possible to calculate SÕ(U) and SÕÕ(U) if U ”= 0, but for this one has to
develop a specialized solution method. We refer to [KV13] where this is done for an
elliptic equation. For more complex state equations, e.g., the Navier-Stokes equation,
this approach becomes very tedious. Fortunately it is not necessary to do this. In the
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framework of Section 2.8 and 2.9, one only needs to evaluate jœ
k

and its derivatives at
0 in every iteration of the proposed optimization methods. Even if one is interested in
these quantities at U ”= 0, they can be conveniently obtained by working on ·U (œk) and
using the relations provided by Theorems 2.31 and 2.39, respectively by Lemma 2.74. In
the next section we employ the framework of Section 2.11 and 2.12, and describe this
technique in more detail.

3.4. Numerical examples

Let us conclude this chapter with some numerical experiments. We consider the situation in
Figure 3.1(b), i.e., the initial domain œ

0

is a rectangle and we are allowed to modify the upper
boundary denoted by ≈B . Furthermore, the height of the boundaries on the left and right side
can also vary. In this setting it seems reasonable to parametrize the domains via the vertical
displacement of the upper boundary. It is convenient to work here with a fixed reference
domain œref = œ

0

and vertical boundary displacements u in a suitable Hilbert space U of
functions defined on ≈B . This is exactly the framework of Section 2.11. Note that in this simple
example one could easily extend the boundary displacements linearly to the whole domain.
However, we want to demonstrate here a setting which works in more general situations, and
extend the boundary displacement via linear elasticity to a corresponding domain displacement
and an associated transformation of œ

0

. Recall that Theorem 2.87 provides the existence of
a suitable extension operator from the space of boundary displacements U := H2(≈B) to ⇥.
The setting of Figure 3.1(a) is also covered if the immersed body, i.e., the boundary ≈B, is
smooth, since then the only interior angles are the ones in the corner of the rectangle.

In Section 2.12 we described a monotone linesearch descent method (Algorithm 2.5) for the
solution of

min
uœU

j(u), where j : U æ R fi Œ, j(u) =
I
jœ

ref

(Tu) if u œ Ufeas,

Œ else.

The crucial aspect is of course the selection of the descent direction vk. One has di�erent
possibilities here. We choose either the classical Newton direction (Algorithm 2.6), or a
Newton-type direction (Algorithm 2.7).

A special feature of our method is that we compute the state, the reduced objective j, and its
derivatives on the current, physical domain œk. With the help of the formulas in Theorem 2.31
and Lemma 2.74 the derivatives are then transported back to œ

0

, and used to determine the
derivatives of j. We have detailed in Algorithms 3.1 and 3.2 how to evaluate j(u) and jÕ(u) by
combining Section A.1 and A.2. Similarly, one can evaluate jÕÕ(u)v. Note that each application
of T and T ú corresponds to a solve of the linear elasticity equation. The specific formulas for
J , E, and their derivatives are given in Corollaries 3.2 and 3.3.

We implemented the proposed method in MATLAB [TM15]. The discretization uses piecewise
linear finite elements to approximate Y, as well as ⇥ and U . In this setting optimization
and discretization commute, cf. [BLUU09]. We obtain, up to computational accuracy, exact
discrete derivatives by employing the continuous adjoint approach. In particular, we can check
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3. Model problem

Algorithm 3.1: Evaluating j(u)

Require: u œ Ufeas

1: set U = Tu œ ⇥
0

2: set œ = ·U (œ
0

)
3: solve the state equation Ẽ(œ, ỹ) = 0 to obtain ỹ œ Y(œ)
4: return j(u) = J̃(œ, ỹ)

Algorithm 3.2: Evaluating jÕ(u)

Require: u œ Ufeas

1: set U = Tu œ ⇥
2: set œ = ·U (œ

0

)
3: solve the state equation Ẽ(œ, ỹ) = 0 to obtain ỹ œ Y(œ)
4: solve the adjont equation p̃úẼỹ(œ, ỹ) = 0 to obtain p̃ œ Z(œ)
5: evaluate jÕœ(0) = JU (0, ỹ) + p̃úEU (0, ỹ) œ ⇥(œ)ú

6: transport the derivative to obtain jÕœ0(U) as in Theorem 2.31, i.e.,

ÈjÕœ0(U), V Í⇥ú
0,⇥0

= ÈjÕœ(0), V ¶ ·≠1

U Í⇥(œ)

ú
,⇥(œ)

7: return jÕ(u) = T újÕœ0(U) œ Uú

the correct implementation of derivatives via finite di�erences. Furthermore, this ensures that
the coe�cient vectors of the discrete derivatives jÕœ0,h(Uh) and jÕœ,h(0) are equal, i.e., the step
6 in Algorithm 3.2 does not need to be executed explicitly. Note that, although we choose
U = H2(≈B) in theory, we do not employ a conforming discretization of H2(≈B). Instead, we
experimented with di�erent choices for A. We use either

(v, u)A = (v, u)
L

2
(≈

B

)

+ w(vÕ, uÕ)
L

2
(≈

B

)

, or

(v, u)A ¥ (v, u)
L

2
(≈

B

)

+ w(vÕÕ, uÕÕ)
L

2
(≈

B

)

,

where w > 0 is a weighting parameter. The bi-Laplacian scalar product (vÕÕ, uÕÕ)
L

2
(≈

B

)

is
approximated by KM≠1K. Here K is the sti�ness matrix and M the lumped mass matrix.
If not stated otherwise we chose the weighted bi-Laplacian scalar product with w = 1. In
Section 4.5 we discuss di�erent Riesz-isomorphisms R for Algorithms 2.6 and 2.6, and compare
them for both scalar products and di�erent weights.

The pure pressure matching objective (3.1) without additional constraints does in general
not guarantee uniqueness or even existence of a solution of the optimization problem. It is
immediately clear that a non-physical pd will cause problems. But even an exactly realizable
pressure distribution may admit infinitely many global minimizers. Consider, for example, a
straight channel of arbitrary height and fixed length L. Suppose that the potential di�erence
between left- and right-hand side is P . The potential induces a flow parallel to the channel
with velocity v = P/L, independent of the height of the channel, i.e., if this is the desired
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velocity then there are infinitely many global minimizers. Another issue is that coercivity
of the Hessian with respect to U is not ensured, cf. Remark 2.95. In fact, as we will see in
Chapter 4, for the current model problem the Hessian resembles rather a di�erential operator
of order one which is not H1-coercive. For these reasons, we add a cost term to the objective
which promotes smooth solutions close to the initial domain, i.e., we consider

j(u) = j̃(u) + —

2 ÎuÎ2

A .

Here j̃ denotes the reduced tracking term functional we studied so far. If the existence of a
solution is guaranteed by additional constraints, the cost term can be viewed as a Tikhonov
regularization, and the parameter — can be driven to 0 in a continuation scheme. Tikhonov
regularization is a standard technique in optimization with partial di�erential equations and
inverse problems. E�cient algorithms iteratively adapt the regularization term along with
the discretization, cf., e.g., [Kir14]. In Section 5.10 we investigate the addition of geometric
constraints to the problem setting and present an example where — is iteratively decreased
in the progression of a path following scheme. In the mean time, if not stated otherwise, we
choose — = 10≠2 fixed.

Let us start with an example demonstrating the features of the employed algorithm. The
initial domain is a 3-by-1 rectangle, and the outside potential induces a parallel flow with
velocity one. The finite element mesh consists of 9221 nodes. The termination tolerance for
the norm of the gradient is set to TOL = 10≠6.

Example 3.1. In the first example the desired tangential velocity profile pd increases linearly
from 3

4

to 5

4

. Table 3.1 recounts the iteration history of the globalized Newton method. The
first column shows the iteration count, the second the objective value of the current iterate,
the third the value of the tracking term, and the fourth column the norm of the gradient. The
fifth column indicates whether the Newton step was accepted (Newton), or if the negative
gradient was used as a search direction instead (gradient). The last column shows the number
of iterations of the CG method. We observe fast local convergence of Newton’s method. The
final domain is depicted in Figure 3.2. For better visibility of the mesh the result of a run
with coarser discretization is displayed.

Table 3.1.: Detailed history of Newton’s method for example 3.1
k j(uk) j̃(uk)

..jÕ(uk)
..

A≠1 step # CG iter

0 3.12·10≠2 3.12·10≠2 2.24·10≠1 Newton 5
1 7.03·10≠3 1.49·10≠3 8.30·10≠2 Newton 7
2 3.02·10≠3 1.38·10≠3 6.09·10≠2 Newton 5
3 9.77·10≠4 1.30·10≠4 1.56·10≠2 Newton 5
4 5.21·10≠4 7.24·10≠5 4.91·10≠3 Newton 5
5 4.99·10≠4 7.62·10≠5 1.97·10≠4 Newton 5
6 4.99·10≠4 7.69·10≠5 5.64·10≠7 - -

If we employ a gradient descent strategy instead of Newton’s method, 568 iterations are
required to achieve a norm of the gradient of 9.99·10≠7. Although each iteration of the steepest
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0 1.5 3
0

0.5

1

Figure 3.2.: The final domain of Example 3.1

descent method is much cheaper than in Newton’s method, the overall runtime is still more
than nine times as long as for Newton’s method.

In Table 3.2 we compare the results of Newton’s method for di�erent mesh sizes. Clearly, a
mesh-independent behavior can be observed. Finally, we present in Table 3.3 a comparison
of the results for di�erent choices of the A-scalar product and the cost parameter —. While
the e�ort of solving Newton’s equation increases with decreasing w and — values, the overall
behavior of the algorithm is not a�ected.

Table 3.2.: Comparison of di�erent mesh sizes for Example 3.1
# nodes j(uk) j̃(uk)

..jÕ(uk)
..

A≠1 # iter # CG iter total

4941 4.98·10≠4 7.69·10≠5 5.61·10≠7 6 32
9221 4.98·10≠4 7.69·10≠5 5.64·10≠7 6 32
19521 4.98·10≠4 7.69·10≠5 5.49·10≠7 6 32
50601 4.98·10≠4 7.69·10≠5 5.42·10≠7 6 31

Let us conclude this section with two further examples.

Example 3.2. In the second example large deformations of the initial domain can be observed.
The desired velocity profile is given by

pd(x
1

) = 1 + 1
4 arctan (4x

1

≠ 3) ,

i.e., a steep increase around x
1

= 3

4

which levels out later. Table 3.4 recounts the iteration
history of the globalized Newton method. The first column shows the iteration count, the
second the objective value of the current iterate, the third the value of the tracking term, and
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Table 3.3.: Comparison of di�erent choices for A and — for Example 3.1
A-scalar product — j(uk) j̃(uk)

..jÕ(uk)
..

A≠1 # iter # CG iter total

H1, w = 100 10≠2 4.22·10≠4 6.34·10≠5 8.03·10≠7 6 35
H1, w = 10≠1 10≠2 2.51·10≠4 6.10·10≠5 6.78·10≠9 7 67
H1, w = 10≠2 10≠2 2.34·10≠4 6.08·10≠5 2.65·10≠8 7 69

H1, w = 100 10≠4 4.15·10≠5 2.25·10≠5 2.71·10≠8 7 67
H1, w = 10≠1 10≠4 4.04·10≠5 2.30·10≠5 1.68·10≠8 7 69
H1, w = 10≠2 10≠4 4.03·10≠5 2.30·10≠5 5.40·10≠8 7 68

biLap, w = 100 10≠2 4.99·10≠4 7.69·10≠5 5.64·10≠7 6 32
biLap, w = 10≠1 10≠2 2.61·10≠4 6.16·10≠5 1.51·10≠10 7 37
biLap, w = 10≠2 10≠2 2.35·10≠4 6.09·10≠5 2.36·10≠10 7 37

biLap, w = 100 10≠4 4.24·10≠5 2.25·10≠5 1.34·10≠8 7 45
biLap, w = 10≠1 10≠4 4.05·10≠5 2.30·10≠5 1.63·10≠9 7 58
biLap, w = 10≠2 10≠4 4.03·10≠5 2.30·10≠5 2.03·10≠8 7 60

the fourth column the norm of the gradient. The fifth column indicates whether the Newton
step was accepted (Newton), or if the negative gradient was used as a search direction instead
(gradient). The last column shows the number of iterations of the CG method. In this example
we can nicely observe the globalization strategy at work. After several gradient descent steps
Newton’s method takes over in the end and displays fast local convergence. Note that we
stop the CG method early if negative curvature of the Hessian is detected. Of course, simply
taking a negative gradient step after computing several CG iterations is a bit wasteful. The
performance can be improved if the last viable CG direction is chosen instead, as it is done in
the truncated CG method cf. [Ste83]. The final domain is depicted in Figure 3.3. For better
visibility of the mesh the result of a run with coarser discretization is displayed.

Table 3.4.: Detailed history of Newton’s method for Example 3.2
k j(uk) j̃(uk)

..jÕ(uk)
..

A≠1 step # CG iter

0 1.31·10≠1 1.31·10≠1 3.39·10≠1 Newton 6
1 8.35·10≠2 7.70·10≠2 2.24·10≠1 gradient 3
2 7.87·10≠2 7.18·10≠2 3.28·10≠1 gradient 3
...

...
...

...
...

...
20 5.79·10≠2 5.06·10≠2 1.98·10≠2 gradient 6
21 5.79·10≠2 5.06·10≠2 2.34·10≠2 Newton 11
22 5.78·10≠2 5.26·10≠2 2.87·10≠2 Newton 7
23 5.71·10≠2 5.17·10≠2 2.25·10≠3 Newton 7
24 5.71·10≠2 5.27·10≠2 3.58·10≠3 Newton 7
25 5.71·10≠2 5.25·10≠2 5.03·10≠5 Newton 6
26 5.71·10≠2 5.25·10≠2 5.59·10≠6 Newton 7
27 5.71·10≠2 5.25·10≠2 1.06·10≠10 - -

Example 3.3. Finally we present an example where the solution is known analytically. Recall
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3. Model problem

0 1.5 3
0

0.4

0.8

Figure 3.3.: The final domain of Example 3.2

from above that for pd © 1 any straight channel is a global solution. We start with the
perturbed domain depicted in Figure 3.2. In this example we choose — = 10≠4. The iteration
history is recounted in Table 3.5. Again we observe several gradient steps before Newton’s
method takes over. We recover a flat domain, i.e., a global solution. Although the convergence
is quite fast it does not seem to be quadratic. This observation is in line with the fact that in
the optimum the Hessian is not coercive in all directions which are normal to the boundary.

Table 3.5.: Detailed history of Newton’s method for Example 3.3
k j(uk) j̃(uk)

..jÕ(uk)
..

A≠1 step # CG iter

0 3.03·10≠2 3.03·10≠2 2.23·10≠1 Newton 5
1 2.34·10≠3 2.29·10≠3 1.09·10≠1 gradient 2
2 4.84·10≠4 4.36·10≠4 4.15·10≠2 gradient 3
...

...
...

...
...

...
7 1.13·10≠4 2.99·10≠5 1.63·10≠2 gradient 6
8 1.04·10≠4 2.08·10≠5 1.25·10≠2 Newton 8
9 7.53·10≠5 6.79·10≠5 7.98·10≠3 Newton 5
10 7.80·10≠6 3.20·10≠7 2.78·10≠4 Newton 6
11 4.15·10≠6 7.80·10≠9 4.48·10≠5 Newton 6
12 4.24·10≠6 1.61·10≠9 4.54·10≠6 Newton 6
13 4.14·10≠6 1.52·10≠9 4.76·10≠7 - -
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4. The symbol of the Hessian in potential flow
pressure matching

The numerical e�ciency of many optimization methods is greatly influenced by the availability
of a reasonably good approximation of the Hessian. In this chapter we want to exemplify how
such an approximation can be obtained using the symbol of the Hessian. We consider the
model problem of Chapter 3, and study the operator jÕÕ(u) œ L(U , Uú). The term symbol of an
operator originates in Fourier analysis. Denote the Fourier transform of a function by ·̂ and
consider an operator P . If there exists a function m such that

‰Pf(–) = m(–)f̂(–), ’–,

then the multiplier function m is called the symbol of the operator P . For example it is well
known that the symbol of the di�erential operator of order one is i–. Note that the symbol
depends on the employed definition of the Fourier transform. The symbol i– corresponds to a
Fourier transform with angular frequency. To determine the symbol of the Hessian in shape
optimization, one usually concentrates on a single Fourier mode v with frequency – as input,
and tries to characterize jÕÕ(u)v in terms of v and –. We will work with the real-valued Fourier
mode cos(–x) and obtain the symbol C–2, i.e., the Hessian of our model problem corresponds
roughly to a di�erential operator of order two.

In our derivation of the symbol we exploit the fact that the Hessian is symmetric which
implies

ÈjÕÕ(u)v, wÍUú
,U = 1

2
1
ÈjÕÕ(u)(v + w), v + wÍUú

,U ≠ ÈjÕÕ(u)v, vÍUú
,U ≠ ÈjÕÕ(u)w, wÍUú

,U

2
.

Hence, it su�ces to characterize the mapping v ‘æ ÈjÕÕ(u)v, vÍUú
,U . To be of practical use, the

obtained approximation should be much cheaper to evaluate than the true Hessian. Once one
has a suitable approximation of the Hessian available it can be used for several applications.
The two most obvious choices are to either use the approximation instead of the true Hessian
in a Newton-type method, or to use it as a preconditioner in a Krylov-subspace method applied
to the full Newton equation.

Traditionally, the symbol of the shape Hessian has been used in Newton-type descent methods
known as preconditioned gradient methods. It is particularly popular in the field of shape
optimization problems arising in fluid dynamics. Usually, Fourier analysis is employed to study
the highest order terms of the shape Hessian. Prominent early examples are [AT95, AT96,
AV99]. Later this approach was pursued, for example, in [ESSI09, Sch10], and implemented
for various flow problems.
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4. The symbol of the Hessian in potential flow pressure matching

We consistently derive the symbol of the shape Hessian for the elliptic model problem of
Chapter 3. Following the usual approach to operator symbols in shape optimization, we
consider a localized problem, and quantify the image of the Hessian for a smooth periodic
perturbation. We use the exact shape derivative and shape Hessian of the localized problem,
and a mapping from boundary displacement to domain displacement via an extension operator.
We obtain a simple expression as approximation of the Hessian. It has the additional charm
of being symmetric and positive semidefinite. In particular, our expression di�ers from the
one obtained in [ESSI09], and yields superior results when used in a preconditioned gradient
method. An exemplary numerical comparison of the e�ect of the approximations with the
exact Hessian indicates that our version is more accurate.

Just as interesting as using the approximation in a Newton-type strategy is the second applica-
tion mentioned above. The practical performance of Newton’s method is vastly dominated by
the e�ort of solving the Newton equation in each iteration. Since the computation of the full
Hessian is infeasible in PDE constrained problems, a matrix-free, iterative Krylov-subspace
method has to be employed, for instance, the CG method (Algorithm 2.4). For this it is
only necessary to evaluate Hessian-times-vector products, which can be achieved by solving
two additional PDEs. The e�cient evaluation of first and second order derivatives via the
adjoint approach is briefly summarized in Section A.1. For a more detailed discussion we
refer to [HPUU09]. The performance of the CG method, and hence of Newton’s method, is
highly depended on the availability of a good preconditioner, i.e., an good approximation of
the Hessian. Our numerical experiments indicate that using the approximation based on the
symbol of the Hessian leads to a consistent, significant reduction of the number of necessary
CG iterations.

4.1. Localized problem

We consider the model problem of Chapter 3. Recall that for œref œ O it holds

jœ
ref

(U) = J(U, S(U)),

where ·U = Id + U , the functional

J : B⇥(0, 1) ◊ Y æ R, J(U, y) = 1
2

⁄

≈
B

A
tT Ò(y + y

0

)
|D·U t | ≠ pd

B
2

|D·U t | dx,

corresponds to a pressure-tracking objective on the design boundary, and S is the design-to-
solution operator associated with the potential flow, and characterized by the operator

E : B⇥(0, 1) ◊ Y æ Yú, ÈE(U, y), ÏÍYú
,Y = (A(U)Ò(y + y

0

), ÒÏ)
L

2
(œ

ref

)

,

Furthermore, recall the map (3.2)

U ‘æ A(U) := D·≠1

U D·≠T
U det(D·U )

94



4.1. Localized problem

from Section 3.2 and its derivative in a direction V

MV (U) := D·≠1

U

1
≠DV D·≠1

U ≠ D·≠T
U DV T + I tr(D·≠1

U DV )
2

D·≠T
U det(D·U ),

where I denotes the identity matrix in Rd◊d. As in Section 3.4 we focus on the design boundary,
i.e., we control only the transformation of the boundary directly, and obtain the associated
domain transformation by a suitable extension operator T : U æ ⇥, cf. Section 2.11 and 2.12.

We will use the following notation in this chapter: if a is a vector, then [a]i denotes the i-th
component of a. Similarly Òif denotes the i-th component of the gradient of a function f .

We want to characterize the map

v ‘æ ÈjÕÕ(u)v, vÍUú
,U ,

where j : U æ R, j = j ¶ T is the reduced objective in terms of the boundary displacement.
For this purpose, we study an auxiliary localized shape optimization problem. It is formally
derived by the following reasoning. We zoom in on some point of the design boundary of
the current object, until the design boundary appears flat, and the other boundaries are far
away, i.e., at infinity. Thus, in the localized problem œref corresponds to the half-plane
R2

≠ := {x œ R2 | x
2

< 0}, and the design boundary ≈B to ˆR2

≠. For a given small displacement
of the boundary we set ·U = Id + U = Id + T (u), and the state equation reads

≠ div(A(U)Òy) = 0 in R2

≠

nT A(U)Òy = 0 on ˆR2

≠,

with additional boundary conditions at infinity.

The boundary conditions at infinity are assumed to induce a potential di�erence between left
and right, which implies a constant flow parallel to the boundary. Thus y(x) = cx

1

is the
analytical solution y = S(0) of the state equation.

For simplicity, we consider only vertical displacements of the boundary described by a function
u : ˆR2

≠ æ R, and choose the extension operator

T œ L(U ,⇥), Tu(x) = (0, u(x
1

))T ’x œ R2.

Remark 4.1. This can be thought of as an approximation for a setting with normal boundary
displacements and an extension operator as discussed in Section 2.11.2. Close to the design
boundary such an extension operator will resemble the T from above in normal direction.

We study

ÈjÕÕ(0)v, vÍUú
,U = ÈjÕÕœ

ref

(0)Tv, TvÍ⇥ú
,⇥.

for a specific periodic perturbation v given by

v(x
1

) = cos(–x
1

), for some – œ R.
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4. The symbol of the Hessian in potential flow pressure matching

Let us abbreviate V := Tv and recall the representation of the second derivative of jœ
ref

ÈjÕÕœ
ref

(0)V, V Í⇥ú
,⇥ = ÈJUU (0, S(0))V, V Í⇥ú

,⇥

+ ÈJUy(0, S(0))V, SÕ(0)V ÍYú
,Y

+ ÈJyU (0, S(0))SÕ(0)V, V Í⇥ú
,⇥

+ ÈJyy(0, S(0))SÕ(0)V, SÕ(0)V ÍYú
,Y

+ ÈJy(0, S(0)), SÕÕ(0)(V, V )ÍYú
,Y .

As a first step we characterize SÕ(0)Tv and SÕÕ(0)(Tv, Tv) in the next section. This is the
crucial part when deriving the symbol of the Hessian.

For later use we briefly note that, for our choice of V = Tv, and using the notation vÕ = Dv,
it holds

DV (x) =
A

0 0
vÕ(x

1

) 0

B

.

Hence, we find div(V ) = 0, DV DV = 0, and

MV (0)(x) = (I div(V ) ≠ DV ≠ DV T )(x) =
A

0 ≠vÕ(x
1

)
≠vÕ(x

1

) 0

B

.

4.2. Characterization of the design-to-state operator

In this section we examine the derivatives of S more closely. Recall from Section 3.3 that
zV = SÕ(0)V , and µV V = SÕÕ(0)(V, V ) can be obtained by solving (3.4), respectively (3.5).
Transferred to the localized problem the linearized state equation in strong form reads

≠�z = div(MV (0)Òy) in R2

≠,

Ò
2

z = ≠
Ë
MV (0)Òy

È

2

on ˆR2

≠.

Inserting our knowledge about y and V we obtain for x œ R2

≠

≠
Ë
MV (0)Òy

È

2

(x) = vÕ(x
1

)Ò
1

y(x) + vÕ(x
1

)Ò
2

y(x) = ≠–Ò
1

y sin(–x
1

),

and

div(MV (0)Òy)(x) = ≠(vÕÕ(x
1

)Ò
2

y(x) + vÕ(x
1

)Ò2

21

y(x) + vÕ(x
1

)Ò2

12

y(x)) = 0,

where Ò
1

y = c = Ò
1

y(x) for all x œ R2

≠. Hence the function zV = SÕ(0)V solves

≠�z(x) = 0 in R2

≠,

Ò
2

z(x) = ≠–Ò
1

y sin(–x
1

) on ˆR2

≠.
(4.1)

96



4.2. Characterization of the design-to-state operator

Turning to (3.5), we first note that for our specific choices of v and y it holds div(V ) = 0,
DV DV = 0, MV (0)DV T Òy = 0, and DV MV (0)Òy = 0. Hence, several terms on the
right-hand side of (3.5) drop out and the strong form for our setting reads

≠�µ = div(2MV (0)ÒzV ) in R2

≠,

Ò
2

µ = ≠
Ë
2MV (0)ÒzV

È

2

on ˆR2

≠.
(4.2)

4.2.1. The first derivative

We would like to find a simple, explicit expression for zV which solves (4.1). Taking the
right-hand side of (4.1) into account we are led to the ansatz

zV (x) = sin(–x
1

)f(x
2

).

Here f : R æ R is some suitable function yet to be determined. Inserting this ansatz into (4.1)
we obtain an initial value problem for f :

f ÕÕ(x
2

) ≠ –2f(x
2

) = 0 ’x
2

< 0, f Õ(0) = ≠–Ò
1

y.

It is easily checked that the initial value problem admits the solutions

f(x
2

) = ûÒ
1

y exp(±–x
2

).

To obtain a unique solution we require additionally that f(x
2

) æ 0 as x
2

æ ≠Œ. This is
motivated by the reasoning that the influence of a perturbation of the boundary should dwindle
with the distance to the boundary. Thus, we obtain the linearized state as

zV (x) = ≠ sgn(–)Ò
1

y sin(–x
1

) exp(|–|x
2

).

4.2.2. The second derivative

We are now ready to specify the right-hand side of (4.2). It holds

ÒzV (x) = ≠ sgn(–)Ò
1

y

A
– cos(–x

1

) exp(|–|x
2

)
|–| sin(–x

1

) exp(|–|x
2

)

B

,

MV (0)ÒzV (x) = ≠ sgn(–)Ò
1

y

A
|–| sin2(–x

1

) exp(|–|x
2

)
–2 sin(–x

1

) cos(–x
1

) exp(|–|x
2

)

B

,

div(MV (0)ÒzV (x) = ≠3–3Ò
1

y sin(–x
1

) cos(–x
1

) exp(|–|x
2

).

Hence, the function µV V = SÕÕ(0)(V, V ) is the solution of

≠�µ = ≠6–3Ò
1

y sin(–x
1

) cos(–x
1

) exp(|–|x
2

) in R2

≠
Ò

2

µ = 2 sgn(–)–2Ò
1

y sin(–x
1

) cos(–x
1

) exp(|–|x
2

) on ˆR2

≠.
(4.3)

We are led to the ansatz

µV V (x) = sin(–x
1

) cos(–x
1

)f(x
2

),
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4. The symbol of the Hessian in potential flow pressure matching

where f : R æ R is again some suitable function yet to be determined. Inserting this ansatz
into (4.3) we obtain this time an inhomogenuous initial value problem for f :

f ÕÕ(x
2

) ≠ 4–2f(x
2

) = 6–3Ò
1

y exp(|–|x
2

) ’x
2

< 0, f Õ(0) = sgn(–)2–2Ò
1

y.

The solutions of the homogenous equation

f ÕÕ(x) ≠ 4–2f(x) = 0

are given by f
1,2(x) = exp(±2–x). Now we look for a solution of the inhomogeneous problem

using the method of variation of parameters. Setting g(x) = 6–3Ò
1

y exp(|–|x), the solution
has the form

f(x) = A(x)f
1

(x) + B(x)f
2

(x),

with A, B given by

A(x) = ≠
⁄

W ≠1f
2

(x)g(x) dx

B(x) =
⁄

W ≠1f
1

(x)g(x) dx

W = f
1

(x)f Õ
2

(x) ≠ f Õ
1

(x)f
2

(x).

We calculate

W = ≠2– · 1 ≠ 2– · 1 = ≠4–

A(x) = 1
4–

⁄
exp(≠2–x)6–3Ò

1

y exp(|–|x
2

) dx

B(x) = ≠ 1
4–

⁄
exp(2–x)6–3Ò

1

y exp(|–|x
2

) dx.

Hence, it holds for – Ø 0

A(x) = 6Ò
1

y

4–

⁄
–3 exp(≠–x) dx = ≠3

2Ò
1

y– exp(≠–x) + C
1

B(x) = ≠ 6Ò
1

y

4–

⁄
–3 exp(3–x) dx = ≠1

2Ò
1

y– exp(3–x) + C
2

∆ f(x) =
3

≠3
2Ò

1

y– exp(≠–x) + C
1

4
exp(2–x)

+
3

≠1
2Ò

1

y– exp(3–x) + C
2

4
exp(≠2–x)

= ≠ 2Ò
1

y– exp(–x) + C
1

exp(2–x) + C
2

exp(≠2–x),
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4.3. Derivation of the symbol

where C
1

, C
2

œ R, and similarly for – < 0

A(x) = 6Ò
1

y

4–

⁄
–3 exp(≠3–x) dx = ≠1

2Ò
1

y– exp(≠3–x) + C
1

B(x) = ≠ 6Ò
1

y

4–

⁄
–3 exp(–x) dx = ≠3

2Ò
1

y– exp(–x) + C
2

∆ f(x) =
3

≠1
2Ò

1

y– exp(≠3–x) + C
1

4
exp(2–x)

+
3

≠3
2Ò

1

y– exp(–x) + C
2

4
exp(≠2–x

2

)

= ≠ 2Ò
1

y– exp(≠–x) + C
1

exp(2–x) + C
2

exp(≠2–x).

Requiring again f(x) æ 0 for x æ ≠Œ we obtain

f(x) =
I

≠2Ò
1

y– exp(–x) + C
1

exp(2–x) for – Ø 0
≠2Ò

1

y– exp(≠–x) + C
2

exp(≠2–x) for – < 0,

and taking the condition on f Õ(0) into account yields finally

f(x) = ≠2Ò
1

y– exp(|–|x).

To summarize we found

µV V (x) = ≠2Ò
1

y– sin(–x
1

) cos(–x
1

) exp(|–|x
2

).

4.3. Derivation of the symbol

After characterizing zV = SÕ(0)V and µV V = SÕÕ(0)(V, V ), we can now derive the symbol of
the Hessian. Inserting the specific expressions from Section 3.2 into

ÈjÕÕ(0)v, vÍUú
,U = ÈjÕÕœ

ref

(0)V, V Í⇥ú
,⇥ = ÈJUU (0, S(0))V, V Í⇥ú

,⇥

+ÈJUy(0, S(0))V, SÕ(0)V ÍYú
,Y

+ÈJyU (0, S(0))SÕ(0)V, V Í⇥ú
,⇥

+ÈJyy(0, S(0))SÕ(0)V, SÕ(0)V ÍYú
,Y

+ÈJy(0, S(0)), SÕÕ(0)(V, V )ÍYú
,Y ,

(4.4)

we obtain

ÈjÕÕ(0)v, vÍUú
,U =

⁄

≈
B

33
2

1
tT Òy

2
2

≠ 1
2p2

d

4
(tT DV t)(tT DV t) dx

+
⁄

≈
B

3
≠1

2
1

tT Òy
2

2

+ 1
2p2

d

4
(tT DV T DV t) dx

≠ 2
⁄

≈
B

1
tT Òy

2 1
tT ÒzV

2
(tT DV t) dx

+
⁄

≈
B

1
tT ÒzV

2
2

dx

+
⁄

≈
B

11
tT Òy

2
≠ pd

2 1
tT ÒµV V

2
dx.
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4. The symbol of the Hessian in potential flow pressure matching

For the specific choice of ≈B = ˆR2

≠, t = (1, 0)T , and V , we realize that tT DV t = 0 and
tT DV T DV t = (vÕ)2. Finally with

zV (x) = ≠ sgn(–)Ò
1

y sin(–x
1

) exp(|–|x
2

), and
µV V (x) = ≠2Ò

1

y– sin(–x
1

) cos(–x
1

) exp(|–|x
2

),

it holds

ÈjÕÕ(0)v, vÍUú
,U =

⁄

ˆR
2
≠

3
≠1

2
1

tT Òy
2

2

+ 1
2p2

d

4
(tT DV T DV t) dx

+
⁄

ˆR
2
≠

1
tT ÒzV

2
2

dx

+
⁄

ˆR
2
≠

11
tT Òy

2
≠ pd

2 1
tT ÒµV V

2
dx

=
⁄

ˆR
2
≠

3
≠1

2
1

tT Òy
2

2

+ 1
2p2

d

4
(vÕ)2 dx

+
⁄

ˆR
2
≠

(≠ sgn(–)–Ò
1

y cos(–x))2 dx

+
⁄

ˆR
2
≠

11
tT Òy

2
≠ pd

2 1
≠2Ò

1

y–2(cos2(–x
1

) ≠ sin2(–x
1

))
2

dx

=
⁄

ˆR
2
≠

3
≠1

2
1

tT Òy
2

2

+ 1
2p2

d

4
vÕvÕ dx

+
⁄

ˆR
2
≠

1
tT Òy

2
2

(≠vvÕÕ) dx

+
⁄

ˆR
2
≠

1
tT Òy ≠ pd

2
2tT Òy

1
vvÕÕ + vÕvÕ

2
dx.

We have arrived at an expression which depends explicitly only on y, pd, and on v. Supposing
that y and pd vary much slower than v it can be simplified further. Formally performing
integration by parts only with respect to v yields

ÈjÕÕ(0)v, vÍUú
,U =
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Hence the symbol of the Hessian is approximately

1
2

31
tT Òy

2
2

+ p2

d

4
–2,

corresponding to a di�erential operator of order two, and we obtain the following approximation
of the Hessian

ÈjÕÕ(0)v, wÍUú
,U ¥

⁄

≈
B

1
2

31
tT Òy

2
2

+ p2

d

4
vÕwÕ dx. (KU)

4.4. Comparison to previous results

Let us put the presented approach and our result in context with the literature. To the best of
our knowledge, the analysis of the symbol of the shape Hessian was pioneered by Arian and
coworkers in [AT95, Ari95, AT96, AV99]. The applications range from potential and Euler
flow to a coupled aeroelastic problem. In order to determine the nature of the Hessian in a
local solution, they use a Taylor expansion approach and study the resulting small disturbance
problem. However, they derive the symbol of the Hessian in a quite pragmatic way, and often
numerical tests are missing.

Eppler et al. [ESSI09] studied the same model problem as we did in this chapter. They calculate
first and second shape derivatives for a star-shaped domain. Claiming certain properties for
the linearized state and linearized adjoint state they obtain the approximation

ÈjÕÕ(0)v, wÍUú
,U ¥

⁄

≈
B

1
tT Òy

2
vÕwÕ dx +

⁄

≈
B

1
tT Òp

2
vÕw dx +

⁄

≈
B

1
tT Òy

2 1
tT Òp

2
vw dx,

(ESSI)
corresponding also to a di�erential operator of order two. Note however, that this expression
is not symmetric, reflecting the use of the second Eulerian semiderivative instead of the shape
Hessian from Definition 2.42. Moreover, it does not define a positive (semi-) definite bilinear
form on U . Finally (ESSI) does not depend explicitly on the desired velocity profile pd, i.e.,
one can expect it to be not very sensitive with respect to di�erent profiles pd.

In his dissertation [Sch10] Schmidt extensively uses the symbol of the Hessian to design
preconditioned gradient methods for shape optimization problems in aerodynamics. For
potential and Stokes flow he gives analytical formulas. For Navier-Stokes and Euler flow he
resorts to studying numerically the response of a finite di�erence approximation of the Hessian
for di�erent periodic perturbations. Approximating the shape optimization problem with
potential flow by an optimal control problem he obtains also the symbol –2, i.e., a di�erential
operator of order two. For the other applications he obtains the symbol |–|, corresponding to
a pseudo-di�erential operator of order one. Finally, for the actual implementation, he always
uses a weighted H1-scalar product on the boundary to compute the search direction.

In our approach we consistently derive the symbol of the Hessian for the localized shape
optimization problem. The applied technique appears to be easily adapted for other shape
optimization problems. Note however, that additional complications occur if the objective is
not given as a boundary integral on the design boundary. In this case the identification of the
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4. The symbol of the Hessian in potential flow pressure matching

symbol from the formula (4.4) is challenging. An alternative might be to reformulate jÕÕœ
ref

with the help of a boundary integral on the design boundary. Due to Theorem 2.79, this is
usually possible.

Let us conclude this section with a numerical comparison of our approximation (KU) with
(ESSI) and the true Hessian. As test example we choose a setting which is close to the localized
shape optimization problem, but we consider also domains which are quite di�erent from the
ideal half plane setting.

4.5. Numerical examples

In this section we first present a qualitatively comparison between the di�erent approximations
of the Hessian and the true Hessian. We then proceed to exploit the approximations algorith-
mically. As we will see, it is worthwhile to go through the above analysis. The approximations
lead to a considerable speed up, both if used in a Newton-type setting or as preconditioner in
the CG method. However, depending on the application, some modifications may be necessary.
If the obtained approximations (KU) and (ESSI) are to be used to determine a Newton-type
descent direction they should be modified such that one obtains coercive bilinear forms. If one
applies these as a preconditioner in the CG method, one needs to ensure additionally their
symmetry.

Qualitative comparison of the approximations

We work with the setting presented in Section 3.4, and begin with a qualitative check of
the approximation quality of (KU), respectively (ESSI). For this we consider a periodic
perturbation

v(x) = 1/10 sin (10fi(1 + x/3))

and compare j̃ÕÕ(0)v œ Uú, i.e., the true Hessian applied to v, with the respective approximations
(KU), (ESSI). Furthermore, we plot the H1-Riesz map (v, ·)

H
1
(≈

B

)

œ Uú of v. Note that we
study here only the second derivative of the tracking term, i.e., we set the regularization
parameter to — = 0.

We start our investigation with Example 3.1 from Section 3.4. Recall that the desired tangential
velocity profile increases linearly from 3

4

to 5

4

, and the initial domain is a 3-by-1 rectangle.
As one can see from Figure 4.1, all the outputs are very similar. A closer look reveals that
the approximation given by (KU) captures the slow increase from left to right of the true
Hessian output. On the other hand, the approximation (ESSI) can hardly be discerned from
the simple H1-scalar product output. This is not surprising if one recalls that the outside
potential induces a constant flow with velocity one through the rectangle, i.e., tT Òy © 1. In
particular, if pd is close to one, the approximation (ESSI) is similar to the H1-scalar product.

In Example 3.2 we considered a velocity profile which deviates farther from one, i.e.

pd(x
1

) = 1 + 1
4 arctan(4x ≠ 1 ≠ 3).
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Symbol (KU)
Symbol (ESSI)

H1-scalar product

Figure 4.1.: Plot of di�erent output signals for Example 3.1

0 1.5 3

-0.3

0

0.3

Hessian
Symbol (KU)
Symbol (ESSI)

H1-scalar product

Figure 4.2.: Plot of di�erent output signals for Example 3.2
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Figure 4.2 shows that our approximation (KU) mimics the true Hessian again very closely. As
predicted, the approximation (ESSI) does not capture the changed velocity profile pd, and is
again almost indistinguishable from the H1-scalar product. However, it needs to be noted
that, during the derivation of (ESSI) in [ESSI09], it was assumed that tT Òy ≠ pd is small, and
corresponding terms were neglected. Thus, the situation of example 2 does not quite fit into
their setting.

Example 4.1. We consider a di�erent outside potential which induces a flow with velocity
two through the initial domain. The desired tangential velocity profile increases linearly from
7

4

to 9

4

. In particular, as in Example 3.1, this is a situation where tT Òy ≠ pd is relatively small.
However, Figure 4.3 reveals that the approximation (ESSI) is again not able to mimic the true
Hessian as good as (KU).

0 1.5 3

-0.5

0

0.5

Hessian
Symbol (KU)
Symbol (ESSI)

H1-scalar product

Figure 4.3.: Plot of di�erent output signals for Example 4.1

Since the domain considered so far is very close to the ideal half-plane setting, the question
arises whether the observed behavior also manifests itself on other domains. As an example we
plot in Figure 4.4 the di�erent quantities for the same periodic perturbation on the final domain
of Example 3.2, cf. Figure 3.3. Again we observe a good match between the approximation
(KU) and the true Hessian.

Similar observations as above can be made if one varies the frequency –.

Let us now see how the di�erent approximations influence the performance of our algorithms.
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Symbol (ESSI)
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Figure 4.4.: Plot of di�erent output signals for Example 3.2, final domain

Application to Newton-type methods

We begin with the Newton-type method, i.e., we employ Algorithm 2.5 in combination
with Algorithm 2.7. Recall that this approach is also referred to as preconditioned gradient
method. In accordance with this, we use the term preconditioner for the Riesz isomorphism in
Algorithm 2.7. As already mentioned, the preconditioner should induce a coercive bilinear form.
Otherwise we are not guaranteed to obtain a descent direction. If the objective functional
consists only of the tracking term, the expressions (KU) would need to be modified before it
could be applied successfully as a preconditioner. However, as in Section 3.4, we include a
cost term in the objective, i.e., we consider j(u) = j̃(u) + —

2

ÎuÎ2

A. Hence, the Hessian of the
combined objective is given by

ÈjÕÕ(0)v, wÍUú
,U = Èj̃ÕÕ(0)v, wÍUú

,U + — (v, w)A .

In particular, the additional term should be considered in the preconditioner as well. Since our
approximation (KU) is already positive semidefinite, no further modifications are necessary to
obtain a coercive bilinear form

P : U ◊ U æ R, P (v, w) =
⁄

≈
B

1
2

31
tT Òy

2
2

+ p2

d

4
vÕwÕ dx + — (v, w)A . (4.5)

Unfortunately, this is not the case if the approximation (ESSI) is used. Eppler et al. proposed
already in [ESSI09, Section 5] to add a small positive correction ” > 0 to the first term yielding
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the preconditioner

P̃ : U ◊ U æ R, P̃ (v, w) =
⁄

≈
B

31
tT Òy

2
2

+ ”

4
1/2

vÕwÕ dx +
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1
tT Òp

2
vÕw dx

+
⁄

≈
B

1
tT Òy

2 1
tT Òp

2
vw dx + — (v, w)A .

However, P̃ is still not a coercive bilinear form, and one is not guaranteed to obtain a descent
direction. In fact, in most of our tests this occurred in one the first iterations. Thus, we
decided to modify also the other two terms of (ESSI), and tested the preconditioner

P̂ : U ◊ U æ R, P̂ (v, w) =
⁄
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31
tT Òy

2
2

+ ”

4
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2
2
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tT Òp

2
2

+ ”

4
1/2

vw dx + — (v, w)A . (4.6)

In our experiments we always chose ” = 10≠4. We compare the performance of P and P̂ with
the standard steepest descent method. Recall our di�erent choices for A from Section 3.4

(v, u)A = (v, u)
L

2
(≈

B

)

+ w(vÕ, uÕ)
L

2
(≈

B

)

, or

(v, u)A ¥ (v, u)
L

2
(≈

B

)

+ w(vÕÕ, uÕÕ)
L

2
(≈

B

)

.

The approximation of the bi-Laplacian scalar product is described in Section 3.4. For complete-
ness we test once both scalar products with di�erent weighting parameters w > 0. Afterwards
we choose always w = 1. The cost parameter is set to — = 10≠2.

We start again with Example 3.1, and report the results of our experiment in Table 4.1.
The first column displays the particular choice for A and the second column the employed
preconditioner. The third column shows the value of the objective, the fourth the tracking
functional, the fifth the final norm of the gradient, and the last the number of iterations. Note
that we stopped the algorithms if 1000 iterations were exceeded. Evidently the Newton-type
search directions accelerate the convergence of the algorithm significantly.

Repeating the experiment with the other examples yields essentially the same result, cf.
Tables 4.2, 4.3 and 4.4. Again the Newton-type search directions accelerate the convergence
significantly. The best performance is obtained with the choice P , i.e., the approximation
proposed in this chapter.

Application as preconditioner in the CG method

Let us now discuss the application of the obtained approximations as preconditioners in the
CG method, i.e., Algorithm 2.5 in combination with Algorithm 2.6 and Algorithm 2.4. For
this task the preconditioner should not only be coercive, but also symmetric. In particular, the
asymmetric expression (ESSI) is not appropriate for such a purpose. Hence we concentrate
only on (KU).
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Table 4.1.: Comparison of di�erent scalar products, Algorithm 2.7, Example 3.1
A-scalar product preconditioner j(uk) j̃(uk)

..jÕ(uk)
..

A≠1 # iter

H1, w = 100 A 4.22·10≠4 6.34·10≠5 9.98·10≠7 566
H1, w = 100 P 4.22·10≠4 6.34·10≠5 9.03·10≠7 39
H1, w = 100 P̂ 4.22·10≠4 6.34·10≠5 9.45·10≠7 300

H1, w = 10≠1 A 2.52·10≠4 6.14·10≠5 8.36·10≠5 1000
H1, w = 10≠1 P 2.51·10≠4 6.10·10≠5 9.60·10≠7 95
H1, w = 10≠1 P̂ 2.51·10≠4 6.10·10≠5 1.08·10≠6 655

H1, w = 10≠2 A 2.35·10≠4 6.18·10≠5 2.88·10≠4 1000
H1, w = 10≠2 P 2.34·10≠4 6.08·10≠5 9.98·10≠7 225
H1, w = 10≠2 P̂ 2.34·10≠4 6.08·10≠5 5.09·10≠6 1000

biLap, w = 100 A 4.98·10≠4 7.69·10≠5 9.99·10≠7 568
biLap, w = 100 P 4.98·10≠4 7.69·10≠5 1.63·10≠7 20
biLap, w = 100 P̂ 4.98·10≠4 7.69·10≠5 7.68·10≠8 298

biLap, w = 10≠1 A 2.61·10≠4 6.16·10≠5 9.92·10≠7 608
biLap, w = 10≠1 P 2.61·10≠4 6.16·10≠5 1.95·10≠7 20
biLap, w = 10≠1 P̂ 2.61·10≠4 6.16·10≠5 2.67·10≠7 274

biLap, w = 10≠2 A 2.35·10≠4 6.09·10≠5 6.47·10≠6 1000
biLap, w = 10≠2 P 2.35·10≠4 6.09·10≠5 2.13·10≠7 20
biLap, w = 10≠2 P̂ 2.61·10≠4 6.16·10≠5 5.50·10≠7 272

Table 4.2.: Comparison of di�erent scalar products, Algorithm 2.7, Example 3.2
A-scalar product preconditioner j(uk) j̃(uk)

..jÕ(uk)
..

A≠1 # iter

H1, w = 1 A 5.61·10≠2 5.29·10≠2 7.71·10≠5 1000
H1, w = 1 P 5.61·10≠2 5.28·10≠2 9.62·10≠7 158
H1, w = 1 P̂ 5.61·10≠2 5.28·10≠2 3.18·10≠6 1000

biLap, w = 1 A 5.71·10≠2 5.26·10≠2 7.47·10≠5 1000
biLap, w = 1 P 5.71·10≠2 5.25·10≠2 6.71·10≠7 244
biLap, w = 1 P̂ 5.71·10≠2 5.25·10≠2 1.65·10≠5 1000

Table 4.3.: Comparison of di�erent scalar products, Algorithm 2.7, Example 3.3
A-scalar product preconditioner j(uk) j̃(uk)

..jÕ(uk)
..

A≠1 # iter

H1, w = 1 A 3.53·10≠6 4.11·10≠10 1.76·10≠6 1000
H1, w = 1 P 3.51·10≠6 4.22·10≠10 5.17·10≠7 17
H1, w = 1 P̂ 3.54·10≠6 5.43·10≠10 2.95·10≠6 1000

biLap, w = 1 A 4.16·10≠6 2.39·10≠9 2.20·10≠6 1000
biLap, w = 1 P 4.14·10≠6 1.54·10≠9 4.95·10≠7 17
biLap, w = 1 P̂ 4.17·10≠6 1.53·10≠9 2.18·10≠6 1000
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Table 4.4.: Comparison of di�erent scalar products, Algorithm 2.7, Example 4.1
A-scalar product preconditioner j(uk) j̃(uk)

..jÕ(uk)
..

A≠1 # iter

H1, w = 1 A 1.06·10≠4 1.55·10≠5 9.95·10≠7 953
H1, w = 1 P 1.06·10≠4 1.55·10≠5 9.97·10≠7 91
H1, w = 1 P̂ 1.06·10≠4 1.55·10≠5 9.33·10≠7 328

biLap, w = 1 A 1.27·10≠4 1.72·10≠5 9.99·10≠7 796
biLap, w = 1 P 1.27·10≠4 1.72·10≠5 2.13·10≠7 20
biLap, w = 1 P̂ 1.27·10≠4 1.72·10≠5 7.94·10≠7 316

We note again that if the objective functional consists only of the tracking term, then the
expression (KU) would need to be modified before one could employ it as a preconditioner.
However, for the objective under consideration j(u) = j̃(u) + —

2

ÎuÎ2

A this is not necessary since
the cost term should contribute to the preconditioner as well. Thus we can employ again the
preconditioner P from (4.5).

As alternative we simply approximate the Hessian of the tracking term with the H1-scalar
product, and test the preconditioner

P
H

1 : U ◊ U æ R, P
H

1(v, u) = (v, u)
H

1
(œ)

+ — (v, u)A . (4.7)

This choice corresponds also to a di�erential operator of order two. It is further motivated
by the observation in the tests above that the true Hessian of the tracking term can be
roughly approximated by this term. Note that P

H
1 performs already better than the simple

preconditioner — (v, u)A which is only based on the regularization term.

To be able to compare di�erent preconditioners in a fair manner, we choose a stopping criterion
for the CG method which is preconditioner independent. It is based on an estimation of the
discrete energy error, cf. [DW12, Section 5.3.3]. In our experience, the termination tolerance
10≠3 proved su�cient to obtain good Newton directions. Furthermore, we only consider
examples where the optimization algorithm generated the same iterates, i.e., where the only
di�erence is the number of CG iterations till a Newton direction is determined. This is not
guaranteed in the early stage of the optimization where the globalization strategy is active. For
this reason, we always start with a steepest descent method, and only switch to the Newton
method once the norm of the derivative drops below 10≠2. In our tests this ensures that the
di�erent Newton algorithms start with the same initial point close to the optimum.

We test again both the H1-scalar product and the approximated bi-Laplacian scalar product
as choices for A. The results of the comparison are presented in Table 4.5. The first column
indicates which example was tested, the second shows the choice of the A-scalar product,
the third the final value of the objective, the fourth the final value of the tracking term, and
the fifth the norm of the derivative. In the sixth, and seventh column the total number of
iterations, and the number of globalized Newton iterations are depicted. Finally, we compare
the total number of CG iterations generated by the di�erent preconditioners. As one can see,
our investigation of the symbol of the Hessian pays o�. The total number of CG iterations
required by P was consistently below the one required by P

H
1 , often even less than half.
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Table 4.5.: Comparison of di�erent preconditioners, Algorithm 2.6
ex. A-scalar j(uk) j̃(uk)

..jÕ(uk)
..

A≠1 # iter # iter # CG iter total
product Newton P

H
1 P

3.1 H1, w = 1 4.22·10≠4 6.34·10≠5 2.70·10≠7 4 2 42 21
3.1 biLap, w = 1 4.99·10≠4 7.69·10≠5 9.72·10≠8 5 2 16 10

3.2 H1, w = 1 5.61·10≠2 5.29·10≠2 6.81·10≠7 7 4 60 23
3.2 biLap, w = 1 5.71·10≠2 5.24·10≠2 8.12·10≠9 18 5 52 30

3.3 H1, w = 1 3.51·10≠6 4.07·10≠10 2.00·10≠7 7 4 142 42
3.3 biLap, w = 1 4.14·10≠6 1.52·10≠9 2.03·10≠7 9 5 38 28

4.1 H1, w = 1 1.06·10≠4 1.55·10≠5 1.13·10≠8 7 2 75 48
4.1 biLap, w = 1 1.27·10≠4 1.72·10≠5 3.34·10≠9 11 2 24 10

Finally, let us briefly comment on the comparison Newton-type versus Newton’s method. No
general statement can be given here, since it depends on the concrete example which method
is faster. The Newton-type method iterations are significantly cheaper than full Newton
iterations. However, fast local convergence to the optimum is not guaranteed, and in the end
it may take the Newton-type method very long to drive the norm of the derivative below a
given tolerance. Usually, the best results will be obtained by combining the two strategies,
i.e., starting with the robust Newton-type method, and switching to full Newton close to the
solution.
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In this chapter we study a nonlinear optimal control problem with a specific class of control
constraints. We are motivated by a shape optimization problem with point-wise geometric
shape constraints. Nevertheless, since our results may be useful also in other applications,
we present them here in a more general framework. In Section 5.9 we demonstrate on a
concrete example that the following analysis is applicable for shape optimization problems.
Our notation reflects the origin of our work in shape optimization, and may in parts be slightly
non-standard for optimal control problems. In particular, we call the specific control constraint
under consideration a geometric constraint to distinguish it from the standard L2-control
constraints.

The results obtained in this chapter were published in [KU15] in the context of shape optimiza-
tion. As announced, we derive them here in a slightly more general setting, but the overall
arrangement is kept, and the presentation follows closely the one in [KU15].

We are motivated by geometric constraints of the form

·(≈B) µ C,

where C µ Rd is some set, ≈B µ ˆœ denotes the design part of the boundary ˆœ of a
reference domain œ, and · = id + u is a transformation. Such design constraints appear
in many applications and have been considered in various publications. Usually, they are
either considered only with regard to some particular parametrization, e.g., constraints on
the control points of some Bézier curve, or discretization, see for example [ABV13, BLUU09,
BLUU11, Bra11, Lin12, HLA08, NZP04], or they are tacitly assumed to be inactive in the
solution, see for example [Lau00, KV13]. To the best of our knowledge, so far our work in
[KU15] is the only algorithmic treatment of such point-wise geometric shape constraints in a
function space setting. The di�culty here is, that the Lagrange multiplier associated with
the constraint has a-priori only a low regularity. This is a similar setting as in the case of
state constraints in optimal control problems, where the multiplier associated with the state
constraint is in general only a measure. Basically three approaches have been proposed in
the literature on state constraints to deal with the associated di�culties. Inexact primal-dual
path following techniques based on Moreau–Yosida regularization were first investigated in
[IK03, HK06a, HK06b], Lavrentiev regularization methods and the related concept of virtual
control were proposed in [Trö05, MRT06, PTW08, KR09], and barrier methods were studied
in [Sch09, SG11, Kru14]. The Lavrentiev regularization concept relaxes the state constraints to
mixed control and state constraints which feature Lagrange multipliers with higher regularity.
However, in our setting the smoothness of the control causes the problems. Therefore, this
approach is not applicable here. The theory of barrier methods is only available for convex
optimal control problems. Since our optimization problem contains a highly nonlinear state
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equation, we decide to follow the approach taken in [HK06a]. We introduce a Moreau-Yosida
type penalty term, and study the properties of the solutions to the associated subproblems.
Facing a nonlinear problem we will assume some strong second order conditions to hold. Note,
that the study of second order necessary and su�cient conditions, especially in the context of
semismooth derivatives is even in finite dimensions a quite involved topic. It is out of the scope
of this thesis to investigate this aspect in more detail. We will show local Lipschitz continuity
of the regularized solutions, and prove convergence rates estimates similar to [HSW14]. The
subproblems can be solved e�ciently by a semismooth Newton method, cf., e.g., [Ulb11].

This chapter is organized as follows. In Section 5.1 we introduce the setting under consideration,
and briefly discuss existence of a solution as well as di�erentiability of the reduced objective. We
derive the regularized problems employing a Moreau-Yosida type penalty term in Section 5.2,
and discuss the convergence of regularized solutions towards a solution of the original problem
in Section 5.3. We state strong second order conditions in Section 5.4, and show superlinear
convergence of a semismooth Newton method for the regularized problems. We exploit the
second order condition in Section 5.5 to show local Lipschitz continuity of the regularized
solutions. The value function, which maps the regularization parameter to the optimal objective
value of the associated problem, is studied in Section 5.6, and a model function in the spirit of
[HK06a] is proposed. In Section 5.7 we use the optimality conditions to show convergence of
the approximate Lagrange multipliers to the Lagrange multiplier associated with the geometric
constraint. Convergence rate estimates are derived in Section 5.8. In Section 5.9 we specify
conditions which make the results applicable for a shape optimization problem. Finally we
present some numerical tests.

If not stated otherwise, we will denote in this chapter with c > 0 some generic constant which
may change its value in the computations.

5.1. A nonlinear optimal control problem with point-wise
geometric constraints

Let us specify the setting of this chapter. We study the optimal control problem

min
uœU ,yœY

J(T (u), y) + —

2 ÎuÎ2

U s.t. E(T (u), y) = 0, u œ Uad, (5.1)

where U is a Hilbert space with Uad µ U , furthermore V, Y, Z are Banach spaces, and T : U æ V ,
E : V ◊Y æ Z, J : V ◊Y æ R. Depending on the application the term —

2

ÎuÎ2

U with — > 0 may
be viewed as a control cost or Tikhonov regularization term. This term guarantees boundedness
of minimizing sequences, which we need to ensure the existence of a minimizer. Furthermore,
it generates a coercive contribution to the Hessian. Thus, it is reasonable to assume second
order conditions, which are indispensable for the analysis of nonlinear optimization problems.
The operator T is slightly non-standard in optimal control. We will refer to T as the extension
operator, and have in mind, that T maps a boundary displacement u to a domain displacement
U . In other applications, it might only be the compact embedding of some stronger space U
into Lp, or some more involved mapping as it is often found in inverse problems. We refer to
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5.1. A nonlinear optimal control problem with point-wise geometric constraints

[BU15] for an application in seismic tomography. As usual, we assume the existence of the
design-to-state mapping

S : V æ Y, E(U, S(U)) = 0 ’U œ T (Uad),

and introduce the reduced objective functionals

j : V æ R, j(V ) := J(V, S(V )),

j : U æ R, j(u) := j(T (u)) + —

2 ÎuÎ2

U .

Most of the time, we will work with the reduced problem

min
uœU

j(u) s.t. u œ Uad, (P)

which is equivalent to (5.1).

Let us briefly discuss the existence of minimizers. It is a standard result that (P) admits a
solution if

(i) U is a reflexive Banach space, and ÿ ”= Uad µ U is a closed and convex set,

(ii) j is coercive (in the sense that j(u) æ Œ if ÎuÎU æ Œ), and weakly lower semicontinuous.

We specify a setting which is appropriate for the shape optimization context, but can also be
motivated from an optimal control perspective. In many cases it is unreasonable to assume
weak continuity of the operator S. Instead, we place stronger assumptions on T . We require
complete continuity of T , i.e.,

un Ô u implies T (un) æ T (u).

This can, for example, be ensured if T is linear, continuous, and maps to a space Ṽ which
is compactly embedded into V. We refer to Theorem 2.87 for an example of a completely
continuous extension operator in shape optimization.

Assumption 5.1. It holds

1. U is a reflexive Banach space, V, Y, Z are Banach spaces.

2. The extension operator T : U æ V is completely continuous.

3. There exists a design-to-state operator S : V æ Y that is continuous.

4. The objective J is bounded from below and is continuous.

5. Uad µ U is nonempty, closed, and convex.

These conditions ensure that j is coercive and weakly lower semicontinuous. Indeed, the
coercivity of j follows from J being bounded from below and the coercivity of the norm.
Furthermore, u ‘æ J(T (u), S(T (u))) is weakly continuous because T is completely continuous,
and S, J are continuous. Finally, u ‘æ ÎuÎ2

U is weakly lower semicontinuous, since it is a convex
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and continuous functional. Hence we obtain the existence of a solution if Assumption 5.1 is
satisfied.

A su�cient condition for the twice continuous di�erentiability of the reduced objective functional
j is given by the following assumption.

Assumption 5.2. It holds

1. T : U æ V, E : V ◊ Y æ Z and J : V ◊ Y æ R are twice continuously Fréchet
di�erentiable.

2. For any bounded set A µ T (U), there exists a neighborhood Â µ V of A µ V such that,
for every V œ Â, there exists a unique solution y œ Y of the state equation. Hence, the
design-to-state operator S : Â æ Y is well-defined.

3. Ey(V, S(V )) œ L(Y, Z) is continuously invertible for all V œ Â, with Â from (ii).

The implicit function theorem yields that S : T (U) æ Y is twice continuously Fréchet di�er-
entiable. Hence the same holds for the reduced objective j due to the chain rule. Finally,
we recall necessary optimality conditions for the reduced problem (P) and the full problem
(5.1).

Lemma 5.1. Let U be a Hilbert space with a closed, convex subset Uad ”= ÿ, and let u œ U
be a local solution of (P) in which j is Gâteaux-di�erentiable. Then the following optimality
conditions hold and are equivalent:

u œ Uad, ÈjÕ(u), u ≠ uÍUú
,U Ø 0 ’u œ Uad (5.2)

u = PU
ad

(u ≠ cÒj(u)). (5.3)

Here PU
ad

: U æ U denotes the projection onto Uad, c > 0 is arbitrary but fixed and Òj(u) œ U
denotes the Riesz-representation of jÕ(u) œ Uú.

Proof. Compare [HPUU09, Corollary 1.2].

An alternative formulation of the necessary optimality conditions uses the tangent cone of Uad.
If Uad is closed and convex, the tangent cone in u œ Uad is given by

T (Uad, u) := cl {w œ U | w = µ(v ≠ u), where µ > 0, v œ Uad} .

If j is continuously Fréchet di�erentiable, and u is a local solution, then (cf. [HPUU09,
Theorem 1.52])

u œ Uad, and ÈjÕ(u), wÍUú
,U Ø 0 ’w œ T (Uad, u).

We also use the tangent cone for characterizing a minimizer of (5.1). We abbreviate again

zúp := Èp, zÍZú
,Z , for z œ Z and p œ Zú.

There holds the following standard necessary optimality condition.
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Theorem 5.2. [KU15, Theorem 8] Let Assumption 5.1 and Assumption 5.2 hold, and let
(u, y) œ U ◊ Y be a local solution of (5.1). Then there exists a unique adjoint state p œ Zú,
and a Lagrange multiplier ⁄ œ Uú, such that the following optimality conditions hold

JU (T (u), y)T Õ(u) + —u +
1
EU (T (u), y)T Õ(u)

2ú
p + ⁄ = 0 in Uú,

Jy(T (u), y) + Ey(T (u), y)úp = 0 in Yú,
E(T (u), y) = 0 in Z,

u œ Uad,
⁄ œ T (Uad, u)¶,

(5.4)

where T (Uad, u)¶ is the polar cone of T (Uad, u).

Proof. Assumption 5.2 implies surjectivity of Ey(T (u), S(T (u))) for all u œ Uad. Hence
Robinson’s constraint qualification holds, cf. [HPUU09, Lemma 1.14], and the system can be
derived in a standard way, compare for example [HPUU09, Section 1.7]. The uniqueness of p
follows from Assumption 5.2 as well.

If one can choose U as an Lp-space, and if the projection PU
ad

can be written as a superposition
operator, the problem is very well understood. In particular, there exist e�cient semismooth
Newton-type algorithms. The situation changes if U is required to be a stronger space, e.g.,
Hk. In this case the semismoothness of the projection in U is an open question, and the
Lagrange multiplier ⁄ œ Uú has a-priori only a low regularity. One possibility to overcome this
di�culty is to study a sequence of regularized problems. But first let us specify U and the
admissible set Uad in more detail.

Assumption 5.3. ≈B µ Rd is a C1-manifold. U is a Hilbert space of functions u : ≈B æ Rd,
with compact embedding U Òæc L2(≈B,Rd). Furthermore, C µ Rd is a nonempty, closed,
convex set. Finally, the admissible set is given by

Uad := {u œ U | x + u(x) œ C for a.e. x œ ≈B} .

We will often use the abbreviation · := id + u, hence Uad = {u œ U | ·(≈B) µ C}.

Remark 5.3. (i) Clearly Uad is closed and convex. The same holds for its L2-relaxation

UL
ad := {u œ L2(≈B,Rd) | ·(x) µ C for a.e. x œ ≈B}.

(ii) We require a compact embedding U Òæc L2(≈B,Rd). On the one hand this is obviously
a restriction. On the other hand in many applications U is either an Lp-space where
standard semismooth Newton methods are applicable, or some Sobolev space W k,p,
k Ø 1, which is compactly embedded into L2.

(iii) We specified here u : ≈B æ Rd and · = id + u. However, we suspect that it is possible
to extend the following analysis to other settings. In particular, one might exchange ≈B

with some other (sub)set of œ, or consider functions u : ≈B æ Rm, m ”= d.
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5.2. The regularized problem

As we pointed out in the last section, it is di�cult to treat the optimal control problem (P)
with the constraint u œ Uad, which can be written equivalently as

min
uœU

j(u) + ÿU
ad

(u). (5.5)

Recall the notion of the indicator function of some set A

ÿA(v) :=
I

0 if v œ A,

Œ if v /œ A.

The indicator function of a closed, convex, nonempty set is proper, lower semicontinuous, and
convex. Instead of the hard constraint u œ Uad, one can try to satisfy this constraint only
approximately, and then drive the constraint violation to zero in an iterative scheme. Such
infeasible methods usually rely on some functional which measures the constraint violation,
and which is used in the role of ÿU

ad

(u). It is well known that the Moreau envelope (cf., e.g.,
[BC11, CW05]) of ÿU

ad

(·) : U æ [0, Œ] in U is given by 1

2

(dU
ad

)2 where dU
ad

: U æ R denotes
the distance functional to Uad w.r.t. Î·ÎU . The proximity operator of ÿU

ad

(·) corresponds to
the projection PU

ad

in U onto Uad. In particular, it holds

dU
ad

(u) = Îu ≠ PU
ad

(u)ÎU .

Recall the L2-relaxation UL
ad of Uad. Since u œ U fl UL

ad implies u œ Uad, we propose to use the
Moreau envelope of ÿUL

ad

(·) in L2(≈B,Rd) as regularization term. Note, that the projection in
L2(≈B,Rd) onto {v œ L2(≈B,Rd) | v(≈B) µ C} is given by the superposition operator

PC : PC (v) (x) := P̃C(v(x)),

where P̃C : Rd æ Rd is the projection onto C µ Rd. We approximate (5.5) by the regularized
problem

min
uœU

j(u) + “

2 Îid + u ≠ PC (id + u)Î2

L
2
(≈

B

,R
d

)

, (MY)

and abbreviate

”(u) := id + u ≠ PC (id + u) ,

e“(u) := “

2 Îid + u ≠ PC (id + u)Î2

L
2
(≈

B

,R
d

)

,

j“(u) := j(u) + e“(u).

As we will see now the term “
2

Îid + u ≠ PC (id + u)Î2

L
2
(≈

B

,R
d

)

= “
2

Î· ≠ PC (·)Î2

L
2
(≈

B

,R
d

)

is
the Moreau envelope of ÿUL

ad

(·) in L2(≈B,Rd) with regularization parameter “.

Lemma 5.4. [KU15, Lemma 10] The projection in L2(≈B,Rd) onto the closed, convex set
UL

ad µ L2(≈B,Rd) is given by the mapping

u ‘æ uC := PC (id + u) ≠ id.
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Proof. Recall · = id + u. By construction we have uC = PC (·) ≠ id œ UL
ad. It remains to

check whether
1
u ≠ uC , v ≠ uC

2

L
2
(≈

B

,R
d

)

Æ 0 holds for all v œ UL
ad.

Let v œ UL
ad and x œ ≈B. Since P̃C is the projection onto C in Rd and v(x) + x œ C we have

1
·(x) ≠ P̃C(·(x))

2T 1
v(x) + x ≠ P̃C(·(x))

2
Æ 0.

Thus, it holds
1
u ≠ uC , v ≠ uC

2

L
2
(≈

B

,R
d

)

=
⁄

≈
B

(u ≠ uC)T (v ≠ uC) dx

=
⁄

≈
B

(· ≠ PC (·))T (v + id ≠ PC (·)) dx Æ 0.

Corollary 5.5. For all “ > 0 the Moreau envelope e“(·) : L2(≈B,Rd) æ R is convex and
Fréchet di�erentiable. Its derivative is given by

eÕ
“(u) = “(· ≠ PC (·)) œ L2(≈B,Rd) ƒ L2(≈B,Rd)ú,

and is Lipschitz continuous.

Proof. These are general properties of Moreau envelopes, cf. [BC11, Propositions 12.15 and
12.29].

Remark 5.6. Noting that |x ≠ P̃C(x)|2 = d2

C(x) where dC is the distance function of the set
C the result can also be obtained by a more geometric argumentation. In particular, [DZ11,
Theorem 6.8.1] states that dC is convex if and only if C is convex and in this case it holds
d2

C œ C1,1
loc

(Rd).

If j is di�erentiable, the chain rule and Corollary 5.5 yield for all v œ U

ÈjÕ
“(u), vÍUú

,U = ÈjÕ(u), vÍUú
,U + “ (· ≠ PC (·) , v)

L
2
(≈

B

,R
d

)

.

Finally, we suppose that the constraint u œ Uad is not trivially satisfied, and that the reference
configuration is admissible.

Assumption 5.4. It holds

1. If u solves (P) it is not a solution of the unconstrained problem minuœU j(u).

2. u = 0 œ Uad.

We collect our working assumptions for ease of reference.
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Assumption 5.5. Assumption 5.1.1.-4., Assumption 5.2, Assumption 5.3, and Assumption 5.4
are satisfied.

Remark 5.7. It is clear from the above analysis, that (P) admits a global solution if Assump-
tion 5.5 is satisfied. The same holds for the regularized problem (MY) for any “ Ø 0.

Let us furthermore list some notational conventions used in the following.

• We write · for id + u and similarly ·ú, ·̂ , ·n for uú, û, un.

• We write (MY)“ for the problem (MY) with “ = “ and similarly (MY)“
ú , (MY)“̂ , (MY)“

n

.

• We denote by u œ Uad a local solution of (MY)“ , un is a local solution of (MY)“
n

, etc.

5.3. Properties of the regularized solutions

In this section we show that any strict local solution of (P) is a strong accumulation point of
a sequence of local solutions of (MY)“ for “ æ Œ. This convergence result and its proof are
inspired by the ideas presented in [NT08] and go back to [CT02]. The same ideas are used
in [MY09] to obtain similar results. The result is easily extended to show that any weakly
convergent sequence of global solutions of (MY)“ converges strongly towards a global solution
of (P). Furthermore, we show that any accumulation point of a sequence of local solutions
(u“), with “ æ “̂, is a local solution of (MY)“̂ .

We begin by observing that
..”(u“)

..
L

2
(≈

B

,R
d

)

æ 0 for “ æ Œ if j is locally Lipschitz continu-
ous.

Lemma 5.8. [KU15, Lemma 3] Let j be locally Lipschitz continuous. For all u /œ Uad there
exists a “

0

> 0, such that u is not a local solution of (MY)“ for all “ > “
0

.

Proof. Consider an arbitrary u /œ Uad and an 0 < Á < 1. By assumption there exists a local
Lipschitz constant L > 0 of j on the ball BU (u, Á). Let v = PU

ad

(u) and consider the convex
combination u = (1 ≠ Á

2

)u + Á
2

v. Then u œ BU (u, Á), and by convexity (see Corollary 5.5)

Î”(u)Î2

L
2
(≈

B

,R
d

)

Æ (1 ≠ Á

2) Î”(u)Î2

L
2
(≈

B

,R
d

)

+ Á

2 Î”(v)Î2

L
2
(≈

B

,R
d

)

= (1 ≠ Á

2) Î”(u)Î2

L
2
(≈

B

,R
d

)

,

since v œ Uad. Now we choose “ > “
0

:= 4L Î”(u)Î≠2

L
2
(≈

B

,R
d

)

and calculate

j“(u) ≠ j“(u) = j(u) ≠ j(u) + “

2
1

Î”(u)Î2

L
2
(≈

B

,R
d

)

≠ Î”(u)Î2

L
2
(≈

B

,R
d

)

2

< L Îu ≠ uÎU + 2L Î”(u)Î≠2

L
2
(≈

B

,R
d

)

3
≠Á

2 Î”(u)Î2

L
2
(≈

B

,R
d

)

4

Æ LÁ ≠ LÁ = 0.

Hence for any u /œ Uad we find a “
0

such that for all “ > “
0

, u is not a local minimum of
(MY)“ .

118



5.3. Properties of the regularized solutions

Remark 5.9. In particular, for a sequence of local solutions (u“) of (MY)“ , this implies that..”(u“)
..

L
2
(≈

B

,R
d

)

æ 0 for “ æ Œ, if j is locally Lipschitz continuous.

We proceed with the derivation of the announced result regarding local solutions. Adopting an
idea from [CT02, NT08] we consider the following auxiliary problem. For a u œ Uad and r > 0
consider

min
uœU

j“(u) s.t. u œ BU (u, r). (5.6)

Since BU (u, r) is convex, closed, bounded, and non-empty there exists at least one (global)
solution ur

“ œ U of (5.6). We begin by studying the properties of ur
“ for “ æ Œ.

Lemma 5.10. [KU15, Lemma 4] Let Assumption 5.5 hold and (“n) µ R>0

tend to infinity.
Furthermore, let u œ Uad be a local solution of (P) on BU (u, ”). Consider a sequence of global
solutions (ur

n) of (5.6) with “ = “n and r = ”/2. Then there exists a weak accumulation point
of ur

n. Moreover, any weakly convergent subsequence ur
k Ô uú œ U converges strongly, and

uú œ Uad is a local solution of (P).

Proof. (i) The sequence (ur
n) µ BU (u, r) is bounded, hence there exists a weakly convergent

subsequence.

(ii) Now consider an arbitrary weakly convergent subsequence ur
k Ô uú œ BU (u, r). We first

argue that uú œ Uad. If Î”(ur
k)Î

L
2
(≈

B

,R
d

)

”æ 0, then we find arbitrarily large “k with ur
k /œ Uad.

Note that

u := (1 ≠ Á

2)ur
k + Á

2PU
ad

(ur
k) œ BU (u, r)

since u œ Uad and Uad is convex. Copying the argument of Lemma 5.8 we conclude
j“

k

(u) < j“
k

(ur
k) for “k large enough which contradicts the optimality of ur

k. Hence it holds
Î”(ur

k)Î
L

2
(≈

B

,R
d

)

æ 0. Since U Òæc L2(≈B,Rd) we conclude
..”(uú)

..
L

2
(≈

B

,R
d

)

= 0 and thus
uú œ Uad.

(iii) We now show that uú is a local minimum of (P). Obviously u œ Uad is feasible for (5.6).
From ur

k Ô uú in U and j : U æ R being weakly lower semicontinuous we conclude

j(uú) Æ lim inf
kæŒ

j(ur
k) Æ lim inf

kæŒ
j“

k

(ur
k) Æ lim sup

kæŒ
j“

k

(ur
k) Æ lim sup

kæŒ
j“

k

(u) = j(u). (5.7)

We used the optimality of ur
k in the last inequality. By uú œ BU (u, ”

2

) fl Uad we also have
j(u) Æ j(uú) which implies j(u) = j(uú). By assumption it holds

j(u) Ø j(u) = j(uú), ’u œ Uad fl BU (u, ”),

and by construction uú œ BU (u, ”
2

) µ BU(u, ”). We conclude that uú is a local minimum of
(P).
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(iv) Finally, we address the strong convergence of (ur
k). Due to the optimality of ur

k it
holds j(ur

k) Æ j(u) = j(uú) for all k. Combined with the lower semicontinuity of j, i.e.,
lim infkæŒ j(ur

k) Ø j(uú) we obtain

lim
kæŒ

j(ur
k) = j(uú) = J(T (uú), S(T (uú))) + —

2
..uú..2

U .

On the other hand, T is completely continuous, S, J are continuous, hence ur
k Ô uú implies

J(T (ur
k), S(T (ur

k))) æ J(T (uú), S(T (uú))).

We conclude Îur
kÎU æ

..uú..
U . Weak convergence plus convergence in the norm imply the

strong convergence ur
k æ uú in U .

The above result is not quite satisfactory in two aspects. For once, it might be that the global
solutions ur

k are situated on the boundary of the auxiliary admissible set. In this case we can
not infer whether they are also local solutions of (MY)“

k

. Secondly, we would like to obtain
convergence to u, and not to some other nearby local solution. As the next theorem shows it
su�ces to require that u is a strict local solution to address both points. Of course, we could
require some su�cient second order condition in u to guarantee this.

Theorem 5.11. [KU15, Theorem 1] Let Assumption 5.5 hold and u œ Uad be a strict local
solution of (P) on BU(u, ”). Then for every “n æ Œ, every sequence of global solutions
(ur

n) µ U of (5.6) with “ = “n and r < ”, converges strongly in U to u. Furthermore, there
exists a n̂ > 0, such that for all n Ø n̂ the ur

n are local solutions of (MY)“
n

.

Proof. In Lemma 5.10 we showed that for every sequence (ur
n) there exists a weakly convergent

subsequence, and that every such subsequence converges to a local solution uú of (P). In
particular, we proved j(uú) = j(u). Since u is a strict local minimum this implies uú = u.
Hence, u is the only weak accumulation point of the bounded sequence (ur

n), which implies that
the whole sequence converges weakly ur

n Ô u in U . Lemma 5.10 implies that the convergence is
strong. Finally, since ur

n æ u, there exists n̂ > 0 such that for all n Ø n̂ it holds ur
n œ BU (u, r).

Hence, the ur
n are local solutions of (MY)“

n

.

Let us briefly consider global solutions ug, ug
“ of (P), and (MY)“ . Due to the coercivity of j

we can find an r large enough such that ug
“ œ BU (ug, r), in particular ur

“ = ug
“ , for all “ > 0.

Hence Lemma 5.10 implies

Corollary 5.12. [KU15, Corollary 2] Let Assumption 5.5 hold and (“n) µ R>0

tend to
infinity. Then there exists a weakly convergent subsequence of (ug

n). Furthermore, any weakly
convergent subsequence ug

k Ô uú œ U converges strongly, and uú is a global solution of (P).

We show now that any accumulation point of a sequence of local solutions (u“), with “ æ “̂,
is a local solution of (MY)“̂ . Consider the auxiliary problem

min
uœU

j“(u), s.t. u œ A, (5.8)

for some fixed, closed, convex, and nonempty set A µ U .
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Theorem 5.13. [KU15, Theorem 2] Let Assumption 5.5 hold, “̂ > 0, and consider for “n æ “̂
a sequence of global solutions (un) of (5.8) with “ = “n. Then there exists a weakly convergent
subsequence (uk). Furthermore, any weakly convergent subsequence uk Ô uú œ U converges
strongly, and uú solves (5.8) with “ = “̂.

Proof. (i) Since j is coercive the sequence (un) is bounded. Hence there exists a weakly
convergent subsequence.

(ii) Now let (uk) be a weakly convergent subsequence uk Ô uú for some uú œ U . Since A is
weakly closed it holds uú œ A. We start by showing that uú solves (5.8)“̂ . Denote by û := u“̂

a global solution of (5.8)“̂ . Since uk Ô uú in U we have by compact embedding uk æ uú in
L2(≈B,Rd). Hence, continuity of the Moreau envelope and lower semicontinuity of j imply

j(uú) Æ lim inf
kæŒ

j(uk) and e“
k

(uk) æ e“̂(uú).

Furthermore, for all k it holds

j(uk) + e“
k

(uk) = j“
k

(uk) Æ j“
k

(û) = j(û) + e“
k

(û).

Thus we see that

j“̂(uú) = j(uú) + e“̂(uú) Æ lim inf
kæŒ

j(uk) + e“
k

(uk) Æ lim inf
kæŒ

j(û) + e“
k

(û) = j“̂(û),

which implies that uú solves (5.8)“̂ .

(iii) The strong convergence uk æ uú follows as in the proof of Lemma 5.10 part (iv).

Remark 5.14. Obviously A = U is possible and yields the result for global solutions of (MY).

As in the case “ æ Œ the result from Theorem 5.13 alone does not provide enough information
about the behavior of local solutions of (MY). Again this is remedied by considering a strict
local solution u“̂ of (MY)“̂ , which might be guaranteed by a su�cient second order condition.

Corollary 5.15. [KU15, Corollary 3] For “̂ > 0 let Assumption 5.5 be satisfied. Denote by û

a strict local solution of (MY)“̂ on BU (u, ”). Set 0 < r < ” and A = BU (û, r). Then, for any
“n æ “̂, any sequence of global solutions (ur

n) of (5.8) with “ = “n converges strongly in U to
û and, for “n close enough to “̂, the ur

n are local solutions of (MY)“
n

.

Proof. Using Theorem 5.13 we obtain a subsequence (“k) with ur
k æ uú in U , where uú solves

(5.8) with “ = “̂. Furthermore, any weakly convergent subsequence converges towards such a
solution. Since û is a strict local solution of (MY)“̂ and r < ” it follows, that û is the unique
solution of (5.8) with “ = “̂, which implies uú = û. Hence, û is the only weak accumulation
point of the bounded sequence ur

n, therefore the whole sequence converges weakly: ur
n Ô û.

Theorem 5.13 shows that the convergence is strong. Finally for “n close enough to “̂ we have
ur

n œ BU (û, r), since ur
n æ û. Hence the ur

n are local solutions of (MY)“
n

.
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5. Moreau-Yosida path following

We established two important properties of the family of regularized problems (MY): We can
approximate any strict local solution of (P) with a sequence of local solutions u“ of (MY)“

for “ æ Œ. Furthermore, we have a continuity property of u“ in the sense, that a strict local
solution of (MY)“̂ for fixed “̂ > 0 can be approximated by a sequence of local solutions u“ of
(MY)“ with “ æ “̂.

5.4. Solving the regularized problem

In Section 5.3 we showed that a strict local solution of (P) can be found by solving a sequence
of relaxed problems of the form (MY)“

n

with regularization parameter “n tending to infinity.
Of course, this is only a practical strategy if the regularized problems can be solved e�ciently.
We will apply a semismooth Newton method to solve the first order optimality condition:

jÕ
“

n

(un) = 0 in Uú. (5.9)

Remember ÈjÕ
“(u), vÍUú

,U = ÈjÕ(u), vÍUú
,U + “ (”(u), v)

L
2
(≈

B

,R
d

)

, with ”(u) = · ≠ PC (·). The
superposition operator PC is not di�erentiable but semismooth. For a thorough introduction
to semismoothness in Banach spaces we refer to the monograph [Ulb11]. In particular
semismoothness of superposition operators is discussed, see also [Sch08], or [HPUU09, Chapter
2] for a compact overview.

We start by defining the generalized di�erential of PC : U æ Lq(≈B,Rd), q Ø 1. We need

Assumption 5.6. The projection P̃C : Rd æ Rd is ˆP̃C-semismooth, where ˆP̃C denotes
Clarke’s generalized Jacobian [Cla83].

Remark 5.16. This is a condition on the set C µ Rd. In general, the projection P̃C is not even
directionally di�erentiable. See [Sha13] for conditions guaranteeing directional di�erentiability.
If the set C is of the form C = {x œ Rd | g(x) Æ 0}, where g : Rd æ Rm, gi œ C2(Rd,R) is
convex for all i, and the constant rank constraint qualification is satisfied, then [FP03, Theorem
4.5.2] states that the projection is piecewise smooth, in particular semismooth. An alternative,
very general approach to finite-dimensional semismoothness is the concept of tameness, cf.
[BDL09].

Definition 5.17. For q Ø 1 we introduce the set-valued mapping ˆPC : U ◆ L(U , Lq(≈B,Rd)),

ˆPC(w) :=
I

M œ L(U , Lq(≈B,Rd)) Mv(x) = K(x)v(x) ’x œ ≈B, with

K œ LŒ(≈B,Rd◊d), K(x) œ ˆP̃C(w(x)) ’x œ ≈B

J

.

Theorem 5.18. [KU15, Theorem 3] Let Assumption 5.6 hold, and U Òæ Lp(≈B,Rd) for
p > q Ø 1. Then ˆPC is well defined. Furthermore, PC : U æ Lq(≈B,Rd), is ˆPC-semismooth.

Proof. The first statement is immediate. Regarding the claimed semismoothness, it su�ces
to study the components P̃ i

C : Rd æ R and the associated superposition operator P i
C , cf.

[Ulb11, Proposition 3.6]. The result [HPUU09, Theorem 2.13] states su�cient conditions
for semismoothness of superposition operators. Let us check the conditions. The Lipschitz
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5.4. Solving the regularized problem

continuity of the projection P̃C : Rd æ Rd, for C µ Rd closed and convex, is well known.
Semismoothness of P̃ i

C follows from Assumption 5.6. Furthermore, since U Òæ Lp(≈B,Rd), the
mapping U – u ‘æ id + u œ Lp(≈B,Rd) is continuously Fréchet-di�erentiable and Lipschitz
continuous. Hence, we are able to employ [HPUU09, Theorem 2.13] and the claim follows.

Thus, if we want to solve (5.9) with a Newton-type method, we need to employ semismooth
calculus. The chain rule implies that jÕ

“ is ˆjÕ
“-semismooth, where ˆjÕ

“ : U ◆ L(U , Uú) and

Hu
“ œ ˆjÕ

“(u) … ÷Mu œ ˆPC(id + u) :
ÈHu

“ v, wÍUú
,U = ÈjÕÕ(u)v, wÍUú

,U + “ (v ≠ Muv, w)
L

2
(≈

B

,R
d

)

, ’v, w œ U .

We are now equipped to solve (5.9). Consider Algorithm 5.1.

Algorithm 5.1: Semismooth Newton’s method

Require: let Assumptions 5.5 and 5.6 be satisfied, and u0 œ U be given
1: set the iteration index to k = 0
2: repeat

3: choose a Hu
k

“ œ ˆjÕ
“(uk)

4: solve the semismooth Newton equation Hu
k

“ v = ≠jÕ
“(uk) in Uú

5: set uk+1 = uk + v,
6: increment k
7: until uk+1 = uk

For the well-posedness and superlinear convergence of the semismooth Newton method one
may require a uniform regularity condition like ÷ c, r > 0 such that

...(Hu
“ )≠1

...
L(U ,Uú

)

Æ c ’Hu
“ œ ˆjÕ

“(u), ’u œ BU (u“ , r). (5.10)

The following strong assumption assures this regularity condition in a point u œ U :

Assumption 5.7. For “ > 0 and u œ U there exist –̃, r > 0:

ÈHw
“ v, vÍUú

,U Ø –̃ ÎvÎ2

U ’v œ U , ’Hw
“ œ ˆjÕ

“(w), ’w œ BU (u, r).

Remark 5.19. In fact, already (5.10) is a stronger assumption than necessary. It would
su�ce if, in every iteration, there exists a solution of the semismooth Newton equation for the
choice Hu

k

“ , and if
....
1
Hu

k

“

2≠1

1
jÕ

“(uk) ≠ jÕ
“(u“) ≠ Hu

k

“ (uk ≠ u“)
2....

U
= o(

...uk ≠ u“

...
U

).

However, guaranteeing these conditions without a strong assumption like Assumption 5.7 is
challenging.
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5. Moreau-Yosida path following

Theorem 5.20. [KU15, Theorem 4] Let Assumptions 5.5 and 5.6 hold, and let Assumption 5.7
be satisfied for “ > 0 and a local solution u“ of (MY)“. Then there exists an r > 0 such that
for all initial points

u0 œ U with
...u0 ≠ u“

...
U

< r,

the semismooth Newton method (Algorithm 5.1) converges q-superlinearly to u“.

Proof. The superlinear convergence result can, for instance, be found in [HPUU09, Theorem
2.12]. The non-standard termination criterion is discussed in [Ulb11, Section 3.2.3], where
semismooth Newton methods are studied in more detail.

Usually, the following coercivity assumption su�ces.

Assumption 5.8. Let u œ U and suppose there exists an – > 0 such that

ÈjÕÕ(u)v, vÍUú
,U Ø – ÎvÎ2

U ’v œ U .

Theorem 5.21. Let Assumptions 5.5 and 5.6 hold, furthermore suppose that Assumption 5.8
is satisfied for some u œ U . Finally let jÕÕ : U æ L(U , Uú) be locally Lipschitz continuous in u,
i.e., for some ” > 0 there exists an L > 0, such that for all w œ BU (u, ”) we have

...jÕÕ(u)v ≠ jÕÕ(w)v
...

Uú Æ L Îu ≠ wÎU ÎvÎU .

Then, for all w œ BU (u, r) with r Æ ”, it holds

ÈjÕÕ(w)v, vÍUú
,U Ø (– ≠ Lr) ÎvÎ2

U ’v œ U .

In particular, Assumption 5.7 holds in u for r < min(”, –/L), –̃ = – ≠ Lr > 0, and any “ > 0.

Proof. The first claim follows directly from the Lipschitz continuity of jÕÕ and Assumption 5.8.
The second assertion follows as in [KU15, Theorem 5]. Let “ > 0 be arbitrary. The norm of
Clarke’s generalized Jacobian is bounded by the Lipschitz constant of the respective function.
In our case, the projection P̃C has Lipschitz constant one. Hence, recalling Definition 5.17 we
have for all w œ U and v œ U :

’Mw œ ˆPC(w) : ÎMwvÎ
L

2
(≈

B

,R
d

)

Æ ÎvÎ
L

2
(≈

B

,R
d

)

. (5.11)

Thus, for all w œ BU (u, r), and any Hw
“ œ ˆjÕ

“(w):

ÈHw
“ v, vÍUú

,U = ÈjÕÕ(w)v, vÍUú
,U + “ (v ≠ Mwv, v)

L
2
(≈

B

,R
d

)

Ø –̃ ÎvÎ2

U + “
1

ÎvÎ2

L
2
(≈

B

,R
d

)

≠ ÎvÎ2

L
2
(≈

B

,R
d

)

2
= –̃ ÎvÎ2

U .

This shows the claim.
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Of course, Assumption 5.8 is still a quite restrictive condition. If we consider it in the context
of (P) it would be more natural to require the coercivity only with respect to a critical cone.
Instead, we require coercivity for any v œ U . Furthermore, the coercivity is required in the
strong norm Î·ÎU . However, since our objective is given as j(u) = j(T (u)) + —

2

ÎuÎ2

U , this is
satisfied if the Hessian of the functional u ‘æ j(T (u)) is ‘not too negative definite’. This depends
very much on the concrete application, we refer for instance to [HK01] for an analysis of this
issue for optimal control of Navier- Stokes flow. Finally, in the case of a Tikhonov-regularized
objective the coercivity assumption is equivalent to a positivity assumption of jÕÕ under certain
conditions (compare [CT12, KV13]). Let us briefly discuss this in our setting. We require that
the mappings v ‘æ T Õ(u)v and v ‘æ (T ÕÕ(u)v)v are completely continuous. For linear extension
operators this follows immediately from our requirements on T .

Assumption 5.9. Let u œ U and suppose that

ÈjÕÕ(u)v, vÍUú
,U > 0 ’v œ U\{0}.

Lemma 5.22. [KU15, Lemma 5] Let Assumption 5.5 hold. Furthermore suppose Assump-
tion 5.9 is satisfied, and T Õ(u) œ L(U , V) as well as v ‘æ (T ÕÕ(u)v)v are completely continuous.
Then there exists – > 0 such that

ÈjÕÕ(u)v, vÍUú
,U Ø – ÎvÎ2

U , ’v œ U .

Proof. By [CT12, Remark 2.7] the assertion is true if jÕÕ(u) is a Legendre form. For this it
needs to satisfy the following two conditions.

(i) if vk Ô v as k æ Œ, then ÈjÕÕ(u)v, vÍUú
,U Æ lim infnæŒÈjÕÕ(u)vn, vnÍUú

,U

(ii) if additionally È jÕÕ(u)vk, vkÍUú
,U æ ÈjÕÕ(u)v, vÍUú

,U , then Îv ≠ vkÎU æ 0.

Recall j(u) = j(T (u)) + —
2

ÎuÎ2

U . The chain rule yields

ÈjÕÕ(u)v, vÍUú
,U = ÈjÕÕ(T (u))T Õ(u)v, T Õ(u)vÍVú

,V + ÈjÕ(T (u)), (T ÕÕ(u)v)vÍVú
,V + — ÎvÎ2

U .

Using the complete continuity of T Õ and T ÕÕ for the first two terms, and the weak lower
semicontinuity of the squared Hilbert space norm Î·Î2

U condition (i) follows. Furthermore,
ÈjÕÕ(u)vk, vkÍUú

,U æ ÈjÕÕ(u)v, vÍUú
,U for vk Ô v implies ÎvkÎU æ ÎvÎU . Weak convergence plus

convergence of the norm yields Îv ≠ vkÎU æ 0, hence (ii) is satisfied as well.

5.5. Some implications from second order conditions

In this section we study the second order conditions of Assumptions 5.7 and 5.8 more thoroughly.
In a standard manner we obtain a quadratic growth condition from Assumption 5.7, i.e., it may
serve as a su�cient second order condition. Exploiting Assumption 5.8 we show that there
exist neighborhoods of “̂ and u“̂ , such that the map “ ‘æ u“ , restricted to those neighborhoods,
is locally Lipschitz continuous.
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5. Moreau-Yosida path following

Remark 5.23. As already mentioned, we require here a quite strong second order condition.
We suspect that many results which depend on the quadratic growth condition remain true
under weaker assumptions. The current status of the theory of second order conditions for
optimal control problems is very nicely summarized in the recent survey [CT15]. It would also
be very interesting to derive necessary second order optimality conditions for a local solution
u“ of (MY)“ . Note that, even in finite dimensional optimization, the statement of necessary
second order optimality conditions for problems with semismooth derivatives is a quite involved
topic. It is out of the scope of this thesis to investigate this aspect.

We have the following quadratic growth property if Assumption 5.7 is satisfied:

Lemma 5.24. [KU15, Lemma 6] For “ > 0 let Assumption 5.7 hold in a stationary point u“

of (MY)“, and let Assumptions 5.5 and 5.6 be satisfied. Then there exist –, r > 0 such that

j“(u“) + –

2
..u ≠ u“

..2

U Æ j“(u) for all u œ BU (u“ , r). (5.12)

In particular u“ is a strict local solution.

Proof. Consider a u œ BU (u“ , r) with r > 0 as in Assumption 5.7, and the convex combination

ut
“ := (1 ≠ t)u“ + tu.

Since j“ is continuously Fréchet di�erentiable it holds

j“(u) ≠ j“(u“) =
⁄

1

0

jÕ
“(u“ + t(u ≠ u“))(u ≠ u“) dt =

⁄
1

0

jÕ
“(ut

“)(u ≠ u“) dt.

Using the semismoothness of jÕ
“ , we find

⁄
1

0

ÈjÕ
“(ut

“ , u ≠ u“ , dtÍUú
,U

=
⁄

1

0

ÈjÕ
“(u“), u ≠ u“ÍUú

,U + ÈtHu
“ (ut

“)(u ≠ u“), u ≠ u“ÍUú
,U + to(

..u ≠ u“

..2

U ) dt

= ÈjÕ
“(u“), u ≠ u“ÍUú

,U + o(
..u ≠ u“

..2

U ) +
⁄

1

0

tÈHu
“ (ut

“)(u ≠ u“), u ≠ u“ÍUú
,U dt.

Due to stationarity the first term drops out. By Assumption 5.7 we finally obtain

j“(u) Ø j“(u“) + o(
..u ≠ u“

..2

U ) +
⁄

1

0

t–̃
..u ≠ u“

..2

U dt Ø j“(u“) + –

2
..u ≠ u“

..2

U ,

for some suitable 0 < – Æ –̃ and
..u ≠ u“

..
U small enough. The last claim is clear.

We now want to use Assumption 5.8 to show local Lipschitz continuity of the map “ ‘æ u“ .
First we state the following auxiliary lemma. Recall the notation ”(u) = id + u ≠ PC(id + u).

Lemma 5.25. [KU15, Lemma 7] For any u, v œ U it holds (”(u) ≠ ”(v), u ≠ v)
L

2
(≈

B

,R
d

)

Ø 0.
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Proof. The projection P̃C is non-expansive, i.e., |P̃C(x
1

)≠P̃C(x
2

)| Æ |x
1

≠x
2

| for all x
1

, x
2

œ ≈B .
Transferring this to the superposition operator PC we obtain

(”(u) ≠ ”(v), u ≠ v)
L

2
(≈

B

,R
d

)

= (id + u ≠ PC(id + u) ≠ id ≠ v + PC(id + v), u ≠ v)
L

2
(≈

B

,R
d

)

Ø Îu ≠ vÎ2

L
2
(≈

B

,R
d

)

≠ ÎPC(id + u) ≠ PC(id + v)Î
L

2
(≈

B

,R
d

)

Îu ≠ vÎ
L

2
(≈

B

,R
d

)

Ø Îu ≠ vÎ2

L
2
(≈

B

,R
d

)

≠ Îid + u ≠ id ≠ vÎ
L

2
(≈

B

,R
d

)

Îu ≠ vÎ
L

2
(≈

B

,R
d

)

= 0.

Theorem 5.26. [KU15, Theorem 6] For a “̂ > 0 let the conditions of Theorem 5.21 hold in a
local solution û of (MY)“̂. Then there exist neighborhoods G µ R of “̂ and N µ U of û such
that, for all “ œ G, there exists a unique strict local solution u“ of (MY)“ in N . The map

G – “ ‘æ u“ œ N

is Lipschitz continuous on G.

Proof. By Corollary 5.15 we know that for “ close enough to “̂ there exists a local solution u“

of (MY)“ which lies close to û. From Theorem 5.21 we know that there exists a R > 0 such
that Assumption 5.7 is satisfied in û with r = R. Hence, for all u œ BU (û, R/2) Assumption 5.7
is satisfied as well with r = R/2. In particular, Lemma 5.24 tells us that any local solution u“

of (MY)“ in BU (û, R/2) is also strict, and, due to the quadratic growth property, we obtain a
unique local solution. This shows the first claim. The first order optimality conditions yield

jÕ
“̂(û) = 0 and jÕ

“(u“) = 0.

Testing with u“ ≠ û and subtracting those two equations yields

0 = ÈjÕ(u“) ≠ jÕ(û), u“ ≠ ûÍUú
,U + “

!
”(u“), u“ ≠ û

"
L

2
(≈

B

,R
d

)

≠ “̂
!
”(û), u“ ≠ û

"
L

2
(≈

B

,R
d

)

= ÈjÕ(u“) ≠ jÕ(û), u“ ≠ ûÍUú
,U + “

!
”(u“) ≠ ”(û), u“ ≠ û

"
L

2
(≈

B

,R
d

)

+ (“ ≠ “̂)
!
”(û), u“ ≠ û

"
L

2
(≈

B

,R
d

)

.

By Lemma 5.25 the second term can be bounded from below by zero. We will now use
Assumption 5.8 to estimate the first term. Since jÕ is continuously Fréchet di�erentiable it
holds

ÈjÕ(u“) ≠ jÕ(û), u“ ≠ ûÍUú
,U = ÈjÕÕ(û)(u“ ≠ û), u“ ≠ ûÍUú

,U + o(
..u“ ≠ û

..2

U )

Ø –
..u“ ≠ û

..2

U + o(
..u“ ≠ û

..2

U ).

In the last step we used Assumption 5.8. Hence we have

–
..u“ ≠ û

..2

U + o(
..u“ ≠ û

..2

U ) Æ (“̂ ≠ “)
!
”(û), u“ ≠ û

"
L

2
(≈

B

,R
d

)

Æ |“ ≠ “̂| Î”(û)Î
L

2
(≈

B

,R
d

)

..u“ ≠ û
..

L
2
(≈

B

,R
d

)

.
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Since u“ æ û for “ æ “̂ we can choose a r(—) > 0 such that for all “ > 0 with |“ ≠ “̂| < r(—):

–
..u“ ≠ û

..2

U Æ |“ ≠ “̂| Î”(û)Î
L

2
(≈

B

,R
d

)

..u“ ≠ û
..

L
2
(≈

B

,R
d

)

for some – > 0. Boundedness of û implies boundedness of ”(û). Finally, using the embedding
U Òæ L2(≈B,Rd) we arrive at

..u“ ≠ û
..

U Æ C|“ ≠ “̂|,

for some constant C > 0.

5.6. The value function and its model

Usually the value function is defined as V : R æ R, “ ‘æ min
uœU

j“(u). In [HK06a] it is shown
that the value function is di�erentiable in the linear-quadratic setting. Its derivative is given
as 1

2

..ug
“

..
L

2
(≈

B

,R
d

)

, where ug
“ denotes the unique global solution. In the nonlinear setting this

is not necessarily true if the global solutions of the regularized problems are not unique. Hence,
we have to di�er between local and global solutions, and restrict ourselves to a local analysis
for the di�erentiability.

Lemma 5.27. [KU15, Lemma 8] Let Assumption 5.5 hold. Denote a global solutions of
(MY)“ with ug

“. The map “ ‘æ V g(“) := j“(ug
“) is globally Lipschitz continuous for all “ > 0.

Proof. Due to optimality it holds for any “
1

, “
2

> 0

j“2(ug
“2) ≠ j“1(ug

“1) Æ j“2(ug
“1) ≠ j“1(ug

“1) = “2≠“1
2

...”(ug
“1)

...
2

L
2
(≈

B

,R
d

)

,

j“2(ug
“2) ≠ j“1(ug

“1) Ø j“2(ug
“2) ≠ j“1(ug

“2) = “2≠“1
2

...”(ug
“2)

...
2

L
2
(≈

B

,R
d

)

.
(5.13)

This implies

|j“2(ug
“2) ≠ j“1(ug

“1)| Æ |“
2

≠ “
1

|
2 max

1
Î”(ug

“1)Î2

L
2
(≈

B

,R
d

)

, Î”(ug
“2)Î2

L
2
(≈

B

,R
d

)

2
.

The solutions ug
“ are uniformly bounded in U for all “ > 0. To see this consider an admissible

u œ Uad. Then we have for all “ > 0 the estimate —
2

..ug
“

..2

U Æ j“(ug
“) Æ j“(u) Æ j(u).

Since U Òæ L2(≈B,Rd) the term
..”(ug

“)
..2

L
2
(≈

B

,R
d

)

is also uniformly bounded, and the claim
follows.

Remark 5.28. Interestingly, we can show the next result concerning the di�erentiability
of a local value function without employing explicitly the di�erentiability of j“ . However,
the required conditions will usually only be satisfied if a suitable second order condition
holds. In particular, this would necessitate twice di�erentiability. Theorem 5.26 shows that
Assumption 5.8 is su�cient to ensure the conditions of Theorem 5.29.
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Theorem 5.29. [KU15, Theorem 7] Let Assumption 5.5 hold. Let “̂ > 0 be arbitrary and û be
a strict local solution of (MY)“̂. Assume that there exists a neighborhood Û of û such that for
any sequence “ æ “̂ a sequence of local solution u“ of (MY)“

n

lies (for “ close enough to “̂)
in Û , and the u“ are unique local solutions in Û . Then the local value function V : “ ‘æ j“(u“)
is di�erentiable at “̂ with

V Õ(“̂) = 1
2 Î”(û)Î2

L
2
(≈

B

,R
d

)

.

Proof. Due to the local uniqueness assumption we can repeat the estimation (5.13) for u“ and
û if “ is close enough to “̂. This implies

1
2 Î”(û)Î2

L
2
(≈

B

,R
d

)

Æ j“̂(û) ≠ j“(u“)
“̂ ≠ “

Æ 1
2

..”(u“)
..2

L
2
(≈

B

,R
d

)

,

if “̂ Ø “ and the reverse inequality if “̂ < “. Using Corollary 5.15 we see that u“ æ û as
“ æ “̂, in particular

..”(u“)
..2

L
2
(≈

B

,R
d

)

æ Î”(û)Î2

L
2
(≈

B

,R
d

)

. Thus, we obtain the claimed result
V Õ(“̂) = 1

2

Î”(û)Î2

L
2
(≈

B

,R
d

)

in the limit.

Corollary 5.30. Let the conditions of Theorem 5.29 be satisfied. The local value function V
is monotonically increasing. If the local solutions satisfy u“ /œ Uad it is strictly monotonically
increasing. The map “ ‘æ V Õ(“) is strictly monotonically decreasing.

Proof. It holds V Õ(“) Ø 0. V Õ(“) = 0 would imply ”(u“) = 0 which is only the case if u“ œ Uad.
Thus we conclude that the value function V is (strictly) monotonically increasing. Furthermore,

“
2

> “
1

∆
...”(u“2)

...
2

L
2
(≈

B

,R
d

)

<
...”(u“1)

...
2

L
2
(≈

B

,R
d

)

,

hence the mapping “ ‘æ V Õ(“) is monotonically decreasing.

In [HK06a] it was proposed to use the value function V in an algorithmic setting to steer the
“-update and the termination criterion. Since the function is not available explicitly, one has
to approximate it with a model function. Following [HK06a] one may define the model

m(“) = C
1

≠ C
2

(D + “)r ,

for some real constants C
1

, C
2

, D, r, with C
2

, D, r > 0. Note that mÕ > 0, mÕÕ < 0 corresponding
to the properties of V stated in Corollary 5.30.

Remark 5.31. In [HK06b] the same class of model functions was used in inexact Moreau-
Yosida path following for the obstacle problem. The authors reported good results with their
(partially heuristic) strategy. However, in our experience, the performance of such a scheme is
very much dependent on the choice of the various parameters and the concrete example.
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5. Moreau-Yosida path following

5.7. Optimality conditions and properties of the Lagrange
multipliers

In this section we study the optimality conditions of the full problem (5.1) and its regularization.
In particular, we extend the results of Lemma 5.10 and Theorem 5.26 to the state, the adjoint
state, and the Lagrange multiplier associated with the geometric constraint. We do not
explicitly use the second order condition in this section. However, it could be used to check
some of the prerequisites of the following results. The findings in this section were partly
inspired by the ideas presented in [HK06a] and [Ulb11].

The optimality conditions of (5.1) were already derived in Theorem 5.2. We repeat them here
for the convenience of the reader:

JU (T (u), y)T Õ(u) + —u +
1
EU (T (u), y)T Õ(u)

2ú
p + ⁄ = 0 in Uú,

Jy(T (u), y) + Ey(T (u), y)úp = 0 in Yú,
E(T (u), y) = 0 in Z,

u œ Uad,
⁄ œ T (Uad, u)¶.

(5.14)

The regularized problem is given by

min
uœU ,yœY

J(T (u), y) + —

2 ÎuÎ2

U + e“(u) s.t. E(T (u), y) = 0 in Z. (5.15)

Under Assumption 5.5 we obtain for every “ > 0 and a local solution (u“ , y“) œ U ◊ Y the
existence of a unique adjoint state p“ œ Zú such that

JU (T (u“), y“) + —u“ + (EU (T (u“), y“)T Õ(u“))úp“ + ⁄“ = 0 in Uú,
Jy(T (u“), y“) + Ey(T (u“), y“)úp“ = 0 in Yú,

E(T (u“), y“) = 0 in Z,

“(·“ ≠ PC

!
·“

"
) = ⁄“ in L2(≈B,Rd).

(5.16)

Lemma 5.32. [KU15, Lemma 9] Let Assumption 5.5 hold and suppose additionally that the
extension operator T is linear. If a sequence of local solutions u“ is uniformly bounded in U
with respect to “, then the associated sequence (y“ , p“ , ⁄“), as determined by (5.16), is also
bounded in Y ◊ Z ◊ Uú.

Proof. (i) If u“ is uniformly bounded we can find a bounded, closed set Ũ µ U with (u“) µ Ũ
for all “. Due to complete continuity of T the image T (Ũ) is relatively compact and
T (u“) is contained in the compact set Ṽ := cl T (Ũ). Since S is continuous S(Ṽ) is also
compact. In particular we obtain that (y“) = (S(T (u“))) µ S(Ṽ) is uniformly bounded.

(ii) Since J is continuously di�erentiable Jy(T (u“), y“) µ Jy(Ṽ, S(Ṽ)) is also uniformly
bounded. The same holds for Ey(T (u“), y“) and its inverse is likewise bounded. Hence
using the adjoint equation in (5.16) we can bound p“ uniformly

..p“

..
Z Æ

...Ey(T (u“), y“)≠1

...
L(Z,Y)

..Jy(T (u“), y“)
..

Yú Æ C.
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5.7. Optimality conditions and properties of the Lagrange multipliers

(iii) Analogously to (ii) we obtain from the first equation of (5.16) and the boundedness of
(u“ , y“ , p“):

..⁄“

..
Uú Æ

..JU (T (u“), y“) + —u“

..
Uú +

...EU (T (u“), y“)T Õ(u“)
...

L(U ,Z)

..p“

..
Z Æ C.

Remark 5.33. By assumption U (and thus also Uú) are reflexive Banach spaces. Usually this
applies also to Y and Z. In that case the above result provides us with weakly convergent
subsequences. The linearity condition on T may be replaced by suitable conditions on its
derivatives. However, for simplicity we will always require it in this section.

We will now show that ⁄“ œ Uú approximates ⁄ from (5.14) for “ æ Œ. First, recall from
Lemma 5.4 that

u ‘æ uC = PC (·) ≠ id

describes the L2(≈B,Rd)-projection onto

UL
ad = {u œ L2(≈B,Rd) | ·(x) µ C for a. e. x œ ≈B}.

For the convenience of the reader we summarize [Ulb11, Lemma 8.2 and Lemma 8.20] in the
following auxiliary result.

Lemma 5.34. (i) If M œ L(Z, X) is a surjective operator between Banach spaces, then
there exists a constant c > 0 such that

...xÕ
...

X
ú Æ c

...MúxÕ
...

Z
ú for all xÕ œ Xú, where Mú

denotes the adjoint operator of M .

(ii) The linear operator

F : U ◊ Y æ U ◊ Z, F

A
v
z

B

=
A

v

EU (T (u), y)T Õ(u)v + Ey(T (u), y)z

B

is surjective if and only if Ey(T (u), y) œ L(Y, Z) is surjective. Its dual is given by

F ú : Uú ◊ Zú æ Uú ◊ Yú, F ú
A

⁄
p

B

=
A

⁄ + (EU (T (u), y)T Õ(u))úp
Ey(T (u), y)úp

B

.

Recall that Assumption 5.2 implies the surjectivity of Ey(T (u), S(T (u))) for all u œ Uad.
We are now ready to prove the announced convergence result. For “n > 0 we denote by
(un, yn, pn, ⁄n) œ U ◊ Y ◊ Zú ◊ Uú a solution of the optimality system (5.16).

Theorem 5.35. [KU15, Theorem 9] Let Assumption 5.5 hold and “n æ Œ. Furthermore,
suppose that the extension operator T is linear. Then any weakly convergent subsequence
(uk, yk, pk, ⁄k) Ô (u, y, p, ⁄) in U ◊ Y ◊ Zú ◊ Uú converges strongly, and (u, y, p, ⁄) solves the
optimality system (5.14).

131



5. Moreau-Yosida path following

Proof. Consider a weakly convergent subsequence (uk, yk, pk, ⁄k) with limit (u, y, p, ⁄). The
plan of the proof is the following. In (i) we show yk æ y = S(T (u)). We can associate with
(u, y) a unique pair (p̂, ⁄̂) œ Zú ◊ Uú such that the first two equations of (5.14) are satisfied for
(u, y, p̂, ⁄̂). We proceed to show in (ii) that (pk, ⁄k) æ (p̂, ⁄̂). Uniqueness of the limit implies
then (p̂, ⁄̂) = (p, ⁄). As next step we prove uk æ u in (iii). Finally we check that u œ Uad and
⁄ œ T (Uad, u)¶ in (iv) and (v).

(i) The strong convergence yk = S(T (uk)) æ S(T (u)) follows from the complete continuity
of T and the continuity of the design-to-state operator S (compare Assumption 5.1).
Hence y = S(T (u)) solves the state equation of (5.14).

(ii) As announced we associate now with (u, y) a unique pair (p̂, ⁄̂) œ Z ◊ Uú such that the
first two equations of (5.14) are satisfied for (u, y, p̂, ⁄̂). We claim that (pk, ⁄k) æ (p̂, ⁄̂).
Setting Fu to be the operator defined in Lemma 5.34 with u = u and similarly Fk with
u = uk we can write the first two equations in (5.4) and (5.16) with the help of the dual
operators as

F ú
u

A
⁄̂
p̂

B

= ≠
A

JU (T (u), y)T Õ(u) + —u
Jy(T (u), y)

B

and

F ú
k

A
⁄k

pk

B

= ≠
A

JU (T (uk), yk)T Õ(uk) + —uk

Jy(T (uk), yk)

B

.

Using Lemma 5.34 we see that
....

A
⁄̂ ≠ ⁄k

p̂ ≠ pk

B....
Uú◊Zú

Æ c

....F ú
u

A
⁄̂ ≠ ⁄k

p̂ ≠ pk

B....
Uú◊Yú

(5.17)

Æ c

.....F ú
u

A
⁄̂
p̂

B

≠ F ú
k

A
⁄k

pk

B.....
Uú◊Yú

+ c

.....
!
F ú

u ≠ F ú
k

"
A

⁄k

pk

B.....
Uú◊Yú

.

(5.18)

Let us deal with those two terms separately. Using yk æ y and the complete continuity
of T we see that

JU (T (uk), yk) æ JU (T (u), y),
Jy(T (uk), yk) æ Jy(T (u), y), (5.19)

Since T is linear it holds T Õ(uk) = T Õ(u) for all k. Finally, by the definition of weak
convergence we obtain

uk Ô u in U ∆ uk æ u in Uú.

Hence, we have
.....F ú

u

A
⁄̂
p̂

B

≠ F ú
k

A
⁄k

pk

B.....
Uú◊Yú

=
....

A
JU (T (uk), yk)T Õ(uk) + —uk ≠ JU (T (u), y)T Õ(u) ≠ —u

Jy(T (uk), yk) ≠ Jy(T (u), y)

B....
Uú◊Yú

æ 0.
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Addressing the second term we note that also

EU (T (uk), yk) æ EU (T (u), y),
Ey(T (uk), yk) æ Ey(T (u), y), (5.20)

and hence

ÎFk ≠ FuÎL(U◊Y,U◊Z)

æ 0.

Using the properties of the dual operator and boundedness of (⁄k, pk) we obtain
....
!
F ú

k ≠ F ú
u

"
A

⁄k

pk

B....
Uú◊Yú

Æ
..F ú

k ≠ F ú
u

..
L(Uú◊Zú

,Uú◊Yú
)

....

A
⁄k

pk

B....
Uú◊Yú

= ÎFk ≠ FuÎL(U◊Y,U◊Z)

....

A
⁄k

pk

B....
Uú◊Yú

.

Since
A

⁄k

pk

B

is uniformly bounded we conclude from (5.17) that
....

A
⁄̂ ≠ ⁄k

p̂ ≠ pk

B....
Uú◊Zú

æ 0.

Uniqueness of the limit now provides us with

⁄k æ ⁄̂ = ⁄ in Uú and
pk æ p̂ = p in Zú.

(iii) Testing the first equation in (5.14) and (5.16) with u ≠ uk, and subtracting the two
equations we see that

— Îu ≠ ukÎ2

U =ÈJU (T (uk), yk)T Õ(uk) ≠ JU (T (u), y)T Õ(u), u ≠ ukÍUú
,U

+ È
1
EU (T (uk), yk)T Õ(uk)

2ú
pk ≠

1
EU (T (u), y)T Õ(u)

2ú
p, u ≠ ukÍUú

,U

+ È⁄k ≠ ⁄, u ≠ ukÍUú
,U .

Combing now uk Ô u, pk æ p, ⁄k æ ⁄, (5.19), and (5.20) shows that the right hand
side tends to zero and hence uk æ u.

(iv) From ⁄k Ô ⁄ we know that ⁄k in Uú is bounded. Thus

“k (·k ≠ PC (·k) , v)
L

2
(≈

B

,R
d

)

Æ C ÎvÎU for all v œ U .

Since “k æ Œ we conclude that ·k ≠ PC (·k) æ 0 in L2(≈B,Rd). Furthermore uk æ u
in U implies uk æ u in L2(≈B,Rd). Combining these findings yields · ≠ PC (·) = 0 in
L2(≈B,Rd), i.e., u œ Uad.

(v) Let us now check if ⁄ œ T (Uad, u)¶. Recall uC = PC (·) ≠ id. Note that
...uC

k ≠ u
...

L
2
(≈

B

,R
d

)

Æ Îuk ≠ uÎ
L

2
(≈

B

,R
d

)
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by the projection property, and uk æ u in L2(≈B,Rd), hence uC
k æ u in L2(≈B,Rd).

Now let µ(v ≠ u) œ T (Uad, u) for some µ > 0 and v œ Uad. We have

È⁄, µ(v ≠ u)ÍUú
,U = lim

kæŒ
È⁄k, µ(v ≠ u)ÍUú

,U

= lim
kæŒ

(“k(·k ≠ PC (·k)), µ(v ≠ u))
L

2
(≈

B

,R
d

)

= lim
kæŒ

1
“k(·k ≠ PC (·k)), µ(v ≠ uC

k )
2

L
2
(≈

B

,R
d

)

= lim
kæŒ

“kµ
1
uk ≠ uC

k , v ≠ uC
k

2

L
2
(≈

B

,R
d

)

Æ 0.

In the last inequality we used again the projection property. Hence for

K := {w œ U | w = µ(v ≠ u) for some µ > 0 and v œ Uad}

it holds ⁄ œ K¶. Since T (Uad, u) = cl K, and the polar cone of a cone is the same as the
polar cone of its closure, we conclude that ⁄ œ T (Uad, u)¶.

We can immediately carry Theorem 5.35 over to the case “n æ “̂ > 0:
Corollary 5.36. [KU15, Corollary 4] Let Assumption 5.5 hold, “̂ > 0, and “n æ “̂. Further-
more, suppose that the extension operator T is linear. Then any weakly convergent subsequence
(uk, yk, pk, ⁄k) Ô (uú, yú, pú, ⁄ú) converges strongly, and the limit (uú, yú, pú, ⁄ú) solves (5.16)“̂.

Proof. ⁄ú solves the last equation of (5.16), since uk Ô u in U implies uk æ u in L2(≈B,Rd).
Replacing (u, y, p, ⁄) by (uú, yú, pú, ⁄ú) in the steps (i)-(iii) of the proof of Theorem 5.35, we see
that (uú, yú, pú, ⁄ú) solves also the other equations of (5.16) and the convergence is strong.

Finally, we extend the results of Theorem 5.26.
Theorem 5.37. [KU15, Theorem 10] Let Assumption 5.5 hold, “̂ > 0 and (u“ , y“ , p“ , ⁄“) be
a solution of (5.16)“. Furthermore, suppose that the extension operator T is linear. If the map
“ ‘æ u“ is locally Lipschitz continuous for “ close enough to “̂, then the maps “ ‘æ y“, “ ‘æ p“,
and “ ‘æ ⁄“ are also locally Lipschitz continuous.

Proof. By assumption the solution operator S is twice continuously di�erentiable, in particular
locally Lipschitz continuous. Hence, the mapping “ ‘æ y“ = S(T (u“)) is locally Lipschitz
continuous if “ ‘æ u“ is locally Lipschitz. Using again the operators F“ , F“̂ as defined in
Lemma 5.34 with u = u“ , respectively u = u“̂ and copying the calculations in the proof of
Theorem 5.35(ii) we arrive at
....

A
⁄“̂ ≠ ⁄“

p“̂ ≠ p“

B....
Uú◊Zú

Æ c

....F ú
“̂

A
⁄“̂ ≠ ⁄“

p“̂ ≠ p“

B....
Uú◊Yú

Æ c

....

A
JU (T (u“̂), y“̂)T Õ(u“̂) + —u“̂ ≠ JU (T (u“), y“)T Õ(u“) ≠ —u“

Jy(T (u“̂), y“̂) ≠ Jy(T (u“), y“)

B....
Uú◊Yú

+ c

....
!
F ú

“ ≠ F ú
“̂

"
A

⁄“

p“

B....
Uú◊Yú

.
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Since J is twice continuously di�erentiable its first derivatives are Lipschitz continuous. Recall
that T is linear, hence T Õ(u“̂) = T Õ(u“). Thus, the first term can be bounded for “ close to “̂
by c(

..u“̂ ≠ u“

..
U +

..y“̂ ≠ y“

..
Y), and analogously it holds

..F“ ≠ F“̂

..
L(U◊Y,U◊Z)

Æ c(
..u“̂ ≠ u“

..
U +

..y“̂ ≠ y“

..
Y),

for “ close to “̂. Copying the calculations from the proof of Theorem 5.35(ii), we see that
....
!
F ú

“ ≠ F ú
“̂

"
A

⁄“

p“

B....
Uú◊Yú

Æ
..F“ ≠ F“̂

..
L(U◊Y,U◊Z)

....

A
⁄“

p“

B....
Uú◊Zú

Æ c(
..u“̂ ≠ u“

..
U +

..y“̂ ≠ y“

..
Y)

....

A
⁄“

p“

B....
Uú◊Zú

.

Recall that (⁄“ , p“) is (uniformly) bounded. Summarizing, we found
....

A
⁄“̂ ≠ ⁄“

p“̂ ≠ p“

B....
Uú◊Zú

Æ c(
..u“̂ ≠ u“

..
U +

..y“̂ ≠ y“

..
Y).

We conclude, that the local Lipschitz continuity of “ ‘æ u“ and “ ‘æ y“ , implies the local
Lipschitz continuity of the mappings “ ‘æ p“ and “ ‘æ ⁄“ .

5.8. Convergence rate estimates

In this section we present some estimates on the rate of convergence towards feasibility, as
well as on the distance between a solution of (P) and a solution of (MY)“ . This section has
been adopted from [KU15, Section 3.7] with minor changes.

Recall the notation ”(u)(x) = x + u(x) ≠ P̃C(x + u(x)) for x œ ≈B, and the properties of the
oriented distance function

bC = dC ≠ dC
c ,

of the convex set C µ Rd, cf. Section 2.11.3 and [DZ11, Chapter 7]. In particular, for all
x̃ /œ C we have

ÒbC(x̃) = x̃ ≠ P̃C(x̃)
|x̃ ≠ P̃C(x̃)|

and |ÒbC(x̃)| = 1.

Introducing the set of feasible boundary points

Z(u) := {x œ ≈B | ”(u)(x) = 0},

we note that

ÒbC(x + u(x)) = ”(u)(x)
|”(u)(x)| for all x œ ≈B\Z(u).

We now strengthen our assumptions on C and U . We need to be able to smoothen out jumps
of ÒbC originating from corners of C while staying close to the original vector field.
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Assumption 5.10. We have the embedding U Òæ C1,–1(≈B,Rd) for some –
1

> 0. Furthermore,
there exists c

1

, c
2

> 0 and a vector field VC : Rd æ Rd such that

(i) VC(x)T ÒbC(x) Ø c
1

and |VC(x)| Æ c
2

|ÒbC(x)| for all x œ Rd\C

(ii) VC ¶ (id + u) œ U , for all u œ U .

Remark 5.38. The first condition implies that VC cannot di�er to far from ÒbC , in particular
the angle between those vectors is always smaller than fi. The second condition requires a
certain smoothness of VC .

We are now ready to estimate the quantity ”(u“) in the L1(≈B,Rd)-norm. Compare [HSW14]
in the state-constrained setting.

Lemma 5.39. [KU15, Lemma 12] Let Assumptions 5.5 and 5.10 hold. If a family of local
solutions (u“) of (MY)“ is uniformly bounded, then there exists a constant c > 0 such that

..”(u“)
..

L
1
(≈

B

,R
d

)

Æ c“≠1.

Proof. Let “ > 0. A local solution u“ satisfies the optimality condition jÕ
“(u“) = 0. Testing

with v“ := VC ¶ (id + u“) œ U we obtain

0 = ÈjÕ
“(u“), v“ÍUú

,U = ÈjÕ(u“), v“ÍUú
,U + “

!
”(u“), v“

"
L

2
(≈

B

,R
d

)

.

Boundedness of u“ implies boundedness of jÕ(u“) and by Assumption 5.10 also of v“ . Hence,
÷c > 0 such that

“
!
”(u“), v“

"
L

2
(≈

B

,R
d

)

Æ
...jÕ(u“)

...
Uú

..v“

..
U Æ c, for all “ > 0.

Furthermore, for all i = 1, . . . , d it holds
..(”(u“))i

..
L

1
(≈

B

,R
d

)

Æ
s

≈
B

|”(u“)(x)| dx. Thus, using
the properties of bC and VC we find

“
..”(u“)

..
L

1
(≈

B

,R
d

)

Æ “d

⁄

≈
B

|”(u“)(x)| dx

= “d

⁄

≈
B

\Z(u
“

)

|”(u“)(x)| dx

Æ “d

c
1

⁄

≈
B

\Z(u
“

)

VC(x + u“(x))T ÒbC(x + u“(x))|”(u“)(x)| dx

= “d

c
1

⁄

≈
B

\Z(u
“

)

v“(x)T ”(u“)(x) dx

= “d

c
1

⁄

≈
B

v“(x)T ”(u“)(x) dx

= d

c
1

“
!
v“ , ”(u“)

"
L

2
(≈

B

,R
d

)

Æ dc

c
1

.

This shows
..”(u“)

..
L

1
(≈

B

,R
d

)

Æ c“≠1 for some c > 0.
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Now we want to have an estimate on the point-wise constraint violation, which we measure
with

..”(u“)
..

L
Œ

(≈
B

,R
d

)

. The idea is to use the following result from [HSW14]. For convenience
we abbreviate Ck+–(A) := Ck,–(A) for k œ N and – œ (0, 1].

Proposition 5.40. [HSW14, Proposition 2.4] Consider a bounded, open set A µ Rn, and
z œ C—(A) fl L1(A), with 0 < — Æ 2, and z Ø 0. Moreover, assume that z = 0 on ˆA. Then

ÎzÎL
Œ

(A)

Æ c ÎzÎ1≠◊

C
—

(A)

ÎzÎ◊
L

1
(A)

, (5.21)

with ◊ = —/(— + n). The constant c > 0 is indepentdent of A.

Theorem 5.41. [KU15, Theorem 11] Suppose Assumptions 5.5 and 5.10 hold, and consider
a bounded family of local solutions (u“) µ C1,–1(≈B,Rd) of (MY)“ for “ > 0. Choose for all
“ > 0 a point x“ œ ≈B such that

..”(u“)
..

L
Œ

(≈
B

,R
d

)

= |”(u“)(x“)|.

If there exists “̂ such that ’“ Ø “̂ there exists such a point x“ /œ ˆ≈B, then ÷c > 0:

(i)
..”(u“)

..
L

Œ
(≈

B

,R
d

)

Æ c“≠ 1
d .

(ii) If additionally there exist –
2

, –
3

> 0 such that ≈B is a C1,–2-manifold, and C is of class
C1,–3, satisfying ˆC fl Sk(ˆC) = ÿ, then there holds

..”(u“)
..

L
Œ

(≈
B

,R
d

)

Æ c“≠ –+1
–+d ’“ Ø “̂,

where – = min(–
1

, –
2

, –
3

).

Proof. (i) Recall the notation ·“ = id+u“ and that ≈B is a C1-manifold, cf. Assumption 5.3.
Hence, there exists a neighborhood N“ µ Rd of x“ , r > 0 and a C1,0-di�eomorphism
h“ : Rd≠1 ∏ BR

d≠1
(0, r) æ N“ fl ≈B . The idea of the proof is to employ Proposition 5.40

for the composed function

f“ : BR
d≠1

(0, r) æ R, f“(y) = (bC ¶ ·“ ¶ h“)(y).

Note that bC is at least Lipschitz continuous. Furthermore, U Òæ C1,–(≈B,Rd) by
Assumption 5.10, hence ·“ œ C1,–(≈B,Rd). Thus, we obtain for the composition
f“ œ C0,1(BR

d≠1
(0, r)). For any x œ ≈B it holds

|”(u“)(x)| = |·“(x) ≠ P̃C(·“(x))| = (bC ¶ ·“)(x),

in particular, this implies f“ Ø 0. Note that we do not have to satisfy f“ = 0 on
ˆA = ˆBR

d≠1
(0, r) since by assumption the maximizer lies already in the interior, cf.
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5. Moreau-Yosida path following

[HSW14, Remark 2.5]. Thus, we can employ Proposition 5.40, and noting that in this
case ◊ = 1/(1 + (d ≠ 1)) = 1/d, we obtain

..f“

..
L

Œ
(B

R
(0,r))

Æ c
..f“

..1≠ 1
d

C
0,1

(B
R

(0,r))

..f“

..
1
d

L
1
(B

R
(0,r))

. (5.22)

By the choice of x“ it holds
..”(u“)

..
L

Œ
(≈

B

,R
d

)

= |”(u“)(x“)| =
..f“

..
L

Œ
(B

R
(0,r))

.

Furthermore, we find constants c
1

(h“), c
2

(h“) depending only on h“ such that
..f“

..
L

1
(B

R
(0,r))

Æ c
1

(h“)
..”(u“)

..
L

1
(≈

B

flN,R
d

)

Æ c
1

(h“)
..”(u“)

..
L

1
(≈

B

,R
d

)

,
..f“

..
C

0,1
(B

R
(0,r))

Æ c
2

(h“)
..”(u“)

..
C

0,1
(≈

B

flN,R
d

)

Æ c
2

(h“)
..”(u“)

..
C

0,1
(≈

B

,R
d

)

.

Combining these estimates with (5.22) we arrive at
..”(u“)

..
L

Œ
(≈

B

,R
d

)

Æ c
1

(h“)c
2

(h“)
..”(u“)

..1≠ 1
d

C
0,1

(≈
B

,R
d

)

..”(u“)
..

1
d

L
1
(≈

B

,R
d

)

.

Since h“ depends only on x“ œ ≈B and ≈B is a fixed C1-manifold we find an upper
bound for c Ø max(c

1

(h“), c
2

(h“)) for all “. Furthermore, the boundedness of u“ in
U Òæ C1,–1(≈B,Rd) implies boundedness of

..”(u“)
..

C
0,1

(≈
B

,R
d

)

, and we conclude

..”(u“)
..

L
Œ

(≈
B

,R
d

)

Æ c
..”(u“)

..
1
d

L
1
(≈

B

,R
d

)

.

Finally, we invoke Lemma 5.39 to obtain
..”(u“)

..
L

Œ
(≈

B

,R
d

)

Æ c“≠ 1
d .

(ii) We argue as in the first part of the proof. However, we can now exploit the higher
regularity of ≈B and C to obtain a C1,–2-di�eomorphism h“ , and due to Theorem 2.91
we know that (at least locally) bC œ C1,–3 due to Theorem 2.91. Thus, we obtain for the
composition

f“ œ C1,–(BR
d≠1

(0, r)),

with – = min(–
1

, –
2

, –
3

) > 0. Using again Proposition 5.40 this leads us to
..f“

..
L

Œ
(B

R
(0,r))

Æ c
..f“

..1≠ –+1
–+d

C
1,–

(B
R

(0,r))

..f“

..
–+1
–+d

L
1
(B

R
(0,r))

.

Analogously to the above we arrive via
..”(u“)

..
L

Œ
(≈

B

,R
d

)

Æ c
1

(h“)c
2

(h“)
..”(u“)

..1≠ –+1
–+d

C
1,–

(≈
B

,R
d

)

..”(u“)
..

–+1
–+d

L
1
(≈

B

,R
d

)

and Lemma 5.39 at
..”(u“)

..
L

Œ
(≈

B

,R
d

)

Æ c“≠ –+1
–+d .
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5.8. Convergence rate estimates

Remark 5.42. (i) We expect that in many cases the worst case estimate of Theorem 5.41
is not sharp. See the discussion in [HSW14] on convergence rates in Moreau-Yosida
path following, and their dependence on the structure of the Lagrange multiplier in the
optimum.

(ii) The assumption that the maximum is attained in the interior of ≈B, i.e., x“ /œ ˆ≈B is
of technical nature to expedite the proof. In our numerical tests we did not experience
di�culties if it was not satisfied, and we suspect that it can be weakened or even dropped.
It is violated in the examples presented at the end of this chapter.

Finally, we show an estimate on the distance between a solution u of (P), and a solution u“ of
the regularized problem.

Theorem 5.43. [KU15, Theorem 12] Let Assumptions 5.5, 5.6 and 5.10 hold, and u œ Uad

be a local solution of (P) in which the second order condition Assumption 5.8 is satisfied with
–, Á > 0. Further suppose that there exists a family of local solutions (u“) of (MY)“ with
u“ æ u in U , and

..”(u“)
..

L
Œ

(≈
B

,R
d

)

Æ c“≠s for some s > 0 and “ æ Œ. (5.23)

Finally, denote V : “ ‘æ j“(u“). Then there exists “̂ > 0 such that for all “ Ø “̂ we have

0 Æ j(u) ≠ V (“) Æ c“≠s.

Furthermore, it holds
..u ≠ u“

..
U Æ c“≠s/2.

Proof. We obtain from Theorems 5.21 and 5.29 that

V Õ(“) = 1
2

..”(u“)
..2

L
2
(≈

B

,R
d

)

for all “ with
..u ≠ u“

..
U < Á.

Using Lemma 5.39 and (5.23) we obtain

V Õ(“) Æ 1
2

..”(u“)
..

L
Œ

(≈
B

,R
d

)

..”(u“)
..

L
1
(≈

B

,R
d

)

Æ c“≠1≠s.

Now let “
2

> “
1

be large enough. Since V (·) is di�erentiable for such “ we obtain

V (“
2

) ≠ V (“
1

) =
⁄ “2

“1
V Õ(t) dt Æ

⁄ “2

“1
ct≠1≠s dt = c(≠“≠s

2

+ “≠s
1

),

with c independent of “. Hence, passing to the limit “
2

æ Œ, it holds (recall (5.7))

j(u) ≠ V (“
1

) = lim
“2æŒ

j“2(u“2) ≠ V (“
1

) = lim
“2æŒ

V (“
2

) ≠ V (“
1

) Æ c“≠s
1

.

This shows the first claim.
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5. Moreau-Yosida path following

By Theorem 5.21, Assumption 5.7 is satisfied in u for any “ > 0. Choose 0 < r
0

< Á
2

. For all
“ > 0 such that

..u“ ≠ u
..

U Æ r
0

it holds

ÈHu
“ v, vÍUú

,U Ø – ÎvÎ2

U , ’v œ U , ’Hu
“ œ ˆjÕ

“(u), ’u œ BU (u“ , r
0

).

As we showed in Lemma 5.24 this implies

j“(u) Ø j“(u“) + –

2
..u“ ≠ u

..2

U + o(
..u ≠ u“

..2

U ), ’u œ BU (u“ , r
0

),

In particular, it holds

–

2
..u ≠ u“

..2

U + o(
..u“ ≠ u

..2

U ) Æ j“(u) ≠ j“(u“) = j(u) ≠ V (“) Æ c“≠s.

Thus, for “ big enough, i.e.,
..u ≠ u“

..
U small enough, there exists a c > 0 such that
..u ≠ u“

..2

U Æ c“≠s.

5.9. Application to shape optimization with point-wise geometric
constraints

Let us now show how the above analysis can be applied to a shape optimization problem with
geometric constraints. We demonstrate this for the concrete model problem of Chapter 3.
However, the setting can be extended to quite general shape optimization problems. For
simplicity we restrict ourselves to a situation where the sought-for optimal solution is close to
our initial geometry, such that we can work with a fixed reference domain œref .

Recall the pressure tracking shape optimization problem of Chapter 3. To be more precise,
we consider the situation in Figure 3.1(b), i.e., the initial domain œ

0

is a rectangle, and we
are allowed to modify the upper boundary denoted by ≈B. Furthermore, the height of the
boundaries on the left and right side can also vary. In this setting it seems reasonable to
parametrize the domains via the vertical displacement of the upper boundary. As in Section 3.4,
we work with a fixed reference domain œref = œ

0

, and concentrate on displacements of the
boundary as our control, cf. Section 2.11 and 2.12. We choose the Hilbert space

U := H2(≈B),

and extended the boundary displacements via linear elasticity to domain displacements

U = Tu œ C1,–(œref ,R2) =: V,

cf. Theorem 2.87. In particular, the extension operator T : U æ V is linear and completely
continuous. Working with a fixed reference domain we are only interested in displacements
Tu œ BV(0, 1). This can be enforced by restricting the boundary displacements to a suitable
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5.10. Numerical examples

set Ufeas µ U , cf. Section 2.12. We consider geometric constraints in the form of a minimum
and maximum diameter of the channel, i.e., 0 < a < b and define

Uad := {u œ Ufeas | a Æ x
2

+ u(x
1

) Æ b for a.e. x œ ≈B}.

As in Section 3.1, we set Y = H1

D(œref ), Z = Yú, and consider the state equation operator

E : BV(0, 1) ◊ Y æ Z, ÈE(U, y), ÏÍYú
,Y = (A(U)Ò(y + y

0

), ÒÏ)
L

2
(œ

ref

)

,

and the objective

J : BV(0, 1) ◊ Y æ R, J(U, y) = 1
2

⁄

≈
B

A
tT Ò(y + y

0

)
|D·U t | ≠ pd

B
2

|D·U t | dS.

Due to Corollaries 3.2 and 3.3, we know that E and J are twice continuously di�erentiable
on BV(0, 1) ◊ Y. Lemma 3.4 states that Ey(U, y) œ L(Y, Z) is continuously invertible on
BV(0, 1)◊Y . Summarizing, the Assumptions 5.1, 5.2 and 5.3 are satisfied on Ufeas respectively
T (Ufeas). In particular, the reduced objective

j : Ufeas æ R, j(u) = J(T (u), S(T (u))) + —

2 ÎuÎ2

U

is twice continuously di�erentiable. As in Section 3.4, we introduce here a control cost/Tikhonov
regularization term —

2

ÎuÎ2

U . Although we supposed in this chapter that — is fixed, in practice
it can often be iteratively decreased during the course of the penalty method. We present
a related numerical experiment in the next section. Note however, that we used — > 0, i.e.,
the presence of the term —

2

ÎuÎ2

U , in many essential arguments. Hence, most of the obtained
results can, in general, not be expected to hold if — æ 0.

The conditions of Assumption 5.4 can be checked during the setup of a concrete shape
optimization problem. For the considered example the projection P̃C can be represented by the
maximum and minimum operator. These are known to be semismooth, hence Assumption 5.6
is satisfied as well. The second order su�cient condition Assumption 5.8 can not be guaranteed
a-priori. Finally, Assumption 5.10 is trivially satisfied for C = {x œ R | a Æ x Æ b}.

Thus, the pressure tracking shape optimization problem fits into the setting considered in this
chapter. We conclude with some numerical experiments in the next section.

5.10. Numerical examples

We implemented the proposed Moreau-Yosida penalty method in MATLAB [TM15]. For this
we choose a sequence “k æ Œ. The subproblems (MY)“

k

are solved with the globalized
(semismooth) Newton method described in Section 2.12. The solution of subproblem (MY)“

k

is
used as initial iterate of the next subproblem. As it is usually done in path following strategies,
we do not solve each subproblem exactly. Instead, we iteratively decrease the termination
tolerance of the globalized Newton method by setting TOLk = “≠1

k .
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5. Moreau-Yosida path following

In the examples presented below, we employ a fixed factor to increase “k. An alternative
would be to use the model function proposed in Section 5.6 to steer the “-update and the
termination tolerance TOLk, cf. [HK06a, HK06b]. However, the e�ciency of such a strategy is
highly dependent on the concrete problem and various parameters. In our experiments, we did
not identify a parameter set which performed consistently better than the fixed “-update.

Example 5.1. Recall Example 3.1, where the desired tangential velocity profile pd increases
linearly from 3

4

to 5

4

. We again choose the bi-Laplacian scalar product with weight w = 1 for
A, and set — = 10≠2. The penalty method is terminated as soon as Î”(uk)Î

L
Œ

(≈
B

,R
d

)

< 10≠6.
The optimal domain without geometric constraints is depicted in Figure 3.2. As discussed
in the last section, we add now constraints regarding the diameter of the channel to the
optimization problem, and set a = 0.9, b = 1.2. The progression of the penalty method applied
to this problem is presented in Table 5.1. The first column shows the iteration count of the
penalty method, the second column the final objective value of each subproblem (MY)k, the
third the associated value of the tracking term, and the fourth column the associated norm
of the derivative. The sixth column shows the number of iterations the globalized Newton
method required to solve (MY)“

k

up to TOLk. Finally, the last two columns show the value of
the penalty parameter “k, and the infeasibility of the current iterate of the penalty method. It
is interesting to note that the infeasibility Î”(uk)Î

L
Œ

(≈
B

,R
d

)

decreases approximately with the
rate “≠1

k , see also Figure 5.1. Furthermore, we would like to emphasize the small number of
iterations the globalized Newton method needed for each subproblem. In particular, in the
last iterations one Newton step su�ces already.

Table 5.1.: History of the penalty method, Example 5.1
k j(uk) j̃(uk)

..jÕ(uk)
..

A≠1 # iter descent “k Î”(uk)Î
L

Œ(≈B ,R
d)

1 5.21·10≠4 7.24·10≠5 4.91·10≠3 4 0 9.27·10≠2

2 6.24·10≠4 1.53·10≠4 3.35·10≠3 3 101 6.86·10≠3

3 6.68·10≠4 2.45·10≠4 2.38·10≠3 2 102 1.74·10≠3

4 6.83·10≠4 2.78·10≠4 6.32·10≠4 3 103 3.54·10≠4

5 6.86·10≠4 2.85·10≠4 1.88·10≠8 2 104 6.89·10≠5

6 6.87·10≠4 2.87·10≠4 4.54·10≠9 2 105 1.15·10≠5

7 6.87·10≠4 2.87·10≠4 6.85·10≠11 1 106 1.15·10≠6

8 6.87·10≠4 2.87·10≠4 1.21·10≠12 1 107 1.15·10≠7

Example 5.2. Our next example is based on Example 3.2, i.e., the desired velocity profile is
given by

pd(x
1

) = 1 + 1
4 arctan (4x

1

≠ 3) .

We impose the diameter constraints a = 0.9, b = 1.1. This renders the final domain without
geometric constraints completely infeasible. The final domains are compared in Figure 5.2.
The progression of the penalty method applied to this problem is presented in Table 5.2.
The first column shows again the iteration count of the penalty method, the second column
the final objective value of each subproblem (MY)k, the third the associated value of the
tracking term, and the fourth column the associated norm of the derivative. The sixth column
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5.10. Numerical examples

shows the number of iterations the globalized Newton method required to solve (MY)k up
to TOLk. Finally, the last two columns show the value of the penalty parameter “k, and the
infeasibility of the current iterate of the penalty method. We again observe an approximately
linear convergence rate of the infeasibility measure, and very few iterations of the globalized
Newton method.

Table 5.2.: History of the penalty method, Example 5.2
k j(uk) j̃(uk)

..jÕ(uk)
..

A≠1 # iter descent “k Î”(uk)Î
L

Œ(≈B ,R
d)

1 5.77·10≠2 4.70·10≠2 4.43·10≠3 5 0 7.61·10≠1

2 7.04·10≠2 6.69·10≠2 8.55·10≠3 3 101 3.51·10≠2

3 7.33·10≠2 7.19·10≠2 7.89·10≠3 2 102 6.04·10≠3

4 7.38·10≠2 7.28·10≠2 3.46·10≠4 3 103 7.17·10≠4

5 7.39·10≠2 7.29·10≠2 2.13·10≠8 3 104 1.03·10≠4

6 7.39·10≠2 7.29·10≠2 1.29·10≠8 2 105 1.49·10≠5

7 7.39·10≠2 7.29·10≠2 3.61·10≠10 1 106 2.08·10≠6

8 7.39·10≠2 7.29·10≠2 3.53·10≠11 1 107 2.34·10≠7

Example 5.3. Finally, we present an example where we iteratively decrease the Tikhonov
parameter —. We consider the setting of Example 5.1, but decrease — in each iteration of
the penalty method by the factor 10. The progression of the penalty method applied to this
problem is presented in Table 5.3. As one can see, the behavior of the algorithm is essentially
the same as for the fixed — value. We again observe that the infeasibility Î”(uk)Î

L
Œ

(≈
B

,R
d

)

decreases approximately with the rate “≠1

k , see also Figure 5.1. The number of iterations of the
globalized Newton method is still very low, in particular we still observe fast local convergence
of Newton’s method. Of course, the number of overall CG iterations increases compared to
Example 5.1 It is also interesting to note that the value of the tracking term is quite close to
the one in Example 5.1.

Table 5.3.: History of the penalty method, Example 5.3
k j(uk) j̃(uk)

..jÕ(uk)
..

A≠1 # iter descent “k Î”(uk)Î
L

Œ(≈B ,R
d) —

1 1.72·10≠2 9.67·10≠3 4.83·10≠3 1 0 0.00·10≠0 1
2 3.94·10≠3 8.26·10≠4 1.39·10≠3 3 101 6.83·10≠3 10≠1

3 6.70·10≠4 2.39·10≠4 6.04·10≠3 3 102 1.86·10≠3 10≠2

4 3.20·10≠4 2.76·10≠4 4.10·10≠8 3 103 3.63·10≠4 10≠3

5 2.88·10≠4 2.83·10≠4 3.58·10≠8 2 104 5.34·10≠5 10≠4

6 2.84·10≠4 2.84·10≠4 2.06·10≠8 1 105 5.80·10≠6 10≠5

7 2.84·10≠4 2.84·10≠4 6.63·10≠8 5 106 5.84·10≠7 10≠6
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5. Moreau-Yosida path following

10 1 10 2 10 3 10 4 10 5 10 6 10 7
10 -7
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10 -1

1/ γ
Example 5.1
Example 5.2
Example 5.3

Figure 5.1.: Infeasibility Î”(uk)Î
L

Œ
(≈

B

,R
d

)

for the three examples

0 1.5 3
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1.1

(a) Example 3.2

0 1.5 3
0

0.5

0.9

1.1

(b) Example 5.2

Figure 5.2.: Comparison final domains Example 3.2 and Example 5.2
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6. Drag minimization in Stokes flow

In this chapter we consider the shape optimization problem of minimizing the drag of a body
B in a viscous incompressible fluid. To be more precise, we suppose that the fluid is described
by the stationary Stokes equations. We focus here on this simple flow problem to demonstrate
our method. However, our technique can be easily extended to the instationary Navier-Stokes
equations.

We denote the velocity of the flow by v , the pressure by p and the kinematic viscosity by ‹ > 0.
The Stokes equations on a bounded domain œ in absence of body forces are given by

≠‹�ṽ + Òp̃ = 0 in œ,
Ò · ṽ = 0 in œ,

(6.1)

coupled with suitable boundary conditions. For small Reynolds numbers, i.e., relatively large
viscosity, the functional

J̃(œ, ṽ) := ‹
2

⁄

œ

dÿ

i=1

ÒṽT
i Òṽi dx̃

coincides with the usual hydrodynamical drag of a body B immersed in the fluid, cf., e.g.,
[BFCLS97, Section 2]. Under suitable conditions there exists a unique solution (ṽ , p̃) = S̃(œ)
of (6.1), and one can define the shape functional

j : O æ R, j(œ) = J̃(œ, S̃(œ))

for an appropriate set of domains O µ P(Rd). The associated shape optimization problem
reads

min
œœO

j(œ) s.t. œ œ Oad, (6.2)

where Oad is the set of admissible domains and may present additional constraints, e.g., a
volume or center of mass constraint.

We discuss in the next section a general setting in which the drag functional j is well defined
and shape di�erentiable. As usual, we employ the function space parametrization approach,
and exploit the formula (2.42)

j(·U (œ)) = jœ(U) = J(U, S(U)),

where J, S are the transformed objective, respectively the transformed design-to-state operator,
cf. Section 2.14. We then proceed in Section 6.2 by discussing the constraint œ œ Oad. Finally,
we present a concrete numerical experiment in Section 6.3.
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6. Drag minimization in Stokes flow

Shape di�erentiability of the drag for the Stokes and Navier-Stokes equations has been discussed
by various authors. Formal computations were, for example, carried out in [Pir73]. Simon
rigorously obtained shape di�erentiability of the drag for Stokes flow in a W 2,Œ domain in
[Sim91]. Later, together with his coauthors, he studied stationary Navier-Stokes flows, and
obtained shape di�erentiability of the drag in a Lipschitz domain with respect to Lipschitz
displacements in [BFCLS97]. Shape di�erentiability of instationary flows is quite intricate, we
mention [Lin12], where shape di�erentiability of the instationary, incompressible Navier-Stokes
equations is discussed.

6.1. The Stokes equations and function space parametrization

Let us describe the problem setting in detail. We consider a nonempty, bounded Lipschitz
domain œ

0

µ Rd and all its images under C1 transformations, i.e.

O := O⇥(œ
0

) where ⇥ = C1(Rd,Rd). (6.3)

Recall the notations O⇥(œ
0

) = {œ µ Rd | œ = ·(œ
0

), · œ F(⇥)} from (2.5) and F(⇥) see
(2.3). In particular, all domains in O are Lipschitz domains. Note that we could also work
with small enough Lipschitz deformations as in [BFCLS97].

We refrained so far from stating boundary conditions for the Stokes equations. The reason for
this is that, while this choice influences the spaces in which the variational Stokes equations are
posed, it has no direct impact on the considerations we will lay out in this section. Thus, we
decided to work in an abstract setting, and assume that the associated equation is well-posed
and uniquely solvable. For œ œ O, we consider two Hilbert spaces X(œ), M(œ), and set
Y(œ) = X(œ) ◊ M(œ). Let us introduce the operators Ẽœ : Y(œ) æ Y(œ)ú defined as

ÈẼœ(ṽ , p̃), (Ï̃, Ẫ)ÍY(œ)

ú
,Y(œ)

= ‹
dÿ

i=1

(Òṽi, ÒÏ̃i)L
2
(œ)

≠
!
p̃, div(Ï̃)

"
L

2
(œ)

+
1
div(ṽ), Ẫ

2

L
2
(œ)

.

This corresponds to the variational velocity-pressure formulation of the Stokes equations.

Assumption 6.1. Let O be given by (6.3). For every œ œ O the operator Ẽœ : Y(œ) æ Y(œ)ú

is well defined, and for every f œ Y(œ)ú there exists a unique solution (ṽ , p̃) œ Y(œ) of

Ẽœ(ṽ , p̃) = f in Y(œ)ú

which satisfies
..(ṽ , p̃)

..
Y(œ)

Æ c ÎfÎY(œ)

ú for some constant c > 0 independent of f .

Remark 6.1. It is a classical result that this assumption is satisfied in the case of Dirichlet
conditions on the whole boundary ˆœ where X(œ) = H1

0

(œ,R2), M(œ) = L2

0

(œ), see for
example [GR87, Section 1.5], or [Tem77, Gal11]. If one is interested in a situation where œ is
only a part of a much larger (or even infinite) domain, e.g., a channel, than it is more natural
not to describe Dirichlet data on the outflow boundary. Instead, a very popular choice are
free outflow boundary conditions, often referred to as ‘do-nothing’ conditions, see for example
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6.1. The Stokes equations and function space parametrization

[HRT96]. For this the boundary is decomposed into ˆœ = ≈D fi ≈out, i.e., a Dirichlet part and
an outflow boundary. On ≈out one requires

p̃n ≠ ‹ˆn ṽ = 0. (6.4)

The corresponding spaces are X(œ) = H1

D(œ), M(œ) = L2(œ), where H1

D(œ) denotes the
space of vector fields in H1 with zero trace on ≈D. Although the free outflow boundary
conditions work very well in practice, only few theoretical results concerning them are available.
We refer to the recent publication [BM14] where solvability of the stationary Navier-Stokes
equations with a ‘directional do-nothing’ boundary condition is discussed. For the case of an
outflow boundary this condition coincides with the classical ‘do-nothing’ condition.

Hence, supposing some given (partial) Dirichlet datum is smoothly extended to ṽD œ X(œ)
we can formulate the state equation on œ œ O

find (ṽ , p̃) œ Y(œ) satisfying Ẽœ(ṽ , p̃) = ≠Ẽœ(ṽD, 0). (6.5)
As announced in the introduction, the objective functional is given by

J̃ : {(œ, ṽ) | œ œ O, ṽ œ X(œ)} æ R, J̃(œ, ṽ) = ‹
2

dÿ

i=1

(Òṽi, Òṽi)L
2
(œ)

.

Assumption 6.1 allows us to employ the standard machinery of Section 2.14. There exists a
design-to-state operator

S̃ : O – œ ‘æ S(œ) œ Y(œ) with Ẽœ(S̃) = ≠Ẽœ(ṽD, 0) for all œ œ O.

Thus the shape functional
j : O æ R, j(œ) = J̃(œ, S̃(œ))

is well defined. Recall for œ œ O the localized functional
jœ : B⇥(0, 1) æ R, jœ(U) = j(·U (œ))

and the relationship between the derivatives of these two functionals, see Theorems 2.31
and 2.39. As usual, we now want to use the characterization (2.42) to compute the derivatives
of jœ, and thus of j. For this we suppose further that for all œ œ O it holds

Y(œ) = {(ṽ , p̃) ¶ · | (ṽ , p̃) œ Y(·(œ))}
for all · œ F(⇥), and that the mapping

Y(·(œ)) – (ṽ , p̃) ‘æ (v , p) := (ṽ , p̃) ¶ · œ Y(œ)

is a homeomorphism. Note that Lemma 2.9 asserts this property for the spaces Lp, W 1,p, W 1,p
0

.

Consider now a domain œ œ O for which we would like to evaluate the shape derivatives of j,
and abbreviate Y(œ) = Y. We obtain the transformed state equation operator as

E : B⇥(0, 1) ◊ Y æ Yú, E(U, v , p) := Ẽ·
U

(œ)(v ¶ ·≠1

U , p ¶ ·≠1

U ) ¶ ·≠1

U ,

and the transformed objective as
J : B⇥(0, 1) ◊ X(œ) æ R, J(U, v) := J(·U (œ), v ¶ ·≠1

U ).
For completeness and the convenience of the reader we spell out the detailed formulas of E, J ,
and their partial derivatives in the next subsection.
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6.1.1. Partial derivatives

Recall the rules for computing derivatives from Lemma 2.84, as well as the map (3.2)

U ‘æ A(U) := D·≠1

U D·≠T
U det(D·U ),

and its derivative in a direction V œ ⇥ given by (3.3)

MV (U) := D·≠1

U

1
≠DV D·≠1

U ≠ D·≠T
U DV T + I tr(D·≠1

U DV )
2

D·≠T
U det(D·U ),

where I denotes the identity matrix in Rd◊d.

Partial derivatives of E

We begin with the partial derivatives of the state equation operator E : B⇥(0, 1) ◊ Y æ Yú

given by

ÈE(U, v , p), (Ï, Â)ÍYú
,Y = ‹

dÿ

i=1

( A(U)Òvi, ÒÏi)L
2
(œ)

≠
1
tr(D·≠T

U ÒÏ) det(D·U ), p
2

L
2
(œ)

+
1
tr(D·≠T

U Òv) det(D·U ), Â
2

L
2
(œ)

.

For clarity of presentation we employ again the short notation

(Ï, Â)úE(U, v , p) := ÈE(U, v , p), (Ï, Â)ÍYú
,Y .

It holds

(Ï, Â)úE
(v ,p)

(U, v , p)(w , q) = ‹
dÿ

i=1

( A(U)Òwi, ÒÏi)L
2
(œ)

≠
1
tr(D·≠T

U ÒÏ) det(D·U ), q
2

L
2
(œ)

+
1
tr(D·≠T

U Òw) det(D·U ), Â
2

L
2
(œ)

,

(Ï, Â)úEU (U, v , p)V = ‹
dÿ

i=1

1
MV (U)Òvi, ÒÏi

2

L
2
(œ)

+
1
tr(D·≠T

U DV T D·≠T
U ÒÏ) det(D·U ), p

2

L
2
(œ)

≠
1
tr(D·≠T

U ÒÏ) tr(D·≠1

U DV ) det(D·U ), p
2

L
2
(œ)

≠
1
tr(D·≠T

U DV T D·≠T
U Òv) det(D·U ), Â

2

L
2
(œ)

+
1
tr(D·≠T

U Òv) tr(D·≠1

U DV ) det(D·U ), Â
2

L
2
(œ)

.
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Evaluated at U = 0 the expressions simplify to

(Ï, Â)úE
(v ,p)

(0, v , p)(w , q) = ‹
dÿ

i=1

( Òwi, ÒÏi)L
2
(œ)

≠
!
div(Ï), q

"
L

2
(œ)

+ (div(w), Â)
L

2
(œ)

,

(Ï, Â)úEU (0, y)V = ‹
dÿ

i=1

1
(I div(V ) ≠ DV ≠ DV T )Òvi, ÒÏi

2

L
2
(œ)

+
1
tr(DV T ÒÏ), p

2

L
2
(œ)

≠
!
div(Ï) div(V ), p

"
L

2
(œ)

≠
1
tr(DV T Òv), Â

2

L
2
(œ)

+ (div(v) div(V ), Â)
L

2
(œ)

.

The second partial derivatives are given by

(Ï, Â)úE
(v ,p),(v ,p)

(U, v , p) = 0,

(Ï, Â)úE
(v ,p),U (U, y)((w , q), V ) = (Ï, Â)úEU,(v ,p)

(U, y)(V, (w , q))

= ‹
dÿ

i=1

1
MV (U)Òwi, ÒÏi

2

L2
ref

+
1
tr(D·≠T

U DV T D·≠T
U ÒÏ) det(D·U ), q

2

L
2
(œ

ref

)

≠
1
tr(D·≠T

U ÒÏ) tr(D·≠1

U DV ) det(D·U ), q
2

L
2
(œ

ref

)

≠
1
tr(D·≠T

U DV T D·≠T
U Òw) det(D·U ), Â

2

L
2
(œ

ref

)

+
1
tr(D·≠T

U Òw) tr(D·≠1

U DV ) det(D·U ), Â
2

L
2
(œ

ref

)

,

which simplifies to

(Ï, Â)úE
(v ,p),U (0, v , p)((w , q), V ) = (Ï, Â)úEU,(v ,p)

(0, v , p)(V, (w , q))

= ‹
dÿ

i=1

1
(I div(V ) ≠ DV ≠ DV T )Òwi, ÒÏi

2

L
2
(œ)

+
1
tr(DV T ÒÏ), q

2

L
2
(œ)

≠
!
div(Ï) div(V ), q

"
L

2
(œ)

≠
1
tr(DV T Òw), Â

2

L
2
(œ)

+ (div(w) div(V ), Â)
L

2
(œ)

.
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The second derivative with respect to U is a bit lengthy. It holds

(Ï, Â)úEUU (U, y)(V, W ) =

≠ ‹
dÿ

i=1

1
D·≠1

U DWMV (U)Òvi, ÒÏi

2

L
2
(œ)

≠ ‹
dÿ

i=1

1
MV (U)DW T D·≠T

U Òvi, ÒÏi

2

L
2
(œ)

+ ‹
dÿ

i=1

1
MV (U) tr(D·≠1

U DW )Òvi, ÒÏi

2

L
2
(œ)

+ ‹
dÿ

i=1

1
D·≠1

U DV D·≠1

U DWA(U)Òvi, ÒÏi

2

L
2
(œ)

+ ‹
dÿ

i=1

1
A(U)DW T D·≠T

U DV T D·≠T
U Òvi, ÒÏi

2

L
2
(œ)

≠ ‹
dÿ

i=1

1
A(U) tr(D·≠1

U DWD·≠1

U DV )Òvi, ÒÏi

2

L
2
(œ)

≠
1
tr(D·≠T

U DW T D·≠T
U DV T D·≠T

U ÒÏ) det(D·U ), p
2

L
2
(œ)

≠
1
tr(D·≠T

U DV T D·≠T
U DW T D·≠T

U ÒÏ) det(D·U ), p
2

L
2
(œ)

+
1
tr(D·≠T

U DV T D·≠T
U ÒÏ) tr(D·≠1

U DW ) det(D·U ), p
2

L
2
(œ)

+
1
tr(D·≠T

U DW T D·≠T
U ÒÏ) tr(D·≠1

U DV ) det(D·U ), p
2

L
2
(œ)

+
1
tr(D·≠T

U ÒÏ) tr(D·≠1

U DWD·≠1

U DV ) det(D·U ), p
2

L
2
(œ)

≠
1
tr(D·≠T

U ÒÏ) tr(D·≠1

U DV ) tr(D·≠1

U DW ) det(D·U ), p
2

L
2
(œ)

+
1
tr(D·≠T

U DW T D·≠T
U DV T D·≠T

U Òv) det(D·U ), Â
2

L
2
(œ)

+
1
tr(D·≠T

U DV T D·≠T
U DW T D·≠T

U Òv) det(D·U ), Â
2

L
2
(œ)

≠
1
tr(D·≠T

U DV T D·≠T
U Òv) tr(D·≠1

U DW ) det(D·U ), Â
2

L
2
(œ)

≠
1
tr(D·≠T

U DW T D·≠T
U Òv) tr(D·≠1

U DV ) det(D·U ), Â
2

L
2
(œ)

≠
1
tr(D·≠T

U Òv) tr(D·≠1

U DWD·≠1

U DV ) det(D·U ), Â
2

L
2
(œ)

+
1
tr(D·≠T

U Òv) tr(D·≠1

U DV ) tr(D·≠1

U DW ) det(D·U ), Â
2

L
2
(œ)

.
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Evaluated at U = 0 the expression simplifies to

(Ï, Â)úEUU (0, y)(V, W ) = ≠ ‹
dÿ

i=1

1
DW (I div(V ) ≠ DV ≠ DV T )Òvi, ÒÏi

2

L
2
(œ)

≠ ‹
dÿ

i=1

1
(I div(V ) ≠ DV ≠ DV T )DW T Òvi, ÒÏi

2

L
2
(œ)

+ ‹
dÿ

i=1

1
(I div(V ) ≠ DV ≠ DV T ) div(W )Òvi, ÒÏi

2

L
2
(œ)

+ ‹
dÿ

i=1

(DV DWÒvi, ÒÏi)L
2
(œ)

+ ‹
dÿ

i=1

1
DW T DV T Òvi, ÒÏi

2

L
2
(œ)

≠ ‹
dÿ

i=1

(tr(DWDV )Òvi, ÒÏi)L
2
(œ)

≠
1
tr(DW T DV T ÒÏ), p

2

L
2
(œ)

≠
1
tr(DV T DW T ÒÏ), p

2

L
2
(œ)

+
1
tr(DV T ÒÏ) div(W ), p

2

L
2
(œ)

+
1
tr(DW T ÒÏ) div(V ), p

2

L
2
(œ)

+
!
div Ï) tr(DWDV ), p

"
L

2
(œ)

≠
!
div Ï) div(V ) div(W ), p

"
L

2
(œ)

+
1
tr(DW T DV T Òv), Â

2

L
2
(œ)

+
1
tr(DV T DW T Òv), Â

2

L
2
(œ)

≠
1
tr(DV T Òv) div(W ), Â

2

L
2
(œ)

≠
1
tr(DW T Òv) div(V ), Â

2

L
2
(œ)

≠ (div(v) tr(DWDV ), Â)
L

2
(œ)

+ (div(v) div(V ) div(W ), Â)
L

2
(œ)

.

Partial derivatives of J

The partial derivatives of the functional

J(U, v) = ‹
2

dÿ

i=1

(A(U)Òvi, Òvi)L
2
(œ)
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are given by

ÈJv (U, v), ÏÍX
ú
,X = ‹

dÿ

i=1

(A(U)Òvi, ÒÏi)L
2
(œ)

,

ÈJU (U, v), V Í⇥ú
,⇥ = ‹

2

dÿ

i=1

1
MV (U)Òvi, Òvi

2

L
2
(œ)

,

where we abbreviated X = X(œ). Evaluated at U = 0 the expressions simplify to

ÈJv (0, v), ÏÍX
ú
,X = ‹

dÿ

i=1

(Òvi, ÒÏi)L
2
(œ)

,

ÈJU (0, v), V Í⇥ú
,⇥ = ‹

2

dÿ

i=1

1
(I div(V ) ≠ DV ≠ DV T )Òvi, Òvi

2

L
2
(œ)

.

The second partial derivatives are given by

ÈJvv (U, v)Ï, wÍX
ú
,X = ‹

dÿ

i=1

(A(U)ÒÏi, Òwi)L
2
(œ)

,

ÈJvU (U, v)Ï, V Í⇥ú
,⇥ = ÈJUv (U, v)V, ÏÍX

ú
,X

= ‹
dÿ

i=1

1
MV (U)Òvi, ÒÏi

2

L
2
(œ)

,

and

È JUU (U, v)V, W Í⇥ú
,⇥ = ≠ ‹

2

dÿ

i=1

1
D·≠1

U DWMV (U)Òvi, Òvi

2

L
2
(œ)

≠ ‹
2

dÿ

i=1

1
MV (U)DW T D·≠T

U Òvi, Òvi

2

L
2
(œ)

+ ‹
2

dÿ

i=1

1
MV (U) tr(D·≠1

U DW )Òvi, Òvi

2

L
2
(œ)

+ ‹
2

dÿ

i=1

1
D·≠1

U DV D·≠1

U DWA(U)Òvi, Òvi

2

L
2
(œ)

+ ‹
2

dÿ

i=1

1
A(U)DW T D·≠T

U DV T D·≠T
U Òvi, Òvi

2

L
2
(œ)

≠ ‹
2

dÿ

i=1

1
A(U) tr(D·≠1

U DWD·≠1

U DV )Òvi, Òvi

2

L
2
(œ)

.
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Evaluated at U = 0 the expressions simplify to

ÈJvv (0, v)Ï, wÍX
ú
,X = ‹

dÿ

i=1

(ÒÏi, Òwi)L
2
(œ)

,

ÈJvU (0, v)Ï, V Í⇥ú
,⇥ = ÈJUv (0, v)V, ÏÍX

ú
,X

= ‹
dÿ

i=1

1
(I div(V ) ≠ DV ≠ DV T )Òvi, ÒÏi

2

L
2
(œ)

,

È JUU (0, v)V, W Í⇥ú
,⇥ = ‹

2

dÿ

i=1

1
MV (0)

1
I div(W ) ≠ 2DW T

2
Òvi, Òvi

2

L
2
(œ)

+ ‹
2

dÿ

i=1

((2DV DW ≠ tr(DWDV )) Òvi, Òvi)L
2
(œ)

.

6.1.2. Shape di�erentiability of the drag

Let us briefly discuss how shape derivatives of j can be obtained. We begin by observing
that, due to Assumption 6.1, the operator E

(v ,p)

(0, v , p) = Ẽœ is continuously invertible. In
particular, all the conditions of Assumption 2.13 are satisfied. Thus, Corollary 2.108 yields
continuous Fréchet di�erentiability of the transformed design-to-state operator

S : B⇥(0, 1) æ Y, S(U) = S̃(·U (œ)) ¶ ·U ,

in B⇥(0, Á) for some Á > 0. Hence the localized functional

jœ(U) = J(U, S(U))

is also continuously Fréchet di�erentiable on B⇥(0, Á). In particular, due to Theorem 2.31,
the shape functional j is shape di�erentiable at œ œ O. Usually, e.g., in the case of full
Dirichlet boundary conditions, one can easily extend the above argument to obtain continuous
Fréchet di�erentiability of S and jœ on B⇥(0, 1). The first and second derivatives of jœ can
be conveniently computed via the adjoint approach, see Section A.1. The necessary partial
derivatives of E and J are stated in the previous subsection. For example, if (v , p) œ Y solve
the state equations (6.5), and (w , q) œ Y solve the adjoint equations (A.1), then the shape
derivative of j at œ in a direction V œ ⇥ is given by

ÈjÕ(œ), V Í⇥ú
,⇥ = ÈjÕœ(0), V Í⇥ú

,⇥ = JU (0, v , p)V + (w , q)úEU (v , p)V

= ‹
2

dÿ

i=1

1
(I div(V ) ≠ DV ≠ DV T )Òvi, Òvi

2

L
2
(œ)

+ ‹
dÿ

i=1

1
(I div(V ) ≠ DV ≠ DV T )Òvi, Òwi

2

L
2
(œ)

+
1
tr(DV T Òw), p

2

L
2
(œ)

≠
!
div(w) div(V ), p

"
L

2
(œ)

≠
1
tr(DV T Òv), q

2

L
2
(œ)

+
!
div(v) div(V ), q

"
L

2
(œ)

.
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6.2. The set of admissible domains and optimization aspects

In this section we present our choices for the set of admissible domains Oad. Moreover, we
discuss a possible strategy to handle these constraints in an algorithmic setting. Let us begin
by describing the geometric layout of the considered problem in more detail. We consider a
bounded open holdall domain D µ Rd which is Lipschitz. Here d = 2 or 3, and D describes a
section of a channel. The fluid domain œ

0

is given as œ
0

= D\B
0

, where B
0

µ D is a body
immersed in the fluid. We suppose that B

0

and hence œ
0

are Lipschitz. The task is now to
change the shape of the body B

0

such that the associated drag is minimized. Of course the
holdall D should not be modified. A trivial solution would be to shrink B

0

to a single point,
hence usually a constraint involving the volume of the immersed body is incorporated in the
set of admissible domains. Furthermore, the drag can be reduced by placing the body in a part
of the channel where the velocity of the flow is low, e.g., close to a no-slip boundary. To avoid
such undesired behavior one can additionally fix the center of mass cM of the body. Finally
it might be, that additional geometric constraints require the body to lie inside some closed
convex set C µ D. Thus, we consider the following family of admissible domains

Oad = {œ = ·(œ
0

) | · œ F(⇥), ·(ˆD) = ˆD, Vol(·(B
0

)) = Vol(B
0

),
cM (·(B

0

)) = cM (B
0

), ·(B
0

) µ C}.

Note that most of the constraints concern only ·(B
0

). Furthermore, usually the initial shape
B

0

will already be a good guess. Hence, it is often justified to assume that the solution of the
shape optimization problem will be close to B

0

. Thus, it is convenient to work again with
shapes characterized via the transformation of the design boundary ≈B = ˆB

0

, see Section
2.11, 2.12 and 3.4. Recall that in this setting a displacement u œ U of the design boundary
≈B is extended to a displacement U = Tu of œ

0

and hence to a transformed domain ·U (œ
0

).
In particular, one can easily satisfy the requirement ·(ˆD) = ˆD by imposing zero Dirichlet
boundary conditions on ˆD for the extension operator T . For our two dimensional numerical
example we will use an extension via linear elasticity as described in Section 2.11.2. In this
setting we can choose again U = H2(≈B,R2) as space for the boundary displacements for a
smooth ≈B . As discussed in more detail in Section 2.12, we restrict ourselves to a set Ufeas µ U
such that ÎTuÎ⇥ < 1 for all u œ Ufeas, and assume that there exists a solution œú of (6.2)
which satisfies

œú = ·T (u
ú
)

(œ
0

) for some uú œ int Ufeas.

The volume of the body ·(B
0

) is given by

Vol(·(B
0

)) =
⁄

·(B0)

1 dx̃ =
⁄

B0
det(D·(x)) dx,

and the center of mass cM (·(B
0

)) by

cM
i (·(B

0

)) = 1
Vol(·(B

0

))

⁄

·(B0)

x̃i dx̃ = 1
Vol(·(B

0

))

⁄

B0
xi det(D·(x)) dx, i = 1, 2.
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In particular, derivatives with respect to domain displacements U œ ⇥ can easily be obtained
and related to a boundary displacement via the adjoint extension operator T ú. An alternative
is to rewrite the volume integrals as boundary integrals over ·(≈B). After discretization, ≈B

and the transformed boundaries ·(≈B) are polygons, and there are explicit formulas describing
the volume and the center of mass in terms of the coordinates of the boundary nodes. In
particular, one can calculate exact discrete derivatives of these functions with respect to
displacements of the boundary nodes, cf. [Lin12, Section 5.2]. Summarizing, the volume
and center of mass constraints are nonlinear smooth equality constraints depending on the
boundary displacement u œ U . As such they could be treated as explicit constraints, for
instance, in a Lagrange-Newton/SQP method. Instead, we employ the Augmented Lagrangian
method, cf., e.g., [CGT00, Chapter 14] or [NW06, Chapter 17] for a thorough treatment of
this strategy. The idea is to incorporate the constraints in the objective. More precisely, the
Lagrangian

jœ0(Tu) + ⁄
1

!
Vol(·T u(B

0

)) ≠ Vol(B
0

)
"

+ ⁄T
2

!
cM (·T u(B

0

)) ≠ cM (B
0

)
"
,

where ⁄
1

œ R, ⁄
2

œ R2 are the Lagrange multipliers, is augmented with quadratic penalty
terms. By iteratively updating the Lagrange multipliers and the penalty parameters the
constraint violation can be driven to zero and an admissible solution may be found. In contrast
to pure penalty methods, the Augmented Lagrangian method will not necessarily drive the
penalty parameters to Œ.

Finally, the condition ·(B
0

) µ C is equivalent to ·(≈B) µ C, which is a constraint exactly
of the form treated in Chapter 5. In particular, we may repeat the arguments of Section 5.9,
and realize that the shape optimization problem in terms of the boundary displacement fits
into the setting considered in Chapter 5. Thus, we propose to study a series of regularized
objective functionals of the form

f“(u, ⁄) = jœ0(Tu) + ⁄
1

!
Vol(·T u(B

0

)) ≠ Vol(B
0

)
"

+ ⁄T
2

!
cM (·T u(B

0

)) ≠ cM (B
0

)
"

+ “
1

2
!

Vol(·T u(B
0

)) ≠ Vol(B
0

)
"

2 + “
2

2 |cM (·T u(B
0

)) ≠ cM (B
0

)|2

+ “
3

2 Îid + u ≠ PC (id + u)Î2

L
2
(≈

B

,R
d

)

.

The functional f“(·, ⁄) : U æ R is a continuously Fréchet di�erentiable functional on Ufeas. If
“

3

= 0 then it is also twice di�erentiable, otherwise f Õ
“(·, ⁄) is only semismooth, cf. Section 5.4.

We do not elaborate further on the concrete optimization algorithm, instead we refer to
[CGT00, Section 14.4] for a detailed discussion of the Augmented Lagrangian method. In the
presence of geometric constraints we additionally increase the penalty parameter “

3

during
the progression of the Augmented Lagrangian method. We choose a trust-region globalized
(possibly semismooth) Newton method to solve the subproblems of the Augmented Lagrangian
method. We refer to the comprehensive monograph [CGT00] for a thorough treatment of
theoretical and practical aspects of trust region methods. For the step computation we employ
the truncated conjugate gradients method, cf., e.g., [Ste83] or [CGT00, Section 7.5]. To
encourage fast local convergence of Newton’s method we incorporate an additional control
cost/Tikhonov regularization term —

2

ÎuÎ2

U in the objective, see the discussion in Remark 2.95.
This term favors smooth solutions close to the current reference domain.
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6. Drag minimization in Stokes flow

6.3. Numerical examples

Our implementation is based on the C++ software package FlowOpt [Lin12], developed by
Florian Lindemann at the chair of mathematical optimization at the TU München. It provides
an object oriented framework for solving shape optimization problems where the PDE constraint
is given by some variant of the Navier-Stokes equations. In particular, it separates the design
object representation, the PDE solvers, and the optimization algorithm in independent blocks.
The PDE solver block uses the finite element library Sundance [LBvBW12], which is part of
the Trilinos project [HWH03]. We refer to [Lin12] for a detailed description of FlowOpt and
its capabilities.

We extended FlowOpt in several directions.

(i) We incorporated a new design object class which makes it possible to characterize domains
via the displacement u œ U of the reference design boundary. In our concrete implemen-
tation, we choose a nonconforming discretization and approximate U = H2(≈B,R2) by
continuous piecewise linear finite elements. We allow for a free displacement of each
boundary node, and choose again the following scalar product A :

(v, u)A ¥ (v, u)
L

2
(≈

B

)

+ w(vÕÕ, uÕÕ)
L

2
(≈

B

)

,

where w > 0 is a weighting parameter, and the bi-Laplacian scalar product (vÕÕ, uÕÕ)
L

2
(≈

B

)

is approximated by KM≠1K. Here K denotes the sti�ness matrix, and M the lumped
mass matrix on ≈B.

(ii) So far FlowOpt provided only first order derivatives. We implemented the necessary
methods to obtain also second order derivatives of the drag in stationary Stokes flow.
The discretization of the Stokes flow uses Taylor-Hood finite elements, i.e., continuous,
piecewise quadratic elements for the velocity and continuous, piecewise linear elements
for the pressure. The extension operator T is based on the linearized elasticity equation,
which is discretized with continuous, piecewise linear finite elements.

(iii) Finally, we implemented the optimization algorithm which we briefly sketched in Sec-
tion 6.2.

The setting of our numerical tests is based on a DFG benchmark for two dimensional Navier-
Stokes flow in a channel [STD+96]. The channel is a 2.2m by 0.41m rectangle. The initial
body is a ball with radius 0.05m and center cM (B

0

) = (0.2m, 0.2m), where the origin is in
the lower left corner of the channel. In the following we omit the unit m. On the surface of
the body, as well as on the top and bottom of the rectangle, no-slip boundary conditions are
imposed. The left hand boundary is an inflow boundary with prescribed Dirichlet data

ṽD(0, x
2

) =
A

6x
2

(0.41 ≠ x
2

)/(0.41)2

0

B

.

On the right hand side of the rectangle we impose the outflow condition (6.4). The computations
were carried out on a Linux cluster that was partially funded by the grant DFG INST 95/919-1
FUGG.
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6.3. Numerical examples

Let us specify some of our concrete choices for the parameters of the algorithm. If the
Augmented Lagrangian method decides to increase the penalty parameter, we increase “

1

by a
factor of 10. We always set “

2

= “
1

/10. In the presence of geometric constraints we choose
always “

3

= “
1

. As in Section 5.10, we solve the arising subproblems only inexactly, and
decrease the termination tolerance as “ increases. To speed up the convergence, we start with
a large regularization parameter — which is also iteratively decreased. Furthermore, if the
number of iterations which are necessary to solve a subproblem increases too much, we change
the reference domain to the current domain, and reset —. Note that the contribution of the
regularization term to the overall objective is very small in the end, for Example 6.1 it is seven
orders of magnitude smaller than the drag of the final object.

The reference ball B
0

with radius 0.05 and center of mass (0.2, 0.2) defines the constraints, the
corresponding drag is 1.10189958918. The discretization of ≈B features 200 boundary nodes,
the mesh of the whole domain consists of 16006 nodes. The flow around the ball, as well as
the underlying mesh are depicted in Figure 6.1. Note that the mesh is particularly fine in the
vicinity of the submerged object. In our experiments it proved often to be beneficial for the
performance of the algorithm to choose an infeasible initial configuration, namely a slightly
larger ball with radius 0.06.

Figure 6.1.: The reference configuration, a ball with radius 0.05

We abbreviate the various constraint violation indicators by

”k
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k
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6. Drag minimization in Stokes flow

Example 6.1. We consider first a situation without geometric constraints. The progression
of the Augmented Lagrangian method for Example 6.1 is presented in Table 6.1. The first
column counts the iterations of the Augmented Lagrangian method, the second shows the
corresponding value of the penalty parameter “

1

, and the third the current regularization
parameter. The norm of the derivative of the overall objective f“(u) (for brevity we suppress
the dependency on ⁄) is presented in the fourth column. The columns five to seven show the
values of the di�erent constraint violation indicators ”k

V , ”k

c
M

1
, ”k

c
M

2
, and the last column gives

the number of iterations required to solve the subproblem to the specified tolerance. Note
that in most iterations only one or two Hessian evaluations are performed by the truncated
conjugate gradients method, i.e., the computational e�ort per iteration is moderate. After
the third iteration we updated our reference domain. The optimized body exhibits a drag
of 1.03726859748. As already mentioned, the value of the regularization term for the final
iterate is seven orders of magnitude smaller. It is well known that the optimal shape of a body
submerged in a Stokes flow is a prolate pointed spheroid, cf. [Pir73]. Indeed, our final object
has this shape, it is depicted on the left hand side of Figure 6.2.

Table 6.1.: History of the Augmented Lagrangian method, Example 6.1
k “1 —k

..f Õ
“(uk)

..
A≠1 ”k

V ”k

c
M
1

”k

c
M
2

# iter

1 104 10≠1 1.77·10≠4 -2.83·10≠3 1.87·10≠4 -1.59·10≠4 4
2 104 10≠2 8.80·10≠4 2.90·10≠5 1.66·10≠4 -3.53·10≠5 87
3 105 10≠3 9.64·10≠4 4.14·10≠6 1.67·10≠5 -3.37·10≠6 315
4 106 10≠1 7.51·10≠6 -3.68·10≠6 -1.50·10≠5 3.03·10≠6 13
5 106 10≠2 9.68·10≠6 2.83·10≠10 6.62·10≠10 -1.72·10≠9 124

(a) Example 6.1 (b) Example 6.2

Figure 6.2.: Flow around the final objects

Example 6.2. We consider now the setting of Example 6.1 in combination with geometric
constraints. To be more precise, we impose an upper bound for the deformation of the body
in outflow direction, i.e., the back end of the body has to lie in front of the threshold 0.265.
We incorporate the geometric constraint via the Moreau-Yosida regularization technique into
our overall objective. The progression of the combined Augmented Lagrangian Moreau-Yosida
penalty method for Example 6.2 is presented in Table 6.2. The maximum point-wise violation
of the geometric constraint is shown in the eighth column. The decrease of the quantity ”k

MY is
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6.3. Numerical examples

not as fast as it was in Section 5.10. This might be explained by the fact that the optimization
algorithm has to cope now with several competing constraints. The optimized body exhibits a
drag of 1.04512679653. The final domain is depicted on the right hand side of Figure 6.2. To
accommodate the geometric constraint, as well as the volume and center of mass constraints,
the final object is wider and shorter than the result of Example 6.1. The di�erences can be
nicely observed in Figure 6.3, where the objects are overlaid.

Table 6.2.: History of the Augmented Lagrangian method, Example 6.2
k “1 —k

..f Õ
“(uk)

..
A≠1 ”k

V ”k

c
M
1

”k

c
M
2

”k
MY # iter

1 104 100 2.85·10≠5 -1.74·10≠3 2.13·10≠4 -1.82·10≠4 0.00 7
2 104 10≠1 8.13·10≠4 -1.23·10≠3 -2.32·10≠4 5.53·10≠6 1.61·10≠3 5
3 105 10≠2 9.05·10≠5 -1.55·10≠4 -8.41·10≠5 -1.40·10≠6 5.33·10≠4 25
4 105 10≠3 8.90·10≠4 -6.21·10≠7 -3.06·10≠6 -2.86·10≠7 3.46·10≠4 172
5 106 100 9.15·10≠6 2.12·10≠7 1.65·10≠6 2.54·10≠7 7.75·10≠5 4
6 106 10≠1 9.54·10≠6 1.80·10≠7 6.95·10≠7 6.21·10≠10 7.67·10≠5 8
7 107 10≠2 7.78·10≠6 2.08·10≠8 7.63·10≠8 7.37·10≠11 1.46·10≠5 71
8 108 100 7.40·10≠7 -1.88·10≠8 -6.91·10≠8 -6.92·10≠11 3.48·10≠6 5
9 108 10≠1 4.25·10≠6 1.02·10≠10 3.75·10≠10 2.06·10≠12 3.43·10≠6 96

Figure 6.3.: Comparison of the final objects of Example 6.1 (blue grid) and Exam-
ple 6.2 (grey surface)

As one can see, the tips of the final objects are still slightly rounded. This e�ect is very
much influenced by our choice of the scalar product A. The gradient with respect to such
a smooth A does not develop a sharp kink, which would be necessary to obtain a pointed
tip from our smooth initial domain. The presence of the regularization term If we choose
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6. Drag minimization in Stokes flow

for one intermediate iteration of the Augmented Lagrangian method the H1-scalar product a
tip is formed and preserved by subsequent runs with a smoother scalar product. The final
domains obtained with such a strategy is very similar to the ones of Examples 6.1 and 6.2,
see Figure 6.4 for a comparison. The relative di�erence of the drag of the two objects is in
the order of 10≠5. Let us note that a body with a sharp tip is more sensitive with respect to
variations of the parameters of the system, in particular, with regard to changes in the attack
angle, i.e., the inclination of the object with respect to the flow direction. In that sense the
rounded tip is more robust with respect to uncertainties.

Figure 6.4.: Comparison with pointed object

Let us conclude this chapter by remarking that the proposed algorithm still needs fine tuning to
be e�cient. This is evident in the drastic increase of the required iterations per subproblem as
we increase “ and decrease —. A careful balancing of the various parameters might significantly
improve the overall performance. In particular it might be beneficial to revisit the heuristic
updating scheme of [HK06a, HK06b] based on the value function, cf. Section 5.6. However,
the question arises how one can incorporate a variable regularization term into this strategy.
Furthermore, as already mentioned, the behavior of this updating scheme is again highly
dependent on the choice of various parameters. Alternatively, one might consider more
advanced strategies of handling the volume and center of mass constraints, e.g., SQP or interior
point methods.
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7. Shape optimization of a breakwater

This chapter is devoted to a shape optimization model problem which is motivated by a coastal
engineering application. The objective is to reduce the resonance of a harbor due to long range
ocean waves. Let us briefly describe this phenomenon. Harbors are designed to protect ships
from incoming waves. More specifically one tries to place breakwaters in such a way that they
absorb incoming waves, and shelter the harbor basin. Breakwaters are e�ective in absorbing
waves with short wave periods (16 seconds or less according to [Xin09]), which covers the
vast majority of ocean waves. However, this is no longer true for longer wave periods, whose
periods may range from tens of seconds to several hours. These can be generated, for instance,
by earthquakes or landslides, another example are tidal waves. ‘In fact, it is possible that for
certain semi-enclosed harbors the combined e�ect of wave di�raction [around the breakwaters],
wave refraction [due to changing water depth] and multiple reflections from the boundaries can
cause significant increase in the wave amplitude compared with the incident wave amplitude.
This is commonly referred to as harbor resonance.’ [Xin09, page 2]. We refer to [Rab09] and
the references cited therein for a more detailed discussion of this topic. In practice, many
publications employ the mild slope equation to model wave e�ects in coastal areas and harbor
basins, cf., e.g., [FdSF04, LLL01, MH97, Xin09, XLR11]. It was first derived by Berkho� in
[Ber72], and can be written as

Ò · CCgÒÏ + k2CCgÏ = 0, (7.1)

where Ï is the horizontal variation in velocity potential, k is the wave number, Ê is the wave
frequency, C = Ê/k is the wave celerity, Cg = C

2

1
1 + 2kh

sinh 2kh

2
is the group velocity, and h

is the water depth. Usually the mild slope equation is enriched with additional e�ects such
as partial absorption boundaries, bottom friction, entrance loss, etc. In the references above
several comparison studies with actual measured data were conducted, thus justifying the
frequency domain approach.

Although we are motivated by the described application, a realistic treatment of harbor
resonance is out of scope of this thesis, and we will significantly simplify the model in this
chapter. We assume that the water depth is constant throughout the region of interest. Thus,
the mild slope equation reduces to the well-known Helmholtz equation

�Ï + k2Ï = 0. (7.2)

There are various publications dealing with shape or topology optimization problems in
combination with the Helmholtz equation, cf., e.g., [CK13, DJS07, SAM03] and the references
therein. However, they are usually motivated by applications in acoustics. A lot of work is
dedicated to inverse acoustic scattering problems, where the shape of some scatterer is to be
determined from measurements of the far field. Other applications are, for example, finding the
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7. Shape optimization of a breakwater

optimal distribution of reflecting and nonreflecting materials in the walls of a room, or optimal
design of sound barriers and wave guides. Although the resulting optimization problems are
similar to the one considered here, none of those we found quite fits our setting. To the best
of our knowledge a shape optimization problem involving the resonance of a harbor was, so
far, only briefly considered in the thesis [BL98]. The author used the real-valued Helmholtz
equation as state equation, an explicit discrete geometry description via the finite element
mesh, and calculated the discrete shape derivative by di�erentiating with respect to nodal
coordinates.

Some of the results presented in this chapter were already published in [KK15]. In parts, our
presentation here follows the paper closely.

Assuming that the water depth is constant, we consider the complex valued Helmholtz equation
as our model state equation. The objective is to minimize the average wave height in the
harbor basin. We suppose that we are allowed to modify the shape of the breakwater which
surrounds the harbor basin. The model problem naturally involves geometric constraints in the
form of forbidden and contained regions. The harbor basin and the harbor approach should be
part of the ocean, on the other hand the mainland should not be flooded. We strictly enforce
these constraints by employing the projected descent method proposed in Section 2.13. The
geometry will be described by the level set method, cf. Section 2.11.3, i.e., the domain œ is
given as the sub-zero level set of a function Õ : D æ R, where D µ R2 is the holdall domain.

This chapter is organized as follows. We derive our model state equation on a bounded
domain in Section 7.1. The shape optimization problem under consideration is described in
Section 7.2. We sketch how the derivative of the reduced shape functional can be computed via
the adjoint approach. Note that, in contrast to many publications, we use the level set method
in combination with the volume expression of the shape derivative. It requires less regular
finite element functions, and, in our experience, the volume expression is numerically more
stable than the Hadamard form. This assessment is shared in the recent papers [HPS15, LS13].
In [LS13] the volume expression of the shape derivative and the level set method are also
used. We present our optimization algorithm in Section 7.3, and discuss discretization and
implementation aspects. Finally, we present the results of some numerical experiments in
Section 7.4.

Let us fix some conventions and notation for this chapter. We define the usual bilinear
L2-scalar product for real-valued functions on some set œ µ Rd as (·, ·)

L
2
(œ)

, and the corre-
sponding sesquilinear form as (f, g)

L
2
C(œ)

:= (f, g)
L

2
(œ)

for some complex valued functions f, g.
Furthermore, we introduce the real-valued scalar product

(f, g)
L

2
R(œ)

:= Re(f, g)
L

2
C(œ)

.

The norm Î·Î
L

2
R(œ)

induced by this scalar product coincides with the norm induced by the
sesquilinear form. Hence the elements of the space

L2

R(œ) := {f : B ‘æ C | ÎfÎ
L

2
R(œ)

< Œ}

coincide with the elements of {f : œ ‘æ C | ÎfÎ
L

2
C(œ)

< Œ}, but since we use the (·, ·)
L

2
R(œ)

scalar product we have a di�erent Hilbert space structure. Other Hilbert spaces will be treated
analogously (e.g., H1

R(œ)).
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7.1. Description of the physical model

7.1. Description of the physical model

We consider the situation sketched in Figure 7.1. There is an isle bounded by the contour ≈L,
some breakwaters given by ≈B and a surrounding ocean denoted by œ+. We are interested in
the scattered wave u, induced by an incoming planar monochromatic wave z(x) = exp(ikwT x)
with incident direction w œ R2 and wave number k > 0. The total surface perturbation is then
given by y = u + z, and satisfies

�y + k2y = 0 in œ+

ay + ˆny = 0 on ≈I := ≈B fi ≈L.
(7.3)

Here a : R2 æ C describes the absorption coe�cient at the boundary. The boundaries ≈L and
≈B are assumed to be at least Lipschitz. Let us discuss appropriate boundary conditions for
the far field. It is a standard assumption that the scattered wave satisfies the Sommerfeld
radiation condition

iku ≠ ˆru = o(r≠ 1
2 ), for r æ Œ.

Figure 7.1.: The domain œ

If one wants to study this problem in weak form on the unbounded domain œ+ one needs to
introduce di�erent weighted Sobolev spaces for the test and ansatz functions and include the
Sommerfeld radiation condition in the ansatz space. See [Lei86, chapter 4] and [Ihl98, section
2.3] for more details. However, this approach leads to various di�culties in the numerical
realization if a finite element discretization is employed. While it would be possible to handle
the Helmholtz equation on an exterior domain with the boundary element method, cf., e.g.,
[Har08] and the references therein, an extension to the more realistic mild slope equation
would be quite challenging. For this reason we focus on the finite element approach which can
easily cope with such an extension of the model.

Alternatively one may decompose the domain œ+ disjointly into a bounded domain œ and an
unbounded domain œa by introducing an artificial smooth boundary ≈a such that

œ+ = œ fi ≈a fi œa.
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7. Shape optimization of a breakwater

The problem (7.3) is then equivalent to the following coupled problem (cf. [JN80])

�y≠ + k2y≠ = 0 in œ
ay≠ + ˆny≠ = 0 on ≈I

y≠ = y
+

on ≈a

ˆny≠ = ˆny
+

on ≈a

�y
+

+ k2y
+

= 0 in œa

iku
+

≠ ˆru
+

= o(r≠ 1
2 ), for r æ Œ.

(7.4)

For a given u≠ on ≈a, recall u = y ≠ z, one can solve the unbounded Dirichlet problem

�u
+

+ k2u
+

= 0 in œa

u
+

= u≠ on ≈a

iku
+

≠ ˆru
+

= o(r≠ 1
2 ), for r æ Œ,

compare [Lei86]. Once the solution u
+

is available one can easily compute ˆnu
+

= ˆnu≠ on ≈a.
We denote the mapping u≠ ‘æ ˆnu≠ by Ge and observe that Ge œ L(H

1
2
R(≈a), H

≠ 1
2

R (≈a)). This
operator is usually referred to as the Dirichlet-to-Neumann (DtN) operator. There exists an
integral and a series representation of the non-local operator Ge, the integral variant is also
called the Steklov-Poincaré operator. The Neumann condition ˆny≠ = ˆny

+

on ≈a can now be
reformulated as

ˆny≠ = ˆnu≠ + ˆnz = Geu≠ + ˆnz = Gey≠ ≠ Gez + ˆnz.

Evaluating the exact solution operator Ge is expensive. For this reason it is replaced by some
yet unspecified G œ L(H

1
2
R(≈a), H

≠ 1
2

R (≈a)), which might be some approximation of Ge. Hence
we arrive at the bounded problem

�y + k2y = 0 in œ
ay + ˆny = 0 on ≈I

ˆny = Gy ≠ Gz + ˆnz on ≈a,

(7.5)

which is equivalent to (7.3) for the choice G = Ge. We simplify the problem by choosing G
as the 0th-order approximation of Ge, cf. [Ihl98, section 3.]. Furthermore, we suppose that
the the breakwater and isle have perfectly reflecting boundaries. This is summarized in the
following assumption.

Assumption 7.1. The operator G œ L(H
1
2
R(≈a), H

≠ 1
2

R (≈a)) is given by

ÈGy, ÏÍ
H

≠ 1
2

R
(≈

a

),H
1
2
R

(≈
a

)

= (iky, Ï)
L

2
R(≈

a

)

.

Furthermore, the absorption coe�cient is set to a © 0.

Remark 7.1. (i) The choice of G is a rather crude simplification, but our focus in this work
is on methodology, and not so much on realistic modeling. The low-order approximation
of Ge introduces artificial reflections at ≈a. Since this makes the shape optimization
problem presumably harder to solve, we accept that for the moment. For more evolved
methods of treating the artificial boundary ≈a and the operator Ge we refer to [Ihl98,
chapter 3].
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(ii) Setting the absorption coe�cient to zero implies that there is no damping e�ect by
absorption of energy at the reflecting boundary. We note again that this presumably
makes the optimization problem harder, since small design changes might have large
non-local e�ects due to wave interference. Furthermore, as already mentioned at the
beginning of this chapter, long range ocean waves are, in fact, mostly reflected by
breakwaters. Harbor oscillations and resonance due to long waves has been widely
studied in the coastal engineering literature, see for example [Rab09] and the references
therein.

The weak formulation of (7.5), with G and a chosen to satisfy Assumption 7.1, is given by
I

Find y œ H1

R(œ) :
b(y, Ï) = f(Ï), ’Ï œ H1

R(œ),
(7.6)

where we define

b(y, Ï) := (Òy, ÒÏ)
L

2
R(œ)

≠ k2(y, Ï)
L

2
R(œ)

≠ (iky, Ï)
L

2
R(≈

a

)

,

f(Ï) := (ˆnz ≠ ikz, Ï)
L

2
R(≈

a

)

.
(7.7)

Results concerning the existence of a unique solution of (7.6) and its regularity are well
known:

Theorem 7.2. [KK15, Theorem 2.3] Let œ be a Lipschitz domain. Then there exists a
unique solution y œ H1

R(œ) of (7.6) for any right-hand side f œ H1

R(œ)ú, and it holds
ÎyÎ

H
1
R(œ)

Æ c ÎfÎ
H

1
R(œ)

ú for some c > 0.

Proof. We have the Gelfand-triple H1

R(œ) Òæ L2

R(œ) Òæ H1

R(œ)ú. Further, there exists a
C > 0 such that b(·, ·) + C (·, ·)

L
2
R(œ)

is H1

R(œ)-coercive. Hence the Fredholm alternative holds:
Either there exists a unique solution of (7.6) for any f œ H1

R(œ), or there exists a nontrivial
solution y

0

”= 0 of the homogenous problem

b(y, Ï) = 0, ’Ï œ H1

R(œ).

For our choice of the operator G the solution of the homogenous problem is unique, see [Ihl98,
Theorem 3.2].

Theorem 7.3. [KK15, Theorem 2.4] Let œ be a C2-domain. Then the solution y œ H1

R(œ)
of (7.6) has the additional regularity y œ H2

R(œ).

Proof. This follows from standard regularity results for elliptic equations, see for example
[Hac92, Theorem 9.1.20].
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7.2. Shape optimization problem

After deriving the model state equation (7.6) we are now ready to formulate the shape
optimization problem under consideration in detail. As announced in the introduction, our
objective is to minimize the average wave height in the harbor basin Q (compare Figure 7.1).
Given a domain œ and an associated solution y of (7.6) we define the cost functional as

J(y) = 1
2 ÎyÎ2

L
2
R(Q)

.

Due to Theorem 7.2 there exists a design-to-state operator S̃ for Lipschitz domains œ µ R2,
and hence we consider as usual the shape functional

j(œ) := J(S̃(œ)).

Formulating the set of admissible domains requires some care. Enclosing the whole harbor
basin by a breakwater is obviously not a feasible solution, so we introduce a harbor approach
A and demand that Q fi A is always part of the ocean. Furthermore, we do not want to remove
parts of the island (the inhabitants might complain). Finally, we do not want to change our
model by modifying the artificial outer boundary ≈a. Hence, given an initial layout œ

0

, and a
suitable Banach space ⇥, we define the admissible family of domains by

Oad := {œ = ·(œ
0

) | · œ F(⇥), ·(≈a) = ≈a, (Q fi A) µ œ, œ fl L = ÿ}.

Here œ œ Oad represents the ocean. We are looking for a solution of

min
œœO

j(œ) s.t. œ œ Oad. (7.8)

This problem fits exactly into the setting of Section 2.13, and we will apply the projected
descent method proposed there. Note that we do not concern ourselves with the question
whether a solution of the above shape optimization problem exists, we simply suppose that
this is the case. In the next paragraph we briefly state the shape derivative of j, which we
obtain by the function space parametrization approach described in Section 2.14. In Chapter 3
we presented the necessary procedure for a closely related state equation in detail.

Shape derivative

Suppose that œ
0

is a Lipschitz domain whose boundary decomposes into

ˆœ
0

= ≈a fi ≈L fi ≈B,

where ≈a is the artificial boundary introduced in Section 7.1, ≈L is the boundary of the island
L and ≈B is the boundary of the initial breakwater. Furthermore, we suppose that œ

0

œ Oad.
We consider the space ⇥ = C1(Rd,Rd), which ensures that every œ œ Oad is again a Lipschitz
domain. As in Section 2.13 we introduce the sets

Vfeas = {V œ ⇥ | V = 0 on A fi Q fi L fi ≈a}, and Vad = H fl Vfeas,
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7.2. Shape optimization problem

for some suitable Hilbert space H satisfying Assumption 2.11. Due to Proposition 2.99 it
su�ces to characterize ÈjÕ(œ), V Í⇥ú

,⇥ for all V œ Vad. Hence, let œ œ Oad, and recall

A(U) = D·≠1

U D·≠T
U det(D·U )

from (3.2). For all U œ Vad the transformed state equation operator is given by

ÈÏ, E(U, y)ÍZú
,Z := (A(U)Òy, ÒÏ)

L
2
R(œ)

≠ k2 (det(D·U )y, Ï)
L

2
R(œ)

≠ (iky, Ï)
L

2
R(≈

a

)

≠ (ˆnz ≠ ikz, Ï)
L

2
R(≈

a

)

,

and the transformed objective by

J(U, y) = 1
2 ÎyÎ2

L
2
R(Q)

.

We utilize now the adjoint approach, cf. Section A.1. Given a solution y œ H1

R(œ) of the state
equation (7.6), and a solution p œ H1

R(œ) of the adjoint equation

b(Â, p) = ≠ (y, Â)
L

2
R(Q)

’Â œ H1

R(œ), (7.9)

the shape derivative of j in a direction V œ Vad is determined by

ÈjÕ(œ), V Í⇥ú
,⇥ =

1
(I div(V ) ≠ DV ≠ DV T )Òy, Òp

2

L
2
R(œ)

≠ k2 (div(V )y, Ï)L2
R(œ)

, (7.10)

where I denotes the identity matrix in R2.

Optimization strategy

As mentioned above, we employ the projected descent method proposed in Section 2.13. In
our numerical experiments it performs quite well. Additionally, we experimented with some
ideas which are not covered by our theory. We briefly mention two of them here, and describe
the details of our implementation in Section 7.3.

A simple modification is inspired by the method of nonlinear conjugate gradients [NW06,
Section 5.2], which applies a simple correction term to the search direction. In our experience
this led to an improved performance of the descent method. The second idea is motivated by
the standard projected gradient method. As mentioned in Section 2.13, projecting a domain
œ onto the admissible set of domains with respect to the metric dF is challenging. However,
under suitable assumptions, the projection with respect to the metric induced by the measure
of the symmetric set di�erence or the Hausdor� metric is possible [Kra15b]. In fact, the
projection amounts to removing forbidden regions from œ and adding regions which should be
contained in œ. Unfortunately, this approach does not fit together with our shape sensitivity
analysis. Hence, one is not guaranteed to achieve descent. However, since it is a quite obvious
strategy which is easy to implement, we test it for comparison.

We describe the domains œ œ Oad via the level set framework, see Section 2.11.3. In this
context it is convenient to work with transformations obtained as flow maps of the vector fields
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7. Shape optimization of a breakwater

V œ Vad. In particular, given a descent direction V œ Vad, we employ the level set transport
equation (2.37)

ˆtŒ + ÒŒT V = 0 with initial condition Œ(0, x) = bœ(x),

to obtain a level set representation Œ(t) of the transformed domain TV (t)(œ).

Remark 7.4. Note that, while in theory, the solution of the transport equation satisfies

Œ(t, x) = bœ ¶ TV (t)≠1(x),

this is no longer true for the discrete approximate solution of the transport equation (2.37)
obtained with a time stepping scheme. In particular, approximating the transport of the level
set equation may lead to topology changes. However, for the shape optimization problem
under consideration, this is actually a desired feature of the employed optimization strategy.
Indeed, it is a priori not at all clear what topology a good breakwater should have. So while
our optimization method in theory tries to find a solution of (7.8), we deliberately allow for
‘accidental’ topology changes of the domain.

We summarize the employed optimization strategy on the discrete level in Algorithm 7.1.

7.3. Optimization and discretization aspects

Let us briefly sketch Algorithm 7.1 before describing the necessary steps in detail.

Starting with a level set function Õ given on a regular grid, we extract a discretization of
the domain œ and the interface ≈I = ≈B fi ≈L. We solve the state and adjoint equations
on the discretized domain using piecewise linear finite elements. Now we can compute the
shape derivative of the reduced objective, and obtain a projected gradient representation
from (2.40). Finally, the level set function is evolved according to (2.37) along the negative
projected gradient for some time span ∆t which we determine with a backtracking strategy.
Since V |≈

a

= 0 for all V œ Vad we restrict our considerations to the bounded holdall domain
D µ R2 with ˆD = ≈a.

Let us now describe the details of our algorithm. We approximate the interface ≈I , given
by the zero level set of Õ, with one or multiple polygonal curves. Between each pair of
neighbouring points on the regular grid at which the level set function has di�erent signs, there
is an intersection point of the zero level set with the edges of the grid. We approximate this
intersection point using an a�ne model for Õ along the edge. Connecting all these intersection
points, we obtain the polygonal approximation ≈I,h to ≈I , and thus the current domain œh.

In the next step, the domains œh and D are discretized with triangular meshes which resolve
the polygonal boundary ≈I,h. Furthermore, the mesh representing œh consists of a subset
of the triangles of the mesh for D. Cells of the rectangular grid for which all four vertices
have the same sign of Õ are split along their diagonal into two triangles. Cells which are
intersected by ≈I,h are split depending on how they are intersected. To avoid triangles that are
too degenerate and cause numerical di�culties, we enforce a certain minimum ratio between
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7.3. Optimization and discretization aspects

Algorithm 7.1: Projected descent method using the level set approach

Require: an initial level set function Õ0 on a fixed grid and a scalar product (·, ·)a

1: set the iteration index to k = 0
2: repeat

3: approximate the zero level set of Õk by polygonal curves
4: construct a mesh of D and œk which resolves the polygonal boundary
5: solve the state equation (7.6) on œk to obtain yk

6: evaluate j(œk) = 1

2

...yk
...

2

L
2
(Q)

7: solve the adjoint equation (7.9) on œk to obtain pk

8: compute the derivative jÕ(œk) by (7.10)
9: compute the negative projected gradient Uk = Pa(≠Vk) by (2.40)

10: determine the new level set function Õk+1 via (7.12) such that the Armijo
condition (7.13) is satisfied

11: until converged

edges of all mesh triangles. This strategy proved su�cient for our experiments. For a more
advanced technique of transporting and resolving the zero level set we refer to [ADF14]. The
mesh on œh is used to solve the state and adjoint equations, and the mesh on D is used to
solve (2.40) for the projected gradient. Furthermore, our mesh construction ensures that each
point of the original regular grid is also a vertex of the triangle mesh, so that we can extract
Pa(≠Vk) on each grid point to solve (2.37).

Let us briefly comment on the discretization of the state and adjoint equation. We employ the
usual machinery of continuous, piecewise linear finite elements to discretize the scalar products
(f, g)

L
2
(œ

h

)

, (Òf, Òg)
L

2
(œ

h

)

, and (f, g)
L

2
(≈

a

)

for some real valued functions f, g. Recall the
notation from section Section 7.1. Splitting every complex valued function f into f = f

1

+ if
2

,
with fi : œh æ R, we find

(f, g)
L

2
R(œ

h

)

= Re(f
1

+ if
2

, g
1

+ ig
2

)
L

2
C(œ

h

)

= (f
1

, g
1

)
L

2
(œ

h

)

+ (f
2

, g
2

)
L

2
(œ

h

)

.

Analogously it holds that

(Òf, Òg)
L

2
R(œ

h

)

= (Òf
1

, Òg
1

)
L

2
(œ

h

)

+ (Òf
2

, Òg
2

)
L

2
(œ

h

)

,

and
(if, g)

L
2
R(≈

a

)

= (f
1

, g
2

)
L

2
(≈

a

)

≠ (f
2

, g
1

)
L

2
(≈

a

)

. (7.11)

Note that z(x) = exp(ikwT x) which implies ˆnz ≠ ikz = ik(wT n ≠ 1)z. Hence we only need to
implement the boundary expression (7.11). Combining these formulas with the usual mass
and sti�ness matrices, we can easily assemble the system matrix and right-hand side of the
state equation (7.6), and adjoint equation (7.9).

Note that, in order to guarantee the minimum regularity of ⇥ for the velocity field, we would
need to compute the gradient in Hs(D,R2) with s > 2. In our numerical experiments we
neglect to do so. We only use piecewise linear continuous finite elements to discretize the
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7. Shape optimization of a breakwater

ansatz and test spaces of (2.40). In the examples presented below the H1-scalar product is
used to determine the gradient and the projected gradient. We also experimented with di�erent
choices of the scalar product, cf. [KK15].

Once we have computed the projected gradient, we need to update our geometry. For this we
solve

ˆtŒ(t) + UT
k ÒŒ(t) = 0 ’t œ (0, ∆t), Œ(0) = Õ, (7.12)

with Uk = Pa(≠Vk), and use Œ(∆t) as the new level set function in the next iteration. The
time span ∆t is determined by the Armijo rule, i.e.

j(TU
k

(∆t, œk)) Æ j(œk) + ∆t“ÈjÕ(œk), UkÍ⇥ú
,⇥. (7.13)

As already mentioned, the discrete approximate solution of (7.12) may lead to topology changes.
Since these are not allowed for in the shape derivative, this often causes an increase of the
objective functional. Thus, enforcing monotonicity in the objective values may result in a
stalling of the algorithm. Since such changes in the topology often lead to much better designs
in the long run, we introduce a lower bound for ∆t. If no better design is found by the Armijo
rule we accept an increase in the objective functional and evolve the level set function for
the minimum time span. Let us mention that, with proper care, nonmonotone linesearch
methods have proven to be quite e�ective, and often outperform monotone linesearch methods.
We refer to [GLL86, GLL89, Toi96, ZH04] for an introduction to nonmonotone optimization
methods.

As was suggested in [LS13], we employ the local Lax-Friedrichs flux (cf. [OS91]), and an
explicit Euler time stepping scheme to evolve Œ . In our setting this leads to the level set
function updates

Œ l+1

ij = Œ l
ij ≠ ”tHLLF . (7.14)

Here Œ l
ij is the value of the level set function in the node (xi, yj) of the regular grid at the l-th

time step, and the local Lax-Friedrichs flux is given by

HLLF = p≠ + p+

2 U
1

+ q≠ + q+

2 U
2

≠ 1
2(p+ ≠ p≠)|U

1

| ≠ 1
2(q+ ≠ q≠)|U

2

|,

where

p≠ =
Œ l

ij ≠ Œ l
i≠1,j

∆x
, p+ =

Œ l
i+1,j ≠ Œ l

ij

∆x
,

q≠ =
Œ l

ij ≠ Œ l
i,j≠1

∆y
, q+ =

Œ l
i,j+1

≠ Œ l
ij

∆y
.

The time step size ”t is chosen to satisfy the Courant-Friedrichs-Lewy condition which guaran-
tees the stability of the explicit time stepping scheme. It is common to reinitialize the level set
function every few steps for numerical stability if many time steps are necessary . We use the
signed distance function of the current domain (as defined by Œ l), which we obtain via a fast
marching algorithm [Set96]. In our numerical experiments the reinitialization was only rarely
necessary.
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Finally, we briefly describe the two heuristic extensions of our basic algorithm which were
mentioned in Section 7.2. Our adaptation of the Fletcher- Reeves nonlinear conjugate gradients
method (cf., e.g., [NW06, Section 5.2]) inserts the following vector field into (7.12)

Uk = Pa(≠Vk) + ÎPa(≠Vk)Îa

ÎPa(≠Vk≠1

)Îa

Uk≠1

.

However, this modification of our original search direction is not necessarily a descent direction.
As is often done, we restart the procedure every few steps by setting Uk≠1

= 0 and taking
a step along the negative projected gradient. This ensures that the search direction is not
dominated by old gradients. The other strategy mentioned above was to project the domain
instead of the descent direction. In this case we first obtain a new level set function Õk+1

aux

by solving (7.12) for some time ∆t and Uk = ≠Vk. We then modify Õk+1

aux to be positive in
forbidden regions and negative in regions which should be contained in œk+1

. Finally, we
obtain the oriented distance function b

œ
k+1 associated with the corresponding domain by

invoking the fast marching algorithm, and set Õk+1 = b
œ

k+1 .

7.4. Numerical examples

We implemented the proposed projected gradient method in GNU Octave [EBH09]. The
routines for generating the geometry from the level set function, and assembling the finite
element mesh are using the Octave package level set [Kra14] developed by Daniel Kraft. It
also provides a method to compute the signed distance function using a fast marching algorithm.
Note that optimization and discretization do not commute in our approach. Furthermore, we
are only using a first-order method, hence convergence towards a critical point of the discrete
problem is usually not to be expected in a reasonable number of steps. For this reason we
simply terminate after 300 iterations.

The computations were carried out on a Linux cluster that was partially funded by the grant
DFG INST 95/919-1 FUGG.

Example 7.1. In our first experiment the harbor basin Q corresponds to the rectangle
|x| Æ 0.4, and ≠0.3 Æ y Æ 0. The harbor approach is given by |x| Æ 0.1, y Ø 0, and the
isle by |x| Æ 0.55, ≠0.6 Æ y Æ ≠0.4. The computational e�ort is reduced by imposing that
everything outside the box ≠1 Æ x, y Æ 1 is ocean. We study an incoming wave with wave
number k = 7 and direction w = (


1/2, ≠


1/2)T , i.e., the wave front is advancing south-east

from the upper left corner of the rectangle. The regular grid supporting the level set function
consists of 501 ◊ 501 nodes. The initial layout of the breakwater is depicted in Figure 7.2. The
lower rectangle of the structure surrounding the harbor basin is the isle. Observe the wave
resonance in the harbor basin.

We report the progress of the projected descent method in Figure 7.3. The value of the
objective functional dropped in 300 iterations from 3.5·10≠1 to 1.7·10≠6. The H1-norm of the
projected gradient is 6.3·10≠4. Note that the objective functional is bounded from below by
zero, hence the final domain seems to be close to optimal. Considering the various independent
sources of discretization errors in our numerical scheme it seems plausible to say that we found
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an approximation of the solution within the order of the discretization error. The final domain
and the corresponding wave pattern are shown on the right side of Figure 7.2.

(a) Initial domain (b) Final domain

Figure 7.2.: Wave pattern for the initial and final domain of Example 7.1
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Figure 7.3.: History for Example 7.1

Example 7.2. We start with the same configuration as in Example 7.1, but employ the
modification inspired by the nonlinear conjugate gradients method. The final domain is
depicted on the left side of Figure 7.4. The di�erence to the final domain of Example 7.1 is
quite small and essentially the same wave pattern can be observed. We report the progress of
the algorithm in Figure 7.5. The final value of the objective 1.5·10≠6, and the respective H1-
norm of the projected gradient 5.6·10≠4 are quite similar to Example 7.1. However, comparing
the history of the two methods shows that the modified algorithm took significantly fewer
iterations till leveling out.
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(a) Example 7.2 (b) Example 7.3

Figure 7.4.: Wave pattern for the final domains of Example 7.2 and Example 7.3
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Figure 7.5.: History for Example 7.2
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Example 7.3. We start with the same configuration as in Example 7.1, but this time we
project the domains, respectively the level set functions, instead of the gradient. The final
domain is depicted on the right side of Figure 7.4. There are notable di�erence to the other two
examples. However, qualitatively the shape is similar, and also the wave pattern is resembles
the other ones, albeit it exhibits a lower amplitude. We report the progress of the algorithm in
Figure 7.6. The method seems to stall. The objective value after 300 iterations was 2.1·10≠4

and the norm of the gradient was 6.5·10≠2.
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Figure 7.6.: History for Example 7.3

For the first setup of our experiment we can nicely observe resonance inside the harbor basin
for an intuitive initial choice of the breakwater. A good configuration can be found by smoothly
deforming the breakwater. In particular, no topology changes occur. However, the size of the
isle compared to the harbor is very small. Furthermore, the deformed breakwater leads to
significant wave interferences outside the harbor, which clearly dominate the incoming wave.
In the next experiment we choose a much larger isle, and start with a setup which leads to
significant wave interferences throughout the computational domain. They are caused by
a large jetty on the right hand side of the harbor basin which we require to stay fixed. In
particular, we want to demonstrate now the ability of the algorithm to handle topology changes.
For this reason we seed the surrounding of the harbor basin with several small breakwaters.

Example 7.4. The holdall domain D is given by the square ≠4 Æ x, y Æ 4. The initial layout
of the breakwater is depicted in Figure 7.2, where the long rectangle at the bottom is the isle.
The harbor basin Q corresponds to the rectangle |x| Æ 0.4, and ≠3.8 Æ y Æ ≠3.5. The harbor
approach is given by |x| Æ 0.1, y Ø ≠3.5, the isle by |x| Æ 3, ≠3.95 Æ y Æ ≠3.85, and the
fixed jetty by 0.45 Æ x Æ 0.55, ≠3.85 Æ y Æ ≠3.3. The computational e�ort is reduced by
imposing that everything outside the box |x| Æ 1, ≠4 Æ y Æ ≠2.5 is ocean. We study again
the incoming wave with wave number k = 7 and direction w = (


1/2, ≠


1/2)T . The regular

grid supporting the level set function consists of 601 ◊ 601 points.

We report the progress of the projected descent method in Figure 7.8. The value of the
objective functional dropped in 300 iterations from 9.3 to 3.3·10≠6. The H1-norm of the
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projected gradient is 2.5·10≠4. It seems that we found again an approximation of the solution
within numerical accuracy. The final domain and the corresponding wave pattern are shown on
the right side of Figure 7.7. As one can see the separate small breakwaters have merged into
two large ones. Furthermore, one can see the benefit of our nonmonotone linesearch method.
During some of those topology changes the objective increased steeply. However, in the long
run, this helped find a much better configuration. Note that for this example, in the end, the
wave pattern from the incident wave seems to dominate in a large part of the domain.

(a) Initial domain (b) Final domain

Figure 7.7.: Wave pattern for the initial and final domain of Example 7.4
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Figure 7.8.: History for Example 7.4

Example 7.5. We start with the same configuration as in Example 7.4, but employ the
modification inspired by the nonlinear conjugate gradients method. The final domain is
depicted on the left side of Figure 7.9. It di�ers markedly from the final domain of Example 7.1.
Again the wave pattern from the incident wave seems to dominate in a large part of the domain.
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We report the progress of the algorithm in Figure 7.10. The final value of the objective
functional is 9·10≠8, and the respective H1-norm of the projected gradient is 8·10≠6. Note
again the fast decrease of both quantities. However, considering our discretization scheme,
these values seem to be artificially small.

(a) Example 7.5 (b) Example 7.6

Figure 7.9.: Wave pattern for the final domains of Example 7.5 and Example 7.6
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Figure 7.10.: History for Example 7.5

Example 7.6. We start with the same configuration as in Example 7.4, but this time we
project the domains, respectively the level set functions, instead of the gradient. The final
domain is depicted on the right side of Figure 7.9. There are notable di�erence to the other
two examples. While these mostly keep some distance to the harbor basin and approach, the
projected domain method generates a breakwater which touches those two regions to a much
greater extend. Furthermore, a closer look at the outline of the breakwater (not depicted
here) shows that it is rougher than the counterparts from Example 7.4 and Example 7.5.
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The same observation can be made for the first experiment. A reason for this could be
the reinitialization of the level set function in each iteration. We report the progress of the
algorithm in Figure 7.11. It shows the danger of our quite basic linesearch strategy. Only after
over a 100 ascent iterations the algorithm manages to connect two breakwaters and afterwards
rapidly finds a good configuration. The objective function value after 300 iterations is 4·10≠8

and the norm of the gradient is 2.4·10≠4.
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Figure 7.11.: History for Example 7.6

Although our comparison is far from being exhaustive, the modified projected descent method
seems to be the most promising of the three presented alternatives. Moreover, in our examples
it appears that the projected descent method is able to find approximately global solutions of
the shape optimization problem. Of course, there are many other possible strategies which
could be explored. In particular, it would be very interesting to see how projected (quasi-)
Newton methods perform in our example. Furthermore, other strategies for handling the
geometric constraints might be investigated.
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8. Conclusion and further perspectives

In this thesis, we considered shape optimization problems with a special focus on constraints
described by partial di�erential equations, as well as point-wise geometric constraints. We
developed several suitable optimization algorithms, and analyzed their convergence properties
in function space. In particular, we addressed Newton-type methods, which o�er the potential
of fast local convergence. The developed methods were applied to several model problems and
substantiated by numerical tests.

Shape optimization bears a close resemblance to optimization on manifolds. We provided a
new perspective on the connection between these di�erent fields of optimization, in particular
regarding the concepts of second order derivatives and retractions. Based on these insights
we discussed several related algorithms for shape optimization. A well established approach
supposes that the initial domain is already close to a solution of the shape optimization problem.
In that case, the shape optimization problem can be reformulated on a fixed reference domain,
and a nonlinear optimization problem in a Banach space setting is obtained. In particular,
standard results and techniques can be applied, and second-order methods are readily available.
In most of this thesis we considered this setting, more precisely we described the admissible
family of domains via perturbations of a reference boundary. We derived an approximation of
the Hessian via its operator symbol for a class of elliptic model problems motivated by potential
flow pressure matching. The approximation can be used either instead of the Hessian in a
Newton-type strategy, or as a preconditioner for the true Hessian. Our numerical experiments
indicate that it has great potential in both roles. Inspired by the analogies to optimization on
manifolds we recently developed optimization methods which explore the whole admissible
family of domains. While the application of at least first order methods of this type is quite
common in shape optimization, the available literature regarding the convergence analysis of
these algorithms is very scarce. Inspired by linesearch methods along retractions, we developed
a framework for a globally convergent linesearch descent method. To the best of our knowledge
such a rigorous and general analysis has not been presented before. We further extended the
available theory by discussing generalized Newton methods in this framework. Note however,
that this approach is subject of current research, and has so far not been compared to more
established methods in shape optimization.

Besides the analysis of second order methods, the second focus of this thesis are point-wise
geometric constraints. These restrict the admissible shapes to be located inside or outside some
given regions. We considered two quite di�erent approaches to handle such situations. In the
special case where the free part of the boundary is required to be located inside some convex set,
the situation resembles an optimal control problem with control constraints. However, due to
the smoothness of the transformations, similar problems as in state constrained optimal control
arise. We extended the theory of Moreau-Yosida path following in the field of optimal control
and show its applicability to shape optimization. Note, that our results are also applicable in
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a wider context. For instance, they fit into the setting of [BU15], where full-waveform seismic
inversion with additional constraints on the parameters is discussed. We successfully applied
the developed method to shape optimization problems in fluid dynamics, and considered
potential flow as well as Stokes flow. We would like to point out that second order methods
are, so far, only rarely applied in shape optimization, especially in combination with point-wise
geometric constraints. More general geometric constraints in the form of some regions which
should be contained, or which should not be contained in the optimal domain, were also
considered. We strictly enforced these constraints by projecting the search directions onto a
suitable admissible set. This strategy was applied to the problem of minimizing the resonance
of a harbor basin by modifying the shape of the breakwaters. Usage of the level set method
allows for topological changes during the optimization. Note that such a shape optimization
problem has, so far, not been studied in the literature.

Throughout this thesis we pointed out possible extensions and open questions. Let us summarize
some of these. Our analysis is based on the group of transformations F(⇥) from (2.3) and the
associated group of images O⇥(œ

0

) of a set œ
0

. However, several di�erent transformations may
result in the same set œ œ O⇥(œ

0

). An isomorphism between transformations and associated
sets can be obtained by studying the quotient group F(⇥)/G(œ

0

), cf. Section 2.2.1. It would
be very interesting to properly study the tangent space of this quotient group and extend our
analysis of Chapter 2 to this setting. In particular this might facilitate the analysis of Newton’s
method, cf. Section 2.9. This section poses several open questions for the presented approach
which are all related to the fact that the shape Hessian with respect to F(⇥) has necessarily a
nontrivial kernel. In this context an extension of the developed algorithms to Quasi-Newton
methods seems particularly promising. An alternative might be to employ approximations of
the Hessian via its operator symbol. Our results for the potential flow pressure matching are
very promising, and motivate the application of our strategy for the derivation of the symbol
to other applications. Another issue which has to be addressed are suitable globalization
strategies and transition to fast local convergence. A combination of our globally convergent
descent method with second order methods would be the most obvious choice, but trust-region
or filter based globalization methods are also attractive candidates.

Regarding the topic of point-wise geometric constraints, it would be interesting to study
the convergence properties of (inexact) Moreau-Yosida path following in more detail. In
particular, the topic of second order necessary and su�cient conditions deserves further
attention. Another possible direction of research would be the integration of second order
information into the inner product used in our projected descent method in the spirit of
variable metric methods. Furthermore, a closer inspection of the idea of projecting domains
with respect to a suitable metric is warranted. Of course, also other methods for handling
geometric constraints can be conceived. In particular, it would be interesting to see wether one
could carry the ideas of sequential quadratic programming or interior point methods over to the
setting of shape optimization. Similarly, an extension to e�cient Lagrange-Newton strategies
for PDE-constrained shape optimization would be beneficial. In this thesis we only considered
state equations in which the state enters linearly. We believe that the reduced approach
o�ers more advantages for such equations. However, in the case of nonlinear state equations,
the e�ort of evaluating the reduced objective increases dramatically, and a Lagrange-Newton
method might be better suited. The connection to optimization problems on manifolds, or
rather to optimization over vector bundles, may point the way to suitable algorithms.
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A. Appendix

A.1. The adjoint approach

In this section we show how to e�ciently compute the derivatives of the reduced objective

j : V æ R, j(U) = J(U, S(U)).

This can be achieved by the adjoint approach, which is for example described in [HPUU09,
section 1.6]. We only state the necessary equations for the convenience of the reader.

Let us briefly fix the setting. V, Y, Z are Banach spaces, the objective is given by

J : V ◊ Y æ R,

the state equation by

E(U, y) = 0, where E : V ◊ Y æ Zú,

and the design-to state-operator S : V æ Y satisfies E(U, S(U)) = 0 for all U œ V . We assume
that J, E, and S are smooth enough such that all required derivatives exist. Recall the short
notation

púE(U, y) = ÈE(U, y), pÍZú
,Z .

For a given U we consider the solution y = S(U) œ Y of the state equation

E(U, y) = 0 in Zú,

and the solution p = p(U) œ Z of the adjoint equation

púEy(U, y) = 0 in Yú. (A.1)

The derivative of the reduced objective is then given by

jÕ(U) = JU (U, y) + púEU (U, y) œ Vú.

If we want to solve the Newton equation with an iterative method like conjugate gradients
we need to evaluate jÕÕ(U)V œ Vú. For this, we further require the solution zV œ Y of the
linearized state equation

Ey(U, y)zV = ≠EU (U, y)V in Zú,
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and the solution qV œ Z of the linearized adjoint equation

Ey(U, y)qV = ≠ Jyy(U, y)zV ≠ JUy(U, y)V
≠ púEyy(U, y)zV ≠ pEUy(U, y)V in Yú.

Now it holds

jÕÕ(U)V = JUU (U, y)V + JyU (U, y)zV + qú
V EU (U, y)

+ púEUU (U, y)V + púEyU (U, y)zV œ Vú.

A.2. The adjoint approach for the extension operator

We demonstrate in this section how one can compute the derivatives of j(u) = jœ(T (u)), when
T is given as the solution operator of the equation

KU = 0 in œ
U = u on ˆœ.

(A.2)

Note that this problem fits the setting of Section A.1, hence the procedure is already described
there. Nevertheless, we provide the necessary steps here in detail for completeness.

Let us specify (A.2) in more detail. We consider

KU
0

= ≠KFu in V
0

,
U = U

0

+ Fu in V,

where V is a Banach space, V
0

its subspace with zero trace on ˆœ, and F : U æ V is some
suitable smooth linear extension operator.

Remark A.1. Imagine for example the linear elasticity equation, d = 2, U = H2(ˆœ,R2),
and V = H1(œ,R2). In Section 2.11.2 we discussed conditions which ensure then that T (u) has
enough regularity to serve as a domain displacement. Introducing the operator F is a standard
technique. It can be assumed to be smooth and equal to zero away from the boundary.

We assume that we can find a solution U for every boundary displacement u œ U , and denote
the solution operator by T : U æ V. Given a smooth functional j : V æ R we now consider

j : U æ R, j(u) = j(T (u)).

The associated Lagrangian is given by

L : U ◊ V ◊ V
0

◊ Vú ◊ Vú
0

æ R,

L(u, U, U
0

, p
1

, p
2

) = j(U) + Èp
1

, U ≠ U
0

≠ FuÍVú
,V + Èp

2

, KU
0

+ KFuÍVú
0 ,V0

.

We obtain

jÕ(u) = ≠F úp
1

+ F úKúp
2

œ Uú,
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where F ú : Vú æ Uú denotes the dual of F , and p
1

, p
2

solve the adjoint equations

p
1

= ≠jÕ(T (u)) in Vú

Kúp
2

= p
1

in Vú
0

.

Analogously we can evaluate the second derivative jÕÕ(u)v with the adjoint approach. We
introduce (z

1

, z
2

) œ V ◊ V
0

, and (q
1

, q
2

) œ Vú, Vú
0

which solve the linearized state equations

Kz
2

= ≠KFv in V
0

,
z

1

= z
2

+ Fv in V,

as well as the adjoint equations for the Hessian

q
1

= ≠jÕÕ(T (u))z
1

in Vú

Kúq
2

= q
1

in Vú
0

.

One obtains

jÕÕ(u)v = ≠F úq
1

+ F úKúq
2

œ Uú.
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