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Abstract

In a multidimensional affine framework we consider a portfolio optimization prob-
lem with finite horizon, where an investor aims to maximize the expected utility of
her terminal wealth. We state a very flexible asset price model that incorporates
several risk factors modeled both by diffusion processes and by a Markov chain.
We apply Merton’s approach, because we are dealing with an incomplete market.
Based on the semimartingale characterization of Markov chains, we first derive the
Hamilton-Jacobi-Bellman (HJB) equations that, in our case, correspond to a sys-
tem of coupled non-linear partial differential equations (PDE). Exploiting the affine
structure of the model we solve the corresponding HJB equations explicitly up to
an expectation only over the Markov chain or equivalently up to a system of simple
ODEs. Furthermore, general verification theorems are proved. These results are
provided both for the constant relative risk-aversion (CRRA) and hyperbolic abso-
lute risk-aversion (HARA) utility functions. The relevance of the presented general
model is illustrated on various examples including among others a stochastic short
rate model with trading in the bond and the stock market, and a multidimensional
stochastic volatility and stochastic correlation model. Precise verification results
for all examples are provided. Economic interpretations of the models and results
complement the theoretical analysis.
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Zusammenfassung

Diese Arbeit befasst sich mit dem Portfoliooptimierungsproblem eines Investors,
der den erwarteten Nutzen seines Endvermögens maximieren möchte. Das betra-
chtete multidimensionale Preismodell berücksichtigt verschiedene Risikofaktoren,
die sowohl durch Diffusionsprozesse, als auch durch eine Markovkette modelliert
werden. Da es sich um einen unvollständigen Markt handelt, wenden wir Merton’s
Methode an. Ausgehend von der Semimartingaldarstellung der Markovkette leiten
wir zuerst die Hamilton-Jacobi-Bellman Gleichungen her, die in diesem Fall einem
System von gekoppelten nichtlinearen partiellen Differentialgleichungen entsprechen.
Wir nutzen die affine Struktur des Modells aus und finden explizite Lösungen für das
betrachtete Problem in Form von einem Erwartungswert nur über die Markovkette
oder äquivalent dazu einem System von einfachen gewöhnlichen Differentialgleichun-
gen. Zudem, beweisen wir allgemeine Verifikationssätze. Die Ergebnisse werden für
die constant relative risk-aversion (CRRA) und hyperbolic absolute risk-aversion
(HARA) Nutzenfunktionen hergeleitet. Die Relevanz der dargestellten Ergeb-
nisse wird veranschaulicht durch diverse Beispiele, die unter anderem ein Bond-
Aktien-Modell mit stochastischen Zinssätzen und ein multidimensionales Model mit
stochastischer Volatilität und stochastischer Korrelation einschließen. Detaillierte
Verifikationsergebnisse werden für alle Beispiele bewiesen. Die ökonomische Inter-
pretation des Models und der Ergebnisse rundet die theoretische Analyse ab.
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Chapter 1

Introduction

1.1 Literature overview and motivation

In this thesis we derive optimal investment strategies by maximizing the expected
utility from terminal wealth under a very flexible model, influenced simultaneously
by a (multidimensional) continuous stochastic factor and a Markov chain. We do
this for two utility functions: the CRRA, called also power utility, and the HARA
utility function. In what follows we embed this problem in the existing literature
and motivate its relevance.
The utility maximization problem was first stated and solved in continuous-time
for the Black-Scholes model by [80] and [81]. Thereafter, many authors further
developed this theory for more sophisticated and realistic market models. One im-
portant extension is the stochastic modeling of the asset returns volatility and the
risk premium, because the constant Black-Scholes drift and volatility cannot reflect
important empirical observations, such as asymmetric fat-tailed stock return distri-
butions and volatility clustering (see, e.g., [91], [18], and [41] for detailed empirical
studies). Some of the most popular examples of stochastic volatility models include
the affine models by [96] and [58]. Optimal investment rules for one-dimensional
continuous-time models with an additional stochastic factor that follows a diffu-
sion process were derived, e.g., in [67], [104], and [19]. [74] proved rigorously their
validity in the Heston model. Using martingale theory [63] solved the problem of
maximizing expected utility for affine stochastic volatility models with jumps. [20]
and [14] motivated in this context a model with a time-varying expected return by
the fact that investors cannot observe directly the mean of the returns and their
estimate changes as time goes by. As motivated in the next paragraph, in this thesis
we extend the existing results for affine models with continuous stochastic factors
by Markov switching.
Although the incorporation of stochastic volatility and drift terms makes asset price
modeling more realistic, it does not capture long-term macroeconomic developments.
Such fundamental factors can be described using Markov chains, wherein each state
of the Markov chain describes a different market situation, such as a crisis or a boom-



2 1.1 Literature overview and motivation

ing economy. Since the introduction of a Markov-switching autoregressive model by
[53], Markov chains have found several applications in financial mathematics. Em-
pirical studies on Markov-modulated models can be found e.g. in [11] and [105]
for the Markov-switching Black-Scholes and the Markov-switching Vasicek models,
respectively. Pricing of bonds in this context is studied in [37]. The literature on
utility maximization considers mainly the Black-Scholes model. [8] solved the prob-
lem of maximizing utility from terminal wealth when trading in one risky asset and
the bank account, while [95] maximized the utility from consumption over an infinite
time horizon in a multiasset environment. [48] added inflation and [76] considered
the case with transaction costs. By a fixed-point argument [77] derived an implicit
probabilistic representation for the value function when maximizing expected utility
from consumption and terminal wealth over a finite time horizon. Furthermore,
empirical confirmation for the significantly better performance of models exhibiting
a stochastic factor and Markov switching in comparison to models without Markov
switching can be found in [30] and [35].
All this motivates why this thesis combines both sources of randomness - a continu-
ous stochastic factor and a Markov chain - in the context of portfolio optimization.
To assure the analytic tractability of our model, we assume an affine structure. Such
models were recently considered for derivative pricing. [40] derived pricing formu-
las for volatility swaps and [83] and [87] applied perturbation methods for option
pricing under different Markov-switching affine models. We extend the existing lit-
erature by solving the problem of maximizing the utility from terminal wealth in
this framework.
We derive the portfolio optimization results in great detail first in a one-dimensional
model with a bank account and one risky asset. This is done in Chapter 4. After-
wards, in Chapter 5, we direct our attention to the multidimensional context with
several traded assets and multiple stochastic factors. Our interest in the multi-asset
case is motivated by the fact that when considering portfolio optimization it is cru-
cial to account for the interaction between the single assets. Empirical evidences for
the importance of multiasset modeling and stochastic correlation for utility max-
imization problems can be found in [23]. Furthermore, the existence of various
stochastic factors influencing the asset price processes is also supported by numer-
ous empirical findings in the literature. More precisely, [31] confirmed empirically
that various stochastic factors drive the stock price volatility and [45] found empir-
ical evidences for the existence of fast and slow mean-reverting factors influencing
asset prices. Besides volatility, additional sources of randomness might be stochastic
interest rates or factors explaining the expected return of assets, see [93] and [4] for
an empirical verification of such models. What is more, multidimensional models al-
low for simultaneous consideration of several risk factors, for sophisticated modeling
of the correlation structure and for analysis of the optimal trading in different asset
classes, such as bonds and stocks. All this emphasizes the importance of considering
multifactor multiasset models in the context of portfolio optimization.
Utility maximization problems for multidimensional models were solved by [63] and
[75] for affine and quadratic models without Markov switching, however without
providing explicit verification results for multidimensional examples. [56] and [7]
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filled this gap for a Wishart market model. For utility maximization in models with
stochastic interest rates and trading in stocks and a bond consult [21] and [92].
In Chapter 5 of this thesis we solve the utility maximization problem in a general
affine multidimensional model influenced by Markov switching and also prove easy
to apply verification results.
After deriving the results with the power utility function we extend our study to
the HARA utility. It includes the power utility as a special case and allows for
more flexible modeling of the investor’s risk preferences. Optimal portfolio and con-
sumption rules for the HARA utility function were derived by [81] in the context of
the Black-Scholes model. Two decades later [15] related the resulting solutions to
the so-called constant proportion portfolio insurance (CPPI) strategy. The CPPI
strategy assures a lower bound on the terminal wealth by reducing the taken risk
at lower wealth levels and increasing it at higher wealth levels. Thus, it provides
downside protection in bearish markets but also allows for profit in bullish markets.
A lower bound on terminal wealth is a desirable property e.g. for institutional in-
vestors such as pension funds that often have to guarantee their customers minimal
performance. This motivates additionally the relevance of the HARA utility func-
tion. The connection between the HARA utility and the CPPI strategy under the
Black-Scholes framework was further investigated by [97] and [103]. Optimal invest-
ment rules with the HARA utility for the Markov-modulated Black-Scholes model
were derived in discrete time by [25] and in continuous time by [26]. In Chapter
6 we investigate the results in a multidimensional context wherein the asset price
processes are influenced by a Markov chain and additional stochastic factors, mod-
eling e.g. a stochastic short rate and stochastic volatility. We are also interested
in comparing the results for the general HARA utility function with the results for
the power utility function and in verifying the performance of the optimal strategy
using real data.

1.2 Summary of the results and contributions to

literature

To the best of our knowledge we are the first to apply both sources of randomness:
Markov switching and continuous stochastic factors for utility maximization. More
precisely, the contributions of this thesis are the following:

i) Based on the semimartingale characterization of Markov chains we formulate
the HJB equation for a general class of affine models exhibiting simultaneously
a (multidimensional) continuous stochastic factor and a Markov chain (see
Section 3.3). It is in this case a system of coupled PDEs.

ii) In the one-dimensional case the optimal portfolio strategy is derived and the
corresponding value function is explicitly computed up to an expectation over
the paths of the Markov chain (see Section 4.2). Note that we allow for
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instantaneous correlation between the stochastic factor and the asset price
process, which is in accordance with empirical observations (see [41]).

iii) We present a very flexible multidimensional model including continuous
stochastic factors and a Markov chain and work out how exactly to include
the Markov switching component so that the analytical tractability of the
model remains preserved (see Section 3.1 and 5.2). According to our knowl-
edge this is the most general affine model with Markov switching where the
utility optimization problem can be solved explicitly. This general framework
can be easily used for various applications by specifying the model parameters
appropriately.

iv) We derive explicitly both, the optimal portfolio as well as the corresponding
value function in the multidimensional context. In the case without leverage
effect we allow for all parameters to depend on the Markov chain and obtain
a simple probabilistic representation for the value function (see Section 5.2.1).
If we assume correlated Brownian motions we apply a separability ansatz to
obtain an explicit solution (see Section 5.2.2).

v) We prove a verification result that reduces the case with Markov switching to
the one with deterministic coefficients, making it easy to check (see Theorem
3.5).

vi) We state and prove general verification theorems for the Markov-modulated
models (see Theorems 4.2, 5.1 and 6.6).

vii) We extend the results from above to the HARA utility function and obtain as
optimal solution a CPPI-type strategy for Markov-modulated models with a
stochastic factor (see Section 6.2). We prove that the derived optimal strategy
ensures a lower bound on the terminal wealth.

viii) We illustrate the flexibility of the proposed framework and the relevance of
the results by various examples including:

• Markov-modulated Heston model (see Section 4.3)

• Markov-modulated stock-bond model, where the interest rate evolves ac-
cording to the Vasicek model extended by Markov switching and the
stock follows a Markov-modulated geometric Brownian motion (see Sec-
tion 5.3.1)

• Markov-modulated model with two assets exhibiting stochastic covari-
ance and correlation (see Section 5.3.2)

• Markov-modulated stock-bond model with stochastic interest rates and
stochastic stock volatility (see Section 6.3).

Explicit solutions are derived for all these examples. Furthermore, we prove
specific verification theorems for all considered examples that can be directly
applied without any additional computations. All these models are relevant
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not only from a theoretical point of view but are also interesting for practition-
ers because they combine analytical solutions and desirable model properties
such as stochastic interest rates, stochastic correlations and macroeconomic
regimes.

ix) We illustrate the obtained results by various numerical studies and interpret
them from an economic point of view (see Sections 4.3.4, 5.3.1, 5.3.2 and
6.4.3). For all examples a detailed interpretation of the model parameters and
the results is provided. Various numerical studies complete the analysis and
highlight the importance of considering both sources of randomness.

x) We exemplarily estimate one of the considered examples using real data and
test the performance of the derived strategy. We provide a comparison between
the HARA and the CRRA utility functions (see Section 6.4).

xi) We state a version of Itô’s formula especially tailored for Markov-modulated
Itô diffusions (see Section 2.6.2). It is obtained as a corollary of the general
Itô formula for semimartingales.

xii) We state a version of the Feynman-Kac theorem applied to Markov-modulated
stochastic processes (see Section 2.7). It contains a list of explicit sufficient
conditions for the result to hold, so that it can be used in a straightforward
way to solve systems of coupled PDEs in portfolio optimization problems and
other applications, such as derivative pricing and risk measures in Markov-
modulated models.

1.3 Structure of the thesis

In what follows we give an overview over the structure of the thesis.
Chapter 2 contains some existing and new mathematical results needed for the fur-
ther derivations. In particular in Section 2.7 we state and prove a version of the
Feynman-Kac theorem that is especially tailored for Markov-modulated models.
The next chapter introduces the model we consider throughout the whole thesis
and the exact formulation of the optimization problem. Furthermore, we give an
overview over the method we apply to solve it and we state the resulting HJB equa-
tions. A verification theorem that reduces the problem with Markov switching to
one with time-dependent parameters is provided in Section 3.3.
Chapter 4 deals with the one-dimensional case. After deriving the solution in an
auxiliary market with deterministic time-dependent parameters, we continue with
the Markov-modulated model. The solution for the optimal portfolio and value
function as well as general verification theorems are stated in Section 4.2. Here we
consider separately the cases with and without correlation between the Brownian
motions driving the stock and the stochastic factor. In Section 4.3 we apply the
derived results to a Markov-modulated Heston model and analyze them within a
numerical study.
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Chapter 5 extends the results to multiple dimensions. Again we first solve the prob-
lem with time-dependent coefficients and then deal with the Markov-modulated
model. The solutions with and without instantaneous correlation between the as-
sets and the stochastic factors are presented separately in Sections 5.2.1 and 5.2.2.
Two examples complement the multidimensional analysis in Section 5.3. The first
one includes stochastic interest rate and trading both in a bond and a stock. The
second one presents a two-dimensional model, where the traded assets exhibit not
only stochastic volatility but also stochastic correlation. This framework can be
considered as a generalization of the Markov-modulated Heston model from Chap-
ter 4 to multiple dimensions and stochastic correlation between the assets. For both
examples we derive the explicit solutions and prove very easy to apply verification
results. The derived solutions are illustrated by various numerical computations and
are interpreted from an economic point of view.
The results so far are derived with the CRRA utility function. In Section 6 we
generalize them to the HARA utility function. To this aim we consider a multidi-
mensional model with a stochastic interest rate modeled by an Ornstein-Uhlenbeck
process with a Markov-switching mean-reverting level, and explicitly identify one of
traded assets by a bond. The theoretical results are presented in Section 6.2 and a
specific example with stochastic volatility is studied in Section 6.3. This model is a
generalization of the Markov-modulated Heston model from Chapter 4 to stochastic
interest rates and trading in a bond, and extends the first example from Chapter
5 to stochastic volatility. In Section 6.4 we estimate the model parameters for the
considered model and illustrate the optimal portfolio using real data.
Chapter 7 summarizes the main findings of this study and concludes.
Lengthy proofs are outsourced in the appendix.



Chapter 2

Mathematical preliminaries

In this chapter we first recall some general results from stochastics (Sections 2.1-2.6).
Afterwards, in Section 2.7 we state and prove a Feynman-Kac theorem especially
tailored for multidimensional models with Markov switching. To the best of our
knowledge, this result is a novel contribution. Finally, in Section 2.8 we recall some
basic concepts concerning utility functions.

2.1 General notation

We start with the basic notation and abbreviations used in the whole thesis without
any further explanation. They are summarized in Table 2.1.

symbol explanation
N the set of natural numbers including 0
R the set of real numbers
[0,∞) the set of all non-negative real numbers
R>0 the set of all strictly positive real numbers
R̄≥0 the set of all positive real numbers and ∞
Rd the Euclidean d-dimensional space for any d ∈ N\0
Rd1,d2 the set of all d1 × d2-dimensional matrices with elements in

R for any d1, d2 ∈ N\0
ȳi the i-th element of a vector ȳ ∈ Rd

Yi,j the element in position (i, j) of a matrix Y ∈ Rd1,d2

diag(ȳ) the d×d matrix with the elements of ȳ ∈ Rd on the diagonal
and zeroes otherwise

Tr(Y ) the trace of a matrix Y ∈ Rd,d

ȳ′, Y ′ the transpose of vector ȳ ∈ Rd, respectively matrix Y ∈
Rd1,d2

|y|, |ȳ| the absolute value of a real number y ∈ R; for vectors ȳ ∈ Rd

the absolute value is to be taken element-wise
||ȳ|| the Euclidean norm of ȳ ∈ Rd
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h(z) a function Rd → R, z 7→ h(z)
hzi(z) the derivative of function h with respect to (w.r.t.) zi
hz(z) the gradient of function h
hzi,zj(z) the second derivative of function h w.r.t. zi and zj
hzz′(z) the Hessian matrix of function h
h(z)|z0 the value of function h : z 7→ h(z) at point z0

C 0
(
Dh
)

the set of all continuous functions h : Dh → R
C k1,...,kd

(
Dh

1×. . .×
Dh
d)

the set of all functions h : Dh
1×. . .×Dh

d → R, (x1, . . . , xd) 7→
h(x1, . . . , xd) that are ki-times continuously differentiable in
xi, for all i = 1, . . . , d; ki = 0 means continuity in xi

1{...} the indicator function: it has value 1 if the condition {. . .}
is fulfilled and 0 otherwise

Ω state space
F Σ-algebra on Ω
F = {Ft}t∈[0,∞) filtration on (Ω,F )
P probability measure
(Ω,F ,P) probability space
(Ω,F ,F,P) filtered probability space
B(A) the Borel-Σ-algebra on A, i.e. the smallest Σ-algebra con-

taining all open subsets of A
F ⊗ G product Σ-algebra of F and G , i.e. the smallest Σ-algebra

containing all sets A1 × A2 ∈ F × G
RV : Ω→ R a random variable on (Ω,F ,P)
RV ∼ Distr the random variable RV has distribution Distr
N (µ,Σ2) the normal distribution with mean µ ∈ R and variance Σ2 ∈

R
Nd(µ,ΣΣ′) the d-dimensional normal distribution with mean vector µ ∈

Rd and covariance matrix ΣΣ′ ∈ Rd,d

EP[RV ],E[RV ] the expectation of RV under P; whenever the measure is
clear from the context, we omit the index

V arP(RV ),
V ar(RV )

the variance of RV under P; whenever the measure is clear
from the context, we omit the index

sdP(RV ), sd(RV ) the standard deviation of RV under P; whenever the mea-
sure is clear from the context, we omit the index

E[RV |A] the conditional expectation of RV given event A ⊂ Ω
E[RV |G ] the conditional expectation of RV given the sub-Σ-algebra

G ⊂ F
X = {X(t)}t∈[0,∞) stochastic process on (Ω,F ,F,P)
Xt,x process X started at time t in point x
FX = {FX

t }t∈[0,∞) the natural filtration of process X
dim. dimension(al)
HJB Hamilton-Jacobi-Bellman
MS Markov switching
ODE ordinary differential equation
p. page
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PDE partial differential equation
SDE stochastic differential equation
w.r.t. with respect to

Table 2.1: Basic notation and abbreviations.

2.2 A few basic tools

In this section we summarize for the convenience of the reader some very basic
definitions from stochastics that we will apply later on. They are cited from [12]. If
nothing else is stated all objects are defined on the probability space (Ω,F ,P).

Definition 2.1 (Integrable random variable)
A random variable X is called integrable if E[|X|] <∞.

Definition 2.2 (Uniformly integrable)
A family {X(t)}t∈[0,∞) of real-valued random variables is called uniformly integrable
if for any ε > 0, there exists a constant Kε such that E[|X(t)|1|X(t)|>Kε ] < ε for all
t ∈ [0,∞).

Definition 2.3 (Almost sure convergence)
Let {Xn}n∈N be a sequence of random variables. We say that it converges almost
surely (a.s.) to the random variable X and write:

a.s. lim
n→∞

Xn = X,

if
P
(
{ω ∈ Ω| lim

n→∞
Xn(ω) = X(ω)}

)
= 1.

Definition 2.4 (Convergence in mean)
Let {Xn}n∈N be a sequence of random variables with E[|Xn|] <∞ for all n ∈ N. Fur-
ther, let X be a random variable with E[|X|] <∞. We say that {Xn}n∈N converges
to X in mean if the following holds:

lim
n→∞

E[|Xn −X|] = 0.

2.3 Semimartingales

Now we introduce a very general class of stochastic processes, called semimartingales.
Note that in the whole thesis we consider only processes with values in Rd for some
d ∈ N\0. They are defined on the filtered probability space (Ω,F ,F,P) unless
something else is explicitly specified. Recall the following definitions and statements
cited from [59]:
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Definition 2.5 (Càdlàg/càg process, p. 3)
A stochastic process X is called càdlàg if all its paths are right-continuous and ad-
mit left-hand limits. A stochastic process X is called càg if all its paths are left-
continuous.

Definition 2.6 (Jumps, p. 3, Equation 1.8)
Let X be a càdlàg process. Then we define two other processes X− = {X−(t)}t∈[0,∞)

and ∆X = {∆X(t)}t∈[0,∞) by:

X−(0) := X(0), X−(t) := lim
s↑t

X(s) for t > 0

∆X(t) := X(t)−X−(t).

Definition 2.7 (Stopped process, p. 3, Definition 1.9)
Let X be a process and τ a mapping Ω→ R̄≥0. We define process Xτ by:

Xτ (t) := X (min(τ, t)) ,

and call it the process stopped at time τ .

Definition 2.8 (Evanescent set, p. 3, Definition 1.10)
A set A ⊂ Ω× [0,∞) is called evanescent if:

P
({
ω ∈ Ω|∃t ≥ 0 with (ω, t) ∈ A

})
= 0.

Two stochastic processes X and Y are called indistinguishable if the set {(ω, t) ∈
Ω× [0,∞)|X(t, ω) 6= Y (t, ω)} is evanescent.

Definition 2.9 (Adapted process, p. 5, Definition 1.20)
A stochastic process X = {X(t)}t∈[0,∞) is called adapted to the filtration F (F-
adapted) if X(t) is Ft-measurable for all t ∈ [0,∞).

Definition 2.10 (Optional process, p. 5, Definition 1.20)
The Σ-algebra O on Ω× [0,∞) generated by all càdlàg F-adapted processes (consid-
ered as mappings on Ω× [0,∞)) is called the optional Σ-algebra. A process that is
O-measurable is called optional.

Definition 2.11 (Localized class, p. 8, Definition 1.33)
Let C be a class of processes. The corresponding localized class Cloc is defined as
follows: a process X belongs to Cloc if and only if there exists an increasing sequence
{Tn}n∈N of stopping times (depending on X) with a.s. limn→∞ Tn =∞ such that each
stopped process XTn is in C . The sequence {Tn}n∈N is called a localizing sequence
for X (relative to C ).
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Definition 2.12 (Martingale, p. 10, Definition 1.36)
Let M be an adapted process on the filtered probability space (Ω,F ,F,P). Assume
that its P-almost all paths1 are càdlàg and that every X(t) is integrable. X is called
a martingale (resp. submartingale, resp. supermartingale) if for all (s, t) with s ≤ t
it holds:

X(s) = E[X(t)|Fs] (resp.X(s) ≤ E[X(t)|Fs], resp.X(s) ≥ E[X(t)|Fs]).

Definition 2.13 (Uniformly integrable martingale, p. 10, Definition 1.40)
A martingale M is called uniformly integrable if the family of random variables
{M(t)}t∈[0,∞) is uniformly integrable. The class of all uniformly integrable
martingales is denoted by M .

Definition 2.14 (Local martingale, p. 11, Definition 1.45)
The processes in the localized class Mloc constructed from M are called local mar-
tingales. The set of all local martingales M such that M(0) = 0 is called L .

Definition 2.15 (Square integrable martingale, p. 11, Definition 1.41)
A martingale M is square integrable if supt∈[0,∞) E

[
M2(t)

]
< ∞. The class of all

such processes is denoted by H 2. Its localized class is H 2
loc and the processes in H 2

loc

are called locally squared integrable martingales.
For multidimensional processes the definition is to be understood component-wise
(see p. 204 in [59]).

Definition 2.16 (Predictable process, p. 16, Definition 2.1)
The Σ-algebra P on Ω× [0,∞) generated by all càg processes (considered as map-
pings on Ω× [0,∞)) is called the predictable Σ-algebra. A stochastic process is called
predictable if it is P-measurable.

Definition 2.17 (Finite variation, p. 27, Definition 3.1)
The set of all real-valued processes X that are càdlàg, adapted, with X(0) = 0 such
that each path t 7→ X(t, ω) has a finite variation over each finite interval [0, t]2 is
denoted by V .
For a process X ∈ V we denote its variation by VX , i.e. VX(t, ω) is the total vari-
ation of the function s 7→ X(s, ω) on [0,t].
V + denotes the set of all real-valued processes that are càdlàg, adapted, with
X(0) = 0 and non-decreasing paths. For processes X ∈ V + we define X(∞) :=
limt→∞X(t) ∈ R̄≥0 and call X(∞) the terminal variable.

Proposition 2.18 (p. 28, Proposition 3.5)
Consider a process A ∈ V and let H be an optional process, such that the process
B :=

∫ t
0
HdA is finite-valued for all t ≥ 0. Then B ∈ V .

1This means up to a set of paths of measure zero under P.
2Recall e.g. from [12], p. 37, that a real-valued function h defined on the interval [a, b] is called of
finite variation over [a, b] if sup(z0,...,zn)∈P

∑n
i=1 |h(zi) − h(zi−1)| < ∞, where P denotes the set

of all partitions of the interval [a, b]: P = {(z0, . . . , zn) : a = z0 < z1 < . . . < zn = b, n ∈ N}.
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Definition 2.19 (Integrable variation, p. 28/29, Definition 3.6/3.7)
A + denotes the set of all process X ∈ V + that are integrable, i.e. E[X(∞)] <∞.
The set of all processes X ∈ V with integrable variation, i.e. E[VX(∞)] < ∞, is
denoted by A .
A +
loc and Aloc are the localized classes constructed from A + and A , respectively. A

process in A +
loc is called a locally integrable adapted increasing process and a process

in Aloc is called an adapted process with locally integrable variation.

Theorem 2.20 (Predictable quadratic covariation, p. 38, Theorem 4.2)
Let M and N be locally square-integrable martingales, i.e. in H 2

loc. Then there
exists a predictable process 〈M,N〉 ∈ V , unique up to an evanescent set, such that
MN −〈M,N〉 is a local martingale. Furthermore, if M and N are square integrable
martingales then MN − 〈M,N〉 ∈M . The process 〈M,N〉 is called the predictable
quadratic covariation of the pair (M,N).

Definition 2.21 (Orthogonal local martingales, p. 40, Definition 4.11)
Consider two local martingales M and N . They are called orthogonal if their product
MN is a local martingale.

Definition 2.22 (Purely discontinuous, p. 40, Definition 4.11)
Let M be a local martingale. If M(0) = 0 and M is orthogonal to all continuous
local martingales then it is called a purely discontinuous local martingale.

Lemma 2.23 (p. 41, Lemma 4.14)
A local martingale that belongs to V is purely discontinuous.

Theorem 2.24 (p. 42, Theorem 4.18)
Any local martingale M admits a unique (up to indistinguishability) representation
of the form:

M = M0 +M c +Md,

where M c(0) = Md(0) = 0, M c is a continuous local martingale, and Md is a purely
discontinuous local martingale. M c is called the continuous part of M and Md is its
purely discontinuous part.

Definition 2.25 (Semimartingale, p. 43, Definition 4.21)
Processes X of the form:

X = X0 +M + A, (2.1)

where X0 is finite-valued and F0-measurable, M ∈ L and A ∈ V , are called semi-
martingales. The space of all semimartingales is denoted by S .
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Proposition 2.26 (p. 45, Proposition 4.27)
Let X be a semimartingale. There exists a unique (up to indistinguishability)
continuous local martingale Xc with Xc(0) = 0, such that any decomposition
X = X0 +M + A of type (2.1) meets M c = Xc (up to indistinguishability again).
Xc is called the continuous martingale part of X.

Remark 2.27
For processes X = (X1, . . . , Xd)

′ with values in Rd we define the sets V d, V +,d, A d,
A +,d, A d

loc, A +,d
loc , M d, L d, H 2,d, H 2,d

loc and S d analogously as before, such that
the corresponding property holds for each component Xi, i = 1, . . . , d.

Definition 2.28 (Characteristics, p. 76, Definition 2.6)
Let X = (X1, . . . , Xd) be a continuous d-dimensional semimartingale with the fol-
lowing semimartingale decomposition:

X = X0 +M + A,

where X0 ∈ Rd is F0-measurable, M ∈ L d, and A ∈ V d. Define process C with
values in Rd,d by:

Ci,j := 〈Mi,Mj〉.

Then the pair (A,C) is called the characteristics of the continuous semimartingale
X.
Note that this definition is restricted to continuous semimartingales as this complex-
ity suffices for our applications. For the general definitions with jumps, see [59].

Proposition 2.29 (Factorization, p. 77, Proposition 2.9)
Let X be a d-dimensional continuous semimartingale. There exists a version of its
characteristics (A,C), such that:

Ai(t) =

∫ t

0

ai(s)dF (s)

Ci,j(t) =

∫ t

0

ci,j(s)dF (s),

(2.2)

where

• F ∈ A +
loc is a predictable process.

• a is a d-dimensional predictable process.

• c is a predictable process with values in the set of all symmetric non-negative
d× d matrices.
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Definition 2.30 (L2,d(M), p. 204, Definition 6.3)
Let M ∈ H 2,d, i.e. M is a d-dimensional process such that each element Mi is a
locally square-integrable martingale. Define Ci,j := 〈Mi,Mj〉 and consider a factor-
ization as in (2.2):

Ci,j(t) =

∫ t

0

ci,j(s)dF (s).

The set of all d-dimensional predictable processes H such that the increasing process

{
∫ t

0

d∑
i,j=1

Hici,jHjdF (s)}t∈[0,∞) is integrable, respectively locally integrable, is denoted

by L2,d(M), respectively L2,d
loc(M).

Theorem 2.31 (Square integrable martingales, p. 204f, Theorem 6.4)
Let M be a d-dimensional locally square integrable martingale and H ∈ L2,d

loc(M).

Then {
∫ t

0
HdM}t∈[0,∞) is a locally square integrable martingale. Further, it is a

square integrable martingale if and only if H ∈ L2,d(M).

Theorem 2.32 (Itô’s formula for semimartingales, p. 57, Theorem 4.47)
Let X = (X1, . . . , Xd) be a d-dimensional semimartingale, and f : [0,∞)×Rd → R
be a real-valued function with f ∈ C 1,2([0,∞)×Rd). Then f(X) is a semimartingale
and we have:

f
(
t,X(t)

)
=f
(
0, X(0)

)
+

∫ t

0

ft
(
s,X−(s)

)
ds+

d∑
i=1

∫ t

0

fxi
(
s,X−(s)

)
dXi(s)

+
1

2

d∑
i,j=1

fxi,xj
(
s,X−(s)

)
d〈Xc

i , X
c
j 〉(s)

+
∑
s≤t

[
f
(
s,X(s)

)
− f

(
s,X−(s)

)
−

d∑
i=1

∆Xi(s)fxi
(
s,X−(s)

)]
.

(2.3)

Note that the result in Theorem 4.47 from [59] is not explicitly stated with the
dependence of function f on t, however Representation (2.3) follows directly by
identifying in Theorem 4.47 the first component of the semimartingale with process
dt.
Now we cite a result from [62], that states a set of very general sufficient conditions
for an exponential of an affine process to be a martingale. Before we present the
result,we need to define the concept of differential semimartingale characteristics.
Again we do this in the context of continuous processes, the general definition with
jumps can be found in [62].

Definition 2.33 (Differential semimartingale characteristics, [62])
Let X be a continuous d-dimensional semimartingale and denote its semimartingale
characteristics by (A,C). Furthermore, assume that there exist:
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• a predictable processes µ with values in Rd, such that A(t) =
∫ t

0
µ(s)ds,

• a predictable non-negative process Γ with values in the set of symmetric ma-
trices in Rd×d with C(t) =

∫ t
0

Γ(s)ds.

Then, the pair (µ,Γ) is called the differential characteristics of the continuous semi-
martingale X.

Now we cite Corollary 3.4 from [62].

Theorem 2.34 (Exponential affine martingales)
Let X = (X1, . . . , Xd)

′ be a d-dim continuous semimartingale with affine differential
characteristics (µ,Γ) ∈ Rd × Rd×d, i.e.

µ(t) =

 µ1(t)
...

µd(t)

 =

 α0
1(t)
...

α0
d(t)


︸ ︷︷ ︸

=:α0

+
d∑
i=1

Xi

 αi1(t)
...

αid(t)


︸ ︷︷ ︸

=:αi

Γ(t) =

 Γ1,1(t) . . . Γ1,d(t)
...

...
...

Γd,1(t) . . . Γd,d(t)

 =

 β0
1,1(t) . . . β0

1,d(t)
...

...
...

β0
d,1(t) . . . β0

d,d(t)


︸ ︷︷ ︸

=:β0

+
d∑
i=1

Xi

 βi1,1(t) . . . βi1,d(t)
...

...
...

βid,1(t) . . . βid,d(t)


︸ ︷︷ ︸

=:βi

,

for some deterministic functions αik, β
i
k,l : [0,∞] → R, i ∈ {0, . . . , d}, k, l ∈

{1, . . . , d}. Further assume that there exists a number p ∈ N, p ≤ d such that
for all t ∈ [0, T ]:

i) αik(t) ≥ 0 if 0 ≤ i ≤ p, 1 ≤ k ≤ p, k 6= i,

ii) αik(t) = 0 if i ≥ p+ 1, 1 ≤ k ≤ p,

iii) βik,l(t) = 0 if 0 ≤ i ≤ p, 1 ≤ k, l ≤ p unless k = l = i,

iv) βik,l(t) = 0 if i ≥ p+ 1, 1 ≤ k, l ≤ d.

If additionally αi(t) and βi(t) are continuous in t ∈ [0,∞), for all 0 ≤ i ≤ d, and
the following condition holds for some 1 ≤ i ≤ d:

αik(t) +
1

2
βik,k(t) = 0,∀ 0 ≤ k ≤ d, (2.4)

then
{

exp
(
Xi(t)

)}
t∈[0,∞)

is a martingale.
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2.4 Itô processes

Now we consider a special class of semimartingales called Itô processes. The follow-
ing short summary is based on [12]. All results are cited from there unless something
else is stated. Further details are provided there and in the references cited therein.
In order to present the concept of Itô processes we need to introduce a special process
called Brownian motion.

Definition 2.35 (Brownian motion, p. 160, Definition 5.3.1.)
An adapted process W = {W (t)}t∈[0,∞) is called a Brownian motion (or a Wiener
process), if W satisfies the following properties:

i) W (0) = 0, P-a.s.,

ii) W has independent increments, i.e. W (t + s) −W (t) is independent of FW
t

for s > 0,

iii) W has Gaussian increments, W (t+ h)−W (t) ∼ N (0, h), for all h > 0,

iv) W has continuous paths, i.e. t 7→ W (t, ω) is continuous in t for all ω ∈ Ω.

This definition can be naturally extended to more dimensions.

Definition 2.36 (d-dimensional Brownian motion, p. 160)
W given by W =

(
W1, . . . ,Wd

)′
=
{(
W1(t), . . . ,Wd(t)

)′}
t∈[0,∞)

is called a d-

dimensional Brownian motion (or d-dimensional Wiener process) if its components
Wj, for j = 1, . . . , d are independent Brownian motions.

Definition 2.37 (Itô process, p. 193, Section 5.6.2)
Let X = (X1, . . . , Xd1)′ be a d1-dimensional stochastic process. It is called an Itô
process if it satisfies the following equation:

X(t) =X(0) +

∫ t

0

µ(s)ds+

∫ t

0

Σ(s)dW (s) (2.5)

=


X1(0) +

∫ t
0
µ1(s)ds+

d2∑
j=1

∫ t
0

Σ1,j(s)dWj(s)

...

Xd1(0) +
∫ t

0
µd1(s)ds+

d2∑
j=1

∫ t
0

Σd1,j(s)dWj(s)

 , (2.6)

where:

i) X(0) = (X1(0), . . . , Xd1(0))′ is d1-dimensional F0-measurable random vari-
able,
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ii) µ = (µ1, . . . , µd1)′ is a d1-dimensional stochastic process, where µi is adapted
and

∫ t
0
|µi(s)|ds <∞, for all i = 1, . . . , d1,

iii) Σ =

 Σ1,1 · · · Σ1,d2

... · · · ...
Σd1,1 · · · Σd1,d2

 is a d1× d2-dimensional stochastic process, where

Σi,j is adapted, B([0,∞)) ⊗ F -measurable and
∫ t

0
E[(Σi,j)

2]ds < ∞, for all
i = 1, . . . , d1 and j = 1, . . . , d2,

iv) W = (W1, . . . ,Wd2)′ is a d2-dimensional Brownian motion.

For convenience, we can rewrite Equation (2.6) in the following form:

dX(t) = µ(t)dt+ Σ(t)dW (t).

We call this expression a stochastic differential equation (SDE) with drift µ and
diffusion term Σ.

The next three results allow us to derive the dynamics of an Itô process under
different probability measures.

Lemma 2.38 (Novikov condition, p. 198)
Let W = (W1, . . . ,Wd) be a d-dimensional Brownian motion and γ = {γ(t)}t∈[0,T ]

a measurable, adapted, d-dimensional process with
∫ T

0
γi(t)dt < ∞ P-a.s., for all

i = 1, . . . , d. Assume that

E
[

exp
(1

2

∫ T

0

||γ(s)||2ds
)]

<∞. (2.7)

Then process L = {L(t)}t∈[0,T ] defined as follows:

L(t) := exp
(
−
∫ t

0

γ′(s)dW (s)− 1

2

∫ t

0

||γ(s)||2ds
)

(2.8)

is a continuous martingale. Note that process γ is not required to be continuous.

Remark 2.39
Under Novikov’s condition it holds that:∫ t

0

||γ(s)||2ds <∞, P-a.s., for all t ∈ [0, T ],

so that the stochastic integral in (2.8) is well-defined. For a detailed explanation see
[102], p. 34.
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Theorem 2.40 (Girsanov theorem, p. 199, Theorem 5.7.1)
Let processes W , γ and L be as in Lemma 2.38. Define the equivalent probability
measure Q on (Ω,FT ) by:

dQ
dP

= L(T ), i.e. Q(A) = E[1A L(T )] =

∫
A

L(T )dP,∀A ∈ FT .

Then, process W̃ = {W̃ (t)}t∈[0,T ] = {(W̃1, . . . , W̃d)
′}t∈[0,T ] given by:

W̃i(t) = Wi(t) +

∫ t

0

γi(s)ds,

for t ∈ [0, T ] and i = 1, . . . , d, is a Q-Brownian motion.
Process L is called the density or the change of measure from P to Q.

2.4.1 CIR Process

In what follows we consider an important example for an Itô process: the so-called
Cox-Ingersoll-Ross (CIR) process. We will summarize some of its properties as we
will need them later on.

Example 2.41 (CIR process)
The CIR process is given by the following SDE:

dX(t) = κ(θ −X(t))dt+ χ
√
X(t)dW (t),

where κ, θ and Σ are positive real constants and W is a one-dimensional Brownian
motion. If X(0) ≥ 0, then X = {X(t)}t∈[0,∞) remains positive, provided that θ >
χ2/2κ (see [49]).
Although there exists no explicit formula for X = {X(t)}t∈[0,∞) in terms of W =
{W (t)}t∈[0,∞), a formula for the transition probability density p(X(s) = y|X(t) = x)
can be found. More details are provided by [32].
As shown by [33], the expectation, variance and covariance functions are given by:

E[X(t)] =θ
(
1− e−κt

)
+X(0)e−κt

Var(X(t)) =θ
χ2

2κ

(
1− e−κt

)2
+X(0)

χ2

κ

(
e−κt − e−2κt

)
Cov(X(s), X(t)) =θ

χ2

2κ

(
e−κ(t−s) − 2e−κt + e−κ(t+s)

)
+X(0)

χ2

κ

(
e−κt − e−κ(t+s)

)
, s ≤ t.

Note that

lim
t→∞

E[X(t)] = lim
t→∞

(
θ
(
1− e−κt

)
+X(0)e−κt

)
= θ,

i.e. the CIR process is mean-reverting. The invariant distribution of the CIR process
is the Gamma distribution with expectation θ and variance χ2θ

2κ
(see [34]).
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Now we state a result on the expectations of exponentials of the CIR process. It is
cited from [74], Proposition 5.1.

Lemma 2.42
Let X be a CIR process as defined in Example 2.41. For β ≤ κ2

2χ2 and α ≤ κ+a
χ2 ,

where a :=
√
κ2 − 2βχ2, the following function is well-defined:

ϕα,β(t, T, x) := E
[

exp
{
αX(T ) + β

∫ T

t

X(s)ds
}∣∣∣X(t) = x

]
.

More precisely, it is given by:

ϕα,β(t, T, x) = exp
{
Aα,β(T − t) +Bα,β(T − t)x

}
,

where for a fixed T > 0 functions Aα,β(τ) and Bα,β(τ) are real-valued, continu-
ously differentiable on [0, T ] and satisfy the following system of ordinary differential
equations (ODEs):

−Bα,β
τ (τ) +

1

2
χ2
(
Bα,β(τ)

)2 − κBα,β(τ) + β = 0, Bα,β(0) = α

− Aα,βτ (τ) + κθBα,β(τ) = 0, Aα,β(0) = 0.

For β < κ2

2χ2 and α < κ+a
χ2 they are given by:

Aα,β(τ) =
κθ(κ− a)

χ2
τ − 2κθ

χ2
ln
{1− c exp(−aτ)

1− c

}
Bα,β(τ) =

−c(κ+ a) exp(−aτ) + κ− a
χ2
(
1− c exp(−aτ)

) ,

where

c :=
−αχ2 + κ− a
−αχ2 + κ+ a

.

For β ≤ κ2

2χ2 and α = κ+a
χ2 we obtain:

Aα,β(τ) = κθ
κ+ a

χ2
τ

Bα,β(τ) =
κ+ a

χ2
.

In the following lemma we summarize some properties of functions Aα,β and Bα,β.
The proof is given in Appendix A

Lemma 2.43
Consider the notation from Lemma 2.42 and assume that β < κ2

2χ2 and α < κ+a
χ2 .

Then it holds that:
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i) Bα,β(τ) is monotone in τ .

ii) limτ↓0B
α,β(τ) = α.

iii) limτ↑∞B
α,β(τ) = κ−a

χ2


< 0, for β < 0

= 0, for β = 0

> 0, for β > 0

.

iv) ∂
∂τ
Aα,β(τ)

{
≤ 0, for α ≤ 0 and β < 0

≥ 0, for α ≥ 0 and β > 0
.

v) Let β ≥ 0 and α ≥ 0. Then

Aα,β(τ) ∈
[
− 2

κθ

χ2
ln{1 + Tκ}, 3κ

2θT

χ2

]
,

for all τ ∈ [0, T ].

vi) Let a 6= 0. For all c2 ∈ (κ−a
χ2 ,

κ+a
χ2 ) it holds: if α < c2, then Bα,β(τ) < c2.

As a trivial application of Lemma 2.42 we obtain a result on the solution of the
so-called Riccati differential equations. We state it explicitly in the next corollary
in the form we will apply in later on.

Corollary 2.44
Consider the following Riccati differential equation:

Bt(t) +
1

2
χ2B2(t)− κB(t) + β = 0, B(T ) = α,

for some constants κ > 0, χ 6= 0, β and α. It is solvable if β ≤ κ2

2χ2 and α ≤ κ+a
χ2 ,

where a =
√
κ2 − 2βχ2. More precisely, for β < κ2

2χ2 and α < κ+a
χ2 , its solution is

given by:

B(t) =
−c(κ+ a) exp{−a(T − t)}+ κ− a

χ2
(
1− c exp{−a(T − t)}

) ,

where:

c :=
−αχ2 + κ− a
−αχ2 + κ+ a

.

For β ≤ κ2

2χ2 and α = κ+a
χ2 , we obtain:

B(t) =
κ+ a

χ2
.
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Remark 2.45 (Half-life of a mean-reverting process)
As already mentioned, the CIR process is a mean-reverting process with mean-
reverting level θ. The speed of the mean-reversion is driven by the parameter κ
and can be described by the concept of the so-called half-life of the process. This is
the average time needed for the process to halve the distance to θ. In order to derive
this formally we approximate the increments of the process by their expectation:

dX(t)
.
= E[dX(t)] = κ(θ −X(t))dt.

This, together with the initial value X(0) leads to the following expression for X(t):

X(t)
.
= θ
(
1− e−κt

)
+X(0)e−κt.

Now we want to find this t1, such that:

X(t1)− θ = 0.5
(
X(0)− θ

)
.

It follows that:

t1 =
ln 2

κ
.

So, the expected time that the process needs to revert half the way back to θ is
inversely proportional to κ. The quantity ln 2

κ
is called the half-life of the process.

2.5 Basic continuous financial models

In this section we introduce some general notation concerning financial models in
continuous-time and provide a very brief overview over the definitions of some basic
continuous financial models used later on in the thesis. For further details we refer
to [12] and to the literature cited for each example.
All definitions are stated on the filtered probability space (Ω,F ,F,P), where mea-
sure P is called the real-world measure. We consider a bank account with price
process P0 and N traded risky assets. Their price processes are summarized in the
N -dimensional process P . Furthermore, we define the vector of discounted price
processes P̃ by:

P̃ :=
(P1

P0

, . . . ,
PN
P0

)
.

The log-return of asset Pi over the period from t0 to t is defined as ln Pi(t)
Pi(t0)

, for all
0 ≤ t0 ≤ t and all i = 1, . . . , N . It is often useful to consider the market under
another equivalent measure, the so-called risk-neutral measure with some favorable
properties. It is precisely defined in the following definition.

Definition 2.46 (Risk-neutral measure)
A probability measure Q on (Ω,F ) is called a risk-neutral probability measure (or
equivalent martingale measure) if it is equivalent to P and the discounted price pro-
cess P̃ is a Q-local martingale.



22 2.5 Basic continuous financial models

Now we continue with the brief definition of some basic financial models where the
price processes are modeled by continuous stochastic processes.

Example 2.47 (Black-Scholes model, [16])
The Black-Scholes model consists of a bank account P0 and one risky asset with price
process P1. The dynamics under the real-world measure P are defined as follows:

dP0(t) = P0(t)rdt

dP1(t) = P1(t)
{
µdt+ ΣdW (t)

}
,

where W is a one-dimensional Brownian motion and r, µ,Σ are constants with Σ 6=
0.
Application of Itô’s formula to ln(P1) yields the solution for P1:

P1(t) =P1(t0) exp
{(
µ− 1

2
Σ2
)
(t− t0) + Σ

(
W (t)−W (t0)

)}
,

for any 0 ≤ t0 ≤ t. Thus, the log-returns of the risky asset are normally distributed:

ln
P1(t)

P1(t0)
∼ N

((
µ− 1

2
Σ2
)
(t− t0),Σ2(t− t0)

)
.

The classical Black-Scholes model can be extended to N traded risky assets
in a straightforward manner if we take µ = (µ1, . . . , µN)′ ∈ RN , Σ = Σ1,1 . . . Σ1,N

...
. . .

...
ΣN,1 . . . ΣN,N

 ∈ RN,N invertible and let W = (W1, . . . ,WN)′ be an N-

dimensional Brownian motion:

dP0(t) = P0(t)rdt

dPn(t) = Pn(t)
{
µndt+

N∑
m=1

Σn,mdWm(t)
}
, n = 1, . . . , N.

Analogously as before it holds:(
ln

P1(t)

P1(t0)
, . . . , ln

PN(t)

PN(t0)

)′
∼ NN

((
µ− 1

2
diag(ΣΣ′)

)
(t− t0),ΣΣ′(t− t0)

)
.

Example 2.48 (Vasicek model, [99])
The Vasicek model proposes stochastic dynamics for the short rate. One assumes
that the short rate develops according to the following SDE under the real-world
measure:

dX(t) = κ(θ −X(t))dt+ χdWX(t), (2.9)
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where WX is a Brownian motion. Furthermore, it is assumed that the density for
the change of measure form the real-world measure to the risk-neutral measure Q is
given by:

L(t) := exp
(∫ t

0

λdW (s)− 1

2

∫ t

0

λ2ds
)
,

for a constant λ. Then, the dynamics of X under the risk-neutral measure are:

dX(t) = κ
(
θ +

χλ

κ︸ ︷︷ ︸
=:θ̃

−X(t)
)

dt+ χdW̃X(t),

where W̃X is a Q-Brownian motion. The price at time point t of a zero-coupon
bond with maturity T is:

P1(t) = EQ
[

exp
{
−
∫ T

t

X(s)ds
}∣∣∣FX

t

]
= exp

{
− A1(T − t)− A2(T − t)X(t)

}
,

where for τ ∈ [0, T ]:

A1(τ) =
(
θ̃ − χ2

2κ2

)(
τ − A2(τ)

)
+
χ2

4κ
A2

2(τ)

A2(τ) =
1

κ

(
1− exp{−κτ}

)
.

Note that Remark 2.45 can be applied to process (2.9) as well, so that its half-life is
given as ln 2

κ
.

Example 2.49 (Heston model, [58])
The Heston model extends the Black-Scholes framework by stochastic volatility. More
precisely, we have:

dP0(t) = P0(t)rdt

dP1(t) = P1(t)
{(
r + λX(t)

)
dt+

√
X(t)dW P (t)

}
dX(t) = κ(θ −X(t))dt+ χ

√
X(t)dWX(t)

d〈WX ,W P 〉(t) = ρdt,

where W P and WX are one-dimensional Brownian motions with constant correlation
ρ ∈ (−1, 1) and r, λ, κ, θ, χ are constants with κ, θ, χ > 0 and θ > χ2

2κ
. So, the risky

asset exhibits stochastic volatility modeled by a CIR process. We introduced the CIR
process in more detail in Section 2.4.1.

2.6 Markov chains

Now we continue with an example of semimartingales with jumps: Markov chains.
They are one of the basic ingredients for our further derivations, that is why we
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pay some special attention to them. First, we summarize some basic definitions and
properties concerning Markov chains and then we show how to embed them in the
general semimartingale framework. Again, all definitions are considered on a filtered
probability space (Ω,F ,F,P).

2.6.1 Basic definitions and properties

Definition 2.50 (Markov process, [66], p. 74, Definition 5.10)
For d ∈ N\{0} consider an adapted d-dimensional process X = {X(t)}t∈[0,∞). Let
ν be a probability measure on

(
Rd,B(Rd)

)
. X is said to be a Markov process with

initial distribution ν if:

i) P(X(0) ∈ B) = ν(B), ∀B ∈ B(Rd),

ii) for t ≥ s ≥ 0 and B ∈ B(Rd),

P
(
X(t) ∈ B|Fs

)
= P

(
X(t) ∈ B|X(s)

)
, P− a.s.

Definition 2.51 (Jump process, [101], p. 16, Section 2.3)
A jump process is a right-continuous stochastic process with piece-wise constant sam-
ple paths.

Definition 2.52 (Continuous-time Markov chain, [101], p. 16)
Let MC := {MC(t)}t≥0 denote a jump process that takes values in some finite or
countable space E. For convenience, the space E is set to either E = {1, 2, . . . , I}
or E = {1, 2, . . .}. Then MC is called a continuous-time Markov chain with state
space E if and only if it is a Markov process, i.e.

P
(
MC(t) = i|Fs

)
= P

(
MC(t) = i|MC(s)

)
, t ≥ s ≥ 0. (2.10)

Further, denote the jump times of MC by {tn}n∈N:

t0 = 0, tn := inf{s > tn−1|MC(s) 6= MC−(s)}.

The random variable Ti(t) :=
∫ t

0
1{MC(s)=i}ds, i ∈ E, t ≥ 0 is called the occupation

time of MC in state i up to time t. We denote T (t) := (T1(t), . . . , TI(t))
′.

For the whole thesis we use the convention that Markov chains are càdlàg processes.

Definition 2.53 (Transition matrix, [101], p. 17)
For any i, j ∈ E and t ≥ s ≥ 0 denote:

pi,j(t, s) := P
(
MC(t) = j|MC(s) = i

)
,

and P (t, s) := {pi,j(t, s)}i,j∈E. We name P (t, s) the transition matrix of the Markov
chain MC, and postulate that:

lim
t↓s

P (t, s) = 1, (2.11)

where 1 denotes the identity matrix.
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Proposition 2.54 (Properties, [101], p. 17)
It holds for t ≥ τ ≥ s ≥ 0:

i) pi,j(t, s) ≥ 0, for all i, j ∈ E.

ii)
∑

j∈E pi,j(t, s) = 1, for all i ∈ E.

iii) pi,j(t, s) =
∑

k∈E pi,k(τ, s)pk,j(t, τ), for all i, j ∈ E.

The last identity is usually referred to as the Chapman-Kolmogorov equation.

Definition 2.55 (Stationarity, [101], p. 17)
If the transition probability P

(
MC(t) = i|MC(s)

)
depends only on t − s, then the

Markov chain MC is stationary. In this case we define

pi,j(h) := pi,j(s+ h, s)

and P (h) := {pi,j(h)}i,j∈E for any h ≥ 0. The process is non-stationary otherwise.

Definition 2.56 (q-Property, [101], p. 17, Definition 2.1)
Denote by Q(t) = {qi,j(t)}i,j∈E a matrix-valued function in t, for t ≥ 0. It satisfies
the q-Property if:

i) qi,j is B(R)-measurable for all i, j ∈ E,

ii) qi,j(t) is uniformly bounded, that is, there exists a constant K such that
|qi,j(t)| ≤ K, for all i, j ∈ E and t ≥ 0,

iii) qi,j(t) ≥ 0 for i 6= j and
∑

j∈E qi,j(t) = 0, for all i ∈ E.

Definition 2.57 (Generator matrix, [101], p. 17, Definition 2.2)
A matrix-valued function Q(t) = {qi,j(t)}i,j∈E, defined for t ≥ 0 is a generator of
the Markov chain MC if it satisfies the q-Property and for all bounded, real-valued
functions f on E the following process

f
(
MC(t)

)
−
∫ t

0

∑
j∈E

qMC(s),j(s)f(j)ds

is a martingale w.r.t the filtration generated by MC.

Lemma 2.58 (Generator matrix, [101], p. 18, Lemma 2.4)
Let E = {1, . . . , I}. Then process MC with values in E is a Markov chain with state
space E and generator Q(t) if and only if 1{MC(t)=1}

...
1{MC(t)=I}

− ∫ t

0

Q′(s)

 1{MC(t)=1}
...

1{MC(t)=I}

 ds

is a martingale.
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Theorem 2.59 (Generated Markov chain, [101], p. 19, Theorem 2.5)
Suppose that the matrix Q(t) = {qi,j(t)}i,j∈E satisfies the q-Property for t ≥ 0. Then,
there exists a Markov chain MC = {MC(t)}t∈[0,∞) with state space E and generator
matrix Q(t).

i) Its transition matrix P (t, s) satisfies the following forward differential equation:

∂

∂t
P (t, s) = P (t, s)Q(t) for t ≥ s, P (s, s) = 1. (2.12)

If we further assume that Q(t) is continuous in t then it satisfies also the
following backwards differential equation:

∂

∂s
P (t, s) = Q(s)P (t, s) for t ≥ s, P (s, s) = 1. (2.13)

These two differential equations are referred to as forward and backward Kol-
mogorov equations, respectively.

ii) If we again assume that Q(t) is continuous in t then

lim
∆t↓0

pi,j(t+ ∆t, t)− δi,j
∆t

= qi,j(t),

where δi,j = 1{i=j} denotes the Kronecker symbol.

From now on we will consider stationary continuous-time Markov chains with a finite
state space as this is the relevant case in most financial applications. As a direct
application of Theorem 2.59 and Theorem 2.1.1 from [85] one obtains the following
corollary:

Corollary 2.60 (Stationary generator matrices)
Assume that the constant matrix Q = {qi,j}ij∈E satisfies:

i) for i 6= j it holds qi,j ≥ 0,

ii)
∑

j∈E qi,j = 0, for all i ∈ E.

Then, it is the generator matrix of a stationary Markov chain MC = {MC(t)}t∈[0,∞)

with state space E and transition matrix for h ≥ 0:

P (h) = exp{hQ} =
∞∑
k=0

hk

k!
Qk.

Theorem 2.61 (Existence of a generator matrix, [2])
Let {P (h)}h≥0 be the family of transition matrices of the Markov chain MC with
state space E. Then the following holds:
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i) The limit qi,i := limh↓0
pi,i(h)−1

h
exists for all i ∈ E.

Assume further that qi,i > −∞ for all i ∈ E. Then it holds that:

ii) The limits qi,j := limh↓0
pi,j(h)−δi,j

h
, for all i, j ∈ E exist and are finite.

iii) For i 6= j, qi,j ≥ 0. Further,
∑

j∈E qi,j = 0, for all i ∈ E.

iv) Seen as a function, {P (h)}h≥0 solves the following differential equation

d

dh
P (h) = P (h)Q, for h ≥ 0

P (0) = 1,

where Q := {qi,j}i,j∈E. Thus, P (h) = exp{hQ} =
∑∞

k=0
hk

k!
Qk, h ≥ 0.

Proof
Statement i): [2], p. 9, Proposition 2.2.
Statement ii): [2], p. 10, Proposition 2.4.
Statement iii): Follows directly from statement (ii).
Statement iv): [2], p. 13, Proposition 2.7.

2

Remark 2.62
Applying Corollary 2.60, one can identify matrix Q from Theorem 2.61 with the
generator matrix of the Markov chain MC. Thus, a Markov chain can be uniquely
characterized by its initial value resp. initial distribution {P(MC(0) = i)}i∈E and
either its generator matrix Q or the family of transition matrices {P (h)}h≥0 .

Proposition 2.63 (Distribution properties, [2], p. 16, Proposition 2.8)
The following holds:

P
(
t1 > t|MC(0) = i

)
= exp{qi,it} (2.14)

P
(
MC(t1) = j|MC(0) = i

)
=

{
(1− δi,j) qi,j

−qi,i , if − qi,i > 0

δi,j, if − qi,i = 0
. (2.15)

Recall that t1 denotes the first jump time of MC.

This proposition leads directly to the following corollary:

Corollary 2.64 (Embedded Markov chain / jump chain)
The discrete time process {MC(n)}n∈N defined via MC(n) := MC(tn) is a discrete-
time Markov chain, i.e. it is a Markov process in discrete time with a finite or
countable state space. More precisely, its state space is equal to the state space of
MC, E = {1, 2, . . . , I} and the transition probabilities are given by

ri,j := P
(
MC(n+ 1) = j|MC(n) = i

)
=

{
(1− δi,j) qi,j

−qi,i , if − qi,i > 0

δi,j, if − qi,i = 0
. (2.16)
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2.6.2 Semimartingale characterization

Now we show that Markov chains are semimartingales and apply some known results
from the semimartingale theory to Markov chains.

Remark 2.65
Without loss of generality one can identify a Markov chain MC with state space
E = {1, 2, . . . , I} and transition matrices {P (h)}h≥0 by a Markov chain MC with
state space E = {e1, e2, . . . , el} and the same transition probabilities:

P
(
MC(t) = ej|MC(s) = ei

)
= pi,j(t, s), t ≥ s ≥ 0, i, j ∈ E,

where ei = (0, . . . , 0, 1, 0, . . . , 0)′ denotes the ith unit vector in RI . More precisely,
one defines:

MC(t) :=

 1{MC(t)=1}
...

1{MC(t)=I}

 ∈ RI . (2.17)

Naturally, the jump times and occupation times for both Markov chains coincide.

Notation
From now on throughout the whole study we denote by MC a Markov chain with
state space E = {1, 2, . . . , I}, transition matrices {P (h)}h≥0 and generator matrix
Q. MC stays for a Markov chain with state space E = {e1, e2, . . . , eI}, transition
matrices {P (h)}h≥0 and generator matrix Q. The corresponding embedded Markov
chains are denoted by MC andMC, respectively. The jump times for both Markov
chains are denoted by {tn}n∈N and T (t) stays for the occupation times. The natural
filtration of process MC is denoted by FMC = {FMCt }t∈[0,∞).

Corollary 2.66 (Semimartingale decomposition)
By Corollary 2.58 it follows that the Markov chain MC can be written in the fol-
lowing form:

MC(t) =MC(0) +

∫ t

0

Q′MC(s)ds+M(s), (2.18)

where M is a martingale w.r.t. the filtration generated byMC. Observe that accord-
ing to Proposition 2.18 process

∫ t
0
Q′MC(s)ds is of finite variation. Thus, Equation

(2.18) is a semimartingale representation of MC.

Using the notation about semimartingales from Section 2.3 we can state the following
corollary:

Corollary 2.67
It holds that MCc = M c = 0.
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Proof
Observe that M is of finite variation, as the difference of two processes with finite
variation:

M(s) =MC(t)−MC(0)︸ ︷︷ ︸
∈V

−
∫ t

0

Q′MC(s)ds︸ ︷︷ ︸
∈V

.

Thus, with Lemma 2.23 it follows that M is purely discontinuous, i.e. M c = 0.
Further, from Proposition 2.26 we know that MCc = M c. The statement follows.

2

Lemma 2.68 (Laplace transform of the occupation times, [38])
For any λ ∈ RI it holds:

φT (t)(λ) : = E
[

exp
{
〈λ, T (t)〉

}]
= E

[
exp

{∫ t

0

〈λ,MC(s)〉ds
}]

=
(
exp

{(
Q′ + diag(λ)

)
t
}
E
[
MC(0)

])′


1
1
...
1

 .

(2.19)

Lemma 2.69 (Quadratic variation, [39], p. 340, Lemma 1.3)
For the martingale M from Equation (2.18) it holds:

〈M,M〉(t) =diag
(∫ t

0

Q′MC(s)ds
)
−
∫ t

0

(
diag(MC(s))

)
Qds

−
∫ t

0

(
Q′diag(MC(s))

)
ds =:

∫ t

0

{vi,j(s)}i,j∈Eds.

(2.20)

Now we define the class of processes used in this thesis. This class extends Itô
processes by Markov switching.

Definition 2.70 (Markov-modulated Itô diffusion)
Let X := {X(t)}t≥0 =:

{(
X1(t), . . . , Xd1(t)

)′}
t≥0

be a d1-dimensional process and

MC := {MC(t)}t≥0 a continuous-time Markov chain with finite state space E =
{e1, . . . , eI}. Process X is called a Markov-modulated Itô diffusion if it satisfies the
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following equation:

X(t) = X(0) +

∫ t

0

µ
(
s,X(s),MC(s)

)
ds+

∫ t

0

Σ
(
s,X(s),MC(s)

)
dW (s) (2.21)

=

 X1(0)
...

Xd1(0)

+

∫ t

0

 µ1

(
s,X(s),MC(s)

)
...

µd1

(
s,X(s),MC(s)

)
 ds

+

∫ t

0

 Σ1,1

(
s,X(s),MC(s)

)
. . . Σ1,d2

(
s,X(s),MC(s)

)
...

...
...

Σd1,1

(
s,X(s),MC(s)

)
. . . Σd1,d2

(
s,X(s),MC(s)

)
 d

 W1(s)
...

Wd2(s)

 ,

where X(0) = (X1(0), . . . , Xd1(0))′ is a d1-dimensional F0-measurable random vari-
able, W := {W (t)}t≥0 is a d2-dimensional Brownian motion and µ : [0,∞)×Rd1 ×
E 7→ Rd1 and Σ : [0,∞)× Rd1 × E 7→ Rd1,d2 are deterministic measurable functions
such that: ∫ t

0

∣∣µi(s,X(s),MC(s)
)∣∣ds <∞, i = 1, . . . , d1∫ t

0

E
[{

Σi,j

(
s,X(s),MC(s)

)}2]
ds <∞, i = 1, . . . , d1, j = 1, . . . , d2.

Observe that X is a continuous process as we only have integrals w.r.t. continuous
processes.

Remark 2.71 (Existence of Markov-modulated Itô diffusions)
If one assumes that the following process exists for all i ∈ E:

X(i)(t) = X(0) +

∫ t

0

µ
(
s,X(s), ei

)
ds+

∫ t

0

Σ
(
s,X(s), ei

)
dW (s)

for any starting value X(0) ∈ DX ⊂ Rd1, and that X(i)(t) ∈ DX , for all t ≥ 0, then
it is clear that process X defined in (2.21) exists as well, as it can be constructed
step-wise from processes X(1), . . . , X(I).

Now we derive the most basic tool for Markov-modulated Itô diffusions: Itô’s for-
mula. It is obtained as an application of the general result for semimartingales cited
in Theorem 2.32.

Theorem 2.72 (Itô’s formula for Markov-modulated Itô diffusions)
Consider process X defined as in Definition 2.70. Let the Markov chain MC have
the following semimartingale decomposition:

MC(t) =MC(0) +

∫ t

0

Q′MC(s)ds+M(s),
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with intensity matrix Q = {qi,j}i,j∈E. Further, a function f : [0,∞) × Rn × E →
R,
(
t, (x1, . . . , xn)′, ei

)
7→ f

(
t, (x1, . . . , xn)′, ei

)
is given, which is once continuously

differentiable in the first variable and twice continuously differentiable in the second
for all ei ∈ E . Then

{
f
(
t,X(t),MC(t)

)}
t∈[0,∞)

is a semimartingale and we have:

f
(
t,X(t),MC(t)

)
= f(0, X(0),MC(0))

+

∫ t

0

ft
(
s,X(s),MC(s)

)
+

d1∑
j=1

fxj
(
s,X(s),MC(s)

)
µj
(
s,X(s),MC(s)

)
+

1

2

d1∑
j,k=1

fxj ,xk
(
s,X(s),MC(s)

) d2∑
r=1

Σj,r

(
s,X(s),MC(s)

)
Σk,r

(
s,X(s),MC(s)

)
ds

+

∫ t

0

d1∑
j=1

(
fxj
(
s,X(s),MC(s)

) d2∑
r=1

Σj,r

(
s,X(s),MC(s)

)
dWr(s)

)
+

∫ t

0

I∑
i=1

f
(
s,X(s), ei

)
qMC(s),ids+

∫ t

0

I∑
i=1

f(s,X(s), ei)dMi(s).

(2.22)

Proof
The statement is an application of the general Itô formula for semimartingales (see
Theorem 2.32). Observe that function f is defined in the third variable only on
the discrete space E . So, in order to be able to apply Theorem 2.32, we need to
extend function f to some open set on which we can define derivatives and assure
that the extended function is twice continuously differentiable. This is possible, e.g.
via polynomials. As we will see in the following computation, it does not make
any difference how this is done, so we do not consider the issue further. Denote by
fm the derivative of this extended function w.r.t. the third variable. Recall from
Corollary 2.67 that MCc = 0. Substitution in Equation (2.3) leads to:

f
(
t,X(t),MC(t)

)
= f(0, X(0),MC(0))

+

∫ t

0

[
ft
(
s,X(s),MC(s)

)
+

d1∑
j=1

fxj
(
s,X(s),MC(s)

)
µj
(
s,X(s),MC(s)

)
+

1

2

d1∑
j,k=1

fxj ,xk
(
s,X(s),MC(s)

) d2∑
r=1

Σj,r

(
s,X(s),MC(s)

)
Σk,r

(
s,X(s),MC(s)

)]
ds

+

∫ t

0

d1∑
j=1

(
fxj
(
s,X(s),MC(s)

) d2∑
r=1

Σj,r

(
s,X(s),MC(s)

)
dWr(s)

)
+

∫ t

0

fm
(
s,X(s),MC−(s)

)
dMC(s)

+
∑

0≤s≤t

[
f
(
s,X(s),MC(s)

)
− f

(
s,X(s),MC(s−)

)]
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−
∑

0≤s≤t

fm
(
s,X(s),MC−(s)

)
∆MC(s).

As MC is a purely jump process, it holds that:∫ t

0

fm
(
s,X(s),MC−(s)

)
dMC(s) =

∑
0≤s≤t

fm
(
s,X(s),MC−(s)

)
∆MC(s).

Further,

∑
0≤s≤t

[
f
(
s,X(s),MC(s)

)
− f

(
s,X(s),MC−(s)

)]
=

∫ t

0

I∑
i=1

f
(
s,X(s), ei

)
dMCi(s)

=

∫ t

0

(
f
(
s,X(s), e1

)
, . . . , f

(
s,X(s), eI

))
Q′MC(s)ds

+

∫ t

0

(
f
(
s,X(s), e1

)
, . . . , f

(
s,X(s), eI

))
dM(s).

Substituting the fact that Q′MC(s) =

 qMC(s),1
...

qMC(s),I

 yields the statement.

2

Remark 2.73
For notational simplicity we have formulated all statements from above without loss
of generality for processes staring at time-point 0. Naturally they can be rewritten
for arbitrary starting point t ≥ 0.

2.7 Feynman-Kac theorem for Markov-

modulated Itô processes

Another important result about Itô diffusions extended by Markov chains is the
connection between the solution of a deterministic PDE and expectations of expo-
nentials. It is presented in the following theorem. As we were not able to find in the
literature a formulation of the statement under conditions applicable for our case,
we extended the proof for the case without Markov switching (see e.g. [86], p. 137,
Theorem 8.2.1.) to Markov-switching parameters. The detailed proof is given in
Appendix A.

Theorem 2.74 (Feynman-Kac theorem with Markov switching I)
Let process X, valued in the set DX ⊆ Rd1, be a d1-dimensional Markov-modulated
Itô diffusion given by the following SDE:

dX(t) = µ
(
X(t),MC(t)

)
dt+ Σ

(
X(t),MC(t)

)
dW (s),
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where W = (W1, . . . ,Wd2)′ is an d2-dimensional Brownian motion and µ : DX ×
E → Rd1 and Σ : DX × E → Rd1,d2 are deterministic functions. Consider function
K : [0, T ]×DX × E → R and define function k : [0, T ]×DX × E → R via:

k(t, x, ei) := E
[

exp
{
−
∫ t

0

K
(
t− s,X(s),MC(s)

)
ds
}∣∣∣X(0) = x,MC(0) = ei

]
.

For all (t, x, ei) ∈ [0, T ]×DX×E , assume that function k is well-defined, k(t, x, ei) <
∞, and that the following conditions hold for all i = 1, . . . , I:

i) Function k is twice continuously differentiable in x.

ii) Process {N(r)}r∈[0,T ] defined by:

N(r) :=
1

r

∫ r

0

[
kx
(
t,X(s),MC(s)

)′
µ
(
X(s),MC(s)

)
+

1

2
Tr
(
kxx′
(
t,X(s),MC(s)

)
Σ
(
X(s),MC(s)

)
Σ′
(
X(s),MC(s)

))
+

I∑
j=1

qMC(s),jk(t,X(s), ej)
]
ds,

converges in mean to its almost sure limit, for all t ∈ [0, T ]:

lim
r↓0

E[N(r)|X(0) = x,MC(0) = ei] = E[a.s. lim
r↓0

N(r)|X(0) = x,MC(0) = ei].

iii) E
[ ∫ r

0
kx
(
t,X(s),MC(s)

)′
Σ
(
X(s),MC(s)

)
dW (s)

∣∣∣X(0) = x,MC(0) = ei

]
=

0,∀r ∈ [0, T ].

iv) E
[ ∫ r

0

(
k(t,X(s), e1), . . . , k(t,X(s), eI)

)
dM(s)

∣∣∣X(0) = x,MC(0) = ei

]
=

0,∀r ∈ [0, T ].

v) For all r ∈ [0, T − t] define:

Z(t+ r) : = exp
{
−
∫ t+r

0

K
(
t+ r − s,X(s),MC(s)

)
ds
}

Y (r) : = exp
{∫ r

0

K
(
t+ r − s,X(s),MC(s)

)
ds
}
,

and assume that:

lim
r↓0

E
[
Z(t+ r)

Y (r)− Y (0)

r

∣∣∣X(0) = x,MC(0) = ei

]
= E

[
a.s. lim

r↓0
Z(t+ r)

Y (r)− Y (0)

r
)
∣∣∣X(0) = x,MC(0) = ei

]
= E[Z(t)

∣∣∣X(0) = x,MC(0) = ei]K(t, x, ei).



34 2.7 Feynman-Kac theorem for Markov-modulated Itô processes

Then k is differentiable w.r.t. t and satisfies for all (t, x) ∈ [0, T ]×DX the following
system:

− kt(t, x, ei)− k(t, x, ei)K(t, x, ei) + kx(t, x, ei)
′µ(x, ei)

+
1

2
Tr
(
kxx′(x, ei)Σ(t, x, ei)Σ(t, x, ei)

′) = −
I∑
j=1

qi,jk(t, x, ej)

k(0, x, ei) = 1, ∀i ∈ {1, . . . , I}.

(2.23)

Further, conditions iii) and iv) and v) can be replaced by the following conditions,
respectively:

iii)’ E
[ ∫ r

0
kx
(
t,X(s),MC(s)

)′
Σ
(
X(s),MC(s)

)
Σ
(
X(s),MC(s)

)′
· kx
(
t,X(s),MC(s)

)
ds
∣∣∣X(0) = x,MC(0) = ei

]
<∞,∀r ∈ [0, T ].

iv)’ E
[ ∫ r

0

(
k(t,X(s), ej)

)2
ds
∣∣∣X(0) = x,MC(0) = ei

]
< ∞, ∀r ∈ [0, T ],

∀j = 1, . . . , I.

v)’ K(t, x, ei) is differentiable in t, K(t, x, ei) and Kt(t, x, ei) are continuous in t
and x, and

lim
r↓0

E
[
Z(t+ r)

Y (r)− Y (0)

r

∣∣∣X(0) = x,MC(0) = ei

]
= E

[
a.s. lim

r↓0
Z(t+ r)

Y (r)− Y (0)

r
)
∣∣∣X(0) = x,MC(0) = ei

]
,

for all r ∈ [0, T − t]. Note that due to the Dominated convergence theorem
(Corollary 6.26 in [68]) a sufficient condition for the equation above to hold is

the existence of an integrable bound for Z(t+ r)Y (r)−Y (0)
r

.

Remark 2.75
Some boundedness conditions on k, µX , ΣX and K can easily replace assumptions
ii), iii), iv) and v). However these functions are not bounded for important examples,
such as the Heston model. That is why we keep the assumptions as general as
possible. Furthermore, observe that the result without Markov switching is a special
case of the theorem above, so we do not state it explicitly here.

For our applications we need the backwards formulation of the Feynman-Kac result,
which follows as an application of the theorem above and is stated in the following
corollary:

Corollary 2.76 (Feynman-Kac theorem with Markov switching II)
Consider processes X and MC as in Theorem 2.74 and some function H : [0, T ]×
DX × E → R. Define function h : [0, T ]×DX × E 7→ R via:

h(t, x, ei) := E
[

exp
{
−
∫ T

t

H
(
s,X(s),MC(s)

)
ds
}∣∣∣X(t) = x,MC(t) = ei

]
.
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Denote K(t, x, ei) := H(T − t, x, ei) and define function k(t, x, ei) as in Theorem
2.74. Assume that the conditions of Theorem 2.74 hold for k and K. Then, h
is differentiable w.r.t. t and satisfies the following system of coupled PDEs for all
(t, x) ∈ [0, T ]×DX :

ht(t, x, ei)− h(t, x, ei)H(t, x, ei) + hx(t, x, ei)
′µ(x, ei)

+
1

2
Tr
(
hxx′(t, x, ei)Σ(x, ei)Σ(x, ei)

′) = −
I∑
j=1

qi,jh(t, x, ej)

h(T, x, ei) = 1,∀i ∈ {1, . . . , I}.

Proof
First recall that the stated assumptions assure that k satisfies System (2.23). Ob-
serve further that:

h(t, x, ei) = E
[

exp
{
−
∫ T

t

H
(
s,X(s),MC(s)

)
ds
}∣∣∣X(t) = x,MC(t) = ei

]
= E

[
exp

{
−
∫ T

t

K
(
T − s,X(s),MC(s)

)
ds
}∣∣∣X(t) = x,MC(t) = ei

]
= E

[
exp

{
−
∫ T−t

0

K
(
T − t− s,X(s),MC(s)

)
ds
}∣∣∣X(0) = x,MC(0) = ei

]
= k(T − t, x, ei),

because of the Markov property of (X,MC). It follows that:

ht(t, x, ei) = −kt(T − t, x, ei), hx(t, x, ei) = kx(T − t, x, ei)
hxx′(t, x, ei) = kxx′(T − t, x, ei), h(T, x, ei) = k(0, x, ei) = 1.

Substitution of the equations above in System (2.23) shows that h satisfies the
following system for all (t, x) ∈ [0, T ]×DX :

ht(t, x, ei)− h(t, x, ei)K(T − t, x, ei)︸ ︷︷ ︸
=H(t,x,ei)

+hx(t, x, ei)
′µ(x, ei)

+
1

2
Tr
(
hxx′(t, x, ei)Σ(x, ei)Σ(x, ei)

′) = −
I∑
j=1

qi,jh(t, x, ej)

h(T, x, ei) = 1,∀i ∈ {1, . . . , I}.

2

Remark 2.77
The conditions of Theorem 2.74 for k and K can be trivially rewritten in terms of
h and H as follows:
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i) Function h is twice continuously differentiable in x.

ii) For the process {Ñ(r)}r∈[0,T ] defined by

Ñ(r) :=
1

r

∫ r

0

hx
(
t,X(s),MC(s)

)′
µ
(
X(s),MC(s)

)
+

1

2
Tr
(
hxx′

(
t,X(s),MC(s)

)
Σ
(
X(s),MC(s)

)
Σ
(
X(s),MC(s)

)′)
+

I∑
j=1

qMC(s),jh(t,X(s), ej)ds,

it holds that:

lim
r↓0

E[Ñ(r)|X(0) = x,MC(0) = ei] = E[a.s. lim
r↓0

Ñ(r)|X(0) = x,MC(0) = ei].

This means, it converges in mean to its almost sure limit, for all t ∈ [0, T ].

iii) E
[ ∫ r

0
hx
(
t,X(s),MC(s)

)′
Σ
(
X(s),MC(s)

)
dW (s)

∣∣∣X(0) = x,MC(0) = ei

]
=

0, for all r ∈ [0, T ].

iv) E
[ ∫ r

0

(
h(t,X(s), e1), . . . , h(t,X(s), eI)

)
dM(s)

∣∣∣X(0) = x,MC(0) = ei

]
= 0,

for all r ∈ [0, T ].

v) For

Z(t+ r) : = exp
{
−
∫ t+r

0

H
(
T − t− r + s,X(s),MC(s)

)
ds
}

Y (r) : = exp
{∫ r

0

H
(
T − t− r + s,X(s),MC(s)

)
ds
}
,

it holds that

lim
r↓0

E
[
Z(t+ r)

Y (r)− Y (0)

r

∣∣∣X(0) = x,MC(0) = ei

]
= E

[
a.s. lim

r↓0
Z(t+ r)

Y (r)− Y (0)

r
)
∣∣∣X(0) = x,MC(0) = ei

]
= E[Z(t)

∣∣∣X(0) = x,MC(0) = ei]H(T − t, x, ei),

for all r ∈ [0, T − t].

iii)’ E
[ ∫ r

0
hx
(
t,X(s),MC(s)

)′
Σ
(
X(s),MC(s)

)
Σ
(
X(s),MC(s)

)′
· hx
(
t,X(s),MC(s)

)
ds
∣∣∣X(0) = x,MC(0) = ei

]
<∞,∀r ∈ [0, T ].

iv)’ E
[ ∫ r

0

(
h(t,X(s), ej)

)2
ds
∣∣∣X(0) = x,MC(0) = ei

]
< ∞,∀r ∈ [0, T ],

∀j = 1, . . . , I.
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v)’ H(t, x, ei) is differentiable in t, H(t, x, ei) and Ht(t, x, ei) are continuous in t
and x, and

lim
r↓0

E
[
Z(t+ r)

Y (r)− Y (0)

r

∣∣∣X(0) = x,MC(0) = ei

]
= E

[
a.s. lim

r↓0
Z(t+ r)

Y (r)− Y (0)

r
)
∣∣∣X(0) = x,MC(0) = ei

]
,

for all r ∈ [0, T − t].

As an application of the backwards Feynman-Kac result one obtains the following
corollary:

Corollary 2.78 (Linear system of coupled ODEs)
Consider again the Markov chain MC and define function ξ : [0, T ] × E → R as
follows:

ξ(t, ei) = E
[

exp
{
−
∫ T

t

Ξ
(
s,MC(s)

)
ds
}∣∣∣MC(t) = ei

]
,

for some finite function Ξ : [0, T ]× E → R. Assume that function ξ is well-defined
and ξ(t, ei) < ∞,∀ (t, ei) ∈ [0, T ] × E . Further, for an arbitrary but fix t ∈ [0, T ]
and all r ∈ [0, t], define:

Z(t+ r) : = exp
{
−
∫ t+r

0

Ξ
(
T − t− r + s,MC(s)

)
ds
}

Y (r) : = exp
{∫ r

0

Ξ
(
T − t− r + s,MC(s)

)
ds
}
,

and assume that

lim
r↓0

E
[
Z(t+ r)

Y (r)− Y (0)

r

∣∣∣MC(0) = ei

]
= E

[
a.s. lim

r↓0
Z(t+ r)

Y (r)− Y (0)

r
)
∣∣∣MC(0) = ei

]
= E[Z(t)

∣∣∣MC(0) = ei]Ξ(T − t, ei),

(2.24)

for all ei ∈ E .
Alternatively to assuming (2.24) one can require that Ξ(t, ei) is differentiable in t,
and that Ξ(t, ei) and ∂

∂t
Ξ(t, ei) are continuous in t for all ei ∈ E .

Then ξ satisfies the following system of ODEs for all t ∈ [0, T ]:

∂

∂t
ξ(t, ei)− ξ(t, ei)Ξ(t, ei) = −

l∑
j=1

qi,jξ(t, ej)

ξ(T, ei) = 1,∀i = 1, . . . , I.
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Proof
Recall that we have to check the conditions of Theorem 2.74 for K(t, ei) := Ξ(T −
t, ei) and k(t, ei) := ξ(T−t, ei) in order to be able to apply Corollary 2.76. Conditions
i) and iii) from Theorem 2.74 are trivially fulfilled, as we do not have dependence
on x. The term N(r) from Condition ii) has in this case the following form:

N(r) =
1

r

∫ r

0

I∑
j=1

qMC(s),jξ(t, ej)ds.

By the Dominated convergence theorem (Corollary 6.26 in [68]) it converges in
mean to its almost sure limit, as the elements of the intensity matrix qMC(s),j are
constrained. Condition iv)’ is fulfilled as it holds:

∫ r

0

(
ξ(t, ej)

)2
ds = r

(
ξ(t, ej)

)2
<∞,

for all r ∈ [0, t] and ej ∈ E . Condition v) coincides with (2.24).
It is only left to show that the continuity of Ξ(t, ei) and ∂

∂t
Ξ(t, ei) suffices for the

convergence in mean in Condition v)’. To this aim observe that for all s, t ∈ [0, T ]:

−
I∑
j=1

|Ξ(t, ej)| ≤ Ξ(t,MC(s)) ≤
I∑
j=1

|Ξ(t, ej)|.

This implies that:

∣∣∣Z(t+ r)
Y (r)− Y (0)

r

∣∣∣ = Z(t+ r)
|Y (r)− Y (0)|

r

= exp
{∫ t+r

0

−Ξ
(
T − t− r + s,MC(s)

)
ds
}

∣∣ exp
{∫ r

0
Ξ
(
T − t− r + s,MC(s)

)
ds
}
− 1
∣∣

r

≤ exp
{∫ t+r

0

|Ξ
(
T − t− r + s,MC(s)

)
|ds
}

∣∣ exp
{∫ r

0
Ξ
(
T − t− r + s,MC(s)

)
ds
}
− 1
∣∣

r
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≤ exp
{∫ t+r

0

I∑
j=1

|Ξ
(
T − t− r + s, ej

)
|ds
}

max

{ ∣∣ exp
{
−
∫ r

0

∑I
j=1 |Ξ((T − t− r + s, ej)|ds

}
− 1
∣∣

r︸ ︷︷ ︸
r↓0→

∑I
j=1 |Ξ

(
T−t,ej

)
| by the Leibniz rule

,

∣∣ exp
{∫ r

0

∑I
j=1 |Ξ((T − t− r + s, ej)|ds

}
− 1
∣∣

r︸ ︷︷ ︸
r↓0→

∑I
j=1 |Ξ

(
T−t,ej

)
| by the Leibniz rule

}

≤ c1

( I∑
j=1

|Ξ
(
T − t, ej

)
|+ c2

)
< c3,

for sufficiently small r > 0 and all t ∈ [0, T ], where c1, c2 and c3 are some positive
real numbers. The convergence in mean follows again by the Dominated convergence
theorem (Corollary 6.26 in [68]).

2

2.8 Utility functions

The risk preferences of the investor are characterized by her utility function U :
DU → R, v 7→ U(v). We adopt the usual assumptions on the utility functions (see
e.g. [71]): U(v) is increasing, continuously differentiable and concave in v. These
assumptions imply that the investor prefers more to less, is risk averse and that it
gets harder and harder to increase her happiness as wealth increases. In what follows
we also assume that U is twice continuously differentiable. In order to understand
better how utility functions reflect the risk-preferences of the investor we briefly
summarize the concepts of risk-premium and risk-aversion. This overview is based
on [90].

Definition 2.79 (Risk premium)
Consider an investor with current wealth v and utility function U who is faced with a
risk with payoff given by the random variable Z with E[Z] = 0, such that E[U(v+Z)]
is finite. The risk premium is the amount pU(v;Z) that makes the investor indifferent
between taking the risk or paying the deterministic amount pU(v;Z):

U(v − pU(v;Z)) = E[U(v + Z)].

An investor is called (strictly) risk averse if pU(v;Z) ≥ 0 (pU(v;Z) > 0) for all
v ∈ DU and all Z. The higher the risk premium pU(v;Z) for the same risk Z, the
more risk averse the investor.
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Proposition 2.80 ([90], p. 130)
An investor is (strictly) risk averse if and only if U is (strictly) concave.

Definition 2.81 (Arrow-Pratt measure of absolute risk aversion)
The Arrow-Pratt measure of absolute risk aversion for utility function U is defined
as follows:

APU(v) = −Uvv
Uv

.

The next proposition explains why APU is considered as a measure of risk aversion.

Proposition 2.82 ([90], p. 125, Equation (5))
Consider the setting from Definition 2.79 and denote ΣZ := sd(Z). Assume that
E[|Z|3] = o((ΣZ)2), i.e. E[|Z|3] is of smaller order than (ΣZ)2. Then, it holds:

pU(v;Z) =
1

2
(ΣZ)2APU(v) + o

(
(ΣZ)2

)
.

So, APU is twice the risk premium per unit of variance.

As stated in the next proposition, APU can be used equivalently to pU to compare
the risk aversion of two investors, respectively utility functions.

Proposition 2.83 ([90], p. 128, Theorem 1)
Let U1 and U2 be two utility functions with DU1 = DU2 = DU . Then the following
two statements are equivalent:

i) APU1(v) ≥ APU2(v), for all v ∈ DU .

ii) pU1(v;Z) ≥ pU2(v;Z), for all v ∈ DU and all Z.

An alternative way of characterizing the risk aversion is given by the so-called Arrow-
Pratt measure of relative risk aversion. It is related to the concept of proportional
risk premium:

Definition 2.84 (Proportional risk premium)
If an investor with utility function U is indifferent between carrying a risk vZ̃, for a
random variable Z̃ with E[Z̃] = 0, and paying the deterministic amount vp̃U(v; Z̃),
then we call p̃U(v; Z̃) the proportional risk premium. This means that:

U(v − vp̃U(v; Z̃)) = E[U(v + vZ̃)].

Thus,

p̃U(v; Z̃) =
pU(v; vZ̃)

v
.
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Definition 2.85 (Arrow-Pratt measure of relative risk aversion)
The Arrow-Pratt measure of relative risk aversion is defined as follows:

ÃP
U

(v) = −vUvv
Uv

= vAPU(v).

Some of its basic properties are summarized in the following two corollaries, obtained
directly from Propositions 2.82 and 2.83:

Corollary 2.86
Let Z̃ be a random variable with E[Z̃] = 0. Denote ΣZ̃ := sd(Z̃). Assume that

E[|Z̃|3] = o
(
(ΣZ̃)2

)
. Then it holds for any utility function U :

p̃U(v; Z̃) =
1

2
(ΣZ̃)2ÃP

U
(v) + o

(
(ΣZ̃)2

)
.

So, ÃP
U

is twice the relative risk premium (as a portion of the whole wealth) per
unit of variance.

Corollary 2.87
Let U1 and U2 be two utility functions with DU1 = DU2 = DU . Then the following
two statements are equivalent:

i) ÃP
U1

(v) ≥ ÃP
U2

(v), for all v ∈ DU .

ii) p̃U1(v; Z̃) ≥ p̃U2(v; Z̃), for all v ∈ DU and all Z̃.

Utility functions can be classified by the criteria whether they have constant, de-
creasing or increasing Arrow-Pratt measure of (relative) risk aversion. One of the
most popular utility functions is the constant relative risk aversion (CRRA) utility
function, that up to a constant is given as follows:

UP (v) =
vδ

δ
, v ∈ DUP := [0,∞), (2.25)

where δ < 1, δ 6= 0. In what follows we call this utility function the power utility
function due to its structure. Observe that its Arrow-Pratt measure of relative risk
aversion is given by:

−v(UP )vv
(UP )v

= 1− δ,

so parameter δ describes the risk aversion of the investor: δ → 1 describes a risk-
neutral investor and the smaller δ, the more risk-averse the investor. This is con-
firmed by Figure 2.1, that shows the utility function for different parameter values.
It can be seen that the higher δ, the bigger the weight of high wealth levels and
the smaller the weight of low wealth values. This means that an investor with a δ
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close to 1 is more willing to take risks compared to an investor with a lower δ. This
relationship can be recognized even more clearly for negative values for δ, for which
a very high negative weight is assigned to wealth levels close to zero whereas very
high wealth levels improve only marginally the utility of the investor. That is why
utility functions with a negative parameter δ are used to describe very risk averse
investors.
A generalization of the power utility function is the so-called hyperbolic absolute
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Figure 2.1: Power utility function UP (v) = vδ

δ for different parameters δ ≤ 1.

risk aversion (HARA) utility function (see [81]). It can be expressed by different
parametrizations, in the sequel we adopt the following definition:

UH(v) =
1− δ
δ

α
{ 1

1− δ
(v − F )

}δ
, v ∈ DUH := [F,∞), (2.26)

where δ < 1, δ 6= 0, F ≥ 0. In this case the Arrow-Pratt measure of absolute risk
aversion is given by:

−(UH)vv
(UH)v

= (1− δ) 1

v − F
,

so it is decreasing in v and the smaller the difference v − F , the more risk-averse
the investor. Note that for F = 0 and α = (1 − δ)δ−1, UH(v) corresponds to the

power utility function UP (v) = vδ

δ
. The HARA utility function is plotted in Figure

2.2 for different values of parameter δ. It basically corresponds to the power utility
function shifted to the right by F .
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Figure 2.2: HARA utility function UH(v) = 1−δ
δ α

{
1

1−δ (v − F )
}δ
, v ∈ DUH := [F,∞) for different

parameters δ ≤ 1. In the upper plot F = 10 and in the lower F = 0.2. For both plots we set
α = (1− δ)δ−1 to ease the comparability with the power utility function.



Chapter 3

Problem formulation and the HJB
approach

In this chapter we first present the general model we work with and state formally
the optimization problem (see Section 3.1). Then, in Section 3.2 we introduce an
auxiliary model without Markov switching, but with deterministic time-dependent
model parameters. It is later on used to simplify the results in the case with Markov
switching. Finally, in Section 3.3 we give an overview over the method we apply
to solve the considered optimization problem. More precisely, we derive the cor-
responding HJB equations, state a candidate for the optimal control and prove a
verification theorem that reduces the case with Markov switching to the one with
time-dependent coefficients. The notation introduced in this chapter holds through-
out the whole thesis unless something else is stated.

3.1 Model and optimization problem

We start with a formal definition of the considered class of models on the filtered
probability space (Ω,F ,P,F), where P denotes the real-world measure and F =
{Ft}t∈[0,T ] describes the corresponding information flow. Whenever nothing else
is stated expectations are w.r.t. the real-world measure P. As we have a finite
investment horizon T we consider all processes over the time interval [0, T ].

Definition 3.1 (Multidimensional affine model with Markov switching)
We consider a financial model where investors dispose of a bank account with riskless
interest rate r and have the opportunity to invest in N risky securities with price
processes Pn, n = 1, . . . , N . The bank account price process is denoted by P0. We
assume that these price processes are influenced both, by a Markov chain MC and
by J stochastic factors modeled by the J-dimensional process X with values in DX ⊆
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RJ . More precisely, we consider the following model dynamics:

dP0(t) = P0(t)r
(
X(t),MC(t)

)
dt

dPn(t) = Pn(t)
[
µn
(
X(t),MC(t)

)
dt+ Σn

(
X(t),MC(t)

)
dW P (t)

]
, n = 1, . . . , N

dX(t) = µX
(
X(t),MC(t)

)
dt+ ΣX

(
X(t),MC(t)

)
dWX(t)

d〈WX ,W P 〉(t) = ρ
(
X(t),MC(t)

)
dt,

(3.1)

where W P is a standard N-dimensional Brownian motion, WX is a standard J-
dimensional Brownian motion, r(x, ei) : DX × E → R, µn(x, ei) : DX × E → R,
Σn(x, ei) : DX × E → R1,N , µX(x, ei) : DX × E → RJ , ΣX(x, ei) : DX × E → RJ,J ,
ρ(x, ei) : DX × E → RJ,N . The last equation in (3.1) is to be understood as follows:

d〈WX
j ,W

P
n 〉(t) = ρj,n

(
X(t),MC(t)

)
dt, ∀j = 1, . . . , J, n = 1, . . . , N.

Further we denote:

P (t) :=
(
P1(t), . . . , Pn(t)

)′ ∈ RN

µ
(
X(t),MC(t)

)
:=
(
µ1

(
X(t),MC(t)

)
, . . . , µN

(
X(t),MC(t)

))′
∈ RN

Σ
(
X(t),MC(t)

)
:=
(

Σ1

(
X(t),MC(t)

)
, . . . ,ΣN

(
X(t),MC(t)

))′
∈ RN,N ,

and assume that Σ(X(t),MC(t)) is a.s. invertible for all t ∈ [0, T ] and that
{Σ(X(t),MC(t))}t∈[0,T ] has a.s. finite paths. We call this model a multidimen-
sional affine model with Markov switching if the following conditions are fulfilled for
all (x, ei) ∈ DX × E :

r = ε(0)(ei) + ε̄(1)(ei)
′x (3.2)

µX = k̄(0)(ei)−K(1)(ei)x (3.3)

ΣX(ΣX)′ = H(0)(ei) +
J∑
j=1

H(1j)(ei)xj (3.4)

(µ− r)′
(
ΣΣ′

)−1
(µ− r) = h(0)(ei) + h̄(1)(ei)

′x (3.5)

ΣXρΣ−1(µ− r) = ḡ(0)(ei) +G(1)(ei)x (3.6)

ΣXρρ′(ΣX)′ − ΣX(ΣX)′ = L(0)(ei) +
J∑
j=1

L(1j)(ei)xj, (3.7)

where ε(0), h(0) ∈ R, ε̄(1), k̄(0), h̄(1), ḡ(0) ∈ RJ , and K(1), H(0), H(1j), G(1), L(0), L(1j) ∈
RJ,J , for all j = 1, . . . , J . Subtraction of a scalar from a vector is to be understood as
subtracting the scalar from every element of the vector, i.e. µ−r = (µ1−r, . . . , µn−
r)′. Observe that on the right hand side of the expressions above we use small letters
for scalars, small letters with an upper bar for vectors and capital letters for matrices.
Furthermore, on the left hand side of the equations above the dependence on (x, ei)
is omitted for purposes of clarity.
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Remark 3.2
In the case without Markov switching a generalization of the multidimensional affine
models to quadratic processes and application to portfolio optimization is provided
in [75].

Remark 3.3
The requirement that Σ is invertible is made just to ease the notation in the following
derivation. However, it is not absolutely necessary. If suffices to assume that ΣΣ′

is invertible. In this case Condition (3.6) is replaced by the following equation:

ΣXρΣ′(ΣΣ′)−1(µ− r) = ḡ(0)(ei) +G(1)(ei)x, (3.8)

and Conditions (3.2)-(3.5), (3.7) remain the same.

Note that the affine structure of the terms in Definition 3.1 is the most general one
that allows for an exponential affine ansatz for the resulting HJB equation. On the
other hand, this model definition is not only analytically tractable but also very
flexible and covers various models as illustrated in Sections 4.3, 5.3 and 6.3. In
the most general case all parameters are Markov-switching. This setting is tractable
when ρ = 0. The challenge in the presence of a leverage effect ρ 6= 0 is to position the
Markov chain in a suitable way so that both, the model flexibility and the existence
of explicit solutions are preserved. We propose such frameworks in Sections 4.2.2,
5.2.2 and 6.1.
But first of all let us specify formally the optimization problem. We allow for
continuous trading in the risky assets and the cash account, and assume that the
investor can observe not only the asset prices but also the value of the stochastic
factor X and the state of the Markov chainMC, and makes her investment decision
based on all this information. This assumption was made in numerous studies: see
e.g. [104] and [74] for the observability of the stochastic factor and [8] and [95] for
the Markov chain. So, a trading strategy can be described with an N+1-dimensional
F-adapted real-valued process ϕ = {ϕ(t)}t∈[0,T ] = {(ϕ0(t), ϕ1(t), . . . , ϕN(t))′}t∈[0,T ],
where at time t, ϕ0(t) stands for the number of units invested in the cash account
and, for n = 1, . . . , N , ϕn(t) denotes the number of risky assets Pn in the portfolio
of the investor. In terms of this notation we define the wealth process corresponding
to strategy ϕ as:

V ϕ(t) :=
N∑
i=0

ϕi(t)Pi(t).

We consider only self-financing portfolio strategies, which are characterized by the
following equation:

V ϕ(t) = V ϕ(0) +

∫ t

0

ϕ′(s)dP (s), t ∈ [0, T ].

However, for the further computations it is more convenient to describe trading
strategies not by the absolute portfolio positions but by the relative portfolio process
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that corresponds to the fraction of wealth invested in the single assets at each time
point:

πn(t) :=
ϕn(t)Pn(t)

V ϕ(t)
, n = 1, . . . , N.

From now on we denote the corresponding wealth process by V π. We assume that
π := (π1, . . . , πn)′ has a.s. finite paths on [0, T ] and that it is self-financing, so that
the SDE for the wealth process is given by:

dV π(t) =V π(t)
[
r
(
X(t),MC(t)

)
+ π(t)′

(
µ
(
X(t),MC(t)

)
− r
(
X(t),MC(t)

))]︸ ︷︷ ︸
=:µV (V π(t),X(t),MC(t),π(t))

dt

+ V π(t)π(t)′Σ
(
X(t),MC(t)

)︸ ︷︷ ︸
=:ΣV (V π(t),X(t),MC(t),π(t))

dW P (t),

(3.9)

where the initial wealth of the investor is V π(0) = v0. An application of Theorem
2.72 to ln(V π) leads to the following solution of SDE (3.9):

V π(t) =v0 exp

{∫ t

0

[
r
(
X(t),MC(t)

)
+ π(t)′

(
µ
(
X(t),MC(t)

)
− r
(
X(t),MC(t)

))
− 1

2
π(t)′Σ

(
X(t),MC(t)

)
Σ
(
X(t),MC(t)

)′
π(t)

]
ds

+

∫ t

0

π(t)′Σ
(
X(t),MC(t)

)
dW P (s)

}
,

which shows that V π(t) > 0, for all t ∈ [0, T ], if v0 > 0.
The risk preferences of the investor are characterized by her utility function U :
DU → R, v 7→ U(v). In the subsequent sections we consider the power and the
HARA utility functions (see Section 2.8). The investor aims at maximizing her ex-
pected utility from terminal wealth by dynamically choosing her investment strategy
from the set of all admissible portfolio strategy. More, precisely, this set is defined
as follows for all (t, v) ∈ [0, T ]× [0,∞):

Λ(t, v) :=
{
π
∣∣∣π(s) ∈ RN , V π(t) = v, V π(s) ≥ 0,∀s ∈ [t, T ], V π(T ) ∈ DU ,

E
[
−min

{
U
(
V π(T )

)
, 0
}
|Ft

]
<∞

}
.

(3.10)

So, Λ(t, v) contains strategies starting at time t with wealth v that lead to a non-
negative wealth process. Strictly speaking, one should write Λ(t, v, x, ei), however
we omit the remaining arguments for better readability. Furthermore, denote:

DΛ :=
{

(t, v, x, ei) ∈ [0, T ]× [0,∞)×DX × E
∣∣Λ(t, v, x, ei) 6= ∅

}
. (3.11)
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Now we can formally state the optimization problem we consider throughout the
whole thesis. For all (t, v, x, ei) ∈ DΛ we are interested in the following problem:

J (t,v,x,ei)(π) := E
[
U(V π(T ))|V π(t) = v,X(t) = x,MC(t) = ei

]
Φ(t, v, x, ei) := max

π∈Λ(t,v)
J (t,v,x,ei)(π).

(3.12)

The maximal expected utility Φ is called the value function. Observe that now
the optimization problem has not only one state variable (v) expressing the
current wealth level V π, as in the classical Merton’s optimization problem, but two
additional (x, ei), corresponding to the two additional sources of randomness in our
model: the stochastic factors X and the Markov chain MC.
Let us have a closer look at the set of admissible portfolio strategies Λ(t, v). The
last condition in Equation (3.10) requires that the negative part of the terminal
utility is integrable, excluding strategies that might lead with a positive probability
to infinite negative utility. Note that this condition is trivially fulfilled for the
optimal portfolio with the power and the HARA utility functions, as they are
either positive or negative on their whole definition sets. So, if one can show that
the value function is finite, its negative part is either zero or equals the finite
value function. Furthermore, due to the exponential structure of our model, the
wealth process is positive for all self-financing trading strategies. Thus, for the
power utility function we do not need to check additionally the admissibility of the
optimal trading strategies but can perform optimization directly over RN . For the
HARA utility function UH we just need to assure that V π(T ) ∈ DUH .

3.2 Time-dependent model

In some cases Problem (3.12) can be solved using the results in a simpler auxiliary
market with deterministic time-dependent coefficients instead of Markov-switching
ones. To this aim we replace in Model (3.1) the Markov chainMC by a deterministic
piece-wise constant function m : [0, T ] → E with at most a countable number of
jumps in [0, T ], denoted by 0 < t1 < . . . < tK ≤ T . Set t0 = 0. More precisely, m is
given by:

m(t) :=


m0 t ∈ [t0, t1)

m1 t ∈ [t1, t2)
...

mK t ∈ [tK , T ),

(3.13)

where mk := m(tk) ∈ E are the corresponding states of m. Let us denote the set of
all such functions by M.
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Using this notation we define the following model:

dPm
0 (t) = Pm

0 (t)r
(
Xm(t),m(t)

)
dt

dPm
n (t) = Pm

n (t)
[
µn
(
Xm(t),m(t)

)
dt+ Σn

(
Xm(t),m(t)

)
dW P (t)

]
, n = 1, . . . , N

dXm(t) = µX
(
Xm(t),m(t)

)
dt+ ΣX

(
Xm(t),m(t)

)
dWX(t)

d〈W P ,WX〉(t) = ρ
(
Xm(t),m(t)

)
dt,

(3.14)

where W P and WX , as well as r, µn,Σn, µ
X ,ΣX are as in the definition of Model

(3.1). Analogously to the previous section, Pm
0 , Pm, Xm and V m,π denote the bank

account, the risky assets, the stochastic factors and the wealth process. We can
interpret this model as Model (3.1) conditioned on an arbitrary but fixed path m of
the Markov chain. That is why we call it the time-dependent model corresponding
to Model (3.1) or the time-dependent model induced by m and vice versa, Model
(3.1) is the Markov-switching model corresponding to Model (3.14).
For the time-dependent model the optimization problem is stated as follows:

J (t,v,x,m)(π) := E
[
U
(
V m,π(T )

)∣∣∣V m,π(t) = v,Xm(t) = x
]

Φm(t, v, x) := max
π∈Λm(t,v)

J (t,v,x,m)(π),
(3.15)

with

Λm(t, v) :=
{
πm
∣∣∣πm(s) ∈ RN , V m,π(t) = v, V m,π(s) ≥ 0,∀s ∈ [t, T ], V m,π(T ) ∈ DU ,

E
[
−min

{
U
(
V m,π(T )

)
, 0
}
|Ft

]
<∞

}
.

In the next section we give an overview over the method that we will apply to solve
Problems (3.12) and (3.15) and provide the link between their solutions.

3.3 HJB approach

As we are dealing with an incomplete market we will apply the Hamilton-Jacobi-
Bellman (HJB) approach. It is based on Bellman’s principle (see [10]):

Φ(t, v, x, ei) = sup
π∈Λ(t,v)

E
[
Φ
(
t+ h, V π(t+ h), X(t+ h)

)
,MC(t+ h)

∣∣∣Ft

]
,

for any h > 0, where V π(t) = v, X(t) = x and MC(t) = ei.
Applying Itô’s formula to the right-hand side of the above equation, taking the
limit h → 0 and interchanging the expectation and the limit leads to the following
equation, called the HJB equation:

max
π∈Rn
{L(ei, π)Φ(t, v, x, ei)} = −

I∑
z=1

qi,zΦ(t, v, x, ez)

Φ(T, v, x, ei) = U(v), ∀i ∈ {1, . . . , I},
(3.16)
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where the differential operator L(ei, π) is given for each ei ∈ E as follows:

L(ei, π)Φ :=Φt + µV Φv + (µX)′Φx +
1

2
ΣV (ΣV )′Φvv +

1

2
Tr
(
ΣX(ΣX)′Φxx′

)
+ ΣV ρ′(ΣX)′Φvx

∣∣∣
(t,v,x,ei,π)

. (3.17)

Note that we have neglected here the admissibility restrictions for π. They will be
verified at the end for the derived optimal portfolio. Observe that because of the
Markov chain we have to deal with a system of coupled PDEs in contrast to a single
PDE for models driven by standard Itô diffusions.
Now, we consider the first-order condition for an interior maximum:

∂

∂π

{
L(ei, π)Φ(t, v, x, ei)

}
= 0.

By differentiating the left hand-side of Equation (3.16) we obtain:

vΦv(µ− r) + v2ΦvvΣΣ′π + vΣρ′(ΣX)′Φvx = 0,

which leads to the following candidate for the optimal investment strategy:

π̄(t) =− 1

V π̄(t)Φvv

{
Φv

(
ΣΣ′)−1(µ− r) + (Σ′)−1ρ′(ΣX)′Φvx

}∣∣∣
(t,V π̄(t),X(t),MC(t))

.

(3.18)

So, we need the solution for the value function in order to derive the optimal portfolio
in an explicit form. Note that substitution of (3.18) in (3.16) yields the following
PDE for the value function Φ:

Φt + vrΦv −
1

2

Φ2
v

Φvv

(µ− r)′(ΣΣ′)−1(µ− r) + (µX)′Φx −
1

2

1

Φvv

Φ′vxΣ
Xρρ′(ΣX)′Φvx

+
1

2
Tr
(
ΣX(ΣX)′Φxx′

)
− Φv

Φvv

(µ− r)′(Σ′)−1ρ′(ΣX)′Φvx = −
I∑
z=1

qi,zΦ(t, v, x, ez).

(3.19)

In order to solve this equation we consider an ansatz for Φ suitably chosen depending
on the considered utility function. In Chapters 4 and 5 we will see how it looks like
for the power utility function and in Chapter 6 we deal with the HARA utility
function. However, a solution for the HJB equation is not necessarily the value
function to the considered optimization problem, as the HJB equation is obtained
by a heuristic derivation and the necessary technical assumptions have not been
proved so far. This is done in the so-called verification theorem. In what follows we
state general verification theorems that summarize a set of necessary conditions for
a function to be indeed the value function. When applying the verification theorem
to a specific model one has to check these conditions, which might be quite technical.
We do this for several relevant examples.
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Remark 3.4 (Decomposition of the optimal portfolio)
It can be seen in Equation (3.18) that the well-known decomposition of the optimal
portfolio in a mean-variance part and a hedging term known from the case with de-
terministic coefficients is preserved also with Markov switching. The mean-variance
part (first summand in (3.18)) is mainly driven by the excess return of the traded
risky assets and their volatility. The hedging part (second summand in (3.18)) ap-
pears because of the additional stochastic factor X. For the case with deterministic
model parameters see e.g. [104]. In the next sections we analyze in detail these two
terms.

In some cases the verification theorem for the Markov-switching model (3.1) can be
reduced to the corresponding time-dependent case. That is why, here we state also
the HJB equation in the time-dependent Model (3.14). It is defined piece-wise by:

max
π∈RN
{L(m(t), π)Φm(t, v, x)} = 0,∀(t, v, x) ∈ [tk, tk+1)× [0,∞)×DX

Φm(T, v, x) = U(v),
(3.20)

for all k = 0, . . . , K, where the differential operator L is as given by (3.17) and
function Φm is required to be continuous. Observe that in this context the HJB
equation corresponds to a classical PDE with piece-wise constant coefficients and
not to a system of PDEs, as in the case with Markov switching.
As before we use the first-order condition for an interior maximum to obtain a
candidate for the optimal investment strategy:

π̄m(t) =− 1

V m,π(t)Φm
vv

{
Φm
v

(
ΣΣ′

)−1
(µ− r) +

(
Σ′
)−1

ρ′(ΣX)′Φm
vx

}∣∣∣
(t,Vm,π(t),Xm(t),m(t))

.

(3.21)

The next theorem links the solutions of the two optimization Problems (3.12) and
(3.15).

Theorem 3.5 (Verification via the time-dependent model)
For all m ∈ M, denote the value function in the time-dependent model induced by
m by Φm(t, v, x) : [0, T ] × R≥0 ×DX → R and assume that there exists an optimal
investment strategy π̄m, which depends on the current level of m and the current
values of the stochastic processes, but not on the entire path of m on [0, T ], i.e. it
holds:

π̄m(t) = p(t, V m,π̄m(t), Xm(t),m(t)),

for some function p : [0, T ] × [0,∞) × DX × E → R. Then, an optimal invest-
ment strategy in the corresponding Markov-modulated model is given by π̄(t) =
p(t, V π̄(t), X(t),MC(t)) and for the value function it holds:

Φ(t, v, x, ei) = E[ΦMC(t, v, x)|MC(t) = ei].
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Proof
First, to ease the readability of the derivations below, we recall the following notation
for any n-dimensional process Z: Zt,z denotes the process Z started at time t in point
z ∈ Rn.
Let π̄m and π̄ be as defined in the statement of the theorem. Note the following
equation for an arbitrary but fix m ∈M:(
Xm
t,x, V

m,π̄m

t,v,x , π̄mt,v,x
)
≡
(
Xt,x,m(t), V

π̄
t,v,x,m(t), π̄t,v,x,m(t)

)∣∣{MC(s) = m(s),∀s ∈ [t, T ]}.

This implies that:(
XMCt,x,ei

, VMC,π̄
MC

t,v,x,ei , π̄MCt,v,x,ei

)
≡
(
Xt,x,ei , V

π̄
t,v,x,ei

, π̄t,v,x,ei
)
.

Pay attention that this is true because the optimal strategy π̄m in the time-dependent
model depends only on the current value of the step-wise function m and not on
its whole path on [t, T ] and because of the independence between the Brownian
motions and the Markov chain. By applying this observation and the tower rule for
conditional expectations we obtain:

Φ(t, v, x, ei) = E
[
ΦMC(t, v, x)

∣∣MC(t) = ei
]

= E
[
ΦMCt,ei (t, v, x)

]
= E

[
E
[
ΦMCt,ei (t, v, x)

∣∣FMCt,ei
T

]]
= E

[
E
[(VMC,π̄MCt,v,x,ei (T ))δ

δ

∣∣FMCt,ei
T

]]
= E

[
E
[(V π̄

t,v,x,ei
(T )
)δ

δ

∣∣FMCt,ei
T

]]
= E

[(V π̄
t,v,x,ei

(T )
)δ

δ

]
.

So, function Φ expresses indeed the expected utility corresponding to strategy π̄.
To obtain the optimality of π̄ consider an arbitrary admissible π and note that for
all m ∈M, π|{MC(s) = m(s),∀s ∈ [t, T ]} is admissible also in the time dependent
model induced by m. Thus, using the optimality of π̄m, one can compute:

Φ(t, v, x, ei) = E
[
E
[(VMC,π̄MCt,v,x,ei (T )

)δ
δ

∣∣FMCt,ei
T

]]
≥ E

[
E
[(VMC,πt,v,x,ei(T )

)δ
δ

∣∣FMCt,ei
T

]]
= E

[(V π
t,v,x,ei

(T )
)δ

δ

]
.

2

Remark 3.6
Note that this theorem allows us to show a verification result for the Markov-
switching model without showing explicitly that the value function solves the cor-
responding HJB system of PDEs. This might save lengthy technical proofs.

For a more detailed study of portfolio optimization problems in continuous-time and
further solution methods besides the HJB approach we refer to [71].
After this general introduction to the HJB approach, in what follows we apply it
to the considered class of models. In the next chapter we give a very detailed
presentation for the one-dimensional case wherein trading is done only in the bank
account and one risky asset, and the price processes are influenced by one stochastic
factor.



Chapter 4

One-dim. affine
Markov-modulated model

In this chapter we consider a special case of Model (3.1) with a riskless investment
opportunity (bank account) and one risky asset. As mentioned in the introduction
there are various studies in literature considering portfolio optimization either with
a stochastic factor or with Markov switching. In what follows we extend this by
combining both sources of randomness. The example considered at the end of this
chapter is an extension of the well-known Heston model by Markov switching. Note
that parts of this chapter have been published in [47].
The price processes of the riskless investment and the risky asset are denoted by
{P0(t)}t∈[0,T ] and {P1(t)}t∈[0,T ], respectively. Their dynamics are influenced by a
one-dimensional stochastic factor X with values in DX ⊆ R and an observable
continuous-time Markov chainMC. More precisely, the considered model is defined
as follows:

dP0(t) = P0(t)r
(
MC(t)

)
dt

dP1(t) = P1(t)
[
µ1

(
X(t),MC(t)

)
dt+ Σ1

(
X(t),MC(t)

)
dW P (t)

]
dX(t) = µX

(
X(t),MC(t)

)
dt+ ΣX

(
X(t),MC(t)

)
dWX(t)

d〈W P ,WX〉(t) = ρdt,

(4.1)

where W P and WX are two one-dimensional Brownian motions with constant
correlation ρ ∈ R. They are independent of the Markov chain. r : E → R,
µ1,Σ1, µ

X ,ΣX : DX × E → R are deterministic real-valued functions. Further-
more, we assume for all (x, ei) ∈ DX ×E the following conditions, which correspond
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to Assumptions (3.3)-(3.6) from the general model definition in Chapter 3:

µX =k̄(0)(ei)−K(1)(ei)x (4.2)

(ΣX)2 =H(0)(ei) +H(11)(ei)x (4.3)(
µ1 − r

Σ1

)2

=h(0)(ei) + h̄(1)(ei)x (4.4)

ΣXρ
µ1 − r

Σ1

=ḡ(0)(ei) +G(1)(ei)x, (4.5)

for some real-valued functions k̄(0), K(1), H(0), H(11), h(0), h̄(1), ḡ(0), G(1) : E → R.
Note that Condition (3.2) is trivially fulfilled for Model (4.1) and (3.7) follows di-
rectly from (4.3) in the one-dimensional case. In the one-dimensional case the SDE
for the wealth process corresponding to portfolio π is given by:

dV π =V π(t)
[
r
(
MC(t)

)
+ π(t)

(
µ1

(
MC(t)

)
− r
(
X(t),MC(t)

))]︸ ︷︷ ︸
=:µV

dt

+ V π(t)π(t)Σ1

(
X(t),MC(t)

)︸ ︷︷ ︸
=:ΣV

dW P (t).
(4.6)

Remark 4.1
Note that Assumption (4.5) is trivially fulfilled for ρ = 0, and for ρ 6= 0 it implies
that:

ΣX(x, ei) = b(ei)
µ1(x, ei)− r(ei)

Σ1(x, ei)
⇒ µ1(x, ei)− r(ei)

Σ1(x, ei)
=

1

b(ei)
ΣX(x, ei), (4.7)

for some deterministic function b : E → R. So, for the case with correlation the
market price of risk µ1−r

Σ1
should be a multiple of the volatility of the stochastic factor.

Formally, this implies the following:

H(0)(ei) =
(
b(ei)

)2
h(0)(ei)

H(11)(ei) =
(
b(ei)

)2
h̄(1)(ei)

ḡ(0)(ei) =ρb(ei)h
(0)(ei)

G(1)(ei) =ρb(ei)h̄
(1)(ei).

Observe that the drift and the diffusion term for the stochastic factor, as well as
the squared market price of risk are affine in X. We will see later on that as a
consequence of this, all terms in the corresponding HJB equation have affine struc-
ture, which allows for an exponentially affine ansatz for its solution. One important
example for this class of models can be obtained by adding Markov switching to the
famous Heston model. This example will be considered in detail in Section 4.3.
We assume that the risk-preferences of the investor are characterized by the power
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utility function UP as defined in (2.25) and consider Problem (3.12). The general
HJB Equation (3.16) takes the following form in the one-dimensional case:

max
π∈R
{L(ei, π)Φ(t, v, x, ei)} = −

I∑
z=1

qi,zΦ(t, v, x, ez)

Φ(T, v, x, ei) =
vδ

δ
,∀i ∈ {1, . . . , I},

(4.8)

where

L(ei, π)Φ :=Φt + µV Φv + µXΦx +
1

2
(ΣV )2Φvv +

1

2
(ΣX)2Φxx + ΣV ρ(ΣX)Φvx

∣∣∣
(t,v,x,ei,π)

,

(4.9)

and µV and ΣV are as defined in Equation (4.6). As mentioned in Section 3.3
the candidate for the optimal portfolio derived from the first-order condition for a
maximum is given by:

π̄(t) = −(µ1 − r)Φv + ρΣXΣ1Φvx

V π(t)(Σ1)2Φvv

∣∣∣(
t,X(t),MC(t)

). (4.10)

Now we propose an ansatz for the value function:

Φ(t, v, x, ei) =
vδ

δ
f(t, x, ei). (4.11)

Substituting (4.11) and the one-dimensional model specifications in (3.19) leads to
the following system for function f :

ft(t, x, ei) + f(t, x, ei) δ
{
r(ei) +

1

2

1

1− δ

(µ1(x, ei)− r(ei)
Σ1(x, ei)

)2}
︸ ︷︷ ︸

=:g(x,ei)

+ fx(t, x, ei)
{
µX(x, ei) +

δ

1− δ
ρΣX(x, ei)

µ1(x, ei)− r(ei)
Σ1(x, ei)

}
︸ ︷︷ ︸

=:µ̃X(x,ei)

+
1

2
fxx(t, x, ei)

(
ΣX(x, ei)

)2
+

1

2

(
fx(t, x, ei)

)2

f(t, x, ei)

δ

1− δ
ρ2
(
ΣX(x, ei)

)2

= −
I∑
z=1

qi,zf(t, x, ez),

f(T, x, ei) = 1, ∀i ∈ {1, . . . , I}.

(4.12)

Furthermore, (4.10) and (4.11) yield the following simplified expression for π̄:

π̄(t) =
1

1− δ

{µ1 − r
(Σ1)2

+ ρ
ΣX

Σ1

fx
f

}∣∣∣(
t,X(t),MC(t)

). (4.13)
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So in order to solve the HJB equation and obtain a candidate for the optimal control
we need to find function f . Before we do so, we state a general verification result
that summarizes a set of sufficient conditions for the HJB solution to be the value
function of our optimization problem.

Theorem 4.2 (Verification via a martingale condition)
Consider a real-valued function Φ(t, v, x, ei) : [0, T ] × [0,∞) × DX × E → R and
assume that:

i) For each ei ∈ E , Φ(·, ·, ·, ei) ∈ C 1,2,2
(
[0, T ] × [0,∞) × DX

)
, i.e. Φ is once

continuously differentiable in t and twice continuously differentiable in v and
x.

ii) Φ satisfies the following equation:

L(ei, π̄)Φ(t, v, x, ei) = −
I∑
z=1

qi,zΦ(t, v, x, ez)

Φ(T, v, x, ei) = UP (v), ∀i ∈ {1, . . . , I},

where operator L is defined in (4.9) and π̄ is given by (4.10).

iii)
{

Φ
(
t, V π̄(t), X(t),MC(t)

)}
t∈[0,T ]

is a martingale.

Then:

E
[
UP
(
V π̄(T )

)∣∣V π̄(t) = v,X(t) = x,MC(t) = ei
]

= Φ(t, v, x, ei).

Further, if Φ = vδ

δ
f(t, x, ei) for a positive function f then π̄ is the optimal solution

and Φ is the corresponding value function.

As the same result holds for the general multidimensional case (see Theorem 5.1),
we omit the proof here and provide it in Chapter 5 for Theorem 5.1.
So, basically we have two approaches how to deal with the considered optimization
problem. Either we solve System (4.12), find the HJB solution and apply Theorem
4.2, or we solve the HJB equation for the corresponding time-dependent model,
proof that it is the value function and apply Theorem 3.5. As the second possibility
is very convenient in many cases, in what follows we derive the solution for the
time-dependent model. Afterwards, in Section 4.2, we will use these results for the
solution with Markov switching.
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4.1 Time-dependent model

In the one-dimensional case Model (3.14) is stated as follows:

dPm
0 (t) = Pm

0 (t)r
(
m(t)

)
dt

dPm
1 (t) = Pm

1 (t)
[
µ1

(
Xm(t),m(t)

)
dt+ Σ1

(
Xm(t),m(t)

)
dW P (t)

]
dXm(t) = µX

(
Xm(t),m(t)

)
dt+ ΣX

(
Xm(t),m(t)

)
dWX(t)

d〈W P ,WX〉(t) = ρdt.

(4.14)

The risk preferences of the investor are again described by the power utility function
UP and we consider Problem (3.15). The HJB equation in this case takes the
following form:

max
π∈R
{L(m(t), π)Φm(t, v, x)} = 0, ∀(t, v, x) ∈ [tk, tk+1)× [0,∞)×DX

Φm(T, v, x) =
vδ

δ
,

(4.15)

for all k = 0, . . . , K, where the differential operator L is defined by (4.9), t0 := 0,
and tK+1 := T . As before, the candidate for the optimal investment strategy looks
like this:

π̄m(t) = −(µ1 − r)Φm
v + ρΣXΣ1Φm

vx

V m,π(t)(Σ1)2Φm
vv

∣∣∣(
t,Xm(t),m(t)

). (4.16)

By the ansatz:

Φm(t, v, x) =
vδ

δ
fm(t, x), (4.17)

for some continuous real-valued function fm : [0, T ]×DX → R, we simplify π̄m to:

π̄m(t) =
1

1− δ

{µ1 − r
(Σ1)2

+ ρ
ΣX

Σ1

fmx
fm

}∣∣∣(
t,Xm(t),m(t)

). (4.18)

Substitution of Equations (4.16) and (4.17) in the HJB equation (4.15) leads to the
following PDE in t and x for function fm defined piece-wise for all k = 0, . . . , K:

fmt (t, x) + fm(t, x) δ
{
r
(
m(t)

)
+

1

2

1

1− δ

(µ1

(
x,m(t)

)
− r
(
m(t)

)
Σ1

(
x,m(t)

) )2}
︸ ︷︷ ︸

=:g(x,m(t))

+ fmx (t, x)
{
µX
(
x,m(t)

)
+

δ

1− δ
ρΣX

(
x,m(t)

)µ1

(
x,m(t)

)
− r
(
m(t)

)
Σ1

(
x,m(t)

) }
︸ ︷︷ ︸

=:µ̃X(x,m(t))

+
1

2
fmxx(t, x)

(
ΣX
(
x,m(t)

))2

+
1

2

(
fmx (t, x)

)2

fm(t, x)

δ

1− δ
ρ2
(

ΣX
(
x,m(t)

))2

= 0,∀(t, x) ∈ [tk, tk+1)×DX

fm(T, x) = 1.

(4.19)
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Note that in this case we obtain a single PDE and not a system of PDEs as in the
case with Markov switching. So, if we manage to find a solution to Equation (4.19)
we will have also the solution to the HJB PDE (4.15). But first of all, we state
in the subsequent proposition a set of sufficient conditions for this solution to be
indeed the value function to the considered optimization problem.

Proposition 4.3 (Verification result in the time-dependent model)
Consider a real-valued function Φm(t, v, x) : [0, T ] × [0,∞) × DX → R given by

Φm(t, v, x, ei) = vδ

δ
fm(t, x) for a positive function fm. Assume that:

i) Φm ∈ C 1,2,2
(
[tk, tk+1)× [0,∞)×DX

)
for all k = 0, . . . , K,

ii) Φm ∈ C
(
[0, T ]× [0,∞)×DX

)
,

iii) Φm satisfies the following PDE, defined piece-wise for all k = 1, . . . , K:

L(m(t), π̄m)Φm(t, v, x) = 0, ∀(t, v, x) ∈ [tk, tk+1)× [0,∞)×DX

Φm(T, v, x) =
vδ

δ
,

with π̄m as given by (4.16).

iv)
{

Φm
(
t, V m,π̄m(t), Xm(t)

)}
t∈[0,T ]

is a martingale.

Then:

E
[
UP
(
V m,π̄m(T )

)∣∣V m,π̄m(t) = v,Xm(t) = x
]

= Φm(t, v, x),

and

E
[
UP
(
V m,π(T )

)∣∣V m,π(t) = v,Xm(t) = x
]
≤ Φm(t, v, x),

for all (t, v, x) ∈ [0, T ] × [0,∞) × DX and all admissible portfolio strategies π, i.e.
π̄m is an optimal investment strategy and Φm is the value function for the considered
problem.

The proof is given directly for the multidimensional case in Proposition 5.3.

Remark 4.4
Note that a related result is presented in Corollary 2.5 from [63]. Using a fun-
damentally different methodology based on martingale theory and semimartingale
characteristics the authors show that a trading strategy is optimal if there exists a
special semimartingale that fulfills some martingale conditions. This process can
be identified in our context with {fm(t,Xm(t))}t∈[0,T ] and the required assumptions
there correspond to Conditions iii) and iv) from Proposition 4.3. Whereas the re-
quired conditions in [63] are rather abstract our derivation based on the HJB equation
theory allows us to specify the necessary conditions in an explicit way.
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Remark 4.5
If Φm is positive then the following two conditions:

i) Φm(·, ·, ·) ∈ C 1,2,2
(
[0, T ]× [0,∞)×DX

)
,

ii) Φ satisfies Equation (4.15) where the maximum on the left hand side is ob-
tained at π̄ as given by (4.16),

suffice to show that:

E
[
UP
(
V m,π(T )

)∣∣V m,π(t) = v,X(t) = x
]
≤ Φm(t, v, x),

for all (t, v, x) ∈ [0, T ]× [0,∞)×DX and all portfolio strategies π. The derivation
can be found in Appendix B.

Remark 4.6
Assumption iv) in Proposition 4.3 can be replaced by one of the following conditions:

iv)’ For all (v, x) ∈ [0,∞)×DX and all k = 1, . . . , K it holds:

E
[ ∫ tk+1

tk

(
Φm
v

(
s, V m,π̄m(s), Xm(s))

)
ΣV
(
V m,π̄m(s), Xm(s),m(s), π̄m(s)

))2

+
(

Φm
x

(
s, V m,π̄m(s), Xm(s)

)
ΣX
(
Xm(s),m(s)

))2

ds∣∣∣V m,π̄m(tk) = v,Xm(tk) = x
]
<∞.

iv)” Functions π̄m(s, v, x, ei) and Σ1(x, ei) are continuous in (s, v, x) for all ei ∈ E ,
and for all k = 1, . . . , K it holds: for every sequence of stopping times {θn}n∈N
with θn → tk+1 it holds that:

lim
n→∞

E
[
Φm(θn, V

m,π̄m(θn), Xm(θn))
∣∣V m,π̄m(tk) = v,Xm(tk) = x

]
= E

[
Φm(tk+1, V

m,π̄m(tk+1), Xm(tk+1))
∣∣V m,π̄m(tk) = v,Xm(tk) = x

]
.

The proof is given in Appendix B.

Now we can continue with the solution to the HJB equation.

Proposition 4.7 (Solution in the time-dependent model)
Set ϑ = 1−δ

1−δ+δρ2 . Assume that the following equation:

B̃m
t (t) +

1

2
H(11)

(
m(t)

)(
B̃m(t)

)2
+
{ δ

1− δ
G(1)

(
m(t)

)
−K(1)

(
m(t)

)}
B̃m(t)

+
1

2

1

ϑ

δ

1− δ
h̄(1)
(
m(t)

)
= 0, B̃m(T ) = 0 (4.20)
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admits a continuous, piece-wise continuously differentiable solution B̃m ∈
C 1
(
[tk, tk+1) × [0,∞) × DX

)
, for all k ∈ {0, 1, 2, . . . , K} and denote Bm(t) :=

ϑB̃m(t). Furthermore, define function Am as follows:

Am(t) =

∫ T

t

1

2

1

ϑ
H(0)

(
m(s)

)(
Bm(s)

)2
+
{ δ

1− δ
ḡ(0)
(
m(s)

)
+ k̄(0)

(
m(s)

)}
Bm(s)ds.

(4.21)

Then the solution of the HJB Equation (4.15) is given by:

Φm(t, v, x) =
vδ

δ
E
[

exp
{∫ T

t

1

ϑ
g
(
X̃m(s),m(s)

)
ds
}∣∣∣X̃m(t) = x

]ϑ
=
vδ

δ
exp

{∫ T

t

δ
{
r(m(s)) +

1

2

1

1− δ
h(0)(m(s))

}
+

1

2

1

ϑ
H(0)

(
m(s)

)(
Bm(s)

)2

+
{ δ

1− δ
ḡ(0)
(
m(s)

)
+ k̄(0)

(
m(s)

)}
Bm(s)ds

}
exp{Bm(t)x} (4.22)

=
vδ

δ
exp

{∫ T

t

δ
{
r(m(s)) +

1

2

1

1− δ
h(0)(m(s))

}
ds
}

exp{Am(t) +Bm(t)x}

=:
vδ

δ
ξm(t) exp

{
Bm(t)x

}
. (4.23)

The maximum in (4.15) is obtained at:

π̄m(t) =
1

1− δ

{µ1 − r
(Σ1)2

+ ρ
ΣX

Σ1

Bm
}∣∣∣

(t,Xm(t),m(t))
. (4.24)

Trivially, Φm ∈ C 1,2,2
(
[tk, tk+1)× [0,∞)×DX

)
for all k ∈ {0, 1, 2, . . . , K} and it is

continuous on the whole interval [0, T ].
If
{

Φm
(
t, V m,π̄m(t), Xm(t)

)}
t∈[0,T ]

is a martingale, then Φm is the value function and

π̄m is the optimal portfolio.

Proof
We start with the solution to (4.19). Observe that due to the nonlinear term
Feynman-Kac theorem cannot be directly applied to obtain a probabilistic represen-
tation of the solution. As in [104] we apply the following transformation to eliminate
the nonlinear term:

hm(t, x) :=
(
fm(t, x)

) 1
ϑ ,

for some ϑ ∈ R>0. Then hm solves the PDE below:

hmt (t, x) + hm(t, x)
1

ϑ
g
(
x,m(t)

)
+ hmx (t, x)µ̃X

(
x,m(t)

)
+

1

2
hmxx(t, x)

(
ΣX
(
x,m(t)

))2

+
1

2

(
hmx (t, x)

)2

hm(t, x)

(
ΣX
(
x,m(t)

))2{
ϑ− 1 + ϑ

δ

1− δ
ρ2
}

= 0,

hm(T, x) = 1.
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We choose ϑ in such a way that the factor for the nonlinear term disappears, i.e.

ϑ =
1− δ

1− δ + δρ2
, (4.25)

and obtain:

hmt (t, x) + hm(t, x)
1

ϑ
g(x,m(t)) + hmx (t, x)µ̃X(x,m(t))

+
1

2
hmxx(t, x)

(
ΣX
(
x,m(t)

))2

= 0,

hm(T, x) = 1.

(4.26)

which is to be understood piece-wise. Observe that ϑ = 1 for ρ = 0, which is in
accordance with the fact that for ρ = 0 the PDE for fm is linear. Under some inte-
grability conditions we can apply Corollary 2.76 to obtain the following probabilistic
representation for the solution of Equation (4.26):

hm(t, x) =E
[

exp
{∫ T

t

1

ϑ
g
(
X̃m(s),m(s)

)}∣∣∣X̃m(t) = x
]

= exp
{∫ T

t

1

ϑ
δ
{
r
(
m(s)

)
+

1

2

1

1− δ
h(0)
(
m(s)

)}
ds
}

· E
[

exp
{∫ T

t

1

ϑ

1

2

δ

1− δ
h̄(1)
(
m(s)

)
X̃m(s)ds

}∣∣∣X̃m(t) = x
]
,

(4.27)

where the dynamics of process X̃m are given for t ∈ [0, T ] by the following SDE:

dX̃m(t) = µ̃X
(
X̃m(t),m(t)

)
dt+ ΣX

(
X̃(t),m(t)

)
dWX(s).

Observe that when the expectation in Representation (4.27) is known in a closed
form, we do not need to check the assumptions of Corollary 2.76, as we can just plug
in the expectation and verify that it is indeed the solution to the HJB equation. In
what follows we will characterize the expression for this expectation up to a Riccati
ODE.
First recall the affine definition of our model, which implies that:

µ̃X(x, ei) = µX(x, ei) +
δ

1− δ
ρΣX(x, ei)

µ1(x, ei)− r(ei)
Σ1(x, ei)

= k̄(0)(ei) +
δ

1− δ
ḡ(0)(ei) + { δ

1− δ
G(1)(ei)−K(1)(ei)}x(

ΣX(x, ei)
)2

= H(0)(ei) +H(11)(ei)x.

This specification of the parameters allows for an affine ansatz for function hm. More
precisely, we assume that:

hm(t, x) = exp
{∫ T

t

1

ϑ
δ
{
r(m(s)) +

1

2

1

1− δ
h(0)
(
m(s)

)}
ds
}

exp{Ãm(t) + B̃m(t)x}.
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Inserting this ansatz in Equation (4.26) and equating the coefficients in front of x0

and x1 leads to the following two ODEs for Ãm and B̃m:

B̃m
t (t) +

1

2
H(11)

(
m(t)

)(
B̃m(t)

)2
+
{ δ

1− δ
G(1)

(
m(t)

)
−K(1)

(
m(t)

)}
B̃m(t)

+
1

2

1

ϑ

δ

1− δ
h̄(1)
(
m(t)

)
= 0, B̃m(T ) = 0 (4.28)

Ãmt (t) +
1

2
H(0)

(
m(t)

)(
B̃m(t)

)2
+
{ δ

1− δ
ḡ(0)
(
m(t)

)
+ k̄(0)

(
m(t)

)}
B̃m(t) = 0,

Ãm(T ) = 0. (4.29)

So in order to obtain the solution of the HJB equation we only need to solve the
Riccati Equation (4.28) and do the integration in Equation (4.29):

Ãm(t) =

∫ T

t

1

2
H(0)

(
m(s)

)(
B̃m(s)

)2
+
{ δ

1− δ
ḡ(0)
(
m(s)

)
+ k̄(0)

(
m(s)

)}
B̃m(s)ds.

Then, the expression for Φm from (4.23) follows directly.
The verification result follows as an application of Proposition 4.3.

2

Remark 4.8 Observe that the parameters in the equations for B̃m are time-
dependent but piece-wise constant. So we are looking for a continuous, piece-wise
continuously differentiable solution. If we know the solution for constant parame-
ters and inhomogeneous terminal condition a recursive solution method with finitely
many steps is possible. A result on the solvability of Equation (4.20) with constant
parameters is summarized in Corollary 2.44. We will apply this result in Section
4.3 to construct step-wise a solution for the Heston model with time-dependent co-
efficients.

So, when applying the derived optimization results to a special model of
interest, one basically needs to solve Equation (4.20) and to verify that{

Φm
(
t, V m,π̄m(t), Xm(t)

)}
t∈[0,T ]

is a martingale. The latter might be in general quite

laborious. That is why we present in what follows a special case of the general time-
dependent model, for which this can be easily shown. To this aim we additionally
assume for Model (4.14) that:

H(0) = h(0) = ḡ(0) = 0, k̄(0) ≥ 0.

Then the martingale property and thus the verification result follow easily from a
general statement about exponentials of affine processes, given in Corollary 3.4 from
[62]. For convenience, this result is summarized in Theorem 2.34. In the following
proposition we apply it for the verification result.

Proposition 4.9 (Verification via Theorem 2.34)
Let Φm be as given by Expression (4.23). Furthermore, assume that H(0) = h(0) =
ḡ(0) = 0 and k̄(0) ≥ 0. Then the optimal portfolio strategy is as given in Equation
(4.24) and Φm is the corresponding value function.
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The proof is given in Appendix B.

Remark 4.10
Note that Theorem 2.34 can be applied also if X1 does not appear in the volatility of
the traded asset, nor in the excess return, but just in the riskless interest rate. As
in this case we will have stochastic interest rates, we should consider additionally
trading in a bond. So, we end up with a multidimensional model. This example is
considered in Section 5.3.

To sum up, when we consider a special example for a time-dependent model with
H(0) = h(0) = ḡ(0) = 0 and k̄(0) ≥ 0, we just need to find a continuous, piece-wise
differentiable functions B̃m that solves Equations (4.20). Then we can apply the
just proved theorem and derive directly the optimal solution. In Section 4.3.1 we
will do this for the time-dependent Heston model.

Remark 4.11
Let us summarize the different possibilities for proving a verification result that we
have considered so far. After finding a sufficiently differentiable solution to the HJB
equation one can either prove the martingale condition directly for the derived value
function (see Theorem 4.2) or prove it first for the time-dependent model and then
apply Theorem 3.5. In the latter case, Theorem 2.34 can be useful, when applicable
(as in Theorem 4.9). As we will see in Chapters 5 and 6, the same methods can be
adopted also in the multidimensional case and for the HARA utility function.

After deriving all necessary results for the time-dependent model, we can proceed
with the Markov-modulated model. We consider separately the cases with and
without correlation between the Brownian motions driving the stock price and the
stochastic factor in Sections 4.2.1 and 4.2.2, respectively.

4.2 Markov-modulated model

In this section we consider the Markov-modulated Model (4.1). For the case without
leverage (i.e. ρ = 0), we provide the solution up to a simple expectation only
over the probability measure of the Markov chain, which can be computed very
efficiently (see Corollary 4.12). If we assume separability of the value function in the
Markov chain and the stochastic volatility we can further simplify this expression
and derive an explicit solution even for the case wherein the Brownian motions
exhibit instantaneous correlation (see Theorem 4.13).
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4.2.1 Solution with no correlation

Let us first consider the case with ρ = 0. Observe that although the Brownian
motions do not exhibit instantaneous correlation, the two processes are correlated
by the joint Markov chain.
In the considered case the PDE system for function f has the following simpler form:

ft(t, x, ei) + f(t, x, ei) δ
{
r(ei) +

1

2

1

1− δ

(µ1(x, ei)− r(ei)
Σ1(x, ei)

)2}
︸ ︷︷ ︸

=:g(x,ei)

+fx(t, x, ei)µ
X(x, ei)

+
1

2
fxx(t, x, ei)(Σ

X)2(x, ei) = −
I∑
z=1

qi,zf(t, x, ez)

f(T, x, ei) = 1,∀ i ∈ {1, . . . , I}.
(4.30)

As we are dealing with a system of linear PDEs we can apply Corollary 2.76, if its
conditions are fulfilled for process X and function g(x, ei), which is defined in the
equation above, and derive the following probabilistic representation for f :

f(t, x, ei) =E
[

exp
{∫ T

t

δ
(
r
(
MC(s)

)
+

1

2

1

1− δ

(µ1

(
X(s),MC(s)

)
− r
(
MC(s)

)
Σ1

(
X(s),MC(s)

) )2)
ds
}

∣∣∣X(t) = x,MC(t) = ei

]
.

(4.31)

Now transform this expression by the tower rule for conditional expectations as
follows:

f(t, x, ei) =E
[

exp
{∫ T

t

δ
(
r
(
MCt,ei(s)

)
+

1

2

1

1− δ

(µ1

(
Xt,x,ei(s),MCt,ei(s)

)
− r
(
MCt,ei(s)

)
Σ1

(
Xt,x,ei(s),MCt,ei(s)

) )2)
ds
}]

=E
[
E
[

exp
{∫ T

t

δ
(
r
(
MCt,ei(s)

)
+

1

2

1

1− δ

(µ1

(
Xt,x,ei(s),MCt,ei(s)

)
− r
(
MCt,ei(s)

)
Σ1

(
Xt,x,ei(s),MCt,ei(s)

) )2)
ds
}
|FMC

T

]]
=E
[
fMCt,ei (t, x)

]
= E

[
fMC(t, x)

∣∣∣MC(t) = ei

]
, (4.32)

for all (t, x, ei) ∈ [0, T ] ×DX × E , where fm denotes for all m ∈ M the solution of
System (4.19) in the time-dependent model induced bym, thus fMC(t, x) is an FMC

T -
measurable random variable. Observe that here we have used the independence of
MC and WX . So, the candidate for the value function in the considered model has
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the following form:

Φ(t, v, x, ei) =
vδ

δ
f(t, x, ei) =

vδ

δ
E
[
fMCt,ei (t, x)

]
= E

[vδ
δ
fMCt,ei (t, x)

]
= E[ΦMCt,ei (t, v, x)] = E[ΦMC(t, v, x)|MC(t) = ei],

(4.33)

where for each m ∈M, Φm denotes the value function in the time-dependent model.
This expression is in accordance with Theorem 3.5. So, instead of proving that
the Markov-switching Feynman-Kac theorem is applicable in order to show that
Expression (4.32) indeed solves Equation (4.30), we can directly prove that Φ as
given by (4.33) is the value function for the considered problem. To this aim Theorem
3.5 can be applied, as stated in the next corollary.

Corollary 4.12 (Solution with no correlation)
Consider Model (4.1) and set ρ = 0. Assume that the value function in the corre-
sponding time-dependent model is given by:

Φm(t, v, x) =
vδ

δ
E
[

exp
{∫ T

t

g(Xm(s),m(s))ds
}∣∣∣Xm(t) = x

]
=:

vδ

δ
fm(t, x),

and the optimal investment strategy by:

π̄m(t) =
1

1− δ
µ1 − r
(Σ1)2

∣∣∣
(Xm(t),m(t))

Then, the value function in the Markov-modulated model has the following form:

Φ(t, v, x, ei) =E[ΦMC(t, v, x)|MC(t) = ei]

=
vδ

δ
E
[

exp
{∫ T

t

g(X(s),MC(s))ds
}∣∣∣X(t) = x,MC(t) = ei

]
= :

vδ

δ
f(t, x, ei),

(4.34)

and the optimal portfolio strategy is

π̄(t) =
1

1− δ
µ1 − r
(Σ1)2

∣∣∣
(X(t),MC(t))

Note that in the case of ρ = 0 the optimal strategy consists only on the mean-variance
portfolio.

Proof
Verify that the optimal portfolio in the time-dependent model does not depend on
the whole path of function m and apply Theorem 3.5.

2
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After deriving the general solution we are now interested in simplifying the proba-
bilistic representation from Corollary 4.12. This can be done by assuming separabil-
ity of the value function in the state of the Markov chain and the stochastic factor.
As in this case one can even allow for correlation, we directly consider the general
model with ρ 6= 0 in what follows. For the result without leverage, just set ρ = 0 in
the subsequent analysis.

4.2.2 Solution with correlation

In this section we consider the general Model (4.1), so function f is characterized
by System (4.12). We were not able to find its solutions in general, mainly because
of the nonlinear term. Unfortunately a transformation like the one in Section 4.1
does not work in the most general case, because here we have a system of coupled
PDEs. What is more, Theorem 3.5 cannot be applied in this case, as in general π̄m

depends on the whole path of m. The key to find a solution in this case is to assume
a separable exponential ansatz:

f(t, x, ei) = ξ(t, ei) exp
{
B(t)x

}
, (4.35)

for some functions ξ : [0, T ] × E → R, B : [0, T ] → R, which of course implies
certain restrictions on the model parameters: we assume that h̄(1), K(1), H(11) and
G(1) are constants. The solution in this case and a link to the verification results
from Theorem 4.2 and Theorem 3.5 are precisely stated in the following theorem.

Theorem 4.13 (Solution with correlation)
Consider Model (4.1) and let h̄(1), K(1), H(11) and G(1) be constants. Set ϑ = 1−δ

1−δ+δρ2 .
Assume that the following equation:

Bt +
1

2

δ

1− δ
h̄(1) +B

[ δ

1− δ
G(1) −K(1)

]
+

1

2
B2H

(11)

ϑ
= 0, B(T ) = 0 (4.36)

possesses a differentiable solution B. Then the solution of the corresponding HJB
equation is given by:

Φ(t, v, x, ei) =
vδ

δ
E
[

exp
{∫ T

t

w(s,MC(s))ds
}∣∣∣MC(t) = ei

]
exp{B(t)x}

=:
vδ

δ
ξ(t, ei) exp{B(t)x},∀(t, v, x, ei) ∈ [0, T ]× [0,∞)×DX × E ,

(4.37)

where function w is given by:

w(t, ei) = δr(ei) +
1

2

δ

1− δ
h(0)(ei) +B

[ δ

1− δ
ḡ(0)(ei) + k̄(0)(ei)

]
+

1

2
B2H

(0)(ei)

ϑ
.
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The maximum point for the HJB equation is given by:

π̄ =
1

1− δ

{(µ1 − r)
(Σ1)2

+ ρ
ΣX

Σ1

B
}∣∣∣

(t,(X(t),MC(t))
.

Note that Φ ∈ C 1,2,2 for all ei ∈ E .
Denote:

a :=

√(
K(1) − δ

1− δ
G(1)

)2 − δ

1− δ
h̄(1)

H(11)

ϑ

c :=
K(1) − δ

1−δG
(1) − a

K(1) − δ
1−δG

(1) + a
,

and assume that:

H(11)

ϑ
> 0, K(1) − δ

1− δ
G(1) > 0

δ

1− δ
h̄(1) <

ϑ
(
K(1) − δ

1−δG
(1)
)2

H(11)

0 ≤ ϑ
a+K(1) − δ

1−δG
(1)

H(11)
.

Then function B is given by:

B(t) =

ϑ
−c(K(1)− δ

1−δG
(1)+a) exp{−a(T−t)}+K(1)− δ

1−δG
(1)−a

H̄(11)(1−c exp{−a(T−t)}) for 0 < ϑ
a+K(1)− δ

1−δG
(1)

H(11)

0 for 0 = ϑ
a+K(1)− δ

1−δG
(1)

H(11)

.

Further, consider an arbitrary but fixed path m of the Markov chain and consider the
time-dependent model associated with m. Then, the solution Φm to its HJB equation
is given by:

Φm(t, v, x) =
vδ

δ
exp

{∫ T

t

w
(
s,m(s)

)
ds
}

exp
{
B(t)x

}
, (4.38)

and

π̄m =
1

1− δ

{µ1 − r
(Σ1)2

+ ρ
ΣX

Σ1

B
}∣∣∣

(t,(Xm(t),m(t))
.

Assume that one of the following conditions holds:

i) {Φm(t, V m,π̄m(t), Xm(t))}t∈[0,T ] is a martingale,

ii) {Φ(t, V π̄(t), X(t),MC(t))}t∈[0,T ] is a martingale.
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Then, function Φ is the value function for the model with Markov switching and the
optimal portfolio is given by π̄.

Proof
As already mentioned we consider the ansatz f(t, x, ei) = ξ(t, ei) exp

{
B(t)x

}
and

substitute it in PDE (4.12). This leads to the following system of PDEs for function
ξ(t, ei):

ξ(t, ei)
[
δr(ei) +

1

2

δ

1− δ
h(0)(ei) +B

[ δ

1− δ
ḡ(0)(ei) + k̄(0)(ei)

]
+

1

2
B2H

(0)(ei)

ϑ

]
︸ ︷︷ ︸

=w(t,ei)

+ ξt(t, ei) = −
I∑
z=1

qi,zξ(t, ez), ξ(T, ei) = 1,∀i = 1, . . . , I,

(4.39)

where ϑ = 1−δ
1−δ+δρ2 , and the following ODE with constant parameters for B(t):

Bt +
1

2

δ

1− δ
h̄(1) +B

[ δ

1− δ
G(1) −K(1)

]
+

1

2
B2H

(11)

ϑ
= 0, B(T ) = 0. (4.40)

Note that Equation (4.40) can be solved by Corollary 2.44. Furthermore, Corollary
2.78 provides the following probabilistic representation for function ξ(t, ei):

ξ(t, ei) = E
[

exp
{∫ T

t

w(s,MC(s))ds
}∣∣∣MC(t) = ei

]
,∀ei ∈ E , (4.41)

as w(t, ei) and ∂
∂t
w(t, ei) are continuous in t. Observe that ξ is continuous and dif-

ferentiable w.r.t t.
For the proof of the HJB solution (4.38) in the corresponding time-dependent model
observe that B̃(t) := 1

ϑ
B(t) solves Equation (4.20) for the considered model specifi-

cation and apply Proposition 4.7. It is easily verified that the term in the integral
in Equation (4.22) corresponds to w(s,m(s)) with B = Bm. So, Φm solves the
time-dependent HJB equation. Furthermore, Assumption i) implies by Proposition
4.3 that Φm is the value function for the time-dependent model. Observe that for
function Φ it holds:

Φ(t, v, x, ei) = E[ΦMC(t, v, x)|MC(t) = ei].

Further, the optimal strategy in the time-dependent model is given by:

π̄m =
1

1− δ

{µ1 − r
(Σ1)2

+ ρ
ΣX

Σ1

B
}∣∣∣

(t,(Xm(t),m(t))
.

As it does not depend on the whole path of m, but only on its current level, we can
apply Theorem 3.5 and prove the statement.
Assumption ii) allows us to apply directly Theorem 4.2 and conclude that Φ is the
value function for the Markov-switching model and that the optimal portfolio is
given by π̄.

2
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Remark 4.14
Alternatively to the probabilistic representation for ξ the solution for System (4.39)
can be approximated by the so-called Magnus exponential series, for details see [78].
Applying a numerical solving scheme is also possible. Another possibility is presented
in the following lemma for the case of two possible states of the Markov chain, i.e.
I = 2.

Lemma 4.15
Let I = 2 and assume that the Riccati equation:

ct(t) +
[
− w(t, e1) + w(t, e2)− q1,1 + q2,2

]
c(t)− q1,2c

2(t) + q2,1 = 0, c(T ) = 1,

has a unique solution c(t). Then, the solution of System (4.39) is given by:

ξ(t, e1) = exp
{∫ T

t

w(s, e1) + q1,1 + q1,2c(s)ds
}

ξ(t, e2) = c(t)ξ(t, e1).

Proof
For I = 2 we have the following system of two coupled ODEs:

ξt(t, e1) + ξ(t, e1)w(t, e1) = −q1,1ξ(t, e1)− q1,2ξ(t, e2), ξ(T, e1) = 1 (4.42)

ξt(t, e2) + ξ(t, e2)w(t, e2) = −q2,1ξ(t, e1)− q2,2ξ(t, e2), ξ(T, e2) = 1. (4.43)

Denote c(t) := ξ(t,e2)
ξ(t,e1)

and substitute ξ(t, e2) = c(t)ξ(t, e1) in Equation (4.42) to
obtain:

ξt(t, e1) = −
[
w(t, e1) + q1,1 + q1,2c(t)

]
ξ(t, e1), ξ(T, e1) = 1.

It follows that:

ξ(t, e1) = exp
{∫ T

t

w(s, e1) + q1,1 + q1,2c(s)ds
}
.

Furthermore, compute:

ξt(t, e2) = ct(t)ξ(t, e1) + c(t)ξt(t, e1) =
{
ct(t)− c(t)

[
w(t, e1) + q1,1 + q1,2c(t)

]}
ξ(t, e1),

and substitute this result in Equation (4.43). Canceling of ξ(t, e1) on both sides
leads then to:

ct(t) +
[
− w(t, e1) + w(t, e2)− q1,1 + q2,2

]
c(t)− q1,2c

2(t) + q2,1 = 0, c(T ) = 1,

which is a Riccati equation with one time-dependent parameter and can be solved
numerically.

2
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Remark 4.16
By analogous computations one can ”decouple” System (4.39) also for I = 3. In
this case, solving the whole system can be reduced to solving just one nonlinear ODE
of second grade.

In the next remark we point out two further special cases, where ξ(t, e) can be
computed explicitly.

Remark 4.17
Recall that throughout this section it is assumed that h̄(1), K(1), H(11) and G(1) are
constants.

i) If additionally we assume that process X does not depend on MC, i.e. k̄(0)

and H(0) are constants, and that ρ = 0, then function ξ is given for all (t, e) ∈
[0, T ]× E by:

ξ(t, ei) =E
[

exp
{∫ T

t

w(s,MC(s))ds
}∣∣∣MC(t) = ei

]
= exp

{∫ T

t

B(s)k̄(0) +
1

2
B2(s)H(0)ds

}
E
[

exp
{∫ T

t

δr(MC(s)) +
1

2

δ

1− δ
h(0)(MC(s))︸ ︷︷ ︸

=:w̄(MC(s))

ds
}∣∣∣MC(t) = ei

]

= exp
{∫ T

t

B(s)k̄(0) +
1

2
B2(s)H(0)ds

}

·

〈
exp

{[
Q′ + diag

(
w̄(e1), . . . , w̄(eI)

)]
(T − t)

}
ei,


1
1
...
1


〉
,

where in the last equation we have used Lemma 2.68.

ii) If we allow for ρ 6= 0 and assume that only parameter r depends on the Markov
chain, we obtain:

ξ(t, ei) =E
[

exp
{∫ T

t

w(s,MC(s))ds
}∣∣∣MC(t) = ei

]
= exp

{∫ T

t

1

2

δ

1− δ
h(0) +B(s)

[ δ

1− δ
ḡ(0) + k̄(0)

]
+

1

2
B2(s)

H(0)

ϑ
ds
}

E
[

exp
{∫ T

t

δr(MC(s))ds
}∣∣∣MC(t) = ei

]
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= exp
{∫ T

t

1

2

δ

1− δ
h(0) +B(s)

[ δ

1− δ
ḡ(0) + k̄(0)

]
+

1

2
B2(s)

H(0)

ϑ
ds
}

·

〈
exp

{[
Q′ + diag

(
δr(e1), . . . , δr(eI)

)]
(T − t)

}
ei,


1
1
...
1


〉
.

4.3 Example: Markov-modulated Heston model

In this section we apply the derived results to the famous Heston model (see Ex-
ample 2.49), where the stochastic factor follows a mean-reverting CIR process and
is interpreted as the stochastic volatility of the asset price process. The original
model was introduced in [58]. Optimal portfolios under the original Heston model
are derived in [74] and [61].
In what follows we extend this framework to Markov-switching parameters. More
precisely, we consider the following model:

dP0(t) = P0(t)r
(
MC(t)

)
dt

dP1(t) = P1(t)
[
r
(
MC(t)

)
+ λ
(
MC(t)

)
X(t)dt+ ν

(
MC(t)

)√
X(t)dW P (t)

]
dX(t) = κ

(
MC(t)

)
(θ
(
MC(t)

)
−X(t))dt+ χ

(
MC(t)

)√
X(t)dWX(t)

d〈W P ,WX〉(t) = ρdt,

(4.44)

with r, λ, ν, κ, θ, χ : E → R being deterministic functions with κ(ei), θ(ei), χ(ei) > 0,
for all ei ∈ E . Furthermore, it is assumed that 2κ(ei)θ(ei) ≥ χ2(ei), for all ei ∈
E , in order to assure the positivity of process Xm. Observe that this framework
corresponds to the following parameter specifications in terms of the notation from
Model (4.1):

Σ1(x, ei) = ν(ei)
√
x

µ1(x, ei)− r(ei)
Σ1(x, ei)

=
λ(ei)

ν(ei)

√
x ⇒ h(0)(ei) = 0, h̄(1)(ei) =

λ2(ei)

ν2(ei)

µX(x, ei) = κ(ei)
(
θ(ei)− x

)
⇒ k̄(0)(ei) = κ(ei)θ(ei),

K(1)(ei) = κ(ei)

ΣX(x, ei) = χ(ei)
√
x ⇒ H(0)(ei) = 0,

H(11)(ei) = χ2(ei)

ρ
µ1(x, ei)− r(ei)

Σ1(x, ei)
ΣX(x, ei) = ρ

λ(ei)

ν(ei)
χ(ei)x ⇒ ḡ(0)(ei) = 0,

G(1)(ei) = ρ
λ(ei)

ν(ei)
χ(ei),

(4.45)
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for all (t, ei) ∈ [0, T ] × E . A similar model is used for pricing of volatility swaps in
[40].
As before, we first derive the optimal portfolio strategy and the value function in
the corresponding time-dependent model (Section 4.3.1). Afterwards, in Section
4.3.2, we present the results for the Markov-modulated model without correlation
between the Brownian motion driving the risky asset price process and the one for
the volatility. Section 4.3.3 deals with the case with correlation.

4.3.1 Time-dependent Heston model (TDH)

The corresponding time-dependent Heston model is stated as follows:

dP0(t) = P0(t)r
(
m(t)

)
dt,

dP1(t) = P1(t)
[
r
(
m(t)

)
+ λ
(
m(t)

)
Xm(t)dt+ ν

(
m(t)

)√
Xm(t)dW P (t)

]
,

dXm(t) = κ
(
m(t)

)
(θ
(
m(t)

)
−Xm(t))dt+ χ

(
m(t)

)√
Xm(t)dWX(t),

d〈W P ,WX〉(t) = ρ dt,

(4.46)

where function m is defined as in Equation (3.13), and κ(ei), θ(ei), χ(ei) > 0 are as
in (4.44). A similar model is presented and motivated in the context of calibration
and derivatives pricing in [36] and [82].
Recall from Proposition 4.7 that in order to find a solution for the value function
we either have to solve Equation (4.20) for Bm or calculate explicitly the following
expectation:

hm(t, x) = E
[

exp
{∫ T

t

1

ϑ
g(s, X̃m(s),m(s))ds

}∣∣∣X̃m(t) = x
]
. (4.47)

From Equation (4.19) we know that the drift µ̃X of the modified process X̃m is given
by:

µ̃X(X̃m(t),m(t)) = κ(m(t))
(
θ(m(t))− X̃m(t)

)
+

δ

1− δ
ρ
χ(m(t))λ(m(t))

ν(m(t))
X̃m(t)

=: κ̃(m(t))
(
θ̃(m(t))− X̃m(t)

)
.

So, X̃m is also a CIR process with piece-wise constant coefficients. Thus, the ex-
pectation above can be calculated in an explicit form by applying step-wise Lemma
2.42. We will do so in the next proposition to derive the solution to our optimization
problem.

Proposition 4.18 (Solution and verification in TDH)
Consider Model (4.46) and assume that κ̃(ei) > 0, for all ei ∈ E . Let ei ∈ E be
arbitrary but fixed. For any constants α and β, such that:

β <
κ̃2(ei)

2χ2(ei)

α <
κ̃(ei) + ã(ei)

χ2(ei)
,
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with:

ã(ei) :=
√
κ̃(ei)2 − 2βχ(ei)2,

define the following two functions:

Ãα,β,ei(τ) :=
κ̃(ei)θ̃(ei)(κ̃(ei)− ã(ei))

χ(ei)2
τ − 2κ̃(ei)θ̃(ei)

χ(ei)2
ln
{1− c̃(ei) exp(−ã(ei)τ)

1− c̃(ei)

}
B̃α,β,ei(τ) :=

−c̃(ei)(κ̃(ei) + ã(ei)) exp(−ã(ei)τ) + κ̃(ei)− ã(ei)

χ(ei)2
(
1− c̃(ei) exp(−ã(ei)τ)

) ,

where

c̃(ei) :=
−αχ(ei)

2 + κ̃(ei)− ã(ei)

−αχ(ei)2 + κ̃(ei) + ã(ei)
.

Assume the following conditions on the model parameters in (4.46):

1

2ϑ

δ

1− δ

(
λ(ei)

)2(
ν(ei)

)2 <
κ̃2(ei)

2χ2(ei)
,∀ei ∈ E (4.48)

max
ei∈E

{ κ̃(ei)− ã(ei)

χ2(ei)

}
≤ min

ei∈E

{ κ̃(ei) + ã(ei)

χ2(ei)

}
. (4.49)

Then the following expressions are well-defined:

Ak(τ) := Ãαk,βk,mk(τ), Bk(τ) := B̃αk,βk,mk(τ),∀k = 0, . . . , K,

where

βk :=
1

2ϑ

δ

1− δ

(
λ(m(tk))

)2(
ν(m(tk))

)2 ,∀k = 0, . . . , K

αk := Bk+1(τk+1), for τk := tk+1 − tk, ∀k = 0, . . . , K − 1

αK := 0.

The solution of the corresponding HJB system is given for all (t, v, x) ∈ [0, T ) ×
R≥0 ×DX by:

Φm(t, v, x) =
vδ

δ
E
[

exp
{∫ T

t

1

ϑ
g(s, X̃m(s),m(s))ds

}∣∣∣X̃(t) = x
]ϑ

=
vδ

δ
ξm(t) exp

{
Bm(t)x

}
,

where:

ξm(t) := exp
{∫ T

t

δr(m(s))ds+ ϑ

K∑
k=0

{
Ak(tk+1 − t) +

K∑
z=k+1

Az(τz)
}
1t∈[tk,tk+1)

}
Bm(t) := ϑ

K∑
k=0

{
Bk(tk+1 − t)

}
1t∈[tk,tk+1).
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Further, Φm(t, v, x) is the value function of the optimization problem and the optimal
portfolio strategy is given for all t ∈ [0, T ] by:

π̄m(t) =
1

1− δ

{ λ(m(t))(
ν(m(t))

)2 + ρ
χ(m(t))

ν(m(t))
Bm(t)

}
.

The proof can be found in Appendix B.

Remark 4.19
Observe that by Lemma 2.43, Bm > 0 for δ > 0 and Bm < 0 for δ < 0. We will
analyze this in detail in Section 4.3.4.

Remark 4.20
An alternative verification theorem for the Heston model with constant coefficients
is presented in [74]. It relies on the specific form of the solution in this example.
However, it is very technical and requires some more restrictions on the model
parameters in the case with time-dependent parameters.

4.3.2 Markov-modulated Heston model with no correlation
(MMH0)

We continue with the Markov-modulated Heston model with no correlation. Con-
sider Model (4.44) and set ρ = 0. Based on the results for the time-dependent model,
the solution of the HJB equation in the Markov-switching model can be derived as
shown in the following proposition.

Proposition 4.21 (Solution and verification in MMH0)
Consider Model (4.44) with ρ = 0. Denote analogously as before for all ei ∈ E :

a(ei) :=
√
κ(ei)2 + 2βχ(ei)2

c(ei) :=
αχ(ei)

2 + κ(ei)− a(ei)

αχ(ei)2 + κ(ei) + a(ei)

Aα,β,ei(τ) := −κ(ei)θ(ei)(κ(ei)− a(ei))

χ(ei)2
τ +

2κ(ei)θ(ei)

χ(ei)2
ln
{1− c(ei) exp(−a(ei)τ)

1− c(ei)

}
Bα,β,ei(τ) := −−c(ei)(κ(ei) + a(ei)) exp(−a(ei)τ) + κ(ei)− a(ei)

χ(ei)2
(
1− c(ei) exp(−a(ei)τ)

) ,

for any parameters α and β, satisfying:

β <
κ2(ei)

2χ2(ei)

α <
κ(ei) + a(ei)

χ2(ei)
.
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Assume the following:

1

2ϑ

δ

1− δ

(
λ(ei)

)2(
ν(ei)

)2 <
κ2(ei)

2χ2(ei)
,∀ei ∈ E (4.50)

max
ei∈E

{κ(ei)− a(ei)

χ2(ei)

}
≤ min

ei∈E

{κ(ei) + a(ei)

χ2(ei)

}
, (4.51)

and define recursively backwards the following expressions:

Ak(τ) := Aαk,βk,mk(τ), Bk(τ) := Bαk,βk,mk(τ),∀k = 0, . . . , K,

where

βk :=
1

2ϑ

δ

1− δ

(
λ(m(tk))

)2(
ν(m(tk))

)2 ,∀k = 0, . . . , K

αk := Bk+1(τk+1), for τk := tk+1 − tk, ∀k = 0, . . . , K − 1

αK := 0.

Then the value function Φ is given by the following equation:

Φ(t, v, x, ei) =
vδ

δ
E
[
fMC(t, x)

∣∣MC(t) = ei
]

=
vδ

δ
E
[
ξMC(t) exp

{
BMC(t)x

}∣∣MC(t) = ei
]
, (4.52)

where for any m ∈M, functions ξm and Bm are given by:

ξm(t) = exp
{ K∑
k=0

{∫ T

t

δr(m(s))ds+ Ak(tk+1 − t) +
K∑

z=k+1

Az(τz)
}
1t∈[tk,tk+1)

}
Bm(t) =

K∑
k=0

{
Bk(tk+1 − t)

}
1t∈[tk,tk+1).

The optimal portfolio is:

π̄(t) =
1

1− δ
λ(MC(t))(
ν(MC(t))

)2 .

Proof
An application of Proposition 4.18 for ρ = 0, i.e. ϑ = 1, shows that the value
function in the corresponding time-dependent model is given by:

Φm(t, v, x) =
vδ

δ
E
[

exp
{∫ T

t

g(s, X̃m(s),m(s))ds
}∣∣∣X̃m(t) = x

]
=
vδ

δ
ξm(t) exp

{
Bm(t)x

}
,
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and for the optimal strategy it holds that:

π̄m(t) =
1

1− δ
λ(m(t))(
ν(m(t))

)2 .

So, Corollary 4.12 can be applied and the statement follows directly.
2

Observe that function Φ can be easily computed by a partial Monte Carlo simulation,
where one has to simulate only the path of the Markov chain and not all other
processes.
If we assume separability of the value function in ei and x, the solution can be even
further simplified. As in this case an explicit solution can be derived also in the
Heston model with leverage, we directly consider the case with general correlation
ρ in the next section.

4.3.3 Markov-modulated Heston model with correlation
(MMHρ)

For a tractable framework with leverage we specify our model in such a way that a
separable explicit solution can be found. More precisely, we assume the following:

dP0(t) = P0(t)r
(
MC(t)

)
dt

dP1(t) = P1(t)
[
r
(
MC(t)

)
+ dν

(
MC(t)

)︸ ︷︷ ︸
=λ(MC(t))

X(t)dt+ ν
(
MC(t)

)√
X(t)dW P (t)

]
dX(t) = κ

{
θ
(
MC(t)

)
−X(t)

}
dt+ χ

√
X(t)dWX(t)

d〈W P ,WX〉(t) = ρ dt.

(4.53)

This corresponds to the following specifications in the notation from (4.1):(µ1(x, ei)− r(ei)
Σ1(x, ei)

)2

= d2x ⇒ h(0)(ei) = 0, h̄(1) = d2

µX(x, ei) = κθ(ei)− κx ⇒ k̄(0)(ei) = κθ(ei), K(1) = κ(
ΣX(x, ei)

)2
= χ2x ⇒ H(0)(ei) = 0, H(11) = χ2

ρ
µ1(x, ei)− r(ei)

Σ1(x, ei)
ΣX(x, ei) = ρdχx ⇒ ḡ(0)(ei) = 0, G(1)(ei) = ρdχ

⇒ b =
χ

|d|
,

(4.54)

where b is the parameter defined on (4.7). Proposition 4.9 and Theorem 4.13 lead
to the verification result in this case:
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Proposition 4.22 (Solution and verification in MMHρ)
Assume that:

0 < κ− δ

1− δ
ρχ|d| (4.55)

δ

1− δ
d2 <

ϑ(κ− δ
1−δρχ|d|)

2

χ2
. (4.56)

For a :=
√

(κ− δ
1−δρχ|d|)2 − δ

1−δ
χ2

ϑ
d2, define

B(t) =
ϑ
(
− c(κ− δ

1−δρχ|d|+ a) exp{−a(T − t)}+ κ− δ
1−δρχ|d| − a

)
χ2(1− c exp{−a(T − t)})

, (4.57)

for all t ∈ [0, T ], with c :=
κ− δ

1−δ ρχ|d|−a
κ− δ

1−δ ρχ|d|+a
. Furthermore, set for all (t, ei) ∈ [0, T ]× E :

ξ(t, ei) = E
[

exp
{∫ T

t

w(s,MC(s))
}

ds
∣∣∣MC(t) = ei

]
, (4.58)

where w(t, ei) = δr(ei) + B(t)κθ(ei). The value function in Model (4.53) is given
for all (t, v, x, ei) ∈ [0, T ]× [0,∞)×DX × E by:

Φ(t, v, x, ei) =
vδ

δ
ξ(t, ei) exp{B(t)x}. (4.59)

The optimal portfolio is:

π̄(t) =
1

1− δ

[ d

ν
(
MC(t)

) + ρ
χ

ν
(
MC(t)

)B(t)
]
. (4.60)

As mentioned earlier the first part of the optimal portfolio is called the mean-variance
term:

π̄MV (t) :=
1

1− δ
d

ν(MC(t))
, (4.61)

and the second one is the hedging term:

π̄H(t) :=
1

1− δ
ρ

χ

ν(MC(t))
B(t). (4.62)

Proof
We would like to apply Theorem 4.13. To this aim, observe that Equation (4.36)
takes the following form in this case:

Bt(t) +
1

2

χ2

ϑ
B2(t)−

[
κ− δ

1− δ
ρχ|d|

]
B(t) +

1

2

δ

1− δ
d2 = 0, B(T ) = 0.
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Conditions (4.55) and (4.56) allow us to conclude by Theorem 4.13 that the solution
of the ODE from above is given by function B as defined in Equation (4.57). Fur-
thermore, from Theorem 4.13 it follows that the HJB solution in the time-dependent
model is given by:

Φm(t, v, x) =
vδ

δ
exp

{∫ T

t

w(s,m(s))ds
}

exp{B(t)x}

=
vδ

δ
exp

{∫ T

t

δr(m(s)) +B(t)κθ(m(s))ds
}

exp{B(t)x}.

Finally, observe that by Proposition 4.9, Φm is indeed the corresponding value func-
tion. The statement follows by applying the verification result from Theorem 4.13.

2

Now let us have a closer look at the variance process of the log returns of the risky
asset: V ar(t) := ν2(MC(t))X(t). We start by deriving explicitly its dynamics.

Corollary 4.23 (Variance of the log returns)
The instantaneous variance of the log asset returns is characterized by the following
SDE:

dV ar(t) =κ̂
(
MC(t)

)(
θ̂
(
MC(t)

)
− V ar(t)

)
dt+ χ̂

(
MC(t)

)√
V ar(t)dWX(t)

+ V ar(t)
I∑
i=1

ν2(ei)

ν2
(
MC(t)

)dMi(t),

where:

κ̂
(
MC(t)

)
= κ−

I∑
i=1

ν2(ei)

ν2
(
MC(t)

)qMC(t),i

θ̂
(
MC(t)

)
=
ν2
(
MC(t)

)
κθ
(
MC(t)

)
κ̂

χ̂
(
MC(t)

)
= |ν

(
MC(t)

)
|χ.

With this notation the price process for the risky asset is given by the following SDE:

dP1(t) = P1(t)
[
r
(
MC(t)

)
+

d

ν
(
MC(t)

)V ar(t)]dt+
√
V ar(t)dW P (t). (4.63)

Proof
Follows directly as an application of Itô’s formula for Markov-modulated Itô diffu-
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sions, which is stated in Theorem 2.72:

dV ar(t) =ν2
(
MC(t)

)
κ
{
θ
(
MC(t)

)
−X(t)

}
dt+ ν2

(
MC(t)

)
χ
√
X(t)dWX(t)

+
I∑
i=1

ν2(ei)X(t)qMC(t),idt+
I∑
i=1

ν2(ei)X(t)dMi(t)

=ν2
(
MC(t)

)
κθ
(
MC(t)

)
− V ar(t)

{
κ−

I∑
i=1

ν2(ei)

ν2
(
MC(t)

)qMC(t),i

}
︸ ︷︷ ︸

=:κ̂(MC(t))

dt

+ |ν
(
MC(t)

)
|χ
√
V ar(t)dWX(t) + V ar(t)

I∑
i=1

ν2(ei)

ν2
(
MC(t)

)dMi(t).

2

Observe that the variance V ar follows a mean-reverting process with jumps accord-
ing to the Markov chain, where all parameters depend on the Markov chain. This
rich stochastic structure makes the considered model very flexible and suitable for
describing a wide range of markets. Furthermore, from SDE (4.63) the structure of
the mean-variance portfolio becomes intuitively clear: d

ν(MC(t)) corresponds to the
excess return for a unit of variance. A detailed analysis of the single components
driving the optimal portfolio is given in the next section.

4.3.4 Numerical implementation and discussion

In this section we illustrate and interpret the results derived above by some numer-
ical examples. First of all we specify the basic parameter set we are working with
and show the numerical results for this parameter specification in order to indicate
the impact of the Markov switching. We continue with the hedging term and the
impact of the stochastic volatility. Thereafter, we study the influence of the risk
aversion parameter δ on the behavior of the investor. Then, we extend the analysis
on the impact of d and ν, which are the driving parameters of π̄MV as one can see
in Equation (4.61). Subsequently we discuss the sensitivity of the results to changes
of the remaining parameters. Finally we present an alternative parameter specifica-
tion which can capture an even more complex market behavior, and interpret the
obtained results.
In what follows we consider the model presented in Section 4.3.3 and assume that
the Markov chain can switch between two states. The first one, e1, describes a
calm market with moderate volatility levels. The second one, e2 corresponds to a
turbulent state with higher volatility and lower ratio µ1−r

V ar(t)
. The investment time

horizon is set to T = 5 years throughout the whole section. Based on the empirical
results from [1]1 we fix the following basic parameter set: κ = 4, θ(e1) := θ1 = 0.02,

1In this paper the parameters of a Heston model are estimated using daily observations of the
S&P500 stock index and VIX volatility index over the period from 1990 to 2003. Using their
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θ(e2) := θ2 = 0.04, χ = 0.35, d = 1.7, ν(e1) := ν1 = 1, ν(e2) := ν2 = 1.3,
r(e1) := r1 = 0.03, r(e2) := r2 = 0.01, ρ = −0.8. So, as mentioned in Remark 2.45

the average half-life of process X is ln(2)
κ

= ln(2)
4
≈ 2 months. Further, following

[11]2, we set the elements of the intensity matrix to q1,1 = −1.0909, q2,2 = −3.4413.
This means that on average the Markov chain remains one year in the calm state
and around 4 months in the turbulent state, as the waiting time the Markov chain
spends in state ei before the next jump is exponentially distributed with parameter
−qi,i and expectation − 1

qi,i
(see Proposition 2.63). We will compare the results for

two investors with different risk preferences: the first one has a positive risk aversion
parameter δ = 0.3 and for the second one it is negative δ = −1. We denote these
parameter specifications by Set 1 and Set 2, respectively. This differentiation is
necessary because δ influences strongly the optimal behavior of the investor, as we
will see in what follows.
Table 1 contains the optimal expected utility for Set 1 and Set 2 calculated as in
Proposition 4.22, where function ξ is computed using a Monte Carlo simulation
of the Markov chain with 10, 000 simulations. Additionally, it is compared with
the optimal expected utility computed through a full Monte Carlo simulation of
the three-dimensional process (P1, X,MC) with 1 Mio. simulations and 250 steps
per year, in other words, trading occurs once a day. The values from the second
and fourth columns are quite close to each other. This indicates that trading only
once a day, which is sensible in reality, does not lead to a significant loss of utility.
Therefore, the derived optimal strategy is applicable in practice. Moreover, many
time-consuming Monte Carlo simulations are required to obtain converging results
for the full Monte Carlo approach, which confirms the importance of the derived
theoretical results in Proposition 4.22. Now we compare the optimal trading strate-

Parameter Formula Comp. time Monte Carlo Comp. time
Set 1 7.4261 40 sec 7.4260 approx. 2.2 h
Set 2 -0.0802 40 sec -0.0802 approx. 2.2 h

Table 4.1: Comparison of the optimal expected utility computed as in Proposition 4.22 (second
column) and by a full Monte Carlo simulation(fourth column), where V (0) = 10, X(0) = 0.02,
MC(0) = e1, T = 5. The third and fifth columns contain the corresponding computational time.

gies in the two discussed parameter settings, which are presented in Figure 4.1. The
main part of the optimal strategy is given by the mean-variance portfolio, which is
observed to be positive, as expected, given that the expected asset return exceeds
the riskless interest rate for both states of the Markov chain (at the end of this
section we consider also model specifications where the excess return is negative
for one of the states). One can also recognize that higher δ leads to a higher long
position in the risky asset and for δ = 0.3 the exposure even exceeds the investor’s
wealth. A lower δ results in a more moderate investment in the risky asset. This

results we selected our Markov-modulated parameters in such a manner, that the first state of
MC describes a calm market and the second state describes a volatile one.

2In this paper a Markov-modulated Black-Scholes model is estimated for weekly S&P500 prices
from 1987 to 2009. We use their result for the intensity matrix of the Markov chain.
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observation is in accordance with the interpretation of δ as a risk aversion param-
eter. Furthermore, the investment in the risky asset is lower in the turbulent state
of the Markov chain because it is associated with lower excess return and higher
volatility and, thus, higher risk. Because of this difference in the optimal behavior
for different states of the Markov chain, it is important for the investor to recognize
the true state and to react to the parameter changes.
Let us continue with the hedging term. It follows from Statements i) and ii)
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Figure 4.1: Mean-variance portfolio (4.61) (upper row) and hedging term (4.62) (lower row) for
the two considered parameter sets. The blue lines represent the optimal investment in the calm
state and the green lines the optimal investment in the turbulent state.

in Lemma 2.43 that sign(B) = sign(δ), so that sign(π̄H) = sign(B)sign(ρ) =
sign(δ)sign(ρ). As we are dealing with a negative correlation ρ < 0 the correction
term is negative for δ > 0 and positive for δ < 0. Although this might seem sur-
prising at first sight it gets more clear once we clarify the impact of the stochastic
factor X and the correlation ρ. By inserting the mean-variance portfolio π̄MV in
the SDE for the wealth process (4.6) we observe that the market price of risk, which
is proportional to

√
X, drives the drift and volatility terms of the wealth process.

Therefore, the relevant risk for the investor coming from the randomness of X is
the change in the market price of risk. Analogously to the derivation of the value
function, it can be shown that the expected utility of the terminal wealth of the
mean-variance portfolio is increasing in X. So, the very risk averse investor (δ < 0)
would like to hedge his mean-variance portfolio against a falling market price of risk.



82 4.3 Example: Markov-modulated Heston model

This is achieved by an additional long position in the risky asset (π̄H > 0) as the
negative correlation relates lower values for X, i.e. lower levels of the market price
of risk, to a higher asset price, i.e. higher wealth for a positive investment position.
On the contrary, the investor with positive δ speculates on an increasing market
price of risk and his strategy aims at high wealth in this case, realized by a short
position in the risky asset (π̄H < 0). The reason for the differentiation between
positive and negative values for δ is the form of the utility function: if δ < 0 low
wealth levels are heavily penalized, whereas for δ > 0 the emphasis is on the reward
for high wealth values. Moreover, observe that the higher the correlation between
WX and W P , the higher the absolute value of the hedging term as the stochastic
factor can be better hedged by the risky asset. Similar interpretations can be found
in [67]3 and [24]4.
Now, we deepen our observations of the influence of the risk aversion parameter δ
on the optimal portfolio. Figure 4.2 illustrates the density of the terminal wealth of
an investor following the derived optimal strategy for different values of δ.
Higher values for δ are clearly recognized as leading to higher probabilities for both
very low (close to zero) and very high (even above 120) wealth levels. In contrast,
for small δ the probabilities for both high losses and high profits are much lower.
This fact is also reflected in the shift of the 5%-quantile to the right and of the
95%-quantile to the left for smaller values for δ. This observation is in accordance
with [100] who has proved that extremely risk averse investors replicate with their
optimal investment a bond with maturity T .
Figure 4.3 confirms that a smaller δ results in a more conservative mean-variance
portfolio. The absolute value of the hedging term also decreases for smaller δ pri-
marily due to the influence of the factor 1

1−δ that drives the mean-variance term
as well. What is more, Figure 4.3 illustrates that depending on the risk aversion
of the investor, the hedging term can play a significant role in the optimal asset
allocation. A similar observation has been made also in [24]. Furthermore, it is
clear from Figure 4.3 that in the turbulent state the investor holds less of the risky
asset throughout time and for all values for δ.
We proceed with the remaining components of the mean-variance portfolio: d and ν.
The influence of d on π̄MV is naturally positive if ν is positive because a high d indi-
cates a high market price of risk. The plots in Figure 4.4 illustrate the influence of
d on the distribution of the terminal wealth of an investor with δ = 0.3. The higher
d, the higher the 95% quantile on the one side and the lower the 5% quantile on
the other side. Therefore, the probabilities for both significant gains and significant
losses increase. The risk on the downside results from the fact that the investor has
a greater exposure for larger values of d, therefore, if the stock price declines, she
experiences larger losses. However, the effect on the positive side is stronger because
an increasing d leads to high excess returns for the stock and, thus, to the possibility
for much greater gains. As the plots in Figure 4.5 illustrate, the same phenomenon

3In this paper the authors consider portfolio optimization in a model where a correlated mean-
reverting stochastic factor influences the market price of risk.

4This paper derives optimal consumption and investment rules in discrete time on an infinite time
horizon in a market where the excess return of the traded asset is modeled by an AR(1) process.
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Figure 4.2: Density of the terminal wealth of an investor following the derived optimal strategy
for different values of δ, where the remaining parameters are adopted from Set 1. The densities
are obtained via Monte Carlo simulations of Model (4.53). For reasons of better comparability all
values higher than 150 are summarized in the last bar in the plots.

is also observed for δ = −1; however, the influence of d on the wealth distribution
is not as strong because we are dealing with a more risk averse investor who prefers
less exposure to the risky asset. Furthermore, the wealth distribution in this case is
more symmetric than for δ = 0.3, which reflects once again the risk aversion of the
investor. The influence of ν on the investment strategy can be easily derived from
the analytical formula for the optimal portfolio. Higher values of ν lead to lower
investments in the risky assets because it reduces the excess return for a unit of
variance. As ν1 < ν2, exposure in the risky asset is lower in the turbulent state than
in the calm state. This observation holds for the mean-variance portfolio and for
the hedging term. The larger the difference between ν1 and ν2, the more important
for the investor is to recognize the Markov-switching character of the market and to
adjust her strategy. One can understand the influence of ν on the optimal portfolio
even better by recalling the SDE of the wealth process resulting from the optimal
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Figure 4.3: Optimal mean-variance portfolio (see Equation (4.61)) and hedging term (see Equation
(4.62)) as well as the proportion of the hedging term to the whole portfolio over time for different
values of δ.

strategy given in Equation (4.60):

dV π̄(t) =V π̄(t)
{
r
(
MC(t)

)
+

d

1− δ
(
d+ ρχD(t)

)
X(t)dt

+
1

1− δ
(
d+ ρχD(t)

)√
X(t)dW P (t)

}
.

Note that the wealth process does not depend on ν. So, the optimal portfolio is
chosen in such a way, that the investor is protected against changes in ν.
We continue with the remaining model parameters. Lower values for χ and higher
values for κ may be summarized as leading to a lower absolute value of the hedging
term because a lower volatility coefficient reduces the risk from the stochastic factor
X and a faster mean-reversion makes hedging more difficult. The corresponding
plots can be found in Appendix B.1. Finally, we remark that the mean-reversion
level θ and the current level of X do not influence directly the optimal policy. The
reason is that the stochastic factor X influences proportionally the instantaneous
variance and the excess return of the risky asset price.
As announced in the beginning of the section, we now present an additional parame-
ter setting. It describes a market, where the asset return in the turbulent state is on
average lower than the riskless interest rate, so we set ν1 = −1, ν2 = 1.3, d = −1.7.
State e1 is again interpreted as a calm market and the second state e2 describes
a crisis. Note that this parameter specification makes it possible to capture three
different patterns in the price process: If process X is at a low level and the Markov
chain is in the first state we observe a calm market with positive expected return.
If process X reaches high levels because of big positive increments of WX but the
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Figure 4.4: Density of the terminal wealth of an investor following the derived optimal strategy
for different values of d, where the remaining parameters are adopted from Set 1. The densities
are obtained via Monte Carlo simulations of Model (4.53). For reasons of better comparability all
values higher than 250 are summarized in the last bar in the plots.

Markov chain remains in the first state, then the ratio d
ν

would remain the same,
but the negative coefficient ν1 together with the negative correlation ρ would lead
to positive increments in the diffusion term of the price process. So, in this case
we are dealing with a continuously rising market. The second state of the Markov
chain can be interpreted as a crisis situation as the volatility takes higher values and
the expected return is lower than the riskless interest rate. We call this parameter
setting Set 3 if δ = 0.3 and Set 4 if δ = −1. Table 4.2 summarizes these parameter
specifications in comparison to Sets 1 and 2. The value function for the 4 parameter

Set 1 Set 2 Set 3 Set 4
Parameter κ = 4, θ1 = 0.02, θ2 = 0.04, χ = 0.35, r1 = 0.03, r2 = 0.01, ρ = −0.8
ν1 1 1 -1 -1
ν2 1.3 1.3 1.3 1.3
d 1.7 1.7 -1.7 -1.7
δ 0.3 -1 0.3 -1

Table 4.2: Summary of the parameter specifications for the four considered sets.

sets is presented in Table 4.3. Note that changing the signs of ν1 and d does not
influence heavily the optimal expected utility. In contrast, as we can see in Figure
4.6, the optimal portfolio strategies are very different. They are adjusted to the
considered market in such a way that the investor takes the most advantage out of
it and thus, her expected utility does not change a lot. For Sets 3 and 4 it is optimal
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Figure 4.5: Density of the terminal wealth of an investor following the derived optimal strategy
for different values of d, where the remaining parameters are adopted from Set 2. The densities
are obtained via Monte Carlo simulations of Model (4.53). For reasons of better comparability all
values higher than 60 are summarized in the last bar in the plots.

Parameter Formula Comp. time Monte Carlo Comp. time
Set 1 7.4261 40 sec 7.4260 approx. 2.2 h
Set 2 -0.0802 40 sec -0.0802 approx. 2.2 h
Set 3 7.4810 40 sec 7.4780 approx. 2.2 h
Set 4 -0.0810 40 sec -0.0810 approx. 2.2 h

Table 4.3: Comparison of the optimal expected utility computed as in Proposition 4.22 (second
column) and by a full Monte Carlo simulation (fourth column), where V (0) = 10, X(0) = 0.02,
MC(0) = e1, T = 5. The third and fifth columns contain the corresponding computational time.

to short sell the risky asset in the turbulent state, as e2 is clearly interpreted as a
crash. So, recognizing the Markov-switching character of the market protects the
investor in the case of a crisis.
For Sets 3 and 4 also the sign of the hedging term in the first state changes. The
reason is the negative sign of ν(e1), as in this case an increase of X due to a positive
increment dWX is related to an increase in νdW P as well. So, the speculation of the
riskier investor (Set 3) on rising X is realized in state e1 by a positive investment in
the stock, whereas the negative hedging term in Set 4 acts as a protection against
negative increments of WX which might lead to falling stock prices, as ν(e1) < 0.
Note that in spite of the positive correlation between dWX and νdW P , the empiri-
cally observed tendency that falling stock prices and high volatility occur together
is realized by the Markov switching in θ and the excess return of the stock.
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Figure 4.6: Mean-variance portfolio (4.61) (first row) and hedging term (4.62) (second row) for the
four considered parameter sets. The blue lines represent the optimal investment in the calm state
and the green lines - in the turbulent state.



Chapter 5

Multidim. affine
Markov-modulated model

In this chapter we consider the general multidimensional Model (3.1) and Problem
(3.12) with the power utility function UP defined as in (2.25). We extend the litera-
ture on utility maximization in multidimensional models listed in the introduction in
two directions: first, we add Markov switching to the affine framework and second,
we provide easy to apply verification theorems. The example we present in Section
5.3.1 is a generalization of the results presented in [73] to Markov-modulated pa-
rameters and the example considered in Section 5.3.2 extends the model presented
in [45] to Markov switching and solves the utility maximization problem for this
model. Note that parts of this chapter have been published in [84].
As in the one-dimensional case, we propose an ansatz for the value function in
accordance with the utility function:

Φ(t, v, x, ei) =
vδ

δ
f(t, x, ei), (5.1)

for a function f : [0, T ] × DX × E → R. Together with (3.18) this leads to the
following simplified form for π̄:

π̄(t) =
1

1− δ

{
(ΣΣ′)−1(µ− r) + (Σ′)−1ρ′(ΣX)′

fx
f

}∣∣∣
(t,X(t),MC(t))

. (5.2)

Inserting (5.1) and (5.2) in the HJB Equation (3.16) yields the following PDE system
for f :

ft + fδ
{
r +

1

2

1

1− δ
(µ− r)′

(
ΣΣ′

)−1
(µ− r)

}
+ f ′x

{
µX +

δ

1− δ
ΣXρΣ−1(µ− r))

}
+

1

2
Tr
(
ΣX(ΣX)′fxx′

)
+

1

2

δ

1− δ
1

f
f ′xΣ

Xρρ′(ΣX)′fx

∣∣∣
(t,x,ei)

= −
I∑
z=1

qi,zf(t, x, ez)

f(T, x, ei) = 1,∀i ∈ {1, . . . , I}.
(5.3)
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So, we are interested in finding the solution to this system. Before we present the
explicit solutions for function f , we prove a verification theorem, which assures that
if we find a solution to the HJB equation, then it is indeed the value function for
the considered optimization problem and π̄ from (5.2) is the optimal portfolio. The
verification result is based on martingale theory.

Theorem 5.1 (Verification via a martingale condition)
Consider a real-valued function Φ(t, v, x, ei) : [0, T ] × [0,∞) × DX × E → R and
assume that:

i) For each ei ∈ E , Φ(·, ·, ·, ei) ∈ C 1,2,2
(
[0, T ] × [0,∞) × DX

)
, i.e. Φ is once

continuously differentiable in t and twice continuously differentiable in v and
x.

ii) Φ satisfies the following equation:

L(ei, π̄)Φ(t, v, x, ei) = −
I∑
z=1

qi,zΦ(t, v, x, ez)

Φ(T, v, x, ei) = UP (v),∀i ∈ {1, . . . , I},

where operator L is defined in (3.17) and π̄ is given by (3.18).

iii)
{

Φ
(
t, V π̄(t), X(t),MC(t)

)}
t∈[0,T ]

is a martingale.

Then:

E
[
UP
(
V π̄(T )

)∣∣V π̄(t) = v,X(t) = x,MC(t) = ei
]

= Φ(t, v, x, ei).

Further, if Φ = vδ

δ
f(t, x, ei) for a positive function f then π̄ is the optimal solution

and Φ is the corresponding value function.

The proof is given in Appendix C.

Similarly to Remark 4.5 one can show the following result:

Remark 5.2
If Φ is positive then just the following two conditions:

i) For each ei ∈ E , Φ(·, ·, ·, ei) ∈ C 1,2,2
(
[0, T ]× [0,∞)×DX

)
,

ii) Φ satisfies System (3.16), where the maximum on the left hand side is obtained
at π̄ as given by (3.18),

suffice to show that:

E
[
UP
(
V π(T )

)∣∣V π(t) = v,X(t) = x,MC(t) = ei
]
≤ Φ(t, v, x, ei),

for all (t, v, x, ei) ∈ [0, T ] × [0,∞) × DX × E and all portfolio strategies π. The
derivation can be found in Appendix C.
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5.1 Time-dependent model

Alternatively to applying Theorem 5.1, one can first derive the solution in the cor-
responding time-dependent model and then apply Theorem 3.5, analogously to the
one-dimensional case. Thus, in this section we briefly state the basic results for the
multidimensional time-dependent Model (3.14).

Consider Problem (3.15) with the power utility function UP (v) = vδ

δ
. As in the

model with Markov-switching, an ansatz of the form:

Φm(t, v, x) =
vδ

δ
fm(t, x), (5.4)

and the first-order condition for a maximum in the HJB equation (3.21) lead to the
following simplified PDE defined piece-wise for all k = 0, . . . , K by:

fmt + fmδ
{
r +

1

2

1

1− δ
(µ− r)′

(
ΣΣ′

)−1
(µ− r)

}
+ (fmx )′

{
µX +

δ

1− δ
ΣXρΣ−1(µ− r))

}
+

1

2
Tr
(
ΣX(ΣX)′fmxx′

)
+

1

2fm
(fmx )′

δ

1− δ
ΣXρρ′(ΣX)′fmx

∣∣∣
(t,x,m(t))

= 0,∀(t, v) ∈ [tk, tk+1)×DX

fm(T, x) = 1.

(5.5)

So, if we find a solution fm to this equation, then function Φm = vδ

δ
fm(t, x) solves

the HJB PDE (3.20). Before, we go deeper in the derivation of fm, we prove that if

such a solution exists, then Φm = vδ

δ
fm(t, x) is indeed the value function.

Proposition 5.3 (Verification result in the time-dependent model)
Consider a real-valued function Φm(t, v, x) : [0, T ] × [0,∞) × DX → R where

Φm(t, v, x, ei) = vδ

δ
fm(t, x) for a positive function fm. Assume that:

i) Φm ∈ C 1,2,2
(
[tk, tk+1)× [0,∞)×DX

)
for all k = 0, . . . , K,

ii) Φm ∈ C
(
[0, T ]× [0,∞)×DX

)
,

iii) Φm satisfies the following PDE, defined piece-wise for all k = 1, . . . , K:

L(m(t), π̄m)Φm(t, v, x) = 0,∀(t, v, x) ∈ [tk, tk+1)× [0,∞)×DX

Φm(T, v, x) =
vδ

δ
,

(5.6)

where L is given by (3.17) and π̄m is as in (3.21).

iv)
{

Φm
(
t, V m,π̄m(t), Xm(t)

)}
t∈[0,T ]

is a martingale.

Then π̄m is the optimal portfolio for Model (3.14) and Φm is the corresponding value
function.
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The proof is given in Appendix C.

Now we state explicitly the value function and the optimal trading strategy.

Proposition 5.4 (Solution in the time-dependent model)
Consider Model (3.14) and Problem (3.15) with U = UP . Assume that Bm is a
continuous solution to the following system, which holds piece-wise on [tk, tk+1) for
all k = 0, . . . , K:

Bm
t (t)′x+ δ

{
ε̄(1)
(
m(t)

)}′
x+

1

2

δ

1− δ
{
h̄(1)
(
m(t)

)}′
x−Bm(t)′K(1)

(
m(t)

)
x

+
δ

1− δ
Bm(t)′G(1)

(
m(t)

)
x+

1

2

δ

1− δ
Bm(t)′

[ J∑
j=1

{
L(1j)

(
m(t)

)
+H(1j)

(
m(t)

)}
xj

]
Bm(t) +

1

2
Bm(t)′

[ J∑
j=1

H(1j)
(
m(t)

)
xj

]
Bm(t) = 0

Bm(T ) = 0,

(5.7)

such that Bm ∈ C 1
(
[tk, tk+1)) for all k = 0, . . . , K. Furthermore, let function ξm be

given by:

ξm(t) = exp
{∫ T

t

w
(
s,m(s)

)
ds
}
, (5.8)

where

w(t, ei) =δε(0)(ei) +
1

2

δ

1− δ
h(0)(ei) +

(
Bm(t)

)′
k̄(0)(ei) +

δ

1− δ
(
Bm(t)

)′
ḡ(0)(ei)

+
1

2

δ

1− δ
(
Bm(t)

)′(
L(0)(ei) +H(0)(ei)

)
Bm(t) +

1

2

(
Bm(t)

)′
H(0)(ei)B

m(t).

Then, Φm given by:

Φm(t, v, x) =
vδ

δ
ξm(t) exp{(Bm(t))′x} (5.9)

satisfies the HJB Equation (3.20) with:

π̄m =
1

1− δ

{
(ΣΣ′)−1(µ− r) + (Σ′)−1ρ′(ΣX)′Bm

}∣∣∣
(t,X(t),m(t))

. (5.10)

Furthermore, if
{

Φm
(
t, V m,π̄m(t), Xm(t)

)}
t∈[0,T ]

is a martingale, then Φm is the value

function for the considered problem and π̄m is the optimal trading strategy.

Proof
First of all, we solve Equation (5.5). One can apply a similar transformation as in
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Proposition 4.7 to eliminate the nonlinear term. However, as we already have the
experience from the one-dimensional case, we directly state the following ansatz for
fm:

fm(t, x) = ξm(t) exp{(Bm(t))′x}, (5.11)

for some functions ξm : [0,∞)→ R and Bm(t) = (Bm
1 (t), . . . , Bm

J (t))′ : [0,∞)→ RJ .
Substitution of (5.11) in (5.5) leads to System (5.8) for Bm and the following system
of coupled ODEs for ξm:

ξmt (t) + ξm(t)
[
δε(0)

(
m(t)

)
+

1

2

δ

1− δ
h(0)
(
m(t)

)
+Bm(t)′k̄(0)

(
m(t)

)
+

δ

1− δ
Bm(t)′ḡ(0)

(
m(t)

)
+

1

2

δ

1− δ
Bm(t)′

{
L(0)

(
m(t)

)
+H(0)

(
m(t)

)}
Bm(t)

+
1

2
Bm(t)′H(0)

(
m(t)

)
Bm(t)

]
= 0, ξm(T ) = 1.

(5.12)

This equation leads directly to the solution for ξm given by (5.8). Note that the
involved integral over the finite interval [0, T ] is well-defined and finite, as function
Bm is continuous. So, Φm as given by (5.9) solves the HJB PDE in the considered
case.
For the verification result we check the conditions of Proposition 5.3. Conditions
i) and ii) are trivially fulfilled for function Φm. Condition iii) has just been shown
and Condition iv) holds as well. Thus, the verification result follows by a direct
application of Proposition 5.3.

2

Remark 5.5
The multidimensional Riccati ODE for Bm can be transformed by comparison of the
factors in front of the single xj’s to the following system of coupled ODEs:

∂

∂t
Bm
j (t) + δε̄

(1)
j

(
m(t)

)
+

1

2

δ

1− δ
h̄

(1)
j

(
m(t)

)
−

J∑
d=1

Bm
d (t)K

(1)
jd

(
m(t)

)
+

δ

1− δ

J∑
d=1

Bm
d (t)G

(1)
jd

(
m(t)

)
+

1

2

δ

1− δ
Bm(t)′

(
L(1j)

(
m(t)

)
+H(1j)

(
m(t)

))
Bm(t) +

1

2
Bm(t)′H(1j)

(
m(t)

)
Bm(t) = 0

Bj(T ) = 0, ∀j ∈ {1, . . . , J}.

(5.13)

In the special case where K(1) and G(1) are diagonal matrices, and L(1j) and H(1j)

have a non-zero element only at position (j, j), we have J not coupled Riccati ODEs
with piece-wise constant coefficients. So, a solution can be constructed starting at
the back and applying in each step Corollary 2.44. Note that in general Bm depends
on the whole path {m(t)}t∈[0,T ].
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As in the one-dimensional case, the martingale condition required in the previous
proposition can be shown in some special cases by applying Theorem 2.34. This is
more precisely stated in the following proposition:

Proposition 5.6 (Verification via Theorem 2.34)
Consider again Model (3.14) and Problem (3.15) with U = UP . Let Φm and π̄m be
defined as in Proposition 5.4. Define process G by:

G(t) := ln

(
Φm(t, V m,π̄m(t), Xm(t))

Φm(0, V m,π̄m(0), Xm(0))

)
.

Now consider the J + 1-dimensional process Z := (X̄m, G)′, where X̄m is a suitable
permutation of Xm. Then its semimartingale characteristics µZ ,ΓZ exhibit an affine
structure as in Theorem 2.34. Assume that µZ ,ΓZ fulfill requirements i)-iv) from
Theorem 2.34. Then

{
Φm
(
t, V m,π̄m(t), Xm(t)

)}
t∈[0,T ]

is a martingale. Furthermore,

Φm is the value function to the considered optimization problem and π̄m is the optimal
portfolio.

The proof is given in Appendix C.

Now we can continue with the solution for the Markov-modulated model.

5.2 Markov-modulated model

Consider again Model (3.1) and Problem (3.18) with the power utility function. In
what follows we derive an explicit solution for the value function and the optimal
investment strategy. We start with the case for which the Brownian motions driving
the stochastic factors and the ones for the asset prices are independent. Thereafter
we derive the solutions for the case with correlation.

5.2.1 Solution with no correlation

Consider Model (3.1) and set ρ = 0. Then the non-linear term in Equation (5.3)
disappears and under some technical requirements we can apply the Feynman-Kac
theorem for Markov-modulated processes (see Corollary 2.76), which yields the fol-
lowing probabilistic representation:

f(t, x, ei) =E
[

exp
{∫ T

t

δ
[
r +

1

2

1

1− δ
(µ− r)′

(
ΣΣ′

)−1
(µ− r)

]
ds
}

∣∣∣X(t) = x,MC(t) = ei

]
.

(5.14)

Alternatively to showing the conditions necessary for the application of the
Feynman-Kac theorem in the Markov-modulated model, one can use Theorem 3.5
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and reduce the problem to finding a solution in the corresponding time-dependent
model with deterministic piece-wise constant coefficients. As shown in the next
corollary, this approach is always possible in the case without leverage, as the opti-
mal solution in the corresponding time-dependent model depends only on the current
value of m and not on its entire path.

Corollary 5.7 (Solution with no correlation)
Assume that ρ = 0 in Model (3.1). Let Bm be a continuous solution to the following
system, which holds piece-wise on each interval [tk, tk+1) for k = 0, . . . , K:

Bm
t (t)′x+ δε̄(1)

(
m(t)

)′
x+

1

2

δ

1− δ
h̄(1)
(
m(t)

)′
x−Bm(t)′K(1)

(
m(t)

)
x

+
1

2
Bm(t)′

J∑
j=1

H(1j)
(
m(t)

)
xjB

m(t) = 0, Bm(T ) = 0,
(5.15)

with Bm ∈ C 1
(
[tk, tk+1)) for all k = 0, . . . , K. Define function ξm by:

ξm(t) = exp
{∫ T

t

w
(
s,m(s)

)
ds
}
,

where

w(t, ei) =δε(0)(ei) +
1

2

δ

1− δ
h(0)(ei) +Bm(t)′k̄(0)(ei) +

1

2
Bm(t)′H(0)(ei)B

m(t).

(5.16)

Furthermore, define function Φm by:

Φm(t, v, x) =
vδ

δ
exp

{∫ T

t

w
(
s,m(s)

)
ds
}

exp
{
Bm(t)′x

}
, (5.17)

and assume that
{

Φm
(
t, V m,π̄m(t), Xm(t)

)}
t∈[0,T ]

is a martingale. Then function Φ

given by:

Φ(t, v, x, ei) =
vδ

δ
E
[

exp
{∫ T

t

w
(
s,MC(s)

)
ds
}

exp
{
BMC(t)′x

}∣∣∣MC(t) = ei

]
(5.18)

is the value function for the considered problem and the optimal investment strategy
is:

π̄(t) =
1

1− δ
(ΣΣ′

)−1
(µ− r)

∣∣∣
(t,X(t),MC(t))

. (5.19)

Proof
It follows from Proposition 5.4 and ρ = 0 that Φm is the solution for the correspond-
ing time-dependent model and π̄m given by:

π̄m(t) =
1

1− δ
(ΣΣ′

)−1
(µ− r)

∣∣∣
(t,Xm(t),m(t))

(5.20)
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is the optimal investment strategy. As π̄m(t) depends only on the current value m(t)
and not on the whole path {m(t)}t∈[0,T ], we can apply Theorem 3.5 that yields the
statement.

2

Remark 5.8
Equation (5.15) is equivalent to the following system of coupled Riccati ODEs:

∂

∂t
Bm
j (t) + δε̄

(1)
j

(
m(t)

)
+

1

2

δ

1− δ
h̄

(1)
j

(
m(t)

)
−

J∑
d=1

Bm
d (t)K

(1)
jd

(
m(t)

)
+

1

2
Bm(t)′H(1j)

(
m(t)

)
Bm(t) = 0, Bj(T ) = 0,∀j ∈ {1, . . . , J}.

(5.21)

Note that if K(1) is a diagonal matrix, and H(1j) has a non-zero element only at
position (j, j), then in (5.21) we have J not coupled Riccati ODEs with piece-wise
constant coefficients. Although at first sight this condition appears quite restrictive,
it concerns only the structure of process X and includes many very flexible examples,
wherein it is even allowed for correlation between the stochastic factors. E.g. it is
fulfilled if for all j ∈ {1, . . . , J}, xj appears linearly in its own drift term µXj but
does not influence the drifts of the other stochastic processes, and ΣX is constant
or (ΣX

j,k)
2 is an affine function of xj, for some k ∈ {1, . . . , J}, and ΣX

i,k = 0 for all
i 6= j. See Section 5.3 for some examples, such as a bond-stock market model and a
principal component stochastic correlation model.

Remark 5.9
Note that the expectation in (5.18) can be easily calculated using a Monte Carlo
simulation with a very short computation time, as it involves only the simulation of
the Markov chain.

The obtained expression in (5.18) can be further simplified if we assume separability
of the value function in the Markov chain and the stochastic factor. In this case we
can even allow for leverage. The details are presented in the subsequent analysis.

5.2.2 Solution with correlation

We continue with the case wherein W P and WX are correlated. In this case a
probabilistic representation as in (5.14) is not possible because of the non-linear term
in the PDE for f . An explicit solution can be found by assuming that coefficients
ε̄(1), K(1), h̄(1), G(1), H(1j) and L(1j) for j = 1, . . . , J do not depend on the Markov
chain and the application of a separable ansatz. The result is stated in the following
theorem:
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Theorem 5.10 (Solution with correlation)
Consider Model (3.1) with a general matrix ρ and assume that ε̄(1), K(1), h̄(1), G(1),
H(1j) and L(1j) for j = 1, . . . , J are constant. Assume that the following equation:

Bt(t)
′x+ δ(ε̄(1))′x+

1

2

δ

1− δ
(h̄(1))′x−B(t)′K(1)x+

δ

1− δ
B(t)′G(1)x

+
1

2

δ

1− δ
B(t)′

J∑
j=1

(
L(1j) +H(1j)

)
xjB(t) +

1

2
B(t)′

J∑
j=1

H(1j)xjB(t) = 0

B(T ) = 0

(5.22)

possesses a continuously differentiable solution B. Define function ξ : [0, T ]×E → R
by:

ξ(t, ei) = E
[

exp
{∫ T

t

w
(
s,MC(s)

)
ds
}∣∣MC(t) = ei

]
, (5.23)

where

w(t, ei) =δε(0)(ei) +
1

2

δ

1− δ
h(0)(ei) +B(t)′k̄(0)(ei) +

δ

1− δ
B(t)′ḡ(0)(ei)

+
1

2

δ

1− δ
B(t)′

(
L(0)(ei) +H(0)(ei)

)
B(t) +

1

2
B(t)′H(0)(ei)B(t).

(5.24)

Then the HJB system of equations is solved by the following function:

Φ(t, v, x, ei) =
vδ

δ
E
[

exp
{∫ T

t

w
(
s,MC(s)

)
ds
}∣∣MC(t) = ei

]
exp

{
B(t)′x

}
,

(5.25)

with

π̄(t) =
1

1− δ

{
(ΣΣ′

)−1
(µ− r) +

(
Σ′
)−1

ρ′(ΣX)′B(t)
}∣∣∣

(t,X(t),MC(t))
. (5.26)

Let Φm and π̄m be as given by:

Φm(t, v, x) =
vδ

δ
exp

{∫ T

t

w
(
s,m(s)

)
ds
}

exp
{
B(t)′x

}
π̄m(t) =π̄(t)

∣∣
(t,Xm(t),m(t))

,

for any m ∈ M. If at least one of the following two processes
{Φm(t, V m,π̄m(t), Xm(t))}t∈[0,T ] and {Φ(t, V π̄(t), X(t),MC(t))}t∈[0,T ] is a martin-
gale, then Φ is the value function to the considered optimization problem and the
optimal portfolio is given by π̄.

Proof
Analogously to the time-dependent model we consider the following ansatz

f(t, x, ei) = ξ(t, ei) exp
{
B(t)′x

}
,
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where ξ(t, ei) : [0, T ] × E → R, B(t) = (B1(t), . . . , BJ(t))′ : [0, T ] → RJ . Inserting
this ansatz in Equation (5.3) leads to a system of ODEs for ξ and B. More precisely,
for ξ we have the following system:

ξt(t, ei) + ξ(t, ei)
[
δε(0)(ei) +

1

2

δ

1− δ
h(0)(ei) +B(t)′k̄(0)(ei) +

δ

1− δ
B(t)′ḡ(0)(ei)

+
1

2

δ

1− δ
B(t)′

(
L(0)(ei) +H(0)(ei)

)
B(t) +

1

2
B(t)′H(0)(ei)B(t)

]
= −

J∑
z=1

qi,zξ(t, ez)

ξ(T, ei) = 1, ∀i = 1, . . . , I.

(5.27)

As function w(t, ei) is continuously differentiable in t for all ei ∈ E , we can apply
the Feynman-Kac theorem for Markov chains from Corollary 2.78 to obtain the
representation from (5.23). The equation obtained for B is given by (5.22). So, if
we find a solution to System (5.22) then we have found also a solution to the HJB
equation. For the verification result we can apply either directly Theorem 5.1 or
use the time-dependent model together with Proposition 5.4 and Theorem 3.5. For
the latter possibility note that from Theorem 3.5 we obtain the HJB solution in the
time-dependent model as follows:

Φm(t, v, x) =
vδ

δ
exp

{∫ T

t

w
(
s,m(s)

)
ds
}

exp
{
B(t)′x

}
. (5.28)

As this function is sufficiently differentiable, the required martingale property of
{Φm(t, V m,π̄m(t), Xm(t))}t∈[0,T ] yields the verification result.

2

Remark 5.11 System (5.22) is equivalent to the following system of (in generally)
coupled ODEs for the single components of B:

∂

∂t
Bj(t) + δε̄

(1)
j +

1

2

δ

1− δ
h̄

(1)
j −

J∑
d=1

Bd(t)K
(1)
jd +

δ

1− δ

J∑
d=1

Bd(t)G
(1)
jd

+
1

2

δ

1− δ
B(t)′

(
L(1j) +H(1j)

)
B(t) +

1

2
B(t)′H(1j)B(t) = 0

Bj(T ) = 0,∀j ∈ {1, . . . , J}.

(5.29)

In the special case where K(1) and G(1) are diagonal matrices, and L(1j) and H(1j)

have a non-zero element only at position (j, j), we have J not coupled Riccati ODEs
with constant coefficients, which can be solved by Corollary 2.44.

Note that under some conditions on the model Proposition 5.6 can be applied to
show that {Φm(t, V m,π̄m(t), Xm(t))}t∈[0,T ] is a martingale. We do this for Example
2 in Section 5.3.
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Remark 5.12
If we require only that ΣΣ′ is invertible instead of Σ itself being quadratic and in-
vertible, then the PDE System (5.3) for function f is modified as follows:

ft + fδ
{
r +

1

2

1

1− δ
(µ− r)′

(
ΣΣ′

)−1
(µ− r)

}
+ f ′x

{
µX +

δ

1− δ
ΣXρΣ′(ΣΣ′)−1(µ− r))

}
+

1

2
Tr
(
ΣX(ΣX)′fxx′

)
+

1

2f
f ′x

δ

1− δ
ΣXρΣ′(ΣΣ′)−1Σρ′(ΣX)′fx

∣∣∣
(t,x,ei)

= −
I∑
z=1

qi,zf(t, x, ez)

f(T, x, ei) = 1,∀i ∈ {1, . . . , I},

(5.30)

and strategy π̄ has the following form:

π̄(t) =
1

1− δ
(ΣΣ′)−1

{
(µ− r) + Σρ′(ΣX)′

fx
f

}∣∣∣
(t,X(t),MC(t))

. (5.31)

Considering the definition in Remark 3.3, all other calculations and proofs remain
valid.

After deriving the general theoretical results we show their relevance by presenting
two examples in what follows. The first one includes stochastic interest rates and
models simultaneously the stock and bond markets (see Section 5.3.1). The second
one covers a multidimensional generalization of the Heston model (see Section 5.3.2).

5.3 Examples

5.3.1 Example 1: Markov-modulated Black-Scholes model
with a stochastic short rate

In this case the stochastic factor X models a stochastic riskless interest rate and
thus investment is possible not only in the bank account and a stock but also in a
bond. The Markov chain is interpreted as the state of the economy. In the numerical
example we consider at the end of this section it switches between two states: a calm
period and a recession.
To model the stochastic short rate we adopt the Vasicek model (see Example 2.48),
i.e. under the risk-neutral measure Q the SDE for X is given as follows:

dX(t) =κ
(
θ̃ −X(t)

)
dt+ χdW̃X(t),

where W̃X is a Q-Brownian motion, κ, χ ∈ [0,∞). We denote the market price
of interest rate risk by λ1

(
MC(t)

)
and allow for dependence on the Markov chain.

More precisely, the change from the real-world to the risk-neutral measure is given
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by dQ
dP

∣∣∣
FX

= L(T ) where:

L(t) = exp
{∫ t

0

λ1

(
MC(s)

)
dWX(s)− 1

2

∫ t

0

‖ λ1

(
MC(s)

)
‖2 ds

}
.

As the Markov chain can take values in a finite set, Novikov’s condition (see Lemma
2.38) is trivially fulfilled for L. Thus, by Girsanov’s Theorem 2.40 process WX

1

defined by:

WX(t) = W̃X(t) +

∫ t

0

λ1

(
MC(s)

)
ds

is a P-Brownian motion. Then, under the real-world measure P, process X is char-
acterized by the following SDE:

dX(t) =κ
(
θ̃ −

χλ1

(
MC(t)

)
κ︸ ︷︷ ︸

=θ(MC(t))

−X(t)
)

dt+ χdWX(t).

See [105] and [37] for bond pricing and parameters estimation of short rate Vasicek
models extended by Markov switching.
As the interest rate is modeled by a stochastic process, a zero-coupon bond cannot
be replicated by the bank account. That is why we allow for the investor to trade
also in a zero-coupon bond with maturity T1 > T additional to its investment in the
risky stock and the bank account. The price of this bond at time t < T1 is given by

P1(t, T1, X(t)) =EQ
[

exp
{
−
∫ T1

t

X(s)ds
}∣∣∣FX

t

]
.

Thus, by Feynman-Kac theorem (see Corollary 2.76) it satisfies the following PDE:

(P1)t + (P1)xκ
(
θ̃ −X(t)

)
+

1

2
χ2(P1)xx − P1x = 0, P1(T1, T1, x) = 1. (5.32)

Recall from [99] that its solution is given by:

P1(t, T1, X(t)) = exp
{
− A1(T1 − t)− A2(T1 − t)X(t)

}
, (5.33)

where for τ ∈ [0, T1]:

A1(τ) =
(
θ̃ − χ2

2κ2

)(
τ − A2(τ)

)
+
χ2

4κ
A2

2(τ)

A2(τ) =
1

κ

(
1− exp{−κτ}

)
.
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Then, the SDE for P1(t) := P1(t, T1, X(t)) can be derived by applying Itô’s formula
for Markov-modulated processes and substituting PDE (5.32):

dP1(t) =
[
(P1)t

(
t, T1, X(t)

)
+ (P1)x

(
t, T1, X(t)

)
κ
(
θ −X(t)

)
+

1

2
χ2(P1)xx

(
t, T1, X(t)

)]
dt+ (P1)x

(
t, T1, X(t)

)
χdWX

=
[
(P1)t

(
t, T1, X(t)

)
+ (P1)x

(
t, T1, X(t)

)
κ
(
θ̃ −X(t)

)
(5.34)

− (P1)x
(
t, T1, X(t)

)
χλ1

(
MC(t)

)
+

1

2
χ2(P1)xx

(
t, T1, X(t)

)]
dt

+ (P1)x
(
t, T1, X(t)

)
χdWX

(5.32)
=
[
P1

(
t, T1, X(t)

)
X(t)− (P1)x

(
t, T1, X(t)

)
χλ1

(
MC(t)

)]
dt

+ (P1)x
(
t, T1, X(t)

)
χdWX

=
[
P1(t)X(t) + P1(t)A2(T1 − t)χλ1

(
MC(t)

)]
dt− P1(t)A2(T1 − t)χdWX

=P1(t)
[{
X(t) + A2(T1 − t)χλ1

(
MC(t)

)}
dt+ A2(T1 − t)χdW P

1

]
, (5.35)

where W P
1 := −WX .

Besides the bond the investor has the opportunity to invest in a stock with price
process denoted by P2. We assume that the stock follows a geometric Brownian
motion, where both the market price of risk and the volatility of the stock switch
with the Markov chain. Furthermore we allow for regime-switching correlation ρ12

between the Brownian motions driving the bond and the stock. This flexibility of the
model is in accordance with the empirical observation that the correlation between
the bond and stock markets changes between the different states of the economy
(see [11]).
To summarize, the model has the following dynamics under the real-world measure
P:

dX(t) =κ
(
θ(MC(t))−X(t)

)
dt+ χdWX(t)

dP0(t) =P0(t)X(t)dt

dP1(t) =P1(t)
[{
X(t) + λ1

(
MC(t)

)
χA2(T1 − t)

}
dt+ χA2(T1 − t)dW P

1

]
dP2(t) =P2(t)

[
X(t) + λ2

(
MC(t)

)
ν
(
MC(t)

)
dt+ ν

(
MC(t)

)
ρ12

(
MC(t)

)
dW P

1

+ ν
(
MC(t)

)√
1− ρ12

(
MC(t)

)2
dW P

2

]
ρdt =

(
d〈WX ,W P

1 〉(t), d〈WX ,W P
2 〉(t)

)
= (−1, 0)dt,

(5.36)

where WX is a one-dimensional Brownian motion, dW P
1 = −dWX and W P =

(W P
1 ,W

P
2 ) is a standard two-dimensional Brownian motion. Utility maximization

in a similar model without Markov switching is considered in [73]. In terms of the
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notation from Model (3.1) we have the following specifications:

Σ =

(
χA2(T1 − t) 0

ν
(
MC(t)

)
ρ12

(
MC(t)

)
ν
(
MC(t)

)√
1− ρ12

(
MC(t)

)2

)

µ− r =

(
λ1

(
MC(t)

)
χA2(T1 − t)

λ2

(
MC(t)

)
ν
(
MC(t)

) )
µX =κθ

(
MC(t)

)
− κX(t)

ΣX =χ,

which implies that:

ε(0) = 0, ε̄(1) = 1

k̄(0) = κθ(ei), K
(1) = κ

H(0) = χ2, H(11) = 0

h(0) =
λ1(ei)

2 − 2ρ12(ei)λ1(ei)λ2(ei) + λ2(ei)
2

1− ρ12(ei)2
, h̄(1) = 0

ḡ(0) = −χλ1(ei), G
(1) = 0

L(0) = 0, L(11) = 0.

(5.37)

So, the considered model fits in our general framework and allows the application
of Theorem 5.10. The result is stated in the following proposition:

Proposition 5.13 (Solution and verification in Example 1)
Consider Model (5.36). The value function for the portfolio optimization problem is
given as follows:

Φ(t, v, x, ei) =
vδ

δ
ξ(t, ei) exp{B(t)x}, (5.38)

with

B(t) =
δ

κ

(
1− exp

{
− κ(T − t)

})
(5.39)

ξ(t, ei) =E
[

exp
{∫ T

t

w(s,MC(s))ds
}∣∣∣MC(t) = ei

]
(5.40)

w(t, ei) =
1

2

δ

1− δ
λ1(ei)

2 − 2ρ12(ei)λ1(ei)λ2(ei) + λ2(ei)
2

1− ρ12(ei)2
+B(t)κθ(ei)

− δ

1− δ
B(t)λ1(ei)χ+

1

2

1

1− δ
B(t)2χ2. (5.41)
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The optimal portfolio is1:

π̄(t) =
1

1− δ

(
λ1(MC(t))−ρ12(MC(t))λ2(MC(t))

χA2(T1−t)(1−ρ2
12(MC(t))) − B(t)

A2(T1−t)
λ2(MC(t))−ρ12(MC(t))λ1(MC(t))

ν(MC(t))(1−ρ2
12(MC(t)))

)
. (5.42)

The proof can be found in Appendix C.

Now that we have verified the result from the theoretical point of view, let
us have a closer look at the structure of the optimal portfolio (5.42) and especially
at the influence of the Markov-switching parameters. As expected the factors
driving the excess return of the single assets influence positively the positions in
the corresponding assets, i.e. the bigger λi, the higher π̄i. The contrary holds for
the volatility terms. As the two assets are correlated, the excess return of one asset
influences also the position in the other one. More precisely, if the correlation ρ12

is positive, the two assets (partially) act as substitutes: e.g. if π̄1 rises as a result
of rising λ1, whereas all other parameters remain the same, then π̄2 is reduced. On
the other side, if ρ12 is negative, the two assets can be seen as complements and are
used for diversification: an increase of π̄1 due to a higher λ1, leads to an increase of
π̄2.
Let us deepen our analysis of the influence of the Markov-switching correlation factor
ρ12 on the optimal portfolio. Observe that sign( ∂π̄1

∂ρ12
) = sign(−λ2− λ2ρ

2
12 + 2λ1ρ12)

and, if ν > 0, sign( ∂π̄2

∂ρ12
) = sign(−λ1 − λ1ρ

2
12 + 2λ2ρ12). Let us concentrate on the

case where λi > 0, i = 1, 2, as this corresponds to the classical setting, where assets
have positive market price of risk. First consider the case when ρ12 < 0. Then
∂π̄1

∂ρ12
< 0 and ∂π̄2

∂ρ12
< 0. So, if ρ12 increases, which means that its absolute value

decreases, the investor should hold less in both assets. The reason is that assets
with negative correlation are used for diversification, so the smaller |ρ12|, the less
effective the diversification. In the second case, where ρ12 > 0, the influence of the
correlation depends on the relationship between λ1 and λ2. One can differentiate
the following three cases:

λ1

λ2
>

1+ρ2
12

2ρ12
(> 1) ⇒ ∂π̄1

∂ρ12
> 0, ∂π̄2

∂ρ12
< 0

1+ρ2
12

2ρ12
≥ λ1

λ2
≥ 2ρ12

1+ρ2
12
⇒ ∂π̄1

∂ρ12
≤ 0, ∂π̄2

∂ρ12
≤ 0

(1 >) 2ρ12

1+ρ2
12
> λ1

λ2
⇒ ∂π̄1

∂ρ12
< 0, ∂π̄2

∂ρ12
> 0.

Note that if one of the assets clearly outperforms the other one, i.e. its market price
of risk is sufficiently higher that the market price of risk of the other asset, then the

1In the case of constant parameters without Markov switching Formula (5.42) leads to the optimal
portfolio given by [73]. Note that in the latter study the authors also present a proof of the
verification theorem without Markov switching based on a general result in [50], p. 163. They
require explicitly the continuity of the model parameters. Instead of loosening this assumption
for our proof we prefer to apply directly Theorem 5.10 in a straightforward manner to obtain an
alternative proof that is shorter and easy to follow.
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higher the positive correlation the bigger the investment in the better performing
asset and the smaller the position in the other one. As mentioned before, the two
assets function as partial substitutes. Only in a certain interval, where λ1 and λ2

are not sufficiently different, increasing correlation leads to a reduction of both po-
sitions, because the substitution effect is not strong enough to compensate the risk
of higher correlation. However, this interval gets smaller for higher ρ12 as the two

thresholds 2ρ12

1+ρ2
12

and
1+ρ2

12

2ρ12
approach one from below and above respectively, when

ρ12 increases. So when the correlation becomes high enough, the investor starts ex-
panding her increasing position in the better performing asset because he can hedge
it better by her decreasing position in the other one. To summarize, starting at a
negative ρ12, both π̄1 and π̄2 decrease until ρ12 reaches some critical level ρ̂ given by

2ρ̂
1+ρ̂2 =

λn1

λn2
, where λn1 < λn2 , n1, n2 ∈ {1, 2}, n1 6= n2. If ρ12 exceeds ρ̂ and increases

further, then π̄n1 continues decreasing and π̄n2 gets bigger.

Now let us pay attention to the second part of π̄1: − 1
1−δ

B(t)
A2(T1−t) . This fraction of

the wealth is shifted between the bond position and the bank account because of
the additional risk coming from the stochastic interest rate, that is why we will call
it the hedging term. Observe that sign( 1

1−δ
B(t)

A2(T1−t)) = sign(δ). So, for a very risk
averse investor with δ < 0 the bond position is increased. The reason is that the
relevant risk for the investor comes from a falling short rate as this would reduce
the drift of her wealth process (see Equation (3.9)). If this happens the bond price
would increase due to its negative correlation with the short rate. So, the investor
protects his portfolio against decreasing X with a positive bond hedging term. On
the contrary, a less risk averse investor with δ > 0 speculates on an increasing short
rate and enters a short bond position in order to profit it this case.
To summarize, it is crucial to consider multidimensional models, as the relation be-
tween the assets influences strongly the optimal portfolio. Furthermore, the Markov
chain plays an important role in the portfolio choice, as the switching parameters
drive the performance of the single assets considered for themselves and in compar-
ison to each other.
In order to illustrate this analysis we fix a realistic set of parameters following
the empirical results of [17], [11], and [57] and implement the optimal solution.
More precisely we set: λ1(e1) = 0.1, λ1(e2) = 0.3, λ2(e1) = 0.26, λ2(e2) = −0.22,
ν(e1) = 0.13, ν(e2) = 0.20, ρ12(e1) = −0.14, ρ12(e2) = −0.34, χ = 0.03, κ = 0.15,
θ(e1) = 0.08, θ(e2) = 0.04. Clearly, e1 corresponds to a calm state of the economy
with relatively low volatility. The second state e2 describes an economy in a reces-
sion, so the volatility is higher and the expected stock return and the log-term mean
of the short rate are lower than in e1. Note, that the negative correlation between
the bond and the stock is stronger in the second state. For the intensity matrix of
the Markov chain we set q1,1 = −1.0909 and q2,2 = −3.4413, which implies that the
calm state lasts on average 1 year and the turbulent one approximately 4 months.
We consider four different values for δ, corresponding to investors with different
risk preferences: δ ∈ {0.1,−1,−5,−10}, see [22] for some discussion on the topic
of how to choose δ. Figure 5.1 illustrates the resulting optimal portfolios. One can
recognize the big differences between the two states of the economy: in the second
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state the investor shifts weight from the stock to the bond, whose price is positively
effected by the turbulent situation in the stock market.
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Figure 5.1: Example 1: Fraction of wealth invested in a bond with maturity 15 years (upper row)
and in the stock (lower row) for an investor with time horizon T = 5 and different risk parameters
δ.

As an illustration we also plotted the distribution of the terminal wealth of an
investor following the derived optimal strategy for different values of δ (see Figure
5.2). It can be clearly seen that a decrease in δ, thus an increase in the risk aversion,
leads to a more conservative investment.

5.3.2 Example 2: Two-dimensional Markov-modulated
stochastic correlation model

In the second example we consider a two-dimensional model with stochastic volatility
and stochastic correlation between the assets. More precisely, two mean-reverting
stochastic factors X1 and X2 influence the price processes of two traded assets P1
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Figure 5.2: Example 1: Distribution of the terminal wealth obtained using the derived optimal
strategy (5.42) with time horizon T = 5 and different risk parameters δ. For better comparability
all values higher than 100 are summarized in the last bar.

and P2. The formal definition of the model reads as follows:

dP0(t) =P0(t)rdt

dP1(t) =P1(t)
[{
r + c1a11

(
MC(t)

)√
X1(t)σ1

(
X1(t)

)
+ c2a12

(
MC(t)

)√
X2(t)σ2

(
X2(t)

)}
dt

+ a11

(
MC(t)

)
σ1

(
X1(t)

)
dW P

1 (t) + a12

(
MC(t)

)
σ2

(
X2(t)

)
dW P

2 (t)
]

dP2(t) =P2(t)
[{
r + c1a21

(
MC(t)

)√
X1(t)σ1

(
X1(t)

)
+ c2a22

(
MC(t)

)√
X2(t)σ2

(
X2(t)

)}
dt

+ a21

(
MC(t)

)
σ1

(
X1(t)

)
dW P

1 (t) + a22

(
MC(t)

)
σ2

(
X2(t)

)
dW P

2 (t)
]

dX(t) =

(
κ1

(
θ1

(
MC(t)

)
−X1(t)

)
κ2

(
θ2

(
MC(t)

)
−X2(t)

) ) dt+

(
χ1

√
X1(t)dWX

1 (t)

χ2

√
X2(t)dWX

2 (t)

)
ρdt =

(
d〈WX

1 ,W
P
1 〉(t) d〈WX

1 ,W
P
2 〉(t)

d〈WX
2 ,W

P
1 〉(t) d〈WX

2 ,W
P
2 〉(t)

)
=

(
ρ1 0
0 ρ2

)
dt,

(5.43)

where W P = (W P
1 ,W

P
2 ) and WX = (WX

1 ,W
X
2 ) are standard Brownian motions. We

denote A
(
MC(t)

)
=

(
a11

(
MC(t)

)
a12

(
MC(t)

)
a21

(
MC(t)

)
a22

(
MC(t)

) ) . To facilitate the calculations
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in the subsequent analysis we summarize the model in terms of the notation from
(3.1): (

µ1 − r
µ2 − r

)
=A
(
MC(t)

)( c1

√
X1(t)σ1(X1)

c2

√
X2(t)σ2(X2)

)
Σ =

(
a11

(
MC(t)

)
σ1

(
X1(t)

)
a12

(
MC(t)

)
σ2

(
X2(t)

)
a21

(
MC(t)

)
σ1

(
X1(t)

)
a22

(
MC(t)

)
σ2

(
X2(t)

) )
=A
(
MC(t)

)( σ1

(
X1(t)

)
0

0 σ2

(
X2(t)

) )
µX =

(
µX1
µX2

)
=

(
κ1

(
θ1

(
MC(t)

)
−X1(t)

)
κ2

(
θ2

(
MC(t)

)
−X2(t)

) )
ΣX =

(
χ1

√
X1 0

0 χ2

√
X2

)
.

Using the notation from (3.2)-(3.7) we obtain the following equations:

ε(0) = r, ε(1) = 0

k̄(0)(ei) =

(
κ1θ1(ei)
κ2θ2(ei)

)
, K(1) =

(
κ1 0
0 κ2

)
H(0) = 0, H(11) =

(
χ2

1 0
0 0

)
, H(12) =

(
0 0
0 χ2

2

)
h(0) = 0, h̄(1) =

(
c2

1

c2
2

)
ḡ(0) = 0, G(1) =

(
χ1ρ1c1 0

0 χ2ρ2c2

)
L(0) = 0, L(11) =

(
χ2

1(ρ2
1 − 1) 0
0 0

)
, L(12) =

(
0 0
0 χ2

2(ρ2
2 − 1)

)
.

Note that the market price of risk associated to the two Brownian motions W P
1 and

W P
2 driving the asset processes has the following form:

Σ−1(µ− r) =

(
c1

√
X1

c2

√
X2

)
.

So, it resembles the structure of the market price of risk in the one-dimensional
Heston model.
This model presents a very flexible framework that covers different known examples
as special cases. If the vectors (a11, a21)′ and (a12, a22)′ are assumed to be orthonor-
mal then we are dealing with an example of a principle component model (see [43],
[44] and [46]). The othonormality assumption might be useful to maintain the num-
ber of parameters manageable when the dimension increases, however this is not
a necessary assumption for the derivation of the optimal portfolio and we do not
imply it in what follows.
Note that if we set σ1(x1) =

√
x1 and σ2(x2) =

√
x2 the model can be seen as a two-

dimensional extension of the Heston Model, where not only the covariance matrix,
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but also the correlation between the traded assets is stochastic. The two stochastic
factors may also be used to model stochastic factors with different scales of mean-
reversion: a slow one and a fast one, see e.g. [51] and [45] for a motivation and
discussion of stochastic volatility with slow and fast mean-reverting components.
Observe furthermore, that we allow for correlation between the Brownian motions
driving X and P , a desirable property observed in reality (see [41] for a discussion
of the topic in a stochastic volatility context). Portfolio optimization results for the
one-dimensional Heston model with constant parameters are presented in [74] and
[63]. By merging ideas from these two papers and applying the results derived in
Section 3 we deliver in Proposition 5.14 an easy to follow proof of the verification
result for a multidimensional Markov-switching extension of the Heston model.
Another application of Model (5.43) arises if we set σ1 and σ2 to be constants and
let the stochastic factors influence only the excess return of the stocks. A similar
framework has been motivated in the literature on predictable stock returns, see [93]
and [4] for a discussion of models wherein the stock returns are driven by the labor
income or the dividend yield.
The Markov chain can be again interpreted as the state of the economy. We allow
for regime switching in the mean-reverting level of the stochastic factors, the stock
volatility and its excess return. As an illustration we will present at the end of
this section some numerical results for a stochastic volatility model where the first
state ofMC represents a calm state and the second one corresponds to a turbulent
market with high volatility levels.
The explicit solution to the optimization problem and the corresponding verification
result are shown in the following proposition:

Proposition 5.14 (Solution and verification in Example 2)
Consider Model (5.43) and assume that:

0 <κ̃j (5.44)

δ

1− δ
c2
j <

κ̃2
jϑj

χ2
j

, (5.45)

with κ̃j = κj − δ
1−δχjρjcj, ϑj = 1−δ

1−δ+δρ2
j

and aj =

√
κ̃2
j − δ

1−δc
2
j

χ2
j

ϑj
, for j = 1, 2. Then

the value function for the considered portfolio optimization problem is given by:

Φ(t, v, x, ei) =
vδ

δ
ξ(t, ei) exp{B1(t)x1 +B2(t)x2},

where

Bj(t) =
ϑj(κ̃j − aj)

[
1− exp{−aj(T − t)}

]
χ2
j

(
1− bj exp{−aj(T − t)}

) , j = 1, 2 (5.46)

ξ(t, ei) = E
[

exp
{∫ T

t

w(s,MC(s))ds
}∣∣∣MC(t) = ei

]
(5.47)

w(t, ei) = δr +B1κ1θ1(ei) +B2κ2θ2(ei), (5.48)
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with bj =
κ̃j−aj
κ̃j+aj

.

The optimal investment strategy has the following form (where the dependence of
aij, i, j = 1, 2, on MC is omitted for better readability):

π̄(t) =
1

1− δ
(
A′(MC(t))

)−1


 c1

√
X1(t)

σ1(X1(t))

c2
√
X2(t)

σ2(X2(t))

+

 ρ1χ1

√
X1(t)B1(t)

σ1(X1(t))

ρ2χ2

√
X2(t)B2(t)

σ2(X2(t))


=

1

(1− δ)(a11a22 − a12a21)


 a22c1

√
X1(t)

σ1(X1(t))
− a21c2

√
X2(t)

σ2(X2(t))

a11c2
√
X2(t)

σ2(X2(t))
− a12c1

√
X1(t)

σ1(X1(t))


+

 a22ρ1χ1

√
X1(t)B1

σ1(X1(t))
− a21ρ2χ2

√
X2(t)B2

σ2(X2(t))

a11ρ2χ2

√
X2(t)B2

σ2(X2(t))
− a12ρ1χ1

√
X1(t)B1

σ1(X1(t))


∣∣∣∣∣∣
(t,MC(t))

.

(5.49)

The proof can be found in Appendix C.

Again, we call the first summand in (5.49) the mean-variance part and de-
note it by π̄MV . It resembles the optimal portfolio if X1 and X2 were deterministic.
The second summand is the hedging term π̄H . It accounts for the additional risk
coming from the stochastic factors X1 and X2. In what follows we analyze these
two terms and the sensitivity of the optimal portfolio to the model parameters. We
will pay special attention to the Markov-switching parameters.
To ease the exposition we assume that aij, cj ≥ 0, i, j = 1, 2. Furthermore, we
set σ1(x1) =

√
x1 and σ2(x2) =

√
x2, which, as already mentioned, leads to a

two-dimensional Heston-type model. Then, the expression for the strategy simplifies
to:

π̄(t) =
1

(1− δ)(a11a22 − a12a21)

{(
a22c1 − a21c2

a11c2 − a12c1

)
+(

a22ρ1χ1B1 − a21ρ2χ2B2

a11ρ2χ2B2 − a12ρ1χ1B1

)}∣∣∣∣
(t,MC(t))

.

(5.50)

To better understand the structure of the portfolio we define the following quantities:

m̄1(e) :=c1a11(e)θ1(e) + c2a12(e)θ2(e), m̄2(e) := c1a21(e)θ1(e) + c2a22(e)θ2(e)

(s̄1(e))2 :=(a11(e))2θ1(e) + (a12(e))2θ2(e), (s̄2(e))2 := (a21(e))2θ1(e) + (a22(e))2θ2(e)

ρ̄(e) :=
a11(e)a21(e)θ1(e) + a12(e)a22(e)θ2(e)

s̄1(e)s̄2(e)
.

(5.51)

Observe that m̄1 and m̄2 correspond to the ”long-term average” excess returns of
P1 and P2, respectively. They are obtained by replacing processes X1 and X2 in
(µ − r) by their mean-reversion levels θ1 and θ2, respectively. Analogously, s̄2

1 and
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s̄2
2 correspond to the ”long-term average” instantaneous variance of the log-returns

and ρ̄ is obtained from the instantaneous correlation between the two assets. Using
this notation it is easily verified that the mean-variance part π̄MV of the optimal
portfolio can be expressed as follows:

π̄MV =
1

1− δ

(
1

1−ρ̄2
m̄1

(s̄1)2 − ρ̄
1−ρ̄2

m̄2

s̄1s̄2
1

1−ρ̄2
m̄2

(s̄2)2 − ρ̄
1−ρ̄2

m̄1

s̄1s̄2

)
.

So, if ρ̄ = 0 the mean-variance portfolio for both assets reduces to the ratio between
the ”long-term average” excess return and the variance as a measure of risk. This is
the well-known myopic portfolio obtained when considering only one risky asset with
deterministic coefficients. This term is intuitively clear, as higher excess return leads
to higher investment, whereas higher variance, i.e. higher risk, reduces the position
in the corresponding asset. If the two assets are correlated they are considered
relatively to each other, e.g. if ρ̄ is positive, an increase of m̄2 leads not only to
a higher position in P2 but also to a reduction of the investment in P1, as the
performance of the second asset has improved relatively to the first one and the two
assets are considered as partial substitutes. Later on we will illustrate the influence
of the instantaneous asset correlation using a numerical example.
Now let us have a look at the hedging term. To separate the hedging effect from
the interaction between the assets we consider the case when a12 = a21 = 0 and the
two stocks are independent. Then the hedging term has the following form:

π̄H(t) =
1

(1− δ)

{(
ρ1χ1B1

a11
ρ2χ2B2

a22

)}∣∣∣∣∣
(t,MC(t))

. (5.52)

The sign of the hedging part depends on ρj and Bj. It can be shown that
sign(Bj) = sign(δ)2. Assuming that ρj < 0, which is related to the well-known
leverage effect, it follows that the hedging term is negative if δ > 0 and positive if
δ < 0. The reason is that the more risk-averse investor, characterized by δ < 0,
would like to reduce the impact of a falling market price of risk due to a decrease in
X. Due to ρ < 0, when X is decreasing, the asset prices tend to increase. Hence,
as the investor is looking for a hedging term with increasing value in this situation,
she adds a long position in the risky assets, i.e. π̄H > 0. On the contrary, the less
risk-averse investor with δ > 0 wants to participate in an increasing market price of
risk, when X is increasing and his hedging part consists of a short position in the
risky asset. For similar interpretations consult [67] and [24]. For a more detailed
analysis of the hedging term without Markov switching we refer the reader to [23].
A numerical illustration of the sensitivity of the hedging part to different model
parameters is given at the end of this section.
We continue with an analysis of the optimal strategy on a concrete numerical ex-
ample. We assume that the Markov chain has two states: e1 describes a calm

2First note that ϑj > 0. If δ > 0, then 0 < aj < |κ̃j |. As κ̃j + aj > 0, it follows that κ̃j > 0.
So, 0 < aj < κ̃j . This leads to 0 < bj < 1. We can conclude that Bj > 0. The case δ < 0 goes
analogously.
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period corresponding to normal market conditions and e2 models a turbulent period
characterized by lower excess returns and higher volatility for both assets, i.e. we
can interpret the second state as a crisis. More precisely, we set: m̄1(e1) = 0.05,
m̄2(e1) = 0.065, s̄1(e1) = 0.15, s̄2(e1) = 0.2 for the calm state and m̄1(e2) = 0.005,
m̄2(e2) = 0.01, s̄1(e2) = 0.25, s̄2(e2) = 0.4 for the volatile one. Furthermore, we
choose ρ̄(e1) = 0.2 and ρ̄(e2) = 0.9 to reflect the empirical observation that in
a financial crisis the correlation between related assets may increase dramatically
(see e.g. [11]). We set a12 = 0 for both states, so that factor X1 is interpreted
as the common driver for both assets, whereas factor X2 is specific only for the
second asset. This specification allows for an intuitive interpretation of matrix A
in terms of the assets correlation: if a21 � a22 the two assets are strongly cor-
related, whereas if a21 � a22 they are mainly driven by different factors. Using

System (5.51) we set A(e1) =

(
0.68 0
0.18 0.74

)
, A(e2) =

(
18.75 0

27 10.86

)
, c1 = 1.5,

c2 = 1, θ1(e1) = 0.05, θ1(e2) = 0.0002, θ2(e1) = 0.06, θ2(e2) = 0.00033. Furthermore,
ρ1 = −0.8, ρ2 = −0.6, χ1 = χ2 = 0.35, κ1 = κ2 = 4. We adopt the same values for
Q as in Example 1 and set r = 0.05. Call these parameter specifications Set 1.
The optimal investment strategy for different values for δ is presented in Figure 5.3.
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Figure 5.3: Example 2: Fraction of wealth invested in the high-risk stock P1 (upper row) and in the
less risky stock P2 (low raw) for an investor with time horizon T = 5 and different risk parameters
δ. All other parameters are as in Set 1.

3Note that the increase in the asset variances is achieved by an increase in matrix A, whereas the
decrease in the returns is modeled by lower values for θ1 and θ2 for the second state.
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In the calm state the investor holds high long positions in both assets, whereas in
the turbulent state she has almost no investment in the risky assets. This is ex-
plained not only by the lower return and higher variance but also by the increased
correlation in a crisis. To illustrate this we consider a second example wherein only
the instantaneous correlation changes between the states, whereas m̄1, m̄2, s̄1 and
s̄2 are the same for all states. We allow for three states: e1, e∗2 and e∗3. The pa-
rameters for state e1 are the same as in Set 1. We set ρ̄(e∗2) = 0 and ρ̄(e∗3) = 0.9
so that in the second state the two assets are independent and in the third state
they are highly correlated. This is achieved by the following parameter specifications

A(e∗2) =

(
0.68 0

0 0.62

)
, A(e∗3) =

(
0.68 0
0.81 1.52

)
, θ2(e∗2) = 0.11 and θ2(e∗3) = 0.003.

All other parameters remain the same as in state e1. We call these parameter spec-
ifications Set 2. The optimal portfolio strategies are shown in Figure 5.4. It is

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

time

po
si

tio
n 

st
oc

k 
1,

 d
el

ta
=

0.
1

 

 

1 2 3 4 5
0

0.5

1

1.5

2

time

po
si

tio
n 

st
oc

k 
2,

 d
el

ta
=

0.
1

 

 

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

time

po
si

tio
n 

st
oc

k 
1,

 d
el

ta
=

−
1

 

 

1 2 3 4 5
0

0.5

1

1.5

2

time

po
si

tio
n 

st
oc

k 
2,

 d
el

ta
=

−
1

 

 

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

time

po
si

tio
n 

st
oc

k 
1,

 d
el

ta
=

−
5

 

 

1 2 3 4 5
0

0.5

1

1.5

2

time

po
si

tio
n 

st
oc

k 
2,

 d
el

ta
=

−
5

 

 

1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

time

po
si

tio
n 

st
oc

k 
1,

 d
el

ta
=

−
10

 

 

1 2 3 4 5
0

0.5

1

1.5

2

time

po
si

tio
n 

st
oc

k 
2,

 d
el

ta
=

−
10

 

 

av. corr.=0
av. corr.=0.2
av. corr.=0.9

av. corr.=0
av. corr.=0.2
av. corr.=0.9

av. corr.=0
av. corr.=0.2
av. corr.=0.9

av. corr.=0
av. corr.=0.2
av. corr.=0.9

calm
turb.

av. corr.=0
av. corr.=0.2
av. corr.=0.9

av. corr.=0
av. corr.=0.2
av. corr.=0.9

av. corr.=0
av. corr.=0.2
av. corr.=0.9

Figure 5.4: Example 2: Fraction of wealth invested in the high risk stock P1 (upper row) and in the
less risky stock P2 (low raw) for an investor with time horizon T = 5 and different risk parameters
δ. All other parameters are as in Set 2.

clearly recognizable that in situations with high asset correlation the investor holds
less in both assets compared to the independent case. This can be interpreted as a
protection against potential extremely high losses if both asset prices decrease.
The influence of δ is also clearly recognizable in Figure 5.3 and Figure 5.4: the
smaller δ, thus the more risk-averse the investor, the smaller the absolute value of
her positions in the stocks. The effect of the risk aversion is also reflected in the
distribution of the terminal wealth illustrated in Figure 5.5: for lower values of δ, its
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standard deviation gets smaller, so that both high losses and high gains have lower
probability.
Finally, we address the question of the importance of the hedging term. Figure 5.6
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Figure 5.5: Example 2: Distribution of the terminal wealth obtained using the derived optimal
strategy (5.50) with time horizon T = 5 and different risk parameters δ. All other parameters are
as in Set 1. For better comparability all values higher than 100 are summarized in the last bar.

shows the relation between the hedging portfolio and the mean-variance position in
stock P2 as a function of the different parameters influencing the stochastic factor
X2

4. It can be seen that slow mean-reversion and high correlation with the asset
price increase the weight of the hedging term as in this case the stochastic factor
can be better hedged using the traded asset. Furthermore, as the risk coming from
the stochastic factor increases when its volatility parameter increases, the bigger

χ, the higher the ratio | π̄
H
2

π̄MV
2
|. We obtained similar results in Section 4.3.4 for the

one-dimensional Markov-modulated Heston model.
To summarize, depending on the risk preferences of the investor and the parameter
values of the stochastic factors the hedging term may play an important role in
the optimal portfolio. Thus, if an investor neglects the randomness of X1 and X2

4Note that X2 and WP
2 influence only P2, whereas X1 and WP

1 appear in both assets. So, the
position in P2 is chosen in such a way to assure optimal exposure of the whole portfolio to X2

and WP
2 . On the other side the position in P2 contains additional exposure also to X1 and WP

1 .
So, the investment in P1 is adjusted to compensate for this and thus, reflects also the interaction
effects between the assets. We illustrate the importance of π̄H using the second stock as it contains
the hedging effect separately from the interaction between the assets.
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Figure 5.6: Example 2: Ratio (in %) between the hedging term and the mean-variance portfolio
invested in stock P2 for an investor with time horizon T = 5 and δ = 0.1 (upper row), resp. δ = −10
(lower row) as a function of χ2 (first column), ρ2 (second column), κ2 (third column). All other
parameters are as in Set 1.

and invests only in π̄MV , significant misallocations in the order of a double-digits
percentage may arise.
To conclude the numerical analysis, considering the interaction between the two
assets, as well as recognizing the additional stochastic factors and the Markov-
switching character of the parameters is crucial for an optimal investment. This
supports the relevance of the developed results.



Chapter 6

Extension to the HARA utility
function

In this chapter we extend our study from the power utility function to the more
general case of the HARA utility function UH as defined by (2.26). We specify one
of the stochastic factors to be the short rate and propose a consistent bond-stock
framework with bond-stock correlation. For utility optimization results in a bond-
stock market without Markov switching see [21]. There the interest rate is driven
by two stochastic factors and the stock price process has constant excess return
and volatility. In what follows we use for the interest rate a Markov-modulated
Vasicek model and extend the optimization results from [21] to Markov switching
and additional stochastic factors such as stochastic volatility and excess return.

6.1 Model and optimization problem

Let us first introduce formally the model we are working with, which is a special
case of Model (3.1). As in the general definition we consider N traded risky assets,
influenced by a Markov chain MC and J further sources of randomness modeled
by the stochastic process X. Similarly to Section 5.3.1, in this chapter we identify
process X1 as the driver of the short rate r = r

(
X1

)
and P1 as the price of a bond

with fixed maturity T1 > T . So, additionally to the bank account we also allow for
trading in a bond.
We start by specifying the dynamics of X1 and deriving the SDE for the bond price.
Let X1 be characterized by the following SDE under the risk-neutral measure Q:

dX1(t) = µ̃X1
(
X1(t)

)
dt+ ΣX

11

(
X1(t)

)
dW̃X

1 (t),

where W̃X
1 is a one-dimensional Q-Brownian motion. As in Section 5.3.1, the change

from the real-world to the risk-neutral measure is given by the following density
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dQ
dP

∣∣∣
FX1

= L(T ) where:

L(t) = exp
{∫ t

0

λ1

(
MC(s)

)
dWX

1 (s)− 1

2

∫ t

0

‖ λ1

(
MC(s)

)
‖2 ds

}
.

Note that we allow for the market price of risk λ1 to depend on the Markov chain.
As Novikov’s condition is trivially fulfilled for L we can apply Girsanov’s Theorem
2.40 to show that process WX

1 defined by:

WX
1 (t) = W̃X

1 (t) +

∫ t

0

λ1

(
MC(s)

)
ds

is a P-Brownian motion. Thus, under P we have the following SDE for X1:

dX1(t) = µX1
(
X1(t),MC(t)

)
dt+ ΣX

11

(
X1(t)

)
dWX

1 (t),

where

µX1
(
X1(t),MC(t)

)
= µ̃X1

(
X1(t)

)
− ΣX

11

(
X1(t)

)
λ1

(
MC(s)

)
. (6.1)

The price at time t of a zero-coupon bond with maturity T1 is then given by:

P1(t, T1, x1) = EQ
[

exp
{
−
∫ T1

t

r
(
X1(s)

)
ds
}∣∣∣X1(t) = x1

]
.

By the Feynman-Kac theorem, for a fixed T1 function P1 satisfies the following PDE:

(P1)t + (P1)x1µ̃
X
1 +

1

2

(
ΣX

11

)2
(P1)x1x1 − P1r = 0, P1(T1, T1, x1) = 1. (6.2)

As in Section 5.3.1 we adopt a Vasicek model for the short rate: r(X1) = X1 with

ΣX
11(x1) = χ1 (6.3)

µ̃X1 (x1) = κ1(θ̃1 − x1), (6.4)

thus,

µX1 (x1, ei) = κ1(θ̃1 − x1)− χ1λ1(ei) =: κ1(θ1(ei)− x1). (6.5)

Analogously to Equation (5.33), the bond price is known in an explicit form:

P1(t, T1, x1) = exp
{
− A1(T1 − t)− A2(T1 − t)x1

}
, (6.6)

where for τ ∈ [0, T1] functions A1(τ) and A2(τ) are given by:

A1(τ) =
(
θ̃1 −

χ2
1

2κ2
1

)(
τ − A2(τ)

)
+

χ2
1

4κ1

A2
2(τ) (6.7)

A2(τ) =
1

κ1

(
1− exp{−κ1τ}

)
. (6.8)
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Remark 6.1
If we assume the Vasicek model for X1 and an affine function for r(x1):

r(x1) = ε(0) + ε̄
(1)
1 x1,

we obtain the following SDE for the short rate:

dr(X1(t)) = κ1(ε(0) + ε̄
(1)
1 θ̃1︸ ︷︷ ︸

=:θ̂1

− (ε(0) + ε̄
(1)
1 X1(t))︸ ︷︷ ︸

=r(X1(t))

dt+ ε̄
(1)
1 χ1︸ ︷︷ ︸
=:χ̂1

dW̃X
1 (t).

So the affine transformation results again in a Vasicek process. As it does not in-
crease the flexibility of the model, we define r(x1) = x1 in order to avoid unnecessary
complication of the notation.

From now on we use the following shorter notation whenever referring to a bond
with maturity T1: P1(t) := P1(t, T1, X1(t)). Now we derive the P-dynamics of the
bond price:

dP1(t) =
[
(P1)t

(
t, T1, X1(t)

)
+ (P1)x1

(
t, T1, X1(t)

)
µX
(
X1(t),MC(t)

)
+

1

2
ΣX

11ΣX
11(P1)x1x1

(
t, T1, X1(t)

)]
dt+ (P1)x1

(
t, T1, X1(t)

)
ΣX

11dWX
1

=
[
(P1)t

(
t, T1, X1(t)

)
+ (P1)x1

(
t, T1, X1(t)

)
µ̃X
(
X1(t),MC(t)

)
− (P1)x1

(
t, T1, X1(t)

)
ΣX

11λ1

(
MC(t)

)
+

1

2
ΣX

11ΣX
11(P1)x1x1

(
t, T1, X1(t)

)]
dt

+ (P1)x1

(
t, T1, X1(t)

)
ΣX

11dWX
1

(6.2)
=
[
P1

(
t, T1, X1(t)

)
r
(
X1(t)

)
− (P1)x1

(
t, T1, X1(t)

)
ΣX

11λ1

(
MC(t)

)]
dt

+ (P1)x1

(
t, T1, X1(t)

)
ΣX

11dWX
1

=
[
P1(t)r

(
X1(t)

)
+ P1(t)A2(T1 − t)ΣX

11λ1

(
MC(t)

)]
dt

− P1(t)A2(T1 − t)ΣX
11dWX

1

=P1(t)
[{
r
(
X1(t)

)
+ A2(T1 − t)ΣX

11λ1

(
MC(t)

)}︸ ︷︷ ︸
=µ1(t,X1(t),MC(t))

dt+ A2(T1 − t)ΣX
11︸ ︷︷ ︸

=Σ11(t)

dW P
1

]
,

(6.9)

where W P
1 := −WX

1 and consequently it is a P-Brownian motion.
As in Model (3.1), for the remaining N − 1 risky assets we assume an affine expo-
nential structure, where the drift and the volatility terms are influenced both by the
Markov chain and the stochastic factors. We assume that the remaining stochastic
factors are driven by J−1 Brownian motions (WX

2 , . . . ,W
X
J ), which are independent

of WX
1 .

In the next definition we summarize the assumptions so far and state the considered
model explicitly in terms of the notation from Model (3.1).

Definition 6.2 (Affine bond-stock model with Markov switching)
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We consider the following model:

dP0(t) = P0(t)r
(
X1(t)

)
dt (bank account)

dP1(t) = P1(t)
[
µ1

(
t,X1(t),MC(t)

)
dt+ Σ1(t)dW P (t)

]
(bond)

dPn(t) = Pn(t)
[
µn
(
X(t),MC(t)

)
dt+ Σn

(
X(t),MC(t)

)
dW P (t)

]
, n = 2, . . . , N

dX1(t) = µX1
(
X1(t),MC(t)

)
dt+ ΣX

1 dWX(t) (short rate)

dXj(t) = µXj
(
X(t),MC(t)

)
dt+ ΣX

j

(
X(t),MC(t)

)
dWX(t), j = 2, . . . , J

d〈WX ,W P 〉(t) = ρ
(
X(t),MC(t)

)
dt, i.e. d〈WX

j ,W
P
n 〉(t) = ρjn

(
X(t),MC(t)

)
dt,

(6.10)

where W P = (W P
1 , . . . ,W

P
N ) ∈ RN and WX = (WX

1 , . . . ,W
X
J ) ∈ RJ are standard

Brownian motions, Σn(x, ei) : DX × E → R1,N , µn(x, ei) : DX × E → R, for
n = 2, . . . , N , µXj (x, ei) : DX × E → R, ΣX

j (x, ei) : DX × E → RJ , for j = 2, . . . , J ,

ρ(x, ei) : DX × E → RJ,N , ρjn
(
X(t),MC(t)

)
dt = d〈WX

j ,W
P
n 〉(t) and the following

holds:

Σ1(t) = (Σ11(t), 0, . . . , 0) : [0, T ] 7→ RN (6.11)

ΣX
1 = (ΣX

11, 0, . . . , 0) ∈ RJ (6.12)

ρ11 = −1, ρ1n = ρj1 = 0, for n = 2, . . . , N, j = 2, . . . , J. (6.13)

Recall that Σ11 and µ1 are defined in (6.9) and ΣX
11 and µX1 are given by (6.3) and

(6.5), respectively. To ease the exposition, we denote:

µ(t, x, ei) := (µ1(t, x, ei), µ2(x, ei), . . . , µN(x, ei))
′ ∈ RN

Σ(t, x, ei) := (Σ1(t),Σ2(x, ei), . . . ,ΣN(x, ei))
′ ∈ RN,N

µX(x, ei) := (µX1 (x, ei), µ
X
2 (x, ei), . . . , µ

X
J (x, ei))

′ ∈ RJ

ΣX(x, ei) := (ΣX
1 ,Σ

X
2 (x, ei), . . . ,Σ

X
J (x, ei))

′ ∈ RJ,J .

We assume that Σ is a.s. invertible and that the following conditions hold:

r = x1 (6.14)

µX = k̄(0)(ei)−K(1)x (6.15)

ΣX(ΣX)′ = H(0)(ei) +
J∑
j=1

H(1j)xj (6.16)

(µ− r)′
(
ΣΣ′

)−1
(µ− r) = h(0)(ei) + (h̄(1))′x (6.17)

ΣXρΣ−1(µ− r) = ḡ(0)(ei) +G(1)x (6.18)

ΣXρρ′(ΣX)′ − ΣX(ΣX)′ = L(0)(ei) +
J∑
j=1

L(1j)xj, (6.19)

where k̄(0), ḡ(0) : E 7→ RJ , h(0) : E 7→ R, H(0), L(0) : E 7→ RJ,J , ε̄(1), h̄(1) ∈ RJ ,
K(1), H(1j), G(1), L(1j) ∈ RJ,J , for all j = 1, . . . , J . Recall that k̄

(0)
1 = κ1θ1(ei),
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K
(1)
11 = κ1, K

(1)
1j = 0, for j = 2, . . . , J , H

(0)
11 = χ2

1, H
(1j)
11 = 0, for j = 1, . . . , J .

Note that the above conditions are a special case of Conditions (3.2)-(3.7) and cor-
respond to the assumptions made in Section 5.2.2. Furthermore, observe that this
framework allows for instantaneous correlation between the bond and the stock as
the Brownian motion of the bond W P

1 might influence the dynamics of all assets.

Remark 6.3
If ρ = 0 one can relax Conditions (6.15)-(6.19) by allowing for K(1), H(1j), h̄(1),
G(1), and L(1j) to depend on the Markov chain.

For the risk preferences of the investor we assume a HARA utility function UH as
defined by (2.26) and as discussed in Section 3.1, the set of all admissible trading
strategies is given by:

Λ(t, v) :=
{
π
∣∣∣π(s) ∈ RN , V π(t) = v, V π(T ) ≥ F

}
.

Observe that V π(T ) ≥ F implies that V π(t) ≥ FP1(t, T,X1(t)) for all t ∈ [0, T ], as
otherwise the investor would not have enough capital to buy the necessary amount
of bonds to assure that her terminal wealth is higher than F . This is more precisely
explained by the fact that the stock price and the value of the bank account at
maturity are not bounded from below. Reversely, if V π(t) ≥ FP1(t, T,X1(t)), then
investing the whole wealth in bonds with maturity T assures that the terminal
wealth is higher or equal to F . Thus,

DΛ =
{

(t, v, x, ei) ∈ [0, T ]× [0,∞)×DX × E
∣∣v ≥ FP1(t, T, x)

}
. (6.20)

We consider the optimization problem from (3.12) for the HARA utility function:

J (t,v,x,ei)(π) := EQ

[
UH(V π(T ))|V π(t) = v,X(t) = x,MC(t) = ei

]
Φ(t, v, x, ei) := max

π∈Λ(t,v)
J (t,v,x,ei)(π).

(6.21)

6.2 General optimization results

As in Chapters 4 and 5 we already discussed in detail the two simpler frameworks:
with time-dependent deterministic coefficients and with ρ = 0, here we omit the
detailed results for these two cases and proceed directly with the more relevant
case ρ 6= 0. Recall from Equation (3.16) the corresponding HJB equation for all
(t, v, x, ei) ∈ DΛ:

max
π∈Λ(t,v)

{L(ei, π)Φ(t, v, x, ei)} = −
I∑
z=1

qi,zΦ(t, v, x, ez)

Φ(T, v, x, ei) = UH(v),∀i ∈ {1, . . . , I},
(6.22)
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where the differential operator L(ei, π) is given for each ei ∈ E as follows:

L(ei, π)Φ :=Φt + µV Φv + (µX)′Φx +
1

2
ΣV (ΣV )′Φvv +

1

2
Tr
(
ΣX(ΣX)′Φxx′

)
+ ΣV ρ′(ΣX)′Φvx

∣∣∣
(t,v,x,ei,π)

.

As in Equation (3.18) the candidate for the optimal portfolio is given by:

π̄(t) =− 1

V π̄(t)Φvv

{
Φv

(
ΣΣ′)−1(µ− r) + (Σ′)−1ρ′(ΣX)′Φvx

}∣∣∣
(t,V π̄(t),X(t),MC(t))

.

(6.23)

According to the form of the utility function we propose the following ansatz for the
value function:

Φ(t, v, x, ei) =
1− δ
δ

α
{ 1

1− δ
(
v − Fd(t, x1)

)}δ
f(t, x, ei), (6.24)

where d : [0, T ] × R 7→ R and f : [0, T ] × RJ × E 7→ R are real-valued functions.
Together with (6.23) this ansatz leads to the following expression for the candidate
optimal strategy π̄:

π̄(t) =
1

1− δ
V π̄(t)− Fd
V π̄(t)

{
(ΣΣ′)−1(µ− r) + (Σ′)−1ρ′(ΣX)′

fx
f

}
+

Fd

V π̄(t)
(Σ′)−1ρ′(ΣX)′

dx
d

∣∣∣
(t,V π̄(t),X(t),MC(t))

.

(6.25)

Substitution of (6.23) and (6.24) in (6.22) leads to the following system of PDEs for
f and d:

v2
{ L1

1− δ
+ rf

}
+ vF

{
− fL2 + f ′x

(
ΣXρρ′(ΣX)′ − ΣX(ΣX)′

)
dx −

2

1− δ
dL1

− drf
}

+ F 2dfL2 − F 2df ′x
(
ΣXρρ′(ΣX)′ − ΣX(ΣX)′

)
dx +

1

1− δ
F 2d2L1

+
1− δ

2
F 2fd′x

(
ΣXρρ′(ΣX)′ − ΣX(ΣX)′

)
dx

∣∣∣
(t,x,ei)

= 0,∀i = 1, . . . , I,

(6.26)

where

L1 :=
1− δ
δ

ft +
1− δ
δ

(µX)′fx +
1

2

1− δ
δ

Tr
(
ΣX(ΣX)′fxx′

)
+

1

2
(µ− r)′

(
ΣΣ′

)−1
(µ− r)f + f ′xΣ

XρΣ−1(µ− r) +
1

2

f ′x
f

ΣXρρ′(ΣX)′fx

+
1− δ
δ

I∑
z=1

qi,zf(t, x, ez)

L2 :=dt + (µX)′dx +
1

2
Tr
(
ΣX(ΣX)′dxx′

)
− d′xΣXρΣ−1(µ− r).
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The terminal conditions read as follows:

f(T, x, ei) = 1

d(T, x1) = 1.

The explicit solutions for f and d and consequently the solution to the HJB equation
are stated in the following theorem. We also state the solution in the corresponding
time-dependent model, as we will need it later on.

Theorem 6.4 (Solution with the HARA utility function)
Assume that the following system of ODEs:

∂

∂t
Bj(t) + δε̄

(1)
j +

1

2

δ

1− δ
h̄

(1)
j −

J∑
d=1

Bd(t)K
(1)
jd +

δ

1− δ

J∑
d=1

Bd(t)G
(1)
jd

+
1

2

δ

1− δ
B(t)′

(
L(1j) +H(1j)

)
B(t) +

1

2
B(t)′H(1j)B(t) = 0

Bj(T ) = 0,∀j ∈ {1, . . . , J},

(6.27)

admits a solution B(t) =
(
B1(t), . . . , BJ(t)

)′
. Furthermore, define:

ξ(t, ei) =E
[

exp
{∫ T

t

w
(
s,MC(s)

)
ds
}∣∣MC(t) = ei

]
, (6.28)

with

w(t, ei) =
1

2

δ

1− δ
h(0)(ei) +B(t)′k̄(0)(ei) +

δ

1− δ
B(t)′ḡ(0)(ei)

+
1

2

δ

1− δ
B(t)′

(
L(0)(ei) +H(0)(ei)

)
B(t) +

1

2
B(t)′H(0)(ei)B(t).

(6.29)

Then functions f and d given by:

f(t, x, ei) =ξ(t, ei) exp
{
B(t)′x

}
, (6.30)

d(t, x1) =P1(t, T, x1) = exp
{
− A1(T − t)− A2(T − t)x1

}
(6.31)

satisfy System (6.26). Function Φ given by:

Φ(t, v, x, ei) =
1− δ
δ

α
{ 1

1− δ
(
v − Fd(t, x1)

)}δ
f(t, x, ei) (6.32)

solves Equation (6.22) with π = π̄ given by:

π̄(t) =
1

1− δ
v − Fd
v

{
(ΣΣ′)−1(µ− r) + (Σ′)−1ρ′(ΣX)′(B1, B2, . . . , BJ)′

}
+
Fd

v
(Σ′)−1ρ′(ΣX)′(

dx1

d
, 0, . . . , 0)′

∣∣∣
(t,V π̄(t),X(t),MC(t))

.
(6.33)
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The HJB solution for the corresponding time-dependent model is given by:

Φm =
1− δ
δ

α
{ 1

1− δ
(
v − Fd(t, x1)

)}δ
exp

{∫ T

t

w
(
s,m(s)

)
ds
}

exp
{
B(t)′x

}
,

(6.34)

and

π̄m =
1

1− δ
v − Fd
v

{
(ΣΣ′)−1(µ− r) + (Σ′)−1ρ′(ΣX)′(B1, B2, . . . , BJ)′

}
+
Fd

v
(Σ′)−1ρ′(ΣX)′(

dx1

d
, 0, . . . , 0)′

∣∣∣
(t,Vm,π̄m (t),Xm(t),m(t))

.
(6.35)

Proof
We are interested in solving Equation (6.26) in order to find the HJB solution. By
comparison of coefficients the terms in front of the powers of v should be zero, which
yields the following system:

v2 :
L1

1− δ
+ rf = 0⇔ L1 = −(1− δ)rf (6.36)

v1 :− fL2 + f ′x
(
ΣXρρ′(ΣX)′ − ΣX(ΣX)′

)
dx −

2

1− δ
dL1 − drf = 0

(6.36)⇔ −fL2 + f ′x
(
ΣXρρ′(ΣX)′ − ΣX(ΣX)′

)
dx +

2

1− δ
d(1− δ)rf − drf = 0

⇔ L2 =
f ′x
f

(
ΣXρρ′(ΣX)′ − ΣX(ΣX)′

)
dx + dr (6.37)

v0 :F 2dfL2 − F 2df ′x
(
ΣXρρ′(ΣX)′ − ΣX(ΣX)′

)
dx +

1

1− δ
F 2d2L1

+
1− δ

2
F 2fd′x

(
ΣXρρ′(ΣX)′ − ΣX(ΣX)′

)
dx = 0

6.36⇔
6.37

F 2df

(
f ′x
f

(
ΣXρρ′(ΣX)′ − ΣX(ΣX)′

)
dx + dr

)
− F 2df ′x

(
ΣXρρ′(ΣX)′ − ΣX(ΣX)′

)
dx −

1

1− δ
F 2d2(1− δ)rf

+
1− δ

2
F 2fd′x

(
ΣXρρ′(ΣX)′ − ΣX(ΣX)′

)
dx = 0

⇔ F 2df ′x
(
ΣXρρ′(ΣX)′ − ΣX(ΣX)′

)
dx + F 2d2fr − F 2df ′x

(
ΣXρρ′(ΣX)′

− ΣX(ΣX)′
)
dx − F 2d2fr +

1− δ
2

F 2fd′x
(
ΣXρρ′(ΣX)′ − ΣX(ΣX)′

)
dx

⇔ fd′x
(
ΣXρρ′(ΣX)′ − ΣX(ΣX)′

)
dx = 0. (6.38)

Note that dx = (dx1 , 0, . . . , 0)′ and recall Equations (6.12)and (6.13) from Definition
6.2 to conclude that: (

ΣXρρ′(ΣX)′ − ΣX(ΣX)′
)
dx = 0.
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Thus, Equation (6.38) is trivially fulfilled. Considering additionally Equation (6.11)
and the fact that function d depends only on x1, Equation (6.37) simplifies to:

dt +
(
µX1 − ΣX

11ρ11
µ1 − r

Σ11

)
dx1 +

1

2
(ΣX

11)2dx1x1 − dr = 0, (6.39)

with terminal condition d(T, x1) = 1. By recalling the definitions of µ1 and Σ11

from Equation (6.9), as well as the fact that ρ11 = −1 and the definition of µ̃X1 from
Equation (6.1), we can follow that:

µX1 − ΣX
11ρ11

µ1 − r
Σ11

= µ̃X1 .

Inserting this into (6.39) and comparing with (6.2) we see that d corresponds to the
price of a zero-coupon bond with maturity T and analogously to Equation (6.6) is
given by:

d(t, x1) = P1(t, T, x1) = exp
{
− A1(T − t)− A2(T − t)x1

}
. (6.40)

Now let us continue with Equation (6.36) and the calculation of its solution f . Note
that up to a constant it is the same as Equation (5.3), so from Theorem 5.10 we
know its solution and it is exactly as given by the theorem. The solution for the
corresponding time-dependent model follows analogously. 2

Before we state a verification result, we first check the admissibility of the candidate
π̄ for the optimal portfolio by showing in the next theorem that V π̄(t) ≥ Fd(t,X1(t)).
The proof can be found in Appendix D.

Theorem 6.5 (Lower Bound)
Let f and d be given as in Theorem 6.4 and π̄ be the strategy given by Equation
(6.33). Assume the following lower bound for the initial wealth of the investor:

V π̄(0) ≥ Fd(0, X1(0)).

Then it holds:

V π̄(t) ≥ Fd(t,X1(t)),∀t ∈ (0, T ].

Now we prove a verification theorem that gives a set of sufficient conditions for the
derived function Φ and portfolio π̄ to be the solution to the considered optimization
problem. It is analogous to Theorem 5.1. Although the proof follows the same steps
as Theorem 5.1, we provide it in Appendix D as there are some complications due
to the more general utility function.

Theorem 6.6 (Verification via a martingale condition)
Consider function d as given by (6.31) and let function Φ : DΛ → R, where DΛ is
defined by (6.20) fulfill the following conditions:
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i) For each ei ∈ E , Φ is once continuously differentiable in t and twice continu-
ously differentiable in v and x.

ii) Φ satisfies System (6.22) with π = π̄ given as in (6.33).

iii)
{

Φ
(
t, V π̄(t), X(t),MC(t)

)}
t∈[0,T ]

is a martingale.

Then E
[
U
(
V π̄(T )

)∣∣V π̄(t) = v,X(t) = x,MC(t) = ei
]

= Φ(t, v, x, ei). Further, if

Φ(t, v, x, ei) = 1−δ
δ
α
{

1
1−δ

(
v − Fd(t, x1)

)}δ
f(t, x, ei) with some positive function f

then Φ is the value function and π̄ is the optimal trading strategy to Problem (6.21).

Now, we combine Theorems 6.4, 6.6 and 3.5 in the following corollary.

Corollary 6.7
Adopt the notation from Theorem 6.4 and assume that the conditions required
there are true. If at least one of the processes {Φm(t, V m,π̄m(t), Xm(t))}t∈[0,T ] or
{Φ(t, V π̄(t), X(t),MC(t))}t∈[0,T ] is a martingale, then Φ is the value function and
π̄ the optimal strategy for Problem 6.21.

Proof
As in Proposition 5.3 one can show that the martingale property of Φm leads to
the verification result for the time-dependent model. Then, Theorem 3.5 yields the
verification result for the Markov-switching model as well. Furthermore, if Φ is a
martingale, we can apply Theorem 6.6 to show that Φ is the value function and π̄
the optimal trading strategy for the considered optimization problem.

2

As in Proposition 5.6, the martingale property of Φm can be shown under certain
conditions by Theorem 2.34. We state this is the following proposition:

Proposition 6.8 (Verification via Theorem 2.34)
Consider Φm : DΛ → R and π̄m given by (6.34) and (6.35), respectively. Define
process G by:

G(t) := ln

(
Φm(t, V m,π̄m(t), Xm(t))

Φm(0, V m,π̄m(0), Xm(0))

)
.

Now consider the J + 1-dimensional process Z := (X̄m, G)′, where X̄m is a suitable
permutation of Xm. Then its differential semimartingale characteristics µZ ,ΓZ ex-
hibit an affine structure as in Theorem 2.34. Assume that µZ ,ΓZ fulfill requirements
i)-iv) from Theorem 2.34. Then Φ given by (6.32) is the value function to Problem
(6.21) and the optimal portfolio is as given in (6.33).
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Proof
Substitution of (6.34) and (6.35) in the definition of G leads to the same dynamics
for process G as in Proposition 5.6. Thus, the rest of the proof is exactly the same
as the proof of Proposition 5.6.

2

Now we would like to have a closer look at the optimal investment strategy (6.33)
and understand better the role of its single parts. Note that it exhibits a structure
similar to a CPPI strategy: the investment in the risky assets (up to the last term for
the bond investment) is proportional to the difference between the current wealth
and the discounted floor, which is in this case Fd. This difference is called the
cushion. The CPPI strategy was introduced by [88] and [13]. For further details
see e.g. [89] and [103]. As we have additional stochastic factors, the multiplier for
the risky exposure is not constant but stochastic. This analogon is completed by
Theorem 6.5 that proves that F is a lower bound for the terminal wealth. Thus it
can be indeed interpreted as a floor.
The additional term in the bond position is a correction for the stochastic short
rate and accounts for the fact that the floor cannot be replicated only by the bank
account. To better explain this we introduce the following notation:

π̄(t) = π̂(t) + π̃(t) =
V π̄ − Fd
V π̄

π̇(t) +
Fd

V π̄
π̈(t),

where π̂ contains the terms in (6.33) proportional to V π̄−Fd
V π̄

and π̃ contains the
last term in (6.33), which is proportional to Fd

V π̄
. The optimal investment for the

power utility function is obtained by setting F = 0 and is denoted by π̇. So, π̂
corresponds to the optimal investment for the power utility function scaled by the
factor V π̄−Fd

V π̄
∈ (0, 1]. Note that it exhibits the usual decomposition in a myopic

part driven by the stocks excess return and volatility and a hedging part coming
from the stochastic factor X. The second part π̃ contains an additional investment
in the bond due to the stochastic interest rate. In the case of a deterministic interest
rate or for F = 0 it would be zero. Let us rewrite the SDE for V π̄ with this new
notation:

dV π̄ = (V π̄ − Fd)
[{
r + π̇′(µ− r)

}
dt+ π̇ΣdW P

]
︸ ︷︷ ︸

=d(V π̄−Fd)

+ Fd
[{
r + π̈′(µ− r)

}
dt+ π̈ΣdW P

]
︸ ︷︷ ︸

=d(Fd)

.

So, the optimal investment consists basically of two parts: the first one invests the
cushion V π̄−Fd according to the optimal portfolio for the power utility function and
the second one replicates Fd by an investment in the bank account and the bond.
Using the martingale approach for dynamic optimization [72] obtained similar results
in a complete market (without additional stochastic factors and without Markov
switching).
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In the next two sections we apply the derived results to a concrete example and
provide a more detailed analysis of the influence of the model parameters on the
optimal strategy.

6.3 Example: Markov-modulated Heston model

with stochastic interest rates

In what follows we consider an example with a bond and a stock, where the stock
exhibits stochastic volatility and follows Markov-switching Heston-type dynamics.
Models with similar features have been motivated in various empirical studies (see
the references in Section 6.4). We apply the derived results from Section 6.2 to this
bond-stock model, study their sensitivity to the model parameters and provide an
economic interpretation. More precisely the model under consideration is given by:

dP0(t) =P0(t)X1(t)dt (bank account)

dP1(t) =P1(t)
[
X1(t) + λ1

(
MC(t)

)
A2(T1 − t)χ1dt+ A2(T1 − t)χ1dW P

1 (t)
]

(bond)

dP2(t) =P2(t)
[
X1(t) + λ1

(
MC(t)

)
a+ λ2ν

(
MC(t)

)
X2dt+ adW P

1 (t)

+ ν
(
MC(t)

)√
X2(t)dW P

2 (t)
]

(stock)

dX1(t) =κ1

(
θ1

(
MC(t)

)
−X1(t)

)
dt+ χ1dWX

1 (t) (short rate)

dX2(t) =κ2

(
θ2

(
MC(t)

)
−X2(t)

)
dt+ χ2

√
X2(t)dWX

2 (t) (stochastic volatility)

ρ =

(
−1 0
0 ρ̄

)
,

(6.41)

where λ1, ν, θ1, θ2 : E → R are real-valued functions of the state of the Markov
chain and χ1, a, λ2, κ1, κ2, χ2 ∈ R are constants. Recall that θ1(ei) = θ̃1 − χ1λ1(e1)

κ1
,

κ1, χ1 > 0 and the definition of function A2 from (6.8). Furthermore, assume that

κ2 > 0, χ2 > 0 and θ2(ei) >
χ2

2κ
in order to assure the positiveness of process X2. In

terms of the general notation from (6.2) we have:

r = x1

µX =

(
κ1θ1(ei)− κ1x1

κ2θ2(ei)− κ2x2

)
ΣX =

(
χ1 0
0 χ2

√
x2

)
⇒ ΣX

(
ΣX
)′

=

(
χ2

1 0
0 χ2

2x2

)
Σ =

(
A2(T1 − t)χ1 0

a ν(ei)
√
x2

)
µ− r =

(
λ1(ei)A2(T1 − t)χ1

aλ1 + λ2ν(ei)x2

)
⇒ Σ−1(µ− r) =

(
λ1(ei)
λ2
√
x2

)
ΣXρΣ−1(µ− r) =

(
−χ1λ1(ei)
χ2ρ̄λ2x2

)
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ΣXρρ′(ΣX)′ − ΣX(ΣX)′ =

(
0 0
0 χ2

2(ρ̄2 − 1)x2

)
,

which implies that:

k̄(0)(ei) =

(
κ1θ1(ei)
κ2θ2(ei)

)
, K(1) =

(
κ1 0
0 κ2

)
H(0) =

(
χ2

1 0
0 0

)
, H(11) = 0, H(12) =

(
0 0
0 χ2

2

)
h(0) = λ2

1(ei), h̄
(1) =

(
0
λ2

2

)
ḡ(0) =

(
−χ1λ1(ei)

0

)
, G(1) =

(
0 0
0 χ2ρ̄λ2

)
L(0) = 0, L(11) = 0, L(12) =

(
0 0
0 χ2

2(ρ̄2 − 1)

)
.

So, Model (6.41) fits in our general framework and we can apply Proposition 6.8 to
derive the solution to the considered optimization problem. The result is given in
the following proposition:

Proposition 6.9 (Solution and verification for a bond-stock model)
Consider Model (6.41) and assume that:

0 <κ̃2 (6.42)

δ

1− δ
λ2

2 <
κ̃2

2

χ̃2
2

, (6.43)

where κ̃2 = κ2 − δ
1−δχ2ρ̄λ2 and χ̃2

2 = χ2
2

(
1 + δ

1−δ ρ̄
2
)
. Then, the value function to the

considered optimization problem is given by:

Φ =
1− δ
δ

α
{ 1

1− δ
(
v − Fd(t, x1)

)}δ
E
[

exp
{∫ T

t

w
(
s,MC(s)

)
ds
}∣∣MC(t) = ei

]
· exp

{
B1(t)x1 +B2(t)x2

}
,

(6.44)

where

d(t, x1) =P1(t, T, x1) = exp
{
− A1(T − t)− A2(T − t)x1

}
w(t, ei) =

1

2

δ

1− δ
λ2

1(ei) +B1(t)
(
κ1θ1(ei)−

δ

1− δ
χ1λ1(ei)

)
+B2(t)κ2θ2(ei) +

1

2

1

1− δ
B2

1(t)χ2
1

B1(t) =
δ

κ1

(
1− exp

{
− κ1(T − t)

})
B2(t) =

−b(κ̃2 + c) exp{−c(T − t)}+ κ̃2 − c
χ̃2

2

(
1− b exp{−c(T − t)}

) ,

(6.45)
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with A1 and A2 as in (6.7) and (6.8), respectively, and

c :=

√
κ̃2

2 −
δ

1− δ
λ2

2χ̃
2
2

b :=
κ̃2 − c
κ̃2 + c

.

The optimal portfolio has the following expression:

π̄ =
V π̄ − Fd
V π̄


1

1− δ

( λ1

A2(T1−t)χ1
− aλ2

A2(T1−t)χ1ν
λ2

ν

)
︸ ︷︷ ︸

=:π̄MV

+
1

1− δ

(
− 1
A2(T1−t)

(
B1 + aρ̄χ2

χ1ν
B2

)
ρ̄χ2

ν
B2

)
︸ ︷︷ ︸

=:π̄H


+

(
Fd
V π̄

A2(T−t)
A2(T1−t)

0

)
︸ ︷︷ ︸

=:π̄F

∣∣∣
(t,V π̄(t),X(t),MC(t))

.

(6.46)

For the proof see Appendix D.

Now we are interested in better understanding the optimal portfolio and how
the single model parameters influence it. Analogously to the case of the power
utility function, π̄MV is mainly driven by the ratio between the market price of
risk and the volatility for the single assets and is called the mean-variance part.
The second term π̄H adjusts it for the additional risk coming from the stochastic
factors and is called the hedging part. As already discussed in Section 6.2, the last
term π̄F is used for the replication of the floor, that is why we call it the replication
part. The mean-variance term is intuitive: the higher the market price of risk for
the considered asset and the lower its volatility, the higher the investment in this
asset. As the two assets are correlated the excess return for P2 influences also the
position in P1, e.g. if a < 0, i.e. the bond and the stock are negatively correlated, a
higher mean-variance position in the stock leads to a higher investment in the bond
as well. Economically this can be interpreted as a diversification effect.
The same correlation term proportional to a can be observed in the hedging term
as well. The remaining drivers of the hedging term are basically the parameters
of the stochastic factors. To better understand the hedging effect, let us assume
for a moment that a = 0. It becomes clear that the hedging bond position is
due to the stochastic interest rate X1 and the hedging stock position comes from
the stochastic volatility driver X2. It is interesting to explore the sign of π̄H . As
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in Section 4.3 and 5.3.2 it can be easily shown that sign(− B1

A2(T1−t)) = −sign(δ)

and sign( ρ̄χ2

ν
B2) = sign(ρ̄)sign(ν)sign(δ). So, if ρ̄ < 0, which corresponds to the

leverage effect, ν > 0, which means a positive stock position, and δ < 0, the hedging
term is positive. The reason is that the investor wants to hedge his portfolio against
the risk of falling interest rates and market price of risk. A falling short rate implies
rising bond price, and decreasing X2 is related to increasing stock price due to the
leverage effect. So, the hedge is achieved by a positive position in both risky assets.
If δ > 0. i.e. we are dealing with a less risk averse investor, the hedging term is
negative, as the investor speculates on rising X1 and X2. The importance of the
hedging factor for different values for the relevant parameters is further studied in
the next section.
Now let us have a look at the replicating term π̄F . It contains just a bond position.
It is clear that π̄F1 > 0. Furthermore, the higher the floor relative to the current
wealth, the higher its importance. It also holds that the closer T1 to T , the higher
π̄F1 . This is explained by the fact that then the traded bond replicates better the
floor at maturity.

6.4 Application to real data

In this section we illustrate the derived results for Model (6.41) using real data. To
this aim we first estimate the model parameters and then study the performance of
the derived optimal Strategy (6.46).

6.4.1 Data and introduction

For the parameter estimation we use weekly time series over the period from De-
cember, 1st 2005 till December, 30th 2010. The used data is publicly available from
the Frankfurt Stock Exchange (www.boerse-frankfurt.de) and the Deutsche Bundes-
bank (www.bundesbank.de). We identify the stock price process P2 with the German

stock index DAX and approximate its volatility process
√
a2 + ν2

(
MC(t)

)
X2(t) by

the corresponding volatility index VDAX. For a discussion of this approximation we
refer to [1]. For the traded bond P1 we consider a 10 years German government zero-
coupon bond. Its price is calculated from the yield curve published by the Deutsche
Bundesbank. The estimation procedure is based on the weekly excess returns of the
stock index and the bond. They are approximated by the difference between the
respective weekly log-returns and the one-week Euribor rate. For the estimation we
use additionally bond yields with maturities ranging from half a year to 25 years.
A documentation of the estimation procedure applied by the Deutsche Bundesbank
to extract the yield curve from observed Government bond prices can be found in
[94]. After the parameter estimation we perform an out-of-sample analysis of the
derived portfolio strategy by applying it to the data over the period from January,
3rd 2011 till February, 2nd 2015. We show how the optimal portfolio is adjusted
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to the regime shifts. Furthermore, we compare the performance of the strategy to
the case wherein the investor does not consider Markov switching and illustrate the
huge misallocation that may arise if the regime switching is neglected.
The observations of the DAX, the VDAX and the 10 years bond price can be seen
in Figure 6.1 and the considered interest rates are presented in Figure 6.2.
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Figure 6.1: Data used for the estimation and the out-of-sample testing: weekly DAX (upper plot)
and VDAX (middle plot) time series and price development of a bond with maturity 10 years at
the first observation point (lower plot).

6.4.2 Parameter estimation

Before we can test the derived strategies we need to estimate the model parameters
using the observed data. To this aim we propose in this section a possible estimation
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Figure 6.2: Data used for the estimation and out-of-sample testing: 1 week Euribor and German
government bond yields for different maturities.

procedure1. It consists of 4 steps. First, we use the empirical bond-stock covariance
to estimate parameter a. Then, we apply a Baum-Welch Algorithm2 to the volatil-
ity process to estimate its parameters and filter the state of the Markov chain.
Afterwards, by using a Kalman Filter3 for bond yields with different maturities
we derive maximum likelihood estimators for the parameters of the short rate and
the traded bond price process. Finally, the remaining parameters for the stock
price process are obtained via linear regression and the stock-volatility correlation
parameter is set to the empirical correlation between the random increments of the
two processes. We set the discretization step to 4 = 7

365
.

Step 1: Stock-bond covariance
As already mentioned, for the estimation we use the excess log-returns of the bond
and the stock:

R1(t) := ln

(
P1(t+4)

P1(t)

)
−X1(t)4

=
[
λ1

(
MC(t)

)
A2(T1 − t)χ1 −

1

2

{
A2(T1 − t)χ1

}2]4
+ A2(T1 − t)χ1

(
W P

1 (t+4)−W P
1 (t)︸ ︷︷ ︸

=:
√
4εP1 (t+4)

)
(6.47)

1We would like to thank Laslo Bollmann and Andreas Lichtenstern for coding parts of a previous
version of the estimation procedure under the close guidance of Daniela Neykova.

2For an introduction to the Baum-Welch Algorithm we refer to [9] and [106].
3An introduction to the Kalman Filter can be found in [64], [65] and [55].
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R2(t) := ln

(
P2(t+4)

P2(t)

)
−X1(t)4

=
[
λ1

(
MC(t)

)
a+ λ2ν

(
MC(t)

)
X2(t)− 1

2

{
a2 + ν2

(
MC(t)

)
X2(t)

} ]
4

+ a
(
W P

1 (t+4)−W P
1 (t)

)
+ ν
(
MC(t)

)√
X2

(
W P

2 (t+4)−W P
2 (t)︸ ︷︷ ︸

=:
√
4εP2 (t+4)

)
,

(6.48)

where εP1 (t) and εP2 (t) are i.i.d. standard-normally distributed for all time points t
in the discretization grid. It follows that:

Cov
(R1(t)−

≈ emp. mean of R1︷ ︸︸ ︷
[λ1

(
MC(t)

)
A2(T1 − t)χ1 −

1

2

{
A2(T1 − t)χ1

}2
]4

A2(T1 − t)χ1︸ ︷︷ ︸
≈ emp. st. dev. of R1/

√
4

,

R2(t) + [
1

2

{
a2 + ν2

(
MC(t)

)
X2(t)

}︸ ︷︷ ︸
=V DAX2

]4
)

= Cov
(√
4εP1 (t+4),

[
λ1

(
MC(t)

)
a+ λ2ν

(
MC(t)

)
X2(t)

]
4

+ a
√
4εP1 (t+4) + ν

(
MC(t)

)√
X2

√
4εP2 (t+4)

)
= Cov

(√
4εP1 (t+4), a

√
4εP1 (t+4)

)
= a4,

where in the last but one equation we have used the fact that W P
1 is independent

of WX
2 and W P

2 . By applying the above equation we obtain a = −0.096. Note
that the instantaneous bond-stock correlation ( a√

a2+ν2
(
MC(t)

)
X2(t)

) is a stochastic

process, however, as an orientation for the average correlation we can replace the
stock volatility by its empirical mean and obtain a

mean(V DAX)
= −0.425. Recent

empirical studies on the bond-stock correlation in different markets report as well
highly negative bond-stock correlation over the last 15 years, see e.g. [3], [6] and
[60]. The average correlation we obtain is in accordance with these findings.

Step 2: Volatility process and Markov chain
Let us now continue with the volatility process. It is clearly visible in Figure 6.1
that the volatility process exhibits short periods with very high levels, followed
by longer periods with moderate values. We would like to reflect this behavior
by considering a Markov chain with two regimes and estimating its parameters
directly from the volatility data. One can also recognize from Figure 6.1 that the
periods with high volatility are related to negative DAX returns and falling interest
rates. This observation is in accordance to existing literature: [79] and [28] conduct
detailed empirical studies to motivate the existence of two market regimes: one
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with high stock return and low volatility and one with lower returns and higher
volatility. For further motivation of Markov-modulated models consult [98] and
[54] who show that Markov-switching models capture well observed properties of
stock returns distributions such as heavy tails, volatility clustering and asymmetry.
[52] and [11] motivate empirically their application to asset allocation problems.
Furthermore, empirical evidences for regime-switching stochastic volatility are
presented in [35] and [30]. Motivated by all these empirical studies we consider
Markov-switching model parameters with two possible regimes and use the VDAX
time series to estimate the parameters of the Markov chain and its state at each
time point.
To ease the exposition we introduce the following notations:

V ara(t) := a2 + ν2
(
MC(t)

)
X2(t) = V DAX(t)2

V ar0(t) := ν2
(
MC(t)

)
X2(t) = V DAX(t)2 − a2.

Then, for the Euler discretization of V ar0 conditional on the state of the Markov
chain we obtain:

V ar0(t+4) =V ar0(t) + κ2

(
ν
(
MC(t)

)2
θ2

(
MC(t)

)︸ ︷︷ ︸
=:θ̂2(MC(t))

−V ar0(t)
)
4

+ |ν
(
MC(t)

)
|χ2︸ ︷︷ ︸

=:χ̂2(MC(t))

√
V ar0(t)

(
WX

2 (t+4)−WX
2 (t)

)︸ ︷︷ ︸
=:
√
4εX2 (t+4)

,
(6.49)

where εX2 (t) are i.i.d. standard normally distributed for all time points t in the grid.
We rewrite it in the form of a linear regression:

V ar0(t+4)− V ar0(t)√
V ar0(t)

√
4︸ ︷︷ ︸

=:y(t+4)

=κ2θ̂2

(
MC(t)

)︸ ︷︷ ︸
=:α1(MC(t))

√
4√

V ar0(t)︸ ︷︷ ︸
=:x1(t)

−κ2︸︷︷︸
=:α2

√
V ar0(t)

√
4︸ ︷︷ ︸

=:x2(t)

+ χ̂2

(
MC(t)

)
εX2 (t+4).

(6.50)

For comparison reasons we first estimate the parameters without Markov switching
using a classical linear regression. Then we obtain the following values: κ2 = 2.115,
θ̂2 = 0.051, χ̂2 = 0.505. The standard errors and levels of significance for the
parameters are presented in Table 6.1: The high levels of significance suggest

Coefficient Value Standard error Level of significance

α1 0.1082 0.0493 0.0291
α2 -2.11531 1.4146 0.1360

Table 6.1: Results for the linear regression in (6.50) with constant parameters (no Markov switch-
ing).

hat the proposed model does not fit well the observed data. The QQ plot of the
residuals shown in Figure 6.3 confirms this conclusion. As we will see, this is
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Figure 6.3: Normal QQ plot of the residuals of the linear regression in (6.50) with constant pa-
rameters (no Markov switching).

strongly improved by considering Markov switching. To estimate the parameters
of the Markov-switching linear regression we use the R-package MSwM that contains
a suitable implementation of the Baum-Welch Algorithm. Applications of the
Baum-Welch Algorithm in similar contexts can be found e.g. in [11] and [57].
The following results are obtained: κ2 = 5.563, θ̂2(e1) = 0.027, θ̂2(e2) = 0.285,

χ̂2(e1) = 0.309, χ̂2(e2) = 1.205, Q =

(
−1.109 1.109
11.385 −11.385

)
. So, the algorithm

recognizes two regimes with very different parameters: the first one is characterized

by a moderate mean-reverting volatility level

√
a2 + θ̂2(e1) = 0.19 and lower

volatility of volatility. On the contrary, in the second state both the average stock

volatility

√
a2 + θ̂2(e2) = 0.54 and the volatility of volatility are much higher.

These results coincide with our intuitive expectations based on Figure 6.1. As
already mentioned in Section 4.3.4 the average occupation time for e1 is − 1

q11
≈11

months, whereas for e2 it is − 1
q22
≈1 month. Thus, we can identify the first state

as a normal stock market situation, whereas the second one describes shorter
turbulent periods. As we will see later on, e2 is also characterized by lower stock
returns, which allows to interpret it as a crisis. These results are in accordance
with the findings in the studies cited at the beginning of Step 2. Furthermore,
note that as explained in Remark 2.45 the average half-life for the mean-reversion
without regime switching is 0.7

κ2
≈3 months, whereas with the regime differentiation

it reduces to approx. 1 months. The reason is that without the Markov chain the
regime switch is interpreted as a deviation from the overall mean-reversion level
and this biases the estimation for κ2.
A look at the levels of significance of the parameters in Table 6.2 and the QQ plot
in Figure 6.4 shows that the model with Markov switching describes the observed
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data much better than the model with constant parameters.
As a byproduct of the Baum-Welch algorithm we obtain also the probabilities

Coefficient Value Standard error Level of significance

α1(e1) 0.1527 0.0353 1.520e−5

α1(e2) 1.5976 0.6872 0.0209
α2 -5.5631 1.1823 2.535e−6

Table 6.2: Results for the linear regression in (6.50) with Markov-switching parameters.
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Figure 6.4: Normal QQ plot of the residuals of the linear regression in (6.50) with Markov-switching
parameters.

for being in the single states at each time point conditional on the information
till this time (so-called filtered probabilities) and conditional on the whole data
(smoothed probabilities). They are plotted in Figure 6.5 (first and second plot).
We use the smoothed probabilities to determine the state of the Markov chain by
a simple intuitive rule: we assume that the Markov chain is in the most probable
state according to the smoothed probability. The filtered state of MC can also
be seen in Figure 6.5 (third plot). Figure 6.6 shows the filtered state together
with the DAX, VDAX and Euribor time series. The algorithm recognizes the
financial crisis of 2008, as well as a few short turbulent periods. These results
coincide with the interpretation of the second state as a crisis. Figure 6.7 depicts
process V ar0 together with its estimated mean-reverting level for the two regimes.
It can be observed that the estimated parameters match well the observed data.
Alternatively one can apply a more sophisticated method for the estimation of the
state of the Markov chain by considering further macroeconomic factors, see e.g. [57].

Step 3: Short rate and bond price
Now that we have the estimates for the states of the Markov chain, we can continue
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Figure 6.5: Filtered probability for the second state (upper plot), smoothed probabilities for the
second state (middle plot) and estimated state using the smoothed probability: ”0”=e1, ”1”=e2
(lower plot).

with the parameters for the bond and the short rate. One difficulty is that the short
rate is not directly observable. That is why we apply a Kalman Filter methodology
to bond yields with different maturities. For detailed empirical studies on the
Kalman Filter application to short rate models consult e.g. [5] and [27]. [29], [42]
and [105] motivate the regime-switching extension of such kind of models.
The first step for the application of the Kalman Filter is to derive the unobservable
transition equation from the solution of the SDE for the short rate process. We
assume that the Markov chain remains constant on the discretization interval
[t, t+4) and obtain the following:

X1(t+4) =θ1

(
MC(t)

)(
1− exp{−κ14}

)
+X1(t) exp{−κ14} (6.51)

+ χ1

∫ t+4

t

exp{κ1(s− t−4)}dWX
1 (s)︸ ︷︷ ︸

d
=N (0,

χ2
1

2κ1
(1−exp{−2κ14}))

. (6.52)

This equation can be rewritten as follows:

X1(t+4) =θ1

(
MC(t)

)(
1− exp{−κ14}

)
+X1(t) exp{−κ14}+ Σ1ε

X
1 (t), (6.53)
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Figure 6.6: On the left y-axis: VDAX time series (blue line), 1-week-Euribor time series scaled by
the factor 10 (cyan line), estimated state (green dots: ”0”=e1, ”1”=e2); on the right y-axis: DAX
time series (red line).

where θ1(ei) = θ̃1− χ1λ1(e1)
κ1

, Σ2
1 :=

χ2
1

2κ1
(1−exp{−2κ14}) and εX1 (t) are i.i.d. standard

normally distributed. For the measurement equations we use bond yields with d
different times to maturity τ1, . . . , τd:

Rτ1(t,X1(t)) : = −
ln
{
P1(t, t+ τ1, X1(t))

}
τ1

+ ΣR
1 ε

R
1 (t)

=
A1(τ1)

τ1

+
A2(τ1)

τ1

X1(t) + ΣR
1 ε

R
1 (t)

...

Rτd(t,X1(t)) : = −
ln
{
Pd(t, t+ τd, X1(t))

}
τd

+ ΣR
d ε

R
d (t)

=
A1(τd)

τd
+
A2(τd)

τd
X1(t) + ΣR

d ε
R
d (t),

(6.54)

where εR1 (t), . . . , εRd (t) are i.i.d. standard normally distributed measurement errors.
We need to assume the random measurement errors, so that we can consider
simultaneously various maturities without obtaining a non-solvable system. Note
that due to the dependence of λ1 and thus θ1 on the Markov chain we have to
deal with time-dependent parameters in the transition Equation (6.52). To this
aim we use the R-package FKF that offers a Kalman Filter implementation with
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Figure 6.7: Process V ar0 (blue line) together with the estimated mean-reverting levels θ̂2(e1) and

θ̂2(e2) for the estimated regimes.

time-dependent model parameters. We apply it to the German government bond
yields for maturities 0.5, 1, 2, 3, 4, 5, 7, 10, 20 and 25 years and obtain the
following results: κ1 = 0.266(0.004), θ̃1 = 0.047(0.0002), χ1 = 0.013(0.0005),
λ1(e1) = 0.146(0.316), λ1(e2) = 6.674(1.549), where the values in parenthesis
correspond to the standard errors of the estimates. First of all, note that there is
an immense difference between the values for λ1 for the two states. This is one
more indicator for the existence of two very different market regimes. Moreover,
we would like to draw the attention of the reader to the well-known difficulty
when estimating λ1, recognizable in the big standard errors of the estimates for λ1

(see e.g. [105]). Incorporating expert opinions or applying a more sophisticated
estimation method might be useful. However, as the aim of this exemplary
estimation is the illustration of the derived optimal strategies we do not go deeper
in this issue. Let us have a closer look at the estimated values for λ1. Substitution
in the formula θ1 = θ̃1 − χ1λ1

κ1
leads to θ1(e1) = 0.040 and θ1(e2) = −0.275. At first

sight the negative mean-reverting level for the second regime might seem surprising.
However, it is explained by the fact that during the crisis in 2008 the interest rates
dropped extremely fast to very low levels. Furthermore, note that in our case the
negative θ1(e2) does not mean that the short rate will become negative, as the
average time needed for the mean-reversion is much longer than the average time
spent in the second regime. To see this recall that the half-life of process X is given
by ln 2

κ1
≈ 2.6 years, whereas the expected time spent in regime e2 is − 1

q22
≈1 month.

The filtered short rate and the reconstructed yields using the derived parameters
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(without the measurement errors) are shown in Figure 6.8. It is recognizable that
the yields on both extreme ends - very short and very long - are not reconstructed
accurately, however the yields for maturities from three to seven years are matched
well. Clearly we are dealing with a situation where the one-factor interest rate
model meets its limits. However, we prefer to keep this simplicity of the interest
rate modeling as it allows us to present the portfolio optimization results in a
clearer way. What is more, the investor trades in a bond with maturity of ten years
at the initial time point and has a trading horizon of roughly five years. So, she is
not strongly affected by the mismatch on the very short and very long ends.
For comparison, the estimated parameters without Markov switching are given by:
κ1 = 0.266(0.004), θ̃1 = 0.047(0.0002), χ1 = 0.013(0.0005), λ1 = 0.689(0.284), where
again the values in parenthesis correspond to the standard errors of the estimates.
The values for κ1, θ̃1 and χ1 are the same as in the case of a Markov-switching λ1.
The reason is that λ1 does not appear directly in the formulas for the bond yields
in (6.54) but only through the state of the unobservable short rate X1.

Step 4: Stock price
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Figure 6.8: 1 week Euribor and German government bond yields for different maturities: real data
(lines) and reconstructed yields using the estimated parameters (circles).

What is left to be estimated are the stock parameters and the stock - volatility
correlation. For these parameters we again consider the weekly excess return of the
stock price process conditional on the state of the Markov chain and rewrite it as a
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linear regression:

R2(t)−
[
λ1(MC(t))a− 1

2
V ara(t)

]
4√

V ara(t)︸ ︷︷ ︸
=V DAX(t)

√
4

︸ ︷︷ ︸
=:y2(t+4)

=
λ2

ν(MC(t))︸ ︷︷ ︸
=:β(MC(t))

=V ar0(t)︷ ︸︸ ︷
ν2(MC(t))X2√

V ara(t)

√
4︸ ︷︷ ︸

=:x(t)

+εP2 (t+4).

(6.55)

We will use the states of the Markov chain from Step 2 and a linear regression
estimation to obtain the unknown parameters. However, note that β(e1) and β(e2)

can not be chosen freely, as from Step 2 we have that β(e1)
β(e2)

= ν(e2)
ν(e1)

= χ̂2(e2)sign(ν(e2))
χ̂2(e1)sign(ν(e1))

.
Thus we cannot run two separate linear regressions for the two states of the Markov
chain. To deal with this restriction we transform the x-values corresponding to
the second state by multiplying them with χ̂2(e1)

χ̂2(e2)
. By doing so we obtain a linear

regression only in terms of β(e1) over the whole time series. The following values
are obtained: λ2

ν(e1)
= 5.102, λ2

ν(e2)
= −1.307. Note that λ2

ν
corresponds to the ratio

between the excess return related to the stochastic volatility and the corresponding
stochastic part of the variance. There is a clear difference between the two states:
this ratio is much higher in the first state, whereas in the second state it even becomes
negative. This result confirms the interpretation of the states of the Markov chain
as a normal situation and a crisis. To get an intuition on the estimated parameters
in Table 6.3 we compare the empirical mean of the stock variance and excess return
with the estimated average values for the two regimes. More precisely, we compare
the following:

emp. mean(V ara(t)|MC(t) = ei) ≈a2 + θ̂2(ei)

emp. mean(R2(t)|MC(t) = ei) ≈
[
λ1(ei)a+

λ2

ν(ei)
emp. mean(V ar0(t)|MC(t) = ei)

− 1

2
emp. mean(V ara(t)|MC(t) = ei)

]
4,

for i = 1, 2. It can be recognized that the estimated average for the variance is
lower than the empirical mean in state e1 and higher in regime e2. The reason is
that at every regime switch the process starts moving towards its long-term mean
for the corresponding regime, however it takes some time till it reaches it. For
the excess return we observe that the empirical mean is exactly matched in the
first regime, in contrast to the second regime, where we observe a difference. This
is explained by the fact that the time series contains much more observations for
state e1, so regime e1 has a bigger weight in the computation of the estimates via
the linear regression. Without Markov switching one obtains a value between the
two regimes: λ2

ν
= 2.2304. Although the QQ plots for both regressions with and

without Markov switching are quite similar (see Figures 6.9 and 6.10), allowing
for Markov switching improves strongly the level of significance of the considered
parameter (compare Tables 6.4 and 6.5). We continue with the estimation of the
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state Excess return Variance
empirical mean estimated average empirical mean estimated average

e1 0.003 0.003 0.047 0.037
e2 -0.026 -0.019 0.200 0.295

Table 6.3: Comparison of the empirical mean of the stock excess return and variance with the
estimated average values for the two regimes.

Coefficient Value Standard error Level of significance

β 2.234 2.072 0.282

Table 6.4: Results for the linear regression in (6.55) with constant parameters (no Markov switch-
ing).

stock-volatility correlation. To this aim we consider the noise terms in the weekly
excess return of P2 and the Euler discretization of V ar0:

εP2 (t+4) =
R2(t)−

[
λ1a+ λ2

ν
V ar0(t)− 1

2
V ara(t)

]
4− a

√
4εP1 (t+4)√

V ar0(t)
√
4

εX2 (t+4) =
V ar0(t+4)− V ar0(t)−

[
κ2

(
θ̂2 − V ar0(t)

)]
4

χ̂2

√
V ar0(t)

√
4

,

where for better readability the dependence on the Markov chain is omitted. Note
that εP1 is obtained from the weekly excess return of P1 given in (6.47). The
empirical correlation of εP2 and εX2 yields ρ̄ = −0.454. For the case without Markov
switching we get ρ̄ = −0.514.

The estimated values for the parameters are summarized in Table 6.6. For
comparison, we also include the parameter estimates without Markov switching.

6.4.3 Optimal portfolio

Now we are ready to test the derived portfolio strategies. Using the parameters
estimated over the period 2005-2010, we perform an out-of sample test over the
period 2011-2015. For the estimate of the state of the Markov chain we use the
filtered probabilities. So, at every time point, the investor uses only past data for
her investment decision and assumes that the Markov chain will stay in the same
state for the next short period. The investor trades in the DAX and in a German
government bond with maturity 10 years at the beginning. Furthermore, she can
borrow and lend money at the 1 week Euribor rate. The investment horizon is set to

Coefficient Value Standard error Level of significance

β(e1) 5.102 2.404 0.0348

Table 6.5: Results for the linear regression in (6.55) with Markov-switching parameters.
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Figure 6.9: Normal QQ plot of the residuals of the linear regression in (6.55) with constant pa-
rameters (no Markov switching).

the last day in our time series, February, 20th 2015. The portfolio is restructured on
a weekly basis. The risk preferences of the investor are characterized by the HARA
utility function (2.26) with the following parameters: δ = −10, α = (1 − δ)δ−1 (to
assure comparability with the power utility function) and the floor F is set to 80%
of the initial wealth. The resulting wealth path is plotted in Figure 6.11. It is
compared to the following three cases:

1. the complete initial wealth is invested in the DAX;

2. the complete initial wealth is invested in the bond;

3. the investor estimates the model without considering Markov switching and
follows the resulting optimal strategy.

It is clearly recognizable that the wealth process with the derived MS-strategy is
most of the time above the paths in the other three cases and ends up with the high-
est wealth. The positions in the bond and in the stock are presented in Figure 6.12.
Let us first consider the stock investment. One can recognize that by differentiating
between two different states and adjusting her portfolio accordingly the investor can
profit from the DAX in both states of the economy: she holds a long position in
the good state and a short position in a crisis. In contrast, if she accounts only for
one state she almost does not invest in the stock due to the averaging between the
two states. The effect of the Markov switching is clearly visible also in the bond
position: in times of a crisis the investor holds a big long position due to the falling
interest rates and increasing bond prices.
Now let us compare the solution to the power utility functions by setting F = 0.
The wealth path and the optimal portfolio are plotted in Figures 6.13 and 6.14,
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Figure 6.10: Normal QQ plot of the residuals of the linear regression in (6.55) with Markov-
switching parameters.

respectively. One can recognize that the minimum of the wealth path is lower than
in the previous case of F = 80% of the initial wealth. This is intuitively clear as in
the present case the utility function does not imply a lower bound on the wealth.
Thus, the investor is exposed to a higher risk on both the down and up side: the
minimum of the wealth is lower, however the terminal wealth is higher than when
we impose a floor restriction. The higher absolute value of the investment in the
risky assets is in accordance with this interpretation.
We would like to deepen our analysis on the influence of F by studying not only one
single path but the whole distribution of the terminal wealth. To this aim we simu-
late 1100000 paths according to Model (6.41) with the parameter values from Table
6.6 and apply the derived optimal strategy (6.46) for different values for the floor F
and the risk aversion parameter δ. The resulting histograms are plotted in Figure
6.15. For comparison reasons we also include the histograms of the terminal wealth
when the whole initial wealth is invested only in the stock, respectively only in the
bond (see Figure 6.16). It is clearly recognizable that the assumption of a floor re-
striction reduces the probability on the high-end of the distribution, independently
of the risk aversion parameter. This observation is confirmed by the cumulative
distribution functions of the simulated terminal wealth shown in Figure 6.17. This
is the price to pay for assuring a lower bound on the terminal wealth. On the other
side, the floor restriction assures higher quantiles on the very low end. This can be
seen in Table 6.7. Furthermore, compared to the stock-only portfolio, it is clear that
the quantiles both on the low and high end are improved. The bond-only portfolio
represents a very conservative investment with very high quantiles on the low end,
however also very low quantiles on the high end.
Figure 6.15 and Table 6.7 illustrate also the influence of δ: the smaller δ, i.e. the
more risk averse the investor, the lower the probability for low wealth levels on the
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Process Parameter No Markov switching Markov switching

X1, P1 κ1 0.266 0.266

θ̃1 0.047 0.047
χ1 0.013 0.013

λ1(e1) 0.689 0.146
λ1(e2) 0.689 6.674

X2 κ2 2.115 5.563

θ̂2(e1) 0.051 0.027

θ̂2(e2) 0.051 0.285
χ̂2(e1) 0.505 0.309
χ̂2(e2) 0.505 1.205

P2
λ2
ν(e1) 2.234 5.102
λ2
ν(e2) 2.234 -1.307

a -0.096 -0.096
ρ̄ -0.514 -0.454

Table 6.6: Estimated model parameter values for Model (6.41). The third column contains the
values without Markov switching, whereas the Markov-switching values are listed in the fourth
column.

one side, and high profits on the other.
Now we extend this comparison between the HARA and the power utility functions
for different risk aversion parameters by various portfolio risk measures. They are
either based on the distribution properties of the yearly log-return of the portfolio:
Rπ̄(T ) := 1

T
ln V π̄(T )

V π̄(0)
or on the distribution of the terminal wealth V π̄(T ) itself. More

precisely, we consider the following characteristics of the investment:

i) expected log-return (exp. return): E [Rπ̄(T )]

ii) expected excess log-return (exp. ex. return): E
[
Rπ̄(T )− 1

T
ln P0(T )

P0(0)

]
iii) standard deviation of the log-returns (st. dev.):

√
V ar (Rπ̄(T ))

iv) skewness of the log-returns:
E[{Rπ̄(T )−E[Rπ̄(T )]}3]√

V ar(Rπ̄(T ))3

v) kurtosis of the log-returns:
E[{Rπ̄(T )−E[Rπ̄(T )]}4]

V ar(Rπ̄(T ))2

vi) Sharpe-ratio of the log-returns:
E
[
Rπ̄(T )− 1

T
ln
P0(T )
P0(0)

]
√
V ar(Rπ̄(T ))

vii) downside probability: P
(
Rπ̄(T ) < 1

T
ln P0(T )

P0(0)
]
)

viii) Omega with the bank account as a benchmark (Omega):
E
[
max

{
Rπ̄(T )− 1

T
ln
P0(T )
P0(0)

, 0
}]

E
[
max

{
1
T

ln
P0(T )
P0(0)

−Rπ̄(T ), 0
}] ,
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Figure 6.11: On the left y-axis are plotted the paths for the wealth process for the following
portfolios: derived optimal Strategy (6.46) considering Markov switching (black line), 100% DAX
(red line), 100% bond (blue line), derived optimal Strategy (6.46) without Markov switching (grey
line). The green circles correspond to the estimated state of the Markov chain: ”0”=e1, ”1”=e2
on the right y-axis.

upside part: E
[
max

{
Rπ̄(T )− 1

T
ln P0(T )

P0(0)
, 0
}]

,

downside part: E
[
max

{
1
T

ln P0(T )
P0(0)

−Rπ̄(T ), 0
}]

ix) value at risk at the confidence level q (VaRq):
inf {v ∈ R : P (V π̄(0)− V π̄(T ) > v) ≤ 1− q}
= inf {v ∈ R : P (V π̄(0)− V π̄(T ) ≤ v) ≥ q}

x) conditional value at risk at the confidence level q (CVaRq):
E [(V π̄(0)− V π̄(T )) |V π̄(0)− V π̄(T ) > VaRq].

The results are summarized in Table 6.8. It can be seen that F > 0 results in lower
expected return however also in lower standard deviation of the returns. The lower
bound on the terminal wealth improves basically the distribution of the terminal
wealth on the low end. This is reflected in the lower VaRq and CVaRq-levels for
high q. Furthermore, note that although the downside probability is bigger when
we impose a positive floor F , the floor leads to an improvement in the downside of
Omega. The price to pay for this improvement is the reduced upside part of Omega.
For comparison, in Table 6.9 we also include the values of these risk-measures when
investing only in the stock or only in the bond. It is confirmed once again that the
bond represents a very conservative investment with very low expected return on
the one side and very low standard deviation and value at risk on the other side.
Compared to the most conservative of the considered optimal trading strategies
(i.e. δ = −15 and F = 80%), it has lower standard deviation, however it is clearly
outperformed in the excess return, the value at risk and the conditional value at
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Figure 6.12: On the left y-axis are plotted the portfolio positions following the derived optimal
Strategy (6.46). Upper plot: position in the bond with and without Markov switching (black and
grey lines, respectively), lower plot: position in the DAX with and without Markov switching (red
and pink lines, respectively). The green circles correspond to the estimated state of the Markov
chain: ”0”=e1, ”1”=e2 on the right y-axis.

risk. The pure DAX investment is characterized by higher expected excess return
and higher standard deviation compared to the bond investment. Compared to
the most conservative of the considered optimal trading strategies (i.e. δ = −15
and F = 80%), it is outperformed both in the expected return, as well as in
the value at risk at all considered levels and the conditional value at risk. Note
that the higher expected return of the portfolio strategies in Table 6.8 is possible
due to the fact that the investor does not have any short-selling or borrowing
restrictions. So, in times of a crisis she can short-sell the stock and enter a very
long bond position (possibly higher than her wealth), whereas in calm periods
she can purchase big amounts of stocks financed by borrowing money from the bank.

Let us now go back to the case with F = 80% of the initial wealth. Al-
though the portfolio profile from Figure 6.12 corresponds to the theoretical optimal
trading strategy, such big shifts as in the bond position might not be desirable in
reality due to transaction costs. While introducing transaction costs would exceed
the scope of this study, we propose an ad-hoc method to overcome this difficulty by
assuming that λ1 is constant instead of Markov-switching. This might be reasonable
also considering the difficulty in the estimation of λ1 as mentioned above. We still
allow for Markov switching in the stock price and volatility processes. Thus, Step
1 and Step 2 in the estimation procedure remain unchanged. For the parameters
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Figure 6.13: On the left y-axis are plotted the paths for the wealth process for the following
portfolios: derived optimal Strategy (6.46) with F = 0 considering Markov switching (black line),
100% DAX (red line), 100% bond (blue line), derived optimal Strategy (6.46) without Markov
switching (grey line). The green circles correspond to the estimated state of the Markov chain:
”0”=e1, ”1”=e2 on the right y-axis.

for X1 we obtain the results without Markov switching: κ1 = 0.266, θ̃1 = 0.047,
χ1 = 0.013, λ1(e1) = λ1(e2) = 0.689 and in Step 4 we obtain: λ2

ν(e1)
= 6.639,

λ2

ν(e2)
= −1.701 and ρ̄ = −0.460. The corresponding wealth path and portfolio

development can be seen in Figure 6.18 and Figure 6.19, respectively. Although the
terminal wealth in this case is lower than if we allow for a Markov-switching λ1, it
is still higher compared to the other three portfolios. Furthermore, note that the
peaks in the bond position are much lower. They are mainly caused by the Markov
switching in the stock process and the lower stock position for state e2, as the bond
is used to hedge the stock due to their negative correlation.

Finally, we would like to study the importance of the hedging term. In Fig-

ure 6.20 we plotted the ratio
π̄H1
π̄MV

1
for different values for κ1 and χ1 and Figure 6.21

shows
π̄H2
π̄MV

2
as a function of ρ̄, κ2 and χ2. It can be seen, that independently of

the state of the economy, the lower the mean-reversion speed and the higher the
volatility coefficient for stochastic factors, the higher the influence of the hedging
portfolio. Furthermore, the higher the absolute value of the leverage effect, the

higher the relation | π̄
H
2

π̄MV
2
|. Intuitively this can be explained by the fact that for

slower mean reversion and higher correlation the stochastic factor can be better
hedged by the risky asset. What is more, the higher the volatility of the stochastic
factor, the higher its risk, thus the bigger the hedging term. These results are in
accordance with the findings in Sections 4.3.4 and 5.3.2.
We can conclude from the whole empirical and numerical study that the proposed
model and investment strategies can be successfully applied in reality and that
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Figure 6.14: On the left y-axis are plotted the portfolio positions following the derived optimal
Strategy (6.46) with F = 0. Upper plot: position in the bond with and without Markov switching
(black and grey lines, respectively), lower plot: position in the DAX with and without Markov
switching (red and pink lines, respectively). The green circles correspond to the estimated state
of the Markov chain: ”0”=e1, ”1”=e2 on the right y-axis.

considering Markov switching, various stochastic factors and simultaneous invest-
ment in a bond and a stock is very beneficial for the investor and leads to a higher
terminal wealth and thus, to higher utility.
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Figure 6.15: Numerically calculated distribution of the terminal wealth using the derived optimal
strategy (6.46) with data simulated from Model (6.41) for the parameters from Table 6.6. Initial
wealth and maturity are as in the estimation procedure. Three different values were used for δ:
−5 (left plot), −10 (middle plot) and −15 (right plot). For F two cases were considered: F = 80%
of the initial wealth (black bars) and F = 0 (red lines).
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Figure 6.16: Numerically calculated distribution of the terminal wealth when investing only in the
stock, resp. bond with data simulated from Model (6.41) for the parameters from Table 6.6. Initial
wealth and maturity are as in the estimation procedure.
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Figure 6.17: Numerically calculated cumulative distribution distribution function of the terminal
wealth when using the derived optimal strategy (6.46) with data simulated from Model (6.41) for
the parameters from Table 6.6. Initial wealth and maturity are as in the estimation procedure.
Three different values were used for δ: −5 (left plot), −10 (middle plot) and −15 (right plot). For
F two cases were considered: F = 80% of the initial wealth (black bars) and F = 0 (red lines).
For reasons of better comparability, the x-axis is restricted to the interval [0, 8× 105] for all three
plots.

Parameters for Quantiles for the terminal wealth median
the utility function 0.01% 0.1% 1% 95%

δ = −5, F = 0 5328 7203 10392 3438166 116967
δ = −5, F = 80% 7283 7894 8931 1123855 43597

δ = −10, F = 0 6642 7799 9521 268887 38159
δ = −10, F = 80% 7711 8088 8649 93029 17965

δ = −15, F = 0 7141 7969 9140 95597 24204
δ = −15, F = 80% 7874 8143 8524 36656 13426

only stock 1036 1756 3005 26015 11229
only bond 7114 7359 7672 9749 8767

Table 6.7: Numerically calculated quantiles and median for the terminal wealth using the derived
optimal strategy (6.46) with data simulated from Model (6.41) for the parameters from Table 6.6.
Initial wealth and maturity are as in the estimation procedure. The quantiles are calculated for
different values for δ and F . The last two lines contain the quantiles when the whole initial wealth
is invested only in the stock, respectively only in the bond.
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δ = −5 δ = −10 δ = −15
F = 0 F = 80% F = 0 F = 80% F = 0 F = 80%

exp. return 0.7637 0.5406 0.4594 0.2821 0.3357 0.1917
exp. ex. return 0.7342 0.5112 0.4300 0.2526 0.3062 0.1622
st. dev. 0.4168 0.3705 0.2405 0.1834 0.1692 0.1127
skewness 0.8531 1.1956 0.8575 1.4218 0.8593 1.5087
kurtosis 3.8657 4.6843 3.8714 5.6821 3.8742 6.2502
Sharpe-ratio 1.7615 1.3798 1.7874 1.3776 1.8103 1.4395
downside prob. 0.0026 0.0030 0.0022 0.0037 0.0023 0.0051
Omega 8140 14072 10258 8696 10068 4744
upside part 0.7343 0.5112 0.4300 0.2526 0.3062 0.1622
downside part 9×10−5 4×10−5 4×10−5 3×10−5 3×10−5 3×10−5

VaR99% -3452 -1992 -2582 -1709 -2200 -1584
VaR99.99% 1612 -343 297 -771 -201 -934
VaR99.999% 2734 20 1123 -504 431 -729
CVaR99.999% 3044 122 1320 -439 571 -683

Table 6.8: Numerically calculated risk measures for the terminal wealth using the derived optimal
strategy (6.46) with data simulated from Model (6.41) for the parameters from Table 6.6. Initial
wealth and maturity are as in the estimation procedure. The risk measures are calculated for
different values for δ and F .

only stock only bond

exp. return 0.1172 0.0585
exp. ex. return 0.0878 0.0290
st. dev. 0.1313 0.0153
skewness -0.0905 0.1938
kurtosis 3.4470 3.1288
Sharpe-ratio 0.6683 1.9016
downside prob. 0.2325 0.1292
Omega 5.8807 19.7336
upside part 0.1058 0.0306
downside part 0.0180 0.0015
VaR99% 3935 -732
VaR99.99% 5904 -174
VaR99.999% 6253 12
CVaR99.999% 6381 87

Table 6.9: Numerically calculated risk measures for the terminal wealth when investing only in
the stock resp. only in the bonds with data simulated from Model (6.41) for the parameters from
Table 6.6. Initial wealth and maturity are as in the estimation procedure.
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Figure 6.18: On the left y-axis are plotted the paths for the wealth process for the following
portfolios: derived optimal Strategy (6.46) with a constant λ1 but Markov-switching parameters
for X2 and P2 (black line), 100% DAX (red line), 100% bond (blue line), derived optimal Strategy
(6.46) without any Markov switching (grey line). The green circles correspond to the estimated
state of the Markov chain: ”0”=e1, ”1”=e2 on the right y-axis.
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Figure 6.19: On the left y-axis are plotted the portfolio positions following the derived optimal
Strategy (6.46). Upper plot: position in the bond with a constant λ1 but Markov-switching
parameters for X2 and P2 (black line) and without Markov switching (grey line), lower plot:
position in the DAX with a constant λ1 but Markov-switching parameters for X2 and P2 (red line)
and without Markov switching (pink line). The green circles correspond to the estimated state of
the Markov chain: ”0”=e1, ”1”=e2 on the right scale.
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Figure 6.20: Ratio (in %) between the hedging term and the mean-variance portfolio invested in
bond P1 at the beginning of the investment period for an investor with δ = −10 as a function of
κ1 (first column) and χ1 (second column) for state e1 (first row), resp. e2 (second row).
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Figure 6.21: Ratio (in %) between the hedging term and the mean-variance portfolio invested in
stock P2 at the beginning of the investment period for an investor with δ = −10 as a function of
κ2 (first column), χ̂2 (second column), ρ̄ (third column) for state e1 (first row), resp. e2 (second
row).



Chapter 7

Conclusion

In the context of utility maximization we presented a flexible and simultaneously
analytically tractable multidimensional framework that allows for incorporating var-
ious sources of risk, such as stochastic asset volatility and correlation, stochastic
interest rate and macroeconomic regime changes. To the best of our knowledge, this
is the most general affine model with Markov switching for which explicit solutions
can be derived.
More precisely, in Chapter 3 we stated the corresponding HJB equations, relying
on the semimartingale representation of the Markov chain. We discovered that
adding a Markov chain does not change the decomposition of the optimal portfolio
in a mean-variance part and a correction for the additional risk from the stochastic
factor. Furthermore, we proved a verification theorem that reduced the case with
Markov switching to a model with time-dependent coefficients (Theorem 3.5).
In Chapter 4 we found explicit solutions for the optimal control with the power
utility function when trading in one risky asset. We derived the value function up
to an expectation over the Markov chain (Corollary 4.12 and Theorem 4.13). We
applied the results to the Heston model extended by Markov switching and stated
besides the explicit optimal solution also very easy to check conditions for the veri-
fication result (Propositions 4.21 and 4.22). Thus, we extended the results from [8]
by stochastic volatility and the results from [74] by Markov switching. Moreover, by
various numerical computations we illustrated that the state of the Markov chain
strongly influenced the optimal investment decision.
Chapter 5 presented the multidimensional case. We worked through the models with
and without correlation between the Brownian motions driving the risky assets and
the stochastic factors, and managed to place the dependence on the Markov chain
in a suitable way to assure both the flexibility and the analytical tractability of the
model. We derived explicit solutions (Corollary 5.7 and Theorem 5.10) and general
verification results (Theorem 5.1 and Proposition 5.6). These results can be seen as
an extension of [63] and [75] to Markov switching. The presented examples covered a
bond-stock market and a two-asset market with stochastic volatility and stochastic
correlation. For each of them we derived the solution in an explicit way and proved
a verification theorem (Propositions 5.13 and 5.14). These models illustrated the
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broad range of possible applications of the presented results.
In Chapter 6 we generalized the study to the HARA utility function (Theorem 6.4,
Theorem 6.6, Proposition 6.8). We showed that the HARA utility function leads
to a lower bound on the terminal wealth and a CPPI-type strategy with a Markov-
switching stochastic multiplier (Theorem 6.5). Thus, we extended the results from
[15] to Markov switching and further stochastic factors. Furthermore, we stated a
special stock-bond model with stochastic volatility and stochastic interest rate and
derived the optimal solution and a verification result (Proposition 6.9). This model
can be seen as an extension of [26] that allows for stochastic volatility, stochastic
interest rates and trading not only in a stock, but also in a bond. After estimating
its parameters we provided some numerical computations and economic interpreta-
tions that showed the importance of considering various assets simultaneously and
illustrated the influence of incorporating Markov switching parameters and different
stochastic factors on the optimal investment strategy. An empirical study based on
real data confirmed the practicability and good performance of the derived results.
To sum up, we contributed to literature by solving the optimal investment problem
in a realistic model and analyzing the results from theoretical and practical point of
view.
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Appendix for Chapter 2

Proof of Lemma 2.43
Statement i): It is trivially calculated that:

∂

∂τ
Bα,β(τ) =

2a2 exp{−aτ}
χ2
[
1− c exp{−aτ}

]2︸ ︷︷ ︸
>0

c.

The statement follows directly.
Statement ii): Observe that:

lim
τ↓0

Bα,β(τ) =
−c(κ+ a) + κ− a

χ2(1− c)
.

Inserting the definition of c leads to the statement.
Statement iii): For the limit result consider that a > 0 and for the inequalities
recall the definition of a.
Statement iv): First observe that:

1− c =
2a

−αχ2 + κ+ a
, (A.1)

and use that α < κ+a
χ2 and a > 0 to conclude that 1 − c > 0, i.e. c < 1. Now

calculate:

∂

∂τ
Aα,β(τ) =

κθ

χ2

κ− a− κc exp(−aτ)− ac exp(−aτ)

1− c exp(−aτ)
.

Further, insert c = 1− 2a
−αχ2+κ+a

to obtain:

∂

∂τ
Aα,β(τ) =

κθ

χ2

1

1− c exp(−aτ)︸ ︷︷ ︸
>0

[
2a exp(−aτ)︸ ︷︷ ︸

>0

{ κ+ a

−αχ2 + κ+ a
− 1
}

︸ ︷︷ ︸
=:d1

+
{

1− exp(−aτ)
}︸ ︷︷ ︸

>0

(κ− a)
]
.
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Now note that:

κ+ a

−αχ2 + κ+ a
− 1


< 0, for α < 0

= 0, for α = 0

> 0, for α > 0

, κ− a


< 0, for β < 0

= 0, for β = 0

> 0, for β > 0

,

which yields the statement.
Statement v): First we rewrite function Aα,β(τ) in a convenient way by inserting
Equality (A.1):

Aα,β(τ) =
κθ

χ2

[
(κ− a)τ − 2 ln

{1− c exp(−aτ)

1− c

}]
=
κθ

χ2

[
(κ− a)︸ ︷︷ ︸
∈[0,κ]

τ − 2 ln
{ 1− exp(−aτ)

2a︸ ︷︷ ︸
∈[0,T

2
]

(
− αχ2 + κ+ a

)︸ ︷︷ ︸
∈[0,2κ]

+ exp(−aτ)︸ ︷︷ ︸
∈[exp(−κT ),1]

}]
.

Now observe that a ∈ [0, κ], as β ≥ 0. Thus, κ − a ∈ [0, κ] and exp(−aτ) ∈
[exp(−κτ), 1]. Further, −αχ2 + κ + a ∈ [0, 2κ], as α ≥ 0. Now consider the term
1−exp(−aτ)

2a
and prove that it is monotonically decreasing in a by showing that its

derivative w.r.t. a is negative:

∂

∂a

(1− exp(−aτ)

2a

)
=

exp(−aτ)(1 + aτ)− 1

2a2
,

where negativity follows by the general inequality exp(x) > 1 + x,∀x ∈ R. So, for

a ∈ [0, κ], 1−exp(−aτ)
2a

∈ [1−exp(−κτ)
2κ

, lima↓0
1−exp(−aτ)

2a
]. The limit is given by:

lim
a↓0

1− exp(−aτ)

2a
= lim

a↓0

exp(−aτ)τ

2
=
τ

2
.

As τ ∈ [0, T ], we obtain: 1−exp(−aτ)
2a

∈ [0, T
2
]. Combining the inequalities from above

leads to the statement.
Statement vi): In this proof we consider Bα,β(τ) as a function in α and fix all
other parameters. Computing the first two derivatives shows that Bα,β is a convex,
monotonically increasing function of α:

∂

∂α
Bα,β(τ) =

4a2 exp(−aτ)

(1− c exp(−aτ))2(−αχ2 + κ+ a)2
≥ 0

∂2

∂α2
Bα,β(τ) =

8a2χ2 exp(−aτ)(1− exp(−aτ))

(1− c exp(−aτ)︸ ︷︷ ︸
>0

)3(−αχ2 + κ+ a︸ ︷︷ ︸
>0

)3
≥ 0.

Further,

lim
α↑κ+a

χ2

Bα,β(τ) = lim
c↑∞

Bα,β(τ) =
κ+ a

χ2
.



158

Now we would like to find the points where the graph of Bα,β crosses the graph of
function f(α) = α. To this aim we solve the following equation:

Bα,β(τ) = α⇔ (αχ2 − κ+ a)(exp(−aτ)− 1) = 0.

Now assume that τ 6= 0 and a 6= 0 and observe that the only solution is given by
α = κ−a

χ2 . What is more, in this case the first two derivatives are even strictly positive,

which means that Bα,β is strictly monotonically increasing and strictly convex in α.
Thus, its graph stays for α ∈

(
κ−a
χ2 ,

κ+a
χ2

)
under the graph of the function f(α) = α,

crosses it at α = κ−a
χ2 and converges to it for α ↑ κ+a

χ2 . This proves Statement vi) for
τ 6= 0 and a 6= 0.
Now assume a > 0 and τ = 0. Then Bα,β(0) = α and Statement vi) follows directly
in this case.

2

Proof of Theorem 2.74
The proof follows the main idea from [86], p. 137, Theorem 8.2.1. Here we generalize
the necessary assumptions and extend the statement to multidimensional Markov-
modulated diffusions and time-dependence of K.
First note that because of the Markov property of (X,MC) it holds for any t, r ∈
[0, T ]:

k(t, x, ei) = E
[

exp
{
−
∫ t

0

K
(
t− s,X(s),MC(s)

)
ds
}∣∣∣X(0) = x,MC(0) = ei

]
= E

[
exp

{
−
∫ t+r

r

K
(
t+ r − s,X(s),MC(s)

)
ds
}∣∣∣X(r) = x,MC(r) = ei

]
.

Using the equation above and the tower rule for conditional expectations (see Propo-
sition 2.5.1 in [12], p. 48) compute for any arbitrary but fixed t ∈ [0, T ] and r < t:

LS(r) :=
1

r

{
E
[
k
(
t,X(r),MC(r)

)∣∣∣X(0) = x,MC(0) = ei

]
− k(t, x, ei)

}
(A.2)

=
1

r

{
E
[

exp
{
−
∫ t+r

0

K
(
t+ r − s,X(s),MC(s)

)
ds
}

︸ ︷︷ ︸
=Z(t+r)

· exp
{∫ r

0

K
(
t+ r − s,X(s),MC(s)

)
ds
}

︸ ︷︷ ︸
=Y (r)

− exp
{
−
∫ t

0

K
(
t− s,X(s),MC(s)

)
ds
}

︸ ︷︷ ︸
=:Z(t)

∣∣∣X(0) = x,MC(0) = ei

]}

=
1

r
E
[
Z(t+ r)− Z(t)

∣∣X(0) = x,MC(0) = ei
]

+
1

r
E
[
Z(t+ r)

(
Y (r)− 1

)∣∣X(0) = x,MC(0) = ei
]
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=
1

r

(
k(t+ r, x, ei)− k(t, x, ei)

)
+ E

[
Z(t+ r)

(Y (r)− Y (0)

r

)∣∣∣X(0) = x,MC(0) = i
]
. (A.3)

Now define k̂(t)(x, ei) := k(t, x, ei) and apply the Itô’s formula for Markov-modulated
diffusions (Theorem 2.72) to k̂(t)

(
X(r),MC(r)

)
(considered as a process in r):

k̂(t)
(
X(r),MC(r)

)
= k̂(t)

(
X(0),MC(0)

)
+

∫ r

0

[
k̂(t)
x

(
X(s),MC(s)

)′
µ
(
X(s),MC(s)

)
+

1

2
Tr
(
k̂

(t)
xx′

(
X(s),MC(s)

)
Σ
(
X(s),MC(s)

)
Σ
(
X(s),MC(s)

)′)
+

I∑
j=1

qMC(s),j k̂
(t)
(
X(s), j

)]
ds

+

∫ r

0

k̂(t)
x

(
X(s),MC(s)

)′
Σ
(
X(s),MC(s)

)
dW (s)

+

∫ r

0

(
k̂(t)
(
X(s), e1

)
, . . . , k̂(t)

(
X(s), eI

))
dM(s).

This allows us to rewrite the expression in (A.2) as follows:

LS(r) =
1

r

{
E
[
k
(
t,X(r),MC(r)

)∣∣∣X(0) = x,MC(0) = ei

]
− k(t, x, ei)

}
= E

[1

r

∫ r

0

k̂(t)
x

(
X(s),MC(s)

)′
µ
(
X(s),MC(s)

)
+

1

2
Tr
(
k̂

(t)
xx′

(
X(s),MC(s)

)
Σ
(
X(s),MC(s)

)
Σ
(
X(s),MC(s)

)′)
+

I∑
j=1

qMC(s),j k̂
(t)
(
X(s), ej)

)
ds
∣∣∣X(0) = x,MC(0) = ei

]
+

1

r
E
[ ∫ r

0

k̂(t)
x

(
X(s),MC(s)

)′
Σ
(
X(s),MC(s)

)
dW (s)︸ ︷︷ ︸

=:M1(r)

∣∣∣X(0) = x,MC(0) = ei

]

+
1

r
E
[ ∫ r

0

(
k̂(t)
(
X(s), e1

)
, . . . , k̂(t)

(
X(s), el

))
dM(s)︸ ︷︷ ︸

=:M2(r)

∣∣∣X(0) = x,MC(0) = ei

]

=: E
[
N(r)

∣∣X(0) = x,MC(0) = ei
]

+
1

r
E
[
M1(r)

∣∣X(0) = x,MC(0) = ei
]

+
1

r
E
[
M2(r)

∣∣X(0) = x,MC(0) = ei
]
.

Observe the following P.a.s. (point-wise) limit for all i = 1, . . . , I:

a.s. lim
r↓0

N(r)|{X(0) = x,MC(0) = ei} = kx(t, x, ei)
′µ(x, ei)

+
1

2
Tr
(
kxx′(t, x, ei)Σ(x, ei)Σ(x, ei)

′)+
I∑
j=1

qi,jk(t, x, ej).
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Together with Assumptions ii), iii) and iv) we obtain:

lim
r↓0

LS(r) = lim
r↓0

E[N(r)|X(0) = x,MC(0) = ei] = kx(t, x, ei)
′µ(x, ei)

+
1

2
Tr
(
kxx′(t, x, ei)Σ(x, ei)Σ(x, ei)

′)+
I∑
j=1

qi,jk(t, x, j).
(A.4)

Further, Assumption v) leads to:

lim
r↓0

E
[
Z(t+ r)

Y (r)− Y (0)

r

∣∣X(0) = x,MC(0) = ei
]

= K(t, x, ei)E
[
Z(t)

∣∣X(0) = x,MC(0) = ei
]

= K(t, x, ei)k(t, x, ei).

(A.5)

Combining Equations (A.4), (A.5) and (A.3) gives us:

lim
r↓0

1

r

(
k(t+ r, x, ei)− k(t, x, ei)

)
= kx(t, x, ei)

′µ(x, ei)

+
1

2
Tr
(
kxx′(t, x, ei)Σ(x, ei)Σ(x, ei)

′)+
I∑
j=1

qi,jk(t, x, ej)−K(t, x, ei)k(t, x, ei).

By considering 1
r

{
E
[
k
(
t−r,X(r),MC(r)

)∣∣∣X(0) = x,MC(0) = ei

]
−k(t−r, x, ei)

}
we obtain analogously:

lim
r↓0

1

r

(
k(t, x, ei)− k(t− r, x, ei)

)
= kx(t, x, ei)

′µ(x, ei)

+
1

2
Tr
(
kxx′(t, x, ei)Σ(x, ei)Σ(x, ei)

′)+
I∑
j=1

qi,jk(t, x, ej)−K(t, x, ei)k(t, x, ei).

Thus, k is continuously differentiable in t for all (x, ei) ∈ DX ×E and fulfills System
(2.23).
Finally, we show that iii)’⇒iii), iv)’⇒iv) and v)’⇒v). For the first statement apply
directly Theorem 2.31 to follow that M1 is a square integrable martingale, thus

E
[
M1(r)

∣∣X(0) = x,MC(0) = ei
]

= E
[
M1(0)

∣∣X(0) = x,MC(0) = ei
]

= 0.

For the second statement consider:∫ r

0

(
k
(
t,X(s), e1

)
, . . . , k

(
t,X(s), eI

))
dM(s) =

I∑
j=1

∫ r

0

k
(
t,X(s), ej

)
dMj(s),

and by Theorem 2.69:

E
[ ∫ r

0

(
k(t,X(s), ej)

)2
d〈Mj,Mj〉(s)

∣∣∣X(0) = x,MC(0) = ei

]
= E

[ ∫ r

0

(
k(t,X(s), ej)

)2
vj,j(s)ds

∣∣∣X(0) = x,MC(0) = ei

]
.
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As vii is bounded for all i = 1, . . . , I, condition iv)’ implies again by Lemma 2.31
that M2 is a martingale. So,

E
[
M2(r)

∣∣X(0) = x,MC(0) = ei
]

= E
[
M2(0)

∣∣X(0) = x,MC(0) = ei
]

= 0.

For the last statement we just need to show the a.s. convergence of Z(t+r)Y (r)−Y (0)
r

for r ↓ 0. To this aim observe that for any arbitrary but fixed path of X and MC
one can consider Y as a function of r. Furthermore, for any fixed path ofMC there
exists a positive number ε > 0 such thatMC remains constant on [0, ε]. So, we can
apply the generalized Leibniz integral rule (summarized for convenience in Lemma
A.1 after the end of this proof) to obtain the derivative Yr:

Yr(r) = Y (r)
[ ∫ r

0

Kt

(
t+ r − s,X(s),MC(s)

)
ds+K

(
t+ r − r,X(r),MC(r)

)]
.

Thus, we get:

a.s. lim
r↓0

Z(t+ r)
Y (r)− Y (0)

r
= Z(t)Yr(0) = Z(t)K

(
t,X(0),MC(0)

)
.

2

For the convenience of the reader we recall the Generalized Leibniz integral rule in
the following lemma:

Lemma A.1 (Generalized Leibniz integral rule))
Consider a real-valued function f : O × [a, b] → R, (x, t) 7→ f(x, t) for an open set
O ⊂ R and a compact interval [a, b] ⊂ R. Assume that the following conditions hold:

i) For all x ∈ O, the map t 7→ f(x, t) is continuous.

ii) For all t ∈ [a, b], the map x 7→ f(x, t) is differentiable.

iii) The function (x, t) 7→ fx(x, t) is continuous on O × [a, b].

Let ã : [x, x] → R and b̃ : [x, x] → R be two real-valued continuously differentiable
functions. Define the following set:

Dã,b̃ = {(x, t) ∈ R2|x ∈ [x, x], t ∈ [ã(x), b̃(x)]}.

Further, assume that Dã,b̃ ⊂ O × [a, b] and define the following function:

F̃ (x) :=

∫ b̃(x)

ã(x)

f(x, t)dt.

Then, F̃ (x) is differentiable w.r.t. x and has the following derivative:

F̃x(x) =

∫ b̃(x)

ã(x)

fx(x, t)dt+ f
(
x, b̃(x)

)
b̃x(x)− f

(
x, ã(x)

)
ãx(x).

Proof
Follows directly from the fundamental theorem of calculus (see [69], p. 200) and the
Leibnitz integral rule (see [70], p. 75.)
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Appendix for Chapter 4

Proof of Remark 4.5
Let t be an arbitrary time point in [0, T ), where t ∈ [tK̃ , tK̃+1) for some K̃ ∈ 0, . . . , K.
Start by applying Itô’s formula step-wise to Φm

(
T, V m,π(T ), Xm(T )

)
:

Φm
(
T, V m,π(T ), Xm(T )

)
= Φm

(
tK , V

m,π(tK), Xm(tK)
)

+

∫ T

tK

Lm(mK , π)Φm
(
s, V m,π(s), Xm(s)

)
ds

+

∫ T

tK

Φm
v

(
s, V m,π(s), Xm(s)

)
ΣV
(
V m,π(s), Xm(s),m(s), π(s)

)
dW P (s)

+

∫ T

tK

Φm
x

(
s, V m,π(s), Xm(s)

)
ΣX
(
Xm(s),m(s)

)
dWX(s)

= Φm
(
tK−1, V

m,π(tK−1), Xm(tK−1)
)

+
K∑

k=K−1

∫ tk+1

tk

Lm(mi, π)Φm
(
s, V m,π(s), Xm(s)

)
ds

+

∫ T

tK−1

Φm
v

(
s, V m,π(s), Xm(s)

)
ΣV
(
V m,π(s), Xm(s),m(s), π(s)

)
dW P (s)

+

∫ T

tK−1

Φm
x

(
s, V m,π(s), Xm(s)

)
ΣX
(
Xm(s),m(s)

)
dWX(s)

= . . .

= Φm
(
t, V m,π(t), Xm(t)

)
+

K∑
k=K̃+1

∫ tk+1

tk

Lm(mk, π)Φm
(
s, V m,π(s), Xm(s)

)︸ ︷︷ ︸
≤0

ds

+

∫ tK̃+1

t

Lm(mK̃ , π)Φm
(
s, V m,π(s), Xm(s)

)︸ ︷︷ ︸
≤0

ds

+

∫ T

t

Φm
v

(
s, V m,π(s), Xm(s)

)
ΣV
(
V m,π(s), Xm(s),m(s), π(s)

)
dW P (s)
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+

∫ T

t

Φm
x

(
s, V m,π(s), Xm(s)

)
ΣX
(
Xm(s),m(s)

)
dWX(s)

≤ Φm
(
t, V m,π(t), Xm(t)

)
+

∫ T

t

Φm
v

(
s, V m,π(s), Xm(s)

)
ΣV
(
V m,π(s), Xm(s),m(s), π(s)

)
dW P (s)

+

∫ T

t

Φm
x

(
s, V m,π(s), Xm(s)

)
ΣX
(
Xm(s),m(s)

)
dWX(s) =: Y m(T ).

Note that here we have used the continuity and the piece-wise differentiability of
function Φm. One can show the statement analogously for an arbitrary end-point
τ ∈ [t, T ]:

Φm
(
τ, V m,π(τ), Xm(τ)

)
≤ Φm

(
t, V m,π(t), Xm(t)

)
+

∫ τ

t

Φm
v

(
s, V m,π(s), Xm(s)

)
ΣV
(
V m,π(s), Xm(s),m(s), π(s)

)
dW P (s)

+

∫ τ

t

Φm
x

(
s, V m,π(s), Xm(s)

)
ΣX
(
Xm(s),m(s)

)
dWX(s) =: Y m(τ).

(B.1)

So, by definition:

Y m(t) = Φm
(
t, V m,π(t), Xm(t)

)
.

As Φm
(
τ, v, x

)
≥ 0 for all (τ, v, x) ∈ [0, T ]× [0,∞)×DX , it follows that Y m(τ) ≥ 0.

Furthermore, Y m is a local martingale, as it has a zero drift and all involved functions
are at least piece-wise continuous, so it is a supermartingale. Then it holds that:

E
[
UP
(
V m,π(T )

)∣∣∣Ft

]
= E

[(V m,π(T )
)δ

δ

∣∣∣Ft

]
= E

[
Φm
(
T, V m,π(T ), Xm(T )

)∣∣∣Ft

]
≤ E[Y m(T )|Ft] ≤ Y m(t) = Φm

(
t, V m,π(t), Xm(t)

)
,

which proves the statement.
2

Proof of Remark 4.6
First assume iv)’. Going through the same calculations as in the proof of Remark
4.5 for π̄m instead of π we obtain ” = ” instead if ” ≤ ”:

Φm
(
τ, V m,π̄m(τ), Xm(τ)

)
= Φm

(
t, V m,π̄m(t), Xm(t)

)
+

∫ τ

t

Φm
v

(
s, V m,π̄m(s), Xm(s)

)
ΣV

(
V m,π̄m(s), Xm(s),m(s), π̄m(s)

)
dW P (s)

+

∫ τ

t

Φm
x

(
s, V m,π̄m(s), Xm(s)

)
ΣX

(
Xm(s),m(s)

)
dWX(s),

(B.2)

for all 0 ≤ t ≤ τ ≤ T . So, process
{

Φm
(
t, V m,π̄m(t), Xm(t)

)}
t∈[0,T ]

is a local martin-

gale. Condition iv)’ assures by Theorem 2.31 that
{

Φm
(
t, V m,π̄m(t), Xm(t)

)}
t∈[tk,tk+1]
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is a martingale for all k ∈ {0, . . . , K}. As function Φm is continuous, we can con-
clude that

{
Φm
(
t, V m,π̄m(t), Xm(t)

)}
t∈[0,T ]

is a martingale.

Now assume iv)” and consider an arbitrary but fixed index k ∈ {0, 1, . . . , K}.
Define θn as the exit time of {

(
t, V m,π(t), Xm(t)

)
}t∈[tk,tk+1] out of the region

[tk, tk+1]× [0, n]× [−n, n]. Then limn→∞ θn = tk+1 and

E
[ ∫ θn

tk

(
Φm
v

(
s, V m,π̄m(s), Xm(s))

)
ΣV

(
V m,π̄m(s), Xm(s),m(s), π̄m(s)

))2

+
(

Φm
x

(
s, V m,π̄m(s), Xm(s)

)
ΣX

(
Xm(s),m(s)

))2

ds
∣∣∣Ftk

]
<∞,

as all involved functions are continuous in (s, v, x). Together with Equation (B.2)
it follows that:

E
[
Φm
(
θn, V

m,π̄m(θn), Xm(θn)
)∣∣Ftk

]
= Φm

(
tk, V

m,π̄m(tk), X
m(tk)

)
.

Condition iv)” implies that:

E
[
Φm
(
tk+1, V

m,π̄m(tk+1), Xm(tk+1)
)∣∣Ftk

]
= lim

n→∞
E
[
Φm
(
θn, V

m,π̄m(θn), Xm(θn)
)∣∣Ftk

]
= Φm

(
tk, V

m,π̄m(tk), X
m(tk)

)
.

Again, due to the continuity of Φm it follows that
{

Φm
(
t, V m,π̄m(t), Xm(t)

)}
t∈[0,T ]

is

a martingale.
2

Proof of Proposition 4.9
As function Φm given by Equation (4.23) is obviously continuous and piece-wise suffi-
ciently differentiable, by Proposition 4.3 we only need to show that

{
Φm(t)}t∈[0,T ] :={

Φm
(
t, V m,π̄m(t), Xm(t)

)
}t∈[0,T ] is a martingale. We start by writing down the solu-

tion of the SDE for V m,π̄m :

V m,π̄m(t) = v0 exp
{∫ t

0

r
(
m(s)

)
+
(
µ1

(
Xm(s),m(s)

)
− r
(
m(s)

))
π̄m(s)

− 1

2

(
π̄m(s)

)2
(

Σ1

(
Xm(s),m(s)

))2

ds+

∫ t

0

π̄m(s)Σ1

(
Xm(s),m(s)

)
dW P (s)

}
,
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for all 0 ≤ t ≤ T , where v0 := V m,π̄m(0). Then we insert it in the expression for Φm:

Φm
(
t, V m,π̄m(t), Xm(t)

)
=

(
V m,π̄m(t)

)δ
δ

exp
{∫ T

t

δr
(
m(s)

)
ds
}

exp
{
Am(t) +Bm(t)Xm(t)

}
=
vδ0
δ

exp
{∫ T

0

δr
(
m(s)

)
ds
}

exp{Am(0) +Bm(0)x0}︸ ︷︷ ︸
=Φm(0,v0,x0)

· exp
{∫ t

0

δ
(
µ1

(
Xm(s),m(s)

)
− r
(
m(s)

))
π̄m(s)− 1

2
δ
(
π̄m(s)

)2
(

Σ1

(
Xm(s),m(s)

))2

+ Amt (s) +Bm
t (s)Xm(s) +Bm(s)µX

(
Xm(s),m(s)

)
ds

+

∫ t

0

Bm(s)ΣX
(
Xm(s),m(s)

)︸ ︷︷ ︸
=:ΣG1 (s,Xm(s))

dWX(s)
}

+

∫ t

0

δπ̄m(s)Σ1

(
Xm(s),m(s)

)︸ ︷︷ ︸
=:ΣG2 (s,Xm(s))

dW P (s)

=: Φm(0, v0, x0) exp
{∫ t

0

µG
(
s,Xm(s)

)
ds+

∫ t

0

ΣG
1

(
s,Xm(s)

)
dWX(s)

+

∫ t

0

ΣG
2

(
s,Xm(s)

)
dW P (s)

}
=: Φm(0, v0, x0) exp{G(t)}.

Now we recognize easily the differential semimartingale characteristics

µZ(t) =

(
µZ1
(
t,Xm(t)

)
µZ2
(
t,Xm(t)

) ) and ΓZ(t) =

(
ΓZ1,1
(
t,Xm(t)

)
ΓZ1,2
(
t,Xm(t)

)
ΓZ2,1
(
t,Xm(t)

)
ΓZ2,2
(
t,Xm(t)

) )
of the two-dimensional process Z := (Xm, G)′:

µZ1
(
t, x
)

=µX(x,m(t)) = k̄(0)
(
m(t)

)
− xK(1)

(
m(t)

)
µZ2
(
t, x
)

=µG(t, x)

=δ
(
µ1

(
x,m(t)

)
− r
(
m(t)

))
π̄m(t)− 1

2
δ
(
π̄m(t)

)2
(

Σ1

(
x,m(t)

))2

+ Amt +Bm
t x+BmµX

(
x,m(t)

)
=Amt +Bmk̄(0) + x

{
Bm
t −BmK(1) +

δ

1− δ
h̄(1)
(
1− 1

2(1− δ)
)

−BmG(1) δ2

(1− δ)2
− 1

2

δ

(1− δ)2
(Bm)2ρ2H(11)

}
ΓZ1,1(t, x) =

(
ΣX
(
x,m(t)

))2

= xH(11)
(
m(t)

)
ΓZ1,2(t, x) =ΓZ2,1(t, x) = ΣX(x,m(t))

(
ΣG

1 (t, x) + ρΣG
2 (t, x)

)
= x

{1

ϑ
Bm(t)H(11)

(
m(t)

)
+

δ

1− δ
G(1)

(
m(t)

)}
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ΓZ2,2(t, x) =
(
ΣG

1 (t, x)
)2

+
(
ΣG

2 (t, x)
)2

+ 2ρΣG
1 (t, x)ΣG

2 (t, x)

=x
{

(Bm(t))2H(11)
(
m(t)

)(
1 +

ρ2δ2

(1− δ)2
+ 2

ρ2δ

1− δ

)
+ 2Bm(t)G(1)

(
m(t)

) δ

(1− δ)2
+

δ2

(1− δ)2
h̄(1)
(
m(t)

)}
,

where we have omitted the dependence on m, t and x for reasons of better readability
and we have substituted the following equations:

π̄m(t) =
1

1− δ

{(µ1

(
x,m(t)

)
− r
(
m(t)

))(
Σ1

(
x,m(t)

))2

+ ρ
ΣX
(
x,m(t)

)
Σ1

(
x,m(t)

) Bm(t)
}

(
ΣX
(
x,m(t)

))2

=H(11)
(
m(t)

)
x

µX
(
x,m(t)

)
=k̄(0)

(
m(t)

)
−K(1)

(
m(t)

)
x

ρΣX
(
x,m(t)

)(µ1

(
x,m(t)

)
− r
(
m(t)

))
Σ1

(
x,m(t)

) =G(1)
(
m(t)

)
x((

µ1

(
x,m(t)

)
− r
(
m(t)

))
Σ1

(
x,m(t)

) )2

=h̄(1)
(
m(t)

)
x.

Observe that µZ and ΓZ are piece-wise continuous and fulfill conditions i),ii),iii),
iv) from Theorem 2.34 with p = 1. Next we show that µZ2 (t, x) + 1

2
ΓZ22(t, x) = 0,

which by comparison of coefficients is equivalent to Equation (2.4) for i = 2. This
equation is a direct consequence of the HJB PDE. More precisely, we have:

dΦm = Lm(π)Φm︸ ︷︷ ︸
=:µΦm=0

dt+ Φm
x ΣXdWX + Φm

v ΣV dW P

On the other side:

Φm(t) = Φm(0) exp{G(t)}.

Thus,

0 = µΦm = Φm
(
µZ2 +

1

2
ΓZ22

)
.

It follows from Theorem 2.34 that process {exp{G(t)}}t∈[0,T ] and thus also process{
Φm(t)}t∈[0,T ] = {Φm

(
t, V m,π̄m(t), Xm(t)

)
}t∈[0,T ] are martingales. Application of

Proposition 4.3 completes the proof.
2

Proof of Proposition 4.18
Consider a fixed point t ∈ [tk, tk+1) for some k ∈ {0, . . . , K}. Recall the probabilistic
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representation for hm from Proposition 4.7 and apply Lemma 2.42 step-wise starting
at the back:

hm(t, x) = E
[

exp
{∫ T

t

1

ϑ
g(s, X̃m(s),m(s))ds

}∣∣∣X̃m(t) = x
]

= exp
{∫ T

t

1

ϑ
δr(m(s))ds

}
E
[

exp
{∫ T

t

1

2ϑ

δ

1− δ

(
λ(m(s))

)2(
ν(m(s))

)2 X̃
m(s)ds

}∣∣∣X̃m(t) = x
]

= exp
{∫ T

t

1

ϑ
δr(m(s))ds

}
E
[

exp
{∫ T

t

1

2ϑ

δ

1− δ

(
λ(m(s))

)2(
ν(m(s))

)2 X̃
m
t,x(s)ds

}]
= exp

{∫ T

t

1

ϑ
δr(m(s))ds

}
E
[
E
[

exp
{∫ T

t

1

2ϑ

δ

1− δ

(
λ(m(s))

)2(
ν(m(s))

)2 X̃
m
t,x(s)ds

}∣∣∣F X̃m

tK

]]
= exp

{∫ T

t

1

ϑ
δr(m(s))ds

}
E
[

exp
{∫ tK

t

1

2ϑ

δ

1− δ

(
λ(m(s))

)2(
ν(m(s))

)2 X̃
m
t,x(s)ds

}
· E
[

exp
{ 1

2ϑ

δ

1− δ

(
λ(m(tK))

)2(
ν(m(tK))

)2︸ ︷︷ ︸
=βK

∫ T

tK

X̃m
t,x(s)ds

}∣∣∣F X̃m

tK

]]

(∗)
= exp

{∫ T

t

1

ϑ
δr(m(s))ds

}
E
[

exp
{∫ tK

t

1

2ϑ

δ

1− δ

(
λ(m(s))

)2(
ν(m(s))

)2 X̃
m
t,x(s)ds

+ Ã0,βK ,mK (T − tK)︸ ︷︷ ︸
=AK(τK)

+ B̃0,βK ,mK (T − tK)︸ ︷︷ ︸
=BK(τK)

X̃m
t,x(tK)

}]

= exp
{∫ T

t

1

ϑ
δr(m(s))ds

}
exp{AK(τK)}E

[
E
[

exp
{
BK(τK)X̃m

t,x(tK)

+

∫ tK

t

1

2ϑ

δ

1− δ

(
λ(m(s))

)2(
ν(m(s))

)2 X̃
m
t,x(s)ds

}∣∣∣F X̃m

tK−1

]]
= exp

{∫ T

t

1

ϑ
δr(m(s))ds

}
exp{AK(τK)}

· E
[

exp
{∫ tK−1

t

1

2ϑ

δ

1− δ

(
λ(m(s))

)2(
ν(m(s))

)2 X̃
m
t,x(s)ds

}
· E
[

exp
{
BK(τK)X̃m

t,x(tK) +
1

2ϑ

δ

1− δ

(
λ(m(tK−1))

)2(
ν(m(tK−1))

)2︸ ︷︷ ︸
=βK−1

∫ tK

tK−1

X̃m
t,x(s)ds

}∣∣∣F X̃m

tK−1

]]
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(∗)
= exp

{∫ T

t

1

ϑ
δr(m(s))ds

}
exp{AK(τK)}

· E
[

exp
{∫ tK−1

t

1

2ϑ

δ

1− δ

(
λ(m(s))

)2(
ν(m(s))

)2 X̃
m
t,x(s)ds

}
· exp

{
ÃBK ,βK−1,mK−1(tK − tK−1)︸ ︷︷ ︸

=AK−1(τK−1)

+ B̃BK ,βK−1,mK−1(tK − tK−1)︸ ︷︷ ︸
=BK−1(τK−1)

X̃m
t,x(tK−1)

}]

= exp
{∫ T

t

1

ϑ
δr(m(s))ds

}
exp{AK(τK) + AK−1(τK−1)}

· E
[
E
[

exp
{
BK−1(τK−1)X̃m

t,x(tK−1)

+
1

2ϑ

δ

1− δ

(
λ(m(tK−2))

)2(
ν(m(tK−2))

)2︸ ︷︷ ︸
=:βK−2

∫ tK−1

t

X̃m
t,x(s)ds

}∣∣∣F X̃m

tK−2

]]

= · · ·

= exp
{∫ T

t

1

ϑ
δr(m(s))ds

}( K∏
z=k+1

exp{Az(τz)}

)
E
[

exp
{
Bk+1(τk+1)X̃m

t,x(tk+1)

+
1

2ϑ

δ

1− δ

(
λ(m(tk))

)2(
ν(m(tk))

)2︸ ︷︷ ︸
=:βk

∫ tk+1

t

X̃m
t,x(s)ds

}]

(∗)
= exp

{∫ T

t

1

ϑ
δr(m(s))ds

}( K∏
z=k+1

exp{Az(τz)}

)
exp

{
ÃBk+1,βk,mk(tk+1 − t)︸ ︷︷ ︸

=Ak(tk+1−t)

}
· exp

{
B̃Bk+1,βk,mk(tk+1 − t)︸ ︷︷ ︸

=Bk(tk+1−t)

x
}
.

For the equations marked with (∗) we have applied Lemma 2.42, so its assumptions
need to be checked. They read as follows:

βk =
1

2ϑ

δ

1− δ

(
λ(m(tk))

)2(
ν(m(tk))

)2 <
κ̃2(mk)

2χ2(mk)
, ∀k ∈ {0, . . . , K} (B.3)

αk := Bk+1(τk+1) <
κ̃(mk) + ã(mk)

χ2(mk)
,∀k ∈ {0, . . . , K − 1} (B.4)

αK = 0 <
κ̃(mK) + ã(mK)

χ2(mK)
. (B.5)

Inequality (B.3) follows directly from Assumption (4.48) and Inequality (B.5) is
obvious as κ̃(e), ã(e) > 0,∀e ∈ E . For Inequality (B.4) we consider two cases: δ > 0
and δ < 0. First assume that δ > 0. It follows that βi > 0 and thus ã(mk) < κ̃(mk)

for all k ∈ {0, . . . , K}. Then, αK = 0 < maxe∈E

{
κ̃(e)−ã(e)
χ2(e)

}
:= c2. From Assumption
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(4.49) we obtain further c2 <
κ̃(mk)+ã(mk)

χ2(mk)
for all i ∈ {0, . . . , K}. Statement vi) from

Lemma 2.43 leads to αK−1 = BK(τK) < c2 <
κ̃(mK−1)+ã(mK−1)

χ2(mK−1)
. To obtain Condition

(B.4) for all k, observe that αk = Bk+1(τk+1) and continue backwards in an analogous

way showing that Bk+1 < c2 <
κ̃(mk)+ã(mk)

χ2(mk)
for all k ∈ {0, · · · , K}. Now let δ < 0.

Then βk < 0 for all k. It follows from Statements ii) and iii) in Lemma 2.43 that
Bk(τk) < 0 for all k. This yields directly Condition (B.4).
So, by Proposition 4.7, Φm solves the corresponding HJB equation. The verification
result and the optimal portfolio strategy follow as a direct application of Proposition
4.9.

2
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B.1 Additional plots for Section 4.3.4
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Figure B.1: Optimal mean-variance portfolio (see Equation (4.61)) and hedging term (see Equation
(4.62)) over time for δ = 0.3 and different values of ρ.
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Figure B.2: Optimal mean-variance portfolio (see Equation (4.61)) and hedging term (see Equation
(4.62)) over time for δ = −1 and different values of ρ.
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Figure B.3: Optimal mean-variance portfolio (see Equation (4.61)) and hedging term (see Equation
(4.62)) over time for δ = 0.3 and different values of κ.
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Figure B.4: Optimal mean-variance portfolio (see Equation (4.61)) and hedging term (see Equation
(4.62)) over time for δ = −1 and different values of κ.
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Figure B.5: Optimal mean-variance portfolio (see Equation (4.61)) and hedging term (see Equation
(4.62)) over time for δ = 0.3 and different values of χ.
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Figure B.6: Optimal mean-variance portfolio (see Equation (4.61)) and hedging term (see Equation
(4.62)) over time for δ = −1 and different values of χ.



Appendix C

Appendix for Chapter 5

Proof of Theorem 5.1
Consider an arbitrary but fixed point (t, v, x, ei) ∈ [0, T ]×[0,∞)×DX×E and assume
that the wealth of the investor at time t is v, further X(t) = x andMC(t) = ei. As
Φ is a martingale, it follows:

E
[
UP
(
V π̄(T )

)∣∣∣Ft

]
= E

[(V π̄(T )
)δ

δ

∣∣∣Ft

]
= E

[
Φ
(
T, V π̄(T ), X(T ),MC(T )

)∣∣∣Ft

]
=Φ(t, v, x, ei),

which proves the first statement. For the second one we apply the idea from Propo-
sition 2.3 in [63]: First observe that substitution of the ansatz Φ = vδ

δ
f in (3.16)

leads to the following system of PDEs for f :

ft + fδ
(
r + π̄′(µ− r)

)
+ f ′xµ

X +
1

2
Tr
(
fxx′Σ

X(ΣX)′
)

+ f ′xδΣ
XρΣ′π̄

+
1

2
fδ(δ − 1)π̄′ΣΣ′π̄

∣∣∣(
t,x,ei

) = −
I∑
z=1

qi,zf(t, x, ez), f(T, x, ei) = 1,∀i ∈ {1, . . . , I},

(C.1)

where π̄(t) = 1
1−δ

{(
ΣΣ′

)−1
(µ− r) +

(
Σ′
)−1

ρ′(ΣX)′ fx
f

}∣∣∣(
t,x,ei

). Let π be an arbitrary

admissible strategy and define process {L(τ)}τ∈[t,T ] by

L(τ) :=
{
V π̄(τ)

}δ−1
V π(τ)f

(
τ,X(τ),MC(τ)

)
.

Apply Itô’s formula to obtain its dynamics:

dL =
{
V π̄
}δ−1

V π
[
ft + f ′xµ

X +
1

2
Tr
(
fxx′Σ

X(ΣX)′
)

+ f(δ − 1)(r + π̄′(µ− r))

+ f(r + π′[µ− r]) + f ′x(δ − 1)ΣXρΣ′π̄ + f ′xΣ
XρΣ′π + f(δ − 1)π′ΣΣ′π̄

+
1

2
f(δ − 1)(δ − 2)π̄′ΣΣ′π̄ +

I∑
i=1

qMC(τ),if
(
τ,X(τ), ei

)]
dτ
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+
{
V π̄
}δ−1

V πf ′xΣ
XdWX +

{
V π̄
}δ−1

V πf
(
(δ − 1)π̄′ + π′

)
ΣdW P

+
{
V π̄
}δ−1

V π
(
f(τ,X(τ), e1), . . . , f(τ,X(τ), eI)

)
dM

= : µLdτ + ΣL
1 dWX + ΣL

2 dW P + ΣL
3 dM,

where we have missed out the arguments (τ,X(τ),MC(τ)) for better readability.
By a substitution of Equation (C.1) and the definition of π̄ it holds:

µL =
{
V π̄
}δ−1

V π
[
ft + fδ(r + π̄′[µ− r]) + f ′xµ

X +
1

2
Tr
(
fxx′Σ

X(ΣX)′
)

+ f ′xδΣ
XρΣ′π̄

+
1

2
fδ(δ − 1)π̄′ΣΣ′π̄ +

I∑
i=1

qMC(τ),if(τ,X(τ), ei) + (π′ − π̄′)
(
f [µ− r]

+ Σρ′(ΣX)′fx + f(δ − 1)ΣΣ′π̄
)]

= 0.

It follows that L is a local martingale, as all involved functions are continuous in
X, V π, V π̄, π and π̄ for all ei ∈ E . Furthermore, as f is assumed to be posi-
tive, process L is positive as well, so it is a supermartingale. Using this together
with the concavity of the utility function UP (v) = vδ

δ
, the martingale property of{

Φ
(
τ, V π̄(τ), X(τ)

)}
τ∈[t,T ]

and L(T ) = 1 we obtain the following inequality:

E
[
UP
(
V π(T )

)∣∣Ft

]
≤ E

[
UP
(
V π̄(T )

)∣∣Ft

]
+ E

[
(UP )v

(
V π̄(T )

)(
V π(T )− V π̄(T )

)∣∣Ft

]
= E

[
UP
(
V π̄(T )

)∣∣Ft

]
+ E

[
L(T )

∣∣Ft

]
− E

[{
V π̄(T )

}δ∣∣Ft

]
≤ E

[
UP
(
V π̄(T )

)∣∣Ft

]
+ L(t)− δE

[
Φ
(
T, V π̄(T ), X(T ),MC(T )

)∣∣Ft

]
= E

[
UP
(
V π̄(T )

)∣∣Ft

]
+ vδf

(
t, x, ei

)
− δΦ

(
t, v, x, ei

)
= E

[
UP
(
V π̄(T )

)∣∣Ft

]
.

Our proof is complete.
Observe that we have not used the exponential structure of our model for this proof.
Thus, the result holds for general time-dependent models with a stochastic factor.

2

Derivation of Remark 5.2
Consider an arbitrary but fixed point (t, v, x, ei) ∈ [0, T ] × [0,∞) × DX × E and
assume that the wealth of the investor at time t is v, further X(t) = x and
MC(t) = ei. Let π be an arbitrary admissible strategy. Apply Itô’s formula to
Φ
(
τ, V π(τ), X(τ),MC(τ)

)
, for an arbitrary τ ∈ [t, T ], and use the HJB equation to

obtain:

Φ
(
τ, V π(τ), X(t),MC(τ)

)
≤ Φ

(
t, v, x, ei

)
+

∫ τ

t

Φv

(
s, V π(s), X(s),MC(s)

)
ΣV
(
V π(s), X(s),MC(s), π(s)

)
dW P (s)

+

∫ τ

t

Φx

(
s, V π(s), X(s),MC(s)

)′
ΣX
(
X(s),MC(s)

)
dWX(s)

+

∫ τ

t

I∑
i=1

Φ
(
s, V π(s), X(s), ei

)
dMi(s) =: Y (τ).

(C.2)
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As Φ ≥ 0, it follows that Y (τ) ≥ 0. Furthermore, Y is a local martingale, as all
involved functions are continuous in X, V π and π, for all ei ∈ E . So, Y is a lower
bounded local martingale, thus it is a supermartingale. Then it holds that:

E
[
UP
(
V π(T )

)∣∣∣Ft

]
= E

[(V π(T )
)δ

δ

∣∣∣Ft

]
= E

[
Φ
(
T, V π(T ), X(T ),MC(T )

)∣∣∣Ft

]
≤ E[Y (T )|Ft] ≤ Y (t) = Φ

(
t, v, x, ei

)
.

2

Proof for Proposition 5.3
The proof goes analogously to the proof of Theorem 5.1. Here we include it for
completeness.
Consider an arbitrary but fixed point (t, v, x) ∈ [0, T ] × [0,∞) × DX and assume
that the wealth of the investor at time t is v and Xm(t) = x. From the martingale
property of {Φm

(
τ, V m,π̄m(τ), Xm(τ)

)
}τ∈[t,T ] we obtain directly:

E
[(V m,π̄m(T )

)δ
δ

∣∣∣Ft

]
= E

[
Φm
(
T, V m,π̄m(T ), Xm(T )

)∣∣∣Ft

]
= Φm

(
t, v, x

)
.

For the second statement substitute expression Φm = vδ

δ
f(t, x) in Equation (3.20)

to obtain the following PDE for fm:

fmt + fmδ
(
r + (π̄m)′(µ− r)

)
+ (fmx )′µX +

1

2
Tr
(
fmxx′Σ

X(ΣX)′
)

+ (fmx )′δΣXρΣ′π̄m

+
1

2
fmδ(δ − 1)(π̄m)′ΣΣ′π̄m

∣∣∣(
t,x,m(t)

) = 0,∀(t, x) ∈ [tk, tk+1)×DX

fm(T, x) = 1,

(C.3)

for all k = 0, . . . , K, where π̄m(t) = 1
1−δ

{
(ΣΣ′)−1(µ−r)+(Σ′)−1ρ′(ΣX)′ f

m
x

fm

}∣∣∣
(t,x,m(t))

.

Now define process {Lm(τ)}τ∈[t,T ] by Lm(τ) :=
{
V m,π̄m(τ)

}δ−1
V m,π(τ)f

(
τ,Xm(τ)

)
for an arbitrary admissible portfolio strategy π. By Itô’s formula it follows:

dLm =
{
V m,π̄m

}δ−1
V m,π

[
fmt + (fmx )′µX +

1

2
Tr
(
fmxx′Σ

X(ΣX)′
)

+ fm(δ − 1)(r + (π̄m)′(µ− r)) + fm(r + π′(µ− r)) + (fmx )′(δ − 1)ΣXρΣ′π̄m

+ (fmx )′ΣXρΣ′π + fm(δ − 1)π′ΣΣ′π̄m +
1

2
fm(δ − 1)(δ − 2)(π̄m)′ΣΣ′π̄m

]
dτ

+
{
V m,π̄

}δ−1
V m,π(fmx )′ΣXdWX

+
{
V m,π̄

}δ−1
V m,πfm

(
(δ − 1)(π̄m)′ + π′

)
ΣdW P

= : µL
m

dτ + ΣLm

1 dWX + ΣLm

2 dW P ,
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where we have missed out the arguments (τ,Xm(τ),m(τ)) for better readability. It
holds:

µL
m

=
{
V m,π̄m

}δ−1
V m,π

[
fmt + fmδ(r + (π̄m)′(µ− r)) + (fmx )′µX +

1

2
Tr
(
fmxx′Σ

X(ΣX)′
)

+ (fmx )′δΣXρΣ′π̄m +
1

2
fmδ(δ − 1)(π̄m)′ΣΣ′π̄m

+ (π′ − (π̄m)′)
(
f(µ− r) + Σρ′(ΣX)′fmx + fm(δ − 1)ΣΣ′π̄

)]
= 0,

where we have substituted Equation C.3 and the definition of π̄m. It follows that
Lm is a local martingale. Furthermore, observe that Lm is positive, so it is a super-
martingale. Using this together with the concavity of the utility function UP (v) = vδ

δ

and the martingale property of
{

Φm
(
τ, V m,π̄m(τ), Xm(τ)

)}
τ∈[t,T ]

we obtain the fol-

lowing inequality:

E
[
UP
(
V m,π(T )

)∣∣Ft

]
≤ E

[
UP
(
V m,π̄m(T )

)∣∣Ft

]
+ E

[
(UP )v

(
V m,π̄m(T )

)(
V m,π(T )− V m,π̄m(T )

)∣∣Ft

]
= E

[
UP
(
V m,π̄m(T )

)∣∣Ft

]
+ E

[
Lm(T )

∣∣Ft

]
− E

[{
V m,π̄m(T )

}δ∣∣Ft

]
≤ E

[
UP
(
V m,π̄m(T )

)∣∣Ft

]
+ Lm(t)− δE

[
Φm
(
T, V m,π̄m(T ), Xm(T )

)∣∣Ft

]
= E

[
UP
(
V m,π̄m(T )

)∣∣Ft

]
+ vδf

(
t, x
)
− δΦm

(
t, v, x

)
= E

[
UP
(
V m,π̄m(T )

)∣∣Ft

]
.

Our proof is complete.
2

Proof of Proposition 5.6
We will show that {Φm(t)}t∈[0,T ] :=

{
Φm
(
t, V m,π̄m(t), Xm(t)

)}
t∈[0,T ]

is a martingale

and apply Proposition 5.4.
To this aim substitute (5.9) and (5.10) in the definition for G and derive its SDE:

dG(t) =µG
(
t,Xm(t),m(t)

)
dt+ ΣG

1

(
t,Xm(t),m(t)

)
dWX(t)

+ ΣG
2

(
t,Xm(t),m(t)

)
dW P (t),

with

µG =− w + δr +
δ

1− δ
(µ− r)′(ΣΣ′)−1(µ− r) +

δ

1− δ
(Bm)′ΣXρΣ−1(µ− r)

− 1

2

δ

(1− δ)2

{
(µ− r)′(ΣΣ′)−1(µ− r) + (Bm)′ΣXρρ′(ΣX)′Bm

+ 2(µ− r)′(Σ′)−1ρ′(ΣX)′Bm
}

+ (Bm
t )′Xm + (Bm)′µX

ΣG
1 =(Bm)′ΣX

ΣG
2 =

δ

1− δ
{

(µ− r)′(Σ′)−1 + (Bm)′ΣXρ
}
,
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where the dependence on (t,Xm(t),m(t)) is omitted for simplicity. Thus, for the
second component of the semimartingale characteristics of G we obtain:

ΓG =(Bm)′ΣX(ΣX)′Bm + 2
δ

1− δ
(Bm)′ΣXρΣ−1(µ− r)

+ 2
δ

1− δ
(Bm)′ΣXρρ′(ΣX)′Bm +

δ2

(1− δ)2

{
(µ− r)′(ΣΣ′)−1(µ− r)

+ (Bm)′ΣXρρ′(ΣX)′Bm + 2(µ− r)′(Σ′)−1ρ′(ΣX)′Bm
}
.

For process X̄m we introduce the following notation:

dX̄m = µ̄X
(
t,Xm(t),m(t)

)
dt+ Σ̄X

(
t,Xm(t),m(t)

)
dWX .

Together, the semimartingale characteristics of process Z are given as follows:

µZ =

(
µ̄X

µG

)
ΓZ =

(
Σ̄X Σ̄X

(
(ΣG

1 )′ + ρ(ΣG
2 )′
)(

ΣG
1 + ΣG

2 ρ
′)(Σ̄X)′ ΓG

)
.

The model specifications from (3.2)-(3.7) lead to the affine representations for µZ

and ΓZ as stated in the proposition. The required conditions i)-iv) assure that we
can apply Theorem 2.34 to process Z. We only need to show that µG + 1

2
ΓG = 0 in

order to conclude that exp{G} and thus Φm as well are martingales. This condition
follows from the fact that Φm solves the HJB PDE. More precisely, we have:

dΦm = Lm(π)Φm︸ ︷︷ ︸
=:µΦm=0

dt+ Φm
x ΣXdWX + Φm

v ΣV dW P .

On the other side:

Φm(t) = Φm(0) exp{G(t)}.

Thus,

0 = µΦm = Φm
(
µG +

1

2
ΓG
)
.

So, process Φm is a martingale. We can conclude by Proposition 5.3 that Φm and
π̄m are the optimal solution for the time-dependent model.

2

Proof of Proposition 5.13
It follows directly from Theorem 5.10 that function B is the solution of the following
ODE:

Bt(t) + δ −B(t)κ = 0, B(T ) = 0.
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Thus, we obtain for B the expression given by (5.39). Substitution of the model
specifications from (5.37) in (5.24) leads to the solution for w as given by (5.41). So,
function Φ as defined in (5.38) is the HJB solution and its maximum is obtained at
π̄ as given in (5.42).
What remains to be demonstrated is that {Φm

(
t, V m,π̄m(t), Xm(t)

)
}t∈[0,T ] is a mar-

tingale, where function Φm is given by:

Φm(t, v, x) =
vδ

δ
exp

{∫ T

t

w(s,m(s))ds
}

exp{B(t)x}. (C.4)

Start by applying Itô’s formula:

Φm
(
t, V m,π̄m(t), Xm(t)

)
= Φ

(
0, V m,π̄m(0), Xm(0)

)
+

∫ t

0

L(m(s), π̄m)Φ
(
s, V m,π̄m(s), Xm(s)

)︸ ︷︷ ︸
=0

ds

+

∫ t

0

Φm
v

(
s, V m,π̄m(s), Xm(s)

)
ΣV

1 (s, V m,π̄m(s),m(s), π̄m(s))dW P
1 (s)

+

∫ t

0

Φm
v

(
s, V m,π̄m(s), Xm(s)

)
ΣV

2 (V m,π̄m(s),m(s), π̄m(s))dW P
2 (s)

+

∫ t

0

Φm
x

(
s, V m,π̄m(s), Xm(s),m(s)

)
χdWX(s),

for any t ∈ [0, T ]. We will apply Theorem 2.31 to prove that the process above is a
square integrable martingale. Thus, we need to show that:

E
[ ∫ T

0

(
Φm
v (t)ΣV

1 (t)− Φm
x (t)χ

)2

dt
]
<∞

E
[ ∫ T

0

(
Φm
v (t)ΣV

2 (t)
)2

dt
]
<∞,

where we substituted dW P
1 = −dWX and omitted the arguments of the functions

to improve readability. Recalling from (5.38) and (3.9) the definitions of Φm and
ΣV = (ΣV

1 ,Σ
V
2 ) and the fact that B(t), w(t, ei), A2(T1 − t) and π̄m(t) are bounded

on [0, T ], it becomes clear that it suffices to show the following inequality:

A := E
[ ∫ T

0

(V m,π̄m(t))2δ exp
{

2B(t)Xm(t)
}

dt
]
<∞. (C.5)

Note that the solution for process V m,π̄m is given by:

V m,π̄m(t) = V m,π̄m(0) exp
{∫ t

0

Xm(s) + π̄m1 (s)λ1χA2(T1 − s) + π̄m2 (s)λ2ν

− 1

2

[
χA2(T1 − s)π̄m1 (s) + π̄m2 (s)ρ12ν

]2 − 1

2

[
π̄m2 (s)

√
1− ρ2

12ν
]2

ds

+

∫ t

0

[
χA2(T1 − s)π̄m1 (s) + π̄m2 (s)ρ12ν

]
dW P

1 (s) +

∫ t

0

π̄m2 (s)
√

1− ρ2
12νdW P

2 (s)
}
,
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where we again omitted the dependence of the parameters on m(t). Inserting the
previous expression and the relation W P

1 = −WX in the formula for A from (C.5)
leads to:

A = v2δ
0 E
[ ∫ T

0

exp
{

2δ

∫ t

0

Xm(s) + π̄m1 (s)λ1χA2(T1 − s) + π̄m2 (s)λ2ν

− 1

2

[
χA2(T1 − s)π̄m1 (s) + π̄m2 (s)ρ12ν

]2 − 1

2

[
π̄m2 (s)

√
1− ρ2

12ν
]2

ds

+ 2δ

∫ t

0

−π̄m2 (s)ρ12ν − χA2(T1 − s)π̄m1 (s)dWX(s)

+ 2δ

∫ t

0

π̄m2 (s)ν
√

1− ρ2
12dW P

2 (s) + 2B(t)Xm(t)
}

dt
]
.

By exploiting the boundedness of π̄m(t) and A2(T1 − t) on [0, T ], we obtain:

A ≤ c1E
[ ∫ T

0

exp
{

2δ

∫ t

0

Xm(s)ds+ 2δ

∫ t

0

−π̄m2 (s)ρ12ν − χA2(T1 − s)π̄m1 (s)dWX(s)

+ 2δ

∫ t

0

π̄m2 (s)ν
√

1− ρ2
12dW P

2 (s) + 2B(t)Xm(t)
}

dt
]
,

for some constant c1 ∈ [0,∞). Now insert the following two equations for process
Xm: ∫ t

0

Xm(s)ds =
1

κ

(
Xm(0)−Xm(t) +

∫ t

0

κθ(m(s))ds+ χWX(t)
)

Xm(t) = Xm(0)e−κt +

∫ t

0

eκ(s−t)κθ(m(s))ds+

∫ t

0

χeκ(s−t)dWX(s),

and rewrite the inequality for A:

A ≤ c1E
[ ∫ T

0

exp
{2δ

κ

(
Xm(0)−Xm(t) +

∫ t

0

κθ(m(s))ds+ χWX(t)
)

+ 2δ

∫ t

0

−π̄m2 (s)ρ12ν − χA2(T1 − s)π̄m1 (s)dWX(s)

+ 2δ

∫ t

0

π̄m2 (s)ν
√

1− ρ2
12dW P

2 (s) + 2B(t)Xm(t)
}

dt
]

= c1E
[ ∫ T

0

exp
{2δ

κ

(
Xm(0) +

∫ t

0

κθ(m(s))ds+ χWX(t)
)

+ 2δ

∫ t

0

−π̄m2 (s)ρ12ν − χA2(T1 − s)π̄m1 (s)dWX(s)

+ 2
(
B(t)− δ

κ

) ∫ t

0

χeκ(s−t)dWX(s) + 2δ

∫ t

0

π̄m2 (s)ν
√

1− ρ2
12dW P

2 (s)

+ 2
(
B(t)− δ

κ

)(
Xm(0)e−κt +

∫ t

0

eκ(s−t)κθ(m(s))ds
)}

dt
]
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≤ c2E
[ ∫ T

0

exp
{∫ t

0

2δ

κ
χ+ 2δ

(
− π̄m2 (s)ρ12ν − χA2(T1 − s)π̄m1 (s)

)
+ 2
(
B(t)− δ

κ

)(
χeκ(s−t))dWX(s) +

∫ t

0

2δπ̄m2 (s)ν
√

1− ρ2
12dW P

2 (s)
}

dt
]

=: c2E
[ ∫ T

0

exp
{∫ t

0

a(s, t)dWX(s) +

∫ t

0

b(s)dW P
2 (s)

}
dt
]
,

where c2 ∈ [0,∞). As a and b are bounded and thus integrable, and WX and W P
2

are independent we get:∫ t

0

a(s, t)dWX(s) +

∫ t

0

b(s)dW P
2 (s)

d
= N

(
0,

∫ t

0

a2(s, t) + b2(s)ds
)
,

where N (µ,Σ2) denotes the normal distribution with mean µ and variance Σ2. Now
exchange the integration and the expectation:

A ≤ c2

∫ T

0

E
[

exp
{∫ t

0

a(s, t)dWX(s) +

∫ t

0

b(s)dW P
2 (s)

}]
dt

= c2

∫ T

0

exp
{1

2

∫ t

0

a2(s, t) + b2(s)ds
}

dt ≤ c3 <∞,

for a constant c3 ∈ [0,∞). Our proof is complete.
Note that the verification result can be also proved by Proposition 5.6. However, we
prefer to provide an alternative approach as it is straightforward, does not rely on
more specific concepts and illustrates a possible solution method when Proposition
5.6 is not applicable. 2

Proof of Proposition 5.14
Again, we will apply Theorem 5.10. To this aim we first find in explicit
form a function Φ that solves the HJB equation. Then we show that process
{Φm

(
t, V m,π̄m(t), Xm(t)

)
}t∈[0,T ] is a martingale by Proposition 5.6.

From Theorem 5.10 it follows directly that functions Bj, for j = 1, 2 satisfy the
following ODEs:

∂

∂t
Bj +Bj

[ δ

1− δ
χjρjcj − κj

]
+

1

2

(
Bj

)2χ
2
j

ϑj
+

1

2

δ

1− δ
c2
j = 0, (C.6)

with terminal condition Bj(T ) = 0. Note that Equation (C.6) corresponds to Equa-
tion (5.29), where we have substituted the model specifications from (5.43). Condi-
tions (5.44) and (5.45) allow us to apply Corollary (2.44) and conclude that functions
Bj, for j = 1, 2 are as in Equation (5.46). Furthermore, from Theorem 5.10 function
w is given as in Equation (5.48). The expression for π̄ follows as well directly from
Theorem 5.10.
What remains to be proved is that {Φm

(
t, V m,π̄m(t), Xm(t)

)
}t∈[0,T ] is a martingale.

We will show this by applying Proposition 5.6. Consider process G as defined there:

G(t) := ln

(
Φm(t, V m,π̄m(t), Xm(t))

Φm(0, V m,π̄m(0), Xm(0))

)
.
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From the poof of Proposition 5.6 we know that the dynamics of process G are given
by:

dG(t) = µG
(
s,Xm(s)

)
ds+

2∑
j=1

ΣG
j

(
s,Xm(s)

)
dWX

j +
2∑
j=1

ΣG
(2+j)

(
s,Xm(s)

)
dW P

j ,

where

µG
(
s,Xm(s)

)
=

2∑
j=1

Xm
j (s)

[ ∂
∂t
Bj(s)− κjBj(s) +

δ − 2δ2

2(1− δ)2
c2
j

− δ2

(1− δ)2
Bjχjcjρj −

δ

2(1− δ)2

(
Bj(s)χjρj

)2

ΣG
j

(
s,Xm(s)

)
=Bj(s)χj

√
Xm
j (s), j = 1, 2

ΣG
(2+j)

(
s,Xm(s)

)
=

δ

1− δ

√
Xm
j (s)

(
cj +Bj(s)χjρj

)
, j = 1, 2.

Thus, the differential semimartingale characteristics of process Z := (Xm
1 , X

m
2 , G)

are given as follows:

µZj (t, x) =µXj (x,m(t))

µZ3 (t, x) =µG(t, x)

ΓZjj(t, x) =χ2
jxj

ΓZ33(t, x) =
2∑
j=1

xj

[(
Bj(t)

)2
χ2
j +

δ2

(1− δ)2
c2
j +

2δ

(1− δ)2
Bjχjcjρj

+
2δ − δ2

(1− δ)2

(
Bj(s)χjρj

)2

ΓZ12(t, x) =ΓZ21(t, x) = 0

ΓZj3(t, x) =ΓZ3j(t, x) = χjxj

[
Bj(t)χj +

δ

1− δ
ρj
(
cj +Bj(t)χjρj

)]
,

for j = 1, 2. It is easily checked that µZ and ΓZ satisfy Conditions i)-iv) from The-
orem 2.34 with p = 2. Thus, by Proposition 5.6,

{
Φm
(
t, V m,π̄m(t), Xm(t)

)
}
}
t∈[0,T ]

is

a martingale. Note that the martingale condition 2.4 from Theorem 2.34 is already
proved in Proposition 5.6. Finally, Theorem 5.10 delivers the verification result for
the Markov-modulated model.

2



Appendix D

Appendix for Chapter 6

Proof of Theorem 6.5
First denote:

C π̄(t) := V π̄(t)− Fd(t,X1(t)), (D.1)

for all t ∈ [0, T ]. Analogously to SDE (6.9) it can be shown that d exhibits the
following dynamics:

dd
(
t,X1(t)

)
=d
(
t,X1(t)

)[{
r
(
X1(t)

)
+ A2(T1 − t)ΣX

11λ1

(
MC(t)

)}
dt

+ A2(T1 − t)ΣX
11dW P

1

]
.

(D.2)

Substitution of (D.2), the SDE for V π̄ from (3.9) and the definitions of process π̄
from (6.33) in (D.1), leads to the following SDE for process C π̄:

dC π̄(t) =
{
V π̄X1 − FdX1 +

1

1− δ
C π̄(µ− r)′(ΣΣ′)−1(µ− r)

+
1

1− δ
C π̄ f

′
x

f
ΣXρΣ−1(µ− r) + Fd′xΣ

XρΣ−1(µ− r)− FdA2(T − t)ΣX
11λ1

}
dt

+
{ 1

1− δ
C π̄(µ− r)′(Σ′)−1 +

1

1− δ
C π̄ f

′
x

f
ΣXρ+ Fd′xΣ

Xρ

− FdA2(T − t)ΣX
11(1, 0, . . . , 0)

}
dW P ,

where the dependence on (t,X(t),MC(t)) is omitted for better readability. Using
that:

d′xΣ
Xρ =

(
dA2(T − t)ΣX

11, 0, . . . , 0
)

d′xΣ
XρΣ−1(µ− r) = dA2(T − t)ΣX

11λ1,

the SDE for C π̄ simplifies to:

dC π̄(t) = C π̄(t)
[{
X1 +

1

1− δ
(µ− r)′(ΣΣ′)−1(µ− r) +

1

1− δ
f ′x
f

ΣXρΣ−1(µ− r)
}

dt

+
1

1− δ

{
(µ− r)′(Σ′)−1 +

f ′x
f

ΣXρ
}

dW P
]
.
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From the exponential structure of the above SDE we can follow that if C π̄(0) ≥ 0,
then C π̄(t) ≥ 0, for all t ∈ (0, T ].

2

Proof of Theorem 6.6
In what follows we extend the proof of Theorem 5.1 to the HARA utility function.
Consider an arbitrary point (t, v, x, ei) ∈ DΛ, where v corresponds to the wealth of
the investor at time point t and X(t) = x,MC(t) = ei. The first statement follows
directly by applying the terminal condition from (6.22) and the martingale property
of Φ:

E
[
UH
(
V π̄(T )

)
|Ft

]
= E

[
Φ
(
T, V π̄(T ), X(T ),MC(T )

)
|Ft

]
= Φ(t, v, x, ei).

For the second statement consider an arbitrary admissible strategy π ∈ Λ(t, v) and
define the following process for τ ∈ [t, T ]:

L(τ) :=
{
V π̄(τ)− Fd(τ,X1(τ))︸ ︷︷ ︸

=:Cπ̄(τ)

}δ−1{
V π(τ)− Fd(τ,X1(τ))︸ ︷︷ ︸

=:Cπ(τ)

}
f
(
τ,X(τ),MC(τ)

)
.

First, we show that process L is a supermartingale. To this aim we derive its
dynamics by applying Itô’s formula for Markov-modulated diffusions (see Theorem
2.72):

dL(τ) =
[(
C π̄
)δ−3

Cπ
{(
C π̄
)2[
fX1 + ft + f ′xµ

X +
1

2
Tr{fxx′ΣX(ΣX)′}

+
I∑
z=1

qMC,zf(ez)
]

+ C π̄(δ − 1)
[
fV π̄[X1 + π̄′(µ− r)]− fFd[X1 + A2ΣX

11λ1]

+ f ′xΣ
XρΣ′V π̄π̄ − f ′xΣXρFdA2ΣX

11(1, 0, . . . , 0)′
]

+
1

2
(δ − 1)(δ − 2)f

[(
V π̄
)2
π̄′ΣΣ′π̄ +

(
FdA2ΣX

11

)2
+ 2V π̄FdA2ΣX

11π̄
′Σ(1, 0, . . . , 0)′

]}
+
(
C π̄
)δ−2

V ππ′
{
C π̄f(µ− r) + (δ − 1)fΣΣ′V π̄π̄

− (δ − 1)fFdA2ΣX
11Σ(1, 0, . . . , 0)′ + C π̄Σρ′(ΣX)′fx

}
+
(
C π̄
)δ−2

FdA2ΣX
11

{
− C π̄fλ1 + (δ − 1)fFdA2ΣX

11

− (δ − 1)fV π̄π̄′Σ(1, 0, . . . , 0)′ − C π̄f ′xΣ
Xρ(1, 0, . . . , 0)′

}]
dτ

+
(
C π̄
)δ−1

Cπf ′xΣ
XdWX

+
[
(δ − 1)

(
C π̄
)δ−2

Cπf
{
V π̄π̄′Σ− FdA2ΣX

11(1, 0 . . . , 0)
}

+
(
C π̄
)δ−1

f
{
V ππ′Σ− FdA2ΣX

11(1, 0 . . . , 0)
}]

dW P

+
(
C π̄
)δ−1

Cπ
(
f(e1), . . . , f(eI)

)
dM =: µLdτ + ΣL

1 dWX + ΣL
2 dW P + ΣL

3 dM,



184

where A2 = A2(T − τ) and the dependence on (τ,X1(τ),MC(τ)) is omitted for
better readability. Now we show that µL = 0. To ease the exposition we introduce
the following notation:

µL =:
(
C π̄
)δ−3

Cπ(∗) +
(
C π̄
)δ−2

V ππ′(∗∗) +
(
C π̄
)δ−2

FdA2ΣX
11(∗ ∗ ∗).

By a substitution of (6.25) in the expressions for (∗∗) and (∗ ∗ ∗), we obtain (∗∗) =
(0, . . . , 0)′ and (∗ ∗ ∗) = 0. It remains to be shown that (∗) = 0. Observe that by

inserting Φ(t, v, x, ei) = 1−δ
δ
α
{

1
1−δ

(
v − Fd(t, x1)

)}δ
f(t, x, ei) in System (6.22) with

π = π̄ we obtain the following System of PDEs for f :

(
C π̄
)2[
ft + f ′xµ

X +
1

2
Tr{fxx′ΣX(ΣX)′}+

I∑
z=1

qMC,zf(ez)
]

+ δC π̄V π̄
[
f [X1 + π̄′(µ− r)] + π̄′Σρ′(ΣX)′fx

]
− δC π̄F

[
f(dt + µX1 dx1 +

1

2
(ΣX

11)2dx1x1) + f ′xΣ
X(ΣX)′dx

]
− δ(1− δ)

[1
2

(
V π̄
)2
fπ̄′ΣΣ′π̄ − V π̄Ffπ̄′Σρ′(ΣX)′dx +

1

2
f(FΣX

11dx1)2
]

= 0.

(D.3)

Exploiting (D.3), the PDE for d (6.39) and the definition of π̄ (6.25) we obtain
(∗) = 0. Together, µL = 0. Thus, L is a local martingale. As it is positive, it is a
supermartingale.
Now we apply the concavity of the utility function, the supermartingale property of
L and the martingale property of Φ to prove the statement:

E
[
UH
(
V π(T )

)∣∣Ft

]
≤ E

[
UH
(
V π̄(T )

)
+ (UH)v

(
V π̄(T )

)(
V π(T )− V π̄(T )

)∣∣Ft

]
= E

[
UH
(
V π̄(T )

)∣∣Ft

]
+ E

[
(UH)v

(
V π̄(T )

)(
V π(T )− FD(T, T,X1(T ))

)∣∣Ft

]
− E

[
(UH)v

(
V π̄(T )

)(
V π̄(T )− FD(T, T,X1(T ))

)∣∣Ft

]
= E

[
UH
(
V π̄(T )

)∣∣Ft

]
+ E

[ α

(1− δ)δ−1
L(T )

∣∣Ft

]
− E

[
δΦ
(
T, V π̄(T ), X(T ),MC(T )

)∣∣Ft

]
≤ E

[
UH
(
V π̄(T )

)∣∣Ft

]
+

α

(1− δ)δ−1
L(t)− δΦ

(
t, v, x, ei

)
= E

[
UH
(
V π̄(T )

)∣∣Ft

]
.

2

Proof of Proposition 6.9
We apply Proposition 6.8. Note that for the considered model specifications System
(6.27) takes the following form:

∂

∂t
B1(t)−B1(t)κ1 + δ = 0

∂

∂t
B2(t)−B2

(
κ2 −

δ

1− δ
χ2ρ̄λ2

)
︸ ︷︷ ︸

=κ̃2

+
1

2
B2

2 χ
2
2

(
1 +

δ

1− δ
ρ̄2
)

︸ ︷︷ ︸
=χ̃2

2

+
1

2

δ

1− δ
λ2

2 = 0, (D.4)
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with B1(T ) = 0 and B2(T ) = 0. The solution for B1 is trivial and the solution for B2

follows from Corollary 2.44, where Conditions (6.42) and (6.43) assure its applicabil-
ity. Now, adopting the notation from Proposition 6.8, we define Z := (Xm

2 , X
m
1 , G).

A straightforward substitution of the model definition in the expressions for µZ and
ΓZ from the proof of Proposition 6.8 and Proposition 5.6 shows that conditions i)-iv)
from Theorem 2.34 are fulfilled for p = 1. The statement follows directly.

2
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