Simulation-based Decision-making in Early Design Stages

Fabian Ritter, fabian.ritter@tum.de
Technische Universitdt Miinchen, Germany

Philipp Geyer, p.geyer@kuleuven.be
KU Leuven, Belgium

André Borrmann, andre.borrmann@tum.de
Technische Universitdt Miinchen, Germany

Abstract

The use of digital tools for building design has increased in the past few years with the introduction
of building information modeling (BIM). However, the advantage of integrating decision support
information into the early design stages has been little exploited. Such integration has the potential
to enhance design solutions by providing knowledge of interactions and dependencies through
explicit descriptions of the design space (DS), including dependence of energy performance on design
parameters.

The design space exploration assistance method (DSEAM) proposed here allows designers to
evaluate their design using project specific simulation results and the DS formed by the potential
alternative solutions to ensure deeper understanding of the calculated results. The response surface
methodology, a metamodeling method, provides rapid results. Moreover, the approach visualizes the
impact of design changes. The proposed approach is integrated into a computer-aided design
environment to guide designers through the DS to find a well-performing solution. An office design
example illustrates the benefits of DSEAM for decision-making.

Keywords: Design Decision Support, visual programming, performance-driven design

1 Introduction

In recent years, the use of building information modeling (BIM) has been growing in the architecture,
engineering, and construction (AEC) sector. However, the method is mainly used in the later phases
of the planning process for very detailed models to generate blueprints or run detailed simulations
when major decisions have already been made and most of the design process has been completed.
The potential of BIM methods to gain and interconnect knowledge in very early phases, i.e., at the
conceptual stage, is not well exploited. Typically, changes in the design concept in later phases are
expensive as well as time-consuming. Therefore, an approach to gain insights into the consequences
of design decisions is required as early as possible in the design process.

The design space exploration assistance method (DSEAM) utilizes available information and
applies parametric modeling and simulation techniques including the response surface methodology
(RSM) for metamodeling to render the DS, the parametric space of alternatives for a given design
situation, interactively accessible for decision-making. This method focuses on the energy
performance of the building under design. Typical design decisions in early phases concern the
building shape and envelope as they exercise a major influence on future energy consumption and
material and space usage.

1.1 Performance driven design

Owing to continuously enhanced energy standards and governmental certification programs,
designers face the problem of focusing on performance-driven design instead of architectural design,
which relies on space and form, their field of expertise. In addition, designers require new tools that
are integrated into their design environment to maintain control of the design process and not hand
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it over to green building specialist engineers (Shi & Yang 2013). Hence, substantial research has been
conducted lately to integrate building performance simulation (BPS) into the design process in the
early design stages. One present challenge in BPS is to ensure the development of adequate
representation of the built environment and its performance, not a trivial task (Clarke & Hensen
2015).

There are three ways to integrate BPS into the design process: (a) a combined model, wherein all
simulations can be performed within the modeling environment, (b) a central model, wherein the
information is shared between different modeling and simulation tools using a data standard, and (c)
a distributed model, wherein simulation tools are coupled to the modeling environment by
middleware (Negendahl 2015). These systems often rely on either databases from which results from
other projects are available, as in (Markova et al 2013), or generative approaches coupled to
optimization algorithms that assist the designer in minimizing design iterations. The latter includes
generative design support using parametric design as presented in (Lin & Gerber 2014) or grammars
as in (Granadeiro et al 2013).

However, these approaches do not support the designer in decision-making for a specific design
task that is different from previous ones, because even large databases often miss a well-fitting
solution and optimization algorithms do not help find options other than the optimized one.
Furthermore, all these methods lack an interface for designers that is easy to use and can be easily
adapted to different design tasks in their common environment. Therefore, a new methodology
integrated into a traditional environment must be developed to enable designers to define design
problems and support the search for effective solutions.

1.2 Design Decision Support

To provide extensive supporting information on energy performance in early design phases, the
conceptual building design, this study presents a new methodology (DSEAM) that interactively
integrates computational model-driven design decision support (DDS) in a design process. The aim is
to enable designers to define problems, automatically derive the performance characteristics within
the DS and then present them in an easy to understand and interactive manner for further steps of
decision-making. A key feature of this model-driven DDS is the rapid exploitation and visualization
of DSs and alternatives that allow effective real-time support for design sessions.

1.3 Design Space Exploration

The DS is defined by all possible solutions to a given design problem. It contains all the parameters
that stakeholders consider in their design subspaces (Figure 1). Hence, the design process can be
described as DS construction, i.e., the definition of objectives, variables, and constraints, and DSE,
which involves the examination and evaluation of different solutions (Maher 2000). Performed
manually, this is a time-consuming process because all the solutions must be evaluated in their
performance, e.g., costs, energy consumption, and carbon footprint. Therefore, computational support
in DSE could provide a substantial benefit to this process for finding well-performing design solutions.
However, computationally expensive performance evaluations provide a hurdle for DSE, because they

Design Space Subspace
T arch | shape msu_latlop
comfort certification
T materials  daylighting
constr | A [acoustic| | | appearance energy-
S costs consumption
re— K pe— facade v15|b|_I|_ty
color usability
space

Figure 1 The DS contains all possible solutions for a given task. It can be divided into several
subspaces, which are represented as the participants in building design. These can be subdivided
among different experts within a group (e.g., a group of architects with different focuses).
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hinder interactive design and are therefore often performed completely automatically without
human-computer interaction.

Nonetheless, human-computer interaction must occur in computational DSE because of the
aesthetic and emotional character of architectural design, which requires tacit knowledge and is
therefore difficult to derive automatically. The designer needs to have the possibility of interfering
with the DSE to drive the design in a direction that also fulfills the aesthetic aspects and brings in
other tacit knowledge that cannot be computationally reproduced.

2 Design Space Exploration Assistance Method

DSEAM was developed to enable designers to perform a rapid DSE. Therefore, a representation of the
DS, focusing on energy performance in the presented case, is integrated within a 3D computer-aided
design (CAD)/BIM environment that visualizes the multidimensional DS interactively (Figure 2). The
BIM environment is not intended to hold a detailed model but to use the results of DSEAM based on
a conceptual model for further detailing.

Furthermore, DSEAM enables designers to gain knowledge of the DS. The rapid exploration of
DS in terms of performance and representation allows exploration of the influence and impact of
different solutions without actually modeling them. DSEAM utilizes a metamodel generated on the
basis of a few initial variants that serve as supporting points. Hence, it is possible to explore the DS
continuously and understand the sensitivity of the examined variables.

The modification of the complete DS (total modification) is insufficient in most cases owing to the
complexity or irrelevance of a parameter in the entire setting, with the result that typically only a
partial modification is deployed or only one subspace is explored (Maheri & Isikveren 2013). In the
presented case, we focus on energy performance within the architectural subspace.
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Figure 2 Integration of DSEAM into the design workflow.

2.1 Response Surface Methodology

RSM was first introduced by Box & Wilson (1951) as an important means of metamodeling and was
then developed further (Box & Draper 2007, Forrester et al 2008). It assists in the construction of
rapidly responding models based on supporting points. These points stem from an intelligent choice
of experiments using the design of experiments (DoE) methodology. RSM has already been used for
engineering problems, primarily in the field of mechanical engineering (Gholap & Khan 2007, Goel et
al 2007, Ekren & Ekren 2008, Georgopoulou & Giannakoglou 2010, Zhang et al 2012, Cheng et al 2013).
However, RSM has also been applied in an AEC context (Chlela et al 2009, Jaffal et al 2009, Geyer &
Schliter 2014).

DSEAM utilizes the approach of parametric simulation and metamodel construction for rapidly
responding DSE. It enables the designer to describe the design task in a CAD modeling environment
and obtain instant feedback regarding well-performing solutions and the impact of parameter changes
(Figure 2). Hence, DSEAM enables the designer to implement informed decisions and gain knowledge
of the explored DS and the impact of the various parameters.
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2.1.1 Mathematical Model
In the traditional RSM approach, the structure of the equations is static since the DS is represented
by second-order polynomials and either no or only first-order interactions. The typical form is

y = f(x1,%2), (1)

where x; are the design variables and y is the target value. The metamodel is represented as

9 = Bo+ Baxs + Poxy + Paxi + Paxi + Psxyix, + € = g(x), (2)

where f; are the fitting coefficients, ¢ is the modeling error, and ¥ is the response.

In particular cases, manual extensions serve to improve accuracy. Chlela et al (2009) considered
selected second-order interactions, and Forrester et al (2008) introduced the Vandermonde matrix,
which allows higher-order polynomials. However, this requires mathematical and technical
knowledge, discouraging typical designers. Consequently, rigid configurations, which lack a good fit
to the real nature of the dependencies and interactions between factors, form the main application of
RSM. They are inappropriate for providing general information on the behavior of an individual
design case. Individual cases, especially in building design and retrofitting, are significantly different
with respect to their component constitutions and thus their engineering dependency characteristics
that lead to individual performance behavior requiring appropriate design strategies.

To enable metamodeling, a selected number of supporting points must be determined. There are
three ways of achieving the responses for the supporting points: (1) calculation based, for example,
on known physical behavior, (2) measurement through experiments, and (3) simulation. In this study,
we focus on metamodeling using simulation owing to the lack or poor availability of measured data
and the strong influence of the behavior of the people living in the examined area. Therefore, the
required supporting points are evaluated using an energy analysis tool, EnergyPlus. These
calculations also require some time, but the generated metamodel allows instant feedback for all
further design changes.

2.2 Integration into the Design Process
To support the design process, DSEAM must be seamlessly implemented into the used environment.
As an interface for the designer, visual programming language Dynamo (Keough 2015) is used.

The advantages of Dynamo are that it offers an easy to understand way of integrating additional
functionalities into a common modeling environment, and it can be adapted easily to various
scenarios. Dynamo can access and modify the parameters of a CAD model and can therefore apply to
a defined design. This is important because design tasks have various requirements and constraints
that differ for every new design task. Furthermore, designers have varying knowledge regarding
specific points and need other feedback from the system.

Normally, DoE serves to determine a subset of supporting points that provide as much
information with as few experiments as possible. However, in our case, to calculate the second-degree
polynomial metamodel corresponding to equation (5), at least three variation steps (design points) of
each factor are necessary. This leads to a minimum of 3" simulations for the metamodel, which allows
a full factorial exploration of the DS, where n is the number of variables. Then, each factor is
normalized to a range of -1 to 1. To this end, the evaluation of the parametric simulation model is
performed at steps -1, 0, and 1 to ensure the highest distribution of design points in the examined
DS.

2.3 Implementation

The parametric CAD model is coupled to a simulation model via Dynamo to enable RSM for DDS
in terms of energy performance. A framework was developed using MATLAB (Mathworks 2015) and
EnergyPlus (U.S. Department of Energy 2013) to automate the generation of the metamodel.

The EnergyPlus input files are generated within Dynamo, thereby allowing access to the model
parameters. These files are then exported and used within MATLAB to evaluate the supporting points

Proc. of the 32" CIB W78 Conference 2015, 27th-29th 2015, Eindhoven, The Netherlands



Ritter et al. 2015 Simulation-based Decision-making in Early Design Stages

————
Create.DS F—
jstring |-\ param1 m Write.Files e —
value[J} range]2 in | P— +
param o
rangez idf 7||ﬁ
value[J{ |- Create.Model . —— | Energy
in_| | _ stertautomatically _ _  [| —— Plus
____________________________________ . i 5
ReadModel] « — — — — — - — - - - __ _ 1 _notifyon completion _ _ _ | ———
[ out\ Use.Model Vievalize
del th
o [l § i Mat1ab
[value 1 Jparem? i
valu ~ < |
\Veha'
Dynamo Metamodel

Figure 3 DSEAM workflow: The designer defines his or her first intention and the parameters desired for study in
a given range. Next, DSEAM automatically creates the DS for the given problem and loads it into the CAD
application. The designer receives instant feedback on the performance of the current design and the impact
regarding parameter changes within the previously defined DS.

of the metamodel. The metamodel is then provided in Dynamo to visualize feedback and explore the
DS (Figure 3).

2.4 Visualization and Exploration

The problem regarding visualization of the DSEAM results is their high-dimensional nature. As the
response surfaces can be easily visualized in 3D (i.e., two parameters and the resulting impact, e.g.,
the glazing factor, the window U-value, and their impact on the heating energy consumption), more
dimensions require specifications that are often not intuitively classifiable (Packham et al 2005).

One good solution for the visualization of high-dimensional problems is parallel coordinates. They
display different options along scaled vertical axes for different parameters (Figure 4). They can be
compared with a spider web graph but are more readable because they do not radially order the
values.
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Figure 4 The different variants in parallel coordinates. They can be easily understood and
compared. The selected variant (red) shows that the “optimal” result (least energy
consumption) might not result in the intended design. The designer can evaluate the variants
compared with his own intentions and decide accordingly.
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3 Case study
In the following, the integration of DSEAM into the design process is explained using a conceptual
design of an office building in an urban area.

3.1 Design Task

The task is to design an office building with a fixed usage area. Therefore, each space plan layout
option uses the same amount of space on site. The designer begins by defining the initial geometries
and constraints in the CAD environment and connects them to Dynamo. Owing to the urban
environment, the design orientation is restricted to two main axes along the north and south sides of
the site. Thus, a parametric conceptual mass is defined by the architect using a common CAD
environment. The parametric layout is displayed in Figure 5. Moreover, the surrounding buildings are
modeled as masses and integrated within the energy performance evaluation because they influence
performance in terms of shading.

Figure 5 An office building in a city environment as modeled in Revit 2016 (Autodesk 2015). The geometry of the
building is parametric and automatically steered by DSEAM via Dynamo. The parameters include the length of the
north and south wings as well as the positions of the two wings and the connecting center part. The environment
is also modeled with a high-rise building in the south of the office building to evaluate the influences of shading.

The ranges for design variables, representing the DS steps, are selected as shown in Table 1. The
parameters are usually selected as continuous parameters and hence can form a response surface as
the metamodel. This means that the wings can be placed along their sides between the west and east
corners at any location. The length is also a continuous parameter, but owing to the restriction of the
total space required, they are dependent on each other. Since the maximum length is restricted to
25 m, the minimum length is 10 m on order to satisfy the planned office space requirement. The two
parameters’ envelope quality and glazing factor are also continuous without affecting the space
layout. Among the parameters, only the version is not continuously varied because the designer has
decided to place the inner part at discrete positions. Therefore, each version will form a new
metamodel, which can be explored individually or in parallel.

Table 1 Design variables for the office design

Design Variable -1 0 +1

Version (Position of the inner part) A (east) B (mid) C (west)

Wing Length Ratio (North/South) 10/25 m 17.5/17.5 m 25/10 m

Right Wing Position east mid west

South Wing Position east mid west

Envelope Quality [W/m?K] Uwall = 2.0 Uwall = 1.1 Uwall = 0.14
Uwindow = 1.85 Uwindow = 1.25 Uwindow = 0.65

Glazing Factor 0.3 0.6 0.9
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Figure 6 Space layouts that form the supporting points of the DS for the office building. All space layouts lead to
the same amount of available office space within the buildings. The versions define the position of the connection
between two areas (left, center, and right) and are explicit/discrete. The lengths and positions of the wings can be
manipulated continuously and lead to space plan layouts where two buildings emerge.
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The question now is how the different shapes affect the energy consumption of the building.
Therefore, the designer uses DSEAM to generate the version metamodels for the given design task.
In the first step, the variants that form the supporting points, i.e., the full factorial space of the values
described in Table 1, are automatically generated and evaluated. The different geometric designs are
displayed in Figure 6.

3.1.1 Results

The simulation results are the overall heating energy demand with a set point temperature of 20°C,
the cooling demand with a set point of 24°C, and the maximal heating and cooling load that can be
used by specialists to decide on the heating, ventilating, and air conditioning (HVAC) system. All
values are related to the conditioned space for improved comparison.

performance parameter
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Figure 7 The results of the different office building variants that form the supporting points for the metamodel in
parallel coordinates. Each line represents a dedicated design variant that can be visualized within the CAD
environment according to the selected performance.
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Figure 8 Visualization of the metamodel for Versions A (left), B (middle), and C (right). The response surfaces are
displayed for three specific cases of each version. More cases can be added or removed for detailed exploration.
The differences between Versions A and C are related to the defined environment (surrounding buildings).

The resulting performance is shown in parallel coordinates in Figure 7. Results show a total energy
demand (heating and cooling) ranging from 40 to 250 kWh/m?a. This is a very wide range owing to
the chosen range of the envelope quality, 2.0-0.14 W/m’K.

The metamodel is then obtained by regression (minimizing the quadratic mean error), whereby
the absolute error is calculated using the following equation:

e=3-y, 3)

where ¥ is the result of the metamodel and y is the simulation results. The calculated errors are shown
in Table 2.

Table 2 Error of the metamodel for the three versions

Version Max Error [%] >10% >15%

Version A 38 136 out of 675 57 out of 675
Version B 50 160 out of 675 84 out of 675
Version C 40 140 out of 675 59 out of 675

The metamodel can then be explored again in parallel coordinates or by displaying the response
surfaces. The response surfaces cannot be explored in higher dimensions but offer the opportunity to
understand the influences in more detail.

Figure 8 shows the metamodels as an example of visualization of the response surfaces. The
parameters for the glazing factor and envelope quality are selected for visualization. Each model
shows three specific geometrical layouts with the north wing length at a maximum. It can be easily
seen that the highest influence on the energy consumption of the building is the envelope quality (y
axis of the response surface in Figure 8). High envelope qualities can halve the energy consumption
of the building. The second important parameter is the glazing factor (x axis of the response surface
in Figure 8), which has an optimum glazing of approximately 60%. With this factor, the building has
sufficient solar heat gain to maintain low heating energy consumption in winter but less than
sufficient to avoid overheating, with consequent high cooling energy consumption in summer. Owing
to the shading of the high-rise building in the south, version C’s performance is somewhat better than
those of the other two versions.

To get a better understanding of the sensibility of each variable, the influences can be displayed
in bar charts as well (Figure 9). The influence of the envelope quality has at least an influence of 70%
up to about 85%. This is also related to the wide range in which this variable is modeled. The glazing
factor also has a high influence, which will be reduced if also shading elements are considered. But
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Figure 9 Left: Visualization of the influence of the five variables for the three, Versions A (blue), B (red), and C
(green). Right: The best performance can be achieved with Version B.

also the influence of the space layout cannot be neglected with impacts up to 40%. Only the Version
B has a very low influence due to its compactness. On the right side of Figure 9, the energetic
performance ranges of the three versions are shown. Also here it can be seen, that the compact
version B performs better than the other two. But with a range from 250 kWh/m?a down to
25 kWh/m?a the examined parameters have to be chosen reasonably.

Finally, the designer now has the possibility of making informed decisions based on the
metamodel. The designer can decide on design changes in combination with his or her aesthetic and
emotional design intent, architectural knowledge, and other requirements that cannot be
computationally evaluated well. Also if some general perceptions may be clear (like that the most
compact and insulated design grants the best performance) it enables designers to see how much
worse or better their design is compared to the “optimized” solution and hence find the best
performing solution for the design task including their tacit perception of architectural and spatial
design.

4 Conclusion

This study presented DSEAM, an approach that allows rapid DS evaluation in terms of energy
performance within a common design interface. It interactively visualizes the performance indicators
of the multidimensional DS.

Parametric modeling, energy simulation, and metamodeling were applied to enable rapid DSE
and additional DS knowledge. The method enables DDS in conceptual design without limiting the
solutions to automatically optimized ones. The designer can explore the DS, gain knowledge of the
influence of parameters, and decide on the basis of the performance indicators visualized in parallel
coordinates and response surfaces and on his or her design intentions and architectural knowledge.

The presented case study of an urban office building showed the advantages of DSEAM for
evaluating energy performance. It was clearly seen that the envelope quality is the most important
factor and must be considered.

In further steps, predefined generic parametric components that directly integrate DSEAM will
be developed. Furthermore, additional analysis tools for evaluating the daylighting factor, material
use, and costs, for example, will be implemented.
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