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The breaking of a wave cannot explain the whole sea.

Vladimir Vladimirovich Nabokov





Abstract
In order to improve the reliability and accuracy of weather and climate models,
it is necessary to deepen the understanding of buoyancy-driven turbulent flows
and to find efficient numerical simulation methods for this kind of flows. The
present work contributes to these objectives by providing a number of bench-
mark simulations of homogeneous stratified turbulence, which are investigated
in detail with respect to the spectral energy fluxes and the two-dimensional spec-
tral eddy viscosity and diffusivity. Based on these results we validate several
efficient large-eddy simulation (LES) methods for stratified turbulence. Further-
more, we present high resolution reference simulations of three different cases of
breaking monochromatic gravity waves in the terrestrial mesosphere. We anal-
yse these results elaborately, compare them to previous studies and use them
for the validation of different LES methods which have produced promising re-
sults for stratified turbulence. We show that it is possible to simulate the fully
non-linear process of gravity-wave breaking with a comparatively low number
of grid cells, as long as the computational parameters are chosen carefully.

Zusammenfassung
Um die Zuverlässigkeit und Genauigkeit von Wetter- und Klimamodellen zu ver-
bessern, ist einerseits ein vertieftes Verständnis der Physik auftriebgetriebener
turbulenter Strömungen notwendig, andererseits werden effiziente numerische
Simulationsmethoden für diese Art von Strömungen benötigt. Diese beiden Fra-
gestellungen werden durch die vorliegende Arbeit vorangetrieben. Dazu wurden
mehrere Referenzsimulationen von homogener geschichteter Turbulenz angefer-
tigt, die detailliert analysiert werden, insbesondere auch in Hinblick auf die spek-
tralen Energieflüsse und die spektrale Wirbelviskosität und -diffusivität. Darauf
aufbauend werden verschiedene Methoden der Large-Eddy-Simulation (LES) für
homogene geschichtete Turbulenz validiert. Weiterhin wurden hochaufgelöste
Referenzsimulationen von drei verschiedenen Fällen brechender monochroma-
tischer Schwerewellen in der mittleren Erdatmosphäre durchgeführt. Die Ergeb-
nisse dieser Simulationen werden ausführlich analysiert, mit älteren Ergebnissen
verglichen und ebenfalls zur Validierung verschiedener LES-Methoden verwen-
det, die zuvor zu guten Ergebnissen bei geschichteter Turbulenz geführt haben.
Es wird gezeigt, dass es möglich ist mit einer vergleichsweise kleinen Anzahl an
Gitterzellen den kompletten nichtlinearen Prozess des Brechens atmosphärischer
Schwerewellen zu simulieren, wenn die entsprechenden numerischen Parameter
sorgfältig gewählt werden.
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Preface

The present work is a summary of six peer-reviewed journal articles published
by the author during the years 2012–2015. The included articles are:

IJHFF12: Remmler, S. and Hickel, S. (2012). Direct and large eddy simulation
of stratified turbulence. Int. J. Heat Fluid Flow, 35:13–24.

TCFD13: Remmler, S. and Hickel, S. (2013). Spectral structure of stratified
turbulence: Direct numerical simulations and predictions by large eddy
simulation. Theor. Comput. Fluid Dyn., 27:319–336.

JFM13: Remmler, S., Fruman, M. D., and Hickel, S. (2013). Direct numerical
simulation of a breaking inertia-gravity wave. J. Fluid Mech., 722:424–
436.

JFM14: Remmler, S., Hickel, S. (2014). Spectral eddy viscosity of stratified
turbulence. J. Fluid Mech., 755, R 6:.

JGR14: Fruman, M. D., Remmler, S., Hickel, S., and Achatz, U. (2014) On the
construction of a direct numerical simulation of a breaking inertia-gravity
wave in the upper-mesosphere. J. Geophys. Res. 119:11 613–11 640.

JAS15: Remmler, S., Hickel, S., Fruman, M. D., and Achatz, U. (2015) Validation
of large-eddy simulation methods for gravity-wave breaking. J. Atmos.
Sci., doi:10.1175/JAS-D-14-0321.1, in press.

In the following text we will use the abbreviations (IJHFF12 etc.) for these inter-
nal references and the usual “author (year)” citation style for external references.

IJHFF12, TCFD13 and JFM14 deal with direct numerical simulation (DNS) of
stratified turbulence and proper turbulence subgrid-scale models for the large-
eddy simulation (LES) of this kind of flow. The latter are required for the simula-
tion of breaking gravity waves. In JFM13 we focus purely on fully resolved sim-
ulations of a first breaking wave case without a turbulence subgrid-scale model
in order to create reference data for the validation of LES. In JGR14 we extend
this topic by adding two new test cases and summarising the whole process of

xi



Contents

designing, setting up and conducting the DNS. Eventually, in JAS15 we present
LES of the breaking wave cases introduced before.

The following introduction (chapter 1) provides an overview of the available
literature, open questions and our contribution to the field of numerical simula-
tion of turbulence in stably stratified fluids in general and, specifically, breaking
gravity waves. This chapter summarises the introductions of the respective jour-
nal articles without skipping too much information.

Chapter 2 summarises the numerical methods used without covering all de-
tails. The chapter mainly gives an overview of the methods, explains differences
in the nomenclature in the articles and clarifies how the different sets of equa-
tions are related. For many details the reader is referred to the respective articles.

Instead of a “results” section, chapter 3 provides one-page summaries of each
journal article included in this work. The articles, including all results, figures,
tables and discussions are fully reprinted in the appendix.

The work is concluded by a summary and discussion of the results in chapter 4.
Complementary to this book there is a data DVD including initial conditions

as well as time resolved integral results, energy spectra and 1-D result data from
different simulations of the three investigated cases of breaking monochromatic
gravity waves (JFM13, JGR14 and JAS15). These data may be used as reference
for similar investigations. For details concerning the data format and accessibil-
ity, please refer to the enclosed file “readme.pdf”.

xii



1. Introduction

1.1. Gravity waves in the atmosphere

Gravity wave (fluid mechanics): A wave in a fluid medium in which
restoring forces are provided primarily by buoyancy (that is, gravity)
rather than by compression.

(Dictionary of scientific and technical terms: Parker, 2003)

Any vertical displacement of a fluid parcel in a stably stratified fluid induces a
restoring force on that parcel. The restoring force causes the parcel to move back
into its neutral position, to overshoot due to its inertia and, if viscous forces are
sufficiently weak, to oscillate around its neutral position. The local displacement
of fluid causes this oscillation to spread within the whole domain as a transverse
wave, generally referred to as an (internal) gravity wave. Gravity waves are
an important feature of the circulation within the terrestrial atmosphere and
oceans. They transport energy and momentum from the source region to the
region where they are dissipated, e.g. by breaking. These two regions can be
located hundreds or even thousands of kilometres apart from each other. The
breaking of gravity waves can locally lead to enhanced turbulence, mixing of
passive tracers and induction of large scale flows. In fact, gravity wave breaking
is a sine qua non for understanding the global oceanic circulation and some
important phenomena in the middle atmosphere.

Atmospheric gravity waves are mostly forced by flow over orography (e.g.
Smith, 1979; Lilly et al., 1982; McFarlane, 1987), by convection (e.g. Chun et al.,
2001; Grimsdell et al., 2010) or by spontaneous imbalance of the mean flow
in the troposphere (O’Sullivan and Dunkerton, 1995; Plougonven and Snyder,
2007). Flow over mountains, ridges or whole mountainous areas is probably the
best understood source of gravity waves today. The orographic obstacle exerts a
drag on the flow; this drag acts in the region where the emitted gravity waves are
dissipated, i.e. possibly far away from the source. Sawyer (1959) was one of the
first to note the necessity of taking gravity wave drag into account in numerical
weather forecast models. Several authors (Bretherton, 1969; Lilly, 1972; Blu-
men and McGregor, 1976) attempted to quantify the gravity wave drag exerted
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1. Introduction

by orographic gravity waves on the mean flow, finding values of the order of
1 Pa, which can be sufficient to accelerate the mean flow by several m/s per day
(Nappo, 2002). Chun and Baik (1998) found even larger values of acceleration
and deceleration due to gravity waves generated by thermal forcing in cumulus
convection. The direct effects of gravity waves on the general circulation in the
troposphere and lower stratosphere are only minor, although gravity wave break-
ing can lead to clear-air turbulence and locally enhanced turbulent diffusion in
that region. On the other hand, gravity waves strongly influence the circulation
in the atmospheric layers above the troposphere. In the stratosphere (the alti-
tude range between approximately 15 and 50 km) they lead, together with other
equatorial waves, to the quasi-biennial oscillation in equatorial winds (Dunker-
ton, 1997a; Baldwin et al., 2001). In the mesosphere (approximately 50 and
90 km altitude) gravity waves are, for example, responsible for the cold summer
pole mesopause (Hines, 1965; Houghton, 1978). Gravity waves generated in the
troposphere (the altitude range below approximately 15 km) are subject to wave
dispersion while propagating into the middle atmosphere. Prusa et al. (1996)
showed in a series of numerical experiments that gravity waves generated in
the troposphere at a broad wavelength spectrum reach the upper mesosphere as
an almost monochromatic wave packet with a horizontal wavelength between a
few kilometres and more than 100 km depending on the horizontal scale of the
forcing and the background conditions. For a detailed overview of gravity waves
in the middle atmosphere see Fritts and Alexander (2003).

Since most gravity waves have a wavelength that cannot be resolved in general
circulation models, the effect of gravity waves on the global circulation is usually
accounted for by some parametrisation1 based on combinations of linear wave
theory, empirical observations of time-mean energy spectra and simplified treat-
ments of the breaking process. Various parametrisations have been proposed,
e.g. by Lindzen (1981), Holton (1982), Palmer et al. (1986), Scinocca and Mc-
Farlane (2000) and others. Reviews of gravity wave parametrisation schemes
are provided by McLandress (1998), Kim et al. (2003) and Fritts and Alexander

1 Geophysicists prefer the term “parametrisation” over the engineering term “model”. Both
terms refer to the same concept, i.e. a more or less complex mathematical description of
the effect of some unresolved small scale process on the numerically resolved large scale
phenomenon. To remain close to the accepted terminology of both fields, we use “gravity
wave parametrisation” but “turbulence subgrid-scale model”.

Furthermore, a flow solver is generally referred to as a “code” by engineers and as a “model”
by geophysicists, which shall not be confused with the engineering “model” described above.
We generally use “flow solver” or “code” to refer to a pure CFD computer programme, while
we use “weather or climate model” for the software used in geophysics.

2



1.1. Gravity waves in the atmosphere

(2003). Generally, the upward propagation of linear waves through the atmo-
sphere is computed using the Wentzel–Kramers–Brillouin–Jeffreys (WKBJ) ap-
proximation (Bretherton, 1966; Einaudi and Hines, 1970; Laprise, 1993), which
is based on the assumption of a slowly varying background flow field. During
the upward propagation of the wave, the amplitude typically grows as the am-
bient density decreases. Effects of non-linearity within the wave become more
important until the wave reaches the threshold of static stability (i.e. when the
vertical gradient of total potential temperature becomes locally negative) and
breaks. Most parametrisation schemes account for this effect by rather pragmat-
ically reducing the wave amplitude and transferring the corresponding fraction
of the wave momentum to the mean flow.

The study of gravity wave breaking has been a subject of research for many
decades. Theoretical analyses of inviscid (Mied, 1976; Drazin, 1977) and weakly
viscous (Klostermeyer, 1982) breaking gravity waves show that monochromatic
high frequency gravity waves (HGWs), i.e. waves unaffected by rotation, are
linearly unstable regardless of their amplitude. As opposed to HGWs, low fre-
quency inertia-gravity waves (IGWs) are influenced by the Coriolis force and
thus have a non-zero third velocity component perpendicular to the plane of the
wave. Dunkerton (1997b) and Achatz and Schmitz (2006b) showed that this
influences the orientation of the most unstable perturbations. Therefore, the
breaking mechanism in IGWs differs fundamentally from HGWs and has to be
investigated separately.

The onset of gravity wave breaking, i.e. the initial growth of some instability
modes, can be treated as a two-dimensional problem with three velocity com-
ponents. However, the breaking process itself is inherently three-dimensional,
and the breaking dynamics in two- and three-dimensional simulations strongly
differ from each other, as pointed out first by Andreassen et al. (1994) and by
Fritts et al. (1994). This was later confirmed by Fritts et al. (2009a,b, 2013)
and by Fritts and Wang (2013) using simulations with much higher, and thus,
more realistic Reynolds numbers. For a more comprehensive review of the most
recent DNS studies on gravity wave breaking see JGR14.

The breaking of gravity waves can be studied best by means of numerical sim-
ulations, since these allow for a separation of the wave-breaking effects from all
other atmospheric phenomena and offer a variety of analysis and post-processing
tools. An important aspect in setting up a simulation of a gravity wave breaking
event is the proper choice of the domain size and initial conditions. Since the
gravity wave itself is one-dimensional, while the breaking process and the result-
ing turbulence is three-dimensional, proper choices have to be made for the two

3



1. Introduction

directions perpendicular to the wave vector. In order to make the DNS of break-
ing gravity-waves feasible, Achatz (2005) and Achatz and Schmitz (2006a) anal-
ysed the optimal perturbations for a given monochromatic gravity wave. Fruman
and Achatz (2012) extended this analysis for IGWs by computing optimal sec-
ondary perturbations based on the time dependent perturbed wave. They found
that the wavelength of the optimal secondary perturbation can be much smaller
than the original wave. Thus a three-dimensional domain does not need to have
the size of the base wavelength in all three directions. They proposed the fol-
lowing multi-step approach to set up the domain and the initial conditions for a
given monochromatic gravity wave:

1. solution (in the form of normal modes or singular vectors) of the Boussi-
nesq equations linearised about the basic state wave determining the pri-
mary instability structures;

2. non-linear two-dimensional numerical solution of the full Boussinesq
equations using the result of stage 1 as initial condition;

3. solution in the form of singular vectors (varying in the remaining spatial di-
rection) of the Boussinesq equations linearised about the time-dependent
result of stage 2;

4. three-dimensional DNS of the Boussinesq equations using the linear solu-
tions from stages 1 and 3 as the initial condition and their wavelengths for
the size of the computational domain.

In the present work, we applied this methodology to three different cases of
monochromatic gravity waves breaking in the upper mesosphere. In all cases
the wavelength is chosen to be 3 km, the Coriolis parameter f is chosen such
that it resembles a position at 70◦N in the earth atmosphere and the kinematic
viscosity is 1m2/s corresponding to an altitude of 81 km. The cases differ with
respect to their non-dimensional amplitude2 a and propagation angle Θ, and
thus, oscillation period. We selected

1. an unstable IGW (a = 1.2, Θ = 89.5◦),
2. a stable IGW (a = 0.86, Θ = 89.5◦) and
3. an unstable HGW (a = 1.2, Θ = 70◦).

2 The non-dimensional wave amplitude a is defined such that a gravity wave with a = 1 is
neutrally stable at its least stable point, i.e. the minimum vertical buoyancy gradient is zero.
Waves with a < 1 are statically stable and waves with a > 1 we refer to as statically unstable,
although the unstable region might extend only a small portion of the wave phase depending
on the actual value of a.
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1.2. Turbulence modelling in stably stratified fluids

We conducted DNS of case 1 (JFM13) and DNS of all three cases, including
spectral analysis (JGR14). Detailed lists of parameters for all cases can be found
in our respective publications.

1.2. Turbulence modelling in stably stratified fluids

Simulations of gravity wave breaking events are computationally very expensive
if the smallest turbulence scales have to be resolved (DNS). The necessity of a
very high resolution can be avoided by applying the concept of large-eddy simu-
lation (LES), i.e. resolving only the largest turbulence structures and modelling3

the effect of the subgrid-scale (SGS) part of the energy spectrum on the resolved
scales. Since gravity waves only occur in stably stratified fluids, studying gravity
wave breaking by LES requires a model for SGS turbulence that correctly mod-
els the SGS stresses in the presence of stable stratification. In this section we
will review the special characteristics of turbulence in stably stratified fluids (i.e.
stratified turbulence) and the available SGS models.

Stable stratification suppresses vertical motions and thus makes the velocity
field strongly anisotropic. The coherent structures in the stratified turbulent flow
have much larger horizontal length scales compared to the vertical scales. Also
the energy spectrum is not isotropic. The earth atmosphere is stably stratified
almost everywhere at almost every time and is thus one of the most important
sources of information about stratified turbulence. Nastrom and Gage (1985)
analysed the horizontal velocity spectrum in the atmosphere using aircraft ob-
servations . They found a power-law behaviour in the mesoscale range with an
exponent of −5/3, which is the same value as in isotropic turbulence (see Batch-
elor, 1953; based on the theory of Kolmogorov, 1941). In the vertical spectrum,
Cot (2001) observed an exponent of −3 for the inertial range.

There has been a long and intensive discussion whether the observed spectra
are due to a backward cascade of energy (Gage, 1979; Lilly, 1983; Herring and
Métais, 1989) as in two-dimensional turbulence (Kraichnan, 1967), or due to
intermittent breaking of internal waves, which means that a forward cascade is
the dominant process (Dewan, 1979; van Zandt, 1982; Dewan, 1997). In dif-
ferent numerical and theoretical studies, ambiguous or even conflicting results
were obtained (Lilly et al., 1998). Despite this discussion about its origin, the
inertial range itself with an exponent of −5/3 in the horizontal spectrum was
confirmed by most authors.

3 For the terminology see footnote 1 on page 2
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1. Introduction

Over the last years, a number of new simulations and experiments have ad-
dressed the issue. Smith and Waleffe (2002) observed a concentration of en-
ergy in the lowest modes in their simulations. Other studies (Laval et al., 2003;
Waite and Bartello, 2004) suggested that the character of the flow depends on
the Reynolds number

Re=
UL
ν

, (1.1)

where U and L are characteristic velocity and length scales of the flow and ν
is the kinematic viscosity. High Reynolds numbers are associated with stronger
three-dimensionality and a forward cascade of energy. Riley and de Bruyn Kops
(2003) suggested that the flow can be strongly stratified but still turbulent if
Fr2Re> 1, where the Froude number is

Fr=
U

NL
(1.2)

and N is the Brunt–Väisälä frequency. Lindborg (2006) presented a scaling anal-
ysis of the Boussinesq equations for low Froude and high Reynolds number. His
theory of strongly anisotropic, but still three-dimensional, turbulence explains
the horizontal spectrum with an exponent of -5/3 as well as the vertical spec-
trum with an exponent of -3. On the basis of these findings, Brethouwer et al.
(2007) showed that the relevant non-dimensional parameter controlling strati-
fied turbulence must indeed be the buoyancy Reynolds number R = Fr2Re. For
R � 1, they predict stratified turbulence including local overturning and a for-
ward energy cascade. In the opposite limit, for R � 1, the flow is controlled by
viscosity and does not contain small-scale turbulent motions. The present work
complements the previous numerical studies of stratified turbulence by a set of
new DNS extending the investigated range of parameters to higher buoyancy
Reynolds numbers (IJHFF12) and by an analysis of the spectral structure and
spectral energy budget of homogeneous stratified turbulence (TCFD13).

Fully resolved DNS are computationally extremely expensive and are still re-
stricted to comparably low Reynolds numbers (by orders of magnitudes smaller
than Reynolds numbers realistic for tropospheric flows). Simulations that re-
solve only the largest turbulence eddies are typically referred to as LES. Since
the small scale features in a flow are responsible for the majority of the flow
energy dissipation, this natural sink of energy is missing in LES. The forward en-
ergy cascade leads to a transport of flow energy from the largest scales (where
typically the flow is forced) to the smallest resolved scales. Without any counter-
measures taken, the energy is not dissipated on these scales (at least not quickly
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1.2. Turbulence modelling in stably stratified fluids

enough) and piles up on the grid scale until it spoils the whole simulation and
may even cause it to break down. Providing exactly the right amount of dissipa-
tion on the coarse grid without knowing the SGS motions is the main modelling
task for LES.

The first turbulence SGS model was proposed by Smagorinsky (1963). He
intended to stabilise under-resolved simulations of turbulent atmospheric flows
and achieved this by adding an extra term to the equations of motion to dissipate
energy. What we now refer to as the “standard Smagorinsky model” (SSM) has
become a robust workhorse for LES in geophysical and engineering applications.
The model is based on the assumption of an eddy viscosity that adds to the
molecular viscosity of the fluid. The eddy viscosity is proportional to the resolved
strain rate and to a free model parameter, for which a universal value was sought
for a long time. It turned out that the actual value of this Smagorinsky “constant”
depends not only on the flow investigated and the underlying numerical scheme,
but also on the personal preferences of the investigator. Germano et al. (1991)
proposed a dynamic procedure for computing the Smagorinsky parameter based
on the instantaneous flow solution. This method is based on the assumption of
scale similarity, i.e. a similarity between the spectral flux to the grid scale from
a (slightly larger) test grid scale and the spectral flux from the grid scale to
the subgrid-scale. Lilly (1992) improved the dynamic procedure by including a
robust least squares technique to minimise the difference between the closure
assumption and the resolved stresses. We refer to the resulting method as the
“dynamic Smagorinsky model” (DSM).

Turbulence SGS models such as the SSM and the DSM are referred to as “ex-
plicit” models since they involve additional terms in the equations of motion.
On the other hand, “implicit” models rely on the ability of numerical discreti-
sation schemes to dissipate energy. If the numerical scheme provides the right
amount of dissipation, an explicit scheme is not necessary. This approach cir-
cumvents the typical problem of explicit SGS models, i.e. that the computed
SGS stresses are of the same order as the grid truncation error, which can lead
to numerical instability, lack of grid convergence or even wrong results on the
large scales. Implicit LES (ILES) methods are particularly appealing for the sim-
ulation of stratified flows, where the fundamental assumptions of conventional
eddy viscosity-based turbulence models may not hold. Several approaches to
ILES have been developed in the past, for a comprehensive overview see Grin-
stein et al. (2007). First indications that the truncation error of linear upwind
schemes in some cases may function as an implicit SGS model so that no explicit
SGS model has to be added to the discretised flow equations were reported by
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1. Introduction

Kawamura et al. (1986). The use of non-linearly stable higher-order schemes
(i.e. monotonic, monotonicity preserving, or total variation diminishing meth-
ods) for so called Monotonically Integrated LES (MILES) has been proposed by
Boris et al. (1992). Particularly noteworthy is the Multidimensional Positive Def-
inite Advection Transport Algorithm (MPDATA) of Smolarkiewicz and Margolin
(1998), which has been applied widely to geophysical flows. However, when
using non-linearly stable schemes for ILES, one must be aware that most previ-
ously proposed methods only guarantee numerical stability, which is necessary,
but not sufficient for the physically correct dynamics of the resolved scales. Em-
ploying ILES for predictive science requires that not only mathematical, but also
physical constraints have to be incorporated into the design of an implicit SGS
model. The first ILES method which is not only based on numerical considera-
tions but also involves physical constraints is the Adaptive Local Deconvolution
Method (ALDM) for incompressible neutrally stratified turbulent flows (Hickel
et al., 2006) with an extension to passive scalar transport (Hickel et al., 2007).

Within the present work we conducted LES of stratified turbulence governed
by the Boussinesq equations, i.e. with an active scalar, by using ALDM, SSM and
DSM (IJHFF12, TCFD13) obtaining encouraging results with ALDM and DSM.
The integral flow data and the energy spectra from the LES agree quite well with
the various reference DNS. Beyond the present work we also applied ALDM to
the problem of a differentially heated rotating annulus (Borchert et al., 2015;
Vincze et al., 2015). The results obtained for this complex flow involving waves
induced by buoyancy and solid body rotation as well as turbulence in boundary
layers and breaking waves compare well to other numerical and experimental
data.

The effect of unresolved small scales on the resolved large scale motion
can be described by the spectral eddy viscosity (SEV). Heisenberg (1948) in-
troduced the concept of modelling non-linear interactions in turbulence by a
scale-dependent SEV. The underlying theory has later been refined by Kraichnan
(1976) and others. Although impractical in real-space-based numerical simu-
lations, the SEV as a function of wavenumber can be used to verify the cor-
rect behaviour of SGS models in a set-up of homogeneous (but not necessarily
isotropic) turbulence.

Algebraic expressions for the SEV have been derived based on the Eddy-
Damped Quasi-Normal Markovian (EDQNM) theory (Orszag, 1970) for isotropic
turbulence. Furthermore, Domaradzki et al. (1987) computed the SEV from di-
rect numerical simulations (DNS) with fully resolved turbulence by truncating
the results in spectral space. They found some agreement with the theoretical
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1.3. Large-eddy simulations of gravity-wave breaking

results of Kraichnan (1976) but also differences due to the finite inertial range
in their simulations. Despite these discrepancies, the behaviour of isotropic tur-
bulence is quite well understood. On the other hand, a corresponding study for
anisotropic turbulence had not yet been carried out.

Semi-analytical expressions for the eddy-viscosity and eddy-diffusivity spec-
trum for stratified turbulence are given by Godeferd and Cambon (1994), Sta-
quet and Godeferd (1998), and Godeferd and Staquet (2003) in the framework
of the EDQNM approximation. Another form was obtained by Sukoriansky et al.
(2005) through quasi-normal scale elimination (QNSE). These theoretical re-
sults show that turbulence anisotropy can significantly affect SGS energy dissi-
pation in flows dominated by stable stratification, solid body rotation, or shear.

The present work extends the knowledge about the SEV in stratified turbu-
lence based on DNS of homogeneous turbulence (JFM14) using the set-up of
the previous articles (IJHFF12, TCFD13). We filtered the DNS results to coarser
resolutions in several steps and computed the SGS stress necessary to obtain the
same large-scale result on the coarse grid as on the full DNS grid. We compared
this exact SEV from the DNS to the SEV of our different LES methods finding
that for the horizontal kinetic energy and potential energy ALDM and the DSM
yield good agreement with the DNS, whereas for the vertical kinetic energy the
best results are obtained with the pure central discretisation without any SGS
model.

1.3. Large-eddy simulations of gravity-wave breaking

For practical simulations of breaking gravity waves it is often impossible to re-
solve the smallest turbulence scales. This includes, e.g., investigations of the
dependence of the gravity wave breaking on several parameters (propagation
angle, wavelength, amplitude, viscosity, stratification) at the same time; prob-
lems in which many wavelengths need to be resolved, such as propagation of
a wave packet or wave train through a variable background (Lund and Fritts,
2012) or simulating realistic cases of waves generated by topography or convec-
tion; validating quasilinear wave-propagation theory (Muraschko et al., 2014);
or validating gravity-wave drag parametrisation schemes.

The problem of high computational costs for fully resolved DNS is especially
relevant for IGWs that have large spatial scales and long oscillation periods4 aug-

4 The IGW simulated in JFM13, JGR14 and JAS15 has a horizontal wavelength of 340 km and
an oscillation period of approximately 8 km.
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menting both the required computational domain and the number of time steps
to be computed. Various approaches have been used to avoid the high numeri-
cal resolution for DNS of breaking IGWs. Fritts et al. (2009a,b, 2013) and Fritts
and Wang (2013) restricted their simulations to breaking HGWs ignoring the
third velocity component induced by the Coriolis force. Lelong and Dunkerton
(1998) simulated breaking IGWs at a greatly reduced ratio of the Brunt-Väisälä
frequency to the Coriolis parameter compared to atmospheric values. There and
in many other studies (e.g. Winters and D’Asaro, 1994; Andreassen et al., 1998;
Dörnbrack, 1998; Afanasyev and Peltier, 2001) no attempt was made to resolve
all turbulence scales at realistic Reynolds numbers. Instead, SGS turbulence
models and/or hyperviscosity formulations were used. In none of these studies,
the used SGS models have been validated using turbulence resolving reference
simulations.

However, it is not clear a priori which effects a certain SGS model will have
on a simulation of a complex transient stably stratified turbulent flow such as
the breaking of a gravity wave. Having available the reference DNS for three
different cases (JFM13, JGR14), we were able to directly validate LES methods
for the breaking of gravity waves. Within the present work we conducted LES
of our three reference cases with different SGS models (ALDM, SSM, DSM and
no model) and on different grids with the objective of finding the most efficient
set-up at an acceptable accuracy of results for each of the cases (JAS15). This in-
volves reducing the resolution as much as possible in all directions, analysing the
sensitivity of the results concerning the exact initial condition and assessing the
performance of two-dimensional simulations with three velocity components.
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2. Numerical methods

2.1. Boussinesq equations

Flows in the atmosphere5 are characterised by a variable density % and can thus
be treated, in principle, using the full compressible set of equations. For sim-
plicity, we omit viscosity for a moment and start with the Euler equations for an
ideal gas with constant heat capacities under the influence of gravity

∂t% +∇ · (%uuu) = 0, (2.1a)

∂t(%uuu) +∇ · (%uuuuuu) = −∇p−%geeez, (2.1b)

∂t(%e) +∇ · (uuu [%e+ p]) = 0, (2.1c)

where

%e =
p

γ− 1
+
%uuu2

2
+%gxxx · eeez and p = %RT. (2.2)

Here uuu is the velocity vector6, p is pressure, % is density and e is the internal
energy. Further, xxx is the spatial coordinate, eeez is the unit vector pointing in ver-
tical direction, g is the gravitational acceleration, γ is the isentropic exponent, R
is the specific gas constant and T is the absolute temperature. Equations (2.1)
support sound waves, i.e. density variations due to changes in pressure. For me-
teorological applications this is not only unnecessary but indeed a nuisance since
it strongly limits the time step for typical numerical time integration schemes
(involving an explicit time integration). “Sound-proof” sets of equations that do
not support sound waves but still allow density variations can be obtained by
making some assumptions concerning the character of the flow. For a review of
such approaches see Klein (2009).

We split the pressure, density and temperature fields into a background dis-
tribution (only dependent on the vertical direction z) as well as space and time-

5 Similar considerations are, of course, valid in the oceans, in the earth mantle and other
geophysical flows. For simplicity, we limit ourselves to the atmosphere, where the buoyancy
is primarily a function of temperature.

6 We use uuu and vvv for the velocity vector in the respective journal articles. Both notations are
equivalent.
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2. Numerical methods

dependent fluctuations. For the example of density this reads

%(xxx , t) = %0(z) +%
′(xxx , t) = %0

�

1+%′/%0

�

. (2.3)

If we assume the background state to be in hydrostatic equilibrium

∇p0 = −%0 geeez (2.4)

and make the assumption that%′/%0� 1, we find the Boussinesq approximation
of the Euler equations:

∇ ·uuu= 0, (2.5a)

∂tuuu+ (uuu · ∇)uuu= −
∇p
%0
−
%′

%0
geeez, (2.5b)

∂t%
′ + (uuu · ∇)%′ =

d%0

dz
eeez ·uuu. (2.5c)

This system is incompressible, i.e. it does not support pressure induced density
variations, but density variations are transported as an active scalar quantity
providing a source of vertical momentum. The vertical velocity, in turn, is a
source of density variations in case of a finite background stratification d%0/dz.
This coupled system supports gravity waves if d%0/dz < 0.

We extend the system of equations (2.5) by transforming it to a frame of refer-
ence rotating at a constant angular velocity about the vertical axis eeez (ignoring
centrifugal forces) and by adding diffusive terms for an incompressible New-
tonian fluid. Furthermore, we replace the density fluctuations %′ by a buoy-
ancy field variable b = −g%′/%0 and introduce the Brunt–Väisälä frequency
N =

p

−g/%0 d%0/dz to find

∇ ·uuu= 0, (2.6a)

∂tuuu+ (uuu · ∇)uuu= −
∇p
%0
+ beeez − f eeez ×uuu+ ν∇2uuu, (2.6b)

∂t b+ (uuu · ∇) b = −N 2eeez ·uuu+α∇2 b, (2.6c)

where f = 2ΩE sinφ is the Coriolis parameter, φ is the latitude angle of the do-
main centre, ΩE is the angular velocity of the earth and ν and α are the kinematic

12



2.1. Boussinesq equations

viscosity and thermal diffusivity7, respectively. The Boussinesq equations in the
form (2.6) are equivalent to equations (2) in JGR14 and JAS15, respectively.

For many applications it is convenient to use the Boussinesq equations (2.6)
in a non-dimensional form. Typically, characteristic length and velocity scales
L and U are chosen and all velocities in the equations are non-dimensionalised
by U , all lengths by L , pressure by U 2/%0 and time by L /U . In the liter-
ature on stratified turbulence the buoyancy b is usually replaced by the non-
dimensional density fluctuation %̃ = −b/(N 2L ). The resulting set of equations
reads

∇ · ũuu= 0, (2.7a)

∂tũuu+ (ũuu · ∇) ũuu= −∇p̃−
%̃eeez

Fr2
met

−
eeez × ũuu

Ro
+
∇2ũuu
Re

, (2.7b)

∂t%̃ + (ũuu · ∇) %̃ = ũuueeez +
∇2%̃

PrRe
, (2.7c)

where the tilde ·̃ indicates non-dimensional quantities and the governing non-
dimensional parameters are the Froude, Prandtl, Reynolds and Rossby numbers:

Frmet =
U

NL
, Pr=

ν

α
, Re=

UL
ν

, Ro=
U
fL

. (2.8)

This variant of the Froude number Frmet is popular within the atmospheric and
oceanographic literature. It has the advantage that only one parameter is re-
quired to control the intensity of the stratification. However, neutrally stratified
flows (d%0/dz = 0) cannot be treated with this set of equations. We used equiv-
alent formulations of the Boussinesq equations (omitting the Coriolis term) in
IJHFF12 and TCFD13; see the respective equations (1).

An alternative form of non-dimensional Boussinesq equations can be obtained
by using the non-dimensional buoyancy b̃ = b/g. The equations then read

∇ · ũuu= 0, (2.9a)

∂tũuu+ (ũuu · ∇) ũuu= −∇p̃+
b̃eeez

Fr2
eng

−
eeez × ũuu

Ro
+
∇2ũuu
Re

, (2.9b)

∂t b̃+ (ũuu · ∇) b̃ = −Ñ 2ũuueeez +
∇2 b̃
Pr Re

, (2.9c)

7 We use D, µ and α for the thermal diffusivity in the respective journal articles. These notations
are equivalent. Note that µ is also frequently used for the dynamic viscosity.
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where the alternative Froude number Freng and the non-dimensional Brunt–
Väisälä frequency are

Freng =
U

p

gL
, Ñ =

√

√db̃0

dz
= N

√

√L
g

. (2.10)

Ñ depends on the background stratification expressed as the vertical gradient

of the non-dimensional buoyancy db̃/dz. The Boussinesq equations in the form
(2.9) are implemented in our flow solver INCA. This form was used in JFM13.
It allows to control the buoyancy and the stratification independently of each
other. The relation between both types of non-dimensionalisation is given by

Frmet =
Freng

Ñ
, %̃ = −

b̃

Ñ 2
. (2.11)

Assuming zero mean flow, the local kinetic energy and the available8 potential
energy in the flow are

Ek =
uuu ·uuu

2
=

ũuu · ũuu
2
U 2, (2.12a)

Ep =
b2

2N 2
=

%̃2

2Fr2
met

U 2 =
b̃2

2Ñ 2Fr2
eng

U 2. (2.12b)

The kinetic energy Ek can be decomposed into a fraction Ev that includes only the
vertical velocity component and another fraction Eh that includes the horizontal
velocity components:

Ev =
(uuu · eeez)

2

2
, (2.13a)

Eh = Ek − Ev (2.13b)

The dissipation rates of kinetic and potential energy are non-dimensionalised
accordingly. For detailed discussions of the energy budget and the different types
of energy dissipation, see TCFD13 and JAS15.

8 In the following text and in the journal articles, we generally skip the term “available” which
can be necessary to avoid confusion with the “total” potential energy

∫ H

0 %gdz based on the
density % and absolute altitude H of a fluid parcel. In the present context, the total potential
energy is never needed.
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2.2. Turbulence subgrid-scale modelling

2.2. Turbulence subgrid-scale modelling

2.2.1. General concept of LES

The basic idea of LES is the separation of resolved and unresolved flow scales by
a filter operation. A spatially compact filter kernel G is applied to the equations
of motion yielding a set of equations for the filtered flow variables that is very
similar to the original one, but has an additional term representing the effect
of the unresolved subgrid scales9 on the filtered quantities. For the momentum
equation (2.6b) we obtain

∂tuuu+ (uuu · ∇)uuu= −
∇p
%0
+ beeez − f eeez ×uuu− 2∇ ·

�

νSSS
�

−∇ ·τττ (2.14)

where S i j = 0.5
�

∂x i
u j + ∂x j

ui

�

is the filtered strain rate tensor and τi j = uiu j −
uiu j is the unknown SGS stress tensor, which has to be modelled. Many explicit
SGS models define an eddy viscosity νt to model the SGS stress tensor based on
the resolved strain rate

τττmod = 2νtSSS (2.15)

in anology to the molecular viscosity.

2.2.2. The Smagorinsky model

Smagorinsky (1963) estimated the unknown eddy viscosity νt from

νt =
�

CS∆
�2
|SSS|, |SSS|=

Ç

2S i jS i j, (2.16)

where ∆ =
�

∆x∆y∆z

�1/3
is the grid or filter size, respectively. In this formula-

tion, the unknown SGS fluxes can be computed directly from the resolved veloc-
ity field. There is no universal value for the model parameter CS; for different
flow configurations different values of the parameter have been found to be op-
timal. In our simulations with the standard Smagorinsky model (SSM) we use a
value of CS = 0.18, which follows from the theory of isotropic turbulence (Lilly,
1967) and has been found to yield good results in practice (Clark et al., 1979).
The buoyancy transport equation (2.6c) is closed analogously by an eddy diffu-
sivity model with αt = νt/Prt, where Prt = 0.4 (see, e.g., Eidson, 1985).

9 Strictly speaking, these are “subfilter”-scale features. But since the filter width is typically
equal to the grid size, the term “subgrid”-scales is commonly accepted in this context.
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2. Numerical methods

The dynamic procedure of Germano et al. (1991) can be applied to the
Smagorinsky model. For this purpose, the filtered velocities ui are explicitly
filtered by a test filter with a larger filter width Ò∆. As a test filter, we use a
top-hat filter with Ò∆ = 2∆. The subfilter-scale stress tensor is Ti j =Ôuiu j −Òui

Òu j.
It cannot be computed directly from the filtered velocity field, but the Leonard
stress tensor Li j =Ôui u j −Òui

Òu j can be calculated. Using the Germano identity

Ti j = Li j +cτi j (2.17)

and the standard Smagorinsky model for τi j and T ji, we can minimize the dif-
ference between Li j and

Lmod
i j = T mod

i j (C ,Ò∆,buuu)−Õτmod
i j (C ,∆,uuu)

= −2CÒ∆2|bSSS|bS i j + 2C
Û

�

∆
2
|SSS|S i j

�

(2.18)

= 2C Mi j

by a least-squares procedure (Lilly, 1992)

C =
1
2




Li j Mi j

�




Mi j Mi j

� . (2.19)

A spatial or temporal average 〈·〉 can be applied to enumerator and denominator
of the equation in order to prevent numerical instability. In IJHFF12 we apply
this average in all spatial directions which results in a spatially constant but
temporarily varying model parameter and in JAS15 we apply the average in only
one spatial direction. The dynamic procedure must be applied in every time step
to obtain the model parameter C2

S = C for the flow. This involves filter operations
on the whole flow field and thus increases the computational costs compared to
the SSM. This dynamic procedure can also be applied to the turbulent Prandtl
number. However, we use a constant value of Prt = 0.4, since it has shown itself
to be of minor importance for the flow results.

2.2.3. The Adaptive Local Deconvolution Method

Filtering the non-linear equations of motion leads to an unknown SGS stress
term, as we have seen before. Numerical solution of the equations further re-
quires a discretisation which leads also to an unknown discretisation error, which
is similar in structure and magnitude to the SGS stress. The idea of implicit LES
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2.2. Turbulence subgrid-scale modelling

(ILES) is to merge these two terms and tune the discretisation error of the nu-
merical scheme in such a way that it acts as an SGS model. The Adaptive Local
Deconvolution Method (ALDM) is a realisation of this idea, originally presented
by Hickel et al. (2006).

Here we will only outline the general idea behind ALDM. For details the reader
is referred to Hickel et al. (2006) and to IJHFF12 and TCFD13. Given the one-
dimensional generic transport equation for the quantity υ

∂tυ+ ∂x F(υ) = 0, (2.20)

the numerical approximation of the flux F̃ is computed based on the available
filtered numerical solution υ by approximately reconstructing the unfiltered so-
lution υ̃ (deconvolution) and a numerical regularisation through a suitable nu-
merical flux function.

The reconstruction is based on an approximate deconvolution of the unfiltered
solution on the represented scales by combining deconvolution polynomials. The
different polynomials are dynamically weighted based on the smoothness of the
filtered solution. The regularisation is obtained through a tailored numerical flux
function operating on the reconstructed solution. Both, the solution-adaptive
polynomial weighting and the numerical flux function involve free model pa-
rameters that were calibrated in such a way that the truncation error of the
discretised equations correctly represents the SGS stresses of isotropic turbu-
lence. This set of parameters was not changed for any subsequent applications
of ALDM. For the presented computations, we used an implementation of ALDM
with improved computational efficiency (Hickel and Adams, 2007).

The extension of ALDM to passive scalar transport was developed by Hickel
et al. (2007). In IJHFF12 and TCFD13 we show that the method also performs
well for the active scalar in stably stratified turbulent flows governed by the
Boussinesq equations. However, in simulations of breaking gravity waves some-
times strong oscillations emerged in the flow variables spoiling the whole sim-
ulation. In order to avoid this problem, we slightly modified the numerical flux
function for the buoyancy transport. The original buoyancy flux function for an
equidistant staggered grid reads

F̃ s
j±1/2 = u j−1/2±1/2

b̃−j±1/2 + b̃+j±1/2

2
−σ j±1/2

�

b̃+j±1/2 − b̃−j±1/2

�

, (2.21)
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where the numerical viscosity is chosen to be

σ j±1/2 = σb

�

�

�ũ−j±1/2 − ũ+j−1±1/2

�

�

� (2.22)

withσb = 0.615 (Hickel et al., 2007) for Pr® 1. In these equations the index j±
1/2 indicates the right/left cell face (the velocity u j is stored on the cell faces, the
buoyancy b j is stored in the cell centers), b̃+ and b̃− are reconstructed solution
values primarily based on values of b on the right/left of the reconstruction
position.

The formulation (2.22) was chosen in analogy to ALDM for the momentum
equations and is dimensionally consistent. It proved to work very well in fully

turbulent flows, but if the flow is temporarily laminar,
�

�

�ũ−j±1/2 − ũ+j−1±1/2

�

�

� ap-

proaches zero and the numerical damping is effectively turned off. Any numeri-
cal oscillations in the scalar field can then grow without bound. In order to regu-
larise the scalar transport in case of advection by a smooth velocity field, we pro-
pose a blending of ALDM with an upwind biased flux function (JAS15). A pure
upwind flux function could be obtained within the given framework through

σ j±1/2

�

�

upwind
=

1
2

�

�u j−1/2±1/2

�

� . (2.23)

A pure upwind scheme like this is numerically very stable, i.e. it tends towards
very strong damping of all oscillations through a huge numerical diffusivity. De-
spite its stability it is thus not suitable for LES, since it excessively damps all
turbulent motion on the resolved scales.

The convex combination of standard ALDM flux and upwind flux leads to the
following expression for the numerical viscosity:

σ j±1/2 = ασb

�

�

�ũ−j±1/2 − ũ+j−1±1/2

�

�

�

︸ ︷︷ ︸

M

+ (1−α)σb

�

�

�

�

�

ũ−j±1/2 + ũ+j−1±1/2

2

�

�

�

�

�

︸ ︷︷ ︸

P

, (2.24)

where we approximated the advection velocity by

u j−1/2±1/2 ≈
ũ−j±1/2 + ũ+j−1±1/2

2
. (2.25)
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The blending parameter α is dynamically evaluated based on the instantaneous
velocity values by

α=
M

βP +M
, (2.26)

whereM denotes the velocity difference andP the advection velocity as defined
in equation (2.24) and β is a free model parameter that controls the ratioM/P
at which the modification becomes effective. In turbulent flows, where velocity
fluctuations are typically large compared to the mean advection velocity, we find
M/P � β , which means that α→ 1 and we recover the original formulation
(2.22). On the other hand, if the flow is laminar or governed by a large mean
advection velocity, then α→ 0 and we have an upwinding scheme.

2.3. The flow solver INCA

INCA is a multi-purpose flow solver for compressible and incompressible prob-
lems on Cartesian grids. INCA has successfully been applied to a wide range
of different flow problems, ranging from incompressible boundary layer flows
(Hickel et al., 2008) to supersonic flows (Grilli et al., 2012). Among the large
number of different methods implemented in INCA, we will briefly mention here
only those that were actually used for the simulations within the present work.

The incompressible Navier–Stokes equations and the transport equations for
scalar quantities are discretised by a fractional step method (Chorin, 1968) on
staggered Cartesian mesh blocks. We used a uniform cell size and periodic
boundary conditions throughout the present work. The buoyancy and Corio-
lis terms as well as the explicit SGS models are implemented as source terms
completing the right-hand side of the equations. For time advancement the ex-
plicit third-order Runge–Kutta scheme of Shu (1988) is used. The time-step is
dynamically adapted to satisfy a Courant–Friedrichs–Lewy condition (including
the limits for advective, diffusive and buoyancy terms).

Two different solvers for the pressure Poisson equation were used depending
on the size of the problem, the utilised computer and the grid layout. The first
solver employs a Fast Fourier Transform (FFT) of the velocity field in the vertical
direction and a Stabilized Bi-Conjugate Gradient (BiCGSTAB) solver (van der
Vorst, 1992) in the horizontal plane. The FFT converts the three-dimensional
problem into a set of independent two-dimensional problems, which are solved
in parallel through shared memory parallelisation. We used this pressure solver
for single-block simulations. For large simulations (DNS) we used distributed
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memory computer clusters, which required a domain decomposition. For these
simulations we used a Krylov subspace solver with algebraic-multigrid precon-
ditioning to solve the pressure Poisson equation.

INCA simulations with relevance for the present work include isotropic tur-
bulence (Hickel et al., 2006), passive scalar mixing (Hickel et al., 2007), stably
stratified turbulence (IJHFF12, TCFD13, JFM14), the transition of the three-
dimensional Taylor–Green vortex in the neutrally (Hickel et al., 2006) and stably
stratified set-up (IJHFF12), gravity-wave breaking in the atmosphere (JFM13,
JGR14, JAS15), as well as, the differentially heated rotating annulus (Borchert
et al., 2015; Vincze et al., 2015).

20
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3.1. IJHFF12: Direct and large eddy simulation of stratified
turbulence (Remmler and Hickel, 2012)

In order to validate our LES methods for stably stratified turbulent flows gov-
erned by the Boussinesq equations, we performed DNS of the three-dimensional
Taylor–Green vortex (TGV) and of forced homogeneous turbulence, both with
a stable background stratification. For both cases we considered different
Reynolds numbers and different Froude numbers. We chose the parameters such
that the flow was turbulent and stably stratified at the same time, the limit of
the Reynolds number being set by the maximum resolution allowed by the avail-
able computational resources. The simulated flows span the whole range from
neutrally to strongly stratified turbulence.

The initial flow field of the TGV has only horizontal kinetic energy. During
the evolution of the neutrally stratified flow, part of this energy is converted
into vertical kinetic energy, transferred to smaller scales and dissipated. We
found that this process is modified by the presence of a stable stratification to the
extend that vertical kinetic energy is quickly converted into available potential
energy. This leads to a periodic exchange between horizontal kinetic energy and
potential energy. The associated damping of vertical motions partly inhibits the
energy transfer to small scales and thus delays and reduces the energy dissipation
peak. Hence the stable stratification tends to stabilise the flow.

In our simulations, neutrally stratified homogeneous turbulence, although
forced only at large horizontal scales, was isotropic at medium and small scales.
The large scale forcing had no effect on the inertial and dissipation range. Given
a stable stratification, we found that turbulence becomes strongly anisotropic
with much larger horizontal than vertical length scales. The flow was organised
in thin horizontal layers that were separated by sheets of horizontally oriented
small scale vortices.

We used our reference DNS for validation of LES with ALDM, SSM and DSM.
For the TGV we obtained good agreement of the dissipation rates with all three
SGS models, independent of the strength of the stratification. The results
with ALDM were in general a little bit superior to the standard and dynamic
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Smagorinsky models. In weakly stratified homogeneous turbulence, the results
with all three SGS models were very similar and close to the reference DNS. In
strongly stratified turbulence, however, the SSM damped small scale motions too
much and the DSM did not produce the correct spectral slope in the horizontal
energy spectra. With ALDM the energy spectra were predicted most accurately.

The work share of the applicant in the presented study included the imple-
mentation of the Boussinesq equations and the dynamic Smagorinsky model into
the existing incompressible version of INCA; the design, set-up, conduction and
post-processing of all presented simulations, including new INCA routines for
separated analysis of horizontal and vertical spectra; as well as writing most of
the journal article.

3.2. TCFD13: Spectral structure of stratified turbulence: Direct
numerical simulations and predictions by large eddy
simulation (Remmler and Hickel, 2013)

We studied stably stratified homogeneous turbulence that is maintained at an
approximately constant energy level by forcing large horizontal modes of hor-
izontal velocity. The investigated parameter range extends to higher buoyancy
Reynolds numbers than in previous numerical studies and covers the whole
range from the neutral to the strongly stratified turbulent regime. We put special
emphasis on the analysis of the energy spectra in the two-dimensional spectral
space.

We found that the horizontal kinetic energy accumulates in modes with high
vertical and low horizontal wavenumber, while the vertical kinetic energy is dis-
tributed much more isotropically in spectral space. The available potential en-
ergy distribution combines elements of both kinetic energy types. Our analysis
of the energy transfer spectra allows for tracking the complete path of energy be-
ing injected as large horizontal modes of horizontal kinetic energy, transformed
into vertical kinetic energy and potential energy, transported to small scales and
eventually dissipated. While in isotropic turbulence the turbulent diffusion is
responsible for an isotropic net transport of energy from large to small scales,
the picture is different for all three types of energy in stratified turbulence. Eh is
primarily transported to medium vertical modes, Ev is shifted from medium ver-
tical modes to horizontal modes and Ep is transported from medium horizontal
and vertical modes to small vertical modes.
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According to our findings, the relevant parameter for controlling the distri-
bution of energy in the wavenumber space is the Froude number rather than
the buoyancy Reynolds number. We observed similar spectra within simulations
with comparable Froude number and strongly varying spectra if the buoyancy
Reynolds number was fixed and the Froude number was varied.

We performed the same simulations on much coarser grids using ALDM and
the SSM. With ALDM the integral flow data agreed well with the DNS as far as the
fully turbulent parameter range is considered, while the SSM failed to correctly
predict the ratios of the different energy types in strongly stratified turbulence.
We also analysed the energy and energy transfer spectra for selected cases (with
neutral, medium and strong stratification) with ALDM and found good agree-
ment with the DNS in all cases. This was achieved without re-calibrating the
ALDM model parameters once optimised for decaying isotropic turbulence.

The work share of the applicant in the presented study included the design,
set-up, conduction and post-processing of all presented simulations, including
new INCA routines for extracting two-dimensional spectra of energy and energy
transfer; as well as writing most of the journal article.

Erratum Equations (5a,b) in the article contain an error. The corrected set of
equations reads
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3.3. JFM13: Direct numerical simulation of a breaking
inertia-gravity wave (Remmler, Fruman and Hickel, 2013)

We present direct numerical simulations of a breaking inertia-gravity wave with a
wavelength of three kilometres. The chosen parameters represent a gravity wave
with almost vertical direction of propagation and a wavelength of 3 km breaking
in the middle atmosphere at 81 km altitude. We initialised the simulation with a
statically unstable gravity wave perturbed by its leading transverse normal mode
and the leading instability modes of the time-dependent wave breaking in a two-
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dimensional domain. The wave breaking was simulated for approximately 16
hours, which is about twice the wave period. The required cell size for resolving
the smallest turbulent eddies was∆≈ 3m, which corresponds to approximately
172 million cells.

Our simulations show that the primary breaking event triggered by the optimal
perturbations generates turbulence in the whole domain, including the most
stable part of the wave. Additionally, we observed two weaker breaking events
following the first one. The second breaking is very weak and is triggered by an
instability in the almost completely re-laminarised wave that is still close to the
threshold of static instability. The third breaking occurs when the unstable part
of the wave has travelled far enough to reach the place where strong turbulence
was generated during the primary breaking in the stable part of the wave.

We compared the 3-D simulations to simulations with two spatial dimensions
and three velocity components (“2.5-D” simulations). Details such as the sec-
ondary breaking events observed in the 3-D DNS were not reproduced by the
2.5-D simulation and the breaking lasted longer in the 3-D simulations. However,
the overall results in terms of total amplitude reduction and breaking duration
were similar between the 3-D and 2.5-D simulations. Furthermore, we varied
the domain size in the direction of the secondary perturbation and replaced the
secondary perturbation by white noise. We found indications that the chosen
domain size is indeed optimal for triggering a fully three-dimensional breaking
at the smallest possible domain size.

The work share of the applicant in the presented study included the imple-
mentation of the Coriolis term into the existing incompressible version of INCA;
the set-up, conduction and post-processing of all presented three-dimensional
simulations, including new INCA routines for extracting the gravity wave am-
plitude, horizontally and spanwise averaged data over time, coarsened three-
dimensional snapshots and further diagnostics such as the Richardson number;
as well as writing most of the journal article.

Erratum Equation (2.5) in the article contains an error. The corrected equation
reads
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The kinetic energy dissipation shown in the various figures has been computed
using the correct equation.
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3.4. JFM14: Spectral eddy viscosity of stratified turbulence
(Remmler and Hickel, 2014)

The spectral eddy viscosity and diffusivity (SEV, SED) is a tool to derive LES
turbulence models and to evaluate their performance in predicting the spectral
energy transfer. It provides a descriptive representation of the SGS stresses, i.e.
the unresolved part of the non-linear advection term that has to be modelled by
the SGS model in an underresolved simulation. We have computed the spectral
eddy viscosity and diffusivity of homogeneous turbulence with and without sta-
ble stratification. We achieved this by filtering fully resolved DNS results and
by computing the additional spectral energy flux that is necessary to obtain the
same total flux in the coarse-grained flow field as in the fully resolved case.

For neutrally stratified turbulence we found eddy viscosity spectra that are, in
general, similar to theoretical predictions (Kraichnan, 1976) showing a plateau-
cusp behaviour. However, the amplitude of the cusp at the cut-off wavenumber
depended on the test filter size and at low wavenumbers we found a pronounced
linear decrease of the SEV instead of a flat plateau.

If stable stratification was increased, the SEV and SED spectra became more
and more anisotropic. For the most stable case investigated, the plateau-cusp
topology almost completely vanished. This illustrates that the characteristics
of the flow change significantly, as soon as the buoyancy Reynolds number ap-
proaches unity. The treatment of SGS stresses in such cases must generally be
different than in fully turbulent flows with higher buoyancy Reynolds numbers.

We used the results from the filtered DNS to test the implicit SGS model ALDM
and a central discretisation scheme with and without Smagorinsky model, either
in the standard or in the dynamic form. We found that ALDM yields accept-
able results for all three forms of flow energy, despite being developed based on
the SEV for neutrally stratified forced homogeneous turbulence. The dynamic
Smagorinsky model did a good job except for the vertical kinetic energy, which
was best matched by the central discretisation without any SGS model. These
results suggest that a potentially better model could be obtained by applying the
dynamic Smagorinsky model only to the horizontal velocity components and
leaving the vertical momentum equation unmodified.

The work share of the applicant in the presented study included the imple-
mentation of routines for the computation of two-dimensional SEV and SED
spectra in DNS and LES simulations; the definition, set-up, conduction and post-
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processing of all presented simulations (DNS on supercomputers, LES on a local
workstation); as well as writing most of the journal article.

3.5. JGR14: On the construction of a direct numerical simulation
of a breaking inertia-gravity wave in the upper-mesosphere
(Fruman, Remmler, Achatz and Hickel, 2014)

We present a systematic approach to the DNS of breaking upper-mesospheric
inertia-gravity waves of amplitude close to or above the threshold for static in-
stability. First, we used normal mode or singular vector analysis (applied in a
frame of reference moving with the phase velocity of the wave) to determine
the most likely scale and structure of the primary instability and to initialise
non-linear 2.5-D simulations. We then applied singular vector analysis to the
time-dependent 2.5-D solution to predict the transition of the breaking event to
three-dimensional turbulence and to initialise three-dimensional DNS. The care-
ful choice of the computational domain and the relatively low Reynolds numbers,
in the order of 25000, relevant to breaking waves in the upper mesosphere, make
the three-dimensional DNS tractable with present day computing clusters.

We analyse three test cases: a statically unstable low-frequency inertia-gravity
wave, a statically and dynamically stable inertia-gravity wave, and a statically
unstable high-frequency gravity wave. The three-dimensional DNS are com-
pared to ensembles of 2.5-D simulations.

In general, the results of the 2.5-D simulations are similar to those of the 3-D
DNS in terms of the projection and resolved-energy dissipation diagnostics. The
initial phase of wave breaking tends to be more rapid and more intense in the
3-D simulations – understandable since it provides more degrees of freedom and
avenues to exchange energy between spatial scales. The spatial and temporal
distributions of the energy dissipation are similar. This suggests that results of
2.5-D simulations are meaningful if the domain and initial condition are chosen
properly.

The most interesting case was the unstable inertia-gravity wave (which was
already investigated in JFM13), where the turbulence and wave decay was in-
termittent and persisted for approximately one wave period. After the first ap-
proximately 30 minutes, most of the energy dissipation in the 3-D simulation
occurred near the level of static instability in the original wave, while in 2.5-D
there is some strong energy dissipation also in the stable part of the wave, which
significantly affects the slope of the energy spectra in a certain range of time. It
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was the only case with substantial differences between the 2.5-D and 3-D DNS
and with considerable variation between members of the ensemble in 2.5-D.

The stable inertia-gravity wave case showed a weak single breaking event last-
ing for a short time compared to the wave period and associated with a reduction
of the wave amplitude of only 5%. The unstable high-frequency gravity wave
showed much stronger breaking and turbulence for a time longer than the wave
period. In this case the breaking was relatively isotropic and uncorrelated to
the initial wave structure. For both latter cases the 2.5-D DNS are in very good
agreement with the full 3-D DNS.

The work share of the applicant in the presented study included the exten-
sion of all gravity-wave related INCA routines to distributed memory systems
allowing domain decomposition in all three spatial directions; the set-up, con-
duction and post-processing of all presented three-dimensional simulations in-
cluding new INCA routines for extracting gravity wave spectra; as well as writing
most of those parts of the journal article that are related to 3-D simulations and
spectral analysis.

3.6. JAS15: Validation of Large-Eddy Simulation Methods for
Gravity-Wave Breaking (Remmler, Hickel, Fruman and
Achatz, 2015)

The DNS results presented in JGR14 provide a good insight into the physics
of these specific wave breaking cases, but DNS is far too expensive to be used
for systematic studies of waves breaking under different conditions or for cases
that require simulating larger domains. The last article consequently has the
objective of reducing the computational costs of wave breaking simulations as
much as possible while still ensuring an acceptable quality of the results. In
order to reduce the number of grid cells massively, it is necessary to use an LES
method involving a turbulence subgrid-scale model.

We validated three different LES methods – ALDM, DSM and a central dis-
cretisation without turbulence model (CDS4) – for those cases of the breaking of
monochromatic gravity waves for which we presented DNS results in JGR14. For
ALDM we developed a modification of the numerical flux function for the buoy-
ancy that significantly improved the simulation results in case of a temporarily
very smooth velocity field. It consists of blending the ALDM flux function for
passive scalars with an upwind flux function with a weighting factor that de-
pends on the local smoothness of the velocity field. All simulations were carried
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out both in 3-D and 2.5-D domains and for all simulations a small ensemble of
simulations starting from slightly different initial conditions was performed in
order to assess the sensitivity and robustness of the results.

We found that results obtained with ALDM and DSM are generally in good
agreement with the reference DNS results as long as the resolution in the direc-
tion of the wave vector is sufficiently high. The resolution in the other direc-
tions had a weaker influence on the results. The simulations without turbulence
model were only successful if the resolution was high and the level of turbulence
comparatively low. In cases with low turbulence intensity and a smooth velocity
field for long time periods (unstable and stable IGW) ALDM generated spurious
oscillations in the buoyancy field, which we could avoid by using the modified
numerical flux function. However, this was not necessary in the case with a high
turbulence level (unstable HGW) and in all 2.5-D simulations.

We showed that with ALDM and DSM reliable results can be obtained in 2.5-D
simulations with less than 2000 grid cells or in 3-D simulations with less than one
hundred thousand grid cells. Such inexpensive simulations would allow running
large numbers of simulations in order to study the influence of various param-
eters on gravity-wave breaking, such as stratification, wavelength, amplitude,
propagation angle and viscosity.

The work share of the applicant in the presented study included the implemen-
tation and testing of the modified ALDM flux function; the set-up, conduction
and post-processing of all presented 3-D and 2.5-D LES ensembles; as well as
writing most of the journal article.
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The general objective of the present work was to gain a better insight into the
flow physics of buoyancy-driven flows such as stratified turbulence and breaking
gravity waves and finding efficient numerical simulation methods for this kind
of flows. The breaking of atmospheric gravity-waves involves a large range of
spatial and temporal scales and leads to enormous computational costs if all
scales from the large scale flow down to the smallest turbulent eddies shall be
resolved. It is thus desirable to use large-eddy simulation (LES), i.e. modelling
the effect of the small-scale motion on the larger scales while resolving only the
large-scale eddies.

Turbulent buoyant flows pose a special challenge to LES methods since the
small-scale turbulence is not isotropic as it is assumed in many approaches. We
thus had to assess the suitability of different LES methods for the simulation of
gravity-affected turbulent flows. A validation of LES methods can most conve-
niently be done on the basis of direct numerical simulations (DNS) of idealised
flows, since observations in the atmosphere usually do not allow separating dif-
ferent phenomena from each other and experiments in the parameter range rel-
evant for atmospheric phenomena are not possible. Our starting point was thus
the direct numerical simulation of idealised flows such as the three-dimensional
Taylor–Green vortex under the influence of stable stratification (IJHFF12) and
homogeneous stratified turbulence (IJHFF12, TCFD13) at different Reynolds
numbers (characterising how turbulent the flow is) and Froude numbers (in-
dicating the importance of buoyancy forces). We simulated the same cases on
much coarser grids using the Adaptive Local Deconvolution Method (ALDM), an
implicit turbulence model and the traditional Smagorinsky model in the static
and dynamic version (SSM, DSM). We compared these results to the reference
DNS in terms of different diagnostics, such as energy dissipation over time, en-
ergy distribution in the spectral space, the ratio of kinetic and potential energy
in the flow and the energy conversion and transport within the spectral space
(TCFD13). For all diagnostics we found a very good agreement of the ALDM
results with the reference DNS for moderately stratified cases and still a good
agreement for strongly stratified cases. Also, good results were obtained using
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the dynamic Smagorinsky model. The standard Smagorinsky model with a fixed
model coefficient, however, produced in general less reliable results.

Comparing just LES flow results to a reference DNS can be misleading in some
cases, since a seemingly correct result can also be produced by an unsuitable
numerical method just due to coincidence. It is thus advantageous to directly
analyse the way how the numerical model modifies the flow and its energy bud-
get. Thus, we computed the spectral eddy viscosity and diffusivity (SEV, SED)
from LES of homogeneous stratified turbulence and compared it to correspond-
ing DNS results (JFM14). The best overall agreement with the reference DNS
was again produced with ALDM. The dynamic Smagorinsky model did a better
job in predicting the SEV for the horizontal kinetic energy and the SED; however,
it failed in predicting the SEV of vertical kinetic energy.

Having analysed the behaviour of different LES methods in stably stratified
turbulent flows, we turned to cases of breaking monochromatic gravity waves in
the middle atmosphere. These cases are more complex than the homogeneous
stratified turbulence studied before since they involve spatially and temporally
varying intensities of stratification and turbulence. We thus started this chapter
by running fully resolved DNS of three different cases (JFM13, JGR14). These
simulations are not only a very good reference for the validation of computa-
tionally less expensive simulation methods (for our own work and potentially
other groups interested in this field) but also provide a very detailed insight into
the physics of gravity wave breaking under different conditions.

The last article (JAS15) finally combines the two main chapters of this work
by focusing on LES of breaking gravity waves. We simulated the breaking wave
cases presented in JFM13 and JGR14 using ALDM, DSM and CDS4 (a fourth or-
der accurate central discretisation without turbulence model) and compared the
results to the reference DNS in terms of wave amplitude and energy dissipation
over time, variability among ensemble members (simulations with almost iden-
tical initial conditions) and spatial energy spectra at certain instances of time.
We found that the central discretisation without turbulence model can in some
cases (low levels of turbulence) yield good results, but fails completely if the tur-
bulence intensity is too high. Therefore it cannot be recommended. ALDM in its
original formulation works well in cases with high levels of turbulence but tends
to generate spurious oscillations in the buoyancy field if the velocity field is very
smooth. This can be avoided by adding an upwind term to the ALDM buoyancy
flux function, at the cost of an increased overall energy dissipation. The DSM
results were in all cases in good agreement with the reference DNS without any
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modifications. The DSM was thus the most robust and reliable turbulence model
for the different gravity wave breaking cases.

To sum up, among the investigated LES methods only ALDM and DSM can be
regarded as reliable turbulence models for stably stratified turbulent flows and
(especially) gravity wave breaking. ALDM did a better job in the simulations of
homogeneous stratified turbulence and also provides a better approximation of
the spectral eddy viscosity and diffusivity compared to DSM. However, ALDM
tends to produce spurious oscillations of the buoyancy field in simulations of
breaking waves that involve a temporally very smooth velocity field. ALDM thus
requires a modification for these cases while DSM works well for all tested cases
of gravity wave breaking. The computational costs of ALDM and DSM are similar,
ALDM performs better in homogeneous stratified turbulence and DSM is more
reliable for gravity wave breaking. So the overall score in LES for buoyancy-
affected flows is even.

In conclusion, the major contributions of the present work extending the
knowledge about buoyancy-affected turbulent flows include

1. a number of new DNS reference simulations of homogeneous stratified
turbulence which confirm results of previous studies and extend the range
of parameters investigated to higher buoyancy Reynolds numbers,

2. a detailed investigation of the spectral energy fluxes within homogeneous
stratified turbulence based on DNS results,

3. the analysis of two-dimensional spectral eddy viscosity and diffusivity in
homogeneous stratified turbulence,

4. the validation of different LES methods for homogeneous stratified turbu-
lence using the results from points 1, 2 and 3, showing that ALDM per-
forms best and DSM yields also good results without any modifications to
the models,

5. reference DNS simulations of three different cases of breaking monochro-
matic gravity waves in the terrestrial mesosphere,

6. a modification of the ALDM scalar flux function in order to reduce scalar
fluctuations in (almost) laminar flow fields and

7. the validation of different LES methods for the gravity wave breaking cases
showing that DSM yields good results if the resolution in the direction of
the wave vector is sufficient and ALDM also works well if the modification
mentioned in point 6 is applied.

The possibility of using ALDM and DSM for simulations of breaking gravity
waves will allow for the variation of basic parameters in the wave breaking set-
up in order to study their effect on the results by running a large amount of sim-
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ulations, and for the simulation of large domains including many wavelengths
to study spatially developing gravity waves within a non-uniform background
flow. A first example for this kind of application is the work of Muraschko et al.
(2014), who used LES with ALDM to validate two new WKB theory based meth-
ods for the accurate and efficient simulation of gravity-wave packets travelling
in a non-uniform background flow. Considering these applications, the present
work will also contribute to a further deepening of the understanding of atmo-
spheric phenomena and thus improving reliability and accuracy of weather and
climate models in the future.
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• IJHFF12: Direct and large eddy simulation of stratified turbulence
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• JFM14: Spectral eddy viscosity of stratified turbulence
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a b s t r a c t

Simulations of geophysical turbulent flows require a robust and accurate subgrid-scale turbulence mod-
eling. To evaluate turbulence models for stably stratified flows, we performed direct numerical simula-
tions (DNSs) of the transition of the three-dimensional Taylor–Green vortex and of homogeneous
stratified turbulence with large-scale horizontal forcing. In these simulations we found that energy dis-
sipation is concentrated within thin layers of horizontal tagliatelle-like vortex sheets between large pan-
cake-like structures. We propose a new implicit subgrid-scale model for stratified fluids, based on the
Adaptive Local Deconvolution Method (ALDM). Our analysis proves that the implicit turbulence model
ALDM correctly predicts the turbulence energy budget and the energy spectra of stratified turbulence,
even though dissipative structures are not resolved on the computational grid.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

To predict atmospheric and oceanic mesoscale flows, we need
to understand and parametrize small scale turbulence that is
strongly affected by the presence of stable density stratification.
The stratification suppresses vertical motions and thus makes all
scales of the velocity field strongly anisotropic. Using aircraft
observations, the horizontal velocity spectrum in the atmosphere
was analyzed by Nastrom and Gage (1985). They found a power-
law behavior in the mesoscale range with an exponent of �5/3.
In the vertical spectrum, on the other hand, Cot (2001) observed
an exponent of �3 in the inertial range.

There has been a long an intensive discussion whether the ob-
served spectra are due to a backward cascade of energy (Gage,
1979; Lilly, 1983; Herring and Métais, 1989) as in two-dimensional
turbulence (Kraichnan, 1967), or due to breaking of internal waves,
which means that a forward cascade is the dominant process
(Dewan, 1979; van Zandt, 1982). In different numerical and theo-
retical studies, ambiguous or even conflicting results were ob-
tained (Lilly et al., 1998).

During the last decade, a number of new simulations and exper-
iments addressed the issue. Smith and Waleffe (2002) observed a
concentration of energy in the lowest modes in their simulations.
Other studies (Laval et al., 2003; Waite and Bartello, 2004) sug-
gested that the character of the flow depends on the Reynolds
number. Apparently, high Reynolds numbers are associated with
stronger three-dimensionality and a forward cascade of energy.
Riley and de Bruyn Kops (2003) suggested that the flow can be

strongly stratified but still turbulent if Fr2Re > 1. Lindborg (2006)
presented a scaling analysis of the Boussinesq equations for low
Froude and high Reynolds number. His theory of strongly aniso-
tropic, but still three-dimensional, turbulence explains the hori-
zontal k�5=3

h spectrum as well as the vertical k�3
v spectrum. On the

basis of these findings, Brethouwer et al. (2007) showed that the
relevant non-dimensional parameter controlling stratified turbu-
lence must indeed be the buoyancy Reynolds number R ¼ Fr2Re.
For R � 1, they predict stratified turbulence including local over-
turning and a forward energy cascade. In the opposite limit, for
R� 1, the flow is controlled by viscosity and does not contain
small-scale turbulent motions. A detailed analysis of the spectral
structure and spectral energy budget of homogeneous stratified
turbulence based on direct numerical simulations is provided by
Remmler and Hickel (in press).

Since a full resolution of all turbulence scales is only possible for
very low Reynolds numbers, many groups performed large eddy
simulations (LESs), which rely on a subgrid-scale model to repre-
sent effects of unresolved small-scale turbulence. For example,
Métais and Lesieur (1992) used a spectral eddy viscosity model,
based on the eddy damped quasi-normal Markovian (EDQNM) the-
ory. This required a flow simulation in Fourier space and the cut-off
wavenumber to be in the inertial range. For LES in physical space,
Smagorinsky models are widely used, either in the classical formu-
lation (Kaltenbach et al., 1994) or with certain modifications for
stratified turbulence that are usually based on the local Richardson
number (Dörnbrack, 1998). Better results can be obtained if the
model constant of a Smagorinsky model is not prescribed, but com-
puted by the dynamic procedure of Germano et al. (1991). This ap-
proach was successfully applied to stably stratified turbulent
channel flow by Armenio and Sarkar (2002), Taylor et al. (2005),
Basu and Porté-Agel (2006), and others. Staquet and Godeferd
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(1998) presented a two-point closure statistical EDQNM turbu-
lence model, which was adapted for axisymmetric spectra about
the vertical axis. Recently, many groups presented regularized di-
rect numerical simulations (DNSs) of stratified turbulence, which
means rather pragmatically stabilizing under-resolved DNS by
removing the smallest resolved scales. This is usually achieved
by a hyperviscosity approach (Lindborg, 2006) or by de-aliasing
in spectral methods using the ‘‘2/3-rule’’ (Bouruet-Aubertot et al.,
1996; Fritts et al., 2009).

In practice, all SGS turbulence models suffer from the problem
that the computed SGS stresses are of the same order as the grid
truncation error. This typically leads to interference between SGS
model and numerical scheme, that can manifest in instability
and lack of grid convergence. This issue can be solved by combin-
ing discretization scheme and SGS model in a single approach. This
is usually referred to as ‘‘implicit’’ LES (ILES) in contrast to the tra-
ditional ‘‘explicit’’ SGS models. The idea of physically consistent
ILES was realized by Hickel et al. (2006) in the Adaptive Local
Deconvolution Method (ALDM) for neutrally stratified fluids.
ALDM provides a framework for the design, analysis and optimiza-
tion of numerical discretizations with an implicit SGS model that is
consistent with turbulence theory. Based on this method and
ALDM for passive scalar transport (Hickel et al., 2007), we devel-
oped an implicit SGS model for Boussinesq fluids. In the present
paper, we evaluate the applicability of ALDM for stably stratified
turbulence.

We simulated transition and decay of the three-dimensional
Tailor–Green vortex as an example of a transitional stratified tur-
bulent flow. For isotropic conditions, this flow was intensively
studied by Brachet et al. (1983). Riley and de Bruyn Kops (2003)
first simulated its evolution in a stably stratified background. The
second test case to be considered is forced homogeneous stratified
turbulence at different Froude and Reynolds numbers. For both
cases, we present not only ILES, but also LES with a standard Sma-
gorinsky model (SSM) and a dynamic Smarorinsky model (DSM) as
well as high-resolution DNS as benchmark solutions.

2. Governing equations

The non-dimensional Boussinesq equations for a stably strati-
fied fluid in Cartesian coordinates read

r � u ¼ 0 ð1aÞ

@tuþr � ðuuÞ ¼ �rp� q
Fr2

0

ez þ
1

Re0
r2u ð1bÞ

@tqþr � ðquÞ ¼ �wþ 1
Pr Re0

r2q ð1cÞ

where velocities u = [u, v, w] are made non-dimensional by U , all
spatial coordinates by the length scale L, pressure by U2, time by
L=U , and density fluctuation q ¼ q� � �q (q⁄: local absolute density,
�q: background density) by the background density gradient
Ljd�q=dzj. The non-dimensional parameters are

Fr0 ¼
U

NL ; Re0 ¼
UL
m
; Pr ¼ m

a
; ð2Þ

where N ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�g=q0 d�q=dz

p
is the Brunt–Väisälä frequency, m is the

kinematic viscosity and a is the thermal diffusivity. We chose a
Prandtl number of Pr = 0.7, corresponding to values found in the
atmosphere. Froude and Reynolds number are the parameters that
control the flow regime. For given Fr0 and Re0, the dimensional
length scale can be estimated from

L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Re0

Fr0

m
N

s
: ð3Þ

With the instantaneous values of kinetic energy Ek and kinetic
energy dissipation ek, we find the local Froude and Reynolds num-
ber as well as the buoyancy Reynolds number R, defined by Bre-
thouwer et al. (2007):

Fr ¼ Fr0L
U

ek

Ek
; Re ¼ Re0

UL
E2

k

ek
; R ¼ Re Fr2 ð4Þ

In ILES by construction we do not have direct access to the value
of ek, as only a small part of it is resolved. For LES, we thus estimate
ek from the total energy balance

@thEti ¼ @thEki þ @thEpi ¼ P � ek � ep ¼ P � ð1þ CÞek; ð5Þ

where the temporal change of total energy in the flow @thEti can be
computed from the energy levels at subsequent time steps, P is the
power inserted into the system by the external forcing and C = ep/ek

is the mixing ratio assumed to be constant C = 0.4, which is an
acceptable approximation for a wide range of parameters (Remmler
and Hickel, in press). Here, ep is the dissipation rate of potential en-
ergy. The kinetic energy dissipation rate can then be computed from

ek ¼
1

1þ C
ðP � @thEtiÞ: ð6Þ

3. Numerical method

3.1. Flow solver

Our finite-volume solver INCA offers different discretization
schemes depending on the application. For DNS and LES with
SSM and DSM, we used a non-dissipative central difference scheme
with 4th order accuracy for the convective terms and 2nd order
central differences for the diffusive terms and the continuity equa-
tion (Poisson equation for pressure). For implicit LES, we replaced
the central difference scheme for the convective terms by the im-
plicit turbulence model ALDM. All computations were run on
Cartesian staggered grids with uniform cell size.

For time integration, we used an explicit third-order accurate
Runge–Kutta scheme, proposed by Shu (1988). The time step was
dynamically adjusted to keep the CFL number smaller than unity.

The Poisson equation for the pressure is solved in every Runge–
Kutta sub step. The Poisson solver employs fast Fourier-transform
(FFT) in the vertical direction and a Stabilized Bi-Conjugate Gradi-
ent (BiCGSTAB) solver (van der Vorst, 1992) in the horizontal plane.
By the FFT, the three-dimensional problem is transformed into a
set of independent two-dimensional problems, which can be
solved in parallel.

3.2. The adaptive local deconvolution method

Our approach to ILES is based on a nonlinear finite-volume
scheme involving a solution adaptive reconstruction (deconvolu-
tion) of the numerical solution. The nonlinear discretization
scheme generates a certain controllable spectral numerical viscos-
ity. Using an evolutionary optimization algorithm, free parameters
of the discretization scheme have been calibrated in such a way
that the effective spectral numerical viscosity is identical to the
spectral eddy viscosity from turbulence theory for asymptotic
cases (Hickel et al., 2006). In the following we give a concise
description of ALDM on the example of a one-dimensional generic
transport equation

@tuþ @xFðuÞ ¼ 0: ð7Þ

For a more detailed description and the extension to the three-
dimensional Navier–Stokes equations, we refer to Hickel et al.
(2006).

14 S. Remmler, S. Hickel / International Journal of Heat and Fluid Flow 35 (2012) 13–24



We obtain the discretized form of Eq. (7) by a convolution with
a homogeneous filter kernel G and a subsequent discretization of
the filtered equations

@t �uN þ G � @xFNðuNÞ ¼ �G � @x � ssgs ¼ Gsgs; ð8Þ

where the overbar indicates spatial filtering and the subscript N de-
notes the discretized solution on a numerical grid. In Eq. (8) we use
the unfiltered solution to compute the nonlinear term, which re-
quires the deconvolution of the solution on the range of represented
scales uN ¼ G�1 � �uN .

The truncation error of a numerical reconstruction scheme can
be written as:

Gnum ¼ G � @xFNðuNÞ � eG � ~@x
eF Nð~uNÞ; ð9Þ

where the tilde indicates discrete numerical approximations: While
the exact continuous solution u is unknown, we can obtain the
numerical approximation ~uN of the grid function uN by a regularized
deconvolution of �uN (Domaradzki and Adams, 2002). The discrete
filtered solution of a general numerical method then satisfies the
modified differential equation

@t �uN þ G � @xFNðuNÞ ¼ Gnum þ eGsgs; ð10Þ

which is identical to Eq. (8) if Gnum þ eGsgs ¼ Gsgs. Explicit SGS model-
ing is based on the assumption Gnum ¼ 0. In implicit LES the numer-
ical error acts as an implicit SGS model: Gnum¼: Gsgs and no explicit
SGS model is used, i.e., eGsgs ¼ 0. The transport equation eventually
to be solved is

@t �uN þ eG � ~@x
eF Nð~uNÞ ¼ 0; ð11Þ

where no model terms are computed explicitly.
Finite volume methods such as ALDM require a local approxi-

mation of the unfiltered solution at the cell faces (indicated by
half-integer indices), which we find by a nonlinear combination

~u�Nðxj�1=2Þ ¼
XK

k¼1

Xk�1

r¼0

x�k;rð�uNÞ~p�k;rðxj�1=2Þ; ð12Þ

of Harten-type reconstruction polynomials (Harten et al., 1987)

~p�k;rðxj�1=2Þ ¼
Xk�1

l¼0

c�k;r;lðxNÞ�uj�rþl: ð13Þ

The deconvolution is solution adaptive by weighting the contri-
butions of the different polynomials by the coefficients x�k;rð�uNÞ,
which represent the smoothness of the solution �uN , see Hickel
et al. (2006). The grid-dependent coefficients c�k;r;lðxNÞ are chosen
such that the polynomial ~p�k;r is a k-th order approximation of the
unfiltered solution. The reconstructed solution ~u�N is used in a con-
sistent numerical flux function

eF Nðxj�1=2Þ ¼ F
~u�j�1=2 þ ~uþj�1=2

2

 !
� rj�1=2 ~uþj�1=2 � ~u�j�1=2

� �
: ð14Þ

Both, reconstruction and flux function introduce free parame-
ters, which can be used to control the truncation error. Our objec-
tive is not a maximum order of accuracy but a physically correct
representation of the effects of unresolved turbulence. For this pur-
pose, Hickel et al. (2006) performed a spectral space analysis of the
effective viscosity of ALDM. They optimized the free parameters
such that the spectral numerical viscosity of ALDM matches the
spectral eddy viscosity from the eddy-damped quasinormal Mar-
kovian (EDQNM) theory for isotropic turbulence. This single set
of parameters has not been changed since it was once settled
and is also used for the computations we are presenting here.
Although optimized for the asymptotic case of isotropic turbu-
lence, ALDM has proven to yield good results for a large variety

of complex turbulent flows. This includes decaying turbulence
(Hickel et al., 2006), boundary layer flows (Hickel and Adams,
2007; Hickel and Adams, 2008), separated flows (Hickel et al.,
2008; Grilli et al., in press) and others. ALDM yields good results
also for cases of anisotropic and inhomogeneous turbulence.

Hickel et al. (2007) extended ALDM to the turbulent transport of
passive scalars. This basically employs the same framework, but a
distinction is made between two different regimes depending on
the Schmidt number. For high Schmidt numbers Sc� 1, the pas-
sive scalar spectrum has two distinct inertial ranges, which is taken
into account by using a different set of optimized model parame-
ters. For the case Sc [ 1, which applies to the present simulations,
the spectra of turbulence kinetic and potential energy are similar
and thus the same set of parameters can be used for momentum
and scalar transport equations. We adopted this implicit SGS mod-
el for passive scalar transport for the active scalar equation. This is
possible since the feedback from the density field onto the velocity
field does not originate from a nonlinear term but from the linear
buoyancy term.

In the original formulation, Hickel et al. (2007) used the recon-
structed velocity field ~u to compute the numerical flux function for
the scalar transport. Since the reconstructed velocity ~u is in general
not divergence-free, an additional divergence correction term is
necessary to avoid the generation of artificial fluctuations in a uni-
form scalar field. In the present implementation we avoid this dif-
ficulty by using the filtered velocity field �uN , which satisfies the
continuity Eq. (1a), for the transport velocity in the buoyancy flux.
The numerical flux function in the buoyancy transport equation
then reads

eF s
j�1=2 ¼ �uj�1=2�1=2

~c�j�1=2 þ ~cþj�1=2

2

� rC ~u�j�1=2 � ~uþj�1�1=2

��� ��� ~cþj�1=2 � ~c�j�1=2

� �
: ð15Þ

This modified numerical flux function was validated against the
original implementation for neutrally and stably stratified turbu-
lence. As there was no recognizable effect on the flow energy spec-
tra, we used the simplified formulation throughout the present
study.

3.3. Standard Smagorinsky model

If we apply a generic spatial filter (denoted by an overbar) to the
dimensional momentum equation, we obtain

@t �ui þ @xj
ð�ui�ujÞ þ @xi

�p ¼ @xj
ð2mSijÞ � @xj

sij: ð16Þ

where Sij ¼ 0:5ð@xi
�uj þ @xj

�uiÞ is the filtered strain rate tensor and
sij ¼ uiuj � �ui�uj is the unknown SGS stress tensor, which has to be
modeled. With a Boussinesq approach the SGS stress tensor is mod-
eled as

smod
ij ¼ �2mtSij: ð17Þ

The eddy viscosity concept is common to many SGS turbulence
models. Smagorinsky (1963) estimated the unknown eddy viscos-
ity mt from

mt ¼ ðCSDÞ2jSj; jSj ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

q
; ð18Þ

where D ¼ ðDxDyDzÞ1=3 is the grid or filter size, respectively. In this
formulation, the unknown SGS fluxes can be computed directly
from the resolved velocity field. There is no universal value for
the model constant CS; for different flow configurations different
values of the constant have been found to be optimal. In our simu-
lations we use a value of CS = 0.18, which follows from theory of iso-
tropic turbulence (Lilly, 1967) and has been found to yield good
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results in practice (Clark et al., 1979). The buoyancy equation is
closed analogously by an eddy diffusivity model with at = mt/Prt.

3.4. Dynamic Smagorinsky model

The case-dependence of the value for the model constant in the
standard Smagorinsky model led to the idea of replacing the con-
stant by a dynamic parameter, which automatically adjusts to
the flow conditions. Germano et al. (1991) presented a general dy-
namic procedure for eddy viscosity models and applied it to the
Smagorinsky model. The basic idea is a similarity between the
interactions of the smallest resolved scales and unresolved scales
compared to the interactions between medium scales and the
smallest resolved scales.

The solution is available in its filtered form �u with a grid filter
width D. This filtered velocity field is explicitly filtered by a test

filter with a larger filter width bD. As a test filter, we use a top-
hat filter with bD ¼ 2D. The subfilter-scale stress tensor is
Tij ¼duiuj � bui

buj . It cannot be computed directly from the filtered
velocity field, but one can compute the Leonard stress tensor
Lij ¼ dui uj � bui

buj . Using the Germano identity

Tij ¼ Lij þcsij ð19Þ
and the standard Smagorinsky model for sij and Tji, we can mini-
mize the difference between Lij and

Lmod
ij ¼ Tmod

ij ðC; bD; �̂uÞ � dsmod
ij ðC;D; �uÞ ð20Þ

¼: � 2C bD2jbSjbSij þ 2C dðD2jSjSijÞ
¼: 2CMij

by a least-squares procedure

C ¼ 1
2

LijMij

MijMij
: ð21Þ

We apply this dynamic procedure in every time step to obtain
the model parameter C2

S ¼ C for the flow. Since the presently inves-
tigated flows are homogeneous in all spatial directions, numerator
and denominator of Eq. (21) are averaged in space before evaluat-
ing Eq. (21). So finally, the parameter CS is spatially constant, but
can vary in time.

4. Results and discussion

4.1. Taylor–Green vortex (TGV)

Transitional flows are a challenging problem for turbulence
subgrid-scale models. Their correct prediction is only possible if
the subgrid-scale model does not affect the laminar flow and its
instability modes. For most eddy-viscosity models, such as the
Smagorinsky model without dynamic model-coefficient adaption,
this requirement is not fulfilled. We used the transition of the
three-dimensional Taylor–Green vortex (TGV) as a test for ALDM
in laminar-to-turbulence transition. The velocity field in a triple-
periodic box with side length LD ¼ 2pL is initialized with a set of
large scale vortices varying vertically:

uðt ¼ 0Þ ¼ U cosðz=LÞ
cosðx=LÞ sinðy=LÞ
� sinðx=LÞ cosðy=LÞ

0

264
375 ð22Þ
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Fig. 1. Ratio of vertical to horizontal kinetic energy in the Taylor–Green vortex
(Re0 = 1600).

Fig. 2. Visualization of the TGV at t = 10 (DNS 2563 cells at Re0 = 800). Iso-surfaces at Q = 0.5, colored by the shear rate.
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where U and L are characteristic velocity and length scales of the
problem. The density field q(t = 0) 	 0 is initially unperturbed.

Initially, all flow energy is concentrated on the lowest wave-
numbers. The flow is purely horizontal, laminar and strongly aniso-
tropic. At later times, energy is transferred to smaller scales by
vortex stretching. After approximately 10 non-dimensional time
units, the flow is quasi-turbulent, keeping its determinism and spa-
tial symmetry. At this time, the energy dissipation has a maximum
due to the enhanced shear in the small scale vortices. If neutrally
stratified, the energy of the vertical velocity component increases
quickly, almost reaching the level of the horizontal components.
In case of a stable background stratification, vertical motions are
damped by the restoring buoyancy force and the flow remains
highly anisotropic. In the linear limit of zero Froude number, the
stratification completely prevents the transition to turbulence.

We show the temporal evolution of the ratio of vertical to hor-
izontal kinetic energy in Fig. 1. We see, that contrary to common
beliefs, the TGV never reaches a fully isotropic state. In the unstrat-

ified case, the maximum Ev/Eh observed is 0.4, whereas a value of
0.5 would correspond to isotropic turbulence. For the strongly
stratified case (Fr0 = 1), the vertical kinetic energy never exceeds
10% of the horizontal kinetic energy.

For DNS, the number of computational cells depends on the
Reynolds number. We used 2563 cells for Re0 = 800, 5123 cells for
Re0 = 1600, and 7683 cells for Re0 = 3000, to ensure proper repre-
sentation of the smallest turbulence scales. With LES, the resolu-
tion is in principle Reynolds number independent. We used 643

cells for all LES.
The effect of a density stratification on turbulence is illustrated

in Fig. 2, which shows a visualization of the turbulence structures
approximately at the time of maximum dissipation. In a stratified
medium, the coherent structures are larger and anisotropic and
the shear rate magnitude is lower compared to neutral
stratification.

The local Froude and Reynolds number in the TGV flow field are
rapidly changing during the transition. To verify that the transition
occurs in a relevant parameter space, we show the tracks of several
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TGV simulations in Fig. 3. Indeed, most of the simulations are lo-
cated in the regime of strongly stratified turbulence. Hence they
are suitable for validation of an SGS model for stratified turbulence.

An LES must be able to correctly predict the temporal evolution
of the total dissipation rate by modeling the effect of the small
scale vortices on the larger scales. In Fig. 4, we show results for
LES (643 cells) using ALDM as well as the SSM and DSM compared
to DNS results (5123 cells). The resolution of the LES can be charac-
terized by comparing the grid size D to the Kolmogorov length
g ¼ m3=4=e1=4

k , computed from the corresponding DNS results. The
maximum of the ratio D/g is about 6.5 for the LES and correspond-

ingly about 0.8 for the DNS. Since the dependence of g on ek is
weak, these numbers are basically the same for all turbulent cases.
The LES predict the total dissipation very well, independent of the
stratification. The differences between the results from ALDM, DSM
and SSM are small, the best prediction being obtained with ALDM.

In Figs. 5–7, we show the contributions of molecular and impli-
cit SGS dissipation to the total dissipation in LES with ALDM for
three different intensities of stratification. The relative amount of
implicit SGS dissipation decreases with increasing stratification,
since the flow is better resolved in cases of strong stratification.
For Fr0 = 2 and Fr0 = 1, the dissipation peaks are dominated by im-
plicit SGS dissipation, which shows that the implicit model is auto-
matically activated, when it is needed, and provides a good
approximation of the unresolved stresses for different intensities
of stratification.

The ratios of the different types of energy in the TGV vary
throughout the temporal evolution. While initially there is only
horizontal kinetic energy, at later times a certain fraction of this
energy is converted to vertical kinetic energy as well as available
potential energy. The energy budget for one representative case
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is shown in Fig. 8. Both LES, with implicit ALDM and with explicit
SSM, predict the energy conversions with good accuracy. The best
agreement is obtained for the horizontal kinetic energy compo-
nent. The overall agreement with DNS data is slightly better if
ALDM is used.

4.2. Homogeneous stratified turbulence (HST)

The second investigated test case is homogeneous stratified tur-
bulence in a statistically steady state. The flow is maintained at an
approximately constant energy level by a large scale vertically uni-
form forcing of the horizontal velocity components. This approach
models the forcing by the synoptic scale flow in the atmosphere
and was successfully applied by several authors before (Métais
and Herring, 1989; Waite and Bartello, 2004; Lindborg, 2006).

We ran two series of DNS, series A with Re0 = 6500 and series B
with Re0 = 13 000. The domain size was 3203 cells for series A and
6403 cells for series B. Within the single series, the Froude number
was varied to cover different buoyancy Reynolds numbers. The ba-
sic domain size again was 2pL. For low Froude numbers, we used a
flat domain with a height of only pL, but keeping cubical cells. This
is permitted since in stratified turbulence there is only a very small
amount of energy contained in the large scale vertical modes.

The dimensional domain size can be computed from Eq. (3). If
we, for example, assume a Brunt–Väisälä frequency of N = 0.02s�1

and a kinematic viscosity of m = 1 m2/s (upper mesosphere), then
we find dimensional domain sizes between 10 km and 40 km for
the simulations of series B.

For both series, we performed LES, both with implicit ALDM and
explicit SSM and DSM. For all these simulations, we used grid
boxes with 643 cells. For the low Froude number simulations, the
domain was flattened as well, leading to a doubled resolution in
vertical direction. Fig. 9 shows the local Froude and Reynolds num-
ber of the simulations.

Fig. 12. DNS of strongly stratified turbulence (Re = 7110, Fr = 0.017). Coloring as in
Fig. 11.

Fig. 13. Vertical (x = 0) and horizontal (z = 2.4) cuts through a DNS result of neutrally stratified turbulence. Left panels: velocity magnitude, right panels: molecular
dissipation.
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Most important for the assessment of a parametrization scheme
for stratified turbulence is its ability to correctly predict the amount
of energy converted from horizontal kinetic energy to vertical ki-
netic energy and available potential energy before the energy is fi-
nally dissipated on the smallest represented scales. In Fig. 10, we
show the ratio Ev/Ep as a function of local Froude number as pre-
dicted by DNS and LES with ALDM. The ratio Ev/Ep is not influenced
by the forcing and can thus freely develop according to the dynamic
interaction of convective, pressure and buoyancy term.

The vertical to potential energy ratio increases almost linearly
with Froude number in the DNS. We find the same trend in our LES
with ALDM. The agreement between DNS and LES is best in the re-
gion of high Froude numbers (weakly stratified turbulence), whereas
for low Froude numbers the vertical kinetic energy is slightly under-
predicted. Note that the difference between results from ALDM and
SSM differ from each other most at the lowest Froude number. This
is an indication for ALDM being better capable of handling the strong
turbulence anisotropy in strongly stratified flows.

For a visual comparison of neutrally and stably stratified turbu-
lence, we show the results of two computations from series B in
Figs. 11 and 12. Both show snapshots of the developed turbulent
flow at comparable Reynolds numbers. The turbulent structures
are visualized by iso-surfaces of the Q-criterion (Hunt et al.,
1988). For presentation purposes, the visualization includes only
slices of finite thickness at the domain boundaries.

Fig. 11 shows a case with neutral stratification (Re = 8440). For
better comparability with the stratified case, we show only the
lower half of the cubical computational domain. The visualization
shows that the turbulent structures have no preferred orientation.
This proves that isotropic turbulence can be generated by the
horizontal large-scale forcing that we used. Furthermore, we

observe a spatially intermittent field of turbulence which reflects
the remaining large-scale anisotropy. There are regions of higher
and lower density of turbulent vortices. The regions with strong
turbulence activity are associated with much higher values of
molecular dissipation rate. Note that the color scale of normalized
dissipation rate is logarithmic. In the (rare) red1 regions, the

Fig. 14. Vertical (x = 0) and horizontal (z = 0.1) cuts through a DNS result of strongly stratified turbulence. Left panels: velocity magnitude, right panels: molecular dissipation.

Fig. 15. Zoom into the vertical cut through a DNS result of strongly stratified
turbulence (molecular dissipation).

1 For interpretation of color in Figs. 1–18, the reader is referred to the web version
of this article.
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dissipation rate is more than 30 times higher than the instanta-
neous spatial average in the whole domain.

In case of strongly stratified turbulence (Re = 7110, Fr = 0.017,
R ¼ 2:1, cf. Fig. 12), the turbulence structures look completely dif-
ferent. Although Reynolds number and mean total energy dissipa-
tion are similar to the neutrally stratified case, the smallest eddies

are much larger. Additionally, all eddies are aligned horizontally.
Despite the larger vortices, the molecular dissipation rates are
comparable to the neutral case. This is due to the intensified shear
between the horizontal layers.

We present vertical and horizontal cuts of the DNS domain in
Figs.13 and 14. In the neutrally stratified case, we can still see

Fig. 16. Vertical (x = 0) and horizontal (left panel: z = 1.6, right panel: z = 0.9) cuts through ALDM results (velocity magnitude) of neutrally and strongly stratified turbulence.
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the signature of the horizontal forcing in the velocity magnitude
plots (left panels of Fig. 13). There are large-scale column-like re-
gions of higher or lower velocity, superposed by a lot of small-scale
variation. Apparently, this does not affect the behavior of the small
scales. The signature of the column structures is missing in the
contour plot of molecular dissipation (right panels). There is hardly
any correlation between velocity magnitude and molecular dissi-
pation. Small turbulence scales ‘‘forget’’ about the anisotropic
large-scale forcing.

In case of strong stratification (Fig. 14), we find a strong hori-
zontal layering, as described in many studies before. The flow is
separated into thin layers of very different kinetic energy. The flow
laminarization due to stratification reduces the amount of small-
scale variations of velocity in horizontal planes compared to the
neutrally stratified case. Neighboring layers can have strongly dif-
ferent (horizontal) velocities, which results in the formation of
unstable shear layers. We observe a lot of Kelvin–Helmholtz-like
structures all over the domain (cf. upper right panel of Fig. 14
and Fig. 15), which are responsible for the major part of energy dis-
sipation. The signature of these Kelvin–Helmholtz layers can also
be observed in the horizontal cut of the domain.

Many authors refer to the structures in stratified turbulence as
‘‘pancake’’ vortices. This popular image is used to describe large flat
vortices rotating around a vertically oriented core. We observe
large flat structures in the flow, but they are far from being coher-
ent quasi-two-dimensional vortices. Instead, we find only very
weak rotation around the vertical axis. The dominant turbulence
structures are small-scale Kelvin–Helmholtz vortices, such as the
ones shown in Fig. 15. These vortices are dominating the energy
dissipation in the stratified turbulent flow. They appear in horizon-
tal patches between two layers of strongly differing velocities, but
their axis of rotation is basically horizontal. To stay within the culi-
nary images, these vortices may better be described as ‘‘tagliatelle’’
rather than pancakes.

In Fig. 16 we present the contours of velocity magnitude for
ALDM computations of the two cases presented before. The LES
resolution was 643, so the total number of cells was three orders
of magnitude lower than in the DNS. The global flow structure
resembles well the DNS result, of course without the unresolved
small scale content. In the strongly stratified case, we observe
the same layering with large horizontal scales as in the DNS. Even
the number and thickness of horizontal layers is similar. The major

difference between LES and DNS consists in the horizontal Kelvin–
Helmholtz vortices. Their vertical extension, as found in the DNS, is
of the same order of magnitude as the vertical resolution in the
LES. Hence, they form a typical subgrid-scale problem and their
dissipative effect is accounted for by the implicit turbulence model.

For comparison of kinetic energy spectra, we selected one DNS
in the weakly stratified regime (R ¼ 41, Fr = 0.07, Re = 9300; cf.
Fig. 17) and one DNS in the strongly stratified regime (R ¼ 6:3,
Fr = 0.03, Re = 8300; cf. Fig. 18), both from series B. A more detailed
analysis of these computations in spectral space is provided by
Remmler and Hickel (in press). The corresponding LES have similar
local Froude and Reynolds numbers.

In the horizontal spectra of kinetic energy, the differences be-
tween ALDM and the explicit SGS models are most obvious. In
the weakly stratified case (R ¼ 41), the horizontal spectrum is still
quite similar to the Kolmogorov spectrum of isotropic turbulence.
In this case, all three SGS models predict the inertial range spec-
trum fairly well. The SSM and DSM are slightly too dissipative,
but the difference to the DNS spectrum is acceptable. Things com-
pletely change for the stronger stratified case (R ¼ 6:3). The SSM
dissipates too much energy and thus underpredicts the inertial
range spectrum by more than one order of magnitude. Addition-
ally, the predicted power-law exponent is significantly lower than
�5/3. With the DSM, the overall prediction of the spectrum is
much better than with the SSM, but the power-law exponent near
the cut-off wavenumber is greater than �5/3. The spectrum pre-
dicted by ALDM agrees better with the DNS than results for both
Smagorinsky models. Only ALDM correctly predicts the character-
istic plateau region between the forcing scales and the inertial
scales. Moreover, ALDM produces a power-law decay with an
exponent of �5/3, corresponding to the DNS and theory derived
from scaling laws (Brethouwer et al., 2007).

We note that the dynamic model coefficient in the DSM is
approximately constant in time as soon as the statistically steady
state is reached. The dynamic procedure is efficient in choosing a
proper coefficient depending on the strength of the stratification,
but cannot cure the more structural weakness of the isotropic eddy
viscosity approach.

In the vertical spectra of kinetic energy, the inertial range decay
exponent changes from �5/3 in neutrally stratified fluid to �3 in
strongly stratified turbulence. We find this change in the DNS
and it is well reproduced by the LES. All three SGS models predict
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the turbulence inertial range decay well. At strong stratification,
the ALDM result perfectly agrees with the DNS. The SSM result is
slightly too dissipative in this region.

5. Conclusion

We presented a numerical investigation of turbulence in a sta-
bly stratified fluid to proof the reliability of implicit turbulence
modeling with the Adaptive Local Deconvolution Method (ALDM).
As benchmark results, we used high resolution DNS data and LES
results obtained with an explicit standard (SSM) Smagorinsky
model and a dynamic Smagorinsky model (DSM). The investigated
test cases were the transition of the three-dimensional Taylor–
Green vortex (TGV) and horizontally forced homogeneous strati-
fied turbulence (HST). In most simulations, the buoyancy Reynolds
number was larger than unity. The Froude and Reynolds number
were chosen to cover the complete range from isotropic Kolmogo-
rov turbulence up to strongly stratified turbulence.

For the transition of the TGV, we found good agreement be-
tween ALDM results and DNS in neutrally and stably stratified
fluid. With ALDM, we generally obtained similar or better predic-
tions of energy dissipation rates than with both explicit models.
ALDM also predicts the ratio of vertical and horizontal kinetic en-
ergy much better than the SSM and the DSM. This demonstrates
the ability of the implicit turbulence model ALDM to properly rep-
resent the effect of the SGS stresses in a transitional stratified
flow.

We analyzed results from DNS of homogeneous turbulence with
and without stable stratification. As in previous studies, we found a
strong horizontal layering in the strongly stratified cases. Energy
dissipation is concentrated within thin layers of Kelvin–Helmholtz
vortices. Although these dominant vortices are not resolved in the
LES, the LES results (with ALDM) agree well with the reference
DNS, both in integral flow properties and energy spectra. This ap-
plies to the whole Froude number range from infinity down to very
low values. Especially in the strongly stratified regime, ALDM per-
forms better than the SSM. While the SSM is far too dissipative in
this case, ALDM spectra agree very well with the reference DNS.
With the DSM, the excessive dissipation of the SSM can be avoided,
but the spectral slope near the cut-off wavenumber is still not cor-
rect. Among the investigated SGS models, only ALDM predicted the
correct exponent of �5/3.

The results presented here were obtained without recalibrating
the ALDM model constants for stratified turbulence. The good
agreement with DNS data shows the ability of ALDM to automati-
cally adapt to strongly anisotropic turbulence. Within the continu-
ation of the project, we will investigate to which extend the results
can be further improved by a recalibration of the model coeffi-
cients for stratified turbulence. But even without this possible
improvements, ALDM provides a suitable parametrization of geo-
physical turbulence. After having applied ALDM successfully to
rather simple model flows, we will continue working on more
complex geophysical problems.
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Abstract Density stratification has a strong impact on turbulence in geophysical flows. Stratification changes
the spatial turbulence spectrum and the energy transport and conversion within the spectrum. We analyze
these effects based on a series of direct numerical simulations (DNS) of stratified turbulence. To facilitate
simulations of real-world problems, which are usually beyond the reach of DNS, we propose a subgrid-scale
turbulence model for large eddy simulations of stratified flows based on the Adaptive Local Deconvolution
Method (ALDM). Flow spectra and integral quantities predicted by ALDM are in excellent agreement with
direct numerical simulation. ALDM automatically adapts to strongly anisotropic turbulence and is thus a
suitable tool for studying turbulent flow phenomena in atmosphere and ocean.

Keywords Stratified turbulence · Direct numerical simulation · Large eddy simulation ·
Subgrid-scale modeling

1 Introduction

Density stratification is a common situation in geophysical fluid flows that affects turbulence strongly. Strati-
fication suppresses vertical motions typically leading to a k−3

v scaling of the vertical turbulence kinetic energy

spectrum, while the horizontal spectrum shows a k−5/3
h inertial range. These different scaling laws render

all scales of the velocity field strongly anisotropic, which poses a true challenge for turbulence models and
parameterizations.

The horizontal velocity spectrum in the atmosphere was analyzed by Nastrom and Gage [31] using aircraft
observations. They found a power-law behavior in the mesoscale range with an exponent of −5/3. There has
been a long an intensive discussion whether this spectrum is due to a backward cascade of energy [13,16,26] as
it is known for two-dimensional turbulence [24], or due to intermittent breaking of internal waves [7,8,36] and
thus a forward cascade of energy. In different numerical and theoretical studies, ambiguous or even conflicting
results were obtained [27]. Despite this discussion about its origin, the inertial range itself with an exponent
of −5/3 in the horizontal spectrum has been confirmed by most authors.

During the last decade, a number of new simulations [25,33,38] suggested that the character of the
flow depends on the Reynolds number. High Reynolds numbers are associated with stronger three-dimen-
sionality and a forward cascade of energy. Lindborg [28] presented a scaling analysis of the Boussinesq
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equations for low Froude and high Reynolds number. His theory of strongly anisotropic, but still three-
dimensional, turbulence explains the horizontal k−5/3

h -spectrum as well as the vertical k−3
v -spectrum observed

by Cot [6]. On the basis of these findings, Brethouwer et al. [5] showed that the relevant non-dimen-
sional parameter for stratified turbulence is the buoyancy Reynolds number R = Fr2 Re. For R � 1,
they predict stratified turbulence including local overturning and a forward energy cascade. In the oppo-
site limit, for R � 1, the flow is controlled by viscosity and does not contain small-scale turbulent
motions.

Since a full resolution of all turbulence scales is only possible for very low Reynolds numbers, many
groups resorted to large eddy simulations (LES) and used subgrid-scale (SGS) models in their computa-
tions. For example, Métais and Lesieur [30] used a spectral eddy viscosity model, based on the eddy-damped
quasi-normal Markovian (EDQNM) theory. This required a flow simulation in Fourier space and the cut-off
wavenumber to be in the inertial range. For classical LES in physical space, Smagorinsky models are widely
used, either in the classical formulation [22] or with certain modifications for stratified turbulence based on the
local Richardson number [11]. Staquet and Godeferd [35] presented a two-point closure statistical EDQNM
turbulence model, which was adapted for axisymmetric spectra about the vertical axis. Recently, many groups
presented regularized direct numerical simulations (DNS) of stratified turbulence, which means rather prag-
matically stabilizing under-resolved DNS by removing the smallest resolved scales. This is often achieved by a
hyperviscosity approach [28,29], which is frequently combined with rigorous de-aliasing in spectral methods
using the 2/3-rule [4,12], or by explicit spectral filtering [9].

All explicit SGS turbulence closures for LES suffer from the problem that the computed SGS stresses
are of the same order as the grid truncation error. This interference between SGS model and numerical
scheme may lead to computational instability and a lack of grid convergence. A possible solution for this
issue is a combination of discretization scheme and SGS model in a unified framework. Such approaches
are usually referred to as “implicit” LES (ILES) in contrast to the traditional “explicit” SGS models. ILES
methods are particularly appealing for the simulation of stratified flows, where the fundamental assump-
tions of conventional eddy viscosity-based turbulence models may not hold. Several approaches to ILES
have been developed in the past, which led to a comprehensive textbook edited by Grinstein et al. [14].
First indications that the truncation error of linear upwind schemes in some cases may function as an
implicit SGS model so that no explicit SGS model has to be added to the discretized flow equations were
reported by Kawamura and Kuwahara [23]. The use of nonlinearly stable higher-order schemes (i.e., mono-
tonic, monotonicity preserving, or total variation diminishing methods) for so-called Monotonically Integrated
LES (MILES) has been proposed by Boris et al. [3]. Particularly noteworthy is the Multidimensional Pos-
itive Definite Advection Transport Algorithm (MPDATA) of Smolarkiewicz and Margolin [34], which has
been applied widely to geophysical flows. However, when using nonlinearly stable schemes for ILES, one
must be aware that most previously proposed methods only guarantee numerical stability, which is nec-
essary, but not sufficient for the physically correct dynamics of the resolved scales. Employing implicit
LES for predictive science requires that not only mathematical but also physical constraints have to be
incorporated into the design of an implicit SGS model. The first ILES method which is not only based
on numerical considerations but also involves physical constraints is the Adaptive Local Deconvolution
Method (ALDM) for incompressible neutrally stratified fluids presented by Hickel et al. [19]. Based on this
method and ALDM for passive scalar transport [20], we developed an implicit SGS model for Boussinesq
fluids.

So far most numerical and experimental studies of stratified turbulence were concentrating on the purely
horizontal or vertical spectra of turbulence. In the first part of the present study, we will extend this work
and discuss the spatial structure of the turbulence energy spectrum. We shall show how stratification changes
the shape of the spectrum with respect to the spherically symmetric spectrum known from isotropic turbu-
lence. Stratified turbulence is called “pancake-turbulence” by several authors, because of the large horizontal
and small vertical extension of flow structures in physical space. We will demonstrate how this translates
into spectral space as well. Furthermore, we will analyze the contributions of the different terms in the
energy transport equation on the total spectral energy balance. This will enable us to follow the flow energy
from its injection into the flow through all transport and conversion mechanisms eventually to molecular
dissipation.

Based on this detailed analysis of homogeneous stratified turbulence by direct numerical simulation, we
will assess the applicability of the implicit SGS model ALDM to this type of flow in the second part of the paper.
The comparison of spectra from ALDM simulations with results of DNS and of the standard Smagorinsky
model (SSM) will be part of this analysis.
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2 Governing equations

The non-dimensional Boussinesq equations for a stably stratified fluid in Cartesian coordinates read

∇ · u = 0 (1a)

∂t u + ∇ · (uu) = −∇ p − ρ

Fr2
0

ez + 1

Re0
∇2u (1b)

∂tρ + ∇ · (ρu) = uez + 1

Pr Re0
∇2ρ (1c)

where velocities are made non-dimensional by U , all spatial coordinates by the length scale L, pressure by U2,
time by L/U , and density fluctuation ρ = ρ∗ − ρ (ρ∗: local absolute density, ρ: background density) by the
background density gradient L|dρ/dz|. The vertical unit vector is ez . The non-dimensional parameters are

Fr0 = U
NL , Re0 = UL

ν
, Pr = ν

μ
(2)

We chose a Prandtl number of Pr = 0.7, corresponding to typical values in the atmosphere. Froude and
Reynolds number are parameters that control the flow regime.

Without loss of generality, we assume that all mean velocity components are zero (Galilean invariance)
and define the turbulence kinetic energy

Ek = 1

2
ui ui (3)

and the available potential energy

E p = 1

2
ρ2/Fr2

0 . (4)

The transport equations for the turbulence kinetic and the potential energy read

∂t Ek + ∇ · (uEk)

︸ ︷︷ ︸
−T

= − u · ∇ p

︸ ︷︷ ︸
P

− ρ

Fr2
0

u · ez

︸ ︷︷ ︸
B

+ 1

Re0

[∇2 Ek + (∇u)2]

︸ ︷︷ ︸
D

+ F
︸︷︷︸
F

(5a)

∂t E p + ∇ · (
uE p

)

︸ ︷︷ ︸
−T

= ρ

Fr2
0

u · ez

︸ ︷︷ ︸
B

+ 1

Pr Re0

[
∇2 E p + (∇ρ)2

Fr2
0

]

︸ ︷︷ ︸
D

(5b)

where the single terms represent turbulent diffusion T (advection by turbulent velocity), pressure transport P ,
buoyancy transport B, molecular dissipation and diffusion D, and external forces F .

Our results will be presented in spectral space. The spectral kinetic energy density is defined as

Êk = 1

2
ûi ûi

∗, (6)

where ûi are the Fourier-transformed velocity components and the asterisk (·)∗ denotes the complex conjugate.
The temporal rate of change of kinetic energy in spectral space is computed from

∂̂t Ek = 1

2

(
ûi ∂̂t ui

∗ + ûi
∗∂̂t ui

)
= T̂ (Ek) + P̂(Ek) + B̂(Ek) + D̂(Ek) + F̂(Ek) (7)

For evaluating the terms T̂ , P̂ , B̂, D̂, and F̂ , we use the respective term of the discretized transport equation
to replace ∂̂t ui . The spectral buoyancy transport of kinetic energy, for example, is computed from

B̂(Ek) = − ez

2Fr2
0

· (
ûρ̂∗ + û∗ρ̂

)
. (8)

The spectral distribution of potential energy and its temporal derivative are defined accordingly.
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With the spatial mean values of kinetic energy 〈Ek〉 and kinetic energy dissipation εk = 〈D(Ek)〉, we
define the integral flow scales

Uint = 〈Ek〉1/2 , L int = 〈Ek〉3/2

εk
(9)

to find the local Froude and Reynolds number as well as the buoyancy Reynolds number R, defined by
Brethouwer et al. [5]:

Fr = Fr0L
U

εk

〈Ek〉 , Re = Re0

UL
〈Ek〉2

εk
, R = Re Fr2 = Re0 Fr2

0 εk
L
U3 (10)

In LES by construction, we do not have direct access to the values of εk and εp = 〈
D(E p)

〉
, as they are

unresolved small-scale quantities. For LES, we thus estimate εk from the total energy balance

∂t 〈Et 〉 = ∂t 〈Ek〉 + ∂t
〈
E p

〉 = P − εk − εp = P − (1 + �)εk, (11)

where the temporal change of total energy in the flow 〈Et 〉 can be computed from the energy levels at subsequent
time steps, P is the power inserted into the system by the external forcing and � = εp/εk is the mixing ratio
assumed to be constant � = 0.4, which is an acceptable approximation for a wide range of parameters (cp. our
DNS results, Fig. 2).

3 Numerical method

3.1 The adaptive local deconvolution method

Our approach to ILES is based on a nonlinear finite volume scheme involving a solution adaptive recon-
struction (deconvolution) of the numerical solution. The nonlinear discretization scheme generates a certain
controllable spectral numerical viscosity. Using an evolutionary optimization algorithm, free parameters of
the discretization scheme have been calibrated in such a way that the effective spectral numerical viscosity is
identical to the spectral eddy viscosity from turbulence theory for asymptotic cases [19]. In the following, we
give a concise description of ALDM on the example of a one-dimensional generic transport equation

∂t u + ∂x F(u) = 0. (12)

For a more detailed description and the extension to the three-dimensional Navier-Stokes equations, we refer
to Hickel et al. [19].

We obtain the discretized form of Eq. 12 by a convolution with a homogeneous filter kernel G and a
subsequent discretization of the filtered equations

∂t uN + G ∗ ∂x FN (uN ) = −G ∗ ∂x · τsgs = Gsgs, (13)

where the overbar indicates spatial filtering and the subscript N denotes the discretized solution on a numerical
grid. In Eq. 13 we use the unfiltered solution to compute the nonlinear term, which requires the deconvolution
of the solution on the range of represented scales uN = G−1 ∗ uN .

The truncation error of a numerical reconstruction scheme can be written as

Gnum = G ∗ ∂x FN (uN ) − G̃ ∗ ∂̃x F̃N (ũN ), (14)

where the tilde indicates discrete numerical approximations. While the exact continuous solution u is unknown,
we can obtain the numerical approximation ũN of the grid function uN by a regularized deconvolution of uN
[10]. The discrete filtered solution of our numerical method then satisfies the modified differential equation

∂t uN + G ∗ ∂x FN (uN ) = Gnum + G̃sgs, (15)

which is identical to Eq. 13 if Gnum +G̃sgs = Gsgs. Explicit SGS modeling is based on the assumption Gnum = 0.
In implicit LES, the numerical error acts as an implicit SGS model: Gnum = Gsgs and no explicit SGS model
is used, i.e., G̃sgs = 0. The transport equation eventually to be solved is

∂t uN + G̃ ∗ ∂̃x F̃N (ũN ) = 0, (16)

where no model terms are computed explicitly.
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Finite volume methods such as ALDM require a local approximation of the unfiltered solution at the cell
faces (indicated by half-integer indices), which we find by a nonlinear combination

ũ∓
N (x j±1/2) =

K∑

k=1

k−1∑

r=0

ω∓
k,r (uN ) p̃∓

k,r (x j±1/2) (17)

of Harten-type polynomials [15]

p̃∓
k,r (x j±1/2) =

k−1∑

l=0

c∓
k,r,l(xN )u j−r+l . (18)

The deconvolution is solution adaptive by weighting the contributions of the different polynomials by the
coefficients ω∓

k,r (uN ), which represent the smoothness of the solution uN , see [19]. The grid-dependent

coefficients c∓
k,r,l(xN ) are chosen such that the polynomial p̃∓

k,r ( j ± 1/2) is a k-th order approxima-

tion of the unfiltered solution. The reconstructed solution ũ∓
N is used in a consistent numerical flux

function

F̃N (x j±1/2) = F

(
ũ−

j±1/2 + ũ+
j±1/2

2

)
− σ j±1/2

(
ũ+

j±1/2 − ũ−
j±1/2

)
. (19)

Both the reconstruction scheme and the flux function introduce free parameters, which can be used to
control the truncation error. Our objective is not a maximum order of accuracy but a physically correct rep-
resentation of the effects of unresolved turbulence. For this purpose, Hickel et al. [19] performed a spectral
space analysis of the effective viscosity of ALDM. They optimized the free parameters such that the spec-
tral numerical viscosity of ALDM matches the spectral eddy viscosity from the eddy-damped quasi-normal
Markovian (EDQNM) theory for isotropic turbulence. This single set of parameters has not been changed
since it was once settled and is also used for the computations we are presenting here. Although optimized
for the asymptotic case of isotropic turbulence, ALDM has proven to yield good results for a large variety
of complex turbulent flows. This includes decaying turbulence [19], boundary layer flows [17,18], sepa-
rated flows [21], and others. ALDM yields good results also for cases of anisotropic and inhomogeneous
turbulence.

Hickel et al. [20] extended ALDM to the transport of passive scalars. This basically employs the same
framework, but a distinction is made between two different regimes depending on the Schmidt number. For
high Schmidt numbers Sc � 1, the passive scalar spectrum has two distinct inertial ranges, which is taken
into account by using a different set of optimized model parameters. For the case Sc � 1, which applies to
the present simulations, the spectra of turbulence kinetic and potential energy are similar and thus the same
set of parameters can be used for momentum and scalar transport equations. We adopted this implicit SGS
model for passive scalar transport for the active scalar equation. This is possible since the feedback from the
density field onto the velocity field does not originate from a nonlinear term but from the linear buoyancy
term.

In the original formulation, Hickel et al. [20] used the reconstructed velocity field ũ to compute the
numerical flux function for the scalar transport. Since the reconstructed velocity ũ is in general not diver-
gence-free, an additional divergence correction term is necessary to avoid the generation of artificial fluc-
tuations in a uniform scalar field. In the present implementation, we avoid this difficulty by using the
filtered (defined on a staggered Cartesian mesh and therefore divergence-free) velocity field uN for the
transport velocity in the scalar flux. The numerical flux function in the scalar transport equation then
reads

F̃ s
j±1/2 = u j−1/2±1/2

c̃−
j±1/2 + c̃+

j±1/2

2
− σC

∣∣∣ũ−
j±1/2 − ũ+

j−1±1/2

∣∣∣
(

c̃+
j±1/2 − c̃−

j±1/2

)
. (20)
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This modified numerical flux function has been tested against the original implementation for neutrally and sta-
bly stratified turbulence. As there was no recognizable effect on the flow energy spectra, we used the simplified
formulation throughout the present study.

3.2 Computational details

With our flow solver INCA, the Boussinesq equations are discretized by a fractional step method on a stag-
gered Cartesian mesh. The code is parallelized both for shared and distributed memory systems and it offers
different discretization schemes depending on the application. For time advancement, the explicit third-order
Runge-Kutta scheme of Shu [32] is used. The time step is dynamically adapted to satisfy a Courant-Friedrichs-
Lewy condition with CFL= 1.0. The spatial discretization is a finite volume method. For DNS and LES with
explicit SGS model, we use a non-dissipative central difference scheme with fourth-order accuracy for the
convective terms and second-order central differences for the diffusive terms and the pressure Poisson solver.
For implicit LES, the central difference scheme for the convective terms is replaced by the implicit turbulence
model ALDM. The Poisson equation for the pressure is solved at every Runge-Kutta substep. The Poisson
solver employs fast Fourier-transform in the vertical direction and a Stabilized Bi-Conjugate Gradient (BiCG-
STAB) solver [37] in the horizontal plane. By the FFT, the three-dimensional problem is transformed into a set
of independent two-dimensional problems, which can be solved in parallel. All computations presented here
were run on Cartesian grid blocks with uniform cell size.

3.3 Numerical set-up of homogeneous stratified turbulence

We simulate homogeneous turbulence with stable stratification in a triply-periodic box. The turbulence kinetic
energy is maintained at an approximately constant level by a volume force at small wavenumbers. As proposed
in [5,16,28,38], the forcing is only applied to horizontal wavenumbers of the horizontal velocity components.
The time- and space-dependent forcing term reads [1]

F(x, t) =
2∑

ki ,k j =1

ai, j cos(2πki x + pi, j ) cos(2πk j y + qi, j ). (21)

The random amplitudes ai, j and phases pi, j and qi, j are recomputed at every time step so that no mean velocity
is forced in any direction. Additionally, the forcing term is scaled with a spatially constant factor in such a
way that the forcing power achieves a prescribed value. Thus, the amount of input energy per time unit is kept
constant and variations of the total flow energy are only due to variations in the dissipation rate. The forcing
is applied at wavenumbers ki , k j ∈ [1, 2], which corresponds to lengthscales L f ∈ [0.5L,L], where L = 2π
is an arbitrary length scale. In the statistically steady state, the mean dissipation rate becomes equal to the
forcing power. Hence we can control the total energy dissipation rate by fixing the forcing power. We choose
the forcing power to be P = 1/(2π) and a unity velocity scale U . Thus, the integral turbulence length scale
L int = U3/ε is of the same order as L.

The computations are initialized with low-level white noise. Due to the constant energy injection by the
forcing, the flow energy increases linearly in time. Vertical vortices gain intensity until they break down due
to the inherent instability of the flow [2]. This transition was completed in all computations after 30–40 time
units. We usually computed the transition phase on a coarse grid. Then, we interpolated the results to the final
fine grid and continued the computation on the fine grid. An example time series of energy and dissipation rate
is displayed in Fig. 1.

We present the result of three series of direct numerical simulations. A detailed list with the parameters of
the computations is given in Table 1. The series differ in their Reynolds number, which is approximately 5,000
for series A, 10,000 for series B, and 25,000 for series C. Within each series we chose a set of different Froude
numbers between 0.01 and 0.2 and simulated also a neutrally stratified case, which corresponds to an infinite
Froude number. To reduce the number of grid points, the domain size in the vertical direction is reduced by
50% the cases with R < 50, except for the third series. This was possible since the vertical length scales are
expected to be much smaller than the horizontal ones if the stratification has a considerable influence.

The LES were performed with the same set of parameters and domain size as the DNS. The LES resolution
is 643 grid cells, unless stated otherwise.
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Fig. 1 Total energy and dissipation rate over time for a single DNS. At t = 40 we switched from the coarse to the fine grid, which
generates a peak in the dissipation rate

Table 1 List of direct numerical simulations of forced stratified turbulence

# Re Fr R Nh Nv Lv/π ηkmax

A1 3,700 0.017 1.1 320 160 1 2.3
A2 3,700 0.028 2.8 320 160 1 2.3
A3 4,900 0.033 5.3 320 160 1 1.9
A4 5,300 0.044 10.4 320 160 1 1.8
A5 4,200 0.099 41.3 320 160 1 2.1
A6 4,900 0.162 126.7 320 320 2 1.9
A7 4,800 0.304 448.1 320 320 2 1.9
B1 7,100 0.017 2.1 640 320 1 2.8
B2 6,100 0.025 3.7 640 320 1 3.2
B3 8,300 0.027 6.3 640 320 1 2.6
B4 11,800 0.035 14.2 640 320 1 2.0
B5 9,300 0.067 41.4 640 640 2 2.4
B6 9,600 0.201 387.6 640 640 2 2.2
B7 8,400 ∞ ∞ 480 480 2 1.7
C1 23,000 0.010 2.4 960 960 2 2.8
C2 22,700 0.020 9.5 960 960 2 3.2
C3 28,900 0.034 33.7 960 960 2 2.6
Within the series A, B, and C, the simulations have roughly the same Reynolds number. Nh and Nv are the number of cells in
horizontal and vertical direction, respectively. Lv is the vertical domain size. The horizontal domain size was Lh = 2π in all
cases. The product of Kolmogorov length η and the maximum resolved wavenumber kmax is an indicator of the resolution of the
smallest turbulent scales. It should be larger than one for any DNS

4 Results

4.1 Direct numerical simulations

4.1.1 Integral flow data

In Fig. 2, we show the mixing efficiency εp/εk as well as the ratio of potential to kinetic energy E p/Ek as
functions of the buoyancy Reynolds number. These plots include the results from all three series of DNS.
Additionally, we added the results from Brethouwer et al. [5]. For low R, the mixing efficiency increases
with increasing R. This confirms the results of Brethouwer et al. [5]. In the region with R � 100, we find a
decreasing mixing efficiency. The computations in the high R region all have a comparatively high Froude
number (larger than 0.1), which means that they are only weakly affected by stratification effects and thus
do not necessarily follow the same scaling as the stronger stratified cases. Thus, we cannot conclude with
certainty whether the decreasing mixing efficiency is an effect of Froude or buoyancy Reynolds number. The
peak value of εp/εk is between 0.4 and 0.5, which agrees with common assumptions.

The ratio of potential to kinetic energy E p/Ek is not a universal quantity as the mixing efficiency since it
is directly influenced by the forcing, but still we can find a certain trend depending on the buoyancy Reynolds
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Fig. 2 Integral ratios of kinetic to potential energy and dissipation rates in stratified turbulence (DNS)

number. Similarly to the mixing efficiency, it has a peak in the region 10 < R < 100, although the results scatter
a bit more than for the mixing efficiency. This shows that large-scale features (energy ratio) and small-scale
features (mixing efficiency) evolve in a similar manner if the stratification is gradually increased.

4.1.2 Effects of stratification

The energy spectrum of homogeneous turbulence is a function of the three-dimensional wavenumber space.
If we assume that the flow is isotropic in the horizontal plane, we can reduce this to a two-dimensional rep-
resentation. We removed the second horizontal direction by averaging the spectrum on circles with constant
distance from the vertical axis (kh) and constant vertical wavenumber (kv).

To illustrate the influence of stable stratification on the energy spectra, we show in Figs. 3, 4, 5, 6 results from
the second series of DNS with Reynolds numbers of approximately 10,000. The three cases chosen include a
strongly stratified case (Fr = 0.017, R = 2.1), a moderately stratified case (Fr = 0.035, R = 14.2), and a
neutrally stratified case (Fr = ∞) for comparison.

The energy spectra of the three selected cases are presented in Fig. 3. In the neutral case, the horizontal
kinetic energy is distributed quite isotropically, if we ignore the local influence of the large-scale horizontal
forcing. For increasing stratification, the vertical modes of Eh contain increasingly more energy than the hor-
izontal modes of the same absolute wavenumber. This corresponds to integral flow structures that have large
horizontal and small vertical scales. Note that the peak energy density for the strongly stratified example is
more than one order of magnitude higher than in the neutral case, while the integral amount of energy is similar
in both cases.

The effect of stratification on the vertical kinetic energy is remarkably different. We find that the distribu-
tion of Ev is less anisotropic than Eh , especially for the strongly stratified case. Here, the peak energy density
decreases, since the integral amount of vertical kinetic energy decreases for strong stratification. The potential
energy spectrum has features of both kinetic energy spectra. It shows an agglomeration of energy near the
vertical axis, just like the horizontal kinetic energy spectrum, but on the other hand, there is also a significant
contribution on horizontal modes for medium wavenumbers.

To help understanding the mechanisms that lead to the mean energy spectra presented before, we analyze
the spectra of the different terms in the transport equation of turbulence energy. To account for the fact that
regions with large horizontal wavenumbers contribute more to the total change of energy than region close to
the vertical axis, we show here spectra integrated over circles with constant horizontal and vertical wavenumber
rather than averaged spectra.

We show the spectra of turbulent diffusion in Fig. 4. Horizontal kinetic energy is transported away from the
region of forcing (which is not displayed in the double-logarithmic plot, since it has a zero vertical wavenumber)
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Fig. 3 Two-dimensional energy spectra of homogeneous stratified turbulence with Re ≈ 10,000 (Simulations B1, B4, and B7).
Solid lines: energy contours (adjacent contour lines are separated by a factor of

√
10), dashed lines: iso-lines of total wave-

number
√

k2
h + k2

v . First row: neutral stratification (Fr = ∞), second row: weak stratification (Fr = 0.035), third row: strong
stratification (Fr = 0.017)

to smaller scales. For vertical kinetic energy, we find a transport from large to small scales only in the neu-
trally stratified case. As soon as stable stratification comes into play, it is more a transport away from vertical
or diagonal1 modes to horizontal modes. This explains the isotropic distribution of Ev , we have seen in the
preceding section.

The molecular diffusion and dissipation spectra in Fig. 5 show that for strong stratification the activity of
molecular dissipation of horizontal kinetic energy and potential energy is concentrated in the vertical modes,
where the peak values of the respective energy spectra are located. This does not apply to the vertical kinetic
energy, which is dissipated more or less isotropically at small scales.

The gap between turbulent diffusion and molecular dissipation is closed by the pressure term, Fig. 6a,
which basically converts horizontal kinetic energy into vertical kinetic energy and the buoyancy term, Fig. 6b,
which converts vertical kinetic energy into available potential energy. Both terms act on similar medium scales.

We can summarize the evolution of energy in strongly stratified turbulence as follows: Horizontal tur-
bulence kinetic energy Eh , being produced by a forcing on large horizontal scales, is transported to medium
vertical and diagonal scales by turbulent diffusion (advection by the turbulent velocity field). A certain fraction,
especially in the vertical modes, is directly dissipated by molecular viscosity, the rest is turned into vertical
kinetic energy Ev by the pressure term. Turbulent diffusion equilibrates the distribution of Ev by transferring
part of it to medium horizontal modes. A small amount of Ev is dissipated, the rest is converted into available
potential energy E p by buoyancy. E p is transferred to small vertical scales by turbulent diffusion, where it is
eventually extracted from the system by molecular dissipation.

1 As diagonal modes we refer to the region where vertical and horizontal wavenumber are similar. This corresponds to
isotropically shaped structures in real space.
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Fig. 4 Two-dimensional spectra of turbulent diffusion T̂ in homogeneous stratified turbulence with Re ≈ 10,000. Dashed lines
indicate constant total wavenumber. Fr = ∞, 0.035, 0.017 (cf. Fig. 3)

4.1.3 Reynolds number effects

In the preceding section, we have discussed the effects of varying Froude number on the energy spectra. The
second important issue is the influence of the Reynolds number. Certainly, increasing the Reynolds number will
shift the dissipation range to smaller scales and increase the size of the inertial range. According to Brethouwer
et al. [5], the spectra are self-similar at constant buoyancy Reynolds number. On the other hand, the anisotropy
of turbulence is governed by the Froude number. The question is then how the spectra change if the Reynolds
number is changed and the Froude number or buoyancy Reynolds number, respectively, are held constant.

In Fig. 7, we show the spectra of horizontal kinetic energy for cases with different Reynolds numbers.
In the top row, the buoyancy Reynolds number is approximately held constant, while the Froude number is
changed. In the bottom row, the Froude number is approximately constant. Generally, the dissipative range
of the spectrum is shifted to higher wavenumbers as the Reynolds number increases, since the Kolmogorov
length scale decreases. So the small-scale range of the spectra does not show any unexpected behavior. The
energy containing region, however, looks different in the scenario with R ≈ const compared to a constant
Froude number. Only for the latter variation we find a similar peak region for all three Reynolds numbers. For
constant buoyancy Reynolds number, on the other hand, the peak is shifted to larger vertical wavenumbers as
the Reynolds number is increased (which means a decreased Froude number).

This observation is confirmed by studying the energy transfer spectra. As an example, we show the buoy-
ancy transport spectrum of vertical kinetic energy in Fig. 8. For R ≈ const we observe a shift of the main
activity of the buoyancy term to smaller scales at higher Reynolds number. Especially, the separation of the
activity into two distinct regions, one on vertical modes and one more on horizontal modes, only arises if the
Froude number is sufficiently low. On the other hand, for Fr ≈ const the distribution of buoyancy fluxes looks
similar for all Reynolds numbers. Only the “tail” of the horizontal region reaches to smaller horizontal scales.

In summary, we find that the relevant parameter determining the shape of the spectrum in the strongly
stratified regime is the Froude number. It controls the distribution of the most energetic modes in the spectrum
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Fig. 5 Two-dimensional spectra of molecular diffusion and dissipation D̂. Dashed lines indicate constant total wavenumber.
Fr = ∞, 0.035, 0.017 (cf. Fig. 3)

and the anisotropy of turbulence. The Reynolds number, in the other hand, just changes the range of scales
of turbulence but does not influence the large scales. This is in good agreement to common knowledge about
isotropic turbulence.

4.2 Large eddy simulations

4.2.1 Integral flow data

The first criterion for the validation of an LES method is its ability to correctly reproduce the ratios of the
different types of energy from the DNS. In Fig. 9a, we show again the ratio of potential to kinetic energy
versus buoyancy Reynolds number. The results from a number of LES are included. They match very well
with the DNS results for most of the parameter space. Just for the lowest buoyancy Reynolds number, the
energy ratio is under-predicted by the LES. However, in this region the flow is not turbulent any more
but in the transition to the “viscosity affected stratified” regime [5], which we presently do not want to
address.

In Fig. 9b, we make the comparison for the ratio of vertical kinetic energy to potential energy. In our
horizontally forced scenario, this ratio of energies is the only one which is not affected by the forcing. We
thus can assume that it will follow a universal trend. Ev/E p monotonically decreases if the Froude number
decreases. This emphasizes the growing influence of the buoyancy transport with increasing stratification. In
the DNS, the rate of change of the energy ratio is approximately Fr0.82. If plotted over the Froude num-
ber, the results from all DNS with different Reynolds number are within a comparably narrow band. On the
other hand, in a plot as a function of buoyancy Reynolds number, one could see a significant influence of
Reynolds number. We conclude that the Froude number is also the relevant parameter to control the ratio
Ev/E p.
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Fig. 6 Two-dimensional spectra of pressure transport P̂ and buoyancy transport B̂ of vertical kinetic energy. Dashed lines indicate
constant total wavenumber. Fr = ∞, 0.035, 0.017 (cf. Fig. 3)

With the implicit LES model ALDM, we find the same trend for the energy ratio. For large Froude numbers,
the agreement with DNS is very good, whereas for stronger stratification ALDM systematically under-predicts
Ev/E p. The exponent for the rate of change is slightly higher, i.e., approximately 0.95. This result is, however,
still in much better agreement with the DNS than the results obtained with the standard Smagorinsky model
(SSM). For high Froude numbers, the SSM predicts the energy ratio with good accuracy, but for stronger strat-
ified flows the decay of vertical kinetic energy compared to potential energy is strongly over-predicted. The
large eddy simulations with ALDM and SSM, respectively, were computed on the same computational grids.
Hence, the different result is due to the different ability of both SGS models to adapt to strongly anisotropic
conditions. ALDM clearly shows a better performance in strongly stratified cases.

4.2.2 One-dimensional energy spectra

For comparison of kinetic energy spectra, we selected one DNS in the weakly stratified regime (R = 41,
Fr = 0.07, Re = 9,300) in Fig. 10 and strongly stratified regime (R = 6.3, Fr = 0.03, Re = 8,300) in
Fig. 11. The corresponding LES have similar Froude and Reynolds numbers.

In the horizontal spectra of kinetic energy, the difference between ALDM and an explicit eddy viscosity
model is most obvious. In the weakly stratified case (R = 41), the horizontal spectrum is still quite simi-
lar to the Kolmogorov spectrum of isotropic turbulence. In this case, both SGS models predict the inertial
range spectrum fairly well. The SSM is slightly too dissipative, but the difference from the DNS spectrum is
acceptable. Things completely change for the stronger stratified case (R = 6.3). The SSM dissipates too much
energy and thus under-predicts the inertial range spectrum by more than one order of magnitude. Additionally,
the predicted power-law exponent is significantly lower than −5/3. The spectrum predicted by ALDM, on
the other hand, agrees well with the DNS. It correctly predicts the characteristic plateau region between the
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Fig. 7 Two-dimensional spectra of horizontal kinetic energy for different Reynolds numbers. Dashed lines indicate constant total
wavenumber. a Simulations A4, B3, and C2; b simulations A2, B2, and C2

Fig. 8 Two-dimensional spectra of buoyancy transport B̂ of vertical kinetic energy for different Reynolds numbers. Dashed lines
indicate constant total wavenumber
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Fig. 9 Integral energy ratios in stratified turbulence. Comparison of DNS and LES results
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Fig. 10 Weakly stratified turbulence kinetic energy spectra (R = 41)

forcing scales and the inertial scales. Moreover, it produces a power-law decay with an exponent of −5/3,
corresponding to the DNS2 and theory derived from scaling laws [5].

In the vertical spectra of kinetic energy, the inertial range decay exponent changes from −5/3 in neutrally
stratified fluid to −3 in strongly stratified turbulence. We find this change in the DNS and it is well reproduced
by the LES. Both SGS models predict the turbulence inertial range decay well. At strong stratification, the
ALDM result perfectly agrees with the DNS. The SSM result is slightly too dissipative in this region.

4.2.3 Two-dimensional energy spectra

We compare the two-dimensional energy spectra of a strongly stratified case (R = 3.7) in Fig. 12. In the DNS
spectra, the LES domain is indicated by a black rectangle to simplify visual comparison with the LES results.
The ILES spectra of all three types of energy compare well the corresponding DNS spectra, although the ILES

2 In fact, the inertial range is not clearly visible in the DNS due to the low buoyancy Reynolds number R. Similar spectra
were, for example, reported by Brethouwer et al. [5].
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Fig. 11 Strongly stratified turbulence kinetic energy spectra (R = 6.3)

Fig. 12 Two-dimensional energy spectra of stratified turbulence (Fr = 0.025, Re = 6,100, R = 3.7). DNS (top row) and ILES
with ALDM (bottom row)

was computed on a coarse grid of only 643 cells, while the DNS needed 6402 × 320 cells. The ILES resemble
the large-scale features of the DNS very well and also correctly predict the vertical spectrum up to the cut-off
wavenumber. At high horizontal wavenumbers, we observe a slight under-prediction of the energy levels, as
we have already seen in the one-dimensional spectra (Figs. 10 and 11).

The ILES are also capable of accurately predicting the spectra of turbulent diffusion (Fig. 13). At high hori-
zontal wavenumbers, the computed values of T̂ are smaller in the ILES solution compared to the corresponding
DNS results. This discrepancy is due to the lower energy level observed there. However, the anisotropic shape
of the two-dimensional spectra and the relative intensities of energy are predicted in an excellent way.
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Fig. 13 Two-dimensional spectra of turbulent diffusion T̂ in stratified turbulence (Fr = 0.025, Re = 6,100, R = 3.7). DNS
(top row) and ILES with ALDM (bottom row)

Since T̂ is a pure energy transport term, its integral over all wavenumbers is zero for each individual energy
form in the DNS. In the under-resolved ILES, the complete region of negative turbulent diffusion is resolved,
but part of the region where it is positive (and energy is dissipated by molecular viscosity) is not included.
Hence the integral of T̂ over the ILES domain must be smaller than zero, corresponding to an effective dis-
sipation of energy. The implicit SGS model automatically accounts for this effect. In the example presented
in Fig. 13, the implicit SGS dissipation compared to the total (resolved molecular plus implicit) dissipation
amounts to Ti (Eh)/εh = 0.63, Ti (Ev)/εv = 0.48, and Ti (E p)/εp = 0.54, respectively. About half of the total
energy dissipation is provided by the implicit SGS model.

5 Conclusion

We presented new results from DNS of horizontally forced homogeneous stratified turbulence of a Boussinesq
fluid at different Reynolds and Froude numbers. Our numerical set-up is similar to previous simulations,
which allowed us to compare results with literature. In addition to the previously investigated cases, the
parameter range of the new DNS data extends to significantly higher buoyancy Reynolds numbers and covers
the strongly stratified regime as well as the transition to weak and neutral stratification. We thoroughly dis-
cussed two-dimensional spectra for all three forms of flow energy: horizontal and vertical kinetic energy and
potential energy. A particular emphasis was put on identifying the mechanisms that govern the conversion of
energy and its transport between different scales. This was achieved through analyzing the contributions of all
terms of the Boussinesq energy budget equations in spectral space.

Confirming the findings of Brethouwer et al. [5], we observed that the ratio of potential to kinetic energy as
well as the mixing efficiency decreases with increasing stratification. In extending previous studies to higher
buoyancy Reynolds numbers, we found that both ratios also tend to decrease for very weak stratification, which
means that there is a peak at about 10 < R < 100.

The horizontal kinetic energy accumulates in modes with high vertical and low horizontal wavenumber
(“pancake-turbulence”), while the vertical kinetic energy is distributed much more isotropically in spectral
space. The available potential energy distribution combines elements of both kinetic energy types. It has a
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strong peak on vertical modes like the horizontal kinetic energy and it has some contribution on medium hori-
zontal scales like the vertical kinetic energy. In analyzing the contributions of the different terms in the energy
transport equations to the total energy balance, we could show in detail the various ways in which energy is
transformed and transported. Furthermore, we found that with changing Reynolds number the relevant param-
eter for controlling the distribution of energy in the wavenumber space is the Froude number rather than the
buoyancy Reynolds number. We observed similar spectra in simulations with comparable Froude number and
strongly varying spectra if the buoyancy Reynolds number was fixed.

To reduce the computational costs of simulating stratified turbulent flows, we proposed an implicit SGS
model for LES based on the ALDM [19,21]. In ALDM, the SGS stress term is not explicitly computed based
on the available flow solution, but it is rather part of the non-linear numerical discretization. The implicit
SGS model provided by this discretization can be interpreted as a combination of tensor dissipation and scale
similarity modeling. When applying ALDM to homogeneous stratified turbulence, we found good agreement
with the DNS results. ALDM correctly predicts trends and values of integral flow parameters, such as the
ratios of different types of energy. Especially in cases of strong stratification, the ALDM predictions are much
closer to the DNS results than simulations with a Smagorinsky model. The same observation is made for
the prediction of energy spectra. We emphasize that ALDM does neither require ad hoc modifications nor a
re-calibration of model parameters. We used the very same set of model parameters for our simulations of
stratified turbulence that had been found to be optimal for isotropic neutrally stratified turbulence before.
The implicit model automatically adapts to anisotropic conditions and predicts the spectra modified by strong
stratification much better than a classical eddy viscosity model.

We conclude that ALDM is a suitable tool for simulating turbulent flows in stably stratified background.
The applicability of ALDM to (neutrally stratified) engineering flows had already been shown in a number
of previous studies. With the present investigations, we also qualified the implicit SGS model for use in geo-
physical applications. Future applications of ALDM include breaking of gravity waves, atmospheric boundary
layers, mixing events in the ocean and other small and mesoscale phenomena.
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We performed fully resolved three-dimensional numerical simulations of a statically un-
stable monochromatic inertia-gravity wave using the Boussinesq equations on an f -plane
with constant stratification. The chosen parameters represent a gravity wave with al-
most vertical direction of propagation and a wavelength of 3 km breaking in the middle
atmosphere. We initialised the simulation with a statically unstable gravity wave per-
turbed by its leading transverse normal mode and the leading instability modes of the
time-dependent wave breaking in a two-dimensional space. The wave was simulated for
approximately 16 hours, which is twice the wave period. After the first breaking triggered
by the imposed perturbation, two secondary breaking events are observed. Similarities
and differences between the three-dimensional and previous two-dimensional solutions of
the problem and effects of domain size and initial perturbations are discussed.

1. Introduction

Today there is no longer any doubt that gravity waves play an important role in the
global circulation in the atmosphere. Sawyer (1959) was one of the first to note the neces-
sity of taking gravity waves into account in numerical weather forecast models. Several
authors (Bretherton 1969; Lilly 1972; Blumen & McGregor 1976) attempted to quantify
the gravity wave drag exerted by orographic gravity waves on the mean flow, finding
values of the order of 1 Pa, which can be sufficient to accelerate the mean flow by several
m/s per day (Nappo 2002). Chun & Baik (1998) found even larger values of acceleration
and deceleration due to gravity waves generated by thermal forcing in cumulus convec-
tion. The direct effects of gravity waves on the general circulation in the troposphere and
lower stratosphere are only minor, although gravity wave breaking can lead to clear-air
turbulence and locally enhanced turbulent diffusion in this region. On the other hand,
gravity waves strongly influence the circulation in the mesosphere (the altitude range
between 50 and 90km), where they are responsible for the cold summer pole mesopause
(Houghton 1978), and in the stratosphere, where together with other equatorial waves
they lead to the quasi-biennial oscillation in equatorial winds (Dunkerton 1997a).

Despite this unquestioned importance of gravity waves, their treatment in present
general circulation models remains unsatisfactory. The major part of the gravity wave
spectrum is not or is only marginally resolved by the numerical grids and must thus be
explicitly parametrised. Various parametrisations have been proposed, e. g. by Lindzen
(1981), Holton (1982) and others. Reviews of gravity wave parametrisation schemes are
provided by McLandress (1998) and Fritts & Alexander (2003). Generally, the upward
propagation of linear waves through the atmosphere is computed using the Wentzel-
Kramers-Brillouin-Jeffreys (WKBJ) approximation, which is based on the assumption
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of a slowly varying background flow field. During the upward propagation of the wave,
the amplitude typically grows as the ambient density decreases. The wave becomes more
nonlinear until it reaches the threshold of static stability (i. e. where the vertical gradient
of total potential temperature becomes locally negative) and breaks. Most parametrisa-
tion schemes account for this effect by transferring some fraction of the wave momentum
to the mean flow and reducing the wave amplitude accordingly.

All aspects of gravity wave parametrisation, i. e. sources, propagation and breaking
are associated with large uncertainties. Consequently, the schemes have to be carefully
tuned in order to obtain realistic results for the general circulation. An improvement of
the gravity wave parametrisation (without ad-hoc tuning) requires a better understanding
of the physical process of wave breaking, which can only be obtained through a detailed
analysis of breaking events.

Theoretical analyses of inviscid (Mied 1976; Drazin 1977) and weakly viscous (Kloster-
meyer 1982) breaking gravity waves show that monochromatic high frequency gravity
waves (HGWs), i. e. waves unaffected by rotation, are linearly unstable regardless of
their amplitude, either through parametric subharmonic instability or convective insta-
bility. As opposed to HGWs, low frequency inertia-gravity waves (IGWs) are influenced
by the Coriolis force and thus have a nonzero third velocity component perpendicular
to the plane of the wave. Dunkerton (1997b) and Achatz & Schmitz (2006b) showed
that this influences the orientation of the most unstable perturbations. Hence the break-
ing mechanism in IGWs differs fundamentally from HGWs and has to be investigated
separately.

The onset of gravity wave breaking, i. e. the initial growth of some instability modes,
can be treated as a two-dimensional problem with three velocity components. However,
the breaking process itself is inherently three-dimensional, and the breaking dynamics in
two- and three-dimensional simulations strongly differ from each other, as pointed out
first by Andreassen et al. (1994) and later by Fritts et al. (1994, 2009).

The analysis of the breaking process of gravity waves in the atmosphere at realis-
tic scales and Reynolds numbers requires highly resolved non-linear three-dimensional
simulations. For IGWs, which are affected by rotation, no such simulations have yet
been published. The high resolution simulations of Fritts et al. (2009) are restricted to
HGWs, where the velocity vector of the base wave lies in the plane of the wave. Lelong
& Dunkerton (1998) simulated breaking IGWs at a greatly reduced ratio of the Brunt-
Väisälä frequency to the Coriolis parameter compared to atmospheric values. There and
in many other studies (Winters & D’Asaro 1994; Andreassen et al. 1998; Dörnbrack 1998;
Afanasyev & Peltier 2001, and others) no attempt is made to resolve all turbulence scales
at realistic Reynolds numbers. Instead, either a subgrid-scale (SGS) parametrisation of
turbulence or a hyperviscosity formulation is used. Alternatively, the Reynolds number is
greatly reduced to match laboratory experiments. In none of the aforementioned studies
have the used SGS parametrisations been validated using turbulence resolving reference
simulations. Clearly, however, possible effects of the SGS parametrisation on the general
breaking process can only by excluded by fully resolving all turbulence scales.

Since three-dimensional simulations are computationally expensive and thus not suit-
able for investigating a large space of parameters, the following multi-step approach for
the simulation of IGW breaking was proposed by Fruman & Achatz (2012): First, they
computed the leading primary instabilities of a given IGW. Second, they performed high-
resolution nonlinear simulations initialised with the superposition of the IGW and its
leading unstable modes. These simulations are restricted to a two-dimensional domain
but contain three independent velocity components, so they are referred to as “2.5”-
dimensional. Next, this 2.5-dimensional time dependent flow was analysed for stability
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Figure 1. Left: Computational domain in the rotated coordinate system x, y, z. The earth
coordinates are denoted as x′, y′, z′. cp and cg indicate the phase and group velocity. Right:
Initial condition with secondary SV perturbation. Contours of buoyancy in colours and an
iso-surface at b = 0 in green.

with respect to secondary perturbations varying in the remaining spatial direction. We
will now extend this procedure by adding a fourth and last step: a fully three-dimensional
nonlinear integration of the breaking event. The initial condition is the same as that of
the 2.5-dimensional simulations, but perturbed by the fastest growing secondary pertur-
bation. The resulting initial flow field is then fully three-dimensional. The domain size
is determined by the wavelength of the base wave and by the scales of the primary and
secondary perturbations.

2. Physical and mathematical model

Inertia-gravity waves have a horizontal wavelength that can easily reach some hundreds
of kilometres. We can avoid simulating in such a large domain by rotating the coordinate
system so that one coordinate axis is aligned with the direction of propagation of the
wave. Figure 1 shows the unrotated and rotated coordinate systems for the case of a
transverse primary perturbation. We obtain the wave coordinates x, y, z by rotating the
earth coordinates x′, y′, z′ first by 90◦ −Θ about the y′ axis and then by 90◦ about the
z axis. Then x is the direction of the primary perturbation, y is the direction of the
secondary perturbation and the base wave varies in the z direction. In this coordinate
system the true vertical direction is described by the unit vector ez′ = [0, sin Θ, cos Θ].

We can write the non-dimensional Boussinesq equations on an f -plane as

∇ · u = 0 (2.1a)

∂tu +∇ · (uu) = −ez′ × u

Ro
−∇p+

b

Fr2
ez′ +

1

Re
∇2u (2.1b)

∂tb+∇ · (bu) = −N̂2u · ez′ +
1

PrRe
∇2b, (2.1c)

where velocities u are made non-dimensional by U , all spatial coordinates x by the length
scale L, normalised pressure p by U2, and time t by L/U . Density deviations from the
background mean are measured by the buoyancy b = (θ∗−θ)/θ0 (θ: background potential
temperature, θ∗: local potential temperature, θ0: reference potential temperature). The
non-dimensional parameters are

Ro =
U
fL , F r =

U√
gL , Re =

UL
ν

, N̂2 =
∂b

∂z′
= N2L

g
, Pr =

ν

α
, (2.2)
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where f is the Coriolis parameter, g is the gravitational acceleration, ν is the kinematic
viscosity, N2 = (g/θ0)dθ/dz′ is the Brunt-Väisälä frequency and α is the thermal diffu-
sivity.

If we use the rotated coordinates as defined above, we find that the monochromatic
gravity wave is an exact solution to the Boussinesq equations 2.1:

[u, v, w, b] = a

[
f/K

cos Θ
cosϕ,− Ω/K

sin Θ cos Θ
sinϕ, 0,−N

2/K

g sin Θ
cosϕ

]
, (2.3)

where K = 2π/λ is the base wave number, ϕ = Kz − Ωt is the phase angle of the wave
and the wave frequency Ω is determined by the dispersion relation

Ω2 = N2 cos2 Θ + f2 sin2 Θ. (2.4)

The non-dimensional wave amplitude a is defined such that the wave is statically unstable
for a > 1 and statically stable for a < 1. For the detailed derivation of the wave solution
in the rotated coordinate system and for the primary and secondary instability analysis,
see the work of Achatz (2005, 2007) and Fruman & Achatz (2012).

The flow under investigation is highly three-dimensional and thus requires appropri-
ate definitions for quantifying turbulent mixing. Fully resolved DNS allow for a direct
evaluation of the local dissipation rates εk and εp of kinetic energy 1

2uiui and available

potential energy 1
2b

2/N̂2Fr2 from the velocity and buoyancy fields:

εk =
1

Re

〈(
∂xj

ui + ∂xi
uj
) (
∂xj

ui + ∂xi
uj
)〉

(2.5)

εp =
1

PrRe N̂2 Fr2
〈(∂xi

b) (∂xi
b)〉 , (2.6)

where 〈...〉 indicates an appropriate spatial average. These definitions fully exploit the
three-dimensional information available in DNS and, in particular, they do not involve
any assumptions about the ratio of horizontal to vertical scales, as sorting procedures
(Thorpe 1977) generally do. For a detailed analysis of the energy transfer and dissipation
in a stably stratified turbulent flow we refer to Remmler & Hickel (2012b).

The Boussinesq equations are discretised by a finite-volume fractional-step method
on a staggered Cartesian mesh. For time advancement the explicit third-order Runge-
Kutta scheme of Shu (1988) is used. The time-step is dynamically adapted to satisfy a
Courant-Friedrichs-Lewy condition with CFL 6 1.0. The spatial discretization is based
on non-dissipative central schemes with 4th order accuracy for the advective terms and
2nd order accuracy for the diffusive terms and the pressure Poisson solver. The Poisson
equation for the pressure is solved at every Runge-Kutta sub step, using a direct method
(based on the Fast Fourier Transform and modified wavenumbers consistent with the
underlying staggered grid method) in the z direction and an iterative Stabilised Bi-
Conjugate Gradient (BiCGSTAB) solver in the x-y planes. For more details on our flow
solver INCA (www.inca-cfd.org), its performance and validation for atmospheric flows
we refer to Remmler & Hickel (2012a,b).

3. Test case definition

We consider a statically unstable monochromatic inertia-gravity wave whose param-
eters are chosen such that inertial and buoyancy forces have similar magnitudes. All
physical parameters are summarised in table 1. A comparable 2.5-D case was already in-
vestigated by Achatz (2007) and Fruman & Achatz (2012) at a wavelength of λ = 6 km.
To reduce the necessary domain size, we repeated their analysis for a wavelength of
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wavelength λ = 3 km
wave vector orientation Θ = 89.5◦

dimensional wave amplitudes û = 8.97 m/s ; v̂ = 14.56 m/s ; b̂ = 0.0234
non-dimensional wave amplitude a = 1.2
kinematic viscosity ν = 1 m2/s ; Re = 43665
Coriolis parameter f = 1.367 · 10−4 s−1 ; Ro = 35.5

Brunt-Väisälä frequency N = 0.02 s−1 ; N̂ = 6.12
gravitational acceleration g = 9.81 m/s2 ; Fr = 0.0848
thermal diffusivity α = 1 m2/s ; Pr = 1

horizontal wavelength λx′ = 343 km
(downward) phase velocity cp = 0.106 m/s
wave oscillation period T = 7.87 h

Table 1. Physical parameters of the investigated inertia-gravity wave. The non-dimensional
numbers were computed based on the wavelength L = λ = 3 km and the maximum velocity
U = v̂ = 14.56 m/s.

only λ = 3 km and found that the wavelengths of the perturbations scale with the base
wavelength without changing the general character of the breaking event. The kinematic
viscosity used here and in the preceding 2.5-D studies corresponds to a geopotential al-
titude of 81 km in the US Standard Atmosphere, which is in the upper part of the range
where gravity wave breaking occurs and affects the middle-atmosphere circulation. We
refrain from using a lower kinematic viscosity (corresponding to lower altitudes) to limit
the computational costs and to keep our results comparable to the previous work.

The base wave as described by equation 2.3 is initially disturbed by its leading trans-
verse normal mode (Achatz 2007), which has a wavelength of 3891 m. This wavelength
determines the domain size in the x direction. The perturbed wave field is further per-
turbed by the fastest growing singular vector (SV) of the equations 2.1 linearised about
the time dependent nonlinear 2.5-D solution (Fruman & Achatz 2012). This singular vec-
tor has a wavelength of 400 m, which determines the domain size in the y direction. The
amplitude of the SV perturbation is somewhat arbitrary. We chose the amplitude such
that the maximum energy density in the SV is 1% of the maximum initial energy density
in the wave and primary normal mode. The initial condition is displayed in figure 1.
The domain size for the simulations presented here was 3981 m × 400 m × 3000 m. We
conducted two simulations on different grids: a fine simulation designed to fully resolve
all turbulence scales and a second, coarser simulation at approximately half the resolu-
tion. The grid of the fine simulation had 1350× 128× 1000 cells, which corresponds to a
uniform cell size ∆ ≈ 3 m in all directions. The coarse grid had a resolution of ∆ ≈ 6 m
(640× 64× 500). The governing equations were integrated in time for 34000 s (fine) and
60000 s (coarse).

4. Results and discussion

We verified the chosen grid resolution by computing the Kolmogorov length η = ν3/4ε
−1/4
k

with the maximum of the kinetic energy dissipation rate in the domain, see figure 2(a).
According to Yamazaki et al. (2002), the low-order statistics of turbulence are basically
unaffected by the resolution as long as kmaxη & 1, i. e. ∆ < πη. By this criterion, we
find that the fine simulation is fully resolved and the coarse simulation is insufficiently
resolved. Nevertheless, the coarse simulation remains free of unphysical oscillations with-
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Figure 2. Time series for (a) Kolmogorov length and (b) nondimensional amplitude of the
primary wave and total energy dissipation. Solid lines: full resolution 3-D DNS; dashed lines:
half resolution 3-D DNS; symbols: 2.5-D DNS; dash-dotted lines: laminar decay.
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Figure 3. Spatial mean values of energy dissipation: (a) contributions to the energy
dissipation for the fine grid, (b) Γ = εp/εk in coarse and fine simulation.

out requiring any artificial numerical dissipation, which we attribute to the good spectral
resolution properties (modified wavenumber) of staggered-grid methods.

The most important quantities extracted from the simulations are the amplitude of the
primary wave and the spatially averaged energy dissipation rate, shown in figure 2(b). For

comparison, we added the curves for a purely laminar wave decaying like a(t) = a0e
−νK2t

with the parameter a0 fitted to match the final (laminar) state of the original wave.
During the first wave period (T = 28342 s), there are three distinct occurrences of

wave breaking characterised by a rapid decrease of the wave amplitude and a strongly
increased total dissipation rate. After t = 35000 s the wave has become laminar and no
longer shows signs of turbulence and enhanced dissipation.

Both 3-D simulations predict basically the same temporal development of the am-
plitude. There are some differences in the dissipation rate between the fine and coarse
simulations, especially during the second and third breaking events. However, the over-
all agreement between the two simulations is very good. This indicates that the full
resolution simulation yields a grid-converged solution.

We compare the 3-D DNS to a 2.5-D simulation performed with the model of Achatz
(2007) initialised with just the IGW and the leading transverse normal mode. The wave
amplitude from the 2.5-D simulation with ∆ ≈ 3 m is also plotted in figure 2(b). While
the temporal evolution of the wave amplitude is not exactly the same in the 2.5-D and
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(a) Ri (b) εk (c) εp

Figure 4. Hovmöller plots of Richardson number (a) and energy dissipation (b and c). The
dashed lines indicate a fixed position in space while the coordinate system is moving downward
with the phase speed of the wave.

3-D simulations, the duration of the breaking event and the total energy decrease due
to the breaking are similar. Details, such as the secondary breaking events observed in
the 3-D simulations are not reproduced by the 2.5-D simulation and the breaking lasts
longer in the 3-D simulations.

We decomposed the energy dissipation into kinetic εk and potential energy dissipation
εp in figure 3(a). Both show peaks during the three breaking events, but the peaks of εk
are much more pronounced, so that the ratio Γ = εp/εk is temporally reduced during
these events (figure 3(b)). The strongest reduction is observed during the third event.
This means that the energy dissipation is caused by strong gradients in the velocity field
rather than the buoyancy field during this event.

The dissipation rates averaged in the x-y plane (perpendicular to the wave vector) are
plotted against time in figure 4. The coordinate system is moving with the phase speed of
the primary wave, so the most unstable region is always in the upper half of the domain
and the most stable part in the lower half. An indicator for stability is the Richardson
number

Ri =
N̂2 + 〈∂z′b〉

Fr2
〈

(∂z′u′)
2

+ (∂z′v′)
2
〉 =

N̂2 + 〈∑i ∂xi
b ez′,i〉

Fr2
〈∑

k

(∑
j ∂xk

u′h,jez′,k
)2〉 , (4.1)

where u′h,j = uj − (u · ez′)ez′,j is the horizontal velocity in the earth frame and 〈...〉
indicates an average in the x-y plane. The Richardson number is shown in figure 4(a).
Blue regions indicate static instability, because the Richardson number is negative there.
Violet regions correspond to 0 < Ri < 0.25 and hence dynamic instability. Comparison
of figures 4(a) and 4(b) shows that turbulent dissipation of kinetic energy is spatially
and temporally correlated with static and dynamic instability of the mean state. Note
that this is an average Richardson number in the x-y-plane, so locally the value of Ri
can strongly differ from this average.

The first breaking event triggered by the initial perturbation is spread over the whole
domain. Turbulence (indicated by enhanced kinetic energy dissipation, figure 4(b)) is
generated in the stable and unstable regions of the wave, but only in the stable region
does this lead to strong potential energy dissipation, see figure 4(c). Both secondary
breaking events (around t = 12000 s and t = 16000 s) have hardly any signature in εp.
Most energy is dissipated mechanically in the unstable half of the domain.

Figure 5 shows some snapshots of the wave field during the first breaking event. The
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(a) t = 0 s (b) t = 280 s (c) t = 520 s

(d) t = 1055 s (e) t = 1570 s (f) t = 2000 s

Figure 5. Temporal evolution of the first breaking event. Background: plane at y = 400 m
coloured by buoyancy; foreground: iso-surface of Q = 0.004 s−2, indicating turbulent vortices.

(a) t = 12680 s (b) t = 13100 s (c) t = 13560 s

Figure 6. Temporal evolution of the second breaking event. Colouring as in figure 5.

(a) t = 16110 s (b) t = 16650 s (c) t = 17110 s

Figure 7. Temporal evolution of the third breaking event. Colouring as in figure 5.

yellow iso-surface ofQ = 1
2
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|Ω|2 − |S|2

)
= 1

8

(
|∂xj

ui − ∂xi
uj |2 − |∂xj

ui + ∂xi
uj |2

)
is used

to visualise turbulent vortices. During the first 1000 s strongly three-dimensional turbu-
lence structures develop in the unstable half. The strong perturbations of the isopycnals
quickly vanish. In the meantime a strong two-dimensional overturning develops in the
stable region, eventually breaking and generating three-dimensional turbulence around
t = 1500 s. While turbulence is sustained for a long time in the unstable half of the wave,
it decays quickly through the damping effect of stratification in the stable half. In the
2.5-D simulations, the turbulence in the stable half of the wave is much longer lived.
Achatz & Schmitz (2006a) and Achatz (2007) attribute this turbulence to small scale
waves excited near the level of maximum static instability encountering a critical level
associated with the zero in the v component of the original wave. This effect appears to
be less important in 3D.



Direct numerical simulation of a breaking inertia-gravity wave 9

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 0  10000  20000  30000  40000

10-4

10-3

10-2

a

ε t
 [W

/k
g]

t [s]

amplitude

dissipation

Ly = 400m, SV
Ly = 400m, noise
Ly = 200m, noise
Ly = 800m, noise

(a)

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 0  2500  5000

a

t [s]

(b)

Figure 8. Time series for the non-dimensional amplitude of the primary wave and total en-
ergy dissipation for different secondary perturbations and domain sizes. (a) full time range, (b)
amplitude during the first 5000 s (circles: 2.5-D simulation)

The second breaking event (figure 6) is much weaker than the first. It is initiated by
a growing instability of the large-scale wave that spans both the statically stable and
unstable regions. Note that the nondimensional amplitude of the wave drops below the
threshold of static instability right before the event becomes visible. Unlike the first
event, the instability is too weak to generate turbulence in the stable region, but some
turbulence appears in the unstable region.

The third breaking event (figure 7) is stronger than the second, but still much weaker
than the first. It is not preceded by a visible instability of the primary wave. The isopy-
cnals in figure 7(a) are almost perfectly horizontal. The turbulence emerges “out of
nothing” in the unstable region, causes some mixing there and eventually decays. An
explanation can be found in figure 4(b). By the time of the third breaking event, the pri-
mary wave has propagated about half a wavelength downwards, so the unstable region
of the wave has arrived at the fixed point in space where the wave was most stable at the
beginning of the simulation. There seems to be some “leftover” turbulence generated by
the first breaking, which is amplified as soon as the stability in this region has decreased
sufficiently. Therefore, the third event is not really a third breaking event, but rather a
burst of turbulence triggered by the arrival of the dynamically unstable part of the wave
in a region preconditioned by the first breaking event.

In order to investigate the effect of the particular choice of secondary perturbation on
the three-dimensionalisation and overall evolution of the flow, we conducted additional
simulations at the 6 m resolution with the SV perturbation replaced by low level white
noise and with the domain size Ly in the direction of the secondary perturbation varied
between 200 m and 800 m. Since white noise is a superposition of perturbations with all
possible scales, it also contains contributions of the SV that leads to maximum energy
growth, as long as the domain size is large enough. For Ly = 400 m and Ly = 800 m, the
wave amplitude decay and energy dissipation are similar to those of the SV initialization,
but for the smaller domain size the initial peak of the dissipation rate is smaller and
the second and third breaking events are missing completely, see figure 8(a). A close
look at the first hour of the integrations in figure 8(b) reveals that the quick three-
dimensionalisation seen in the SV simulation occurs only in the simulation with Ly =
800 m, while the other two white noise simulations follow the 2.5-D solution, and three-
dimensional effects take longer to emerge. This reassures us that the SV is physically
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meaningful and representative of the perturbations that grow spontaneously even in a
larger domain with many more degrees of freedom.

5. Conclusion

We have presented the first turbulence resolving three-dimensional simulations of an
inertia-gravity wave breaking under environmental conditions realistic for the middle
atmosphere. The breaking was stimulated by optimal perturbations of the wave derived
from linear theory.

The primary breaking of the unstable wave stretches over the complete space of the
wave and is responsible for a strong reduction of the wave amplitude by more than 12%
within less than 10000 s (on the order of half a wave period). A pure laminar decay of
the wave would take three times as long for the same amplitude reduction.

We observed a second and a third burst of turbulence after the first breaking event.
During these secondary events turbulence appears only in the unstable region of the
wave and most energy is dissipated mechanically rather than thermally. The second
event is negligible with regard to its reduction of the amplitude of the primary wave. It is
preceded by a weak instability of the wave, which has an amplitude close to the threshold
of static instability at that time. During the third event the reduction of the primary
wave amplitude is more severe, amounting to about 5% of the amplitude. However, the
third event is not really a breaking event, but rather a burst of turbulence in the unstable
region of the wave triggered by disturbances created during the first breaking of the wave.

As previous simulations of breaking IGWs employed a 2.5-D approximation, i.e. a two-
dimensional domain and three velocity components, we conducted a 2.5-D simulation of
the same wave breaking case to investigate the effects of three-dimensionality. Details
such as the secondary breaking events observed in the 3-D DNS are not reproduced by
the 2.5-D simulation and the breaking lasts longer in the 3-D simulations. However, the
overall results in terms of total amplitude reduction and breaking duration are similar
between the 3-D and 2.5-D simulations. This similarity is important to note, since the
singular vector analysis that we used to determine the domain size for the 3-D DNS was
based on the 2.5-D simulation.

DNS where we replaced the secondary SV perturbation by white noise and varied the
domain size, showed that a SV initialization is both physically meaningful and efficient,
as it leads to a realistic three-dimensionalisation of the flow in the smallest possible
domain.

With these first fully resolved three-dimensional direct numerical simulations of a
breaking IGW we hope to present a valuable reference case for testing and validation
of models involving less brute-force resolution and more physics-based parameterisation.
This may include large eddy simulations as well as more abstract methods like WKBJ
models, which can lead to efficient and more reliable representation of gravity waves in
atmospheric circulation models.

We gratefully acknowledge the support of Ulrich Achatz, who was the scientific spir-
itus rector of the project. This work was funded by the German Research Foundation
(DFG) under the grant HI 1273-1 and the MetStröm priority programme (SPP 1276).
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The spectral eddy viscosity (SEV) concept is a handy tool for the derivation of large-
eddy simulation (LES) turbulence models and for the evaluation of their performance
in predicting the spectral energy transfer. We compute this quantity by filtering and
truncating fully resolved turbulence data from direct numerical simulations (DNS)
of neutrally and stably stratified homogeneous turbulence. The results qualitatively
confirm the plateau–cusp shape, which is often assumed to be universal, but show
a strong dependence on the test filter size. Increasing stable stratification not only
breaks the isotropy of the SEV but also modifies its basic shape, which poses a
great challenge for implicit and explicit LES methods. We find indications that for
stably stratified turbulence it is necessary to use different subgrid-scale (SGS) models
for the horizontal and vertical velocity components. Our data disprove models that
assume a constant positive effective turbulent Prandtl number.

Key words: homogeneous turbulence, stratified turbulence, turbulence modelling

1. Introduction

In large-eddy simulation (LES) the unresolved part of the turbulent velocity field is
modelled by a subgrid-scale (SGS) model. This SGS turbulence model is supposed to
modify the flow energy balance in the same way as the small-scale structures of fully
resolved turbulence would do. Most SGS models are, at least to some extent, based
on an eddy viscosity hypothesis. This means that the SGS model dissipates turbulence
energy, especially at the smallest resolved scales, but also on larger scales. Heisenberg
(1948) introduced the concept of modelling nonlinear interactions in turbulence by a
scale-dependent spectral eddy viscosity (SEV). The underlying theory has since been
refined by Kraichnan (1976) and others. Although impractical in real-space-based
numerical simulations, the SEV as a function of wavenumber can be used to verify
the correct behaviour of SGS models in a set-up of homogeneous (but not necessarily
isotropic) turbulence.

† Email address for correspondence: remmler@tum.de
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Algebraic expressions for the SEV have been derived based on the eddy-damped
quasi-normal Markovian (EDQNM) theory (Orszag 1970) for isotropic turbulence. A
different approach was pursued by Domaradzki et al. (1987), who computed the SEV
from direct numerical simulations (DNS) of fully resolved turbulence by truncating
the results in spectral space. They found some agreement with the theoretical results
of Kraichnan (1976), but also differences due to the finite inertial range in their
simulations. Despite these discrepancies, the behaviour of isotropic turbulence is quite
well understood. On the other hand, corresponding numerical studies for anisotropic
turbulence are still rare.

Semi-analytical expressions for the eddy-viscosity and eddy-diffusivity spectra
for stratified turbulence are given by Godeferd & Cambon (1994), Staquet &
Godeferd (1998) and Godeferd & Staquet (2003) in the framework of the EDQNM
approximation. Another form was obtained by Sukoriansky, Galperin & Staroselsky
(2005) and Galperin & Sukoriansky (2010) through quasi-normal scale elimination
(QNSE). These theoretical results show that turbulence anisotropy can significantly
affect SGS energy dissipation in flows dominated by stable stratification, solid body
rotation or shear.

In validating an SGS model for stably stratified flows, we have generated an
extensive database of DNS results for homogeneous stratified turbulence. The
simulations cover a wide range of Froude numbers from the neutrally stratified to the
strongly stratified regime (Remmler & Hickel 2012, 2013). We now analyse these
results with respect to the anisotropic, i.e. direction-dependent, SEV. To achieve this,
we follow Domaradzki et al. (1987) and filter the DNS results to coarser resolutions
in several steps and compute the SGS stress necessary to obtain the same large-scale
result on the coarse grid as on the full DNS grid. Similar studies were presented by
Kitsios, Frederiksen & Zidikheri (2012, 2013) for the quasi-geostrophic equations and
by Khani & Waite (2013) for the Boussinesq equations using one-dimensional SEV
spectra based on grid truncation in the horizontal or vertical direction.

In the following section, we will briefly outline the governing equations, review the
concept of SEV and diffusivity and comment on our flow solver. A short overview
of the computational set-up follows. The results section presents results for isotropic
turbulence in comparison to the work of Kraichnan (1976) and Domaradzki et al.
(1987) as well as SEV data in a two-dimensional spectral space for stably stratified
homogeneous turbulence. Furthermore, we use these newly obtained reference data
to evaluate the performance of different existing LES methods. One model follows
the implicit LES paradigm, i.e. the discretisation scheme and the SGS model are
merged. The other models combine an explicit approximation of the SGS tensor with
a non-dissipative central discretisation.

2. Computational methods

2.1. Boussinesq equations
The flows to be investigated are characterised by a stable background stratification, so
the density is not constant. However, the density differences are small and the flow
velocities are much smaller than the speed of sound, which justifies the Boussinesq
approximation. The non-dimensional Boussinesq equations for a stably stratified fluid
in Cartesian coordinates read

∇ · u = 0, (2.1a)

∂tu+∇ · (uu) = −∇p− ρ

Fr2
0

êz + 1
Re0
∇2u+ F, (2.1b)
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∂tρ +∇ · (ρu) = u · êz + 1
Pr Re0

∇2ρ, (2.1c)

where the velocities are made non-dimensional by a reference velocity U , all spatial
coordinates by the length scale L , pressure by ρU 2, time by L /U and density
fluctuation ρ = ρ∗ − ρ (ρ∗ is the local absolute density, ρ is the background density)
by the background density gradient L |dρ/dz|. The vertical unit vector is êz and F
denotes a large-scale forcing, see (3.1). The non-dimensional flow parameters are

Fr0 = U

NL
, Re0 = U L

ν
, Pr= ν

D
, (2.2a–c)

where ν is the kinematic viscosity, N =√−g/ρ dρ/dz is the Brunt–Väisälä frequency
and D is the thermal diffusivity of the fluid. We chose a Prandtl number of Pr= 0.7,
corresponding to typical values in the atmosphere.

The local dissipation rates εk and εp of kinetic energy Ek = (1/2)
∑

iuiui and
available potential energy Ep = (1/2)ρ2/Fr2

0 can be computed directly from the
velocity and density field,

εk = u ·∇2u
Re0

, εp = ρ∇2ρ

Pr Re0 Fr2
0

. (2.3a,b)

With the spatial mean values of kinetic energy 〈Ek〉 and kinetic energy dissipation
〈εk〉, we define the local Froude and Reynolds number as well as the buoyancy
Reynolds number R, (Brethouwer et al. 2007)

Fr= Fr0L

U

〈εk〉
〈Ek〉 , Re= Re0

U L

〈Ek〉2
〈εk〉 , R = Re Fr2, (2.4a–c)

which are used to characterise the flow regime. The overturning wavenumber
(Dougherty 1961; Ozmidov 1965)

kO = N3/2

ε
1/2
k

(2.5)

approximately separates small scales which are practically isotropic and large scales
which are affected by buoyancy.

2.2. Spectral eddy viscosity
The momentum equation for incompressible homogeneous turbulence in spectral space
reads (

∂t + νk2
)

ûi(k)= Ŝi(k)− i
∑

j,q

kqPij(k)
∑

m

ûj(m)ûq(k−m), (2.6)

where Pij(k)= δij− kikj/k2 is the projection tensor onto a divergence-free velocity field,
δij is the Kronecker symbol, k2=|k|2= k2

1 + k2
2 + k2

3 is the wavenumber and Ŝi contains
all forces on the fluid. The kinetic energy of a single mode k is

ei(k)= 1
2 ûi(k)û?i (k), (2.7)

where (·)? denotes the complex conjugate. Implicit summation over repeated indices
does not apply throughout this paper. If required, summation is directly indicated. We
refer to e(k) =∑i ei(k) as the total kinetic energy and to eh(k) = e1(k) + e2(k) and
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ev(k)= e3(k) as the horizontal and vertical kinetic energy, respectively (assuming for
simplicity that the vertical direction coincides with the x3 direction).

The temporal evolution of ei(k) is governed by
(
∂t + 2νk2

)
ei(k)−Re

{
Ŝiû?i (k)

}
= Ti(k), (2.8)

with the transfer term

Ti(k)=
∑

j,q

kqPij(k)Im

{∑

m

û?i (k)ûj(m)ûq(k−m)

}
. (2.9)

If the numerical discretisation acts as a perfect low-pass filter, only wavenumbers |k|<
kc are resolved and we can split the transfer term T(k) into

T(k)=
∑

i

Ti(k)= T−(k, kc)+ T+(k, kc); |k|< kc, (2.10)

where T−(k, kc) involves only interactions of wavenumbers |k| < kc, |m|< kc,
|k−m|< kc and is thus resolved by the numerical grid. The SGS transfer T+(k, kc)
represents all unresolved interactions and has to be modelled in an LES.

We can model the average SGS transfer by using the SEV hypothesis

νt(k, kc)=
〈
T+(k, kc)

〉
s

2k2 〈e(k)〉s
or νt(k′, kc)=

〈
T+(k, kc)

〉
c

2k2 〈e(k)〉c
. (2.11a,b)

The average 〈· · ·〉s is taken over time and on thin spherical shells with radius |k| for
isotropic turbulence, which reduces the wavenumber space to one dimension k. For
flows with spectra symmetric about the kz-axis, such as rotating or stratified turbulence,
we average 〈· · ·〉c over thin cylindrical shells with radius kh = |kh| =

√
k2

x + k2
y . The

result is defined in a two-dimensional wavenumber space k′ = (kh, kz). We compute
the SEV for the horizontal and vertical kinetic energy by

νt,h = 1
4k2

[〈
T+1
〉

〈e1〉 +
〈
T+2
〉

〈e2〉

]
; νt,v =

〈
T+3
〉

2k2 〈e3〉 . (2.12a,b)

For isotropic turbulence the SEV is generally normalised by the cutoff wavenumber
and the kinetic energy at this wavenumber

ν+t (k/kc)= νt(k, kc)

√
kc

E(kc)
, (2.13)

where the integral kinetic energy is E(k)= 4πk2〈e(k)〉. This is only a useful definition
if the energy spectrum is known (e.g. E(k)= CKε

2/3k−5/3) at the cutoff wavenumber.
Otherwise, it is helpful to use the original formulation of Kraichnan (1976),

ν∗t (k/kc)= νt(k, kc)ε
−1/3
k k4/3

c . (2.14)

For isotropic turbulence with an infinite inertial range, ν+t and ν∗t are simply related
by ν∗t =

√
CKν

+
t , where CK is the Kolmogorov constant. An algebraic model equation

for ν+t (k/kc) in isotropic turbulence is given by Chollet (1984).
As we have a fully resolved simulation of homogeneous turbulence, we can extract

the full transfer term T(k). By filtering the solution to a coarser test grid, we find the
resolved term T−(k, kc) for the test grid resolution and then compute the SGS transfer
T+(k, kc) from (2.10).
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We can derive an expression for the spectral eddy diffusivity (SED) of any
conserved scalar, such as the density fluctuation

Dt(k′, kc)=
〈
T+p (k, kc)

〉
c

2k2
〈
ep(k)

〉
c

, (2.15)

where T+p is the SGS transfer term in the density equation and

ep(k)= 1
2 ρ̂(k)ρ̂

?(k) (2.16)

is the spectral potential energy density. We normalise the SED by

D∗t (k/kc)=Dt(k, kc)ε
−1/3
k k4/3

c (2.17)

using the kinetic energy dissipation rate εk as for the SEV. This normalisation follows
from the common belief that the eddy diffusivity can roughly be modelled with a
turbulent Prandtl number, which is backed by spectral turbulence theory for high
Reynolds numbers and Prandtl numbers of order unity (see equation (23) in Hickel,
Adams & Mansour 2007).

We define the effective turbulent Prandtl number for a certain cutoff wavenumber
kc in the spectral space,

Prt(k, kc)= νt(k, kc)

Dt(k, kc)
. (2.18)

2.3. Flow solver
With our flow solver INCA, the Boussinesq equations are discretised by a fractional-
step method on a staggered Cartesian mesh. For time advancement the explicit
third-order Runge–Kutta scheme of Shu (1988) is used. The time step is dynamically
adapted to satisfy a Courant–Friedrichs–Lewy condition (including the limits for
advective, diffusive and buoyancy terms) with CFL 6 1.0. The Poisson equation for
the pressure is solved at every Runge–Kutta substep.

2.4. Spatial discretisation and SGS models
The spatial discretisation is based on a finite-volume method. We use a non-dissipative
central-difference scheme with second-order accuracy for the diffusive terms and the
pressure Poisson solver. The discretisation of the advective terms depends on the
application. For the DNS we use a non-dissipative fourth-order central difference
scheme (CDS4).

For LES on much coarser grids a turbulence SGS model is required. In the present
study we tested four different SGS models. The first model is the Adaptive Local
Deconvolution Method (ALDM). It is an implicit SGS model, i.e. the numerical
discretisation of the advective terms acts as a sink of energy by providing a suitable
amount of numerical dissipation. This is achieved by a reconstruction of the unfiltered
solution through an approximate deconvolution and a regularisation based on a tailored
numerical flux function. ALDM was developed by Hickel, Adams & Domaradzki
(2006) and Hickel et al. (2007) and successfully applied to stably stratified turbulent
flows by Remmler & Hickel (2012, 2013).

Alternatively, an explicit SGS model can be applied on top of the non-dissipative
central discretisation scheme. We use the Smagorinsky (1963) model with a fixed
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No. Re Fr R Reλ ηkmax kO

1 20 800 ∞ ∞ 372 0.95 0.0
2 23 150 0.089 184.0 393 0.97 6.4
3 28 250 0.025 17.2 434 0.83 38.4
4 33 480 0.008 2.1 472 0.71 192.0

TABLE 1. List of the presented DNS ordered by the strength of the stable stratification.
No. 1 is neutrally stratified, No. 4 is strongly stratified.

model coefficient of CS = 0.18 (‘standard Smagorinsky model’, SSM) or a dynamic
version of this model (‘dynamic Smagorinsky model’, DSM) based on the dynamic
procedure proposed by Germano et al. (1991) and improved by Lilly (1992). The
dynamic procedure is used to compute the Smagorinsky model coefficient based on
test filtering the numerical solution assuming scale similarity between the smallest
resolved scales and the largest unresolved scales. The test filter size is twice the
grid size. For numerical stability reasons the computed model coefficient is usually
averaged in homogeneous directions. Since we investigate a flow field that is
homogeneous in all three directions, the method reduces to the computation of a
spatially constant but temporally varying model coefficient. We also investigated the
case without spatial averaging; this is denoted ‘DSM2’ in § 4. In order to prevent
numerical instability, the Smagorinsky model coefficient is clipped if negative values
are computed. The turbulent Prandtl number is assumed to be Prt = 0.4 for both the
SSM and the DSM.

3. Numerical set-up

We simulated homogeneous stratified turbulence in a triply periodic box with side
length L = 2π and a resolution of 5123 cells. A fluctuating large-scale horizontal
volume force is applied to the fluid, which injects a constant forcing power into the
domain. The time- and space-dependent forcing term reads (Aspden et al. 2008)

F(x, t)=
2∑

i,j=1

ai,j cos(2πkix+ pi,j) cos(2πkjy+ qi,j). (3.1)

The random amplitudes ai,j and phases pi,j and qi,j are recomputed at every time step.
After an initial transient phase, the turbulence kinetic energy remains at a constant
level, as soon as the forcing power P = 1/(2π) is balanced by the mean molecular
dissipation εk + εp. A more detailed description of the simulations is provided by
Remmler & Hickel (2013). We sampled the SEV and SED in time intervals 1T =
5L /U sufficiently large to ensure decorrelated velocity and density fields. With an
average computational time step of 1t = 1.6 × 10−3L /U we needed ∼3125 time
steps for each sample. To limit computational costs, we restricted ourselves to 20
samples per simulation. All figures presented below are averages of these samples.

A list of the simulations can be found in table 1, where we provide the
non-dimensional parameters for each case as well as the Reynolds number based
on the Taylor microscale (see, e.g. Pope 2000), computed using the kinetic energy
Ek and kinetic energy dissipation εk,

Reλ = Ek

√
20Re0

3UL εk
. (3.2)
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FIGURE 1. Integrated spectra of neutrally stratified turbulence DNS (5123 cells).
(a) Horizontal and vertical kinetic energy spectra. The vertical lines indicate cutoff
wavenumbers for SEV computation. (b) SEV at different test grid levels. The EDQNM
prediction (Kraichnan 1976) is also shown for comparison.

The product of the Kolmogorov length η and the maximum resolved wavenumber kmax

is ηkmax ≈ 1, which indicates sufficient resolution of the smallest scales of turbulence.
The Ozmidov wavenumber kO indicates the smallest scales of motion that are

affected by buoyancy. For case No. 2 only the largest scales are affected by buoyancy;
in case No. 4 almost the complete spectrum is influenced by buoyancy forces. (It
should be noted that the grid cutoff wavenumber is kc = 256.)

4. Results and discussion

4.1. Neutrally stratified turbulence
For neutrally stratified turbulence we can compare our results directly with the
EDQNM prediction. The spectra of horizontal and vertical kinetic energy shown
in figure 1(a) confirm that the turbulence is fully isotropic for wavenumbers k > 5.
In figure 1(b) we show the results of spherically averaged SEV for five different
coarse test grids together with the algebraic law of Kraichnan. It turns out that in our
simulations the values of ν+t are similar to the theoretical ones and the plateau–cusp
shape of the curve is reproduced. However, the cusp is sharper than in the theoretical
curve and its maximum value increases with the test grid resolution. Moreover, the
plateau at low wavenumbers is tilted, its level rises with decreasing test grid resolution
and it saturates for the test grid with 643 cells and the coarser grids.

Domaradzki et al. (1987) already observed a lower level of the SEV at low
wavenumbers compared with theory, when they analysed DNS of isotropic turbulence
at very low Reynolds number. Therefore the low-level plateau is probably due to the
high cutoff wavenumbers which are close to the dissipative range.

The dependence of the cusp maximum and sharpness on the test grid was also
observed and quantified by Kitsios et al. (2012). Our observations confirm their
findings.
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FIGURE 2. Two-dimensional SEV of neutrally stratified horizontally forced turbulence
(test grid with 643 cells). Horizontal (a) and vertical (b) kinetic energy.

In figure 2 we present the SEV in a two-dimensional spectral space. Averaging
was performed on circles with constant distance from the vertical axis. The analysis
was carried out separately for the horizontal and vertical kinetic energy components.
It turns out that, as expected, the horizontal eddy viscosity spectrum νt,h shows an
isotropic distribution. The SEV of the vertical kinetic energy component νt,v is not
isotropic, which is due to the anisotropic spectrum of any single-direction kinetic
energy in a divergence-free velocity field.

4.2. Stably stratified turbulence
We applied the same analysis to the simulations with stable stratification, see figure 3.
In this case, a third type of energy has to be considered, the available potential energy
and hence the SED Dt. In the following, it is sometimes helpful to discuss the results
not in Cartesian spectral coordinates but in terms of the absolute wavenumber k and
the angle φ, which has the range 06φ6π/2 for the horizontal and vertical directions,
respectively.

The cutoff wavenumber for the spectra presented in figure 3 is kc= 32. This means
that it is larger than the Ozmidov wavenumber kO in case No. 2, approximately equal
to kO in case No. 3 and significantly smaller than kO in case No. 4. As pointed out
by Khani & Waite (2013), this has a large influence on the SEV and SED spectra.

The SEV of the horizontal kinetic energy is still almost isotropic in case No. 2
with R = 184. At lower Froude numbers the cusp no longer appears in all directions,
but only at medium angles φ. At the lowest Froude number investigated, it almost
completely vanishes.

For the vertical kinetic energy, there is no visible difference between the neutral
and the weakly stratified case. With increasing stable stratification, the overall level
of νt,v decreases and a region with negative values appears. This could be explained
by an inverse energy cascade or by the effect of ‘pancake’ vortices elongated in the
horizontal direction and layered in the vertical direction. Remmler & Hickel (2013)
indeed observed a transport of vertical kinetic energy from small to larger vertical
scales in the case of strong stable stratification (cf. their figure 4b), which supports
this view.

The SED differs quite strongly from the SEV described above. In the weakly
stratified case, there is a clear plateau–cusp behaviour, but the plateau level depends
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FIGURE 3. SEV and diffusivity of stably stratified turbulence (test grid with 643 cells)
at different Froude numbers (corresponding to weak, medium and strong stratification).
Horizontal (a–c) and vertical (d–f ) kinetic energy as well as potential energy (g–i). (a,d,g)
R = 184, Fr= 0.089; (b,e,h) R = 17.2, Fr= 0.025; (c,f,i) R = 2.1, Fr= 0.008.

on the spectral direction. It strongly decreases when φ is increased. The cusp level,
in contrast, is almost unaffected by the spectral direction. It decreases only slightly at
φ≈π/2. Case No. 3 (R= 17.2) looks very similar, just the plateau level is decreased
and the drop of the cusp level at high φ is more pronounced than in the previous
case. For the strongest stratification, the picture changes significantly. There is a peak
at high horizontal wavenumbers and no plateau region as in the previous cases.

According to Galperin & Sukoriansky (2010), the horizontal viscosity and diffusivity
should grow in the case of increased stratification while the vertical counterparts
decrease. Our results confirm this for the vertical viscosity and diffusivity, but show
a different trend for the horizontal direction.

The effective turbulent Prandtl number (figure 4) is homogeneously distributed in
the spectrum in the case of weak stratification. In the horizontal direction there is a
plateau at Prt ≈ 0.35 and a cusp near the cutoff wavenumber with a maximum value
of Prt = 0.55. For the vertical direction Prt > 1. In the case of stronger stratification
the difference in the horizontal and vertical directions is increased, leading to a
large region with negative values in our most strongly stratified case. The growth of
the vertical turbulent Prandtl number with increasing stratification, at least for cases
Nos 2 and 3, is in agreement with the findings of Galperin & Sukoriansky (2010).
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FIGURE 4. Effective turbulent Prandtl number in stably stratified turbulence (test grid
with 643 cells) at different Froude numbers (corresponding to weak, medium and strong
stratification). (a) R=184, Fr=0.089; (b) R=17.2, Fr=0.025; (c) R=2.1, Fr=0.008.

Based on the observed inhomogeneity of the effective turbulent Prandtl number in
spectral space we conclude that traditional SGS models assuming a constant positive
turbulent Prandtl number are certainly unsuitable for simulations of strongly stratified
turbulence.

4.3. Analysis of LES schemes
The reference data obtained from filtering the DNS can now be used to analyse LES
methods. We computed the effective SEV and SED in LES from an ensemble of
statistically independent snapshots of the flow field (see Hickel et al. 2006). The SEV
and SED are both affected by the numerical discretisation and the turbulence SGS
model. Both interfere with each other and cannot be judged independently, which
motivates the idea of implicit LES where the discretisation and the SGS model are
fully merged. Since quantitative comparison of two-dimensional plots as in figures 2
and 3 is difficult, we show the SEV and SED of different LES methods in figure 5
in a one-dimensional graph that is a cut through the spectral space at φ = π/4 (the
‘diagonal’ modes). As a test case we selected case No. 3 with a medium stable
stratification. The cutoff wavenumber kc = 16 is slightly smaller than the Ozmidov
wavenumber kO = 38.4, so the SGS turbulence is, to a certain degree, influenced by
buoyancy forces. Together with the EDQNM prediction and the DNS reference result,
we show the results obtained with the ALDM, pure CDS4 without an SGS model
and CDS4 with explicit models, namely SSM, DSM and DSM2.

It turns out that none of the tested methods are able to correctly reproduce all three
SEV and SED spectra at the same time. The ALDM does on average a good job,
which is remarkable since the method was optimised to reproduce the EDQNM curve
as closely as possible (Hickel et al. 2006). The averaged DSM gives good results for
the SEV of the horizontal kinetic energy and the SED of the available potential energy,
but fails for the SEV of the vertical kinetic energy. The SEV of the vertical kinetic
energy, on the other hand, is well predicted by the pure CDS4 discretisation without
a turbulence SGS model. The DSM2 model, which allows for local variations in the
model coefficient, does not improve the result over the averaged DSM, but rather
makes it worse.

5. Summary and conclusions

We have computed the SEV and diffusivity of homogeneous turbulence with and
without stable stratification. This was achieved by filtering fully resolved DNS results
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FIGURE 5. Diagonal SEV and SED of stably stratified turbulence at R = 17.2 (323 cells)
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and by computing the additional spectral energy flux that is necessary to obtain the
same total flux in the coarse-grained flow field as in the fully resolved case.

For neutrally stratified turbulence we found eddy viscosity spectra that are,
in general, similar to the EDQNM prediction of Kraichnan (1976) showing the
well-known plateau–cusp behaviour. However, the amplitude of the cusp at the cutoff
wavenumber depends on the test filter size, as described by Kitsios et al. (2012), and
at low wavenumbers we find a pronounced linear decrease of the SEV instead of a
flat plateau.

If the stable stratification is increased, the SEV and SED spectra become more and
more anisotropic. For the most stable case investigated, the spectral space topology
has completely changed. This illustrates that the characteristics of the flow change
significantly as soon as the buoyancy Reynolds number approaches R ≈ 1. Strong
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stratification leads to negative values of the effective turbulent Prandtl number at large
horizontal and small vertical wavenumbers. Such results contradict the widespread
assumption of a constant positive effective turbulent Prandtl number in SGS modelling.
The treatment of SGS stresses in such cases must generally be different from that in
fully turbulent flows with higher values of R.

We used the results from the filtered DNS to test the implicit SGS model ALDM
and a central discretisation scheme with and without the Smagorinsky model, either
in the standard form or in the dynamic form. We found that the ALDM, despite
being calibrated for the SEV from EDQNM theory, yields acceptable results for all
three forms of flow energy. The DSM does a good job except for the vertical kinetic
energy, which is best matched by the central discretisation without any SGS model.
These results suggest that a potentially better model could be obtained by applying the
DSM only to the horizontal velocity components and leaving the vertical momentum
equation unmodified.
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Abstract A systematic approach to the direct numerical simulation (DNS) of breaking upper
mesospheric inertia-gravity waves of amplitude close to or above the threshold for static instability is
presented. Normal mode or singular vector analysis applied in a frame of reference moving with the phase
velocity of the wave (in which the wave is a steady solution) is used to determine the most likely scale and
structure of the primary instability and to initialize nonlinear “2.5-D” simulations (with three-dimensional
velocity and vorticity fields but depending only on two spatial coordinates). Singular vector analysis is
then applied to the time-dependent 2.5-D solution to predict the transition of the breaking event to
three-dimensional turbulence and to initialize three-dimensional DNS. The careful choice of the
computational domain and the relatively low Reynolds numbers, on the order of 25,000, relevant to
breaking waves in the upper mesosphere, makes the three-dimensional DNS tractable with present-day
computing clusters. Three test cases are presented: a statically unstable low-frequency inertia-gravity wave,
a statically and dynamically stable inertia-gravity wave, and a statically unstable high-frequency gravity
wave. The three-dimensional DNS are compared to ensembles of 2.5-D simulations. In general, the decay of
the wave and generation of turbulence is faster in three dimensions, but the results are otherwise
qualitatively and quantitatively similar, suggesting that results of 2.5-D simulations are meaningful if the
domain and initial condition are chosen properly.

1. Introduction

Inertia-gravity waves are a ubiquitous feature of the dynamics in the atmosphere and play a pivotal role
in the global circulation. They are forced mostly by flow over orography [e.g., Smith, 1979; Lilly et al., 1982;
McFarlane, 1987], by convection [e.g., Chun et al., 2001; Grimsdell et al., 2010], and by spontaneous imbal-
ance of the mean flow in the troposphere [O’Sullivan and Dunkerton, 1995; Plougonven and Snyder, 2007],
and they transport energy and momentum from the region where they are forced to the region where they
are dissipated (e.g., through breaking), often thousands of kilometers away. Since the waves are filtered
and refracted by the environment through which they propagate, their effects are highly nonuniform. Var-
ious phenomena, such as the cold summer mesopause [Hines, 1965; Lindzen, 1973] and the quasi-biennial
oscillation in the equatorial stratosphere [e.g., Baldwin et al., 2001], cannot be explained nor reproduced in
weather and climate simulations without accounting for the effect of gravity waves (see Fritts and Alexander
[2003] for an overview of gravity waves in the middle atmosphere). In almost all cases, this is done through
rather crude and extensively tuned parameterizations based on combinations of linear wave theory (begin-
ning with Lindzen [1981]), empirical observations of time-mean energy spectra [e.g., Hines, 1997], and very
simplified treatments of the breaking process. See Kim et al. [2003] and McLandress [1998] for reviews of the
various standard parameterization schemes.

Inertia-gravity wave breaking involves time scales from seconds to hours and spatial scales from meters to
tens of kilometers. It is therefore a demanding problem for both observational and computational investi-
gation. The representation of small-scale turbulence in wave-breaking simulations and of wave breaking in
weather and climate simulations represent two important but separate parameterization problems in atmo-
spheric science. The former is the goal of large-eddy simulation (LES). To be trusted, an LES scheme must
be tested against turbulence-resolving direct numerical simulation (DNS). The purpose of the present study
is to describe a systematic strategy for constructing such DNS and to provide DNS for a selection of waves
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with different characteristics. To qualify as DNS, a simulation of a turbulent flow must resolve scales smaller
than the Kolmogorov length 𝜂, which depends on the kinematic viscosity 𝜈 and the maximum rate of kinetic
energy dissipation; 𝜂 represents the scale below which molecular viscosity and diffusion dominate over
inertial effects and energy is removed from the system or converted to heat. For realistic flows in the tro-
posphere, 𝜂 is on the order of millimeters [Vallis, 2006], so for gravity waves with wavelengths on the order
of kilometers, DNS is impossible. One case where DNS is possible is waves in the upper mesosphere (about
80 km altitude), where due to the extremely low ambient density, 𝜈 is about 1 m2 s−1 in the U.S. Standard
Atmosphere [NOAA et al., 1976]. Remmler et al. [2013] found from simulation of a breaking statically unsta-
ble 3 km inertia-gravity wave a Kolmogorov length of between 1 m and 3 m so that a 3-D DNS could be
achieved with on the order of 109 grid cells.

There have been a number of recent numerical studies of breaking gravity waves. Fritts et al. [2009a, 2009b]
performed high-resolution DNS of high-frequency gravity waves (with periods of a few times the back-
ground buoyancy period) with amplitudes slightly above and slightly below the threshold for convective
instability. They found that both waves break down to about a third of their initial amplitude within one or
two wave periods and that the early phase of wave breaking is dominated by turbulent three-dimensional
motion, while wave-wave interactions between the primary wave and secondary waves excited by the
breaking persist for many wave periods. Fritts et al. [2013] and Fritts and Wang [2013] performed highly
resolved, high Reynolds number DNS of a monochromatic gravity wave breaking due to interaction with a
vertically varying “fine-structure” shear flow, finding that the direction of the fine-structure flow relative to
the plane of the wave strongly affected the degree to which the gravity wave broke down into turbulence.

The above studies neglect the Coriolis effect, and thus, the velocity field of the primary gravity wave is
strictly in the plane of phase propagation. The propagation of inertia-gravity waves, on the other hand, is
maintained by both the vertical restoring force due to the stratification and the horizontal restoring force
due to the Coriolis effect (the vertical component of the Coriolis force is typically neglected). Since in the
atmosphere the former is much stronger than the latter, waves with steep phase propagation, with their
nearly horizontal fluid parcel motions strongly influenced by the Coriolis force, have much lower frequency
than waves with shallow phase propagation. Instability and breaking are very different for inertia-gravity
waves of different frequencies [Achatz, 2005, 2007a, 2007b; Lelong and Dunkerton, 1998], so it is difficult to
extrapolate any conclusions from a DNS study to waves with higher or lower frequency. Remmler et al. [2013]
produced a DNS of a statically unstable low-frequency inertia-gravity wave (referred to as case I later in this
paper). The low-frequency wave decays much less than a high-frequency wave, only to about three quar-
ters of its initial amplitude within one wave period, about 8 h in that case. Also, the distribution of turbulent
energy dissipation is much more inhomogeneous and intermittent than for a high-frequency wave.

Other recent studies have simulated not just one wavelength of a monochromatic wave in a triply peri-
odic domain (as is done in the present work), but the more realistic case of a train of waves propagating
through a variable background as they break. Lund and Fritts [2012] considered waves propagating through
the thermosphere, their amplitude growing due to the decreasing density and changing due to the
height-dependent stratification and chemical composition. Liu et al. [2010] considered waves excited at the
surface of the ocean propagating downward through the thermocline. These studies must inevitably sacri-
fice model resolution to accommodate multiple wavelengths but are essential if conclusions from the more
fully resolved idealized DNS are to be applied to more practical problems such as the parameterization of
wave breaking in general circulation models, where a monochromatic inertia-gravity wave is unlikely to
occur in isolation, especially at the amplitude necessary for convective instability.

Since a DNS of a breaking inertia-gravity wave is computationally expensive, time consuming, and produces
a dauntingly complex and nonlinear result, it is important to choose the domain and parameters carefully.
The present work describes a systematic, hierarchical approach to analyzing an inertia-gravity wave break-
ing event, combining linear modal analysis with two- and three-dimensional nonlinear simulation. Aspects
of this procedure have already been published in Achatz [2007a, 2007b], Fruman and Achatz [2012], and
Remmler et al. [2013]. Three test cases were chosen, representing waves with different inherent time scales
and breaking behavior.

The analysis is greatly simplified if one works with the Boussinesq approximation on an f plane with a con-
stant background Brunt-Väisälä frequency, enabling the use of periodic boundary conditions in any three
orthogonal directions, one of which is usually chosen parallel to the direction of phase-propagation of
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the wave. While obviously not realistic for a general description of the dynamics in the mesosphere, one
might justify the Boussinesq approximation as long as the wavelength of the wave is small compared to
the density scale height and the breaking process is fast compared to the vertical group propagation of
the wave.

The method proceeds in four stages: (1) solution (in the form of normal modes or singular vectors) of the
Boussinesq equations linearized about the basic state wave, determining the primary instability structures,
(2) nonlinear two-dimensional (in space) numerical solution of the full equations using the result of stage
1 as initial condition, (3) solution in the form of singular vectors (varying in the remaining spatial direction)
of the equations linearized about the time-dependent result of stage 2, and (4) three-dimensional DNS
using the linear solutions from stages 1 and 3 as initial condition and their wavelengths for the size of the
computational domain. In some cases the resulting computational domain is relatively narrow in either the
streamwise or the spanwise direction, and therefore, the three-dimensional DNS is comparatively very effi-
cient. Implicit in the strategy is that there is a temporal- and/or spatial-scale separation between the primary
and secondary instabilities so that the nonlinear two-dimensional solution (stage 2) resembles the realistic
(three-dimensional) evolution for a short time while secondary instabilities—different in scale and charac-
ter from the primary instabilities calculated in stage 1—develop. This is the advantage of the approach over
simply initializing three-dimensional DNS with mutually orthogonal primary perturbations.

The paper is organized as follows. Section 2 presents the governing equations, the monochromatic
inertia-gravity wave solution, and the rotated coordinate system used. Section 3 describes in detail the
four-stage approach to gravity wave breaking analysis. Section 4 presents the three test cases. The numerical
methods used are explained in section 5. The results of the analyses are presented in section 6. Appendices
elaborate on the calculation of normal modes and singular vectors, on projection of the evolving solution
onto the original wave, and on the computing resources used for the 3-D DNS.

2. Governing Equations and the Gravity Wave Solution

Without loss of generality, we may assume that the monochromatic inertia-gravity wave is propagating in
the x-z plane and let Θ be its angle of phase propagation with respect to the x axis. The problem is best
solved in a reference frame (𝜉, y, 𝜁 ) rotated about the y axis through an angle 𝜋∕2 − Θ so that the wave
vector of the gravity wave is parallel to the 𝜁 axis (see Figure 1 (left)). That is,

𝜉 = x sinΘ − z cosΘ, (1a)

𝜁 = x cosΘ + z sinΘ. (1b)

The Boussinesq equations may be written

𝜕vvv
𝜕t

+ (vvv ⋅ ∇)vvv = bê̂êez − f ê̂êez × vvv − ∇p + 𝜈∇2vvv, (2a)

𝜕b
𝜕t

+ (vvv ⋅ ∇) b = −N2ê̂êez ⋅ vvv + 𝜇∇2b, (2b)

∇ ⋅ vvv = 0, (2c)

where vvv = (u𝜉 , v,w𝜁 ) is the fluid velocity, b is buoyancy, p is pressure normalized by a constant background
density, ê̂êez is the unit vector in the true vertical direction, N is the Brunt-Väisälä frequency, f is the Coriolis
parameter, and 𝜈 and 𝜇 are the kinematic viscosity and thermal diffusivity, respectively.

An inertia-gravity wave propagating in the x-z plane at an angle Θ to the x axis and with upward group
velocity may be written in the form

[u𝜉 , v,w𝜁 , b] = [U𝜉0, V0,W𝜁0, B0]

≡ 𝑅𝑒
{

a

[
iK𝜔
km

, f
k
, 0,−N2

m

]
ei𝜙

}
, (3)

where K is the magnitude of the wave vector and k = K cosΘ and m = K sinΘ are its horizontal and vertical
components in the Earth frame,

𝜔 = −
√

f 2 sin2 Θ + N2 cos2 Θ (4)
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Figure 1. (left and right) Rotated coordinate systems for primary and secondary instability analyses [after Remmler
et al., 2013]. c indicates the direction of the phase velocity of the wave.

is the frequency, and 𝜙 = K𝜁 − 𝜔t is the wave phase. The nondimensional (complex) wave amplitude a
is defined such that a wave with |a| = 1 is neutral with respect to static instability at its least stable point,
namely, where the vertical gradient of total potential temperature is least. Equation (3) is an exact solution
to (2a) in the inviscid (𝜈 = 𝜇 = 0) limit. When the Prandtl number is unity (i.e., 𝜈 = 𝜇), the solution decays
exponentially with time such that

a(t) = a(0)e−𝜈K2t. (5)

In the midlatitude mesosphere, N is about 100 times larger than f , so the properties of the wave are very
sensitive to Θ. A wave with Θ close to 90◦ has a relatively low frequency—close to f —and elliptically polar-
ized velocity in the streamwise-spanwise (𝜉-y) plane, i.e., u𝜉 and v are of similar amplitude. Since f strongly
affects the form of these waves, we call them inertia-gravity waves (IGW). A wave with shallower phase
propagation has much higher frequency, approximately equal to N cosΘ, and a linearly polarized transverse
velocity field (|v| ≪ |u|). We call such waves high-frequency gravity waves (HGW) (strictly speaking, these
are also inertia-gravity waves, but rotation plays a negligible role). Lelong and Dunkerton [1998] and Achatz
[2005] showed that the nature of the instabilities of the two categories of waves are markedly different. This
is primarily because of the influence of the transverse velocity component, large in the IGW and small in the
HGW, which has maximum vertical shear at the levels of maximum buoyancy gradient, and because of the
important role played by horizontal buoyancy gradients and horizontal velocity shear in the HGW.

3. Four-Stage Approach to the Simulation of Gravity Wave Breaking

In order to quantify the temporal and spatial scales of gravity wave breaking and to design a meaningful but
still computationally tractable (and economical) 3-D DNS, we employ the following four-stage combination
of linear and nonlinear analysis.

3.1. Primary Instability Analysis and 2.5-Dimensional DNS
The first step is to perform a large number of one-dimensional linear calculations to determine the
wavelength, orientation, and spatial structure of the most unstable perturbations to the gravity wave.

The Boussinesq equations (2a) are linearized about the gravity wave (3) to yield the system

D′u′
𝜉

Dt
+ w′

𝜁

dU𝜉0

d𝜙
+ cosΘ b′ − f sinΘ v′ + 𝜕p′

𝜕𝜉
= 𝜈∇2u′

𝜉 , (6a)

D′v′

Dt
+ w′

𝜁
dV0

d𝜙
+ f

(
sinΘ u′

𝜉 + cosΘ w′
𝜁

)
+ 𝜕p′

𝜕y
= 𝜈∇2v′, (6b)
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D′w′
𝜁

Dt
− sinΘ b′ − f cosΘ v′ + K

𝜕p′

𝜕𝜙
= 𝜈∇2w′

𝜁 , (6c)

D′b′

Dt
+ w′

𝜁
dB0

d𝜙
+ N2

(
− cosΘ u′

𝜉 + sinΘ w′
𝜁

)
= 𝜇∇2b′, (6d)

𝜕u′
𝜉

𝜕𝜉
+ 𝜕v′

𝜕y
+ K

𝜕w′
𝜁

𝜕𝜙
= 0, (6e)

where [u′
𝜉 , v′,w′

𝜁 , b′] is a small departure from (3) and

D′

Dt
≡ 𝜕

𝜕t
+ U𝜉0

𝜕
𝜕𝜉

+ V0
𝜕
𝜕y

− 𝜔 𝜕
𝜕𝜙

. (7)

Since the coefficients of u′
𝜉 , v′, w′

𝜁 , and b′ in (6) are independent of streamwise and spanwise position (𝜉, y),
solutions may be sought in the form

[u′
𝜉 , v′,w′

𝜁 , b′] = R
{
[û′

𝜉(𝜙, t), v̂′(𝜙, t), ŵ′
𝜁 (𝜙, t), b̂′(𝜙, t)] exp

[
i(k𝜉𝜉 + kyy)

]}
, (8)

where k𝜉 and ky are constants. The ansatz (8) is inserted in (6), and the resulting system of equations for
[û′

𝜉 , v̂′, ŵ′
𝜁 , b̂′] are solved numerically (see section 5).

Note that the dissipation of the gravity wave solution is neglected in (6) so that the system of equations for
[û′

𝜉 , v̂′, ŵ′
𝜁 , b̂′] is homogeneous and autonomous and therefore admits normal mode analysis. The approx-

imation is valid for our test cases since the time scale of the decay of the wave, (𝜈K2)−1 ≈ 2 days, is long
compared to the time for which the linear model is run (5 or 7.5 min) and the inverse growth rates of the
fastest growing modes (about 100 s).

Normal modes are solutions of (6) in which the time dependence of [u′
𝜉 , v′,w′

𝜁 , b′] is a complex exponential
function. For statically unstable waves (|a| > 1), there typically exist exponentially growing solutions, and
the normal mode with largest growth factor is the dominant linear mode. For statically and dynamically
stable waves, by which we mean that the Richardson number corresponding to the solution (3), viz

RiIGW = N2(1 + a sin𝜙)
a2 tan2 Θ(𝜔2 cos2 𝜙 + f 2 sin2 𝜙)

, (9)

is greater than one fourth (the sufficient condition for linear stability of a steady, stratified shear flow)
[see Howard, 1961; Miles, 1961], there are typically no exponentially growing normal modes, so the lead-
ing singular vector for a given optimization time is calculated instead. The leading singular vector [Farrell
and Ioannou, 1996a, 1996b] for a given perturbation wavelength 𝜆∥ and orientation angle 𝛼 is defined as
the perturbation whose energy (or another norm) grows by the largest factor in the given optimization
time (as governed by the linearized equations). Although singular vectors necessarily consist of superposi-
tions of normal modes, they can have large growth factors even when all normal modes are exponentially
decaying, since the latter are not orthogonal (i.e., “nonnormal”) with respect to the energy scalar product.
Details of the computation of normal modes and singular vectors are given in Appendix A [see also Achatz,
2005, 2007a].

The second stage is to perform nonlinear two-dimensional simulations initialized with the original gravity
wave and one of the “more interesting” normal modes (or singular vectors), by which is meant those with
the highest linear growth rate (or growth factor). In order to perform these simulations, a second rotation
of the coordinate system, this time through an angle 𝛼 about the 𝜁 axis (Figure 1 (right)) is required, leading
to the new coordinates

x∥ = 𝜉 cos 𝛼 + y sin 𝛼, (10a)

y⊥ = −𝜉 sin 𝛼 + y cos 𝛼. (10b)

and corresponding velocity components u∥ and v⊥.
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Since the dynamics—in terms of, for example, the energy exchange processes—are so different for trans-
verse (𝛼 = 90◦) and parallel (𝛼 = 0◦) perturbations [Andreassen et al., 1994; Lelong and Dunkerton, 1998;
Achatz, 2007a; Fruman and Achatz, 2012], both the leading transverse and parallel perturbations are tried
even when one has a much lower linear growth rate (or growth factor) than the other. As we will see,
perturbation by the mode with smaller linear growth rate (or growth factor) can have a much more pro-
found effect on the breaking of the original wave in nonlinear simulations. These simulations are called
here “2.5-dimensional” (2.5-D) because although there are only two independent spatial coordinates, the
velocity and vorticity fields are three dimensional. Since there is no conservation of enstrophy in this sys-
tem (due to the vortex-tilting mechanism being active), the turbulent energy cascade is direct as in three-
dimensional turbulence rather than inverse as in classical two-dimensional turbulence [e.g., Kraichnan and
Montgomery, 1980].

For each 2.5-D simulation, the projection of the solution onto the original gravity wave mode (see Appendix
B and Achatz [2007b] for details) is plotted versus time and compared to the laminar decay of an unper-
turbed wave (see equation (5)). A breaking wave decays faster, at first due to energy exchange with the
growing linear mode and later due to interaction with the turbulence excited by the breaking. The latter
process can last much longer than the time scale of the linear perturbation and as long as the period of the
original wave. The decay of the gravity wave amplitude is the quantity most relevant to parameterizations
of gravity wave drag in atmospheric models.

Other diagnostics used are the sum of the kinetic energy dissipation rate 𝜖k and the potential energy
dissipation rate 𝜖p, where

𝜖k = 𝜈
2

(
𝜕vi

𝜕xj
+

𝜕vj

𝜕xi

)(
𝜕vi

𝜕xj
+

𝜕vj

𝜕xi

)
(11a)

𝜖p = 𝜇
N2

𝜕b
𝜕xi

𝜕b
𝜕xi

(11b)

(summation over repeated indices is implied) and the streamwise-spanwise-averaged energy wavelength
spectra. Note that in nature, the dissipation of kinetic energy leads to localized frictional heating, an effect
not considered in the present study.

3.2. Secondary Instability Analysis and Three-Dimensional DNS
The 2.5-D solution, which we write

[u∥, v⊥,w𝜁 , b] =
[

U∥(x∥, 𝜙, t), V⊥(x∥, 𝜙, t),W𝜁 (x∥, 𝜙, t), B(x∥, 𝜙, t)
]
, (12)

remains two-dimensional in space if not perturbed, but in nature the breaking of a gravity wave is inherently
three dimensional. Therefore, in the next stage, the 2.5-D simulations in which the gravity wave amplitude
decreased by the largest amount are subjected to a secondary instability analysis. The full equations (2a) are
linearized about the time-dependent 2.5-D solution (12) to yield

D′′u′′
∥

Dt
+

𝜕U∥

𝜕x∥
u′′
∥ + K

𝜕U∥

𝜕𝜙
w′′

𝜁 + cos 𝛼 cosΘ b′′ − f
(

sinΘ v′′
⊥ + sin 𝛼 cosΘ u′′

∥

)
+ 𝜕p′′

𝜕x∥
= 𝜈∇2u′′

∥ , (13a)

D′′v′′
⊥

Dt
+

𝜕V⊥

𝜕x∥
u′′
∥ + K

𝜕V⊥

𝜕𝜙
w′′

𝜁 − sin 𝛼 cosΘ b′′ + f
(

sinΘ u′′
∥ + cos 𝛼 cosΘ w′′

𝜁

)
+ 𝜕p′′

𝜕y⊥
= 𝜈∇2v′′

⊥, (13b)

D′′w′′
𝜁

Dt
+

𝜕W𝜁

𝜕x∥
u′′
∥ + K

𝜕W𝜁

𝜕𝜙
w′′

𝜁 − sinΘ b′′ − f
(

sin 𝛼 cosΘ u′′
∥ + cos 𝛼 cosΘ v′′

⊥

)
+ K

𝜕p′′

𝜕𝜙
= 𝜈∇2w′′

𝜁 , (13c)

D′′b′′

Dt
+ N2

(
− cos 𝛼 cosΘ u′′

∥ + sin 𝛼 cosΘ v′′
⊥ + sinΘ w′′

𝜁

)
= 𝜇∇2b′′, (13d)

𝜕u′′
∥

𝜕x∥
+

𝜕v′′
⊥

𝜕y⊥
+ K

𝜕w′′
𝜁

𝜕𝜙
= 0, (13e)

where

D′′

Dt
≡ 𝜕

𝜕t
+ U∥

𝜕
𝜕x∥

+ V⊥
𝜕
𝜕y⊥

+
(

KW𝜁 − 𝜔
) 𝜕
𝜕𝜙

, (14)
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and u′′
∥ , v′′

⊥ , w′′
𝜁 , and b′′ are small perturbations from the 2.5-D basic state (12). Solutions are sought in

the form

[u′′
∥ , v′′

⊥,w′′
𝜁 , b′′] = R

{
[û′′

∥ (x∥, 𝜙, t), v̂′′
⊥(x∥, 𝜙, t), ŵ′′

𝜁 (x∥, 𝜙, t), b̂′′(x∥, 𝜙, t)] × exp(ik⊥y⊥)
}
, (15)

where k⊥ is the wave number in the y⊥ direction (perpendicular to the plane defined by the wave vectors of
the gravity wave and the primary perturbation).

Since the coefficients in (13) are time dependent; normal mode solutions of the form (15), i.e., solutions with
complex exponential time dependence, do not exist. Instead, the leading singular vectors are computed
for various wavelengths 𝜆⊥. This entails calculating eigenvectors involving tens to hundreds of 2.5-D linear
integrations for each value of 𝜆⊥ (see Fruman and Achatz [2012] for more details). An alternative approach,
used by Klaassen and Peltier [1985] for the related problem of secondary instabilities in Kelvin-Helmholtz
billows, is to neglect the time dependence of the basic state and calculate secondary normal modes, but
such an implicit assumption of time scale separation is not necessary for computing singular vectors.

The optimization time used for the calculation of the secondary singular vectors must necessarily be rel-
atively short, because if at the optimization time the 2.5-D solution has already become turbulent and
filamented, the fastest growing linear modes will be dominated by very small-scale shear instabilities which
would quickly saturate in a nonlinear simulation and in any case are not well resolved by the numerics.

The final step is to perform three-dimensional simulations initialized with the sum of the gravity wave, the
primary perturbation associated with the most significant wave decay in the 2.5-D simulations, and the
initial condition of a leading secondary perturbation. The wavelengths of the primary wave and the pertur-
bations determine the size of the triply periodic domain. The required grid size Δ depends on the intensity
of the turbulence generated during the breaking process and the corresponding Kolmogorov length

𝜂 = min
(
𝜈3∕4𝜖−1∕4

k

)
, (16)

where the minimum is over the computational domain, by the condition Δ < 𝜋𝜂 (discussed by Yamazaki
et al. [2002] for the case of isotropic turbulence). Since the resolved dissipation rate 𝜖k in turn depends on
the grid resolution, the necessary grid resolution must be found by repeated simulations with increasingly
fine meshes until the maximum dissipation rate does not change and the condition Δ < 𝜋𝜂 is fulfilled. The
results of the 3-D DNS are compared with those of the 2.5-D simulations in terms of the time-dependent
projection of the full solution onto the basic wave, the global mean dissipation of kinetic and potential
energy in the system, and the streamwise-spanwise-averaged energy spectra.

4. Test Cases

Results are presented for three test cases: two low-frequency inertia-gravity waves (IGW), one of ampli-
tude above and the other of amplitude below the static stability threshold, and a statically unstable
high-frequency gravity wave (HGW). All waves have wavelength 3 km, and in all three cases, the f plane is
centered at 70◦N (f = 1.4 × 10−4 s); the constant Brunt-Väisälä frequency of N = 2 × 10−2 s−1 is used. A value
of 1 m2 s−1, realistic for the upper mesosphere, is used for the kinematic viscosity 𝜈 and thermal diffusivity 𝜇.

The low-frequency test cases use an IGW with propagation angle Θ = 89.5◦, corresponding to a period of
8 h and phase speed 0.1 m s−1. Case I is a statically unstable wave with initial amplitude a0 ≡ |a(t0)| = 1.2,
and case II is a statically and dynamically stable wave with a0 = 0.86. The basic wave for case III is a statically
unstable HGW with angle of phase-propagation Θ = 70◦ and initial amplitude a0 = 1.2. It has a period of
15 min and phase speed 3.3 m s−1. Due to its short period and small horizontal spatial scale, rotational
effects do not play an important role in the dynamics of the HGW.

The Reynolds number, defined following Fritts and Wang [2013] as Re≡ 𝜆2
z N∕2𝜋𝜈, where 𝜆z is the vertical

wavelength of the wave, is about 28,000 for cases I and II and about 25,000 for case III.

The atmosphere and wave parameters for the three test cases are summarized in Tables 1 and 2.

5. Numerical Methods

The 2.5-D nonlinear simulations and the linear integrations required for determining the primary and sec-
ondary instability modes are performed with the numerical models developed by Achatz [2005, 2007a] and
Fruman and Achatz [2012].
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Table 1. Atmosphere Parameters

Kinematic viscosity 𝜈 1 m2 s−1

Thermal diffusivity 𝜇 1 m2 s−1

Latitude for Coriolis parameter 𝜙C 70◦N
Coriolis parameter f 1.37 × 10−4 s−1

Brunt-Väisälä frequency N 2 × 10−2 s−1

Acceleration due to gravity g 9.81 m s−2

As described in section 3.1 and in
Achatz [2005], primary perturbations
in the form of normal modes are com-
puted using the one-dimensional linear
system (6), constructed by linearizing
(2a) about (3), and substituting the
ansatz (8). The independent variables
are the real and imaginary parts of

û′
𝜉 , v̂′, ŵ′

𝜁 , and b̂′ evaluated on a discretized 𝜙 axis (𝜙 being the phase of the wave). Singular vectors addition-
ally require the corresponding adjoint model, which was developed using the Tangent linear and Adjoint
Model Compiler (TAMC) utility [Giering and Kaminski, 1998]. The time integration is performed using a
fourth-order Runge-Kutta scheme for the first two time steps and a third-order Adams-Bashforth scheme for
the rest [see Durran, 2010, section 2.4].

The 2.5-D nonlinear simulations are performed at high enough resolution to resolve scales down to the
Kolmogorov scale, here a few meters. The time integration of the system (2a) is performed using the
third-order Runge-Kutta scheme of Williamson [1980].

The secondary singular vectors are computed using a two-dimensional model to solve the system (13)
with solutions of the form (15) inserted. The dependent variables are the real and imaginary parts of û′′

∥ , v̂′′
⊥ ,

ŵ′′
𝜁 , and b̂′′ evaluated on a discrete x∥-𝜙 grid. Again, the corresponding adjoint model required for finding

singular vectors was developed with the help of TAMC.

The 3-D DNS are performed with the INCA model (http://www.inca-cfd.com; for details see Remmler and
Hickel [2012, 2013]) which solves the Boussinesq equations by means of a finite-volume fractional-step
method in a triply periodic domain. For time advancement the explicit third-order Runge-Kutta scheme
of Shu [1988] is used. The time step is dynamically adapted to satisfy a Courant-Friedrichs-Lewy condition.
The spatial discretization is based on nondissipative central schemes with fourth-order accuracy for the
advective terms and second-order accuracy for the diffusive terms and the pressure Poisson-equation solver.

For all models, the spatial discretization is a staggered one-, two-, or three-dimensional C grid, with
each velocity component evaluated at a point displaced by one-half grid interval in the corresponding
direction relative to the buoyancy and pressure. Eigenvalues for the primary and secondary instability
analyses are computed iteratively using a variant of the Arnoldi process with the Fortran library ARPACK
[Lehoucq et al., 1998].

In the one- and two-dimensional models, the discrete pressure Poisson equation (obtained by setting
the time derivative of the divergence constraint (2c) to zero) is solved using the discrete Fourier trans-
form. For the 3-D multiblock simulations, the Poisson equation is solved by a Krylov subspace solver with
algebraic-multigrid preconditioning.

Table 2. Parameters of the Initial Conditions for the 3-D DNS Test Casesa

Propagation Primary Secondary
Case Amplitude Angle Θ Perturbation Perturbation

I. Unstable a0 = 1.2 89.5◦ NM, 𝛼 = 90◦ 𝜆⊥ = 0.4km
IGW Δu𝜉 = 14.6 m s−1 𝜆∥ = 3.98km A2 = 0.02

Δb = 0.23 m s−2 A1 = 0.05
II. Stable a0 = 0.86 89.5◦ SV, 𝛼 = 90◦ 𝜆⊥ = 0.3 km

IGW Δu𝜉 = 10.4 m s−1 𝜆∥ = 2.12 km A2 = 0.01
Δb = 0.16 m s−2 A1 = 0.1

III. Unstable a0 = 1.2 70◦ NM, 𝛼 = 90◦ 𝜆⊥ = 3.0 km
HGW Δu𝜉 = 12.2 m s−1 𝜆∥ = 2.93 km A2 = 0.01

Δb = 0.24 m s−2 A1 = 0.05

aA1 and A2 are the amplitudes of the primary and secondary perturbations in
terms of the maximum perturbation energy density compared to the maximum
energy density in the basic state. Δu𝜉 and Δb are the amplitudes of the u𝜉 velocity
component and buoyancy in the original wave.
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Figure 2. (a–c) Growth factors of leading primary linear modes as functions of perturbation wavelength and orientation angle: normal modes of unstable IGW
(Figure 2a), 𝜏 = 7.5 min singular vectors of stable IGW (Figure 2b), and normal modes of unstable HGW (Figure 2c). (d–f ) Streamwise-spanwise mean perturbation
energy density in initial condition of 2.5-D simulations, normalized by the mean energy density in the IGW (EIGW) or HGW (EHGW), for leading transverse (𝛼 = 90◦)
and parallel (𝛼 = 0) NM of unstable IGW (Figure 2d), leading transverse and parallel SV of stable IGW (Figure 2e), and leading transverse and parallel NM of
unstable HGW (Figure 2f ). Shaded regions in Figures 2d–2f are for reference, indicating levels of maximum (𝜙 = 𝜋∕2) and minimum (𝜙 = 3𝜋∕2) static stability in
the basic state wave. (g–i) Time-dependent projection of 2.5-D nonlinear solution onto the unstable IGW (Figure 2g), stable IGW (Figure 2h), and unstable HGW
(Figure 2i). Grey-shaded regions in Figures 2g–2i represent the range of values from integrations with additional small-amplitude initial noise (ensemble average
indicated by dashed lines), and dash-dotted line represents the viscous decay of the unperturbed wave.

See Appendix C for the computing resources required for the 3-D DNS and the technical specifications of
the machines used to perform them.

6. Results
6.1. Case I: Statically Unstable IGW
The first test case is a statically unstable inertia-gravity wave with initial amplitude a0 = 1.2, propagation
angle 89.5◦, and wavelength 3 km. The wave period is 8 h and the phase speed is 0.1 m s−1.

Figure 2a shows the 5 min growth factors for the leading normal modes as a function of perturbation wave-

length 𝜆∥ ≡ 2𝜋
(

k2
𝜉 + k2

y

)−1∕2
and orientation angle 𝛼 ≡ tan−1(ky∕k𝜉). The peaks in the growth factor occur
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Figure 3. Linear growth factors (left) of leading and second-leading 5 min secondary singular vectors and (right) of
randomly initialized perturbations versus secondary perturbation wavelength 𝜆⊥ for the unstable IGW perturbed by
its leading transverse primary normal mode. Dashed horizontal lines in Figure 3 (left) are growth factors of leading SV
for 𝜆⊥ = ∞; filled diamonds indicate growth factors at 𝜆⊥ = 400 m. Heavy dashed line in Figure 3 (right) represents
ensemble mean growth factor at each wavelength.

for the limiting cases of parallel (𝛼 = 0) and transverse (𝛼 = 90◦) perturbations. Their spatial structure can
be gleaned from Figure 2d, showing the perturbation energy density as a function of 𝜙. The perturbations
are normalized such that the ratio A1 of the maximum perturbation energy density in the domain to the
(uniform) energy density in the basic state is 0.05. The faster growing of the two modes (indeed the fastest
growing mode overall) is the leading parallel normal mode. It has very short wavelength (316 m), and its
energy is very localized near the level of maximum static instability 𝜙 = 3𝜋∕2. The leading transverse normal
mode has wavelength longer than that of the original wave (𝜆∥ = 3.981 km), and its energy is distributed
throughout the domain.

Figure 2g shows the projection of the 2.5-D nonlinear solution on the original gravity wave as a function
of time for simulations initialized with the wave plus either the leading parallel or the leading transverse
normal mode, as well as the range of results from ensembles of simulations with additional small ampli-
tude random noise (white noise smoothed with a running mean with window of width 50 m in the x∥ and
𝜁 directions). For comparison, the curve showing the viscous amplitude decay of the unperturbed wave
(see equation (5)) is plotted with a dash-dotted line. Despite the smaller linear growth rate of the initial per-
turbation, the wave perturbed by the transverse normal mode decays more than the wave perturbed by
the parallel normal mode. The wave breaking lasts on the order of one half of a wave period and involves
intermittent sharp drops in amplitude (these correspond to “bursts” of enhanced total energy dissipation
discussed below; see Figure 6). The intermittency seems to be associated with the phase propagation of the
wave (especially the layer of weakest static stability) through the inhomogeneous field of turbulence excited
by the initial instability. Because it showed the most significant wave breaking, we focus on the simulation
initialized with the transverse normal mode for the secondary instability analysis and 3-D DNS.

Figure 3 shows the growth factors of the leading 5 min secondary singular vectors versus perturbation
wavelength 𝜆⊥. Also shown are the 5 min growth factors for an ensemble of linear integrations initialized
with a random perturbation with a k−5∕3 energy spectrum. The ensemble mean has a peak near 𝜆⊥ = 400 m.
The leading secondary singular vector has a somewhat longer wavelength, but for 𝜆⊥ > 400 m, the growth
factor does not change much with wavelength. The 𝜆⊥ = 400 m singular vector was therefore used to initial-
ize the 3-D DNS. Figure 4 shows the structure of the real part of the ŵ′′

𝜁 field of the 400 m secondary singular
vector at the initial and optimization time (𝜏 = 5 min) plotted over the time-dependent basic state velocity
and buoyancy fields. Note that the energy associated with the secondary singular vector—like the parallel
primary normal mode—is initially concentrated near the level of maximum negative basic state buoyancy
gradient. Unlike the primary normal mode, the structure of the singular vector evolves with time to extract
most efficiently both potential energy (through interaction with the buoyancy gradient) and kinetic energy
(through interaction with the wind shear) from the basic state. At the optimization time, the region of maxi-
mum energy density in the secondary singular vector straddles the line of maximum V⊥ in the basic state. It
is growing through the Orr mechanism associated with shear in the background velocity component paral-
lel to the direction in which the perturbation varies (in this case y⊥). See Fruman and Achatz [2012, Figures 8
and 9] for details.
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Figure 4. Contours of the real part of perturbation vertical velocity amplitude ŵ′′
𝜁 (top row) at initial and (bottom row) at optimization times for 5 min secondary

singular vector superimposed on the basic state buoyancy (left column) B and horizontal velocity fields (middle column) U∥ and (right column) V⊥ (shading) for
statically unstable IGW perturbed by leading transverse normal mode.

Three-dimensional DNS initialized with the IGW (𝜆 = 3 km), the leading transverse primary normal mode
(𝜆∥ = 3.981 km) and the leading secondary singular vector with 𝜆⊥ = 400 m were run with a grid
spacing Δ of about 3 m (full resolution) and 6 m (coarse) in all three directions. The amplitude for the
secondary singular vector A2, defined here as the maximum perturbation energy density divided by the
maximum basic state energy density, was 0.02. It was shown by Remmler et al. [2013] that only in the fully
resolved simulation was the Kolmogorov length never smaller than Δ∕𝜋 and that the results of the two
simulations were otherwise extremely similar (hence grid converged). Figure 5 shows the initial buoyancy
field from the full-resolution simulation and a snapshot at t = 695 s of the buoyancy field together with
the kinetic energy dissipation 𝜖k . At the instant shown, very early in the simulation, turbulence has already
developed in the upper half of the wave (i.e., the less stable half ) and not in the lower half, but the energy
density is not strongly correlated with the buoyancy gradient (velocity shear has a strong influence). Note
that the figure is plotted in the reference frame moving with the wave. The decay of the wave amplitude
with time and the global mean of the total energy dissipation 𝜖k + 𝜖p from the ensemble of 2.5-D simu-
lations and from the 3-D DNS are shown in Figure 6. The initial burst of turbulence is more intense in the
3-D DNS, and the wave decays more rapidly. On the other hand, in the 2.5-D simulations the initial turbu-
lence is more sustained, the energy decay rate is greater for t ≳ 30 min, and the total reduction in wave
amplitude over the length of the whole simulation is greater. Figure 7 shows the streamwise and spanwise
averaged total energy dissipation as a function of 𝜁 and time from the fully resolved 3-D DNS and the 2.5-D
simulations without additional noise. Again, the plot is in the reference frame moving with the phase veloc-
ity of the wave. In the first 40 min of the 3-D simulation the turbulent dissipation is distributed throughout
the domain after which it dies out in the statically stable half. In the 2.5-D simulation dissipation is sus-
tained also in the stable half. In analyzing 2.5-D simulations of a similar unstable IGW, Achatz [2005, 2007a]
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Figure 5. Snapshots of the buoyancy field from fine 3-D DNS (1350 × 128 × 1000 cells) of the statically unstable IGW: (left) 3-D initial condition with an iso-
surface at b = −0.02 m s−2 (green color). (right) Flow field averaged in the y⊥ direction at t = 11.6 min (grey scale contours: buoyancy, colored lines: total
energy dissipation).

attributed the dissipation in the stable region to small-scale waves propagating away from the unstable
region and encountering a critical level. After about one half of a wave period (about 4 h), there is an episode
of enhanced energy dissipation in the 3-D DNS and a corresponding dip in the wave amplitude (cf. Figure 6).
At this time the point of minimum static stability in the original wave has propagated down to the level ini-
tially occupied by the most stable point. The dashed black line in Figure 7 represents a point fixed in space.
Evidently, residual turbulence in the stable part of the wave left over from the early phase of the breaking
is stirred up when it interacts with the unstable part of the wave. This is discussed in more depth in Remmler
et al. [2013]. The dark grey contours in Figure 7 show the isoline Ri = 1∕4, where

Ri =
N2 + 𝜕b∕𝜕z

(𝜕u∕𝜕z)2 + (𝜕v∕𝜕z)2
(17)

Figure 6. Comparison of (left) wave amplitude decay and (right) total energy dissipation in 2.5-D and 3-D DNS
of statically unstable IGW. Dash-dotted line indicates amplitude decay due to laminar viscous decay of the
unperturbed wave.
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Figure 7. Spanwise and streamwise averaged total energy dissipation from (top row) 3-D and (bottom row) 2.5-D DNS of
unstable IGW. Contours equally spaced on a logarithmic (base 10) scale. Dashed black line represents a fixed point in the
Earth frame. Results of the (left column) entire run and (right column) closeups of the first 2h of model time. Solid dark
grey lines represent contours of Ri = 1∕4 (see equation (17)).

is the Richardson number (the overbars indicate the streamwise-spanwise mean,

u = u∥ cos 𝛼 sinΘ − v⊥ sin 𝛼 sinΘ + w𝜁 cosΘ (18a)

v = u∥ sin 𝛼 + v⊥ cos 𝛼 (18b)

are the horizontal velocity components in the Earth frame, and

𝜕
𝜕z

= − cos 𝛼 cosΘ 𝜕
𝜕x∥

+ sin 𝛼 cosΘ 𝜕
𝜕y⊥

+ sinΘ 𝜕
𝜕𝜁

(19)

is the vertical derivative in the Earth frame). Most of the dissipation occurs in regions of Ri < 1∕4. This does
not necessarily indicate a causal relationship (along the lines of a Kelvin-Helmholtz type instability) since
turbulence necessarily entails large local velocity shear, which implies small values of Ri.

Figure 8 shows the streamwise and spanwise averaged energy spectra at times of peak energy dissipa-
tion in the 2.5-D (ensemble) and coarse-resolution 3-D simulations and near the end of the simulations.
Also shown are the spectra from the initial conditions, which are identical in 2.5-D and 3-D except for the
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Figure 8. Spanwise and streamwise averaged energy spectra from times of peak energy dissipation in the 2.5-D and coarse-resolution (640 × 64 × 500 cells) 3-D
DNS of the unstable IGW. Shaded regions show the range of values from the ensemble of 2.5-D simulations. Also plotted on all panels are the spectra from the
initial conditions of 2.5-D and 3-D simulations.

effect of the secondary singular vector perturbation. At the moment of maximum energy dissipation in 3-D
(0.39 h), the 2.5-D and 3-D spectra are very similar, both showing energy having moved to small scales and a
k−5∕3 inertial range forming, characteristic of 3-D isotropic turbulence. The 3-D spectrum shows more energy
at the smallest scales, which is what one would expect, given it has more possibilities for vortex tilting and
stretching and therefore a more efficient downscale energy cascade.

The spectra at the time of the second burst of dissipation in 2.5-D (1.39 h) are quite different in 2.5-D and
3-D. There is much more energy in the smaller scales in the 2.5-D simulation, the 3-D simulation having
“burned itself out” more quickly. The energy in the largest scale (which contains the original wave) is, how-
ever, almost the same in the two simulations. Both of these observations are consistent with Figure 6: the
dissipation at 1.39 h is much less in 3-D (Figure 6, right), but the graphs of the projection onto the IGW
intersect at about that time (Figure 6, left).

The 2.5-D spectra at 1.39 h exhibit a clear k−3 inertial range behavior. This spectral slope has been found in
observations of the atmosphere [Cot, 2001] and in numerical studies [e.g., Carnevale et al., 2001; Brethouwer
et al., 2007; Remmler and Hickel, 2013] to be characteristic of the “buoyancy range” in stratified turbulence.
The 3-D spectral slope at the same time is something in between k−3 and k−5∕3, representing neither com-
pletely isotropic nor fully stratified turbulence. In the 2.5-D ensemble the spectra remain close to k−3 in the
range between 100 m and 1000 m until about t ≈ 4.5 h (not shown), which is about as long as the turbu-
lent dissipation persists in the stable half of the domain (compare with Figure 7). This causes the turbulence
to be, on average, much more strongly affected by stratification than in the 3-D DNS, where significant tur-
bulence persists only in the unstable half of the domain. Consequently, the spectral slope in the 3-D DNS
changes multiple times between k−5∕3 in times of strong turbulent dissipation (t < 2 h, t ≈ 4 h, t ≈ 5 h) and
k−3 in times of weak dissipation (t ≈ 3.5 h, t ≈ 4.5 h, t > 6 h).

At the end of the simulations (11.11 h), the turbulence has died out and there is very little energy in the
smaller scales. Notice that there is a wide variation in the spectra between 2.5-D ensemble members.
Indeed, after the first burst of turbulence, the ensemble members begin to diverge in all three of the diag-
nostics presented. It is natural that such a long simulation of a highly nonlinear process like a breaking wave
be sensitive to the addition of initial noise.

6.2. Case II: Statically Stable IGW
The second case is a statically stable inertia-gravity wave, identical to the first case but with a0 = 0.86. The
Richardson number RiIGW in the wave solution (equation (9)) is greater than 1∕4, and the linear model has
been used to verify that no exponentially growing normal mode solutions exist for any perturbation wave-
length or orientation (not shown). As such, the primary perturbation analysis in this case involves calculating
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Figure 9. As in Figure 3 but for optimization time 7.5 min and the statically stable IGW perturbed by its leading transverse singular vector. The filled diamonds
mark the growth factors of the leading 12 (note that they come in degenerate pairs) singular vectors for 𝜆⊥ = 300 m and 𝜆⊥ = 1800 m.

the leading singular vectors for a range of perturbation wavelengths and orientations. An optimization time
of 𝜏 = 7.5 min, chosen a posteriori, ensures that the primary and secondary singular vector analyses both
yield a finite scale for the most amplified mode. The singular vector growth factors as functions of 𝜆∥ and 𝛼
are shown in Figure 2b. Again, the leading parallel perturbation has shorter wavelength (𝜆∥ = 0.638 km)
than the leading transverse perturbation (𝜆∥ = 2.115 km) and a larger growth factor, but only slightly so.

Figure 2e shows the energy density as a function of 𝜙 in the initial condition for the 2.5-D nonlinear sim-
ulations for the parallel and transverse singular vectors. Again, the transverse perturbation is less focused
near the level of lowest static stability in the original wave. The amplitude A1 of the initial perturbation was

Figure 10. As in Figure 4 but for optimization time 𝜏 = 7.5 min and the statically stable IGW perturbed by its leading 7.5 min transverse primary singular vector.
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Table 3. Parameters of Numerical Calculations of Primary and Secondary Instability Growth
Factors and of 2.5-D and 3-D Direct Numerical Simulations

I. Unstable IGW II. Stable IGW III. Unstable HGW

Primary Instability
n𝜙 (Δ𝜁 ) 1024 (3 m) 1024 (3 m) 1024 (3 m)
Time step Δt 0.025 s 0.025 s 0.025 s
Integration time 𝜏 5 min 7.5 min 5 min

2.5-D DNS
nx∥

× n𝜁 (Δx∥ , Δ𝜁 ) 660 × 500 (6 m, 6 m) 350 × 500 (6 m, 6 m) 500 × 500 (6 m, 6 m)

Time step Δt 0.05 s 0.05 s 0.05 s
Integration time 𝜏 666 min 60 min 90 min

Secondary Instability
nx∥

× n𝜙 (Δx∥, Δ𝜁 ) 128 × 512 (31 m, 6 m) 128 × 512 (17 m, 6 m) 256 × 256 (11 m, 12 m)

Time step Δt 0.05 s 0.05 s 0.05 s
Integration time 𝜏 5 min 7.5 min 5 min

Coarse-Resolution 3-D DNS
nx∥

× ny⊥
× n𝜁 640 × 64 × 500 512 × 64 × 768 7683 / 3843

Cell size Δ 6.2 m, 6.3 m, 6.0 m 4.1 m, 4.7 m, 3.9 m 3.9 m / 7.8 m
Integration time 𝜏 1000 min 100 min 91 min / 157 min

Full-Resolution 3-D DNS
nx∥

× ny⊥
× n𝜁 1350 × 128 × 1000 720 × 96 × 1024 1536 × 1536 × 1536

Cell size Δ 2.9 m, 3.1 m, 3.0 m 2.9 m, 3.1 m, 2.9 m 1.9 m
Integration time 𝜏 572 min 100 min 46 min

chosen such that the maximum energy density in the perturbation is 10% that of the original wave. Unlike
a normal mode, which in the linear regime has a fixed spatial structure as its amplitude grows and oscil-
lates, the structure of a singular vector changes with time (since its constituent normal modes each have a
different decay rate and frequency). The choice of initial amplitude is therefore more consequential here in
that it affects the spatial structure of the solution at the moment when nonlinear effects become important.
Figure 2h shows the amplitude as a function of time for the 2.5-D simulations initialized with the leading
parallel and transverse singular vectors, including results for an ensemble of simulations further perturbed
by small-amplitude noise at t = 0. The wave perturbed by the transverse singular vector decays more than
the wave perturbed by the parallel singular vector. The breaking is modest, in general, in this case, as the
original wave is statically and dynamically stable.

Again, we chose the transverse perturbation for the rest of the analysis. Figure 9 shows the 7.5 min growth
factors for the leading secondary singular vectors as functions of perturbation wavelength 𝜆⊥. The most
amplifying perturbation has wavelength 𝜆⊥ = 300 m. Also shown (filled diamonds) are the growth factors
of the trailing singular vectors for 𝜆⊥ = 300 m and 𝜆⊥ = 1800 m (where the growth factor curve reaches
a local maximum) and the growth factors for 𝜆⊥ = ∞ (dashed lines). Figure 9 (right) shows the growth
factors from ensembles of randomly initialized (with a k−5∕3 energy spectrum) linear integrations with a
range of perturbation wavelengths. The ensemble mean of the latter also has peaks near 𝜆⊥ = 300 m and
𝜆⊥ = 1800 m, suggesting that the secondary singular vectors are representative of modes likely to emerge
spontaneously. Figure 10 shows the spatial structure of the secondary singular vector with 𝜆⊥ = 300 m
at the initial and optimization times. Notice that the spatial scale in the (x∥, 𝜁 ) plane roughly matches the
wavelength (300 m) in the y⊥ direction. This seems to be a generic feature of the early time unstable modes
(primary and secondary; see Fruman and Achatz [2012]). As in the case of the unstable IGW, it is through
interaction with the V⊥ component of the basic state that the secondary singular vector is growing at the
optimization time.

The initial condition for the 3-D DNS is composed of the original IGW (𝜆 = 3 km), the leading 7.5 min
transverse primary singular vector (𝜆∥ = 2.115 km) and the leading 7.5-min secondary singular vector
(𝜆⊥ = 300 m). Simulations were run with average grid spacing Δ ≈ 3 m (“fine”) and Δ ≈ 4.2 m (“coarse”)
(see third column of Table 3). The initial buoyancy field from the fine 3-D DNS is shown in Figure 11a. Note
that although the base wave is statically stable, due to the finite amplitude primary perturbation, there is a
region of static instability at the level of weakest stability in the base wave (as evidenced by the fold in the
b = −0.03 m s−2 surface of the initial condition). The temporal development of the flow field is visualized

FRUMAN ET AL. ©2014. American Geophysical Union. All Rights Reserved. 11,628



Journal of Geophysical Research: Atmospheres 10.1002/2014JD022046

Figure 11. Snapshots of the buoyancy field from 3-D DNS (720 × 96 × 1024 cells) of the statically stable IGW: (a) 3-D initial condition with the isosurface
b = −0.03 m s−2 (green color). (b–f ) Flow field averaged in the y⊥ direction (grey scale contours: buoyancy, colored lines: total energy dissipation).

in Figures 11b–11f by contours of streamwise-averaged buoyancy and kinetic energy dissipation 𝜖k . The
perturbation grows during the first minutes and generates turbulence in the least stable part of the wave.
The turbulence remains confined to this region and is dissipated quickly. The peak dissipation is reached at
t = 11 min, and after 40 min the turbulence has basically vanished. During this period of turbulent decay,
some overturning occurs in the most stable part of the wave, similar to the case of the unstable IGW. Here,
however, the overturning is too weak to create a negative vertical buoyancy gradient and breaking. It is thus
simply dissipated by molecular heat transport.

Figure 12 shows the evolution of the wave amplitude and total energy dissipation from the 3-D DNS and the
ensemble of 2.5-D simulations. The decay (and partial rebound) of the wave amplitude is very similar in 3-D
and 2.5-D, but the onset of turbulence and the associated energy dissipation occur earlier in 3-D. The lower
portion of Figure 12 (left) shows the maximum and mean perturbation energy density from a linear 2.5-D
integration initialized with the primary singular vector. The mean energy in the singular vector is maximum
at the optimization time and then decays. The drops in the maximum perturbation energy density from the
linear integration approximately coincide in time with the rebounds of the IGW amplitude from the non-
linear simulations. The spatial distribution of the dissipation (Figure 13) is very similar in 2.5-D and 3-D. The
energy dissipation is strongly correlated with the region of Ri < 1∕4 (bounded by the dark grey contour),
particularly in the upper half of the domain in the 2.5-D simulation.
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Figure 12. As in Figure 6 but for the statically stable IGW. The resolutions used for the 3-D DNS were 720 × 96 × 1024
(fine) and 512 × 64 × 768 (coarse). The curves in the lower part of Figure 12 (left) show the maximum (solid line) and
mean (dashed line) energy in the linear 2.5-D integration initialized with the primary SV, and the vertical dotted line
marks the optimization time (7.5 min). For reference, the energy density in the unperturbed IGW is 54.5 m2 s−2.

The base wave in this case being stable, it is not surprising that the peak in global mean dissipation is weaker
than in case I (compare Figures 6 and 12). Nevertheless, the kinetic energy dissipation can be locally more
intense during the early phase of the simulation (compare the colored contours in Figures 5 and 11). This
can be attributed to the difference between a primary normal mode, used in case I, and a primary singular
vector with short optimization time, used in case II. The latter extracts maximum energy in the early phase
of the simulation.

The Kolmogorov length as a function of time from the two 3-D DNS is plotted in Figure 14a. In the fine sim-
ulation, 𝜂 is always larger than Δ∕𝜋 (indicated by the horizontal line), so all turbulence scales are resolved.
Although 𝜂 is briefly below Δ∕𝜋 in the coarse simulation, the results are almost indistinguishable from the
fine simulation (compare the projection and dissipation diagnostics shown in Figure 12), so the simulations
are grid converged.

Figure 13. Spanwise and streamwise averaged total energy dissipation from the fully resolved (left) 3-D and (right) 2.5-D
DNS of the statically stable IGW. Contours equally spaced on a logarithmic (base 10) scale. Solid light grey line is the
contour Ri = 1∕4 (see equation (17)), and the heavy dashed black line represents a fixed point in the Earth frame.
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Figure 14. Kolmogorov length in the 3-D DNS of (a) the stable IGW and (b) the unstable HGW. The threshold where the
simulation is supposed to be fully resolved is indicated by a horizontal line for each simulation.

6.3. Case III: Statically Unstable HGW
The third and final test case is the statically unstable (a0 = 1.2) high-frequency gravity wave (Θ = 70◦, period
15 min, phase speed 3.3 m s−1).

The 5 min growth factors of the leading normal modes for a range of wavelengths 𝜆∥ and orientation angles
𝛼 are shown in Figure 2c. The fastest growing normal mode overall is the leading transverse (𝛼 = 90◦) mode
with 𝜆∥ = 2929 m. The wavelength of maximum growth rate is not very sensitive in this case to the orienta-
tion of the perturbation, with the peak for most orientation angles near 𝜆∥ = 3 km (which happens to be the
wavelength of the original wave). The leading parallel (𝛼 = 0) normal mode is an exception, having a shorter
wavelength of 𝜆∥ = 1589 m. Figure 2c is comparable to Figure 5 of Fritts et al. [2013] showing growth rates
computed using the Floquet theory method of Lombard and Riley [1996] for a HGW with a0 = 1.1. For exam-
ple, the growth factor of the leading transverse normal modes (𝛼 = 90, or ki = 0 in their notation) exhibits
multiple peaks with the largest growth factor for primary perturbation wavelength close to the wavelength
of the original wave.

The energy density in the leading transverse and parallel normal modes and the wave amplitude decay
in the respectively initialized 2.5-D simulations are shown in Figures 2f and 2i. The high-frequency and
significant horizontal gradients in the HGW make it less similar to a steady stratified shear flow than the
IGW. It is not surprising then that the energy density in the leading normal modes is not as strongly cor-
related in space with the level of lowest static stability. Once again, it is the longer-wavelength transverse
normal mode that leads to the most profound breaking of the original wave. The HGW decays more com-

Figure 15. As in Figure 3 but for the statically unstable HGW perturbed by its leading transverse singular vector. Filled diamonds in Figure 15 (left) indicate growth
factors of leading twelve singular vectors with 𝜆⊥ = 1000 m and 𝜆⊥ = 3000 m.
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Figure 16. As in Figure 4 but for the statically unstable HGW perturbed by the leading transverse normal mode.

pletely and more vigorously than does the unstable IGW (cf. Figure 2g); its amplitude is reduced to about 0.3
within 30 min.

The 5 min growth factors of the leading secondary singular vectors as functions of perturbation wavelength
𝜆⊥ are shown in Figure 15. The basic state is the 2.5-D simulation initialized with the wave and the leading
transverse primary normal mode. Also shown are the 5 min growth factors of randomly initialized integra-
tions. There is no clear peak in either case, but the growth factor does not increase much beyond 𝜆⊥ = 3 km.
Figure 16 shows the structure of the secondary singular vector with 𝜆⊥ = 3 km at the initial and optimiza-
tion times. Notice that the singular vector appears to have “propagated” up through the domain. In fact, it
is the original wave (and hence the entire reference frame) that has propagated downward about one third
of a wavelength. Notice also that unlike for the elliptically polarized IGW, the transverse velocity in the basic
state (U∥ in the twice-rotated reference frame) is initially about an order of magnitude weaker than the par-
allel (V⊥) component, but at the optimization time, it has grown due to interaction with the velocity shear in
the HGW. Achatz [2007b] found that transverse primary perturbations to statically unstable HGW grow more
through interaction with the shear in the wave than with the unstable buoyancy gradient.

The 3-D DNS was initialized with the original HGW (𝜆 = 3 km), the leading transverse primary normal
mode (𝜆∥ = 2.929 km) and the 5 min secondary singular vector with 𝜆⊥ = 3 km. Three simulations were
performed, with grid spacing Δ of 1.9 m (fine resolution), 3.9 m (coarse 1), and 7.8 m (coarse 2). The initial
buoyancy field from the fine-resolution simulation is shown in Figure 17 together with snapshots of the
streamwise-averaged buoyancy and kinetic energy dissipation at a sequence of later times. The dissipa-
tion at early times is localized where the secondary singular vector energy is concentrated (cf. Figure 16)
but soon fills the domain. Comparisons of the amplitude decay and total energy dissipation are shown in
Figure 18. Both diagnostics are quite similar in 2.5-D and 3-D, although as in the previous cases the onset
of turbulent dissipation occurs slightly earlier in 3-D. The distribution in space and time of the energy
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Figure 17. Snapshots of the buoyancy field from the fine 3-D DNS (15363 cells) of the statically unstable HGW: (a) 3-D initial condition with the isosurface
b = 0.2 m s−2 (green color). (b–f ) Flow field averaged in the y⊥-direction (grey scale contours: buoyancy, colored lines: total energy dissipation).

Figure 18. As in Figure 6 but for the statically unstable HGW. The 3-D DNS were performed with 15363 (fine), 7683 (coarse 1), and 3843 (coarse 2) grid cells.
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Figure 19. As in Figure 13 but for the unstable HGW. The fine-resolution simulation (15363 cells) was used for the
3-D plot.

dissipation from the medium-resolution (coarse 1) run is shown in Figure 19. The regions of intense energy
dissipation are approximately fixed in space (parallel to the heavy dashed black lines), particularly in the
2.5-D simulation.

Spanwise and streamwise averaged energy spectra from the 2.5-D ensemble and the medium (coarse 1)
resolution 3-D DNS are plotted in Figure 20 (computation of spectra for the fine simulation was too memory
intensive). Spectra from two times during the period of strong energy dissipation (15 and 30 min) and at the
end of the simulation are shown. During the period of maximum turbulence, energy moves to smaller scales
and close to a k−5∕3 spectrum forms. At the end of the simulation the spectrum has steepened as the energy
in smaller scales has been lost to friction and thermal diffusion. The cascade of energy to the smallest scales
is more efficient in the 3-D simulations, but the difference between the 2.5-D and 3-D spectra seems to be

Figure 20. As in Figure 8 but for the unstable HGW. Plot times correspond to the moment of maximum energy dissipation in the 3-D simulation (15 min), a time
after which the wave has decayed to near its saturation level (30 min) and the end of the simulations (90 min). The 3-D spectra were computed using the medium
(coarse 1) resolution DNS.
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small in this case. Like in the intermediate-time spectra from case I (Figure 8), the spectra at 90 min are close
to the k−3 spectrum characteristic of anisotropic, buoyancy-dominated turbulence.

There is much less variation between ensemble members in the dissipation and spectra diagnostics than in
the (much longer) unstable IGW simulations, and in the projection diagnostic there is much less variation
relative to the amount of decay.

The Kolmogorov length 𝜂 from the 3-D DNS with the three different resolutions is plotted as a function of
time in Figure 14b. In the fine simulation, 𝜂 is always approximately equal to or larger than Δ∕𝜋 (indicated by
the horizontal lines) and can hence be considered fully resolved. Nevertheless, there is not much difference
in terms of the wave amplitude and dissipation rates (Figure 18) in the intense early phase (up to about 15
min) of the fine and coarse 1 simulations, so it is probably acceptable to use the latter for computing the
spectra for Figure 20. The coarse 2 simulation, on the other hand, has a slightly lower dissipation peak than
the other two and is thus not quite resolving the smallest relevant scales.

7. Conclusion

A systematic but flexible method for constructing an efficient three-dimensional (3-D) direct numerical sim-
ulation (DNS) of a breaking inertia-gravity wave has been presented. The method consists of four stages,
which can be summarized as follows:

1. Normal mode (NM) or singular vector (SV) analysis of the Boussinesq equations linearized about the
inertia-gravity wave solution (equation (6)). This entails a large number of one-dimensional linear
calculations in the once-rotated coordinate system (𝜉, y, 𝜁 ).

2. “2.5-dimensional” (2.5-D) nonlinear simulation of the full Boussinesq equations (equation (2a)) initialized
with the inertia-gravity wave plus a leading NM or SV from step 1. These simulations are performed in
the twice-rotated coordinate system (x∥, y⊥, 𝜁 ) and are supplemented by ensembles of simulations with
additional small-amplitude initial noise.

3. SV analysis on the full equations linearized about the particular time-dependent 2.5-D solution from step
2 that resulted in the greatest reduction in the gravity wave amplitude. Uses equation (13).

4. Three-dimensional DNS initialized with the inertia-gravity wave, the leading NM or SV from step 1 and a
leading secondary SV from step 3. The dimensions of the integration domain are equal to the wavelengths
of the wave and the leading perturbations.

The characteristics of the initial wave are completely determined by the atmosphere parameters N and f and
the wavelength and propagation angle Θ of the wave (see Tables 1 and 2). The primary instability structures
(NM or SV) further depend on the viscosity 𝜈 and diffusivity 𝜇 and are characterized by the orientation angle
𝛼 and wavelength 𝜆∥ and in the case of the singular vector the optimization time 𝜏 . The secondary singular
vectors are characterized by their wavelength 𝜆⊥ and the optimization time, which may or may not be the
same as that used for computing the primary singular vector.

The method has been applied to three test cases, resulting in the following initial conditions for the 3-D DNS:

Case I. A statically unstable inertia-gravity wave (IGW) with wavelength 𝜆 = 3 km, propagation angle Θ =
89.5◦ (period 8 h, phase speed 0.1 m s−1), and amplitude a0 =1.2 (streamwise velocity amplitude
Δu𝜉 = 14.6 m s−1) perturbed by the leading transverse primary normal mode with 𝜆∥ = 3.9 km and
the leading 5 min secondary singular vector with 𝜆⊥ = 400 m.

Case II. A statically stable IGW with parameters identical to case I except the amplitude a0 = 0.86 (Δu𝜉 =
10.4 m s−1), perturbed by the leading 7.5 min transverse primary singular vector with 𝜆∥ = 2.115 km
and the leading 7.5 min secondary singular vector with 𝜆⊥ = 300 m.

Case III. A statically unstable high-frequency gravity wave (HGW) with wavelength 𝜆 = 3 km, propagation
angle Θ = 70◦ (period 15 min, phase speed 3.3 m s−1) and amplitude a0 = 1.2 (Δu𝜉 = 12.2 m s−1)
perturbed by the leading transverse normal mode with 𝜆∥ = 2.9 km and the leading secondary
singular vector with 𝜆⊥ = 3 km.

The breaking of the unstable IGW (case I, also discussed in Remmler et al. [2013]) was perhaps the richest of
the three cases. The turbulence and wave decay was intermittent and persisted for almost the period of the
wave (8 h). The preliminary linear instability analysis and nonlinear 2.5-D simulations indicated that this case
could be treated in a domain relatively narrow in the y⊥ direction, making such a long integration possible.
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After the first approximately 30 min, most of the energy dissipation in the 3-D simulation occurred near the
level of static instability in the original wave, while in 2.5-D there is significant energy dissipation also in the
stable part of the wave. In general, it was the only case with significant differences between the 2.5-D and
3-D DNS and with significant variation between members of the ensemble in 2.5-D.

The unstable HGW (case III) resulted in a rapid and almost total breakdown of the wave, its amplitude decay-
ing to about 30% of the threshold amplitude for static instability within just over a single wave period
(15 min). The breaking of this wave seems to be relatively isotropic, with scales in all three directions compa-
rable to the wavelength of the original wave, and the dissipation occurs in one powerful burst (as opposed
to being intermittent) and does not appear to be very spatially correlated with the distributions of velocity
and buoyancy in the original wave. The results of this test case were similar to those of Fritts et al. [2009a,
2009b]. Although those authors did not include the Coriolis force in their calculations, it plays almost no role
in the dynamics of high-frequency waves.

Probably, the least interesting of the three cases (from the point of view of wave breaking) was the statically
stable IGW (case II). The wave amplitude is reduced by about 5%, from a0 = 0.86 to about |a| = 0.82 before
rebounding slightly after the optimization time of the primary singular vector (at which time its energy,
in the linear solution, begins to decrease). Achatz [2007a] discussed a similar case (but for a wave with
6 km wavelength) and found that perturbation by a primary SV with 10 times larger relative amplitude than
that considered here could lead, in nonlinear simulations, to significant reduction in the amplitude of the
IGW. Such a large perturbation, however, makes the initial condition locally exceed the static instability
threshold.

Overall, the results of the 2.5-D simulations are remarkably similar to those of the 3-D DNS in terms of the
projection and resolved-energy dissipation diagnostics. The initial phase of wave breaking tends to be more
rapid and more intense in the 3-D simulations—understandable since it provides more degrees of freedom
and avenues to exchange energy between spatial scales. The spatial and temporal distribution of the energy
dissipation are similar in 2.5-D and 3-D.

A possible objection to the approach advocated here is that the computational domain and initial condition
are too carefully chosen for the results to be relevant to a wave breaking spontaneously in nature. For that
reason, Remmler et al. [2013] performed additional simulations with the inertia-gravity wave from case I, in
domains half as wide (200 m) and twice as wide (800 m) in the y⊥ direction and with small amplitude noise
instead of the secondary singular vector. It was found that the breaking of the wave in the narrow domain
was more like in the 2.5-D simulations, while the breaking in the wider domain was more like the optimally
initialized 3-D DNS, suggesting that the optimal initialization might be a closer approximation to nature
than a randomly initialized simulation in a bounded domain. Since the breaking of the HGW (case III) was so
similar in 2.5-D and in 3-D, this test was not deemed necessary.

While simulation of realistic breaking waves in the upper mesosphere is becoming tractable with improved
computing technology, it remains an expensive and time-consuming undertaking and is still out of reach
for waves in the ocean and most of the atmosphere. For that, one must rely on large-eddy simulation (LES)
models. An immediate application of the results presented here is in the validation of LES schemes against
a reliable properly resolved solution. The LES can then serve as an essential intermediate tool for the testing
of gravity wave drag parameterizations, which are needed by every weather forecast and climate model, or
simply for extending the parameter range (higher Reynolds numbers, larger simulation domains) that can
be explored in monochromatic wave-breaking studies of the type presented here. We would be happy to
share the data from the 3-D DNS with other researchers. Summaries of the data will be made available on
the World Wide Web.

Appendix A: Normal Modes and Singular Vectors

Consider a system of coupled linear ordinary differential equations

d
dt

x = AAAx, (A1)

where x is a vector and AAA is a matrix which may depend on time. In the context of the primary instability
analysis (section 3.1), x consists of the real and imaginary parts of the perturbation velocity and buoyancy
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amplitudes at a discrete set of 𝜙 values (where 𝜙 ∈ (0, 2𝜋) is the phase of the original gravity wave) and AAA
depends on 𝜙 through the basic state fields but is independent of time. For the secondary instability analysis
(section 3.2), x consists of the same fields at discrete points on the (x∥, 𝜙) grid and AAA is time dependent.

The normal modes of (A1) are solutions of the form

x(t) = x0e𝛾t, (A2)

where x0 is an eigenvector of AAA and 𝛾 the corresponding eigenvalue. The leading normal mode is the one
with the largest growth rate (the real part of 𝛾). In general, AAA is a very large matrix, and one is interested only
in the fastest growing normal modes, so it is convenient to use an iterative eigenvector solution method
like the Arnoldi method, but these methods find the eigenvalue with the largest magnitude rather than the
eigenvalue with the largest real part. The answer is to instead find the eigenvalues of the propagator matrix
Φ𝜏 defined by

x(𝜏) = Φ𝜏x(0). (A3)

When AAA is time independent, Φ𝜏 ≡ exp(𝜏AAA) and has the same eigenvectors as AAA and eigenvalues of the form
Γ = exp(𝛾𝜏). Since |Γ| = exp(Re(𝛾)t), the eigenvalues of Φ𝜏 with the largest magnitude correspond to the
eigenvalues of AAA with the largest real part. Note that the matrix Φ𝜏 need not be known explicitly in order to
calculate its eigenvalues and eigenvectors using a tool such as the ARPACK library [Lehoucq et al., 1998]. One
need only have a way of calculating x(𝜏) from x0, i.e., the linear model.

It is often required to find the initial perturbations x0 for which the growth factor after time 𝜏 ,

𝜎 ≡
√

x(𝜏)†MMMx(𝜏)
x†

0MMMx0

=

√√√√x†
0Φ

†
𝜏MMMΦ𝜏x0

x†
0MMMx0

(A4)

is maximized. Here MMM is a positive-definite matrix which defines a norm (such as the total energy) and its
associated inner product, and x† is the conjugate-transpose of x. It can be shown that 𝜎 is maximized when
x0 is the eigenvector of the matrix MMM−1Φ†

𝜏MMMΦ𝜏 with the largest (in magnitude) eigenvalue. The eigenvec-
tors {xk} of MMM−1Φ†

𝜏MMMΦ𝜏 are called the singular vectors of the system described by AAA with respect to the
optimization time 𝜏 .

It is simpler to find the vectors qk = NNNxk , where MMM = NNN†NNN is the Cholesky factorization of MMM, because the qk

satisfy the Hermitian eigenvector equation

(NNNΦ𝜏NNN−1)†(NNNΦ𝜏NNN−1)qk = 𝜎2qk. (A5)

The singular vectors xk can then be recovered by computing xk = NNN−1qk . In order to calculate the qk , both
the linear model, to compute y = Φ𝜏x, and its adjoint, to compute Φ†

𝜏y, are required. In the present study,
the adjoint models were constructed using the tool TAMC [Giering and Kaminski, 1998].

When AAA is time dependent (such as in the calculation of the secondary instabilities), the normal mode prob-
lem is not well-defined, but singular vectors can be calculated for any linear system. Furthermore, since the
vectors qk are the eigenvectors of a positive definite, Hermitian matrix, they form an orthonormal set. It fol-
lows that the singular vectors xk are orthonormal with respect to the norm MMM. It is easily shown that they are
orthogonal also at the optimization time 𝜏 , i.e.,

(Φ𝜏xj)†MMM(Φ𝜏xk) = x†
j Φ

†
𝜏MMMΦ𝜏xk = 𝜎2

k x†
j MMMxk = 𝛿jk𝜎

2
k . (A6)

Appendix B: Projection Onto Free Gravity Waves

An important diagnostic quantity for simulations of the breaking of an inertia-gravity wave is the projection
of the solution onto the inertia-gravity wave as a function of time. See the appendix of Achatz [2007b] for
the more general problem of projecting the solution onto all free inertia-gravity waves and vortical modes.
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The projection onto just the original inertia-gravity wave may be extracted from the streamwise-spanwise
mean fields u∥, v⊥, w𝜁 , and b, where for the quantity X ,

X(𝜙, t) = 1
𝜆∥𝜆⊥ ∫

𝜆⊥

0 ∫
𝜆∥

0
X(x∥, y⊥, 𝜙, t)dx∥dy⊥. (B1)

The free linear modes depending only on 𝜁 and t and periodic in 𝜁 with period 𝜆 consist of the geostrophi-
cally balanced vortical modes

Vn ≡ [u∥, v⊥,w𝜁 , b]0
n

≡
√

2N√
N2 cos2 Θ + f 2 sin2 Θ

[
cosΘ sin 𝛼, cosΘ cos 𝛼, 0, f sinΘ

]
exp (inK𝜁 ) , (B2)

and the upward and downward propagating inertia-gravity waves

G±
n ≡ [u∥, v⊥,w𝜁 , b]±n

≡
[

i cos 𝛼 + f sinΘ
𝜔± sin 𝛼,−i sin 𝛼 + f sinΘ

𝜔± cos 𝛼, 0,−N2 cosΘ
𝜔±

]
exp

[
i
(

nK𝜁 − 𝜔±t
)]

. (B3)

Here Θ is the angle of phase propagation of the original wave, 𝛼 is the orientation of the primary perturba-
tion, n is an integer, and

𝜔± = ±
√

f 2 sin2 Θ + N2 cos2 Θ. (B4)

In addition, there is the “mode” W ≡ [u∥, v⊥,w𝜁 , b]w = [0, 0,
√

2, 0] representing the streamwise and span-
wise mean of w𝜁 (it follows from the continuity equation averaged over x∥ and y⊥ that w𝜁 is independent
of 𝜁 ).

It is readily shown that the set {V0
n ,G+

n ,G−
n ,W}, where n = 1, 2, 3,… , forms an orthonormal basis in the

energy norm

||[u∥, v⊥,w𝜁 , b]||2 ≡ 1
2𝜆 ∫

𝜆

0

(
|u∥|2 + |v⊥|2 + |w𝜁 |2 + |b|2

N2

)
d𝜁 (B5)

for periodic functions of 𝜁 with period 𝜆. The original inertia-gravity wave, which had upward vertical group
speed and therefore downward vertical phase speed, is the mode G−

1 .

Defining the discrete Fourier transform according to

X̂j =
1

N𝜁

N𝜁∑
l=1

Xl exp
(
−i

2𝜋jl
N𝜁

)
, (B6)

where N𝜁 is the number of grid points in the 𝜁 direction, the (complex) amplitude of the inertia-gravity wave
at a given time is then the scalar product of the transformed discrete fields with G−

1

A(t) = 1
2

(
û∥∗1

û∥−1
+ v̂⊥∗

1
v̂⊥−

1
+ 1

N2
b̂∗

1b̂−
1

)

= 1
2

[(
i cos 𝛼 + f sinΘ

𝜔− sin 𝛼
)

û∥∗1
+
(
−i sin 𝛼 + f sinΘ

𝜔− cos 𝛼
)

v̂⊥∗
1
− N2 cosΘ

𝜔− b̂∗
1

]
, (B7)

where [û∥
−
1 , v̂⊥

−
1 , 0, b̂−

1 ] is the complex amplitude of the mode G−
1 (from equation (B3)). The magnitude of the

amplitude normalized relative to the threshold for static instability |b̂C| = N2∕(K cosΘ) is then

|a(t)| = |b̂−
1 |

|b̂C|
|A(t)| = 2 cosΘ sinΘ

(𝜆∕2𝜋)|𝜔−| |A(t)|. (B8)
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Appendix C: Computational Resources Used for the 3-D DNS

The 3-D direct numerical simulations for the three test cases were performed at different high-performance
computing centers.

For the unstable IGW, a resolution of Δ = 3 m and therefore 172.8 million grid cells were required for the
solution to be fully resolved. The simulation was run on the NEC SX-9 vector computer at the High Perfor-
mance Computing Center in Stuttgart, Germany (HLRS). A single node of this machine (500 GB memory,
16 vector processors with 100 GFLOP/s peak performance each) had sufficient memory to store the com-
plete flow field. Hence, we could avoid domain decomposition and relied on shared memory parallelization
only. The efficient Poisson solver employs a discrete Fourier transform in one direction in combination
with a Bi-Conjugate Gradient Stabilized solver [van der Vorst, 1992] in the plane perpendicular to the
chosen direction. The Fourier transform converts the three-dimensional problem into a set of indepen-
dent two-dimensional problems, which are solved in parallel. The simulation of a flow time of 35,000 s
(270,000 time steps) required a wall time of 1100 h, which corresponds to 85.7×10−9 node seconds per time
step and cell.

The simulations of the stable IGW were carried out on the LOEWE cluster at CSC Frankfurt, Germany. This
machine consists of nodes with two AMD Opteron 6172 CPUs (12 cores per CPU, 8.4 GFlop/s per core peak
performance) and 64 GB memory. The fully resolved DNS with 71 million grid cells was decomposed into
192 blocks and simulated on eight nodes. The integration up to t = 100 min (38 600 time steps) took 183 h,
i.e., 1.93 × 10−6 node seconds per time step and cell.

The simulations of the unstable HGW were the most demanding and were run on the Cray XE6 cluster at
HLRS Stuttgart, consisting of nodes with two AMD Opteron 6276 (Interlagos) CPUs (16 cores per CPU, 9.2
GFlop/s per core peak performance) and 32 GB memory. The fully resolved DNS with 3624 million grid
cells was decomposed into 4096 blocks and simulated on 512 nodes using eight processor cores per node.
The integration up to t = 46.2 min (49,460 time steps) required a wall time of about 288 h. Hence, the
computational performance was 2.96 × 10−6 node seconds per time step and cell.
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ABSTRACT

To reduce the computational costs of numerical studies of gravity wave breaking in the atmosphere, the grid

resolution has to be reduced as much as possible. Insufficient resolution of small-scale turbulence demands a

proper turbulence parameterization in the framework of a large-eddy simulation (LES). The authors validate

three different LES methods—the adaptive local deconvolution method (ALDM), the dynamic Smagorinsky

method (DSM), and a naïve central discretization without turbulence parameterization (CDS4)—for three

different cases of the breaking of well-defined monochromatic gravity waves. For ALDM, a modification of the

numerical flux functions is developed that significantly improves the simulation results in the case of a tempo-

rarily very smooth velocity field. The test cases include an unstable and a stable inertia–gravity wave as well as an

unstable high-frequency gravity wave. All simulations are carried out both in three-dimensional domains and in

two-dimensional domains in which the velocity and vorticity fields are three-dimensional (so-called 2.5D sim-

ulations). The results obtained with ALDM andDSM are generally in good agreement with the reference direct

numerical simulations as long as the resolution in the direction of the wave vector is sufficiently high. The

resolution in the other directions has a weaker influence on the results. The simulations without turbulence

parameterization are only successful if the resolution is high and the level of turbulence is comparatively low.

1. Introduction

Gravity waves are a common phenomenon in any

stably stratified fluid, such as found in the atmosphere of

Earth. They can be excited by flow over orography (e.g.,

Smith 1979; McFarlane 1987), by convection (e.g., Chun

et al. 2001; Grimsdell et al. 2010), and by spontaneous

imbalance of the mean flow in the troposphere

(O’Sullivan and Dunkerton 1995; Plougonven and

Snyder 2007). Gravity waves transport energy and mo-

mentum from the region where they are forced to the

region where they are dissipated (e.g., through break-

ing), possibly far away from the source region. Various

phenomena, such as the cold summermesopause (Hines

1965) and the quasi-biennial oscillation in the equato-

rial stratosphere (e.g., Baldwin et al. 2001), cannot be

explained nor reproduced in weather and climate sim-

ulations without accounting for the effect of gravity

waves. See Fritts and Alexander (2003) for an overview

of gravity waves in the middle atmosphere. Prusa et al.

(1996) found in numerical experiments that (because of

wave dispersion) gravity waves generated in the tro-

posphere at a broad wavelength spectrum reach the

upper mesosphere as an almost monochromatic wave

packet with a horizontal wavelength between a few ki-

lometers and more than 100 km, depending on the

horizontal scale of the forcing and the background

conditions.

Sincemost gravity waves have a wavelength that is not

well resolved in general circulation models, the effect of

gravity waves on the global circulation is usually

accounted for by parameterizations based on combina-

tions of linear wave theory (Lindzen 1981), empirical

observations of time-mean energy spectra (e.g., Hines

1997), and simplified treatments of the breaking process.
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SeeKim et al. (2003) andMcLandress (1998) for reviews

of the various standard parameterization schemes.

A common weakness of most parameterization

schemes is the oversimplified treatment of the wave

breaking process. Improving this point requires a deeper

insight into the breaking process that involves genera-

tion of small-scale flow features through wave–wave

interactions and through wave–turbulence interactions.

Since the gravity wave wavelength and the turbulence

that eventually leads to energy dissipation into heat

span a wide range of spatial and temporal scales, the

breaking process is challenging both for observations

and numerical simulations. Direct numerical simula-

tions (DNSs) must cover the breaking wave with a

wavelength of a few kilometers as well as the smallest

turbulence scales (the Kolmogorov length h). The

Kolmogorov length depends on the kinetic energy dis-

sipation and the kinematic viscosity. It is on the order of

millimeters in the troposphere (Vallis 2006) and

approximately 1m at 80-km altitude (Remmler

et al. 2013).

The necessity of resolving the Kolmogorov scale can

be circumvented by applying the approach of a large-

eddy simulation (LES): that is, by parameterizing the

effect of unresolved small eddies on the resolved large-

scale flow. This can be necessary in cases where DNS

would be too expensive [e.g., in investigating the de-

pendence of the gravity wave breaking on several pa-

rameters (propagation angle, wavelength, amplitude,

viscosity, and stratification) at the same time]; for

problems in which many wavelengths need to be re-

solved, such as propagation of a wave packet or wave

train through a variable background (Lund and Fritts

2012) or modeling realistic cases of waves generated by

topography or convection; for validating quasi-linear

wave-propagation theory (Muraschko et al. 2014); or

for validating gravity wave–drag parameterization

schemes.

The subgrid-scale parameterization of turbulence is,

of course, a source of uncertainty and, where possible,

should be validated against fully resolved DNSs or ob-

servations for every type of flow for which it is to be

used. Many numerical studies of breaking gravity waves

rely on the LES principle without such a validation (e.g.,

Winters and D’Asaro 1994; Lelong and Dunkerton

1998a,b; Andreassen et al. 1998; Dörnbrack 1998;

Afanasyev and Peltier 2001).

Recent studies (Fritts et al. 2009a,b, 2013; Fritts and

Wang 2013) have presented highly resolved, high Rey-

nolds number DNSs of a monochromatic gravity wave

breaking. However, they do not take into account the

Coriolis force, which has a large influence on the dy-

namics of breaking for low-frequency gravity waves

(Dunkerton 1997; Achatz and Schmitz 2006b), often

referred to as inertia–gravity waves (IGWs), as opposed

to high-frequency gravity waves (HGWs). The Coriolis

force induces an elliptically polarized transverse veloc-

ity field in IGWs, and the velocity component normal to

the plane of propagation of the wave has its maximum

shear at the level of minimum static stability. Dunkerton

(1997) andAchatz and Schmitz (2006b) showed that this

strongly influences the orientation of the most unstable

perturbations.

An important aspect in setting up a simulation of a

gravity wave breaking event is the proper choice of the

domain size and initial conditions. While the gravity

wave itself depends on one spatial coordinate and has a

natural length scale given by its wavelength, the break-

ing process and the resulting turbulence are three-

dimensional, and proper choices have to be made for

the domain sizes in the two directions perpendicular to

the wave vector. Achatz (2005) and Achatz and Schmitz

(2006a) analyzed the primary instabilities of mono-

chromatic gravity waves of various amplitudes and

propagation directions using normal-mode and singular-

vector analysis, and Fruman and Achatz (2012) ex-

tended this analysis for IGWs by computing the leading

secondary singular vectors with respect to a time-

dependent simulation of the perturbed wave. (Normal-

mode analysis is not suited to time-dependent basic

states, while singular-vector analysis, whereby the per-

turbations for which energy grows by the largest factor

in a given optimization time, is always possible.) They

found that the wavelength of the optimal secondary

perturbation can be much shorter than the wavelength

of the original wave. Thus, the computational domain

for a three-dimensional simulation need not necessarily

have the size of the base wavelength in all three di-

rections. They proposed the following multistep ap-

proach to set up the domain and initial conditions for a

DNS of a given monochromatic gravity wave:

1) solution (in the form of normal modes or singular

vectors) of the governing (Boussinesq) equations

linearized about the basic-state wave, determining

the primary instability structures;

2) two-dimensional (in space) numerical solution of the

full nonlinear equations using the result of stage 1 as

initial condition;

3) solution in the form of singular vectors (varying in

the remaining spatial direction) of the governing

equations linearized about the time-dependent result

of stage 2; and

4) three-dimensional DNS using the linear solutions

from stages 1 and 3 as initial conditions and their

wavelengths for the size of the computational domain.
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This procedure was applied to an unstable IGW by

Remmler et al. (2013) and fully elaborated with two

additional test cases by Fruman et al. (2014).

Having these properly designed DNS results available,

we can now use them for the validation of computation-

ally less expensive methods. Hence, the present study

analyzes the suitability of different LES methods for the

cases presented by Fruman et al. (2014): namely, an un-

stable IGW, a stable IGW, and an unstable HGW, all of

them with a base wavelength of 3km. The first LES

method to be applied is the adaptive local deconvolution

method (ALDM) of Hickel et al. (2006, 2014). It is an

‘‘implicit’’ LES method, since the subgrid-scale (SGS)

stress parameterization is implied in the numerical dis-

cretization scheme. Based on ALDM for incompressible

flows and its extension to passive scalar mixing Hickel

et al. (2008), Remmler and Hickel (2012, 2013), and

Rieper et al. (2013) successfully applied ALDM to stably

stratified turbulent flows. For the present study, the nu-

merical flux function for the active scalar in ALDM has

been modified to prevent the method from generating

spurious oscillations in partially laminar flow fields.

The second method to be applied is the well-known

Smagorinsky (1963) method with the dynamic estima-

tion of the spatially nonuniform model parameter pro-

posed by Germano et al. (1991) and refined by Lilly

(1992). The third LES method is a ‘‘naïve’’ approach
with a simple central discretization scheme and no ex-

plicit SGS parameterization. This method is theoreti-

cally dissipation free but can lead to numerical

instability if the turbulence level is high (which was the

reason for the development of the first explicit SGS

parameterization by Smagorinsky 1963). However, the

method is computationally inexpensive and can be used

in some cases without problems, as we will show.

We apply these methods to the three gravity wave test

cases using grids of different refinement levels with the

goal of using as few grid cells as possible while still

obtaining good agreement with the DNS results. We

also run small ensembles for each simulation with only

slightly different initial conditions to get an estimate of

the sensitivity and variability of the results. All this is

done in a three-dimensional domain (with the same

domain size as the DNS) and in a two-dimensional do-

main in which the two dimensions are chosen to be

parallel to the wave vectors of the gravity wave and of

the most important growing primary perturbation

[without the addition of the secondary singular vector

(cf. step 2 above)]. Because the velocity and vorticity

fields are three-dimensional and because the turbulent

cascade is direct (energymoves to smaller length scales),

these simulations are sometimes called 2.5D. Fruman

et al. (2014) found that 2.5D and 3D results are broadly

very similar for the inertia–gravity wave test cases

considered here.

The paper is organized as follows. In section 2, the

governing equations used for the simulations are pre-

sented along with properties of the inertia–gravity wave

solutions and the energetics of the system. Section 3

describes the numerical methods used, in particular the

three LES schemes. The three test cases are reviewed in

section 4, and the results of the simulations are discussed

in sections 5–7.

2. Governing equations

Assuming the vertical wavelength of the inertia–

gravity wave is small compared to the density scale

height of the atmosphere, the dynamics are reasonably

well approximated by the Boussinesq equations on an f

plane. For mathematical convenience, we further as-

sume that the molecular viscosity and diffusion, as well

as the Brunt–Väisälä frequency of the background, are

constants, independent of space and time.

Since there is no preferred horizontal direction on an f

plane, there is no loss of generality in assuming the basic

wave propagates in the y–z plane. In all three test cases,

the primary perturbation is transverse [corresponding to

an angle of a5 908 in the nomenclature of Fruman et al.

(2014)]. It is thus advantageous to rotate the coordinate

system with respect to the Earth coordinates (x, y, z)

through an angle 9082Q about the x axis (whereQ is the

angle the wave vector makes with the y axis) such that

one coordinate direction is parallel to the wave vector.

We thus define the rotated Cartesian coordinates:

xk 5 x , (1a)

y? 5 z cosQ1 y sinQ, and (1b)

z5 z sinQ2 y cosQ , (1c)

as well as the corresponding velocity vector

u5 (uk, y? , wz). The rotated coordinate system is

sketched in Fig. 1.

The Boussinesq equations on an f plane are, in vector

form,

$ � u5 0, (2a)

›tu1 (u � $)u52f êz3 u1 bêz2$p1 n=2u1F ,

and (2b)

›tb1 (u � $)b52N2êz � u1m=2b1B , (2c)

where b is buoyancy, p is pressure normalized by a

constant background density, and êz 5 (0, sinQ, cosQ) is

the unit vector in the true vertical direction. The termN

is the constant Brunt–Väisälä frequency; f is the Coriolis
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parameter; n and m are the kinematic viscosity and ther-

mal diffusivity, respectively; and F and B represent the

influence of an explicit turbulence SGS parameterization.

An inertia–gravity wave, propagating at an angle Q
with respect to the horizontal plane, is a solution to Eq.

(2) of the form

0BBB@
uk
y?
wz

b

1CCCA5<

266666666664
a

0BBBBBBBBBB@

f

k

2
iKv

km

0

2
N2

m

1CCCCCCCCCCA
eif

377777777775
, (3)

where K is the magnitude of the wave vector;

k5K cosQ and m5K sinQ are its horizontal and ver-

tical components in the Earth frame; f5Kz2vt is the

wave phase; and

v52

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2 sin2Q1N2 cos2Q

q
(4)

is the wave frequency (the negative sign was chosen so

that the wave has an upward group velocity). The non-

dimensional (complex) wave amplitude a is defined such

that a wave with jaj5 1 is neutral with respect to static

instability at its least stable point. Waves with jaj. 1 are

statically unstable, and waves with jaj, 1 are statically

stable. The phase velocity of the wave is directed in the

negative z direction.

The local kinetic and available potential energy den-

sities in the flow are defined as

Ek 5
1

2
u> u and Ep 5

b2

2N2
, (5)

with the total energy defined as the sum Et 5Ek 1Ep.

We obtain the transport equations of the energy com-

ponents by scalar multiplying Eq. (2b) by u and Eq. (2c)

by b/N2 and applying the divergence constraint equation

[Eq. (2a)]:

›tEk 1$ � (uEk)52fu � (êz3 u)2 bu � êz2 u � $p
1 n[=2Ek2 ($u)2]1 u � F and

(6a)

›tEp1$ � (uEp)5 bu � êz1m

"
=2Ep 1

($b)2

N2

#
1

bB
N2

.

(6b)

Based on these, we define the following contributions to

the spatially averaged energy dissipation in an under-

resolved simulation as

«m 5 «k,m 1 «p,m

5 hn[($u)22=2Ek]is 1
*
m

"
($b)2

N2
2=2Ep

#+
s

, (7a)

«s 5 «k,s 1 «p,s 5 hu � Fis 1
�
u � B
N2

�
s

, (7b)

«n 5 «k,n 1 «p,n 5 hu � (u � $)uis1 hu � (u � $)bis , (7c)

5h$ � (uEk)is 1 h$ � (uEp)is, and (7d)

«t 52h›tEtis 5 «m 1 «s 1 «n 1 «a , (7e)

where h⋯is indicates a spatial average over the

whole domain; «t is the total change of flow energy

over time; «m is the resolved part of the molecular

dissipation; «s is the dissipation of an explicit SGS

parameterization scheme; «n is the numerical dissi-

pation due to the discretization of the advection term

in a periodic domain without fixed walls; and «a is the

additional numerical dissipation due to the Coriolis,

buoyancy, and pressure terms, as well as the temporal

discretization. Note that the equality u � (u � $)u5
$�(uEk) used in the derivation of the energy transport

equations is valid for exact continuous operators but is

only an approximation in case of discrete numerical

operators.

3. Numerical methods

a. The INCA model

With our flow solver [solver for the (in)compressible

Navier–Stokes equations on Cartesian adaptive grids

(INCA)], the Boussinesq equations are discretized by a

fractional stepmethod on a staggered Cartesian mesh. The

code offers different discretization schemes depending on

FIG. 1. Rotated coordinate system and computational domain

(gray box) for the monochromatic gravity wave (after Remmler

et al. 2013).
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the application, two of which are described below. For

time advancement, the explicit third-order Runge–Kutta

scheme of Shu (1988) is used. The time step is dy-

namically adapted to satisfy a Courant–Friedrichs–

Lewy condition.

The spatial discretization is a finite-volume method.

We use a second-order central difference scheme

for the discretization of the diffusive terms and for

the pressure Poisson solver. The Poisson equation

for the pressure is solved at every Runge–Kutta

sub step. The Poisson solver employs the fast Four-

ier transform in the vertical (i.e., z) direction

and a stabilized biconjugate gradient (BiCGSTAB)

solver (van der Vorst 1992) in the horizontal

(xk–y? ) plane.

b. The adaptive local deconvolution method

The ALDM is based on the idea of using the

discretization error as an SGS parameterization for

turbulence [implicit LES (ILES)]. Given the one-

dimensional generic transport equation for the quan-

tity u:

›tu1 ›xF(u)5 0, (8)

the numerical approximation of the flux ~F is com-

puted based on the available filtered numerical

solution u by approximately reconstructing the

unfiltered solution ~u and applying a numerical

regularization.

The reconstruction of the unfiltered solution on the

represented scales is based on Harten-type deconvolu-

tion polynomials. Different polynomials are dynami-

cally weighted depending on the smoothness of the

filtered solution. The regularization is obtained

through a tailored numerical flux function operating on

the reconstructed solution. Both the solution-adaptive

polynomial weighting and the numerical flux function

involve free model parameters that were calibrated in

such a way that the truncation error of the discretized

equations optimally represents the SGS stresses of

isotropic turbulence (Hickel et al. 2006). This set of

parameters was not changed for any subsequent

applications of ALDM. For the presented computa-

tions, we used an implementation of ALDM with

improved computational efficiency (Hickel and

Adams 2007).

The extension of ALDM to passive scalar trans-

port was developed by Hickel et al. (2007). Remmler

and Hickel (2012) showed that the method also

performs well for the active scalar in stably strati-

fied turbulent flows governed by the Boussinesq

equations. They simplified the numerical flux func-

tion using the filtered divergence-free velocity field

as the transporting velocity. The buoyancy flux in the

xj direction for an equidistant staggered grid then

reads

~F
s
j61/25 yj21/261/2

~b2j61/21
~b1j61/2

2
2sj61/2(

~b1j61/22
~b2j61/2) ,

(9)

where the numerical diffusion is essentially controlled

by

sj61/25sbj~y2j61/22 ~y1j2161/2j , (10)

with sb 5 0:615 (Hickel et al. 2007). In these equations,

the index j6 1/2 indicates the right and left cell faces

(the velocity yj is stored on the cell faces, and the

buoyancy bj is stored in the cell centers); ~b1 and ~b2 are

reconstructed solution values primarily based on values

of b on the right and left, respectively, of the re-

construction position.

The formulation equation [Eq. (10)] was chosen to be

analogous to ALDM for the momentum equations and

is consistent with turbulence theory. The SGS (hyper)

diffusivity thus depends on the smoothness of the

buoyancy field and scales with the velocity gradients

times the square of the cell widths, which proved to

work very well in fully turbulent flows (Remmler and

Hickel 2012, 2013). In the present case, however, the

flow is temporarily laminar, which means that

j~y2j61/2 2 ~y1j2161/2j approaches zero, and the physically

motivated SGS regularization is effectively turned off.

Any numerical oscillations in a passive scalar field can

then grow without bound. To numerically regularize

the scalar transport in case of advection by a smooth

velocity field, we propose a blending of ALDMwith an

upwind biased flux function. A pure upwind flux func-

tion can be obtained within the given framework

through

sj61/2jupwind5
1

2
jyj21/261/2j . (11)

The convex combination of standard ALDM flux and

upwind flux leads to the following expression for the

numerical viscosity:

sj61/25sb

�
aj~y2j61/22 ~y1j2161/2j

1 (12a)
1

2
j~y2j61/21 ~y1j2161/2j

�
,
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where we took the liberty of approximating the advec-

tion velocity by

yj21/261/2’
~y2j61/21 ~y1j2161/2

2
. (12)

The blending parameter a is dynamically evaluated

based on the instantaneous velocity values by

a5
M

bP1M , (13)

where M5 j~y2j61/2 2 ~y1j2161/2j denotes the velocity dif-

ference, P5 j~y2j61/2 1 ~y1j2161/2j/2 denotes the advection

velocity as defined in Eq. (12), and b, 1 is a free pa-

rameter. The choice of b controls the ratio M/P at

which the modification will become effective. In turbu-

lent flows, where velocity fluctuations are typically large

compared to the mean advection velocity, we find

M/P � b, which means that a/ 1, and we recover the

original formulation [Eq. (10)]. On the other hand, if the

flow is laminar or governed by a large mean advection

velocity, then a/ 0, and we have an upwind scheme. It

is important to note that this blending is proposed for

purely numerical reasons (balance dispersive errors);

the numerical diffusion of upwind schemes is not Gali-

lean invariant and thus cannot replace a physical SGS

turbulence model.

c. Dynamic Smagorinsky method

The Smagorinsky (1963) scheme is based on the as-

sumption that the incompressible momentum SGS term

can be parameterized as

F 52$ � tmod522$ � (ntS) , (14)

where Sij 5 0:5(›xiyj 1 ›xjyi) is the filtered strain rate

tensor, and tmod is the parameterized SGS stress tensor.

The unknown eddy viscosity nt is evaluated from the

strain rate tensor via

nt 5 (CSD)
2jSj; jSj5

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2SijSij

q
, (15)

where D5 (DxDyDz)
1/3 is either the grid size or the filter

size. In this formulation, the unknown SGS fluxes can be

computed directly from the resolved velocity field. The

same closure can be used for scalar transport equations

using an eddy diffusivity: mt 5 nt/Prt.

The value of the model constant CS is unknown a

priori but can be estimated by means of the dynamic

procedure of Germano et al. (1991), given a solution

available in its filtered form y with a grid filter width D.
This filtered velocity field is explicitly filtered by a test

filter with a larger filter width D̂. As a test filter, we use a

top-hat filter with D̂5 2D. The subfilter-scale stress

tensor isTij 5duiuj 2 bui buj. It cannot be computed directly

from the filtered velocity field, but one can compute

the Leonard stress tensor Lij 5 dui uj 2 bui buj. Using the

Germano identity

Tij 5Lij 1btij (16)

and the standard Smagorinsky method for tij and Tji, we

can minimize the difference between Lij and

Lmod
ij 5Tmod

ij (C, D̂,bu)2 dtmod
ij (C,D, u)

522CD̂2cjSjbSij 1 2Cb(D2jSjSij)
5 2CMij , (17)

whereC[C2
S, by a least squares procedure, yielding the

optimal value (Lilly 1992):

C5
1

2

hLijMijis
hMijMijis

. (18)

A spatial average can be applied to both the numerator

and denominator of Eq. (18) in order to prevent nu-

merical instability. In the 3D cases, we apply this spatial

average in the y? direction, while, in the 2.5D simula-

tions, we do not apply any average.We update the model

parameter C at the beginning of every time step. For the

turbulent Prandtl number, we use a constant value of

Prt 5 0:4 (see, e.g., Eidson 1985). We also performed

numerical experiments using Prt 5 0:2 and Prt 5 0:6 (not

shown) and found that the exact value of Prt is of minor

importance to the overall simulation results.

d. Central discretization scheme

To evaluate the benefit of an SGS parameterization,

we run under-resolved direct numerical simulations with

an ordinary fourth-order accurate central interpolation:

namely,

~u2j11/25
1

12
(2uj221 7uj211 7uj 2 uj22) (19)

on an LES grid (i.e., at a resolution much too low to

resolve the Kolmogorov scale).

4. Test cases

According to Prusa et al. (1996), gravity waves arriv-

ing at the upper mesosphere tend to be almost mono-

chromatic, with horizontal wavelengths ranging from a

few kilometers to more than 100km, and with vertical

wavelengths of a few kilometers. These waves break at
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altitudes between 65 and 120 km. We investigate three

different cases of monochromatic gravity waves in an

environment representative of the upper mesosphere at

an altitude of approximately 80 km. For the atmospheric

parameters, see Table 1, and for the wave parameters,

see Table 2. All three waves have a wavelength of 3 km

and the wave phase is such that, in the rotated co-

ordinate system, the maximum total buoyancy gradient

within the wave is located at z5 750m, and the mini-

mum (associated with the least stable point) is located at

z5 2250m. The primary and secondary perturbations of

the waves used to construct the initial condition for the

3D simulations were computed by Fruman et al. (2014).

In Fig. 2, we show the initial perturbation energy Eini

(primary and secondary perturbations) as a function of

z, integrated in the spanwise–streamwise (xk–y? ) plane.
Case 1 is a statically unstable inertia–gravity wave

with a wave period of 8 h and a phase speed of 0.1m s21.

The vertical and horizontal wave lengths are similar to

those actually observed by Hoffmann et al. (2005) in

wind radar measurements at an altitude of approxi-

mately 85 km. The wavelength of the leading transverse

normal mode (primary perturbation) is somewhat lon-

ger than the base wavelength (lk 5 3:98 km), while the

leading secondary singular vector (with respect to an

optimization time of 5min) has a significantly shorter

wavelength (l? 5 0:4 km). The initial perturbation en-

ergy (Fig. 2a) is distributed rather homogeneously in the

wave with a peak close to the minimum static stability

and a minimum in the most stable region. The time

scales of the turbulent wave breaking and of the wave

propagation are similarly long, which makes this case

especially interesting. Remmler et al. (2013) pointed out

that a secondary breaking event is stimulated in this case

when the most unstable part of the wave reaches the

region where the primary breaking has earlier generated

significant turbulence.

Case 2 is also an inertia–gravity wave with the same

period and phase speed as case 1, but with an amplitude

below the threshold of static instability. The wave is

perturbed by the leading transverse primary singular

vector (lk 5 2:115 km) and the leading secondary sin-

gular vector (l? 5 300m). An optimization time of

7.5min was used for computing both the primary and

secondary singular vectors. The perturbation energy in

this case is concentrated exclusively in the region of

lowest static stability (see Fig. 2b). This is typical for

singular vectors (SVs), which maximize perturbation

TABLE 1. Atmospheric parameters.

Kinematic viscosity n 1m2 s21

Thermal diffusivity m 1m2 s21

Latitude for Coriolis parameter fC 708N
Coriolis parameter f 1.37 3 1024 s21

Brunt–Väisälä frequency N 2 3 1022 s21

Gravitational acceleration g 9.81m s22

TABLE 2. Parameters of the initial conditions for the investigated test cases. A1 and A2 are the amplitudes of the respective pertur-

bations in terms of the maximum perturbation energy density compared to the maximum energy density in the basic state; ûk, ŷ? , and b̂

are the amplitudes of the original wave [Eq. (3)]; ly and lz are the horizontal and vertical wavelengths in the earth frame, corresponding to

the base wavelength l5 3 km and the propagation angle; and h«timax is the maximum value observed in our respective highest-resolved

DNS. NM indicates normal mode and SV indicates singular vector.

Case

1 (unstable IGW) 2 (stable IGW) 3 (unstable HGW)

Amplitude

a 1.2 0.86 1.2

ûk (m s21) 8.97 6.43 0.23

ŷ? (m s21) 14.56 10.43 12.20

b̂ (m s22) 0.229 0.164 0.244

Propagation angle Q (8) 89.5 89.5 70

Wavelengths

ly (km) 343 343 8.7

lz (km) 3.0 3.0 3.1

Primary perturbation

a (8) 90 (NM) 90 (SV) 90 (NM)

lk (km) 3.98 2.12 2.93

A1 0.05 0.05 0.05

Secondary perturbation

l? (km) 0.4 0.3 3.0

A2 0.02 0.01 0.01

Wave period T 7.8 h (28 083 s) 7.8 h (28 083 s) 15.3min (918 s)

Phase speed cp (m s21) 0.107 0.107 3.27

Maximum dissipation during breaking h«timax (mWkg21) 17 4.3 88
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energy growth in a given time. Despite the wave being

statically stable, the perturbations lead to a weak

breaking and the generation of turbulence. However,

the duration of the breaking event is much shorter than

the wave period, and the overall energy loss in the wave

is not much larger than the energy loss through viscous

forces on the base wave in the same time.

Case 3 is a statically unstable high-frequency gravity

wave with a period of 15min and a phase speed of

3.3ms21 perturbed with the leading transverse primary

normal mode (lk 5 2:929km) and the leading secondary

singular vector with l? 5 3 km. The initial perturbation

energy (Fig. 2c) has a clear maximum at z5 100m, which

is in a region with moderately stable stratification. The

breaking is much stronger than in cases 1 and 2 and lasts

for slightly more than one wave period. Turbulence and

energy dissipation are almost uniformly distributed in the

domain during the most intense phase of the breaking.

The three different cases were chosen to represent a

wide range of different configurations of breaking

gravity waves. They especially differ in the duration of

the breaking compared to the wave period. In case 1, the

breaking duration is slightly smaller than the wave pe-

riod, and the breaking involves multiple bursts of tur-

bulence. In case 2, the breaking lasts only for a short

time compared to the wave period, and, in case 3, the

breaking lasts longer than one wave period.

5. Case 1: Unstable inertia–gravity wave

a. Three-dimensional DNS

Fruman et al. (2014) showed that, in 2.5D sim-

ulations, a small initial random disturbance of the

flow field can lead to different global results. To in-

vestigate whether the same applies to full 3D simula-

tions of the same case and whether the LES method has

an influence on this variability, we added two newDNSs

(640 3 64 3 500 cells) to the results of Remmler et al.

(2013) to have a very small ensemble of four simulations

from which we can compute averages and standard de-

viations. For these new simulations, a very small amount

of white noise was added to all three velocity compo-

nents at the initial time. In Fig. 3, we show the ensemble

average of the amplitudes haie and of the spatially av-

eraged total dissipation rate h«tis,e as a solid line and the

standard deviation from these ensemble averages as

shaded area.

For the present case, the wave breaking consists of a

series of three single breaking events. Each of those

events is characterized by a peak in the energy dissipa-

tion and by an enhanced amplitude decrease. The

strongest breaking event is initialized by the initial

perturbations and starts directly at the beginning of the

simulation. It involves overturning and generation of

turbulence in the whole computational domain. The

intensity of this primary breaking event is very similar in

all ensemble members, independent of the resolution

and initial white noise. The second breaking event

around t ’ 4h is preceded by an instability of the large-

scale wave and generates only a small amount of tur-

bulence in the unstable half of the domain. The third

breaking event around t ’ 5 h is caused by a small

amount of remaining turbulence from the first breaking

event, which was generated in the stable part of the

wave. At the time of the third breaking event, the wave

phase has traveled approximately half a wavelength, so

the unstable part of the wave has reached the region of

the remaining turbulence at this time. For details of the

wave breaking process, we refer to Remmler et al.

(2013) and Fruman et al. (2014).

The amplitude variations in the 3D DNSs are very

small. The ensemble members diverge slightly during a

very weak breaking event at t ’ 8 h, which has very

different intensity in the four simulations. The total

dissipation rate varies significantly among the ensemble

FIG. 2. Initial horizontally (xk–y? ) averaged perturbation energy at different 3D grid resolutions.

3544 JOURNAL OF THE ATMOSPHER IC SC IENCES VOLUME 72



members during the weak breaking events but not dur-

ing the first strong breaking event.

b. Three-dimensional LES

We simulated the 3D setup of case 1 using three dif-

ferent LES resolutions, which we refer to as fine (1003
24 3 80 cells, corresponding to a cell size of 39.8m 3
17.7m 3 37.5m), medium (24 3 12 3 80 cells), and

coarse (24 3 12 3 20 cells). We chose these resolutions

after a series of numerical experiments that showed two

main results: (i) the horizontal (i.e., in the xk–y? plane)

resolution can be reduced without much effect on the

global result as long as the vertical resolution remains

comparatively high, and (ii) reducing the vertical reso-

lution and keeping the horizontal resolution high had a

strong adverse effect on the global result, independent

of the LES method used. One reason for this behavior

might be the insufficient resolution of the initial per-

turbation on the coarsest grid. From Fig. 2a, it is obvious

that the initial perturbation is well resolved by 80 cells in

the z direction but deviates in places on the coarse grid

with only 20 cells in the z direction.

In LES, it is easily affordable to run small ensembles

for many different simulations. For all presented 3D

LES results, we performed the same simulation eight

times with some low-level white noise superposed on the

FIG. 3. Statically unstable IGW (3D). Base wave amplitudes a and total dissipation rates «t at coarse, medium, and

fine LES resolution. The gray shaded area indicates the standard deviation of four DNSs, and the error bars indicate

the standard deviation of nine LESs.
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initial condition (consisting of the base wave and its

leading primary and secondary perturbations) and once

with no added noise. The results of these nine re-

alizations were then averaged. The average amplitudes

of simulations with three different resolutions and four

different LES methods [standard ALDM with b5 0:0,

modified ALDM with b5 0:01, dynamic Smagorinsky

(DSM), and plain central discretization (CDS4)] are

shown in Figs. 3a–c. Figure 3d shows the total dissipation

rates for the medium grid. In all figures, the error bars

indicate the standard deviation of the ensemble.

Using the fine LES grid, the average wave amplitude

is quite well predicted by standard ALDM, DSM, and

CDS4. Modified ALDM dissipates slightly too much

energy, while standard ALDM shows very large varia-

tions between ensemble members.

With the medium grid, the three SGS models (i.e.,

DSM and the two versions of ALDM) yield good

agreement with the DNS, both in the average amplitude

and in the variations among ensemble members. Only

CDS4 (without an SGS model) creates a bit too much

dissipation and far too much variability. The analysis of

the total dissipation rates in Fig. 3d shows that the exact

evolution of the dissipation is reproduced by none of the

LES methods. However, the results with modified

ALDM, DSM, and CDS4 are acceptably close to the

DNS results. The result from standard ALDM strongly

oscillates in time despite being an ensemble average. For

clarity of the figure, we did not plot the error bars for this

curve, but it is nevertheless obvious that the variation

among the ensemble members with standard ALDM is

much larger than with the other methods.

With the coarse resolution, ALDM and CDS4 dissi-

pate far toomuch energy and, hence, predict a too-quick

wave decay. The flow physics are not correctly repro-

duced. Only DSM produces an acceptable result, al-

though the wave amplitude at the end of the breaking is

considerably lower than in the DNS. The variability in

the DSM results is even smaller than in the DNS, which

is not necessarily an indication of a good approximation

of the unresolved turbulent scales.

The strong variations of the wave amplitude (fine

resolution) and total dissipation rate (medium resolu-

tion) in the simulations with standard ALDMmotivated

the development of the modification described in sec-

tion 3b. In Fig. 4, we compare Hovmöller diagrams of

resolved kinetic energy dissipation (as an indicator of

velocity fluctuations) averaged in xk–y? planes from the

DNS, the high-resolution LES with DSM, and with

standard and modified ALDM. Standard ALDM

produces a lot of velocity oscillations in the stable half of

the domain (0, z, 1500m) not present in the DNS and

DSM results. These velocity fluctuations are generated

by numerical oscillations in the buoyancy, which are a

result of the smooth velocity field that causes the nu-

merical diffusivity to be effectively zero. These oscilla-

tions are thus only slightly smoothed but not completely

eliminated by the stable stratification. If we add a pas-

sive scalar to the flowwith a similar initial distribution as

the buoyancy, we observe, indeed, exponentially grow-

ing fluctuations up to the limits of double-precision

floating point numbers. These physically unlikely oscil-

lations can be avoided bymodifying the flux function for

the scalar, as described in section 3b. The parameter

b controls the intensity of the damping. In a series of

numerical experiments, we found b5 0:01 to be a good

compromise between excessive damping with strong

wave decay (higher values of b) and no damping with

strong oscillations (lower values of b). Choosing the

exact value of b is, at the present time, a matter of

personal judgement.

The first breaking event lasts for about 1 h and is as-

sociated with the strongest turbulence. This peak is

predicted quite differently by the different SGS models.

We show the energy dissipation during the first 2 h in

Fig. 5. In theALDMandDSM simulations, only aminor

part of the total energy dissipation is resolved because of

the coarse resolution; the remainder is provided by the

implicit («n) or explicit («s) turbulence SGS parame-

terization. This is exactly how the parameterization is

supposed to work. However, the total dissipation during

themost intense breaking is considerably smaller than in

the DNS with both SGS parameterizations.

For the CDS4 simulations, where no SGS parame-

terization is applied (Fig. 5e), the resolved dissipation «m
is much higher because of the stronger small-scale fluc-

tuations (see also the spectra in Fig. 6 described below).

During the phase of highest dissipation, it is com-

plemented by a small amount of numerical dissipation

«n and a significant amount of dissipation «a because of

numerical effects in terms other than the advective term.

The resulting total dissipation «t matches surprisingly

well with the DNS result.

The energy dissipation can be decomposed into

mechanical energy dissipation «k and thermal energy

dissipation «p. In Figs. 5b, 5d, and 5f, we show

«p 5 «p,m 1 «p,n 1 «p,s and the total energy dissipation. In

the simulations with ALDM, the thermal energy dissi-

pation «p is too strong compared to the total energy

dissipation «t during the peak. With DSM, «p is smaller,

but the ratio «p/«t is also smaller than in the DNS. In

CDS4, on the other hand, «p is too small during the

period of peak dissipation. After the first dissipation

peak, after about 1 h, the dissipation rates match the

DNS results quite well with all three LESmethods. In all

LESs, the dissipation peaks a little bit earlier than in the
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DNS. The time difference is surely a result of the time

that flow energy needs to be transported through the

spectrum from the finest LES scales to the scales of

maximum dissipation in the DNS.

Instantaneous vertical energy spectra averaged in the

xk and y? directions are shown in Fig. 6. The chosen

instant in time in each case is at the moment of maxi-

mum dissipation (which is a slightly different time in

each simulation) and at t 5 2 h, which is after the first

breaking event. For orientation, we added straight lines

to the spectra in order to distinguish the regions of weak

and strong wave interaction (E;k23
z ) and inertial tur-

bulence (E; k25/3
z ), respectively, according to the the-

ory of Lumley (1964) and Weinstock (1985). Especially

at t5 2 h, when turbulence has become weaker after the

first breaking, these two regions can clearly be distin-

guished from each other. At the time of maximum dis-

sipation, the agreement between all of the LESs and the

FIG. 4. Statically unstable IGW (3D). Hovmöller plots of horizontally averaged (resolved) dissipation of kinetic

energy. (a) DNS (640 3 64 3 500 cells) and (b)–(d) LES (100 3 24 3 80 cells). The dashed line indicates a fixed

position in space.
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FIG. 5. Statically unstable IGW (3D). Comparison of (a),(c),(e) resolved («m), numerical («n), parameterized («s), and total («t)

dissipation and (b),(d),(f) thermal («p) and total dissipation during the first breaking event (DNS: single simulation; LES: ensemble

averages).
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FIG. 6. Statically unstable IGW (3D). Distributions of total, kinetic, and potential energy over vertical wavelength lz (a),(c),(e) at the

moment of maximum total energy dissipation and (b),(d),(f) at t 5 2 h (DNS: single simulation; LES: ensemble averages).
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DNS in terms ofEt andEk is quite good.With the DSM,

the small-scale fluctuations are a bit underpredicted,

and, with CDS4, they are overpredicted. With ALDM

(standard and modified) the matching is also good at the

smallest resolved scales. The difference between stan-

dard ALDM and the modified version is small because

of the fully developed turbulence at this time. The po-

tential energy spectrum with ALDM and DSM has the

right level but does not decrease monotonically as in the

DNS. The Ep spectrum with CDS4 is much closer to

the DNS result than in the other LES solutions, with only

the high-wavenumber fluctuations a bit overpredicted.

At t 5 2h, the agreement of the Ek spectra from all

LES methods with the DNS is even better than at the

time of maximum dissipation. The spectral slope is a bit

too steep with DSM, a bit too shallow with CDS4, and

somewhere in between with ALDM, with the modified

version of ALDM slightly outperforming the original

ALDM. The Ep spectrum is well predicted by all four

LES methods in the wavelength range lz * 500m. At

smaller scales, the DNS spectrum suddenly falls off,

which is not reproduced with any of the LES methods.

The level of turbulence is already quite low at this time,

so there is a clear difference in the spectra between the

original and modified ALDM, the result with the mod-

ified ALDM agreeing better with the DNS than the

original version.

c. 2.5D simulations

The results of the 2.5D simulations (DNS and LES)

are summarized in Fig. 7. Corresponding to the 3DLESs,

we chose LES grids with high (100 3 80 cells), medium

(243 80 cells), and coarse (243 20 cells) resolution and

performed the sameLES eight times with some low-level

white noise superposed on the initial condition (con-

sisting of the base wave and its leading primary pertur-

bation) and once with no added noise. The results of

these nine realizations were then averaged. The refer-

ence 2.5D DNSs were run at a resolution of 660 3 500

cells (see Fruman et al. 2014). An ensemble of eight

DNSs was used for the calculation of mean values and

standard deviations. For a detailed comparison of 2.5D

and 3D DNS results, see Fruman et al. (2014).

The results obtained with the highest LES resolution

are very close to the DNS reference results (Figs. 7a,b),

almost independent of the LES method used. The best

results, both in terms of wave amplitude and total energy

dissipation, were obtained with ALDM in the standard

formulation. Since the spurious oscillations observed in

some 3D LESs with ALDM did not occur in any of the

2.5D simulations, we do not present any results using the

modified ALDM with b. 0. With DSM, the final wave

amplitude is a bit too low, while the total dissipation rate

matches quite well with the DNS result throughout the

whole simulated period. With pure CDS4, on the other

hand, the final wave amplitude is a little bit too high. The

total dissipation rate has some deviations from the 2.5D

DNSs in some regions. Specifically, there is a peak (in

mean value and variability) after approximately 5.5 h,

which is not present in the 2.5D DNSs but which did

occur in the 3D DNSs.

With a grid coarsened in the xk direction (Figs. 7c,d),

the CDS4 method becomes less reliable. The amplitude

decay is strongly overpredicted, and the variability

among ensemble members is much larger than in the

DNS. With ALDM and DSM, the results are very sim-

ilar: during the first hour, the dissipation is a bit too high,

but this is compensated for later on, and the final wave

amplitude is predicted quite well.

The grid further coarsened in the z direction causes

the CDS4 simulations to quickly break down. The

ALDM and DSM simulations are stable, but the quality

of the result is poor, showing too much total energy

dissipation and wave amplitude decay.

d. Summary of case 1

The unstable IGW is the most complex test case pre-

sented here. It involves multiple breaking events, and the

total time of the breaking is similar to the wave period. It

is thus a challenging test for the LES methods in 3D and

2.5D. In 3D LESs, we obtained good agreement with the

reference DNS using the DSM and ALDM (with

b5 0:01). With the original ALDM (b5 0:0), there are

spurious oscillations in the stable half of the domain that

reduce the overall result quality. The LESs using the

CDS4 method, although utilizing neither explicit nor

implicit numerical viscosity, remain stable throughout all

simulations. A certain pileup of energy close to the grid

cutoff wavenumber is visible in the spectra, but because

of the low overall turbulence level, it is not strong enough

to cause the simulations to diverge.

The 3D and 2.5D LES results depend strongly on the

numerical resolution in the z direction (of the wave

phase), while the resolution in the xk direction has only

minor influence on the results. With a resolution of 80

cells in the z direction, the results are generally in good

agreement with the DNS, while basically all simulations

with a z resolution of only 20 cells deviate strongly from

the reference DNS.

6. Case 2: Stable inertia–gravity wave

a. Three-dimensional DNS

The reference DNS results are taken from

Fruman et al. (2014). They presented simulations
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FIG. 7. Statically unstable IGW (2.5D). Base wave amplitude a and total dissipation rate «t at coarse, medium, and fine LES resolution

compared with a and resolved dissipation rate «m fromDNS. The gray shaded area indicates the standard deviation of eight DNSs, and the

error bars indicate the standard deviation of nine LESs.
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with 7203 963 1024 cells and with 5123 643 768 cells.

To have at least a small ensemble of four members for

comparison, we repeated these simulations (adding

low-level white noise to the velocity components of the

initial condition) running until t 5 1h. The ensemble

average and standard deviation of these four simulations

is shown in Fig. 8.

The breaking of the wave is weaker than in the un-

stable IGW case, and it lasts only for a short period in

time. The initial perturbations grow during the first

minutes and generate some turbulence, which remains

confined to the least stable part of the domain and is

dissipated quickly. The dissipation peak occurs at t 5
11min, and, 30min later, the turbulence has vanished

completely.

b. Three-dimensional LES

The computational domain for the stable inertia–

gravity wave is smaller in the xk and y? directions

than for the unstable wave in case 1. To have approxi-

mately the same cell size for the LESs as for case 1, we

chose an LES grid with 64 3 12 3 80 cells (corre-

sponding to a cell size of 33.0m 3 25.0m 3 37.5m) for

the highest LES resolution. After experimenting with

different coarsening levels in the xk and z directions, we

found the most interesting results with one grid coars-

ened in the xk direction with 16 3 12 3 80 cells and

another coarsened in the z direction with 64 3 12 3 20

cells. With a fully coarsened grid of 16 3 12 3 20 cells,

the model performance was as poor as for case 1. The

initial perturbation energy (Fig. 2b) is well resolved by

the fine LES grid and the grid coarsened in the xk di-

rection but probably insufficiently resolved on the grid

coarsened in the z direction.

We performed LESs using ALDM (b5 0, b5 1022,

and b5 1025), DSM, and CDS4. With the fine LES grid,

the DSM and CDS4 results agree well with the DNS in

terms of base wave amplitude (Fig. 8a) and total dissi-

pation rate (Fig. 8b). The original ALDM introduces

spurious oscillations in the buoyancy and, consequently,

also in the velocity field, as in case 1. These oscillations

manifest themselves in strong fluctuations of the total

dissipation rate, and the wave amplitude decays a little

bit too strongly. The modified ALDM with additional

damping (b5 1022) avoids these spurious oscillations at

the cost of a too-high energy dissipation rate after the

breaking event when the flow has become almost lami-

nar. The results do not strongly depend on the exact

value of b. For b5 1025, we obtain a very similar result

as for b5 1022; only the dissipation rate of the laminar

wave is slightly smaller. If the value of b is further

decreased, a similar solution as with the unmodified

ALDM is obtained.We could not find a value that yields

low dissipation and suppresses oscillations at the

same time.

With the grid coarsened in the xk direction (Figs. 8c,d),

the DSM and CDS4 results do not differ very much

from those with the fine grid. In both cases, the single

dissipation peak has become multiple peaks, but the

total dissipation during the breaking event remains ap-

proximately the same. With the original ALDM, the

spurious oscillations are weaker than with the fine grid

but still apparent. As with the fine grid, ALDM with

additional damping eliminates these oscillations. With

b5 1022, the dissipation rate is again slightly too high,

resulting in a too-rapid amplitude decay, but, with

b5 1025, the result agrees very well with the DNS and

with the LESs using DSM and CDS4.

If the grid is not coarsened in the xk direction but in

the direction of the base wave z (Figs. 8e,f), all LES

methods fail to predict the wave amplitude and dissi-

pation rate correctly. This is consistent with the findings

for case 1 (unstable IGW). Especially with ALDM, the

dissipation rates are far too high. With DSM and CDS4,

the shape of the dissipation peak is not predicted cor-

rectly, and the partial recovery of the base wave am-

plitude in the last phase of the breaking is too weak, so

the predicted final wave amplitude after the breaking is

too low, although the dissipation rate in the relami-

narized wave is overpredicted only slightly.

c. 2.5D simulations

The results of the 2.5D simulations (DNS and LES)

are summarized in Fig. 9. As for the 3D LESs, we chose

LES grids with high resolution (64 3 80 cells) and grids

coarsened in the xk direction (16 3 80 cells) and in the

z direction (64 3 20 cells), and we performed the same

LES eight times with some low-level white noise su-

perposed on the initial condition (consisting of the base

wave and its leading primary perturbation) and once

with no added noise. The results of these nine realizations

were then averaged. The reference 2.5D DNSs were run

at a resolution of 3503 55 cells. An ensemble of sixDNSs

was used for the calculation of mean values and standard

deviations. For a detailed comparison of 2.5D and 3D

DNS results, see Fruman et al. (2014).

The matching of the simulation results is very similar

to the 3D cases. With the highest resolution (64 3 80

cells), the agreement is almost perfect, independent of

the LES method used. With the grid coarsened in the xk
direction (163 80 cells) there are some small deviations

from the DNS, but the overall agreement is still good,

except that, with ALDM, the dissipation and amplitude

decay at the end of the simulation are a bit too high.

With the grid coarsened in the z direction (643 20 cells),

the results are equally wrong with all three LES
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FIG. 8. Statically stable IGW (3D). Base wave amplitude a and total dissipation rate «t at three different LES resolutions. The gray shaded

area indicates the standard deviation of five DNSs, and the error bars indicate the standard deviation of nine LESs.
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FIG. 9. Statically stable IGW (2.5D). Base wave amplitude a and total dissipation rate «t at three different LES resolutions compared

with a and resolved dissipation rate «m from DNS. The gray shaded area indicates the standard deviation of six DNSs, and the error bars

indicate the standard deviation of nine LESs.
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methods. The dissipation and amplitude decay are

strongly overpredicted during the whole simulation.

d. Summary of case 2

The breaking of the stable IGW is weak and lasts only

for a fraction of the wave period. Both in 3D and in 2.5D

LESs, we obtained good agreement with the reference

DNSs as long as we chose a comparatively high resolu-

tion in the z direction, while the results were not much

affected by choosing a low resolution in the xk direction.
Since the 2.5D DNSs were sufficient for estimating the

breaking duration and intensity (see Fruman et al. 2014),

LESs with only 16 3 80 5 1280 cells are thus sufficient

for computing the basic characteristics of the wave

breaking. Good LES results were obtained without any

SGS parameterization and with DSM.

7. Case 3: Unstable high-frequency gravity wave

a. Three-dimensional DNS

Fruman et al. (2014) simulated the case of a breaking

unstable HGW on grids with 15363 cells, 7683 cells, and

3843 cells. They found no notable differences between

the two highest resolutions. We added another two

simulations with 7683 cells and 3843 cells and averaged

the results of these five DNSs. The results are presented

in Fig. 10.

The wave breaking is much more intense than in both

IGW cases. The generation of turbulence starts imme-

diately after the initialization in the unstable part of the

wave and is quickly advected also into the stable part

because of the high phase velocity of the wave. At the

time ofmaximumenergy dissipation (around t5 15min)

turbulence is distributed almost homogeneously in the

whole domain. The nondimensional wave amplitude

rapidly decreases from an initial value of a 5 1.2 to

a ’ 0.3 after 30min and does not change significantly

any more after that time. The breaking process is ana-

lyzed in more detail by Fruman et al. (2014).

b. Three-dimensional LES

The domain for the unstable high-frequency gravity

wave case is almost cubic. In a number of LESs with

different resolutions in the horizontal and the vertical

directions, we could not find any indication that differ-

ent resolutions in the different directions make a great

deal of difference. Hence, we present here the results

of three LES grids with coarse (203), medium (403),

and fine (803) resolution (with the fine resolution cor-

responding to a cell size of 36.6m 3 37.5m 3 37.5m).

On the medium and fine grid, the initial perturbation is

resolved almost perfectly (see Fig. 2c), while, on the coarse

grid, there are some slight deviations in the initial per-

turbation energy distribution. We performed LESs on

these grids using ALDM (b5 0 and b5 0:01), DSM,

and CDS4. For all of these cases, we averaged the results

of nine simulations to get an estimate of the ensemble

average and the standard deviations.

With the high LES resolution of 803 cells, the results

are very similar to the DNS (Figs. 10a,b). The base wave

amplitude decay is slightly overpredicted with ALDM

and CDS4, but the amplitude remains almost within the

variations among the DNS ensemble members. The

peak dissipation rate matches well with the DNS in all

cases. With CDS4, the dissipation falls off a bit too

rapidly after the peak.WithmodifiedALDM (b5 0:01),

the dissipation rate is overpredicted during the phases of

weak turbulence (i.e., before and after the peak). Ac-

tually, using the modified version is not necessary for

this simulation, since no physically unlikely oscillations

develop at any time because of the high level of turbu-

lence during most of the simulation.

When the resolution is reduced to 403 cells (Figs. 10c,d),

the main difference is in the CDS4 simulations. The

turbulence during the peak of breaking is too strong, and

the molecular dissipation is not sufficient on the coarse

grid to keep the energy balance. Energy piles up at the

smallest resolved wavenumbers (see the energy spectra

in Fig. 12), and numerical errors lead to an increase of

flow total energy, which eventually also affects the

largest resolved scales and therefore the amplitude of

the base wave. The time of simulation breakdown is

almost the same in all ensemble members. By using the

turbulence parameterization schemes, this instability

can be avoided. The best matching with the DNS results

is obtained with the original ALDM.Only about 10% of

the peak energy dissipation is resolved (see Fig. 11a),

but the sum of resolved molecular and numerical dissi-

pation matches quite well with the DNS result. Also, the

ratio between «k and «p is well reproduced (see

Fig. 11b). The modified ALDM dissipates too much

energy. The DSM predicts a slightly too-high base wave

amplitude after the breaking, and the total dissipation

rate starts oscillating moderately after approximately

60min. The total dissipation rate presented in Fig. 11c is

overpredicted a bit at the peak but matches well with the

DNS before t 5 10min and after t 5 15min.

In Fig. 12, we present the energy spectra of all LESs

with 403 cells compared to the DNS spectra. The CDS4

spectra are wrong, as mentioned above, and the method

fails for this case. TheALDMandDSM spectra are very

close to the DNS reference for wavelengths lz . 400m.

For smaller wavelengths, the spectral energy is slightly

underpredicted, with only very small differences be-

tween ALDM (b5 0:0) and DSM. With ALDM
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FIG. 10. Statically unstable HGW (3D). Base wave amplitude a and total dissipation rate «t at coarse, medium, and fine LES resolution.

The gray shaded area indicates the standard deviation of five DNSs, and the error bars indicate the standard deviation of nine LESs.
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FIG. 11. Statically unstable HGW (3D). Comparison of (a),(c),(e) resolved («m), numerical («n), parameterized («s), and total («t)

dissipation and (b),(d),(f) thermal («p) and total dissipation during the first breaking event (DNS: single simulation; LES: ensemble

averages).
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FIG. 12. Statically unstable HGW (3D). Distributions of total, kinetic, and potential energy over vertical wavelength lz (a),(c),(e) at the

moment of maximum total energy dissipation and (b),(d),(f) at t 5 30min (DNS: single simulation; LES: ensemble averages).
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(b5 0:01), the thermal energy dissipation is over-

predicted; hence, the spectra of potential and total en-

ergy fall off rapidly close to the grid cutoff wavelength.

The results obtained with the coarsest grid, with 203

cells (Figs. 10e,f), are similar to those with the medium

resolution. The simulations with CDS4 break down as a

result of the unbounded growth of numerical errors.

ALDM with b5 0:01 is far too dissipative before and

after the peak of dissipation. The DSM now under-

predicts the final wave amplitude and generates oscil-

lations of total dissipation after the breaking. The closest

match with the DNS is obtained with the original

ALDM, both in terms of base wave amplitude and total

dissipation rate. Also, the variations among ensemble

members are similar to the DNSs. The onset of dissi-

pation is, in all LESs, a little bit earlier than in theDNSs.

This is consistent with our observations in case 1.

c. 2.5D simulations

The results of the 2.5D simulations (DNS and LES)

are summarized in Fig. 13. LES grids with high (802

cells), medium (402 cells), and coarse resolution (202

cells) were used. The same LESs were performed eight

times with some low-level white noise superposed on the

initial condition (consisting of the base wave and its

leading primary perturbation) and once with no added

noise. The results of these nine realizations were then

averaged. The reference 2.5D DNSs were run at a res-

olution of 5003 500 cells. An ensemble of six DNSs was

used for the calculation of mean values and standard

deviations.

With the highest resolution (802 cells), the results in

terms of wave amplitude and total dissipation rate are in

very close agreement with the reference DNSs. Only for

CDS4 is the dissipation rate a bit too low during the

period of decreasing dissipation.

At the medium resolution (402 cells), the DSM and

ALDM results are very similar and still in good agree-

ment with the DNSs. The dissipation peak is slightly

shifted to earlier times according to the dissipation act-

ing at larger wavenumbers and the hence reduced time

required for flow energy to reach this range. CDS4,

however, predicts the wrong evolution of the wave am-

plitude and dissipation rate and cannot be recom-

mended for this resolution.

At the coarsest resolution (202 cells), ALDM and

DSM still do a very good job in predicting the amplitude

decay and the dissipation maximum. The dissipation

peak is further shifted forward in time because of the

reduced time the flow energy needs to move through the

spectrum. In the CDS4 simulation, however, the dissi-

pation rate becomes negative after approximately

20min, and, hence, the predicted flow field is completely

wrong, although the simulations remain stable in a nu-

merical sense during the whole simulated period.

d. Summary of case 3

The unstableHGW involves much stronger turbulence

than the IGW cases, and thus the buoyancy forces are

weaker compared to the acceleration associated with

turbulent motions. The original ALDM and the DSM

thus do an excellent job in predicting the dissipation rates

and the wave amplitude decay over time, even at a very

coarse resolution with a cell size of aboutD5 150m, both

in 3D and 2.5D simulations. According to Fruman et al.

(2014), the 3D and the 2.5D solutions are similar in this

case. We conclude that for a proper estimation of the key

parameters of breaking time, maximum dissipation, and

amplitude decay, only a 2.5D simulation with 202 5 400

cells is necessary if ALDM or DSM is applied.

8. Conclusions

We scrutinized different methods of large-eddy simu-

lation for three cases of breaking monochromatic gravity

waves. The methods tested included the following: the

adaptive local deconvolutionmethod (ALDM), an implicit

turbulence parameterization; the dynamic Smagorinsky

method (DSM); and a plain fourth-order central dis-

cretization without any turbulence parameterization

(CDS4). The test cases have been carefully designed and

set up by Remmler et al. (2013) and Fruman et al. (2014)

based on the primary and secondary instability modes of

the base waves and included an unstable and a stable

inertia–gravity wave, as well as an unstable high-

frequency gravity wave. All simulations presented were

run in 2.5D and 3D domains, and, for all simulations, a

small ensemble of simulations starting from slightly dif-

ferent initial conditions was performed in order to assess

the sensitivity and robustness of the results.

The original ALDM leads to spurious oscillations of

the buoyancy field in some 3D simulations, where the

velocity field is very smooth for a long time. We thus

developed a modified version of the ALDM flux func-

tion. The modification led to a significant reduction of

the oscillations but also increased the overall energy

dissipation.

For all three test cases, we started at an LES resolu-

tion of 80 cells per wavelength of the original wave and

gradually reduced the resolution in all three directions.

The inertia–gravity wave cases, in which the wave vector

almost coincides with the vertical direction, were very

sensitive to the resolution in the direction of the wave

vector, while the resolution in the other directions could

be strongly reduced without amassive negative effect on

the overall results.
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FIG. 13. Statically unstableHGW(2.5D). Base wave amplitude a and total dissipation rate «t at coarse, medium, and fine LES resolution

compared with a and resolved dissipation rate «m from DNS. The gray shaded area indicates the standard deviation of six DNSs, and the

error bars indicate the standard deviation of nine LESs.
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We found that results obtained with ALDM and DSM

are generally in good agreement with the reference direct

numerical simulations as long as the resolution in the di-

rection of the wave vector is sufficiently high. The CDS4

simulations, without turbulence parameterization, are only

successful if the resolution is high and the level of turbu-

lence comparatively low. In cases with low turbulence in-

tensity and a smooth velocity field for long time periods

(unstable and stable IGW) ALDM generated spurious

oscillations in the buoyancy field, which we could avoid by

using the modified numerical flux function. However, this

was not necessary in the case with a high turbulence level

(unstable HGW) and in all 2.5D simulations.

Our results back the findings of Remmler and Hickel

(2012, 2013, 2014), who showed that both DSM and

ALDM are suitable tools for the simulation of homoge-

neous stratified turbulence. Applying the same methods

to gravity wave breaking, where turbulence is spatially

inhomogeneous and intermittent in time, reveals that

DSM is, in some cases, more robust than ALDM, al-

though ALDM provides a better approximation of the

spectral eddy viscosity and diffusivity in homogeneous

stratified turbulence (Remmler and Hickel 2014).

In all simulations, we observed that the peak of dis-

sipation occurs earlier in simulations with coarser com-

putational grids. This is more pronounced in 2.5D LESs

but also apparent in 3D LESs. We explain this time

difference by the time required for flow energy to move

from the smallest resolved wavenumbers in an LES to

the dissipative scales in a DNS. Among the tested LES

methods, there is no method that can account for this

time lag. However, the large-scale flow and the maxi-

mum dissipation can still be predicted correctly.

Fruman et al. (2014) have shown that, in some cases,

2.5D simulations can be sufficient to get a good estimate

of the energy dissipation during a breaking event. We

showed that, with ALDM and DSM, reliable results can

be obtained in 2.5D simulations with fewer than 2000

computational cells. Such inexpensive simulations will

allow for the running of large numbers of simulations in

order to study the influence of various parameters on

wave breaking, such as stratification, wavelength, am-

plitude, propagation angle, and viscosity. A possible

automated approach would involve computing the

growth rates of perturbations of the original waves,

setting up an ensemble of 2.5D LESs initialized by the

base wave and its leading primary perturbation, and

extracting key data from the LES results, such as the

maximum energy dissipation, the amplitude decay, and

the duration of the breaking event. Another potential

application of our findings is the (2.5D or 3D) simulation

of wave packets in the atmosphere, which is computa-

tionally feasible only if small-scale turbulence remains

unresolved and is treated by a reliable subgrid-scale

parameterization, such as ALDM or DSM.
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