Probabilistic Pose Estimation using Mixtures of Projected Gaussians

Matched Pair
- **Database Feature**
 - key point & descriptor in 2D
 - 3D position
 - 3D orientation
- **Camera Feature**
 - rotation in image plane
 - RGB-D camera: 3D position

Strength Evaluation
- radius match:
 - similarity of matched features
 \[\lambda \in (0, 1) \]
 - matching strength committed to pose estimation

Stability Evaluation
- **Goal**
 - feature stabilization
 - outsorting of outliers
- **Kalman Filter**
 - pose and variance estimation: impact in pose estimation
 - variance respective appearance rate

Input:
- strong and stable matched feature pairs

Sensor Model
- **ideal world**
 - 6D feature pose determined & matching 6D feature in database
 \[\Rightarrow \text{object pose} \]
- **real world**
 - camera data only provides uncertain feature pose information
 \[\Rightarrow \text{information fusion of several matched pairs necessary} \]

Probability Density over 6D Poses in
- desired mixtures of Gaussians, but only for translation possible
- rotation on unit sphere \(S^3 \)
- Gaussians on tangent space

Parameterization of 6D Pose
- **3D rotation**
 - unit quaternion \(q = a + b \mathbf{i} + c \mathbf{j} + d \mathbf{k} \) with \(a^2 + b^2 + c^2 + d^2 = 1 \)
- **3D translation**
 - imaginary quat. \(q_i = 0 + b \mathbf{i} + c \mathbf{j} + d \mathbf{k} \) translation vector
- **6D rigid motion**
 - dual quaternion \(q_d = q + \frac{1}{2} \mathbf{v} \) with \(\mathbf{v}^2 = 0 \)

Mixture of Projected Gaussians
- **definition**
 \[M = (1 - \lambda)u + \sum_{i} \lambda \text{PG}_i \]
 - unit distribution \(u \) for background noise
- **fusion**
 - similar to fusion of Mixtures of Gaussians
- **composition**
 - used to change coordinate systems
- **element reduction**
 - merge similar elements, drop elements with negligible weights

Output:
- probability distribution describing object pose

Features
- **SENSOR MODEL**
 - input:
 - strong and stable matched feature pairs
 - parameterization of 6D pose:
 - 3D rotation
 - 3D translation
 - 6D rigid motion
 - mixture of projected Gaussians:
 - definition
 - fusion
 - composition
 - element reduction

Results
- probability distribution describing object pose

Benefits for Perception
- representation of weak pose information
- efficient calculation
- open to various feature types: surface / object shape features
- allows for forward inference

Selected publications:
- M. Lang, W. Feiten, "MPG - Fast Forward Reasoning on 6 DOF Pose Uncertainty", Inproceedings ROBOTIK 2012
- W. Feiten et al., "6D Pose Uncertainty in Robotic Perception", Advances in Robotics Research, Springer Berlin Heidelberg, 2009