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Abstract: The paper deals with the robust energy-based stabilization of a wheeled inverted
pendulum, which is an underactuated, unstable mechanical system subject to nonholonomic
constraints. The equilibrium to be stabilized is characterized by the length of the driven path,
the orientation, and the pitch angle. We use the method of Controlled Lagrangians which is
applied in a systematic way, and is very intuitive, for it is physically motivated. After a detailed
presentation of the model under nonholonomic constraints, we provide an elegant solution of
the matching equations for kinetic and potential energy shaping for the considered systems.
Simulations show the applicability and robustness of the method.
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1. INTRODUCTION

The wheeled inverted pendulum (WIP) – and its commer-
cial version, the Segway [2015, Jan] – has gained inter-
est for human assistance and transportation in the past
several years due to its high maneuverability and simple
construction (see, e. g., Li et al. [2013]). A WIP – shown
from the side in Figure 1 (left) – consists of a vertical body
with two coaxial driven wheels mounted on the body. The
actuation of both wheels in the same direction generates
a forward (or backward) motion; opposite wheel velocities
lead to a turning motion around the vertical axis. Mobile
robotic systems based on the WIP like the intelligent two
wheeled road vehicle B2 presented by Baloh and Parent
[2003], or novel and more car-like systems like the Segway
Puma [2015, Jan] are being developed to be used as new
personal urban transportation systems. Some institutes
have also developed their own WIPs for research purposes,
e. g., Yamabico Kurara, introduced by Ha and Yuta [1996],
or JOE, presented by Grasser et al. [2002], to give only
some examples. These systems can be further used as
service robots like KOBOKER (see Lee and Jung [2011]).

The stabilization and tracking control for the WIP is
challenging: The system belongs to the class of underac-
tuated mechanical systems, since the number of control
inputs is less than the number of degrees of freedom.
Furthermore, the upward position of the body represents
an unstable equilibrium which needs to be stabilized by
feedback. In addition, the system motion is restricted by
nonholonomic (nonintegrable) constraints (Bloch [2003]).
These constraints do not restrict the configuration space
Q̃ on which the dynamics evolve, but the motion direction
at a given point: Because of the rolling-without-slipping
constraint it is not possible to move sideways, and the
forward velocity of the WIP and its yaw rate are directly
given by the angular velocity of the wheels. The goal of
this paper is to present the design of a robust nonlinear

position controller using energy shaping techniques for
wheeled inverted pendulum systems.

1.1 Existing work

Several control laws have been applied to the WIP, mostly
using linearized models (see Li et al. [2013], Ha and Yuta
[1996], Grasser et al. [2002]). During the last decade, how-
ever, researchers have put a strong focus on the nonlinear
model for control purposes: Some accessibility and con-
trollability analysis of the WIP has been done by Pathak
et al. [2005] and Nasrallah et al. [2007]. Based on the
analysis of the nonlinear system, nonlinear control strate-
gies have been developed for Segway-like systems. Pathak
et al. [2005] present, e. g., two different two-level controllers
based on the partially feedback linearized model for posi-
tion and velocity control while maintaining stable pitch
dynamics; Nasrallah et al. [2007] design in several steps
a posture and velocity control for the WIP moving on an
inclined plane. Many other types of modeling and control
approaches have also been implemented and tested: For a
very complete overview of the existing work on modeling
and control of WIPs until 2012 the reader is referred to
Chan et al. [2013].

Energy shaping techniques, like the method of Controlled
Lagrangians, or Interconnection and Damping Assignment
Passivity-Based Control (IDA-PBC), have been success-
fully used for the stabilization of underactuated mecha-
nical systems in the past, see, e. g., Ortega et al. [2002],
Chang et al. [2002]. These methods are attractive since
they shape the energy of the system but preserve its
physical structure, and thus, appear natural. The idea of
shaping the energy can also be expanded to mechanical
systems subject to nonholonomic constraints: Maschke and
Van der Schaft [1994] stabilize nonholonomic systems by
shaping the potential energy. Muralidharan et al. [2009]
stabilize the pitch dynamics of the WIP through IDA-
PBC.



Nonholonomic systems violate one of the necessary condi-
tions for asymptotic stabilization by smooth state feedback
formulated by Brockett [1983]. Thus, for the asymptotic

stabilization of a desired configuration q∈Q̃, a discontinu-
ous or time-varying control law is required (Astolfi [1996]).
In this paper, to avoid this issue, instead of working in the
WIPs six-dimensional configuration space Q̃, we restrict
our analysis to the three dimensional space Q with local
coordinates consisting of the path length, the pitch, and
the yawing angle: ξ = [s α θ]T ∈Q. The pitch angle is phys-
ically restricted to −π/2<α< π/2. We design a passivity-
based controller for the stabilization of an equilibrium
ξ∗ ∈ Q. The controller is thereafter parametrized apply-
ing local linear dynamics assignment (LLDA), a method
used to fix design parameters in nonlinear passivity based
control by making use of the linearized model (Kotyczka
[2013]). Using this approach, prescribed local dynamics (in
terms of the closed-loop eigenvalues) can be achieved.

The passivity-based controller presented in this note can
be systematically computed and leads to an asymptotically
stable equilibrium ξ∗ ∈ Q with a large domain of attrac-
tion. Since the closed-loop mechanical energy is used as
Lyapunov function, the framework is remarkably intuitive
for it is physically motivated. Moreover, LLDA allows
for transparency concerning parameter tuning. The ap-
plicability, performance, and robustness of the developed
controller is shown with a series of simulations.

Notation: For compactness of notation, the operator
∇xf(x) is used to denote the transposed Jacobian of a
vector-valued function f(x). Additionally, we will use the
notation s(α) = sinα, and c(α) = cosα. When obvious
from the context, arguments are omitted for simplicity.

2. MODELING

In a mechanical system with nonholonomic constraints,
the n-dimensional manifold Q̃ is the configuration space,
its tangent bundle T Q̃ is the velocity phase space and a
smooth (nonintegrable) distribution D ⊂ T Q̃ represents

the constraints. The Lagrangian L is a map L : T Q̃ → R

and is defined as the kinetic energy minus the potential
energy L = T − V . A curve q(t) is said to satisfy the

constraints if q̇(t) ∈ Dq, for all q ∈ Q̃ and all times t.
For k nonholonomic constraints, the admissible velocities
in a point q are thus restricted to a (n−k)-dimensional

subset (Dq
∼= R

n−k) of the tangent space TqQ̃. The
constraint distribution D is assumed to be regular, i. e.,
of constant rank. The widely used Lagrange-d’Alembert
equations (see, e. g., Bloch [2003])

d

dt
(∇q̇L)−∇qL = A(q)λ+

∑

Fext (1)

describe the dynamics of systems subject to k nonholo-
nomic (Pfaffian) constraints of the form

AT (q)q̇ = 0. (2)

Assuming there are no external forces other than the input
torques τ̃ , (1) results in

M̃(q)q̈ + C̃(q, q̇)q̇ +∇qV (q) = τ̃ +A(q)λ, (3)

where M̃ = M̃T is the positive definite mass matrix, and
the term C̃q̇ represents the Coriolis and centripetal forces.

The constraints have been adjoined to the system using
Lagrange multipliers λ∈R

k that represent the magnitude
of the constraint forces which oblige the system to satisfy
the constraints. The work done by these forces vanishes as
can be seen by looking at the corresponding power

Pconstr = q̇TAλ = λTAT q̇ = 0. (4)

The approach, as explained in the following, is also used,
e. g., by Pathak et al. [2005] for the modeling of the WIP:
Due to the nonholonomic constraints (2), the admissible

velocities at q ∈ Q̃ must be of the form

q̇ = S(q)ν, (5)

with a smooth full rank matrix S satisfying ATS = 0 for
all q∈Q̃, and local coordinates of the constrained tangent
space ν ∈ Dq. The admissible velocities at q lie in the

subspace of TqQ̃ spanned by the columns of S, which is
nothing but the (n−k)-dimensional space Dq. Now, replace

q̇ = Sν and q̈ = Sν̇ + Ṡν in (3), and eliminate the
constraints by pre-multiplying it by ST

ST M̃Sν̇ + ST
(

M̃Ṡ + C̃S
)

ν + ST∇qV = ST τ̃ . (6)

The dynamical system represented by (6) can also be
written in the form

M̂ ν̇ + Ĉν + ST∇qV = τ̂ + Ĵν, (7)

where M̂ = ST M̃S, and τ̂ = ST τ̃ . Since the matrix
Ĉ is solely defined by the Christoffel symbols of M̂ , the
matching of the systems (6) and (7) requires, in general,

additional gyroscopic forces Ĵν, where Ĵ = −ĴT , which
are mistakently missing in Muralidharan et al. [2009] for
imposing the constraints before taking variations in the
derivation of the equations of motion (see Bloch [2003]).

2.1 The wheeled inverted pendulum (WIP)

Different modeling approaches for WIPs can be found,
e. g., in Pathak et al. [2005], Delgado et al. [2015], Nas-
rallah et al. [2007]. The dynamic parameters needed for
the modeling of the WIP are listed below in Table 1
with the values used for the simulations. Figure 1 shows

mB body mass 1 kg
mW wheel mass 0.5 kg
r wheel radius 0.05m
b distance from the wheel axis to

the body’s center of mass 0.08m
d half of the wheel distance 0.05m
IB body’s moment of inertia

IBxx
around x-axis 1e-5 kgm2

IByy
around y-axis 9e-4 kgm2

IBzz
around z-axis 4e-4 kgm2

IW wheel’s moment of inertia
IWyy

around y-axis 1e-8 kgm2

IWzz
around z-axis 1e-6 kgm2

g gravity constant 10m/s2

Table 1. System parameters

a simple scheme of the wheeled inverted pendulum. Let
Q̃ = R

2×S
1×S

1×S
1×S

1 be the configuration space and
define local coordinates q = (x, y, θ, α, ϕl, ϕr) ∈ Q̃. The
coordinates ϕl and ϕr represent the absolute rotation of
the left and right wheel, respectively. The equations



wheels

body

yaw angle

plane

α

α

θ
x y

z
r, mw, IW

mB, IB, b

2d

Fig. 1. The wheeled inverted pendulum

AT q̇ =

[

− s(θ) c(θ) 0 0 0 0
c(θ) s(θ) d 0 −r 0
c(θ) s(θ) −d 0 0 −r

]

q̇ = 0 (8)

represent the rolling-without-slipping constraints of the
wheels. The velocities in a specific configuration q ∈ Q̃
are thus restricted to

q̇ = Sν =















c(θ) 0 0
s(θ) 0 0
0 0 1
0 1 0
1/r 0 d/r
1/r 0 −d/r



















v
α̇

θ̇



 , (9)

where v is the forward velocity of the WIP. With this
matrix S, the equations of motion are of the form (7) with

M̂ =

[

c1 c2 c(α) 0
c2 c(α) c3 0

0 0 Iθ(α)

]

, ST∇qV =

[

0
−c2g s(α)

0

]

,

τ̂ =

[

1/r(τr + τl)
−τr − τl

d/r(τr − τl)

]

, Ĵ =





0 0 c2 θ̇ s(α)
0 0 0

−c2 θ̇ s(α) 0 0



, (10)

where
Iθ(α) = c4 s

2(α) + c5,

and

c1 = mB + 2mW + 2
IWyy

r2
, c2 = mBb,

c3 = mBb
2 + IByy

, c4 = IBxx
+mBb

2 − IBzz
,

c5 = IBzz
+ 2

IWyy
d2

r2
+ 2mWd2 + 2IWzz

.

The n−k equations of motion (7) together with the recon-
struction equation (9) describe the motion of the WIP in
the space (q, ν). For a simpler analysis and control synthe-

sis, define reduced local coordinates ξ = [s α θ]T ∈Q⊂Q̃,

such that 1 ξ̇ = ν. In the remaining of the paper we will
restrict the analysis to the configuration space Q. This is
possible, since ST∇qV = ∇ξV , for the potential forces act
directly on the admissible space D.

2.2 Input and feedback transformation

The control inputs are the motor torques on the right and
on the left wheel, τr and τl, respectively. These inputs
can, however, be transformed into more natural quantities
for the control of the WIP. Apply the following input
transformation

1 The variable s defines the path length.

u1 = τr + τl

u2 =
d

r
(τr − τl), (11)

such that the new inputs u1 and u2 represent the resulting
torque for the forward and the turning motion, respec-
tively. The input vector can then be written as

τ̂ = Gu =

[

1/r 0
−1 0
0 1

]

[

u1

u2

]

. (12)

In order to obtain a model of the WIP suitable for energy-
based control it is helpful to feedback linearize the yawing
dynamics, for the terms involved in the computation get
simpler. Choose

u1 = w1,

u2 = Iθ(α)w2 + 2c4α̇θ̇ s(α) c(α) + c2vθ̇ s(α)

to get finally the simplified model

Mν̇ + (C − J)ν +∇ξV = Gw, (13)

used for controller design. Here, the corresponding matri-
ces and vectors are

M =

[

c1 c2 c(α) 0
c2 c(α) c3 0

0 0 1

]

, ∇ξV =

[

0
−c2 g s(α)

0

]

,

G =

[

1/r 0
−1 0
0 1

]

, C − J =





0 −c2 α̇ s(α) −c2 θ̇ s(α)

0 0 −c4 θ̇ s(α) c(α)
0 0 0



.

(14)
Note that the yawing dynamics is not completely decou-
pled, since a turning motion still affects the pitch and
forward motion.

3. ENERGY-BASED CONTROLLER DESIGN

This section presents the methodology for the design of the
energy-based controller. Since the procedures IDA-PBC
and Controlled Lagrangians are equivalent (see Blanken-
stein et al. [2002], Chang et al. [2002]), the following con-
troller design can be done in both frameworks analogously.
We will put the focus on the Lagrangian case, for velocities
are more intuitive than momenta.

As stated in the introduction, the objective is to design
in a systematical way a controller which stabilizes an
admissible equilibrium ξ∗ ∈Q in the reduced space 2 . An
equilibrium is called admissible if G⊥∇ξV |

ξ∗
= 0, where

V is the potential energy of the uncontrolled system. We
formulate the conditions for the desired closed-loop equi-
librium ξ∗ to be (asymptotically) stable. The closed-loop
system is parametrized using LLDA to achieve prescribed
local dynamics in terms of the closed-loop eigenvalues.

3.1 Matching equations

The goal of the Controlled Lagrangians procedure is to
transform (13) by static state feedback w = w(ξ, ν) into a
Lagrangian closed-loop system. Let

Lc(ξ, ν) =
1

2
νTMc(ξ)ν − Vc(ξ) (15)

2 A given configuration q∗ ∈ Q̃ in the original configuration space
cannot be asymptotically stabilized using the energy-based controller
since Brockett’s necessary condition for asymptotic stabilization is
not met, in which case only convergence to a (non-intuitive) invariant
set can be shown.



be the desired closed-loop Lagrangian with mass matrix
Mc(ξ) = MT

c (ξ) and potential energy Vc(ξ), and let us
consider the Euler-Lagrange equations of motion for the
target system with dissipation (and additional gyroscopic
forces 3 Chang et al. [2002])

d

dt
(∇νLc)−∇ξLc = (Jc −Rc)ν. (16)

The target system dynamics evolving on Q can be rewrit-
ten as

Mcν̇ + Ccν +∇ξVc = (Jc −Rc)ν, (17)

or equivalently

ν̇ = −M−1

c Ccν −M−1

c ∇Vc +M−1

c (Jc −Rc)ν, (18)

where the matrix Jc = Jc(ξ, ν) (linear in ν) is skew
symmetric, and the closed-loop damping matrix Rc(ξ) is
symmetric.

Proposition 1. The equilibrium (ξ∗, 0) of the system (17)
is stable if Mc(ξ) > 0 in a neighborhood Ω of ξ∗,
Vc(ξ) has a strict minimum at ξ∗, and Rc ≥ 0 in Ω.
The equilibrium is asymptotically stable if the system is
pervasively damped.

Proof. Consider the closed-loop mechanical-type energy
as Lyapunov function

Ec =
1

2
νTMcν + Vc. (19)

The time derivative of Ec along the trajectories of (17) is

Ėc = −νTRcν, (20)

where it has been used the fact that Ṁc = Cc + CT
c .

Stability of the equilibrium is shown for Rc ≥ 0. If the
damping is pervasive, the largest invariant set under the
closed-loop dynamics (17) contained in

{

(ξ, ν) ∈ Q×R
3 | Ėc = 0

}

(21)

equals the equilibrium (ξ∗, 0). Asymptotic stability follows
from La Salle’s invariance principle. An estimate of the
domain of attraction is given by the largest bounded level
set of Ec in Ω.

In order to formulate conditions, under which it is possible
to match both, the system (13) and the desired Euler-
Lagrange system (17), first replace the target dynamics
(18) in the systems equations of motion (13) to get

−MM−1

c Ccν −MM−1

c ∇ξVc +MM−1

c (Jc −Rc)ν

+ (C − J)ν +∇ξV = Gw. (22)

We require to find an input w, which solves (22), for
the closed-loop system to take the desired form (17).
Splitting the equations in terms of the dependency on
the velocities ν leads to the matching equations of the
potential (independent from ν) and kinetic (quadratic in
ν) energy, and of the dissipation, which consists of the
terms linear in ν. The resulting set of equations

−MM−1

c (Cc − Jc)ν + (C − J)ν = Gwke, (23a)

−MM−1

c ∇ξVc +∇ξV = Gwpe, (23b)

−MM−1

c Rcν = Gwdi, (23c)

determines the components of the control law

w = wke + wpe + wdi (24)

related to the shaping of the kinetic and potential energy,
and to damping injection. In the following we demonstrate
3 The matrix Jc serves as additional design parameter.

how to solve the three matching equations independently,
which is sufficient to satisfy (22).

3.2 Shaping the kinetic energy

One can show that the upward equilibrium of the WIP
cannot be stabilized simply by shaping the potential
energy, i. e., solving (23b) for an appropriate potential
energy Vc(ξ) and keeping Mc = M . It is thus necessary to
also shape the kinetic energy by solving (23a) for a positive
definite closed-loop matrix Mc 6= M . The skew-symmetric
matrix Jc is free, and thus, a further design parameter.
Assuming that Jc and Cc are linear in the velocities, and
that the kinetic shaping input is of the form

wke = FT (ξ, ν)ν, (25)

with F (ξ, ν) ∈ R
3×2 also linear in the velocities, more

modest sufficient conditions for matching are obtained. We
require

(

−MM−1

c (Cc − Jc) + C − J −GFT
)

ν = 0, (26)

or equivalently, since (26) has to be satisfied for all ν ∈ R
3:

Jc = Cc +McM
−1(J − C +GFT ). (27)

Recalling that Ṁc = CT
c +Cc, the skew symmetry of (27),

Jc + JT
c = 0, can be rewritten as

McM
−1(J−C+GFT )+(J−C+GFT )TM−1Mc+Ṁc = 0.

(28)
The matrix F in (28) is the velocity feedback matrix in
the kinetic energy shaping control law. To extract the
conditions that have to be satisfied independently from
control, we pre-multiply (28) by G⊥MM−1

c and post-
multiply it by M−1

c MGT
⊥
, where G⊥ = [r 1 0] is a full rank

left annihilator of G, i. e., G⊥G = 0. Note that the matrix
equation (28) is symmetric, so is the projected equation

G⊥

(

(J− C)M̄cM +MM̄c(J− C)T
)

GT
⊥
= G⊥M

˙̄McMGT
⊥
.

(29)

Thus, shaping the kinetic energy only requires the solution
M̄c of this differential equation for M̄c = M−1

c . One
possible solution for (29) is

M−1

c =













k1 −
γk3φ1(α) + g

γφ2(α)
0

−
γk3φ1(α) + g

γφ2(α)

k3φ
2

1
(α)

φ2
2
(α)

0

0 0 k2













, (30)

with φ1(α) = c1r + c2 c(α), φ2(α) = c3 + c2r c(α), and
constant positive parameters k1, k2, k3, and γ, which are
chosen such that Mc > 0 in −π/2 < α < π/2. The kinetic
energy shaping control (25) can be now derived by pre-
multiplying (27) by GTMM−1

c

wke = (GTG)−1GT
(

MM−1

c (Jc − Cc) + (C − J)
)

ν. (31)

The matrices Cc and Jc can be easily calculated from
the matrix Mc, and premultiplying (27) by G⊥MM−1

c ,
respectively. The matrix Jc takes the form

Jc =





0 −f2v − f3α̇ 0

f2v + f3α̇ 0 −f1θ̇

0 f1θ̇ 0



 (32)

for some functions 4 fi(ξ).

4 The explicit form of the functions fi(ξ) is omitted for brevity.



3.3 Shaping the potential energy

With the new mass matrix of the closed-loop system Mc,
we can proceed to shape the potential energy by solving
(23b). The corresponding projected matching equation is

G⊥(∇ξV −MM−1

c ∇ξVc) = 0, (33)

which represents a set of linear first order PDEs and can be
easily solved using a computer algebra system. The closed-
loop potential energy takes the form

Vc(ξ) = γ
(

ln(φ1(α))(r
2c1 − c3)− rc2 c(α)

)

+Π1(Φ(s, α)) + Π2(θ), (34)

where Π1(Φ(s, α)) is a free function of the homogeneous
solution

Φ(s, α) = s− rα +
γ

g
(k1 − k3)(c3α+ c2r s(α))

+ 2
c3− c1r

2

√

c2
1
r2− c2

2

arctan

(

(c2− c1r)(1− c(α))
√

c2
1
r2− c2

2
s(α)

)

,

(35)

and Π2(θ) is a free function of θ. Both, Π1 and Π2, need
to be chosen such that Vc(ξ) has an isolated minimum at
ξ = ξ∗. The potential energy shaping control is

wpe = (GTG)−1GT (∇ξV −MM−1

c ∇ξVc). (36)

3.4 Damping injection and control law

To achieve asymptotic stability of the equilibrium (ξ, ν) =
(ξ∗, 0), it is necessary to add (pervasive) damping accord-
ing to Proposition 1, for which we need the solution of
(23c) for a dissipation matrix Rc ≥ 0, such that any
possible system motions elicit energy dissipation. First,
define Rc = McM

−1R̆M−1Mc, such that (23c) becomes

−R̆M−1Mcν = Gwdi. (37)

Choose the damping matrix as R̆ = GKdiG
T , for Kdi =

diag(kd,1, kd,2) > 0. We add damping by choosing

wdi = −KdiG
TM−1Mcν. (38)

Proposition 2. Consider the equations of motion (13).
Assume there is a matrix Mc(ξ) > 0 and a scalar function
Vc(ξ) which verify (29) and (33), where the function Vc is
such that ξ∗ = arg min Vc. Then, the closed-loop system
(13) with input w according to (24), with (31), (36), and
(38), has an (asymptotically) stable equilibrium (ξ, ν) =
(ξ∗, 0) for Kdi > 0.

Proof. The solution of (23) is sufficient to meet the
requirement for matching (22). Since G is not an invertible
matrix, the equations (23) cannot be trivially solved. Pre-
multiplying (23) by the full rank matrix

[

G⊥

GT

]

(39)

splits the matching equations (23) into non-actuated and
fully actuated parts. The fully actuated part leads straight-
forwardly to (24) according to (31), (36), and (38), respec-
tively. The non-actuated part of (23c) is trivially solved

for a damping matrix of the form R̆ = GKdiG
T . The PDE

(33) represents the part of the potential matching equation
which is not dependent on the input. It is clear from (27)
and (28) that the non-actuated part of (23a) is equivalent

to (29). The control law (24) composed of the parts cor-
responding to the potential and kinetic energy shaping,
and the damping injection, renders (13) the closed-loop
Lagrangian system (17). Stability of the desired equilib-
rium (ξ∗, 0) follows from Proposition 1, since Mc(ξ) > 0,
ξ∗ = arg minVc, and Rc ≥ 0. Asymptotic stability can be
shown invoking La Salle’s invariance principle.

3.5 Some remarks on the parameter choice

Since the yawing dynamics of the closed-loop system (17)
is fully actuated, it can be parametrized independently and
arbitrarily. Choose, e. g., the function

Π2(θ) =
1

2
kp(θ − θ∗)2, kp > 0. (40)

The resulting closed-loop yawing dynamics are of the form

k2θ̈ = −kp(θ − θ∗)− kd,2θ̇ + f1(ξ)θ̇α̇, (41)

where the term quadratic in the velocities arises from
(32). The closed-loop yawing dynamics (41) can be
parametrized similar to a PD-controller by the choice of
k2, kp, and kd,2 to achieve desired local behavior. For
the parametrization of the remaining dynamics we apply
LLDA: The 4 free parameters k1, k3, γ, and kd,1, and the
free function Π1(s, α) are chosen such that the linearized
closed-loop system has desired eigenvalues at the equilib-
rium (ξ∗, 0). The procedure results in an asymptotically
stable closed-loop system with desired local dynamics and
a large domain of attraction.

3.6 Robustness

In order to check the robustness of the controller, let us
consider the plant

(M +∆M)ν̇+(C−J+∆C−∆J)ν+∇ξ(V +∆V ) = Gw,
(42)

where the model uncertainties are denoted by ∆. Using
the controller (24) results in a closed-loop system

(Mc+∆M)ν̇+(Cc−Jc+∆C−∆J)ν+∇ξ(Vc+∆V ) = −Rcν.
(43)

Since the real system is of mechanical nature, the matrix

∆J is skew symmetric, and ˙(∆M) = ∆C + ∆CT holds.
According to Proposition 1, the closed-loop system has an
(asymptotically) stable equilibrium (ξ∗, 0) ifMc+∆M > 0
and Vc +∆V has a strict minimum at ξ∗.

4. SIMULATIONS

The yawing dynamics has been parametrized by the choice
of k2, kp, and kd,2, such that, locally, it has closed-loop
eigenvalues {−1,−6.2}. The remaining parameters k1, k3,
γ, and kd,1, and the function

Π1(Φ(s, α)) =
1

2
µ (Φ(s− s∗, α))

2

are chosen such that the linearized closed-loop system has
eigenvalues {−1,−2,−3,−6}. Figure 2 shows two level sets
of the Lyapunov function Ec in the plane

{

(ξ, ν) ∈ Q×R
3 | ν = 0, θ = 0

}

. (44)

The level set of interest is limited by the pitch angle
|α| < π/2. The simulations have been run for the initial
condition α0 = 1.5 rad, θ0 = 2 rad and s0 = ṡ0 = α̇0 =
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Fig. 2. Level sets of Ec for θ = 0, ν = 0.

θ̇0 = 0, and for s∗ = 1m. For the disturbed model we
have chosen matrices M̂ and Ĉ in (10) to be 1.5 times the
nominal value. The simulation results are shown below in
Figure 3 and Figure 4.
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Fig. 3. Response of the path length s for the nominal
(solid) and the disturbed model (dashdotted).
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5. FURTHER WORK

The methodology presented here can be extended to
the speed control without any further computations as
shown in an extended version of this paper submitted
to Automatica. Further, the stabilization of the position
given by the cartesian coordinates x and y has been solved
by other authors applying a coordinate transformation.We
plan to redesign our approach to achieve that task.
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