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Abstract

Discrete non-abelian flavour symmetries are attractive candidates for a solution to the flavour
problem of the Standard Model. After an introduction to finite group theory and the flavour
problem, conditions for such symmetries to be anomaly free are presented. In flavour
models with discrete non-abelian symmetries, there are corrections to the kinetic terms of
matter fields which change their mixing structure. The resulting effects on neutrino mixing
are computed and shown to be non-negligible. In order to build models in which a discrete
group is obtained from the spontaneous breaking of a continuous group, the corresponding
branching rules must be known. It is shown how to derive these rules for the decomposition
of representations of the compact classical Lie groups into representations of arbitrary
finite subgroups. Furthermore, the definition of proper physical CP transformations in the
presence of discrete non-abelian symmetries is investigated in detail, and the connection of
CP to class-inverting automorphisms is derived. It is thereby shown that some groups do
not, in general, allow for the definition of a consistent CP transformation.

Zusammenfassung

Diskrete nichtabelsche Flavoursymmetrien sind attraktive Kandidaten für die Lösung des
Flavourproblems des Standardmodells. Nach einer Einführung in die Theorie endlicher
Gruppen und in das Flavourproblem werden Bedingungen dafür aufgestellt, dass solche
Symmetrien anomaliefrei sind. In Flavourmodellen mit diskreten nichtabelschen Sym-
metrien treten Korrekturen zu den kinetischen Termen der Materiefelder auf, die deren
Mischungsstruktur ändern. Die Auswirkungen der Korrekturen auf die Neutrinomischung
werden berechnet und es wird gezeigt, dass diese nicht vernachlässigbar sind. Zur Auf-
stellung von Modellen, in denen eine diskrete Gruppe durch spontane Brechung einer
kontinuierlichen Gruppe erzeugt wird, müssen die entsprechenden Verzweigungsregeln
bekannt sein. Es wird gezeigt, wie diese Regeln für die Zerlegung von Darstellungen der
kompakten klassischen Liegruppen in Darstellungen beliebiger endlicher Untergruppen
berechnet werden können. Darüber hinaus wird die Definition von physikalischen CP-Trans-
formationen in Modellen mit diskreten nichtabelschen Symmetrien detailliert untersucht
und die Verbindung von CP zu klasseninvertierenden Automorphismen hergeleitet. Dabei
wird gezeigt, dass es für einige Gruppen im Allgemeinen nicht möglich ist, eine konsistente
CP-Transformation zu definieren.
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I Introduction

The Standard Model of particle physics (SM) [7, 8] is undoubtedly one of the most successful
models of physics ever conceived. In countless years of experiments, including run I of
the Large Hadron Collider, physicists have been able to pin down the parameters of the
SM ever more precisely without detecting any clear evidence for inconsistencies. On the
experimental side, therefore, only the existence of neutrino masses, which can, however,
easily be incorporated in an extension of the SM, the cosmological evidence for Dark Matter
and the fact that gravity is not described by the SM point towards the necessity for a more
fundamental theory.

Independently of these successes in describing experimental results and of the already
mentioned deficiencies, there are several theoretical reasons rendering a more fundamental
theory than the SM desirable. A very prominent role amongst them plays the hierarchy
problem, i.e. the question why the electroweak scale is suppressed by many orders of
magnitude against the Planck scale. A second and certainly not less pressing issue of the
Standard Model is the so-called flavour problem. Even though the SM provides a framework
that can be used to fit experimental results, it requires about 20 input parameters to do
so. These parameters are not predicted by the theory itself but must be set by hand in
order to accommodate experimental results. Especially in the flavour sector, i.e. the sector
responsible for the masses of matter particles, this abundance of input parameters seems
an issue. Moreover, the required coupling values are not, as one might expect, clustered
close to unity but span many orders of magnitude. At the same time, there seems to be
a pattern behind the mixing angles connecting the different generations of quarks and
leptons, respectively. In addition, the so-called CP symmetry is broken in Nature, i.e.
replacing particles with their anti-particles and simultaneously right-handed with left-
handed particles is not a symmetry. Although this can again easily be parametrised by the
explicitly CP violating Dirac CP phase of the quark sector, the SM does not provide any
further insight into this breaking.

Of course, one would like to explain these observations on a fundamental level and not
merely parametrise them. So-called flavour symmetries are a possible avenue one can
pursue to this end. In this framework, it is assumed that a symmetry relates the different
generations of matter fields at high energies. At some lower energy scale, the symmetry is
spontaneously broken, thereby generating a structure for the mass terms. The difficulty is
to find a symmetry that generates the desired mass, mixing and CP violation patterns in a
natural fashion. Moreover, first-order calculations are often insufficient since higher-order
effects can spoil the leading-order predictions. The estimation of these corrections, however,
can be computationally very demanding.
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Amongst the different types of symmetries available for this purpose to model builders,
discrete non-abelian symmetries are arguably the most promising alternative. Since they
are non-abelian, they are able to generate non-trivial mixing patterns. Furthermore, they
do not suffer from issues connected to Goldstone bosons that would be unavoidable in the
spontaneous breaking of global continuous symmetries. It is the purpose of this work to
present progress concerning several aspects of model building with discrete non-abelian
symmetries and to aid the construction of such models of physics beyond the SM.

For the discussion of the physical implications of discrete symmetries, a sound knowledge
of finite group theory is indispensable. Therefore, in Chapter II, some basic information on
the theory of finite groups is compiled. Besides some general definitions and theorems, the
notion of Clebsch–Gordan coefficients is particularly important because these coefficients
are needed for the construction of Lagrangians. However, Clebsch–Gordan coefficients are
not uniquely determined; hence, the resultant ambiguities in general and the corresponding
implications for model building in particular are explained in some detail.

In Chapter III, a brief introduction to the flavour problem of the Standard Model is given.
An important point in the discussion of the SM flavour sector is the introduction of the
so-called CKM and PMNS mixing matrices of the quark and neutrino sector, respectively.
Particular care is exercised with respect to their phase and sign ambiguities, which are
important for the later discussion of kinetic term corrections. Subsequently, the aforemen-
tioned discrete non-abelian flavour symmetries are advertised as a means to explain the
observed flavour structure. Moreover, a neutrino flavour model based on the tetrahedral
group A4, also called alternating group on four letters, is presented. This model was ori-
ginally proposed by Altarelli and Feruglio [9, 10]. It is ideally suited to understand the
salient features of flavour models with discrete non-abelian symmetries and is used also as
an example model in the later discussion of the kinetic term corrections. In the conclusion
of the chapter, some of the well-known criticism towards such models is compiled and
commented on.

As is well known, a symmetry of a classical Lagrangian or classical action is not necessarily
a symmetry of the corresponding quantum theory. In such a case, the symmetry is said to
be anomalous. This does not only occur for continuous but also for discrete symmetries.
Conditions for discrete groups to be free of anomalies are thus derived in Chapter IV. In
particular, it is shown that the path integral measure transforms in a proper one-dimensional
representation of the group. From this observation, a series of interesting results follows.
For example, discrete groups are less prone to anomalies in combination with SO(𝑁) or
exceptional gauge groups than in combination with SU(𝑁).

Model building with discrete flavour symmetries, like the aforementioned A4 model,
usually proceeds in the framework of effective field theories. Thus, one has to consider
higher-order corrections to the lowest-order results that are computed first. In particular,
there are corrections to the kinetic terms of matter fields, which can change their normalisa-
tions and induce a mixing. As shown in Chapter V, these corrections can have profound
implications for model predictions such as flavour mixing; however, these effects have often
been neglected in the literature. To facilitate the estimation of their impact, analytical formu-
las are derived which depend only on the naive masses and mixing parameters computed
without taking into account the corrections. These formulas are also incorporated into a
publicly available Mathematica [11] package. Note that, for simplicity, the discussion is
presented using a supersymmetric terminology, in which the corrections are called Kähler
corrections, although such effects are present independently of supersymmetry. As is shown
using the A4 model and another model based on the group T′, the effects of kinetic term
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corrections on the mixing angles can be large. In addition, the impact of Kähler corrections in
supersymmetric models on the vacuum alignment and on flavour changing neutral currents
is briefly described.

Although discrete symmetries are very useful for model building, there are various
reasons to assume that they are not fundamental. For example, as all global symmetries,
they are conjectured to be violated badly by gravitational effects, which thereby render them
ineffective [12, 13]. One possible solution is to obtain a discrete group from spontaneous
breaking of a continuous gauge group. In order to do so, knowledge of the branching rules of
representations of the gauge group into representations of the discrete subgroup is required.
In particular, only representations of the gauge group whose decomposition contains at
least one trivial singlet of the discrete group can be used for the breaking. A procedure for
the computation of these branching rules is presented in Chapter VI. The resulting routines
are furthermore implemented in a publicly available Mathematica package. Indeed, one
can use the package to compute general branching rules for some finite groups which are
popular in model building. Some examples of such decomposition rules are given and their
implications discussed.

One of the least understood phenomena of particle physics is the violation of the com-
bination of charge conjugation and parity transformation denoted by CP. Although in the
context of the Standard Model it is clear how this transformation acts on the fields, this is
more intricate if discrete symmetries are present. Building on work by Grimus and Rebelo
[14], Holthausen, Lindner and Schmidt [15] and Feruglio, Hagedorn and Ziegler [16], in
Chapter VII, the interplay of discrete (flavour) symmetries and CP is investigated in detail.
After discussing the CP transformations of Quantum Electrodynamics and of the SM, the
results of the aforementioned publications are reviewed. As it turns out, their criteria are
insufficient to obtain proper physical CP transformations if discrete symmetries are present.
The correct group theoretical conditions are presented, connecting CP transformations to
so-called class-inverting automorphisms, and some mathematical tools for the necessary
computations are introduced. The resulting constraints on the availability of CP transforma-
tions are discussed. In particular, it is shown that there are groups which for generic settings
do not allow CP consistently to be defined. This is also seen in a toy model based on the
group 𝛥(27). Furthermore, in a modification of this model, spontaneous CP violation with
group theoretical, i.e. calculable, phases is achieved. Another model with CP violation
due to calculable phases is the three Higgs doublet model by Branco, Gerard and Grimus
[17], where this effect is called geometrical CP violation. The model is briefly reviewed and
some misconceptions concerning this type of CP violation are corrected. Subsequently, the
usability of generalised CP transformations as solutions to the strong CP problem is dis-
cussed. Moreover, the spontaneous breaking of discrete groups and of CP transformations
is re-considered with regard to the group theoretical structure of CP. Finally, some more
fundamental considerations are taken up concerning the connection of CP to the inversion
of all quantum numbers. After concluding this part, three publications by other authors
related to generalised CP transformations are commented on.

After the main conclusion, some appendices contain material omitted in the main text. In
Appendix A, notations and bases for some frequently used groups as well as some additional
mathematical theorems and proofs can be found. In the subsequent Appendix B, analytical
formulas for kinetic term corrections to tri-bi-maximal mixing are shown. Some of the GAP
codes used to compute the results of Chapter VII are presented in Appendix C. Finally, a
list with the numbers of distinct CP transformations for finite groups up to order 100 can be
found in Appendix D.
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It should be noted that, although flavour symmetries are mostly chosen as examples,
almost all results obtained here are independent of the precise purpose for which the
discrete non-abelian symmetries are employed. For example, the anomaly computations
in Chapter IV and the discussion of CP transformations in Chapter VII are completely
independent of whether the discrete non-abelian symmetry is used to explain the flavour
structure of the Standard Model or for some other purpose.

Some of the results presented here have already been communicated in the following
publications:

[1] M.-C. Chen, M. Fallbacher, M. Ratz and C. Staudt, ‘On predictions from spontaneously broken
flavor symmetries’, Phys. Lett. B 718 (2012), 516–521, arXiv: 1208.2947 [hep-ph], [inSPIRE].

[2] M.-C. Chen, M. Fallbacher, Y. Omura, M. Ratz and C. Staudt, ‘Predictivity of models with
spontaneously broken non-Abelian discrete flavor symmetries’, Nucl. Phys. B 873 (2013), 343–
371, arXiv: 1302.5576 [hep-ph], [inSPIRE].

[3] M.-C. Chen, M. Fallbacher, K. T. Mahanthappa, M. Ratz and A. Trautner, ‘CP violation from
finite groups’, Nucl. Phys. B 883 (2014), 267–305, arXiv: 1402.0507 [hep-ph], [inSPIRE].

[4] M. Fallbacher and A. Trautner, ‘Symmetries of symmetries and geometrical CP violation’,
Nucl. Phys. B 894 (2015), 136–160, arXiv: 1502.01829 [hep-ph], [inSPIRE].

[5] M.-C. Chen, M. Fallbacher, M. Ratz, A. Trautner and P. K. S. Vaudrevange, ‘Anomaly-safe
discrete groups’, Phys. Lett. B 747 (2015), 22–26, arXiv: 1504.03470 [hep-ph], [inSPIRE].

[6] M. Fallbacher, ‘Breaking classical Lie groups to finite subgroups – an automated approach’,
Nucl. Phys. B 898 (2015), 229–247, arXiv: 1506.03677 [hep-th], [inSPIRE].

http://dx.doi.org/10.1016/j.physletb.2012.10.077
http://arxiv.org/abs/1208.2947
http://inspirehep.net/search?p=Chen:2012ha
http://dx.doi.org/10.1016/j.nuclphysb.2013.04.020
http://dx.doi.org/10.1016/j.nuclphysb.2013.04.020
http://arxiv.org/abs/1302.5576
http://inspirehep.net/search?p=Chen:2013aya
http://dx.doi.org/10.1016/j.nuclphysb.2014.03.023
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http://inspirehep.net/search?p=Chen:2014tpa
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II Group theory

In many parts of this text, heavy use is made of finite group theory. For example, in order to
build models with discrete symmetry groups as reviewed in Chapter III and to interpret
their results as done for a special case in Chapter V, one has to understand the construction
of invariant Lagrangians using Clebsch–Gordan coefficients. Moreover, many properties
of such models like their behaviour with respect to CP, see Chapter VII, or with respect to
anomalies, see Chapter IV, depend on the relations imposed on them by the symmetries,
which in turn are determined by the structure of the symmetry groups. Only with a good
knowledge of group theory these discussions can be led. Therefore, some basic notions of
group theory are reviewed in the present chapter, including the concepts of representations,
characters, group automorphisms, tensor products of representations and Clebsch–Gordan
coefficients. Moreover, some notation used later on is introduced.

Since most of the material presented in this chapter is well known, the corresponding
references are to textbooks rather than to original research contributions. Moreover, proofs
for most of the theorems stated below are not reproduced but can be found in the cited
sources. For more information on the topic, cf. any book on group and representation theory,
e.g. [18, 19].

First, the concepts of groups and of group homomorphisms are introduced. Since most
often symmetry groups of physical models are direct or semi-direct product groups, e.g.
GSM = SU(3)C ×SU(2)L ×U(1)Y, these notions are explained in the second section. The most
important topic in group theory for physics is probably representation theory, whose basic
concepts are presented in Section II.3. A closely related and very powerful computational
tool are group characters, which are introduced subsequently. Section II.5 then gives the
definition of real and pseudo-real representations.

Whereas everything up to this point would also be of use to non-physicists, the last two
sections are more focused on the physics application. Hence, they might also be interesting
for readers who are otherwise proficient in group theory.

In Section II.6, the concept of tensor products of representations and Clebsch–Gordan
coefficients is explained. Since this topic is absolutely crucial for model building, the
discussion is rather detailed. In particular, the ambiguities that arise in the definition of
Clebsch–Gordan coefficients are clarified. These ambiguities are often neglected but are
very important when discussing the CP properties of a theory. Another topic that is usually
glossed over concerns the associativity of the tensor product. Due to the way model builders
usually write down Lagrangians, an associated subtlety can lead to ambiguities when
specifying a model.
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Details on some finite groups which are used extensively in this text are collected in
Section A.1. Information on other finite groups of small orders can easily be obtained using
the SmallGroups library of the group theory software GAP [20].

II.1 Groups and group homomorphisms

For completeness, let us start with some very basic definitions.

Definition 1 (Group). A group 𝐺 is a set, also called 𝐺, together with a closed binary operation
most often called multiplication,

⋆ ∶ 𝐺 × 𝐺 → 𝐺 ,
(𝑎, 𝑏) ↦ 𝑎 ⋆ 𝑏 , (1.1)

which is associative, 𝑎 ⋆ (𝑏 ⋆ 𝑐) = (𝑎 ⋆ 𝑏) ⋆ 𝑐. Moreover, there has to be an identity element 𝑒 ∈ 𝐺
such that 𝑒 ⋆ 𝑎 = 𝑎 for all 𝑎 ∈ 𝐺, and for each element 𝑎 ∈ 𝐺 there has to be an inverse 𝑎−1 ∈ 𝐺 with
𝑎−1 ⋆ 𝑎 = 𝑒. A group 𝐺 is called abelian if 𝑎 ⋆ 𝑏 = 𝑏 ⋆ 𝑎 for all 𝑎, 𝑏 ∈ 𝐺 and non-abelian otherwise. A
subgroup 𝐻 of 𝐺, 𝐻 ≤ 𝐺, is a subset of 𝐺 that is closed under group multiplication and inversion.

Note that the multiplication symbol ⋆ is omitted henceforth; the product of two group
elements 𝑎 and 𝑏 is just denoted by 𝑎𝑏 if there is no danger of confusion.

Groups can be finite sets, in which case the number of elements |𝐺| of 𝐺 is called the order
of 𝐺, or infinite. This work restricts the notion of group to compact topological groups,
i.e. groups which are, with respect to their natural topology, compact, and whose binary
operation as well as inverse map are continuous. The focus is set on finite groups and
compact Lie groups.

Definition 2 (Lie group). A Lie group 𝐺 is a differentiable manifold with a group structure such
that group multiplication and inverse map are smooth.

As a special case, the general linear group of a vector space shall be defined because it is
needed for the definition of group representations.

Definition 3 (General linear group). The general linear group GL(𝑉) of a vector space 𝑉 is the
group of all automorphisms of 𝑉, i.e. of all bijective linear maps on 𝑉. If 𝑉 is finite dimensional,
dim 𝑉 = 𝑛 < ∞, GL(𝑉) is isomorphic to the group GL(𝑛, 𝐾) of all invertible 𝑛 × 𝑛-matrices over
the base field 𝐾.

The most important type of maps between groups are maps that are compatible with the
group structure, so-called group homomorphisms.

Definition 4 (Group homomorphism). Given two groups 𝐺 with operation ⋆ and 𝐻 with operation
∗, respectively, any map

𝜑 ∶ 𝐺 → 𝐻 (1.2)

with 𝜑(𝑎 ⋆ 𝑏) = 𝜑(𝑎) ∗ 𝜑(𝑏) for all 𝑎, 𝑏 ∈ 𝐺 is called a group homomorphism. If 𝜑 is a bijection and
𝐺 = 𝐻, 𝜑 is called an automorphism.

Definition 5 (Automorphism group). The automorphisms of a group 𝐺 form another group, the
automorphism group Aut(𝐺).
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Definition 6 (Conjugator automorphism and inner automorphism group). For each group
element 𝑔, the associated conjugation map conj(𝑔) with conj(𝑔)(ℎ) ≔ 𝑔ℎ𝑔−1 for all ℎ ∈ 𝐺 is an
automorphism. These automorphisms are called inner automorphisms. They form the group of inner
automorphisms Inn(𝐺) ≤ Aut(𝐺).

Definition 7 (Conjugacy class). Being related by an inner automorphism defines an equivalence
relation on the set of group elements. The equivalence classes of this relation are called conjugacy
classes.

Definition 8 (Normal subgroup). A subgroup 𝑁 ≤ 𝐺 that is invariant under all inner automorph-
isms is called normal subgroup 𝑁 E 𝐺.

Definition 9 (Simple group). A group 𝐺 is simple if and only if it has no non-trivial normal
subgroup, i.e. if its only normal subgroups are 𝐺 itself and the trivial group.

Definition 10 (Centre). The centre 𝑍(𝐺) of a group 𝐺 is the normal subgroup of 𝐺 containing all
group elements that commute with every other group element.

Definition 11 (Quotient group). The equivalence classes 𝐺/𝑁, where 𝑁 is a normal subgroup of
𝐺, define a group, the so-called quotient group of 𝐺 by 𝑁. The canonical projection

𝑝 ∶ 𝐺 → 𝐺/𝑁 ,
𝑔 ↦ [𝑔] (1.3)

is the surjective group homomorphism sending each element of 𝐺 to its equivalence class in 𝐺/𝑁.

Definition 12 (Outer automorphism group). The inner automorphisms form a normal subgroup
of the automorphism group. The corresponding quotient group Out(𝐺) ≔ Aut(𝐺)/ Inn(𝐺) is called
outer automorphism group.

Note that outer automorphisms, i.e. the elements of the outer automorphism group, are
not automorphisms but equivalence classes of automorphisms.

Definition 13 (Commutator subgroup and Abelianisation [21]). The commutator or derived
subgroup [𝐺, 𝐺] (or 𝐺′) is the subgroup of 𝐺 generated by all commutator elements of 𝐺,

[𝐺, 𝐺] ≔ ⟨{𝑔 ∈ 𝐺 | 𝑔 = 𝑎𝑏𝑎−1𝑏−1, 𝑎 ∈ 𝐺, 𝑏 ∈ 𝐺}⟩ . (1.4)

It is a normal subgroup of 𝐺 because commutators are invariant under any automorphism of 𝐺. The
corresponding quotient group 𝐴(𝐺) ≔ 𝐺/[𝐺, 𝐺] is abelian and called Abelianisation of 𝐺.

Definition 14 (Perfect group). A group 𝐺 is called perfect if and only if it equals its own commutator
subgroup. This is the same as saying that its Abelianisation 𝐴(𝐺) is trivial.

Theorem 1 (Non-abelian simple groups are perfect). A non-abelian simple group 𝐺 is perfect.

This can be seen by noting that the commutator subgroup is a normal subgroup. Thus,
the commutator subgroup of a simple group can only be the group itself, in which case the
group is abelian, or the trivial group, in which case the group is perfect.
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II.2 Direct and semi-direct product of groups

Definition 15 (Direct product [19]). A group 𝐺 is the inner direct product of subgroups 𝐴u�,

𝐺 = 𝐴1 × 𝐴2 × ⋯ × 𝐴u� , (2.1)

if and only if the following conditions are fulfilled:

(i) all 𝐴u� are normal subgroups or, equivalently, they all commute;

(ii) the set product ∏u� 𝐴u� generates 𝐺;

(iii) each 𝐴u� intersects trivially the subgroup generated by the 𝐴u�≠u� or, equivalently, each element
𝑔 ∈ 𝐺 has a unique decomposition into ∏u� 𝑎u� with 𝑎u� ∈ 𝐴u�.

The direct product of groups 𝐴u� is again a group 𝐺 with the multiplication

(𝑎1, … , 𝑎u�)(𝑏1, … , 𝑏u�) ≔ (𝑎1𝑏1, … , 𝑎u�𝑏u�) . (2.2)

The resulting group 𝐺 fulfils the three conditions above.

The concept of direct product groups can be used completely to classify the finite abelian
groups.

Theorem 2 (Fundamental theorem on finite abelian groups [22]). Any finite abelian group 𝐺
is isomorphic to the direct product of cyclic groups of orders which are powers 𝑛u�,u� of prime numbers
𝑝u�,

𝐺 ≅ ⨉
u�,u�

ℤ
u�u�u�,u�

u�
. (2.3)

A generalisation of the direct product of two groups is their semi-direct product.

Definition 16 (Semi-direct product [19]). A group 𝐺 is the semi-direct product of two subgroups
𝑁 and 𝐻,

𝐺 = 𝑁 o 𝐻 , (2.4)

if and only if the following conditions are fulfilled:

(i) 𝑁 is a normal subgroup;

(ii) the set product 𝑁𝐻 generates 𝐺;

(iii) 𝑁 ∩ 𝐻 = {𝑒} or, equivalently, each element 𝑔 ∈ 𝐺 has a unique decomposition into a product
𝑛ℎ with 𝑛 ∈ 𝑁 and ℎ ∈ 𝐻.

On the other hand, the Cartesian product of sets 𝑁 × 𝐻 can be made into the semi-direct product
group 𝑁 o 𝐻 by the multiplication

(𝑛, ℎ)(𝑛′, ℎ′) ≔ (𝑛𝜑(ℎ)(𝑛′), ℎℎ′) (2.5)

where 𝜑 is any group homomorphism from 𝐻 to the automorphism group of 𝑁.

In the special case 𝜑 ≡ id the semi-direct product becomes the direct product.
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II.3 Representations

Group representations are a particular form of group homomorphisms.

Definition 17 (Group representation). A continuous homomorphism 𝑹 from a group 𝐺 to the
general linear group GL(𝑉) of a vector space 𝑉

𝑹 ∶ 𝐺 → GL(𝑉) (3.1)

is called (linear) representation. The dimension (or degree) of a representation is the same as the
dimension of its representation space, dim 𝑹 ≔ dim 𝑉. If the representation homomorphism is an
injection, the representation is called faithful. A subrepresentation is a proper, non-trivial subspace
𝑊 of 𝑉 such that 𝑊 is invariant under 𝑹. If 𝑉 has no such subspace, 𝑹 is called an irreducible
representation. A representation is unitary if 𝑹(𝑔) is a unitary operator for all 𝑔 ∈ 𝐺, i.e. if it
preserves the inner product on 𝑉.

Only finite-dimensional representations over the base field ℂ are considered hereafter.
The specification of a representation 𝑹 is, of course, incomplete without the specification
of the corresponding representation space 𝑉. However, the representation space is usually
suppressed in the notation. In these cases it is understood that the space is 𝑉 = ℂdim 𝑹.

For finite groups, the dimension of an irreducible representation divides the order of
the group [18]. The number of inequivalent irreducible representations of a finite group is
equal to the number of conjugacy classes, and the sum of the squares of the dimensions of
all inequivalent irreducible representations 𝑹u� equals the order of the group [19],

∑
u�

(dim 𝑹u�)2 = |𝐺| . (3.2)

For finite-dimensional representation spaces 𝑉 over the field 𝐾 the term representation is
also used for a specific matrix realisation

𝜌𝑹 ∶ 𝐺 → GL(𝑛, 𝐾) ,
𝑔 ↦ 𝜌𝑹(𝑔) . (3.3)

Hence, representation can refer, interchangeably, to either the representation space, the map
into the general linear group of this space or the map into the invertible matrices for some
choice of basis on the representation space.

Definition 18 (Complex conjugate representation). Given a representation 𝑹 on 𝑉 one can
define the complex conjugate representation 𝑹 on the complex conjugate vector space 𝑉 by

𝑹 ∶ 𝐺 → GL(𝑉) (3.4)

with 𝑹(𝑔)(𝑣∗) ≔ (𝑹(𝑔)(𝑣))∗ for all 𝑣∗ ∈ 𝑉.

The irreducible representations of abelian groups have a very elementary structure.

Theorem 3 (Irreducible representations of abelian groups [19]). All irreducible representations
of abelian groups are one-dimensional.

Given two, not necessarily distinct, representations it is possible to obtain a representation
on the direct sum and on the tensor product of the respective vector spaces.
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Definition 19 (Direct sum and tensor product of representations [19]). The direct sum of two
representations 𝑹 and 𝑹′ of 𝐺 on 𝑉 and 𝑊, respectively, is the representation on 𝑉 ⊕ 𝑊 defined by

𝑹 ⊕ 𝑹′ ∶ 𝐺 → GL(𝑉 ⊕ 𝑊) ,
𝑔 ↦ (𝑹 ⊕ 𝑹′)(𝑔) (3.5)

where (𝑹 ⊕ 𝑹′)(𝑔)(𝑣 ⊕ 𝑤) ≔ 𝑹(𝑔)(𝑣) ⊕ 𝑹′(𝑔)(𝑤).
One can also define a representation on the tensor product space 𝑉 ⊗ 𝑊 by

𝑹 ⊗ 𝑹′ ∶ 𝐺 → GL(𝑉 ⊗ 𝑊) ,
𝑔 ↦ (𝑹 ⊗ 𝑹′)(𝑔) (3.6)

with (𝑹 ⊗ 𝑹′)(𝑔)(𝑣 ⊗ 𝑤) ≔ 𝑹(𝑔)(𝑣) ⊗ 𝑹′(𝑔)(𝑤).

Theorem 4 (Irreducible representations of direct product groups [19]). Given two representa-
tions 𝑹 on 𝑉 of 𝐺1 and 𝑹′ on 𝑊 of 𝐺2, the tensor product representation

𝑹 ⊗ 𝑹′ ∶ 𝐺1 × 𝐺2 → GL(𝑉) ⊗ GL(𝑊) ,
(𝑔1, 𝑔2) ↦ 𝑹(𝑔1) ⊗ 𝑹′(𝑔2) (3.7)

with (𝑹(𝑔1) ⊗ 𝑹′(𝑔2))(𝑣 ⊗ 𝑤) ≔ 𝑹(𝑔1)(𝑣) ⊗ 𝑹′(𝑔2)(𝑤) is a representation of 𝐺 = 𝐺1 × 𝐺2. In
fact, the irreducible representations of 𝐺 are the representation obtained this way from all irreducible
representations of 𝐺1 and 𝐺2.

Theorem 5 (Representations of quotient groups [21]). The representations of a quotient group
𝐺/𝑁 are in bijective correspondence with the representations of 𝐺 whose kernel contains 𝑁. The
bijection is provided by the canonical projection and its pre-image, respectively. For compact groups
the one-to-one correspondence is one of irreducible representations.

To be more explicit, let 𝑹 be a representation of 𝐺, 𝒓 be a representation of 𝐺/𝑁 and 𝑝 be
the canonical projection of 𝐺 onto 𝐺/𝑁. If 𝑹 is constant on 𝑁, the composition 𝑹 ∘ 𝑝−1 is
well defined and a representation of 𝐺/𝑁. Conversely, 𝒓 ∘ 𝑝 is a representation of 𝐺 which is
constant on 𝑁. The fact that this is a bijection between irreducible representations in the
case of compact 𝐺 can easily be seen using group characters, which are introduced below in
Section II.4. The proof is thus deferred to this section, see equation (4.5).

This theorem can be applied to the special case of the Abelianisation of a group.
Theorem 6 (One-dimensional representations and the Abelianisation [21]). There is a one-to-
one correspondence between the one-dimensional representations of a group 𝐺 and the representations
of its Abelianisation 𝐴(𝐺).

The first direction is clear because 𝐴(𝐺) is abelian and, hence, has only one-dimensional
irreducible representations, which lift to one-dimensional representations of 𝐺 by Theorem 5.
The second direction works out because all elements of 𝐺 which are also contained in [𝐺, 𝐺]
are sent to 1 by any one-dimensional representation as complex numbers commute. Thus,
Theorem 5 can be applied again.

Maps between representation spaces should be compatible with the group action.
Definition 20 (Intertwiner). A linear map 𝜑 between two representation spaces 𝑉 with representa-
tion 𝑹 and 𝑊 with representation 𝑹′ is called intertwiner if and only if it commutes with the group
action,

𝜑 ∘ 𝑹 = 𝑹′ ∘ 𝜑 . (3.8)

The intertwiners make up the vector space Homu�(𝑉, 𝑊). If the intertwiner 𝜑 is an automorphism,
the two representations 𝑹 and 𝑹′ are called equivalent, 𝑹 ≅ 𝑹′.
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This defines an equivalence relation on the set of all representations of a group. In partic-
ular, when referring to irreducible representations, usually the qualification ‘inequivalent’ is
understood to avoid double-counting. Bold letters and, when referring to representations of
a specific group, bold numbers denote henceforth equivalence classes of (mostly irreducible)
representations. Specific matrix realisations thereof, i.e. the matrices that one obtains after
choosing a certain fixed representation and a basis convention, are denoted by 𝜌𝑹 for a
representation in the equivalence class 𝑹 of representations.

The fact that ℂ is algebraically closed and has characteristic zero simplifies many dis-
cussions or is even a necessary condition. As a result of the assumptions made so far, the
following theorems hold.

Theorem 7 (All representations are unitary [23]). Every representation is equivalent to a unitary
representation.

Theorem 8 (Complete reducibility [23]). Every representation is completely reducible, i.e. it is a
direct sum of irreducible representations.

Another important theorem for finite-dimensional representations, which basically follows
directly from the definition of irreducibility, is Schur’s lemma.

Theorem 9 (Schur’s lemma [23]). If 𝜑 is an intertwiner of two irreducible representation spaces 𝑉
and 𝑊, then either

(i) 𝜑 ≡ 0 or

(ii) 𝜑 is an isomorphism, i.e. the two representations are equivalent.

If 𝜑 is a self-intertwiner, i.e. 𝑉 = 𝑊, then 𝜑 = 𝜆 id for some complex number 𝜆.

It can also be shown that the matrix elements of finite-dimensional representations are, in
a certain way, orthogonal to each other. The notation is adapted to the case of finite groups.
The statement stays true for non-finite compact groups if the normalised summation over
all group elements 1

|u�| ∑u�∈u� is replaced by an integration over the group with respect to the
unimodular Haar measure.

Theorem 10 (Schur orthogonality [23]). Let 𝑹u� be the irreducible representations of a finite group
𝐺. Then the matrix elements of these representations are orthogonal to each other,

1
|𝐺|

∑
u�∈u�

[𝜌𝑹u�
(𝑔−1)]

u�u�
[𝜌𝑹u�

(𝑔)]
u�u�

=
1

dim 𝑹u�
𝛿u�u� 𝛿u�u� 𝛿u�u� , (3.9)

which can also be written for unitary representations as (please observe the change of indices on the
left-hand side)

1
|𝐺|

∑
u�∈u�

[𝜌𝑹u�
(𝑔)∗]

u�u�
[𝜌𝑹u�

(𝑔)]
u�u�

=
1

dim 𝑹u�
𝛿u�u� 𝛿u�u� 𝛿u�u� . (3.10)

In both equations 𝛿u�u� is one if 𝑹u� ≅ 𝑹u� and zero otherwise.
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II.4 Group characters

An important tool for group theory proofs and computations are group characters. Many
results can be obtained using characters without resorting to a specific matrix realisation of
a representation.

Let 𝐺 be, as above, a compact topological group and consider its representations over the
complex numbers.

Definition 21 (Group character [23]). Given a representation 𝑹 with matrix realisation 𝜌𝑹(𝑔) its
character is defined by

𝜒𝑹 ∶ 𝐺 → ℂ ,
𝑔 ↦ 𝜒𝑹(𝑔) ≔ tr 𝑹(𝑔) = tr 𝜌𝑹(𝑔) , (4.1)

where the last equality is true for any matrix realisation because the trace is basis invariant. By the same
argument, characters are class functions, i.e. they are constant on conjugacy classes, 𝜒𝑹(ℎ𝑔ℎ−1) =
𝜒𝑹(𝑔) for all 𝑔, ℎ ∈ 𝐺. In fact, they span the space of all class functions on 𝐺. Furthermore, they
fulfil the relations

𝜒𝑹(𝑔−1) = 𝜒𝑹(𝑔)∗ = 𝜒𝑹(𝑔) , ∀ 𝑔 ∈ 𝐺 , (4.2a)
𝜒𝑹⊕𝑹′(𝑔) = 𝜒𝑹(𝑔) + 𝜒𝑹′(𝑔) , ∀ 𝑔 ∈ 𝐺 , (4.2b)
𝜒𝑹⊗𝑹′(𝑔) = 𝜒𝑹(𝑔) ⋅ 𝜒𝑹′(𝑔) , ∀ 𝑔 ∈ 𝐺 . (4.2c)

A character defines uniquely up to equivalence the corresponding representation and vice versa [19].

The representation that belongs to a character 𝜒𝑹 is faithful if and only if 𝜒𝑹(𝑔) ≠ dim 𝑹
for all 𝑔 ≠ 𝑒.

It is possible to define a scalar product on characters. Here, this is shown only for finite
groups. Again, the statements stay true for compact groups if the normalised summation is
replaced by an integration with respect to the Haar measure.

Definition 22 (Character scalar product [23]). The scalar product on characters of a group 𝐺 is
defined by

(𝜒𝑹, 𝜒𝑹′) ≔
1

|𝐺|
∑
u�∈u�

𝜒𝑹(𝑔−1) 𝜒𝑹′(𝑔) =
1

|𝐺|
∑
u�∈u�

𝜒𝑹(𝑔)∗ 𝜒𝑹′(𝑔) . (4.3)

For irreducible characters this product is one for identical characters and zero for different
characters. Hence, the characters of irreducible representations form an orthonormal basis
of the space of class functions. This in turn implies that the irreducible characters separate
the conjugacy classes, i.e. for any two conjugacy classes there is always a character which
takes different values on these classes.

Given a reducible module 𝑹red, the multiplicity of the irreducible representation 𝑹irr
in 𝑹red, i.e. the number of times 𝑹irr is contained in 𝑹red, is equal to (𝜒𝑹irr

, 𝜒𝑹red
) [23]. In

summary, for two representations 𝑹 on 𝑉 and 𝑹′ on 𝑊 [23],

(𝜒𝑹, 𝜒𝑹′) = dim Homu�(𝑉, 𝑊) . (4.4)

The character scalar product can also be used to show that the bijection between repres-
entations of a group 𝐺 and one of its quotient groups 𝐺/𝑁 is a bijection between irreducible
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representations. With the notation of Theorem 5,

(𝜒𝑹, 𝜒𝑹) =
1

|𝐺|
∑
u�∈u�

𝜒𝑹(𝑔−1) 𝜒𝑹(𝑔) =
|𝑁|
|𝐺|

∑
u�∈u�/u�

𝜒𝑹(𝑔−1) 𝜒𝑹(𝑔)

=
1

|𝐺/𝑁|
∑

u�∈u�/u�
𝜒𝒓∘u�(𝑔−1) 𝜒𝒓∘u�(𝑔) = (𝜒𝒓∘u�, 𝜒𝒓∘u�) .

(4.5)

Thus, either both norms are one and both representations are irreducible or both norms are
greater than one and neither representation is irreducible.

It also follows directly from (4.3) that the product of two irreducible representations 𝑹u�
and 𝑹u� contains the trivial representation 𝑹id if and only if 𝑹u� = 𝑹u� and then exactly once
because

(𝜒𝑹u�⊗𝑹u�
, 𝜒𝑹id

) = (𝜒𝑹u�
⋅ 𝜒𝑹u�

, 𝜒𝑹id
) = (𝜒𝑹u�

, 𝜒𝑹u�
) = 𝛿𝑹u�, 𝑹u�

. (4.6)

II.5 Real and pseudo-real representations

Finite-dimensional representations can be classified according to their relation to their
complex conjugate representations. Without loss of generality it is assumed that all repres-
entations are unitary.

Definition 23. A representation 𝑹 is called

(i) real if 𝑹 ≅ 𝑹 and if there is a basis such that 𝜌𝑹(𝑔) is real for all 𝑔;

(ii) pseudo-real if 𝑹 ≅ 𝑹 but there is no basis such that 𝜌𝑹(𝑔) is real for all 𝑔;

(iii) complex if 𝑹 ≇ 𝑹.

Distinguishing between pseudo-real and real representations on the one hand and complex
representations on the other hand is simple.

Theorem 11 (Real characters afford (pseudo-) real representations [19]). An irreducible
representation is real or pseudo-real if and only if the corresponding character is real for each group
element.

The distinction between real and pseudo-real representations is somewhat more subtle.
If a representation 𝑹 is real or pseudo-real, its representation matrices are related to their
complex conjugates by a common similarity transformation,

𝜌𝑹(𝑔) = 𝜌𝑹(𝑔)∗ = 𝑈 𝜌𝑹(𝑔) 𝑈−1 , ∀ 𝑔 ∈ 𝐺 , (5.1)

with some unitary matrix 𝑈. Iterating this equation one finds

𝜌(𝑔) = (𝑈 𝑈∗) 𝜌(𝑔) (𝑈 𝑈∗)−1 , ∀ 𝑔 ∈ 𝐺 . (5.2)

For an irreducible representation 𝑹, Schur’s lemma (Theorem 9) implies that [19]

𝑈 𝑈∗ = ±𝟙 . (5.3)

Here the plus sign refers to a real representation and the minus sign to a pseudo-real
representation, as can be seen as follows.1

1 The effect of specific choices of bases for scalar fields in real representations is discussed in Section A.2.
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Assume that 𝑈 𝑈∗ = 𝟙, which implies that 𝑈 is symmetric,

𝑈 = 𝑈u� . (5.4)

Hence, one can write

𝑈 = 𝑉 𝑉u� (5.5)

with a unitary matrix 𝑉 using a Takagi factorisation, see Section A.6.3. After a basis change
with 𝑉,

𝜌𝑹(𝑔)′ ≔ 𝑉u� 𝜌𝑹(𝑔) 𝑉∗ , ∀ 𝑔 ∈ 𝐺 , (5.6)

the new matrices 𝜌𝑹(𝑔)’ are manifestly real.
Assuming instead that 𝑈 𝑈∗ = −𝟙, 𝑈 is anti-symmetric, i.e.

𝑈 = −𝑈u� . (5.7)

Hence, as can be seen from the normal form of unitary matrices derived in [24] (see also
Section A.6.4), it can be written as

𝑈 = 𝑉 𝑄 𝑉u� , (5.8)

where 𝑄 is block-diagonal with blocks of the form

( 0 1
−1 0) , (5.9)

and it is impossible to rotate to a manifestly real basis.
It is possible to distinguish between real, pseudo-real and complex representations using

only characters. The means to this is provided by the following theorem.

Theorem 12 (Frobenius–Schur indicator [19]). For a finite group 𝐺 and a finite-dimensional
representation 𝑹, the Frobenius–Schur indicator is defined by

FS(𝑹) ≔
1

|𝐺|
∑
u�∈u�

𝜒𝑹(𝑔2) . (5.10)

On irreducible representations 𝑹u�, it only assumes the values

FS(𝑹u�) =

⎧{{
⎨{{⎩

1 , for 𝑹u� real,
0 , for 𝑹u� complex,

−1 , for 𝑹u� pseudo-real.
(5.11)

The Frobenius–Schur indicator can also be used for compact groups after replacing the
sum with the appropriate integral.
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II.6 The tensor product of representations and Clebsch–Gordan
coefficients

The concept of the tensor product of representations is crucial for the construction of
Lagrangians. Since some of the results presented in this work specifically depend on the
tensor product and its connection to the so-called Clebsch–Gordan coefficients of a group,
the discussion in this section is kept rather detailed and explicit.

As always, only finite-dimensional representations are discussed, and their representation
matrices are all assumed to be chosen unitary. Let 𝑹 acting on 𝑉 and 𝑹′ acting on 𝑊 be two
representations of a group 𝐺, and set 𝑛 ≔ dim 𝑉 and 𝑚 ≔ dim 𝑊. Given two bases 𝑒u� with
𝑎 = 1, … , 𝑛 of 𝑉 and 𝑓u� with 𝑏 = 1, … , 𝑚 of 𝑊, the representations 𝑹 and 𝑹′ can be viewed as
maps from 𝐺 to GL(𝑛, ℂ) and GL(𝑚, ℂ), respectively. Without loss of generality, the bases
are assumed to be orthonormal.

The tensor product space 𝑉 ⊗ 𝑊 can be defined as the span of the ordered pairs of basis
vectors from 𝑉 and 𝑊, where the ordered pairs are called the tensor product of the two basis
vectors and denoted by 𝑒u� ⊗ 𝑓u� [19],2

𝑉 ⊗ 𝑊 ≔ ⟨{𝑒u� ⊗ 𝑓u� | 𝑎 = 1, … , 𝑛; 𝑏 = 1, … , 𝑚}⟩ . (6.1)

The tensor product of general vectors of 𝑉 and 𝑊 can be obtained from this construction by
bilinear extension and is independent of the original choice of bases. If 𝑉 and 𝑊 are inner
product spaces, the natural scalar product on the tensor product space is given by

⟨𝑣1 ⊗ 𝑤1, 𝑣2 ⊗ 𝑤2⟩u�⊗u� = ⟨𝑣1, 𝑣2⟩u� ⋅ ⟨𝑤1, 𝑤2⟩u� (6.2)

such that with respect to the corresponding norm the basis vectors in equation (6.1) are
normalised to one. Using this basis, the tensor product representation 𝑹 ⊗ 𝑹′ acting on
𝑉 ⊗ 𝑊 can be viewed as a map from 𝐺 to the matrix group GL(𝑛 ⋅ 𝑚, ℂ). In this case, the
representation matrices of 𝑹 ⊗ 𝑹′ are given by the Kronecker products of the representation
matrices of 𝑹 and 𝑹′,

𝜌𝑹⊗𝑹′(𝑔) = 𝜌𝑹(𝑔) ⊗ 𝜌𝑹′(𝑔) , ∀ 𝑔 ∈ 𝐺 . (6.3)

The resulting tensor product representation 𝑹 ⊗ 𝑹′ is, in general, not irreducible. Since
finite-dimensional representations of compact groups over ℂ are completely reducible, see
Theorem 8, the tensor product space can be decomposed into a direct sum of invariant
subspaces 𝑈u�, 𝑉 ⊗ 𝑊 = ⨁u� 𝑈u�. That is, the product of two representations 𝑹 and 𝑹′ is
equivalent to a direct sum of irreducible representations,

𝑹 ⊗ 𝑹′ ≅ ⨁
u�

u�(u�)
⨁
u�=1

𝑹u� , (6.4)

where 𝑘 runs over all inequivalent irreducible representations and 𝜇(𝑘) is the multiplicity of
any given irreducible representation 𝑹u� in the product. This multiplicity can be computed
by the character scalar product [25]

𝜇(𝑘) = (𝜒𝑹⊗𝑹′, 𝜒𝑹u�
) = (𝜒𝑹 ⋅ 𝜒𝑹′, 𝜒𝑹u�

) . (6.5)

2 For the more general definition of the tensor product using its universal property, cf. e.g. [23].
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The block structure of the respective representation matrices can be made visible by a
basis transformation 𝐶𝑹⊗𝑹′ such that [25]

𝐶−1
𝑹⊗𝑹′ (𝜌𝑹(𝑔) ⊗ 𝜌𝑹′(𝑔)) 𝐶𝑹⊗𝑹′ = ⨁

u�

u�(u�)
⨁
u�=1

𝜌𝑹u�
(𝑔) = ⨁

u�
(𝟙u�(u�) ⊗ 𝜌𝑹u�

(𝑔)) , ∀ 𝑔 ∈ 𝐺 ,

(6.6)

where 𝐶𝑹⊗𝑹′ ∈ GL(𝑛 ⋅ 𝑚, ℂ) contains the so-called Clebsch–Gordan coefficients of the group
𝐺.3 In other words, 𝐶𝑹⊗𝑹′ is the intertwiner realising the equivalence of equation (6.4). In
principle, the matrix 𝐶𝑹⊗𝑹′ should be viewed as a multi-index object. Its rows are naturally
labelled by a pair of indices (𝑎, 𝑏) from 𝑹 and 𝑹′, respectively, and its columns can be denoted
by 𝑘 running over all irreducible representations, 𝑗 running over their multiplicity and an
index 𝑙 for the components of 𝑹u�. Moreover, the two representations whose tensor product
is considered should be displayed. One possible notation is therefore (cf. [25])

𝐶𝑹⊗𝑹′ = 𝐶𝑹,𝑹′

u�u�,u�u�u� = ( 𝑹 𝑹′ 𝑘 𝑗
𝑎 𝑏 𝑙 ) . (6.7)

Although having the advantage of showing all dependences of the Clebsch–Gordan matrix
explicitly, for its complexity this notation is scarcely used in the following, i.e. the matrix
indices of the representation matrices are conventionally suppressed for simplicity.

The Clebsch–Gordan matrices also depend on the explicit matrix realisations of the
representations, i.e. on the choice of bases. Given basis transformations

𝜌𝑹u�
(𝑔)′ = 𝑆𝑹u�

𝜌𝑹u�
(𝑔) 𝑆−1

𝑹u�
, ∀ 𝑔 ∈ 𝐺 , (6.8)

for all irreducible representations 𝑹u�, the Clebsch–Gordan coefficients for the tensor product
of 𝑹u�1 with 𝑹u�2 in the new basis are

𝐶′
𝑹u�1⊗𝑹u�2

= (𝑆𝑹u�1
⊗ 𝑆𝑹u�2

) 𝐶𝑹u�1⊗𝑹u�2

⎛⎜
⎝

⨁
u�

u�(u�)
⨁
u�=1

𝑆−1
𝑹u�

⎞⎟
⎠

= (𝑆𝑹u�1
⊗ 𝑆𝑹u�2

) 𝐶𝑹u�1⊗𝑹u�2
(⨁

u�
(𝟙u�(u�) ⊗ 𝑆−1

𝑹u�
)) .

(6.9)

It is important to note that, even after fixing bases for all irreducible representations, the
Clebsch–Gordan matrices 𝐶𝑹⊗𝑹′ are not unique. One possibility to reduce this arbitrariness
is to demand them be unitary, which is always possible and done hereafter. This ensures
that the new basis vectors ℎu�u�u� of the tensor product space, where 𝑘 again runs over all
inequivalent irreducible representations in the product, 𝑗 over multiple occurrences thereof
and 𝑙 over the indices of 𝑹u�, given in terms of the old basis by

ℎu�u�u� ≔ (𝑒u� ⊗ 𝑓u�) 𝐶𝑹,𝑹′

u�u�,u�u�u� , (6.10)

are orthonormal. Even after this choice, there remains, however, still some ambiguity. In
fact, one can multiply 𝐶𝑹⊗𝑹′ from the right with a unitary matrix,

𝐶𝑹⊗𝑹′ ↦ 𝐶𝑹⊗𝑹′ (⨁
u�

(𝑊u� ⊗ 𝟙dim 𝑹u�
)) , (6.11)

3 In principle, the order of representations in the direct sum on the right-hand side is arbitrary. Since a
re-ordering only amounts to a re-ordering of columns of u�𝑹⊗𝑹′, a specific order is assumed to be fixed
without any loss of generality. This has already been used in the second equality of (6.6).
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where each 𝑊u� is a unitary matrix of dimension 𝜇(𝑘) [25]. This is the most general trans-
formation on (unitary) Clebsch–Gordan matrices as can be seen by applying Schur’s lemma
to equation (6.6) (up to the aforementioned re-ordering of representations in the direct
sum).4 For representations with multiplicity one in the product the only freedom left is a
complex phase, i.e. a U(1) ambiguity. More generally, for a representation with multiplicity
𝜇, the ambiguity is a U(𝜇) transformation. These ambiguities have lead to some confusion
in the model building literature. Hence, Clebsch–Gordan coefficients and their ambiguities
are discussed again with regard to their application in the construction of Lagrangians in
Section II.7.

So far, Clebsch–Gordan coefficients have only been defined for tensor products of two
representations. The definition can, however, easily be extended to multiple factors, e.g. for
three factors

𝐶−1
𝑹⊗𝑹′⊗𝑹″ (𝜌𝑹(𝑔) ⊗ 𝜌𝑹′(𝑔) ⊗ 𝜌𝑹″(𝑔)) 𝐶𝑹⊗𝑹′⊗𝑹″ = ⨁

u�
(𝟙u�(u�) ⊗ 𝜌𝑹u�

(𝑔)) , ∀ 𝑔 ∈ 𝐺 .

(6.12)

It is clear, of course, that such multiple factor Clebsch–Gordan matrices can be computed
given Clebsch–Gordan coefficients for all pairs of irreducible representations. For example,
the Clebsch–Gordan matrix 𝐶𝑹u�1⊗𝑹u�2⊗𝑹u�3

for the corresponding triple tensor product can
be computed using the Clebsch–Gordan matrices for tensor products of two irreducible
representations 𝐶𝑹u�⊗𝑹u�

. The result is

𝐶𝑹u�1⊗𝑹u�2⊗𝑹u�3
= (𝐶𝑹u�1⊗𝑹u�2

⊗ 𝟙dim 𝑹u�3
) (⨁

u�
(𝟙u�(u�) ⊗ 𝐶𝑹u�⊗𝑹u�3

)) , (6.13)

where 𝑘 runs over all irreducible representation in the decomposition of the tensor product
of 𝑹u�1 and 𝑹u�2. This can inductively be generalised to arbitrary numbers of factors in the
tensor product.

II.7 Associativity of the tensor product

Finally, let us mention a subtlety that can often be neglected in model building but that can
be crucial in some cases, e.g. when CP invariance of a model is discussed. Since the CP
properties of models with discrete symmetries are one of the main topics of the present
work, see Chapter VII, these details cannot be glossed over here. The point to be raised
concerns the associativity of the tensor product and its bearing on the unique specification
of a Lagrangian.

The tensor product is associative by the natural isomorphism

≅∶ (𝑉 ⊗ 𝑊) ⊗ 𝑈 → 𝑉 ⊗ (𝑊 ⊗ 𝑈) ,
(𝑣 ⊗ 𝑤) ⊗ 𝑢 ↦ 𝑣 ⊗ (𝑤 ⊗ 𝑢) (7.1)

4 By Schur’s lemma, the matrix multiplying u�𝑹⊗𝑹′ from the right can only be block-diagonal with blocks for
each u� because the 𝑹u� are inequivalent irreducible representations which cannot be intertwined; hence, one
can consider each subspace with fixed u� separately. For any such subspace, the dimension of the space of
intertwiners is u�(u�), and, by demanding the Clebsch–Gordan matrix be unitary, the intertwiners have to be
unitary. Moreover, inside each individual irreducible representation space, the intertwiner is a phase times
the identity leading to the displayed tensor product structure. This phase from the second factor of the
tensor product can finally be absorbed via the bilinearity of the tensor product into the first factor.
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such that, in principle, the order of computation does not matter. However, this only holds
for the whole expression of the tensor product and fails if the computation is performed
without explicitly keeping the basis vectors. The reason is that in intermediate steps different
phases are implicitly absorbed into the basis vectors depending on the order of computation.5

To discuss the relevance of this issue for model building, take as an example first the
tensor product of two vectors 𝑣 = 𝑣u� 𝑒u� ∈ 𝑉 and 𝑤 = 𝑤u� 𝑓u� ∈ 𝑊, which in model building
would be fields in irreducible representations of a symmetry group. The tensor product can,
as seen in (6.10) above, not only be written in terms of the canonical tensor product basis
but also in the basis obtained from this one by the Clebsch–Gordan coefficients,

𝑣 ⊗ 𝑤 = 𝑣u� 𝑤u� (𝑒u� ⊗ 𝑓u�) (7.2a)
= 𝐶−1

u�u�u�,u�u� 𝑣u� 𝑤u� (𝑒u� ⊗ 𝑓u�) 𝐶u�u�,u�u�u� = 𝐶−1
u�u�u�,u�u� 𝑣u� 𝑤u� ℎu�u�u� , (7.2b)

where the representation dependence of the Clebsch–Gordan coefficients is suppressed. As
an example, consider the tensor product of two 𝟐0 doublets 𝑣 and 𝑤 of T′ in the basis by
Feruglio et al. [26, Appendix A]. Note that the phase convention from this reference, which
is also used in the present section, is different from the one shown in Section A.1.2. The
result of this contraction is

𝑣 ⊗ 𝑤 = 𝑣1 𝑤1(𝑒1 ⊗ 𝑓1) + 𝑣1 𝑤2(𝑒1 ⊗ 𝑓2) + 𝑣2 𝑤1(𝑒2 ⊗ 𝑓1) + 𝑣2 𝑤2(𝑒2 ⊗ 𝑓2) (7.3a)

=
𝑣2 𝑤1 − 𝑣1 𝑤2

√2

𝑒2 ⊗ 𝑓1 − 𝑒1 ⊗ 𝑓2
√2

+

+
⎛⎜⎜⎜⎜
⎝

1−i
2 (𝑣2 𝑤1 + 𝑣1 𝑤2)

i 𝑣1 𝑤1
𝑣2 𝑤2

⎞⎟⎟⎟⎟
⎠

u�
⎛⎜⎜⎜⎜
⎝

1+i
2 (𝑒1 ⊗ 𝑓2 + 𝑒2 ⊗ 𝑓1)

− i (𝑒1 ⊗ 𝑓1)
(𝑒2 ⊗ 𝑓2)

⎞⎟⎟⎟⎟
⎠

.
(7.3b)

The term in the second line is the singlet in the tensor product and the terms in the last line
give the triplet components. It is customary in the literature only to display the coefficients
of the basis but not the basis vectors. This can lead to inconsistencies because it is possible
to absorb arbitrary phases into the basis vectors even if one demands them to be normalised
to one, i.e.

𝑣 ⊗ 𝑤 = ⎛⎜
⎝

ei u�1
𝑣2 𝑤1 − 𝑣1 𝑤2

√2
⎞⎟
⎠

⎛⎜
⎝

e− i u�1
𝑒2 ⊗ 𝑓1 − 𝑒1 ⊗ 𝑓2

√2
⎞⎟
⎠

+

+
⎛⎜⎜⎜⎜
⎝

ei u�2 1−i
2 (𝑣2 𝑤1 + 𝑣1 𝑤2)
ei u�2 i 𝑣1 𝑤1
ei u�2 𝑣2 𝑤2

⎞⎟⎟⎟⎟
⎠

u�
⎛⎜⎜⎜⎜
⎝

e− i u�2 1+i
2 (𝑒1 ⊗ 𝑓2 + 𝑒2 ⊗ 𝑓1)

− e− i u�2 i (𝑒1 ⊗ 𝑓1)
e− i u�2 (𝑒2 ⊗ 𝑓2)

⎞⎟⎟⎟⎟
⎠

(7.4)

is a valid choice for the decomposition into invariant subspaces for any real numbers
𝜑1 and 𝜑2. The choice of phases is, of course, precisely the ambiguity of the Clebsch–
Gordan coefficients outlined above. This freedom has been used to arrive at the Clebsch–
Gordan coefficients for the Feruglio basis shown in Section A.1.2, which have a better CP
transformation behaviour, see Chapter VII. This latter advantage notwithstanding, both
phase conventions are admissible, and, without any further arguments like the one with
respect to CP, one convention cannot be preferred over the other.

Terms of a Lagrangian invariant under a group 𝐺 are obtained by projecting onto one-
dimensional invariant subspaces, i.e. trivial singlets of 𝐺. However, without taking into

5 If the Clebsch–Gordan coefficients are not chosen unitary, the results can also differ by a scale factor.
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account the basis vectors, there is no control over this process because the projection is
implicit in neglecting the basis vectors from the beginning. This can lead to phase ambiguities
in the computation of Lagrangian terms from their tensor product expressions even if one
uses unitary Clebsch–Gordan coefficients.

As an example, consider the contraction

𝟑 ⊗ 𝟐0 ⊗ 𝟐0 ≅ 𝟏0 ⊕ 𝟏1 ⊕ 𝟏2 ⊕ 𝟑 ⊕ 𝟑 ⊕ 𝟑 (7.5)

of T′ in the Feruglio basis. The singlet coefficients of the two different ways to perform the
computation are related by6

(𝟑 ⊗ 𝟐0) ⊗ 𝟐0∣singlet coefficient = ei u�/4 ⋅ 𝟑 ⊗ (𝟐0 ⊗ 𝟐0)∣singlet coefficient (7.6a)

and the corresponding basis vectors by

(𝟑 ⊗ 𝟐0) ⊗ 𝟐0∣singlet basis vector = e− i u�/4 ⋅ 𝟑 ⊗ (𝟐0 ⊗ 𝟐0)∣singlet basis vector . (7.6b)

In accordance with the fact that the tensor product is associative, the products of coefficient
and basis vector coincide. In contrast to that, the coefficients alone exhibit a phase difference
of 𝜋/4.

The problem is amplified if there are several trivial singlets in the tensor product as, for
example, in

𝟑 ⊗ 𝟐0 ⊗ 𝟑 ⊗ 𝟐0 = 𝟏0 ⊕ 𝟏0 ⊕ 𝟏0 ⊕ … . (7.7)

Thus, in the tensor product of two triplets and two doublets there are three one-dimensional
invariant subspaces, i.e. there is, in fact, a three-dimensional invariant subspace. Since one
can project onto each of the three singlets, there are three different possible Lagrangian
terms which, in general, can have three distinct couplings. When specifying these couplings,
one has to make sure that it is explicit which coupling belongs to which singlet projection.
Otherwise, a given set of couplings does not define the model uniquely. In particular, if
the basis vectors are omitted from the calculation, different orders of computation lead to
different projections onto the three singlet subspaces. The couplings defining the identical
theory for different projections are related by a unitary matrix. In the case at hand, for
example,

𝑔1 ((𝟑 ⊗ 𝟐0)𝟐0
⊗ (𝟑 ⊗ 𝟐0)𝟐0

)𝟏0

+ 𝑔2 ((𝟑 ⊗ 𝟐0)𝟐1
⊗ (𝟑 ⊗ 𝟐0)𝟐2

)𝟏0

+ 𝑔3 ((𝟑 ⊗ 𝟐0)𝟐2
⊗ (𝟑 ⊗ 𝟐0)𝟐1

)𝟏0

= 𝑔′
1 (𝟑 ⊗ ((𝟐0 ⊗ 𝟑)𝟐0

⊗ 𝟐0)𝟑)𝟏0

+ 𝑔′
2 (𝟑 ⊗ ((𝟐0 ⊗ 𝟑)𝟐1

⊗ 𝟐0)𝟑)𝟏0

+ 𝑔′
3 (𝟑 ⊗ ((𝟐0 ⊗ 𝟑)𝟐2

⊗ 𝟐0)𝟑)𝟏0
,

(7.8)

with

⎛⎜⎜⎜⎜
⎝

𝑔′
1

𝑔′
2

𝑔′
3

⎞⎟⎟⎟⎟
⎠

=
1 + i

3 √2

⎛⎜⎜⎜⎜
⎝

1 −2 2
−2 −2 −1
−2 1 2

⎞⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

𝑔1
𝑔2
𝑔3

⎞⎟⎟⎟⎟
⎠

. (7.9)

6 Using the phases from the appendix, there is only a mismatch by a sign factor of −1.
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It is therefore necessary to specify the order of computation, e.g. via brackets, and for
each step the resulting representation as done in equation (7.8) to define a unique theory.
However, this is unfortunately often neglected in the literature, cf. [26, 27] for partially prob-
lematic examples. The whole discussion becomes especially important when considering
the properties of a model under CP transformations, which depend heavily on the choice of
phases for couplings. CP transformations in presence of finite groups are discussed in great
detail in Chapter VII.



III Flavour and flavour symmetries

Whereas the gauge sector of the Standard Model is very well motivated and understood,
even though a simple gauge group might seem even more natural than the reductive SM
gauge group GSM, this is not true for the flavour sector, i.e. the non-gauge interactions of
the three generations of matter and the Higgs. Gauge interactions are fully specified by the
gauge symmetry group, the value of the gauge coupling and maybe a 𝜃QCD-like parameter.
For the flavour sector, however, no such strong organising principle is known and masses
and mixing angles in the Standard Model have to be set by hand. This amounts, for example,
to six masses, three mixing angles and one phase, i.e. to 10 free parameters, in the quark
sector alone. There are many more free parameters in the lepton sector, where one faces the
additional difficulty that the structure of the neutrino mass terms is not yet known.

The only free parameter of the flavour sector whose value could easily be explained is
the Dirac CP phase 𝛿u�u�, which would vanish if CP were a symmetry of the Standard Model.
However, CP is broken, and due to the present lack of theoretical understanding of this
effect one can only parametrise the size of the violation by setting 𝛿u�u� to the experimentally
observed value.

An explanation from fundamental principles or just a deeper understanding of the ob-
served structure and the measured values of these parameters is, of course, highly desirable.
However, so far no conclusive solution to this flavour puzzle has been found, cf. also [28] for
a recent review of these issues and of some of the theoretical efforts towards their solution.

To lay a foundation for the following discussions, in the first part of this chapter, the flavour
sector of the Standard Model is reviewed and some notation is introduced. In particular,
the CKM and PMNS matrices are defined, and the phase ambiguities in these definitions
are highlighted.

One possible avenue towards a solution to the flavour puzzle is provided by flavour
symmetries. Relating different terms of the flavour sector, they at least decrease the number
of free parameters. Furthermore, they might provide a reason for the peculiar structures in
the quark and lepton sector. The concept of such symmetries is introduced in Section III.2.
Of course, given the topic of this text, the focus is set on discrete non-abelian symmetries.

In order to illustrate the use of such discrete non-abelian flavour symmetries, a model
for the neutrino sector originally devised by Altarelli and Feruglio [9, 10] is reviewed in
Section III.3. This model is based on the symmetry group of a regular tetrahedron A4. It
also serves as an example in later chapters.

Although discrete flavour symmetries are a very promising option, there is some valid
criticism of the way they are used in model building. Thus, in the final section of this chapter,
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(Left-handed) particles Symbol (𝑖 = 1, 2, 3) (SU(3)C, SU(2)L, U(1)Y)

lepton doublets 𝑙u� ≔ (𝜈u�, 𝑒u�)u� (𝟏, 𝟐, −1/2)
lepton singlets 𝑒u�

u� (𝟏, 𝟏, 1)
singlet neutrinos 𝜈u�

u� (𝟏, 𝟏, 0)
quark doublets 𝑞u� ≔ (𝑢u�, 𝑑u�)u� (𝟑, 𝟐, 1/6)
up quark singlets 𝑢u�

u� (𝟑, 𝟏, −2/3)
down quark singlets 𝑑u�

u� (𝟑, 𝟏, 1/3)

Higgs boson ℎ ≔ (ℎ+, ℎ0)u� (𝟏, 𝟐, 1/2)

Table III.1: Representations and field symbols for all SM matter particles plus right-
handed neutrinos written as left-handed Weyl spinors and the Higgs boson [29].

this criticism is briefly discussed and some general comments on the predictiveness of such
models are made, concluding the introduction to the flavour problem and to discrete flavour
symmetries.

III.1 The flavour sector of the Standard Model

The three generations of matter observed so far in both quark and lepton sector are distin-
guished not by their gauge interactions but only by their masses, which are determined by
their couplings to the Higgs boson, the so-called Yukawa couplings. For the charged lepton
and quark sector, they can be written using left-handed Weyl spinors as

ℒSM ⊃ −𝑌u�u�
u� ℎ∗ 𝑒u�

u� 𝑙u� − 𝑌u�u�
u� ℎ∗ 𝑑u�

u� 𝑞u� − 𝑌u�u�
u� 𝜖 ℎ 𝑢u�

u� 𝑞u� + h. c.

EWSB−−−−−→ −
𝑣

√2
𝑌u�u�

u� 𝑒u�
u� 𝑒u� −

𝑣
√2

𝑌u�u�
u� 𝑑u�

u� 𝑑u� −
𝑣

√2
𝑌u�u�

u� 𝑢u�
u� 𝑢u� + h. c.

(1.1)

with the notation for the Standard Model fields summarised in Table III.1 and 𝑣 ≔ ⟨ℎ0⟩. The
Yukawa matrices 𝑌u�/u�/u� are, in the SM, not restricted by any symmetry but arbitrary complex
matrices in flavour space. One might therefore expect their entries to be order one complex
numbers. Experimentally, however, this turns out not to be the case. It is more convenient
to discuss this in the mass basis instead of the flavour basis used in equation (1.1).

The transformation matrices for this change of basis can be obtained from the singular
value decomposition, see also Section A.6.2, of the Yukawa matrices,

𝑣
√2

𝑌u� ≕ 𝑉u� 𝑀u� 𝑈†
u� , 𝑓 = 𝑒, 𝑢, 𝑑 , (1.2)

where 𝑀u� is diagonal with real non-negative eigenvalues. The new fields obtained by

𝑓′u� ≔ (𝑈†
u� )u�u� 𝑓u� (1.3a)

(𝑓u�)′
u� ≔ 𝑓u�u� (𝑉u�)u�u� (1.3b)

for 𝑓 = 𝑒, 𝑢, 𝑑 are the desired mass eigenstates.
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Without further assumptions one might expect the masses to be of the order of the Higgs
vacuum expectation value (VEV) 𝑣 ≈ 246 GeV. However, they turn out to be strongly
hierarchical with only the top quark mass being of the expected order; all other masses are
smaller by one or several orders of magnitude. A possible explanation for this pattern is the
Froggatt–Nielsen mechanism [30], which is briefly reviewed in Section III.2.

Since the rotations of left-handed up quarks 𝑈u� and down quarks 𝑈u� need not be identical,
and, in fact, are not so in Nature, the SU(2)L charged current interactions are non-diagonal
in the mass eigenstate basis. This mismatch is encoded by the CKM matrix

𝑈CKM ≔ 𝑈†
u� 𝑈u� (1.4)

named after Cabibbo [31] and Kobayashi and Maskawa [32]. As a unitary 3 × 3 matrix, it
has 9 free parameters, which can be written as three angles and six phases.1 However, not
all of them are uniquely defined, and, therefore, some are not observable. Indeed, assuming
non-degenerate masses, the matrices 𝑈u� and 𝑉u� are only defined up to multiplication with a
diagonal phase matrix ,

𝑉u� ↦ 𝑉u� 𝑈ph
u� , (1.5a)

𝑈u� ↦ 𝑈u� 𝑈ph
u� , (1.5b)

see also Section A.6.2, which represents nothing but the freedom to re-phase the quark fields.
Hence, the CKM matrix is only defined up to the transformation

𝑈CKM ↦ (𝑈ph
u� )† 𝑈CKM 𝑈ph

u� , (1.6)

which can be used to remove five out of the six phases (𝑈CKM is invariant under changes
of the overall common phase of 𝑈ph

u�/u�). The CKM matrix is conventionally written as the
product [33]

𝑈CKM = diag (ei u�u�, ei u�u�, ei u�u�) 𝑉(𝜃12, 𝜃13 𝜃23, 𝛿u�u�) diag (e− i u�1/2, e− i u�2/2, 1) (1.7)

with

𝑉 =
⎛⎜⎜⎜⎜
⎝

𝑐12 𝑐13 𝑠12 𝑐13 𝑠13 e− i u�u�u�

−𝑠12 𝑐23 − 𝑐12 𝑠23 𝑠13 ei u�u�u� 𝑐12 𝑐23 − 𝑠12 𝑠23 𝑠13 ei u�u�u� 𝑠23 𝑐13
𝑠12 𝑠23 − 𝑐12 𝑐23 𝑠13 ei u�u�u� −𝑐12 𝑠23 − 𝑠12 𝑐23 𝑠13 ei u�u�u� 𝑐23 𝑐13

⎞⎟⎟⎟⎟
⎠

, (1.8)

using 𝑠u�u� ≔ sin 𝜃u�u� and 𝑐u�u� ≔ cos 𝜃u�u�. In this parametrisation 𝜃u�u� ∈ [0, 𝜋/2] and 𝛿u�, 𝛿u�u�, 𝛼u� ∈
[0, 2 𝜋]. The physical parameters are the angles 𝜃u�u� and the CP violating (Dirac) phase 𝛿u�u�.
The other phases are removable by the transformation shown above.2

Among these parameters, the Dirac phase 𝛿u�u� is special because it is so far the only
experimentally verified source of CP violation in the Standard Model. If it were trivial, i.e.
zero or 𝜋, CP could still be a symmetry of the SM.3 CP symmetries and their violation are
discussed in detail in Chapter VII.

1 In general, a u� × u� unitary matrix has 2 u�2 − u�2 = u�2 parameters of which 1/2 u� (u� − 1) are angles which
span the subspace of orthogonal matrices.

2 Note that this transformation is, in general, chiral and therefore affects the vacuum angle of QCD.
3 Of course, CP has to be violated for baryogenesis [34].
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sin 𝜃12 sin 𝜃23 sin 𝜃13 𝛿u�u�/°

0.22523 ± 0.00065 0.0417 ± 0.00057 0.00363 ± 0.00012 69.4 ± 3.4

Table III.2: Pre-ICHEP2014 values for mixing angles and phases of the CKM matrix
by the UTfit collaboration [35].

Instead of the anarchic structure that might be expected due to the absence of any organ-
ising principle for the Yukawa couplings, the observed magnitudes of the 𝑈CKM matrix are
highly diagonal [33]:

∣𝑈CKM∣ ≈
⎛⎜⎜⎜⎜
⎝

0.974 0.225 0.004
0.225 0.973 0.041
0.009 0.041 0.999

⎞⎟⎟⎟⎟
⎠

. (1.9)

Values for the angles and 𝛿u�u� can be found in Table III.2. It is tempting to assume that
this structure of 𝑈CKM is the perturbation of a unit matrix, e.g. via quantum effects or a
softly broken symmetry. However, it is also possible to arrive at a CKM matrix consistent
with observation by the use of discrete non-abelian flavour symmetries, cf. e.g. [36]. An
explanation of the general structure of such models, albeit with a focus on the lepton sector,
is deferred to Section III.2.

The discussion can be repeated for the neutrino sector with the additional difficulty that
it is not yet known how neutrinos obtain their masses. So far, it has not even been possible
to determine whether the observed three light neutrinos are Dirac or Majorana particles,
i.e. whether lepton number is conserved. The different possibilities how mass terms can
be generated are not presented here in detail, cf. [37, 38] and references therein for more
information. Moreover, the discussion is focused on the case of the three light active SM
neutrinos with the possible addition of three total singlet neutrinos.4 This is in complete
agreement with the number of light neutrinos determined from, for example, the 𝑍0 width
[33] and also with the number required for anomaly freedom of the SM. For the more general
case of arbitrary neutrino numbers, cf. [39].

The notion of Dirac neutrinos means that there is a pure (effective) Dirac mass term
coupling the left-handed neutrinos from the lepton doublets of the SM to additional singlet
neutrinos 𝜈u�

u� . Such a term is, of course, not SU(2)L gauge invariant but can be generated
by one insertion of the SM Higgs. After plugging in the vacuum expectation value of the
Higgs, one obtains a mass term of the form

ℒu�u�
= −𝑚u�u�

u� 𝜈u�
u� 𝜈u� + h. c. (1.10)

This term is, for the natural assignment of charges, invariant under lepton number trans-
formations.

The mass eigenstates can be determined in complete analogy to the quark case. Although
the absolute neutrino mass scale has not been measured directly, there are upper bounds
on it. The presently strongest upper bound on the total mass of active neutrinos is derived
from cosmological considerations and observations [40],

∑
u�

𝑚u�u�
< 0.23 eV . (1.11)

4 Usually, these neutrinos are referred to as ‘right-handed’ neutrinos. However, in the present notation they
are, like all other matter fields, written as left-handed Weyl spinors. Therefore, they are most often called
singlet neutrinos hereafter.
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Thus, neutrino masses are of the order 0.1 eV comparing to the 0.511 MeV of the electron.
Since the Dirac mass terms for charged leptons and neutrinos are structurally identical, it
seems difficult, albeit not impossible (cf. e.g. [41]), to explain this huge hierarchy between
the mass scales in a natural fashion. This is easier for the Majorana case where the See-saw
mechanism can be employed, see below.

The discussion of the mixing matrix, which in the lepton sector is called PMNS matrix
after Pontecorvo [42] and Maki, Nakagawa and Sakata [43], proceeds precisely as in the
quark case defining5

𝑈PMNS ≔ 𝑈†
u� 𝑈u� . (1.12)

In contrast to Dirac neutrinos, Majorana neutrinos, which are their own anti-particles,
allow for a Majorana mass term. Given only the SM field content, this can arise via the
effective Weinberg operator [44] at the non-renormalisable level,

ℒu�u�
=

1
4

𝜅u�u� (𝜈u� 𝜀 ℎ) (𝜈u� 𝜀 ℎ) + h. c.

EWSB−−−−−→
1
2

𝑚u�u�
u� 𝜈u� 𝜈u� + h. c.

(1.13)

with 𝑚u� = 𝑣2 𝜅/4 and where the couplings 𝜅u�u� have negative mass dimension. Using the
Weinberg operator one is agnostic about the specific type of interaction that, at the funda-
mental level, generates the neutrino masses. However, it assumes that the relevant degrees
of freedom are heavy compared to the energies involved in the observed processes.

There is a popular natural solution to generate a Majorana mass term with the desired
suppression with respect to the charged lepton masses: the (type I) See-saw mechanism
[45–48]. Here both Dirac and Majorana mass terms exist,

ℒu�u�
= −𝑚u�u�

u� 𝜈u�
u� 𝜈u� − 𝑚u�u�

u� 𝜈u�
u� 𝜈u�

u� + h. c. , (1.14)

but the Majorana masses are much larger than the Dirac masses. Then the combined mass
matrix for 𝜈u� and 𝜈u�

u� can be approximately block-diagonalised yielding

ℒu�u�
≈ 𝑚u�u�

u� 𝜈′
u� 𝜈′

u� − 𝑚u�u�
u� (𝜈u�)′

u� (𝜈u�)′
u� + h. c. , (1.15)

with 𝑚u� ≈ −𝑚u�
u� 𝑚−1

u� 𝑚u�, 𝜈′
u� ≈ 𝜈u� and (𝜈u�)′

u� ≈ 𝜈u�
u� for large 𝑚u� [49]. Hence, the masses for 𝜈u� are

suppressed by the Majorana mass of the 𝜈u�
u� , which is the origin of the name See-saw. Putting

the Majorana masses at the GUT scale of 1016 GeV and the Dirac masses at the electroweak
scale 𝑣 yields neutrinos too light by one to two orders of magnitude. This can be ameliorated,
for example, by using a lower scale for the right-handed neutrinos or by a large number of
right-handed neutrinos as in certain string models [50].

Since Majorana mass terms have a different structure than Dirac mass terms, one cannot
use a simple singular value decomposition to compute the mass eigenstates. However, the
Majorana mass matrix is symmetric, and it can be diagonalised by a Takagi factorisation,
see also Section A.6.3,

𝑚u� = 𝑈∗
u� 𝐷u� 𝑈†

u� , (1.16)

5 This is the adjoint of the CKM matrix definition when written in terms of SU(2)L doublet components.
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Figure III.1: The two possible neutrino mass hierarchies are depicted. The colours
denote the fraction of each flavour state 𝜈u�,u�,u� contained in the mass eigenstates 𝜈1,2,3,
i.e. the boxes are partitioned according to the absolute values squared of the corres-
ponding entries in 𝑈PMNS. This figure is taken from [53].

where 𝐷u� is diagonal with real non-negative eigenvalues. Hence, the unitary matrix 𝑈u� is
not defined up to multiplication with a diagonal phase matrix like in the quark sector but
up to

𝑈u� ↦ 𝑈u� diag (±1, ±1, ±1) . (1.17)

Thus, the phases 𝛼u�, called Majorana phases, in the PMNS analogue to (1.7) cannot be
removed by a re-phasing of the neutrino fields and are, hence, physical. Aside from this,
the mixing matrix 𝑈PMNS can be computed as for Dirac neutrinos.

In both Dirac and Majorana cases, the misalignment of flavour and mass eigenstates leads
to the well-known phenomenon of neutrino oscillations [42]. Oscillation amplitudes only
depend on the mixing angles 𝜃u�u�, 𝛿u�u� and the differences ∆𝑚2

u�u� of the squared masses of
neutrinos but not on the Majorana phases or the absolute mass scale. In contrast to the quark
sector, not all lepton masses and mixing parameters have been measured. The absolute
values of the differences of the squared masses are known and also that ∆𝑚2

21 > 0 from
the MSW effect [51, 52], whereas the absolute mass scale as well as the sign of ∆𝑚2

31 are
unknown. Thus, 𝜈3 could be the heaviest (normal ordering) or lightest (inverted ordering)
state, see Figure III.1. Moreover, all three mixing angles have been measured, but the Dirac
CP phase 𝛿u�u� and the Majorana phases are still unknown.6

The absolute values of the entries of the PMNS matrix do not show the same almost
diagonal structure as the CKM entries without, however, being totally devoid of any structure
[54]:

∣𝑈PMNS∣3u� =
⎛⎜⎜⎜⎜
⎝

0.801 → 0.845 0.514 → 0.580 0.137 → 0.158
0.225 → 0.517 0.441 → 0.699 0.614 → 0.793
0.246 → 0.529 0.464 → 0.713 0.590 → 0.776

⎞⎟⎟⎟⎟
⎠

(1.18)

6 Majorana phases are only physical and therefore measurable if the neutrinos are Majorana neutrinos, of
course.
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NuFIT 2.0 (2014)

Normal Ordering (Δχ2 = 0.97) Inverted Ordering (best fit) Any Ordering

bfp ±1σ 3σ range bfp ±1σ 3σ range 3σ range

sin2 θ12 0.304+0.013
−0.012 0.270 → 0.344 0.304+0.013

−0.012 0.270 → 0.344 0.270 → 0.344

θ12/
◦ 33.48+0.78

−0.75 31.29 → 35.91 33.48+0.78
−0.75 31.29 → 35.91 31.29 → 35.91

sin2 θ23 0.452+0.052
−0.028 0.382 → 0.643 0.579+0.025

−0.037 0.389 → 0.644 0.385 → 0.644

θ23/
◦ 42.3+3.0

−1.6 38.2 → 53.3 49.5+1.5
−2.2 38.6 → 53.3 38.3 → 53.3

sin2 θ13 0.0218+0.0010
−0.0010 0.0186 → 0.0250 0.0219+0.0011

−0.0010 0.0188 → 0.0251 0.0188 → 0.0251

θ13/
◦ 8.50+0.20

−0.21 7.85 → 9.10 8.51+0.20
−0.21 7.87 → 9.11 7.87 → 9.11

δCP/
◦ 306+39

−70 0 → 360 254+63
−62 0 → 360 0 → 360

Δm2
21

10−5 eV2 7.50+0.19
−0.17 7.02 → 8.09 7.50+0.19

−0.17 7.02 → 8.09 7.02 → 8.09

Δm2
3�

10−3 eV2 +2.457+0.047
−0.047 +2.317 → +2.607 −2.449+0.048

−0.047 −2.590 → −2.307

�
+2.325 → +2.599
−2.590 → −2.307

�

Table III.3: Table from [54] showing the values for the neutrino mixing parameters
and mass splittings from their global fit.

The results of a global fit to neutrino data for the mass splittings and mixing angles are
shown in Table III.3. On the one hand, the structure that emerges in the PMNS matrix
could be described as the perturbation of one of several symmetric mixing matrices, where
the latter can be obtained at first order from discrete non-abelian flavour symmetries, see
the subsequent section. On the other hand, the mixing matrix is still consistent with the
assumption of anarchy [55, 56], i.e. precisely the absence of any organising principle, an
avenue that is not pursued further in this work.

III.2 Flavour symmetries

As seen in the previous section, the flavour structure of the Standard Model clearly asks for
an explanation, i.e. for a derivation from fundamental principles. However, there has not
yet emerged any definite strategy to reach this goal. One important candidate is the idea
of flavour symmetries, cf. [28, 37, 38, 57–59] for reviews. In this approach, it is assumed
that there is a fundamental symmetry acting on flavour space and supplying relations
between different Yukawa couplings. In order to generate non-degenerate masses for the
SM particles, this symmetry must be broken somewhere above the electroweak scale. It may
then be hoped that the relations between couplings enforced by the additional symmetry
constrain the possible flavour patterns even after the breaking, providing an explanation for
the observed structure. In the best case, this also explains the observed CP violation in the
SM.

It is clear that, before building a concrete model, one has to make some fundamental
decisions about the preferred type of symmetry and the method of breaking. Firstly, the
symmetry can be abelian or non-abelian, discrete or continuous and gauged or global.
Secondly, the breaking can be explicit or spontaneous or by certain geometric means of
higher-dimensional models. Every choice has specific advantages and disadvantages.

As method of breaking, spontaneous symmetry breaking is generally to be preferred over
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explicit breaking. For an explicitly broken symmetry one should have reasons why the
symmetry should hold approximately instead of being wholly absent. Moreover, the size of
the breaking is usually very important for the phenomenology of approximate symmetries,
controlling how ‘approximate’ the symmetry is and therefore how predictive it is despite
being broken. This can, without any further arguments, induce a fine-tuning for the coup-
lings of the symmetry breaking operators. An exception are approximate symmetries which
arise if an exact discrete symmetry is accidentally enlarged to an approximate continuous
symmetry that is only broken by higher-order operators, cf. e.g. [60]. In this case, the effective
field theory suppression can yield the desired explanation for the smallness of the explicit
breaking.

Regarding the type of symmetry used, note that global continuous symmetries have two
important disadvantages. The first issue is that global symmetries are believed to be broken
by gravitational effects [12, 13]. Secondly, if global continuous symmetries are spontaneously
broken, one has to deal with the emerging Goldstone bosons, which severely challenge the
phenomenological viability of such models. Both issues could be disposed of by gauging
the symmetry: gauge symmetries are safe from violations by quantum gravity [61] and
Goldstone modes are absorbed by the gauge bosons.

The alternative are discrete flavour symmetries, which do not suffer from any problems
associated to Goldstone bosons and for which also solutions exist that overcome the first issue.
One possible consistent origin of these symmetries that shields them from gravitational
violation is, for example, provided by string theory [62]. Another possibility is starting with
a gauged continuous symmetry at very high energies, which is then broken spontaneously
to the discrete symmetry; an avenue that is investigated more thoroughly in Chapter VI.

The focus of this work is on discrete symmetries; however, it is instructive to discuss the
simplest type of flavour symmetry first, which is a (gauged) abelian U(1) symmetry.7 This
leads to models of the Froggatt–Nielsen type [30], which can be used to explain the mass
hierarchy among generations. The fundamental observation is that Yukawa terms like

ℒu� ⊃ −𝑌u� ℎ∗ 𝑒u� 𝑒 (2.1)

are forbidden if the charges 𝑞u� of matter fields under the Froggatt–Nielsen U(1)FN are non-
negative integers that depend on the generation while no other SM field carries a charge. The
reason is that, by assumption, 𝑞u�u� + 𝑞u� > 0 and analogously for the other matter fields besides
maybe the top quark, for which an order one Yukawa coupling is desirable. Introducing an
additional scalar field 𝜑, called flavon, uncharged with respect to GSM but with negative
charge 𝑞u� = −1 with respect to U(1)FN, the higher-order terms

ℒu� ⊃ − (
𝜑
𝛬

)
u�u�u�+u�u�

𝑌u� ℎ∗ 𝑒u� 𝑒 (2.2)

are invariant under all symmetries. The mass scale 𝛬 is, as usual, assumed to be some high
scale associated with new physics, which can be the Planck or some lower scale, depending
on the model. If the flavon VEV ⟨𝜑⟩ is smaller than the new physics scale, e.g. of the order
of 0.1 𝛬, the mass terms are suppressed by powers of a small quantity. Depending on the
precise value of the flavon VEV one adjusts the U(1)FN charges such that a viable mass
hierarchy emerges from this process. For a discussion of the Froggatt–Nielsen mechanism
in a supersymmetric context and of its relation to GUTs and anomaly cancellation by the
Green–Schwarz mechanism [64], cf. [65–68]. Similarly suppressed Yukawa couplings can

7 It is also possible to build very similar models with ℤu� symmetries, cf. e.g. [63].
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be obtained without a Froggatt–Nielsen symmetry by coupling the model to a strongly
coupled sector which generates the suppression due to the running of the wave function
renormalisation factors [69, 70].

Since by Theorem 3 abelian groups only have one-dimensional irreducible representations,
it is clear that they cannot yield any non-trivial predictions for the mixing of quarks or
leptons. It is just impossible to obtain relations between different generations, i.e. between
two or more fields, using one-dimensional representations. Only non-abelian groups feature
the higher-dimensional irreducible representations that are needed for these relations. Non-
abelian groups also have the advantage that they can suppress the additional contributions to
flavour changing neutral currents (FCNCs) that many models of physics beyond the Standard
Model introduce. Stringent experimental bounds, which challenge models of new physics,
exist for many of these processes, e.g. for the lepton sector Br(𝜇+ → 𝑒+ + 𝛾) < 5.7 ⋅ 10−13

[71]. Non-abelian flavour symmetries ameliorate the problem by restricting the number
of inter-generational operators allowed. This is, in particular, also true for certain discrete
symmetries, cf. [72].

Summarising their benefits, discrete non-abelian flavour symmetries can be shielded from
gravitational violations, they do not suffer from the prediction of unobserved Goldstone
bosons, they can be used to generate non-trivial mixing structures and they suppress FCNCs.
Therefore, they can be considered favourable tools for model building. Information on many
groups used in model building can be found in [57, 58, 73, 74]. Details for some of them are
also compiled in Section A.1.

As the focus of this text is on such discrete non-abelian groups, it seems advisable to be a
bit more precise regarding the terminology ‘discrete’. Discrete groups are, from now on,
understood to be subgroups of GL(𝑛, ℂ) for some 𝑛 ∈ ℕ that, with respect to the subgroup
topology, are discrete. In fact, the notion shall be even further restricted in the non-abelian
case to compact groups, which are then automatically finite. Simply speaking this implies
that ‘discrete group’ refers to either a finite abelian or non-abelian group or such a group
with additional factors of ℤ.

As an aside, note that, especially in neutrino model building, there is sometimes made
a distinction between so-called ‘direct’ and ‘indirect’ models [37, 75]. This terminology is
related to the automatic symmetries of Dirac and Majorana mass matrices. A Majorana mass
matrix is invariant under ℤ3

2 transformations acting on the lepton doublets, and a Dirac
mass matrix is invariant under U(1)3 (cf. e.g. [76]). This is also reflected in the freedom to
remove signs and phases from the mixing matrices, see (1.5) and (1.17). Usually, overall
phase transformations are divided out of these symmetries; hence, one speaks of the Klein
symmetry ℤ2 × ℤ2 of the Majorana mass matrix and of U(1) × U(1) as symmetry of the
Dirac masses. Models in which the Klein symmetry and a finite (usually ℤ3) subgroup of
U(1)2 are contained in the original flavour symmetry are called direct models. In this case
the flavour symmetry is broken to two different subgroups in the neutrino and charged
lepton sector containing the respective mass matrix symmetries. If a direct model is to yield
tri-bi-maximal mixing, the flavour group must contain the permutation group on four letters
S4 [77, 78]. In the indirect approach, the symmetries of the mass matrices are not contained
in the original flavour symmetry group and arise accidentally, putting the focus on the exact
alignment of the flavon vacuum expectation values. For a pictorial comparison of these
differences of the direct and indirect model building approaches, see also Figure III.2.

As already mentioned above, the PMNS matrix does not seem to be the perturbation of a
unit matrix, in contrast to the CKM matrix. However, there are certain popular propositions
for mixing matrices that arise at first order in flavour models and that could be the correct
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Figure III.2: Comparison of the direct and indirect model building approaches, figure
taken from [79].

bi-maximal tri-bi-maximal golden ratio

tan 𝜃12 1 1/√2 2/(1 + √5)
𝜃12/° 45 35.26 31.72

Table III.4: Values of the mixing angle 𝜃12 for bi-maximal, tri-bi-maximal and golden
ratio mixing [37].

starting point for an explanation of the structure of 𝑈PMNS. The three particularly popular
shapes of bi-maximal [80, 81], tri-bi-maximal [82] and golden ratio mixing [83, 84] share the
properties 𝜃13 = 0° and 𝜃23 = 45° such that [37]

𝑈PMNS =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑐12 𝑠12 0
− u�12

√2

u�12

√2
1

√2u�12

√2
− u�12

√2
1

√2

⎞⎟⎟⎟⎟⎟⎟
⎠

, (2.3)

where both Majorana and charged lepton phases are set to zero. The remaining angle 𝜃12 for
all three cases is shown in Table III.4. Of the three cases, the tri-bi-maximal mixing matrix

𝑈TBM ≔

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

√2
3

1
√3

0

− 1
√6

1
√3

1
√2

1
√6

− 1
√3

1
√2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(2.4)

plays the most important role in the following. All three propositions share the deficiency
that 𝜃13 is predicted to be exactly zero. This is a remnant of the times before the direct
measurement of this angle [85–89] when the observational results were still consistent with
zero. Note that 𝜃13 = 0 implies that the CP phase 𝛿u�u� is not well defined.

Before providing an example for models with discrete non-abelian flavour symmetries
leading to such mixing matrices in the next section, two more general remarks are in order.

First, note that it can be shown that the symmetry group has to be fully broken, i.e.
broken to at most an abelian subgroup, to arrive at a realistic pattern of masses and mixing
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𝑙 𝑒u� 𝜇u� 𝜏u� ℎu� ℎu� 𝜑u� 𝜑u� 𝜉

A4 𝟑 𝟏 𝟏″ 𝟏′ 𝟏 𝟏 𝟑 𝟑 𝟏
ℤ4 1 3 3 3 0 0 0 2 2

⟨ ⋅ ⟩ 0 0 0 0 ( 0
𝑣u�

) (𝑣u�
0 )

⎛⎜⎜⎜⎜
⎝

𝑣′

0
0

⎞⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

𝑣
𝑣
𝑣

⎞⎟⎟⎟⎟
⎠

𝑤

Table III.5: The A4 representations and ℤ4 charges of all fields relevant to the lepton
sector of the model by Altarelli and Feruglio [9, 10]. Additionally, the vacuum expect-
ation values after flavour and electroweak symmetry breaking are displayed.

parameters [90]. The reason is that, if some non-abelian subgroup stayed unbroken, there
would be degenerate masses or some mixing angles would vanish contradicting experimental
observations.

The second point concerns the spontaneous breaking of any discrete symmetry. In prin-
ciple, the physical vacua in causally disconnected patches of the universe can be equivalent
but different. Such vacua are connected by the symmetry transformations that are spontan-
eously broken. For discrete symmetries, regions living in different vacua are thus separated
by domain walls [91] as there is no way continuously to deform one vacuum solution into a
different but equivalent one. No such domain wall has been observed; hence, for a model to
be viable one must either hide or annihilate them. Possible solutions are the use of (pseudo-)
anomalous symmetries for which the domain walls can dissolve due to the anomalous
breaking of the symmetry [92] or, again, discrete gauge symmetries for which the differ-
ent vacua are not equivalent but actually identical. Using the former solution there is, of
course, the difficulty that the anomaly might change the phenomenology of a model in
many more ways than just the annihilation of domain walls. Anomalies of discrete groups
are considered in detail in Chapter IV.

III.3 Example model with A4 symmetry

It is most instructive to discuss flavour models with discrete non-abelian symmetries by
means of a specific example. The chosen one is a model by Altarelli and Feruglio [9, 10]. It
is based on the alternating group on four letters A4, which is also called tetrahedral group
since it is the symmetry group of a regular tetrahedron. For details of A4, see Section A.1.1.8
The model predicts tri-bi-maximal mixing for the neutrinos at first order. Regarding the
terminology introduced before, since clearly A4 does not contain S4, the model is not a fully
direct model. However, it is sometimes called a semi-direct model as only one ℤ2 factor of
the Klein symmetry of the Majorana mass matrix is accidental.

The field content encompasses all Standard Model fields, an additional second Higgs
boson such that there are two Higgs doublets ℎu� = (𝟏, 𝟐, 1/2) and ℎu� = (𝟏, 𝟐, −1/2) like, for
example, in the MSSM, and three flavon fields 𝜑u�, 𝜑u� and 𝜉. Their representations with respect
to A4 and charges under an additional abelian ℤ4 symmetry are displayed in Table III.5.
The terms responsible for lepton masses after flavour and electroweak symmetry breaking

8 Note that the basis used in the original reference is different from the one employed here.
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are [9, 10]

ℒu� ≔
ℎu�
𝛬

ℎu� 𝑒u� (𝜑u� ⊗ 𝑙)𝟏 +
ℎu�

𝛬
ℎu� 𝜇u� (𝜑u� ⊗ 𝑙)𝟏′ +

ℎu�
𝛬

ℎu� 𝜏u� (𝜑u� ⊗ 𝑙)𝟏″

+
𝜆1

𝛬 𝛬u�
{[(𝑙 ℎu�) ⊗ (𝑙 ℎu�)]𝟑s

⊗ 𝜑u�} +
𝜆2

𝛬 𝛬u�
[(𝑙 ℎu�) ⊗ (𝑙 ℎu�)]𝟏 𝜉 .

(3.1)

Here ℎu� and 𝜆u� are dimensionless coupling constants, 𝛬 the flavour scale and 𝛬u� the, possibly
identical, See-saw scale. The general structure of the mass terms is common to all flavour
models with discrete non-abelian symmetries. There are usually several flavon fields which
are not charged with respect to the Standard Model gauge group but with respect to the
flavour group. Some of these flavons should transform in higher-dimensional representa-
tions of the flavour group to generate a non-trivial mixing structure. Further, either leptons
or anti-leptons or both reside in higher-dimensional representations. This combination
yields relations among the mass terms of different generations that are, at least to a certain
degree, predicted by the group structure. An additional abelian symmetry like the ℤ4 in
the example is used to forbid unwanted couplings, a method which is so common in flavour
model building that there is the danger of a proliferation of such symmetries. Due to the
finite order of these symmetries, one has to be careful that allowed higher-order terms do
not spoil the desired structure.

After performing the contractions in (3.1) according to the rules of Section A.1.1 and
inserting the Higgs vacuum expectation values, see Table III.5, one arrives at the following
mass matrices for charged leptons and neutrinos:

𝑚u� =
𝑣u�

√3 𝛬

⎛⎜⎜⎜⎜
⎝

ℎu� ⟨𝜑u�,1⟩ ℎu� ⟨𝜑u�,3⟩ ℎu� ⟨𝜑u�,2⟩
ℎu� ⟨𝜑u�,2⟩ ℎu� ⟨𝜑u�,1⟩ ℎu� ⟨𝜑u�,3⟩
ℎu� ⟨𝜑u�,3⟩ ℎu� ⟨𝜑u�,2⟩ ℎu� ⟨𝜑u�,1⟩

⎞⎟⎟⎟⎟
⎠

, (3.2a)

𝑚u� =
2 𝑣2

u�
3 𝛬 𝛬u�

⋅

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(√3 𝜆2 ⟨𝜉⟩ + √2 𝜆1 ⟨𝜑u�,1⟩) − 1
√2

𝜆1 ⟨𝜑u�,3⟩ − 1
√2

𝜆1 ⟨𝜑u�,2⟩

− 1
√2

𝜆1 ⟨𝜑u�,3⟩ √2 𝜆1 ⟨𝜑u�,2⟩ √3 𝜆2 ⟨𝜉⟩ − 1
√2

𝜆1 ⟨𝜑u�,1⟩

− 1
√2

𝜆1 ⟨𝜑u�,2⟩ √3 𝜆2 ⟨𝜉⟩ − 1
√2

𝜆1 ⟨𝜑u�,1⟩ √2 𝜆1 ⟨𝜑u�,3⟩

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

(3.2b)

Inspecting these mass matrices it is immediately clear that one of the crucial points of this
type of model is the alignment of the flavon vacuum expectation values. If the triplet VEVs
in this model were completely arbitrary, no structure would be recognisable in the mass
matrices. With the specific choice of Table III.5, however, one obtains

𝑚u� =
𝑣u� 𝑣′

√3 𝛬

⎛⎜⎜⎜⎜
⎝

ℎu� 0 0
ℎu� 0

0 0 ℎu�

⎞⎟⎟⎟⎟
⎠

, (3.3a)

𝑚u� =
𝑣2

u�
3 𝛬 𝛬u�

⎛⎜⎜⎜⎜
⎝

𝑎 + 2 𝑑 −𝑑 −𝑑
−𝑑 2 𝑑 𝑎 − 𝑑
−𝑑 𝑎 − 𝑑 2 𝑑

⎞⎟⎟⎟⎟
⎠

, (3.3b)

where the abbreviations 𝑎 ≔ 2 √3 𝜆2 𝑤 and 𝑑 ≔ √2 𝜆1 𝑣 are used. As the charged lepton
mass matrix is already diagonal, which is one reason for the present choice of A4 basis, the
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mass eigenstates coincide with the flavour eigenstates up to phase changes, which can be
absorbed into the charged lepton singlet fields. Three couplings are involved in determining
the three mass values; thus, there is no prediction but one can fit the correct values. The
model as presented so far does not provide any reason for the hierarchy among the charged
lepton masses, a deficit which is shared by most models with discrete non-abelian flavour
symmetries. However, this could be remedied here by introducing an additional Froggatt–
Nielsen symmetry acting on the charged lepton singlets as they are singlets under the flavour
symmetries [9].

With a diagonal charged lepton mass matrix, the PMNS matrix is the same as 𝑈u� up to
possible phases. Computing the lepton mixing matrix, it turns out that

𝑈PMNS = 𝑈u� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

√2
3

1
√3

0

− 1
√6

1
√3

− 1
√2

− 1
√6

1
√3

1
√2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⋅ diag (ei arg (u�+3 u�)/2, ei arg (u�)/2, ei arg (−u�+3 u�)/2) ,

(3.4)

i.e. 𝑈PMNS is a tri-bi-maximal matrix, compare equation (2.4), with additional Majorana
phases. One particular feature of this model is that the mixing angles do not depend on any
couplings.9

The neutrino masses are

𝑚u�u�
=

𝑣2
u�

3 𝛬 𝛬u�
⋅

⎧{{
⎨{{⎩

|𝑎 + 3 𝑑| , 𝑖 = 3 ,
|𝑎| , 𝑖 = 2 ,
| − 𝑎 + 3 𝑑| , 𝑖 = 1 .

(3.5)

Assuming real couplings, which can be obtained by imposing a CP symmetry, see also
Chapter VII, the fact that there are only two couplings involved in three mass values leads
to a prediction of the absolute mass scale from the mass differences [9].

Before concluding the discussion of the A4 example model, corrections to the first order
mixing pattern obtained so far shall be mentioned. Since the Lagrangian contains effective
operators of orders five and six, there is no good reason for stopping the expansion at any
fixed order. Indeed, one should take into account all higher-order terms that are consistent
with the symmetries of the theory. These terms can be expected to perturb the mixing matrix
away from the tri-bi-maximal pattern without destroying the picture completely because
the perturbations are suppressed by additional factors of vacuum expectation values over
fundamental or See-saw scale. Such perturbations are welcome, for the angles of tri-bi-
maximal mixing deviate from the measured values, most notably 𝜃13 ≈ 8.5° ≠ 0. Usually,
only higher-order terms for the potential (or superpotential for supersymmetric models)
are investigated [9]. However, there are also operators which, after flavour symmetry
breaking, change the normalisation of kinetic terms of matter fields (Kähler potential terms
in supersymmetric models); thus, they influence the mixing angles via the additional
re-normalisation of fields to be performed. These corrections are discussed in detail in
Chapter V. An important difference between these two types of higher-order terms is that
superpotential terms can be forbidden by additional abelian shaping symmetries while this
is impossible for certain corrections to the kinetic terms. A further correction that should be
taken into account is the renormalisation group (RG) running of mixing parameters as they
are not RG invariant [93–95].
9 This feature is sometimes called ‘form-diagonalisability’.
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III.4 Critical assessment of discrete non-abelian flavour
symmetries

As seen in this chapter, the flavour structure of the Standard Model clearly asks for a more
fundamental explanation. Popular candidates for a solution to this flavour puzzle are
models with discrete non-abelian flavour symmetries. Models with such symmetries can,
in principle, generate a non-trivial mixing structure, no Goldstone bosons are generated
in the process of flavour symmetry breaking, and the symmetries can be protected from
gravitational violation. Many models built within this framework so far predict one of
the three mixing structures called tri-bi-maximal mixing, bi-maximal mixing and golden
ratio mixing, whose mixing angles are not too far from experimental values. However,
higher-order corrections have to be taken into account both to obtain robust predictions and
to arrive at realistic values for the mixing parameters.

Although aesthetically appealing, model building with discrete flavour symmetries has to
face some criticism. One particular reason is the ambiguity enjoyed by the models coming
from the choice of symmetry and field content. There is clearly an infinite number of finite
non-abelian groups, even when restricting the discussion to groups with three-dimensional
irreducible representations, cf. e.g. the 𝛥(3 𝑛2) series of SU(3) subgroups. Usually, the choice
of group is only based on arguments like simplicity and minimal size, leading to groups
like the tetrahedral group A4 used in the example model.

Even after choosing a group, there is still the possibility to freely introduce fields in
arbitrary irreducible representations. Of course, one would again try to be as economical as
possible, but this is a rather vague requirement. The situation is improved if one obtains
the discrete group by spontaneously breaking a continuous (gauge) symmetry because one
is then restricted to a field content that can arise from the breaking, see Chapter VI.

Another type of uncertainty enters the model building process when imposing, rather
than actually deriving, the VEV alignment of the flavons because then there is no guarantee
that the chosen alignment is physical. In many (especially supersymmetric) models the
seemingly sharp line between deriving a VEV alignment from a potential and inserting it
by hand is blurred by the introduction of many additional driving fields, cf. [10, 37]. Using
this mechanism, one can, in principle, write down potentials with arbitrary minima with
great ease; however, this is at the expanse of a large number of additional abelian shaping
symmetries and driving fields, cf. e.g. the models [27, 96, 97].

The situation is improved in string model building, where discrete flavour groups can
naturally arise [62, 98–100]. While it is not yet entirely clear which classes of finite groups
one can obtain from string constructions, it is impossible to pick a group at will. Moreover,
the field content of the model is set from the beginning and cannot be changed, completely
removing this ambiguity. Nevertheless, as there is a huge number of string vacua, it remains
very difficult to make definite predictions.
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Usually, symmetries of the action defining a theory are assumed also to be symmetries at the
quantum level, i.e. symmetries of the generating functional of the corresponding quantum
field theory. It is, of course, well known that this is not always the case [101, 102]. The
breaking of a classical symmetry at the quantum level is called anomaly and the symmetry
is said to be anomalous. This possibility is not restricted to continuous symmetries but can
equally affect discrete symmetries such as the ones discussed in the previous section [61].
Such symmetries are then violated at least non-perturbatively. Hence, checking whether a
discrete symmetry is anomaly free is crucial for its phenomenological understanding. This
becomes particularly acute if the symmetry is to be embedded into a gauge symmetry at
high energies to shield it from gravitational violation. In this case it has to be anomaly free
because, otherwise, this high-energy gauge symmetry would have to be anomalous as well,
rendering it inconsistent.

For abelian finite groups, anomaly constraints were first derived from the spontaneous
breaking of U(1) symmetries [103–105]. It was shown in [106, 107], however, that discrete
anomalies can also be derived from the transformation of the path integral measure used
first by Fujikawa [108, 109] for continuous symmetries. This derivation also shows clearly
that the only anomaly constraints one has to consider are of the form 𝐺 − 𝐿 − 𝐿 where 𝐿
denotes the (Lie) gauge group of the theory, i.e. there is no 𝐺 − 𝐺 − 𝐺 anomaly for global
symmetries 𝐺 (including discrete 𝐺). Nonetheless, it is possible to consider the constraints
obtained from embedding the discrete group into a continuous anomaly-free symmetry
[110, 111]. The resulting restrictions on the symmetry are then, in general, stronger than
strictly needed for anomaly freedom. Thus, the path integral method is employed in the
following to determine the anomalies of discrete groups and to show which kinds of groups
are anomaly free regardless of the details of a specific model.

First, the anomaly conditions on discrete groups derived from the transformation of
the path integral measure are reviewed, and it is shown that the path integral measure
transforms in a well-defined one-dimensional representation of the discrete group. Based
on this argument it is easy to see that perfect groups, and thus also simple groups, are
anomaly free, whereas all other groups may suffer, in general, from anomalies. Moreover,
the argument shows that such anomalies always can consistently be cancelled by a discrete
Green–Schwarz mechanism [41, 64, 112]. Particular care is taken of the normalisation of the
gauge group Dynkin indices, and it is shown that orthogonal and exceptional gauge groups
are somewhat less prone to anomalies than unitary and symplectic groups, a fact that has
not been noted before.

* Some of the results presented in this chapter have already been communicated in [5].
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𝐿 SU(𝑁) Sp(2𝑁) SO(𝑁) G2 F4 E6 E7 E8

ℓ (𝑭u�) 1/2 1/2 1 1 3 3 6 30

Table IV.1: Dynkin indices of the fundamental representations of the simple compact
Lie groups 𝐿 using the conventions of Bernard et al. [114].

IV.1 Anomalies of discrete groups

The theory under consideration shall be defined by a Lagrangian which is invariant under
a discrete symmetry 𝐺 and a gauged compact simple Lie group 𝐿.1 Moreover, let 𝛹 be a
multiplet of Dirac fermions transforming in a representation 𝒓 of 𝐿. Consider now a chiral
transformation of the left-handed part 𝛹u� ≔ 𝑃u� 𝛹 of the multiplet 𝛹, which is assumed to
transform in a unitary representation 𝑹 of 𝐺,

𝛹u� ↦ 𝜌𝑹(𝑔) 𝛹u� . (1.1)

As group representation matrices are invertible, any 𝜌𝑹(𝑔) has a matrix logarithm ln 𝜌𝑹(𝑔)
such that

𝜌𝑹(𝑔) = eln u�𝑹(u�) , (1.2)

cf. e.g. [113]. This logarithm is, of course, not unique, but it turns out that its use is only
necessary at intermediate steps; it completely drops out in the final results. Hence, any
specific choice of logarithm is permitted.

The transformation of the path integral measure is then (cf. [107])

𝒟𝛹 𝒟𝛹 ↦ 𝒟𝛹 𝒟𝛹 𝒥u� ≔ 𝒟𝛹 𝒟𝛹 exp {tr (ln 𝜌𝑹(𝑔)) ⋅ ℓ (𝒓) ⋅ ∫ d4𝑥
1

16 𝜋2 𝐹u�u�,u� ̃𝐹u�u�
u� } .

(1.3)

The definition of the field strength tensor 𝐹u�u� = 𝐹u�u�,u� 𝑇u� used is 𝐹u�u� ≔ i [𝐷u�, 𝐷u�] with the
gauge covariant derivative 𝐷u� ≔ ∂u� − i 𝐴u� = ∂u� − i 𝐴u�,u� 𝑇u�. Further, the dual field strength
is normalised as ̃𝐹u�u� ≔ 1

2 𝜀u�u�u�u� 𝐹u�u�. Finally, 𝑇u� denotes the generators of the Lie algebra of 𝐿,
whose normalisation is chosen according to the convention of Bernard et al. [114]. Hence,
the longest root of the Lie algebra of 𝐿 has length one or, equivalently, the Dynkin index

𝛿u�u� ℓ (𝒓) ≔ tr (𝒓(𝑇u�) 𝒓(𝑇u�)) (1.4)

evaluated in the adjoint representation, 𝒓 = 𝐚𝐝𝐣, equals the dual Coxeter number of the
algebra (cf. e.g. [115]). The resulting Dynkin index ℓ (𝑭u�) for the fundamental representations
𝑭u� of the simple compact Lie groups 𝐿, which are the representations of smallest dimension,
are shown in Table IV.1. Dynkin indices for all other representations are integer multiples
of these values.

In contrast to the continuous case, where the group transformation parameters can take
arbitrary values, the normalisation is crucial for the discrete case. The reason is that the
index theorems (cf. e.g. [116]) imply that the Pontryagin index

𝑃 ≔ ∫ d4𝑥
1

32 𝜋2 𝐹u�u�,u� ̃𝐹u�u�
u� (1.5)

1 The discussion can be repeated for abelian groups and gravity.
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is an integer for any gauge field configuration in the chosen normalisation [114, 117]. In a
different normalisation it would, of course, still be a topological charge, but it might take
values in, for example, ℤ/2 or 2 ℤ instead. For the chosen normalisation, however, it was
shown in [114], using the theorem that any mapping from 𝑆3 into a simple Lie group 𝐿 can
be deformed to a mapping into an SU(2) subgroup of 𝐿 [118], that, varying the gauge field
configuration, precisely all integers are assumed by 𝑃. This normalisation issue was not
properly taken into account in previous studies of non-abelian discrete anomalies using the
path integral [106, 107] and leads to differences in anomaly conditions for orthogonal and
exceptional groups compared to unitary and symplectic groups, see Section IV.2 below.

Using this abbreviation and the identity

det eu� = etr u� (1.6)

for any complex square matrix 𝐴, the path integral transformation (1.3) can be rewritten to

𝒟𝛹 𝒟𝛹 𝒥u� = 𝒟𝛹 𝒟𝛹 det (𝜌𝑹(𝑔))2 ℓ (𝒓) ⋅ u� . (1.7)

Note that as 𝑹 is assumed to be unitary, which is no restriction for finite discrete groups, see
Theorem 7, the determinant lies on the unit circle in ℂ. Moreover, since the determinant
is a group homomorphism from GL(𝑛, ℂ) to GL(1, ℂ) = ℂ×, the composition of group
homomorphisms (det ∘ 𝑹) is a one-dimensional representation of 𝐺. Using the additional
information that 2 ℓ (𝑹) ⋅ 𝑃 is an integer and that integer powers of one-dimensional rep-
resentations are themselves one-dimensional representations, one concludes that the path
integral measure transforms in a one-dimensional representation of the discrete group 𝐺.2
This fact is exploited in several ways in the following section.

IV.2 Anomaly-safe discrete groups

Going back to the physics application, the symmetry 𝐺 is anomaly free if and only if the
product of the path integral measures of all fields 𝑓 transforms trivially, i.e. if and only if3

∏
u�

det (𝜌𝑹u�(𝑔))2 ℓ (𝒓u�) ⋅ u� = 1 , ∀ 𝑃 ∈ ℤ , ∀ 𝑔 ∈ 𝐺 . (2.1)

A group 𝐺 can be said to be anomaly safe if it does not suffer from anomalies independently
of the specific field content and of the gauge symmetries present. This is true if

det (𝜌𝑹u�
(𝑔)) = 1 , ∀ 𝑔 ∈ 𝐺 , (2.2)

for all irreducible representations 𝑹u� since the minimal non-trivial 𝑃 is one and the minimal
Dynkin index is 1/2, see again Table IV.1. This is, by the arguments outlined above, equivalent
to the requirement that 𝐺 shall not have any non-trivial one-dimensional representation at
all.

As stated in Chapter II, the one-dimensional representations of 𝐺 are in one-to-one cor-
respondence with the representations of its Abelianisation 𝐴(𝐺), see Definition 13 and

2 The statements of the last two sentences are true since det u� u� = det u� ⋅ det u� and (u� u�)u� = u�u� u�u� for
u�, u� ∈ ℂ.

3 For a discussion using the more common notion of anomaly-coefficients, yielding modular equations for
the sum of the tr (ln u�𝑹(u�)) for all fields, see [5].
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Theorem 6. Assume from now on that the Abelianisation is finite, which is clear for finite
𝐺 but can also happen for infinite groups as, for example, SL(2, ℤ). As an abelian group,
𝐴(𝐺) has |𝐴(𝐺)| inequivalent irreducible representations, i.e. anomaly-safe groups have
|𝐴(𝐺)| = 1.4 Groups with trivial Abelianisation, i.e. groups which equal their commutator
subgroup, are called perfect groups, see Definition 14. This shows that the notion of perfect
group coincides with the definition of anomaly-safe group used here.5

It follows from Theorem 1 that all non-abelian simple groups are perfect. These groups
are the groups into which all finite groups can be decomposed using the composition series
[120]. Examples are all alternating groups Au� with 𝑛 ≥ 5, the projective special linear groups
PSL(𝑛, 𝑘) with 𝑛 ≥ 2 over finite fields 𝑘 (without char 𝑘 ≤ 3 while 𝑛 = 2) and other classical
and exceptional finite groups of Lie type [120]. Among them especially A5, which can yield
golden ratio mixing when applied to neutrino model building [84], and 𝑃SL(2, 7) = 𝛴(168),
which can yield tri-bi-maximal mixing [121], have been used in model building. For more
information on these groups, see [57], and for recent model building approaches utilising
them, see [122–124].

However, since perfect groups are not the same as non-abelian simple groups, there are
also non-abelian, non-simple perfect groups. Examples are the special linear groups SL(𝑛, 𝑘)
with 𝑛 ≥ 2 over finite fields 𝑘 (without char 𝑘 ≤ 3 while 𝑛 = 2) [120] and semi-direct products
of perfect groups. The latter can be seen because any element of a semi-direct product can
be written as the product of one group element of each factor, see Definition 16; hence,
it can be written as the product of commutator elements, i.e. every group element is an
element of the commutator subgroup. This includes, as the trivial example of a semi-direct
product, also direct products of perfect groups. Note that the semi-direct product of two
simple groups is perfect but not simple since one of the two factors is a non-trivial normal
subgroup of the product.

Sometimes in model building, one is already sure about the symmetries, or at least gauge
symmetries, of a model, although the field content has not been fixed completely. In this
case, it turns out that the definition of anomaly-safe groups given above can be too strong.
The reason is that only for SU(𝑁) and Sp(2𝑁) the smallest Dynkin label is 1/2; for SO(𝑁), for
example, it is one. Hence, given SO(𝑁) as gauge group, the exponent in equation (1.7) is
always an even integer instead of just any integer. Therefore, groups whose one-dimensional
representations only have ±1 as image are free of anomalies with respect to SO(𝑁) gauge
groups. An important example are the symmetric groups (for their representations, cf. [57]),
which are thus free of Su� −SO(𝑁)−SO(𝑁) anomalies and, in fact, free of Su� −𝐿−𝐿 anomalies
for 𝐿 not SU(𝑁) and Sp(2𝑁). Su� − SU(𝑁) − SU(𝑁) anomalies, however, may exist.

More generally, a discrete group 𝐺 is free of anomalies with respect to a given gauge
group 𝐿 irrespectively of the field content if and only if

det (𝜌𝑹u�
(𝑔))

2 ℓ (𝑭u�)
= 1 , ∀ 𝑔 ∈ 𝐺 , ∀ 𝑖 (2.3)

for the fundamental representation 𝑭u� of 𝐿 and all irreducible representations 𝑹u� of 𝐺 since
all other Dynkin indices are integer multiples of ℓ (𝑭u�). This condition is certainly fulfilled if

2 ℓ (𝑭u�)
|𝐴(𝐺)|

∈ ℤ . (2.4)

4 The sum of the squares of the dimensions over all inequivalent irreducible representations of a finite group
equals the order of the group. Since for abelian groups the orders are all one, the stated result follows.

5 The fact that perfect groups are anomaly free was first realised in [119] using anomaly coefficients.
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To see this, note that the order of 𝐴(𝐺) is an upper bound on the orders of its group elements.
These are, in turn, by the correspondence of one-dimensional representations of 𝐺 with the
representations of 𝐴(𝐺), the same as the powers needed for (2.3) to be true. This is already
sufficient for the case of the symmetric groups because [Su�, Su�] = Au� and Su�/Au� = ℤ2
[21]. Also the case of completely anomaly-safe groups can be derived immediately because
perfect groups have 𝐴(𝐺) = 1.

However, the argument can still be refined for more complicated Abelianisations. Since
any finite abelian group can be written as the direct product of cyclic groups with powers
of prime numbers as orders, see Theorem 2,

𝐴(𝐺) = ⨉
u�,u�

ℤ
u�u�u�,u�

u�
(2.5)

for some prime numbers 𝑝u� and natural numbers 𝑛u�,u�. The maximal order of an element of
𝐴(𝐺) is thus ∏u� maxu� 𝑛u�,u�, which allows for a refinement of (2.4) to a necessary and sufficient
condition. In fact, a discrete group 𝐺 is anomaly free with respect to a gauge group 𝐿
irrespectively of the field content if and only if

2 ℓ (𝑭u�)
∏u� maxu� 𝑛u�,u� ∈ ℤ . (2.6)

IV.3 Further comments and conclusion of the chapter

It was shown that perfect groups and, therefore, non-abelian simple groups are anomaly
safe, i.e. that they are not anomalous irrespective of gauge group and field content. If one
abandons the first condition and specifies the gauge group, the results (2.4) and (2.6) show
that some discrete groups are anomaly free irrespective of the field content for SO(𝑁) or
exceptional gauge groups but, in general, anomalous with respect to SU(𝑁) and Sp(2𝑁).
This shows that theories with gauge group SO(𝑁) or exceptional gauge groups are somehow
less prone to anomalies than theories with SU(𝑁).

The discussion is also applicable to infinite discrete groups like SL(2, ℤ), although, of
course, statements involving the order of the Abelianisation only make sense if this is a
finite number. Note, however, that one has to make sure that the assumption of a unitary
transformation, i.e. equation (1.1), is fulfilled. For example, the 𝑇-duality transformation of
string theory, which is known to be anomalous [125, 126], does not fall into this class in its
usual formulation (cf. e.g. [127]), and it is not clear whether one can choose a basis such that
the present discussion can be applied.

Some results stay even true for mixed anomalies of continuous groups. In fact, the
derivation of (1.7) is valid for 𝐿′ − 𝐿 − 𝐿 anomalies, where 𝐿 and 𝐿′ are different Lie groups
(not necessarily structurally, but as symmetries of the theory). The result can then be used,
for example, to show that SU(𝑁) − SU(𝑀) − SU(𝑀) anomalies vanish by virtue of the fact
that SU(𝑁) is perfect [23].6 The structure of 𝐿 − 𝐿 − 𝐿 anomalies, i.e. of cubic anomalies,
however, is completely different, and the presented results cannot be applied to this case.

Additionally, the present discussion allows a simple understanding of the fact derived in
[119] that, whenever a discrete symmetry is anomalous, one may employ a so-called discrete

6 Note that it is not sufficient to observe that SU(u�) is generated by unitary matrices of dimension u� with
determinant one because there could, in principle, be other representations that do not have determinant
one for all elements.
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Green–Schwarz mechanism to cancel it [41, 64, 112]. The basic idea of this mechanism is
that there is a field, called axion, that couples to the 𝐹u�u� ̃𝐹u�u� term in the Lagrangian and
shifts under the given discrete symmetry in such a way that the anomaly is exactly cancelled.
The anomaly only returns as soon as the axion acquires a vacuum expectation value. An
obstruction would occur if there were no transformation behaviour for the axion to achieve
the cancellation. However, since it was shown that the path integral measure transforms in
a proper one-dimensional representation, the axion just has to transform as the phase of
the complex conjugate representation. This requirement is completely consistent for any
discrete group and thus settles the discussion.



V Kinetic term corrections to neutrino
mixing

As outlined in Section III.2, one can make a good case for models with discrete non-abelian
flavour symmetries to be (part of) the explanation of the lepton flavour structure. In partic-
ular, the neutrino mixing matrix as determined by experiment comes reasonably close to
several highly symmetric types of mixing matrices, e.g. to the tri-bi-maximal matrix (III.2.4),
even though most of them predict a mixing angle 𝜃13 of zero in contrast to the measured
value of about 8.5°. However, to be precise, the prediction of, for example, tri-bi-maximal
mixing by the A4 model reviewed in Section III.3 is only true at lowest non-trivial order.
Since these models are in the framework of effective field theory, i.e. their Lagrangians are
non-renormalisable, there is no reason to cut off the expansion in 1/𝛬 at any fixed order,
where 𝛬 is the scale at which the effective theory breaks down due to new physics. Hence,
any such model can be expected to receive higher-order corrections that perturb the mixing
matrices away from their symmetric lowest-order structures.

On the one hand, this is desirable because it might explain the deviations, e.g. why 𝜃13 ≠ 0.
On the other hand, it might prove disastrous if the good features of a model are lost due to
the higher-order contributions. Moreover, at higher order, there is usually a proliferation
of couplings because more and more terms invariant under all symmetries can be written
down. If their effect is too large, this can diminish the predictive power of a model altogether
unless there is a way to control these couplings. This is particularly pressing in flavour
models because flavon fields are often assumed to attain rather large vacuum expectation
values up to the order of a tenth of the new physics scale.

Corrections to the (super-) potential are often considered, cf. e.g. [9, 10] for the A4 model,
and they are in a certain way under control because it is usually possible to forbid dangerous
terms by additional abelian shaping symmetries. In contrast to that, terms changing the
normalisation of matter fields are ignored in most analyses, although it has long been
known that they exist [128, 129]. They arise if a flavon field, or any field obtaining a vacuum
expectation value, couples to the kinetic terms of matter fields, e.g. of the neutrinos. A
comparison with experimental results like mixing angles, however, only makes sense for a
theory with canonically normalised fields, and during the process of re-normalising the
fields the mixing structure is changed [130–133]. Such changes occur because, as detailed in
Section III.2, the flavour symmetry has to be fully broken for a realistic spectrum to arise,
and, hence, the mixing parameters are not protected by the symmetry any more. This is
also reflected in the fact that there is a non-trivial renormalisation group running of the
mixing parameters [94, 95].

* Some of the results presented in this chapter have already been communicated in [1, 2].
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The canonical normalisation effects are discussed here using a supersymmetric termin-
ology. The results, however, are also applicable to non-supersymmetric models. This is
explained after briefly reviewing the definition of the Kähler potential, which contains the
kinetic terms in supersymmetric theories, in the next section. Afterwards, the effects of
additional Kähler potential terms on the mass matrices are discussed in Section V.2. In the
subsequent section, analytical formulas are derived that relate additional contributions to
the Kähler metric, or to the kinetic terms in non-supersymmetric models, directly to changes
in the mixing angles.1 These formulas are completely independent of the specific model
and only depend on the mixing parameters and masses as determined before taking into
account the corrections. Furthermore, the Mathematica package KaehlerCorrections is
presented, in which these formulas are implemented. It is publicly available online.2

Using these analytical formulas, the A4 model of Section III.3 and a further flavour model
with a T′ symmetry are analysed with respect to possible kinetic term corrections. Thus, it
is shown that, in contrast to earlier claims in the literature [134], the changes of the mixing
angles are not small and that such corrections must be taken into account when determining
the predictions of a model. Moreover, results for general contributions to the kinetic terms
for tri-bi-maximal and bi-maximal mixing are presented in Section V.4.3.

For supersymmetric models, furthermore, the implications of Kähler corrections for the
alignment of vacuum expectation values are considered, and some comments are made
on the possibility of constricting Kähler potential couplings using experimental results on
flavour changing neutral currents.

V.1 The Kähler potential

No general introduction to supersymmetry is given here because the effects to be discussed
below can be understood without this knowledge. For introductions to SUSY, cf. [135–
138]. Here only the notions of Kähler potential and superpotential are reviewed and the
connection to non-supersymmetric models is made.

A supersymmetric theory is determined by three functions of superfields:

(i) the superpotential 𝑊, which is a holomorphic function of chiral superfields 𝛷;

(ii) the gauge kinetic function 𝑓u�u�, which is also a holomorphic function of chiral superfields
and which has two indices 𝑎 and 𝑏 running over the adjoint representation of the gauge
group;

(iii) the Kähler potential 𝐾, which is a real function of the chiral superfields and their
complex conjugates multiplied with the gauge connection matrix e−2 u�u� u�u�.

The full Lagrangian is then [138]

ℒ = ∫ d2𝜃 d2 ̄𝜃 𝐾(𝛷, 𝛷† e−2 u�) + ∫ d2𝜃 [
1
4

𝑓u�u�(𝛷) 𝒲u� 𝒲u� + 𝑊(𝛷) + h. c.] (1.1)

where 𝒲u� are the gauge superfields.

1 Note that the whole chapter focuses on Majorana neutrinos.
2 http://einrichtungen.ph.tum.de/T30e/codes/KaehlerCorrections

http://einrichtungen.ph.tum.de/T30e/codes/KaehlerCorrections
http://einrichtungen.ph.tum.de/T30e/codes/KaehlerCorrections
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To obtain kinetic terms for the fermion field 𝜓, its scalar superpartner 𝜑 and the auxiliary
field 𝐹 residing in a chiral supermultiplet 𝛷, one sets the Kähler potential to

𝐾(𝛷, 𝛷† e−2 u�) = 𝛷† e−2 u� 𝛷 . (1.2)

Neglecting the gauge boson contributions because they do not affect the discussion, the
resulting kinetic terms are precisely the desired canonically normalised ones [138],

ℒkinetic = ∫ d2𝜃 d2 ̄𝜃 𝛷†𝛷 = (∂u�𝜑∗) (∂u�𝜑) +
i
2

𝜓† 𝜎̄u� ∂u�𝜓 −
i
2

(∂u�𝜓†) 𝜎̄u� 𝜓 + 𝐹∗𝐹 . (1.3)

Interactions are usually introduced by adding a non-trivial superpotential. In fact, after
integrating out the auxiliary fields [138]

𝑆 = ∫ d4𝑥 [(∂u�𝜑∗) (∂u�𝜑) + i 𝜓† 𝜎̄u� ∂u�𝜓 − ∣
∂𝑊
∂𝛷

(𝜑)∣
2

⏟⏟⏟⏟⏟
scalar potential u�(u�, u�∗)

− ⎛⎜
⎝

1
2
∂2𝑊
∂𝛷2 (𝜑) 𝜓2 + h. c.⎞⎟

⎠
] , (1.4)

i.e. the superpotential determines the form of the potential. However, there is no reason to
restrict the Kähler potential to the canonical one shown in equation (1.2). In fact, higher-
order Kähler potential terms are generated, for example, in string theory and are on equal
footing with superpotential terms. For an arbitrary Kähler potential, the superspace integral
over 𝐾 is

ℒ ⊃ ∫ d2𝜃 d2 ̄𝜃 𝐾(𝛷, 𝛷† e−2 u�)

= 𝒦u�u�(𝜑, 𝜑∗) ((∂u�𝜑∗
u� ) (∂u�𝜑u�) +

i
2

𝜓†
u� 𝜎̄u� ∂u�𝜓u� −

i
2

(∂u�𝜓†
u� ) 𝜎̄u� 𝜓u� + 𝐹∗

u� 𝐹u�) + ⋯ ,
(1.5)

where only kinetic terms are displayed and where

𝒦u�u�(𝜑, 𝜑∗) ≔
∂2𝐾

∂𝛷†
u� ∂𝛷u�

(𝜑, 𝜑∗) (1.6)

is the Hermitian, field-dependent Kähler metric. The canonical Kähler metric is therefore

𝒦u�u�(𝜑, 𝜑∗) = 𝛿u�u� . (1.7)

Any Kähler potential should contain (1.2) as a subset such that the Lagrangian includes the
usual kinetic terms, but there may be additional terms of higher mass dimension.

In principle, these additional terms are just interaction terms similar, though structurally
different, to the ones contained in the superpotential. Indeed, for example, the scalar
potential changes to

𝑉(𝜑, 𝜑∗) = (𝒦u�u�(𝜑, 𝜑∗))−1 ∂𝑊∗

∂𝛷†
u�

(𝜑∗)
∂𝑊
∂𝛷u�

(𝜑)

+
1
2

(Re 𝑓u�u�(𝜑))−1 Re (
∂𝐾
𝛷u�

(𝜑, 𝜑∗) ⋅ (𝑇u� 𝜑)u�) Re ⎛⎜
⎝

∂𝐾
𝛷u�

(𝜑, 𝜑∗) ⋅ (𝑇u� 𝜑)u�
⎞⎟
⎠

(1.8)

for an arbitrary Kähler potential.
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However, these interactions can have the additional effect of changing the normalisation
of fields. The effective kinetic terms are determined by the Kähler metric evaluated at the
vacuum expectation values of all fields,

𝒦̂u�u� ≔ 𝒦u�u�(⟨𝜑⟩, ⟨𝜑∗⟩) . (1.9)

Using this matrix, the kinetic terms read

ℒkinetic = 𝒦̂u�u� ((∂u�𝜑∗
u� ) (∂u�𝜑u�) + i 𝜓†

u� 𝜎̄u� ∂u�𝜓u�) . (1.10)

Depending on the interaction terms and VEVs, a non-canonical Kähler potential can thus
have the effect of changing the normalisation of the kinetic terms due to 𝒦̂ ≠ 𝟙. This is
precisely what happens in flavour models like the one presented in Section III.3 after the
flavon fields acquire their vacuum expectation values. Usually, the vacuum expectation
values of fields are smaller than the scale of new physics which suppresses terms with
higher mass dimension in the Kähler potential. Hence, the extra contributions to 𝒦̂ can be
meaningfully split off to write

𝒦̂u�u� = 𝛿u�u� + ∆𝒦̂u�u� (1.11)

with entries in ∆𝒦̂ smaller than one. The determination of ∆𝒦̂ and an analytical estimation
of its effects on neutrino mixing are the topic of the following analysis.

From equation (1.5) and equation (1.10) it is clear that the discussion is not limited to
supersymmetric theories. One can, and in an effective theory should, add interaction terms
of the form (1.5) to any Lagrangian irrespective of whether it is supersymmetric or not.
After plugging in the vacuum expectation values, one ends up with re-normalised kinetic
terms like (1.10). The discussion could hence be led by starting with a non-supersymmetric
Lagrangian with interactions that affect the kinetic terms encoded in a field-dependent
matrix 𝒦 such that

ℒ ⊃ 𝒦u�u�(𝜑, 𝜑∗) (
i
2

𝜓†
u� 𝜎̄u� ∂u�𝜓u� −

i
2

(∂u�𝜓†
u� ) 𝜎̄u� 𝜓u�)

u�→⟨u�⟩
−−−−→ 𝒦̂u�u� i 𝜓†

u� 𝜎̄u� ∂u�𝜓u� (1.12)

with 𝒦̂ ≠ 𝟙. Thus, although the notation and terminology used here stems from supersym-
metry, most of the results are also applicable to non-supersymmetric models. In fact, this is
used in Section V.4.2, where the discussion is applied to a non-supersymmetric T′ model.
For simplicity, 𝒦̂ is also called Kähler metric in the non-supersymmetric case.

V.2 Kähler corrections to lepton flavour mixing

The normalisation changes due to Kähler potential interactions have important implications
for neutrino flavour mixing, cf. [130, 131]. Since these effects are to be quantified below, it
is instructive to have a realistic example model at hand from the beginning. For this, the
neutrino model of Section III.3 is used in its supersymmetric version. That is, all matter,
Higgs and flavon fields of Table III.5 are elevated to chiral superfields. The Kähler potential
just contains the canonical term for each field and the mass terms are now part of the
superpotential,

𝑊u� =
ℎu�
𝛬

𝐻u� 𝐸u� (𝛷u� ⊗ 𝐿)𝟏 +
ℎu�

𝛬
𝐻u� 𝛭u� (𝛷u� ⊗ 𝐿)𝟏′ +

ℎu�
𝛬

𝐻u� 𝛵u� (𝛷u� ⊗ 𝐿)𝟏″

+
𝜆1

𝛬 𝛬u�
{[(𝐿 𝐻u�) ⊗ (𝐿 𝐻u�)]𝟑s

⊗ 𝛷u�} +
𝜆2

𝛬 𝛬u�
[(𝐿 𝐻u�) ⊗ (𝐿 𝐻u�)]𝟏 𝛯 ,

(2.1)
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where the superfields are denoted by the capitalised versions of the symbols introduced
in Table III.5. The lower case symbols retain their old meaning, i.e. they denote the spinor
components of matter fields and the scalar components of Higgs and flavon fields such that
their notation coincides with the non-supersymmetric case.

The results for neutrino masses and the mixing parameters are identical to the ones
presented earlier for the non-supersymmetric case. Thus, the effective mass matrices

𝑊u�
u�→⟨u�⟩
−−−−→

1
2

𝐿u� 𝑚u� 𝐿 − 𝑅u� 𝑚u� 𝐿 , 𝑅u� ≔ (𝐸u�, 𝛭u�, 𝛵u�) , (2.2)

are again given by (III.3.2); hence, the model predicts tri-bi-maximal mixing while being able
to accommodate the present knowledge of neutrino and charged lepton masses. These model
predictions are perturbed by higher-order terms in the superpotential and by associated
changes in the vacuum alignment, cf. [10]. Since the purpose of the present analysis is only
the discussion of Kähler potential corrections, no such higher-order terms are added to the
superpotential.

The prediction of tri-bi-maximal mixing rests on the assumption that the Kähler potential
for the lepton fields is canonical,

𝐾 ⊃ 𝐿† 𝐿 + 𝑅† 𝑅 . (2.3)

It is simple, however, to write down additional Kähler potential terms allowed by all sym-
metries such that

𝐾 ⊃ 𝐿† 𝒦u� 𝐿 + 𝑅† 𝒦u� 𝑅 = 𝐿† (𝟙 + ∆𝒦u�) 𝐿 + 𝑅† (𝟙 + ∆𝒦u�) 𝑅 (2.4)

with non-trivial ∆𝒦u�/u�, which depend on the flavon fields 𝛷u�, 𝛷u� and 𝛯. The terms

∆𝐾 = ∑
u�∈{a, s}

⎛⎜
⎝

𝜅u�
u�

𝛬
𝐿† (𝐿 ⊗ 𝛷u�)𝟑u�

+
𝜅u�

u�
𝛬

𝐿† (𝐿 ⊗ 𝛷u�)𝟑u�
⎞⎟
⎠

+
𝜅u�
𝛬

𝛯 𝐿† 𝐿 + h. c. , (2.5)

linear in the flavons might serve as an example. The discussion of these specific terms is
deferred to Section V.4.1

In the low-energy theory, i.e. below the flavour symmetry breaking scale, the kinetic terms
of the leptons are then

𝐿† 𝒦̂u� 𝐿 + 𝑅† 𝒦̂u� 𝑅 = 𝐿† (𝟙 + ∆𝒦̂u�) 𝐿 + 𝑅† (𝟙 + ∆𝒦̂u�) 𝑅 (2.6)

with, by construction, Hermitian matrices 𝒦̂u�/u�. This necessitates a re-definition of the
lepton fields 𝐿 and 𝑅 in order to arrive at canonically normalised fields 𝐿′ and 𝑅′ for which
the mixing parameters and masses can then be read off from the superpotential. Since
fields should not acquire a negative kinetic energy, the matrices 𝒦̂u�/u� can be assumed to be
positive.3 Hence, they have unique positive, Hermitian square roots 𝒦̂1/2

u�/u�, see Section A.6.1,
and one can write the kinetic terms as

𝐿† 𝒦̂u� 𝐿 + 𝑅† 𝒦̂u� 𝑅 = 𝐿† (𝒦̂1/2
u� )

†
𝒦̂1/2

u� 𝐿 + 𝑅† (𝒦̂1/2
u� )

†
𝒦̂1/2

u� 𝑅 ≕ (𝐿′)† 𝐿′ + (𝑅′)† 𝑅′ .
(2.7)

3 In fact, if the corrections ∆𝒦̂u�/u� are large enough to drive any of the eigenvalues of 𝒦̂u�/u� to negative values,
the effective theory description in general and the separation (1.11) in particular are not meaningful.
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It is important to note that the field re-definitions

𝐿′ ≔ 𝒦̂1/2
u� 𝐿 , (2.8a)

𝑅′ ≔ 𝒦̂1/2
u� 𝑅 (2.8b)

are, in general, not unitary. This reflects the possibility that the normalisation of fields is
changed.

The re-definition affects the mass terms in the superpotential in such a way that

𝑊u�
u�→⟨u�⟩
−−−−→

1
2

(𝐿′)u� (𝒦̂−1/2
u� )u� 𝑚u� 𝒦̂−1/2

u� 𝐿′ − (𝑅′)u� (𝒦̂−1/2
u� )u� 𝑚u� 𝒦̂−1/2

u� 𝐿′

≕
1
2

(𝐿′)u� 𝑚′
u� 𝐿′ − (𝑅′)u� 𝑚′

u� 𝐿′ ,
(2.9)

where mass matrices 𝑚′
u� and 𝑚′

u� for the new fields are defined [130, 131]. It is these matrices
that the mixing angles should be read off from and not the naive, i.e. unperturbed, matrices
𝑚u� and 𝑚u�. The true mixing angles and phases can therefore be expected to be different
from the naive expectations. This change of the mixing parameters from the naive to the
true values is directly quantified by the analytical formulas derived in the following section.
The reader not interested in the details of the derivation can skip to the results and examples
presented in Section V.4.

V.3 Derivation of analytical formulas

The situation envisaged in the present section is that one is given a model with predictions for
the mixing matrix 𝑈PMNS computed assuming a canonical Kähler potential.4 The purpose
of the following derivation is to obtain formulas that give an estimate directly of the changes
of the mixing parameters, i.e. without first computing the new mass matrices 𝑚′

u� and 𝑚′
u�.

This is also reflected by the fact that the input is only the naive mixing matrix 𝑈PMNS and
not the original mass matrices. The formulas are, therefore, completely agnostic about
the details of the model. A model-dependence is only introduced when discussing which
terms can enter the Kähler potential, a question whose answer depends on the symmetries,
field content and VEV alignment of the model. This is discussed after the derivation of
the general formulas in Section V.4. Note again that the discussion, although for simplicity
phrased in supersymmetric terminology, also applies to the non-supersymmetric case.

The derivation of the analytical formulas depends on the assumption that the additional
terms in the Kähler potential are corrections to the canonical Kähler potential, i.e. that they
lead to small deviations from the unit matrix for the Kähler metric. This is a reasonable
assumption because any higher-order term is suppressed by the ratio of a flavon VEV to the
new physics scale, which is usually roughly equal to or lower than 0.2 in flavour models.5
The true Kähler metrics for left-handed and right-handed lepton fields are parametrised as6

𝒦̂u�/u� ≕ 𝟙 − 2 𝑥u�/u� 𝑃u�/u� , (3.1)

4 Whether higher-order terms in the superpotential have been taken into account is irrelevant for the discus-
sion. However, it is, of course, advisable to do so.

5 This number is of the order of the Cabibbo angle, which, in quark flavour models, sets the scale of VEVs
necessary to obtain a viable CKM matrix.

6 Note that this normalisation is only adopted for the derivation. As detailed below in Section V.3.3, the final
formulas implemented in the package are computed for the simpler normalisation 𝒦̂u�/u� ≕ 𝟙 + u�u�/u� u�u�/u�.
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where 𝑃u�/u� are matrices later to be determined from the model with order one entries
and where factors of two are introduced for later convenience. The assumption of small
corrections thus implies that the real numbers 𝑥u�/u�, which contain factors of VEV over scale,
are small and can be used as expansion parameters. The field re-definition (2.8) can then be
reversed using first the linear approximation

𝒦̂1/2
u�/u� ≐ 𝟙 − 𝑥u�/u� 𝑃u�/u� (3.2)

for the square root and then the Neumann series [139] for the inverse truncated at linear
order in 𝑥u�/u�,

𝐿 ≐ (𝟙 + 𝑥u� 𝑃u�) 𝐿′ , (3.3a)
𝑅 ≐ (𝟙 + 𝑥u� 𝑃u�) 𝑅′ . (3.3b)

Using these approximate field re-definitions, one obtains approximations to the true mass
matrices defined in (2.9) to first order in 𝑥u�/u� from the naive mass matrices by

𝑚′
u� = (𝒦̂−1/2

u� )
u�

𝑚u� 𝒦̂−1/2
u� ≐ 𝑚u� + 𝑥u� (𝑃u�

u� 𝑚u� + 𝑚u� 𝑃u�) , (3.4a)

𝑚′
u� = (𝒦̂−1/2

u� )
u�

𝑚u� 𝒦̂−1/2
u� ≐ 𝑚u� + 𝑥u� 𝑃u�

u� 𝑚u� + 𝑥u�𝑚u� 𝑃u� . (3.4b)

For the duration of the derivation, the true mass matrices are considered functions of 𝑥u�/u�.
They have to be diagonalised by a Takagi factorisation and a singular value decomposition,7
respectively,

𝑚′
u�(𝑥u�) = 𝑈∗

u�(𝑥u�) 𝐷u�(𝑥u�) 𝑈†
u�(𝑥u�) , (3.5a)

𝑚′
u�(𝑥u�, 𝑥u�) = 𝑉u�(𝑥u�, 𝑥u�) 𝐷u�(𝑥u�, 𝑥u�) 𝑈†

u�(𝑥u�, 𝑥u�) , (3.5b)

where 𝐷u�/u� are diagonal matrices with non-negative real entries, i.e. they contain the singular
values (masses) of 𝑚′

u� and 𝑚′
u�. Since the latter are functions of 𝑥u�/u�, the singular values and

the diagonalising matrices are also functions of these variables. This immediately carries
over to the PMNS matrix

𝑈PMNS(𝑥u�, 𝑥u�) = 𝑈†
u�(𝑥u�, 𝑥u�) 𝑈u�(𝑥u�) . (3.6)

The basic idea is to think of 𝑈PMNS(𝑥u�, 𝑥u�) as being determined by an initial value problem
with 𝑈PMNS(0, 0) being the original PMNS matrix before taking into account the Kähler
corrections. The corresponding differential equations can be read off from (3.4). Since they
are structurally identical to the renormalisation group equations for the neutrino mixing
parameters, they can be treated in the same fashion [94].

For computational reasons it is advantageous to introduce for each unitary matrix 𝑈
depending on a variable 𝑥 an associated anti-Hermitian matrix

𝑇 ≔ 𝑈† 𝑈̇ , (3.7)

where 𝑈̇ is the derivative of 𝑈 with respect to 𝑥. It will always be clear from the context or
specified explicitly which variable the derivative refers to. This matrix allows to write the

7 See again Section III.1, Section A.6.3 and Section A.6.2.
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derivative of 𝑈 as 𝑈̇ = 𝑈 𝑇. As an anti-Hermitian 3 × 3 matrix, 𝑇 has nine real degrees of
freedom

Re 𝑇u�<u�, Im 𝑇u�≤u� , 𝑖, 𝑗 = 1, 2, 3 . (3.8)

From its definition it is clear that the matrix 𝑇PMNS depends linearly on the derivatives
of all nine mixing parameters. Therefore, there is a linear map from the derivatives of
the mixing parameters to the independent elements of 𝑇PMNS, which can be inverted to
obtain the desired linear map from the nine elements of 𝑇PMNS to the nine derivatives of
the mixing parameters. This computation has to be performed only once,8 and the result is
implemented in the Mathematica package KaehlerCorrections presented in Section V.3.3.

The remaining task is to determine the dependence of the entries of 𝑇PMNS on the matrices
𝑃u�/u�. There are contributions coming from 𝑈u� and 𝑈u�, respectively, which can be discussed
separately. To this end, write

𝑇PMNS = 𝑈†
PMNS 𝑈̇†

u� 𝑈u� + 𝑈†
PMNS 𝑈†

u� 𝑈̇u�

= 𝑈†
PMNS 𝑈̇†

u� (𝑈u� 𝑈†
u�) 𝑈u� + 𝑈†

PMNS 𝑈†
u� (𝑈u� 𝑈†

u�) 𝑈̇u�

= 𝑇u� − 𝑈†
PMNS 𝑇u� 𝑈PMNS .

(3.9)

In the first line the product rule was used, in the second line two identity matrices were
inserted and in the last line the matrices 𝑇u� and 𝑇u� were introduced and their anti-Hermiticity
used.

Some more comments on the following computation are in order before proceeding. Only
contributions linear in 𝑥u�/u� are taken into account. Moreover, the computation is assumed
to proceed in a basis where 𝑚u�, i.e. the original neutrino mass matrix, is diagonal with real,
non-negative entries. At the same time, it is assumed that the charged lepton phases 𝛿u�/u�/u�
are zero. Of course, after transforming to a basis with a diagonal charged lepton mass matrix
with non-negative entries, there is no guarantee that these phases are zero. Indeed, this
second assumption is not even fulfilled by the example model from Section III.3. Further, if
the Kähler metric is not canonical, it is not invariant under the phase re-definitions needed to
obtain zero charged lepton phases. Hence, in all such cases, one has to replace the matrices
𝑃u�/u� determined from the Kähler potential with

𝑃̂u�/u� ≔ (𝑈u�ℎ
u� )† 𝑃u�/u� 𝑈u�ℎ

u� (3.10)

before using the formulas, where 𝑈u�ℎ
u� is the diagonal phase matrix used to remove the

phases from 𝑈PMNS, see Section III.1.
Since the computations relating 𝑃u�/u� with 𝑇u� and 𝑇u� differ, the discussion is now split into

two parts. The neutrino contribution is treated first.

V.3.1 Corrections to 𝑚u�

The true neutrino mass matrix (3.4a) is, to linear order in 𝑥u�, a solution to the initial value
problem

d
d𝑥u�

𝑚′
u�(𝑥u�) = 𝑃u�

u� 𝑚u� + 𝑚u� 𝑃u� , 𝑚′
u�(0) = 𝑚u� . (3.11)

8 To be precise, it has to be done once for any given parametrisation of the mixing matrix u�PMNS. The
package implements the map for the standard parametrisation (III.1.7).
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Plugging in the Takagi factorisation of the neutrino mass matrix and evaluating the expres-
sion at 𝑥u� = 0, one arrives at

d
d𝑥u�

(𝑈∗
u�(𝑥u�) 𝐷u�(𝑥u�) 𝑈†

u�(𝑥u�))∣
u�u�=0

= 𝑃u�
u� 𝑈∗

u�(0) 𝐷u�(0) 𝑈†
u�(0) + 𝑈∗

u�(0) 𝐷u�(0) 𝑈†
u�(0) 𝑃u� .

(3.12)

The argument 0 is understood and suppressed henceforth. Moreover, define the abbreviation

𝑃̃u� ≔ 𝑈†
u� 𝑃u� 𝑈u� = 𝑈†

PMNS 𝑃u� 𝑈PMNS , (3.13)

where the latter equality is correct because 𝑈u�(0, 0) is, by the basis choice, the identity matrix.
Using the product rule and multiplying the equation with 𝑈u�

u� from the left and 𝑈u� from the
right, one obtains

𝑈u�
u� 𝑈̇∗

u� 𝐷u� + 𝐷u� 𝑈̇†
u� 𝑈u� + 𝐷̇u� = 𝑃̃u�

u� 𝐷u� + 𝐷u� 𝑃̃u� . (3.14)

Introducing the anti-Hermitian matrix 𝑇u� as explained before, one can rewrite this equation
in the more useful form

𝐷̇u� = 𝑃̃u�
u� 𝐷u� + 𝐷u� 𝑃̃u� − 𝑇∗

u� 𝐷u� + 𝐷u� 𝑇u� . (3.15)

By definition, the matrix 𝐷u� is real and diagonal; hence, this must also be true for the
right-hand side. Consider first the equations for the diagonal entries, where the diagonal
entries of 𝐷u� are the neutrino masses denoted by 𝑚u�u�

(no sum over 𝑖):

𝑚̇u�u�
= 2 (𝑃̃u�)u�u� 𝑚u�u�

+ ((𝑇u�)u�u� − (𝑇∗
u�)u�u�) 𝑚u�u�

. (3.16)

Whereas 𝑃u� and thus 𝑃̃u� is Hermitian and has real diagonal values, the imaginary parts of
the diagonal of 𝑇u� must vanish,

Im (𝑇u�)u�u� = 0 , (3.17)

for this equation to be consistent. The equation of the (𝑖, 𝑗) position is

𝑚u�u�
(𝑇u�)u�u� + (𝑇∗

u�)u�u� 𝑚u�u�
= −(𝑃̃u�

u�)u�u� 𝑚u�u�
− 𝑚u�u�

(𝑃̃u�)u�u� . (3.18)

This set of equations can then be solved for the real and imaginary parts of 𝑇u� in terms of
the 𝑃̃u�:

Re(𝑇u�)u�u� = −
𝑚u�u�

+ 𝑚u�u�

𝑚u�u�
− 𝑚u�u�

Re(𝑃̃u�)u�u� , 𝑖 ≠ 𝑗 , (3.19a)

Im(𝑇u�)u�u� = −
𝑚u�u�

− 𝑚u�u�

𝑚u�u�
+ 𝑚u�u�

Im(𝑃̃u�)u�u� . (3.19b)

This fully specifies 𝑇u� in terms of 𝑃u� and the original 𝑈PMNS.
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V.3.2 Corrections to 𝑚u�

In complete analogy to the corrections to the neutrino diagonalisation matrix 𝑈u�, one can
also compute the corrections to 𝑈u�. The true charged lepton mass matrix (3.4b) can be
diagonalised by the singular value decomposition (3.5b). However, for the PMNS matrix,
only 𝑈u� is needed such that it is more convenient to consider

𝑚′
u�(𝑥u�, 𝑥u�)† 𝑚′

u�(𝑥u�, 𝑥u�) = 𝑈u�(𝑥u�, 𝑥u�) 𝐷2
u� (𝑥u�, 𝑥u�) 𝑈†

u�(𝑥u�, 𝑥u�) , (3.20)

which to first order in 𝑥u�/u� is

𝑚2
u� + 2 𝑥u� 𝑚u� 𝑃u�

u� 𝑚u� + 𝑥u� (𝑃u� 𝑚2
u� + 𝑚2

u� 𝑃u�) = 𝑈u�(𝑥u�, 𝑥u�) 𝐷2
u� (𝑥u�, 𝑥u�) 𝑈†

u�(𝑥u�, 𝑥u�) , (3.21)

where it has been used that 𝑚u� is diagonal in the chosen basis. The contributions connected
to 𝑥u� and 𝑥u� are discussed in turn.

First, take the derivative of (3.21) with respect to 𝑥u� and evaluate the expression at 𝑥u� =
𝑥u� = 0, suppressing the dependence on 𝑥u�:

d
d𝑥u�

(𝑈u�(𝑥u�) 𝐷2
u� (𝑥u�) 𝑈†

u�(𝑥u�))∣
u�u�/u�=0

= 𝑃u� 𝑚2
u� + 𝑚2

u� 𝑃u� . (3.22)

Using the product rule and introducing 𝑇u�
u� = 𝑈̇u�, where the superscript 𝐿 means that the

derivative is taken with respect to 𝑥u� and where 𝑈u�(0) = 𝟙 is used, this equation can be
rewritten to (the argument 0 is again suppressed)

𝐷̇2
u� = 𝑃u� 𝑚2

u� + 𝑚2
u� 𝑃u� − 𝑇u�

u� 𝑚2
u� + 𝑚2

u� 𝑇u�
u� . (3.23)

Let the charged lepton masses be denoted by 𝑚u�u�
. Then the equations determining the

diagonal values are

𝑚̇2
u�u�

= 2 (𝑃u�)u�u� 𝑚2
u�u�

. (3.24)

Note that the contribution from 𝑇u�
u� drops completely out of the equation; thus, the diagonal

values of 𝑇u�
u� cannot be determined. This reflects the fact that after diagonalising the Kähler

potential the charged lepton phases can again be changed arbitrarily. During the compu-
tation of the formulas for the Mathematica package, the diagonal entries of 𝑇u�

u� were kept
arbitrary such that it could be verified explicitly that they drop out of the formulas for all
physical mixing parameters, i.e. for angles, 𝛿u�u� and the Majorana phases. The off-diagonal
values of 𝑇u�

u� , however, can be computed from the equations above and are

(𝑇u�
u� )u�u� = −

𝑚2
u�u�

+ 𝑚2
u�u�

𝑚2
u�u�

− 𝑚2
u�u�

(𝑃u�)u�u� , 𝑖 ≠ 𝑗 . (3.25)

It remains to determine 𝑇u�
u� , which encodes the contribution connected to 𝑥u�. The analogue

of (3.23) is

𝐷̇2
u� = 2 𝑚u� 𝑃u�

u�𝑚u� − 𝑇u�
u� 𝑚2

u� + 𝑚2
u� 𝑇u�

u� . (3.26)

Again, the diagonal entries of 𝑇u�
u� are not determined but only affect the charged lepton

phases, which can be rotated away in the end. This has also been explicitly verified. The
off-diagonal terms are

(𝑇u�
u� )u�u� = −2

𝑚u�u�
𝑚u�u�

𝑚2
u�u�

− 𝑚2
u�u�

(𝑃u�)u�u� , 𝑖 ≠ 𝑗 . (3.27)

This finishes the computation of the matrices 𝑇u� in terms of 𝑃u�/u�. Examples for the corrections
to be expected are presented in Section V.4.
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V.3.3 The package KaehlerCorrections

The formulas derived by the procedure described above are implemented in the package
KaehlerCorrections for Mathematica [11]. It can be found on the web-page

http://einrichtungen.ph.tum.de/T30e/codes/KaehlerCorrections.

The package contains the full analytical formulas for left- and right-handed corrections due
to a Kähler potential of the form

𝐾 = 𝐿† (𝟙 + 𝑥u� 𝑃u�) 𝐿 + 𝑅† (𝟙 + 𝑥u� 𝑃u�) 𝑅 (3.28)

or due to the corresponding kinetic terms in the non-supersymmetric case. Note the different
normalisation of 𝑥u�/u� compared to (3.1).

The initial values, i.e. the mixing parameters and masses for the theory with canonical
Kähler potential, 𝑥u� = 𝑥u� = 0, can be set by the user. This can most easily be done using the
function kaehlerCorr. An example for how this function can be called looks as follows:

kaehlerCorr[ 𝑃u�, 𝑃u�, initial angles & phases, initial masses ]

(
0 i − i

− i 0 i
i − i 0

)

0

{arcsin ( 1
√3

), 0, u�
4 , u�0, u�, u�, 0, 2u�, 2u�}

{u�u�1, u�u�2, u�u�3, u�u�, u�u�, u�u�}

The formulas are computed for a diagonal charged lepton mass matrix with non-negative
real entries. If the charged lepton mass matrix of the model at hand does not fulfil the
requirement, one has to transform to such a basis before using the package to compute the
corrections.

If one of the mixing angles initially is zero, as happens with tri-bi-maximal mixing, the
phase 𝛿u�u� is not well defined. Its correct value can be obtained by demanding that the
change of 𝛿u�u� be analytical in the angle that has zero initial value, see also the discussion in
Section V.4.1. This computation is performed automatically by the package. However, there
also is the possibility to override this behaviour in case the automatic determination fails.

More information on the package can be found in the manual which is part of the down-
load.

V.4 Results and examples

Before discussing explicit examples, let us summarise the findings of the derivation. There
is a linear relation between the matrix 𝑇PMNS defined in (3.9) and the first derivatives of the
mixing angles with respect to 𝑥u�/u�. The contributions of charged leptons and neutrinos and
of left-handed doublets and right-handed singlets can be discussed separately, writing

𝑇u�
PMNS = 𝑇u� − 𝑈†

PMNS 𝑇u�
u� 𝑈PMNS , (4.1a)

𝑇u�
PMNS = −𝑈†

PMNS 𝑇u�
u� 𝑈PMNS . (4.1b)

The entries of 𝑇PMNS are, to first order in 𝑥u�/u�, determined by

Re(𝑇u�)u�u� = −
𝑚u�u�

+ 𝑚u�u�

𝑚u�u�
− 𝑚u�u�

Re(𝑈†
PMNS 𝑃u� 𝑈PMNS)u�u� , 𝑖 ≠ 𝑗 , (4.2a)

http://einrichtungen.ph.tum.de/T30e/codes/KaehlerCorrections
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Im(𝑇u�)u�u� = −
𝑚u�u�

− 𝑚u�u�

𝑚u�u�
+ 𝑚u�u�

Im(𝑈†
PMNS 𝑃u� 𝑈PMNS)u�u� , (4.2b)

(𝑇u�
u� )u�u� = −

𝑚2
u�u�

+ 𝑚2
u�u�

𝑚2
u�u�

− 𝑚2
u�u�

(𝑃u�)u�u� , 𝑖 ≠ 𝑗 , (4.2c)

(𝑇u�
u� )u�u� = −2

𝑚u�u�
𝑚u�u�

𝑚2
u�u�

− 𝑚2
u�u�

(𝑃u�)u�u� , 𝑖 ≠ 𝑗 (4.2d)

in terms of 𝑃u�/u�. The missing imaginary parts of the diagonals of 𝑇u�/u�
u� are undetermined

but only influence the change of the charged lepton phases, which, in the low-energy theory,
are unphysical. The formulas thus yield a linear approximation to the effects induced by
additional terms in the Kähler potential changing the Kähler metric by −2 𝑥u�/u� 𝑃u�/u�. For
completely general initial conditions, the formulas are rather complicated and can be found
in the Mathematica package KaehlerCorrections. However, for symmetric starting points
like tri-bi-maximal mixing, the formulas are rather simple as is shown for some examples
explicitly below and in Appendix B.

From the formulas (4.2) it is obvious that the mass spectrum plays a crucial role for the
size of the corrections. In particular, the effects depend on the mass differences of the
neutrinos and the differences of the mass squares of the charged leptons. Since the charged
lepton masses are highly hierarchical, 𝑚u� ≪ 𝑚u� ≪ 𝑚u�, 𝑇u�

u� is, up to signs, almost the same
as 𝑃u� whereas 𝑇u�

u� is highly suppressed. Indeed, to first order in the mass differences, 𝑇u�
u�

has entries proportional to 𝑚u�/𝑚u� ≈ 1/200, 𝑚u�/𝑚u� ≈ 1/3500 and 𝑚u�/𝑚u� ≈ 1/17 and is
therefore practically negligible. The contributions coming from the neutrinos are certainly
not negligible, as shown below, and become more important if their masses are degenerate.
This resembles the results for the renormalisation group effects [94]. However, in contrast
to these effects, the Kähler corrections are not suppressed by a loop factor. Moreover, the
Kähler corrections are not restricted to diagonal matrices 𝑃u�/u� as can be seen from the
examples presented below. In particular, there is no reason to assume that the largest entries
of 𝑃u�/u� are in the lower-right corner as is the case for the renormalisation group effects
which are dominated by the tau lepton Yukawa coupling 𝑦u�.

Let us now discuss the structure of additional Kähler potential terms and quantify their
implications. The first example discussed is the A4 model already introduced above. As
a second example, an extension of this model using T′ is used, and, finally, some general
formulas and results are presented.

V.4.1 Kähler corrections to the A4 model

Let us start the discussion of Kähler corrections to the A4 model of Section V.2 with the
right-handed charged lepton corrections. Even ignoring their large suppression by the mass
splittings, the model is such that one cannot expect any effects on the mixing angles. The
reason is that the charged lepton singlets are in one-dimensional irreducible representations
of A4, whereas there are no flavons in non-trivial one-dimensional representations. Thus,
one cannot generate off-diagonal terms for the Kähler metric and only the mass eigenvalues
are changed by canonical normalisation. Hence, only additional Kähler potential terms for
the left-handed doublets are considered here.

The simplest terms one can write down that are compatible with gauge and A4 symmetries
are linear in the flavons. They are expected to give the largest contributions because they
are only suppressed by one power of VEV divided by new physics scale in the effective field
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theory expansion. These linear terms in the flavon fields contributing to the Kähler metric
∆𝒦u� of the left-handed fields for the A4 model are

∆𝐾 = ∑
u�∈{a, s}

⎛⎜
⎝

𝜅u�
u�

𝛬
𝐿† (𝐿 ⊗ 𝛷u�)𝟑u�

+
𝜅u�

u�
𝛬

𝐿† (𝐿 ⊗ 𝛷u�)𝟑u�
⎞⎟
⎠

+
𝜅u�
𝛬

𝛯 𝐿† 𝐿 + h. c. (4.3)

The last term is a multiple of the canonical Kähler potential for the lepton doublets and only
changes the mass eigenvalues. It is thus not considered in the following. Spelt out explicitly,
the A4 contractions of the other terms are

𝐿† (𝐿 ⊗ 𝛷)𝟑s
=

1
√6

[𝐿†
1 (2 𝐿1 𝛷1 − 𝐿2 𝛷3 − 𝐿3 𝛷2) + 𝐿†

2 (2 𝐿3 𝛷3 − 𝐿1 𝛷2 − 𝐿2 𝛷1)

+ 𝐿†
3 (2 𝐿2 𝛷2 − 𝐿1 𝛷3 − 𝐿3 𝛷1)] ,

(4.4a)

𝐿† (𝐿 ⊗ 𝛷)𝟑a
=

1
√2

[𝐿†
1 (𝐿2 𝛷3 − 𝐿3 𝛷2) + 𝐿†

2 (𝐿1 𝛷2 − 𝐿2 𝛷1)

+ 𝐿†
3 (𝐿3 𝛷1 − 𝐿1 𝛷3)] ,

(4.4b)

where 𝛷 can be 𝛷u� or 𝛷u�. Plugging in the VEVs one arrives at the additional contributions
to the Kähler metric

∆𝒦̂u� = 𝜅s
u�

𝑣′

𝛬
1

√6
𝑃s

u� + 𝜅a
u�

𝑣′

𝛬
1

√2
𝑃a

u� + 𝜅s
u�

𝑣
𝛬

1
√6

𝑃s
u� + 𝜅a

u�
𝑣
𝛬

1
√2

𝑃a
u� + h. c. , (4.5)

where the following abbreviations for matrices are introduced:

𝑃s
u� ≔ diag (2, −1, −1) , (4.6a)

𝑃a
u� ≔ diag (0, −1, 1) , (4.6b)

𝑃s
u� ≔

⎛⎜⎜⎜⎜
⎝

2 −1 −1
−1 −1 2
−1 2 −1

⎞⎟⎟⎟⎟
⎠

, (4.6c)

𝑃a
u� ≔

⎛⎜⎜⎜⎜
⎝

0 1 −1
1 −1 0

−1 0 1

⎞⎟⎟⎟⎟
⎠

. (4.6d)

In fact, not all of these terms are allowed in the model. The neutrino flavon triplet 𝛷u� is
additionally charged under the ℤ4 shaping symmetry, see Table III.5, such that 𝜅a/s

u� vanish.
This highlights a general feature of Kähler potential terms linear in the flavons: they can
easily be forbidden by additional abelian shaping symmetries. In certain models, there are
enough such symmetries present from the outset in order to get rid of all linear terms, see
e.g. the T′ model discussed below in Section V.4.2. Hence, although if present they should
have the largest effects, linear terms are not further discussed here.

In contrast to linear terms, terms quadratic in a particular flavon cannot be forbidden by
abelian symmetries. That is, terms of the form

(𝐿 ⊗ 𝛷)†
𝑹 (𝐿 ⊗ 𝛷)𝑹 (4.7)

are always present. They can only be forbidden by enlarging the non-abelian flavour
symmetry, in which case one would have to consider Kähler corrections to the model with
the larger symmetry group. Thus, the problem would be transformed rather than solved.
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The simplest example of such a quadratic correction is

1
𝛬2 (𝐿 ⊗ 𝛷)†

𝟏 (𝐿 ⊗ 𝛷)𝟏 =
1

𝛬2 ∣(𝐿1 𝛷1 + 𝐿2 𝛷3 + 𝐿3 𝛷2)∣2 . (4.8)

It leads to the additional contributions

∆𝒦̂u� = 𝜅𝟏
u�

|𝑣′|2

𝛬2
1
3

diag (1, 0, 0) + 𝜅𝟏
u�

|𝑣|2

𝛬2
1
3

⎛⎜⎜⎜⎜
⎝

1 1 1
1 1 1
1 1 1

⎞⎟⎟⎟⎟
⎠

+ h. c. (4.9)

to the Kähler metric. As is common to all quadratic terms, they are suppressed quadratically
by the ratio of flavon VEV to scale 𝛬, i.e. their size is smaller than that of the linear terms.
However, as seen explicitly below, the effects of quadratically suppressed terms are not
necessarily small and certainly not negligible, in contrast to earlier claims in the literature
[134].

A less simplistic contraction leading to quadratic corrections is

1
𝛬2 (𝐿 ⊗ 𝛷)†

𝟑s
(𝐿 ⊗ 𝛷)𝟑a

=
1

𝛬2
1

2 √3
[(2 𝐿†

1 𝛷†
1 − 𝐿†

2 𝛷†
3 − 𝐿†

3 𝛷†
2) (𝐿2 𝛷3 − 𝐿3 𝛷2)

+ (2 𝐿†
3 𝛷†

3 − 𝐿†
2 𝛷†

1 − 𝐿†
1 𝛷†

2) (𝐿1 𝛷2 − 𝐿2 𝛷1)
+ (2 𝐿†

2 𝛷†
2 − 𝐿†

1 𝛷†
3 − 𝐿†

3 𝛷†
1) (𝐿3 𝛷1 − 𝐿1 𝛷3)] .

(4.10)

This contraction is present for both 𝛷u� and 𝛷u�, leading to the two additional Kähler potential
terms

∆𝐾 = 𝜅as
u�

1
𝛬2 (𝐿 ⊗ 𝛷u�)†

𝟑s
(𝐿 ⊗ 𝛷u�)𝟑a

+ ̃𝜅as
u�

1
𝛬2 (𝐿 ⊗ 𝛷u�)†

𝟑s
(𝐿 ⊗ 𝛷u�)𝟑a

+ h. c. , (4.11)

where both couplings are, as always, complex numbers. Plugging in the VEVs, the Kähler
metric is amended by

∆𝒦̂u� = 𝜅as
u�

|𝑣′|2

𝛬2
1

2 √3
diag (0, 1, −1) + 𝜅as

u�
|𝑣|2

𝛬2

√3
2

⎛⎜⎜⎜⎜
⎝

0 i − i
− i 0 i
i − i 0

⎞⎟⎟⎟⎟
⎠

+ h. c. , (4.12)

where 𝜅as
u� is the imaginary part of ̃𝜅as

u� . The corresponding imaginary unit has been absorbed
into the 𝑃 matrix to render it Hermitian, and the contribution proportional to the real part of

̃𝜅as
u� drops out because the Kähler potential is real. The second term is particularly interesting.

On the one hand, as shown below, this term leads to large corrections to the mixing angle
𝜃13. On the other hand, this contribution to the Kähler metric is not CP invariant, i.e. it
could be forbidden by a CP symmetry. For the details of CP symmetries compatible with
A4, see Chapter VII. Here it suffices to say that the CP transformation turns out to be just
the canonical one. This symmetry forces ̃𝜅as

u� to be real such that 𝜅as
u� vanishes.

Without going into further details of the computations, all correction matrices that occur
at quadratic order can be written as linear combinations of the following five basis matrices:

𝑃I ≔ diag (1, 0, 0) , (4.13a)
𝑃II ≔ diag (0, 1, 0) , (4.13b)



V.4 Results and examples 55

𝜃12 𝜃13 𝜃23 𝛿u�u� 𝛿u� 𝛿u� 𝛿u� 𝛼1 𝛼2

atan 1
√2

0 u�
4 − 𝜋 𝜋 0 2 𝜋 2 𝜋

Table V.1: Values for the mixing parameters of the A4 model before taking into account
Kähler corrections. The model precisely exhibits tri-bi-maximal mixing.

𝑃III ≔ diag (0, 0, 1) , (4.13c)

𝑃IV ≔
⎛⎜⎜⎜⎜
⎝

1 1 1
1 1 1
1 1 1

⎞⎟⎟⎟⎟
⎠

, (4.13d)

𝑃V ≔
⎛⎜⎜⎜⎜
⎝

0 i − i
− i 0 i
i − i 0

⎞⎟⎟⎟⎟
⎠

. (4.13e)

In fact, the matrices 𝑃I−III arise from contractions of 𝛷u� whereas 𝑃IV and 𝑃V arise from
𝛷u�-related Kähler potential terms. The list also shows clearly that there is no reason to
assume that the emerging 𝑃 matrices are diagonal (like the ones dictating renormalisation
group effects) or that their dominant entry is in the lower-right corner, in contrast to earlier
claims [132]. In fact, it turns out that the non-diagonal contributions are the most important
ones for the model at hand. This is, of course, not very surprising as non-diagonal entries in
the Kähler metric mix the kinetic terms of the three generations, which intuitively can be
expected to induce large changes of the mixing angles.

After discussing the possible contributions of the flavon VEVs to the Kähler metric in the
A4 model, the effects on the mixing angles shall now be quantified using the approximative
analytical formulas derived in the previous section. The results obtained with these formulas
are compared to the results of an exact numerical diagonalisation of the Kähler metric. In
this case, the mixing parameters are extracted from the corrected mass matrices using the
MixingParameterTools package for Mathematica [95]. The initial values for the mixing
parameters are taken from the PMNS matrix of the A4 model shown in equation (III.3.4)
with the mass parameters assumed to be real. These values are also shown in Table V.1.
Note that the value of 𝛿u�u� is undefined because 𝜃13 = 0.9 For the analytical formulas, one still
has to provide an initial value for the CP phase. The correct value is obtained by demanding
that the residue of the change of 𝛿u�u� at 𝜃13 = 0 vanishes, i.e. that 𝛿u�u� is an analytic function
in 𝜃13 also at zero. The package KaehlerCorrections presented in Section V.3.3 takes care
of this automatically.

Concerning the hierarchy of neutrino masses, normal ordering is chosen. For the plots,
the mass of the lightest neutrino 𝑚u�1

is kept as a free parameter while the other masses are
set relatively to it using the experimental values for the mass square differences shown in
Table III.3.

Since the main deviation of the tri-bi-maximal prediction from experiment is in 𝜃13, it
seems desirable to quantify the possible corrections to this mixing parameter first. The most
relevant contribution is the one of the matrix 𝑃V shown in (4.12). Note that this contribution
can be forbidden by a CP symmetry. Accordingly, the initial value of 𝛿u�u� obtained by the
analyticity criterion stated above is 𝛿u�u� = ±𝜋/2. The analytical formula for the change of 𝜃13

9 Indeed, u�u�u� is undefined if any of the mixing angles is zero because there is no CP violation in two-particle
mixing.
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Figure V.1: Correction to 𝜃13 in the A4 model due to the additional Kähler metric
contribution ∆𝒦̂u� = 𝜅as

u�
|u�|2

u�2
√3 𝑃V in dependence of the lightest neutrino mass 𝑚u�1

.
The other neutrino masses are fixed by the measured mass differences. The free
parameters are set to |𝑣|/𝛬 = 0.2 and 𝜅as

u� = 3 (see main text). The dashed blue line is an
exact numerical computation and the solid red line shows the linear approximation
discussed in the text. The green shaded area shows the ±1𝜎 range around the best fit
point for 𝜃13 and the blue shaded area the exclusion by the limit on the neutrino mass
sum. Experimental values are taken from [40, 54].

for the given initial condition of tri-bi-maximal mixing due to 𝑃V is

∆𝜃13 = 𝜅as
u�

|𝑣|2

𝛬2
√3

2
⎛⎜
⎝

2 𝑚u�1

𝑚u�1
+ 𝑚u�3

+
𝑚2

u�
𝑚2

u� − 𝑚2
u�

+
𝑚2

u�
𝑚2

u� − 𝑚2
u�

⎞⎟
⎠

≈ 𝜅as
u�

|𝑣|2

𝛬2
√6

𝑚u�1

𝑚u�1
+ 𝑚u�3

,
(4.14)

where in the second line the contribution due to the charged leptons is dropped because of
their mass hierarchy. The correction approaches a maximum for large values of the lightest
neutrino mass 𝑚u�1

, i.e. for a degenerate spectrum, as already predicted by the general
considerations above.

In Figure V.1, the change of 𝜃13 is plotted with respect to the mass 𝑚u�1
. The parameters

are chosen such that |𝑣|/𝛬 = 0.2, i.e. the ratio of VEV to scale is of the order of the Cabibbo
angle, and such that 𝜅as

u� = 3. The reason for this seemingly very large coupling value is
the normalisation of the Clebsch–Gordan coefficients, see Section II.6. The normalisation
adopted here is such that the Clebsch–Gordan matrix is unitary, which means that the more
terms there are in a contraction the smaller are the coefficients. However, a more physical
condition is that the numbers multiplying specific monomials in the potential should not
exceed order one. A value of precisely one would, in the present case, be achieved for a
coupling of 2 √3, which cancels the normalisation factors of the Clebsch–Gordan coefficients.
To facilitate the comparison with the original publication, this has been rounded down to 3
such that the numerical results coincide.10 Note that, despite the large value of the coupling,
the expansion parameter 𝑥u� is still only of order 0.1, i.e. any higher-order contributions
neglected by the analytical formulas can be expected to be subleading. Indeed, there is a

10 There are small differences to the numerical results of the original publication because of the newer values
for the mass-square differences used here.
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(a) Correction to 𝜃12.
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(b) Correction to 𝜃23.

Figure V.2: Corrections to (a) 𝜃12 and (b) 𝜃23 in the A4 model due to the additional
Kähler metric contribution ∆𝒦̂u� = 𝜅as

u�
|u�|2

u�2
√3 𝑃V in dependence of the lightest neutrino

mass 𝑚u�1
. The other neutrino masses are fixed by the measured mass differences.

The free parameters are set to |𝑣|/𝛬 = 0.2 and 𝜅as
u� = 3. The dashed blue line shows an

exact numerical computation. The blue shaded area represents the exclusion by the
cosmological limit on the neutrino mass sum. Experimental values are taken from
[40, 54].

good agreement between the exact numerical computation (dashed blue line) and the result
derived from the analytical formulas (solid red line) despite the overall large effects of the
Kähler correction.

Although the chosen magnitudes for VEV and coupling strength are not uncommon in
flavour model building, they are rather at the verge of their expected range. That is, the
value of 𝜃13 shown in the plot is close to the maximum that can possibly be achieved using
the Kähler corrections alone. The mass range plotted extends to 0.1 eV, but such very large
values are at least strongly disfavoured by the cosmological bound derived by Planck, see
(III.1.11). The area excluded by this bound is shaded in blue. Moreover, the ±1𝜎 region
around the best fit value for 𝜃13 from Table III.3 is shown in the plot as a green shaded band.
Choosing 𝑚u�1

close to the maximal still allowed value and making the assumptions laid out
before, one can thus obtain a 𝜃13 that is within 3𝜎 of the best fit value. Even though it does
not seem very likely that this effect is the sole explanation of the sizeable value of 𝜃13, the
result provides a proof of concept that large contributions even to angles that are zero at
first order can be obtained from Kähler corrections.

The other two mixing angles are predicted by the analytical formulas to stay invariant
under the Kähler correction considered. Due to higher-order effects, amplified by the large
changes in 𝜃13, this is not exactly true, but their changes are still considerably smaller than
the changes to 𝜃13. Numerical results for the other two angles are shown in Figure V.2.
Taking all results together and comparing the changes with the 3𝜎 regions from Table III.3,
one can conclude that, assuming a large coupling value and neutrino masses close to the
cosmological bound, one can bring all three angles in rough agreement with experiment.
However, it is important to repeat that it seems very unlikely that the A4 model with Kähler
corrections is the correct explanation of the neutrino mixing parameters. The results should
rather be seen as a hint to exercise caution when comparing model predictions to experiment
without taking into account the corrections discussed here. They are sizeable and can alter
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Figure V.3: Correction to 𝜃12 in the A4 model due to the additional Kähler metric
contribution ∆𝒦̂u� = 𝜅𝟏

u�
|u�′|2

u�2
2
3 𝑃I in dependence of the lightest neutrino mass 𝑚u�1

. The
other neutrino masses are fixed by the measured mass differences. The free parameters
are set to |𝑣′|/𝛬 = 0.2 and 𝜅𝟏

u� = 1/2. The dashed blue line is an exact numerical
computation and the solid red line shows the linear approximation discussed in the
text. The green shaded area shows the ±1𝜎 range around the best fit point for 𝜃12.
Experimental values are taken from [54].

the model predictions heavily.
To emphasize this point, a second correction is considered in some detail. This correction

is due to 𝑃I, see e.g. the first term in equation (4.9). The analytical formulas predict a change
of 𝜃12 of size

∆𝜃12 = 𝜅𝟏
u�

|𝑣′|2

𝛬2

√2
9

𝑚u�1
+ 𝑚u�2

𝑚u�1
− 𝑚u�2

. (4.15)

There are no contributions due to charged leptons because diagonal corrections to their
Kähler metric only change their mass eigenvalues but not the mixing angles. This is due
to the chosen basis with diagonal 𝑚u�. The resulting change of 𝜃12 is plotted in Figure V.3
for |𝑣′|/𝛬 = 0.2 and 𝜅𝟏

u� = 1/2 up to a mass 𝑚u�1
= 0.05 eV. Despite the relatively small

coupling, which does not offset the suppression due to the Clebsch–Gordan coefficients, the
corrections are very large. Starting from 𝑚u�1

= 0, they drive the angle 𝜃12 first through the
best fit region shaded in green and then away from it to smaller values. Up to a correction
of the order of ten degrees, the analytical formulas and the numerical computation agree
well. For even larger values of ∆𝜃12, however, the linear approximation made in expressing
the change of the angle in terms of its first derivative breaks down and the actual correction
is smaller than predicted.

The changes of 𝜃13 and 𝜃23 due to 𝑃I are predicted to be zero by the analytical formulas.
Since this is precisely matched by the numerical computation, no plots are shown for these
mixing angles.

In contrast to the two cases discussed so far, there are also corrections that do not depend
on the neutrino masses. An example is the second term in equation (4.9), i.e. the contribution
with the structure of 𝑃IV. The analytical formulas for the changes of the mixing angles are

∆𝜃12 = 𝜅𝟏
u�

|𝑣|2

𝛬2

√2
3

𝑚2
u� 𝑚2

u� − 𝑚4
u�

(𝑚2
u� − 𝑚2

u� ) (𝑚2
u� − 𝑚2

u� )
≈ 𝜅𝟏

u�
|𝑣|2

𝛬2

√2
3

, (4.16a)
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∆𝜃13 = 𝜅𝟏
u�

|𝑣|2

𝛬2

√2
3

𝑚2
u� (𝑚2

u� − 𝑚2
u�)

(𝑚2
u� − 𝑚2

u� ) (𝑚2
u� − 𝑚2

u� )
≈ 𝜅𝟏

u�
|𝑣|2

𝛬2

√2
3

𝑚2
u�

𝑚2
u�

≪ 1 , (4.16b)

∆𝜃23 = 𝜅𝟏
u�

|𝑣|2

𝛬2
1
3

𝑚2
u� + 𝑚2

u�

𝑚2
u� − 𝑚2

u�
≈ −𝜅𝟏

u�
|𝑣|2

𝛬2
1
3

. (4.16c)

Using again a coupling value of 3 to offset the normalisation of the Clebsch–Gordan coeffi-
cients and a VEV-to-scale ratio of 0.2, the changes are thus

∆𝜃12 ≈ 3.2° , (4.17a)
∆𝜃13 ≈ 0° , (4.17b)
∆𝜃23 ≈ −2.3° , (4.17c)

within 10 % agreement of a numerical computation, which also bears out the independence
from the neutrino masses.

It should be noted that there is no (theoretical) reason to prefer any one correction over
the others. They are all on the same footing theoretically and have to be taken into account
when discussing the predictions of the A4 model. Without any UV completion of this model
or any other guide to which higher-dimensional operators can enter the Kähler potential
and with which strength, it seems, hence, difficult to make definite predictions. The model
can both be made viable again by Kähler corrections or driven away even further from the
experimental values. A conclusive answer to the question whether the A4 model could
still qualify as the underlying model of neutrino masses and mixing can thus not be given
without further theoretical advances.

Nonetheless, the example computations show that the analytical formulas computed in
Section V.3 yield a good approximation to the true changes of the mixing angles due to
Kähler corrections for not too large coupling values and not too degenerate neutrino masses,
the latter anyway being disfavoured by experiment. The formulas can thus, as intended,
be used to quickly estimate the possible corrections to neutrino mixing. To emphasize this
point, another example model is discussed in the following section.

V.4.2 Kinetic term corrections to a T′ model

The second example to be discussed is a model by Chen and Mahanthappa [36, 140]. It is
a non-supersymmetric SU(5) Grand Unified Theory (GUT) with an additional T′ flavour
symmetry. The double tetrahedral group T′ is the double covering group of the tetrahedral
group A4. Its inequivalent irreducible representations are the three singlets, now denoted
𝟏0−2, and the triplet 𝟑 of A4 plus three additional doublet representations 𝟐0, 𝟐1 and 𝟐2. More
information on the group theory of T′ can be found in Section A.1.2.

Only the details of the model relevant to the kinetic term corrections to neutrino mixing
are presented here. All other information, including the mixing pattern for the quark sector,
can be found in the original references [36, 140]. The flavon fields, which are all the fields
needed to discuss the kinetic term corrections, are shown in Table V.2 together with their T′

representations, their charges under the additional ℤ12 × ℤ12 shaping symmetry and with
their vacuum expectation values after flavour symmetry breaking. The fields 𝜑, 𝜉 and 𝜑′

are, concerning the kinetic term corrections, the analogues of 𝜑u� and 𝜑u�, i.e. of the scalar
components of 𝛷u� and 𝛷u�, in the A4 model.

In the quark sector, this flavon content together with the VEV alignment leads to a realistic
CKM matrix [36, 140]. Furthermore, the model gives rise to almost tri-bi-maximal neutrino
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𝜑 𝜑′ 𝜓 𝜓′ 𝜁 𝑁 𝜉 𝜂

T′ 𝟑 𝟑 𝟐1 𝟐0 𝟏2 𝟏1 𝟑 𝟏
ℤ12 3 2 6 9 9 3 10 10
ℤ12 3 6 7 8 2 11 0 0

⟨ ⋅ ⟩
⎛⎜⎜⎜⎜
⎝

𝜑0
0
0

⎞⎟⎟⎟⎟
⎠

⎛⎜⎜⎜⎜
⎝

𝜑′
0

𝜑′
0

𝜑′
0

⎞⎟⎟⎟⎟
⎠

(𝜓0
0 ) (𝜓′

0
𝜓′

0
) 𝜁0 𝑁0

⎛⎜⎜⎜⎜
⎝

𝜉0
𝜉0
𝜉0

⎞⎟⎟⎟⎟
⎠

𝜂0

Table V.2: The T′ representations and ℤ12 × ℤ12 charges of all flavon fields of the
model by Chen and Mahanthappa [36, 140]. Additionally, the vacuum expectation
values are displayed.

𝜃12 𝜃13 𝜃23 𝛿u�u� 𝛿u� 𝛿u� 𝛿u� 𝛼1 𝛼2

approx. angle/° 33 3 45 227 185 184 180 7 177

Table V.3: Values for the mixing parameters of the T′ model before taking into account
kinetic term corrections. The model exhibits approximate tri-bi-maximal mixing with
a non-trivial Dirac CP phase 𝛿u�u�.

mixing. In fact, using the same T′ basis as the original publication, the neutrino mixing
matrix is diagonalised by the tri-bi-maximal mixing matrix. However, there are, in contrast
to the A4 model, additional contributions to 𝑈PMNS due to a non-diagonal charged lepton
mass matrix. The resulting angles and phases are shown in Table V.3. One of the main
differences to the A4 model is that 𝜃13 is non-zero even at leading order. Due to the GUT
relations, 𝜃13 is related to the Cabibbo angle 𝜃u� by

𝜃13 ≈
𝜃u�

3 √2
. (4.18)

Unfortunately, the resulting 𝜃13 is not large enough to be phenomenologically viable. It is
therefore interesting to investigate whether kinetic term corrections can enhance it suffi-
ciently. Furthermore, the model predicts a non-trivial leptonic Dirac CP phase and an
absolute neutrino mass scale with 𝑚u�1

= 0.0156 eV and mass-square differences ∆𝑚2
21 =

8.0 ⋅ 10−5 eV2 and ∆𝑚2
32 = 2.4 ⋅ 10−3 eV2.

The T′ model is a nice example of a model where no correction to the kinetic terms of
the lepton fields which is linear in any flavon can arise. The reason for this is the ℤ12 × ℤ12
shaping symmetry, under at least one factor of which every flavon field is charged. Hence,
the lowest-order contributions to the kinetic terms (besides the canonical ones) come from
terms quadratic in flavons. Since, as mentioned above, the model contains flavons of the
same types as 𝜑u� and 𝜑u� in the A4 model, all additional terms discussed in Section V.4.1 also
arise here. However, there are new contributions due to the doublet flavons 𝜓 and 𝜓′. The
relevant contraction is

𝟐u� ⊗ 𝟑 ≅ 𝟐0 ⊕ 𝟐1 ⊕ 𝟐2 , 𝑖 = 0, 1, 2 , (4.19)

where 𝟑 is to be replaced by the lepton doublet and 𝟐u� by either 𝜓 or 𝜓′. The structure of the
additional terms is thus

∆ℒ ⊃ [(∂u�𝑙) ⊗ 𝜓(′)]
†

𝟐u�
[(∂u�𝑙) ⊗ 𝜓(′)]𝟐u�

. (4.20)
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Using the Clebsch–Gordan coefficients and plugging in the VEVs, one arrives at contribu-
tions to the kinetic terms of the form

𝜅i−vi
∣𝜓(′)

0 ∣
2

𝛬2
1
3

(∂u�𝑙)u� 𝑃i−vi (∂u�𝑙) + h. c. (4.21)

where the VEV of the unprimed field has to be inserted for i to iii and the VEV of the
primed field for iv to vi. The factor of one third is again due to the normalisation of the
Clebsch–Gordan coefficients. The matrices 𝑃i−vi are defined by

𝑃i ≔ diag (0, 2, 1) , (4.22a)
𝑃ii ≔ diag (1, 0, 2) , (4.22b)
𝑃iii ≔ diag (2, 1, 0) , (4.22c)

𝑃iv ≔
⎛⎜⎜⎜⎜
⎝

2 1 −1
1 2 0

−1 0 2

⎞⎟⎟⎟⎟
⎠

, (4.22d)

𝑃v ≔
⎛⎜⎜⎜⎜
⎝

2 0 1
0 2 −1
1 −1 2

⎞⎟⎟⎟⎟
⎠

, (4.22e)

𝑃vi ≔
⎛⎜⎜⎜⎜
⎝

2 −1 0
−1 2 1
0 1 2

⎞⎟⎟⎟⎟
⎠

. (4.22f)

Together with the matrices 𝑃I−V from Section V.4.1, these are all structures of additional
kinetic terms that arise in the T′ model at quadratic order.

Before discussing the implications of some of these terms, one important difference to
the A4 model has to be discussed. In the A4 model, the charged lepton mass matrix is
diagonal, in accordance with the assumptions made for the derivation of the analytical
formulas. This is not the case for the T′ model. Hence, in order to apply the formulas, one
has to diagonalise the charged lepton mass matrix first. This does, of course, not affect
the initial mixing parameters since they are basis-independent. However, it does affect the
non-canonical parts of the kinetic terms. Let the charged lepton matrix be diagonalised by a
transformation

𝑙 ↦ 𝑉 𝑙 (4.23)

with 𝑉 unitary and a similar transformation for the charged lepton singlets. Then the 𝑃
matrices presented above must be adjusted to

(∂u�𝑙)† 𝑃 (∂u�𝑙) ↦ (𝑉 ∂u�𝑙)† 𝑃 𝑉 (∂u�𝑙) = (∂u�𝑙)† 𝑃̂ (∂u�𝑙) (4.24)

with 𝑃̂ ≔ 𝑉† 𝑃 𝑉.
Another difference with respect to the A4 model is that the neutrino masses are not free

parameters but that 𝑚u�1
= 0.0156 eV as stated above. Hence, it does not make sense to

discuss the dependence of the corrections on the neutrino mass spectrum. The only free
parameter is the product of the coupling and the square of the ratio of VEV to scale. Thus,
the plots to be discussed below show the dependence of the mixing angles on this quantity
up to assumed values of 3 for the coupling and 0.2 for the VEV-to-scale ratio and compare it
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to exact numerical computations. Of course, this means that the results from the analytical
formulas are straight lines because they are linear approximations.

Since for the T′ model 𝜃13 turns out to be too small, even though it is not zero, it is
worthwhile to discuss the correction related to the matrix 𝑃V again, which in the A4 case
leads to large changes of this angle. The results are shown in Figure V.4. Analytical and
numerical results agree reasonably well although for larger values of the coupling the
numerical computation deviates from a straight line. The correction is too small to bring 𝜃13
into agreement with experiment, even for large values of coupling times VEV suppression.
The reason is clear from the comparison with Figure V.1, which also only predicts a change
of about 3° for a mass 𝑚u�1

of the size present in the T′ model.11 In principle, there is the
possibility that the two contributions by 𝜑′ and 𝜉, respectively, add up, thereby leading to a
larger correction to 𝜃13. However, this can be considered a rather remote possibility.

As an example for a correction not present in the A4 model, the contribution due to 𝑃vi to
𝜃23 is shown in Figure V.5. Again, analytical and numerical computations are generally in
good agreement. The correction turns out not to be very large, which can be understood
from the highly non-degenerate neutrino mass spectrum predicted by the model. The
corrections to 𝜃12 and 𝜃13 show the same trend; however, with only one half and one fifth,
respectively, of the size of ∆𝜃23.

From these examples it can be seen that the T′ model is comparably safe from corrections
to the kinetic terms. This is a virtue for the predictivity of the model because the results do
not change too much with these additional contributions. However, it is also impossible to
make the model viable again by increasing 𝜃13 using kinetic term corrections. Both issues are,
of course, two sides of the same medal and can be attributed to the small lightest neutrino
mass 𝑚u�1

and the thus non-degenerate neutrino spectrum. For a way to accommodate a
realistic 𝜃13 in the T′ model by adding an additional singlet flavon, cf. [141].

V.4.3 A basis of 𝑃 matrices

Since the analytical formulas derived in Section V.3 are linear approximations, the contribu-
tions of different additional kinetic terms can be summed. That is, the additional contribu-
tions to the Kähler metric 𝒦̂ can be decomposed into a basis of Hermitian matrices, their
individual contributions to the mixing angles determined, and the final results summed.12

One convenient choice of basis is the following:

𝑃1 =
⎛⎜⎜⎜⎜
⎝

1 0 0
0 0 0
0 0 0

⎞⎟⎟⎟⎟
⎠

, 𝑃2 =
⎛⎜⎜⎜⎜
⎝

0 1 0
1 0 0
0 0 0

⎞⎟⎟⎟⎟
⎠

, 𝑃3 =
⎛⎜⎜⎜⎜
⎝

0 0 0
0 1 0
0 0 0

⎞⎟⎟⎟⎟
⎠

,

𝑃4 =
⎛⎜⎜⎜⎜
⎝

0 0 1
0 0 0
1 0 0

⎞⎟⎟⎟⎟
⎠

, 𝑃5 =
⎛⎜⎜⎜⎜
⎝

0 0 0
0 0 1
0 1 0

⎞⎟⎟⎟⎟
⎠

, 𝑃6 =
⎛⎜⎜⎜⎜
⎝

0 0 0
0 0 0
0 0 1

⎞⎟⎟⎟⎟
⎠

, (4.25)

𝑃7 =
⎛⎜⎜⎜⎜
⎝

0 − i 0
i 0 0
0 0 0

⎞⎟⎟⎟⎟
⎠

, 𝑃8 =
⎛⎜⎜⎜⎜
⎝

0 0 − i
0 0 0
i 0 0

⎞⎟⎟⎟⎟
⎠

, 𝑃9 =
⎛⎜⎜⎜⎜
⎝

0 0 0
0 0 − i
0 i 0

⎞⎟⎟⎟⎟
⎠

.

In order to gain some intuition on which results are to be expected for which kind of
kinetic term correction, one can look at their individual contributions for a certain set of

11 Note that Figure V.1 is, for the reasons outlined above, only an approximation for the T′ model.
12 In fact, this is more or less what the package KaehlerCorrections does.
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Figure V.4: Correction to 𝜃13 in the T′ model due to the additional Kähler metric
contribution ∆𝒦̂u� = 𝜅as

u�′
|u�′

0|2

u�2
√3 𝑃V in dependence of 𝜅as

u�′
|u�′

0|2

u�2 . The dashed blue line is
an exact numerical computation and the solid red line shows the linear approximation.

0 0.02 0.04 0.06 0.08 0.1 0.12

−3

−2

−1

0

𝜅vi
|u�′

0|2

u�2

∆𝜃
23

/°

𝜃23 analytical
𝜃23 numerical
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𝜃12 𝜃13 𝜃23 𝛿u�u� 𝛿u� 𝛿u� 𝛿u� 𝛼1 𝛼2

tri-bi-maximal arctan 1
√2

0 u�
4 − 𝜋 𝜋 0 2 𝜋 2 𝜋

bi-maximal u�
4 0 u�

4 − 𝜋 𝜋 0 2 𝜋 2 𝜋

Table V.4: Tri-bi-maximal and bi-maximal mixing parameters as used for the compu-
tation of the corrections for the full basis of 𝑃 matrices.

𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃6 𝑃7 𝑃8 𝑃9

∆𝜃12/° −0.98 −0.28 0.49 −0.28 0.97 0.49 0 0 0
∆𝜃13/° 0 −0.11 −0.015 0.11 0 0.015 −0.073 0.073 0.011
∆𝜃23/° 0 −0.021 −0.23 0.021 −0.29 0.23 0 0 0

Table V.5: Changes of the mixing angles under Kähler corrections of the form ∆𝐾 =
𝑥u� 𝐿† 𝑃u� 𝐿 for 𝑥u� = 0.01 and 𝑚u�1

= 0.01 eV starting from tri-bi-maximal mixing.

initial parameters. Here only contributions due to the left-handed sector are considered, i.e.
from Kähler potentials of the form

𝐾 = 𝐿† (1 + 𝑥u� 𝑃u�) 𝐿 + 𝑅† 𝑅 (4.26)

or from equivalent kinetic terms in the non-supersymmetric case.
The sets of initial values used are tri-bi-maximal mixing, as obtained from the A4 model,

and bi-maximal mixing. The precise values are compiled in Table V.4. Note that the results
depend on all the parameters, i.e. also on Majorana phases and charged lepton phases.

Furthermore, one has to set a specific neutrino mass scale, which is chosen here by setting
𝑚u�1

= 0.01 eV and computing the other two masses such that their mass square differences
are correct for normal hierarchy.

The last point to be decided is which value of 𝑥u� to use. However, whereas the dependence
on the masses in non-linear, as seen in Figure V.1, the dependence on 𝑥u� is linear. One can
hence obtain the result for any desired 𝑥u� from the tables by a simple re-scaling. For the
tables, 𝑥u� = 0.01 is used.

Moreover, as already discussed, 𝛿u�u� is not well defined for 𝜃13 = 0, which is true for both
tri-bi-maximal and bi-maximal mixing. Hence, the technique using the analyticity of the
change of 𝛿u�u� at zero as described in Section V.4.1 is used to set 𝛿u�u� in each individual case.
This means that the results for two 𝑃u� cannot just be summed up to give the correct result
for the sum of the 𝑃u� since for two different 𝑃u� also two different 𝛿u�u� might be computed,
with the real 𝛿u�u� of the sum being some interpolation of the two results. This is, of course,
taken care of in the KaehlerCorrections package.

The results following the assumptions made are shown in Table V.5 and Table V.6.
It is interesting to note that the three CP violating matrices 𝑃7/8/9 only contribute to 𝜃13

but not to the other two angles. Generally, the changes to 𝜃12 are largest, reaching 1° even
for the small neutrino mass scale and small 𝑥u� chosen. For a still realistic value of 𝑥u� = 0.1
or, alternatively, larger 𝑚u�1

, the change could easily increase to 10°, in agreement with the
situation in the A4 model depicted in Figure V.3. However, it should be clear that the linear
approximation should be used with care for such large corrections because the backreaction
becomes non-negligible.

In addition to these tables, which only contain results for fixed 𝑚u�u�
, one can compute the
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𝑃1 𝑃2 𝑃3 𝑃4 𝑃5 𝑃6 𝑃7 𝑃8 𝑃9

∆𝜃12/° −1.0 0.20 0.52 0.20 1.0 0.52 0 0 0
∆𝜃13/° 0 −0.12 −0.015 0.12 0 0.015 −0.075 0.075 0.012
∆𝜃23/° 0 −0.022 −0.23 0.022 −0.29 0.23 0 0 0

Table V.6: Changes of the mixing angles under Kähler corrections of the form ∆𝐾 =
𝑥u� 𝐿† 𝑃u� 𝐿 for 𝑥u� = 0.01 and 𝑚u�1

= 0.01 eV starting from bi-maximal mixing.

analytical formulas for a given set of initial mixing parameters for each of the 𝑃u� but without
specifying neutrino masses. For tri-bi-maximal mixing, the results of this computation are
presented in Appendix B. The formulas thus obtained are remarkably simple and, as seen
in the examples above, give a good estimate of how large any corrections to mixing angles
are.

V.5 Further implications

In this section, two further possible implications of additional Kähler potential terms shall
be discussed. The first point to be addressed is the alignment of vacuum expectation values
of flavons and its sensitivity to the Kähler corrections. The second topic concerns flavour
changing neutral currents (FCNCs) as, making some assumptions about the structure of the
soft supersymmetry breaking terms, one can try to obtain information on the size of the
Kähler potential couplings from experimental limits on, for example, the decay 𝜇+ → 𝑒+ + 𝛾.

Note that, whereas the discussion on the kinetic term corrections to the neutrino mixing
angles equivalently holds for supersymmetric and non-supersymmetric models, this is not
true for the results presented in this section.

V.5.1 Alignment of vacuum expectation values

In models with discrete flavour symmetries, the alignment of vacuum expectation values is
often decisive for their predictions. Assuming that the VEVs of flavon fields are dynamically
determined by a potential, rather than imposed by hand as is common practice, additional
terms could shift the minimum. In particular, highly symmetric solutions like, for example,
(𝑣, 𝑣, 𝑣) for a triplet VEV could be perturbed to something less symmetric like (𝑣 + ∆𝑣, 𝑣, 𝑣).
Symmetric here means that the VEV is invariant under some non-trivial subgroup of the
original flavour group, i.e. it does not break the group completely. However, the full set of
VEVs has to break the flavour group completely (up to abelian factors) to obtain a realistic
spectrum, see also Section III.2. Thus, although each individual VEV might be at a symmetry
enhanced point, this symmetry is not a symmetry of the full Lagrangian and cannot protect
the VEV from corrections from the superpotential or the Kähler potential. This situation
is clearest in so-called direct models, see also Figure III.2, where the flavour symmetry
is broken into two different, non-intersecting subgroups in the neutrino and the charged
lepton sectors such that the full Lagrangian is not symmetric at all.

Whereas the VEV perturbations by higher-order superpotential terms are often discussed,
cf. e.g. the original references [9, 10] on the A4 model, Kähler corrections are usually ignored
without further justification. Hence, the influence of additional Kähler potential terms on
the VEV alignment shall briefly be investigated here.
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In the following, the simplifying assumption that the flavon sector is independent of any
supersymmetry breaking sector is made. This implies, in particular, that 𝐹-term VEVs of
flavon fields are neglected.

The vacuum expectation values of the flavon fields are determined by minimising the
scalar potential (1.8) of the supersymmetric theory. For this to be minimal, two conditions
must be fulfilled, where 𝛷 denotes the collection of all chiral superfields and 𝜑 their scalar
parts:

∂𝑊
∂𝛷u�

(⟨𝜑⟩) = 0 , ∀ 𝑖 , (𝐹-term) (5.1a)

Re (
∂𝐾
𝛷u�

(⟨𝜑⟩, ⟨𝜑∗⟩) ⋅ (𝑇u� ⟨𝜑⟩)u�) = 0 , ∀ 𝑎 . (𝐷-term) (5.1b)

The conditions are independent of the Kähler metric and the real part of the gauge kinetic
function although these are both part of the potential because they are positive definite
matrices.13 This also immediately settles the question whether the 𝐹-term conditions are
affected by a change in the Kähler potential: they are not. To be precise, if the 𝐹-term
conditions are fulfilled by a VEV ⟨𝜑⟩ for a canonical Kähler potential, this stays true for any
non-canonical but physical Kähler potential.

However, the Kähler potential enters the 𝐷-term conditions in a non-trivial way. Still, the
most common case of flavons which are not charged under any gauge symmetry can be
solved easily. This is, for example, the case in any model with just the Standard Model gauge
symmetry GSM because the flavons clearly cannot be charged with respect to this symmetry;
otherwise, the flavon VEVs would break Standard Model gauge invariance, rendering the
model completely unrealistic. Under the assumption that the flavons are not charged under
any gauge symmetries, they do not enter the 𝐷-term conditions at all as

𝑇u� 𝜑 = 0 (5.2)

for non-gauged fields. Hence, one can conclude that the VEV alignment in models with
ungauged flavons, e.g. the A4 model, is not changed at all by the Kähler corrections.

There is a second case which can be solved generally. Assume that an additional gauge
symmetry is broken by the VEVs of a set 𝑆 of chiral superfields, whereas all other fields,
denoted by 𝛷 in the following, are either not charged under the additional gauge symmetry
or do not obtain a VEV. If, furthermore, the Kähler potential factorises in the form14

𝐾 (𝛷, 𝛷†, 𝑆, 𝑆†) = 𝐾u� (𝑆† 𝟙 𝑆) ⋅ 𝐾u� (𝛷, 𝛷†) , (5.3)

the 𝐷-term conditions for this new Kähler potential are just a scalar multiple of the conditions
for the canonical Kähler potential and, therefore, equivalent. In this case, one can again
conclude that the vacuum alignment is not affected at all by the additional Kähler potential
contributions. In particular, this is fulfilled if the additional gauge symmetry is only broken
by the VEV of a single field, i.e. if there is only one field that is both charged under the
additional gauge symmetry and attains a VEV. This applies, for example, to the T′ model
discussed in Section V.4.2.

To summarise, the additional contributions to the Kähler potential do usually not affect
the vacuum alignment of the flavon fields. They can hence be ignored in most cases when

13 Otherwise the potential would not be bounded below and, hence, unphysical.
14 Note that both u�u� and u�u� should contain a constant term such that there are the usual kinetic terms for all

fields.
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discussing the VEV alignment of supersymmetric flavour models. In contrast to that,
corrections from the superpotential, which are completely unaffected by the present results,
should, of course, be taken into account since they can change the phenomenology of a
model.

V.5.2 Kähler corrections and FCNCs

One of the drawbacks of supersymmetric models is that soft supersymmetry breaking terms
may introduce unwanted flavour changing neutral currents. This happens if the soft masses
and the so-called 𝐴-terms are not aligned with the mass and Yukawa terms in the matter
sector. The problem can be ameliorated, for example, by discrete flavour symmetries [72].
Moreover, the situation can be improved over naive expectations by renormalisation group
effects [142].

However, corrections to the Kähler potential by additional flavon interactions like the ones
discussed above in the context of neutrino mixing could, in principle, lead to large FCNCs
even in models which, without taking into account the corrections, are within experimental
limits. To discuss the influence of Kähler corrections, let us assume that the model under
consideration does not suffer from dangerous flavour changing neutral currents when all
correction terms are set to zero.15 Furthermore, supersymmetry shall be broken by the
𝐹-term vacuum expectation value of a spurion field 𝑋, i.e.

⟨𝑋⟩ = 𝜃2 ⟨𝐹u�⟩ ≠ 0 . (5.4)

The terms relevant for the discussion of flavour changing neutral currents at the present
level are [138]

𝐾 ⊃ 𝐿†
u� 𝒦u�u� 𝐿u� +

1
𝛬soft

(𝑋 𝐿†
u� 𝑛u�u�

u� 𝐿u� + h. c.) −
1

𝛬2
soft

𝑋†𝑋 𝐿†
u� 𝑘u�u�

u� 𝐿u� + (𝐿 → 𝑅) , (5.5a)

𝑊 ⊃ 𝑌u�u�
u� 𝐿u� 𝑅u� 𝐻u� −

1
𝛬soft

(𝑌u�
u� )u�u� 𝑋 𝐿u� 𝑅u� 𝐻u� , (5.5b)

where 𝛬soft is the messenger scale of SUSY breaking and all coupling matrices are functions
of the cut-off scale 𝛬 and the flavon superfields. Moreover, the couplings 𝒦u�/u� and 𝑘u�/u� are
Hermitian.

Integrating out the auxiliary fields and replacing the spurion by its VEV, one obtains the
soft terms

ℒsoft ⊃ − ̃𝑙†u� (𝑚2
LL)u�u� ̃𝑙u� − ̃𝑟†

u� (𝑚2
RR)u�u� ̃𝑟u� − ( ̃𝑙u� 𝐴u�u�

LR ̃𝑟u� + h. c.) (5.6)

for the slepton fields ̃𝑙 and ̃𝑟 with [138]

𝑚2
LL/RR ≔ 𝑀2 [𝑘u�/u� + 𝑛†

u�/u� 𝑛u�/u�] , (5.7a)

𝐴LR ≔ √𝑀2 [𝑌u�
u� + 𝑛u� 𝑌u� + 𝑌u� 𝑛u�] . (5.7b)

Here the scale 𝑀2 ≔ |⟨𝐹u�⟩|2/𝛬2
soft is introduced.

15 This assumption is reasonable because, if a model suffers from FCNCs even before corrections, it also
does so afterwards. In fact, these original contributions would be the leading ones and would shadow the
influence of any Kähler corrections.
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For simplicity, it is assumed that at lowest order

𝒦̂u�/u� = 𝟙 , (5.8a)
𝑛u�/u� = 𝜂u�/u� 𝟙 , (5.8b)
𝑘u�/u� = 𝜅u�/u� 𝟙 . (5.8c)

This is automatically enforced by the flavour symmetry if all left-handed lepton fields are in
a single irreducible representation and, analogously, the right-handed leptons in another
irreducible representation. It is then a simple consequence of Schur’s lemma (Theorem 9).
If the leptons are in reducible representations, the matrices are at least still diagonal if no
two generations transform in equivalent representations.

After introducing higher-order terms in the form of contractions of flavon and lepton
fields as discussed above for the kinetic terms, all three coupling matrices are perturbed.
The new matrices can be written as

𝒦̂u�/u� = 𝟙 − 2 𝑥 𝑃u�/u� , (5.9a)
𝑛u�/u� = 𝜂u�/u� (𝟙 − 2 𝑥 𝑁u�/u�) , (5.9b)
𝑘u�/u� = 𝜅u�/u� (𝟙 − 2 𝑥 𝐾u�/u�) , (5.9c)

where the parameter 𝑥 is supposed to encode the size of the corrections while the matrices
𝑃u�/u�, 𝑁u�/u� and 𝐾u�/u� have entries of order unity. Thus, 𝑥 is usually of the order of the flavon
VEVs over the cut-off scale squared, see the discussion in Section V.4.1, and also depends
on the unknown couplings in the Kähler potential.

Hence, there are two contributions to the soft masses. One is due to the canonical normal-
isation of matter fields, i.e. related to 𝑃u�/u�, and the other comes directly from the changes
of the soft breaking terms, i.e. from 𝑁u�/u� and 𝐾u�/u�. To linear order in 𝑥 the perturbed soft
masses are

𝑚2
LL/RR = 𝑀2 {(𝜅u�/u� + ∣𝜂u�/u�∣2) 𝟙

+ 2 𝑥 [𝜅u�/u� (𝑃u�/u� − 𝐾u�/u�) + ∣𝜂u�/u�∣2 (𝑃u�/u� − 𝑁u�/u� + h. c.)]} .
(5.10)

All additional contributions are, of course, proportional to the small parameter 𝑥. In partic-
ular, all non-diagonal terms are suppressed by this small quantity, owing to the assumption
that there are no zero-th order off-diagonal terms. If there is a relation between the correc-
tions to kinetic terms and to soft terms, they can cancel each other. However, this is generally
not to be expected because, even if structurally similar due to the flavour symmetry, there is
no reason why their individual coefficients should be the same.

A similar discussion applies to the 𝐴-terms. By the assumptions made, all off-diagonal
terms are proportional to the small parameter 𝑥. However, the phenomenological effects also
depend on whether the original 𝐴-terms are hierarchical in the sense that, for example, the
electron-related terms are smaller than the 𝜏-related terms by a factor of 𝑚u�/𝑚u�. This would
be the case, for example, if the mass hierarchy were due to a Froggatt–Nielsen symmetry
because in this case the hierarchy of 𝑌u� carries over to 𝑌u�

u� .
Inserting the corrected soft terms into formulas like the ones by Gabbiani et al. [143], one

can compute the branching fractions for FCNCs as functions of the expansion parameter 𝑥
and the slepton mass scale. Without any further assumptions on the specific model, it is
difficult to make proper quantitative statements. However, it is possible to estimate the
order of magnitude needed for the soft masses in order not to violate present bounds on
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FCNCs. The decay 𝜇+ → 𝑒+ + 𝛾 is presently one of the rare decay processes with the best
experimental bounds and shall thus be used as an example here. In fact, the result of the
MEG collaboration shows that the branching fraction is Br(𝜇+ → 𝑒+ + 𝛾) < 5.7 ⋅ 10−13 [71].
Using the formulas from [143], one arrives at the conclusion that for 𝑥 ≲ 0.04 as assumed in
Section V.4, soft masses of the order 2 TeV are safe and, depending on the model details,
smaller values might also still be feasible [144].16 Of course, the limit on the soft masses
decreases for smaller 𝑥 and vice versa. Hence, such limits can either be seen as lower bounds
on possible soft masses or upper bounds on the possible size of Kähler corrections.

Fixing the ratios of VEVs to cut-off, one thus obtains information on the otherwise
completely unknown size of couplings in the Kähler potential by these considerations.17

However, it is difficult to interpret these results as limits specifically on the couplings in the
Kähler potential that are relevant to neutrino mixing. This is due to the fact that, in addition
to the canonical normalisation contributions to FCNCs, which also affect the neutrino mix-
ing, there are direct contributions of the flavons to the soft masses and 𝐴-terms, which do
not affect the neutrino phenomenology. Without any further assumptions, it is impossible
to disentangle the two contributions from each other. Even worse, there is, in principle, the
possibility that the two contributions cancel partly, allowing for larger effects in the neutrino
sector than would be expected from bounds on FCNCs.

Thus, the only conclusion one can safely draw is that for low TeV-scale SUSY the effects of
additional Kähler potential terms can be dangerous and should be taken into account when
discussing FCNCs. If soft masses are larger than a few TeVs, the model can be considered safe
from Kähler corrections to FCNCs in the sense that, if it is safe ignoring these contributions,
bounds are also not violated when taking them properly into account. Without further
model assumptions, however, experimental limits on FCNCs are not sufficient to constrain
the Kähler potential couplings relevant for neutrino mixing.

V.6 Conclusion of the chapter

The results of this chapter show that kinetic term corrections to neutrino mixing should not
be underestimated. Their effects can be large even though the terms responsible are usually
suppressed by at least an order of magnitude compared to the canonical kinetic terms. This
is particularly important because, for any discrete non-abelian flavour symmetry, one can
write down additional contributions to the kinetic terms that cannot be forbidden by any
additional symmetry. These are terms that are quadratic in a specific flavon.

The effects of canonical normalisation are similar to renormalisation group effects but
can have a more general structure. In particular, there is no reason to assume that effects
related to the 𝜏 lepton are larger than effects related to the electron, or that the effects are
diagonal in a basis with a diagonal charged lepton mass matrix. Moreover, effects due to
additional kinetic terms are not loop suppressed but depend on the ratio of flavon vacuum
expectation values to the new physics scale, which can be very sizeable in flavour models.
Note that, as already explained in Section V.1, the discussion applies to supersymmetric
and non-supersymmetric models alike.

The analytical formulas developed here are made available as the Mathematica package

16 At the time of the original publication [2], only older and, hence, weaker limits on this branching fraction
were available. Thus, the new limits are stronger than the ones originally presented.

17 For a very recent discussion of the influence of general Kähler potentials on flavour changing neutral
currents in M-theory models, cf. [145].
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KaehlerCorrections, which can be found online.18 This package can be used to easily es-
timate the effects of kinetic term corrections directly on the mixing parameters. The formulas
only depend on the mass and mixing parameters obtained by ignoring the additional terms,
i.e. on their naive results. Their analytical expressions show that the effects of corrections to
the right-handed kinetic terms are more or less negligible due to the large mass hierarchy
among the charged leptons. By the same reasoning the effects from the left-handed kinetic
terms are largest for almost degenerate neutrino masses. The validity of these statements
and of the formulas in general was established using two example models based on the
groups A4 and T′, respectively, by comparing the approximate analytical results to an exact
numerical computation.

The corrections to the Kähler potential were also shown not to be a danger for the VEV
alignment in supersymmetric models in most practical cases. In contrast to that, their
effect on flavour changing neutral currents in such models cannot safely be neglected
without further model assumptions. An estimate of the influence of flavon induced Kähler
corrections to the rate of the decay 𝜇+ → 𝑒+ + 𝛾 does, however, not indicate any severe
problems for soft masses slightly above the TeV-scale [144].

Summarising, one can conclude that, on the one hand, kinetic term corrections provide
more freedom for model building. It is, for example, possible to revive models that seem to
have been ruled out by experiment using these additional contributions to neutrino mixing.
Indeed, it was shown that in the A4 model by Altarelli and Feruglio [9, 10], one can, in
principle, raise the angle 𝜃13 to about 8°, which is still feasible.

On the other hand, the corrections constitute a large arbitrariness in flavour model building.
The size of the effects depends on the couplings in the Kähler potential or the additional
kinetic terms about which little is known. It seems thus very important to gain more insight
into the structure of Kähler potentials and kinetic terms by constructing consistent UV
completions for such flavour models. Further possible avenues to obtain more information on
Kähler potentials are computations using wave function overlaps [146, 147] and comparisons
with cases where the Kähler potential is partly known [148]. An important implication of
the arbitrariness is that scans, cf. e.g. [149, 150], over neutrino flavour models that do not
take into account the kinetic term corrections probably largely underestimate the number of
viable models because of the large additional theoretical uncertainties.

18 http://einrichtungen.ph.tum.de/T30e/codes/KaehlerCorrections

http://einrichtungen.ph.tum.de/T30e/codes/KaehlerCorrections
http://einrichtungen.ph.tum.de/T30e/codes/KaehlerCorrections


VI Breaking compact classical Lie groups
to finite subgroups

Explaining the flavour structure of the Standard Model using discrete non-abelian symmet-
ries is, in a sense, only a first step. Subsequently, one would, of course, also like to explain
the origin of these symmetries. As already mentioned, this problem is amplified because
global symmetries are believed to be broken by gravitational effects [12, 13]. One possible
consistent origin of these symmetries is provided by string theory [62, 98–100]. However,
there is another, more bottom-up possibility to obtain discrete symmetries that are protected
from violation by gravitational effects: spontaneous breaking of a (non-anomalous) con-
tinuous gauge group like SU(𝑁) [61]. Symmetries of this kind are known as discrete gauge
symmetries.

The aim of this chapter is to aid the construction of models where a discrete non-abelian
symmetry emerges from the spontaneous breaking of a continuous symmetry, i.e. from
breaking Lie groups to finite subgroups. This is only possible if there is a non-trivial irre-
ducible representation of the Lie group that contains a trivial singlet of the subgroup. A
vacuum expectation value of this component may then break the Lie group to the desired
subgroup. A procedure is thus outlined here for the decompositions of Lie group represent-
ations into irreducible representations of a given subgroup. The resulting routines are also
implemented in the Mathematica [11] package DecomposeLGReps.

The decomposition of a representation of a finite group 𝐺 into representations of a sub-
group 𝐻 ⊂ 𝐺 proceeds via the scalar product of characters, see Section II.4. The branching
rules can be computed using the following algorithm. Given a representation 𝑹 of 𝐺, restrict
it to the desired subgroup 𝐻. Then the character scalar product of 𝑹 with an irreducible
representation 𝒓u� of 𝐻 yields the multiplicity 𝜇u� of 𝒓u� in 𝑹,

𝜇u� = (𝜒𝒓u�
, 𝜒𝑹∣u�) =

1
|𝐻|

∑
ℎ∈u�

𝜒𝒓u�
(ℎ)∗ 𝜒𝑹(ℎ) . (0.1)

The same technique can, in principle, be used for Lie groups as long as their dimension is
finite. However, whereas character tables of finite groups contain all information needed to
go through this procedure, it is clearly impossible to compile all the necessary information
for Lie groups; the character table had to be infinitely large.

Hence, previous studies used different methods to compute the branching rules. A first
possibility is using the fact that each Lie group representation can be obtained from the
tensor product of fundamental representations1 as in [111, 151]. A second option is working

* Some of the results presented in this chapter have already been communicated in [6].
1 So-called spinor representation of SO(u�) are an exception, see also Section VI.1 below.
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with explicit realisations of the Lie group representations [152]. Both approaches cannot
easily be generalised to larger Lie group representations or larger rank Lie groups. In
another approach that also highlights the connection between spontaneous and explicit
symmetry breaking, Merle and Zwicky [153] used an algorithm based on group invariants
and provided a Mathematica package implementing the algorithm for SU(3). Again this is
not easily generalised, and the method relies on rather advanced notions of invariant theory.
Similar considerations also lead to the so-called generating functions for subgroup scalars
compiled in [154]; the focus of [154], however, is mainly on Lie subgroups of Lie groups.

To overcome these limitations, the present work uses the standard technique of the
character scalar product (0.1) and computes the characters on the fly with Mathematica
using what is called the Weyl character formula [155] (for more modern treatments see,
for example, [18, 115]). Note that, since the sum in (0.1) runs over the finite number of
elements of the subgroup, only a finite number of Lie group characters has to be computed.
Thus, the procedure, in principle, allows the computation of branching rules for all compact
Lie groups and arbitrary finite subgroups thereof. The associated Mathematica package
DecomposeLGReps implementing the formulas for the classical Lie groups U(𝑁), SU(𝑁),
SO(𝑁) and USp(2𝑁) can be found online.2

Of course, there remain some general issues with this type of model building. For example,
the VEV of the singlet component of the Lie group representation under consideration may
be left invariant by a larger number of transformations than the desired subgroup, i.e. the
subgroup might not be a maximal invariant subgroup. Unfortunately, there is no general
theory that exposes whether this is the case or not; hence, this question has to be settled
in each case individually, e.g. by examining the subgroup tree [153] or by constructing the
actual representation matrices [151, 152]. Furthermore, it is, in general, difficult to write
down a potential giving rise to the desired VEV dynamically, at least if one does not want to
resort to supersymmetry and driving fields. These caveats notwithstanding, knowledge
of candidate representations for the desired breaking is of great help in model building.
Moreover, as shown below, in some cases one can discern patterns in the branching rules
that allow to make general statements about models embodying this breaking.

In the following, first, criteria for a finite group to be a subgroup of a compact classical
Lie group are compiled in Section VI.1. Then Section VI.2 explains the technical details of
the computation, i.e. the connection between Lie algebra and Lie group characters and the
Weyl character formula. The Mathematica package DecomposeLGReps implementing this
procedure is briefly presented in Section VI.3. Finally, in Section VI.4, some examples are
given for the applicability of the package, and some general results for various small finite
groups are derived.

VI.1 Subgroups of compact classical Lie groups

The purpose of this section is to state criteria for a finite group 𝐻 to be a subgroup of any
of the compact classical Lie groups U(𝑁), SU(𝑁), SO(𝑁) and USp(2𝑁). In fact, the simplest
case is the one of the unitary group U(𝑁) because any finite-dimensional representation of
a compact group is equivalent to a unitary representation, see Theorem 7.

The criterion used here is that 𝐻 is a subgroup of U(𝑁) if and only if it has a faithful
representation of dimension 𝑁.

2 http://einrichtungen.ph.tum.de/T30e/codes/DecomposeLGReps

http://einrichtungen.ph.tum.de/T30e/codes/DecomposeLGReps
http://einrichtungen.ph.tum.de/T30e/codes/DecomposeLGReps
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To see this, let 𝐻 have a faithful unitary representation 𝑹 of dimension 𝑁,

𝑹 ∶ 𝐻 → {𝑁 × 𝑁 unitary matrices} , (1.1)

and let 𝑵 be the fundamental representation of U(𝑁),

𝑵 ∶ U(𝑁) → {𝑁 × 𝑁 unitary matrices} , (1.2)

which is a bijection. Then the map

𝑵−1 ∘ 𝑹 ∶ 𝐻 → U(𝑁) (1.3)

is an injective group homomorphism that embeds 𝐻 into U(𝑁) as a subgroup.
Now let 𝐻 be a subgroup of U(𝑁). Then there exists an embedding 𝑖 of 𝐻 into U(𝑁),

𝑖 ∶ 𝐻 → U(𝑁) , (1.4)

where 𝑖 is an injective group homomorphism. Using this map one can define a faithful
representation 𝑹′ of 𝐻 by

𝑹′ ≔ 𝑵 ∘ 𝑖 , (1.5)

which has dimension 𝑁. This concludes the proof of the subgroup criterion for U(𝑁).
The same arguments go through for the other compact classical Lie groups if, additionally,

det 𝜌𝑹(𝑔) = 1 for SU(𝑁), det 𝜌𝑹(𝑔) = 1 and for some choice of basis 𝜌𝑹(𝑔) ∈ ℝu�×u� for SO(𝑁)
and 𝜌𝑹(𝑔) ∈ Sp(2𝑁, ℂ) for USp(2𝑁).

For works on subgroups of the probably most relevant Lie groups for model building,
SU(3) and SO(3), see [58, 73, 74, 156], and for a general overview of popular groups for
model building, see [57].

One further important remark concerns the notation for Lie group representations used
here. An irreducible representation of a Lie group is labelled by the Dynkin labels 𝛬 =
(𝛬1, 𝛬2, … , 𝛬u�) of the highest weight of its associated Lie algebra representation. This
correspondence between Lie group and Lie algebra representations is only one-to-one for
simply connected Lie groups, e.g. for SU(𝑁) and USp(2𝑁) (cf. [115]). However, SO(𝑁) is not
simply connected and has as universal covering group Spin(𝑁), e.g. the universal covering
group of SO(3) is Spin(3) which is isomorphic to SU(2). Thus, for the present approach one
has to distinguish the groups SO(𝑁) and Spin(𝑁) carefully in contrast to common practice
in physics. In fact, the 𝑁-dimensional fundamental representation of SO(𝑁) is not a faithful
representation for Spin(𝑁). Therefore, the procedure described above really embeds the
finite group into SO(𝑁) and not into Spin(𝑁). Branching rules are, hence, only computed
for non-spinorial representations, i.e. for representations of SO(2𝑁 + 1) whose last Dynkin
label components 𝛬u� are even integers and for representations of SO(2𝑁) with 𝛬u�−1 + 𝛬u�

even.

VI.2 Lie group characters

This section explains the details of the computation of Lie group characters using the Weyl
character formula. It is structured as follows. First, the connection of Lie group and Lie
algebra characters is reviewed, and the Weyl character formula for the computation of Lie
algebra characters in its modern formulation is introduced. Then, after clarifying some
notational issues, the Weyl character formulas for the classical Lie groups are presented in
two formulations due to Weyl, which are for the present purposes more useful than the
general formula mentioned before.
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VI.2.1 Lie group and Lie algebra characters

As already explained in Section II.4, the definition of a group character is not limited to
finite groups. In fact, the character 𝜒u� of a finite-dimensional highest-weight representation
of some finite-dimensional Lie group 𝐿 is defined in the same way, namely

𝜒u�(𝑔) ≔ tr(𝜌u�(𝑔)) , ∀𝑔 ∈ 𝐿 , (2.1)

where 𝜌u� is a matrix realisation of the representation with highest weight 𝛬 [115]. The
characters are again class-functions, i.e. constant on conjugacy classes.

It is important to note that for semi-simple Lie groups any group element 𝑔 is conjugate to
an element 𝑔∘ of a maximal torus, i.e. of a subgroup with the Cartan sub-algebra of the Lie
algebra 𝔩 of 𝐿 as Lie algebra. In other words: each group element can be diagonalised by an
inner automorphism [115]. This leads to a relation between so-called Lie algebra characters
chu� and the desired Lie group characters 𝜒u�. Lie algebra characters chu� are, in principle,
defined as the formal generating function [115]

chu� ≔ ∑
u�′

multu�(𝜆′) eu�′ , (2.2)

where the sum runs over all weights of the representation defined by 𝛬 and multu�(𝜆′) is the
multiplicity of 𝜆′ in the weight diagram. They can also be viewed as functions from weight
space to the complex numbers by interpreting the action of the exponentials on a weight 𝜆
as

eu�′(𝜆) ≔ e(u�′, u�) , (2.3)

where the parenthesis denote the scalar product on weight space. This is given by

(𝜆′, 𝜆) ≔ 𝜆′u� 𝐺u�u� 𝜆u� (2.4)

where 𝐺u�u� denotes the metric on weight space, whose inverse fulfils

𝐺u�u� ≔ 𝜅(𝐻u�, 𝐻u�) (2.5)

for the Cartan sub-algebra generators 𝐻u� associated to the simple roots in the Chevalley–
Serre basis, and where upper indices on weights refer to their components in Dynkin basis,
i.e. their Dynkin labels [115]. The Killing form 𝜅 can be defined via

𝜅(𝑥, 𝑦) ≔ tr(𝐚𝐝𝐣(𝑥) 𝐚𝐝𝐣(𝑦)) =
ℓ(𝐚𝐝𝐣)
ℓ(𝛬)

tr (𝑹u�(𝑥) 𝑹u�(𝑦)) (2.6)

for elements 𝑥 and 𝑦 of the Lie algebra 𝔩, where 𝐚𝐝𝐣 denotes the adjoint representation and ℓ
the Dynkin index.

The relation to Lie group characters is due to the fact that, for each element 𝑔∘ of a maximal
torus of a compact Lie group 𝐿, one can find an element ℎ of the Cartan sub-algebra of the
Lie algebra of 𝐿 such that exp ℎ = 𝑔∘. The Lie algebra character chu�(ℎ) of this element equals
the Lie group character of 𝑔 [115],

chu�(ℎ) = 𝜒u�(exp ℎ) = 𝜒u�(𝑔∘) = 𝜒u�(𝑔) , (2.7)

where the last equality follows because 𝜒u� is a class-function and because 𝑔∘ is in the same
conjugacy class as 𝑔.
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𝔩 𝑊 |𝑊|

𝐴u� Su�+1 (𝑟 + 1)!
𝐵u� ℤu�

2 o Su� 2u� 𝑟!
𝐶u� ℤu�

2 o Su� 2u� 𝑟!
𝐷u� ℤu�−1

2 o Su� 2u�−1 𝑟!

Table VI.1: This table is a partial reproduction of [115, (10.29)] and shows the group
structures and orders of the Weyl groups of the classical Lie algebras.

It is, hence, possible to compute all Lie group characters using this equivalence with Lie
algebra characters given a formula for the latter. In fact, there is a closed formula for Lie
algebra characters called Weyl character formula, which in its modern form is given by [115]

chu�(𝜆) =
∑u�∈u� sign(𝑤) e(u�(u�+u�), u�)

∑u�∈u� sign(𝑤) e(u�(u�), u�) . (2.8)

This formula requires some explanation. First of all, the sums run over all elements of the
Weyl group 𝑊. This is the group generated by all reflections in weight space at planes ortho-
gonal to the simple roots, i.e. it is generated by all so-called Householder transformations
corresponding to the simple roots. The sign of an element 𝑤 of the Weyl group is defined as
sign(𝑤) ≔ (−1)length(u�), where the length of an element is the (unique) minimal number of
reflections defined by simple roots that is needed to generate the reflection 𝑤. The structures
of the Weyl groups of the classical Lie algebras are shown in Table VI.1. Moreover, 𝜌 denotes
the Weyl vector of the Lie algebra and is given by half the sum of the positive roots,

𝜌 ≔
1
2

∑
u�>0

𝛼 . (2.9)

It has components 𝜌u� = 1 for all 𝑖 = 1, … , rank 𝔩 in Dynkin basis.

VI.2.2 Notation for the Weyl character formulas in terms of eigenvalues

The Weyl character formula is finally applied to group elements that are also elements of the
finite subgroup in order to compute the branching rules using the character scalar product
(0.1). In the case of embeddings as described in Section VI.1, these Lie group elements 𝑔 are
not specified by weights but by an explicit representation matrix 𝜌𝑵(𝑔) in the fundamental
representation. One possibility to proceed is to compute the corresponding weight for
each group element. To this end, the representation matrix 𝜌u�(𝑔) is diagonalised and the
logarithm of the resulting diagonal matrix 𝜌diag

u� (𝑔) is projected onto the generators of the
Cartan sub-algebra using the Killing form of the Lie algebra,

𝜆u� = 𝜅 (log 𝜌diag
u� (𝑔), 𝐻u�) = 𝜅 (diag (log 𝜀u�(𝑔)), 𝐻u�) , (2.10)

where 𝜀u�(𝑔) is the 𝑗-th eigenvalue of the group element 𝑔. This yields the correct result
because

𝜆u� = 𝜅 (𝜆u� 𝐻u�, 𝐻u�) 𝐺u�u� . (2.11)

The resulting weight 𝜆 can now be plugged into equation (2.8) to compute the character.
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Instead of first translating the explicit representation matrices of the subgroup into the lan-
guage of weights, one can also compute the characters directly in terms of their eigenvalues
𝜀u�(𝑔) [18, 155, 157]. In this case, the irreducible Lie group representation whose character is
to be computed is conventionally not labelled by Dynkin labels but by its so-called partition,
a notation related to Young tableaux. For SU(𝑁), i.e. Lie algebra 𝐴u�=u�−1, the relation of
Dynkin labels 𝛬 = (𝛬1, 𝛬2, … , 𝛬u�−1) to partitions can be understood in the following way.
The Dynkin label component 𝛬u� is the number of columns with 𝑖 boxes in the Young tableau
corresponding to 𝛬. The partition is then the list of row lengths 𝑓u� of the Young tableau,
which can be computed from the Dynkin labels by

𝑓u� ≔
u�−1
∑
u�=u�

𝛬u� , 𝑖 = 1, … , 𝑁 − 1 , (2.12)

and which results naturally in the ordering 𝑓u� ≥ 𝑓u�+1 [18, 157].
Partitions are also the conventional way to label irreducible representations of U(𝑁) [155].

However, in this case an additional integer 𝑓u� has to be specified. Furthermore, all 𝑓u�≤u�−1 as
computed with the formula above must be increased by this 𝑓u�. Restricting a representation
from U(𝑁) to its SU(𝑁) subgroup, all representations differing only in this global shift are
identical and 𝑓u� can be set to zero without loss of generality.

For representations 𝛬 of the symplectic group USp(2𝑁), i.e. Lie algebra 𝐶u�=u�, the 𝑁 labels
𝑓u� of the corresponding Young tableau are again obtained by equation (2.12) with the sum
extending up to 𝑁 [18].

The definition of Young tableaux and partitions for orthogonal groups is more complicated
and not unique; thus, one has to be careful when comparing different approaches. In addition
to that, one has to distinguish SO(2𝑁), i.e. Lie algebra 𝐷u�=u�, and SO(2𝑁 + 1), i.e. Lie algebra
𝐵u�=u�. We adopt the conventions of [18, 157].3 Hence, the partition corresponding to 𝛬 is
obtained from

𝑓u� ≔
u�−1
∑
u�=u�

𝛬u� +
𝛬u�

2
, 𝑖 = 1, … , 𝑁 , for SO(2𝑁 + 1) and (2.13a)

𝑓u� ≔
u�−2
∑
u�=u�

𝛬u� +
𝛬u�−1 + 𝛬u�

2
, 𝑖 = 1, … , 𝑁 − 1 , 𝑓u� ≔

𝛬u� − 𝛬u�−1

2
, for SO(2𝑁),

(2.13b)

where the sums are set to zero if 𝑖 is larger than their upper limit. All 𝑓u� are integers for
non-spinorial representations but half-integer for spinor representations. This does not pose
any problem for the present approach since only subgroups of SO(𝑁) are considered, and,
therefore, only non-spinorial representations are allowed as input.

It turns out to be convenient to furthermore introduce the abbreviation

`u� ≔ 𝑓u� − 𝑖 + 𝑁 , 𝑖 = 1, … , 𝑁 , (2.14)

setting 𝑓u� ≔ 0 for SU(𝑁).

VI.2.3 The Weyl character formulas in terms of eigenvalues

After introducing this notation, the character formulas simply take the form of determinants.
Using the simplest case of SU(𝑁) as an example, this can be seen as follows. The main

3 The conventions by Weyl [155] differ only slightly from the other two. He uses the absolute value of u�u� for
SO(2u�) and adds a prime to distinguish between representations with positive and negative u�u�.
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observation is that the sum over the Weyl group of the signum of the Weyl group elements
times an exponential resembles, the Weyl group of SU(𝑁) being 𝑆u�, the Leibniz formula for
the determinant of a matrix, which is

det 𝐴 = ∑
u�∈u�u�

sign(𝜎)
u�

∏
u�=1

𝐴u�,u�(u�) . (2.15)

First of all, one has to determine the weight of a given group element 𝑔. The generators of
the Cartan sub-algebra in the Cartan–Weyl basis are

(𝐻u�)u�u� = 𝛿u�,u� 𝛿u�,u� − 𝛿u�,u�+1 𝛿u�,u�+1 (2.16)

leading to weight components

𝜆u� = tr (diag (log 𝜀u�(𝑔)) 𝐻u�) = log (
𝜀u�(𝑔)

𝜀u�+1(𝑔)
) . (2.17)

The Weyl group is represented most simply not in the Dynkin basis but in the orthogonal
basis of weight space, where it is just a permutation of the components. The components
of weights are translated from the Dynkin basis to the orthogonal basis by the following
formula,

𝜆̃u� =
u�

∑
u�=u�

𝜆u� −
1

𝑟 + 1

u�
∑
u�=1

𝑗 𝜆u� , 𝑖 = 1, … , 𝑟 + 1 , (2.18)

where the first sum is set to zero for 𝑖 = 𝑟 + 1. Note that the weight space is now embedded
into ℝu�+1. Hence, the weights of the group element 𝑔 in the orthogonal basis are

𝜆̃u� = log (
𝜀u�(𝑔)

𝜀u�+1(𝑔)
) −

1
𝑟 + 1

log (
1

𝜀u�+1(𝑔)u�+1 ) = log (𝜀u�(𝑔)) , 𝑖 = 1, … , 𝑟 + 1 , (2.19)

i.e. just the logarithms of the eigenvalues. Here, it is used that the determinant of the matrix
and, thus, the product of its eigenvalues is one. The Weyl vector in the orthogonal basis is

̃𝜌u� =
𝑟
2

+ 1 − 𝑖 , 𝑖 = 1, … , 𝑟 + 1 . (2.20)

This shows that the denominator of the Weyl character formula (2.8) is, in fact,

∑
u�∈u�

sign(𝑤)
u�+1
∏
u�=1

𝜀u�/2+1−u�(u�)
u� = ∑

u�∈u�u�+1

sign(𝜎)
u�+1
∏
u�=1

𝜀u�/2+1−u�(u�)
u� = det [𝜀u�/2+1−u�

u� ]
u�u�

. (2.21)

Here, [𝐴]u�u� is the 𝑛 × 𝑛 matrix 𝐴 with entries labelled by 𝑖, 𝑗 = 1, … , 𝑛, and det [𝐴]u�u� is its
determinant. In the numerator, the exponent is changed due to the additional highest weight
𝛬 of the representation under consideration,

∑
u�∈u�

sign(𝑤)
u�+1
∏
u�=1

𝜀
∑u�

u�=u�(u�) u�u�− 1
u�+1 ∑u�

u�=1 u� u�u�+u�/2+1−u�(u�)
u�

= det [𝜀
∑u�

u�=u� u�u�− 1
u�+1 ∑u�

u�=1 u� u�u�+u�/2+1−u�
u� ]

u�u�
.

(2.22)
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In both numerator and denominator constant, i.e. 𝑗-independent, parts of the exponent drop
out because the product of all eigenvalues is one. Hence, one can write the final result for
the Weyl character formula for SU(𝑁) in terms of the eigenvalues 𝜀u�(𝑔) of a group element 𝑔
using the notation introduced above as [155]

𝜒u�(𝑔) =
det [𝜀`u�

u� (𝑔)]
u�u�

det [𝜀u�−u�
u� (𝑔)]

u�u�

. (2.23)

This expression is also called a Schur polynomial [18]. In fact, the denominator can be
simplified because it is just a Vandermonde determinant, yielding

𝜒u�(𝑔) =
det [𝜀`u�

u� (𝑔)]
u�u�

∏u�<u� (𝜀u�(𝑔) − 𝜀u�(𝑔))
. (2.24)

In fact, this formula also holds for U(𝑁) [155].
The other compact classical Lie groups can be treated similarly. However, in all these

cases only half of the eigenvalues are independent because they always come in complex
conjugate pairs.4 Hence, for all groups besides the unitary groups, only one eigenvalue of
each pair is to be used in the formulas below such that their number matches the rank of
the Lie algebra. The formulas for all compact classical Lie groups are then [18, 155]

𝜒u�(𝑔) =
det [𝜀`u�

u� (𝑔)]
u�u�

∏u�<u� (𝜀u�(𝑔) − 𝜀u�(𝑔))
for (S)U(𝑁), (2.25a)

𝜒u�(𝑔) =
det [𝜀`u�+1

u� (𝑔) − 𝜀−`u�−1
u� (𝑔)]

u�u�

det [𝜀u�+1−u�
u� (𝑔) − 𝜀−u�−1+u�

u� (𝑔)]
u�u�

for USp(2𝑁), (2.25b)

𝜒u�(𝑔) =
det [𝜀`u�+1/2

u� (𝑔) − 𝜀−`u�−1/2
u� (𝑔)]

u�u�

det [𝜀u�+1/2−u�
u� (𝑔) − 𝜀−u�−1/2+u�

u� (𝑔)]
u�u�

for SO(2𝑁 + 1), (2.25c)

𝜒u�(𝑔) =
det [𝜀`u�

u� (𝑔) + 𝜀−`u�
u� (𝑔)]

u�u�
+ det [𝜀`u�

u� (𝑔) − 𝜀−`u�
u� (𝑔)]

u�u�

det [𝜀u�−u�
u� (𝑔) + 𝜀−u�+u�

u� (𝑔)]
u�u�

for SO(2𝑁). (2.25d)

These formulas are implemented in the Mathematica package DecomposeLGReps.
Unfortunately, there is a computational difficulty because all determinants are zero if

any two eigenvalues coincide. This can be most easily seen in the case of SU(𝑁), where
the Vandermonde determinant clearly vanishes for two identical eigenvalues. Fortunately,
this is just a removable discontinuity. In the original formula (2.8) this can be ameliorated
by adding a multiple of the Weyl vector 𝑡 ⋅ 𝜌 to the weight 𝜆 and taking the limit 𝑡 → 0
after computing the determinant. In (2.25) the same can be achieved by the replacement
𝜀u� → 𝜀u� ei u�u� and the limit 𝑡 → 0.

4 Matrices of SO(2u� + 1) have an additional eigenvalue +1 which also has to be omitted.
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The formulas (2.25) are computationally rather demanding because of the possibly large
determinants. Computation time should roughly grow as (𝑟 + 1)!, where 𝑟 is the rank of the
Lie group. However, for the ranks of Lie groups usually used in model building this is not a
major concern.

A big advantage of the formulas (2.25), however, is that they are closed, i.e. they do not
involve any recursion in contrast to, for example, the Freudenthal formula [115]. Hence,
they can be used to derive general properties for subgroups of classical Lie groups, see
Section VI.4 below.

VI.2.4 An alternative formulation of the Weyl character formulas

If one only needs a result for fixed integer Dynkin labels, a second form of the character
formulas can be advantageous. This form circumvents the limit procedure, which, other-
wise, considerably slows down the computation. It can be derived using a correspondence
between Schur polynomials and determinants of complete homogeneous symmetric poly-
nomials ℎu�, which are defined by

1
∏u� (1 − 𝑧 𝑥u�)

≕ ∑
u�

ℎu�(𝑥u�) 𝑧u� , (2.26)

see [18, 155]. In the present case the polynomials ℎu� are to be evaluated at the eigenvalues
of the representation matrix. In fact, the quantities from which the characters can be com-
puted are the coefficients 𝑝u� of the generating function for one divided by the characteristic
polynomial of this matrix [18, 155],

1
det (𝟙 − 𝑧 𝜌u�(𝑔))

=
1

∏u� (1 − 𝑧 𝜀u�(𝑔))
= ∑

u�
ℎu�(𝜀u�(𝑔)) 𝑧u� ≕ ∑

u�
𝑝u�(𝑔) 𝑧u� . (2.27)

The final formulas for the characters of U(𝑁), SU(𝑁) and USp(2𝑁) are given by [155]

𝜒u�(𝑔) = det [𝑝`u�−u�+u�(𝑔)]
u�u�

for U(𝑁) and SU(𝑁), (2.28a)

𝜒u�(𝑔) =
1
2

det [𝑝`u�−u�+u�(𝑔) + 𝑝`u�−u�−u�+2(𝑔)]
u�u�

for USp(2𝑁). (2.28b)

Formulas for SO(𝑁) cannot be found in [155], but for O(2𝑁) and O(2𝑁 + 1)

𝜒u�(𝑔) = det [𝑝`u�−u�+u�(𝑔) − 𝑝`u�−u�−u�(𝑔)]
u�u�

. (2.29)

The irreducible representations of SO(2𝑁 + 1) and O(2𝑁 + 1) coincide such that the char-
acter formula for O(2𝑁 + 1) can also be used for SO(2𝑁 + 1). However, only irreducible
representations of SO(2𝑁) whose last two Dynkin labels are equal are also irreducible
representations of O(2𝑁), in which case the characters are again identical. Irreducible rep-
resentations of SO(2𝑁) with Dynkin labels 𝛬u�−1 ≠ 𝛬u� are not representations of O(2𝑁).
Instead, the direct sum of the two conjugate representations 𝛬 = (𝛬1, … , 𝛬u�−1, 𝛬u�) and
𝛬̄ = (𝛬1, … , 𝛬u�, 𝛬u�−1) of SO(2𝑁) forms an irreducible representation of O(2𝑁) [18]. Thus,
for SO(2𝑁)

𝜒u�(𝑔) + 𝜒ū�(𝑔) = 2 Re 𝜒u�(𝑔) = det [𝑝`u�−u�+u�(𝑔) − 𝑝`u�−u�−u�(𝑔)]
u�u�

. (2.30)
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To obtain the imaginary part, note that, whereas the first term in the numerator of (2.25d) is
real, the second one changes sign for 𝛬 → 𝛬̄ and is zero for 𝛬 = 𝛬̄ [18]. That is, the second
term is the imaginary unit times the imaginary part of 𝜒u�. It can be rewritten using the
identity [157]

det [𝜀u�−u�
u� (𝑔) + 𝜀−u�+u�

u� (𝑔)]
u�u�

=
2

∏u�(𝜀u�(𝑔) − 𝜀u�(𝑔)−1)
det [𝜀u�+1−u�

u� (𝑔) − 𝜀−u�−1+u�
u� (𝑔)]

u�u�
(2.31)

and sign(`u�) = sign(𝛬u� − 𝛬u�−1) to

i Im 𝜒u�(𝑔) =
sign(`u�)

2
∏

u�
(𝜀u�(𝑔) − 𝜀u�(𝑔)−1)

det [𝜀`u�
u� (𝑔) − 𝜀−`u�

u� (𝑔)]
u�u�

det [𝜀u�+1−u�
u� (𝑔) − 𝜀−u�−1+u�

u� (𝑔)]
u�u�

. (2.32)

Comparing this with (2.25b) and (2.28b), one obtains the formula for the remaining repres-
entations of SO(2𝑁), which depends on the sign of 𝛬u�−1 − 𝛬u�. In summary, the results for
SO(𝑁) are

𝜒u�(𝑔) = det [𝑝`u�−u�+u�(𝑔) − 𝑝`u�−u�−u�(𝑔)]
u�u�

for SO(2𝑁 + 1), (2.33a)

𝜒u�(𝑔) = det [𝑝`u�−u�+u�(𝑔) − 𝑝`u�−u�−u�(𝑔)]
u�u�

for SO(2𝑁) with 𝛬u�−1 = 𝛬u� , (2.33b)

𝜒u�(𝑔) =
1
2

det [𝑝`u�−u�+u�(𝑔) − 𝑝`u�−u�−u�(𝑔)]
u�u�
+

+
sign(`u�)

4
∏

u�
(𝜀u�(𝑔) − 𝜀u�(𝑔)−1) det [𝑝`u�−u�+u�−1(𝑔) + 𝑝`u�−u�−u�+1(𝑔)]

u�u�

for SO(2𝑁) with 𝛬u�−1 ≠ 𝛬u� . (2.33c)

The Weyl character formulas thus obtained can be implemented on a computer with the
help of a computer algebra system like Mathematica which provides routines for the
series computation (2.27) needed to determine the 𝑝u�. This has been done in the package
DecomposeLGReps presented in the following section.

VI.3 The package DecomposeLGReps

The Mathematica package DecomposeLGReps can be found on the webpage

http://einrichtungen.ph.tum.de/T30e/codes/DecomposeLGReps.

It contains implementations of the Weyl character formulas (2.25) as well as of the alternative
forms shown in (2.28) and (2.33). For a detailed explanation of the functions and their options,
the reader is referred to the package documentation shipped with the package. Here only
the basic usage is briefly explained.

After loading the package with

Needs["DecomposeLGReps`"];

one has to specify the finite group that is to be embedded into a Lie group. This is done by
providing a list containing one list for each irreducible representation of the finite group
with the representation matrices of all group elements. Schematically this looks like

http://einrichtungen.ph.tum.de/T30e/codes/DecomposeLGReps
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group = { { list of representation matrices of representation 1 },
{ list of representation matrices of representation 2 },
...
{ list of representation matrices of representation n } };

This list can, for example, be computed with the GAP interface package Discrete [158].
Alternatively, it is also possible just to specify representation matrices for one representative
of each conjugacy class, see the package documentation for more information.

After this preparation, the finite group can be embedded into a Lie group using embedinLG,

embed = embedinLG[group, 12, "A"];

where the first argument is the list prepared before, the second argument specifies the
representation that is used for the embedding following Section VI.1, and the last argument
specifies the Lie group type.5 If a reducible representation is to be embedded, a list of its
irreducible constituents can be provided instead of a single integer as second argument.
Hence, in the example the group is embedded into SU(𝑁) ∼ 𝐴u�−1 ∼ "A" using the 12-
th representation in the list group, where 𝑁 is automatically chosen as the dimension
of representation number 12. The representation chosen should, of course, be faithful;
otherwise, the embedded group is not the desired one but a subgroup of it. An error is
displayed if this is detected.

The last step is the actual computation of the decomposition of a Lie group represent-
ation specified by the Dynkin labels of its highest weight. This is done by the function
decomposeLGRep in the following way:

decomposeLGRep[{a1, a2,..., aN}, embed]

The first argument is a list with the Dynkin labels and the second argument is the output
of embedinLG. The Lie group type is also taken from there in order to avoid a mismatch
between the Lie group of the embedding and the Lie group for which the branching rule
is to be computed. The output of decomposeLGRep is a list containing the multiplicities of
representations of the finite group in the decomposition of the Lie group representation with
the Dynkin labels (a1, a2, … , aN). The order of the multiplicities in the output is identical to
the one of representations 1 to 𝑛 specified earlier in the variable group.

As an example, let a4Matrices contain the representation matrices of the tetrahedral
group A4 in the form shown above and in the order (𝟏, 𝟏′, 𝟏″, 𝟑) where the notation of [73]
is used, see also Section A.1.1. The tetrahedral group can be embedded into SU(3) using the
faithful triplet representation 𝟑.6 This is done by the command

embedA4 = embedinLG[a4Matrices, 4, "A"];

To avoid confusion with the group name A4, let us again remark that the 4 stands for the
fourth representation in the list a4Matrices, which is assumed to be ordered as (𝟏, 𝟏′, 𝟏″, 𝟑),
and "A" for the Lie algebra of SU(𝑁). The decomposition of the fundamental representation
of SU(3) can then be computed by

decomposeLGRep[{1, 0}, embedA4]

which yields

5 Possible types are "A" for SU(u�) and U(u�), "B" for SO(2u� + 1), "C" for USp(2u�) and "D" for SO(2u�).
6 In fact, it is a subgroup of SO(3), see the following section.
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{0, 0, 0, 1}

i.e. the fundamental of SU(3) contains once the 𝟑 of A4 and no other representation. This
just shows that the embedding worked out correctly. One can now compute more branching
rules, e.g.

decomposeLGRep[{2, 0}, embedA4] -> {1, 1, 1, 1}
decomposeLGRep[{1, 1}, embedA4] -> {0, 1, 1, 2}
decomposeLGRep[{23, 15}, embedA4] -> {640, 640, 640, 1920}

For more examples and explanations of all options, see the package manual included in
the download.

Note that the package was checked for correctness against results for branching rules
from the literature. Indeed, all branching rules presented by Luhn and Ramond [111] and
Luhn [151] were reproduced successfully. For the decompositions SO(3) → A4, SO(3) → S4
and SU(3) → 𝛥(27), this consistency check can easily be repeated by specialising the general
formulas shown in the following section to the representations of smallest dimension.

VI.4 Examples for small finite groups

Using the Mathematica package DecomposeLGReps presented in the previous section, one
can derive general results for branching rules to some well-known finite groups. This can
be done by applying the character formulas (2.25), which allow for generic non-negative
integer inputs for the Dynkin labels of the representations which are to be decomposed. In
all cases not only the exact functions determining the branching are interesting. In addition,
the insight gained on the structure, i.e. on which representations are contained within which
(congruence) class [159] of representations of the continuous group, is very helpful for model
building. The examples chosen are A4, T′, S4, A5, 𝛥(27) and 𝛥(54). Further information on
all these groups can be found in [57] although the notation used here is partly different.
References to the notations used are given for each case individually below. In many cases,
the results are actually independent of the specific naming convention, e.g. in A4 the results
do not depend on which representation is called 𝟏′ and which one 𝟏″.

The following abbreviations are used for functions that occur several times:

𝑓(𝑛, 𝑚) ≔ (1 + 𝑛) (1 + 3𝑚 + 𝑛) (2 + 3𝑚 + 2𝑛) , (4.1a)

𝑝+(𝑛) ≔ cos (
𝑛 𝜋
3

) +
1

√3
sin (

𝑛 𝜋
3

) =

⎧{{
⎨{{⎩

1, 𝑛 ≡ 0, 1 (mod 6),
0, 𝑛 ≡ 2, 5 (mod 6),
−1, 𝑛 ≡ 3, 4 (mod 6),

(4.1b)

𝑝−(𝑛) ≔ cos (
𝑛 𝜋
3

) −
1

√3
sin (

𝑛 𝜋
3

) =

⎧{{
⎨{{⎩

1, 𝑛 ≡ 0, 5 (mod 6),
0, 𝑛 ≡ 1, 4 (mod 6),
−1, 𝑛 ≡ 2, 3 (mod 6),

(4.1c)

𝑞(𝑛) ≔ cos (
4 𝑛 𝜋

3
) +

1
√3

sin (
4 𝑛 𝜋

3
) =

⎧{{
⎨{{⎩

1, 𝑛 ≡ 0 (mod 3),
0, 𝑛 ≡ 2 (mod 3),
−1, 𝑛 ≡ 1 (mod 3).

(4.1d)
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𝛬 → 𝟏 𝟏′ 𝟏″ 𝟑

(12 𝑛) → 𝑛 + 1 𝑛 𝑛 3𝑛
(12 𝑛 + 2) → 𝑛 𝑛 𝑛 3𝑛 + 1
(12 𝑛 + 4) → 𝑛 𝑛 + 1 𝑛 + 1 3𝑛 + 1
(12 𝑛 + 6) → 𝑛 + 1 𝑛 𝑛 3𝑛 + 2
(12 𝑛 + 8) → 𝑛 + 1 𝑛 + 1 𝑛 + 1 3𝑛 + 2
(12 𝑛 + 10) → 𝑛 𝑛 + 1 𝑛 + 1 3(𝑛 + 1)

Table VI.2: Branching rules for the embedding A4 ↪ SO(3) using the triplet repres-
entation of A4. SO(3) representations are denoted by the Dynkin labels 𝛬 of their
highest weights. Only proper SO(3) representations are considered, i.e. 𝛬 is even, see
Section VI.1. For the conventions used, see Section A.1.1.

VI.4.1 A4

The tetrahedral group A4 of the example model by Altarelli and Feruglio [9, 10] is a subgroup
of SO(3); the embedding proceeds via the only three-dimensional representation 𝟑. For the
conventions used, see Section A.1.1.

The decomposition formulas are most easily displayed if the SO(3) representations are
split into five classes with Dynkin labels taking the forms (12 𝑛 + 2𝑚) for 𝑚 = 0, … , 5.7
The resulting multiplicities are displayed in Table VI.2. Setting 𝑛 to zero one obtains the
branching rules for SO(3) representations up to dimension 11. They are identical to the
decomposition rules derived by Luhn and Ramond [111].

The smallest SO(3) representation containing a trivial A4 singlet is the representation
with Dynkin label (6), which using its dimension as label can also be denoted 𝟕.

VI.4.2 T′

The group T′ of the second example model used in Chapter V is not a subgroup of SO(3)
but can be embedded into SU(2) using its representation 𝟐0. The naming conventions are
summarised in Section A.1.2.

Splitting the SU(2) representations into the two classes of vector (2 𝑛) and spinor (2 𝑛 + 1)
representations, the decomposition yields

(2 𝑛) →
1
12

[2𝑛 + (−1)u� (8 𝑝−(𝑛) + 9) + 1] × 𝟏0

⊕
1
12

[2𝑛 + (−1)u� (−4 𝑝−(𝑛) + 9) + 1] × (𝟏1 ⊕ 𝟏2)

⊕
1
4

(2𝑛 + (−1)u�+1 + 1) × 𝟑 ,

(4.2a)

(2 𝑛 + 1) →
1
3

(𝑛 + 2 (−1)u� 𝑝+(𝑛) + 1) × 𝟐0

⊕
1
3

(𝑛 + (−1)1+u� 𝑝+(𝑛) + 1) × (𝟐1 ⊕ 𝟐2) .
(4.2b)

In fact, the decomposition for vector representations is exactly the same as the one for
A4 ↪ SO(3) shown in Table VI.2 with the change of notation 𝟏 → 𝟏0, 𝟏′ → 𝟏1 and 𝟏″ → 𝟏2.

7 Note that, since A4 is embedded into SO(3) (in contrast to SU(2)), only non-spinorial, i.e. genuine, repres-
entations of SO(3) are considered, see the discussion at the end of Section VI.1.



84 VI Breaking compact classical Lie groups to finite subgroups

𝛬 → 𝟐0 𝟐1 𝟐2

(12 𝑛 + 1) → 2𝑛 + 1 2𝑛 2𝑛
(12 𝑛 + 3) → 2𝑛 2𝑛 + 1 2𝑛 + 1
(12 𝑛 + 5) → 2𝑛 + 1 2𝑛 + 1 2𝑛 + 1
(12 𝑛 + 7) → 2(𝑛 + 1) 2𝑛 + 1 2𝑛 + 1
(12 𝑛 + 9) → 2𝑛 + 1 2(𝑛 + 1) 2(𝑛 + 1)
(12 𝑛 + 11) → 2(𝑛 + 1) 2(𝑛 + 1) 2(𝑛 + 1)

Table VI.3: Branching rules for the embedding T′ ↪ SU(2) using the doublet 𝟐0 of T′.
SU(2) representations are denoted by the Dynkin labels 𝛬 of their highest weights.
Only SU(2) spinor representations are considered because the branching rules for
non-spinorial representations are the same as for A4 shown in Table VI.2. For the T′

notation used, see Section A.1.2.

𝛬 → 𝟏 𝟏′ 𝟐 𝟑 𝟑′

(12 𝑛) → 2u�+(−1)u�+3
4

2u�+(−1)u�+1+1
4 𝑛 6u�+(−1)u�−1

4
6u�+(−1)u�+1+1

4

(12 𝑛 + 2) → 2u�+(−1)u�−1
4

2u�+(−1)u�+1+1
4 𝑛 6u�+(−1)u�+3

4
6u�+(−1)u�+1+1

4

(12 𝑛 + 4) → 2u�+(−1)u�+1+1
4

2u�+(−1)u�−1
4 𝑛 + 1 6u�+(−1)u�+1+1

4
6u�+(−1)u�+3

4

(12 𝑛 + 6) → 2u�+(−1)u�+1+1
4

2u�+(−1)u�+3
4 𝑛 6u�+(−1)u�+1+5

4
6u�+(−1)u�+3

4

(12 𝑛 + 8) → 2u�+(−1)u�+3
4

2u�+(−1)u�+1+1
4 𝑛 + 1 6u�+(−1)u�+3

4
6u�+(−1)u�+1+5

4

(12 𝑛 + 10) → 2u�+(−1)u�−1
4

2u�+(−1)u�+1+1
4 𝑛 + 1 6u�+(−1)u�+7

4
6u�+(−1)u�+1+5

4

Table VI.4: Branching rules for the embedding S4 ↪ SO(3) using the triplet repres-
entation 𝟑′ of S4. SO(3) representations are denoted by the Dynkin labels 𝛬 of their
highest weights. For the conventions used, see [73].

For spinor representations the formulas above can be recast as shown in Table VI.3. This
shows that the doublet representations of T′, which are not representations of A4, are ‘spinor’
representations and can only be obtained from spinor representations of SU(2). In particular,
spinor representations of SU(2) cannot be used to break SU(2) to T′ because they do not
contain trivial T′ singlets.

VI.4.3 S4

The same classes as for A4 can be used for S4, which is also a subgroup of SO(3). It was
used early on in flavour model building [160] and is still popular because it, too, can
lead to tri-bi-maximal mixing. The embedding proceeds via representation 𝟑′. The other
three-dimensional representation 𝟑 would lead to an embedding into O(3) because not all
determinants of its representation matrices are +1. Here, the notation from [73] is used.

The results are shown in Table VI.4. The first trivial singlet occurs for the representation
with Dynkin label (8), which can also be called 𝟗. Again, the results for SO(3) representations
up to dimension 11 are the same as already presented in [111].
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VI.4.4 A5

The last missing subgroup of SO(3) with an irreducible triplet representation is the icosa-
hedral group, which is isomorphic to the alternating group on five letters A5. It is the largest
non-abelian subgroup of SO(3) with such a representation. A5 can lead to golden ratio
mixing when applied to neutrino model building [84] and is, as a simple group, intrinsically
anomaly safe, see Chapter IV. For recent model building approaches using this group see
[123, 124]. Again the notation from [73] is used.

The Dynkin labels of SO(3) are split into the classes (30 𝑛 + 2 𝑚) for 𝑚 = 0, … , 14. The
results are shown in Table VI.5. They show that the first singlet is contained in representation
𝟏𝟑 with Dynkin label (12).

VI.4.5 𝛥(27)

The group 𝛥(27) can be embedded into SU(3) using its triplet representation 𝟑. It is part of
the infinite series of 𝛥(3 ⋅ 𝑛2) subgroups of SU(3). 𝛥(27) is well known in model building for
the so-called geometrical spontaneous CP violation [4, 15, 17, 161], see also Section VII.10.
The conventions are as shown in Section A.1.3.

The decomposition properties of representations of SU(3) labelled by their Dynkin labels
(𝑎1, 𝑎2) can be most easily described by splitting them into three different classes. Their
Dynkin labels take the forms (𝑛, 𝑛 + 3𝑚), (𝑛, 𝑛 + 3𝑚 + 1) and (𝑛, 𝑛 + 3𝑚 + 2), where 𝑛 and 𝑚
are integers. These three classes are related to the triality classes of SU(3) [159]. (𝑛, 𝑛 + 3𝑚)
is in class 0, i.e. the real class or the class of the adjoint representation, (𝑛, 𝑛 + 3𝑚 + 1) in class
2, i.e. the class of the anti-fundamental representation, and (𝑛, 𝑛 + 3𝑚 + 2) in class 1, i.e. of
the fundamental representation. The resulting decomposition rules for the three classes are

(𝑛, 𝑛 + 3𝑚) →
1
18

(𝑓(𝑛, 𝑚) + 16 (−1)u�𝑝+(𝑛)) × 𝟏0

⊕
1
18

(𝑓(𝑛, 𝑚) − 2 𝑞(𝑛)) ×
8

⨁
u�=1

𝟏u� ,
(4.3a)

(𝑛, 𝑛 + 3𝑚 + 1) →
1
6

(1 + 𝑛) (2 + 3𝑚 + 𝑛) (3 + 3𝑚 + 2𝑛) × 𝟑 , (4.3b)

(𝑛, 𝑛 + 3𝑚 + 2) →
1
6

(1 + 𝑛) (3 + 3𝑚 + 𝑛) (4 + 3𝑚 + 2𝑛) × 𝟑 . (4.3c)

Hence, all real representations of SU(3) branch to a direct sum of trivial singlets and full sets
of non-trivial 𝛥(27) singlets. Moreover, the class of the fundamental SU(3) representation
yields only triplets and, accordingly, the class of the anti-fundamental only anti-triplets of
𝛥(27). The group 𝛥(27) is thus very much aligned with the structure of SU(3), making it,
for example, impossible to obtain a CP breaking representation content via spontaneous
breaking, see Section VII.9.3 below.

Specialising to SU(3) representations up to dimension 27, the results coincide with the
ones presented in [111, 151].

VI.4.6 𝛥(54)

As a second example of an SU(3) subgroup, consider 𝛥(54). 𝛥(54) is part of the 𝛥(6⋅𝑛2) series
of SU(3) subgroups. It turns out that, due to the additional continuous symmetries, 𝛥(54) is
the realised discrete symmetry group of the 𝛥(27) Higgs potentials leading to geometrical
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𝛬 → 𝟏 𝟑 𝟑′ 𝟒 𝟓

(30 𝑛) → 2u�+(−1)u�+3
4

6u�+(−1)u�+1+1
4

6u�+(−1)u�+1+1
4 2𝑛 10u�+(−1)u�−1

4

(30 𝑛 + 2) → 2u�+(−1)u�+1+1
4

6u�+(−1)u�+3
4

6u�+(−1)u�−1
4 2𝑛 10u�+(−1)u�+1+1

4

(30 𝑛 + 4) → 2u�+(−1)u�−1
4

6u�+(−1)u�+1+1
4

6u�+(−1)u�+1+1
4 2𝑛 10u�+(−1)u�+3

4

(30 𝑛 + 6) → 2u�+(−1)u�+1+1
4

6u�+(−1)u�−1
4

6u�+(−1)u�+3
4 2𝑛 + 1 10u�+(−1)u�+1+1

4

(30 𝑛 + 8) → 2u�+(−1)u�−1
4

6u�+(−1)u�+1+1
4

6u�+(−1)u�+1+1
4 2𝑛 + 1 10u�+(−1)u�+3

4

(30 𝑛 + 10) → 2u�+(−1)u�+1+1
4

6u�+(−1)u�+3
4

6u�+(−1)u�+3
4 2𝑛 10u�+(−1)u�+1+5

4

(30 𝑛 + 12) → 2u�+(−1)u�+3
4

6u�+(−1)u�+1+5
4

6u�+(−1)u�+1+1
4 2𝑛 + 1 10u�+(−1)u�+3

4

(30 𝑛 + 14) → 2u�+(−1)u�+1+1
4

6u�+(−1)u�+3
4

6u�+(−1)u�+3
4 2𝑛 + 1 10u�+(−1)u�+1+5

4

(30 𝑛 + 16) → 2u�+(−1)u�−1
4

6u�+(−1)u�+1+1
4

6u�+(−1)u�+1+5
4 2𝑛 + 1 10u�+(−1)u�+7

4

(30 𝑛 + 18) → 2u�+(−1)u�+1+1
4

6u�+(−1)u�+3
4

6u�+(−1)u�+3
4 2(𝑛 + 1) 10u�+(−1)u�+1+5

4

(30 𝑛 + 20) → 2u�+(−1)u�+3
4

6u�+(−1)u�+1+5
4

6u�+(−1)u�+1+5
4 2𝑛 + 1 10u�+(−1)u�+7

4

(30 𝑛 + 22) → 2u�+(−1)u�+1+1
4

6u�+(−1)u�+7
4

6u�+(−1)u�+3
4 2𝑛 + 1 10u�+(−1)u�+1+9

4

(30 𝑛 + 24) → 2u�+(−1)u�+3
4

6u�+(−1)u�+1+5
4

6u�+(−1)u�+1+5
4 2(𝑛 + 1) 10u�+(−1)u�+7

4

(30 𝑛 + 26) → 2u�+(−1)u�+1+1
4

6u�+(−1)u�+3
4

6u�+(−1)u�+7
4 2(𝑛 + 1) 10u�+(−1)u�+1+9

4

(30 𝑛 + 28) → 2u�+(−1)u�−1
4

6u�+(−1)u�+1+5
4

6u�+(−1)u�+1+5
4 2(𝑛 + 1) 10u�+(−1)u�+11

4

Table VI.5: Branching rules for the embedding A5 ↪ SO(3) using the triplet repres-
entation 𝟑 of A5. SO(3) representations are denoted by the Dynkin labels 𝛬 of their
highest weights. For the conventions used, see [73].
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CP violation [161–163]. The group is embedded into SU(3) using its three-dimensional
representation 𝟑2. Note that there is a second three-dimensional representation 𝟑1, whose
representation matrices do not all have determinant +1. Hence, this representation would
embed 𝛥(54) into U(3) instead of SU(3). The conventions are shown in Section A.1.4.

The representations of SU(3) are again divided into the three classes described for 𝛥(27)
above. The resulting decomposition rules for the three classes are

(𝑛, 𝑛 + 3𝑚) →
1
72

[9 (−1)u� ((−1)u� (3𝑚 + 𝑛 + 1) + 𝑛 + 1)

+ (3𝑚 + 2𝑛 + 2) (2 (𝑛 + 1) (3𝑚 + 𝑛 + 1) + 9(−1)u�)
+ 32 (−1)u� 𝑝+(𝑛)] × 𝟏0

⊕
1
72

[−9 (−1)u� ((−1)u� (3𝑚 + 𝑛 + 1) + 𝑛 + 1)

+ (3𝑚 + 2𝑛 + 2) (2 (𝑛 + 1) (3𝑚 + 𝑛 + 1) − 9(−1)u�)
+ 32 (−1)u� 𝑝+(𝑛)] × 𝟏1

⊕
1
18

[𝑓(𝑛, 𝑚) − 2 𝑞(𝑛)] ×
4

⨁
u�=1

𝟐u� ,

(4.4a)

(𝑛, 𝑛 + 3𝑚 + 1) →
1
24

[(3𝑚 + 2𝑛 + 3) (2 (𝑛 + 1) (3𝑚 + 𝑛 + 2) + 3 (−1)u�)

+ 3 ((−1)u�+1 (𝑛 + 1) + 3𝑚 + 𝑛 + 2) (−1)u�+u�] × 𝟑2

⊕
1
24

[3 (−1)u� ((−1)u�+1 (3𝑚 + 𝑛 + 2) − 3𝑚 − 2𝑛 − 3)

+ (𝑛 + 1) (2 (3𝑚 + 𝑛 + 2) (3𝑚 + 2𝑛 + 3) + 3 (−1)u�)] × 𝟑1 ,
(4.4b)

(𝑛, 𝑛 + 3𝑚 + 2) →
1
24

[(3𝑚 + 2𝑛 + 4) (2 (𝑛 + 1) (3𝑚 + 𝑛 + 3) − 3 (−1)u�)

− 3 ((−1)u� (𝑛 + 1) + 3𝑚 + 𝑛 + 3) (−1)u�+u�] × 𝟑2

⊕
1
24

[(3𝑚 + 2𝑛 + 4) (2 (𝑛 + 1) (3𝑚 + 𝑛 + 3) + 3 (−1)u�)

+ 3 ((−1)u� (𝑛 + 1) + 3𝑚 + 𝑛 + 3) (−1)u�+u�] × 𝟑1 .

(4.4c)

Although the formulas are considerably more complicated than the ones for 𝛥(27), it is easy
to see that 𝛥(54) is also closely aligned to the structure of SU(3). Again, the real class of
SU(3) representations yields trivial singlets and complete sets of doublets (which contain
the non-trivial singlets of 𝛥(27)), whereas the fundamental and anti-fundamental classes
contain triplets and anti-triplets, respectively.

The smallest representation of SU(3) containing a trivial 𝛥(54) singlet is the 𝟐𝟕, which, in
fact, contains three trivial 𝛥(54) singlets. This result is in agreement with [151].

VI.5 Conclusion of the chapter

It was shown how to obtain the branching rules for the breaking of compact classical Lie
groups to finite subgroups thereof using the character scalar product. This information is
important when building models where discrete non-abelian symmetries are obtained by
spontaneously breaking a continuous symmetry group. The embedding of a finite subgroup
into a Lie group is specified by an explicit matrix representation of the finite group, which



88 VI Breaking compact classical Lie groups to finite subgroups

is then viewed as a restriction of the fundamental representation of the Lie group to the
finite group.

To compute the characters of group elements for arbitrary irreducible Lie group rep-
resentations, the Weyl character formula for Lie algebra characters was reviewed and its
applicability to the problem in question established. Two different, but of course equival-
ent, forms of the Weyl character formula in terms of the eigenvalues of the representation
matrices specifying the embedding were presented. These formulas are implemented in
form of the Mathematica package DecomposeLGReps that can be found online.8 It can be
used to compute branching rules for arbitrary non-abelian finite subgroups of the com-
pact classical Lie groups U(𝑁), SU(𝑁), SO(𝑁) and USp(2𝑁), limited only by computational
power. The usage of this package was briefly outlined; more information can be found in
the manual that is included in the download.

As an application of the package, general branching rules as functions of the Dynkin
labels for various small finite groups were derived. The results provide insights into the
breaking patterns available for these finite groups. For example, it was shown explicitly
that the doublet representations of T′ only arise as remnants of SU(2) spinor, in contrast to
vector, representations. Another result is that breaking SU(3) to 𝛥(27) one cannot obtain a
single non-trivial singlet representation but only complete sets of non-trivial singlets. This
result is important for the discussion of spontaneous CP violation in Chapter VII. In general,
such information is very useful for (flavour) model building with spontaneously broken
continuous symmetries because certain structures of the potential can be envisaged directly
from the branching rules of the symmetry.

8 http://einrichtungen.ph.tum.de/T30e/codes/DecomposeLGReps

http://einrichtungen.ph.tum.de/T30e/codes/DecomposeLGReps
http://einrichtungen.ph.tum.de/T30e/codes/DecomposeLGReps


VII Generalised CP

A crucial part of the flavour puzzle of the Standard Model described in Chapter III is the
existence of a non-trivial CP violating phase 𝛿u�u�. Giving a reason for CP violation and
predicting its size from some underlying principle is therefore an important aim of models
of physics beyond the SM. As for the mixing structure and the mass hierarchy, one might be
inclined to tackle this problem using additional symmetries, i.e. flavour symmetries, which
for the reasons outlined in Chapter III might be chosen to be non-abelian and discrete. It is
hence essential to understand how to generalise the CP transformation of the SM to such
models with additional discrete flavour symmetries. At first glance this task seems simple;
however, a difficult interplay of mathematical and physical constraints renders it highly
non-trivial. This generalisation of the CP transformations of Quantum electrodynamics
(QED) and the Standard Model to theories with (non-abelian) discrete symmetries shall
thus be discussed here in great detail.

As starting point, parity transformation, time reversal and charge conjugation are dis-
cussed as symmetries of QED in Section VII.1.1. The only difficulty one faces here is to
determine the transformation behaviour of spinor fields, i.e. to find transformations that
are consistent with the structure of the Lorentz or, rather, Poincaré group. However, this
is not the focus of the present text; detailed discussions of this issue can be found in any
quantum field theory textbook, e.g. [29]. Starting from the definition in the context of
QED, the inversion symmetries are then discussed in the context of the Standard Model in
Section VII.1.2. As is immediately clear from the field content, charge conjugation and parity
cannot be discussed individually but only in the form of a combined CP transformation.
However, even this transformation is not a symmetry of the SM, which makes it difficult to
uniquely define it. This is further discussed in Section VII.2, where it is explained why only
the additional composition with time reversal, i.e. CPT, is a uniquely defined transformation
and symmetry of a quantum field theory.

Albeit it is explicitly broken, one can, of course, still define a CP transformation for the
Standard Model, and it is important to understand how to generalise this to models of
physics beyond the Standard Model. For example, in order to give an explanation of the
CP properties of the SM in terms of spontaneous breaking of CP in a more fundamental
theory, one must first define and understand a consistent CP transformation in this theory.
In particular, the relation of CP symmetries to the various other symmetry groups of a
model is important. For gauge symmetries, this was discussed by Grimus and Rebelo [14];
their results are briefly reviewed in Section VII.3.1. Holthausen, Lindner and Schmidt [15]

* Some of the results presented in this chapter have already been communicated in [3, 4].
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and Feruglio, Hagedorn and Ziegler [16] partly transferred these results to models with
discrete symmetries, and their findings are reviewed in Section VII.3.2.

However, in Section VII.4, it is argued that their conditions are, although under some
assumptions sufficient for purely mathematical consistency, not sufficient to obtain physical
CP transformations, i.e. transformations which should be considered extensions of the
Standard Model CP transformation. This leads us to refine the conditions on CP transform-
ations in the presence of discrete symmetries. As these revised conditions are non-trivial, it
turns out that not all groups allow for CP transformations in generic settings; a statement
that is clarified carefully below. Moreover, only some groups allow the usual canonical CP
transformation to be implemented. These groups, which are classified as type II A groups
below, have a basis in which all Clebsch–Gordan coefficients are real. This latter statement
builds on the equivalence of the existence of such a basis and the existence of a certain
type of automorphism for a given group that was first proved by Bickerstaff and Damhus
[164]. Their statement is thus reviewed and connected to our new results in Section VII.5.
Furthermore, the so-called twisted Frobenius–Schur indicator is introduced in Section VII.6
as a means to test whether a given group has such an automorphism or not, and, in the
latter case, whether it still allows for a consistent CP transformation or whether one cannot
define CP for this group.

It is then discussed in Section VII.8 how these generalised CP transformations constrain
the couplings of a given model. This is illustrated in Section VII.9 with examples for the three
different types of groups, i.e. groups with the canonical CP transformation (type II A), groups
with a different CP transformation (type II B) and groups without any CP transformation
in generic settings (type I). Furthermore, a toy model is presented which proves that it is
possible to spontaneously break a type II group to a type I group in such a way that CP is
violated with calculable phases, i.e. phases that do not depend on couplings but only on the
group theory of the model.

A famous model where CP is spontaneously violated by a vacuum expectation value with
phases which are independent of the couplings was devised by Branco, Gerard and Grimus
[17]. Section VII.10 reviews this so-called geometrical CP violation and corrects a frequent
misunderstanding of this effect.

Although the approach of flavour symmetries is usually focussed on the flavour and
associated weak CP problem, one might hope that the acquired knowledge could as well be
used to find new possibilities for a solution to the strong CP problem. Unfortunately, no
genuinely different solutions can be obtained, as discussed in Section VII.11.

For a final explanation of the (weak) CP violation in the Standard Model, i.e. the question
why 𝛿u�u� has the measured value, it is desirable to break CP spontaneously, if possible with
phases that are independent of couplings. New aspects of spontaneous symmetry breaking
arising from the generalisation of CP to discrete groups are presented in Section VII.12.

Subsequently, in Section VII.13, the criteria by Grimus and Rebelo [14] on CP transform-
ations for continuous groups are examined again for additional conditions that could be
imposed on physical CP transformations of discrete symmetries.

Finally, after concluding, some comments on various claims in the literature are compiled.

VII.1 Inversion symmetries in QED and the Standard Model

For the discussion of generalised CP transformations, it is necessary to understand the
general idea of these inversion symmetries. It is thus instructive first to discuss them in the



VII.1 Inversion symmetries in QED and the Standard Model 91

context of Quantum Electrodynamics (QED), i.e. of a U(1) gauge theory with one charged
fermion described by a Dirac spinor. This is, on the one hand, arguably the simplest theory
with meaningful parity, time reversal and charge conjugation transformations, and, on the
other hand, it allows by comparison with classical electrodynamics an intuitive approach to
the subject.

In contrast to that, the definition of inversion symmetries for the Standard Model is
more involved. As the SM and its extensions are the theories of interest, the inversion
symmetries of the SM are discussed below in order to lay the foundation for their subsequent
generalisation.

The transformation formulas collected in this section are taken from [29], whose notation
and conventions are also used.

VII.1.1 Inversion symmetries in QED

Parity

Parity P is defined to be the inversion of spatial coordinates. Thus, it acts on a space-time
coordinate 𝑥u� as

𝑥u� = (𝑥0, 𝑥u�) u�⟼ 𝑥u�
u� ≔ (𝑥0, −𝑥u�) . (1.1)

It is the transformation that connects proper orthochronous Lorentz transformations, i.e.
transformations of SO(1, 3)+, to improper orthochronous Lorentz transformations. In ana-
logy to its action on spatial coordinates, parity reverses three-momentum and helicity, while
energy and angular momentum are invariant.

When implementing this transformation on a Hilbert space as an operator 𝑷, the operator
must be linear in order to be able to obtain a positive spectrum for a parity invariant theory
[165].1

Parity relates the representation (𝑗, 𝑗′) of SO(1, 3)+ to the representation (𝑗′, 𝑗) [166], i.e. it
changes the chirality (handedness) of a field. For a scalar field this is, of course, no concern
and parity acts as

𝑷 𝜱(𝑥) 𝑷−1 = ei u� 𝜱(𝑥u�) , (1.2)

with a free phase 𝛾, which just parametrises the quantum mechanical freedom to re-phase a
field operator. This freedom is captured by a phase called 𝛾 throughout this section without
further mention.

Note that due to the change 𝑥 ↦ 𝑥u� of the argument of the field, a Lagrangian is not
invariant under parity but transforms in the parity conserving case as ℒ(𝑥) ↦ ℒ(𝑥u�). Due to
the integration over all space-time coordinates, the respective action is, however, invariant,
i.e. parity is not a symmetry of the Lagrangian but of the action.

For spinor fields the change of chirality becomes an issue because a Weyl spinor 𝜆u� in
(1/2, 0) would have to be mapped to a spinor in the (0, 1/2) representation. If the particle
is charged under a symmetry like U(1)em, there is, a priori, no such state with the same
charge to which 𝜆u� could be mapped. This issue does not arise in QED because the electron
is described by a Dirac spinor, i.e. it transforms in the representation (1/2, 0) ⊕ (0, 1/2), and
parity can be implemented by

𝑷 𝜳(𝑥) 𝑷−1 = ei u� 𝛾0 𝜳(𝑥u�) . (1.3)

1 For Wigner’s representation theorem and linear and anti-linear operators, see Section A.3.
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The transformation of the electromagnetic field can then be inferred from its coupling to the
electron insisting that this term be invariant. This leads to

𝑷 𝑨u�(𝑥) 𝑷−1 = 𝜀(𝜇) 𝑨u�(𝑥u�) , (1.4)

where the function

𝜀(𝜇) ≔
⎧{
⎨{⎩

1 , 𝜇 = 0 ,
−1 , otherwise,

(1.5)

is introduced.

Time reversal

As explained below, the name time reversal is actually a slight misnomer. Moreover, there are
several transformations that are called time reversal in the literature [167, 168]. One of them
is the analogous transformation to parity in the sense that it is the Lorentz transformation
sending the proper orthochronous subgroup to the proper anti-chronous coset, i.e. the
transformation that acts on the spatial coordinates as

𝑥u� = (𝑥0, 𝑥u�) u�⟼ 𝑥u�
u� ≔ (−𝑥0, 𝑥u�) (1.6)

and in the same way on any other four-vector, e.g. on the momentum. Since this also
multiplies the energy as zero-th component 𝑝0 of the momentum with −1, one cannot
implement this as a symmetry in a theory with a stable ground state, cf. e.g. [29, 165].

One solution is a time reversal as introduced by Schwinger [169], cf. also [167, 168], which
in addition to the transformation described above acts as a charge conjugation. This is not
discussed any further here.

Most often, however, a transformation defined by Wigner [170] is called time reversal,
although a better name would perhaps be motion reversal, cf. [168]. Its classical analogue acts
like running a film backwards: the properties of particles are unchanged but particles move
in the opposite direction with time, ending up at their starting point. This transformation is
also usually meant with T when talking about the CPT theorem, see below, and it is this
operation that the term time reversal refers to in the following.

The Wigner time reversal acts on spatial coordinates as shown in (1.6) but, in contrast to
the Schwinger time reversal, does not invert the charges of any field. In order to arrive at
a spectrum bounded below, the corresponding Hilbert space operator 𝑻 must be chosen
anti-linear. In the 𝑆-matrix picture, time reversal inverts the direction of motion of every
incoming and outgoing particle, reverses their spins and exchanges incoming and outgoing
particles [165]. Its action on a scalar field operator is thus

𝑻 𝜱(𝑥) 𝑻−1 = ei u� 𝜱(𝑥u�) . (1.7)

As there is only an inversion of the direction of motion, there is, of course no issue with
missing states as for parity, i.e. time reversal can also be implemented in theories with only
a single Weyl fermion. For the discussion of QED, the transformation

𝑻 𝜳(𝑥) 𝑻−1 = ei u� (i 𝛾1 𝛾3) 𝜳(𝑥u�) (1.8)
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of a Dirac spinor is sufficient, though. Using again the coupling of the electromagnetic
gauge boson to the fermion current and demanding invariance of this term, one obtains the
transformation behaviour

𝑻 𝑨u�(𝑥) 𝑻−1 = 𝜀(𝜇) 𝑨u�(𝑥u�) (1.9)

of the gauge boson under time reversal.
Note that, in complete analogy to parity, a Lagrangian is usually not invariant under time

reversal even if its space-time integral, i.e. its action, is, due to the change of the argument
of fields. Invariance of the action is, of course, sufficient for time reversal to be a symmetry
of the theory in question.

Charge conjugation

The action of charge conjugation is a priori not related to the Lorentz structure of a theory,
although it can, in fact, be related to it, cf. [168]. In QED the definition of charge conjugation
seems clear: it replaces an electron with a positron and vice versa without changing anything
else. Note that this operation can only be implemented as a symmetry acting on a Weyl
spinor if there is another Weyl spinor in the complex conjugate representation, i.e. with
the opposite charge. This is the case because, otherwise, the two Hilbert spaces of original
and charge conjugated fields could not be identified [29]. The condition is by construction
fulfilled for Dirac spinors and their transformation behaviour is2

𝑪 𝜳(𝑥) 𝑪−1 = ei u� (i 𝛾0 𝛾2) 𝜳u�(𝑥) ≕ ei u� 𝜳u�(𝑥) , (1.10)

where 𝜳 ≔ 𝜳† 𝛾0 and where 𝑪 is a linear, unitary operator. Analogously, the transformation
of a scalar is

𝑪 𝜱(𝑥) 𝑪−1 = ei u� 𝜱†(𝑥) . (1.11)

By the same arguments as above, the gauge boson transforms as

𝑪 𝑨u�(𝑥) 𝑪−1 = −𝑨u�(𝑥) . (1.12)

VII.1.2 Inversion symmetries in the Standard Model

The extension of the concepts of parity, time reversal and charge conjugation from QED
to the Standard Model might seem straightforward. However, the Standard Model is a
completely different type of theory because it is chiral and thus not invariant under parity
or charge conjugation. This is clear immediately from its matter content, see Table III.1, as
there is, for example, no parity or charge conjugation partner for the left-handed SU(2)L
lepton doublet. Thus, parity and charge conjugation are broken in the Standard Model
by the field or representation content. In fact, it is impossible consistently to define these
transformations. In contrast to P and C individually, their composition CP can be defined
given the Standard Model field content and could, in principle, be a symmetry.

2 Note that, while this equation is numerically correct, the left- and right-handed spinor indices are not
treated correctly. However, this does not matter in purely four-component computations. For the correct
treatment of spinor indices, cf. [171].
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CP in the Standard Model

From the discussion of C and P in QED, a CP transformation should map a left-handed
Weyl fermion to a right-handed Weyl fermion with the opposite charges of the original
fields. This, however, can be achieved by mapping the field to its own complex conjugate.
Thus, there is no obstruction due to the field content.3 Hence, under CP a left-handed Weyl
fermion is mapped to its own complex conjugate amended by a matrix taking care of the
spinor indices,

𝑪𝑷 𝝀u�(𝑥) 𝑪𝑷−1 = ei u� i(𝜎0)u� ̇u� (𝝀†) ̇u�(𝑥u�) ≕ ei u� (𝝀u�u�)u�(𝑥u�) . (1.13)

The CP transformation of the gauge bosons is given by

𝑪𝑷 𝑨u�
u� (𝑥) 𝑪𝑷−1 = 𝜂u� 𝜀(𝜇) 𝑨u�

u� (𝑥u�) (no sum over 𝑎) , (1.14)

where the signs 𝜂u� are defined such that [14]

𝜂u� 𝑇u� = −(𝑇u�)∗ (no sum over 𝑎) , (1.15)

and where 𝑇u� are the generators of the gauge symmetry. This transformation is henceforth
called canonical CP transformation.

Although CP could thus, in principle, be a symmetry of Nature, this is not the case. It is
explicitly broken by complex entries of the Yukawa couplings to the Higgs boson. Glossing
over some details, this statement can be intuitively understood as follows: CP exchanges
each field in the Standard Model Lagrangian with its complex conjugate, i.e. it maps an
operator 𝑶 in the Lagrangian to its Hermitian conjugate operator 𝑶†, which is, of course,
also present in the Lagrangian to ensure that the action is real. However, the coupling 𝑐 of
this operator can be any complex number such that

𝑐 𝑶 u�u�⟼ 𝑐 𝑶† (1.16)

under CP, while the conjugate of the original term is

𝑐∗ 𝑶† . (1.17)

The Lagrangian containing this term could only be CP invariant for real 𝑐. It is important to
note, moreover, that such a transformation does not forbid couplings but restricts them to
real values. These statements are made more precise in the following sections.

In the Standard Model Lagrangian, the relevant couplings are, as already stated, the
Yukawa couplings of the fermions to the Higgs boson responsible for fermion masses
after electroweak symmetry breaking. As some of the entries of the Yukawa matrices are
unphysical, in the sense that they are unobservable, see the discussion in Chapter III, it is
not easy to determine whether for a given set of couplings CP is broken or not. There are
two ways how to proceed, which shall now be sketched for the quark sector.

Firstly, one can diagonalise the Yukawa matrices, determine the quark mass eigenstates
and compute the CKM matrix. After removing as many phases as possible, in the pure SM
only the Dirac CP phase 𝛿u�u� is left and CP is broken if and only if it is neither zero nor 𝜋.
This procedure is somewhat tedious and, moreover, seems to introduce a basis dependence

3 As it turns out, this statement is only true when ignoring possible additional symmetries, as is explained
below.



VII.1 Inversion symmetries in QED and the Standard Model 95

into the discussion of CP invariance. This basis dependence is, of course, only an artefact;
the answer to the question whether CP is broken or unbroken does not depend on the way
the Lagrangian is formulated.

This puzzle can easily be resolved. The quark fields come in three generations distin-
guished only by their mass. That is, there is a U(3) symmetry for each quark flavour that is
explicitly broken by the Yukawa couplings. Instead of explicitly going to the mass eigenstate
basis, one can use a so-called generalised CP transformation [172],

𝑪𝑷 (𝒇u�)u�(𝑥) 𝑪𝑷−1 = 𝑈u�u�
u� (𝒇u�u�

u� )u�(𝑥u�) , (1.18)

where 𝑓 = 𝑞, 𝑢u�, 𝑑u� and 𝑖, 𝑗 label the generations. The matrices 𝑈u� can be assumed unitary
without loss of generality. For now, the occurrence of these matrices can be understood as
making up for not working in the mass eigenstate basis; this statement is made more precise
below. If the mass eigenstate basis is connected to the chosen basis by matrices 𝑉u�, using

𝑈u� ≔ 𝑉u� 𝑉u�
u� (1.19)

in (1.18) is the same as going to the mass eigenstate basis, performing the CP transform-
ation (1.13) there and transforming back to the original basis. This resolves the seeming
basis dependence of CP invariance encountered in the first approach. Generalised CP
transformations like (1.18) are discussed much more thoroughly below in Section VII.3.4

The Yukawa couplings can break some or all of the CP transformations of equation (1.18),
and CP is truly broken only if all of them are broken. This observation leads to the second
approach for the detection of CP violation. One examines so-called weak basis invariants
[172–176], which are combinations of couplings of a model that are invariant under unitary
rotations in flavour space. Viewing CP transformations as mappings of couplings of a given
Lagrangian, some of the invariants change sign under CP. If any CP transformation is a
symmetry, these invariants vanish, and, vice versa, if any of these invariants does not vanish
for the couplings of a given model, all possible CP symmetries are broken.

Let us illustrate this for the SM. The CP odd weak basis invariant that can be built from
the SM Yukawas is the so-called Jarlskog determinant [173]. It is defined by

𝐽 ≔
1
i

det ([𝑌u� 𝑌†
u�, 𝑌u� 𝑌†

u�]) . (1.20)

The Jarlskog determinant is real and invariant under basis transformations of the quark fields.
Since the commutator of two matrices is traceless and since one can show5 that for a traceless
three-dimensional matrix det (𝐴) = 1

3 tr (𝐴3), one can write the Jarlskog determinant also as
[172]

𝐽 =
1
3 i

tr ([𝑌u� 𝑌†
u�, 𝑌u� 𝑌†

u�]3) . (1.21)

4 In fact, the matrices u�u� have to fulfil certain consistency conditions [14]. However, in this particular case
of U(3) symmetries, all unitary matrices are admissible because each such matrix represents an inner
automorphism of U(3). See Section VII.3 for a detailed explanation of these ideas.

5 The characteristic polynomial of a matrix u� is u�u�(u�) = det (u�𝟙u� − u�) = (−1)u� det u� + 𝒪 (u�). It can also
be expressed by u�u�(u�) = exp [tr (ln (u�𝟙u� − u�))]. Expanding this in u� and comparing coefficients, one can
derive a formula for the determinant of matrices of dimension u� as a polynomial of their trace. This formula
simplifies significantly when the matrix is traceless.
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The action of the generalised CP transformation (1.18) on the Lagrangian is equivalent to
the replacement

𝑌u�
u�u�⟼ 𝑈u� 𝑌∗

u� 𝑈†
u�u� , (1.22)

𝑌u�
u�u�⟼ 𝑈u� 𝑌∗

u� 𝑈†
u�u� (1.23)

of the Yukawa couplings. The Jarlskog determinant hence transforms under CP as

𝐽 u�u�⟼
1
i

det ([𝑈u� 𝑌∗
u� 𝑌u�

u� 𝑈†
u�, 𝑈u� 𝑌∗

u� 𝑌u�
u� 𝑈†

u�]) = −𝐽∗ = −𝐽 . (1.24)

This shows that if CP is conserved, the Jarlskog invariant vanishes and, thus, that 𝐽 ≠ 0
implies broken CP. In fact, in the pure SM, CP is conserved if and only if 𝐽 vanishes [172].6
Of course, the approach of CP odd weak basis invariants for the detection of CP violation in
the SM is equivalent to the aforementioned one using invariance of the Lagrangian [173].

Turning back to the CP transformation of equation (1.18), one should note that it is more
general than the canonical CP transformation of equation (1.13), which was obtained by
direct analogy from the QED case. For arbitrary 𝑈u�, i.e. without assuming (1.19), there are
additional CP transformations, and the question arises whether they are any different and
whether they can consistently be imposed on a theory. This, in a certain sense, is the first
occurrence of a true so-called generalised CP transformation. It turns out that, whereas in
the Standard Model equation (1.18) with 𝑈u� from (1.19) is the only sensible generalisation
of the QED CP transformation, the situation is far less clear in models of physics beyond
the SM. This issue is discussed from both conceptional and mathematical viewpoints in
the following after a brief interlude on the uniqueness of the definition of the inversion
symmetries in general quantum field theories.

VII.2 Uniqueness of the definitions of P, T, C and CP

The only really fundamental inversion symmetry of quantum field theory is CPT.7 As
can be shown, any quantum field theory is invariant under this symmetry [178], which is
represented by an anti-linear, unitary operator 𝜣 on Hilbert space. It acts as [179]

𝜣 𝜱
̇u�1⋯ ̇u�u�

u�1⋯u�u� (𝑥) 𝜣−1 ≔ (−1)u� (− i)u� (𝜱
̇u�1⋯ ̇u�u�

u�1⋯u�u� )
†

(−𝑥)

= (−1)u� (− i)u� (𝜱†) u�1⋯u�u�
̇u�1⋯ ̇u�u�

(−𝑥)
(2.1)

on a general spinor field, where 𝐹 is one for fermionic and zero for bosonic fields. Since 𝜣 is
an anti-unitary operator it conjugates all couplings (including objects like 𝛾 and 𝜎 matrices)
and, hence, effectively exchanges a term in the Lagrangian with its complex conjugate term.
Therefore, any Lagrangian quantum field theory with a real Lagrangian is invariant under
this transformation, independently of the additional symmetry content of the theory.8

It is also this CPT symmetry of quantum field theory that ‘provides a precise corres-
pondence between particles and anti-particles’ [165] implying, for example, that they have

6 For an alternative proof that u� ≠ 0 is a necessary and sufficient condition for CP violation in the Standard
Model, see [177].

7 At this point, it is advisable to view CPT just as a name for the transformation defined in (2.1) without
trying to interpret it as a combination of charge conjugation, parity transformation and time reversal.

8 In fact, CPT invariance follows from much less restrictive assumptions, cf. e.g. [178, 179].
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identical masses and decay rates. If this statement were to rely on a C or CP symmetry, it
would not hold in the Standard Model, where both these symmetries are broken.

If one assumes invariance of a theory under a generalised CPT transformation, i.e. a CPT
transformation amended by multiplication with a unitary matrix 𝑈 acting on a set of fields
like in (1.18) for CP, the resulting theory is invariant independently under the canonical
CPT transformation (2.1) and under multiplication by 𝑈∗. Therefore, the concept of such a
generalised CPT transformations is meaningless and CPT uniquely defined [14].

As the name suggests, it is in some cases possible to view CPT as the combination of three
separate inversion symmetries: charge conjugation C, parity transformation P and time
reversal T. This is true, for example, for QED, for which the transformations were described
above in Section VII.1.1. However, this separation in three different transformations is not
unique, cf. [180], and might not even make sense for a given theory. For example, none of
the three transformations is independently a symmetry of the Standard Model. Even more
importantly, C and P cannot even be implemented as transformations acting on the SM field
content. Thus, in the SM one can at most split CPT into two parts, CP and T, which are,
however, broken explicitly by the Yukawa couplings.

Thus, quite naturally the questions arise how to generalise the CP transformation to
models of physics beyond the Standard Model, how unique a given splitting of CPT into CP
and T is, and what restrictions one should impose on possible generalisations of this sym-
metry.9 There are two different aspects of this question: the first concerns the mathematical
consistency of such generalisations and of the definition of CP in general. This is reviewed
in the following section. The second aspect concerns the physical interpretation, i.e. the
question whether it makes sense to call a given mathematically consistent transformation
CP or not. This question is taken up in Section VII.4.1.

VII.3 CP and automorphisms

Models of physics beyond the Standard Model usually have enlarged gauge or global
symmetry groups, e.g. Grand Unified Theories or models with discrete flavour symmetries.
Hence, it is important to understand the interplay of these symmetries with a possible
generalised CP transformation. It is advantageous to split this task into separate discussions
of continuous (gauge) symmetries and of discrete symmetries, although the final results are
structurally very similar.

VII.3.1 Gauge symmetries

The conditions a CP transformation has to fulfil in order to be consistent with the gauge
symmetry of a model were first derived by Grimus and Rebelo [14]. They were able to show
the following. Let the CP transformation act on a multiplet of left-handed Weyl fermions 𝜆u�
residing in a representation with generators 𝑇u� of the gauge group 𝐿 as10

𝜆u�(𝑥) u�u�⟼ 𝑈u�u�
u�u� 𝜆u�u�

u� (𝑥u�) , (3.1)

9 Generalisations of parity and charge conjugation individually are not discussed here because these sym-
metries are already broken by the matter content of the Standard Model. There are, however, so-called
left-right symmetric models which make use of a generalised parity transformation [181–183].

10 For simplicity, the notation is changed from field operators to fields.
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where 𝑈u�u� is unitary. Let it, further, act on the gauge bosons as

𝐴u�(𝑥) u�u�⟼ 𝑅u�u� 𝜀(𝜇) 𝐴u�
u� (𝑥u�) , (3.2)

where 𝑅 is real and orthogonal. Demanding that the gauge coupling term be invariant, the
CP transformation matrices 𝑈u�u� and 𝑅 must fulfil two conditions. Firstly, they are required
to fulfil the consistency equation [14]

𝑈u�u� (−𝑅u�u� (𝑇u�)∗) 𝑈†
u�u� = 𝑇u� . (3.3)

Secondly, the map [14]

𝜏u� ∶ 𝔩 → 𝔩 ,
𝑇u� ↦ 𝑅u�u� 𝑇u� (3.4)

must be an automorphism of the Lie algebra 𝔩 of 𝐿.
This latter condition is very restrictive. It allows one to enumerate all possible CP trans-

formations by looking at all automorphisms of the Lie algebra of the gauge group. However,
not all automorphisms lead to transformations that can be considered CP transformations.
In fact, Grimus and Rebelo [14] singled out the so-called contragredient automorphism as
the only automorphism leading to a consistent physical CP transformation by demanding
that all quantum numbers should be reversed. For more details on this condition, see the
discussion in Section VII.13 and the original reference [14].

Note that CP transformations that differ by a symmetry transformation of the theory lead
to physically identical results. Inner automorphisms of the Lie algebra, which lead to inner
automorphisms of the Lie group and, therefore, to symmetry transformations, are thus
irrelevant. That is, the relevant group (or, rather, Lie algebra) theoretical structure is the
outer automorphism group, see Definition 12. All automorphisms in a given equivalence
class of the outer automorphism group lead to physically identical CP transformations [14].

Under a change of basis

𝜆u� ↦ 𝜆′
u� ≔ 𝑉u�u� 𝜆u� (3.5)

for the fermion fields, the CP transformation changes to [14]

𝑈′
u�u� ≔ 𝑉 𝑈u�u� 𝑉u� . (3.6)

Realising this is important for two reasons. Firstly, the equation shows that starting with
a canonical CP transformation, i.e. 𝑈u�u� = 𝟙, in one basis, one usually ends up with a non-
canonical transformation, i.e. 𝑈u�u� ≠ 𝟙, in different bases. Hence, the seeming generalisation
of CP by including a matrix 𝑈u�u� is not facultative but necessary. This is also the formal
explanation of the observations made in Section VII.1.2, i.e. of equation (1.18).

Secondly, since (3.6) is not a similarity transformation, it is not always possible to transform
to a basis where 𝑈u�u� is trivial [24], see also Section A.6.4. Thus, there can be CP transform-
ations that yield physically different results from the canonical CP transformation. This
situation arises also for the discrete group case discussed below.

As an example for the connection of CP to an automorphism, let the gauge group 𝐿
be SU(𝑁), with 𝑁 > 2. The usual CP transformation, as used in the SM for SU(3)C, cor-
responds to the Dynkin diagram automorphism of the Lie algebra 𝐴u�−1 [14]. This maps
the weight (𝛬1, 𝛬2, … , 𝛬u�−1) to (𝛬u�−1, 𝛬u�−2, … , 𝛬1) and is a representative of the unique
outer automorphism class of 𝐴u�−1. As it turns out, it is more intuitive to choose as a rep-
resentative of this class the contragredient automorphism sending (𝛬1, 𝛬2, … , 𝛬u�−1) to
(−𝛬1, −𝛬2, … , −𝛬u�−1) [14], see also the discussion in Section VII.13.
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VII.3.2 Discrete symmetries

The analysis was repeated for the case of discrete symmetries by Holthausen, Lindner and
Schmidt [15] and Feruglio, Hagedorn and Ziegler [16]. Let 𝐺 be the discrete symmetry
under consideration. Holthausen, Lindner and Schmidt [15] assemble all scalar fields 𝜑u� of
a given model, which are assumed to transform in irreducible representations of 𝐺, together
with their complex conjugates in a field vector 𝛷,

𝛷 ≔ (𝜑1, 𝜑∗
1, … , 𝜑u�, 𝜑∗

u�)u� (3.7)

such that a matrix 𝑊 exists with [15, equation (2.5)]

𝛷∗ = 𝑊 𝛷 (3.8)

and 𝑊2 = 𝟙. To be precise, Holthausen, Lindner and Schmidt [15] make a distinction
between fields in real representations, denoted 𝜑u�, in pseudo-real representations, 𝜑u�, and
complex representations, 𝜑u�, and define [15, equation (2.1)]

𝛷 ≔ (𝜑u�, 𝜑u�, 𝜑∗
u�, 𝜑u�, 𝜑∗

u�)u� . (3.9)

This distinction is unnecessary, and, moreover, the definition (3.9) of 𝛷 is actually inconsistent
with the existence of a 𝑊 fulfilling (3.8). It is true that for real scalar fields, which can only
reside in real representations, one would not have to include the conjugate field in 𝛷 as well
for 𝑊 to exist, but there can also be complex fields in real representations, which are not
related to their complex conjugates by a linear transformation. Thus, the definition (3.7)
consistent with (3.8) is used hereafter, assuming that this is what was actually desired by
Holthausen, Lindner and Schmidt [15]. This assumption is strengthened by their claim that
one should ‘note that 𝛷 always contains the field and its complex conjugate’ [15].

The discrete group acts on 𝛷 as

𝛷 u�⟼ 𝜌u�(𝑔) 𝛷 , ∀ 𝑔 ∈ 𝐺 , (3.10)

where 𝜌u�(𝑔) is a matrix realisation of the reducible representation 𝑹u� of 𝛷 under 𝐺. The
generalised CP transformation is then written as11

𝛷 u�u�⟼ 𝑈u�u� 𝛷∗ = 𝑈u�u� 𝑊 𝛷 , (3.11)

where the last part is only consistent for the definition of 𝛷 adopted here.
The crucial constraint on the CP transformation is that performing first a CP transform-

ation, then a discrete symmetry transformation and then an inverse CP transformation
should not change the Lagrangian [15]. If this were not the case, i.e. if the Lagrangian were
not mapped onto itself when performing these consecutive operations, the CP and discrete
symmetry transformations would be mutually inconsistent. In fact, the transformation
properties of the Lagrangian under 𝐺 would depend on whether one first performs a CP
transformation or not, which is clearly unphysical.

Since a Lagrangian is, by definition, only left invariant by a symmetry operation, the
concatenation of the three operations must also be a symmetry operation; otherwise, the

11 From now on, only the transformation behaviour of scalar fields is shown and the change of the space-time
dependence is suppressed. The transformation of fermion fields can be obtained if instead of the complex
conjugate field the CP conjugate field defined analogously to equation (1.13) is used. This takes care of the
Lorentz structure of the expression.
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𝜱

𝑈u�u� 𝜱†

𝑈u�u� 𝜌u�(𝑔)∗ 𝜱†

𝜌u�(𝑔′) 𝜱 = 𝑈u�u� 𝜌u�(𝑔)∗ 𝑈−1
u�u� 𝜱

𝑪𝑷 𝑼u�

𝑼u�′ 𝑪𝑷−1

Figure VII.1: This is a reproduction of Figure 1 from [15], showing the consecutive
operations of CP, 𝑔 ∈ 𝐺 and inverse CP on a field operator 𝜱 in comparison to just a
symmetry transformation. Note that each of the consecutive operations acts on the
field operator itself, cf. [184].

Lagrangian would not be left invariant. Assuming, furthermore, that 𝐺 is the full symmetry
group acting on the chosen representation space, one obtains the condition [15]

∀ 𝑔 ∈ 𝐺 ∶ ∃ 𝑔′ ∈ 𝐺 ∶ 𝑈u�u� 𝜌u�(𝑔)∗ 𝑈−1
u�u� = 𝜌u�(𝑔′) . (3.12)

This is also depicted in Figure VII.1. Further, 𝑹u� is a faithful representation because,
otherwise, the symmetry group would not be 𝐺 but rather the quotient group 𝐺/ ker 𝑹u�.
Thus, by taking the inverse image under 𝜌u�, equation (3.12) can be seen as a map from the
group 𝐺 into itself,12

𝑢 ∶ 𝐺 → 𝐺 ,
𝑔 ↦ 𝑔′ ≔ 𝜌−1

u� (𝑈u�u� 𝜌u�(𝑔)∗ 𝑈−1
u�u� ) . (3.13)

Moreover, it is clear that

𝑢(𝑔1𝑔2) = 𝜌−1
u� (𝑈u�u� 𝜌u�(𝑔1)∗ 𝜌u�(𝑔2)∗ 𝑈−1

u�u� )
= 𝜌−1

u� (𝑈u�u� 𝜌u�(𝑔1)∗ 𝑈−1
u�u� 𝑈u�u� 𝜌u�(𝑔2)∗ 𝑈−1

u�u� )
= 𝜌−1

u� (𝑈u�u� 𝜌u�(𝑔1)∗ 𝑈−1
u�u� ) 𝜌−1

u� (𝑈u�u� 𝜌u�(𝑔2)∗ 𝑈−1
u�u� )

= 𝑢(𝑔1)𝑢(𝑔2) ,

(3.14)

i.e. 𝑢 is a homomorphism of 𝐺. As there is also an inverse function for 𝑢,

𝑢−1 ∶ 𝐺 → 𝐺 ,
𝑔′ ↦ 𝑔 ≔ 𝜌−1

u� ((𝑈−1
u�u� )∗ 𝜌u�(𝑔′)∗ 𝑈∗

u�u�) , (3.15)

the map 𝑢 is, in fact, an automorphism of 𝐺 [15]. Hence, one can rewrite equation (3.12) to
the consistency equation [15]

∃ 𝑢 ∈ Aut(𝐺) ∶ 𝑈u�u� 𝜌u�(𝑔)∗ 𝑈−1
u�u� = 𝜌u�(𝑢(𝑔)) , ∀ 𝑔 ∈ 𝐺 , (3.16)

for 𝑈u�u�, which is the discrete group analogue to (3.3). Note that 𝑈u�u� is only defined up to a
phase by this relation. Finally, equation (3.6) is also the correct basis transformation for 𝑈u�u�
in the discrete group case.

12 Note that u�−1
u� is the inverse of the map u�u� ∶ u� → GL(u�, ℂ) and not the matrix inverse of a repres-

entation matrix, which would be denoted u�u�(u�)−1.
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The structure of CP transformations in the presence of finite groups is thus reminiscent of
the Lie group case discussed before. Again, the possible CP transformations are a subset
of the automorphisms of the symmetry group 𝐺. In fact, CP transformations belonging to
automorphisms that are connected by an inner automorphism, i.e.

𝑢′ ≡ conj(𝑐) ∘ 𝑢 (3.17)

for some 𝑐 in 𝐺, lead to CP transformations that are related by

𝑈′
u�u� = 𝜌u�(𝑐) 𝑈u�u� . (3.18)

As 𝜌u�(𝑐) is a symmetry transformation, the two CP transformations are indistinguishable.
Hence, one can again restrict one’s attention to the outer automorphism group Out(𝐺) when
enumerating possible CP transformations [15].

It is instructive to illustrate the failure of CP if equation (3.16) is not fulfilled by an example
which was presented already in [15]. This example is based on the tetrahedral group A4 with
two scalar fields 𝑥 and 𝑦 each transforming in the triplet representation 𝟑 and a scalar field
𝜑 transforming in the representation 𝟏2. The basis conventions are shown in Section A.1.1.
Consider the term

𝑐 [𝜑 ⊗ (𝑥 ⊗ 𝑦)𝟏1
]

𝟏0
= 𝑐 𝜑

𝑥1 𝑦1 + 𝜔2 𝑥2 𝑦2 + 𝜔 𝑥3 𝑦3

√3
, (3.19)

which is a trivial A4 singlet, i.e. an allowed term in an A4 invariant Lagrangian with coupling
𝑐.13 Under a canonical CP transformation, i.e. under just the replacement of each scalar field
with its own complex conjugate, the resulting term is

𝑐 [𝜑 ⊗ (𝑥 ⊗ 𝑦)𝟏1
]

𝟏0

u�u�⟼ 𝑐 𝜑∗ 𝑥∗
1 𝑦∗

1 + 𝜔2 𝑥∗
2 𝑦∗

2 + 𝜔 𝑥∗
3 𝑦∗

3

√3
. (3.20)

Comparing this to the complex conjugate of (3.19), one has to realise that there is no choice
of coupling 𝑐 for which the two terms coincide. That is, if insisting on both the A4 symmetry
and the canonical CP transformation, this term (and many others) is forbidden. In fact, the
term (3.20) is not even A4 invariant. This is a result of 𝑈u�u� = 𝟙 not being a solution to (3.16)
for any automorphism of A4. There is, however, the non-inner automorphism [15]

𝑢 ∶ (𝑠, 𝑡) ↦ (𝑠, 𝑡2) , (3.21)

see Section A.1.1 for the A4 notation, which yields

𝑈u�u� =
⎛⎜⎜⎜⎜
⎝

1 0 0
0 0 1
0 1 0

⎞⎟⎟⎟⎟
⎠

(3.22)

for the triplets 𝑥 and 𝑦. Thus, besides conjugating each scalar field, one should exchange the
second and third components of the triplets 𝑥 and 𝑦. This generalised CP transformation
maps the term (3.19) to

𝑐 [𝜑 ⊗ (𝑥 ⊗ 𝑦)𝟏1
]

𝟏0

u�u�⟼ 𝑐 𝜑∗ 𝑥∗
1 𝑦∗

1 + 𝜔2 𝑥∗
3 𝑦∗

3 + 𝜔 𝑥∗
2 𝑦∗

2

√3
, (3.23)

13 Note that, as usual, u� = e2u� i /3.



102 VII Generalised CP

which is precisely the same as the complex conjugate of (3.19) up to conjugation of the
coupling 𝑐, which by the CP transformation is thus simply forced to be real.

Studying this example, it becomes clear that complex Clebsch–Gordan coefficients, e.g.
here the 𝜔, play a crucial role. This connection is explored in detail in Section VII.5. For
A4 the fact that a non-trivial 𝑈u�u� is needed is not an intrinsic feature of the group but
depends on the chosen basis. Indeed, one can find a basis in which 𝑈u�u� is trivial for the
given automorphism. However, as shown below, finding such a basis is not possible for all
discrete groups.

In summary, it is known that any CP transformation of a given model has to fulfil one
of the consistency conditions (3.3) and (3.16) depending on the type of group in question,
which relates it to automorphisms of the group. However, in the discrete group case the
question remains whether this argument can be reversed, i.e. whether each automorphism
leads to a generalised CP transformation (for continuous groups, see [14] and Section VII.13).
In fact, this turns out not to be the case. The reasons for this are discussed in the following
section.

Before proceeding with the discussion, note that in addition to the action of CP on gauge
and on discrete symmetry representations, one can also understand its action on the Lorentz
indices from the discussion of automorphisms of the Lorentz group. As a matter of fact,
parity, charge conjugation and time reversal were identified as automorphisms of the Lorentz
group by Buchbinder, Gitman and Shelepin [168]. However, this is not dwelt on any further
here.

VII.4 Proper CP for discrete groups

As detailed in the preceding section, Grimus and Rebelo [14] for Lie groups as well as
Holthausen, Lindner and Schmidt [15] and Feruglio, Hagedorn and Ziegler [16] for discrete
groups established that a CP transformation must be connected to an automorphism of
the symmetry group. Further, they showed that only automorphisms which are not in the
same equivalence class of the outer automorphism group give rise to physically distinct
CP transformations. Thus, the possible CP transformations can be related to a subset
of the outer automorphism group of the symmetry in question. However, this does not
imply the converse: that any automorphism gives rise to a CP transformation. Whereas for
continuous groups the relevant automorphisms were singled out by Grimus and Rebelo
[14], no conditions were given for discrete groups. Indeed, it was claimed that ‘there is
a one-to-one correspondence between generalised CP transformations […] and the outer
automorphism group’ [15]. We would like to point out that this is not the case.

To this end, a closer inspection of the consistency condition (3.16) and of the definition
(3.7) of 𝛷 is necessary.14 Given any representation 𝑹 of 𝐺, the concatenation of 𝑹 with an
automorphism 𝑢 of 𝐺 is again a representation 𝑹 ∘ 𝑢 of 𝐺 because this is again a map from 𝐺
to the general linear group of the representation space of 𝑹. The dimensions of 𝑹 and 𝑹 ∘ 𝑢
are identical and from the character scalar product it is also clear that 𝑹 ∘ 𝑢 is irreducible if
and only if 𝑹 is irreducible. Further, note that, given a specific matrix realisation 𝜌𝑹 of 𝑹,

14 Note that, as explained below equation (3.8), one might think that a different definition of u� is used here
than seemingly was employed by [15]. This, however, just remedies the fact that their definition did not
fulfil their requirements on u�. Moreover, the present definition is in accordance with their statement
quoted below (3.9).
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the map

𝜌∗
𝑹 ∶ 𝐺 → GL(𝑛, ℂ) ,

𝑔 ↦ 𝜌𝑹(𝑔)∗ (4.1)

yields a specific matrix realisation of the complex conjugate representation 𝑹, see Defini-
tion 18. This implies that the conjugate 𝜑∗ of a field 𝜑 in representation 𝑹 transforms in the
conjugate representation 𝑹 of 𝑹.

Comparing to the Definition 20 of an intertwiner, the consistency condition (3.16) is
nothing but the statement that the CP transformation has to be an intertwiner of 𝑹u� with
𝑹u� ∘ 𝑢 for some automorphism 𝑢, i.e. equation (3.16) is equivalent to

∃ 𝑢 ∈ Aut(𝐺) ∶ 𝑹u� ≅ 𝑹u� ∘ 𝑢 . (4.2)

If this condition is fulfilled, one can use equation (3.16) to compute the matrix 𝑈u�u� in a
specific basis. However, Schur’s lemma (Theorem 9) places stringent constraints on the
solvability of equation (4.2) because it states that for two irreducible representations there
either is no intertwiner or the intertwiner is uniquely determined up to a phase.15 We come
back to this when categorising all solutions.

Returning to the reverse question whether each automorphism leads to a CP transforma-
tion, this can now be split into two sub-questions.

The first part is whether 𝑹u� ≅ 𝑹u� ∘ 𝑢 is true for all automorphisms 𝑢. This is certainly
not the case. As an example, let 𝐺 be 𝛥(27) and 𝛷 = (𝜑, 𝜑∗)u� with 𝜑 transforming in
representation 𝟏1, see Section A.1.3 for the notation. Then choose as automorphism

𝑢2 ∶ (𝑎, 𝑏) ↦ (𝑎𝑏𝑎, 𝑏) . (4.3)

As can be easily checked, this automorphism intertwines 𝟏1 with 𝟏4 and 𝟏2 with 𝟏8 whereas
𝟏1 ≅ 𝟏2. Since 𝑹u� = 𝟏1 ⊕ 𝟏2, one finds that

𝑹u� = 𝟏1 ⊕ 𝟏2 ≅ 𝟏2 ⊕ 𝟏1≇𝟏4 ⊕ 𝟏8 ≅ (𝟏1 ⊕ 𝟏2) ∘ 𝑢 = 𝑹u� ∘ 𝑢 . (4.4)

Thus, as, in principle, already noted by Holthausen, Lindner and Schmidt [15], there is not
always a solution to the consistency condition for a given model. This is in contradiction
to their own statement cited above that there is a one-to-one correspondence between
automorphisms and CP transformations.

Let us repeat this statement for emphasis. There is no one-to-one correspondence between
CP transformations and automorphisms of a symmetry group because, as in the 𝛥(27)
example presented, there are cases in which the field content is such that 𝑹u�≇𝑹u� ∘ 𝑢.

Although this has, in principle, already settled the question, one can proceed one step
and ask whether each automorphism 𝑢 for which 𝑹u� ≅ 𝑹u� ∘ 𝑢 gives rise to a proper CP
transformation. This is a more subtle question which is sensitive to the precise definition of
𝑹u�. To understand why this is the case, let 𝑹 be a complex irreducible representation of a
discrete group 𝐺. Then the representation obtained by concatenating this with any inner
automorphism is always equivalent to 𝑹,

𝑹 ∘ conj(𝑐) ≅ 𝑹 , ∀ 𝑐 ∈ 𝐺 . (4.5)

15 In principle, it is not a phase factor but multiplication with any non-zero complex number. However, the
matrix representation of the intertwiner can always be chosen unitary and is then fixed up to a phase. This
is always assumed implicitly in the following.
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To prove this, one can compute the character, see Definition 21,

𝜒𝑹∘conj(u�)(𝑔) = 𝜒𝑹(conj(𝑐)(𝑔)) = 𝜒𝑹(𝑔) , ∀ 𝑔 ∈ 𝐺 , (4.6)

where it has been used that characters are class functions. The desired result follows because
characters are in one-to-one correspondence with representations. Now let 𝜑 be any field in
a complex irreducible representation 𝒓 of a group 𝐺 such that 𝛷 = (𝜑, 𝜑∗)u� and

𝑹u� = 𝒓 ⊕ 𝒓 . (4.7)

This specific choice makes it possible that the consistency condition can be solved for any
inner automorphism. Let, for example, 𝑢 be the identity automorphism. Then

𝑹u� = 𝒓 ⊕ 𝒓 ≅ 𝒓 ⊕ 𝒓 ≅ (𝒓 ⊕ 𝒓) ∘ id = 𝑹u� ∘ id , (4.8)

and analogously for any inner automorphism by the statement proved above. This solution
is forced in the sense that it relies on the somewhat unusual inclusion of the conjugate field
𝜑∗ in the field vector 𝛷, and, in fact, one has to pay a price for this. The intertwiner in the
(natural) basis where 𝑹u� = 𝒓 ⊕ 𝒓 is block-diagonal for 𝑢 = id is the matrix 𝑊 from (3.8).
Hence, the alleged CP transformation derived from (3.16) acting on 𝛷 is

𝛷 ⟼ 𝑈u�u� 𝛷∗ = 𝑊 𝛷∗ = 𝛷 . (4.9)

This is, of course, no proper CP transformation. In fact, in the special case of the identity
automorphism and the block-diagonal basis it is just the identity transformation and for any
other inner automorphism it is just the corresponding discrete symmetry transformation.
Thus, choosing 𝛷 like Holthausen, Lindner and Schmidt [15] makes it possible to solve the
consistency condition but it does by far not always lead to a CP transformation.

Even if one abandons the special case of inner automorphisms, something similar can
happen. Consider again 𝛥(27) with a field 𝜑 which this time is to transform in the triplet
representation 𝟑. The automorphism

𝑢5 ∶ (𝑎, 𝑏) ↦ (𝑏𝑎2𝑏2, 𝑎𝑏2𝑎2) (4.10)

is such that 𝟑 ∘ 𝑢5 ≅ 𝟑 and

𝛷 ⟼ 𝑈u�u� 𝛷 = 𝑈 𝑊 𝛷∗ = 𝑈 𝛷 , (4.11)

where 𝑈 is, by Schur’s lemma (Theorem 9), a block-diagonal matrix. In fact, 𝑈 = 𝑈u�5
⊕ 𝑈∗

u�5
with

𝑈u�5
=

⎛⎜⎜⎜⎜
⎝

0 0 𝜔2

0 1 0
𝜔 0 0

⎞⎟⎟⎟⎟
⎠

. (4.12)

Hence, the alleged CP transformation is non-trivial but does not amount to anything similar
to CP as known from the SM (or any other theory). It is rather an additional discrete
symmetry transformation enlarging 𝛥(27) to some larger symmetry group. Again, this is an
artefact from the inclusion of the complex conjugate fields in 𝛷.

The consistency condition as proposed by Holthausen, Lindner and Schmidt [15] therefore
does, if it can be solved, ensure consistency with the discrete symmetry group, but there is
no intrinsic connection to CP.



VII.4 Proper CP for discrete groups 105

Examining the various automorphisms of 𝛥(27) and their actions on irreducible represent-
ations, which are also shown in (A.1.21), one realises that there are several types of solutions,
depending both on the field content of a model and on the chosen automorphism. Let us
hence discuss the possible types of solutions to (3.16).

As mentioned earlier, the crucial constraint is Schur’s lemma. By construction, the repres-
entation 𝑹u� is a direct sum of the irreducible representations of all fields and their conjugate
representations. According to Schur’s lemma only equivalent irreducible representations
can be intertwined (of course, this was precisely used to define the notion of equivalent rep-
resentations) and the dimension of the space of their intertwiners is one. If there are no two
fields in identical or mutually complex conjugate representations, i.e. if the decomposition
of 𝑹u� into irreducible representations is free of duplicates, and provided there is a solution
at all, the full intertwiner of 𝑹u� and 𝑹u� ∘ 𝑢 spelt out in its matrix form 𝑈u�u� consists of blocks
for each of the irreducible components of 𝑹u�. The transformation (3.11) can thus be written
as

𝜑u� ⟼ 𝑈u�u�(𝜑u�) 𝜑(∗)
u� , ∀ 𝑖 , (4.13)

i.e. each field in an irreducible representation is mapped to the same (𝑖 = 𝑗) or a different
(𝑖 ≠ 𝑗) field, conjugated or not, and multiplied with a possibly trivial matrix 𝑈u�u�(𝜑u�), which
is uniquely determined up to a phase. If there are several fields in the same irreducible
representation, i.e. if the decomposition of 𝑹u� is not multiplicity free, they can, in addition,
be rotated into each other by a unitary transformation which is left undetermined by (3.16).
This is equivalent to the statement in Schur’s lemma that the space of intertwiners has as
dimension the number of equivalent irreducible constituents, see Theorem 9.

Building on these general considerations, let us list the different types of solutions to the
consistency equation (3.16); the reasoning behind the (telling) names is explained in detail
below.

Proper (generalised) CP: Every field is sent to its own complex conjugate and multiplied
by a (possibly trivial) matrix,

𝜑u� ⟼ 𝑈u�u�(𝜑u�) 𝜑∗
u� , ∀ 𝑖 . (4.14)

Here and in the following, 𝑈u�u�(𝜑u�) denotes the matrix obtained from equation (3.16)
for the field 𝜑u�.

Extended proper CP: Every field is sent to the complex conjugate of a possibly different
field in the same representation and multiplied by a (possibly trivial) matrix,

𝜑u� ⟼ 𝑈u�u�(𝜑u�) 𝜑∗
u� , ∀ 𝑖 . (4.15)

This type is structurally identical to the first type because the representations of 𝜑u�
and 𝜑u� are the same (otherwise, this transformation would not solve the consistency
condition, see the discussion above).

Discrete symmetry: Every field is sent to itself and multiplied by a (possibly trivial) matrix,

𝜑u� ⟼ 𝑈u�u�(𝜑u�) 𝜑u� , ∀ 𝑖 . (4.16)

Hence, the transformation just acts as an ordinary discrete symmetry.
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CP-like: Some fields are sent to complex conjugated fields and some fields are sent to
non-conjugated fields. That is, this type is a mixture of an (extended) proper CP and
a discrete symmetry. Note that, if no field is sent to its own complex conjugate, one
can arrive at a discrete symmetry type transformation by adjusting the conventions
on which field is called conjugate, i.e. by exchanging the notation 𝜑∗ ↔ 𝜑. Hence, in
the following it is assumed that this freedom is used to reduce the transformation to
the discrete symmetry type whenever possible, and a transformation is only called
CP-like if this reduction is impossible.

After identifying these different types of transformations as possible solutions to the
consistency condition (3.16), one can determine which of them should be considered proper
physical CP transformations.

VII.4.1 Physically motivated conditions on CP

The goal of any model of physics beyond the Standard Model is to provide an explanation
for some of the unsolved problems of the SM, e.g. solve the flavour puzzle. Of course,
this implies that the low-energy limit of such a theory should be the SM. Applied to CP,
the low-energy remnant of any generalised CP transformation should lead to a consistent
CP transformation for the effective SM as shown in (1.18). Let us now discuss this for the
different types of transformation behaviours described above.

Discrete symmetry

The transformations termed ‘discrete symmetry’ above, where no field is conjugated, do
certainly not fulfil the criterion that they can lead to a proper SM CP transformation in the
low-energy limit. Rather, these transformations are, as also seen in the example discussed
before, just what the name suggests: additional discrete symmetry transformations. For
example, one could start with an A4 model, impose such a solution to the consistency
equation as a symmetry, and end up with an S4 model. This enlarged symmetry can change
model predictions, but there is no connection whatsoever to CP. Thus, any such solution
should be discarded when looking for generalisations of CP.

Proper generalised CP

The opposite situation is what was called ‘proper generalised CP’. In this case, each irre-
ducible multiplet is sent to its own conjugate and multiplied by some matrix which can be
obtained from (3.16). This clearly mimics the CP transformation (1.18). In fact, putting the
quarks, say, in some three-dimensional representation of a discrete group 𝐺, the consistency
equation just puts a constraint on what kind of matrices are allowed in (1.18), depending on
the structure of 𝐺 and the chosen automorphism. Any such transformation would thus lead
to a zero Jarlskog determinant, i.e. CP invariance, in perfect accordance with the discussion
of CP in the SM. Moreover, the action of such a transformation on the Baryon number
operator is, of course, also as known from the SM, cf. e.g. [185], i.e. without violating this
symmetry no Baryon asymmetry could arise [34]. It is hence clear that, on the present level
of the discussion, this class of transformations deserves its name and should be considered
a valid generalisation of CP to models with discrete symmetries. Note that one can also try
to define CP as inversion of quantum numbers as done for continuous groups by Grimus
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and Rebelo [14]. This is discussed in Section VII.13. However, it turns out that this does not
lead to any new unambiguous constraints on CP transformations besides the present ones.

The ‘extended proper CP’ transformations are from the group theory viewpoint no
different from the non-extended ‘proper CP’ transformations. However, exchanging, for
example, two particles transforming in the same representation of 𝐺 can, of course, have
effects on the phenomenology of a model. Since such statements obviously depend on the
model rather than on the group theory and since any ‘extended proper CP’ transformation
can be replaced by a non-extended one, this type of transformation is not discussed explicitly
any further.

CP-like transformations

‘CP-like’ transformations are the most subtle type. Let us first repeat, however, that us-
ing the freedom to rename a conjugate field 𝜑∗ to 𝜑, one can change the appearance of a
transformation. For example, let the transformation be such that

𝜑u� ⟼ 𝜑∗
u� , 𝑖 ≠ 𝑗 , (4.17)

which looks like part of an ‘extended proper CP’ transformation. Renaming 𝜑u� ↔ 𝜑∗
u� this

reads

𝜑u� ⟼ 𝜑u� , (4.18)

i.e. it looks like a discrete symmetry transformation. If no field in an irreducible representa-
tion is mapped to its own complex conjugate (perhaps multiplied by a matrix), one can use
this freedom to reduce the transformation to a discrete symmetry transformation. In this
case, this is not a CP transformation even though it might have looked like one before the
relabelling.16

Thus, the only real ‘CP-like’ transformations are such that one or several fields are mapped
to their own complex conjugates without all mappings obeying the more stringent constraints
of an ‘(extended) proper CP’ transformation. These cases are rather difficult to judge.

If any SM field, which might be a subset of some larger discrete symmetry representation,
is not sent to its own complex conjugate, the transformation does certainly not resemble CP.
In particular, if this is the case for a quark field, the Jarlskog determinant is not forced to
vanish and Baryogenesis could occur without breaking this transformation.

However, one can also imagine the case that all fields giving rise to Standard Model
fields after breaking of the additional discrete symmetry are mapped to their own complex
conjugates by the transformation under consideration. Only some additional fields, e.g.
flavons, would have an unusual transformation behaviour. It seems impossible to completely
rule out this case just by analogy to the SM.

Nonetheless, there are some valid objections even to this case. The first is that the two
sectors of fields with a proper and an improper transformation behaviour, respectively, are

16 In the simple case of an order two CP transformation, this is obvious. If the CP transformation only closes
after several applications, i.e. u�u�u� = id only for u� greater than two, this is somewhat less trivial. However,
in any orbit obtained by applying CP consecutively to a given field until one arrives again at the original
field, the number of different fields appearing involved is the same as the number of mappings, and any
field shows up in precisely one such orbit. That is, the number of possible re-labellings is as large as the
number of conditions from the mappings, and one can always rewrite the map into a discrete symmetry
transformation.
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to a certain degree decoupled. To illustrate this, assume there are two operators 𝑶1/2 made
up of one or several fields such that some contraction

𝑶1 𝑶2 (4.19)

is an invariant of the discrete group. If the CP-like transformation is such that

𝑶1 ⟼ 𝑶1 , (4.20a)
𝑶2 ⟼ 𝑶†

2 , (4.20b)

the product of the two operators is neither mapped to its Hermitian conjugate nor to itself
but

𝑶1 𝑶2 ⟼ 𝑶1 𝑶†
2 . (4.21)

If 𝑶2 does not transform in a real representation under all symmetries, 𝑶1 𝑶†
2 is forbidden

by a symmetry if 𝑶1 𝑶2 is allowed. Thus, 𝑶1 𝑶2 is forbidden by the CP-like transformation.
Let us illustrate this with an example. Take 𝑶1 = 𝝋1 and 𝑶2 = 𝝋2, where 𝝋1/2 are

multiplets of the discrete group 𝐺. If the two fields are oppositely charged under a global U(1)
symmetry such that their product is invariant, the CP-like transformed term is forbidden by
the U(1) symmetry.17 The term 𝝋1 𝝋2 thus would have to be absent from the Lagrangian.

Moreover, the two fields could not share any gauge quantum number because, if they
were coupling to the same gauge bosons, only one of the two couplings could be invariant
under the CP-like transformation; for the other term the transformation behaviour of the
gauge bosons would be wrong. To be precise, let the U(1) symmetry from before be gauged.
Then the gauge boson would have to transform trivially for the 𝝋1 gauge coupling to be
non-zero and to transform like (1.14) for the 𝝋2 gauge coupling to be allowed.

In addition to that, the arguments on CP as inversion of quantum numbers presented in
Section VII.13 below also single out the case of ‘proper generalised CP’ transformations as
the only valid type.

For all these reasons, it seems justified only to call transformations fulfilling the criteria of
‘proper generalised CP’ transformations CP transformations at all and dismiss all the other
types from the discussion. This result has profound consequences that are presented in the
following.

VII.4.2 The refined consistency condition

The physical arguments of the preceding section single out the transformation behaviour of
what was called ‘proper generalised CP’ transformations as the only valid generalisation of
CP to models with discrete symmetries. One can feed this back into the consistency equation
to obtain constraints on the automorphisms that can be used to define a CP transformation.18

A CP transformation of the required form

𝜑u�
u�u�⟼ 𝑈u�u�(𝜑u�) 𝜑∗

u� , ∀ 𝑖 , (4.22)

17 This can also be understood using the result of Grimus and Rebelo [14] because the transformation of u�1
does not obey their criteria for a CP transformation of the U(1) symmetry.

18 The specifications ‘proper’ and ‘generalised’ are dropped hereafter since only transformations fulfilling the
corresponding criteria are considered CP transformations.
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means that the matrix 𝑈u�u� in (3.16) is block-diagonal. Thus, the single blocks 𝑈u�u�(𝜑u�) are
solutions to a new, refined consistency condition,

∃ 𝑢 ∈ Aut(𝐺) ∶ 𝑈u�u�(𝜑u�) 𝜌𝑹u�u�
(𝑔)∗ 𝑈u�u�(𝜑u�)−1 = 𝜌𝑹u�u�

(𝑢(𝑔)) , ∀ 𝑔 ∈ 𝐺 , ∀ 𝑖 , (4.23)

where 𝑹u�u�
is the irreducible representation of 𝜑u�. Let us, furthermore, assume that the

representation content of a model, i.e. the set of inequivalent irreducible representations
that at least one field of the model resides in, is the full set of irreducible representations
of the group 𝐺. In fact, depending on the group this assumption is stronger than needed,
as can be seen in an example below. Furthermore, one can replace this assumption by the
requirement that the CP transformation should be independent of the actual field content of
a model. Then equation (4.23) can be read as an equation for each irreducible representation
𝑹u� of the group 𝐺:

∃ 𝑢 ∈ Aut(𝐺) ∶ 𝑈u� 𝜌𝑹u�
(𝑔)∗ 𝑈−1

u� = 𝜌𝑹u�
(𝑢(𝑔)) , ∀ 𝑔 ∈ 𝐺 , ∀ 𝑖 . (4.24)

Note that the 𝑈u� are always chosen unitary here. The matrix 𝑈u�u� as defined by Holthausen,
Lindner and Schmidt [15], i.e. the transformation matrix of 𝛷, is then a block-diagonal
matrix, where each block up to a phase only depends on the type of representation that the
corresponding field transforms in.

The refined consistency condition (4.24) poses stringent constraints on the available auto-
morphisms 𝑢.

𝑢 is class-inverting

Taking the trace of equation (4.24), one obtains the relation

𝜒𝑹u�
(𝑔−1) = 𝜒𝑹u�

(𝑔)∗ = tr (𝜌𝑹u�
(𝑔))

∗
= tr (𝜌𝑹u�

(𝑢(𝑔))) = 𝜒𝑹u�
(𝑢(𝑔)) , ∀ 𝑔 ∈ 𝐺 , ∀ 𝑖 ,

(4.25)

for the characters of the irreducible representations 𝑹u� of 𝐺.
An automorphism 𝜏 of 𝐺 is said to be class-inverting if and only if 𝜏(𝑔) is in the same

conjugacy class as 𝑔−1 for all 𝑔 in 𝐺, cf. [186, 187]. Since group characters separate the
conjugacy classes, see the remark below Definition 22, any 𝑢 fulfilling (4.24) has to be class-
inverting. This can also be turned around. Any class-inverting automorphism, i.e. any
automorphism fulfilling (4.25), allows for a solution to equation (4.24). This is a simple
consequence of the bijective correspondence between irreducible characters and irreducible
representations, see Definition 21. The matrices 𝑈u� are just the corresponding intertwiners
in the chosen basis. A GAP code determining whether an automorphism is class-inverting
is shown in Appendix C.

Let us introduce some more terminology following [186]. A conjugacy class is called real
if and only if its elements are conjugate to their inverse elements. If a group has only real
conjugacy classes, it is called ambivalent, and any inner automorphism is class-inverting.
This is equivalent to all irreducible characters of the group being real. A class-inverting
automorphism either acts class-preservingly on a conjugacy class, which is then necessarily
a real class, or it interchanges this conjugacy class with its inverse conjugacy class. Hence, a
class-inverting automorphism can have odd order only for ambivalent groups.
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Restrictions on the order of 𝑢

Applying a CP transformation twice to fields 𝜑𝑹u�
transforming in the irreducible representa-

tions 𝑹u� yields

𝜑𝑹u�

u�u�⟼ 𝑈u� 𝜑∗
𝑹u�

u�u�⟼ 𝑈u� 𝑈∗
u� 𝜑𝑹u�

≕ 𝑉u� 𝜑𝑹u�
, ∀ 𝑖 , (4.26)

where 𝑉u� fulfils

𝑉u� 𝜌𝑹u�
(𝑔) 𝑉−1

u� = 𝑈u� 𝜌𝑹u�
(𝑢(𝑔))∗ 𝑈−1

u� = 𝜌𝑹u�
(𝑢2(𝑔)) = 𝜌𝑹u�

(𝑣(𝑔)) , ∀ 𝑔 ∈ 𝐺 , ∀ 𝑖 , (4.27)

with 𝑣 ≔ 𝑢2, which is a class-preserving automorphism. If the CP transformation is a
symmetry, the square of it is also a symmetry. Thus, by introducing a CP symmetry, one
might effectively end up with a larger discrete symmetry group than desired.

For the following discussion, it is convenient to distinguish three different cases.

(i) 𝑣 is the identity automorphism,

(ii) 𝑣 is an inner automorphism but not the identity, and

(iii) 𝑣 is not an inner automorphism.

If 𝑣 is the identity automorphism, 𝑢2 = id and 𝑢 is said to be involutory. One can show
that this assumption is equivalent to 𝑉u� = ±𝟙 for all 𝑖.

Plugging the assumption 𝑣 = id into equation (4.27) shows that each 𝑉u� is a self-intertwiner
for the irreducible representation 𝑹u�. Thus,

𝑉u� = ei u�u� 𝟙 ⇔ 𝑈u� = ei u�u� 𝑈u�
u� , ∀ 𝑖 . (4.28)

This is only possible if the phases 𝛼u� are either zero or 𝜋, i.e. 𝑉u� = ±𝟙 and the 𝑈u� are either
symmetric (+) or anti-symmetric (−). The reverse direction follows directly from (4.27) by
plugging in 𝑉u� = ±𝟙 and using the fact that all irreducible representations taken together,
i.e. their direct sum, are faithful.19

One can thus conclude that if an involutory, class-inverting automorphism 𝑢 is chosen
in order to obtain a CP transformation, the discrete group 𝐺 is either not enlarged at all or
only enlarged to the direct product 𝐺 × ℤ2, where the charges of fields under the ℤ2 are
determined by their irreducible 𝐺 representation as sign(𝑉u�). This case is illustrated with an
example in Section VII.9.2. Note that groups with class-inverting, involutory automorphisms
that are not ambivalent are called quasi-ambivalent, cf. [187].

The second case to be considered is that 𝑢 squares to a non-trivial inner automorphism
𝑣, which implies that ord 𝑢 > 2. It turns out that such automorphisms seem not to make
any predictions that are physically distinct from automorphisms of order two. The reason
is that, as verified by an explicit computation with GAP, no group up to order 300 (with
some exceptions that could not be checked, see Section A.4.1) has a class-inverting auto-
morphism that is not connected to an involutory, class-inverting automorphism via an
inner automorphism. For automorphisms of order ord (𝑢) = 4𝑚 + 2 for integer 𝑚, of odd
order, and for all automorphisms of odd-order groups, it is even proved in Section A.4.1
that such a correspondence exists. Here, being connected to a class-inverting, involutory

19 The implication that u� = 𝟙 means u�2 = id has also been realised in [188]. However, the other direction was
not considered; in particular, it was not realised that an involutory automorphism can lead to u�u� different
from the unit matrix.
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automorphism means that the composition of the given automorphism with some inner
automorphism as described in equation (3.17) is class-inverting and involutory. As the
corresponding CP transformations differ only by a symmetry transformation, see equa-
tion (3.18), their physical predictions are identical. Thus, it does not make much sense
to discuss the class of higher-order class-inverting automorphism that square to an inner
automorphism separately.

The last case is that the automorphism 𝑢 does not square to an inner automorphism. Note
that there really are class-preserving automorphisms that are not inner automorphisms,
see e.g. group SG(32,43).20 Again, no example for such a class-inverting automorphism
that is not linked to an involutory, class-inverting automorphism has been found in the
scan up to order 300. If such a case exists at all, the resulting discrete symmetry group
𝐻 = 𝐺 ou� ℤord(u�) is a non-trivial semi-direct product as proved in Section A.4.2. However,
the irreducible representations of 𝐺 are contained in irreducible representations of 𝐻 of the
same dimension, i.e. one does not have to add further fields to obtain a viable model, and the
additional symmetry only forbids couplings. Nonetheless, the behaviour of this case is not
desired because the discrete symmetry group is non-trivially enlarged by introducing the CP
symmetry. For this reason, and because no case is known at all, this type of automorphism
is not considered any further.

Thus, to conclude, only class-inverting automorphisms can be used to obtain proper CP
transformations. Moreover, for all practical purposes, one can restrict one’s attention to
involutory automorphisms.

After establishing these constraints on possible CP transformations, the connection of CP
violation to complex Clebsch–Gordan coefficients is explained in the following section.

VII.5 Bickerstaff–Damhus automorphisms

Bickerstaff and Damhus [164] showed that a given set of matrix realisations 𝜌𝑹u�
(𝑔) of the

irreducible representations 𝑹u� of a non-abelian finite group 𝐺 allows for completely real
Clebsch–Gordan coefficients21 if and only if there exists an automorphism 𝜏 of 𝐺 that satisfies

𝜌𝑹u�
(𝑔)∗ = 𝜌𝑹u�

(𝜏(𝑔)) , ∀ 𝑔 ∈ 𝐺 , ∀ 𝑖 . (5.1)

This looks like a special version of the consistency condition (4.24). By inserting equation (5.1)
into itself it follows that the automorphism 𝜏 is involutory and taking the trace one sees that
𝜏 is class-inverting.

If there is an automorphism fulfilling (5.1) for a given basis, it is unique [164]. This can
be proved in the following way. Let 𝜏 and 𝜏′ be two automorphisms of 𝐺 which both fulfil
equation (5.1) for the same matrix realisations 𝜌𝑹u�

(𝑔) of the irreducible representations 𝑹u�.
Then

𝜌𝑹u�
(𝜏(𝑔)) = 𝜌𝑹u�

(𝑔)∗ = 𝜌𝑹u�
(𝜏′(𝑔)) , ∀ 𝑔 ∈ 𝐺 , ∀ 𝑖 . (5.2)

Since the combination of all irreducible representations is faithful, their combined pre-image
is unique and

𝜏(𝑔) = 𝜏′(𝑔) , ∀ 𝑔 ∈ 𝐺 . (5.3)

20 The notation SG(u�,u�) denotes the u�-th group of order u� in the SmallGroups library of GAP, i.e. the numbers
in parenthesis are the group’s SmallGroups ID.

21 One can, of course, introduce superfluous phases by the phase rotations discussed in Section II.6.
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However, the statement of (5.1) depends explicitly on the chosen basis. Transforming to a
different basis 𝜌′

𝑹u�
(𝑔) = 𝑆u� 𝜌𝑹u�

(𝑔) 𝑆†
u� , equation (5.1) reads

𝜌′
𝑹u�

(𝜏(𝑔)) = (𝑆u� 𝑆u�
u� ) 𝜌′

𝑹u�
(𝑔)∗ (𝑆u� 𝑆u�

u� )† ≕ 𝑈u� 𝜌′
𝑹u�

(𝑔)∗ 𝑈†
u� , ∀ 𝑔 ∈ 𝐺 , ∀ 𝑖 . (5.4)

This is precisely the consistency condition (4.24) with the additional requirement that all
matrices 𝑈u� should be symmetric. That is, if and only if the condition

∃ 𝜏 ∈ Aut(𝐺) ∶ 𝜌′
𝑹u�

(𝜏(𝑔)) = 𝑈u� 𝜌′
𝑹u�

(𝑔)∗ 𝑈†
u� , 𝑈u� symmetric, ∀ 𝑔 ∈ 𝐺 , ∀ 𝑖 . (5.5)

is fulfilled, there is a basis of 𝐺 in which one can choose all Clebsch–Gordan coefficients to be
real. In fact, this is then true in all bases for which all 𝑈u� = 𝟙 for the given automorphism 𝜏.
These bases are connected by orthogonal basis transformations 𝑆u�.

Note that, while an automorphism fulfilling (5.1) for a given basis is uniquely determined,
the basis-dependence implies that there can be several automorphisms fulfilling the condi-
tion (5.1) for different bases.22 Using alternatively the condition (5.5) and fixing a basis, there
can be several different sets of 𝑈u� which solve the equation for different automorphisms.

Any automorphism 𝜏 fulfilling (5.5) is henceforth called Bickerstaff–Damhus automorph-
ism. As equation (5.5) is more stringent than the consistency condition (4.24), any Bickerstaff–
Damhus automorphism defines a proper CP transformation. In fact, in the basis where
equation (5.1) holds, this CP transformation is the canonical CP transformation with 𝑈u�u� = 𝟙.
However, the reverse direction is not always true as was seen earlier; not every class-inverting,
involutory automorphism is a Bickerstaff–Damhus automorphism because the correspond-
ing 𝑈u� can be anti-symmetric.

The result by Bickerstaff and Damhus [164] implies that non-quasi-ambivalent groups
do not admit any basis with completely real Clebsch–Gordan coefficients. In particular,
non-abelian groups of odd order do not have such a basis. The proof of this statement can
be found in Section A.4.3.

Although quasi-ambivalence is, in general, only a necessary condition for a basis with real
Clebsch–Gordan coefficients, there are some groups for which it is also sufficient. This is the
case for groups with only odd-dimensional irreducible representations [189]. The reason is
that there is no anti-symmetric unitary, i.e. invertible, matrix in odd dimensions. Hence,
given any involutory, class-inverting automorphism for such a group, all corresponding
matrices 𝑈u� are symmetric, i.e. the automorphism is a Bickerstaff–Damhus automorphism.
In summary, any quasi-ambivalent group with only odd-dimensional irreducible represent-
ations allows a choice of basis where the Clebsch–Gordan coefficients are real. An example
where this can be applied is the tetrahedral group A4.

Another special case are ambivalent groups. They have at least one Bickerstaff–Damhus
automorphism if there is a group element 𝑔 ∈ 𝐺 such that its characters are [189]

𝜒𝑹u�
(𝑔) =

⎧{
⎨{⎩

dim 𝑹u� , 𝑹u� real
− dim 𝑹u� , 𝑹u� pseudo-real

, ∀ 𝑖 . (5.6)

In all other cases, one has to verify explicitly whether there is a Bickerstaff–Damhus
automorphism and thus a basis with real Clebsch–Gordan coefficients. In the next section,
a tool is introduced to greatly simplify this task.

22 For example, the group SG(64,109) has two distinct Bickerstaff–Damhus automorphisms that are both not
inner and that also do not differ by an inner automorphism. For other examples, see the list in Appendix D.
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VII.6 Twisted Frobenius–Schur indicator

One disadvantage of equation (5.5) is that it explicitly requires the representation matrices
for all irreducible representations of a group. There is, however, also a possibility to check
whether a given automorphism is a Bickerstaff–Damhus automorphism that only requires
the characters of the group. The desired tool is the so-called twisted Frobenius–Schur
indicator [164, 190].

In analogy to the (ordinary) Frobenius–Schur indicator presented in Theorem 12, the
twisted Frobenius–Schur indicator for an irreducible representation 𝑹u� of a finite group 𝐺
and an automorphism 𝜏 of this group is defined by

FSu�(𝑹) ≔
1

|𝐺|
∑
u�∈u�

𝜒𝑹(𝑔𝜏(𝑔)) . (6.1)

A GAP code implementing this definition can be found in Appendix C. Applied to all
irreducible representations 𝑹u�, it assumes the values

FSu�(𝑹u�) =
⎧{
⎨{⎩

1 , ∀ 𝑖 , if 𝜏 is a Bickerstaff–Damhus automorphism,
±1 , ∀ 𝑖 , if 𝜏 is class-inverting and involutory,

(6.2a)

but
∃ 𝑖 ∶ FSu�(𝑹u�) ≠ ±1 if 𝜏 is not class-inverting and/or not involutory. (6.2b)

Together with the results of the previous section, the twisted Frobenius–Schur indicator
can be used to determine whether a given automorphism is a Bickerstaff–Damhus auto-
morphism. By checking all automorphisms of a group 𝐺, one can thus determine whether
this group allows for a basis with real Clebsch–Gordan coefficients. A sequence of steps to
determine whether a group has such a basis is shown in Figure VII.2.

In order to prove the statement (6.2), write the definition of the twisted Frobenius–Schur
indicator in terms of matrix components of an arbitrary (unitary) basis of 𝑹u�,

FSu�(𝑹u�) =
1

|𝐺|
∑
u�∈u�

[𝜌𝑹u�
(𝑔)]

u�u�
[𝜌𝑹u�

(𝜏(𝑔))]
u�u�

. (6.3)

In this form, one can apply the Schur orthogonality relations of Theorem 10. As explained
in Section VII.4.2, the irreducible representations realised by 𝜌𝑹u�

(𝑔) and 𝜌𝑹u�
(𝜏(𝑔))∗ are equi-

valent for all 𝑖 if and only if 𝜏 is class-inverting. Hence, if 𝜏 is not class-inverting, according
to Theorem 10, the twisted Frobenius–Schur indicator vanishes for at least one irreducible
representation, proving the last point of (6.2).

Let now 𝜏 be class-inverting. Then the consistency equation (4.24) has a solution, i.e. there
is a unitary matrix 𝑈u� for each irreducible representation 𝑹u� such that

𝑈u� 𝜌𝑹u�
(𝑔)∗ 𝑈−1

u� = 𝜌𝑹u�
(𝜏(𝑔)) , ∀ 𝑔 ∈ 𝐺 , ∀ 𝑖 . (6.4)

Inserting this into the twisted Frobenius–Schur indicator and simplifying the expression
one arrives at

FSu�(𝑹u�) =
1

|𝐺|
∑
u�∈u�

[𝜌𝑹u�
(𝑔)]

u�u�
[𝑈u�]u�u� [𝜌𝑹u�

(𝑔)∗]
u�u�

[𝑈−1
u� ]u�u�

=
1

dim 𝑹u�
𝛿u�u� 𝛿u�u� [𝑈u�]u�u� [𝑈∗

u� ]u�u�

=
1

dim 𝑹u�
tr (𝑈∗

u� 𝑈u�) .

(6.5)
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The order |𝐺| of 𝐺 is odd.

Does 𝐺 admit real Clebsch–Gordan coefficients?

All irreducible characters are real
and there is a group element 𝑔
with 𝜒𝑹u�

(𝑔) = ± dim 𝑹u� for all
irreducible representations 𝑹u�,
where + refers to real and −

to pseudo-real representations.

𝐺 has order 2 automorphisms.

At least one of them
is class-inverting.

𝐺 has only odd-dimensional
irreducible representations.

The twisted Frobenius–Schur
indicators of all irreducible
representations are +1 for

at least one automorphism.

no

no

yes

yes

no

YESNO

yes

yes

no

no

yes

no yes

Figure VII.2: This is a schematic overview of the steps one could follow to determine
whether a finite non-abelian group 𝐺 admits real Clebsch–Gordan coefficients.
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As already shown in Section VII.4.2, if 𝜏 is an involution, then each of the 𝑈u� is either
symmetric or anti-symmetric. Hence, the twisted Frobenius–Schur indicator in these two
cases is +1 or −1, respectively. Moreover, if the indicator is ±1, then 𝑈∗

u� 𝑈u� is ±𝟙; otherwise
tr (𝑈∗

u� 𝑈u�) could not be ± dim 𝑹u�. This then implies that 𝑈u� is symmetric or anti-symmetric,
respectively, and, therefore, that 𝜏 is an involution.

Thus, one can conclude that an automorphism is a Bickerstaff–Damhus automorphism if
and only if the twisted Frobenius–Schur indicator is +1 for all irreducible representations
𝑹u� of 𝐺. If it is ±1 for all irreducible representations but not +1 for all of them, 𝜏 is a class-
inverting involution. If the twisted Frobenius–Schur indicator is not ±1 for all irreducible
representations, 𝜏 is either not class-inverting or not involutory or neither of the two.

In addition, for involutory 𝜏, a zero of the indicator FSu� for at least one irreducible repres-
entation indicates that 𝜏 is not class-inverting. However, for higher-order automorphisms,
the twisted Frobenius–Schur indicator can vanish even though the automorphism is class-
inverting. For such higher-order automorphisms it can therefore be useful to define the
extended twisted Frobenius–Schur indicator which again has the property of being ±1 for
class-inverting automorphisms and zero for at least one irreducible representation oth-
erwise. Let 𝑛 ≔ ord (𝜏)/2 for even-order automorphisms and 𝑛 ≔ ord (𝜏) for odd-order
automorphisms. Then the 𝑛-th extended twisted Frobenius–Schur indicator23 is defined by

FSu�
u�(𝑹u�) ≔

(dim 𝑹u�)u�−1

|𝐺|u�
∑

u�1,…,u�u�∈u�
𝜒𝑹u�

(𝑔1𝜏(𝑔1) ⋯ 𝑔u�𝜏(𝑔u�)) . (6.6)

This indicator is again ±1 for all irreducible representations 𝑹u� for class-inverting 𝜏 and
zero for some irreducible representation otherwise. For the proof, which is analogous to
the one given for the normal twisted Frobenius–Schur indicator above, see Section A.4.5.
Furthermore, in Appendix C, a GAP code is presented which can be used to compute
extended twisted Frobenius–Schur indicators.24

VII.7 Three classes of discrete groups

Using the information obtained in the preceding sections on proper CP transformations, the
Bickerstaff–Damhus automorphism and the (extended) twisted Frobenius–Schur indicator,
it is now possible to categorise all discrete groups into three distinct classes.25

Type I: The group 𝐺 has no class-inverting, involutory automorphisms, i.e. for each auto-
morphism there is at least one irreducible representation such that the associated
twisted Frobenius–Schur indicator is zero. Thus, it is impossible to define a consistent
CP transformation in a generic setting, i.e. CP is generically violated.

Type II: The group 𝐺 has at least one class-inverting, involutory automorphism.
Type II A: For at least one of these automorphisms, all twisted Frobenius–Schur indic-

ators are +1. Hence, this automorphism is a Bickerstaff–Damhus automorphism,

23 For another generalisation of the twisted Frobenius–Schur indicator, cf. [191].
24 Note that for high–order automorphisms such a computation is rather time consuming. From a computa-

tional viewpoint it is better directly to check whether an automorphism inverts all conjugacy classes as
done by the function isClassinverting also presented in Appendix C.

25 In this classification, the possibility of higher-order class-inverting automorphisms that are not equivalent
to an involutory automorphism is neglected for the reasons outlined in Section VII.4.2.
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and there is a basis for 𝐺 with real Clebsch–Gordan coefficients. The automorph-
ism also leads to a proper CP transformation, which is identical to the canonical
one in the real Clebsch–Gordan basis.

Type II B: There is no automorphism for which all twisted Frobenius–Schur indicators
are +1. Hence, there is no Bickerstaff–Damhus automorphism, and there is no
basis with real Clebsch–Gordan coefficients. Nonetheless, one can define a proper
CP transformation using this automorphism. The discrete group is then possibly
enlarged by a ℤ2 factor.

Note that groups of type II A can have additional class-inverting, involutory automorphisms
that are not Bickerstaff–Damhus automorphisms, i.e. they may also have CP transformations
of type II B. The group itself is nonetheless categorised as type II A. Moreover, it is possible
to build models without physical CP violation even with type I groups if the representation
content of a model is restricted. This is explained in more detail in Section VII.8 and
illustrated by an example in Section VII.9.3.

The classification of discrete groups is also illustrated in Figure VII.3.
Examples for each of the three types are presented in Table VII.1. Note that probably all

non-abelian groups of odd order belong to type I, see the proof in Section A.4.3. The only
possible caveat to this statement are class-inverting automorphisms that square to non-inner
automorphisms. However, no such example is known to us, and we have checked explicitly
with GAP that there is no such case for any group up to order 599.

A list with the number of non-equivalent class-inverting automorphisms for each non-
abelian group up to order 100 that cannot be written as a direct product can be found in
Appendix D. Moreover, in Appendix C, a GAP routine is shown that can be used to look for
Bickerstaff–Damhus and class-inverting automorphisms of a finite group, i.e. to determine
into which class the group falls.

VII.8 CP as a symmetry and constraints on couplings

In this section, the implications of proper CP transformations on Lagrangians are discussed
in detail. In particular, the types of constraints on couplings for type I, type II A and
type II B are determined. A discussion of the effects of CP transformations for type I groups
might seem contradictory to the statements made above that in generic setting there is no
CP transformation for such groups. However, as is also shown in an explicit example in
Section VII.9.3, it is possible to define a CP transformation if the representation content of
the model at hand is such that for all present representations the Frobenius–Schur indicators
for the given automorphism are ±1. In this case, all statements about the CP transformation
matrices 𝑈u� made below are only true for these representations. Note, furthermore, that
again, for the reasons presented in Section VII.4.2, only involutory automorphisms are
considered.

For the discussion of CP transformations, it is convenient to work in a special basis. As, by
assumption, the automorphism 𝑢 has order two, the matrices 𝑈u� for the CP transformation of
the irreducible representations 𝑹u� are either symmetric or anti-symmetric [189]. Specialising
from the general case of normal forms for generalised CP transformations discussed in [24],
which is also reviewed in Section A.6.4, to symmetric and anti-symmetric matrices, one
obtains the result that one can write the 𝑈u� as

𝑈u� = 𝑆u� 𝛴u�/u� 𝑆u�
u� , (8.1)
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group 𝐺 with
automorphisms 𝑢

there is a
class-inverting 𝑢

Type II: 𝑢 defines
a physical CP
transformation

there is a 𝑢 for which
all FSu�’s are +1

Type II A: there is
a CP basis in which

all CG’s are real

Type II B: there is
no basis in which
all CG’s are real

Type I: generic
settings based on

𝐺 do not allow
for a physical CP
transformation

no

yes

yes

no

Figure VII.3: The classification of discrete groups into three classes.

𝐺 ℤ5 o ℤ4 𝑇7 𝛥(27) ℤ9 o ℤ3

SG (20,3) (21,1) (27,3) (27,4)

(a) Type I.

𝐺 𝑄8 A4 ℤ3 ⋊ ℤ8 T′ 𝑆4 𝐴5

SG (8,4) (12,3) (24,1) (24,3) (24,12) (60,5)

(b) Type II A.

𝐺 𝛴(72) ((ℤ3 × ℤ3) o ℤ4)oℤ4

SG (72,41) (144,120)

(c) Type II B.

Table VII.1: Examples for each of the three classes of discrete groups. See (a) for
type I, (b) for type II A and (c) for type II B. For each group its trivial name and its
SmallGroups library ID are shown.
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with unitary 𝑆u� and

𝛴u� ≔ 𝟙 , if 𝑈u� is symmetric, i.e. for FSu�(𝑹u�) = 1, (8.2a)

𝛴u� ≔

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1
−1

⋱
1

−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, if 𝑈u� is anti-symmetric, i.e. for FSu�(𝑹u�) = −1.

(8.2b)

Note that the anti-symmetric case does not arise for odd-dimensional irreducible repres-
entations [189] because the 𝑈u� are unitary and, therefore, have full rank. Changing basis
to

𝜌𝑹u�
(𝑔) → 𝑆†

u� 𝜌𝑹u�
(𝑔) 𝑆u� , ∀ 𝑔 ∈ 𝐺 , (8.3)

the transformed 𝑈u� are

𝑆†
u� 𝑈u� 𝑆∗

u� = 𝛴u� = 𝛴u�/u� . (8.4)

Before discussing the most general case of contractions of 𝑛 fields, focus first on the
contraction of two fields. Let 𝜑 and 𝜓 be two scalar fields transforming in irreducible repres-
entations 𝑹u� and 𝑹u� of a discrete group 𝐺 and consider their contraction to a representation
𝑹u�, which can be written

(𝜑 ⊗ 𝜓)𝑹u�
= 𝑃𝑹u�

𝐶†
𝑹u�⊗𝑹u�

(𝜑 ⊗ 𝜓) . (8.5)

For the definition of the Clebsch–Gordan matrices, see (II.6.6), and note that they are chosen
unitary here. The matrix 𝑃𝑹u�

is the (usually non-diagonal) projection matrix containing
only ones and zeros such that

𝑃𝑹u�
(⨁

u�
𝜌𝑹u�

(𝑔)) 𝑃u�
𝑹u�

= 𝜌𝑹u�
(𝑔) , ∀ 𝑔 ∈ 𝐺 , (8.6)

i.e. the projection matrix which singles out the correct representation from the direct sum.
The generalised CP transformation acts on the fields 𝜑 and 𝜓 of the contraction (8.5) as

𝜑 u�u�⟼ 𝑈𝑹u�
𝜑∗ , (8.7a)

𝜓 u�u�⟼ 𝑈𝑹u�
𝜓∗ (8.7b)

with unitary matrices 𝑈𝑹u�
and 𝑈𝑹u�

.
Note that there are several undetermined phases in these expressions.

(i) As explained in Section II.6, there are adjustable phases in the unitary Clebsch–Gordan
matrix 𝐶𝑹u�⊗𝑹u�

. To be precise, there is one global phase for each irreducible represent-
ation 𝑹u� in the product of 𝑹u� and 𝑹u�.

(ii) The overall phase of each CP transformation matrix 𝑈u� can be chosen individually
for each field because it is not fixed by equation (4.24). This just reflects the general
freedom to re-phase each field operator.
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It is now possible to determine the CP transformation behaviour of the compound expres-
sion (𝜑 ⊗ 𝜓)𝑹u�

from the transformations of 𝜑 and 𝜓, 26

(𝜑 ⊗ 𝜓)𝑹u�

u�u�⟼ 𝑃𝑹u�
𝐶†

𝑹u�⊗𝑹u�
(𝑈𝑹u�

⊗ 𝑈𝑹u�
) (𝜑∗ ⊗ 𝜓∗)

= 𝑃𝑹u�
[𝐶†

𝑹u�⊗𝑹u�
(𝑈𝑹u�

⊗ 𝑈𝑹u�
) 𝐶∗

𝑹u�⊗𝑹u�
] 𝐶u�

𝑹u�⊗𝑹u�
(𝜑∗ ⊗ 𝜓∗)

≕ 𝑃𝑹u�
𝑈𝑹u�⊗𝑹u�

𝐶u�
𝑹u�⊗𝑹u�

(𝜑∗ ⊗ 𝜓∗) .

(8.8)

For type II groups, also the representation 𝑹u� has a definite transformation behaviour
under CP given by the matrix 𝑈𝑹u�

. One might thus expect that the compound expression
(𝜑 ⊗ 𝜓)𝑹u�

transforms as

(𝜑 ⊗ 𝜓)𝑹u�

u�u�⟼ 𝑈𝑹u�
[(𝜑 ⊗ 𝜓)𝑹u�

]
∗

. (8.9)

The two transformations are consistent if

𝑈𝑹u�
𝑃𝑹u�

= 𝑃𝑹u�
𝑈𝑹u�⊗𝑹u�

= 𝑃𝑹u�
𝐶†

𝑹u�⊗𝑹u�
(𝑈𝑹u�

⊗ 𝑈𝑹u�
) 𝐶∗

𝑹u�⊗𝑹u�
(8.10)

up to the aforementioned phases.
Let us discuss this condition for type II A and type II B groups (for type I, see further

below).
In the case of type II A groups and if the automorphism that underlies the CP trans-

formation is a Bickerstaff–Damhus automorphism, one can just work in the special basis
described above, where the 𝑈u� for all irreducible representations 𝑹u� are unit matrices. As
explained in Section VII.5, this is, for a suitable choice of the free phases, also the basis with
real Clebsch–Gordan coefficients. Hence, the condition (8.10) is fulfilled. Moreover, the
basis transformation behaviour of the objects in equation (8.10) is such that this holds in
any other basis as well for appropriate phase choices.

In the case of type II B groups or if the automorphism that underlies the CP transformation
for a type II A group is not a Bickerstaff–Damhus automorphism, the discussion is more
involved. There is no basis with completely real Clebsch–Gordan coefficients and not all of
the 𝑈u� can be transformed to unit matrices, but some of them have instead the anti–symmetric
standard form 𝛴u�. Consider, as an example, the special case where 𝑈𝑹u�

= 𝑈𝑹u�
= 𝟙 and

𝑈𝑹u�
= 𝛴u�. Multiplying equation (8.10) with 𝑃u�

𝑹u�
from the right, one obtains the condition

𝛴u� = 𝑃𝑹u�
𝐶†

𝑹u�⊗𝑹u�
𝐶∗

𝑹u�⊗𝑹u�
𝑃u�

𝑹u�
, (8.11)

which cannot be true as the right-hand side is a symmetric matrix while the left-hand side
is an anti-symmetric matrix. That is, there are cases in which equation (8.10) cannot be
solved. Imposing CP as a symmetry removes these problematic terms from the Lagrangian.
As we shall see below, this is the extra ℤ2 factor described in Section VII.4.2 by which the
symmetry group is enlarged.

Let us discuss this again in a more general manner. Note that the only assumptions are
that the automorphism chosen is of order two and that only fields in those representations
are part of the model that are sent to their conjugates by the automorphism. This covers
types II A and II B as well as type I with a restricted representation content.

26 Note that the resulting representation is 𝑹u� ∘ u� instead of 𝑹u� because the projection still projects out the
same lines as before which now contain, however, the CP transformed representation.
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Consider the tensor product ⨂u� 𝜑u� of fields 𝜑u� in irreducible representations 𝑹u�u�
. The

corresponding Clebsch–Gordan coefficients are denoted by 𝐶⊗u�𝑹u�u�
and they fulfil

𝐶†
⊗u�𝑹u�u�

(⨂
u�

𝜌𝑹u�u�
(𝑔)) 𝐶⊗u�𝑹u�u�

= ⨁
u�

(𝟙u�(u�) ⊗ 𝜌𝑹u�
(𝑔)) , ∀ 𝑔 ∈ 𝐺 , (8.12)

where 𝜇(𝑘) is the multiplicity of the irreducible representation 𝑹u� in the tensor product.
This is just a generalisation of equation (II.6.6) to multiple fields. As can be easily verified,
the CP transformation matrix

𝑈⊗u�𝑹u�u�
≔ 𝐶†

⊗u�𝑹u�u�
⨂

u�
𝑈𝑹u�u�

𝐶∗
⊗u�𝑹u�u�

(8.13)

that follows from the CP transformations of the individual fields fulfils the consistency
equation

⨁
u�

(𝟙u�(u�) ⊗ 𝜌𝑹u�
(𝑢(𝑔))) = 𝑈⊗u�𝑹u�u�

(⨁
u�

(𝟙u�(u�) ⊗ 𝜌𝑹u�
(𝑔)∗)) 𝑈†

⊗u�𝑹u�u�
, ∀ 𝑔 ∈ 𝐺 , (8.14)

which is just the tensor product version of (4.24). This, by Schur’s lemma, implies for type II

𝑈⊗u�𝑹u�u�
= (⨁

u�
(𝑊u� ⊗ 𝟙dim (𝑹u�))) ⊗ (⨁

u�
(𝟙u�(u�) ⊗ 𝑈𝑹u�

)) = (⨁
u�

(𝑊u� ⊗ 𝑈𝑹u�
)) (8.15)

where the 𝑊u� are unitary matrices of dimensions 𝜇(𝑘).27 The matrices 𝑊u� comprise the
unitary transformations between equivalent irreducible representations in the tensor product
that are allowed by Schur’s lemma. Type I is slightly more complicated and is dealt with
further below.

The symmetry or anti-symmetry of the full CP matrix 𝑈⊗u�𝑹u�u�
follows directly from the

symmetry or anti-symmetry of the 𝑈𝑹u�u�
as can be seen from its definition (8.13). If all 𝑈𝑹u�u�

are symmetric, i.e. for type II A, also the matrix 𝑈⊗u�𝑹u�u�
is symmetric. For type II B, 𝑈⊗u�𝑹u�u�

is
symmetric if an even number of fields of the contraction is in representations with a negative
twisted Frobenius–Schur indicator and anti-symmetric if their number is odd.

Since we are only interested in contractions that can be part of a Lagrangian, let us
specialise to trivial singlet contractions. In general, a term in the Lagrangian can be written

𝑐u� 𝑃(⊗u�𝑹u�u�→𝟏0) 𝐶†
⊗u�𝑹u�u�

⨂
u�

𝜑u� , (8.16)

where 𝑐 is an a priori complex coupling vector of the length 𝜇(0), i.e. of the number of trivial
singlets in the contraction. The notation for the projector has been changed to emphasise
that it does not only depend on the representation that it projects onto but also on the tensor
product of fields it is applied to. Moreover, this projection is assumed to act as an identity
matrix on the trivial singlet subspace. Other choices would just reshuffle the couplings and
unnecessarily complicate the following computations.

If the contraction (8.16) is part of a Lagrangian, also its complex conjugate term must be
present to guarantee that the Lagrangian is real. The condition that CP is a symmetry of the
Lagrangian means that the CP transformed term and the complex conjugate term must be
identical. The resulting equation then reads

𝑐u� 𝑃(⊗u�𝑹u�u�→𝟏0) 𝑈⊗u�𝑹u�u�

!= (𝑐u�)∗ 𝑃∗
(⊗u�𝑹u�u�→𝟏0) , (8.17)

27 Compare [14] for the Lie group case.
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which is a generalisation of equation (8.10) to several fields but specialised to trivial singlet
contractions. For CP conservation, such a condition has to be fulfilled for each contraction
in the Lagrangian. Using (8.15), assuming without loss of generality 𝑈𝟏0

= 1 (any phase
can be absorbed into 𝑊0) and using that on the singlet subspace the projection acts as the
identity, one can simplify the condition of CP invariance for the contraction (8.16) to

𝑐u� 𝑊0
!= (𝑐u�)∗

⇔ 𝑊u�
0 𝑐 != 𝑐 ∗ .

(8.18)

Consider first type II A. From the symmetry of all 𝑈⊗u�𝑹u�u�
and equation (8.15), one can see

that 𝑊0 must be a symmetric matrix and that it can, hence, be written as

𝑊0 = 𝐴u� 𝐴 (8.19)

for some unitary matrix 𝐴. Condition (8.18) then becomes

𝐴 𝑐 ∈ ℝu�(0) . (8.20)

This removes one half of the degrees of freedom from the a priori complex couplings
𝑐 ∈ ℂu�(0) and restricts them to a subspace which is isomorphic to ℝu�(0). This is, of course,
what one expects from CP. In fact, going to the CP basis, one can easily convince oneself
that 𝑊0 = 𝟙u�(0), i.e. that CP forces all couplings to be real. This is also not changed by pure
basis transformations.

Note that adding (possibly field-dependent) phases to the generalised CP transformations
computationally just amounts to changing 𝑊0 to a diagonal phase matrix. In this case,
the couplings 𝑐 have fixed but non-trivial phases. Physically this corresponds to a simple
re-phasing of the fields and does not lead to different physical observations. Therefore, it is
clear that CP is automatically conserved if there is enough freedom of re-phasing to render
all couplings real. In generic models, however, there can be more couplings with non-trivial
phases than fields, in which case the surplus phases can violate CP explicitly. Concerning
their CP properties, type II A groups behave thus analogously to continuous groups.

The second case to be considered is type II B. If an even number of fields in the tensor
product is in representations with a negative twisted Frobenius–Schur indicator, the discus-
sion proceeds as for type II A and is not repeated. For an odd number, i.e. anti-symmetric
𝑈⊗u�𝑹u�u�

, 𝑊0 is also anti-symmetric and cannot be written as for type II A. Indeed, using the
normal form for unitary matrices in Section A.6.4, one can show that there is no non-trivial
solution to (8.18). This might seem surprising because, suddenly, CP forbids terms instead
of just restricting phases of couplings. However, in this case

𝑉⊗u�𝑹u�u�
= 𝑈⊗u�𝑹u�u�

𝑈∗
⊗u�𝑹u�u�

= 𝑈⊗u�𝑹u�u�
(−𝑈†

⊗u�𝑹u�u�
) = −𝟙 . (8.21)

Hence, as already shown above in Section VII.4.2, the CP symmetry implies the presence
of an additional ℤ2 symmetry, which is responsible for the absence of these terms. That is,
type II B groups have the unusual property that CP invariance forbids certain couplings
rather than just to restrict the phases of the coefficients. This is illustrated with an explicit
example in Section VII.9.2.

This discussion shows that it is always possible to define consistent CP transformations for
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type II groups.28 Whether the transformation is a symmetry just depends on the choice of
phases of couplings and, for type II B cases, on the absence of the terms from the Lagrangian
that are odd under the additional ℤ2.

For type I, the situation is somewhat more complex, partly because there is no CP basis. As
already explained, one can only consistently implement a CP transformation corresponding
to a specific automorphism of the group if just representations with twisted Frobenius–
Schur indicators ±1 are present as elementary fields in the model. In intermediate stages of
contractions, there can, however, appear representations for which this is not true. For any
such representation 𝒓, the assumption that the automorphism is order two together with the
solvability of (8.14) and again Schur’s lemma imply that also a representation 𝒓′ equivalent
to (𝒓 ∘ 𝑢)∗ is part of the tensor product, i.e. 𝒓 and 𝒓′ always come in pairs. This allows one to
combine 𝒓 and 𝒓′ in (8.15) to the reducible representation 𝑹 ≔ (𝒓, 𝒓′). Then equation (8.15) is
also valid for type I with

𝑈𝑹 = ( 0 𝑈u�
𝒓

𝑈𝒓 0 ) , (8.22)

where 𝑈𝒓 fulfils

𝜌𝒓(𝑢(𝑔)) = 𝑈𝒓 𝜌𝒓′(𝑔) 𝑈†
𝒓 . (8.23)

With this trick the derivation of equation (8.18) can be repeated in complete analogy to
type II. However, contrary to type II, there is no guarantee that 𝑊0 is a diagonal matrix due
to the structure of 𝑈𝑹. Indeed, there are cases in which 𝑊0 is non-diagonal. For example, in
𝛥(54), there are two trivial singlets in the tensor product contraction

[(𝟑1 ⊗ 𝟑2)𝟐u�
⊗ (𝟐2 ⊗ 𝟐1)𝟐u�

]
𝟏0

, (8.24)

one for 𝑘 = 3 and one for 𝑘 = 4.29 For a convenient choice of basis, the resulting matrix 𝑊0
turns out to be

𝑊0 = (0 1
1 0) (8.25)

such that one coupling is forced to be equal to the conjugate of the other coupling in the CP
invariant case. The total number of degrees of freedom of the couplings is still reduced by a
factor of two due to the CP symmetry, but their global and relative phases are not fixed.

It is, thus, possible to impose a CP transformation as a symmetry also in type I cases if
one restricts the representation content accordingly. However, the constraints put on the
couplings by this symmetry are not as simple as in the type II case.

28 Note that the discussion above can also be understood as one direction of a physicists proof of the theorem
by Bickerstaff and Damhus [164]. It was shown that given a Bickerstaff–Damhus automorphism, one can
transform to a basis in which a given scalar Lagrangian has real couplings and is invariant under the
canonical CP transformation, i.e. under complex conjugation of just the fields. For this to be possible, the
CP conjugate of each term has to be the same as its complex conjugate. Since the couplings are real, the only
difference between the two maps is that in the latter case the Clebsch–Gordan coefficients are conjugated
as well. As this difference cannot be counteracted by anything else, the Clebsch–Gordan coefficients must
be real.

29 For the u�(54) conventions employed, see Section A.1.4.
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𝟏0 𝟏1 𝟏2 𝟐0 𝟐1 𝟐2 𝟑

FSu� 1 1 1 1 1 1 1

Table VII.2: The twisted Frobenius–Schur indicators for the order two representative
(9.1) of the non-trivial class of the outer automorphism group of T′.

VII.9 Examples

After the theoretical discussion of the effects of generalised CP transformations, their implic-
ations are now illustrated for three example groups. The first example is the double covering
of the tetrahedral group T′, which is a type II A group. The example for the slightly more
complicated case of type II B is the ambivalent group 𝛴(72). Finally, the example chosen for
a type I group is 𝛥(27). Information on these three groups can be found in Section A.1.

VII.9.1 Example for type II A: T′

The structure of the automorphism group of T′ has been discussed already in [15]. The outer
automorphism group Out(T′) turns out to be just ℤ2. A representative of the non-trivial
equivalence class, i.e. the class not containing the identity automorphism, is [15]30

𝑢 ∶ (𝑠, 𝑡) ↦ (𝑠2, 𝑡3) . (9.1)

This automorphism is an involution and, furthermore, class-inverting, as can be seen from
the twisted Frobenius–Schur indicators shown in Table VII.2.

As T′ is not ambivalent, see the characters shown in Table A.2, the identity automorphism
is not class-inverting. Thus, the automorphism 𝑢 of (9.1) is the only automorphism of T′

that can be used for a consistent CP transformation, up to the usual possibility to compose
it with an inner automorphism. It is for this reason that Holthausen, Lindner and Schmidt
[15] claim to have obtained the unique CP transformation as

𝟏u�
u�u�⟼ 𝜔u� 𝟏u�

∗ , 𝑖 = 0, 1, 2 , (9.2a)

𝟐u�
u�u�⟼ diag(𝜓−5, 𝜓5) 𝟐u�

∗ , 𝑖 = 0, 1, 2 , (9.2b)

𝟑 u�u�⟼ diag(1, 𝜔, 𝜔2) 𝟑∗ , (9.2c)

where 𝜔 ≔ e2u� i /3, as usual, and 𝜓 ≔ eu� i /12 and where the T′ basis by Feruglio et al. [26,
Appendix A] is used, see again also Section A.1.2. This neglects, however, the freedom to
change the overall phases of the CP transformation matrices, which are not determined
by the consistency condition (4.24). As already mentioned, this choice can, in principle,
be made for each field individually and just reflects the unobservability of phase changes
of field operators in a quantum field theory. However, it is probably best in most cases
not to make use of this freedom once for each field but only once for each irreducible
representation. This general freedom to choose phases notwithstanding, the specific choice
shown in equation (9.2) seems rather inconvenient.

This can be understood by looking at the contraction of a scalar 𝜓 in representation 𝟐0
with another scalar 𝜒 in 𝟐1 to the non-trivial singlet 𝟏1, which, in the basis from [26] is

(𝜓 ⊗ 𝜒)𝟏1
=

−1
√2

(𝜓1 𝜒2 − 𝜓2 𝜒1) . (9.3)

30 For the group theory of T′ and the notation employed here, see Section A.1.2.
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This compound expression does not pick up a phase under the transformation shown in
(9.2), although a 𝟏1 is supposed to be multiplied by a factor of 𝜔. Although this is not
inconsistent, it is more difficult to do computations with such a choice. Moreover, as shown
in Section VII.8, this complication is unnecessary for type II A groups, where one can always
choose the phases such that compounds transform like elementary fields.

Indeed, as for any type II A group, one can go to a basis for T′ in which the CP transform-
ation is just the canonical one, i.e. just conjugation of the fields,

𝟏u�
u�u�⟼ 𝟏u�

∗ , 𝑖 = 0, 1, 2 , (9.4a)

𝟐u�
u�u�⟼ 𝟐u�

∗ , 𝑖 = 0, 1, 2 , (9.4b)

𝟑 u�u�⟼ 𝟑∗ . (9.4c)

The corresponding basis, which is a special case of one of the bases compiled by Ishimori
et al. [57], is displayed in Section A.1.2. The Clebsch–Gordan coefficients in this basis are, of
course, real.

Transforming from the basis with real Clebsch–Gordan coefficients to the basis used by
[26], one obtains the CP transformation

𝟏u�
u�u�⟼ 𝟏u�

∗ , 𝑖 = 0, 1, 2 , (9.5a)

𝟐u�
u�u�⟼ diag(1, e5u� i /6) 𝟐u�

∗ , 𝑖 = 0, 1, 2 , (9.5b)

𝟑 u�u�⟼ diag(1, 𝜔, 𝜔2) 𝟑∗ . (9.5c)

With this CP transformation and the phases of the Clebsch–Gordan coefficients obtained
from the same basis transformation, see Section A.1.2, all compounds transform like ele-
mentary fields, thereby simplifying computations compared to the choice (9.2).

However, both the basis with real Clebsch–Gordan coefficients and this modified Feruglio
basis suffer from a deficiency related to the triplet representation. The triplet representation
is real, and, in principle, there could be real fields in this representation. However, the
representation matrices in the real Clebsch–Gordan basis and in the Feruglio basis are not
manifestly real. That is, if a real field undergoes such a transformation, it is not real any more
but has developed an imaginary part. This is, of course, inconsistent. One, and arguably the
best, way to deal with this issue is to go to a basis where the triplet representation matrices
are manifestly real. Such a basis is the one by Ma and Rajasekaran [192], which is also shown
in Section A.1.2. In this basis, the CP transformation is not the canonical one but rather

𝟏u�
u�u�⟼ 𝟏u�

∗ , 𝑖 = 0, 1, 2 , (9.6a)

𝟐u�
u�u�⟼ 𝟐u�

∗ , 𝑖 = 0, 1, 2 , (9.6b)

𝟑 u�u�⟼
⎛⎜⎜⎜⎜
⎝

1 0 0
0 0 1
0 1 0

⎞⎟⎟⎟⎟
⎠

𝟑∗ . (9.6c)

Another way to deal with the problem is outlined in Section A.2. Hence, one can choose
between two mutually exclusive options. Either one works in a basis with real Clebsch–
Gordan coefficients and a canonical CP transformation. In this case, one has to treat real
scalar fields very carefully. Alternatively, one can work in a basis with complex Clebsch–
Gordan coefficients and the non-trivial CP transformation shown in (9.6). This removes any
issues with real scalar fields. Which basis is more convenient depends on the precise problem
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𝟏0 𝟏1 𝟏2 𝟏3 𝟐 𝟖

FSid 1 1 1 1 −1 1

Table VII.3: The twisted Frobenius–Schur indicators for the identity automorphism
of 𝛴(72).

to be solved and on the model at hand, e.g. there are no real scalar fields in supersymmetric
models.

As the CP transformation is just the canonical one in a suitably chosen basis, see equa-
tion (9.4), no explicit T′ model is presented here. CP can be imposed as a symmetry on any
T′ model independently of the field content. If there are enough fields to absorb all phases
of couplings, CP symmetry is even automatic. If this is not the case, CP can be explicitly
broken by these phases. The CP behaviour is thus precisely the same as known from SU(𝑁)
groups like, for example, in the Standard Model and therefore not discussed in more detail.

VII.9.2 Example for type II B: 𝛴(72)

The group chosen as an example of the more exotic type II B is 𝛴(72) [189], whose group
theory details are presented in Section A.1.5. This group is ambivalent, i.e. inner automorph-
isms are class-inverting, as can be seen from the fact that all characters are real, see Table A.6.
Thus, 𝛴(72) is a type II group.

It turns out that inner automorphisms are the only class-inverting automorphisms of
𝛴(72), and it is most convenient to choose the identity automorphisms as representative.
However, by computing the twisted Frobenius–Schur indicators, see Table VII.3, one can
easily verify that the identity automorphism is not a Bickerstaff–Damhus automorphism.
The group 𝛴(72) is thus of type II B, and there is no basis with completely real Clebsch–
Gordan coefficients.

The problematic representation is the doublet 𝟐. The simplest CP transformation behaviour
one can achieve is

𝟏u�
u�u�⟼ 𝟏u�

∗ , 𝑖 = 0, 1, 2, 3 , (9.7a)

𝟐 u�u�⟼ 𝑈𝟐 𝟐∗ ≔ ( 0 1
−1 0) 𝟐∗ , (9.7b)

𝟖 u�u�⟼ 𝟖∗ . (9.7c)

This is realised in the basis shown in Section A.1.5.
Imposing this CP transformation as a symmetry leads to an enlarged discrete symmetry

as described in Section VII.4.2 and Section VII.8. In fact, it is enlarged to 𝛴(72) × ℤ2. The
transformation behaviour of irreducible 𝛴(72) representations 𝑹u� under the additional ℤ2
can be obtained from applying CP twice. Only the doublet transforms non-trivially,

𝑉𝑹u�
≔ 𝑈𝑹u�

𝑈∗
𝑹u�

= 𝟙 , 𝑹u�≇𝟐 , (9.8a)
𝑉𝟐 ≔ 𝑈𝟐 𝑈∗

𝟐 = −𝟙 , (9.8b)

where 𝑉𝑹 is the representation matrix of the generator of the additional ℤ2 in representation
𝑹. Hence, this additional ℤ2 forbids all terms which contain an odd number of fields in the
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𝑆 𝑋 𝑌 𝛹 𝛴

𝛥(27) 𝟏0 𝟏1 𝟏3 𝟑 𝟑
U(1) 𝑞u� − 𝑞u� 𝑞u� − 𝑞u� 0 𝑞u� 𝑞u�

Table VII.4: Field content of the 𝛥(27) example model with 𝛥(27) representations and
U(1) charges. Note that 𝑞u� ≠ 𝑞u� is assumed to make the two fields distinguishable.

two-dimensional representation 𝟐. An example of such a term is

[𝟐 ⊗ (𝟖 ⊗ 𝟖)𝟐]𝟏0
. (9.9)

It is impossible to write down a CP invariant Lagrangian containing this term.
As seen in Section VII.8, apart from this complication, the discussion of CP transformations

can proceed as for type II A. No explicit example model is therefore discussed here.

VII.9.3 Example for type I: 𝛥(27)

In a sense the most interesting groups are the ones classified as type I. In these groups, CP
is, in generic models, broken in the same ways as parity in the Standard Model, i.e. it is
broken because one cannot even consistently define such an operation. The reason is, as
explained in detail in the preceding sections, that there is no class-inverting automorphism.
This shall be illustrated in this section by an example using the group 𝛥(27). Moreover, the
example gives us an opportunity to comment on the assumption that a model is generic.
For the group theory of 𝛥(27), see Section A.1.3.

A toy example with CP violation

The toy model to be considered here consists of three scalar fields 𝑋, 𝑌 and 𝑆 in the 𝛥(27)
singlet representations 𝟏1, 𝟏3 and 𝟏0, respectively, and two Dirac spinors 𝛹 and 𝛴 transform-
ing as 𝛥(27) triplets 𝟑. Moreover, suppose that there is a U(1) symmetry that allows one to
distinguish between 𝛹 and 𝛴 because their charges 𝑞u� and 𝑞u� are different. The scalar fields
𝑆 and 𝑋 both have charge 𝑞u� − 𝑞u�, whereas 𝑌 is uncharged. The whole field content is also
summarised in Table VII.4.

Restricting the Lagrangian to renormalisable terms and imposing all symmetries, the
interaction terms of the Lagrangian are

ℒ ⊃ 𝑔u� [𝑆𝟏0
⊗ (𝛹 ⊗ 𝛴)

𝟏0
]

𝟏0

+ 𝑔u� [𝑋𝟏1
⊗ (𝛹 ⊗ 𝛴)

𝟏2
]

𝟏0

+

+ ℎu� [𝑌𝟏3
⊗ (𝛹 ⊗ 𝛹)

𝟏6
]

𝟏0

+ ℎu� [𝑌𝟏3
⊗ (𝛴 ⊗ 𝛴)

𝟏6
]

𝟏0

+ h. c. ,
(9.10)

where 𝑔u�/u� and ℎu�/u� are complex couplings. Note that there is, in principle, also a cubic
term in 𝑌, which does, however, not play any role in the following and is thus omitted.

Performing all the contractions using the basis shown in Section A.1.3, the Lagrangian in
components is

ℒ ⊃ (𝐺u�)u�u� 𝑆 𝛹u�𝛴u� + (𝐺u�)u�u� 𝑋 𝛹u�𝛴u� + (𝐻u�)u�u� 𝑌 𝛹u�𝛹u� + (𝐻u�)u�u� 𝑌 𝛴u�𝛴u� + h. c. (9.11)
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(b) 𝑆 loop contribution.
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(c) 𝑋 loop contribution.

Figure VII.4: Feynman diagrams contributing to the decay of the scalar 𝑌 into the
Dirac spinor 𝛹 and its conjugate 𝛹 at tree level, (a) , and one-loop level, (b) and (c).

with the (Yukawa) coupling matrices

𝐺u� = 𝑔u� 𝟙 , (9.12a)

𝐺u� = 𝑔u�
⎛⎜⎜⎜⎜
⎝

0 1 0
0 0 1
1 0 0

⎞⎟⎟⎟⎟
⎠

, (9.12b)

𝐻u�/u� = ℎu�/u�
⎛⎜⎜⎜⎜
⎝

1 0 0
0 𝜔2 0
0 0 𝜔

⎞⎟⎟⎟⎟
⎠

, (9.12c)

where again 𝜔 ≔ e2u� i /3.
The CP properties of this toy model shall be discussed by means of the decay asymmetry

of the process 𝑌 → 𝛹𝛹, which can be computed with the formula

𝜀u�→u�u� ≔
Γ(𝑌 → 𝛹𝛹) − Γ(𝑌∗ → 𝛹𝛹)
Γ(𝑌 → 𝛹𝛹) + Γ(𝑌∗ → 𝛹𝛹)

. (9.13)

The relevant Feynman diagrams for this process at tree and one-loop level are shown in
Figure VII.4. The interference of these diagrams generates the decay asymmetry

𝜀u�→u�u� ∝ Im (𝐼u�) Im [tr (𝐺†
u� 𝐻u� 𝐺u� 𝐻†

u�)] + Im (𝐼u�) Im [tr (𝐺†
u� 𝐻u� 𝐺u� 𝐻†

u�)]
= |𝑔u�|2 Im (𝐼u�) Im (ℎu� ℎ∗

u�) + |𝑔u�|2 Im (𝐼u�) Im (𝜔 ℎu� ℎ∗
u�) .

(9.14)
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The abbreviations 𝐼u�/u� denote phase space factors and loop integrals, which depend on
the masses of the particles. Note that neither a U(1) charge nor a left–right asymmetry is
produced by the decay. It is, however, possible to distinguish between 𝑌 and 𝑌∗ by measuring
their relative branching fractions to 𝛹𝛹 and 𝛴𝛴.

From the expression in terms of traces of the coupling matrices it is clear that, as any
physical observable, the decay asymmetry is independent of the 𝛥(27) basis used for its
formulation. In fact, the traces are basis invariants of the toy model analogous to the ones
discussed in Section VII.1.2 for the Standard Model. Moreover, the decay asymmetry is
independent of the (unobservable) re-phasing freedom of the fields and does not depend
on the phases of 𝑔u� and 𝑔u�.

It is clear that for CP conservation the decay asymmetry (9.14) would have to vanish.
There are two distinct possibilities when this could happen.

The first occurs if the masses of 𝑆 and 𝑋 coincide, such that the loop factors are identical,
the two couplings 𝑔u� and 𝑔u� have identical absolute values, and the relative phase of the
couplings ℎu� and ℎu�,

𝜑 ≔ arg (ℎu� ℎ∗
u�) , (9.15)

is precisely 𝜑 = −2𝜋/6. As one can easily convince oneself, these relations between the
couplings cannot be due to a consistent CP transformation. The scalar field 𝑆 does not trans-
form under 𝛥(27) at all, whereas 𝑋 transforms non-trivially. Therefore, no automorphism
of 𝛥(27) can lead to a relation between the couplings 𝑔u� and 𝑔u� or between the masses of
𝑆 and 𝑋. Thus, any symmetry leading to the desired equality of the two absolute values
cannot be a CP transformation.

This is in accordance with the fact that 𝛥(27) is a type I group. Indeed, for the rep-
resentations used in the toy model, there is no automorphism of 𝛥(27) whose twisted
Frobenius–Schur indicators are ±1 simultaneously for all of them. This is, as can be checked
easily with GAP, always the case in 𝛥(27) if there is at least one triplet and at least two
different, non-conjugate non-trivial singlets.

The second possibility is a tuning of the parameters such that, even if the masses of 𝑆
and 𝑋 are different, the decay asymmetry is cancelled due to a special value of 𝜑. Since
𝜑 = −2𝜋/6 is the value for equal masses, the respective 𝜑 for unequal masses must be
different. However, any such value changes non-trivially under the renormalisation group.
In fact, the one-loop renormalisation group equation for the product ℎu� ℎ∗

u� of couplings is

16𝜋2 d
d𝑡

(ℎu� ℎ∗
u�) = ℎu� ℎ∗

u� × real + real × (|ℎu�|2 + |ℎu�|2) (|𝑔u�|2 + 𝜔2 |𝑔u�|2) , (9.16)

where 𝑡 is the logarithm of the ratio of the renormalisation scales. Thus, the only phase
value that is invariant under the renormalisation group is

𝜑 = arg (|𝑔u�|2 + 𝜔2 |𝑔u�|2) . (9.17)

For the aforementioned possibility of equal masses of 𝑋 and 𝑆 and equal absolute values
of 𝑔u� and 𝑔u�, this is precisely 𝜑 = −2𝜋/6. However, for other values of the couplings,
any adjusted phase of ℎu� ℎ∗

u� runs away from its original value.31 That is, the assumptions
of this second possibility are not invariant under the renormalisation group and receive
higher-order quantum corrections. Thus, they cannot be obtained by imposing a symmetry.

31 This has also been checked at two-loop order using pyr@te [193].
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Figure VII.5: Contribution of the 𝑍 loop in the modified toy model to the decay
asymmetry 𝜀u�→u�u�.

To conclude, any proper CP transformation, i.e. any transformation mapping each field
to its own conjugate, is inconsistent with the 𝛥(27) symmetry due to the sufficiently non-
generic representation content of the model. Thus, CP is violated in this toy model purely
by group theory, somewhat analogous to parity in the SM.

A modified toy model and spontaneous CP violation

Modifying the toy model introduced in the last section, one can build a model with spon-
taneous CP violation with calculable phases. For spontaneous CP violation, it is, of course,
necessary to start with a CP invariant theory in the first place. Since this is, as shown,
impossible with the field content shown in Table VII.4, let us exchange the field 𝑆 with a
new scalar field 𝑍 with the same U(1) charge but transforming in 𝟏8 under 𝛥(27).

The modified interaction terms of the Lagrangian are

ℒ ⊃ 𝑔u� [𝑍𝟏8
⊗ (𝛹 ⊗ 𝛴)

𝟏4
]

𝟏0

+ 𝑔u� [𝑋𝟏1
⊗ (𝛹 ⊗ 𝛴)

𝟏2
]

𝟏0

+

+ ℎu� [𝑌𝟏3
⊗ (𝛹 ⊗ 𝛹)

𝟏6
]

𝟏0

+ ℎu� [𝑌𝟏3
⊗ (𝛴 ⊗ 𝛴)

𝟏6
]

𝟏0

+ h. c. ,
(9.18)

where 𝑔u� is a complex coupling. Writing the new term in component form, one encounters
the coupling matrix

𝐺u� = 𝑔u�
⎛⎜⎜⎜⎜
⎝

0 0 𝜔2

1 0 0
0 𝜔 0

⎞⎟⎟⎟⎟
⎠

. (9.19)

The exchange of 𝑆 with 𝑍 implies also that one has to recompute the one-loop contribu-
tion to the decay asymmetry 𝜀u�→u�u�. The Feynman diagram shown in Figure VII.4(c) still
contributes but, instead of Figure VII.4(b), there is a new contribution due to 𝑍 shown in
Figure VII.5.

The decay asymmetry thus changes to

𝜀u�→u�u� ∝ Im (𝐼u�) Im [tr (𝐺†
u� 𝐻u� 𝐺u� 𝐻†

u�)] + Im (𝐼u�) Im [tr (𝐺†
u� 𝐻u� 𝐺u� 𝐻†

u�)]
= |𝑔u�|2 Im (𝐼u�) Im (𝜔 ℎu� ℎ∗

u�) + |𝑔u�|2 Im (𝐼u�) Im (𝜔2 ℎu� ℎ∗
u�) .

(9.20)
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CP is still generically violated because the asymmetry is non-vanishing for generic values of
the couplings. It vanishes if the masses of 𝑋 and 𝑍 are identical, the absolute values of 𝑔u�
and 𝑔u� are the same, and the relative phase of ℎu� and ℎu� is 𝜑 = 0.

In contrast to the example with the scalar 𝑆, this point in parameter space can be understood
from a symmetry that is related to an automorphism of 𝛥(27). This is possible because
𝑍 is, in contrast to 𝑆, not a trivial singlet, i.e. it is affected by 𝛥(27) automorphisms. A
possibility is the non-inner automorphism 𝑢3 defined in (A.1.21). This automorphism can
be implemented in the model as

𝑋 ↔ 𝑍 , (9.21a)
𝑌 ⟼ 𝑌 , (9.21b)
𝛹 ⟼ 𝑈u�3

𝛴u�u� , (9.21c)
𝛴 ⟼ 𝑈u�3

𝛹u�u� , (9.21d)

where the matrix 𝑈u�3
is shown in (A.1.22). This transformation is for the special choice

𝑞u� = −𝑞u� consistent with the U(1) symmetry and ensures all relations necessary for CP
invariance. However, the crucial observation is that the transformation (9.21) is not a CP
transformation. This is immediately clear from the transformation of the complex scalar 𝑌,
which does not transform at all.

To understand why CP is conserved nonetheless, one has to realise that this transformation
just enlarges the discrete symmetry of the model, i.e. it is of the type ‘proper discrete
symmetry’ discussed in Section VII.4. This would be even more transparent if one were
to relabel 𝛴u�u� to, for example, 𝛯. The effect of the transformation (9.21) is to enlarge the
discrete symmetry to the semi-direct product 𝛥(27) ou�3

ℤ2. The group structure can be
obtained by the methods of [15, 16] or with the help of GAP. In fact, the resulting group is
the group SG(54,5) in the SmallGroups library of GAP. In this enlarged symmetry, 𝑋 and 𝑍
are combined into a doublet and 𝛹 and 𝛴u�u� into a hexaplet. Of course, this does still not
fully answer the question why CP is conserved after imposing this symmetry. The actual
reason is that SG(54,5) is a type II A group, i.e. it has a Bickerstaff–Damhus automorphism,
and there are enough re-phasing degrees of freedom from the fields to render all couplings
real. That is, in the model with the larger symmetry, CP is automatically, if somewhat
accidentally, conserved. Note furthermore that, due to the symmetry, the conditions ensuring
CP conservation are renormalisation group invariant, as we have explicitly checked.

The model with a SG(54,5) symmetry is now a candidate model for spontaneous CP
breaking because CP is conserved in the beginning. In fact, the group can easily be broken
to 𝛥(27) because there is a singlet representation which is represented as 1 on the 𝛥(27)
subgroup and as −1 on all other group elements. A real singlet scalar field with trivial U(1)
charge in this representation has, at the renormalisable level, the interactions

ℒ ⊃ ⎡⎢
⎣

𝜇
√2

𝜑 (|𝑋|2 − |𝑍|2) + h. c.⎤⎥
⎦

(9.22)

with the other fields of the toy model. A non-trivial vacuum expectation value, as obtained
from the usual Higgs type potential with quadratic and quartic term (a cubic term is
forbidden by SG(54,5)) hence generates a mass splitting between the 𝑋 and 𝑍 fields. However,
the other relations among couplings are still valid.

Therefore, after spontaneous breaking, the decay asymmetry is non-vanishing,

𝜀u�→u�u� ∝ |𝑔u�|2 |ℎu�|2 Im (𝜔) [Im (𝐼u�) − Im (𝐼u�)] , (9.23)
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and all phases are completely determined by group theory. They do not depend on any
parameters of the model, i.e. they are calculable.

Recipe for spontaneous CP violation with calculable phases

This can actually be seen as a recipe for spontaneous CP violation with calculable phases.
One starts with a model which has as symmetry group a type II group and implements a

consistent CP symmetry at this level. Then one breaks this group spontaneously to a type I
subgroup. Depending on the emerging representation content, one obtains a CP violating
theory.

Note, however, that this does not work in all cases. In fact, in Section VI.4.5, it was shown
that breaking SU(3) to 𝛥(27), where SU(3) can be seen as a continuous type II A group, one
can only obtain non-generic representation contents of 𝛥(27).32

CP-like symmetries

Using the toy model with the scalar 𝑍 it is also possible to show that CP-like symmetries do
not lead to physical CP conservation. To this end, instead of the automorphism 𝑢3, impose
the transformation

𝜑 ⟼ 𝜑∗ , 𝜑 = 𝑋, 𝑌, 𝑍 , (9.24a)
𝛹 ⟼ 𝑈u�5

𝛴 , (9.24b)
𝛴 ⟼ 𝑈u�5

𝛹 , (9.24c)

corresponding to 𝑢5 in (A.1.21) as a symmetry, which is the same as 𝑢 from [15]. This
transformation is consistent with the U(1) symmetry for the choice 𝑞u� = −𝑞u� and acts on
the U(1) charges like a charge conjugation.

However, it is not a proper CP transformation as it maps 𝟑 to itself in 𝛥(27). This is
reflected by the fact that the decay asymmetry 𝜀u�→u�u� shown in (9.20) does not vanish if
(9.24) is imposed as a symmetry.

Summary of the 𝛥(27) toy models

After discussing the toy models it should have become clear that, in generic 𝛥(27) models,
physical CP is violated. This has nothing to do with phases of couplings but is purely a
consequence of the group structure of 𝛥(27), namely of its automorphisms. Using this
knowledge, it was possible to construct a (toy) model of spontaneous CP violation with
calculable phases by embedding the 𝛥(27) model into a model with a larger type II A
symmetry group.

VII.10 Clarification of geometrical CP violation

After presenting the toy model with 𝛥(27) symmetry in the previous section, some comments
seem appropriate concerning the well-known three Higgs doublet model (3HDM) by Branco,
Gerard and Grimus [17], which is constructed to be symmetric under 𝛥(27) in addition to
the inherent SU(2)L × U(1)Y of the Higgs doublets. Since it contains only triplets, there are
𝛥(27) automorphisms which can be used to implement a consistent CP transformation, e.g.

32 The possibility of this breaking has been discussed in [151].
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𝑢1 of (A.1.21). Note that this is spoilt as soon as two different, non-conjugate non-trivial
singlets are introduced. As it turns out, CP in this model is, for certain ranges of coupling
values, spontaneously violated in a peculiar way that is called geometrical CP violation.
This section tries to clarify some issues related to this effect.

VII.10.1 The three Higgs doublet potential with 𝛥(27) symmetry

The Higgs potential of the three Higgs doublet model by Branco, Gerard and Grimus [17]
can be written as

𝑉(𝐻) ≔ −𝑚2 𝐻†
u� 𝐻u� + 𝜆1 (𝐻†

u� 𝐻u�)
2 + 𝜆2 (𝐻†

u� 𝐻u�) (𝐻†
u� 𝐻u�) + 𝜆3 (𝐻†

u� 𝐻u�) (𝐻†
u� 𝐻u�)

+ 𝜆̃4 [(𝐻†
1 𝐻2) (𝐻†

1 𝐻3) + cyclic] + h. c. , 𝑖, 𝑗 = 1, 2, 3 with 𝑖 ≠ 𝑗 .
(10.1)

It turns out to be convenient to write 𝜆̃4 as a polar decomposition

𝜆̃4 ≕ 𝜆4 ei u� , 𝜆4 > 0 , 0 ≤ 𝛺 < 2 𝜋 . (10.2)

All other couplings are real and assumed to be chosen such that the potential is bounded
below.

The original model was introduced by demanding invariance under a 𝛥(27) flavour sym-
metry, with 𝐻 transforming as a triplet, in addition to the SU(2)L × U(1)Y electroweak
gauge symmetry. Due to the restriction to renormalisable terms and the additional con-
tinuous symmetries, the model is, in fact, invariant under the larger group 𝛥(54), under
which 𝐻 transforms as 𝟑1 [161–163, 194].33 For further information on 𝛥(27) and 𝛥(54), see
Section A.1.3 and Section A.1.4, respectively.

It is furthermore assumed that the global minimum of the potential preserves electric
charge, i.e. that it can be parametrised as

⟨𝐻u�⟩ = ( 0
𝑣u� ei u�u�

) , 𝑖 = 1, 2, 3 . (10.3)

This assumption is, in principle, a non-trivial constraint because, contrary to models with
at most two doublets [195, 196], there can be charge-breaking minima in a 3HDM [197].
However, using the equivalence transformations discussed in [4], one can always bring the
VEVs into such a form that the arguments of [197] can be used to show that all minima are
charge-conserving. Therefore, for VEVs of the Higgs triplet, only the charge-conserving
lower components are shown hereafter.

A careful computation reveals that, depending on the couplings, there are four possible
types of minima [194, 198],

𝑣I ≔ 𝑣
⎛⎜⎜⎜⎜
⎝

1
1
1

⎞⎟⎟⎟⎟
⎠

, 𝑣II ≔ 𝑣
⎛⎜⎜⎜⎜
⎝

𝜔
1
1

⎞⎟⎟⎟⎟
⎠

, 𝑣III ≔ 𝑣
⎛⎜⎜⎜⎜
⎝

𝜔2

1
1

⎞⎟⎟⎟⎟
⎠

, 𝑣IV ≔ 𝑣
⎛⎜⎜⎜⎜
⎝

√3
0
0

⎞⎟⎟⎟⎟
⎠

, (10.4)

where, as always, 𝜔 ≔ e2u� i /3 and where 𝑣 denotes functions that depend on the couplings.
A detailed explanation of the minimisation procedure can be found in Appendix B of [4].

33 Simply speaking, under u�(27) only cyclic permutations of the triplet components should be a symmetry
transformation. However, also transpositions of components are symmetries of the potential, thus enlarging
the symmetry group to u�(54).
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Figure VII.6: For any given value of the phase 𝛺, one can read off the type of minimum
by determining which curve is the lowest. For phases 𝛺 ∈ {0, 2𝜋/3, 4𝜋/3}, there are
two degenerate types of minima. For all other phase values, the type of the global
minimum is unique.

Note that any of the four types of vacuum expectation values corresponds to a whole orbit
of different VEVs, which can be obtained by acting with all symmetry elements on it. This
implies, in particular, that, due to the U(1)Y gauge symmetry, the overall phase of the VEVs
is not fixed.

Which of the four types of vacuum expectation values shown in (10.4) is the global
minimum of the potential depends on the values of the couplings. One can fix the couplings
𝜆u� in such a way that type IV is excluded. Then the phase 𝛺 alone determines the type of
VEV. Figure VII.6 shows the type of the global minimum for this case in dependence of the
phase 𝛺. The parameter space for 𝛺 splits into three different regions with a unique global
minimum inside the regions and two degenerate global minima on their borders.

The fact that the relative phases of the VEVs shown in equation (10.4) do not depend
continuously on the couplings is called geometrical CP violation [17]. This is now explained
in more detail.

VII.10.2 Geometrical CP violation

The 3HDM introduced above is known best for the fact that the model leads to geometrical
CP violation [17].34 In fact, one should rather use the alternative name calculable phases
for this effect, which can also be found in the original publication by Branco, Gerard and
Grimus [17]. This can be understood as follows.

Contrary to popular beliefs, the main point of geometrical CP violation is not the fact
that there are relative phases between the components in the vacuum expectation values
of types II and III. Indeed, also the VEVs of types I and IV violate CP geometrically. This
becomes immediately clear if one takes into account the possibility of basis transformations.
One can always find a unitary rotation that transforms a given triplet VEV to (1, 0, 0)u� and
vice versa. That is, one can transform any (single) VEV to one without any relative phases.
The phases are then contained in the CP transformation matrix 𝑈u�u�. Alternatively, one can
introduce relative phases into any given VEV. The occurrence of relative phases is thus

34 In fact, Branco, Gerard and Grimus [17] discussed geometrical T violation, but, due to CPT invariance, the
two notions are equivalent.
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connected to the basis in which the computation is performed and, therefore, no physical
effect. However, the fact that the phases do not continuously depend on the couplings, i.e.
that they are calculable, is highly non-trivial and the proper meaning of the term geometrical
CP violation.

To illustrate this further, take the CP transformation

𝐻 u�u�⟼ 𝑈u�4
𝐻∗ (10.5)

connected to the automorphism 𝑢4 ∶ (𝑎, 𝑏) ↦ (𝑎𝑏2𝑎, 𝑏) (see also (A.1.21)), where

𝑈u�4
≔

⎛⎜⎜⎜⎜
⎝

𝜔2 0 0
0 0 1
0 1 0

⎞⎟⎟⎟⎟
⎠

(10.6)

is the solution to the consistency condition (4.24) for the triplet 𝟑. Note that the automorph-
ism 𝑢4 is not class-inverting, which is clear as 𝛥(27) is a type I group. However, only the
Higgs triplet in representation 𝟑 is present which is indeed conjugated by 𝑢4.

The CP transformation (10.5) is a symmetry of the Lagrangian for 𝛺 being either 𝜋/3 or
4𝜋/3. Let hence 𝛺 = 4𝜋/3. According to Figure VII.6, the VEV can either be of type I or of
type III. Both types, however, break the CP transformation (10.5); thus, CP is spontaneously
broken in any case and, in fact, both breakings are geometrical. The geometrical phase
resides either in both the VEV and the CP transformation matrix 𝑈u�4

or only in the latter.
This is even more easily understood if one performs a basis change, see equation (3.6), on

the Higgs triplet to bring 𝑈u�4
to canonical form. The necessary basis transformation is

𝑉 ≔
⎛⎜⎜⎜⎜
⎝

−𝜔2 0 0
0 1/√2 1/√2

0 i/√2 − i/√2

⎞⎟⎟⎟⎟
⎠

. (10.7)

In this case, the geometrical phases are completely contained in the basis-transformed VEVs
of type I and III,

𝑣′
I ≔ 𝑣

⎛⎜⎜⎜⎜
⎝

−𝜔2

√2
0

⎞⎟⎟⎟⎟
⎠

, 𝑣′
III ≔ 𝑣

⎛⎜⎜⎜⎜
⎝

−𝜔
√2
0

⎞⎟⎟⎟⎟
⎠

, (10.8)

while 𝑈′
u�4

= 𝟙. From this it is easy to see that it is impossible to go to a basis where the CP
transformation matrix and the VEV components are real simultaneously.

To summarise, geometrical CP violation is not signalled by just some relative phases
between the individual components of a single vacuum expectation value because this is
clearly basis-dependent. Rather, it is an interplay between the relative phases of the VEV
and the CP transformation. Only if the phases do not depend continuously on the couplings,
one should consider a spontaneous CP violation geometrical.

VII.11 The strong CP problem and generalised CP transformations

Besides the weak Dirac CP phase 𝛿u�u� there is one more possible source of CP violation in
the Standard Model. This is the 𝜃QCD term of QCD, i.e. the term

ℒ ⊃ 𝜃QCD
𝑔2

u�
32 𝜋2 𝐹u�u�,u� ̃𝐹u�u�

u� , (11.1)
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where, as in Chapter IV, ̃𝐹u�u� ≔ 1
2 𝜀u�u�u�u� 𝐹u�u� is the dual field strength tensor. Note that 𝜃QCD

is a combination of a bare parameter and of phases from the quark mass matrices,

𝜃QCD ≔ 𝜃0
QCD + arg det 𝑌u� 𝑌u� . (11.2)

Measurements of the neutron electric dipole moment constrain 𝜃QCD ≲ 10−10 [33], which
seems to be an extremely fine-tuned value. This issue is called the strong CP problem of
the Standard Model. A spontaneously broken global U(1) symmetry was proposed by
Peccei and Quinn [199] as a solution; however, this leads to the introduction of potentially
problematic axions [200, 201]. Another famous solution is the Nelson–Barr proposal [202,
203], in which CP is spontaneously broken in such a way that no tree level contribution
arises. However, one has to make sure that quantum corrections to 𝜃QCD [204] do not
spoil this result. Working in a supersymmetric set-up may help in this respect due to the
non-renormalisation theorems, cf. [205]. For a very recent assessment of these solutions, cf.
[206].

Having followed the discussion on proper (and improper) generalised CP transforma-
tions, one might thus try to obtain a different solution to the strong CP problem using this
framework. Hence, the goal is to force 𝜃QCD = 0 by a generalised CP symmetry while at the
same time allowing for 𝛿u�u� ≠ 0.

VII.11.1 Using a proper generalised CP transformation

The most natural option seems to be a ‘proper’ generalised CP transformation. That is, the
symmetry to be invoked is of the type

𝑓 ↦ 𝑈u� 𝑓u�u� , 𝑓 = 𝑞, 𝑢u�, 𝑑u� . (11.3)

Here, the quark triplets transform in irreducible or reducible representations of the discrete
symmetry group of the model. However, as was the reason for the definition of ‘proper’
CP transformations, the transformation (11.3) must be broken to generate a non-trivial
𝛿u�u�. This can again explicitly be seen from the Jarlskog determinant (1.20) as discussed in
Section VII.1.2. Thus, any proper CP symmetry can only protect 𝜃QCD down to the scale at
which a non-trivial 𝛿u�u� is generated. Whether together with 𝛿u�u� also imaginary parts for the
determinants of the mass matrices are generated depends on the details of the model and is
no longer controlled by the symmetry. Hence, one can only achieve a solution following the
Nelson–Barr approach. In conclusion, proper generalised CP transformations, although, of
course, necessary to build Nelson–Barr-like models with discrete flavour symmetries, do
not provide genuinely new solutions to the strong CP problem of the SM.

VII.11.2 Using a mixed type symmetry in addition to a CP symmetry

Since a proper CP transformation does not open new avenues for a solution to the strong
CP problem, one can try to employ the formerly discarded CP-like transformations. That
is, assume that in addition to a proper CP transformation that forbids the bare 𝜃0

QCD term
and that is broken to generate a non-trivial 𝛿u�u�, there is a second symmetry that prevents
the determinant of the quark matrices from developing an imaginary part. As this second
symmetry cannot be a proper CP transformation, it acts on the quark sector either like a
normal flavour symmetry or like a mixed-type symmetry, i.e. a symmetry relating some 𝑓u�
to 𝑓u�u�

u� (𝑓 = 𝑞, 𝑢u�, 𝑑u�) and some other 𝑓u� to a 𝑓u�.
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As was already mentioned in Section VII.4.1, such a mixed transformation clashes with
Standard Model gauge invariance. Indeed, for the quarks with a proper CP transformation
behaviour to be able to couple to gluons, the QCD gauge bosons would have to transform
as shown in (1.14), i.e. as known from the SM CP transformation. However, then the quarks
which transform to themselves (or some other non-conjugated quark) cannot couple to the
gluons because their gauge coupling terms are only invariant if the gluons are completely
invariant under the transformation.

These considerations together with those of the previous section imply that there is no
symmetry solution to the strong CP problem sending any quark to a conjugate quark. Apart
from normal discrete flavour symmetries, the only type of transformation that thus remains
is the mixed type with all quarks transforming as under a flavour symmetry and only some
additional particles, e.g. flavons, transforming as under a CP transformation. However,
apart from the general problems with CP-like transformations discussed in Section VII.4.1,
such solutions are completely model-dependent. They are therefore not discussed here in
any more detail.

VII.11.3 Summary

Unfortunately, one has to conclude that, while knowledge of generalised CP transformations
is clearly necessary to build models solving the strong CP problem with a Nelson–Barr-like
approach and discrete non-abelian flavour symmetries, these CP transformations do not
open up any completely new opportunities. This is true even if one allows for additional CP-
like transformations, which can only be such that they act as normal symmetry operations
at least on the quark sector of the SM.

VII.12 Spontaneous symmetry breaking and generalised CP
transformations

One particularly interesting approach to the quest for an explanation of the experimentally
measured CP violation in the Standard Model is spontaneous CP violation [207]. In com-
bination with a discrete flavour symmetry, one would thereby assume that a generalised CP
transformation is a symmetry at a high scale and is then broken spontaneously together with
the flavour symmetry or at a different stage. The presumably best outcome would be if all
CP violating phases were determined by the group theory, i.e. if they did not continuously
depend on adjustable couplings. In this way, one could obtain unambiguous predictions for
CP violating quantities. This is, for example, the case in the 𝛥(27) model by Branco, Gerard
and Grimus [17] discussed before.

Note that CP is spontaneously broken if a consistent CP transformation

𝛷 u�u�⟼ 𝑈u�u� 𝛷∗ (12.1)

is a symmetry of the Lagrangian, where 𝛷 contains all scalar fields of the model,35 but is
not respected by the true vacuum of the theory,

𝑈u�u� ⟨𝛷⟩∗ ≠ ⟨𝛷⟩ . (12.2)

35 An analogous transformation for higher-spin particles is understood.
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Note that, if the original theory is symmetric under a group 𝐺 with 𝛷 transforming with
representation matrices 𝜌u�, according to the discussion in Section VII.3, not only the trans-
formation (12.1) is a symmetry of the theory but also any CP transformation

𝛷 u�u�′
⟼ 𝜌u�(𝑔) 𝑈u�u� 𝛷∗ , ∀ 𝑔 ∈ 𝐺 . (12.3)

All of these transformations must be broken in order to achieve spontaneous CP violation.
Equation (12.2) should thus rather be replaced with the more precise condition

𝑈u�u� ⟨𝛷⟩∗ ≠ 𝜌u�(𝑔) ⟨𝛷⟩ , ∀ 𝑔 ∈ 𝐺 . (12.4)

Whereas it is clear that CP is broken if the condition (12.4) is fulfilled, it is non-trivial to
investigate the case in which the CP transformation is not broken explicitly by the VEV, i.e.
(12.4) is not fulfilled, while 𝐺 is broken spontaneously to a subgroup 𝐻.

VII.12.1 Restrictions of automorphisms to subgroups

Since CP transformations are controlled by class-inverting automorphisms, in order to
determine the fate of a CP transformation when the discrete group is spontaneously broken,
one has to understand the restriction of such automorphisms to subgroups. That is, one
has to understand what kind of CP transformations are available after the breaking and
whether any of them is a remnant of the original CP transformation, in which case CP stays
unbroken.

Given a subgroup 𝐻 of 𝐺 and an automorphism 𝜏 of 𝐺 one can consider its restriction to
𝐻,

̃𝜏 ≔ 𝜏|ℎ ∶ 𝐻 → 𝐺 . (12.5)

It is clear that, as the restriction of an automorphism, ̃𝜏 is a group homomorphism from 𝐻
into 𝐺 and that it is injective. However, this does not imply that ̃𝜏 is an automorphism of 𝐻.
In fact, not even ̃𝜏(𝐻) ⊆ 𝐻 is generally true. For ̃𝜏 to be an automorphism of 𝐻, in general,
both ̃𝜏(𝐻) ⊆ 𝐻 and ̃𝜏−1(𝐻) ⊆ 𝐻 must hold. For finite groups 𝐻 it is sufficient that ̃𝜏(𝐻) ⊆ 𝐻
because injectiveness then also implies surjectiveness.

VII.12.2 Class-inverting automorphisms and spontaneous CP violation

As a CP transformation is not just linked to any automorphism but specifically to a class-
inverting automorphism 𝑢, one has to distinguish, in fact, three possible cases when breaking
a group 𝐺 spontaneously to a discrete subgroup 𝐻. In the first case, the restriction of the class-
inverting automorphism 𝑢 to the subgroup is not even an automorphism of the subgroup.
Alternatively, the automorphism could also restrict to an automorphism of the subgroup.
Then it is either class-inverting also for the subgroup or not class-inverting. These three
cases are now considered in turn. In each case, 𝑢 denotes the class-inverting automorphism
of 𝐺 corresponding to the generalised CP transformation (12.1) under consideration.

Moreover, in all three case, it is, of course, assumed that equation (12.4) is not fulfilled
since, otherwise, CP would be broken directly by the VEV.
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The restriction of 𝑢 is not an automorphism of the subgroup

In this case, it can be shown that it is impossible to break 𝐺 to 𝐻 without breaking CP
simultaneously by the vacuum expectation value.

By assumption, the vacuum expectation value of 𝛷 breaks 𝐺 to 𝐻, i.e.

𝜌u�(𝑔) ⟨𝛷⟩
⎧{
⎨{⎩

= ⟨𝛷⟩ 𝑔 ∈ 𝐻 ,
≠ ⟨𝛷⟩ 𝑔 ∉ 𝐻 .

(12.6)

Moreover, the CP transformation (12.1) fulfils the consistency condition (4.24). Let further-
more

𝑈u�u� ⟨𝛷⟩∗ = ⟨𝛷⟩ , (12.7)

i.e. assume that CP is not spontaneously broken.
Let ℎ ∈ 𝐻 and assume that 𝑢(ℎ) = 𝑔 with 𝑔 ∈ 𝐺 ∖ 𝐻. Then

𝜌u�(𝑔)⟨𝛷⟩
⎧{
⎨{⎩

≠ ⟨𝛷⟩
= 𝑈u�u� 𝜌u�(ℎ)∗ 𝑈−1

u�u� ⟨𝛷⟩ = ⟨𝛷⟩ ,
(12.8)

which is a contradiction. Thus, 𝑢(ℎ) ≠ 𝑔 for all 𝑔 ∈ 𝐺 ∖ 𝐻, i.e. 𝑢(ℎ) ∈ 𝐻.
Let again ℎ ∈ 𝐻 and 𝑔 ∈ 𝐺 ∖ 𝐻 but with 𝑢−1(ℎ) = 𝑔. Then

𝜌u�(𝑔)⟨𝛷⟩
⎧{
⎨{⎩

≠ ⟨𝛷⟩
= (𝑈−1

u�u� )∗ 𝜌u�(ℎ)∗ 𝑈∗
u�u� ⟨𝛷⟩ = ⟨𝛷⟩ ,

(12.9)

is again a contradiction and, hence, 𝑢−1(ℎ) ∈ 𝐻. Together, 𝑢(𝐻) ⊆ 𝐻 and 𝑢−1(𝐻) ⊆ 𝐻 imply
that 𝑢 is an automorphism of 𝐻, which contradicts the assumption.

This shows that if 𝑢 does not restrict to an automorphism of 𝐻, 𝐺 can only be broken to 𝐻
if the CP transformation is also broken, i.e. if equation (12.4) holds.

An example for this case is the subgroup SG(63,1) of U(3), which can be embedded using
one of its triplet representations (GAP #12). There is no CP transformation for this triplet
because there is no automorphism that relates this representation to its conjugate one. In
particular, since there is no automorphism of SG(63,1) that could be the restriction of the CP
transformation of U(3), it is impossible to break U(3) to SG(63,1) without also spontaneously
breaking CP.

Turning the result just obtained around, one can conclude that if 𝐺 can be spontaneously
broken to 𝐻 either the CP transformation is broken as well, and thus no symmetry of the
broken phase, or its restriction to 𝐻 is again related to an automorphism of 𝐻, i.e. one of the
remaining two cases is at hand.

The restriction of 𝑢 is an automorphism of the subgroup that is not class-inverting

Even if 𝑢 restricts to an automorphism of the subgroup 𝐻, one must not assume that it is
also class-inverting for the subgroup. Thus, the restriction of the CP transformation might
only be a CP-like transformation of 𝐻.

This occurs, for example, in the 𝛥(27) model discussed in Section VII.9.3, or rather in its
SG(54,5) extension. Indeed, the spontaneous breaking of SG(54,5) to 𝛥(27) in (9.22) is due
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to the vacuum expectation value of a real singlet scalar field. Thus, the CP transformation is
certainly not broken by the vacuum expectation value, i.e.

𝑈u�u� ⟨𝛷⟩∗ = ⟨𝛷⟩ (12.10)

holds. However, the proper SG(54,5) CP transformation is only a CP-like transformation for
the 𝛥(27) symmetry that remains after the breaking and, hence, does not guarantee, as seen
in equation (9.23), CP invariance. As a matter of fact, the Bickerstaff–Damhus automorphism
of SG(54,5) is such that the CP transformation of the hexaplet 𝛹 ⊕ 𝛴u�u� is schematically

( 𝛹
𝛴u�u�) u�u�⟼ 𝑈u�u� (𝛹u�u�

𝛴 ) = ( 𝛴
𝛹u�u�) , (12.11)

i.e. it is just an exchange of 𝛹 and 𝛴. On the level of the representations, the restriction of
the automorphism to 𝛥(27) does not relate the 𝛥(27) triplet 𝟑 to the anti-triplet 𝟑 but sends 𝟑
to itself. The remnant of the SG(54,5) CP transformation does hence not lead to physical CP
conservation on the 𝛥(27) level. This phenomenon could be called indirect spontaneous CP
violation because the CP transformation itself is not broken; it is rather the mass splitting,
here between the scalars 𝑋 and 𝑍, due to the flavour symmetry breaking that turns a proper
CP transformation into a CP-like transformation.

The general lesson one can draw from this example is that some 𝐺 representations can
split up into several inequivalent 𝐻 representations such that the CP transformation of 𝐺
is only CP-like for the subgroup 𝐻. Another example of this that has been checked is the
breaking of SU(3) to 𝛥(27), see also the discussion in Section VI.4.5.

Note, however, that it is impossible to generate a Dirac CP phase 𝛿u�u� for the SM mass
matrices with this mechanism for the same reasons that prohibited a solution to the strong
CP problem. As the CP-like transformation is unbroken also in the low-energy theory
and the remnant of a proper CP transformation, it still prohibits a non-trivial Jarlskog
determinant.

The restriction of 𝑢 is a class-inverting automorphism of the subgroup

This last case is the simplest one, as the CP transformation of 𝐺 is also a valid CP transform-
ation for 𝐻. Hence, CP is unbroken as long as the vacuum expectation value does not break
CP directly via (12.4).

VII.12.3 Summary

The fate of a CP symmetry after the spontaneous breaking of a discrete symmetry group is
determined by the restriction of the automorphism defining CP to the unbroken subgroup.
Fortunately, as shown above, the paradoxical case that a group 𝐺 is broken to one of its
subgroups 𝐻 in such a way that the CP transformation is unbroken but not related to any
automorphism of 𝐻 cannot actually arise. Instead, on the one hand, the CP transformation
can just directly be broken by the VEV, i.e. equation (12.4) can hold. On the other hand,
if the CP transformation is not directly broken by the vacuum expectation value, i.e. if
𝑈u�u� ⟨𝛷⟩∗ = ⟨𝛷⟩, it is either completely unbroken or it is indirectly broken to a CP-like
symmetry. However, this latter type of breaking does not allow for the generation of a
non-trivial 𝛿u�u� for the SM.
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VII.13 CP as inversion of quantum numbers

In Section VII.4.1, physical criteria for CP transformations were collected, i.e. criteria that
allow one to decide whether a transformation should be called CP. These criteria were
then used to single out automorphisms that lead to proper CP transformations. In their
discussion of CP transformations for continuous symmetries, Grimus and Rebelo [14] also
do not consider every transformation that is related to an automorphism via the consistency
condition (3.3) a CP transformation. In fact, their criterion is that ‘CP reverses all quantum
numbers of each field’ [14], by which they mean that all weights are multiplied with −1.
This criterion certainly suits well the interpretation of CP in QED and in the Standard Model.
Moreover, it is equivalent to saying that time reversal, which is the missing piece to arrive at
CPT, which certainly inverts all weights, should only revert the direction of motion but not
affect the characteristics of particles. Note that one can discuss generalised time reversal
transformations for which this is not true. These transformations act like the combination
CT does in QED, cf. e.g. [165, 168, 180].

It is instructive to check how the condition of inverted quantum numbers can be formulated
for discrete groups and how it relates to the condition found in Section VII.4.1, i.e. that the
automorphism must be class-inverting. In order to answer these question, one first has to
understand how to define quantum numbers for discrete groups.

VII.13.1 Quantum numbers and symmetries

Quantum numbers are eigenvalues of observables, i.e. of self-adjoint operators that commute
with the Hamiltonian and that are time-independent. Under these conditions eigenvalues of
the observable are conserved quantities and can be used to label states. Note that the states
that are created by a field 𝛷 in an interacting quantum field theory are not eigenstates of
the Hamiltonian itself, i.e. there are non-trivial scattering processes. However, the quantum
numbers of initial and final states for any physical process coincide.

Let us comment on the definition of quantum numbers in the presence of continuous and
finite symmetries, respectively. In both cases, the spectrum of the theory is described using
irreducible representations of the symmetry group.

Continuous symmetries

For Lie group representations, the quantum numbers can be obtained as follows.
The so-called Harish-Chandra theorem shows that one can uniquely characterise the irre-

ducible representations of a finite-dimensional semi-simple Lie algebra by their eigenvalues
with respect to all the Casimir invariants [115]. Casimir operators are elements of the centre
of the enveloping algebra, i.e. they commute with all other elements of the algebra, and
they are polynomials of the generators. Each semi-simple Lie algebra 𝔤 has exactly rank 𝔤
independent such operators. The first Casimir operator for SU(𝑁) groups, for example, can
be written [115]

𝐶𝑹 ≔ 𝛿u�u� 𝑹(𝑇u�) 𝑹(𝑇u�) , (13.1)

where it is assumed that a basis with a normalised diagonal Killing form is used for the
representation 𝑹 of the generators 𝑇u�. Specialising to SU(2), this operator is just the well-
known 𝑳2, i.e. the total angular momentum operator. It is already sufficient to distinguish
all irreducible representations of SU(2).
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It is also possible to distinguish the different basis vectors within each irreducible module.
Some of the required labels are provided by the eigenvalues with respect to the Cartan
sub-algebra of the Lie algebra, i.e. the weights. For example, in SU(2), the Cartan sub-algebra
is spanned by 𝑳𝒛, whose eigenvalues together with the eigenvalues of the Casimir operator
𝑳2 are sufficient to distinguish all states. However, in general, labelling states just using their
weights is insufficient. In fact, some of the weights might be degenerate as, for example,
the weight (0, 0) of the adjoint representation of SU(3). Racah [208, 209] showed that one
needs dim 𝔤 operators to distinguish all states, rank 𝔤 of which are already given by the
Casimir operators. Hence, another dim 𝔤 − rank (𝔤) operators must be determined. The
rank 𝔤 elements of the Cartan sub-algebra can be used to supply a subset of these operators,
leaving another (dim 𝔤 − 3 rank 𝔤)/2 operators and their conjugates to be found. Racah also
showed that it is always possible to find such a set of operators [208, 210–212].

Finite symmetries

For finite symmetries it is less well known how to construct operators whose eigenvalues
can be used as quantum numbers to label states. Let us first fix some notation. The unitary
operators 𝑼u� implement the group transformation on the field operators, i.e.

𝑼u� 𝜱 𝑼−1
u� = 𝜌u�(𝑔) 𝜱 . (13.2)

Note that they fulfil the group law

𝑼u� 𝑼ℎ = 𝑼ℎu� . (13.3)

By assumption, these unitary operators commute with the Hamiltonian.
The operators needed to distinguish the different irreducible representations of a finite

group 𝐺 are the so-called class-operators, cf. e.g. [213]. They are defined as the sum of all
operators belonging to group elements in a single conjugacy class,

𝑲u� ≔
1

|𝐶u�|
∑

u�∈u�u�

𝑼u� , (13.4)

where 𝑚 is used to label the conjugacy classes 𝐶u� of 𝐺. The class-operators commute with
all other group operators,

[𝑲u�, 𝑼ℎ] =
1

|𝐶u�|
∑

u�∈u�u�

[𝑼u�, 𝑼ℎ] =
1

|𝐶u�|
∑

u�∈u�u�

(𝑼ℎ 𝑼u� 𝑼ℎ−1 𝑼ℎ − 𝑼ℎ 𝑼u�)

=
1

|𝐶u�|
∑

u�∈u�u�

(𝑼ℎ 𝑼u� − 𝑼ℎ 𝑼u�) = 0 ,
(13.5)

and, henceforth, all 𝑲u� commute amongst each other. Moreover, since all group operators
commute with the Hamiltonian, the same is true for the 𝑲u� such that they are conserved
quantities. As the 𝑲u� commute with all group elements, Schur’s lemma implies that the
class-operators act as multiples of the identity on irreducible representations of the group.
Taking the trace one can fix the coefficient and arrives at

𝑲u� =
𝜒𝑹u�

(𝐶u�)
dim 𝑹u�

id (13.6)
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for the irreducible representation 𝑹u�, i.e. the eigenvalues are the characters normalised by
the dimension of the irreducible representation.36

To be more explicit, let 𝒂†
u� be the creation operator in the 𝑚-th component of a field

operator 𝜱 which transforms in the irreducible representation 𝑹u� of 𝐺. Then, assuming an
unbroken symmetry, one can compute the action of the 𝑛-th class-operator 𝑲u� of 𝐺 on the
state created by 𝒂†

u� out of the vacuum,

𝑲u� 𝒂†
u� |0⟩ =

1
|𝐶u�|

∑
u�∈u�u�

𝑼u� 𝒂†
u� |0⟩ =

1
|𝐶u�|

∑
u�∈u�u�

𝜌𝑹u�
(𝑔)u�u� 𝒂†

u� |0⟩ ≕ (𝐾u�)u�u� 𝒂†
u� |0⟩

=
𝜒𝑹u�

(𝐶u�)
dim 𝑹u�

𝒂†
u� |0⟩ ,

(13.7)

where the matrix 𝐾u� was defined. The second line follows from equation (13.6).
Given the class-operators it is possible to define conserved observables [213]

𝑳u� = 𝑲u� + 𝑲†
u� = 𝑲u� + 𝑲u�−1 , (13.8a)

𝑳′
u� = i(𝑲u� − 𝑲†

u�) = i(𝑲u� − 𝑲u�−1) (13.8b)

from the 𝑲u� that can be used to distinguish states in different irreducible representations.
Here 𝑲u�−1 denotes the class-operator of the conjugacy class containing the inverses of the
elements of conjugacy class 𝐶u�.

The operators thus obtained are the analogues of the Casimir operators of Lie groups.
They are sufficient to distinguish between inequivalent irreducible representations but not
between states within one irreducible representation space.

One can also label the individual states of an irreducible module. For this one must choose
a subgroup 𝐻 such that the restriction of each irreducible 𝐺 representation to this subgroup
is multiplicity free, i.e. no irreducible representation of 𝐻 is contained more than once in
the decomposition of each irreducible representation of 𝐺. Group–subgroup pairs (𝐺, 𝐻)
where the restriction of each irreducible representation of 𝐺 to 𝐻 is multiplicity free are
called strong Gelfand pairs. If it is possible to find such a subgroup, one can again compute
the class-operators, this time with respect to the subgroup, and use their corresponding
observables to distinguish different states in the irreducible module of 𝐺 [213]. These labels
are henceforth called internal quantum numbers of a representation. If a whole chain of
such subgroups exists, one can distinguish all the states in an irreducible 𝐺 module by
the constructed observables. If such a chain does not exist, one has to find the additional
labelling operators using different means [213].37

Example

As an example, take the group 𝛥(27), whose details are given in Section A.1.3. As shown
in (13.7), the class-operators 𝑲u� have as eigenvectors the states 𝒂†

u� |0⟩ with eigenvalues
proportional to the characters of the representation that the 𝒂†

u� reside in. Since the characters
separate the irreducible representations, i.e. there is always at least one character that
distinguishes between two representations, the 𝑲u� are enough to distinguish between states
in different irreducible representations of 𝛥(27).

36 The quantities u�𝑹u�
(u�u�) are well defined since any choice of u� ∈ u�u� gives the same value for the character.

37 In a scan with GAP up to order 380 (without order 256) we did not find any group without a subgroup that
fulfils the criterion. However, Wigner [214] claims that it is not always possible to find such a subgroup.
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If one wants to distinguish the different states within the triplet representation of 𝛥(27),
one can use the class-operators of the ℤ3 subgroup generated by the element 𝑏. The 𝟑 of
𝛥(27) decomposes into a 𝟏 ⊕ 𝟏′ ⊕ 𝟏″ of ℤ3, i.e. the decomposition is multiplicity free and
(𝛥(27), ℤ3) is a strong Gelfand pair.38 With respect to this ℤ3 subgroup, there are two new
non-trivial class-operators 𝑲′

u�, which belong to the two non-trivial conjugacy classes of ℤ3.
Since ℤ3 is abelian, the two conjugacy classes each contain only one element: 𝐶′

1 = {𝑏} and
𝐶′

2 = {𝑏2}, i.e. 𝐶′
u� = {𝑏u�}. Hence,

𝑲′
u� 𝒂†

u� |0⟩ =
1

|𝐶′
u�|

∑
u�∈u�′

u�

𝑼u� 𝒂†
u� |0⟩ =

1
1

∑
u�=u�u�

(𝜌𝟑(𝑔))u�u� 𝒂†
u� |0⟩ = (𝐵u�)u�u� 𝒂†

u� |0⟩ . (13.9)

Specialising to the class-operator 𝑲′
1 – the second one does not offer any additional inform-

ation – one can verify explicitly the statements made above. It acts as a multiple of the
identity on each of the three subspaces 𝟏, 𝟏′ and 𝟏″, namely as 1, 𝜔 and 𝜔2, respectively.
Therefore, it provides enough labels to distinguish the three sub-states of the triplet of 𝛥(27).
Moreover, one can see explicitly that it commutes with all 𝑲u� of 𝛥(27) because the latter are
multiples of the identity on the whole triplet space.

This shows that for a complete labelling of states in the presence of a 𝛥(27) symmetry, it
suffices to use (a certain subset of) the class-operators 𝑲u� of 𝛥(27) and the class-operator
𝑲′

1 of the ℤ3 subgroup of 𝛥(27). All of these operators commute with each other and, since
they are made up of symmetry group elements, with the Hamilton operator.

VII.13.2 Inversion of quantum numbers

After defining the necessary operators, one can discuss the action of CP on the quantum
numbers, or rather, define CP as a transformation that acts in a specific way on them.

Continuous symmetries

As already explained, Grimus and Rebelo [14] defined CP via an automorphism that sends
each weight to minus itself. Note that these weights constitute the weights of the complex
conjugate of the original irreducible representation. This automorphism is uniquely defined
by this requirement, up to the choice of Cartan sub-algebra, and is the so-called contragredi-
ent automorphism or Chevally involution [14, 115]. Depending on the specific group, it can
be a non-inner, as e.g. for SU(𝑁) with 𝑁 > 2, or an inner, as e.g. for SO(2𝑁 + 1) with 𝑁 > 1,
automorphism [14].39 Since the definition of the contragredient automorphism refers to
a specific Cartan sub-algebra, the definition of CP might seem to depend on this choice.
However, all Cartan sub-algebras and, therefore also their contragredient automorphisms,
are connected via inner automorphisms. Thus, the CP transformation defined this way is
physically unique.

One has to be careful, however, when saying that all quantum numbers are inverted. The
weights of a CP transformed state are minus the weights of the original state; however, not

38 One only has to consider the triplet because all other representations of u�(27) are one-dimensional and the
u�(27) characters are already sufficient to distinguish them.

39 Note that for SU(u�) it is often said that the automorphism related to CP is the diagram automorphism,
which sends a weight u� = (u�1, u�2, … , u�u�−1) to (u�u�−1, u�u�−2, … , u�1). This is a representative of the equi-
valence class of non-inner automorphisms of the outer automorphism group of SU(u�). However, physically
one should rather think of a different representative of this class which sends u� to (−u�1, −u�2, … , −u�u�−1)
as the defining automorphism of CP. The two automorphisms are related by an inner automorphism and
thus give physically identical results [14].
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all other quantum numbers are minus their original values. Take, for example, the second
order Casimir index defined in (13.1). Sending each weight of a state to minus itself has
the same effect on its eigenvalues with respect to 𝐶𝑹 as sending 𝑇u� to −(𝑇u�)u� in 𝐶𝑹 and
applying it to the original state. Hence, since the quadratic Casimir is quadratic in the
generators, the CP transformed state has the same quantum number as the original state.
The same is true for any even-order Casimir operator, while any quantum number with
respect to an odd-order Casimir is negated. Instead of insisting on all quantum numbers
being negated, one should rather adopt the contragredient automorphism as the defining
criterion for a CP transformation as was factually done by Grimus and Rebelo [14]. The
result is then completely consistent with the cases of QED and the SM and the criteria
outlined in Section VII.4.

Finite symmetries

One can now try to transfer this knowledge to finite groups, where one uses the class-
operators of a subgroup chain to label states.

To obtain the commutation relation of the class-operators 𝑲u� with the CP operator, one
can consider the action of a group element on a CP transformed field operator,40

𝑼u� (𝑪𝑷) 𝜱 (𝑪𝑷)−1 𝑼−1
u� = 𝑈u�u� 𝜌(𝑔)∗ 𝜱†

= 𝜌(𝑢(𝑔)) 𝑈u�u� 𝜱† = (𝑪𝑷) 𝑼u�(u�) 𝜱 𝑼−1
u�(u�) (𝑪𝑷)−1 .

(13.10)

Since the creation operators in 𝜱 generate a basis for the Hilbert space, it follows that

𝑼u� (𝑪𝑷) = (𝑪𝑷) 𝑼u�(u�) (13.11)

and, hence, that

𝑲u� (𝑪𝑷) = (𝑪𝑷) 𝑲u�(u�) . (13.12)

Similar to the continuous case, it is inconsistent to define CP by demanding that all quantum
numbers be sent to their negative values by CP. However, taking the physical criterion
obtained in Section VII.4.2 that the automorphism be class-inverting, one sees that the
eigenvalues of a state with respect to the hermitian observables 𝑳u� are invariant and the
ones with respect to 𝑳′

u� are inverted. In fact, this holds if and only if the automorphism is
class-inverting. Analogous to the continuous case, if a state in the irreducible representation
𝑹 is CP transformed, its quantum numbers are replaced by the eigenvalues which a state in
the complex conjugate representation 𝑹 has. Given the observations made in Section VII.4
and this fact, demanding that the automorphism defining CP be class-inverting seems the
correct starting point.

However, in contrast to the continuous case, the effect of the CP transformation on the
internal quantum numbers of a representation, i.e. the labels of states within one irreducible
representation, is not fixed. Let us thus try to remedy this. The observables needed to
distinguish the internal states are the class-operators of some subgroup 𝐻 ⊂ 𝐺. As the
discussion in Section VII.12 showed, the restriction of an automorphism to a subgroup
is not always an automorphism of the subgroup. Moreover, even if the restriction is an
automorphism, it does not have to be class-inverting with respect to the subgroup. An

40 Note that the dagger in u�† denotes the operator adjoint; u�† is still a column vector in the discrete symmetry
space.
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example of this case is the Bickerstaff–Damhus automorphism of SG(54, 5) = 𝛥(27) o ℤ2,
whose restriction to 𝛥(27) is an automorphism but not class-inverting, as already discussed
in Section VII.12.41

The general situation is as follows. Let 𝐻 be a subgroup of 𝐺 such that

𝜒u�
𝑹u�

≔ 𝜒𝑹u�
∣
u�

= ∑
u�

𝑚u� 𝜒u�
𝒓u�

, (13.13)

with all 𝑚u� either zero or one for each irreducible representation 𝑹u� of 𝐺, i.e. 𝐺 and 𝐻 are a
strong Gelfand pair, and where 𝒓u� are the irreducible representations of 𝐻. Furthermore,
assume that a class-inverting automorphism 𝑢 restricts to an automorphism of the subgroup
𝐻 ⊂ 𝐺, i.e. 𝑢(𝐻) = 𝐻. Then it follows that

𝜒u�
𝑹u�

∘ 𝑢 = 𝜒𝑹u�
∣
u�

∘ 𝑢 = ∑
u�

𝑚u� 𝜒u�
𝒓u�

∘ 𝑢 (13.14a)

and by the consistency condition (4.2) that

𝜒u�
𝑹u�

∘ 𝑢 = (𝜒u�
𝑹u�

)
∗

= ∑
u�

𝑚u� (𝜒u�
𝒓u�

)
∗

. (13.14b)

However, the two equations together only show that the set of characters 𝜒u�
𝒓u�

∘ 𝑢 with 𝑚u� = 1
is equal to the set of characters (𝜒u�

𝒓u�
)

∗
with 𝑚u� = 1, which still leaves the possibility of

permuting some of the characters instead of conjugating them, i.e. the automorphism does
not have to be class-inverting for the subgroup.

This is precisely what happens in the SG(54,5) case with the (real) representation 𝟔, which
decomposes as 𝟑 ⊕ 𝟑 to 𝛥(27). Although, at the level of SG(54,5), the Bickerstaff–Damhus
automorphism sends 𝟔 to 𝟔 = 𝟔, its restriction to 𝛥(27) sends 𝟑 to 𝟑 and 𝟑 to 𝟑. Using the
𝛥(27) subgroup to define the internal quantum numbers for SG(54,5), the internal numbers
of the hexaplet are not all inverted by the Bickerstaff–Damhus automorphism. This can be
seen as the reason why indirect spontaneous CP violation as described in Section VII.9.3
and Section VII.12 is possible.

A sufficient condition for a CP transformation to circumvent this issue is the following.
Let CP be defined by a class-inverting automorphism 𝑢 of 𝐺 such that for some subgroup
chain 𝐺 = 𝐺0 ⊃ 𝐺1 ⊃ ⋯ ⊃ 𝐺u� with an abelian group 𝐺u� the following conditions hold for
all 𝑖 = 1, … , 𝑛:

𝑢(𝐺u�) = 𝐺u� (13.15a)

and

∀𝑔u� ∈ 𝐺u� ∃ ℎ ∈ 𝐺u�+1 ∶ 𝑢(𝑔u�) = ℎ 𝑔−1
u� ℎ−1 . (13.15b)

These two conditions ensure that one can define quantum numbers because the restrictions
of representations along the subgroup chain are multiplicity free, see the proof in Section A.5,
and, at the same time, that the each restriction of the automorphism is class-inverting.

The automorphism used in the SG(54,5) example does not fulfil the second condition.
Using the ℤ3 × ℤ3 subgroup to label the states, there is no class-inverting automorphism of
the full group which is also class-inverting when restricted to this subgroup, as can easily
be checked with GAP.
41 Note that SG(54,5) and u�(27) form a strong Gelfand pair.
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There is a second issue associated to the internal quantum numbers which cannot be
resolved by attaching more conditions to CP transformations. Whereas the concept of weight
for continuous groups is unique up to inner automorphisms of the Lie algebra, this is not the
case for the internal quantum numbers of discrete groups. In fact, their definition relied on
some choice of subgroup 𝐻 of 𝐺. Even demanding that they should form a strong Gelfand
pair, this choice is by far not unique. An automorphism of 𝐺 whose restriction to 𝐻 is not
class-inverting might be class-inverting when restricted to a different subgroup 𝐻′.

As this difficulty cannot easily be resolved and since with indirect spontaneous CP viola-
tion it is not possible to generate a non-trivial 𝛿u�u� in the SM, see Section VII.12, it does not
seem worthwhile to try to fix the action of CP on internal quantum numbers for discrete
symmetries. One should, however, keep in mind that indirect spontaneous CP violation can
happen due to this omission. Thus, the only sensible stringent condition on CP transform-
ations of discrete groups is the one already obtained in Section VII.4: the automorphism
should be class-inverting.

VII.14 Conclusion of the chapter

The discussion in this chapter shows clearly that the generalisation of CP to models with
discrete non-abelian symmetries is non-trivial. As was demonstrated, in order to obtain a
physical CP transformation, the consistency condition of Holthausen, Lindner and Schmidt
[15] and Feruglio, Hagedorn and Ziegler [16] relating a CP transformation to an automorph-
ism of the discrete group is insufficient in generic settings. This deficiency was shown to be
cured by the additional constraint that the automorphism must be class-inverting. In this
case, each field can be sent to its own complex conjugate such that the decisive characteristic
of the CP transformations of QED and the SM is retained. For all practical purposes, it is
also possible to restrict the discussion to involutory automorphisms.

Since not every group has class-inverting automorphisms, the existence of a consistent CP
transformation for generic settings is a non-trivial constraint. Thus, the discrete groups were
shown to fall into three separate classes: type I groups with no consistent CP transformation
in generic settings, an important example for which are odd-order non-abelian groups,
type II A groups, for which in a certain basis the canonical CP transformation can be used,
and type II B groups, for which only non-canonical CP transformations are available.

The consistency of the canonical CP transformation, at least in a certain basis, was related to
the existence of a basis with real Clebsch–Gordan coefficients using a theorem by Bickerstaff
and Damhus [164]. Moreover, a useful tool to check whether an automorphism is class-
inverting was provided with the twisted Frobenius–Schur indicator.

As was discussed in detail, the constraints on couplings due to generalised CP trans-
formations depend on the type of the automorphism. For type II A, only the phases of
couplings are constrained, in analogy to the continuous group case. In type II B cases, some
couplings are completely forbidden by a ℤ2 symmetry which is fully determined by the
CP transformation. The phases of all other couplings are constrained as for type II A or
continuous groups. In type I cases with a non-generic representation content, either the
phases of couplings are constrained or several couplings are related in a non-trivial way, e.g.
such that their absolute values are identical and their phases conjugate to each other. This
peculiar behaviour does not exist for the other types of groups.

The properties of models using a type I symmetry with a sufficiently generic representation
content to render the introduction of a CP transformation impossible were discussed using
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an example based on 𝛥(27). Moreover, it was demonstrated that this toy model can be
obtained by spontaneous breaking from a model with a larger type II symmetry group,
namely SG(54,5), in such a way that all phases are fixed by the group theory of the model.
This type of models offers an interesting avenue for further studies.

Furthermore, the model of geometrical CP violation by Branco, Gerard and Grimus
[17], which is also based on 𝛥(27), was reviewed and the essence of this effect highlighted.
Thereby, the common misunderstanding that non-trivial relative phases in the VEV are
sufficient for geometrical CP violation was corrected.

Using the information gained on generalised CP transformations, the strong CP problem
of the Standard model was re-considered. Although a precise understanding of CP trans-
formations is, of course, indispensable for its solution, it turned out that generalised CP
transformations do not yield any genuinely new insights.

The properties of CP symmetries concerning the spontaneous breaking of discrete sym-
metries were investigated. Not only can CP be broken spontaneously directly by the VEV,
but also indirectly by the breaking of the discrete group. This could already be seen in the
modification of the 𝛥(27) toy example, where the CP symmetry is broken spontaneously
although the VEV itself is CP invariant. In fact, the breaking of the discrete group SG(54,5) to
𝛥(27) turns a class-inverting automorphism, which defines a consistent CP transformation,
into a non-class-inverting automorphism, which is not sufficient to guarantee CP invariance.

Finally, the definition of CP was further investigated using the concept of quantum num-
bers for discrete groups in analogy to the discussion of continuous groups started by
Grimus and Rebelo [14]. Unfortunately, no further unambiguous constraints could be found.
However, the indirect CP violation in the SG(54,5) model could be traced back to the fact
that some internal quantum numbers are not inverted in the first place.

In the following section, some claims from the literature concerning generalised CP
transformations are critically reviewed.

VII.15 Comments on claims in the literature

At this point, some comments on claims in the literature connected to the generalised CP
transformations discussed in this chapter seem appropriate. Indeed, it is shown that some
of these claims do not withstand closer scrutiny. The publications to be commented on are
the following:

(i) ‘Towards realistic models of quark masses with geometrical CP violation’ by Medeiros
Varzielas and Pidt [215];

(ii) ‘Lepton Mixing Predictions including Majorana Phases from 𝛥(6𝑛2) Flavour Symmetry
and Generalised CP’ by King and Neder [216];

(iii) ‘Invariant approach to CP in family symmetry models’ by Branco, Medeiros Varzielas
and King [217].

The discussions below are not self-contained and can only be understood in comparison
with the original publications. Equation numbers mentioned below refer to the journal
versions in cases (i) and (ii) and to arXiv version v1 for (iii).
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VII.15.1 Comments on ‘Towards realistic models of quark masses with
geometrical CP violation’

Medeiros Varzielas and Pidt [215] claim to have built a semi-realistic model of quark masses
with geometrical CP violation. It can be shown, however, that their CP violation is not
really geometrical in the sense defined by Branco, Gerard and Grimus [17] and discussed in
Section VII.10 because CP is also explicitly violated by the Yukawa matrices.

The three Higgs doublet potential with 𝛥(27) symmetry of [17] was discussed in some
detail already in Section VII.10.1. Here, only the parts relevant to the present discussion are
repeated. Let 𝐻 be the triplet of Higgs doublets. The potential of [17], see also equation (10.1),
leads indeed, as assumed by [215], to the vacuum expectation value

⟨𝐻⟩ = 𝑣 (𝜔, 1, 1)u� , (15.1)

where only the charge zero component of the doublets is displayed. At least, this is true if
the CP transformation

𝐻 u�u�⟼ 𝐻∗ (15.2)

is used to constrain the phases in the Higgs potential.42 As can easily be seen, this CP
transformation is spontaneously broken by the vacuum expectation value.

Moreover, Medeiros Varzielas and Pidt [215] use as Yukawa Lagrangian for the down-type
quarks [215, equations (2)-(4)]

ℒu� = 𝑦3 𝑄3 (𝐻 𝑑u�)01 + 𝑦2 𝑄2 (𝐻 𝑑u�)00 𝜑2 + 𝑦1 𝑄1 (𝐻 𝑑u�)00 𝜑3+
+ 𝑝2 𝑄2 (𝐻 𝑑u�)01 𝜃 + 𝑝1 𝑄1 (𝐻 𝑑u�)01 𝜑 𝜃+
+ ℎ3 (𝐻 𝐻†) 𝑄3 (𝐻 𝑑u�)01 + ℎ2 (𝐻 𝐻†) 𝑄2 (𝐻 𝑑u�)00 𝜑2 + ℎ1 (𝐻 𝐻†) 𝑄1 (𝐻 𝑑u�)00 𝜑3 .

(15.3)

For the notation used see the original paper, its details are not really needed for the following
discussion.

It should be clear from (15.3) that the phases of the couplings ℎu� are exactly the same as
the phases of the corresponding couplings 𝑦u� no matter which CP transformation is imposed
on the model because (𝐻 𝐻†) is invariant under any CP transformation. Thus, the partial
mass matrices obtained from the first and third line, respectively, called 𝑀 and 𝑀ℎ in [215],
are identical up to a factor of 𝑣2 and the replacement of 𝑦u� with ℎu�, where 𝑦u� = 𝑐u� ℎu� with
𝑐u� ∈ ℝ. That is, the matrices 𝑀 and 𝑀ℎ of [215] should have identical structures. However,
Medeiros Varzielas and Pidt [215] claim to have obtained

𝑀 = 𝑣
⎛⎜⎜⎜⎜
⎝

𝑦1 𝜔 𝑦1 𝑦1
𝑦2 𝜔 𝑦2 𝑦2
𝑦3 𝑦3 𝑦3 𝜔

⎞⎟⎟⎟⎟
⎠

, (15.4)

𝑀ℎ = 𝑣3 ⎛⎜⎜⎜⎜
⎝

ℎ1 ℎ1 𝜔2 ℎ1 𝜔2

ℎ2 ℎ2 𝜔2 ℎ2 𝜔2

ℎ3 𝜔2 ℎ3 𝜔2 ℎ3

⎞⎟⎟⎟⎟
⎠

. (15.5)

42 Unfortunately, Medeiros Varzielas and Pidt [215] do not indicate which kind of CP transformation they use.
Since the canonical CP transformation leads to the desired VEV, this seems to have been their choice. In
fact, the specific choice does not matter for the following discussion.
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In fact, these different structures, as they realise themselves, are the reason for a non-trivial
𝛿u�u� in the model. That is, Medeiros Varzielas and Pidt [215] choose different phases for the
ℎu� than for the 𝑦u� by hand, thereby breaking the CP transformation explicitly, in order to
generate a non-trivial 𝛿u�u�. This should, of course, not be called geometrical CP violation.

Imposing instead the CP transformation (15.2) consistently on the Lagrangian, the coup-
lings 𝑦u�, 𝑝u� and ℎu� of the Yukawa terms (15.3) are real. Then, the correct mass matrices
are 𝑀 as shown in (15.4) and a matrix 𝑀′

ℎ obtained from this 𝑀 by multiplication with 𝑣2

and the replacement of the real couplings 𝑦u� with some real ℎu�. However, following this
consistent procedure, CP is only violated in the Higgs potential but not in the Yukawas, i.e.
𝛿u�u� = 0. This is, of course, a tree level statement in the sense that the quantum corrected
mass matrices could, in principle, receive corrections from the Higgs self-interactions that
lead to a non-zero effective 𝛿u�u�. It seems unlikely, though, that this induces a realistically
large CP violation in the quark sector.

VII.15.2 Comments on ‘Lepton Mixing Predictions including Majorana Phases
from 𝛥(6𝑛2) Flavour Symmetry and Generalised CP’

King and Neder [216] make several claims about CP transformations for the discrete SU(3)
subgroups in the 𝛥(6 𝑛2) family.

First of all, King and Neder [216] claim that: ‘An outer automorphism however is not inner
[…], i.e. there is at least one 𝑔′ ∈ 𝐺 which is not mapped back into its original conjugacy
class’ [216]. Further: ‘This proves also that an automorphism that maps each element back
into its original conjugacy class is inner’ [216]. However, the notion of class-preserving
automorphisms is distinct from the notion of inner automorphisms. Such a counter-example
of a class-preserving non-inner automorphism exists, for example, for the group SG(32,43),
as can be easily checked with GAP, see also the list in Appendix D. That is, the statement
cited above is wrong.

Moreover, they claim that their operation in [216, equation (19)] ‘can be thought of as
an automorphism mapping 𝑔 ↦ 𝑔−1 followed by an automorphism that maps 𝑔−1 onto
another element in the same class’ [216]. However, the inversion map 𝑔 ↦ 𝑔−1 is not an
automorphism but an anti-automorphism as it changes the order of its arguments. Only for
abelian groups these two notions coincide. To see this, assume that 𝜏 is an automorphism
and sends each group element to its inverse. Then

𝑔ℎ = 𝜏(𝑔−1) 𝜏(ℎ−1) = 𝜏 (𝑔−1ℎ−1) = 𝜏 ((ℎ𝑔)−1) = ℎ𝑔 , ∀ 𝑔, ℎ ∈ 𝐺 , (15.6)

which proves that the group is abelian. The statement cited above is thus wrong for any
non-abelian group and therefore, in particular, for the 𝛥(6 𝑛2) family.

Furthermore, the assumption that a matrix 𝑤u� exists fulfilling the properties assumed
by King and Neder in [216, equation (19)] is the same as assuming that there is a class-
inverting automorphism. However, there is, for example, no class-inverting automorphism
for 𝛥(54). Moreover, in [216, equation (21)], the inverse of the representation map is applied
to something that by no means has to be the representation matrix of a group element,
i.e. the map is acting on something on which it is not even defined. Therefore, any of the
statements by King and Neder following [216, equation (19)] are not proved. They could
only be true by accident.

As can easily be seen, even this is not the case for their final group theoretical statement,
where 𝑋u� is what is called 𝑈u�u� in our notation and the representation considered is assumed
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to be faithful:43

In [15] the authors show that only gCP transformations that map elements into
the class of its inverse element make observables conserve CP. We have proved
here that such transformations are given by 𝑋u� ∈ ei u� 𝐺. In the following we will
specialise 𝐺 to be 𝛥(6 𝑛2). [216]

First of all, it is clear from the discussion in Section VII.3.2 that the CP transformation
that they claim gives the correct result would be physically equivalent to the canonical CP
transformation. The group element is just a symmetry transformation and can be dropped
and the phase can be absorbed in a re-phasing of the field operators. Their statement is
thus equivalent to saying that a consistent CP transformation for the 𝛥(6 𝑛2) family is the
canonical CP transformation.44 This statement is clearly basis-dependent.45 Even ignoring
this issue, the canonical CP transformation is not consistent with every 𝛥(6 𝑛2) symmetry. In
fact, as already mentioned, 𝛥(54) is of type I, i.e. it has no class-inverting automorphism at
all. This can easily be checked with the GAP codes provided in Appendix C. Thus, neither
the canonical CP transformation nor any other CP transformation can be consistent with
the 𝛥(54) symmetry.

VII.15.3 Comments on ‘Invariant approach to CP in family symmetry models’

Branco, Medeiros Varzielas and King [217] discuss the invariant approach to CP violation
and its relation to the consistency condition used in the present work.46 They claim the
following, where their citation [11] refers to the consistency condition by [15, 16]:

We show that such an approach, which relies on a knowledge of the Lagrangian of
the model, is complementary to the approach based on the consistency relations
[11]. Indeed we will show how the consistency conditions can be derived from
the requirement that the Lagrangian is invariant under both CP symmetry and
the discrete family symmetry. Therefore, in analysing particular models, the use
of weak basis invariants alone is both sufficient and convenient. [217]

And further:

The first point we wish to make is that, once a Lagrangian is specified, which
is invariant under a family symmetry G and some CP transformation, then the
consistency relations [11] are automatically satisfied. [217]

This is certainly not true. As seen already in the example in Section VII.3.2, implement-
ing an inconsistent CP transformation forbids many additional terms. Of course, the CP
transformation and the final symmetry group 𝐺′ obtained by implementing both 𝐺 and
CP are, in a sense, consistent by construction. However, 𝐺′ is much larger than the desired
symmetry 𝐺 in this case. In fact, one usually ends up with a free theory if 𝐺 and CP are
inconsistent such that 𝐺′ is at least some continuous unitary group. 𝐺′ is only the same as 𝐺
for a CP transformation that fulfils the condition (4.24). This was precisely the constraint

43 Note that their citation [15] is [3].
44 In fact, as can be seen from the last sentence of the quote, they claim to have proved that for all groups u�

and specialise to u�(6 u�2) only later.
45 A basis transformation acts differently on the group elements than on u�u�u�, see (3.6). Note, moreover, that

they do not refer to any specific basis in their derivation.
46 See also their extended version [218].
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used by Holthausen, Lindner and Schmidt [15] and reviewed in Section VII.3.2. The use of
weak basis invariants alone is thus not sufficient in the sense claimed by Branco, Varzielas
and King [218].

Let us point out why their attempt to prove their statements is insufficient. They consider
some mass matrix 𝑚 and define 𝐻 ≔ 𝑚 𝑚†. This matrix is assumed to be invariant under
group transformations, i.e. [217, equation (6)]

𝜌(𝑔)† 𝐻 𝜌(𝑔) = 𝐻 . (15.7)

Moreover, 𝐻 is assumed to be CP invariant [217, equation (7)],

𝑈† 𝐻 𝑈 = 𝐻∗ , (15.8)

where 𝑈 is what would here be called 𝑈u�u�. After inserting these two assumptions several
times into each other, they end up with [217, equation (10)]

𝑈 (𝜌(𝑔)†)∗ 𝑈† 𝐻 𝑈 𝜌(𝑔)∗ 𝑈† = 𝐻 = 𝜌(𝑔′)† 𝐻 𝜌(𝑔′) (15.9)

which is supposed to hold ‘for a 𝑔′ ’ [217]. This equation is, due to the assumptions, correct.
However, they claim that comparing its two sides one obtains [217, equation (11)]

𝑈 𝜌(𝑔)∗ 𝑈† = 𝜌(𝑔′) . (15.10)

This, they claim further, ‘is just the consistency relation [11]’ [217]. This is incorrect. By the
same logic,

𝑈 𝜌(𝑔)∗ 𝑈† = 𝟙 (15.11)

would have to be true (compare the left-hand side of (15.9) with the middle of the same
equation). And, indeed, for fixed 𝑔,

𝑈 𝜌(𝑔)∗ 𝑈† = 𝜌(𝑔′) (15.12)

would be true for any 𝑔′ ∈ 𝐺, not just for a single one. This is clearly inconsistent.
The reason for this inconsistency and for the breakdown of the proof is the wrong conjec-

ture that one could obtain the implication 𝐴 = 𝐵 from a matrix equation

𝐴 𝐻 𝐴−1 = 𝐵 𝐻 𝐵−1 (15.13)

independently of what 𝐻 is. Indeed, the assumptions (15.7) and (15.8) on 𝐻 are precisely
such that equation (15.9) is meaningless in the following sense. Applying (15.7) and (15.8)
repeatedly, one immediately sees that equation (15.9) merely is the equality

𝐻 = 𝐻 = 𝐻 , (15.14)

written in a much more complicated way. That is, equation (15.9) is, under the given
assumptions, trivial. Of course, it is impossible to deduce the consistency condition from
this relation. Thus, the invariant approach and the consistency condition are not proved to
be equivalent.
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The flavour puzzle is one of the most important unsolved problems of particle physics. For
a complete understanding of Nature, it seems indispensable to derive the observed patterns
of masses and mixing angles as well as the presence and size of CP violation from some
fundamental principle. One framework that could provide such insights is given by discrete
non-abelian flavour symmetries. This thesis derived some of the essential ingredients to
build meaningful and predictive models within this framework.

For model building with discrete groups, a sound knowledge of finite group theory
is necessary. Therefore, a brief introduction to this topic was given in Chapter II. Most
importantly, the notion of Clebsch–Gordan coefficients was reviewed, which are needed to
construct group invariant Lagrangians. Several ambiguities concerning the definition of
these Clebsch–Gordan coefficients that have led to some confusion among model builders
were clarified.

As the main reason for the use of discrete symmetries in model building is the quest for
a solution to the flavour problem, the flavour sector of the Standard Model was reviewed
in Chapter III, and the notion of CKM and PMNS matrices was carefully defined. Several
virtues of discrete non-abelian symmetries were detailed, such as that they can predict a
non-trivial mixing structure due to their higher-dimensional representations. Further, it
was highlighted that the choice of discrete symmetries is supported by the fact that no
massless Goldstone bosons emerge when spontaneously breaking the symmetry. Moreover,
these symmetries can be obtained both from string theory and by breaking a non-abelian
continuous gauge group at very high energies such that they are shielded from possible
violations by gravitational effects. As an example of such flavour theories, a model originally
presented by Altarelli and Feruglio [9, 10], which is based on the tetrahedral symmetry
group A4, was reviewed. This model predicts at leading order tri-bi-maximal mixing for
the neutrinos.

As is well known, symmetries of a classical theory are not always symmetries of the
corresponding quantum theory. The failure of this equivalence of classical and quantum
symmetries is called anomaly. Not only continuous symmetries are plagued by anomalies,
but also discrete symmetries, as can in both cases be seen directly from the symmetry
transformation properties of the path integral measure. In Chapter IV, conditions were
derived for discrete symmetries to be anomaly free based on the observation that the path
integral measure transforms in a proper one-dimensional representation of the group.
Indeed, it turned out that this allows for a simple proof of the fact that perfect, and therefore
also simple, non-abelian discrete groups are always anomaly free. Moreover, it could be
shown that discrete groups in models with SO(𝑁) or exceptional gauge groups are less in
danger of anomalies than in models with SU(𝑁) or Sp(2𝑁) gauge groups. Furthermore,
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general conditions were derived that connect anomaly freedom of a discrete group to the
size of its Abelianisation. A further investigation into the specific effects of anomalously
broken discrete symmetries seems worthwhile. In particular, it would be interesting to
examine whether one can quantify the effects similarly to the case of anomalous Ward
identities for continuous symmetries.

Subsequently, in Chapter V, corrections to neutrino mixing due to additional interactions
connecting flavons and the lepton kinetic terms in models with discrete non-abelian sym-
metries were discussed. Such interaction terms are present in any effective field theory
model with discrete non-abelian symmetries. In the supersymmetric case, they are part of
the Kähler potential, in which case the corrections are also called Kähler corrections. In both
a supersymmetric and a non-supersymmetric example, these kinetic term corrections were
shown to be non-negligible. Indeed, under certain circumstances they are large and then
drastically change the predictions obtained assuming canonical kinetic terms. This can be
used to render otherwise ruled-out models realistic again as shown for the A4 example. Un-
fortunately, at the same time, the missing knowledge about the higher-order corrections to
the kinetic terms in effective field theories introduces a large ambiguity into the derivation of
model predictions. It seems thus important to study UV completions of such flavour models
to obtain more information on the size of the effects to be expected. In the supersymmetric
case, future limits on flavour changing neutral currents could also be used indirectly to
constrain the Kähler potential. In the meantime, making assumptions on the coupling sizes,
estimates of the corrections to neutrino mixing can easily be obtained using the analytical
formulas derived here and the associated Mathematica package KaehlerCorrections.1

As mentioned before, due to the conjectured violation of global symmetries by gravit-
ational effects, it seems desirable to obtain discrete symmetries either from string theory
or by spontaneous breaking of a continuous gauge group. The latter possibility requires
knowledge of the branching rules of representations of the Lie group into representations
of the finite subgroup. For example, only vacuum expectation values of fields in non-trivial
representations of the Lie group which contain at least one trivial singlet of the subgroup
are candidates for the breaking. A procedure for the computation of these branching rules
for the case of the compact classical Lie groups and their finite subgroups was presented
in Chapter VI. The resulting routines were also implemented in the Mathematica package
DecomposeLGReps for U(𝑁), SU(𝑁), SO(𝑁) and USp(2𝑁).2 The method made use of the
Weyl character formula for the computation of Lie algebra characters and of their connection
to Lie group characters. A finite subgroup was embedded into the Lie group by stating an
explicit matrix representation of the finite group that was then interpreted as the restriction
of the fundamental representation of the Lie group to the subgroup. Using the Weyl charac-
ter formula, it was thus shown how to compute in this scenario the characters of arbitrary
Lie group representations for all group elements which are also contained in the finite
subgroup. The desired branching rules were then determined from the usual scalar product
of characters. Using this technique, explicit rules were compiled for some finite groups
popular in model building, e.g. A4, S4 and 𝛥(27), thereby showing that the representation
content obtained by such a breaking cannot, in general, be considered generic. It seems thus
again important to work with UV completions rather than effective theories or, at least, to
take into account such restrictions during the construction of effective models.

The discussion of CP transformations in the presence of discrete non-abelian symmet-
ries presented in Chapter VII turned out to be more complicated but also richer than the

1 http://einrichtungen.ph.tum.de/T30e/codes/KaehlerCorrections
2 http://einrichtungen.ph.tum.de/T30e/codes/DecomposeLGReps

http://einrichtungen.ph.tum.de/T30e/codes/KaehlerCorrections
http://einrichtungen.ph.tum.de/T30e/codes/DecomposeLGReps
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analogous discussion for continuous symmetries. First, the CP transformations of QED
and of the Standard Model were introduced. Then the claims on the generalisation of
CP to models with additional continuous and discrete symmetries by Grimus and Rebelo
[14], Holthausen, Lindner and Schmidt [15] and Feruglio, Hagedorn and Ziegler [16] were
reviewed. It was shown that in the discrete group case, contrary to earlier statements, a
physical CP transformation cannot be obtained from an arbitrary automorphism of the
group. Instead, only class-inverting automorphisms can be used to obtain physical CP
transformations. Further, it was argued that in all practical cases the discussion of CP can
be restricted to involutory automorphisms. The consistency of the canonical CP transforma-
tion was then connected using a theorem by Bickerstaff and Damhus [164] to the existence
of a certain kind of class-inverting automorphism and the reality of all Clebsch–Gordan
coefficients of the group.

After introducing the twisted Frobenius–Schur indicator as a useful mathematical tool,
these newly obtained criteria were used to categorise finite groups into three classes. For
type II groups, it is always possible to define CP transformations, regardless of the field
content. Indeed, for type II A groups, it is even possible to work with the canonical CP
transformation, at least in certain bases. For type II B groups, however, this is impossible,
although one can still always consistently define CP. In addition, a type II B group gets
possibly enlarged by a commuting ℤ2 factor when imposing CP invariance. In contrast to
type II groups, type I groups do not allow CP to be consistently defined in generic settings.
Only for certain choices of field content could this be achieved. Explicit example groups
were discussed for each of the three types. For example, the well-known group 𝛥(27) is
type I, i.e. it does not allow for a consistent CP transformation in a generic setting. Further,
embedding 𝛥(27) into a type II A group, a toy model with spontaneous CP violation with
group theoretical phases was presented. In fact, CP in this model was broken spontaneously
but indirectly by breaking the type II to a type I discrete group. Building a realistic model
with such an indirect breaking seems an invigorating possibility for future research.

Further, the effect called geometrical CP violation appearing in the three Higgs doublet
model by Branco, Gerard and Grimus [17] was reviewed and some misunderstandings
concerning this effect corrected. Indeed, geometrical CP violation is not signalled by just
some relative phases of components of a single VEV but by an interplay of phases in the
CP transformation matrix and the VEV and the fact that these phases do not continuously
depend on couplings. In addition, the newly gained insights on CP transformations were
applied to the strong CP problem, where, however, no genuinely new approach to a solution
could be found. Furthermore, the spontaneous symmetry breaking of discrete groups in
the presence of CP symmetries was studied. Finally, the definition of CP was re-considered
regarding the requirement of the inversion of quantum numbers that was first mentioned
by Grimus and Rebelo [14]. It turned out that this criterion cannot be imposed in an
unambiguous manner and does hence not lead to any additional requirements for CP
transformations in the discrete group case.

The results derived here show that particular care must be exercised when building models
with discrete non-abelian symmetries. Many subtleties emerge from the group theory of
discrete symmetries that are irrelevant in the continuous case. Given the many virtues
of discrete symmetries for model building, it seems nonetheless worthwhile to continue
with the construction of models incorporating such symmetries. Especially type I groups
are appealing candidates for further investigations due to their CP violating properties.
Building a realistic example of a full flavour model based on a type I group might be a first
step towards a group theoretical explanation of CP violation in the Standard Model.





A Mathematical appendix

In this appendix, the notations and basis conventions for the groups used in the examples
of the main text are fixed, and the corresponding Clebsch–Gordan coefficients are shown.
Moreover, some more mathematical results are presented that were omitted in the main
text.

A.1 Selected finite groups

In the following, some details on the finite groups used most extensively in the main text
are provided. Groups are defined by their presentation, i.e. a set of (abstract) generators
and their relations.

Moreover, character tables for the groups are shown, i.e. tables with one row for each
inequivalent irreducible representation and one column for each conjugacy class with the
corresponding characters at the intersections. The conjugacy classes are labelled by the
order of their elements and a letter. The second line of a character table shows the cardinality
and the third line a representative of each conjugacy class.

Furthermore, explicit matrix realisations for the irreducible representations are displayed
together with the corresponding Clebsch–Gordan coefficients. Note that one-dimensional
representation matrices can be read off directly from the character table and are thus not
shown again. For convenience, the normalisation of the Clebsch–Gordan coefficients is
chosen such that the Clebsch–Gordan matrices are unitary.

For other collections of group bases and Clebsch–Gordan coefficients, cf. [15, 57, 58,
73]. Many of the results displayed here were obtained with the help of GAP [20] and the
Mathematica package Discrete [158].

A.1.1 The tetrahedral group A4

The tetrahedral group is the symmetry group of the regular tetrahedron. It is isomorphic to
the alternating group on four letters A4 and is generated by two elements 𝑠 and 𝑡 with

𝑠2 = 𝑡3 = (𝑠𝑡)3 = 𝑒 . (1.1)

The character table of A4 is shown as Table A.1.
A4 has four inequivalent irreducible representations: three singlets 𝟏, 𝟏′ and 𝟏″ and one
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𝐶1u� 𝐶3u� 𝐶2u� 𝐶3u�
1 4 3 4

A4 𝑒 𝑡 𝑠 𝑡2

𝟏 1 1 1 1
𝟏′ 1 𝜔 1 𝜔2

𝟏″ 1 𝜔2 1 𝜔
𝟑 3 0 −1 0

Table A.1: Character table of A4, where 𝜔 ≔ e2u� i /3.

triplet 𝟑. The choice of basis in this text for the triplet is

𝑆 ≔ 𝜌𝟑(𝑠) =
1
3

⎛⎜⎜⎜⎜
⎝

−1 2 2
2 −1 2
2 2 −1

⎞⎟⎟⎟⎟
⎠

, (1.2a)

𝑇 ≔ 𝜌𝟑(𝑡) =
⎛⎜⎜⎜⎜
⎝

1 0 0
0 𝜔 0
0 0 𝜔2

⎞⎟⎟⎟⎟
⎠

, (1.2b)

where 𝜔 ≔ e2u� i /3. This basis is actually a CP basis, i.e. all Clebsch–Gordan coefficients are
real.

The only non-trivial tensor product is

𝟑 ⊗ 𝟑 ≅ 𝟏 ⊕ 𝟏′ ⊕ 𝟏″ ⊕ 𝟑s ⊕ 𝟑a , (1.3)

where 𝟑s and 𝟑a denote the symmetric and the anti-symmetric triplet combinations, re-
spectively. Other linear combinations would, of course, also be possible. In terms of the
components of two triplets 𝒂 and 𝒃,

(𝒂 ⊗ 𝒃)𝟏 =
1

√3
(𝑎1 𝑏1 + 𝑎2 𝑏3 + 𝑎3 𝑏2) , (1.4a)

(𝒂 ⊗ 𝒃)𝟏′ =
1

√3
(𝑎3 𝑏3 + 𝑎1 𝑏2 + 𝑎2 𝑏1) , (1.4b)

(𝒂 ⊗ 𝒃)𝟏″ =
1

√3
(𝑎2 𝑏2 + 𝑎1 𝑏3 + 𝑎3 𝑏1) , (1.4c)

(𝒂 ⊗ 𝒃)𝟑s
=

1
√6

⎛⎜⎜⎜⎜
⎝

2𝑎1 𝑏1 − 𝑎2 𝑏3 − 𝑎3 𝑏2
2𝑎3 𝑏3 − 𝑎1 𝑏2 − 𝑎2 𝑏1
2𝑎2 𝑏2 − 𝑎1 𝑏3 − 𝑎3 𝑏1

⎞⎟⎟⎟⎟
⎠

, (1.4d)

(𝒂 ⊗ 𝒃)𝟑a
=

1
√2

⎛⎜⎜⎜⎜
⎝

𝑎2 𝑏3 − 𝑎3 𝑏2
𝑎1 𝑏2 − 𝑎2 𝑏1
𝑎3 𝑏1 − 𝑎1 𝑏3

⎞⎟⎟⎟⎟
⎠

. (1.4e)

Note that the triplet is a real representation. One can hence change to a realisation in
which all representation matrices are manifestly real. The relation between the original basis
and this new basis denoted with tildes is given by ̃𝑆 ≔ 𝑈u� 𝑆 𝑈†

u� and 𝑇 ≔ 𝑈u� 𝑇 𝑈†
u� with

𝑈u� ≔
1

√3

⎛⎜⎜⎜⎜
⎝

1 1 1
1 𝜔 𝜔2

1 𝜔2 𝜔

⎞⎟⎟⎟⎟
⎠

. (1.5)
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𝐶1u� 𝐶3u� 𝐶4u� 𝐶2u� 𝐶3u� 𝐶6u� 𝐶6u�
1 4 6 1 4 4 4

T′ 𝑒 𝑡 𝑠 𝑠2 𝑡2 𝑠2 𝑡 𝑠2 𝑡2

𝟏0 1 1 1 1 1 1 1
𝟏1 1 𝜔 1 1 𝜔2 𝜔 𝜔2

𝟏2 1 𝜔2 1 1 𝜔 𝜔2 𝜔
𝟐0 2 −1 0 −2 −1 1 1
𝟐1 2 −𝜔 0 −2 −𝜔2 𝜔 𝜔2

𝟐2 2 −𝜔2 0 −2 −𝜔 𝜔2 𝜔
𝟑 3 0 −1 3 0 0 0

Table A.2: Character table of T′, where 𝜔 ≔ e2u� i /3.

The result for the generators in the triplet representation is

̃𝑆 =
⎛⎜⎜⎜⎜
⎝

1 0 0
0 −1 0
0 0 −1

⎞⎟⎟⎟⎟
⎠

, (1.6a)

𝑇 =
⎛⎜⎜⎜⎜
⎝

0 0 1
1 0 0
0 1 0

⎞⎟⎟⎟⎟
⎠

. (1.6b)

Note that the VEV (𝑣, 𝑣, 𝑣)u� in one basis is mapped to the VEV √3 (𝑣, 0, 0)u� in the other basis,
and vice versa.

A.1.2 The double tetrahedral group T′

The double covering of the tetrahedral group is denoted by T′. It is generated by two
elements 𝑠 and 𝑡 with

𝑠4 = 𝑡3 = (𝑠𝑡)3 = 𝑒 . (1.7)

There are seven irreducible representations, 𝟏u�, 𝟐u� and 𝟑, where 𝑖 = 0, 1, 2. The representa-
tions 𝟏1 and 𝟐1 are conjugate to 𝟏2 and 𝟐2, respectively, 𝟐0 is pseudo-real, and 𝟏0 and 𝟑 are
real. The characters of T′ are shown in Table A.2.

The non-trivial T′ tensor product rules are

𝟐u� ⊗ 𝟐u� ≅ 𝟑 ⊕ 𝟏u�+u� (mod 3) , (1.8a)
𝟐u� ⊗ 𝟑 ≅ 𝟐0 ⊕ 𝟐1 ⊕ 𝟐2 , (1.8b)
𝟑 ⊗ 𝟑 ≅ 𝟏0 ⊕ 𝟏1 ⊕ 𝟏2 ⊕ 𝟑s ⊕ 𝟑a . (1.8c)

Ma–Rajasekaran basis

The A4 basis by Ma and Rajasekaran [192] has a manifestly real triplet representation. It can
be complemented to a basis for T′.

𝜌M
𝟐u�

(𝑠) = −
1

√3
⎛⎜⎜
⎝

i √2 i
√2 i − i

⎞⎟⎟
⎠

, 𝑖 = 0, 1, 2 , (1.9a)
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𝜌M
𝟐0

(𝑡) = (𝜔2 0
0 𝜔) , 𝜌M

𝟐1
(𝑡) = (1 0

0 𝜔2) , 𝜌M
𝟐2

(𝑡) = (𝜔 0
0 1) , (1.9b)

𝜌M
𝟑 (𝑠) =

⎛⎜⎜⎜⎜
⎝

1 0 0
0 −1 0
0 0 −1

⎞⎟⎟⎟⎟
⎠

, 𝜌M
𝟑 (𝑡) =

⎛⎜⎜⎜⎜
⎝

0 1 0
0 0 1
1 0 0

⎞⎟⎟⎟⎟
⎠

. (1.9c)

The component expressions of the tensor products in this basis are shown below with
normalisation such that the Clebsch–Gordan matrices are unitary. The overall phases are
obtained via a basis transformation from the CP basis, see below.

(𝑥𝟑 ⊗ 𝑦𝟑)𝟏0
=

𝑥1 𝑦1 + 𝑥2 𝑦2 + 𝑥3 𝑦3

√3
, (1.10a)

(𝑥𝟑 ⊗ 𝑦𝟑)𝟏1
=

𝑥1 𝑦1 + 𝜔2 𝑥2 𝑦2 + 𝜔 𝑥3 𝑦3

√3
, (1.10b)

(𝑥𝟑 ⊗ 𝑦𝟑)𝟏2
=

𝑥1 𝑦1 + 𝜔 𝑥2 𝑦2 + 𝜔2 𝑥3 𝑦3

√3
, (1.10c)

(𝑥𝟑 ⊗ 𝑦𝟑)𝟑s
=

1
√2

⎛⎜⎜⎜⎜
⎝

𝑥2 𝑦3 + 𝑥3 𝑦2
𝑥1 𝑦3 + 𝑥3 𝑦1
𝑥1 𝑦2 + 𝑥2 𝑦1

⎞⎟⎟⎟⎟
⎠

, (1.10d)

(𝑥𝟑 ⊗ 𝑦𝟑)𝟑a
=

i
√2

⎛⎜⎜⎜⎜
⎝

𝑥2 𝑦3 − 𝑥3 𝑦2
𝑥3 𝑦1 − 𝑥1 𝑦3
𝑥1 𝑦2 − 𝑥2 𝑦1

⎞⎟⎟⎟⎟
⎠

, (1.10e)

(𝜓𝟐u�
⊗ 𝜒𝟐u�

)
𝟏u�+u�

=
−1
√2

(𝜓1 𝜒2 − 𝜓2 𝜒1) , (1.10f)

(𝜓𝟐u�
⊗ 𝜒𝟐3−u�

)
𝟑

=
1

√3

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−𝜓1𝜒1 + 1
√2

(𝜓1 𝜒2 + 𝜓2 𝜒1) + 𝜓2 𝜒2

−𝜔 𝜓1𝜒1 + 1
√2

(𝜓1 𝜒2 + 𝜓2 𝜒1) + 𝜔2 𝜓2 𝜒2

−𝜔2 𝜓1𝜒1 + 1
√2

(𝜓1 𝜒2 + 𝜓2 𝜒1) + 𝜔 𝜓2 𝜒2

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (1.10g)

(𝜓𝟐u�
⊗ 𝜒𝟐2−u�

)
𝟑

=
1

√3

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−𝜓1𝜒1 + 1
√2

(𝜓1 𝜒2 + 𝜓2 𝜒1) + 𝜓2 𝜒2

−𝜓1𝜒1 + 𝜔2 1
√2

(𝜓1 𝜒2 + 𝜓2 𝜒1) + 𝜔 𝜓2 𝜒2

−𝜓1𝜒1 + 𝜔 1
√2

(𝜓1 𝜒2 + 𝜓2 𝜒1) + 𝜔2 𝜓2 𝜒2

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (1.10h)

(𝜓𝟐u�
⊗ 𝜒𝟐1−u�

)
𝟑

=
1

√3

⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−𝜓1𝜒1 + 1
√2

(𝜓1 𝜒2 + 𝜓2 𝜒1) + 𝜓2 𝜒2

−𝜔2 𝜓1𝜒1 + 𝜔 1
√2

(𝜓1 𝜒2 + 𝜓2 𝜒1) + 𝜓2 𝜒2

−𝜔 𝜓1𝜒1 + 𝜔2 1
√2

(𝜓1 𝜒2 + 𝜓2 𝜒1) + 𝜓2 𝜒2

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (1.10i)

(𝜓𝟐u�
⊗ 𝑥𝟑)

𝟐u�
=

1
3

⎛⎜⎜
⎝

𝜓1 (𝑥1 + 𝑥2 + 𝑥3) + √2 𝜓2 (𝑥1 + 𝜔2 𝑥2 + 𝜔 𝑥3)
√2 𝜓1 (𝑥1 + 𝜔 𝑥2 + 𝜔2 𝑥3) − 𝜓2 (𝑥1 + 𝑥2 + 𝑥3)

⎞⎟⎟
⎠

, (1.10j)

(𝜓𝟐u�
⊗ 𝑥𝟑)

𝟐u�+1
=

1
3

⎛⎜⎜
⎝

𝜓1 (𝑥1 + 𝜔2 𝑥2 + 𝜔 𝑥3) + √2 𝜓2 (𝑥1 + 𝜔 𝑥2 + 𝜔2 𝑥3)
√2 𝜓1 (𝑥1 + 𝑥2 + 𝑥3) − 𝜓2 (𝑥1 + 𝜔2 𝑥2 + 𝜔 𝑥3)

⎞⎟⎟
⎠

, (1.10k)

(𝜓𝟐u�
⊗ 𝑥𝟑)

𝟐u�+2
=

1
3

⎛⎜⎜
⎝

𝜓1 (𝑥1 + 𝜔 𝑥2 + 𝜔2 𝑥3) + √2 𝜓2 (𝑥1 + 𝑥2 + 𝑥3)
√2 𝜓1 (𝑥1 + 𝜔2 𝑥2 + 𝜔 𝑥3) − 𝜓2 (𝑥1 + 𝜔 𝑥2 + 𝜔2 𝑥3)

⎞⎟⎟
⎠

. (1.10l)
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Ishimori et al. basis

Another basis for T′ was provided by Ishimori et al. [57]. It uses

𝜌I
𝟐u�

(𝑠) = −
1

√3
⎛⎜⎜
⎝

i √2 𝑝
−√2 𝑝∗ − i

⎞⎟⎟
⎠

, 𝑖 = 0, 1, 2 , (1.11a)

𝜌I
𝟐0

(𝑡) = (𝜔2 0
0 𝜔) , 𝜌I

𝟐1
(𝑡) = (1 0

0 𝜔2) , 𝜌I
𝟐2

(𝑡) = (𝜔 0
0 1) , (1.11b)

𝜌I
𝟑(𝑠) =

⎛⎜⎜⎜⎜
⎝

−1 2 𝑝1 2 𝑝1 𝑝2
2 𝑝∗

1 −1 2𝑝2
2 𝑝∗

1 𝑝∗
2 2 𝑝∗

2 −1

⎞⎟⎟⎟⎟
⎠

, 𝜌I
𝟑(𝑠) =

⎛⎜⎜⎜⎜
⎝

1 0 0
0 𝜔 0
0 0 𝜔2

⎞⎟⎟⎟⎟
⎠

(1.11c)

as generators with 𝑝 = ei u�, 𝑝1 = ei u�1, and 𝑝2 = ei u�2, where 𝜙, 𝜙1, and 𝜙2 are arbitrary real
phases. The free phases of the triplet representation can be removed by a transformation
𝜌I′

𝟑 (𝑠) = 𝑃 𝜌I
𝟑(𝑠) 𝑃† with

𝑃 =
⎛⎜⎜⎜⎜
⎝

1 0 0
0 ei u�1 0
0 0 ei(u�1+u�2)

⎞⎟⎟⎟⎟
⎠

. (1.12)

The transformation which connects the bases (1.9) and (1.11) for the triplet representations
is given by

𝜌M
𝟑 (𝑠) = (𝑈u� 𝑃) 𝜌I

𝟑(𝑠) (𝑈u� 𝑃)† and 𝜌M
𝟑 (𝑡) = (𝑈u� 𝑃) 𝜌I

𝟑(𝑡) (𝑈u� 𝑃)†, (1.13)

with 𝑈u� as defined for A4 in (1.5).
Note that for the particular choice of 𝑝 = i and 𝑝1 = 𝑝2 = 1, the representation matrices of

basis (1.11) fulfil the Bickerstaff–Damhus condition (VII.5.1) for the automorphism

𝑢 ∶ (𝑠, 𝑡) ↦ (𝑠3, 𝑡2) . (1.14)

Hence, in this particular basis, all Clebsch–Gordan coefficients are real, i.e. the basis is a CP
basis. This has also been found in an explicit computation in [57]. The explicit expressions
for the tensor products in the CP basis are:

(𝑥𝟑 ⊗ 𝑦𝟑)𝟏0
=

𝑥1 𝑦1 + 𝑥2 𝑦3 + 𝑥3 𝑦2

√3
, (1.15a)

(𝑥𝟑 ⊗ 𝑦𝟑)𝟏1
=

𝑥1 𝑦2 + 𝑥2 𝑦1 + 𝑥3 𝑦3

√3
, (1.15b)

(𝑥𝟑 ⊗ 𝑦𝟑)𝟏2
=

𝑥1 𝑦3 + 𝑥2 𝑦2 + 𝑥3 𝑦1

√3
, (1.15c)

(𝑥𝟑 ⊗ 𝑦𝟑)𝟑s
=

1
√6

⎛⎜⎜⎜⎜
⎝

2𝑥1 𝑦1 − 𝑥3 𝑦2 − 𝑥2 𝑦3
−𝑥2 𝑦1 − 𝑥1 𝑦2 + 2𝑥3 𝑦3
−𝑥3 𝑦1 + 2𝑥2 𝑦2 − 𝑥1 𝑦3

⎞⎟⎟⎟⎟
⎠

, (1.15d)

(𝑥𝟑 ⊗ 𝑦𝟑)𝟑a
=

1
√2

⎛⎜⎜⎜⎜
⎝

𝑥2 𝑦3 − 𝑥3 𝑦2
𝑥1 𝑦2 − 𝑥2 𝑦1
𝑥3 𝑦1 − 𝑥1 𝑦3

⎞⎟⎟⎟⎟
⎠

, (1.15e)

(𝜓𝟐u�
⊗ 𝜒𝟐u�

)
𝟏u�+u�

=
𝜓2 𝜒1 − 𝜓1 𝜒2

√2
, (1.15f)
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(𝜓𝟐u�
⊗ 𝜒𝟐3−u�

)
𝟑

=
⎛⎜⎜⎜⎜⎜
⎝

1
√2

(𝜓1 𝜒2 + 𝜓2 𝜒1)

−𝜓1 𝜒1
𝜓2 𝜒2

⎞⎟⎟⎟⎟⎟
⎠

, (1.15g)

(𝜓𝟐u�
⊗ 𝜒𝟐2−u�

)
𝟑

=
⎛⎜⎜⎜⎜⎜
⎝

−𝜓1 𝜒1
𝜓2 𝜒2

1
√2

(𝜓1 𝜒2 + 𝜓2 𝜒1)

⎞⎟⎟⎟⎟⎟
⎠

, (1.15h)

(𝜓𝟐u�
⊗ 𝜒𝟐1−u�

)
𝟑

=
⎛⎜⎜⎜⎜⎜
⎝

𝜓2 𝜒2
1

√2
(𝜓1 𝜒2 + 𝜓2 𝜒1)

−𝜓1 𝜒1

⎞⎟⎟⎟⎟⎟
⎠

, (1.15i)

(𝜓𝟐u�
⊗ 𝑥𝟑)

𝟐u�
=

1
√3

⎛⎜⎜
⎝

𝜓1 𝜒1 + √2 𝜓2 𝜒2
√2 𝜓1 𝜒3 − 𝜓2 𝜒1

⎞⎟⎟
⎠

, (1.15j)

(𝜓𝟐u�
⊗ 𝑥𝟑)

𝟐u�+1
=

1
√3

⎛⎜⎜
⎝

𝜓1 𝜒2 + √2 𝜓2 𝜒3
√2 𝜓1 𝜒1 − 𝜓2 𝜒2

⎞⎟⎟
⎠

, (1.15k)

(𝜓𝟐u�
⊗ 𝑥𝟑)

𝟐u�+2
=

1
√3

⎛⎜⎜
⎝

𝜓1 𝜒3 + √2 𝜓2 𝜒1
√2 𝜓1 𝜒2 − 𝜓2 𝜒3

⎞⎟⎟
⎠

. (1.15l)

Another basis commonly used in the literature is the one of Feruglio et al. [26, Appendix
A], which can be obtained from (1.11) by setting 𝑝1 = 𝑝2 = e2u� i /3 and 𝑝 = e2u� i /24. Note
that their phases do not coincide with the ones obtained by a basis transformation from the
CP basis. With the phases obtained by the basis transformation, which are then such that
compounds transform like elementary states, the component expressions of the Clebsch–
Gordan coefficients are

(𝑥𝟑 ⊗ 𝑦𝟑)𝟏0
=

𝑥1 𝑦1 + 𝑥2 𝑦3 + 𝑥3 𝑦2

√3
, (1.16a)

(𝑥𝟑 ⊗ 𝑦𝟑)𝟏1
=

𝜔 (𝑥1 𝑦2 + 𝑥2 𝑦1 + 𝑥3 𝑦3)
√3

, (1.16b)

(𝑥𝟑 ⊗ 𝑦𝟑)𝟏2
=

𝜔2 (𝑥1 𝑦3 + 𝑥2 𝑦2 + 𝑥3 𝑦1)
√3

, (1.16c)

(𝑥𝟑 ⊗ 𝑦𝟑)𝟑s
=

1
√6

⎛⎜⎜⎜⎜
⎝

2𝑥1 𝑦1 − 𝑥3 𝑦2 − 𝑥2 𝑦3
−𝑥2 𝑦1 − 𝑥1 𝑦2 + 2𝑥3 𝑦3
−𝑥3 𝑦1 + 2𝑥2 𝑦2 − 𝑥1 𝑦3

⎞⎟⎟⎟⎟
⎠

, (1.16d)

(𝑥𝟑 ⊗ 𝑦𝟑)𝟑a
=

1
√2

⎛⎜⎜⎜⎜
⎝

𝑥2 𝑦3 − 𝑥3 𝑦2
𝑥1 𝑦2 − 𝑥2 𝑦1
𝑥3 𝑦1 − 𝑥1 𝑦3

⎞⎟⎟⎟⎟
⎠

, (1.16e)

(𝜓𝟐u�
⊗ 𝜒𝟐u�

)
𝟏u�+u�

=
e7 i u�/12

√2
(𝜓1 𝜒2 − 𝜓2 𝜒1) , (1.16f)

(𝜓𝟐u�
⊗ 𝜒𝟐3−u�

)
𝟑

= i 𝜔2 ⎛⎜⎜⎜⎜
⎝

1−i
2 (𝜓1 𝜒2 + 𝜓2 𝜒1)

i 𝜓1 𝜒1
𝜓2 𝜒2

⎞⎟⎟⎟⎟
⎠

, (1.16g)

(𝜓𝟐u�
⊗ 𝜒𝟐2−u�

)
𝟑

= i
⎛⎜⎜⎜⎜
⎝

i 𝜓1 𝜒1
𝜓2 𝜒2

1−i
2 (𝜓1 𝜒2 + 𝜓2 𝜒1)

⎞⎟⎟⎟⎟
⎠

, (1.16h)
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𝐶1u� 𝐶3u� 𝐶3u� 𝐶3u� 𝐶3u� 𝐶3u� 𝐶3u� 𝐶3u� 𝐶3ℎ 𝐶3u� 𝐶3u�
1 3 3 3 3 3 3 3 3 1 1

𝛥(27) 𝑒 𝑎 𝑎2 𝑏 𝑏2 𝑎𝑏𝑎 𝑏𝑎𝑏 𝑎𝑏 𝑎2𝑏2 u�u�2u�u�u� u�u�2u�u�u�

𝟏0 1 1 1 1 1 1 1 1 1 1 1
𝟏1 1 1 1 𝜔2 𝜔 𝜔2 𝜔 𝜔2 𝜔 1 1
𝟏2 1 1 1 𝜔 𝜔2 𝜔 𝜔2 𝜔 𝜔2 1 1
𝟏3 1 𝜔2 𝜔 1 1 𝜔 𝜔2 𝜔2 𝜔 1 1
𝟏4 1 𝜔2 𝜔 𝜔2 𝜔 1 1 𝜔 𝜔2 1 1
𝟏5 1 𝜔2 𝜔 𝜔 𝜔2 𝜔2 𝜔 1 1 1 1
𝟏6 1 𝜔 𝜔2 1 1 𝜔2 𝜔 𝜔 𝜔2 1 1
𝟏7 1 𝜔 𝜔2 𝜔2 𝜔 𝜔 𝜔2 1 1 1 1
𝟏8 1 𝜔 𝜔2 𝜔 𝜔2 1 1 𝜔2 𝜔 1 1
𝟑 3 0 0 0 0 0 0 0 0 3𝜔2 3𝜔
𝟑 3 0 0 0 0 0 0 0 0 3𝜔 3𝜔2

Table A.3: Character table of 𝛥(27), where 𝜔 ≔ e2u� i /3.

(𝜓𝟐u�
⊗ 𝜒𝟐1−u�

)
𝟑

= i 𝜔
⎛⎜⎜⎜⎜
⎝

𝜓2 𝜒2
1−i
2 (𝜓1 𝜒2 + 𝜓2 𝜒1)

i 𝜓1 𝜒1

⎞⎟⎟⎟⎟
⎠

, (1.16i)

(𝜓𝟐u�
⊗ 𝑥𝟑)

𝟐u�
=

1
√3

(𝜓1 𝜒1 + (1 + i) 𝜓2 𝜒2
(1 − i) 𝜓1 𝜒3 − 𝜓2 𝜒1

) , (1.16j)

(𝜓𝟐u�
⊗ 𝑥𝟑)

𝟐u�+1
=

𝜔
√3

((𝜓1 𝜒2 + (1 + i) 𝜓2 𝜒3)
(1 − i) 𝜓1 𝜒1 − 𝜓2 𝜒2

) , (1.16k)

(𝜓𝟐u�
⊗ 𝑥𝟑)

𝟐u�+2
=

𝜔2

√3
(𝜓1 𝜒3 + (1 + i) 𝜓2 𝜒1

(1 − i) 𝜓1 𝜒2 − 𝜓2 𝜒3
) . (1.16l)

A.1.3 The group 𝛥(27)

The group 𝛥(27) is a subgroup of SU(3) and an element of the infinite SU(3) subgroup
family 𝛥(3 ⋅ 𝑛2). It is generated by two elements 𝑎 and 𝑏 fulfilling the relations

𝑎3 = 𝑏3 = (𝑎𝑏)3 = 𝑒 . (1.17)

There are eleven inequivalent irreducible representations: 𝟏u�, where 𝑖 = 0, … , 8, 𝟑 and 𝟑. The
character table is shown as Table A.3.

We adopt the labelling of [15] with the difference that in our notation 𝟏u� = 𝟏(HLS)
u�−1 and use

the contractions of [219] translated to our conventions. The representations in the pairs
(𝟏1, 𝟏2), (𝟏3, 𝟏6), (𝟏4, 𝟏8), and (𝟏5, 𝟏7) as well as the triplets are complex conjugates of each
other. As matrix realisations of the generators in the triplet representation

𝐴 ≔ 𝜌𝟑(𝑎) =
⎛⎜⎜⎜⎜
⎝

0 1 0
0 0 1
1 0 0

⎞⎟⎟⎟⎟
⎠

, (1.18a)

𝐵 ≔ 𝜌𝟑(𝑏) =
⎛⎜⎜⎜⎜
⎝

1 0 0
0 𝜔 0
0 0 𝜔2

⎞⎟⎟⎟⎟
⎠

(1.18b)
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are chosen and for 𝟑 the corresponding complex conjugate matrices.
The tensor product of a triplet and an anti-triplet yields a complete set of singlets,

𝟑 ⊗ 𝟑 ≅
9

⨁
u�=1

𝟏u� . (1.19)

The expressions of the singlet components in the tensor product of the triplet 𝑥 with the
anti-triplet 𝑦 read

𝟏0 =
(𝑥1 𝑦1 + 𝑥2 𝑦2 + 𝑥3 𝑦3)

√3
, (1.20a)

𝟏1 =
(𝑥1 𝑦2 + 𝑥2 𝑦3 + 𝑥3 𝑦1)

√3
, 𝟏2 =

(𝑥2 𝑦1 + 𝑥3 𝑦2 + 𝑥1 𝑦3)
√3

, (1.20b)

𝟏3 =
(𝑥1 𝑦1 + 𝜔 𝑥2 𝑦2 + 𝜔2 𝑥3 𝑦3)

√3
, 𝟏6 =

(𝑥1 𝑦1 + 𝜔2 𝑥2 𝑦2 + 𝜔 𝑥3 𝑦3)
√3

, (1.20c)

𝟏4 =
(𝑥1 𝑦2 + 𝜔 𝑥2 𝑦3 + 𝜔2 𝑥3 𝑦1)

√3
, 𝟏8 =

(𝑥2 𝑦1 + 𝜔2 𝑥3 𝑦2 + 𝜔 𝑥1 𝑦3)
√3

, (1.20d)

𝟏5 =
(𝑥2 𝑦1 + 𝜔 𝑥3 𝑦2 + 𝜔2 𝑥1 𝑦3)

√3
, 𝟏7 =

(𝑥1 𝑦2 + 𝜔2 𝑥2 𝑦3 + 𝜔 𝑥3 𝑦1)
√3

. (1.20e)

As a non-abelian group of odd order, i.e. with an odd number of elements, 𝛥(27) cannot have
a class-inverting automorphism. However, there are in total 46 involutory automorphisms,
which interchange some representations with their complex conjugates. For example

𝑢1 ∶ (𝑎, 𝑏) ↦ (𝑎, 𝑏2) ⇒ 𝟏1 ↔ 𝟏2 , 𝟏4 ↔ 𝟏5 , 𝟏7 ↔ 𝟏8 , 𝟑 → 𝑈u�1
𝟑 , (1.21a)

𝑢2 ∶ (𝑎, 𝑏) ↦ (𝑎𝑏𝑎, 𝑏) ⇒ 𝟏1 ↔ 𝟏4 , 𝟏2 ↔ 𝟏8 , 𝟏3 ↔ 𝟏6 , 𝟑 → 𝑈u�2
𝟑 , (1.21b)

𝑢3 ∶ (𝑎, 𝑏) ↦ (𝑏𝑎𝑏, 𝑏2) ⇒ 𝟏1 ↔ 𝟏8 , 𝟏2 ↔ 𝟏4 , 𝟏5 ↔ 𝟏7 , 𝟑 → 𝑈u�3
𝟑 , (1.21c)

𝑢4 ∶ (𝑎, 𝑏) ↦ (𝑎𝑏2𝑎, 𝑏) ⇒ 𝟏1 ↔ 𝟏7 , 𝟏2 ↔ 𝟏5 , 𝟏3 ↔ 𝟏6 , 𝟑 → 𝑈u�4
𝟑 , (1.21d)

𝑢5 ∶ (𝑎, 𝑏) ↦ (𝑏𝑎2𝑏2, 𝑎𝑏2𝑎2) ⇒ 𝟏u� ↔ 𝟏u� , 𝟑 → 𝑈u�5
𝟑 . (1.21e)

Any representation not listed is mapped to itself under the respective automorphism.
𝟑 → 𝑈u�u�

𝟑 means that fields in the triplet representation have to be multiplied by the corres-
ponding matrix in addition to the conjugation. In the basis defined above, these matrices
are

𝑈u�1
= 𝟙 , 𝑈u�2

=
⎛⎜⎜⎜⎜
⎝

𝜔 0 0
0 0 1
0 1 0

⎞⎟⎟⎟⎟
⎠

, 𝑈u�3
=

⎛⎜⎜⎜⎜
⎝

1 0 0
0 𝜔2 0
0 0 𝜔2

⎞⎟⎟⎟⎟
⎠

,

𝑈u�4
=

⎛⎜⎜⎜⎜
⎝

𝜔2 0 0
0 0 1
0 1 0

⎞⎟⎟⎟⎟
⎠

, 𝑈u�5
=

⎛⎜⎜⎜⎜
⎝

0 0 𝜔2

0 1 0
𝜔 0 0

⎞⎟⎟⎟⎟
⎠

. (1.22)

The corresponding twisted Frobenius–Schur indicators for all representations are given in
Table A.4. One can convince oneself by computing the twisted Frobenius–Schur indicators
for all automorphisms of 𝛥(27) that for models with fields in more than two different, non-
conjugate non-trivial one-dimensional representations and a triplet it is impossible to define
a consistent CP transformation.
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𝟏0 𝟏1 𝟏2 𝟏3 𝟏4 𝟏5 𝟏6 𝟏7 𝟏8 𝟑 𝟑

FSu�1
1 1 1 0 0 0 0 0 0 1 1

FSu�2
1 0 0 1 0 0 1 0 0 1 1

FSu�3
1 0 0 0 0 1 0 1 0 1 1

FSu�4
1 0 0 1 0 0 1 0 0 1 1

FSu�5
1 1 1 1 1 1 1 1 1 0 0

Table A.4: Twisted Frobenius–Schur indicators for some 𝛥(27) automorphisms.

𝐶1u� 𝐶3u� 𝐶3u� 𝐶3u� 𝐶3u� 𝐶2u� 𝐶6u� 𝐶6u� 𝐶3u� 𝐶3u�
1 6 6 6 6 9 9 9 1 1

𝛥(54) 𝑒 𝑎 𝑏 𝑎𝑏𝑎 𝑎𝑏 𝑐 𝑎𝑏𝑐 𝑏𝑎𝑐 u�u�2u�u�u� u�u�2u�u�u�

𝟏0 1 1 1 1 1 1 1 1 1 1
𝟏1 1 1 1 1 1 −1 −1 −1 1 1
𝟐1 2 2 −1 −1 −1 0 0 0 2 2
𝟐2 2 −1 2 −1 −1 0 0 0 2 2
𝟐3 2 −1 −1 2 −1 0 0 0 2 2
𝟐4 2 −1 −1 −1 2 0 0 0 2 2
𝟑1 3 0 0 0 0 1 𝜔2 𝜔 3𝜔 3𝜔2

𝟑1 3 0 0 0 0 1 𝜔 𝜔2 3𝜔2 3𝜔
𝟑2 3 0 0 0 0 −1 −𝜔2 −𝜔 3𝜔 3𝜔2

𝟑2 3 0 0 0 0 −1 −𝜔 −𝜔2 3𝜔2 3𝜔

Table A.5: Character table of 𝛥(54), where 𝜔 ≔ e2u� i /3.

A.1.4 The group 𝛥(54)

Like 𝛥(27), the group 𝛥(54) is a subgroup of SU(3). In fact, it is part of the 𝛥(6 ⋅ 𝑛2) chain of
subgroups and contains 𝛥(27) as a normal subgroup. 𝛥(54) is generated by three elements
𝑎, 𝑏, and 𝑐, where

𝑎3 = 𝑏3 = 𝑐2 = (𝑎𝑏)3 = (𝑎𝑐)2 = (𝑏𝑐)2 = 𝑒 . (1.23)

There are five non-trivial real irreducible representations 𝟏1 and 𝟐u� with 𝑖 = 1, … , 4 and,
in addition, the complex representations 𝟑1 and 𝟑2 with their respective conjugates. The
characters are shown in Table A.5.

For the triplets 𝟑1,2 the representation matrices

𝜌𝟑1,2
(𝑎) =

⎛⎜⎜⎜⎜
⎝

0 1 0
0 0 1
1 0 0

⎞⎟⎟⎟⎟
⎠

, 𝜌𝟑1,2
(𝑏) =

⎛⎜⎜⎜⎜
⎝

1 0 0
0 𝜔 0
0 0 𝜔2

⎞⎟⎟⎟⎟
⎠

, 𝜌𝟑1,2
(𝑐) = ±

⎛⎜⎜⎜⎜
⎝

1 0 0
0 0 1
0 1 0

⎞⎟⎟⎟⎟
⎠

, (1.24)

are chosen with the plus sign for 𝟑1. For 𝟑1,2 the corresponding complex conjugate matrices
are used.

Restricting the conjugation map conj(𝑐) from 𝛥(54) to 𝛥(27), one obtains a non-inner
automorphism of 𝛥(27) which exchanges all singlet representations with their respective
complex conjugates. The decomposition of the real 𝛥(54) doublets into the complex 𝛥(27)
singlets is thus given by 𝟐1 = (𝟏1, 𝟏2), 𝟐2 = (𝟏3, 𝟏6), 𝟐3 = (𝟏4, 𝟏8) and 𝟐4 = (𝟏5, 𝟏7).
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𝐶1u� 𝐶3u� 𝐶2u� 𝐶4u� 𝐶4u� 𝐶4u�
1 8 9 18 18 18

𝛴(72) 𝑒 𝑝 𝑚2 𝑚𝑛 𝑛 𝑚

𝟏0 1 1 1 1 1 1
𝟏1 1 1 1 1 −1 −1
𝟏2 1 1 1 −1 1 −1
𝟏3 1 1 1 −1 −1 1
𝟐 2 2 −2 0 0 0
𝟖 8 −1 0 0 0 0

Table A.6: Character table of 𝛴(72).

In a basis where the 𝛥(27) subgroup has block-diagonal representation matrices for the
doublets, the relevant Clebsch–Gordan coefficients of 𝛥(54) are

(𝑥𝟐u�
⊗ 𝑦𝟐u�

)
𝟏0

=
1

√2
(𝑥1 𝑦2 + 𝑥2 𝑦1) , (1.25a)

(𝑥𝟑u�
⊗ 𝑦𝟑u�

)
𝟏0

=
1

√3
(𝑥1 𝑦1 + 𝑥2 𝑦2 + 𝑥3 𝑦3) , (1.25b)

(𝑥𝟑u�
⊗ 𝑦𝟑u�

)
𝟐1

=
1

√3
(𝑥1 𝑦2 + 𝑥3 𝑦1 + 𝑥2 𝑦3

𝑥2 𝑦1 + 𝑥1 𝑦3 + 𝑥3 𝑦2
) , (1.25c)

(𝑥𝟑u�
⊗ 𝑦𝟑u�

)
𝟐2

=
1

√3
(𝑥1 𝑦1 + 𝜔 𝑥2 𝑦2 + 𝜔2 𝑥3 𝑦3

𝑥1 𝑦1 + 𝜔2 𝑥2 𝑦2 + 𝜔 𝑥3 𝑦3
) , (1.25d)

(𝑥𝟑u�
⊗ 𝑦𝟑u�

)
𝟐3

=
1

√3
(𝑥2 𝑦3 + 𝜔 𝑥3 𝑦1 + 𝜔2 𝑥1 𝑦2

𝜔 𝑥2 𝑦1 + 𝑥3 𝑦2 + 𝜔2 𝑥1 𝑦3
) , (1.25e)

(𝑥𝟑u�
⊗ 𝑦𝟑u�

)
𝟐4

=
1

√3
(𝜔2 𝑥2 𝑦1 + 𝑥3 𝑦2 + 𝜔 𝑥1 𝑦3

𝑥2 𝑦3 + 𝜔2 𝑥3 𝑦1 + 𝜔 𝑥1 𝑦2
) . (1.25f)

For the other Clebsch–Gordan coefficients, cf. [57].

A.1.5 The group 𝛴(72)

The non-abelian group 𝛴(72) is isomorphic to the semi-direct product group (ℤ3 × ℤ3)o𝑄8,
where 𝑄8 is the Quaternion group. It is generated by three generators 𝑚, 𝑛 and 𝑝 fulfilling
the relations

𝑚4 = 𝑛4 = 𝑝3 = (𝑚2 𝑝−1)2 = 𝑒 , 𝑚2 = 𝑛2 , 𝑚−1 𝑛 = 𝑛 𝑚 ,
𝑝 𝑚 𝑝 𝑛−1 𝑚 𝑝−1 𝑛 = 𝑒 , 𝑛 𝑝 𝑚−1 𝑝 = 𝑚 𝑝 𝑛 .

(1.26)

𝛴(72) has 6 inequivalent irreducible representations: four one-dimensional (𝟏0−3), one two-
dimensional (𝟐), and one eight–dimensional (𝟖) one. The characters of 𝛴(72) are shown
in Table A.6. Since all characters are real, it is clear that 𝛴(72) is ambivalent and that all
representations are (pseudo-) real. For the two-dimensional representation, the generators
can be chosen as

𝜌𝟐(𝑚) = ( 0 1
−1 0) , 𝜌𝟐(𝑛) = (− i 0

0 i) , 𝜌𝟐(𝑝) = (1 0
0 1) , (1.27)
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and for the eight-dimensional one as

𝜌𝟖(𝑚) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 −1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, 𝜌𝟖(𝑛) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1
1 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

,

(1.28a)

𝜌𝟖(𝑝) =
1
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1 √3 0 0 0 0 0 0
−√3 −1 0 0 0 0 0 0

0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 −1 −√3 0 0
0 0 0 0 √3 −1 0 0
0 0 0 0 0 0 −1 −√3
0 0 0 0 0 0 √3 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (1.28b)

For this basis, the non-trivial tensor product contractions of 𝛴(72) are shown in the
following.

(𝑥𝟏0
⊗ 𝑦𝟐)

𝟐
=

1
√2

(𝑥1 𝑦1
𝑥1 𝑦2

) , (𝑥𝟏1
⊗ 𝑦𝟐)

𝟐
=

i
√2

(𝑥1 𝑦2
𝑥1 𝑦1

) , (1.29a)

(𝑥𝟏2
⊗ 𝑦𝟐)

𝟐
=

i
√2

( 𝑥1 𝑦1
−𝑥1 𝑦2

) , (𝑥𝟏3
⊗ 𝑦𝟐)

𝟐
=

1
√2

( 𝑥1 𝑦2
−𝑥1 𝑦1

) , (1.29b)

(𝑥𝟐 ⊗ 𝑦𝟐)𝟏0
=

1
√2

(𝑥1 𝑦2 − 𝑥2 𝑦1) , (𝑥𝟐 ⊗ 𝑦𝟐)𝟏1
=

i
√2

(𝑥1 𝑦1 − 𝑥2 𝑦2) , (1.29c)

(𝑥𝟐 ⊗ 𝑦𝟐)𝟏2
=

i
√2

(𝑥1 𝑦2 + 𝑥2 𝑦1) , (𝑥𝟐 ⊗ 𝑦𝟐)𝟏3
=

1
√2

(𝑥1 𝑦1 + 𝑥2 𝑦2) , (1.29d)

(𝑥𝟏0
⊗ 𝑦𝟖)

𝟖
= (𝑥1 𝑦1, 𝑥1 𝑦2, 𝑥1 𝑦3, 𝑥1 𝑦4, 𝑥1 𝑦5, 𝑥1 𝑦6, 𝑥1 𝑦7, 𝑥1 𝑦8)u� , (1.29e)

(𝑥𝟏1
⊗ 𝑦𝟖)

𝟖
= (𝑥1 𝑦1, 𝑥1 𝑦2, −𝑥1 𝑦3, −𝑥1 𝑦4, −𝑥1 𝑦5, −𝑥1 𝑦6, 𝑥1 𝑦7, 𝑥1 𝑦8)u� , (1.29f)

(𝑥𝟏2
⊗ 𝑦𝟖)

𝟖
= (𝑥1 𝑦1, 𝑥1 𝑦2, −𝑥1 𝑦3, −𝑥1 𝑦4, 𝑥1 𝑦5, 𝑥1 𝑦6, −𝑥1 𝑦7, −𝑥1 𝑦8)u� , (1.29g)

(𝑥𝟏3
⊗ 𝑦𝟖)

𝟖
= (𝑥1 𝑦1, 𝑥1 𝑦2, 𝑥1 𝑦3, 𝑥1 𝑦4, −𝑥1 𝑦5, −𝑥1 𝑦6, −𝑥1 𝑦7, −𝑥1 𝑦8)u� , (1.29h)

(𝑥𝟐 ⊗ 𝑦𝟖)𝟖1 = (i 𝑥1 𝑦2, − i 𝑥1 𝑦1, i 𝑥2 𝑦4, − i 𝑥2 𝑦3, 𝑥1 𝑦6, −𝑥1 𝑦5, 𝑥2 𝑦8, −𝑥2 𝑦7)u� , (1.29i)
(𝑥𝟐 ⊗ 𝑦𝟖)𝟖2 = (i 𝑥2 𝑦2, − i 𝑥2 𝑦1, − i 𝑥1 𝑦4, i 𝑥1 𝑦3, −𝑥2 𝑦6, 𝑥2 𝑦5, 𝑥1 𝑦8, −𝑥1 𝑦7)u� , (1.29j)

(𝑥𝟖 ⊗ 𝑦𝟖)𝟏0
=

1

2√2
(𝑥1 𝑦1 + 𝑥2 𝑦2 + 𝑥3 𝑦3 + 𝑥4 𝑦4 + 𝑥5 𝑦5 + 𝑥6 𝑦6 + 𝑥7 𝑦7 + 𝑥8 𝑦8) ,

(1.29k)
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(𝑥𝟖 ⊗ 𝑦𝟖)𝟏1
=

1

2√2
(𝑥1 𝑦1 + 𝑥2 𝑦2 − 𝑥3 𝑦3 − 𝑥4 𝑦4 − 𝑥5 𝑦5 − 𝑥6 𝑦6 + 𝑥7 𝑦7 + 𝑥8 𝑦8) , (1.29l)

(𝑥𝟖 ⊗ 𝑦𝟖)𝟏2
=

1

2√2
(𝑥1 𝑦1 + 𝑥2 𝑦2 − 𝑥3 𝑦3 − 𝑥4 𝑦4 + 𝑥5 𝑦5 + 𝑥6 𝑦6 − 𝑥7 𝑦7 − 𝑥8 𝑦8) ,

(1.29m)

(𝑥𝟖 ⊗ 𝑦𝟖)𝟏3
=

1

2√2
(𝑥1 𝑦1 + 𝑥2 𝑦2 + 𝑥3 𝑦3 + 𝑥4 𝑦4 − 𝑥5 𝑦5 − 𝑥6 𝑦6 − 𝑥7 𝑦7 − 𝑥8 𝑦8) ,

(1.29n)

(𝑥𝟖 ⊗ 𝑦𝟖)𝟐1 =
1
2

(i 𝑥2 𝑦1 − i 𝑥1 𝑦2 − 𝑥6 𝑦5 + 𝑥5 𝑦6
i 𝑥4 𝑦3 − i 𝑥3 𝑦4 − 𝑥8 𝑦7 + 𝑥7 𝑦8

) , (1.29o)

(𝑥𝟖 ⊗ 𝑦𝟖)𝟐2 =
1
2

( i 𝑥4 𝑦3 − i 𝑥3 𝑦4 + 𝑥8 𝑦7 − 𝑥7 𝑦8
− i 𝑥2 𝑦1 + i 𝑥1 𝑦2 − 𝑥6 𝑦5 + 𝑥5 𝑦6

) , (1.29p)

(𝑥𝟖 ⊗ 𝑦𝟖)𝟖1 =
1

√2
(𝑥1 𝑦1 − 𝑥2 𝑦2, −𝑥2 𝑦1 − 𝑥1 𝑦2, 𝑥3 𝑦3 − 𝑥4 𝑦4, −𝑥4 𝑦3 − 𝑥3 𝑦4,

𝑥5 𝑦5 − 𝑥6 𝑦6, −𝑥6 𝑦5 − 𝑥5 𝑦6, 𝑥7 𝑦7 − 𝑥8 𝑦8, −𝑥8 𝑦7 − 𝑥7 𝑦8)u� ,
(1.29q)

(𝑥𝟖 ⊗ 𝑦𝟖)𝟖2 =
1

√2
(𝑥3 𝑦5 + 𝑥4 𝑦6, 𝑥4 𝑦5 − 𝑥3 𝑦6, 𝑥1 𝑦7 − 𝑥2 𝑦8, −𝑥2 𝑦7 − 𝑥1 𝑦8,

𝑥7 𝑦1 + 𝑥8 𝑦2, −𝑥8 𝑦1 + 𝑥7 𝑦2, 𝑥5 𝑦3 − 𝑥6 𝑦4, 𝑥6 𝑦3 + 𝑥5 𝑦4)u� , (1.29r)

(𝑥𝟖 ⊗ 𝑦𝟖)𝟖3 =
1

√2
(𝑥3 𝑦7 − 𝑥4 𝑦8, −𝑥4 𝑦7 − 𝑥3 𝑦8, 𝑥1 𝑦5 − 𝑥2 𝑦6, 𝑥2 𝑦5 + 𝑥1 𝑦6,

𝑥7 𝑦3 + 𝑥8 𝑦4, 𝑥8 𝑦3 − 𝑥7 𝑦4, 𝑥5 𝑦1 + 𝑥6 𝑦2, −𝑥6 𝑦1 + 𝑥5 𝑦2)u� , (1.29s)

(𝑥𝟖 ⊗ 𝑦𝟖)𝟖4 =
1

√2
(𝑥5 𝑦7 − 𝑥6 𝑦8, 𝑥6 𝑦7 + 𝑥5 𝑦8, 𝑥7 𝑦5 + 𝑥8 𝑦6, 𝑥8 𝑦5 − 𝑥7 𝑦6,

𝑥1 𝑦3 + 𝑥2 𝑦4, −𝑥2 𝑦3 + 𝑥1 𝑦4, 𝑥3 𝑦1 − 𝑥4 𝑦2, −𝑥4 𝑦1 − 𝑥3 𝑦2)u� ,
(1.29t)

(𝑥𝟖 ⊗ 𝑦𝟖)𝟖5 =
1

√2
(𝑥5 𝑦3 + 𝑥6 𝑦4, −𝑥6 𝑦3 + 𝑥5 𝑦4, 𝑥7 𝑦1 − 𝑥8 𝑦2, −𝑥8 𝑦1 − 𝑥7 𝑦2,

𝑥1 𝑦7 + 𝑥2 𝑦8, 𝑥2 𝑦7 − 𝑥1 𝑦8, 𝑥3 𝑦5 − 𝑥4 𝑦6, 𝑥4 𝑦5 + 𝑥3 𝑦6)u� , (1.29u)

(𝑥𝟖 ⊗ 𝑦𝟖)𝟖6 =
1

√2
(𝑥7 𝑦5 − 𝑥8 𝑦6, 𝑥8 𝑦5 + 𝑥7 𝑦6, 𝑥5 𝑦7 + 𝑥6 𝑦8, −𝑥6 𝑦7 + 𝑥5 𝑦8,

𝑥3 𝑦1 + 𝑥4 𝑦2, 𝑥4 𝑦1 − 𝑥3 𝑦2, 𝑥1 𝑦3 − 𝑥2 𝑦4, −𝑥2 𝑦3 − 𝑥1 𝑦4)u� ,
(1.29v)

(𝑥𝟖 ⊗ 𝑦𝟖)𝟖7 =
1

√2
(𝑥7 𝑦3 − 𝑥8 𝑦4, −𝑥8 𝑦3 − 𝑥7 𝑦4, 𝑥5 𝑦1 − 𝑥6 𝑦2, 𝑥6 𝑦1 + 𝑥5 𝑦2,

𝑥3 𝑦7 + 𝑥4 𝑦8, −𝑥4 𝑦7 + 𝑥3 𝑦8, 𝑥1 𝑦5 + 𝑥2 𝑦6, 𝑥2 𝑦5 − 𝑥1 𝑦6)u� .
(1.29w)
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A.2 Non-real bases for real representations

As detailed in Section II.5, one distinguishes between complex, real and pseudo-real repres-
entations. Real representations are representations which are equivalent to their conjugate
representation (see Definition 18), 𝑹 ≅ 𝑹, and which can be realised as manifestly real
matrices. However, one can, of course, also choose a basis with non-real entries. This can be
desirable, for example, if the CP basis, i.e. the basis with real Clebsch–Gordan coefficients,
happens to be of this type. An example for this is the CP basis of T′ with its triplet represent-
ation, see Section VII.9.1 and Section A.1.2. In this case 𝜌𝑹(𝑔)∗ ≠ 𝜌𝑹(𝑔) for some 𝑔 in 𝐺. For
pseudo-real representations this is always the case because they can, by definition, not be
represented by real matrices. Moreover, one can choose for a complex representation 𝑹 and
its conjugate 𝑹 two bases such that the representation matrices are not mutually complex
conjugate, i.e. 𝜌𝑹(𝑔)∗ ≠ 𝜌𝑹(𝑔) for some 𝑔 in 𝐺. Let for the rest of this section 𝑹 denote a
fixed basis for this representation, i.e. not only up to equivalence, and 𝑹 analogously for
the conjugate representation. Further, let 𝑹∗ denote the representation which is defined by
complex conjugating all matrices of 𝑹.

Then the conjugate 𝜑∗ of a field 𝜑 in representation 𝑹 does not transform with the rep-
resentation matrices 𝜌𝑹 chosen for the conjugate representation but with 𝜌∗

𝑹. However, one
usually only computes the Clebsch–Gordan coefficients for tensor products in terms of 𝑹
and not additionally for 𝑹∗. Using naively the Clebsch–Gordan coefficients of 𝑹 ⊗ 𝑹 for the
contraction of 𝜑 with 𝜑∗, which actually is 𝑹 ⊗ 𝑹∗, leads to wrong results. Let 𝜑 be in the
triplet representation of T′ in the CP basis, for example. Then the contraction of 𝜑 and 𝜑∗ to
the trivial singlet is, as usual,

(𝜑∗ ⊗ 𝜑)𝟏0
= 𝜑† 𝜑 . (2.1)

Applying naively the Clebsch–Gordan coefficient of (1.15a), one could be tricked to think
that

(𝜑∗ ⊗ 𝜑)𝟏0
=

𝜑∗
1 𝜑1 + 𝜑∗

2 𝜑3 + 𝜑∗
3 𝜑2

√3
(2.2)

were, up to normalisation, the correct result, which is clearly wrong.
This shows that one has to be careful when using the Clebsch–Gordan coefficients in this

special case. As 𝑹 ≅ 𝑹∗, there is a unitary matrix 𝑈, unique up to a phase for irreducible 𝑹,
such that

𝜌𝑹(𝑔) = 𝑈 𝜌𝑹∗(𝑔) 𝑈−1 = 𝑈 𝜌𝑹(𝑔)∗ 𝑈−1 . (2.3)

With this matrix, one can define the field

̄𝜑 ≔ 𝑈 𝜑∗ , (2.4)

which transforms with matrices 𝜌𝑹 instead of 𝜌∗
𝑹. Hence, using the field ̄𝜑 instead of 𝜑∗, one

can use the Clebsch–Gordan coefficients for 𝑹 and 𝑹. Taking again the example of the T′

triplet in the CP basis, the matrix 𝑈 is

𝑈 ≔
⎛⎜⎜⎜⎜
⎝

1 0 0
0 0 1
0 1 0

⎞⎟⎟⎟⎟
⎠

(2.5)
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and the contraction reads

( ̄𝜑 ⊗ 𝜑)𝟏0
=

̄𝜑1 𝜑1 + ̄𝜑2 𝜑3 + ̄𝜑3 𝜑2

√3
=

𝜑∗
1 𝜑1 + 𝜑∗

2 𝜑2 + 𝜑∗
3 𝜑3

√3
, (2.6)

which is the correct result.
The occurrence of the matrix 𝑈 does not spoil the good CP behaviour in the CP basis

because 𝑈 is always real for real Clebsch–Gordan coefficients. This can be seen from the fact
that the trivial singlet contraction of 𝜑 and 𝜑∗, which for unitary representations is always
𝜑† 𝜑 up to a complex normalisation, reads using the Clebsch–Gordan coefficients

̄𝜑u� 𝐶u�u�,𝟏0
𝜑u� = 𝑈u�u� 𝜑∗

u� 𝐶u�u�,𝟏0
𝜑u� = 𝛼 𝜑∗

u� 𝛿u�u� 𝜑u� , (2.7)

where 𝛼 is some complex number.1 The complex phase of 𝛼 can always be removed by a
different choice of 𝑈 because 𝑈 is only defined up to a phase. Hence,

𝐶u�u�,𝟏0
𝑈u�u� = |𝛼| 𝛿u�u� , (2.8)

i.e. 𝑈 is the inverse of a matrix with real coefficients and, therefore, real itself.

A.2.1 Real scalar fields in not manifestly real representations

Related issues can arise for a field 𝜑 transforming in a real representation 𝑹 with not
manifestly real representation matrices.2 Starting with a real matrix realisation 𝜌𝑹 of 𝑹,

𝜌𝑹(𝑔) = 𝜌𝑹(𝑔)∗ , ∀ 𝑔 ∈ 𝐺 , (2.9)

one can consistently impose the reality condition

𝜑 = 𝜑∗ (2.10)

on the field.
Let us now change to a different matrix realisation of 𝑹,

𝜑′ = 𝑆−1 𝜑 , (2.11a)
𝜌′

𝑹(𝑔) = 𝑆−1 𝜌𝑹(𝑔) 𝑆 , (2.11b)

where 𝑆 is a unitary matrix, and study the theory in this new basis. In contrast to 𝜌𝑹(𝑔), the
matrix realisation 𝜌′

𝑹(𝑔) need not be manifestly real. In fact,

𝜌′
𝑹(𝑔)∗ = 𝑆u� 𝑆 𝜌′

𝑹(𝑔) 𝑆† 𝑆∗ , (2.12)

and one can define the unitary matrix 𝑈 ≔ 𝑆† 𝑆∗. Moreover, the field 𝜑′ is not real, but it
fulfils the (generalised) reality condition3

𝜑′ = 𝑆† 𝜑 = 𝑆† 𝜑∗ = 𝑆† 𝑆∗ (𝜑′)∗ = 𝑈 (𝜑′)∗ . (2.13)

1 The matrix u� is unitary. Contrary to that, one line of the unitary Clebsch–Gordan matrix u�u�u�,u�u�u� written
down as a matrix in the indices u� and u� for fixed u�, u�, u� has a wrong normalisation. This mismatch is encoded
in u�. In the example above, u� is equal to 1/√3.

2 In fact, that was already the case in the T′ example of the previous discussion.
3 This is, in a sense, an analogue of the Majorana condition for Dirac spinors.
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Indeed, this is the only type of reality condition that can be imposed on fields in a pseudo-
real representation. The canonical kinetic term of the real scalar field in the new basis turns
into

ℒ ⊃
1
2

(∂u�𝜑′)u� 𝑈∗ (∂u�𝜑′) (2.14)

and, since 𝑈∗ is not necessarily positive definite, it might seem that the resulting propagator
is unphysical. However, the new path integral measure is 𝒟𝜑′ ∼ 𝒟 (𝑆−1𝜑) and does not run
over all real field values but over all values that satisfy the generalised reality condition
(2.13). For all these values, the kinetic term is positive.

Although physically equivalent, a choice of basis which is not manifestly real is less
suitable for performing explicit perturbative calculations since one cannot use the standard
Feynman rules for real scalar fields. However, one can, for example, use the following
procedure to carry out computations. One starts with a complex field with complex kinetic
term and drops any reality condition. The reality condition is then imposed dynamically by
a Lagrange multiplier. To this end, one extends the model by a complex auxiliary field 𝑧 in
the same representation as 𝜑 without any kinetic term and adds the terms

ℒ ⊃ 𝑧† (𝜑 − 𝑈 𝜑∗) + (𝜑† − 𝜑u� 𝑈†) 𝑧 + 𝜉 |𝑧|2 (2.15)

to the Lagrangian, where 𝑈 is the same matrix as above. For 𝜉 → 0, the equations of motion
of the auxiliary field 𝑧 enforce the reality condition on 𝜑. Thus, one can read off the Feynman
rules from this Lagrangian and perform the loop calculations which, however, involve the
field 𝑧 on internal lines. After obtaining the result, one performs the limit 𝜉 → 0 to project
out the contributions of 𝜑 that do not obey 𝜑 = 𝑈 𝜑∗. Although it is thus possible to do
computations in a not manifestly real basis, it is probably better to avoid this, if possible,
and to work in a real basis, where one can use the usual Feynman rules.

A.3 Wigner’s representation theorem

Quantum mechanical states are described by vectors in a projective Hilbert space 𝑃𝐻, i.e. in
the projective space obtained from a Hilbert space 𝐻 where any two Hilbert space vectors
that differ by a (non-zero) complex scalar multiple are identified. A symmetry can be defined
as a bijective transformation acting on the states of the projective Hilbert space such that all
transition probabilities between physically realisable states are preserved [178]. According
to a famous theorem by Wigner [220], cf. also [165], all these operations on the projective
Hilbert space 𝑃𝐻 can be elevated to operations on the Hilbert space 𝐻 itself.4 In fact, a
symmetry is either represented on 𝐻 by a linear and unitary operator 𝑨,

𝑨 (𝜆 |𝑣⟩ + 𝜇 |𝑤⟩) = 𝜆 𝑨 |𝑣⟩ + 𝜇 𝑨 |𝑤⟩ ,
⟨𝑨 𝑣 | 𝑨 𝑤⟩ = ⟨𝑣 | 𝑤⟩ ,

∀ 𝑣, 𝑤 ∈ 𝐻 and 𝜆, 𝜇 ∈ ℂ , (3.1)

or by an anti-linear and unitary operator 𝑩

𝑩 (𝜆 |𝑣⟩ + 𝜇 |𝑤⟩) = 𝜆∗ 𝑩 |𝑣⟩ + 𝜇∗ 𝑩 |𝑤⟩ ,
⟨𝑩 𝑣 | 𝑩 𝑤⟩ = ⟨𝑤 | 𝑣⟩ ,

∀ 𝑣, 𝑤 ∈ 𝐻 and 𝜆, 𝜇 ∈ ℂ . (3.2)

For anti-linear, unitary operators the terminology anti-unitary is also common.

4 Issues connected to superselection rules are ignored here, cf. [178].
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A.4 Proofs concerning generalised CP transformations

In this appendix, the proofs concerning generalised CP transformations omitted in the main
text are collected.

A.4.1 Class-inverting automorphisms of higher order

Let 𝑢 be a class-inverting automorphism which is of order greater than two, i.e. which is not
involutory. Moreover, assume that it squares to an inner automorphism,

∃ 𝑎 ∈ 𝐺 ∶ 𝑢2(𝑔) = 𝑎𝑔𝑎−1 , ∀ 𝑔 ∈ 𝐺 . (4.1)

In all checked examples, there is a second, involutory automorphism 𝑢′ such that

∃ 𝑏 ∈ 𝐺 ∶ 𝑢′(𝑔) = 𝑏𝑢(𝑔)𝑏−1 , ∀ 𝑔 ∈ 𝐺 . (4.2)

From the requirement that 𝑢′ be involutory one obtains

𝑢′2(𝑔) = 𝑏𝑢(𝑢′(𝑔))𝑏−1 = 𝑏𝑢(𝑏𝑢(𝑔)𝑏−1)𝑏−1 = 𝑏𝑢(𝑏)𝑎𝑔𝑎−1𝑢(𝑏)−1𝑏−1 = 𝑔 , ∀ 𝑔 ∈ 𝐺 .
(4.3)

This is true if and only if

𝑏𝑢(𝑏)𝑎 ∈ 𝑍(𝐺) . (4.4)

Summarising, given a class-inverting automorphism 𝑢 of order greater than two which
fulfils (4.1), there is an equivalent involutory automorphism if and only if5

∃ 𝑏 ∈ 𝐺 ∶ 𝑏𝑢(𝑏)𝑎 ∈ 𝑍(𝐺) . (4.5)

For some sets of automorphisms, one can prove that such an element 𝑏 can always be
found.

As a first step, one can show using representation theory that 𝑢(𝑎) = 𝑎𝑧 where 𝑧 is in the
centre of 𝐺. To this end, consider the action of 𝑢2 on the matrix realisation of an irreducible
representation 𝑹u�,

𝜌u�(𝑢2(𝑔)) = 𝜌u�(𝑎) 𝜌u�(𝑔) 𝜌u�(𝑎)† = 𝑈u� 𝑈∗
u� 𝜌u�(𝑔) 𝑈u�

u� 𝑈†
u� = 𝑉u� 𝜌u�(𝑔) 𝑉†

u� (4.6)

with

𝑉u� = 𝑈u� 𝑈∗
u� . (4.7)

By Schur’s lemma

𝜌u�(𝑎) = e− i u�u� 𝑉u� , (4.8)

where 𝛼u� is some real phase.6 Consider now

𝜌u�(𝑢(𝑎)) = 𝑈u� (e− i u�u� 𝑈u� 𝑈∗
u� )∗ 𝑈†

u� = ei u�u� 𝑈u� 𝑈∗
u� = e2 i u�u� 𝜌u�(𝑎) . (4.9)

5 A similar but due to different assumptions more restrictive condition has been found in [188].
6 This also shows that the u�u� are group elements up to a phase factor. This phase factor may result in an

enlarged discrete symmetry. However, since it is diagonal for each irreducible representation, the discrete
symmetry can only be enlarged to a direct product of u� with an abelian factor.
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Since 𝑢 is an automorphism, its image must be a group element, i.e.

∃ 𝑏 ∈ 𝐺 ∶ 𝜌u�(𝑏) = e2 i u�u� 𝜌u�(𝑎) . (4.10)

This implies that

𝜌u�(𝑎𝑏−1) = e−2 i u�u� 𝟙 (4.11)

represents an element 𝑧 of 𝐺.7 Since its matrix realisation commutes with all other elements
of the group for each irreducible representation, the group element 𝑧 is in the centre 𝑍(𝐺).
In conclusion,

𝑢(𝑎) = 𝑎𝑧 , (4.12)

i.e. 𝑎 is a fixed-point of 𝑢 up to an element in the centre of 𝐺.
One has now to distinguish the cases that the order of 𝑢 is odd, ord (𝑢) = 2𝑛 + 1, and that

it is even, ord(𝑢) = 2𝑛.
Let first ord (𝑢) = 2𝑛 + 1. Only ambivalent groups can have odd-order class-inverting

automorphisms at all.8 Then using (4.1) and (4.12)

𝑢2u�+1(𝑔) = 𝑔 = 𝑢(𝑎)u�𝑢(𝑔)𝑢(𝑎)−u� = 𝑎u�𝑧u�𝑢(𝑔)𝑎−u�𝑧−u� = 𝑎u�𝑢(𝑔)𝑎−u� , ∀ 𝑔 ∈ 𝐺 , (4.13)

i.e. the automorphism is inner. Thus, it is connected to the identity automorphism by the
conjugation with 𝑏 = 𝑎u�. Since the group is ambivalent, the identity automorphism is
class-inverting and involutory.

Let now ord (𝑢) = 2𝑛, which, as explained, is always the case for non-ambivalent groups.
Then 𝑎u� is in the centre 𝑍(𝐺) of 𝐺. This can be directly seen from the defining equation for
the order of 𝑢 using equation (4.1),

𝑢2u�(𝑔) = 𝑔 = 𝑎u�𝑔𝑎−u� , ∀ 𝑔 ∈ 𝐺 ⇒ 𝑎u� ∈ 𝑍(𝐺) . (4.14)

Let now 𝑛 = 2𝑚+1, i.e. ord (𝑢) = 4𝑚+2. One can then construct a solution 𝑏 to equation (4.5)
in the following way. Since 𝑎 is a fixed-point of 𝑢 up to an element 𝑧 of the centre of 𝐺,
according to (4.12), the choice 𝑏 = 𝑎u� solves equation (4.4) because

𝑏𝑢(𝑏)𝑎 = 𝑎u�(𝑎𝑧)u�𝑎 = 𝑎2u�+1𝑧u� = 𝑎u�𝑧u� ∈ 𝑍(𝐺) , (4.15)

where it has been used that, as shown above, 𝑎u� ∈ 𝑍(𝐺).
This argument also covers all non-abelian groups of odd order because the order of their

elements is odd, i.e. ord (𝑎) = 2𝑘 + 1 for some 𝑘. Then 𝑏 = 𝑎u� can be used to construct a
class-inverting, involutory automorphism out of the higher-order one.

In conclusion, it was shown that any class-inverting automorphism that squares to an inner
automorphism can be related by an inner automorphism to a class-inverting, involutory
automorphism if one of the following is true: either the order of the group is odd or the
order of the original automorphism is odd or the order of the original automorphism is
4𝑚 + 2 for some natural number 𝑚. The only caveats are, hence, automorphisms of order 4𝑚.

Moreover, we have not been able to find a class-inverting automorphism that is not linked
in the prescribed way to a class-inverting, involutory automorphism in any group up to
order 300 using GAP; however, some groups of orders 128, 162, 192, 250, 256 and 288 could
not be checked for computational reasons.

7 This also shows that u� is maximally enlarged to u� × ℤ2.
8 For all other groups there would be at least one conjugacy class that is mapped to its inverse class by an

odd power of the automorphism, i.e. an odd power cannot be the identity.
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A.4.2 Class-inverting automorphisms that do not square to an inner
automorphism

Let 𝑣 = 𝑢2, where 𝑣 is not an inner automorphism of 𝐺.9 Then

𝜌𝑹u�
(𝑣(𝑔)) = 𝑉u� 𝜌𝑹u�

(𝑔) 𝑉−1
u� , ∀ 𝑔 ∈ 𝐺 , ∀ 𝑖 (4.16)

but

∄ 𝑎 ∈ 𝐺 ∶ ∀ 𝑖 ∶ 𝜌𝑹u�
(𝑣(𝑔)) = 𝜌𝑹u�

(𝑎) 𝜌𝑹u�
(𝑔) 𝜌𝑹u�

(𝑎)−1 . (4.17)

Thus, 𝑉u� cannot be written as

𝑉u� = 𝑉′
u� 𝜌u�(𝑎) (4.18)

for any 𝑎 in 𝐺 and with matrices 𝑉′
u� which commute with the representation matrices of all

group elements of 𝐺. Otherwise, one would obtain a contradiction with (4.17). Hence, the
group 𝐻 = 𝐺ou� ℤord (u�) obtained by promoting 𝑉u� to a symmetry is a non-trivial semi-direct
product, i.e. it is not a direct product.

A.4.3 No class-inverting automorphism for odd-order non-abelian groups

Let us show, using the results obtained above, that non-abelian groups of odd order do not
admit class-inverting automorphisms that square to inner automorphisms.10 A remarkable
implication of this is that non-abelian groups of odd order do not admit bases with real
Clebsch–Gordan coefficients. The proof follows the lines of [187].

It is known that any class-inverting automorphism of an odd-order non-abelian group
is fixed-point free [186]. This is true because the only real conjugacy class of such groups
is the identity class. Thus, any involutory, class-inverting automorphism would be order
two and fixed-point free. However, the existence of such an automorphism contradicts the
assumption that the group is non-abelian. This can be seen as follows. Consider a group 𝐺
and let 𝜏 be an order two, fixed-point free automorphism. Then the map

𝑔 ⟼ 𝑔−1 𝜏(𝑔) (4.19)

is injective because

𝑔−1𝜏(𝑔) = ℎ−1𝜏(ℎ) ⇔ ℎ𝑔−1 = 𝜏(ℎ𝑔−1) , (4.20)

which is impossible as 𝜏 is fixed-point free. An injective map on a finite set is automatically
bijective, and, hence, one can write every element 𝑔 ∈ 𝐺 as ℎ−1𝜏(ℎ) for some ℎ ∈ 𝐺. This
implies that the automorphism 𝜏 acts on group elements as inversion,

𝜏(𝑔) = 𝜏(ℎ−1𝜏(ℎ)) = 𝜏(ℎ)−1 ℎ = 𝑔−1 . (4.21)

However, a group for which inversion is an automorphism is abelian,

𝑔ℎ = (ℎ−1𝑔−1)−1 = 𝜏(ℎ−1𝑔−1) = 𝜏(ℎ−1)𝜏(𝑔−1) = ℎ𝑔 , ∀ 𝑔, ℎ ∈ 𝐺 , (4.22)

9 Note that there are class-preserving automorphisms that are not inner automorphisms, e.g. for the group
SG(32,43).

10 We cannot exclude the possibility that there are class-inverting automorphisms that square to non-inner
automorphisms. However, there is no example up to group order 599 as we have checked explicitly using
GAP.
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which contradicts the assumption that the group is non-abelian.
Hence, there can be no involutory, class-inverting automorphism for non-abelian groups

of odd order. This immediately implies that there is no basis with real Clebsch–Gordan
coefficients for such groups.

This result can be extended in the following way. Let 𝑢 be a class-inverting automorphism
of order greater than two that squares to an inner automorphism,

∃ 𝑎 ∈ 𝐺 ∶ 𝑢2(𝑔) = 𝑎𝑔𝑎−1 , ∀ 𝑔 ∈ 𝐺 . (4.23)

Since the order of 𝐺 is odd, there is a natural number 𝑚 such that 𝑎2u�+1 = 𝑒. Then, as shown
in Section A.4.1, the automorphism

𝑢′(𝑔) = 𝑎u�𝑢(𝑔)𝑎−u� , ∀ 𝑔 ∈ 𝐺 (4.24)

is class-inverting and involutory. However, this leads to a contradiction because a non-
abelian group of odd order does not possess such an automorphism. Therefore, no higher-
order class-inverting automorphism with the property (4.23) exists.

In summary, odd-order non-abelian groups do not have a basis with real Clebsch–Gordan
coefficients and do not allow for consistent CP transformations in generic settings (with the
possible caveat of automorphisms that square to non-inner automorphisms).

A.4.4 Class-inverting automorphisms of direct product groups

Since the conjugacy classes of a direct product group 𝐺 × 𝐻 are the Cartesian products of the
classes of 𝐺 and 𝐻, the product of two class-inverting automorphisms of 𝐺 and 𝐻, respectively,
is a class-inverting automorphism of the direct product group. If the automorphisms are
both Bickerstaff–Damhus automorphisms, their Cartesian product is a Bickerstaff–Damhus
automorphism of the direct product group because

𝜌(𝑢(𝑔, ℎ))∗ = 𝜌(𝑢(𝑔, 𝑒))∗ 𝜌(𝑢(𝑒, ℎ))∗ = 𝜌(𝑔, 𝑒) 𝜌(𝑒, ℎ) = 𝜌(𝑔, ℎ) . (4.25)

A.4.5 The extended twisted Frobenius–Schur indicator

Here we prove that the extended twisted Frobenius–Schur indicator (VII.6.6) can be used to
check whether an automorphism 𝜏 of arbitrary order is class-inverting. Let 𝑛 ≔ ord (𝜏)/2
for even-order and 𝑛 ≔ ord (𝜏) for odd-order automorphisms. Then (VII.6.6) can be written
in component form as

FSu�
u�(𝑹u�) =

(dim 𝑹u�)u�−1

|𝐺|u�
∑

u�1,…,u�u�∈u�
[𝜌𝑹u�

(𝑔)]
u�1u�1

[𝜌𝑹u�
(𝜏(𝑔))]

u�1u�1
𝛿u�1u�2

⋯

⋯ [𝜌𝑹u�
(𝑔)]

u�u�u�u�
[𝜌𝑹u�

(𝜏(𝑔))]
u�u�u�u�

𝛿u�u�u�1
.

(4.26)

To this, one can apply the Schur orthogonality relations of Theorem 10, using the statement
from Section VII.4.2 that the irreducible representations realised by 𝜌𝑹u�

(𝑔) and 𝜌𝑹u�
(𝜏(𝑔))∗

are equivalent for all 𝑖 if and only if 𝜏 is class-inverting. Hence, if 𝜏 is not class-inverting,
according to Theorem 10, the extended twisted Frobenius–Schur indicator vanishes for at
least one irreducible representation.

Let now 𝜏 be class-inverting. Then the consistency equation (VII.4.24) has a solution, i.e.
there is a unitary matrix 𝑈u� for each irreducible representation 𝑹u� such that

𝑈u� 𝜌𝑹u�
(𝑔)∗ 𝑈−1

u� = 𝜌𝑹u�
(𝜏(𝑔)) , ∀ 𝑔 ∈ 𝐺 , ∀ 𝑖 . (4.27)
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Each factor of equation (4.26) can now be simplified to

1
|𝐺|

∑
u�u�∈u�

[𝜌𝑹u�
(𝑔u�)]

u�u�u�u�
[𝜌𝑹u�

(𝜏(𝑔u�))]
u�u�u�u�

=

=
1

|𝐺|
∑

u�u�∈u�
[𝜌𝑹u�

(𝑔u�)]
u�u�u�u�

[𝑈u�]u�u�u� [𝜌𝑹u�
(𝑔u�)∗]

u�u�
[𝑈−1

u� ]u�u�u�

=
1

dim 𝑹u�
𝛿u�u�u� 𝛿u�u�u� [𝑈u�]u�u�u� [𝑈∗

u� ]u�u�u�

=
1

dim 𝑹u�
[𝑈∗

u� 𝑈u�]u�u�u�u�
.

(4.28)

Hence, the extended twisted Frobenius–Schur indicator is

FSu�
u�(𝑹u�) =

1
dim 𝑹u�

𝛿u�u�u�1
[𝑈∗

u� 𝑈u�]u�u�u�u�
⋯ 𝛿u�2u�3

[𝑈∗
u� 𝑈u�]u�2u�2

𝛿u�1u�2
[𝑈∗

u� 𝑈u�]u�1u�1

=
1

dim 𝑹u�
tr [(𝑈∗

u� 𝑈u�)
u�] .

(4.29)

Since the trace is cyclic, the indicator is real. Moreover, inserting equation (VII.4.24) 2𝑛
times into itself,

𝜌𝑹u�
(𝜏2u�(𝑔)) = (𝑈u� 𝑈∗

u� )u� 𝜌𝑹u�
(𝑔) (𝑈u� 𝑈∗

u� )−u� = 𝜌𝑹u�
(𝑔) , ∀ 𝑔 ∈ 𝐺 , ∀ 𝑖 , (4.30)

where in the last step the assumption on the order of 𝜏 was used. Hence, due to Schur’s
lemma, (𝑈u� 𝑈∗

u� )u� is proportional to the unit matrix. As its trace is real, in fact, (𝑈u� 𝑈∗
u� )u� = ±𝟙.

This can be inserted back into (4.29) to show that the 𝑛-th extended twisted Frobenius–Schur
indicator is ±1 for class-inverting automorphisms 𝜏 and zero for at least one irreducible
representation for all other automorphisms.

A.5 Strong Gelfand pairs

A pair of (finite) group 𝐺 and subgroup 𝐻 ⊂ 𝐺 such that the decomposition of each ir-
reducible representation of 𝐺 into irreducible representations of 𝐻 does not contain any
irreducible representation of 𝐻 more than once is called strong Gelfand pair [221].11 This
is the case if and only if the algebra of complex-valued functions 𝑓 on the group 𝐺 that are
invariant under conjugation with 𝐻,12 i.e.

𝑓(ℎ𝑔ℎ−1) = 𝑓(𝑔) , ∀ 𝑔 ∈ 𝐺 and ∀ ℎ ∈ 𝐻 , (5.1)

with respect to the multiplication

[𝑓1 ∗ 𝑓2]( ̃𝑔) ≔ ∑
u�∈u�

𝑓1( ̃𝑔 𝑔) 𝑓2(𝑔−1) (5.2)

is commutative [221]. As shown in [214], this is the same as the criterion that the equivalence
classes with respect to conjugation by 𝐻 commute in 𝐺.

11 For information on normal Gelfand pairs see [222].
12 The set of all irreducible characters forms a basis of the ℂ vector space of functions u� → ℂ that are invariant

on (u�-)conjugacy classes.
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A sufficient condition that 𝐺 and 𝐻 are a strong Gelfand pair is the existence of an anti-
automorphism13 𝜏 such that

∀ 𝑔 ∈ 𝐺 ∃ ℎ ∈ 𝐻 ∶ 𝜏(𝑔) = ℎ𝑔ℎ−1 . (5.3)

This can be seen using the definition of the algebra multiplication and the fact that 𝑓(𝑔) =
𝑓(𝜏(𝑔)):

[𝑓1 ∗ 𝑓2]( ̃𝑔) = ∑
u�∈u�

𝑓1( ̃𝑔 𝑔) 𝑓2(𝑔−1)

= ∑
u�∈u�

𝑓1(𝜏( ̃𝑔 𝑔)) 𝑓2(𝜏(𝑔−1))

= ∑
ℎ∈u�

𝑓1(𝜏(ℎ)−1) 𝑓2(𝜏(ℎ ̃𝑔))

= ∑
ℎ∈u�

𝑓2(𝜏( ̃𝑔) 𝜏(ℎ)) 𝑓1(𝜏(ℎ)−1)

= [𝑓2 ∗ 𝑓1](𝜏( ̃𝑔))
= [𝑓2 ∗ 𝑓1]( ̃𝑔) .

(5.4)

One can alternatively use the criterion that the 𝐻 conjugacy classes 𝐶u�
u� in 𝐺 have to

commute, i.e. the criterion by Wigner [214], to show that a group–subgroup pair with such
an anti-automorphism is a Strong Gelfand pair. For this let ̃𝑔 ∈ 𝐶u�

1 𝐶u�
2 . Then 𝑔 = 𝜏−1( ̃𝑔) is

also in 𝐶u�
1 𝐶u�

2 and can, therefore, be written as a product 𝑔1𝑔2 with 𝑔u� ∈ 𝐶u�
u� . Moreover, it

holds that

̃𝑔 = 𝜏(𝑔) = 𝜏(𝑔1𝑔2) = 𝜏(𝑔2) 𝜏(𝑔1) ∈ 𝐶u�
2 𝐶u�

1 . (5.5)

Since this holds for all ̃𝑔 ∈ 𝐶u�
1 𝐶u�

2 and the reversed argument also for all elements ̃𝑔 ∈ 𝐶u�
2 𝐶u�

1 ,
it follows that

𝐶u�
1 𝐶u�

2 = 𝐶u�
2 𝐶u�

1 . (5.6)

Note that anti-automorphisms can be constructed from the composition of automorphisms
with group inversion, which is itself an anti-automorphism. One might thus be led to
think that one could obtain an anti-automorphism fulfilling (5.3) from any class-inverting
automorphism of 𝐺 by composing it with group inversion. This is not the case. Even if the
restriction of the automorphism to the subgroup 𝐻 is class-inverting for 𝐻, its composition
with inversion might not have the desired property. In fact, there might be an element
𝑎 ∈ 𝐺 ∖ 𝐻 such that 𝑢(𝑎) = 𝑘𝑎−1𝑘−1 only for elements 𝑘 ∈ 𝐺 ∖ 𝐻. Indeed, 𝐴5 has 𝑆3 as a
maximal subgroup and, because both are ambivalent groups, the identity automorphism is
class-inverting for both of them. Nonetheless, the decomposition of 𝐴5 representations to
𝑆3 representations is not multiplicity free, namely the 𝟓 of 𝐴5 contains two 𝟐’s of 𝑆3.

The existence of an anti-automorphism fulfilling (5.3) is thus a stronger requirement for a
group–subgroup pair (𝐺, 𝐻) than the existence of a class-inverting automorphism of 𝐺 that
restricts to a class-inverting automorphism of 𝐻.

13 An anti-automorphism is a bijective function on the group that fulfils u�(u�1u�2) = u�(u�2) u�(u�1) for all u�1, u�2 ∈
u�. Sometimes it is also demanded that u� is an involution, i.e. u�2 = id; however, this is not needed for the
proof.
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A.6 Matrix decompositions and normal forms

A.6.1 Positive Hermitian matrices

A matrix 𝐴 representing an endomorphism on 𝑉 is called positive semi-definite if

⟨𝐴 𝑣, 𝑣⟩ ≥ 0 , ∀ 𝑣 ∈ 𝑉 , (6.1)

and positive definite if ≥ can be replaced with >.
If 𝐴 is positive semi-definite and Hermitian, there is a unique positive semi-definite matrix

𝑆 such that [139]

𝐴 = 𝑆† 𝑆 = 𝑆2 . (6.2)

𝑆 is sometimes denoted by 𝐴1/2.

A.6.2 Singular value decomposition

Any matrix14 𝐴 has a unique polar decomposition [139]

𝐴 = 𝑉 𝐻 . (6.3)

where 𝑉 is unitary and 𝐻 the positive semi-definite Hermitian matrix

𝐻 = (𝐴† 𝐴)1/2 . (6.4)

𝐻 is unitarily diagonalised by a matrix 𝑈,

𝐻 = 𝑈 diag (𝜎u�) 𝑈† , (6.5)

with eigenvalues 𝜎u� which are the square roots of the eigenvalues of 𝐴† 𝐴. Hence, one obtains
that for any matrix 𝐴 there is a singular value decomposition

𝐴 = 𝑉 𝑈 diag (𝜎u�) 𝑈† ≕ 𝑉′ diag (𝜎u�) 𝑈† (6.6)

with unitary 𝑉′ and 𝑈. The values 𝜎u� are called singular values of 𝐴. Even assuming that
all singular values are distinct and fixing their order, 𝑉′ and 𝑈 are only defined up to
multiplication with a diagonal phase matrix 𝑈ph,

𝑉′ ↦ 𝑉′ 𝑈ph , (6.7a)
𝑈 ↦ 𝑈 𝑈ph , (6.7b)

because this phase change does not affect equation (6.6). For 𝑛 degenerate singular values
this ambiguity is extended to U(𝑛) for the degenerate subspace.

14 In fact, one can extend this to bounded linear operators on a Hilbert space.
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A.6.3 Takagi factorisation

Any complex symmetric matrix 𝐴 = 𝐴u� can be written using a unitary transformation 𝑈 as
[223]

𝐴 = 𝑈 𝐷 𝑈u� = 𝑈 diag (𝜎1, … , 𝜎u�) 𝑈u� , (6.8)

where the 𝜎u� are the singular values of 𝐴 (see Section A.6.2 and also [224]). That is, the
entries of the diagonal matrix 𝐷 are the non-negative square roots of the absolute values
of the eigenvalues of 𝐴 or, equivalently, the non-negative square roots of the eigenvalues
of 𝐴 𝐴†. This so-called Takagi factorisation is a special case of the singular value decom-
position described in Section A.6.2. It is the matrix decomposition used to obtain the mass
eigenstates of a Majorana mass matrix. In the present text, it is also applied to symmetric
CP transformation matrices 𝑈u�u�.

A.6.4 Normal form of unitary matrices

Ecker, Grimus and Neufeld [24] showed that a general unitary matrix 𝑈 can be written as
the product

𝑈 = 𝑉u�
⎛⎜⎜⎜⎜⎜⎜⎜
⎝

𝑂1
⋱

𝑂u�
𝟙u�

⎞⎟⎟⎟⎟⎟⎟⎟
⎠

𝑉 , (6.9)

with a unitary matrix 𝑉 and where the 𝑂u� are two-dimensional orthogonal matrices,

𝑂u� = ( cos 𝜃u� sin 𝜃u�
− sin 𝜃u� cos 𝜃u�

) . (6.10)

The angles 𝜃u� are determined by the eigenvalues cos2 (𝜃u�) and 1 of the Hermitian matrix

1
4

(𝑈 + 𝑈u�)† (𝑈 + 𝑈u�) (6.11)

or, alternatively, by the eigenvalues e±2 i u�u� of 𝑈 𝑈∗.





B Kinetic corrections to tri-bi-maximal
mixing

In this appendix, results are presented for kinetic corrections to the mixing angles of tri-bi-
maximal mixing as defined in Table V.4. Only contributions from the left-handed doublets,
i.e. from Kähler potentials of the form

𝐾 = 𝐿† (𝟙 + 𝑥u� 𝑃u�) 𝐿 + 𝑅† 𝑅 (0.1)

or equivalent kinetic terms, are shown, where 𝑃u� is replaced by one of the nine basis matrices
𝑃u� from equation (V.4.25).

Since 𝜃13 = 0 as initial condition, the initial CP phase 𝛿u�u� is not well defined. It is
determined from the formulas by demanding that the change of 𝛿u�u� be analytical at 𝜃13 = 0
for each of the 𝑃u� individually, which yields 𝛿 = 0 for 𝑖 = 1, … , 6 and 𝛿 = −𝜋/2 for 𝑖 = 7, 8, 9.
The neutrino masses 𝑚u�u�

are left unspecified. The hierarchy 𝑚u� ≫ 𝑚u� ≫ 𝑚u� of the charged
lepton masses is used to simplify the results. To first order in an expansion in the small
mass ratios, the charged lepton masses completely drop out from the formulas.

The results are listed in the following:
• For 𝑃u� = 𝑃1:

∆𝜃(1)
12 = 𝑥u�

1

3 √2

𝑚u�1
+ 𝑚u�2

𝑚u�1
− 𝑚u�2

, (0.2a)

∆𝜃(1)
13 = 0 , (0.2b)

∆𝜃(1)
23 = 0 . (0.2c)

• For 𝑃u� = 𝑃2:

∆𝜃(2)
12 = 𝑥u�

1

3 √2

2 𝑚u�1
− 𝑚u�2

𝑚u�1
− 𝑚u�2

, (0.3a)

∆𝜃(2)
13 = 𝑥u�

1

3 √2

3 𝑚u�1
𝑚u�2

− 2 𝑚u�1
𝑚u�3

− 𝑚u�2
𝑚u�3

(𝑚u�1
− 𝑚u�3

) (𝑚u�2
− 𝑚u�3

)
, (0.3b)

∆𝜃(2)
23 = 𝑥u�

1
3

𝑚u�3
(𝑚u�1

− 𝑚u�2
)

(𝑚u�1
− 𝑚u�2

) (𝑚u�2
− 𝑚u�3

)
. (0.3c)

• For 𝑃u� = 𝑃3:

∆𝜃(3)
12 = −𝑥u�

1

6 √2

𝑚u�1
+ 𝑚u�2

𝑚u�1
− 𝑚u�2

, (0.4a)
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∆𝜃(3)
13 = 𝑥u�

1

3 √2

𝑚u�3
(𝑚u�1

− 𝑚u�2
)

(𝑚u�1
− 𝑚u�3

) (𝑚u�2
− 𝑚u�3

)
, (0.4b)

∆𝜃(3)
23 = 𝑥u�

1
12

𝑚u�1
(3 𝑚u�2

+ 𝑚u�3
) − 𝑚u�3

(𝑚u�2
+ 3 𝑚u�3

)
(𝑚u�1

− 𝑚u�3
) (𝑚u�2

− 𝑚u�3
)

. (0.4c)

• For 𝑃u� = 𝑃4:

∆𝜃(4)
12 = 𝑥u�

1

3 √2

2 𝑚u�1
− 𝑚u�2

𝑚u�1
− 𝑚u�2

, (0.5a)

∆𝜃(4)
13 = −𝑥u�

1

3 √2

3 𝑚u�1
𝑚u�2

− 2 𝑚u�1
𝑚u�3

− 𝑚u�2
𝑚u�3

(𝑚u�1
− 𝑚u�3

) (𝑚u�2
− 𝑚u�3

)
, (0.5b)

∆𝜃(4)
23 = −𝑥u�

1
3

𝑚u�3
(𝑚u�1

− 𝑚u�2
)

(𝑚u�1
− 𝑚u�3

) (𝑚u�2
− 𝑚u�3

)
. (0.5c)

• For 𝑃u� = 𝑃5:

∆𝜃(5)
12 = −𝑥u�

1

3 √2

𝑚u�1
+ 𝑚u�2

𝑚u�1
− 𝑚u�2

, (0.6a)

∆𝜃(5)
13 = 0 , (0.6b)

∆𝜃(5)
23 = −𝑥u�

1
2

. (0.6c)

• For 𝑃u� = 𝑃6:

∆𝜃(6)
12 = −𝑥u�

1

6 √2

𝑚u�1
+ 𝑚u�2

𝑚u�1
− 𝑚u�2

, (0.7a)

∆𝜃(6)
13 = −𝑥u�

1

3 √2

𝑚u�3
(𝑚u�1

− 𝑚u�2
)

(𝑚u�1
− 𝑚u�3

) (𝑚u�2
− 𝑚u�3

)
, (0.7b)

∆𝜃(6)
23 = 𝑥u�

1
12

𝑚u�1
(3 𝑚u�2

+ 𝑚u�3
) − 𝑚u�3

(𝑚u�2
+ 3 𝑚u�3

)
(𝑚u�1

− 𝑚u�3
) (𝑚u�3

− 𝑚u�2
)

. (0.7c)

• For 𝑃u� = 𝑃7:

∆𝜃(7)
12 = 0 , (0.8a)

∆𝜃(7)
13 = −𝑥u�

1

3 √2

3 𝑚u�1
𝑚u�2

+ 2 𝑚u�1
𝑚u�3

+ 𝑚u�2
𝑚u�3

(𝑚u�1
+ 𝑚u�3

) (𝑚u�2
+ 𝑚u�3

)
, (0.8b)

∆𝜃(7)
23 = 0 . (0.8c)

• For 𝑃u� = 𝑃8:

∆𝜃(8)
12 = 0 , (0.9a)

∆𝜃(8)
13 = 𝑥u�

1

3 √2

3 𝑚u�1
𝑚u�2

+ 2 𝑚u�1
𝑚u�3

+ 𝑚u�2
𝑚u�3

(𝑚u�1
+ 𝑚u�3

) (𝑚u�2
+ 𝑚u�3

)
, (0.9b)

∆𝜃(8)
23 = 0 . (0.9c)

• For 𝑃u� = 𝑃9:

∆𝜃(9)
12 = 0 , (0.10a)

∆𝜃(9)
13 = −𝑥u�

√2
3

𝑚u�3
(𝑚u�1

− 𝑚u�2
)

(𝑚u�1
+ 𝑚u�3

) (𝑚u�2
+ 𝑚u�3

)
, (0.10b)

∆𝜃(9)
23 = 0 . (0.10c)



C GAP codes

In the following, some GAP [20] codes used for the computations concerning class-inverting
automorphisms are presented.

The function isClassinverting can be used to compute whether a given automorphism
aut of a group 𝐺 is class-inverting (return value true) or not (return value false). The
inputs are the automorphism aut, a list cclass of conjugacy classes of 𝐺 and a list repcclass
with representatives for these classes. The result is obtained by comparing the conjugacy
class that each element of repcclass is mapped to with the conjugacy class of its inverse.

isClassinverting:=function(aut,cclass,repcclass)
local j;
for j in repcclass do
if PositionProperty(cclass,x->j^-1 in x)

<>PositionProperty(cclass,x->(j^aut) in x) then
return false;

fi;
od;
return true;
end;

The following function computes the twisted Frobenius–Schur indicators (VII.6.1) with
respect to the automorphism aut for all irreducible representations of a group G.

twistedFS:=function(G,aut)
local elG,tbl,irr,fsList;
elG:=Elements(G);
tbl:=CharacterTable(G);
irr:=Irr(tbl);
fsList:=List(elG,x->x*x^aut);
return List(irr,y->Sum(fsList,x->x^y))/Size(G);
end;

The next function computes the 𝑛-th order extended twisted Frobenius–Schur indicators
(VII.6.6) for all irreducible representations of a group G with respect to the automorphism 𝑢
provided as aut, where 𝑛 ≔ ord 𝑢/2 for even ord 𝑢 and 𝑛 = ord 𝑢 for odd ord 𝑢.

twistedFSn:=function(G,aut)
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local ord,n,elG,tbl,irr,elGaut,fsList,i;
ord:=Order(aut);
if ord=0 mod 2 then

n:=ord/2;
else

n:=ord;
fi;
elG:=Elements(G);
tbl:=CharacterTable(G);
irr:=Irr(tbl);
elGaut:=List(elG,x->x*x^aut);
fsList:=ShallowCopy(elGaut);
for i in [1..n-1] do

fsList:=List(fsList,x->List(elGaut,y->x*y));
fsList:=Flat(fsList);

od;
return List(irr,y->Sum(fsList,x->x^y)*y[1]^(n-1))/Size(G)^n;
end;

The last function presented here computes the inequivalent Bickerstaff–Damhus and
class-inverting automorphisms of a group G. To this end, it generates the automorphism
group of G and its coset decomposition with respect to the inner automorphism group. Then
it loops over these classes, checking for each class whether its automorphisms are class-
inverting. If this is not the case, the loop continuous. If the class consists of class-inverting
automorphisms, for all of them the twisted Frobenius–Schur indicators are computed to
check whether any of them is a Bickerstaff–Damhus automorphism. If a Bickerstaff–Damhus
automorphism is found, a representative of the class is returned as part of the first list of
the output. If no Bickerstaff–Damhus automorphism is found, i.e. the automorphisms of
the class are all only class-inverting, a representative of the class is returned as part of the
second list of the output. Moreover, for each case it is checked whether the automorphisms
are inner automorphisms.

checkForCIAutomorphismsOutG:=function(G)
local i,j,autG,ordG,elG,tbl,chi,cclass,repcclass,innG,

eloutGList,res,resTemp,aut,ci,maclist,fslists;
autG:=AutomorphismGroup(G);
ordG:=Size(G);
elG:=Elements(G);
tbl:= CharacterTable(G);
chi:=Irr(tbl);
cclass:=ConjugacyClasses(tbl);
repcclass:=List(cclass,x->Representative(x));
innG:=InnerAutomorphismsAutomorphismGroup(autG);
eloutGList:=CosetDecomposition(autG,innG);
res:=[[],[]];
for i in [1..Length(eloutGList)] do

resTemp:=[];
aut:=eloutGList[i][1];
ci:=isClassinverting(aut,cclass,repcclass);
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if ci then
for j in [1..Length(eloutGList[i])] do
aut:=eloutGList[i][j];
maclist:=List(elG,x->x*x^aut);
fslists:=List(chi,y->Sum(maclist,x->x^y))/ordG;
if ForAll(fslists,x->x=1) then

Add(resTemp,[i,1]);
break;

else
Add(resTemp,[i,2]);

fi;
od;
if ForAny(resTemp,x->x[2]=1) then
Add(res[1],[eloutGList[i][1],IsInnerAutomorphism(aut)]);

elif ForAny(resTemp,x->x[2]=2) then
Add(res[2],[eloutGList[i][1],IsInnerAutomorphism(aut)]);

fi;
fi;

od;
Print(res[1]," are Bickerstaff-Damhus automorphisms.\n");
Print(res[2]," are class-inverting automorphisms.\n");
return res;
end;





D CP transformations for small groups

The following table lists all groups of order 100 and smaller which are non-abelian and
which are not direct product groups with their numbers of possible CP transformations.1

The first two columns of the table show the ID of the group with respect to the SmallGroups
library of GAP [20] and the structure description of the group in GAP notation, respectively.

The third column contains the number of inequivalent Bickerstaff–Damhus automorph-
isms and the last column the number of inequivalent class-inverting automorphisms that
are not Bickerstaff–Damhus automorphisms. Automorphisms are inequivalent if they are
not in the same equivalence class of the outer automorphism group. A star is attached
to the numbers if an inner automorphism is a Bickerstaff–Damhus automorphism or just
class-inverting, respectively.

ID Group structure BDA ci

[ 6, 1 ] S3 1∗ 0
[ 8, 3 ] D8 1∗ 0
[ 8, 4 ] Q8 1∗ 0
[ 10, 1 ] D10 1∗ 0
[ 12, 1 ] C3 : C4 1 0
[ 12, 3 ] A4 1 0
[ 14, 1 ] D14 1∗ 0
[ 16, 3 ] (C4 x C2) : C2 1 0
[ 16, 4 ] C4 : C4 1 0
[ 16, 6 ] C8 : C2 1 0
[ 16, 7 ] D16 1∗ 0
[ 16, 8 ] QD16 1 0
[ 16, 9 ] Q16 1∗ 0
[ 16, 13 ] (C4 x C2) : C2 1 0
[ 18, 1 ] D18 1∗ 0
[ 18, 4 ] (C3 x C3) : C2 1∗ 0
[ 20, 1 ] C5 : C4 1 0
[ 20, 3 ] C5 : C4 0 0
[ 21, 1 ] C7 : C3 0 0
[ 22, 1 ] D22 1∗ 0
[ 24, 1 ] C3 : C8 1 0
[ 24, 3 ] SL(2,3) 1 0
[ 24, 4 ] C3 : Q8 1∗ 0
[ 24, 6 ] D24 1∗ 0
[ 24, 8 ] (C6 x C2) : C2 1 0
[ 24, 12 ] S4 1∗ 0
[ 26, 1 ] D26 1∗ 0
[ 27, 3 ] (C3 x C3) : C3 0 0

1 For direct product groups, the automorphisms of their factors can just be combined, see Section A.4.4. Note
that there might be additional automorphisms of the direct product group that cannot be constructed this
way.
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ID Group structure BDA ci

[ 27, 4 ] C9 : C3 0 0
[ 28, 1 ] C7 : C4 1 0
[ 30, 3 ] D30 1∗ 0
[ 32, 2 ] (C4 x C2) : C4 1 0
[ 32, 4 ] C8 : C4 1 0
[ 32, 5 ] (C8 x C2) : C2 1 0
[ 32, 6 ] ((C4 x C2) : C2) : C2 1 0
[ 32, 7 ] (C8 : C2) : C2 1 0
[ 32, 8 ] C2 . ((C4 x C2) : C2) = (C2 x C2) . (C4 x C2) 1 0
[ 32, 9 ] (C8 x C2) : C2 1 0
[ 32, 10 ] Q8 : C4 1 0
[ 32, 11 ] (C4 x C4) : C2 1 0
[ 32, 12 ] C4 : C8 1 0
[ 32, 13 ] C8 : C4 1 0
[ 32, 14 ] C8 : C4 1 0
[ 32, 15 ] C4 . D8 = C4 . (C4 x C2) 1 0
[ 32, 17 ] C16 : C2 1 0
[ 32, 18 ] D32 1∗ 0
[ 32, 19 ] QD32 1 0
[ 32, 20 ] Q32 1∗ 0
[ 32, 24 ] (C4 x C4) : C2 1 0
[ 32, 27 ] (C2 x C2 x C2 x C2) : C2 1∗ 0
[ 32, 28 ] (C4 x C2 x C2) : C2 1 0
[ 32, 29 ] (C2 x Q8) : C2 1 0
[ 32, 30 ] (C4 x C2 x C2) : C2 1 0
[ 32, 31 ] (C4 x C4) : C2 1 0
[ 32, 32 ] (C2 x C2) . (C2 x C2 x C2) 1 0
[ 32, 33 ] (C4 x C4) : C2 1 0
[ 32, 34 ] (C4 x C4) : C2 1∗ 0
[ 32, 35 ] C4 : Q8 1∗ 0
[ 32, 38 ] (C8 x C2) : C2 1 0
[ 32, 42 ] (C8 x C2) : C2 1 0
[ 32, 43 ] (C2 x D8) : C2 2∗ 0
[ 32, 44 ] (C2 x Q8) : C2 2∗ 0
[ 32, 49 ] (C2 x D8) : C2 1∗ 0
[ 32, 50 ] (C2 x Q8) : C2 1∗ 0
[ 34, 1 ] D34 1∗ 0
[ 36, 1 ] C9 : C4 1 0
[ 36, 3 ] (C2 x C2) : C9 1 0
[ 36, 7 ] (C3 x C3) : C4 1 0
[ 36, 9 ] (C3 x C3) : C4 1 0
[ 38, 1 ] D38 1∗ 0
[ 39, 1 ] C13 : C3 0 0
[ 40, 1 ] C5 : C8 1 0
[ 40, 3 ] C5 : C8 0 0
[ 40, 4 ] C5 : Q8 1∗ 0
[ 40, 6 ] D40 1∗ 0
[ 40, 8 ] (C10 x C2) : C2 1 0
[ 42, 1 ] (C7 : C3) : C2 0 0
[ 42, 5 ] D42 1∗ 0
[ 44, 1 ] C11 : C4 1 0
[ 46, 1 ] D46 1∗ 0
[ 48, 1 ] C3 : C16 1 0
[ 48, 3 ] (C4 x C4) : C3 0 0
[ 48, 5 ] C24 : C2 1 0
[ 48, 6 ] C24 : C2 1 0
[ 48, 7 ] D48 1∗ 0
[ 48, 8 ] C3 : Q16 1∗ 0
[ 48, 10 ] (C3 : C8) : C2 1 0
[ 48, 12 ] (C3 : C4) : C4 1 0
[ 48, 13 ] C12 : C4 1 0
[ 48, 14 ] (C12 x C2) : C2 1 0
[ 48, 15 ] (C3 x D8) : C2 1 0
[ 48, 16 ] (C3 : C8) : C2 1 0
[ 48, 17 ] (C3 x Q8) : C2 1 0
[ 48, 18 ] C3 : Q16 1 0
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ID Group structure BDA ci

[ 48, 19 ] (C2 x (C3 : C4)) : C2 1 0
[ 48, 28 ] C2 . S4 = SL(2,3) . C2 1∗ 0
[ 48, 29 ] GL(2,3) 1 0
[ 48, 30 ] A4 : C4 1 0
[ 48, 33 ] SL(2,3) : C2 1 0
[ 48, 37 ] (C12 x C2) : C2 1 0
[ 48, 39 ] (C2 x (C3 : C4)) : C2 1 0
[ 48, 41 ] (C4 x S3) : C2 1 0
[ 48, 50 ] (C2 x C2 x C2 x C2) : C3 0 0
[ 50, 1 ] D50 1∗ 0
[ 50, 4 ] (C5 x C5) : C2 1∗ 0
[ 52, 1 ] C13 : C4 1 0
[ 52, 3 ] C13 : C4 0 0
[ 54, 1 ] D54 1∗ 0
[ 54, 5 ] ((C3 x C3) : C3) : C2 1 0
[ 54, 6 ] (C9 : C3) : C2 0 0
[ 54, 7 ] (C9 x C3) : C2 1∗ 0
[ 54, 8 ] ((C3 x C3) : C3) : C2 0 0
[ 54, 14 ] (C3 x C3 x C3) : C2 1∗ 0
[ 55, 1 ] C11 : C5 0 0
[ 56, 1 ] C7 : C8 1 0
[ 56, 3 ] C7 : Q8 1∗ 0
[ 56, 5 ] D56 1∗ 0
[ 56, 7 ] (C14 x C2) : C2 1 0
[ 56, 11 ] (C2 x C2 x C2) : C7 0 0
[ 57, 1 ] C19 : C3 0 0
[ 58, 1 ] D58 1∗ 0
[ 60, 3 ] C15 : C4 1 0
[ 60, 5 ] A5 1∗ 0
[ 60, 7 ] C15 : C4 0 0
[ 62, 1 ] D62 1∗ 0
[ 63, 1 ] C7 : C9 0 0
[ 64, 3 ] C8 : C8 1 0
[ 64, 4 ] ((C8 x C2) : C2) : C2 1 0
[ 64, 5 ] (C4 x C2) : C8 1 0
[ 64, 6 ] (C8 x C4) : C2 1 0
[ 64, 7 ] Q8 : C8 1 0
[ 64, 8 ] ((C8 x C2) : C2) : C2 1 0
[ 64, 9 ] (C2 x Q8) : C4 1 0
[ 64, 10 ] (C8 : C4) : C2 1 0
[ 64, 11 ] (C2 x C2) . ((C4 x C2) : C2) = (C4 x C2) . (C4 x C2) 1 0
[ 64, 12 ] (C4 : C8) : C2 1 0
[ 64, 13 ] (C2 x C2) . ((C4 x C2) : C2) = (C4 x C2) . (C4 x C2) 1 0
[ 64, 14 ] (C2 x C2) . ((C4 x C2) : C2) = (C4 x C2) . (C4 x C2) 1 0
[ 64, 15 ] C8 : C8 1 0
[ 64, 16 ] C8 : C8 1 0
[ 64, 17 ] (C8 x C2) : C4 1 0
[ 64, 18 ] (C8 x C2) : C4 0 0
[ 64, 19 ] C4 . (C4 x C4) 0 0
[ 64, 20 ] (C4 x C4) : C4 1 0
[ 64, 21 ] (C8 x C2) : C4 1 0
[ 64, 22 ] (C4 x C2) . D8 = C4 . (C4 x C4) 1 0
[ 64, 23 ] (C4 x C2 x C2) : C4 1 0
[ 64, 24 ] (C8 : C2) : C4 1 0
[ 64, 25 ] (C8 x C2) : C4 1 0
[ 64, 27 ] C16 : C4 1 0
[ 64, 28 ] C16 : C4 0 0
[ 64, 29 ] (C16 x C2) : C2 1 0
[ 64, 30 ] (C16 : C2) : C2 1 0
[ 64, 31 ] (C16 x C2) : C2 1 0
[ 64, 32 ] ((C8 : C2) : C2) : C2 1 0
[ 64, 33 ] (C4 x C2 x C2) : C4 1 0
[ 64, 34 ] (((C4 x C2) : C2) : C2) : C2 1 0
[ 64, 35 ] (C4 x C4) : C4 1 0
[ 64, 36 ] (C2 . ((C4 x C2) : C2) = (C2 x C2) . (C4 x C2)) : C2 1 0
[ 64, 37 ] C2 . (((C4 x C2) : C2) : C2) = (C4 x C2) . (C4 x C2) 1 0
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ID Group structure BDA ci

[ 64, 38 ] (C16 x C2) : C2 1 0
[ 64, 39 ] Q16 : C4 1 0
[ 64, 40 ] (C16 x C2) : C2 1 0
[ 64, 41 ] (C16 : C2) : C2 1 0
[ 64, 42 ] (C16 : C2) : C2 1 0
[ 64, 43 ] C2 . ((C8 x C2) : C2) = C8 . (C4 x C2) 1 0
[ 64, 44 ] C4 : C16 1 0
[ 64, 45 ] C8 . D8 = C4 . (C8 x C2) 1 0
[ 64, 46 ] C16 : C4 0 0
[ 64, 47 ] C16 : C4 1 0
[ 64, 48 ] C16 : C4 1 0
[ 64, 49 ] C4 . D16 = C8 . (C4 x C2) 1 0
[ 64, 51 ] C32 : C2 1 0
[ 64, 52 ] D64 1∗ 0
[ 64, 53 ] QD64 1 0
[ 64, 54 ] Q64 1∗ 0
[ 64, 57 ] (C4 x C4) : C4 1 0
[ 64, 60 ] (C2 x ((C4 x C2) : C2)) : C2 1 0
[ 64, 61 ] (C2 x (C4 : C4)) : C2 1 0
[ 64, 62 ] ((C4 x C2) : C4) : C2 1 0
[ 64, 63 ] (C4 x C4) : C4 1 0
[ 64, 64 ] (C4 x C4) : C4 1 0
[ 64, 65 ] (C4 x C4) : C4 1 0
[ 64, 66 ] (C2 x (C4 : C4)) : C2 1 0
[ 64, 67 ] (C4 x C2 x C2 x C2) : C2 1 0
[ 64, 68 ] (C4 : C4) : C4 1 0
[ 64, 69 ] (C4 x C4 x C2) : C2 1 0
[ 64, 70 ] (C4 : C4) : C4 1 0
[ 64, 71 ] (C4 x C4 x C2) : C2 1 0
[ 64, 72 ] (C2 x Q8) : C4 1 0
[ 64, 73 ] (C2 x C2 x D8) : C2 0 0
[ 64, 74 ] (C2 x C2 x Q8) : C2 0 0
[ 64, 75 ] (C2 x ((C4 x C2) : C2)) : C2 0 0
[ 64, 76 ] (C4 x C2) : Q8 0 0
[ 64, 77 ] (C2 x (C4 : C4)) : C2 0 0
[ 64, 78 ] (C2 x (C4 : C4)) : C2 0 0
[ 64, 79 ] (C2 x C2 x C2) . (C2 x C2 x C2) 0 0
[ 64, 80 ] (C2 x (C4 : C4)) : C2 0 0
[ 64, 81 ] (C2 x C2 x C2) . (C2 x C2 x C2) 0 0
[ 64, 82 ] (C2 x C2 x C2) . (C2 x C2 x C2) 0 0
[ 64, 86 ] (C8 x C4) : C2 1 0
[ 64, 88 ] (C2 x (C8 : C2)) : C2 1 0
[ 64, 89 ] (C8 x C2 x C2) : C2 1 0
[ 64, 91 ] (((C4 x C2) : C2) : C2) : C2 1 0
[ 64, 94 ] (C2 x (C8 : C2)) : C2 1 0
[ 64, 97 ] (C8 x C2 x C2) : C2 1 0
[ 64, 98 ] (C2 x (C8 : C2)) : C2 2 0
[ 64, 99 ] (C2 x (C8 : C2)) : C2 2 0
[ 64, 100 ] (Q8 : C4) : C2 2 0
[ 64, 102 ] (C2 x (C8 : C2)) : C2 2 0
[ 64, 104 ] (C4 : C8) : C2 1 0
[ 64, 105 ] (C4 : C8) : C2 1 0
[ 64, 108 ] (C8 : C4) : C2 1 0
[ 64, 109 ] (C8 : C4) : C2 2 0
[ 64, 111 ] (C4 . D8 = C4 . (C4 x C2)) : C2 2 0
[ 64, 112 ] (C8 x C4) : C2 1 0
[ 64, 113 ] (C4 : C8) : C2 1 0
[ 64, 114 ] (C8 x C4) : C2 1 0
[ 64, 116 ] (C8 x C2 x C2) : C2 1 0
[ 64, 117 ] (C8 x C4) : C2 1 0
[ 64, 121 ] (C4 x Q8) : C2 2 0
[ 64, 122 ] Q16 : C4 2 0
[ 64, 123 ] (C4 x D8) : C2 2 0
[ 64, 124 ] (C8 x C4) : C2 1 0
[ 64, 125 ] ((C4 x C4) : C2) : C2 2 0
[ 64, 127 ] C8 : Q8 1 0
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[ 64, 128 ] (C2 x C2 x D8) : C2 1∗ 0
[ 64, 129 ] (C2 x C2 x Q8) : C2 1 0
[ 64, 130 ] (C2 x D16) : C2 1 0
[ 64, 131 ] (C2 x QD16) : C2 1 0
[ 64, 132 ] (C2 x Q16) : C2 1∗ 0
[ 64, 133 ] (C2 x Q16) : C2 1 0
[ 64, 134 ] ((C4 x C4) : C2) : C2 1∗ 0
[ 64, 135 ] ((C4 x C4) : C2) : C2 1 0
[ 64, 136 ] ((C4 x C4) : C2) : C2 1 0
[ 64, 137 ] ((C4 x C4) : C2) : C2 1∗ 0
[ 64, 138 ] (((C4 x C2) : C2) : C2) : C2 1∗ 0
[ 64, 139 ] (((C4 x C2) : C2) : C2) : C2 1 0
[ 64, 140 ] (C4 x D8) : C2 1 0
[ 64, 141 ] (C2 x QD16) : C2 1 0
[ 64, 142 ] (Q8 : C4) : C2 1 0
[ 64, 143 ] C4 : Q16 1 0
[ 64, 144 ] (C4 x D8) : C2 1 0
[ 64, 145 ] (C2 x Q16) : C2 1 0
[ 64, 146 ] (C8 x C2 x C2) : C2 1 0
[ 64, 147 ] (C8 x C2 x C2) : C2 1 0
[ 64, 148 ] (C2 x Q16) : C2 1 0
[ 64, 149 ] (C2 x (C8 : C2)) : C2 4 0
[ 64, 150 ] (C2 x (C8 : C2)) : C2 4 0
[ 64, 151 ] (C2 x Q16) : C2 4 0
[ 64, 152 ] (C2 x QD16) : C2 1 0
[ 64, 153 ] (C2 x D16) : C2 1 0
[ 64, 154 ] (C2 x Q16) : C2 1 0
[ 64, 155 ] (C8 : C4) : C2 1 0
[ 64, 156 ] Q8 : Q8 1 0
[ 64, 157 ] (C8 : C4) : C2 1 0
[ 64, 158 ] Q8 : Q8 1 0
[ 64, 159 ] (C8 : C4) : C2 1 0
[ 64, 160 ] (C2 x C2) . (C2 x D8) = (C4 x C2) . (C2 x C2 x C2) 1 0
[ 64, 161 ] (C2 x (C4 : C4)) : C2 1 0
[ 64, 162 ] (C2 x (C4 : C4)) : C2 1 0
[ 64, 163 ] ((C8 x C2) : C2) : C2 1 0
[ 64, 164 ] (Q8 : C4) : C2 1 0
[ 64, 165 ] (Q8 : C4) : C2 1 0
[ 64, 166 ] (C8 : C4) : C2 1 0
[ 64, 167 ] (C8 x C4) : C2 1 0
[ 64, 168 ] (C2 x C2) . (C2 x D8) = (C4 x C2) . (C2 x C2 x C2) 1 0
[ 64, 169 ] (C8 x C4) : C2 1 0
[ 64, 170 ] (Q8 : C4) : C2 4 0
[ 64, 171 ] ((C8 x C2) : C2) : C2 4 0
[ 64, 172 ] (C2 x C2) . (C2 x D8) = (C4 x C2) . (C2 x C2 x C2) 4 0
[ 64, 173 ] (C8 x C4) : C2 1 0
[ 64, 174 ] (C8 x C4) : C2 1∗ 0
[ 64, 175 ] C4 : Q16 1∗ 0
[ 64, 176 ] (C8 x C4) : C2 1 0
[ 64, 177 ] (C2 x D16) : C2 4∗ 0
[ 64, 178 ] (C2 x Q16) : C2 4∗ 0
[ 64, 179 ] C8 : Q8 1 0
[ 64, 180 ] (C2 x C2) . (C2 x D8) = (C4 x C2) . (C2 x C2 x C2) 1 0
[ 64, 181 ] C8 : Q8 1∗ 0
[ 64, 182 ] C8 : Q8 4∗ 0
[ 64, 185 ] (C16 x C2) : C2 1 0
[ 64, 189 ] (C16 x C2) : C2 1 0
[ 64, 190 ] (C2 x D16) : C2 2∗ 0
[ 64, 191 ] (C2 x Q16) : C2 2∗ 0
[ 64, 199 ] (C4 x D8) : C2 1 0
[ 64, 200 ] (C4 x Q8) : C2 1 0
[ 64, 201 ] (C4 x Q8) : C2 1 0
[ 64, 206 ] (C4 x C2 x C2 x C2) : C2 1 0
[ 64, 210 ] (C4 x C4 x C2) : C2 1 0
[ 64, 213 ] (C4 x C4 x C2) : C2 1 0
[ 64, 214 ] (C4 x Q8) : C2 1 0
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[ 64, 215 ] (C2 x C2 x D8) : C2 3∗ 1
[ 64, 216 ] (C2 x C2 x D8) : C2 3∗ 1
[ 64, 217 ] (C2 x C2 x Q8) : C2 3∗ 1
[ 64, 218 ] (C2 x ((C4 x C2) : C2)) : C2 3 1∗

[ 64, 219 ] (C4 x D8) : C2 3 1
[ 64, 220 ] (C4 x D8) : C2 3 1
[ 64, 221 ] (C4 x D8) : C2 3 1
[ 64, 222 ] (C4 x Q8) : C2 3 1
[ 64, 223 ] (C4 x Q8) : C2 3 1
[ 64, 224 ] ((C2 x Q8) : C2) : C2 3 1∗

[ 64, 225 ] (C4 : Q8) : C2 3∗ 1
[ 64, 227 ] (C2 x C2 x D8) : C2 1 0
[ 64, 228 ] (C4 x D8) : C2 1 0
[ 64, 229 ] (C2 x C2 x Q8) : C2 1 0
[ 64, 231 ] (C4 x D8) : C2 1 0
[ 64, 232 ] (C4 x D8) : C2 1 0
[ 64, 233 ] (C4 x Q8) : C2 1 0
[ 64, 234 ] (C4 x D8) : C2 1 0
[ 64, 235 ] (C4 x Q8) : C2 1 0
[ 64, 236 ] (C4 x D8) : C2 1 0
[ 64, 237 ] (C4 x Q8) : C2 1 0
[ 64, 238 ] Q8 : Q8 1 0
[ 64, 240 ] (C4 x D8) : C2 1 0
[ 64, 241 ] ((C4 x C2 x C2) : C2) : C2 10∗ 6
[ 64, 242 ] ((C4 x C4) : C2) : C2 10∗ 6
[ 64, 243 ] ((C2 x C2) . (C2 x C2 x C2)) : C2 10 6∗

[ 64, 244 ] ((C4 x C4) : C2) : C2 10∗ 6
[ 64, 245 ] (C2 x C2) . (C2 x C2 x C2 x C2) 10 6∗

[ 64, 249 ] (C2 x (C8 : C2)) : C2 1 0
[ 64, 256 ] (C2 x (C8 : C2)) : C2 2 0
[ 64, 257 ] (C2 x D16) : C2 1∗ 0
[ 64, 258 ] (C2 x QD16) : C2 1 0
[ 64, 259 ] (C2 x Q16) : C2 1∗ 0
[ 64, 266 ] (C2 x ((C4 x C2) : C2)) : C2 1 0
[ 66, 3 ] D66 1∗ 0
[ 68, 1 ] C17 : C4 1 0
[ 68, 3 ] C17 : C4 0 0
[ 70, 3 ] D70 1∗ 0
[ 72, 1 ] C9 : C8 1 0
[ 72, 3 ] Q8 : C9 1 0
[ 72, 4 ] C9 : Q8 1∗ 0
[ 72, 6 ] D72 1∗ 0
[ 72, 8 ] (C18 x C2) : C2 1 0
[ 72, 13 ] (C3 x C3) : C8 1 0
[ 72, 15 ] ((C2 x C2) : C9) : C2 1∗ 0
[ 72, 19 ] (C3 x C3) : C8 1 0
[ 72, 21 ] (C3 x (C3 : C4)) : C2 1 0
[ 72, 22 ] (C6 x S3) : C2 1 0
[ 72, 23 ] (C6 x S3) : C2 1 0
[ 72, 24 ] (C3 x C3) : Q8 1∗ 0
[ 72, 31 ] (C3 x C3) : Q8 1∗ 0
[ 72, 33 ] (C12 x C3) : C2 1∗ 0
[ 72, 35 ] (C6 x C6) : C2 1 0
[ 72, 39 ] (C3 x C3) : C8 0 0
[ 72, 40 ] (S3 x S3) : C2 1∗ 0
[ 72, 41 ] (C3 x C3) : Q8 0 1∗

[ 72, 43 ] (C3 x A4) : C2 1∗ 0
[ 74, 1 ] D74 1∗ 0
[ 75, 2 ] (C5 x C5) : C3 0 0
[ 76, 1 ] C19 : C4 1 0
[ 78, 1 ] (C13 : C3) : C2 0 0
[ 78, 5 ] D78 1∗ 0
[ 80, 1 ] C5 : C16 1 0
[ 80, 3 ] C5 : C16 0 0
[ 80, 5 ] C40 : C2 1 0
[ 80, 6 ] C40 : C2 1 0



193

ID Group structure BDA ci

[ 80, 7 ] D80 1∗ 0
[ 80, 8 ] C5 : Q16 1∗ 0
[ 80, 10 ] (C5 : C8) : C2 1 0
[ 80, 12 ] (C5 : C4) : C4 1 0
[ 80, 13 ] C20 : C4 1 0
[ 80, 14 ] (C20 x C2) : C2 1 0
[ 80, 15 ] (C5 x D8) : C2 1 0
[ 80, 16 ] (C5 : C8) : C2 1 0
[ 80, 17 ] (C5 x Q8) : C2 1 0
[ 80, 18 ] C5 : Q16 1 0
[ 80, 19 ] (C2 x (C5 : C4)) : C2 1 0
[ 80, 28 ] (C5 : C8) : C2 0 0
[ 80, 29 ] (C5 : C8) : C2 0 0
[ 80, 31 ] C20 : C4 0 0
[ 80, 33 ] (C5 : C8) : C2 0 0
[ 80, 34 ] (C2 x (C5 : C4)) : C2 0 0
[ 80, 38 ] (C20 x C2) : C2 1 0
[ 80, 40 ] (C2 x (C5 : C4)) : C2 1 0
[ 80, 42 ] (C4 x D10) : C2 1 0
[ 80, 49 ] (C2 x C2 x C2 x C2) : C5 1 0
[ 81, 3 ] (C9 x C3) : C3 0 0
[ 81, 4 ] C9 : C9 0 0
[ 81, 6 ] C27 : C3 0 0
[ 81, 7 ] (C3 x C3 x C3) : C3 0 0
[ 81, 8 ] (C9 x C3) : C3 0 0
[ 81, 9 ] (C9 x C3) : C3 0 0
[ 81, 10 ] C3 . ((C3 x C3) : C3) = (C3 x C3) . (C3 x C3) 0 0
[ 81, 14 ] (C9 x C3) : C3 0 0
[ 82, 1 ] D82 1∗ 0
[ 84, 1 ] (C7 : C4) : C3 0 0
[ 84, 5 ] C21 : C4 1 0
[ 84, 11 ] (C14 x C2) : C3 0 0
[ 86, 1 ] D86 1∗ 0
[ 88, 1 ] C11 : C8 1 0
[ 88, 3 ] C11 : Q8 1∗ 0
[ 88, 5 ] D88 1∗ 0
[ 88, 7 ] (C22 x C2) : C2 1 0
[ 90, 3 ] D90 1∗ 0
[ 90, 9 ] (C15 x C3) : C2 1∗ 0
[ 92, 1 ] C23 : C4 1 0
[ 93, 1 ] C31 : C3 0 0
[ 94, 1 ] D94 1∗ 0
[ 96, 1 ] C3 : C32 1 0
[ 96, 3 ] ((C4 x C2) : C4) : C3 0 0
[ 96, 5 ] C48 : C2 1 0
[ 96, 6 ] D96 1∗ 0
[ 96, 7 ] C48 : C2 1 0
[ 96, 8 ] C3 : Q32 1∗ 0
[ 96, 10 ] (C3 : C8) : C4 1 0
[ 96, 11 ] C12 : C8 1 0
[ 96, 12 ] (C12 x C4) : C2 1 0
[ 96, 13 ] (C3 x ((C4 x C2) : C2)) : C2 1 0
[ 96, 14 ] (C3 : C8) : C4 1 0
[ 96, 15 ] (C3 : C8) : C4 1 0
[ 96, 16 ] (C2 x (C3 : C8)) : C2 1 0
[ 96, 17 ] (C3 : Q8) : C4 1 0
[ 96, 19 ] (C3 : C16) : C2 1 0
[ 96, 21 ] (C3 : C4) : C8 1 0
[ 96, 22 ] C24 : C4 1 0
[ 96, 23 ] (C3 : Q8) : C4 1 0
[ 96, 24 ] C24 : C4 1 0
[ 96, 25 ] C24 : C4 1 0
[ 96, 26 ] C3 : (C4 . D8 = C4 . (C4 x C2)) 1 0
[ 96, 27 ] (C24 x C2) : C2 1 0
[ 96, 28 ] (C24 x C2) : C2 1 0
[ 96, 29 ] C3 : (C4 . D8 = C4 . (C4 x C2)) 1 0
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[ 96, 30 ] (C3 x (C8 : C2)) : C2 1 0
[ 96, 31 ] C3 : (C2 . ((C4 x C2) : C2) = (C2 x C2) . (C4 x C2)) 1 0
[ 96, 32 ] (C3 x (C8 : C2)) : C2 1 0
[ 96, 33 ] (C3 x D16) : C2 1 0
[ 96, 34 ] (C3 : C16) : C2 1 0
[ 96, 35 ] (C3 x Q16) : C2 1 0
[ 96, 36 ] C3 : Q32 1 0
[ 96, 37 ] (C2 x (C3 : C8)) : C2 1 0
[ 96, 38 ] (C12 x C2) : C4 1 0
[ 96, 39 ] (C2 x (C3 : C8)) : C2 1 0
[ 96, 40 ] ((C3 : C8) : C2) : C2 0 0
[ 96, 41 ] ((C2 x (C3 : C4)) : C2) : C2 0 0
[ 96, 42 ] (C3 x Q8) : C4 1 0
[ 96, 43 ] C3 : (C2 . ((C4 x C2) : C2) = (C2 x C2) . (C4 x C2)) 0 0
[ 96, 44 ] (C4 x (C3 : C4)) : C2 1 0
[ 96, 64 ] ((C4 x C4) : C3) : C2 1 0
[ 96, 65 ] A4 : C8 1 0
[ 96, 66 ] SL(2,3) : C4 1 0
[ 96, 67 ] SL(2,3) : C4 1 0
[ 96, 70 ] ((C2 x C2 x C2 x C2) : C3) : C2 1 0
[ 96, 71 ] ((C4 x C4) : C3) : C2 0 0
[ 96, 72 ] ((C4 x C4) : C3) : C2 1 0
[ 96, 74 ] ((C8 x C2) : C2) : C3 1 0
[ 96, 76 ] C12 : Q8 1∗ 0
[ 96, 77 ] C3 : ((C2 x C2) . (C2 x C2 x C2)) 1 0
[ 96, 79 ] (C12 x C4) : C2 1 0
[ 96, 81 ] (C12 x C4) : C2 1∗ 0
[ 96, 82 ] (C12 x C4) : C2 1 0
[ 96, 83 ] (C12 x C4) : C2 1 0
[ 96, 84 ] (C4 x (C3 : C4)) : C2 1 0
[ 96, 85 ] (C2 x (C3 : Q8)) : C2 1 0
[ 96, 86 ] (C4 x (C3 : C4)) : C2 1 0
[ 96, 88 ] (C2 x C4 x S3) : C2 1 0
[ 96, 89 ] (C2 x C2 x C2 x S3) : C2 1∗ 0
[ 96, 90 ] (C2 x C4 x S3) : C2 1 0
[ 96, 91 ] (C2 x C4 x S3) : C2 1 0
[ 96, 92 ] (C2 x (C3 : Q8)) : C2 1 0
[ 96, 93 ] (C2 x C2 x (C3 : C4)) : C2 1 0
[ 96, 94 ] (C3 : Q8) : C4 1 0
[ 96, 95 ] C12 : Q8 1∗ 0
[ 96, 96 ] C3 : ((C2 x C2) . (C2 x C2 x C2)) 1 0
[ 96, 97 ] C3 : ((C2 x C2) . (C2 x C2 x C2)) 1 0
[ 96, 99 ] (C4 x (C3 : C4)) : C2 1 0
[ 96, 100 ] (C2 x C4 x S3) : C2 1 0
[ 96, 101 ] (C2 x C4 x S3) : C2 1 0
[ 96, 102 ] (C2 x C4 x S3) : C2 1 0
[ 96, 103 ] (C2 x (C3 : Q8)) : C2 1 0
[ 96, 104 ] (C3 x (C4 : C4)) : C2 1 0
[ 96, 105 ] (C3 x (C4 : C4)) : C2 1 0
[ 96, 108 ] (C24 x C2) : C2 1 0
[ 96, 111 ] (C24 x C2) : C2 1 0
[ 96, 114 ] (C8 x S3) : C2 1 0
[ 96, 115 ] (C2 x D24) : C2 2∗ 0
[ 96, 116 ] (C3 x (C8 : C2)) : C2 2∗ 0
[ 96, 118 ] (D8 x S3) : C2 2 0
[ 96, 119 ] (C8 x S3) : C2 1 0
[ 96, 121 ] (D8 x S3) : C2 2∗ 0
[ 96, 122 ] (Q8 x S3) : C2 2∗ 0
[ 96, 123 ] (C8 x S3) : C2 1 0
[ 96, 125 ] (C3 x Q16) : C2 2 0
[ 96, 126 ] (C8 x S3) : C2 1 0
[ 96, 131 ] (C2 x (C3 : Q8)) : C2 1 0
[ 96, 133 ] (C4 x (C3 : C4)) : C2 1 0
[ 96, 136 ] (C12 x C2 x C2) : C2 1 0
[ 96, 137 ] (C12 x C2 x C2) : C2 1 0
[ 96, 139 ] (C6 x D8) : C2 1 0
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[ 96, 142 ] (C2 x C2 x (C3 : C4)) : C2 1 0
[ 96, 143 ] (C2 x (C3 : Q8)) : C2 1 0
[ 96, 144 ] (C2 x C2 x C2 x S3) : C2 1 0
[ 96, 145 ] (C6 x D8) : C2 1 0
[ 96, 146 ] (C2 x C2 x (C3 : C4)) : C2 1 0
[ 96, 147 ] (C6 x D8) : C2 1 0
[ 96, 149 ] (C6 x Q8) : C2 1 0
[ 96, 151 ] (C3 : C4) : Q8 1 0
[ 96, 153 ] (C6 x Q8) : C2 1 0
[ 96, 154 ] (C6 x Q8) : C2 1 0
[ 96, 155 ] (C2 x (C3 : C8)) : C2 1 0
[ 96, 156 ] (C2 x D24) : C2 1 0
[ 96, 157 ] (C2 x (C3 : C8)) : C2 1 0
[ 96, 158 ] (C2 x (C3 : Q8)) : C2 1 0
[ 96, 160 ] (C6 x C2 x C2 x C2) : C2 1 0
[ 96, 185 ] A4 : Q8 1∗ 0
[ 96, 187 ] (C2 x S4) : C2 1∗ 0
[ 96, 190 ] (C2 x SL(2,3)) : C2 1 0
[ 96, 191 ] (C2 . S4 = SL(2,3) . C2) : C2 1∗ 0
[ 96, 192 ] (C2 . S4 = SL(2,3) . C2) : C2 1 0
[ 96, 193 ] (SL(2,3) : C2) : C2 1∗ 0
[ 96, 195 ] (C2 x C2 x A4) : C2 1 0
[ 96, 201 ] (SL(2,3) : C2) : C2 1 0
[ 96, 202 ] (C2 x SL(2,3)) : C2 1 0
[ 96, 203 ] (C2 x C2 x Q8) : C3 0 0
[ 96, 204 ] ((C2 x D8) : C2) : C3 0 0
[ 96, 211 ] (C6 x D8) : C2 1 0
[ 96, 214 ] (C6 x Q8) : C2 1 0
[ 96, 216 ] (D8 x S3) : C2 1∗ 0
[ 96, 217 ] (Q8 x S3) : C2 1∗ 0
[ 96, 227 ] ((C2 x C2 x C2 x C2) : C3) : C2 1∗ 0
[ 98, 1 ] D98 1∗ 0
[ 98, 4 ] (C7 x C7) : C2 1∗ 0
[ 100, 1 ] C25 : C4 1 0
[ 100, 3 ] C25 : C4 0 0
[ 100, 7 ] (C5 x C5) : C4 1 0
[ 100, 10 ] (C5 x C5) : C4 0 0
[ 100, 11 ] (C5 x C5) : C4 0 0
[ 100, 12 ] (C5 x C5) : C4 0 0
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