
Temporal Program Verification
and Synthesis as
Horn Constraints Solving

Tewodros Awgichew Beyene

Technische Universität München
Lehrstuhl für Theoretische Informatik

Temporal Program Verification and
Synthesis as Horn Constraints Solving

Tewodros Awgichew Beyene

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen

Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Matthias Althoff

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Andrey Rybalchenko

2. Univ.-Prof. Dr. Helmut Seidl

3. Prof. Dr. Philipp Rümmer, Universität Uppsala, Schweden

Die Dissertation wurde am 31.07.2015 bei der Technischen Universität München ein-

gereicht und durch die Fakultät für Informatik am 24.11.2015 angenommen.

Abstract

We live in a world full of safety-critical software-intensive systems whose safe opera-

tion is in dire need. Program verification aims at ensuring a program satisfies a given

desirable property. Temporal logics form an important class of specification languages

for programs. Program verification applies proof rules to obtain proof subgoals called

verification conditions whose validity implies correctness of the program. Verification

conditions generally contain auxiliary assertions that must be inferred and the main

challenge lies in computing such auxiliary assertions. Temporal verification of universal,

i.e., valid for all computation paths, properties of various kinds of programs is a success

story. The success in computing the auxiliary assertions for universal properties is due

to tremendous advances in the state-of-the-art in (universal) validity checking. In re-

cent years, several verification frameworks that are based on solvers for (universal) Horn

clauses are also developed. Existential properties require that there exists a particular

computation path on which a given desirable condition is valid. Advances in dealing

with existential properties of programs are still not on par with the maturity of verifiers

for universal properties. An important challenge is computing auxiliary assertions for

existential properties.

In this dissertation, we propose a new method for solving forall-exists quantified Horn

constraints extended with well-foundedness conditions. The method is based on a

counterexample-guided abstraction refinement scheme to discover witnesses for exis-

tentially quantified variables. The refinement loop collects a global constraint that

declaratively determines which witnesses can be chosen. The chosen witnesses are used

to replace existential quantification, and then the resulting universally quantified Horn

constraints are passed to a solver for such constraints.

We present two application domains that our method can not only formalize declaratively

and elegantly but also solve efficiently. The first domain is verification of branching-time

temporal properties of infinite-state programs. We propose a deductive approach to au-

tomated verification of CTL and CTL+FO properties. The practical applicability of

the approach is demonstrated by an experimental evaluation on industrial examples.

The second domain is computing winning strategies in two-player graph games over the

state space of infinite-state programs. The winning conditions are given by safety, reach-

ability, and general Linear Temporal Logic (LTL) properties. Our proposed approach

gives a sound and relatively complete proof rule for each property class that deductively

describes a winning strategy for a particular player. The practical promise of our ap-

proach is demonstrated through several case studies, including a challenging game, as

well as examples derived from prior works on program synthesis and repair.

i

ii

iii

Acknowledgements

I am grateful to my supervisor Andrey Rybalchenko who has been not only a source

of advice but also a source of motivation during my entire study. He has always been

understanding, patient and supportive. Thank you, Andrey! I would also like to ac-

knowledge the enormous support Corneliu Popeea has been giving me as a colleague and

collaborator. All of the results presented in this dissertation are results of joint work

with Andrey and Corneliu.

The research effort included in this work was supported by the German Research Coun-

cil (DFG) through the doctoral program PUMA (Graduiertenkolleg Programm Und

Modell-Analyse). I would like to thank DFG, PUMA and Helmut Seidl, who is the

coordinator of PUMA and one of the referees for the dissertation. I am also grateful

to Philipp Rümmer for his willingness to referee the dissertation as an external exam-

iner. Javier Esparza has always been helpful in providing me with the endless list of

documents required for my stay in Germany and travels abroad. Claudia Link is always

willing and happy to assist me in various administrative issues. I would like to thank

them and all members of the Theoretical Computer Science and Software Reliability

Chair.

Julio Marino’s and Manuel Carro’s lectures on rigorous software development had pro-

vided me the first exposure to formal verification tools and techniques. Pedro Barahona

had taught me what research in formal verification would look like. I would like to thank

them all, once again, for first introducing me with core concepts of formal methods, pro-

gram logics, and formal program verification.

Edengenet Mashilla, my wife and life partner, gave me unlimited and relentless support

during the entire study. When I needed someone Ed was there for me, when I was down

she lifted me up, and when I was up she lifted me higher. Ed’s confidence in me even

when I lacked self-confidence used to push me forward. If not for her, this journey would

not be able to come to the end. Thank you and love you forever, Mierafe!

The amount of effort my parents, Awgichew Beyene and Almaz Lemma, have invested

from day one to get me where I am today is beyond any words. It will not be possible to

repay the debt I owe them in many, many lifetimes of full-time work. Thank you, Gashe

ena Eteye! My brothers, Nahom, Dawit, Demeke and Daniel, and my sisters, Hezab,

Roza and Alem have always been very supportive, and I would like to wholeheartedly

thank them! Special thanks to Tadelle Oumer for his enormous encouragement over the

years. I am indebted to Roza Awgichew, my sister, and Tesfaye Eshetu, a brother and

a great friend, for their unwavering support.

iv

The amazing friends and family at the Christ Evangelical Church have brought more joy,

purpose and blessing into my stay in Munich. I can not thank them enough! It will not

be possible to name them all but a few special names include Pastor Gebeyehu Feleke,

Amde Aklilu, Tekeste Teweldemedhin, Saba Berhane, Yoseph Kassa, Daniel Berhanu,

Yohanna Yitbarek, Tewodros Abate, Daniel Tamrat, Aman Gashaw, Hanna Abera,

Bernardos Tekeste, Michael Mekonnen, Yoseph Tsegaye and Tesfaye Haregu. May God

bless you all!

One of the fondly memories I will have about Munich is our Saturday morning football

at Westpark. I would like to appreciate all team members for their dedication and also

for their trust in making me the team captain, though some would argue that I was

self-appointed.

Finally, I would like to extend my regards to everyone who have been encouraging me,

supporting me, and more importantly praying for me. Above all, I glorify God for His

everlasting love, forgiveness and protection on me. I thank Jesus for providing me with

such helpful professors, understanding colleagues, caring family, and supportive friends.

Thank You God!

To my parents Awgichew Beyene and Almaz Lemma,
and my wife Edengenet Mashilla.

v

vi

Contents

Abstract

Acknowledgements i

List of Figures ix

List of Tables x

1 Introduction 1

1.1 Dissertation . 2

1.2 Contributions and Outline . 2

2 Preliminaries 5

3 Solving Forall-Exists Quantified Horn Constraints 11

3.1 Introduction . 11

3.2 Solving algorithm . 12

3.3 Solving illustration . 17

3.4 Optimisations . 21

3.5 Implementation . 30

3.6 Related work . 30

3.7 Conclusion . 31

4 CTL Verification as Horn Constraint Solving 33

4.1 Introduction . 33

4.2 CTL basics . 34

4.3 Proof system . 35

4.4 Constraint generation . 40

4.5 Evaluation . 44

4.6 Related work . 49

4.7 Conclusion . 49

5 CTL+FO Verification as Horn Constraint Solving 51

5.1 Introduction . 51

5.2 CTL+FO basics . 52

5.3 Proof system . 53

5.4 Constraint generation . 54

vii

CONTENTS viii

5.5 Evaluation . 57

5.6 Related work . 59

5.7 Conclusion . 59

6 Solving Games on Infinite Graphs as Horn Constraint Solving 61

6.1 Introduction . 61

6.2 The Cinderella-Stepmother game . 64

6.3 Proof rules . 66

6.4 Case study: Cinderella-Stepmother games 74

6.5 Case study: program repair/synthesis games 81

6.6 Evaluation . 89

6.7 Related work . 90

6.8 Conclusion . 92

7 Program synthesis via Solving Recursive Games as
Horn Constraint Solving 93

7.1 Introduction . 93

7.2 Motivation . 96

7.3 Preliminaries . 97

7.4 Game summaries . 100

7.5 Proof rules . 102

7.6 Evaluation . 109

7.7 Related work . 111

7.8 Conclusion . 113

8 Future Work 115

9 Summary and Conclusion 117

Bibliography 119

List of Figures

3.1 The function Skolemize. 13

3.2 The algorithm E-HSF. 14

3.3 The procedure DefsRefine refines Skolem definitions. 15

3.4 An example program (a), its control-flow graph (b), and the corresponding
transition system (c). 23

3.5 The loop acceleration procedure. 27

3.6 The procedure GetAccelRel. 28

3.7 control-flow graph with the accelerated loop (a), and the corresponding
modified transition system (b). 29

4.1 Proof rule RuleCtlDecompUni . 36

4.2 Proof rule RuleCtlDecompBin . 36

4.3 Proof rule RuleCtlInit . 37

4.4 Proof rule RuleCtlEX . 37

4.5 Proof rule RuleCtlEG . 37

4.6 Proof rule RuleCtlEU . 38

4.7 Proof rule RuleCtlAX . 38

4.8 Proof rule RuleCtlAG . 38

4.9 Proof rule RuleCtlAU . 39

4.10 Proof rule RuleCtlEF . 39

4.11 Proof rule RuleCtlAF . 39

4.12 Proof rule RuleCtlAuFinite . 40

4.13 Proof rule RuleCtlAxFinite . 40

4.14 An example program . 41

5.1 Proof rule RuleCtlFoUniv . 53

5.2 Proof rule RuleCtlFoExist . 54

6.1 Proof rule RuleSafe for a safety game. 67

6.2 Proof rule RuleReach for a reachability game. 69

6.3 Proof rule BüchiTerm for an LTL game. 72

7.1 Program that exhibits inadequacy of procedure summaries. 97

7.2 Proof rule RuleSafe for synthesis with respect to a safety requirement
given by assertion safe(v). 103

7.3 Proof rule RuleReach for synthesis with respect to the termination re-
quirement. 106

7.4 Part of function IofCallDriver. 110

ix

List of Tables

4.1 CTL verification on industrial benchmarks 46

4.2 Optimised CTL verification on industrial benchmarks 47

4.3 Comparison of our results with Cook [38, Figure 11] 48

5.1 CTL+FO verification on industrial benchmarks 58

6.1 Statistics for the case studies . 90

7.1 Evaluation of our method on device driver programs from SV-COMP . . . 112

x

Chapter 1

Introduction

We live in a world full of safety-critical software-intensive systems whose safe operation is

in dire need. Program verification aims at ensuring a program satisfies a given desirable

property. Temporal logics form an important class of specification languages for pro-

grams. Solving forall-exists quantified Horn constraints extended with well-foundedness

conditions provides a new method for the verification and synthesis of programs with

respect to existential (and universal) properties.

Program verification applies rules of a program proof system to obtain logical proof sub-

goals called verification conditions. Their validity implies correctness of the program.

The verification conditions generally contain first-order auxiliary assertions such as pro-

gram invariants that must be inferred. The main challenge is to compute such auxiliary

assertions.

Temporal verification of universal (i.e., valid for all computation paths) properties of var-

ious kinds of programs, e.g., procedural, multi-threaded, or functional, can be reduced

to finding solutions for equations in form of universally quantified Horn clauses extended

with well-foundedness conditions. Various techniques, e.g., abstract domains [43], pred-

icate abstraction [58, 71], or interpolation [93], provide a basis for efficient tools for the

verification of such properties, e.g., Astree [18], Blast [71], CPAChecker [16], SatAbs [36],

Slam [8], Terminator [41], or UFO [1]. To a large extent, the success of checkers of univer-

sal properties is determined by tremendous advances in the state-of-the-art in decision

procedures for (universal) validity checking, i.e., advent of tools like MathSAT [24] or

Z3 [47]. In recent years, several verification frameworks that are based on solvers for

Horn clauses are also developed such as Duality [94], HSF [59], SeaHorn [80], and µZ [73].

1

Chapter 1. Introduction 2

1.1 Dissertation

Existential properties require that there exists a particular computation path on which

a given desirable condition is valid. An example of existential property for a program is

existence of a computation path that eventually terminates. Another example is exis-

tence of a winning strategy for a particular player in a two-player game. An important

challenge is dealing with existential properties, i.e., computing the corresponding aux-

iliary assertions in the presence of existential quantification. Advances in dealing with

existential properties of programs are still not on par with the maturity of verifiers for

universal properties. Nevertheless, important first steps were made in proving existence

of infinite program computations, see e.g. [52, 63, 99], even in proving existential (as

well as universal) CTL properties [39]. Moreover, bounded model checking tools like

CBMC [35] or Klee [29] can be very effective in proving existential reachability proper-

ties. All these initial achievements inspire further, much needed research on the topic.

In this dissertation, we propose a new method for solving forall-exists quantified Horn

constraints extended with well-foundedness conditions. The method is very generalized

and has a potential not only to formalize declaratively and elegantly but also to solve

efficiently various important application domains in formal methods. These include veri-

fication of branching-time temporal properties of infinite-state programs and computing

winning strategies in two-player graph games over the state space of infinite-state pro-

grams. Our generalized method outperforms the state-of-art specialized solving methods

in these application domains.

1.2 Contributions and Outline

We now describe the technical contributions and outline for the dissertation.

Solving algorithm for quantified Horn constraints We begin by describing our

method of solving forall-exists quantified Horn constraints, which is at the heart of our

approach for temporal verification and synthesis of infinite-state programs, in Chapter 3.

The method has a template-based counterexample-guided abstraction refinement algo-

rithm to discover witnesses for existentially quantified variables. The refinement loop

collects a global constraint that declaratively determines which witnesses can be chosen.

The chosen witnesses are used to replace existential quantification, and then the result-

ing universally quantified Horn constraints are passed to a solver for such constraints.

Chapter 1. Introduction 3

We show correctness of the algorithm by presenting a condition under which the algo-

rithm is sound, and by discussing how the algorithm ensures progress of refinement.

The work appeared in CAV 2013 [14].

Verification of branching-time temporal properties We describe how our solving

method for quantified Horn constraints can be applied for verification of properties given

in temporal logics CTL and CTL+FO in Chapter 4 and Chapter 5, respectively. We

provide proof rules for generating quantified Horn constraints from a program, given as

a transition system, and a temporal property, given in CTL and CTL+FO. The proof

rules for temporal quantifiers for both logics are adopted from existing proof rules in

[81]. However, we introduce novel yet simple and declarative proof rules for first-order

quantifiers of CTL+FO. Our method for solving quantified Horn constraints helps in

getting an automatic method for verifying branching-time temporal properties. As far as

we know, this is the first automated method particularly for CTL+FO. We demonstrate

the practical applicability of the approach for both logics by presenting experimental

evaluation using examples from the PostgreSQL database server, the SoftUpdates patch

system, the Windows OS kernel.

Part of the result on CTL verification appeared in CAV 2013 [14], and the result on

CTL+FO verification appeared in SPIN 2014 [11].

Solving two-player graph games We present a Horn constraint-based approach to

computing winning strategies in two-player graph games over the state space of infinite-

state programs in Chapter 6. The approach handles games with winning conditions

given by safety, reachability, and general Linear Temporal Logic (LTL) properties. For

each property class, we give a deductive proof rule that describes a winning strategy for

a particular player. We show that the proof rules are sound and relatively complete.

These proof rules are our main contribution. We offer a prototype implementation of

our rules on top of our algorithm for solving quantified Horn constraints, which is given

in Chapter 3. The practical promise of the rules is demonstrated through several case

studies, including a challenging “Cinderella-Stepmother game” that was forwarded to

the community as a challenge [19, 75], as well as examples derived from prior works on

program synthesis and repair.

This work appeared in POPL 2014 [12].

Solving two-player recursive graph games An approach for solving recursive

infinite-state games where games are played on the configuration graphs of programs

with recursion and unbounded data is proposed in Chapter 7. The key idea here is

Chapter 1. Introduction 4

a generalization of traditional summaries, called game summaries, that allow compo-

sitional reasoning about strategies in the presence of procedures and recursion. We

consider two kinds of recursive games: games with safety objectives and games with

reachability objectives. Our contributions include sound and relatively complete proof

rules for compositional, deductive synthesis using game summaries. Here also we pro-

vide a prototype implementation where a sound approximation of the proof rules can

be automated using our Horn constraint solver from Chapter 3. An experimental evalu-

ation over a set of systems code benchmarks demonstrates the practical promise of the

approach.

This work appeared in VSTTE 2015 [13].

Chapter 2

Preliminaries

In this chapter, we present basic notions that are used throughout the rest of the dis-

sertation. These include formalization of programs as transition systems, syntax and

semantics of forall-exists quantified Horn constraints and games.

Programs Given a program, we abstract away from the concrete syntax of its pro-

gramming language and represent the program by a transition system [81, 89]:

P = (init(v),next(v, v′))

where

• v = (u1, . . . , un): A finite tuple of program variables over possibly infinite domains.

A state is a valuation of v. We denote by Σ the set of all states.

• init(v) : An initial condition. This is an assertion characterizing all the initial

states of the transition system. A state is called initial if it satisfies init(v).

• next(v, v′) : A transition relation. This is an assertion relating a state s ∈ Σ to its

successor s′ ∈ Σ by referring to both unprimed and primed versions of the state

variables. The transition relation next(v, v′) identifies state s′ as a successor of

state s if (s, s′) |= next(v, v′).

Let P be a transition system. A run of P is a maximal sequence of states σ : s0, s1, . . .

satisfying the following requirements.

• Initiality: s0 is initial

• Consecution: For each j + 1 ∈ [1..|σ|) , sj+1 is a successor of sj .

5

Chapter 2. Preliminaries 6

The sequence σ is maximal if either σ is infinite, or σ = s0, . . . , sk and sk has no successor

with respect to next(v, v′). We denote by runs(P) the set of runs of P . An infinite run

of P is called a computation. The set of computations of P starting in a state s is

denoted by ΠP (s).

Program verification and synthesis Program verification is the task of automati-

cally generating proofs for a program’s compliance with a given desirable property. If the

program does not comply with the desired property, then the program verification task

will be to generate a counter-example. There are two important classes of properties:

safety properties, which require the absence of “bad” states in each program computa-

tion, and reachability properties, which require that some “good” states are reached in

every computation. Program synthesis is the task of automatically generating a pro-

gram that meets a given desirable property. We can view both program verification and

program synthesis as search problems where the former is a search for proofs and the

later is a search for programs.

Constraints Let T be a first-order theory in a given signature and |=T be the en-

tailment relation for T . We write v, v0, v1, . . . and w to denote non-empty tuples of

variables. We refer to a formula c(v) over variables v from T as a constraint. Let false

and true be an unsatisfiable and a valid constraint, respectively.

For example, let x, y, and z be variables. Then, v = (x, y) and w = (y, z) are tuples

of variables. x ≤ 2, y ≤ 1 ∧ x − y ≤ 0, and f(x) + g(x, y) ≤ 3 ∨ z ≤ 0 are example

constraints in the theory T of linear inequalities and uninterpreted functions, where f

and g are uninterpreted function symbols. y ≤ 1∧ x− y ≤ 0 |=T x ≤ 2 is an example of

a valid entailment.

Well-founded relations A binary relation ϕ(v, v′) is well-founded if it does not

admit any infinite (ascending or descending) chains. For example, the relation

x ≥ 0 ∧ x ′ ≤ x − 1 is well-founded.

Disjunctively well-founded relations A binary relation ϕ(v, v′) is dis-

junctively well-founded if it is included in a finite union of well-founded

relations [105], i.e., if there exist well-founded ϕ1 (v , v ′), . . . , ϕn(v , v ′) such

that ϕ(v , v ′) |=T ϕ1 (v , v ′) ∨ · · · ∨ ϕn(v , v ′). For example, the relation

(x ≥ 0 ∧ x ′ ≤ x − 1) ∨ (y ≤ 0 ∧ y ′ ≥ y + 1) is disjunctively well-founded.

Chapter 2. Preliminaries 7

Queries and dwf-predicates We assume a set of uninterpreted predicate symbols Q
that we refer to as query symbols. The arity of a query symbol is encoded in its name. We

write q to denote a query symbol. Given q of a non-zero arity n and a tuple of variables

v of length n, we define q(v) to be a query. Furthermore, we introduce an interpreted

predicate symbol dwf of arity one (dwf stands for disjunctive well-foundedness). Given

a query q(v, v′) over tuples of variables with equal length, we refer to dwf (q) as a

dwf -predicate. For example, let Q = {r, s} be query symbols of arity one and two,

respectively. Then, r(x) and s(x, y) are queries, and dwf (s) is a dwf -predicate.

Forall-exists quantified Horn constraints Let h(v) range over queries over v, con-

straints over v, and existentially quantified conjunctions of queries and constraints with

free variables in v. We define a forall-exists quantified Horn constraint to be either an

implication c(v0) ∧ q1(v1) ∧ · · · ∧ qn(vn) → h(v) or a unit clause dwf (q). The left-hand

side of the implication is called the body, written as body(v), and the right-hand side is

called the head.

Formally, a forall-exists quantified Horn constraint (∀∃HC) over a first-order theory T
is constructed as follows:

∀∃HC ::= ∀v : conj (v)→ ∃w : conj (v, w) |

conj (v)→ φ(v) | conj (v)→ q(v) | dwf (q)

conj ::= φ(v) | q(v) | conj ∧ conj

v, w ::= a tuple of distinct variables such that v ∩ w = ∅

q(v) ::= an uninterpreted predicate symbol applied to a tuple of variables

φ(v) ::= a formula whose terms and predicates are interpreted over T

As an example, we give a set of forall-exists quantified Horn constraints below:

∀x : x ≥ 0→ ∃y : x ≥ y ∧ rank(x, y),

∀x, y : rank(x, y)→ ti(x, y),

∀x, y, z : ti(x, y) ∧ rank(y, z)→ ti(x, z),

dwf (ti).

These clauses represent an assertion over the interpretation of predicate symbols rank

and ti .

In this work, we quantify explicitly only existentially quantified variables and leave uni-

versal quantification implicit, i.e., variables that are not quantified in a given constraint

are assumed to be universally quantified. This way, we can the example set of Horn

Chapter 2. Preliminaries 8

constraints given above as follows:

x ≥ 0→ ∃y : x ≥ y ∧ rank(x, y),

rank(x, y)→ ti(x, y),

ti(x, y) ∧ rank(y, z)→ ti(x, z),

dwf (ti).

A Horn constraint given as c(v0)∧ q1(v1)∧ · · · ∧ qn(vn)→ h(v) is said to be an inference

clause if its head h(v) contains at least one uninterpreted predicate symbol. For example,

the Horn constraint below is an inference clause.

ti(x, y) ∧ rank(y, z)→ ti(x, z)

Semantics of forall-exists quantified Horn constraints A set of Horn constraints

can be seen as an assertion over the queries that occur in the constraints.

We consider a function ClauseSol that maps each query q(v) occurring in a given set

of Horn constraints into a constraint over v. Such a function is called a solution if the

following two conditions hold. First, for each Horn constraints of the form body(v) →
head(v) from the given set we require that replacing each query by the corresponding

constraint assigned by ClauseSol results in a valid entailment. That is, we require

body(v)ClauseSol |=T head(v)ClauseSol , where the juxtaposition represents application

of substitution. Second, for each clause of the form dwf (q) we require that the constraint

assigned by ClauseSol to q is a disjunctively well-founded relation. Let |=Q be the

corresponding satisfaction relation, i.e., ClauseSol |=Q Clauses if ClauseSol is a solution

for the given set of clauses.

For example, the previously presented set of clauses, say Clauses, has a solution

ClauseSol such that ClauseSol(rank(x, y)) = ClauseSol(ti(x, y)) = (x ≥ 0 ∧ y ≥ x− 1).

To check ClauseSol |=Q Clauses we consider the validity of the following implications:

x ≥ 0→ ∃y : x ≥ y ∧ x ≥ 0 ∧ y ≤ x− 1,

x ≥ 0 ∧ y ≤ x− 1→ x ≥ 0 ∧ y ≤ x− 1,

x ≥ 0 ∧ y ≤ x− 1 ∧ y ≥ 0 ∧ z ≤ y − 1→ x ≥ 0 ∧ z ≤ x− 1.

and the fact that ClauseSol(ti(x, y)) = (x ≥ 0 ∧ y ≤ x − 1) is a (disjunctively) well-

founded relation.

Chapter 2. Preliminaries 9

The HSF solver Let us assume we have a set of forall-exists quantified Horn con-

straints. If none of these Horn constraints has a head with existentially quantified

variable, i.e., for each Horn constraint all of the variables are universally quantified,

we apply the solver called HSF [59] to find solutions for the set of Horn constraints.

On termination, the HSF solver may return a solution when the set of Horn clauses is

satisfiable or a counter-example otherwise. But, the solver may not terminate at all.

Games A (two-player, turn-based, graph) game is a pair consisting of a transition

system and a winning condition:

• We consider transition systems that are composed from two players, Adam and

Eve. Let v be a tuple of variables. For simplicity, we do not distinguish between

variables controlled by Eve and Adam, i.e., both players control all variables.

We represent the initial states of the transition system by an assertion init(v).

The transition relations of Adam and Eve are given by assertions adam(v, v′) and

eve(v, v′), respectively.

• A winning condition obj for a game is given by a set of infinite sequences of system

states. A game is said to be a safety game, a reachability game, and an LTL

game, respectively, when its winning condition is a safety property, a reachability

property, and a general LTL property.

Games semantics We present the semantics of games in two steps. First, we define

strategies of the individual players. A strategy σ for Eve is a set of infinite trees over

the states of the system that satisfies the following conditions:

• The roots of trees in σ coincide with the set of initial states, and are considered

to be on the first level of the trees. Here, the level of a node is the length of the

path to the root plus one.

• The set of successors of each tree node s at an odd level consists of the following

set of states.

{s′ | (s, s′) |= adam(v, v′)}

• The set of successors of each tree node s at an even level consists of a non-empty

subset of the following set of states.

{s′ | (s, s′) |= eve(v, v′)}

Chapter 2. Preliminaries 10

Thus, a strategy for Eve alternates between universal choices of Adam and existential

choices of Eve. We call each infinite sequence of system states that starts at a root of a

strategy σ and follows some branch a play π determined by σ.

A strategy σ for Eve is winning if every play determined by σ is included in the winning

condition.

For the given system and a formula ϕ that describes a winning condition in some tem-

poral logic, we write

(init(v), eve(v, v′), adam(v, v′)) |= ϕ

when Eve has a winning strategy.

We also consider Adam’s perspective. A strategy σ for Adam is defined in a similar way.

The roots of σ represent a non-empty subset of init(v). σ alternates between existential

choices of Adam and universal choices of Eve. If a tree node s is on an odd level, then

its successors form a non-empty subset of {s′ | (s, s′) |= adam(v, v′)}. Otherwise, the

set of successors is {s′ | (s, s′) |= eve(v, v′)}.

Chapter 3

Solving Forall-Exists Quantified

Horn Constraints

3.1 Introduction

Temporal verification of universal, i.e., valid for all computation paths, properties of vari-

ous kinds of programs is a success story. Various techniques, e.g., abstract domains [43],

predicate abstraction [58, 71], or interpolation [93], provide a basis for efficient tools

for the verification of such properties, e.g., Astree [18], Blast [71], CPAChecker [16],

SatAbs [36], Slam [8], Terminator [41], or UFO [1]. To a large extent, the success of

checkers of universal properties is determined by tremendous advances in the state-of-

the-art in decision procedures for (universal) validity checking, i.e., advent of tools like

MathSAT [24] or Z3 [47].

In contrast, advances in dealing with existential properties of programs, e.g., proving

whether there exists a particular computation path, are still not on par with the maturity

of verifiers for universal properties. Nevertheless, important first steps were made in

proving existence of infinite program computations, see e.g. [52, 63, 99], even in proving

existential (as well as universal) CTL properties [39]. Moreover, bounded model checking

tools like CBMC [35] or Klee [29] can be very effective in proving existential reachability

properties. All these initial achievements inspire further, much needed research on the

topic.

In this chapter, we present a method that can serve as a further building block for the

verification of temporal existential (and universal) properties of infinite-state systems.

Our method solves forall-exists quantified Horn clauses extended with well-foundedness

conditions. The conclusion part of such clauses may contain existentially quantified

11

Chapter 3. Solving Forall-Exists Quantified Horn Constraints 12

variables. The main motivation for the development of our method stems from an ob-

servation that verification conditions for existential temporal properties, e.g., generated

by a deductive proof system for CTL [81], can be expressed by clauses in such form.

Our method, called E-HSF, applies a counterexample-guided refinement scheme to dis-

cover witnesses for existentially quantified variables. The refinement loop collects a

global constraint that declaratively determines which witnesses can be chosen. The

chosen witnesses are used to replace existential quantification, and then the resulting

universally quantified clauses are passed to a solver for such clauses. At this step, we

can benefit from emergent tools in the area of solving Horn clauses over decidable the-

ories, e.g., HSF [59], µZ [73], or Duality [94]. Such a solver either finds a solution, i.e.,

a model for uninterpreted relations constrained by the clauses, or returns a counterex-

ample, which is a resolution tree (or DAG) representing a contradiction. E-HSF turns

the counterexample into an additional constraint on the set of witness candidates, and

continues with the next iteration of the refinement loop. Notably, our refinement loop

conjoins constraints that are obtained for all discovered counterexamples. This way E-

HSF guarantees that previously handled counterexamples are not rediscovered and that

a wrong choice of witnesses can be mended.

3.2 Solving algorithm

In this section, we present our algorithm E-HSF for solving constraints in form of

Horn clauses that contain existential quantification and well-foundedness conditions.

We describe the algorithm first and then state its correctness properties. Section 7.2

can be seen for a detailed example of applying E-HSF.

Our solving method proceeds in two steps. First, we rely on Skolemization to re-

formulate the problem of dealing with existential quantification as a problem of finding

witnesses for the existentially quantified variables. Such witnesses are represented by

Skolem relations, which is a slight generalisation of Skolem functions that is convenient in

our setting. Given a forall-exists quantified Horn constraint body(v)→ ∃w : head(v, w),

the corresponding Skolem relation rel(v, w) determines which value w satisfies head(v, w)

for a given value v. Since for each value v such that body(v) holds we need a value w, we

require that such v is in the domain of the Skolem relation. We represent the domain

of Skolem relation rel(v, w) as the guard grd(v), and will use it later to implement the

above requirement.

A function Skolemize shown in Figure 3.1 implements the Skolemization step. It out-

puts a set of clauses without existential quantification, yet containing Skolem relations

Chapter 3. Solving Forall-Exists Quantified Horn Constraints 13

function Skolemize
input

Clauses - set of clauses
begin

1: Skolemized := Parent := Rels := Grds := ∅
2: for each clause ∈ Clauses do
3: match clause with
4: | body(v)→ ∃w :

∧n
i=1 conj i(v, w) ->

5: rel , grd := fresh predicate symbols of arity v + w and v, resp.
6: Parent := {(grd , clause), (rel , clause)} ∪ Parent
7: Rels := {rel} ∪ Rels
8: Grds := {grd} ∪Grds
9: Skolemized := {body(v) ∧ rel(v, w)→ conj i(v, w) | i ∈ 1..n} ∪

{body(v)→ grd(v)} ∪ Skolemized
10: | -> Skolemized := {clause} ∪ Skolemized
11: done
12: return (Skolemized ,Parent ,Rels,Grds)
13: end

Figure 3.1: The function Skolemize.

and guards. Furthermore, Skolemize keeps track of which Skolem relations and guards

belong to which clauses.

The second step takes as input a set of Skolemized clauses produced by Skolemize and

either finds a solution, returns that no solution can be found, or diverges. At this step

we rely on a set of templates that determine the search space for Skolem relations, their

guards, as well as termination arguments used for dealing with well-foundedness. In

order to ensure that the guard of a Skolem relation entails its domain, we assume that

the guard template implies the projection of the Skolem relation template. Formally,

we require that the template functions GrdT and RelT providing guard and Skolem

relation templates for the output of Skolemize satisfy the following condition: for each

grd ∈ Grds and rel ∈ Rels such that Parent(grd) = Parent(rel) the implication

GrdT(grd)(v)→ ∃w : RelT(rel)(v, w) (3.1)

is valid (for arbitrary values of template parameters). We establish Equation 3.1 by

choosing templates accordingly.

See Figure 3.2. The solving process iteratively determines appropriate candidates for

Skolem relations and their guards by using a counterexample driven approach. Each

counterexample induces constraints on template parameters and thus rules out failed

attempts. Given candidates for Skolem relations and their guards, we record these

candidates by introducing appropriate Horn clauses called Defs. Then, we apply the

solver for (ordinary) Horn clauses, which is called HSF, on the set of Skolemized clauses

that is extended with Defs. If HSF finds a solution, then we report it as a solution for

Chapter 3. Solving Forall-Exists Quantified Horn Constraints 14

function E-HSF
input

Clauses - set of clauses
global

Defs - the set of skolem relations
Grds - the set of skolem guards
Constraint - the global constraints

local
function Skolemize
procedure DefsRefine

begin
1: Skolemized ,Parent ,Rels,Grds := Skolemize(Clauses)
2: Constraint := true
3: Defs := {true → rel(v, w) | rel ∈ Rels} ∪ {grd(v)→ true | grd ∈ Grds}
4: match HSF(Skolemized ∪Defs) with
5: | solution ClauseSol ->
6: return “solution ClauseSol”
7: | error derivation Cex and symbol map Sym ->

8: CexDefs := {(body → q(. . .)) ∈ Cex | Sym(q) ∈ Rels ∪Grds}
9: if CexDefs = ∅ then

10: return “error derivation Cex and symbol map Sym”
11: else
12: DefsRefine(Cex ,Sym,CexDefs)
13: goto 4

end

Figure 3.2: The algorithm E-HSF.

the original set of clauses. Otherwise, we inspect a counterexample given by HSF. Such

a counterexample is presented by a set of recursion-free Horn clauses which uses a form

of Static Single Assignment (SSA) to represent an unfolding of Skolemized ∪ Defs that

cannot be satisfied.

If the counterexample does not involve any Skolem relations or their guards, then we

report that Skolemized cannot be satisfied. Otherwise, the unfolding is not satisfiable

either because there are no Skolem relations together with guards that make Skolemized

satisfiable, or because the currently chosen candidates are not correct.

To find out, we call the procedure DefsRefine in Figure 3.3, which tries to find new

candidates for Skolem relations together with their guards that make Skolemized sat-

isfiable by eliminating the current counter-example. The procedure first applies the

function Resolve that does resolution over the set of clauses Cex by excluding the def-

initions Defs for the chosen candidates (in Line 1). The resulting clause may, therefore,

contain Skolem relations and guards. Each Skolem relation in the body of the clause is

replaced by its corresponding template (in Line 2). Similarly, the head of the clause is

replaced by bound and decrease templates if the head is a well-foundedness relation (in

Chapter 3. Solving Forall-Exists Quantified Horn Constraints 15

procedure DefsRefine
input

Cex - a set of clauses involved in the counterexample derivation
Sym - symbol map
CexDefs - candidate definitions involved in the counterexample

local
function Resolve
function EncodeValidity
function SmtSolve

begin
1: (body ∧

∧n
i=1 qi(vi, wi)→ head) := Resolve(Cex \ CexDefs)

2: body := body ∧
∧n
i=1RelT(Sym(qi))(vi, wi)

3: match head with
4: | q(v, w) when dwf (Sym(q)) ∈ Clauses ->

5: head := BoundT(Sym(q))(v) ∧DecreaseT(Sym(q))(v, w)
6: | q(v) when Sym(q) ∈ Grds ->

7: head := GrdT(Sym(q))(v)
8: | -> skip
9: Constraint := EncodeValidity(body → head) ∧ Constraint

10: match SmtSolve(Constraint) with
11: | solution CexSol ->
12: Defs := {RelT(rel)(v, w)CexSol → rel(v, w) | rel ∈ Rels} ∪

{grd(v)→ GrdT(grd)(v)CexSol | grd ∈ Grds}
13: | -> return “error derivation Cex and symbol map Sym”

end

Figure 3.3: The procedure DefsRefine refines Skolem definitions.

Lines 4-5) or by a guard template if the head is a guard relation (in Lines 6-7). Other-

wise, the head is assumed to be a background theory constraint and it will be left as it

is (in Line 8). The procedure then applies EncodeValidity to create a formula whose

free variables are template parameters of the clause (in Line 9). The formula encodes

a constraint over template parameters. We consider a conjunction of such constraints,

which is stored as Constraint , across all iteration of the solving process, thus ensuring

that previously analysed and eliminated counterexamples will not re-appear. Then Smt-

Solve (in Line 10) returns an assignment of constants to template parameters provided

its argument is satisfiable. A solution of Constraint determines new candidates, which

we formally record using the set of clauses Defs. (in Line 12) Now our iteration is ready

to go in the next round. However, if Constraint is not satisfiable, we return the set of

clauses Cex as a counter-example and report that Skolemized cannot be satisfied (in

Line 13).

Correctness The algorithm E-HSF relies on the following propositions. First, the

Skolemization step preserves equi-satisfiability under an assumption that each guard

needs to be a subset of the corresponding Skolem relation.

Chapter 3. Solving Forall-Exists Quantified Horn Constraints 16

Lemma 1 (Skolemization preserves satisfiability). The set of clauses Clauses is equi-

satisfiable with the set of clauses computed by Skolemize when domains of Skolem

relations contain corresponding guards. Formally, Clauses is equi-satisfiable with the

set

{grd(v)→ ∃w : rel(v, w) | grd ∈ Grds ∧ rel ∈ Rels ∧

Parent(grd) = Parent(rel)} ∪ Skolemized .

Proof. (Sketch) Let clause = (body(v)→ ∃w : q(v, w)) and Parent(rel) = Parent(grd) =

clause. We keep pairs (v∗, w∗) such that body(v∗) and q(v∗, w∗) hold in a relation rel

while storing v∗ in grd . Then the statement of the lemma follows immediately.

As previously mentioned, the above relation between Skolem relations and their guards

is established by the appropriate choice of RelT and GrdT functions, see Equation 3.1.

Then E-HSF inherits its soundness from HSF.

Theorem 1 (Soundness). If HSF is sound, i.e., it returns solutions for given sets

of clauses, and if Equation 3.1 holds for each grd ∈ Grds and rel ∈ Rels such

that Parent(grd) = Parent(rel), then, upon termination, E-HSF returns a solution

for Clauses.

Proof. Let ClauseSol be a result of applying HSF in line 4 of Figure 3.2. The first as-

sumption of the theorem statement guarantees that ClauseSol satisfies Skolemized . The

first assumption ensures that Lemma 1 is applicable, hence, ClauseSol satisfies Clauses.

Our method is based on a counterexample guided scheme for discovery of Skolem rela-

tions and guards. While this scheme has successful applications in practice, it does not

guarantee termination of the refinement process when the set of candidates for Skolem

relations and guards is unbounded. Our method necessarily inherits this limitation.

Despite this undecidability imposed limitation, our method strives at achieving termina-

tion of refinement process in practice. An important ingredient is provided by the fact

that Constraint keeps track of the conjunction of constraints used to discover candidates

Skolem relations and guards across all iterations.

Theorem 2 (Progress of refinement). E-HSF does not consider any error derivation

(counter-example) more than once.

Proof. (Sketch) The progress of refinement property follows directly from the observation

that every solution for Constraint yields Skolem relations and guards that satisfy each

previously discovered error derivation.

Chapter 3. Solving Forall-Exists Quantified Horn Constraints 17

3.3 Solving illustration

We consider the following set Clauses that encodes a check whether a program with

the variables v = (x, y), an initial condition init(v) = (y ≥ 1) and a transition relation

next(v, v′) = (x′ = x+ y) satisfies a CTL property EF dst(v), where dst(v) = (x ≥ 0).

init(v)→ inv(v),

inv(v) ∧ ¬dst(v)→ ∃v′ : next(v, v′) ∧ inv(v′) ∧ rank(v, v′),

rank(v, v′)→ ti(v, v′),

ti(v, v′) ∧ rank(v′, v′′)→ ti(v, v′′),

dwf (ti).

Here, inv(v), rank(v, v′), and ti(v, v′) are unknown predicates that we need to solve for.

The predicate inv(v) corresponds to states reachable during program execution, while

the last three clauses ensures that rank(v, v′) is a well-founded relation [105].

We start the execution of E-HSF from Figure 3.2 by applying Skolemize to eliminate

the existential quantification. As a result, the clause that contains existential quantifi-

cation is replaced by the following four clauses that contain an application of a Skolem

relation rel(v, v′) introduced by Skolemize as well as an introduction of a lower bound

on the guard grd(v) of the Skolem relation:

inv(v) ∧ ¬dst(v) ∧ rel(v, v′)→ next(v, v′),

inv(v) ∧ ¬dst(v) ∧ rel(v, v′)→ inv(v′),

inv(v) ∧ ¬dst(v) ∧ rel(v, v′)→ rank(v, v′),

inv(v) ∧ ¬dst(v)→ grd(v).

Furthermore, this introduction is recorded as Rels = {rel} and Grds = {grd}. Note

that we replaced a conjunction in the head of a clause by a conjunction of corresponding

clauses.

First candidate for Skolem relation Next, we proceed with the execution of E-

HSF. We initialise Constraint with the assertion true. Then, we generate a set of

Horn clauses Defs that provides initial candidates for the Skolem relation and its guard

as follows: Defs = {true → rel(v, v′), grd(v) → true}. Now, we apply the solving

algorithm HSF for quantifier free Horn clauses on the set of clauses that contains the

result of Skolemization and the initial candidates in Defs, i.e., we give to HSF the

Chapter 3. Solving Forall-Exists Quantified Horn Constraints 18

following clauses:

init(v)→ inv(v),

inv(v) ∧ ¬dst(v) ∧ rel(v, v′)→ next(v, v′),

inv(v) ∧ ¬dst(v) ∧ rel(v, v′)→ inv(v′),

inv(v) ∧ ¬dst(v) ∧ rel(v, v′)→ rank(v, v′),

inv(v) ∧ ¬dst(v)→ grd(v),

rank(v, v′)→ ti(v, v′),

ti(v, v′) ∧ rank(v′, v′′)→ ti(v, v′′),

dwf (ti),

true → rel(v, v′),

grd(v)→ true.

HSF returns an error derivation that witnesses a violation of the given set of clauses.

This derivation represents an unfolding of clauses in Skolemized ∪ Defs that yields a

relation for ti(v, v′) that is not disjunctively well-founded. To represent the unfolding,

HSF uses a form of static single assignment (SSA) that is applied to predicate symbols,

where each unfolding step introduces a fresh predicate symbol that is recorded by the

function Sym. We obtain the clauses Cex consisting of

init(v)→ q1(v),

q1(v) ∧ ¬dst(v) ∧ q2(v, v′)→ next(v, v′),

true → q2(v, v
′).

together with the following bookkeeping of the SSA renaming: Sym(q1) = inv and

Sym(q2) = rel . From Cex we extract the clause CexDefs that provides the candidate

for the Skolem relation. We obtain CexDefs = {true → q2(v, v
′)}, since Sym(q2) = rel

and hence Sym(q2) ∈ Rels.

We analyse the counterexample clauses by applying resolution on Cex \ CexDefs. The

corresponding resolution tree is shown below (literals selected for resolution are boxed):

init(v)→ q1(v) q1(v) ∧ ¬dst(v) ∧ q2(v, v′)→ next(v, v′)

init(v) ∧ ¬dst(v) ∧ q2(v, v′)→ next(v, v′)

Note that q2(v, v
′) was not eliminated, since the clause true → q2(v, v

′) was not given

to Resolve as input. The result of applying Resolve is the clause init(v) ∧ ¬dst(v) ∧
q2(v, v

′)→ next(v, v′). We assign the conjunction init(v)∧¬dst(v) to body and next(v, v′)

to head , respectively.

Chapter 3. Solving Forall-Exists Quantified Horn Constraints 19

Now we iterate i through the singleton set {1}, which is determined by the fact that

the above clause contains only one unknown predicate on the left-hand side. We apply

RelT on Sym(q2) and set the free variables in the result to (v, v′). This yields a

template v′ = Tv + t for the Skolem relation rel(v, v′). Here, T is a matrix of unknown

coefficients (
txx txy
tyx tyy), and t is a vector of unknown free coefficient (tx, ty). In other words,

our template represents a conjunction of two equality predicates x′ = txxx + txyy + tx

and y′ = tyxx+ tyyy + ty. We conjoin this template with body and obtain body = (v′ =

Tv + t ∧ init(v) ∧ ¬dst(v)). Since head is not required to be disjunctively well-founded,

E-HSF proceeds with the generation of constraints over template parameters.

We apply EncodeValidity on the following implication:

x′ = txxx+ txyy + tx ∧ y′ = tyxx+ tyyy + ty ∧ y ≥ 1 ∧ ¬x ≥ 0→ x′ = x+ y .

This implication is valid if the following constraint returned by EncodeValidity is

satisfiable.

∃
λ︷ ︸︸ ︷

λ1, λ2, λ3, λ4,

µ︷ ︸︸ ︷
µ1, µ2, µ3, µ4 : λ3 ≥ 0 ∧ λ4 ≥ 0 ∧ µ3 ≥ 0 ∧ µ4 ≥ 0 ∧

λ
µ



txx txy −1 0

tyx tyy 0 −1

0 −1 0 0

1 0 0 0

 =

−1 −1 1 0

1 1 −1 0

 ∧
λ
µ



−tx

−ty

−1

−1

 =

0

0



This constraint requires that the right-hand side on the implication is obtained as a

linear combination of the (in)equalities on the left-hand side of the implication. We

conjoin the above constraint with Constraint .

We apply an SMT solver to compute a satisfying valuation of template parameters

occurring in Constraint and obtain:

txx txy tx tyx tyy ty

1 1 0 0 0 10

By applying CexSol on the template v′ = Tv+ t, which is the result of RelT(rel)(v, v′),

we obtain the conjunction x′ = x + y ∧ y′ = 10. In this example, we assume that the

template GrdT(grd)(v) is equal to true. Hence, we modify the clauses that record the

current candidate for rel(v, v′) and grd(v) as follows:

Defs = {x′ = x+ y ∧ y′ = 10→ rel(v, v′), grd(v)→ true}

Now we proceed with the next iteration of the main loop in E-HSF.

Chapter 3. Solving Forall-Exists Quantified Horn Constraints 20

Second candidate for Skolem relation The second iteration in E-HSF uses Defs

and Constraint as determined during the first iteration. We apply HSF on Skolemized ∪
Defs and obtain an error derivation Cex consisting of the clauses

init(v)→ q1(v),

q1(v) ∧ ¬dst(v) ∧ q2(v, v′)→ q3(v, v
′),

x′ = x+ y ∧ y′ = 10→ q2(v, v
′),

q3(v, v
′)→ q4(v, v

′),

together with the function Sym such that Sym(q1) = inv , Sym(q2) = rel , Sym(q3) =

rank , and Sym(q4) = ti . From Cex we extract CexDefs = {x′ = x + y ∧ y′ = 10 →
q2(v, v

′)} since Sym(q2) ∈ Rels. We apply Resolve on Cex \ CexDefs and obtain:

init(v) ∧ ¬dst(v) ∧ q2(v, v′)→ q4(v, v
′) .

As seen at the first iteration, we have RelT(rel)(v, v′) = (v′ = Tv + t). Hence we have

body = (init(v) ∧ ¬dst(v) ∧ v′ = Tv + t).

Since Sym(q4) = ti and dwf (ti) ∈ Skolemized , the error derivation witnesses a violation

of disjunctive well-foundedness. Hence, by applying BoundT and DecreaseT we

construct templates bound(v) and decrease(v, v′) corresponding to a bound and decrease

condition over the program variables, respectively.

bound(v) = (rxx+ ryy ≥ r0) ,

decrease(v, v′) = (rxx
′ + ryy

′ ≤ rxx+ ryy − 1) .

Finally, we set head to the conjunction rxx+ ryy ≥ r0 ∧ rxx′ + ryy
′ ≤ rxx+ ryy − 1.

By EncodeValidity on the implication body → head we obtain the constraint

∃
λ︷ ︸︸ ︷

λ1, λ2, λ3, λ4,

µ︷ ︸︸ ︷
µ1, µ2, µ3, µ4 : λ3 ≥ 0 ∧ λ4 ≥ 0 ∧ µ3 ≥ 0 ∧ µ4 ≥ 0 ∧

λ
µ



txx txy −1 0

tyx tyy 0 −1

0 −1 0 0

1 0 0 0

 =

−rx −ry 0 0

−rx −ry rx ry

 ∧
λ
µ



−tx

−ty

−1

−1

 =

−r0
−1

 .

We add the above constraint as an additional conjunct to Constraint . That is,

Constraint is strengthened during each iteration.

Chapter 3. Solving Forall-Exists Quantified Horn Constraints 21

We apply the SMT solver to compute a valuation template parameters that satisfies

Constraint . We obtain the following solution CexSol :

txx txy tx tyx tyy ty

1 0 1 0 0 1

The corresponding values of r and r0 are (−1, 0) and −1, which lead to the bound

−x ≥ 1 and the decrease relation −x′ ≤ −x − 1. By applying CexSol on the template

v′ = Tv + t we obtain the conjunction x′ = x + 1 ∧ y′ = 1. Note that the solution for

rel(v, v′) obtained at this iteration is not compatible with the solution obtained at the

first iteration, i.e., the intersection of the respective Skolem relations is empty. Finally,

we modify Defs according to CexSol and obtain:

Defs = {x′ = x+ 1 ∧ y′ = 1→ rel(v, v′), grd → true}

Now we proceed with the next iteration of the main loop in E-HSF. At this iteration

the application of HSF returns a solution ClauseSol such that

ClauseSol(inv(v)) = (y ≥ 1) ,

ClauseSol(rel(v)) = (x′ = x+ 1 ∧ y′ = 1) ,

ClauseSol(rank(v, v′)) = (x ≤ −1 ∧ x′ ≥ x+ 1) ,

ClauseSol(ti(v, v′)) = (x ≤ −1 ∧ x′ ≥ x+ 1) .

Thus, the algorithm E-HSF finds a solution to the original set of forall-exists Horn

clauses (and hence proves the program satisfies the CTL property).

3.4 Optimisations

During the process of solving a given set of clauses, E-HSF computes auxiliary assertions

that are often related to over-approximations of the reachable states by starting from

the initial states. For a given program, the reachable states can be considered as images

of its initial states via the transitive closure of the transition relation of the program.

E-HSF computes a finite over-approximation of the set of reachable states by applying

predicate abstraction at each step of the transition relation. Predicate abstraction can

sometimes be too slow and even less advantageous for program variables whose domain

is finite and which are not involved in arithmetic computations. This leaves room for an

optimisation by giving special treatment, for example by not applying abstraction, for

such variables when solving the given set of clauses. Another room for optimisation is in

the transition relation itself where some programming language constructs are modeled

Chapter 3. Solving Forall-Exists Quantified Horn Constraints 22

in ways that cause inefficient computation when solving clauses. An example is the

loop construct of programming languages. In this section, we present two optimisation

techniques that can be applied by E-HSF to enable efficient solving in the light of certain

kind of constructs.

3.4.1 Explicit evaluation

In a transition system modeling a given program, the control flow of the program is

modeled symbolically using a program counter variable. The program counter variable

is not involved in any kind of computation except in equality checks and assignments.

In addition, the program counter variable ranges over some finite domain, which corre-

sponds to the possible reachable locations for the program control, for a given program.

Efficient treatment of the program counter variable along the lines of explicit analysis,

e.g., as performed in HSF and CPAchecker frameworks, could lead to high performance

when dealing with programs with large control-flow graphs [17].

We consider the following set of clauses that encode a check whether the program given

in Figure 3.4 terminates or not.

init(v)→ inv(v),

inv(v) ∧ next(v, v′)→ inv(v′) ∧ rank(v, v′),

rank(v, v′)→ ti(v, v′),

ti(v, v′) ∧ rank(v′, v′′)→ ti(v, v′′),

dwf (ti).

Notice that there is no any existentially quantified implication constraint in the set of

clauses. This is intentional for the sake of focusing on the explicit evaluation aspect of

E-HSF. The unknown predicates that we need to solve for are inv(v), rank(v, v′), and

ti(v, v′). The predicate inv(v) corresponds to states reachable during program execution,

while the last three clauses ensures that rank(v, v′) is a well-founded relation.

To solve this set of clauses, E-HSF applies resolution over the first four clauses, which are

the inference clauses, to infer solutions for the unknown predicates inv(v), rank(v, v′),

Chapter 3. Solving Forall-Exists Quantified Horn Constraints 23

1

2

3

main(int x) {

x = 3;

while (x > 0) {

x--;

}

}

(a)

1

2

ρ1

ρ2

3

ρ3

(b)

v = (x, pc),

init(v) = (pc = 1),

next(v, v′) = (pc = 1 ∧ ρ1 ∧ pc′ = 2 ∨
pc = 2 ∧ ρ2 ∧ pc′ = 2 ∨
pc = 2 ∧ ρ3 ∧ pc′ = 3),

ρ1 = (x′ = 3),

ρ2 = (x− 1 ≥ 0 ∧ x′ = x− 1),

ρ3 = (x ≤ 0 ∧ x′ = x).

(c)

Figure 3.4: An example program (a), its control-flow graph (b), and the corresponding
transition system (c).

and ti(v, v′). One set of solutions that can be inferred from the inference clauses is:

inv(v) = (pc = 1 ∨ pc = 2 ∧ 0 ≤ x ≤ 3 ∨ pc = 3 ∧ x = 0) ,

rank(v, v′) = (pc = 1 ∧ x′ = 3 ∧ pc′ = 2 ∨

pc = 2 ∧ x ≥ 1 ∧ x′ = x− 1 ∧ pc′ = 2 ∨

pc = 2 ∧ x ≤ 0 ∧ x′ = x ∧ pc′ = 3) ,

ti(v, v′) = (pc = 1 ∧ x′ = 3 ∧ pc′ = 2 ∨

pc = 1 ∧ x ≥ 1 ∧ x′ ≤ x− 1 ∧ pc′ = 2 ∨

pc = 1 ∧ x ≤ 0 ∧ x′ = x ∧ pc′ = 3 ∨

pc = 2 ∧ x ≥ 1 ∧ x′ ≤ x− 1 ∧ pc′ = 2 ∨

pc = 2 ∧ x ≤ 0 ∧ x′ = x ∧ pc′ = 3) .

Together with the inference, E-HSF also applies the last clause, which is a prop-

erty clause, to check if each inferred solution for ti(v, v′) satisfies the disjunctive well-

foundedness requirement. For this check, we first apply BoundT and DecreaseT to

construct templates bound(v) and decrease(v, v′) corresponding to a bound and decrease

Chapter 3. Solving Forall-Exists Quantified Horn Constraints 24

condition over the program variables, respectively.

bound(v) = (rxx+ rpcpc ≥ r0) ,

decrease(v, v′) = (rxx
′ + rpcpc

′ ≤ rxx+ rpcpc− 1) .

In general, for each disjunct of the inferred solution of ti(v, v′), say ti j(v, v
′) , we check if

ti j(v, v
′)→ bound(v)∧decrease(v, v′) is satisfiable. However, this can be very inefficient

because well-foundedness for many disjuncts ti j(v, v
′) can be proven without a need

to encode and solve for the implication ti j(v, v
′) → bound(v) ∧ decrease(v, v′). If we

consider the first disjunct of ti(v, v′) above, which is (pc = 1 ∧ x′ = 3 ∧ pc′ = 2), the

value of the program counter variable pc changes from 1 to 2. This alone is enough to

conclude that the disjunct is well-founded. Therefore, by reasoning explicitly on the

values of the program counter variable pc, we are able to avoid a much more demanding

computation that is needed to encode and solve for the implication:

(pc = 1 ∧ x′ = 3 ∧ pc′ = 2)→ (rxx+ rpcpc ≥ r0) ∧ (rxx
′ + rpcpc

′ ≤ rxx+ rpcpc− 1) .

It can be seen that explicit evaluation of the program counter variable is enough to

prove well-foundedness for the first, second, third and fifth disjuncts (4 of the 5) from

the inferred solution of ti(v, v′). For the fourth disjunct, which is (pc = 2 ∧ x ≥ 1 ∧
x′ ≤ x − 1 ∧ pc′ = 2), the value of pc remains the same. Therefore, we can not say

anything on the well-foundedness of the disjunct based on explicit evaluation of the

program counter variable. In such cases, the general approach is followed where we

apply BoundT and DecreaseT to construct templates bound(v) and decrease(v, v′)

respectively. However, since the value of the program counter variable stays the same,

in these bound and decrease conditions as well as in the disjunct for which we want

to prove well-foundedness, expressions over the program counter variable pc (and its

primed version pc′) can be ignored as shown below.

bound(v) = (rxx ≥ r0),

decrease(v, v′) = (rxx
′ ≤ rxx− 1).

Then, we solve for:

(x ≥ 1 ∧ x′ = x− 1)→ (rxx ≥ r0) ∧ (rxx
′ ≤ rxx− 1) .

One of the procedures of our solving algorithm E-HSF that make use of explicit evalua-

tion based optimisation is the check for well-foundedness, like shown in the example. The

perfomance gain due to explicit evaluation is presented in Section 4.5 in the application

area of CTL verification.

Chapter 3. Solving Forall-Exists Quantified Horn Constraints 25

3.4.2 Loop acceleration

A major challenge in computing the set of reachable states lies in loop constructs of

programming languages. Loops are difficult to reason about because the number of

iterations can not always be statically determined, and hence, there is a need to reason

about loops symbolically independently of the exact number of iterations. Our loop

acceleration procedure targets a class of loops called self-loops. A loop at a given progam

location is said to be a self loop if

• there is no any other loop at the location,

• it is terminating, and

• each update of the loop is either an increment or decrement by a constant, or an

assignment of a constant.

In practice, it is very important to model self-loops of a given program in a way that

computing the set of reachable states is efficient. The loop acceleration procedure does

pre-processing on a given transition relation by re-writing disjuncts corresponsing to self

loops.

We illustrate our loop acceleration based optimisation with an example. Let us consider

again the program in Figure 3.4. Note that ρ2 is a self-loop over the program location

`2. The clauses given below compute a set of reachable states for the program.

init(v)→ inv(v),

inv(v) ∧ next(v, v′)→ inv(v′).

Let us see how inv(v), which corresponds to the set of reachable states, is computed.

The first clause ensures that any initial state, which is in init(v), is added to inv(v), i.e.,

inv(v) ⊇ {(pc = 1)}. The second clause computes more states and adds to inv(v) by

applying the transition relation of the program over inv(v) recursively. The computation

first applies ρ1 over inv(v) ⊇ {(pc = 1)} to compute a new state (pc = 2, x = 6) such

that inv(v) ⊇ {(pc = 1), (pc = 2, x = 6)}. Since ρ1 will not compute any new state, we

will apply other relations in the transition relation can compute more new states. The

computation first applies ρ2 over inv(v) ⊇ {(pc = 1), (pc = 2, x = 6)} to compute a new

state (pc = 2, x = 4) such that inv(v) ⊇ {(pc = 1), (pc = 2, x = 6), (pc = 2, x = 4)}.
Since ρ2 will still compute a new state by applying on inv(v), we keep on applying ρ2.

Indeed, ρ2 is applied a total of three times to get inv(v) ⊇ {(pc = 1), (pc = 2, x =

6), (pc = 2, x = 4), (pc = 2, x = 2), (pc = 2, x = 0)}. The computation finally applies ρ3

over inv(v) ⊇ {(pc = 1), (pc = 2, x = 6), (pc = 2, x = 4), (pc = 2, x = 2), (pc = 2, x = 0)}

Chapter 3. Solving Forall-Exists Quantified Horn Constraints 26

to compute a new state (pc = 3, x = 0) such that inv(v) ⊇ {(pc = 1), (pc = 2, x =

6), (pc = 2, x = 4), (pc = 2, x = 2), (pc = 2, x = 0), (pc = 3, x = 0)}. The computation

terminates here since no more new states can be computed.

During this computation, ρ2 is applied three times to decrease the value of x from 6 to

0 in 3 iterations. Once x has the value 0, iteration over the loop terminates since ρ2 can

no more be applied. If x had a large value, say n, at the start of the loop, the process of

computing new states by applying ρ2 takes approximately n/2 steps. This can make the

process of computing the set of reachable states inefficient since one state is computed

at a time. We apply loop acceleration to avoid such inefficient computation.

Let us see how ρ2 can be modified in such a way that the set of states {(pc = 2, x =

4), (pc = 2, x = 2), (pc = 2, x = 0)} can be computed in a single step from the state

(pc = 2, x = 6). Since only the value of x change during the application of ρ2, we focus

on how we can compute the set of states {(x = 4), (x = 2), (x = 0)} given the state

(x = 6). The part of ρ2 that we are interested in is x > 0 ∧ x′ = x − 2, i.e, the part

excluding constraints over the program counter variables. Let k ≥ 1 be the loop counter

and x(k) be the value of x at iteration k. Since the loop executes for any k ≥ 1 whose

values of x(k) satisfies the loop condition, we can re-write the loop as

k ≥ 1 ∧ x(k) > 0 ∧ x′ = x(k)− 2

We can consider x(k) is given by the recurrence

x(k) = x(k − 1)− 2

where x(0) corresponds to the initial value of x before the loop starts to execute. One

closed form of the recurrence is given by

x(k) = x(0)− 2 ∗ (k − 1)

After making the appropriate replacement, the computation of x′ at iteration k is given

by

k ≥ 1 ∧ x(k) = x− 2 ∗ (k − 1) ∧ x(k) > 0 ∧ x′ = x(k)− 2

Going back to our example, when the loop is executed from a state where x has the vale

6, the above equation reduces to k ≥ 1 ∧ k ≤ 3 ∧ x′ = 6 − k ∗ 2. We can see that for

each of the three values of k, a corresponding value of x′ gets computed. We claim that

the constraint k ≥ 1 ∧ k ≤ 3 ∧ x′ = 6 − k ∗ 2 is the accelerated version for the original

constraint x > 0 ∧ x′ = x− 2 as it computes all values of x′ in a single step.

Chapter 3. Solving Forall-Exists Quantified Horn Constraints 27

function LoopAccel
input

T (v, v′) :=
∨n
i=1 τi(v, v

′) - a transition relation
local
function GetAccelRel

begin
1: for i in 1 . . . n do
2: σi(v, v

′) := τi(v, v
′)

3: if τi(v, v
′) |= pc = pc′ then

4: let τi(v, v
′) := pc = `0 ∧ ρi(v, v′) ∧ pc′ = `0

5: if ∃k : 1 ≤ k ≤ n ∧ k 6= i and τk(v, v
′) |= pc = pc′ ∧ pc = `0 then

6: goto 2
7: head(v, v′) := BoundT(v) ∧DecreaseT(v, v′)
8: Constraint(v, v′) := EncodeValidity(ρi(v, v

′)→ head(v, v′))
9: if SmtSolve(Constraint(v, v′)) then

10: let `acc be a fresh program control location value
11: σacc(v, v

′) := GetAccelRel(ρi(v, v
′))

12: σi(v, v
′) := pc = `0 ∧ σacc(v, v′) ∧ pc′ = `acc)

13: for j in 1 . . . n do
14: if τj(v, v

′) |= pc = `0 ∧ pc 6= pc′ then
15: let τj(v, v

′) := pc = `0 ∧ ρj(v, v′) ∧ pc′ = `1
16: σi(v, v

′) := σi(v, v
′) ∨ pc = `acc ∧ ρj(v, v′) ∧ pc′ = `1

17: done
18: done
19: return

∨n
i=1 σi(v, v

′)
20: end

Figure 3.5: The loop acceleration procedure.

The loop acceleration procedure: The procedure re-writes the transition relation

of a given program in such a way that disjuncts modeling self-loops are replaced by non-

looping relations. The complete procedure is given in Figure 3.5. The procedure takes

the transition relation of a given program as input, and manipulates each disjunct of

the transition relation if the disjunct corresponds to a self-loop. If the disjunct does not

correspond to a self-loop, then the procedure does not make any change to the disjunct.

In the procedure, each disjunct is checked if it models a loop (at Line 3), if there is no

any other loop on the same location of this loop (at Line 5), and if the loop modeled by

the disjunct terminates (at Line 9).

The disjunct that models a self loop is passed to the function GetAccelRel shown

in Figure 3.6. This function uses fresh variables k and vk to represent symbolically the

loop counter and the unprimed versions of the program variables v at the kth iteration,

respectively. The function takes each of the updates and guards in the given disjunct

and encodes new corresponding updates and guards using k and vk in addition to v.

Note that an update expression can only be an increment or decrement by a constant

or a constrant assignment. Some valid update expressions are x′ = x+ 1, x′ = x− 2 and

pc′ = 3, but expressions like x′ = x + y and x′ = 2 ∗ x are not valid for self-loops. For

Chapter 3. Solving Forall-Exists Quantified Horn Constraints 28

function GetAccelRel
input
ρ(v, v′) - a relation corresponding to a self-loop

begin
1: let c be a constant
2: let k be a fresh variable corresponding to a loop counter
3: let vk be a tuple of fresh variables of length |v|
4: ρ(v, v′) :=

∧m
i=1 grd i(v) ∧

∧n
j=1 upd j(v, v

′)
5: σ(v, v′) := k ≥ 1
6: for j in 1 . . . n do
7: match updi(v, v

′) with
8: | x′ = c ->
9: σ(v, v′) := σ(v, v′) ∧ xk = c ∧ x′ = c

10: | x′ = x+ c ->
11: σ(v, v′) := σ(v, v′) ∧ xk = x+ (k − 1) ∗ c ∧ x′ = xk + c
12: done
13: for i in 1 . . .m do
14: σ(v, v′) := σ(v, v′) ∧ grdi([vk/v])
15: done
16: return σ(v, v′)
17: end

Figure 3.6: The procedure GetAccelRel.

each update expression in the input disjunct, GetAccelRel encodes two new update

expressions.

• the first expression defines xk, which represents a program variable at the start of

the kth iteration of the loop, in terms of x and a constant, which represents the

corresponding program variable at the start of the loop. This expression simulates

the computation of the possible values of the program variable x before the kth

iteration of the loop is executed.

• the second expression defines x′, which represents the corresponding program vari-

able at the end of the given loop iteration, in terms of xk. This expression simulates

the computation of the possible values of the program variable x after the kth it-

eration of the loop is executed.

This is done at Line 9 when the update expression is a constant assignment, and at

Line 11 when the update expression is an increment or decrement by a constant. For

each guard expression of the input disjunct, vk, which represents the program variables

at the start of the kth iteration of the loop, replaces v. This is done at Line 14.

In general, the function GetAccelRel first models the input disjunct as a recurrence

and then it computes a closed form for the recurrence. The closed form, which represents

values of program variables using the values at the start of the loop and the loop counter,

forms a core part of the accelerated relation of the loop.

Chapter 3. Solving Forall-Exists Quantified Horn Constraints 29

v = (x, pc),

init(v) = (pc = 1),

next(v, v′) = (pc = 1 ∧ ρ1 ∧ pc′ = 2 ∨
pc = 2 ∧ ρ2 ∧ pc′ = 2 ∨
pc = 2 ∧ ρ3 ∧ pc′ = 3),

ρ1 = (x′ = 3),

ρ2 = (k ≥ 1 ∧ xk = x− (k − 1) ∗ 2 ∧ xk > 0 ∧ x′ = xk − 2),

ρ3 = (x ≤ 0 ∧ x′ = x).

(a)

1

2

43

ρ1

ρ3 ρ2

ρ3

(b)

Figure 3.7: control-flow graph with the accelerated loop (a), and the corresponding
modified transition system (b).

Let us get back to the main function LoopAccel. The relation returned by

GetAccelRel simulates the original self-loop without a need to iteration, and hence,

the primed program counter variable is assigned a fresh program location. This fresh

location can be considered as a destination location of the self-loop. All these expression

together form the accelerated version of the self-loop, which is given at Line 12. Any

other disjunct of the transition relation which originates in the same program location

as the self-loop must have a version from the fresh program location. This is done at

Lines 14-16.

Example revisited: Let us see how LoopAccel manipulates the transition relation

next(v, v′) for the program in Figure 3.4. The disjuncts ρ1 and ρ3 stay unchanged

since they do not satisfy the condition on Line 3 of LoopAccel. For ρ2, however, the

conditions on Line 3 is satisfied as both pc and pc′ have the value 2. Since ρ2 is the

only self-loop on the program counter location 2, the goto condition on Line 5 does not

hold. In addition, the constraint (x > 0 ∧ x′ = x − 2) of ρ2 satisfies the condition on

Line 7 that checks the well-foundedness of the loop. Therefore, ρ2 models a self-loop

that can be accelerated and its relation (x > 0∧x′ = x−2) is passed to GetAccelRel

and the corresponding relation for the accelerated loop are generated. The function

GetAccelRel adds the constraint k ≥ 1 over a fresh variable k as the first conjunct of

the accelerated loop constraint as shown on Line 3. Then, by taking the only update in

the input constraint, i.e, x′ = x− 1, the expressions xk = x− (k− 1) ∗ 2 and x′ = xk − 2

are added to the accelerated constraint, at Lines 7-11. Finally, the guard x > 0 is

taken, and x is substituted by xk resulting in a new guard xk > 0, at Line 14. The new

guard will be the final disjunct of the accelerated constraint. GetAccelRel returns

k ≥ 1 ∧ xk = x − (k − 1) ∗ 2 ∧ x′ = xk − 2 ∧ xk > 0 back to LoopAccel. Assume

Chapter 3. Solving Forall-Exists Quantified Horn Constraints 30

`4 is the new program counter location on Line 10 of LoopAccel. The accelerated

version of (pc = `2 ∧ x > 0 ∧ x′ = x − 2 ∧ pc′ = `2) will be (pc = `2 ∧ k ≥ 1 ∧ xk =

x − (k − 1) ∗ 2 ∧ x′ = xk − 2 ∧ xk > 0 ∧ pc′ = `4). This is done on Line 12. Now we

generate more disjuncts as shown in Lines 13 to 17. The only disjunct of the next(v, v′)

that satisfies the condition on Line 14 is (pc = `2 ∧ x ≤ 0 ∧ x′ = x ∧ pc′ = `3).

The new disjunct (pc = `4 ∧ x ≤ 0 ∧ x′ = x ∧ pc′ = `3) is added to the accelerated

transition relation. The complete accelerated version for the transition system of our

example program is given in Figure 3.7.

3.5 Implementation

Our implementation of E-HSF relies on HSF [59] to solve universally-quantified Horn

clauses over linear inequalities (see line 4 in Figure 3.2) and on the Z3 solver [47] at

line 10 in Figure 3.3 to solve for the template parameters in the (possibly non-linear)

constraints. The EncodeValidity function at line 11 in Figure 3.3 encodes the Farkas’

lemma from linear programming [107].

In general, the templates GrdT and RelT that are applied in the DefsRefine pro-

cedure are provided by the user and need to satisfy the condition in Equation 3.1. Our

implementation checks this condition for linear templates by using quantifier elimina-

tion techniques. For dealing with well-foundedness we use linear ranking functions, and

hence corresponding linear templates for DecreaseT and BoundT.

3.6 Related work

Our work is inspired by a recent approach to CTL verification of programs [39]. The

main similarity lies in the use of a refinement loop to discover witnesses for resolving

non-determinism/existentially quantified variables. The main difference lies in the way

candidate witnesses are selected. While [39] refines witnesses, i.e., the non-determinism

in witness relations monotonically decreases at each iteration, E-HSF can change witness

candidates arbitrarily (yet, subject to the global constraint). Thus, our method can

backtrack from wrong choices in cases when [39] needs to give up.

E-HSF generalizes solving methods for universally quantified Horn clauses over decid-

able theories, e.g. [59, 73, 94]. Our approach relies on the templates for describing the

space of candidate witnesses. Computing witnesses using a generalisation approach akin

to PDR [73] is an interesting alternative to explore in future work.

Chapter 3. Solving Forall-Exists Quantified Horn Constraints 31

Template based synthesis of invariants and ranking functions is a prominent technique

for dealing with universal properties, see e.g. [37, 64, 104, 114]. E-HSF implementation

of EncodeValidity supporting linear arithmetic inequalities is directly inspired by

these techniques, and puts them to work for existential properties.

Decision procedures for quantified propositional formulas on bit as well as word level [76,

121] rely on iteration and refinement for the discovery of witnesses. The possibility of

integration of QBF solvers as an implementation of EncodeValidity is an interesting

avenue for future research.

Some formulations of proof systems for mu-calculus, e.g., [44] and [95], could be seen

as another source of forall-exists clauses (to pass to E-HSF). Compared to the XSB

system [44] that focuses on finite state systems, E-HSF aims at infinite state systems

and employs a CEGAR-based algorithm. XSB’s extensions for infinite state systems

are rather specific, e.g., data-independent systems, and do not employ abstraction re-

finement techniques. Finally, we remark that abstraction-based methods, like ours, can

be complemented with program specialization-based methods for verification of CTL

properties [55].

3.7 Conclusion

Verification conditions for proving existential temporal properties of programs can be

represented using existentially quantified Horn-like clauses. In this chapter, we presented

a counterexample guided method for solving such clauses, which can compute witnesses

to existentially quantified variables in form of linear arithmetic expressions. By aggre-

gating constraints on witness relations across different counterexamples our method can

recover from wrong choices. We leave the evaluation of applicability of our method for

problems requiring witness computation, e.g., verification of branching time temporal

properties or computing winning strategies in graph games, for the remaining chapters.

Chapter 3. Solving Forall-Exists Quantified Horn Constraints 32

Chapter 4

CTL Verification as Horn

Constraint Solving

4.1 Introduction

Since Pnueli’s pioneering work [102], temporal logics has long been recognised as a

fundamental approach to the formal specification and verification of reactive systems [49,

88]. Temporal logics allow precise specification of complex properties. There has been

decades of effort on temporal verification of finite state systems [26, 32, 34, 84]. For

CTL and other state-based properties, the standard procedure is to adapt “bottom-up”

(or “tableaux”) techniques for reasoning on finite-state systems. In additional, various

classes of temporal logics support model-checking whose success over the last twenty

years is allowing large and complex (finite) systems to be verified automatically [26,

33, 69, 92]. In recent decades, however, the research focus has shifted to infinite-state

systems in general and on software systems in particular as ensuring correctness for

software is in high demand. Most algorithms for verifying CTL properties on infinite-

state systems typically involve first abstracting the state space into a finite-state model,

and then applying finite reasoning strategies on the abstract model. There is also a lot

of effort on algorithms that are focused on a particular fragment of CTL, such as the

universal fragment [100] and the existential fragment [66], or some particular classes of

infinite-state systems such as pushdown processes [112, 113, 119, 120] or parameterised

systems [48, 51].

In this chapter, we take on the problem of automatically verifying CTL properties for

a given (possibly infinite-state) program. We propose a method based on solving a set

of forall-exists quantified Horn constraints. Our method takes a program P modeled

by a transition system (init(v),next(v, v′)) and a property given by a CTL formula

33

Chapter 4. CTL Verification as Horn Constraint Solving 34

ϕ(v), and then it checks if P satisfies ϕ(v), i.e., if (init(v),next(v, v′)) |=CTL ϕ(v).

The method first generates a set of forall-exists quantified Horn constraints with well-

foundedness conditions by exploiting the syntactic structure of the CTL formula ϕ(v).

It then solves the generated set of Horn constraints by applying the solving algorithm E-

HSF, which has been discussed in Chapter 3. We claim that P satisfies ϕ(v) if and only

if the generated set of Horn constraints has a solution. We demonstrate the practical

applicability of the method by presenting experimental evaluation using examples from

the PostgreSQL database server, the SoftUpdates patch system, the Windows OS kernel.

The rest of the chapter is organised as follows. We start by briefly revising the syntax

and semantics of CTL in Section 4.2. In Section 4.3, we present our proof system

that generates a set of forall-exists quantified Horn constraints for a given verification

problem. We illustrate application of the proof rules on an example in Section 4.4. The

experimental evaluation of our method is given in Section 4.5. Finally, we present a bief

discussion on related works in Section 4.6 and concluding remarks in Section 4.7.

4.2 CTL basics

In this section, we review the syntax and the semantics of the logic CTL following [81].

Let T be a first order theory and |=T denote its satisfaction relation that we use to

describe sets and relations over program states. Let c range over assertions in T and x

range over variables. A CTL formula ϕ is defined by the following grammar using the

notion of a path formula φ.

ϕ ::= c | ϕ ∧ ϕ | ϕ ∨ ϕ | Aφ | E φ

φ ::= Xϕ | Gϕ | ϕUϕ

As usual, we define Fϕ = (trueUϕ). The satisfaction relation P |= ϕ holds if and only

if for each s such that init(s) we have P, s |= ϕ. We define P, s |= ϕ as follows using an

Chapter 4. CTL Verification as Horn Constraint Solving 35

auxiliary satisfaction relation P, π |= φ.

P, s |= c iff s |=T c

P, s |= ϕ1 ∧ ϕ2 iff P, s |= ϕ1 and P, s |= ϕ2

P, s |= ϕ1 ∨ ϕ2 iff P, s |= ϕ1 or P, s |= ϕ2

P, s |= Aφ iff for all π ∈ ΠP (s) holds P, π |= φ

P, s |= E φ iff exists π ∈ ΠP (s) such that P, π |= φ

P, π |= Xϕ iff π = s1, s2, . . . and P, s2 |= ϕ

P, π |= Gϕ iff π = s1, s2, . . . for all i ≥ 1 holds P, si |= ϕ

P, π |= ϕ1Uϕ2 iff π = s1, s2, . . . and exists j ≥ 1 such that

P, sj |= ϕ2 and P, si |= ϕ1 for 1 ≤ i < j

In this chapter, we represent a satisfaction relation P |= ϕ by the relation P |=CTL ϕ to

explicitly indicate that ϕ is a CTL formula. We call such relation a CTL satisfaction,

and ϕ is said to be its formula.

4.3 Proof system

Our CTL verification method encodes the verification problem as a problem of solving

forall-exists quantified Horn constraints with well-foundedness conditions. This is done

by applying a proof system that consists of various proof rules for handling different

kinds of CTL formulas. This proof system is based on a deductive proof system for

CTL* from [81] which is adapted in this work to be suitable from the perspective of

constraint generation for a CTL satisfaction.

Given a transition system (init(v),next(v, v′)) and a CTL formula ϕ(v), the appropriate

proof rules are used from the proof system to generate the corresponding set of Horn

constraints for the CTL satisfaction (init(v),next(v, v′)) |=CTL ϕ(v). There are two sets

of proof rules in the proof system.

4.3.1 Proof rules for decomposition

These proof rules are applied recursively to a CTL satisfaction whose formula is not an

assertion. The proof rules decompose the given CTL formula into new sub-formulas by

following the nesting structure of the formula. Then, the original satisfaction is reduced

to new satisfactions over the new sub-formulas and a Horn constraint relating the new

satisfactions.

Chapter 4. CTL Verification as Horn Constraint Solving 36

There are different proof rules depending on the outer-most operator of the formula.

One case is when the given formula f(ψ(v)) nests another formula ψ(v) such that the

outer-most operator f is a pair of a temporal path operator and a unary temporal

state operator, i.e., f ∈ {AX,AG,AF,EX,EG,EF}. The corresponding proof rule

RuleCtlDecompUni is given in Figure 4.1 that shows how such satisfactions are de-

composed. Another case is when the given formula has a structure f(ψ1(v), ψ2(v))

Given a CTL formula f(ψ(v)) where f ∈ {AX,AG,AF,EX,EG,EF}, and a
transition system (p(v),next(v, v′)), find an assertion q(v) such that:

(p(v),next(v, v′)) |=CTL f(q(v)) (q(v),next(v, v′)) |=CTL ψ(v)

(p(v),next(v, v′)) |=CTL f(ψ(v))

Figure 4.1: Proof rule RuleCtlDecompUni

nesting the formulas ψ1(v) and ψ2(v) such that the outer-most operator f is either a

pair of a temporal path operator and the state operator until or a disjunction/conjunc-

tion, i.e., f ∈ {AU,EU,∧,∨}. Note that when f is ∧ (resp. ∨), the given formula

f(ψ1(v), ψ2(v)) corresponds to ψ1(v) ∧ ψ2(v) (resp ψ1(v) ∨ ψ2(v)). The corresponding

proof rule RuleCtlDecompBin is given in Figure 4.2 that shows how such satisfactions

are decomposed.

Given a CTL formula f(ψ1(v), ψ2(v)) where f ∈ {AU,EU,∧,∨}, and a transition
system (p(v),next(v, v′)), find assertions q1(v) and q2(v) such that:

p(v)→ f(q1(v), q2(v)),
(q1(v),next(v, v′)) |=CTL ψ1(v) (q2(v),next(v, v′)) |=CTL ψ2(v)

(p(v),next(v, v′)) |=CTL f(ψ1(v), ψ2(v))

Figure 4.2: Proof rule RuleCtlDecompBin

4.3.2 Proof rules for constraints generation

This set of proof rules are applied to a CTL satisfaction whose formula is either an

assertion or a basic state formula. Any CTL satisfaction can be decomposed into a set

of such simple CTL satisfactions by applying the proof rules from the previous section.

The next step will be to generate forall-exists quantified Horn constraints (possibly with

well-foundedness condition) that constrain a set of auxiliary assertions over program

states.

Chapter 4. CTL Verification as Horn Constraint Solving 37

The simplest of all is the proof rule RuleCtlInit, see Figure 4.3, which is applied when

the CTL formula is an assertion.

For a CTL formula given by the assertion ψ(v), and a transition system
(p(v),next(v, v′)):

p(v)→ ψ(v)

(p(v),next(v, v′)) |=CTL ψ(v)

Figure 4.3: Proof rule RuleCtlInit

The proof rules RuleCtlEX (see Figure 4.4), RuleCtlEG (see Figure 4.5), and

RuleCtlEU (see Figure 4.6) are applied for generating Horn constraints when the

CTL formula is a basic state formula with existential path operator.

p(v)→ ∃v′ : next(v, v′) ∧ q(v′)

(p(v),next(v, v′)) |=CTL EX q(v)

Figure 4.4: Proof rule RuleCtlEX

Find an assertion inv(v) such that:

p(v)→ inv(v)
inv(v)→ ∃v′ : next(v, v′) ∧ inv(v′)

inv(v)→ q(v)

(p(v),next(v, v′)) |=CTL EG q(v)

Figure 4.5: Proof rule RuleCtlEG

The proof rules RuleCtlAX (see Figure 4.7), RuleCtlAG (see Figure 4.8), and

RuleCtlAU (see Figure 4.9) are applied for generating Horn constraints when the

CTL formula is a basic state formula with universal path operator.

Our proof system is not exhaustive in terms of having proof rules for all kinds of basic

state formula that can be defined in CTL. However, we utilize equivalence between CTL

formulas to generate Horn constraints for a basic state formula whose proof rule is not

Chapter 4. CTL Verification as Horn Constraint Solving 38

Find assertions inv(v), rank(v, v′) and ti(v, v′) such that:

p(v)→ inv(v)
inv(v) ∧ ¬r(v)→ q(v) ∧ ∃v′ : next(v, v′) ∧ inv(v′) ∧ rank(v, v′)

rank(v, v′)→ ti(v, v′)

ti(v, v′) ∧ rank(v′, v′′)→ ti(v, v′′)

dwf (ti)

(p(v),next(v, v′)) |=CTL EU(q(v), r(v))

Figure 4.6: Proof rule RuleCtlEU

p(v) ∧ next(v, v′)→ q(v′)

(p(v),next(v, v′)) |=CTL AX q(v)

Figure 4.7: Proof rule RuleCtlAX

Find an assertion inv(v) such that:

p(v)→ inv(v)
inv(v) ∧ next(v, v′)→ inv(v′)

inv(v)→ q(v)

(p(v),next(v, v′)) |=CTL AG q(v)

Figure 4.8: Proof rule RuleCtlAG

given in the proof system. The equivalence between the formulas EU(true, q(v)) and

EF (q(v)) is used to define RuleCtlEF (see Figure 4.10) from RuleCtlEU. In the

same way, the equivalence between the formulas AU(true, q(v)) and AF (q(v)) is used to

define RuleCtlAF (see Figure 4.11) from RuleCtlAU.

Proof rules for finite-state systems: The proof rules discussed so far are devised

with the assumption that the transition system (init(v),next(v, v′)) is infinite, i.e, for

any state s that is reached from the initial state, there always exists a state s′ such that

(s, s′) |= next(v, v′). However, for finite transition systems, it may be the case that for

some state s that is reached from the initial state, there may not exist a state s′ such

that (s, s′) |= next(v, v′). In such case, any computation of the transition system that

Chapter 4. CTL Verification as Horn Constraint Solving 39

Find assertions inv(v), rank(v, v′) and ti(v, v′) such that:

p(v)→ inv(v)
inv(v) ∧ ¬r(v) ∧ next(v, v′)→ q(v) ∧ inv(v′) ∧ rank(v, v′)

rank(v, v′)→ ti(v, v′),

ti(v, v′) ∧ rank(v′, v′′)→ ti(v, v′′),

dwf (ti).

(p(v),next(v, v′)) |=CTL AU(q(v), r(v))

Figure 4.9: Proof rule RuleCtlAU

(p(v),next(v, v′)) |=CTL EU(true, q(v))

(p(v),next(v, v′)) |=CTL EF q(v)

Figure 4.10: Proof rule RuleCtlEF

(p(v),next(v, v′)) |=CTL AU(true, q(v))

(p(v),next(v, v′)) |=CTL AF q(v)

Figure 4.11: Proof rule RuleCtlAF

reaches the state s will terminate at s since there is no possible further computation.

From the point of view of the computation, any property that is not yet satisfied but that

is expected to be satisfied eventually is guaranteed not to be satisfied since computation

terminates at the given state.

The proof rules that are affected by the finiteness of the transition system are AU and

AX. For a property with the operator AU , we must make sure that for the prop-

erty to eventually be satisfied in the future, there is actually an enabled transition re-

lation from any currently reached state of a computation. This is done bad adding

an extra forall-exists quantified Horn constraint inv(v) ∧ ¬r(v) → ∃v′ : next(v, v′)

to RuleCtlAU to ensure the existence of an enabled transition relation. The re-

sulting proof rule RuleCtlAuFinite is given in Figure 4.12. Similarly, the Horn

constraint p(v) → ∃v′ : next(v, v′) is added to RuleCtlAX to get the proof rule

Chapter 4. CTL Verification as Horn Constraint Solving 40

RuleCtlAxFinite which is given in Figure 4.13.

Find assertions inv(v), rank(v, v′) and ti(v, v′) such that:

p(v)→ inv(v)
inv(v) ∧ ¬r(v)→ ∃v′next(v, v′)

inv(v) ∧ ¬r(v) ∧ next(v, v′)→ q(v) ∧ inv(v′) ∧ rank(v, v′)
rank(v, v′)→ ti(v, v′),

ti(v, v′) ∧ rank(v′, v′′)→ ti(v, v′′),

dwf (ti).

(p(v),next(v, v′)) |=CTL AU(q(v), r(v))

Figure 4.12: Proof rule RuleCtlAuFinite

p(v)→ ∃v′next(v, v′)
p(v) ∧ next(v, v′)→ q(v′)

(p(v),next(v, v′)) |=CTL AX q(v)

Figure 4.13: Proof rule RuleCtlAxFinite

4.4 Constraint generation

The contraint generation procedure performs a top-down, recursive descent through

the syntax tree of the given CTL formula. At each level of recursion, the procedure

takes as input an satisfaction (p(v),next(v, v′)) |=CTL ϕ, where ϕ is a CTL formula,

and assertions p(v) and next(v, v′) describe a set of states and a transition relation,

respectively. The constraint generation procedure applies proof rules from the proof

system presented in the previous section to recursively decompose complex satisfactions

and eventually generate forall-exists quantified Horn constraints with well-foundedness

conditions. Before starting the actual constraint generation, the procedure recursively

re-writes the input satisfaction of a given CTL formula with arbitrary structure into a

set of satisfactions of simple CTL formulas where each simple formula is either a basic

CTL state formula or an assertion over the background theory. The procedure then takes

each satisfaction involving simple formula, introduces auxiliary predicates and generates

a sequence of forall-exists quantified Horn constraints and well-foundedness constraints

(when needed) over these predicates.

Chapter 4. CTL Verification as Horn Constraint Solving 41

Complexity and Correctness The procedure performs a single top-down descent

through the syntax tree of the given CTL formula ϕ. The run time and the size of the

generated constraints is linear in the size of ϕ. Finding a solution for the generated Horn

constraints is undecidable in general. In practice however, our solving algorithm E-HSF

often succeeds in finding a solution (see Section 4.5). We formalize the correctness of

the constraint generation procedure in the following theorem.

Theorem 3. For a given program P with init(v) and next(v, v′) over v and a CTL

formula ϕ the Horn constraints generated from (p(v),next(v, v′)) |=CTL ϕ are satisfiable

if and only if P |= ϕ.

The proof can be found in [81].

Example Let us consider the program given in Figure 4.14. It contains the variable

rho which is assigned a non-deterministic value at Line 2. This assignment results

in the program control to move non-deterministically following the evaluation of the

condition at Line 4. It is common to verify such programs with respect to various

CTL properties as the non-determinism results in different computation paths of the

program. Now, we would like to verify the example program with respect to the CTL

property AG(EF (WItemsNum ≥ 1)), i.e., from every reachable state of the program,

there exists a path to a state where WItemsNum has a positive integer value.

int main () {

1: while (1) {

2: while (1) {

rho = nondet ();

3: if (WItemsNum <=5) {

4: if (rho >0) break; }

5: WItemsNum ++;

6: }

7: while (1) {

8: if (!(WItemsNum >2)) break;

9: WItemsNum --;

10: }

11: }

12: }

Figure 4.14: An example program

We can make the following observations about the program. The value of the variable

WItemsNum is not set initially. Therefore, the property is checked for any arbitrary

initial value of WItemsNum. The verification problem is more interesting for the case

when WItemsNum has a non-positive integer value. This is because depending on how

the variable rho is instantiated at Line 2, we may get a path that will not reach a state

where WItemsNum gets a positive integer value. For example, if we assume WItemsNum

Chapter 4. CTL Verification as Horn Constraint Solving 42

has the value 0 initially and WItemsNum is instantiated to the value 1, the program

control swings between the two internal loops by keeping the value of WItemsNum the

same. This resulting path will not reach the state with WItemsNum ≥ 1. However, if

rho is assigned a non-positive value, no matter what the value of rho is initially, it will

eventually reach a value greater than 5 before exiting the first nested loop. Such path

will eventually reach the state with WItemsNum ≥ 1 and hence the program satisfies

the CTL property AG(EF (WItemsNum ≥ 1)).

Our method abstracts away from the concrete syntax of a programming language by

modeling a program as a transition system. The transition system for our example

program is given below.

v = (w, pc).

init(v) = (pc = 1).

next(v, v′) = (pc = `1 ∧ pc′ = `2 ∧ w′ = w ∨

pc = `2 ∧ pc′ = `3 ∧ w′ = w ∨

pc = `3 ∧ w ≤ 5 ∧ pc′ = `4 ∧ w′ = w ∨

pc = `3 ∧ w > 5 ∧ pc′ = `5 ∧ w′ = w ∨

pc = `4 ∧ pc′ = `5 ∧ w′ = w ∨

pc = `4 ∧ pc′ = `7 ∧ w′ = w ∨

pc = `5 ∧ pc′ = `6 ∧ w′ = w + 1 ∨

pc = `6 ∧ pc′ = `3 ∧ w′ = w ∨

pc = `7 ∧ pc′ = `8 ∧ w′ = w ∨

pc = `8 ∧ w ≤ 2 ∧ pc′ = `11 ∧ w′ = w ∨

pc = `8 ∧ w > 2 ∧ pc′ = `9 ∧ w′ = w ∨

pc = `9 ∧ pc′ = `10 ∧ w′ = w − 1 ∨

pc = `10 ∧ pc′ = `8 ∧ w′ = w ∨

pc = `11 ∧ pc′ = `3 ∧ w′ = w).

In the tuple of program variables v, w corresponds to the program variable WItem-

sNum and pc is the program counter variable. The problem of verifying the program

with respect to the given property amounts to checking if (init(v),next(v, v′)) satisfies

AG(EF (w ≥ 1)), i.e., if the satisfaction (init(v),next(v, v′)) |=CTL AG(EF (w ≥ 1))

holds. Our method first generates a set of Horn constraint corresponding to the verifi-

cation problem by applying the proof system.

We start constraint generation by considering the nesting structure of AG(EF (w ≥
1)). Since AG(EF (w ≥ 1)) has AG as the outer-most operator, we

Chapter 4. CTL Verification as Horn Constraint Solving 43

apply RuleCtlDecompUni from Figure 4.1 to split the original satisfac-

tion (init(v),next(v, v′)) |=CTL AG(EF (w ≥ 1)) into a reduced satisfaction

(init(v),next(v, v′)) |=CTL AG(p1(v)) and a new satisfaction (p1(v),next(v, v′)) |=CTL

EF (w ≥ 1). We need to solve for the auxiliary assertion p1(v) satisfying both of the

satisfactions.

One one hand, the assertion p1(v) corresponds to a set of program states that needs

to be discovered form the initial state. This is represented by the new satisfaction

(init(v),next(v, v′)) |=CTL AG(p1(v)) which is reduced directly to a set of Horn con-

straints by applying RuleCtlAG from Figure 4.8. This set of Horn constraints is over

an auxiliary predicate inv1(v) and given below.

init(v)→ inv1(v),

inv1(v) ∧ next(v, v′)→ inv1(v
′),

inv1(v)→ p1(v).

On the other hand, we require the formula EF (w ≥ 1), which was nested in the main

formula AG(EF (w ≥ 1)), must be satisfied from the set of states represented by p1(v).

This is represented by the new satisfaction (p1(v),next(v, v′)) |=CTL EF (w ≥ 1). Un-

like the reduced satisfaction above, this satisfaction is not always reduced directly to

Horn constraints rather it can be reduced into simpler satisfactions if possible. Since

EF (w ≥ 1) has EF as the outer-most operator, we apply again RuleCtlDecompUni

from Figure 4.1 to split the satisfaction (p1(v),next(v, v′)) |=CTL EF (w ≥ 1) into

a reduced satisfaction (p1(v),next(v, v′)) |=CTL EF (p2(v)) and a new satisfaction

(p2(v),next(v, v′)) |=CTL w ≥ 1. Here also, we need to solve for the auxiliary asser-

tion p2(v) satisfying both of the satisfactions.

The reduced satisfaction (p1(v),next(v, v′)) |=CTL EF (p2(v)) is reduced directly to a set

of Horn constraints by applying RuleCtlEF from Figure 4.10. Due to the existential

path quantifier in (p1(v),next(v, v′)) |=CTL EF (p2(v)), we obtain clauses that contain

existential quantification. We deal with the eventuality by imposing a well-foundedness

condition. This set of Horn constraints is over an auxiliary assertions inv2(v), rank(v, v′),

and ti(v, v′) and given below.

p1(v)→ inv2(v),

inv2(v) ∧ ¬p2(v)→ ∃v′ : next(v, v′) ∧ inv(v′) ∧ rank(v, v′),

rank(v, v′)→ ti(v, v′),

ti(v, v′) ∧ rank(v, v′)→ ti(v, v′′),

dwf (ti).

Chapter 4. CTL Verification as Horn Constraint Solving 44

Coming to the new satisfaction (p2(v),next(v, v′)) |=CTL w ≥ 1, we see that its formula

w ≥ 1 is an assertion with no temporal operators. Since no further decomposition is

possible, we apply RuleCtlInit from Figure 4.3 to generate directly the clause:

p2(v)→ w ≥ 1

As the original satisfaction (init(v),next(v, v′)) |=CTL AG(EF (w ≥ 1)) is reduced

into the satisfactions (init(v),next(v, v′)) |=CTL AG(p1(v)), (p1(v),next(v, v′)) |=CTL

EF (p2(v)) and (p2(v),next(v, v′)) |=CTL w ≥ 1, the constraints for the original satis-

faction will be the union of the constraints for each of the decomposed satisfactions.

The Horn constraints are over the auxiliary assertions p1(v), inv1(v), p2(v), inv2(v),

rank(v, v′), and ti(v, v′), and they are given below.

init(v)→ inv1(v),

inv1(v) ∧ next(v, v′)→ inv1(v
′),

inv1(v)→ p1(v),

p1(v)→ inv2(v),

inv2(v) ∧ ¬p2(v)→ ∃v′ : next(v, v′) ∧ inv(v′) ∧ rank(v, v′),

rank(v, v′)→ ti(v, v′),

ti(v, v′) ∧ rank(v, v′)→ ti(v, v′′),

dwf (ti)

p2(v)→ w ≥ 1

This will be the final output of our Horn constraint generation procedure.

4.5 Evaluation

We evaluate out method of CTL verification by applying the implementation of the

E-HSF solver from Chapter 3 on set of industrial benchmarks from [39, Figure 7].

These benchmarks consists of seven programs: Windows OS fragment 1, Windows

OS fragment 2, Windows OS fragment 3, Windows OS fragment 4, Windows OS

fragment 5, PostgreSQL pgarch and Software Updates. For each of these programs,

four slightly different versions are considered for evaluation. In general, the four versions

of a given program are the same in terms of the main logic of the program and what

the program does, but they may differ on the value assigned to a particular variable or

the condition for exiting a loop, etc. This gives us in total a set of 28 programs. Each

such program P is given with a CTL property ϕ, and there are two verification tasks

Chapter 4. CTL Verification as Horn Constraint Solving 45

associated with it: P |=CTL ϕ and P |=CTL ¬ϕ. The existence of a proof for a property

ϕ for P implies that ¬ϕ is violated by the same program P , and similarly, a proof for

¬ϕ for P implies that ϕ is violated by P . However, it may also be the case that both

P 6|=CTL ϕ and P 6|=CTL ¬ϕ do not hold.

Templates: As discussed in section 3.5, the templates GrdT and RelT are pro-

vided by the user for queries with existentially quantified variables depending on the

application. For the application of CTL verification, which is the main topic of interest

in this chapter, we claim that the transition relation next(v, v′) can be used as a tem-

plate by adding constraints at each location of non-determinism. There are two kinds of

constraints that can be added depending on the two types of possible non-determinism

in next(v, v′).

• non-deterministic guards: this is the case when next(v, v′) has a set of more

than one disjuncts with the same guard, i.e., there can be more than one enabled

moves from a certain state of the program. For each such set, we introduce a fresh

case-splitting variable and we strengthen the guard of each disjunct by adding a

distinct constraint on the fresh variable. For example, if the set has n disjuncts

and B is a fresh variable, we add the constraint B = i for each disjunct i where

1 ≤ i ≤ n. To reason about existentially quantified queries, then it will suffices to

instantiate B to one of the values in the range 1 . . . n. Such reasoning is done by

the E-HSF solver.

• non-deterministic assignments: this is the case when next(v, v′) has a disjunct

in which some w′, which is a subset of v′, is left unconstrained in the disjunct. In

such case, we strengthen the disjunct by adding the constraint x′ = Tx ∗ v + tx as

conjunct for each variable x′ in w′. Solving for Tx and tx is done by the E-HSF

solver.

In our CTL verification examples, both non-deterministic guards and assignments are

explicitly marked in the original benchmark programs using names rho1, rho2, etc. We

apply the techniques discussed above to generate templates from the transition relation

of each program. In these examples, linear templates are sufficiently expressive. For

direct comparison with the results from [39], we used template functions corresponding

to the rho-variables. The quantifier elimination in ∃v′ : next(v, v′) can be automated for

the theory of linear arithmetic. For dealing with well-foundedness we use linear ranking

functions, and hence corresponding linear templates for DecreaseT and BoundT.

We report the results in Table 4.1. For each program in Column 1, we report the shape

of the property in Column 2, the result returned by E-HSF and the time it took to

Chapter 4. CTL Verification as Horn Constraint Solving 46

Program P Property ϕ P |=CTL ϕ P |=CTL ¬ϕ
Result Time(s) Result Time(s)

Windows OS fragment 1

(29 LOC)

AG(p→ AFq) X 0.4 × 0.3
EF (p ∧ EGq) X 0.3 × 0.4
AG(p→ EFq) X 0.4 × 0.3
EF (p ∧AGq) X 0.3 × 0.3

Windows OS fragment 2

(58 LOC)

AG(p→ AFq) X 0.6 × 0.3
EF (p ∧ EGq) X 0.4 × 0.4
AG(p→ EFq) X 0.5 × 0.3
EF (p ∧AGq) X 0.5 × 0.3

Windows OS fragment 3

(370 LOC)

AG(p→ AFq) X 12.9 × 1.1
EF (p ∧ EGq) X 159.0 × 12.3
AG(p→ EFq) X 13.6 × 0.8
EF (p ∧AGq) X 27.2 × 1.1

Windows OS fragment 4

(380 LOC)

AFp ∨AFq X 43.3 × 6.3
EGp ∧ EGq X 0.4 × 9.5
EFp ∧ EFq X 101.7 × 0.6
AGp ∨AGq X 0.2 × 32.1

Windows OS fragment 5

(43 LOC)

AG(AFp) X 0.4 × 0.3
EF (EGp) X 0.3 × 0.4
AG(EFp) X 0.4 × 0.3
EF (AGp) X 0.3 × 0.3

PostgreSQL pgarch

(70 LOC)

AG(AFp) X 0.5 × 0.3
EF (EGp) X 0.4 × 0.6
AG(EFp) X 0.7 × 0.3
EF (AGp) X 0.4 × 0.5

Software Updates

(35 LOC)

p→ EFq X 0.6 × 0.2
p ∧ EGq × 0.3 × 0.4
p→ AFq × 0.2 × 0.2
p ∧AGq × 0.3 × 0.2

Table 4.1: CTL verification on industrial benchmarks

prove the property in Columns 3 and 4, and the result returned by our tool and the

time it took to discover a counterexample for the negated property in Columns 5 and 6.

The variables p and q in Column 2 range over the theory of quantifier-free linear integer

arithmetic. The symbol X marks the cases where E-HSF was able to find a solution,

i.e., a proof that the CTL property ϕ is valid, and the symbol × marks the cases where

E-HSF was able to find a counter-example, i.e., a proof that the negated CTL property

¬ϕ is not valid. The number of LOC of each program is also given in Column 1.

Our method is able to find proofs that the CTL property ϕ is valid and the negated

CTL property ¬ϕ is not valid for all of the programs except the last three programs.

For the last three versions of Software Updates, not only the negated CTL property

¬ϕ but also the CTL property ϕ is not valid. This was because ϕ was satisfied only

for some initial states. Our method takes a total of 427 seconds of which 412 seconds

Chapter 4. CTL Verification as Horn Constraint Solving 47

(96.5 % of the total time) is spent on the programs from Windows OS fragment 3 and

Windows OS fragment 4. These programs are relatively big as compared to the rest of

the programs and their transition relations will have large control flow graphs.

Program P Property ϕ P |=CTL ϕ P |=CTL ¬ϕ
Result Time(s) Result Time(s)

Windows OS fragment 1

(29 LOC)

AG(p→ AFq) X 0.3 × 0.3
EF (p ∧ EGq) X 0.3 × 0.3
AG(p→ EFq) X 0.3 × 0.3
EF (p ∧AGq) X 0.3 × 0.3

Windows OS fragment 2

(58 LOC)

AG(p→ AFq) X 0.4 × 0.3
EF (p ∧ EGq) X 0.4 × 0.3
AG(p→ EFq) X 0.4 × 0.3
EF (p ∧AGq) X 0.4 × 0.3

Windows OS fragment 3

(370 LOC)

AG(p→ AFq) X 0.6 × 1.2
EF (p ∧ EGq) X 9.4 × 0.5
AG(p→ EFq) X 0.7 × 0.8
EF (p ∧AGq) X 0.9 × 1.1

Windows OS fragment 4

(380 LOC)

AFp ∨AFq X 5.7 × 5.2
EGp ∧ EGq X 0.3 × 1.0
EFp ∧ EFq X 5.0 × 0.3
AGp ∨AGq X 0.3 × 6.4

Windows OS fragment 5

(43 LOC)

AG(AFp) X 0.3 × 0.3
EF (EGp) X 0.3 × 0.3
AG(EFp) X 0.3 × 0.3
EF (AGp) X 0.3 × 0.3

PostgreSQL pgarch

(70 LOC)

AG(AFp) X 0.4 × 0.3
EF (EGp) X 0.3 × 0.4
AG(EFp) X 0.3 × 0.3
EF (AGp) X 0.3 × 0.3

Software Updates

(35 LOC)

p→ EFq X 0.6 × 0.2
p ∧ EGq × 0.3 × 0.4
p→ AFq × 0.2 × 0.2
p ∧AGq × 0.3 × 0.3

Table 4.2: Optimised CTL verification on industrial benchmarks

The exponentially long times for these programs is due to the fact that transition re-

lations of the programs model the control flow symbolically using a program counter

variable. Efficient treatment of control flow leads to significant improvements for dealing

with programs with large control flow graphs line the ones from Windows OS fragment

3 and Windows OS fragment 4.

We re-do our experiment by turning on the optimization option that applies explicit

evaluation of program control flow variables, which was described in Section 3.4.1, and

we report the results in Table 4.2. Our method now takes a much improved time of

52 seconds. In addition, the programs from Windows OS fragment 3 and Windows OS

Chapter 4. CTL Verification as Horn Constraint Solving 48

fragment 4 takes a total time of 39 seconds compared to 412 seconds perviously. The

optimization results in an order-of-magnitude performance improvement.

Our method also compares favourably with state-of-art automated CTL verification

methods. We present in Table 4.3 the comparison between the our solving algorithm

E-HSF and a CTL verification method from Cook [38]. Here also, we use the programs

from Table 4.1, however, for the sake of focusing on the comparison, we exclude programs

for which the two methods have different outcomes. For each program in Column 1, we

report the shape of the property in Column 2. The time it takes E-HSF to prove the

property ϕ is given in Column 3, and the corresponding time for Cook et al. is given

in Column 4. Similarly, the time it takes E-HSF to discover a counterexample for the

negated property ¬ϕ is given in Column 5, and the corresponding time for Cook et al.

is given in Column 6.

Program P Property ϕ P |=CTL ϕ P |=CTL ¬ϕ
E-HSF Cook et al. E-HSF Cook et al.

Windows OS fragment 1

(29 LOC)

AG(p→ AFq) 0.3 1.0 0.3 1.4
EF (p ∧ EGq) 0.3 0.1 0.3 0.7
AG(p→ EFq) 0.3 0.1 0.3 0.1
EF (p ∧AGq) 0.3 0.1 0.3 0.1

Windows OS fragment 2

(58 LOC)

EF (p ∧ EGq) 0.4 1.0 0.3 1.2
EF (p ∧AGq) 0.4 0.8 0.3 0.2

Windows OS fragment 3

(370 LOC)

AG(p→ AFq) 0.6 5.9 1.2 6.2
EF (p ∧ EGq) 9.4 2.3 0.5 6.0
AG(p→ EFq) 0.7 6.8 0.8 3.4
EF (p ∧AGq) 0.9 4.7 1.1 3.1

Windows OS fragment 4

(380 LOC)

AFp ∨AFq 5.7 18.5 5.2 13.9
EGp ∧ EGq 0.3 13.5 1.0 14.2
EFp ∧ EFq 5.0 14.7 0.3 4.8
AGp ∨AGq 0.3 8.0 6.4 3.7

Windows OS fragment 5

(43 LOC)

AG(AFp) 0.3 1.0 0.3 0.2
EF (EGp) 0.3 0.1 0.3 0.0
AG(EFp) 0.3 1.0 0.3 0.0
EF (AGp) 0.3 0.1 0.3 0.1

PostgreSQL pgarch

(70 LOC)

AG(AFp) 0.4 2.0 0.3 1.3
EF (EGp) 0.3 0.1 0.4 0.1
AG(EFp) 0.3 2.0 0.3 0.0
EF (AGp) 0.3 2.0 0.3 2.4

Table 4.3: Comparison of our results with Cook [38, Figure 11]

From the result, we can see that while E-HSF takes a total of 48 seconds to finish

the task, Cook et al. takes a total of 149 seconds. This amounts to an approximate

reduction of 70%. There are a few cases where E-HSF takes longer than Cook et al. We

suspect that a more efficient modeling of the original c program as a transition system

can help our method a lot. The presence of many temporary program variables in the

Chapter 4. CTL Verification as Horn Constraint Solving 49

transition relation which are not involved in any computation of the program can affect

the performance of our method.

In general, although E-HSF is a generic algorithm not specific to CTL verification, our

method is able to outperform the state-of-art automated CTL verification method.

4.6 Related work

Verification of properties specified in temporal logics such as CTL has been extensively

explored for finite-state systems[26, 32, 34, 84]. There has also been studies on the

verification of CTL properties for some restricted types of infinite-state systems. Some

examples are pushdown processes [113, 119], pushdown games [120], and parameterised

systems [51]. For such restricted systems, the standard procedure is to abstract the

infinite-state system model into finite-state model and apply the known methods for

finite-state systems. But existing abstraction methods usually do not allow reliable ver-

ification of CTL properties where alternation between universal and existential modal

operators is common. Many methods of proving CTL properties with only universal

path quantifiers are known[30, 40]. There also a few methods mainly focused on proving

branching-time properties with only existential path quantifiers. One example is the

tool Yasm [66] which implements a proof procedure aimed primarily at the non-nested

existential subset of CTL. There are also known techniques for proving program ter-

mination (resp. non-termination) [23, 41] which is equivalent with proving the CTL

formula AF false (resp. EG true)[63].

Banda et al. [9] proposed a CTL verification approach for infinite state reactive sys-

tems based on CLP and abstraction of a CTL semantic function. An automatic proof

method that supports both universal and existential branching-time modal operators

for (possibly infinite-state) programs is proposed in by Cook et al. [39]. The approach

is based on reducing existential reasoning to universal reasoning when an appropriate

restriction is placed on the the state-space of the system. While this approach comes

close to our approach, the refinement procedure for state-space restrictions may make

incorrect choices early during the iterative proof search. These choices may limit the

choices available later in the search leading to failed proof attempts in some cases.

4.7 Conclusion

In this chapter, we proposed a method of verifying CTL properties with respect to a

(possibly infinite-space) program. The method takes a transition system that models

Chapter 4. CTL Verification as Horn Constraint Solving 50

the input program and a CTL formula specifying the property to prove as inputs. It first

applies known proof systems to generate forall-exists quantified Horn constraints with

well-foundedness conditions by the taking the transition system and the CTL formula.

Then, it applies the solving algorithms E-HSF to solve the set of Horn constraints. The

defining feature of this approach is the separation of concerns between the encoding and

the solving of the verification problem. We also demonstrate the practical applicabil-

ity of the approach by presenting an experimental evaluation using examples from the

PostgreSQL database server, the SoftUpdates patch system, the Windows OS kernel.

Chapter 5

CTL+FO Verification as Horn

Constraint Solving

5.1 Introduction

In specifying the correct behaviour of systems, relating data at various stages of a com-

putation is often crucial. Examples include program termination [41] (where the value

of a rank function should be decreasing over time), correctness of reactive systems [74]

(where each incoming request should be handled in a certain timeframe), and information

flow [72] (where for all possible secret input values, the output should be the same). The

logic CTL+FO offers a natural specification mechanism for such properties, allowing

to freely mix temporal and first-order quantification. First-order quantification makes

it possible to specify variables dependent on the current system state, and temporal

quantifiers allow to relate this data to system states reached at a later point.

While CTL+FO and similar logics have been identified as a specification language be-

fore, no fully automatic method to check CTL+FO properties on infinite-state systems

was developed. Hence, the current state of the art is to either produce verification

tools specific to small subclasses of properties, or using error-prone program modifi-

cations that explicitly introduce and initialize ghost variables, which are then used in

(standard) CTL specifications.

In this chapter, we present a fully automatic procedure to transform a CTL+FO verifi-

cation problem into a system of forall-exists quantified recursive Horn constraints. Such

systems can then be solved by applying the solving algorithm E-HSF, allowing to blend

first-order and temporal reasoning. Our method benefits from the simplicity of the

51

Chapter 5. CTL+FO Verification as Horn Constraint Solving 52

proposed proof rules and the ability to leverage on-going advances in Horn constraint

solving.

The rest of the chapter is organised as follows. We start by briefly revising the syntax

and semantics of CTL in Section 5.2. In Section 5.3, we present our proof system

that generates a set of forall-exists quantified Horn constraints for a given verification

problem. We give our constraint generation procedure together with an illustration

on an example in Section 5.4. The experimental evaluation of our method is given in

Section 5.5. Finally, we present a bief discussion on related works in Section 5.6 and

concluding remarks in Section 5.7.

5.2 CTL+FO basics

The following definitions are standard, see e.g. [21, 81]. Let T be a first order theory

and |=T denote its satisfaction relation that we use to describe sets and relations over

program states. Let c range over assertions in T and x range over variables. A CTL+FO

formula ϕ is defined by the following grammar using the notion of a path formula φ.

ϕ ::= ∀x : ϕ | ∃x : ϕ | c | ϕ ∧ ϕ | ϕ ∨ ϕ | Aφ | E φ

φ ::= Xϕ | Gϕ | ϕUϕ

As usual, we define Fϕ = (trueUϕ). The satisfaction relation P |= ϕ holds if and only

if for each s such that init(s) we have P, s |= ϕ. We define P, s |= ϕ as follows using

an auxiliary satisfaction relation P, π |= φ. Note that d ranges over values from the

corresponding domain.

P, s |= ∀x : ϕ iff for all d holds P, s |= ϕ[d/x]

P, s |= ∃x : ϕ iff exists d such that P, s |= ϕ[d/x]

P, s |= c iff s |=T c

P, s |= ϕ1 ∧ ϕ2 iff P, s |= ϕ1 and P, s |= ϕ2

P, s |= ϕ1 ∨ ϕ2 iff P, s |= ϕ1 or P, s |= ϕ2

P, s |= Aφ iff for all π ∈ ΠP (s) holds P, π |= φ

P, s |= E φ iff exists π ∈ ΠP (s) such that P, π |= φ

P, π |= Xϕ iff π = s1, s2, . . . and P, s2 |= ϕ

P, π |= Gϕ iff π = s1, s2, . . . for all i ≥ 1 holds P, si |= ϕ

P, π |= ϕ1Uϕ2 iff π = s1, s2, . . . and exists j ≥ 1 such that

P, sj |= ϕ2 and P, si |= ϕ1 for 1 ≤ i < j

Chapter 5. CTL+FO Verification as Horn Constraint Solving 53

For CTL formula ψ(v) and a transition system (p(v),next(v, v′)), find an assertion
aux (v, x) such that:

p(v)→ aux (v, x) (aux (v, x),next(v, v′) ∧ x′ = x) |=CTL+FO ψ(v, x)

(p(v),next(v, v′)) |=CTL+FO ∀x : ψ(v, x)

Figure 5.1: Proof rule RuleCtlFoUniv

In this chapter, we represent a satisfaction relation P |= ϕ by the relation P |=CTL+FO ϕ

to explicitly indicate that ϕ is a CTL+FO formula. We call such relation a CTL+FO

satisfaction, and ϕ is said to be its formula.

5.3 Proof system

The proof system for CTL+FO extends the proof system from CTL given in Sec-

tion 4.3 by adding two proof rules for handling first-order quantification. The ad-

ditional proof rules handle CTL+FO satisfactions whose formulas have first-order

quantifications as their outer-most operators. Example of such satisfactions are

(init(v),next(v, v′)) |=CTL+FO ∀x : φ(v, x) and (init(v),next(v, v′)) |=CTL+FO ∃x :

φ(v, x), whose formula has universal and existential quantifiers respectively.

Handling First-Order Universal Quantification Let us consider the satisfaction

(p(v),next(v, v′)) |=CTL+FO ∀x : ψ(v, x). Its formula ∀x : ψ(v, x) is obtained from the

formula ψ(v, x) by universally quantifying over the variable x. In our proof system,

we have the proof rule RuleCtlFoUniv, which is given in Figure 5.1, for handling

first-order universal quantification. A first constraint connects the set of states p(v) on

which ∀x : ψ(v, x) needs to hold with the set of states aux (v, x) on which ψ(v, x) needs

to hold. The constraint requires that for every state s such that s |= p(v) and for an

arbitrary value sx of x, the extension of s with sx is in aux (v, x), i.e., (s, sx) |= aux (v, x).

The auxiliary predicate aux (v, x) has its variable x implicitly assigned an arbitrary

value. Then, more constraints are generated for the satisfaction (aux (v, x),next(v, v′)∧
x′ = x) |=CTL+FO ψ(v, x) that keep track of satisfaction of ψ from the set of states in

represented by aux (v, x). Since the value of x is arbitrary but fixed within ψ(v, x),

we require that the transition relation does not modify x and thus extend next to

next(v, v′) ∧ x′ = x.

Chapter 5. CTL+FO Verification as Horn Constraint Solving 54

For CTL formula ψ(v) and a transition system (p(v),next(v, v′)), find an assertion
aux (v, x) such that:

p(v)→ ∃x : aux (v, x) (aux (v, x),next(v, v′) ∧ x′ = x) |=CTL+FO ψ(v, x)

(p(v),next(v, v′)) |=CTL+FO ∃x : ψ(v, x)

Figure 5.2: Proof rule RuleCtlFoExist

Handling First-Order Existential Quantification Let us consider the satisfaction

(p(v),next(v, v′)) |=CTL+FO ∃x : ψ(v, x), where the formula ∃x : ψ(v, x) is obtained

from the formula ψ(v, x) by existentially quantifying over the variable x. In our proof

system, we have the proof rule RuleCtlFoExist, which is given in Figure 5.2, for

handling first-order existential quantification. We use an auxiliary predicate aux (v, x)

that implicitly serves as witness for x. A first constraint connects the set of states p(v)

on which ∃x : ψ(v, x) needs to hold with the set of states aux (v, x) on which ψ(v, x)

needs to hold. We require that for every state s in p(v), a choice of value sx of x exists

such that the extension of s with sx is in aux (v, x). Then, more constraints are generated

for the satisfaction (aux (v, x),next(v, v′) ∧ x′ = x) |=CTL+FO ψ(v, x) that keep track of

satisfaction of ψ on arbitrary x allowed by aux (v, x). As the value of x is restricted but

fixed within ψ(v, x), we require here also that the transition relation does not modify x

and thus extend next to next(v, v′) ∧ x′ = x. Thus, aux (v, x) serves as a restriction of

the choices allowed for x.

5.4 Constraint generation

The contraint generation procedure performs a top-down, recursive descent through the

syntax tree of the given CTL+FO formula. At each level of recursion, the procedure

takes as input an satisfaction (p(v),next(v, v′)) |=CTL+FO ϕ, where ϕ is a CTL+FO

formula, and assertions p(v) and next(v, v′) describe a set of states and a transition

relation, respectively. The tuple v contains variables that are considered to be in scope

and define a state. We assume that variables bound by first-order quantifiers in ϕ do

not shadow other variables.

The constraint generation procedure applies proof rules from the proof system presented

in the previous section to recursively decompose complex satisfactions and eventually

generate Horn constraints. Before starting the actual constraint generation, the pro-

cedure recursively re-writes the input satisfaction of a given CTL+FO formula with

arbitrary structure into a set of satisfactions of simple CTL+FO formulas where each

Chapter 5. CTL+FO Verification as Horn Constraint Solving 55

simple formula is either a basic state formula or an assertion over the background the-

ory. The procedure then takes each satisfaction involving simple formula, introduces

auxiliary predicates and generates a sequence of forall-exists quantified Horn constraints

and well-foundedness constraints (when needed) over these predicates.

Complexity and Correctness The procedure performs a single top-down descent

through the syntax tree of the given CTL+FO formula ϕ. The run time and the size of

the generated constraints is linear in the size of ϕ. Finding a solution for the generated

Horn constraints is undecidable in general. In practice however, our solving algorithm E-

HSF often succeeds in finding a solution (see Section 5.5). We formalize the correctness

of the constraint generation procedure in the following theorem.

Theorem 4. For a given program P with init(v) and next(v, v′) over v and a CTL+FO

formula ϕ the Horn constraints generated from (p(v),next(v, v′)) |=CTL+FO ϕ are satis-

fiable if and only if P |= ϕ.

Proof. Formally, we prove that the constraints generated for the satisfaction

(init(v),next(v, v′)) |=CTL+FO ϕ have a solution if and only if the program P =

(init(v),next(v, v′)) satisfies ϕ. We proceed by structural induction on the formula

ϕ. The base case, i.e., ϕ is an assertion c from our background theory T , is trivial. We

show here the cases where ϕ(v) = ∃x : ψ(v, x) or ϕ(v) = ∀x : ψ(v, x). The proof for the

rest of the cases can be found in [81].

Let us consider the case ϕ(v) = ∃x : ψ(v, x). To prove soundness, we assume that the

generated constraints have a solution. For the predicate aux (v, x), this solution is a rela-

tion Saux that satisfies all constraints generated for aux (v, x). For each s with init(s), we

choose xs such that (s, xs) ∈ Saux . As we require init(v)→ ∃x : aux (v, x), this element is

defined. We now apply the induction hypothesis for P ′ = (aux (v, x),next(v, v′)∧x′ = x)

and ψ(v, x). Then for all s with init(s), we have P ′, (s, xs) |= ψ, and as P ′ is not changing

x by construction, also P ′, (s, xs) |= ψ[xs/x]. From this, P, s |= ϕ directly follows.

For completeness, we proceed analogously. If P |= ϕ holds, then a suitable instantiation

xs of x can be chosen for each s with init(s), and thus we can construct a solution for

aux (v, x) from init(v).

Similarly, we consider the case ϕ(v) = ∀x : ψ(v, x). To prove soundness, we assume

that the generated constraints have a solution. For the predicate aux (v, x), this solution

is a relation Saux that satisfies all constraints generated for aux (v, x). For each s with

init(s) and any instantiation xs of x, we have (s, xs) ∈ Saux . As we require init(v) →
∀x : aux (v, x), this element is well-defined. We now apply the induction hypothesis for

Chapter 5. CTL+FO Verification as Horn Constraint Solving 56

P ′ = (aux (v, x),next(v, v′) ∧ x′ = x) and ψ(v, x). Then for all s with init(s), we have

P ′, (s, xs) |= ψ, and as P ′ is not changing x by construction, also P ′, (s, xs) |= ψ[xs/x].

From this, P, s |= ϕ directly follows.

For completeness, we proceed analogously. If P |= ϕ holds, then any instantiation xs

of x can be chosen for each s with init(s), and thus we can construct a solution for

aux (v, x) from init(v).

Example We illustrate the constraint generation procedure on a simple example. We

consider a property that the value stored in a register v can grow without bound on

some computation.

∀x : v = x→ EF (v > x)

This property can be useful for providing evidence that a program is actually vulnerable

to a denial of service attack. Let init(v) and next(v, v′) describe a program over a

single variable v. We apply the constraint generation procedure on the satisfaction

(init(v),next(v, v′)) |=CTL+FO ∀x : v = x→ EF (v > x).

The procedure first applies RuleCtlFoUniv to reduce the input satisfaction into:

init(v)→ aux(v, x),

(aux(v, x),next(v, v′) ∧ x′ = x) |=CTL+FO v = x→ EF (v > x)

The procedure goes on to decompose the formula v = x → EF (v > x) which is in the

new entailment. This gives:

init(v)→ aux(v, x),

aux(v, x) ∧ v = x→ p(v, x),

(p(v, x),next(v, v′) ∧ x′ = x) |=CTL+FO EF (v > x)

Finally, the constraints for the new satisfaction (p(v, x),next(v, v′) ∧ x′ = x) |=CTL+FO

EF (v > x) are generated. This gives us the final set of Horn constraints generated for

Chapter 5. CTL+FO Verification as Horn Constraint Solving 57

the original input satisfaction.

init(v)→ aux(v, x),

aux(v, x) ∧ v = x→ p(v, x),

p(v, x)→ inv(v, x),

inv(v, x) ∧ ¬(v > x)→ ∃v′, x′ : next(v, x, v′, x′) ∧ inv(v′, x′) ∧ rank(v, x, v′, x′),

rank(v, x, v′, x′)→ ti(v, x, v′, x′),

ti(v, x, v′, x′) ∧ rank(v′, x′, v′′, x′′)→ ti(v, x, v′′, x′′),

dwf (ti).

Note that there exists an interpretation of aux (w), p(w), inv(w), and rank(w,w′) and

ti(w,w′), where w = (v, x), that satisfies these constraints if and only if the program

satisfies the property.

5.5 Evaluation

We evaluate our method by applying the implementation of the solving algorithm E-HSF

on a subset of the industrial benchmarks from Section 4.5. The benchmark programs

considered in this evaluation are Windows OS fragment 1, Windows OS fragment 2,

Windows OS fragment 3, and Windows OS fragment 4. Remember that for each of

these programs, we have considered four slightly different versions for evaluating our

CTL verification method. For each such program P which is given with a CTL property

ϕ, we have modified the property to lift the CTL formula to CTL+FO. As an example,

consider a CTL property AG(a = 1 → AF (r = 1)). One modified property to check

could be ∃x : AG(a = x→ AF (r = 1)), and another one is AG(∃x : (a = x→ AF (r =

1))). Note that both of these properties are in CTL+FO and they are satisfiability-

preserving with respect to the original CTL property. By doing similar satisfiability-

preserving transformations of the properties for all the example programs, we get a

set programs whose properties are specified in CTL+FO as shown in Table 5.1. For

each pair of a program and CTL+FO property ϕ, we generated two verification tasks:

P |=CTL+FO ϕ and P |=CTL+FO ¬ϕ. While the existence of a proof for a property ϕ

implies that ¬φ is violated by the same program, we consider both properties to show

the correctness of our method.

As in Section 4.5, linear templates are sufficiently expressive for dealing with queries

with existentially quantified variables as well as well-foundedness relations.

Chapter 5. CTL+FO Verification as Horn Constraint Solving 58

Program P Property ϕ P |=CTL ϕ P |=CTL ¬ϕ
Result Time Result Time

Windows OS fragment 1

(29 LOC)

∃x : AG(p→ AFq) X 0.2 × 0.3
AG(∃x : p→ AFq) X 0.2 × 0.3

∃x : EF (p ∧ EGq) X 0.3 × 0.3
EF (∃x : p ∧ EGq) X 0.3 × 0.2

∃x : AG(p→ EFq) X 0.3 × 0.3
AG(∃x : p→ EFq) X 0.3 × 0.3

∃x : EF (p ∧AGq) X 0.4 × 0.3
EF (∃x : p ∧AGq) X 0.3 × 0.3

Windows OS fragment 2

(58 LOC)

∃x : AG(p→ AFq) X 0.3 × 0.3
AG(∃x : p→ AFq) X 0.3 × 0.3

∃x : EF (p ∧ EGq) X 0.4 × 0.3
EF (∃x : p ∧ EGq) X 0.4 × 0.4

∃x : AG(p→ EFq) X 0.4 × 0.4
AG(∃x : p→ EFq) X 0.4 × 0.3

∃x : EF (p ∧AGq) X 0.5 × 0.3
EF (∃x : p ∧AGq) X 0.4 × 0.3

Windows OS fragment 3

(370 LOC)

∃x : AG(p→ AFq) X 0.2 × 1.7
AG(∃x : p→ AFq) X 0.2 × 1.0

∀x : EF (p ∧ EGq) X 18.2 × 0.6
EF (∀x : p ∧ EGq) X 18.3 × 0.6

∃x : AG(p→ EFq) X 0.7 × 1.4
AG(∃x : p→ EFq) X 0.7 × 0.8

∀x : EF (p ∧AGq) X 2.5 × 1.8
EF (∀x : p ∧AGq) X 1.7 × 1.1

Windows OS fragment 4

(380 LOC)

∃x : AFp ∨AFq X 0.2 × 0.3

∃x : EGp ∧ EGq X 0.3 × 0.9

∃x : EFp ∧ EFq X 6.0 × 0.3

∃x : AGp ∨AGq X 0.2 × 45.2

Table 5.1: CTL+FO verification on industrial benchmarks

We run our experiment by turning on the optimization option that applies explicit

evaluation of program control flow variables, which was described in Section 3.4.1, and

we report the results in Table 5.1. For each program in Column 1, we report the shape

of the property in Column 2, the result returned by our tool and the time it took to

prove the property in Columns 3 and 4, and the result returned by our tool and the

time it took to discover a counterexample for the negated property in Columns 5 and 6.

The variables p and q in Column 2 range over the theory of quantifier-free linear integer

arithmetic. The symbol X marks the cases where E-HSF was able to find a solution,

i.e., a proof that the CTL property ϕ is valid, and the symbol × marks the cases where

E-HSF was able to find a counter-example, i.e., a proof that the negated CTL property

¬ϕ is not valid. The number of LOC of each program is also given in Column 1. Our

method is able to find proofs that the CTL+FO property ϕ is valid and the negated

CTL+FO property ¬ϕ is not valid for all of the programs.

Chapter 5. CTL+FO Verification as Horn Constraint Solving 59

5.6 Related work

Verification of CTL+FO and its decidability and complexity have been studied (under

various names) in the past. Bohn et al. [21] presented the first model-checking algorithm.

Predicates partitioning a possibly infinite state space are deduced syntactically from the

checked property, and represented symbolically by propositional variables. This allows

to leverage the efficiency of standard BDD-based model checking techniques, but the

algorithm fails when the needed partition of the state space is not syntactically derivable

from the property.

Working on finite-state systems, Hallé et al. [67], Patthak et al. [98] and Rensink [106]

discuss a number of different techniques for quantified CTL formulas. In these works,

the finiteness of the data domain is exploited to instantiate quantified variables, thus

reducing the model checking problem for quantified CTL to standard CTL model check-

ing.

Hodkinson et al. [74] study the decidability of CTL+FO and some fragments on in-

finite state systems. They show the general undecidability of the problem, but also

identify certain decidable fragments. Most notably, they show that by restricting first

order quantifiers to state formulas and only applying temporal quantifiers to formu-

las with at most one free variable, a decidable fragment can be obtained. Finally, Da

Costa et al. [45] study the complexity of checking properties over propositional Kripke

structures, also providing an overview of related decidability and complexity results. In

temporal epistemic logic, Belardinelli et al. [10] show that checking FO-CTLK on a

certain subclass of infinite systems can be reduced to finite systems. In contrast, our

method directly deals with quantification over infinite domains.

5.7 Conclusion

This chapter presented an automated method for proving program properties written in

the temporal logic CTL+FO, which combines universal and existential quantification

over time and data. Our approach relies on a constraint generation algorithm that

follows the formula structure to produce constraints in the form of Horn constraints

with forall/exists quantifier alternation. The obtained constraints can be solved using

an off-the-shelf constraint solver, thus resulting in an automatic verifier.

Chapter 5. CTL+FO Verification as Horn Constraint Solving 60

Chapter 6

Solving Games on Infinite Graphs

as Horn Constraint Solving

6.1 Introduction

Many fundamental questions in formal methods reduce to computing winning strategies

in turn-based graph games [57], i.e., games where two players take turns in moving a

token along the edges of a graph, and a player wins if the sequence of nodes visited by

the token satisfies a certain ω-regular winning condition. For example:

• To synthesize a reactive system from a temporal specification [25, 103, 116], one

constructs a graph game where the goal of one player is to satisfy the specification

and the goal of the other is to violate it. The desired system is realizable if and

only if the first player has a winning strategy in this game.

• The problem of verifying a branching-time property of a system is naturally framed

as a graph game [50]. Here, one player models the existential path quantifiers in the

property; the other player models the universal quantifiers. The system satisfies

the property if and only if the existential player has a winning strategy.

• Graph games are a natural model for “open” systems [83] that explicitly model in-

teractions between a controller (one player) and its environment (the other player).

To prove such a system correct, we show that the controller has a strategy to en-

force its requirements no matter how the environment behaves.

There is a rich literature on algorithmic approaches to graph games motivated by ap-

plications in formal methods [31, 46, 79, 123]. The majority of these approaches focus

61

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 62

on decidable classes of games, such as games on finite graphs. This focus limits the

applications of these techniques. For example, an algorithm that requires a finite game

graph can only be applied to the verification and synthesis of finite-state systems. To

use games in the analysis and synthesis of infinite-state programs, we need symbolic,

abstraction-based algorithms for solving games on the state spaces of such programs.

While a few such algorithms exist in the literature [46, 70], much more remains to be

done on this topic.

This chapter presents a new approach to this problem space. The main contribution is

an algorithmic method based on automated deduction for solving (turn-based) games

over infinite-state symbolic transition systems.

Specifically, we target three classes of games over infinite graphs: safety games, reach-

ability games, and Linear Temporal Logic (LTL) games [57]. These games differ in the

winning condition for the player for whom we are computing a winning strategy (call

this player Eve; the other player is called Adam). In a safety game, Eve wins a play

(an infinite sequence of nodes visited by the game token) if and only if the play avoids

a certain “unsafe” set of nodes. In a reachability game, a play is winning for Eve if and

only if it reaches a certain target set of nodes. In LTL games, Eve wins a play if and only

if the play satisfies an LTL property. We note that, LTL games subsume parity games,

an important class of games where each node of the game graph is labeled with a “color”

from the set {1, . . . , N}, and a play is winning for Eve if and only if the minimum color

seen infinitely often in the play is odd.

The importance of solving the above types of games to formal methods is well-established

in the literature. For instance, the problem of solving a parity game over a program’s

state space is equivalent to that of verifying program properties written in the modal

µ-calculus [50, 57] (note that the µ-calculus subsumes popular temporal logics like Ltl,

Ctl, and Ctl*). The solution of LTL games is also at the core of reactive synthesis

from temporal specifications. Reachability and safety games are important special cases

of LTL games that are sufficient for many applications, including program repair [60, 78],

program synthesis [111], synthesis of interface specifications [2], and verification of the

fragment of the µ-calculus without alternation of fixpoint quantifiers.

For each of the above types of games, we give a deductive proof rule that, given a

symbolic representation of the game graph, symbolically represents a winning strategy

in the game using forall-exists quantified Horn constraints. The rule is then automated

by applying our solving algorithm E-HSF as an engine for automated deduction.

To understand how our rules work, consider a safety game where the objective of Eve is

to satisfy the state property p at all points in all plays. To find a winning strategy for

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 63

Eve, our rule for safety games computes an invariant inv that describes the set of states

from which Eve can win the game. This invariant needs to satisfy the following criteria:

(a) the initial condition of the game implies inv ; (b) inv implies p; and (c) for all Adam

transitions out of inv (let us say to a destination state σ), σ satisfies p and there is a

Eve transition from σ back to inv .

Strategy computation in reachability games relies on well-founded transition invari-

ants [105] to guarantee that a target state is reached after a finite number of rounds

of the game. We solve LTL games with temporal objective ϕ by converting ¬ϕ into

a nondeterministic Büchi automaton, then performing a fair termination check on the

product of this automaton and the game graph.

All of our rules are sound, meaning that if they derive a strategy for a player, then

the player actually wins under the strategy, as well as relatively complete, meaning that

they can always derive a winning strategy when one exists, assuming a suitably powerful

assertion language.

From a practical point of view, the appeal of our rules is that they leverage the most

recent developments in SMT-solving, invariant generation, and termination verifica-

tion [14, 59]. Specifically, given a symbolic representation of the game graph, our

method generates a set of forall-exists quantified Horn constraints (together with well-

foundedness conditions when they are required) which are then fed to the E-HSF engine.

Solving the game now amounts to resolving these Horn clauses to a bounded depth,

proving the unsatisfiability of the resolvent, repeating the process and generalizing from

proofs of unsatisfiability to a solution for the original clauses. The E-HSF engine does

so using a combination of counterexample-guided abstraction-refinement (CEGAR), in-

terpolation, and SMT solving, and with help from user-provided templates that capture

high-level intuitions about the strategy.

We evaluate our method using several challenging case studies, including the “Cinderella-

Stepmother game” — an existing challenge problem for infinite-state graph games that

allows infinite alternation of discrete and continuous choices by the two players — and

games arising out of prior work on program repair [78] and synthesis [118].

Now we summarize the main contributions of the chapter:

• We take on the problem of solving games over state spaces of infinite-state pro-

grams using the power of modern automated software analysis technology.

• We present three deductive proof rules for solving such games under the safety,

reachability, and LTL winning conditions. Our rules are sound and relatively

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 64

complete, and our automata-theoretic rule for LTL games avoids the need to de-

terminize a Büchi automaton.

• We offer a prototype implementation of our rules on top of an existing automated

deduction engine. We illustrate the promise of the system through several case

studies using examples posed in prior work.

This chapter is organized as follows. In Section 6.2, we describe the Cinderella-

Stepmother game as a motivating example. Section 6.3 gives our proof rules for solving

games and proves them correct, i.e., sound and relatively complete. Section 6.4 revisits

the example from Section 6.2 and applies our rules to variants of it; Section 6.5 presents

applications of our rules to repair and synthesis problems from prior work. Section 6.6

presents concrete experimental results. Related work is described in Section 6.7; we

conclude with some discussion in Section 6.8.

6.2 The Cinderella-Stepmother game

In this section, we describe a synthesis problem that motivated this work, and that

we use in a case study later in the chapter. A version of the problem was previously

posed by Rajeev Alur as a challenge problem for the software synthesis community (see

Bodlaender et al. [19] and Hurkens et al. [75] for more on the problem).

The problem involves a turn-based game between the mythical Cinderella, and her

nemesis, the Stepmother. The game setup involves five buckets arranged in a circle.

Each bucket can hold up to c (a constant) units of water; initially, all buckets are empty.

In each round of the game, Stepmother brings 1 unit of additional water and splits

it among the five buckets. If any of the buckets overflow, Stepmother wins. If not,

Cinderella empties two adjacent buckets. Cinderella wins if the game goes on forever.

We can model the Cinderella-Stepmother game using the following symbolic transition

system. Let v be a set of system variables that represent the amount of water in the five

buckets, v = (b1, b2, b3, b4, b5). All the buckets are initially empty — this fact is specified

as the initial condition

init(v) = (b1 = 0 ∧ b2 = 0 ∧ b3 = 0 ∧ b4 = 0 ∧ b5 = 0).

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 65

The transition relation of Stepmother represents a non-deterministic choice of buckets

in which 1 unit of additional water is added:

stepmother(v, v′) = (b′1 + b′2 + b′3 + b′4 + b′5 = b1 + b2 + b3 + b4 + b5 + 1

∧ b′1 ≥ b1 ∧ · · · ∧ b′5 ≥ b5).

The transition relation of the Cinderella player represents a non-deterministic choice of

two consecutive buckets that are emptied.

cinderella(v, v′) =

∨
i∈{1...5}


b′i = 0 ∧ b′(i+1)%5 = 0

∧

(∧
j∈{1..5}

(
j 6= i ∧ j 6= (i+ 1)%5

→ b′j = bj

))  .

The condition that one of the buckets overflows is described by the assertion

overflow(v) = (b1 > c ∨ b2 > c ∨ b3 > c ∨ b4 > c ∨ b5 > c).

Safety game We observe that in the above game, Cinderella wants to enforce a safety

property — specifically, the property G(¬overflow(v)) — in every play of the game.

This property is Cinderella’s winning condition. Games are classified according to the

winning condition of the player for whom we want to compute a strategy. Specifically,

suppose we want to compute a strategy for Cinderella. In that case, we are trying to

solve a safety game.

Reachability game Now suppose we want to compute a strategy for Stepmother

instead. We note that the winning condition for Stepmother is the reachability property

F overflow(v). The game is a reachability game.

LTL and parity games It is easy to define generalizations of the game where the

winning condition for a player is a general Linear Temporal Logic (LTL) property. Such

a game is called an LTL game. LTL games are an extremely challenging class of games —

the problem of solving such games on finite game graphs is 2EXPTIME-complete [103].

The intuitive reason for this hardness is that it requires a conversion from an LTL

formula to a nondeterministic Büchi automaton (an exponential blowup) and then the

determinization of this automaton (another exponential blowup).

An important special case of LTL games is parity games [57]. Here, each state of the

transition system is assigned a color (a number in {1, . . . , N}), and the winning condition

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 66

for a play is that the minimum color seen infinitely often in the play is odd. (The

condition can be stated in LTL in an obvious way.) In Section 6.6, we apply our method

on a parity game generalizing our original game.

Discussion From the determinacy of the classes of graph games that we study [91], it

follows that for every value of c, either Cinderella or Stepmother has a winning strategy

in each of the above games. Now we give some intuitions about what such a winning

strategy would look like in the game as originally stated. The discussion of how to

automatically solve the problem using our method is postponed until Section 6.4.

First note that if c < 1.5 units, then Stepmother wins. Her strategy is as follows: in

the first round, she divides 1 unit into two non-adjacent buckets. Then no matter what

Cinderella does, there will be a bucket with 0.5 units at the end of the round, and

Stepmother can cause a spill in second round by adding 1 unit in that bucket. If c ≥ 3

units, Cinderella wins: she can just select the buckets in a round-robin order, emptying

two buckets in each round, and this strategy is winning no matter what Stepmother

does.

The problem becomes more challenging for 1.5 ≤ c < 3. We leave this case as a challenge

for the reader — it will soon be apparent that it is highly nontrivial. In such cases, fully

automated strategy synthesis seems unrealistic, and computer-assisted proofs driven

by user-provided hints or templates are more plausible. This is the strategy that our

approach takes.

6.3 Proof rules

In this section, we present proof rules for three kind of games: safety, reachability and

parity/LTL games. These proof rules are defined with respect to the player Eve and

conclude that Eve has a winning strategy by imposing implication and well-foundedness

conditions on auxiliary assertions over system variables. For each proof rule we prove its

soundness, i.e., a winning strategy exists if the premises are satisfied by some auxiliary

assertions, and relative completeness, i.e., if a winning strategy exists then auxiliary

assertions satisfying the premises exist under an assumption that the assertion language

of our choice is sufficiently expressive. Such correctness criteria are standard for temporal

proof rules [87].

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 67

Find assertion inv(v) such that:

S1 : init(v) → inv(v)

S2 : inv(v) ∧ adam(v, v′)→ safe(v′) ∧ ∃v′′ : eve(v′, v′′) ∧ inv(v′′)

S3 : inv(v) → safe(v)

(init(v), eve(v, v′), adam(v, v′)) |= G safe(v)

Figure 6.1: Proof rule RuleSafe for a safety game.

6.3.1 Safety games

We consider a safety game for which Eve has a winning strategy if only states from

safe(v) are visited by all plays, i.e., the winning condition is given by a formula G safe(v).

We present the corresponding proof rule in Figure 7.2. The proof rule relies on an

invariant assertion inv(v) that represents a set of states reached by Eve in a winning

strategy. We connect the invariant assertion with the reachable states by resorting to

reasoning by induction on the number of steps to reach a state. The condition S1 requires

that the initial state of the game are considered in inv(v). S2 represent the induction

step. Here, we require that for every step from inv(v) executed by Adam there exist a

step by Eve that leads back to inv(v). Of course, since the winning condition requires

that all states of a play need to satisfy safe(v), we require that all states reached after

Adam made a step as well as inv(v) satisfy the assertion safe(v). The former condition

is enforced by a conjunct safe(v′) in the head of S2. The later condition is guaranteed

by S3.

Theorem 5 (Correctness of rule RuleSafe). The proof rule RuleSafe is sound and

relatively complete.

Proof. We split the proof into two parts: soundness and completeness.

Soundness We prove the soundness by contradiction. Assume that there exists an

assertion inv(v) that satisfies the premises of RuleSafe, yet the conclusion of Rule-

Safe does not hold. That is, there is no winning strategy for Eve. Hence, there exists

a strategy σ for Adam in which each play reaches a state that violates safe(v). This

strategy σ alternates between existential choices of Adam and universal choices of Eve.

Let aux (v) be a set of states for which σ provides existentially chosen successors wrt.

Adam.

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 68

We derive a contradiction by relying on a certain play π that is determined by σ. The

play π is constructed iteratively. We start from some root state s1 of σ, which also

satisfies the initial condition init(v). Note that s1 |= inv(v), due to S1, and s1 |= aux (v)

due to σ. Each iteration round extends the play obtained so far by two states, say

s′ and s′′. We maintain a condition that each such s′′ satisfies inv(v) and aux (v).

Let s be the last state of the play π constructed so far. Due to our condition, we

have s |= inv(v) ∧ aux (v). Then, σ determines a successor state s′ such that (s, s′) |=
adam(v, v′), and S2 guarantees that there exists a state s′′ such that (s′, s′′) |= eve(v, v′)

and s′′ |= inv(v). Furthermore, s′′ satisfies aux (v) due to σ. Finally, from S2 and S3

follows that s′ |= safe(v) and s′′ |= safe(v), respectively.

By iteratively constructing π using the above step we obtain a play that satisfies the

strategy σ. Thus, we obtain a contradiction, since according to our construction all

states in π satisfies safe(v), however σ guarantees that each play eventually reaches a

state that violates safe(v).

Completeness Assume that Eve has a winning strategy, say σ, i.e., the conclusion of

RuleSafe holds. We prove the completeness claim by showing how to construct inv(v)

that satisfies the premises of RuleSafe.

This strategy σ alternates between universal choices of Adam and existential choices of

Eve. Let inv(v) be a set of states for which σ provides universally chosen successors

wrt. Adam. Since σ is a winning strategy, all states satisfying inv(v) also satisfy safe(v),

i.e., inv(v) satisfies S3. inv(v) satisfies S1, since σ guarantees that Eve wins from every

initial state. Now we consider an arbitrary state s that satisfies inv(v). σ guarantees

that for every successor s′ of s wrt. Adam there exists a successor s′′ wrt. Eve such that

s′′ |= inv(v). Furthermore, since σ is winning, we have s′ |= safe(v). Thus we conclude

that inv(v) satisfies the condition S2 as well.

6.3.2 Reachability games

In contrast to safety games, the winning condition of reachability games ensures that a

certain set of states called dst(v) is eventually reached by each play, i.e., the winning

condition is given by a formula F dst(v). Reasoning about such eventuality properties

demands the use of well-founded orders.

We present a rule RuleReach for proving that Eve has a winning strategy for a reach-

ability property given by an LTL formula Fdst(v) in Figure 6.2. RuleReach requires

an invariant assertion inv(v) together with a binary relation round(v, v′). Similarly to

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 69

Find assertions inv(v) and round(v, v′) such that:

R1 : init(v) → inv(v)

R2 : inv(v) ∧ ¬dst(v) ∧ adam(v, v′) ∧ ¬dst(v′) → ∃v′′ : eve(v′, v′′)∧
inv(v′′) ∧ round(v, v′′)

R3 : wf (round(v, v′))

(init(v), eve(v, v′), adam(v, v′)) |= F dst(v)

Figure 6.2: Proof rule RuleReach for a reachability game.

RuleSafe, we use inv(v) to keep track of states that are reached by Eve. This is cap-

tured by R1 and a part of R2. To ensure that Adam makes progress when aiming at the

set dst(v) we keep track of pairs of states towards reaching it in round(v, v′), see the last

conjunct in R2. We note that the proof rule only imposes conditions when dst(v) is not

yet reached, as encoded by the second conjunct in R2. Finally, to ensure that dst(v) is

eventually reached by each play we require that round(v, v′) represents a well-founded

relation. Thus, it is impossible to return to inv(v) ∧ ¬dst(v) infinitely many times.

Theorem 6 (Correctness of rule RuleReach). The proof rule RuleReach is sound

and relatively complete.

Proof. We split the proof into two parts: soundness and completeness.

Soundness We prove the soundness by contradiction. Assume that there exist asser-

tions inv(v) and round(v, v′) that satisfy the premises of RuleReach, yet the conclusion

of RuleReach does not hold. That is, there is no winning strategy for Eve. Hence,

there exists a strategy σ for Adam in which each play never reaches a state that satis-

fies dst(v). This strategy σ alternates between existential choices of Adam and universal

choices of Eve. Let aux (v) be a set of states for which σ provides existentially chosen

successors wrt. Adam. Note that the implication aux (v) → ¬dst(v) is valid, since no

play determined by σ visits dst(v).

We derive a contradiction by relying on a certain play π that is determined by σ. The

play π is constructed iteratively, in a similar way as done in the proof of Theorem 5.

We start from some root state s1 of σ, which satisfies the initial condition init(v). Note

that s1 |= inv(v), due to R1, and s1 |= aux (v) due to σ. Each iteration round extends

the play obtained so far by two states, say s′ and s′′. We maintain a condition that each

such s′′ satisfies inv(v) and aux (v). Let s be the last state of the play π constructed so

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 70

far. Due to our condition, we have s |= inv(v)∧ aux (v). Then, σ determines a successor

state s′ such that (s, s′) |= adam(v, v′), and R2 guarantees that there exists a state s′′

such that (s′, s′′) |= eve(v, v′) and s′′ |= inv(v). Furthermore, s′′ satisfies aux (v) due

to σ. Finally, from R2 also follows that s′ |= ¬dst(v) and (s, s′′) |= round(v, v′).

By iteratively constructing π = s1, s2, . . . using the above step we obtain a play that

satisfies the strategy σ. Thus, there is an infinite sequence of states s1, s3, s5, . . . that

takes states occurring at odd positions in π such that each pair of consecutive states

s2i−1 and s2i+1 is connected by round(v, v′), for i ≥ 1. The existence of such an infinite

sequence contradicts the well-foundedness condition imposed by R3.

Completeness Assume that Eve has a winning strategy, say σ, i.e., the conclusion

of RuleReach holds. We prove the completeness claim by showing how to construct

inv(v) and round(v, v′) that satisfy the premises of RuleReach.

The strategy σ alternates between universal choices of Adam and existential choices of

Eve. Each play π = s1, s2, s3, . . . contributes elements to inv(v) and round(v, v′) as

follows. Let k be the position of the first occurrence of a state in π that satisfies dst(v),

i.e., we have sk |= dst(v) and si 6|= dst(v) for each i ∈ 1..k − 1. Such position exists,

since the play satisfies Fdst(v). Then, for each i ≥ 1 such that 2i − 1 ≤ k we add the

state s2i−1 to inv(v). Furthermore, for each i ≥ 1 such that 2i+ 1 ≤ k we add the pair

of states s2i−1 and s2i+1 to round(v, v′).

We note that the above construction ensures that for each pair of states s and s′′ such

that (s, s′′) |= round(v, v′′) holds: i) we have s 6|= dst(v), and ii) there exists a state s′

such that s′ 6|= dst(v), (s, s′) |= adam(v, v′), and (s′, s′′) |= eve(v, v′).

We observe that inv(v) satisfies R1, since σ guarantees that Eve wins from every initial

state. Now we consider each pair of states s and s′ that satisfies the left hand side of R2.

σ guarantees that there exists a successor s′′ wrt. Eve. Regardless whether s′′ |= dst(v)

the above construction guarantees that the right-hand side of R2 is satisfied by assigning

s, s′, and s′′ to v, v′, and v′′, respectively.

Now we show by contradiction that round(v, v′) is well-founded. Assume otherwise, i.e.,

there exists an infinite sequence of states s1, s2, . . . induced by round(v, v′). As noted

previously, for each pair of consecutive states si and si+1 there exists an intermediate

state s′i such that the sequence s1, s
′
1, s2, . . . , si, s

′
i, si+1, . . . is a play. Since this play does

not visit any state that satisfies dst(v), we obtain a contradiction to the assumption that

Eve has a winning strategy. Hence, we conclude that R3 is satisfied.

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 71

6.3.3 LTL and parity games

Now we show how to solve LTL games and, as a special case, parity games. To state

the parity winning condition we assume that the set of all states is partitioned into N

subsets that are denoted by the assertions p1(v), . . . , pN (v). Thus, p1(v)∨ · · · ∨ pN (v) is

valid and for each 1 ≤ i < j ≤ N we have that pi(v) ∧ pj(v) is unsatisfiable. Without

loss of generality we assume that N is an odd number.

The parity condition states that the system wins the game for a given computation

if among the subsets pi1(v), . . . , piK (v) that are visited infinitely many times by the

computation the minimal identifier is odd, i.e., min{i1, . . . , iK} is odd. We can represent

the parity condition by the following LTL formula ϕ.

ϕ = GFp1(v)

∨ GFp3(v) ∧ FG¬(p1(v) ∨ p2(v))

· · ·

∨ GFpN (v) ∧ FG¬(p1(v) ∨ · · · ∨ pN−1(v))

The first disjunct states that p1(v) is visited infinitely often, while the second disjunct

states that p3(v) is visited infinitely often and there exists a suffix that neither visits

p1(v) nor p2(v). The last disjunct states that pN (v) is visited infinitely often and there

is a suffix that visits no other subset.

To solve games where the winning condition is an LTL formula ϕ, we negate ϕ and apply

a standard technique, e.g., [56], for translating LTL formulas to Büchi automata on the

resulting ¬ϕ. Let B be the obtained automaton. We represent B using assertions over

the program counter of the automaton pcB and the system variables v. Let the initial

condition of the automaton be given by initB(pcB). We represent the transition relation

of B by nextB(pcB, v, pc′B). This transition relation evolves the value of the program

counter of the automaton while taking into consideration the current state of the system

given by a valuation of v. Finally, we assume that accB(pcB) represents the accepting

states of the automaton.

Given a sequence of states π = s1, s2, . . . we define a run of B on π to be an infinite

sequence of automaton states q0, q1, q2, . . . such that q0 |= initB(pcB) and (qi−1, si, qi) |=
nextB(pcB, v, pc′B) for each i ≥ 1. A run is accepting wrt. the Büchi acceptance condition

if it contains infinitely many states that satisfy accB(pcB). The automaton B accepts a

play π if there exists an accepting run on π. Note that our construction ensures that if

B accepts π then π 6|= ϕ.

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 72

Find assertions inv(w), aux (w,w′, v′′), round(w,w′, w′′), and fair(w,w′) where
w = (v, pcB) such that:

B1 : init(v) ∧ initB(pcB) ∧ nextB(pcB, v, pc′B) → inv(v, pc′B)

B2 : inv(w) ∧ adam(v, v′) ∧ nextB(pcB, v
′, pc′B) → ∃v′′ : eve(v′, v′′) ∧ aux (w,w′, v′′)

B3 : aux (w,w′, v′′) ∧ nextB(pc′B, v
′′, pc′′B) → inv(w′′) ∧ round(w,w′, w′′)

B4 : round(w,w′, w′′) ∧ (accB(pcB) ∨ accB(pc′B))→ fair(w,w′′)

B5 : fair(w,w′) ∧ round(w′, w′′, w′′′) → fair(w,w′′′)

B6 : wf (fair(w,w′))

(init(v), eve(v, v′), adam(v, v′)) |= ϕ

Figure 6.3: Proof rule BüchiTerm for an LTL game.

A proof rule BüchiTerm for LTL games based on the above automata-theoretic ap-

proach [117] is presented in Figure 6.3. The winning condition is given by an LTL

formula ϕ. BüchiTerm requires that the negation of the winning condition is trans-

lated into a Büchi automaton B, which together with the system description appears

in the proof rule. An interesting property of this proof rule is that it relies on a non-

deterministic Büchi automaton representation of the negated winning condition, and

does not require any determinization via Rabin, Muller, or Streett acceptance condi-

tions.

We consider a synchronous parallel product of the transition relations of the players

and the transition relation of the Büchi automaton, which is expressed in the proof rule

by appropriate conjunctions. We use w = (v, pcB) to refer to the vector of the system

variables and the program counter of the automaton.

The existence of a winning strategy for Eve depends on the identification of aux-

iliary assertions inv(w), aux (w,w′, v′′), round(w,w′, w′′), and fair(w,w′) as follows.

inv(w) keeps track of the system states reached by Adam, similarly to RuleSafe and

RuleReach. To deal with the non-determinism in the transition relation of the au-

tomaton, we introduce an intermediate book-keeping assertion aux (w,w′, v′′), which

allows us to decouple the treatment of the automaton state q′′ from the selection of s′′.

round(w,w′, w′′) contains all triples of adjacent program states occurring in plays. Here,

it is more fine-grained than the counterpart in RuleReach, as we keep track of inter-

mediate states visited by Eve instead of only considering the combined steps (visited

by Adam). For keeping track of acceptance fair(w,w′) contains all pairs of program

states that describe play segments visiting Büchi accepting states at least once. We

derive fair(w,w′) from round(w,w′, w′′) using transitive closure-like conditions B4 and

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 73

B5. Finally, the well-foundedness condition B6 shows that accepting states cannot be

visited infinitely many times.

Theorem 7 (Correctness of rule BüchiTerm). The proof rule BüchiTerm is sound

and relatively complete.

Proof. We split the proof into two parts: soundness and completeness.

Soundness We prove the soundness by contradiction. Assume that there exist asser-

tions inv(w), aux (w,w′, v′′), round(w,w′, w′′), and fair(w,w′) that satisfy the premises

of BüchiTerm, yet the conclusion of BüchiTerm does not hold. That is, there is

no winning strategy for Eve. Hence, there exists a strategy σ for Adam in which each

play violates ϕ. This strategy σ alternates between existential choices of Adam and

universal choices of Eve. We derive a contradiction by relying on a certain set of trees

whose branches are sequences (s1, q1), (s2, q2), . . . that are jointly determined by σ and

the assumed assertions (via BüchiTerm).

The requisite branches are constructed iteratively, in a similar way as the play con-

struction is done in the proof of Theorem 5. We start from some root state s1 of σ,

which satisfies the initial condition init(v). Then the play is extended from a state s by

considering an existential choice s′ offered by σ that is followed by an existential choice

s′′ offered by B2. We obtain appropriate runs q0, q1, . . . by applying B1, B2, and B3

for values of v, v′, and v′′ determined by currently considered s, s′, and s′′, respectively.

Since the automaton B is non-deterministic, for each s, s′, and s′′ there is a set of ap-

propriate automaton states. Considering each choice leads to a tree construction, as

described below.

First, we consider s1 and B1, and for each q1 such that there exists q0 with init(s1) ∧
initB(q0)∧nextB(q0, s1, q1) we add a (s1, q1) as a root to our tree. We remember the state

q0 that was used to create each (s1, q1). Then, for each tree leaf (s, q) we perform the

following tree expansion. First, we consider the state s′ that σ provides as a successor

of s. Then, we rely on B2, and for each q′ such that nextB(q, s′, q′) holds we add (s′, q′)

as a child node of (s, q). Furthermore, for given s and q, and each s′ and q′ we take s′′

such that eve(s′, s′′) ∧ aux (s, q, s′, q′, s′′). Now we rely on B3, and for each q′′ such that

nextB(q′, s′′, q′′) holds we add (s′′, q′′) as a child node of the corresponding (s′, q′).

By applying the above tree expansion steps we construct a set of trees where every branch

is a sequence (s1, q1), (s2, q2), . . . that comes with the corresponding initial automaton

state q0. Note that s1, s2, . . . is a play determined by σ, hence it violates ϕ. Thus, there

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 74

exists a branch for which the sequence q0, q1, . . . is an accepting run of B for the cor-

responding play determined by the branch. Let (si1 , qi1), (si2 , qi2), . . . be a subsequence

such that qij |= accB(pcB) for each j ≥ 1. Then, each pair (sij , qij) contributes

((sij , qij), (sij+1 , qij+1))

(or its closest neighbour visited by Adam) to fair(w,w′). Thus, the condition B6 is

violated.

Completeness Assume that Eve has a winning strategy, say σ, i.e., the conclusion of

BüchiTerm holds. We prove the completeness claim by showing how to construct

inv(w), aux (v, w′, v′′), round(v, w′, w′′), and fair(w,w′) that satisfy the premises of

BüchiTerm.

The strategy σ alternates between universal choices of Adam and existential choices

of Eve. Each play π = s1, s2, s3, . . . contributes elements to inv(w), aux (v, w′, v′′),

and round(w,w′, w′′) in the following way through an appropriate sequence of automa-

ton states q0, q1, q2, Since π |= ϕ, we note that π is not accepted by B. Hence,

either there is an infinite run q0, q1, q2, . . . that is not accepting, or the exists a fi-

nite run q0, . . . , qn that cannot be extended (i.e., there is no automaton state qn+1

such that nextB(qn, sn, sn+1)). In either case, for each i ≥ 0 (and 2i + 1 ≤ n if the

run is finite) we let (s2i−1, q2i−1) be an element of inv(w), (s2i−1, q2i−1, s2i, q2i, s2i+1)

be an element of aux (w,w′, v′′), and (s2i−1, q2i−1, s2i, q2i, s2i+1, q2i+1) be an element

of round(w,w′, w′′). Then we define fair(w,w′) for the obtained round(w,w′, w′′) as

the least solution of B4 and B5.

Since the run is not accepting, it visits accepting states only finitely many times. Hence,

fair(w,w′) is well-founded.

6.4 Case study: Cinderella-Stepmother games

In this section we illustrate our constraint-based approach to solving games applying it

to the Cinderella-Stepmother game introduced in Section 6.2. We consider five variants

of this game corresponding to different winning conditions. In Section 6.6 we report on

running times required for solving these games by applying our method.

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 75

6.4.1 Games with Cinderella’s safety objective

In these games, we attempt to obtain winning strategies for Cinderella in her at-

tempt to keep the buckets from overflowing. The winning condition for Cinderella is

G ¬overflow(v). As mentioned in Section 6.2, the Cinderella player has simple winning

strategies for bucket capacity c ≥ 3. For values 2 ≤ c ≤ 3, the strategies are more

involved. (For values c ≤ 2 there are no strategies for the player Cinderella to win the

game).

Round strategy We define the first game using the value c = 3 for the bucket ca-

pacity. A winning strategy might follow an alternation of consecutive buckets that are

emptied. Accordingly, we use an auxiliary variable r for a pair of buckets to be emptied,

to remember the previous choice made by the Cinderella player. The tuple of game vari-

ables contains the five bucket variables from v and is extended with the round variable

r as follows: w = (b1, b2, b3, b4, b5, r). The initial states assertion sets the round variable

to r = 1. We let Adam play the role of Stepmother and therefore the transition relation

of Adam is based on the assertion stepmother(v, v′), while the transition relation of Eve

is given by cinderella(v, v′). (Both constraints are given in Section 6.2.)

init(w) = (b1 = 0 ∧ · · · ∧ b5 = 0 ∧ r = 1)

eve(w,w′) = cinderella(v, v′)

adam(w,w′) = (stepmother(v, v′) ∧ r′ = r)

Considering the safety condition obj (w) = G(¬overflow(v)), we instantiate the proof

rule from Figure 7.2 as follows.

(init(w), adam(w,w′), eve(w,w′)) |= obj (w)

There exists a strategy for Eve provided that the premises of the proof rule are satisfied.

These premises are Horn clauses over the auxiliary assertion inv(w). We apply a solver,

e.g., E-HSF, to find a solution for the auxiliary assertion. The clauses S1 and S3 are

universally quantified over the game variables, while the existentially quantified clause

S2 is skolemized in the E-HSF approach. We use the skolem relation rel(w,w′, w′′) to

denote the witness constraint corresponding to the existentially quantified variables w′′.

inv(w) ∧ stepmother(v, v′) ∧ r′ = r ∧ rel(w,w′, w′′)→

cinderella(v′, v′′) ∧ inv(w′′)

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 76

E-HSF requires a template for the skolem relation and we present below the intuition

behind this constraint. For each of the five disjuncts from cinderella(v, v′) transition

relation, we add guards (one guard exclusive to the others) and update the value of

the round variable. We use c1(v, v
′) to c5(v, v

′) to denote the five disjuncts from the

transition relation of the Cinderella player introduced in Section 6.2. We obtain the

following template constraint.

Templ(rel)(w,w′, w′′) = (r′ = 1 ∧ r′′ =?1 ∧ c1(v′, v′′) ∨

r′ = 2 ∧ r′′ =?2 ∧ c2(v′, v′′) ∨

r′ = 3 ∧ r′′ =?3 ∧ c3(v′, v′′) ∨

r′ = 4 ∧ r′′ =?4 ∧ c4(v′, v′′) ∨

r′ = 5 ∧ r′′ =?5 ∧ c5(v′, v′′))

The template parameters are denoted by “?”-variables and different subscripts indicate

distinct template parameters.

Our approach is able to synthesize automatically the values used to update the round and

implicitly the order in which the Cinderella player should alternate emptying the buckets.

E-HSF returns the solution ?1 = 4, ?2 = 1, ?3 = 1, ?4 = 3, ?5 = 1. Corresponding to this

solution, the strategy for the Cinderella player consists of a repeating sequence of three

player moves:

1. Since initially r = 1 and the first disjunct is enabled, decide to empty buckets 1

and 2 and update the round variable r′′ = 4.

2. Since the disjunct r′ = 4∧ r′′ =?4 is enabled, decide to empty buckets 4 and 5 and

update the round variable to r′′ = 3.

3. Since the disjunct r′ = 3∧ r′′ =?3 is enabled, decide to empty buckets 3 and 4 and

update the round variable to r′′ = 1.

After these three moves, r has value 1, the first disjunct is again enabled and the

strategy will continue with the first move/decision above. This strategy ensures that

the Cinderella player empties often enough all the buckets and therefore the Stepmother

player cannot enforce an overflow. This game is won by the Cinderella player based on

the round strategy described above.

Second strategy We show how our approach can be used to obtain a strategy for the

case of the game that is more difficult for Cinderella to win, i.e., c = 2.

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 77

We fix the roles of the two players similar to the previous paragraph: eve(v, v′) =

cinderella(v, v′) and adam(v, v′) = stepmother(v, v′). To explain the rationale behind

the Cinderella’s decisions for this case, we refer to the proof rule from Figure 7.2. We

repeat the second clause S2 instantiated for the two players of the C-S game:

inv(v) ∧ stepmother(v, v′)→ safe(v′) ∧ ∃v′′ : cinderella(v′, v′′)

∧ inv(v′′)

To change the state of the system from v′ to v′′, the strategy for the Cinderella player

takes into consideration her previous move (reflected in variables v) and the reply by

Stepmother (reflected in variables v′). Therefore the template for the strategy considers

five cases depending on which buckets the Cinderella player may have emptied in the

previous turn:

Templ(rel)(v, v′, v′′) = (b1 = 0 ∧ b2 = 0 ∧ T12(v′, v′′) ∨

b2 = 0 ∧ b3 = 0 ∧ T23(v′, v′′) ∨

b3 = 0 ∧ b4 = 0 ∧ T34(v′, v′′) ∨

b4 = 0 ∧ b5 = 0 ∧ T45(v′, v′′) ∨

b5 = 0 ∧ b1 = 0 ∧ T51(v′, v′′)).

The Tij conjuncts refer to non-obvious knowledge and relate to an invariant stating that

each pair of non-adjacent buckets should have total contents at most 1 [75]. The first

part of the template, i.e., T12, is based on the intuition that if in the previous round

Cinderella emptied buckets 1 and 2 (b1 = 0 ∧ b2 = 0), then during the next round she

will decide to empty another pair of buckets. That is, either the pair of buckets 3 and

4 (b′′3 = 0 ∧ b′′4 = 0) or the pair of buckets 4 and 5 (b′′4 = 0 ∧ b′′5 = 0) will be emptied.

However, the condition on which to decide if to empty buckets 3 and 4 or buckets 4

and 5 is not straightforward. We use template parameters and leave the decision to be

automated by our game solving approach. The formula T12 is provided as follows.

T12(v
′, v′′) = (?5 ∗ b′5+?2 ∗ b′2 ≤ 1 ∧ b′′3 = 0 ∧ b′′4 = 0 ∨

?1 ∗ b′1+?3 ∗ b′3 ≤ 1 ∧ b′′4 = 0 ∧ b′′5 = 0)

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 78

Following a similar argument, we obtain the formulas that complete the definition of the

template Templ(rel)(v, v′, v′′):

T23(v
′, v′′) = (?1 ∗ b′1+?3 ∗ b′3 ≤ 1 ∧ b′′4 = 0 ∧ b′′5 = 0 ∨

?2 ∗ b′2+?4 ∗ b′4 ≤ 1 ∧ b′′5 = 0 ∧ b′′1 = 0)

T34(v
′, v′′) = (?2 ∗ b′2+?4 ∗ b′4 ≤ 1 ∧ b′′5 = 0 ∧ b′′1 = 0 ∨

?3 ∗ b′3+?5 ∗ b′5 ≤ 1 ∧ b′′1 = 0 ∧ b′′2 = 0)

T45(v
′, v′′) = (?3 ∗ b′3+?5 ∗ b′5 ≤ 1 ∧ b′′1 = 0 ∧ b′′2 = 0 ∨

?4 ∗ b′4+?1 ∗ b′1 ≤ 1 ∧ b′′2 = 0 ∧ b′′3 = 0)

T51(v
′, v′′) = (?4 ∗ b′4+?1 ∗ b′1 ≤ 1 ∧ b′′2 = 0 ∧ b′′3 = 0 ∨

?5 ∗ b′5+?2 ∗ b′2 ≤ 1 ∧ b′′3 = 0 ∧ b′′4 = 0).

The template parameters are marked as before by “?”-variables and we aim to obtain

solutions for the five template parameters ?1, ?2, ?3, ?4, ?5. Our approach is indeed able

to synthesize automatically values for these parameters. The E-HSF engine returns the

solutions ?1 = 1, ?2 = 1, ?3 = 1, ?4 = 1, ?5 = 1. The resulting strategy for the Cinderella

player guarantees that no state with overflow can be reached. For a different perspective,

we refer the interested reader to an article on (non-automated) reasoning and invariants

needed to establish strategies for the Cinderella-Stepmother game similar to the ones

we synthesize [75].

6.4.2 Game with Stepmother’s reachability objective

We continue illustrating our approach with the Cinderella-Stepmother game, this time

based on a reachability objective: the winning condition for the Stepmother player

requires that a state with overflow is reached, obj (v) = F overflow(v). For this game, we

use the bucket capacity c = 1.4, a value for which the Stepmother has indeed a winning

strategy. To derive this strategy, we instantiate the proof rule for the reachability game

as follows.

init(v) = (b1 = 0 ∧ · · · ∧ b5 = 0)

eve(v, v′) = stepmother(v, v′)

adam(v, v′) = cinderella(v, v′)

Next we provide a template corresponding to the existentially quantified clause. The

insight behind the template is that the quantity of water from each bucket increases

during the turn of Stepmother, but without specifying the amount, i.e., (b′′i = b′i+?i ∧

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 79

?i ≥ 0).

Templ(rel)(v, v′, v′′) = (?1 + · · ·+?5 = 1 ∧∧
i∈{1..5}

(b′′i = b′i+?i ∧?i ≥ 0)

Our approach computes the auxiliary assertions that are required by the reachability

proof rule and a witness for the existential quantifier. The witness instantiates the

template parameters and represents the Stepmother’s strategy to ensure that the buckets

eventually overflow no matter what moves are made by the Cinderella player.

rel(v, v′) = (b′1 = b1 + 0.8 ∧ b′2 = b2

∧ b′3 = b3 + 0.1 ∧ b′4 = b4 ∧ b′5 = b5 + 0.1)

In this case, since the addition of water is done in non-adjacent buckets, e.g., b1 and b3,

eventually the game reaches an overflow state, and the Stepmother is the player to win

this game.

6.4.3 Games with Cinderella’s LTL objectives

Apart from games with safety and reachability objectives, our approach is able to handle

games with more general LTL objectives. For this game, we use the following player

roles.

init(v) = (b1 = 0 ∧ · · · ∧ b5 = 0)

eve(v, v′) = cinderella(v, v′)

adam(v, v′) = stepmother(v, v′)

We use the value c = 1.4 for the bucket capacity, similar to Section 6.4.2. As already

explained, with this value Stepmother has a strategy to win the game with the objective

ϕ(v) = Foverflow(v). Consequently, Cinderella does not have a strategy to win the game

with the objective set to the complement formula, i.e., ¬ϕ(v) = G ¬overflow(v). For this

section, we formalize a winning condition that is a weaker logical formula than ¬ϕ(v)

for which Cinderella has a winning strategy. The objective constraint GF ¬overflow(v)

states that an overflow state does not occur infinitely often in the plays of the game.

More generally, we use color to indicate the most significant bucket for which an overflow

occurs.

• A state without overflow: (color = 0).

• A state with overflow such that i is the smallest index of those that correspond to

buckets that have overflown: (color = i).

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 80

We group the states of the system based on the truth value of the predicates color = i

as follows.

p0(v) = (color = 0) = (b1 ≤ 1.4 ∧ · · · ∧ b5 ≤ 1.4)

p1(v) = (color = 1) = (b1 > 1.4)

p2(v) = (color = 2) = (b1 ≤ 1.4 ∧ b2 > 1.4)

p3(v) = (color = 3 ∨ color = 4 ∨ color = 5) = . . .

A winning condition corresponding to a value i ensures that states from pi(v) occur

infinitely often in the plays of the system, and that i is the smallest value for which

states occur infinitely often.

win(v, i) = (GF pi(v) ∧
∧

j∈{0,..,i−1}

FG ¬pj(v))

Our approach for solving games with LTL objectives proceeds in three steps: 1) com-

plement the LTL formula ϕ representing the winning condition; 2) construct a Büchi

automaton corresponding to the complemented formula ¬ϕ; 3) instantiate the proof rule

from Figure 6.3 using the Büchi automaton representation.

LTL game 1 For the first LTL game, we define the objective for the Cinderella

player obj (v) = win(v, 0) = GF p0(v). We complement the objective formula to obtain

FG ¬p0(v) = FG overflow(v), then construct the Büchi automaton corresponding to

the complemented formula as follows.

initB(pcB) = (pcB = 0)

nextB(pcB, v, pc′B) = (pcB = 0 ∧ pc′B = 0 ∨

pcB = 0 ∧ pc′B = 1 ∧ overflow(v) ∨

pcB = 1 ∧ pc′B = 1 ∧ overflow(v))

accB(pcB) = (pcB = 1)

We instantiate the proof rule from Figure 6.3 as follows.

(init(v), adam(v, v′), eve(v, v′)) |= obj (v)

There exists a strategy for Eve provided that the premises of the proof rule

are satisfied. These premises are Horn clauses over the auxiliary assertion

inv(w), aux (w,w′, v′′), round(w,w′, w′′), and fair(w,w′). We apply E-HSF to find a

solution for the auxiliary assertions. The clause B2 is an existentially quantified clause.

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 81

By skolemization of the existential clause B2 we obtain the following.

inv(w) ∧ stepmother(v, v′) ∧ nextB(pcB, v, pc′B)

∧ rel(w,w′, v′′)→ cinderella(v′, v′′) ∧ aux (w,w′, v′′)

Using the template described in the paragraph ”Second strategy” from Section 5.1, our

approach is able to derive solutions for the auxiliary assertions and the following template

parameters ?1 =?2 =?3 =?4 =?5 = 1. We conclude that Cinderella is the player to win

this game, and that her strategy ensures that states without overflow occur infinitely

often in the plays of the game.

LTL game 2 For the second LTL game, we define the objective for the Cinderella

player win(v, 0) ∨ win(v, 2). The objective for the Stepmother player is win(v, 1) ∨
win(v, 3). The formula corresponding to the Cinderella’s objective:

ϕ = (GF p0(v) ∨ (GF p2(v) ∧ FG ¬p1(v) ∧ FG ¬p0(v))).

The complemented formula is

¬ϕ = (FG ¬p0(v) ∧ (FG ¬p2(v) ∨GF p1(v) ∨GF p0(v))).

The Büchi automaton corresponding to the complemented formula contains 10 distinct

control states, from which two are accepting states. Using our proof rule, we are able to

compute automatically auxiliary assertions and obtain that the same second strategy is

winning for the Cinderella player.

Note that for the player Cinderella, the LTL game 2 (with objective win(v, 0)∨win(v, 2))

is easier to win than the LTL game 1 (with objective win(v, 0)). However, the relation

between the two objectives is not immediately usable in a deductive approach like ours.

We presented both LTL games 1 and 2, since our approach based on the proof rule from

Figure 6.3 constructs different Buechi automata and different auxiliary assertions for the

two objectives.

6.5 Case study: program repair/synthesis games

In this section we illustrate how our constraint-based approach to solving games applies

to the synthesis of reactive programs from temporal specifications. We consider synthesis

problems obtained from program repair questions, see Section 6.5.1 and Section 6.5.2,

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 82

as well as inference of thread synchronization, see Section 6.5.3. In Section 6.6 we report

on running times required for solving these games by applying E-HSF.

6.5.1 Program repair game with safety objective

We model program repair as a game following [78]. That is, given a set of suspect state-

ments, we look for a modification of those program statements such that the modified

program satisfies its specification. For the first repair game, we assume that a program is

given by a tuple (init(v),next(v, v′), error(v)) that represents initial states, a transition

relation, and error states, respectively.

As an example we consider the program shown in Figure 3 in [78]. The program has

three program variables v = (l, gl , pc). The variable l models a lock, the variable gl is

used to keep track of the status of the lock, while the variable pc is the program counter

variable. The initial states of the program are

init(v) = (gl = 0 ∧ l = 0 ∧ pc = `0).

We show the control-flow graph of the program below.

`0

`2 `4

`5 `6

ρ1 ρ2

ρ3
ρ4 ρ5

ρ6

ρ7

The transition relation is defined as follows.

ρ1(v, v
′) = (pc = `0 ∧ pc′ = `2 ∧ l′ = l ∧ gl ′ = gl)

ρ2(v, v
′) = (pc = `0 ∧ pc′ = `4 ∧ l′ = l ∧ gl ′ = gl)

ρ3(v, v
′) = (pc = `2 ∧ pc′ = `4 ∧ l ≤ 0 ∧ l′ = 1)

ρ4(v, v
′) = (pc = `4 ∧ pc′ = `5 ∧ gl 6= 0 ∧ l′ = l ∧ gl ′ = gl)

ρ5(v, v
′) = (pc = `4 ∧ pc′ = `6 ∧ gl = 0 ∧ l′ = l ∧ gl ′ = gl)

ρ6(v, v
′) = (pc = `5 ∧ pc′ = `6 ∧ l ≥ 1 ∧ l′ = 0 ∧ gl ′ = gl)

ρ7(v, v
′) = (pc = `6 ∧ pc′ = `0 ∧ l′ = l)

next(v, v′) = (ρ1(v, v
′) ∨ · · · ∨ ρ7(v, v′))

Note that in ρ3(v, v
′) and ρ7(v, v

′) the variable gl is assigned a non-deterministic value,

since it is not constrained by the corresponding assertions. The execution of the program

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 83

enters an error state at location `2 if the lock variable l is held, and at location `5 if the

lock variable l is not held, i.e., we have

error(v) = (pc = `2 ∧ l = 1 ∨ pc = `5 ∧ l = 0).

We instantiate the safety game proof rule such that the system role is played by the

program transition relation and the environment role is to provide inputs to the program

(in this case, the program does not expect any inputs).

eve(v, v′) = next(v, v′)

adam(v, v′) = skip(v, v′)

obj (v) = G ¬error(v)

A repair of the program restricts the transition relation of the program such that

G ¬error(v) holds. To this end, we provide a template corresponding to the existentially

quantified clause of the proof rule:

Templ(rel)(v, v′, v′′) = (pc′ = `2 ∧ pc′′ = `4 ∧ gl ′′ =?1

∨ pc′ = `6 ∧ pc′′ = `0 ∧ gl ′′ =?2)

Our algorithm returns the witness for the existential quantifier clause that instantiates

the template parameters ?1 = 1 and ?2 = 0. This corresponds to a repaired program

that assigns the value 1 to gl at location `2, and assigns the value 0 to gl at location `6.

We obtain the same program repair as the solution originally presented in [78].

6.5.2 Concurrent program repair games with safety and response ob-

jectives

We illustrate how our approach can be applied to concurrent program repair problems,

and in particular to repair problems under fairness assumptions. We use the Critical

Section example from Figure 5 in [78] for this purpose. In this example, the assignment

turn1B = false at location `2 is faulty. The goal is to repair this assignment, and hence,

the entire program by checking if there exists an assignment to the variable turn1B

from its domain {true, false} such that the resulting program satisfies certain temporal

properties. These properties are used in directing the repair process towards the correct

version of the program.

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 84

Let (f1a, f1b, t1b, f2a, f2b, t2b) be abbreviations of original variable names (flag1A,

flag1B , turn1B , flag2A, flag2B , turn2B). We encode the original program over vari-

ables v = (pc1, pc2, x, y, f1a, f1b, t1b, f2a, f2b, t2b) using an initial condition init(v) such

that

init(v) = (f1a = 0 ∧ f1b = 0 ∧ t1b = 0 ∧ f2a = 0

∧ f2b = 0 ∧ t2b = 0 ∧ pc1 = `1 ∧ pc2 = `1),

and a transition relation next(v, v′). Since the program is multi-threaded with two

threads, we give next(v, v′) as a disjunction of transition relations of individual threads

next1(v, v
′) ∧ pc′2 = pc2 ∨ next2(v, v

′) ∧ pc′1 = pc1.

For the first thread we define (note that we explicate assignments of a non-deterministic

value to a variable z by z′ = ND and we omit equalities for variables that do not change,

hence, each variable z that does not appear in z′ = . . . is constrained by z′ = z):

next1(v, v
′) = (pc1 = `1 ∧ pc′1 = `2 ∧ f1a ′ = 1 ∨

pc1 = `2 ∧ pc′1 = `3 ∧ t1b′ = ND ∨

pc1 = `3 ∧ f1b = 1 ∧ t1b = 1 ∧ pc′1 = `3 ∨

pc1 = `3 ∧ (f1b = 0 ∨ t1b = 0) ∧ pc′1 = `4 ∨

pc1 = `4 ∧ pc′1 = `5 ∧ f1a ′ = 0 ∨

pc1 = `5 ∧ t1b = 1 ∧ pc′1 = `6 ∧ f2a ′ = 1 ∨

pc1 = `5 ∧ t1b = 1 ∧ pc′1 = `9 ∨

pc1 = `6 ∧ pc′1 = `7 ∧ t2b′ = 1 ∨

pc1 = `7 ∧ f2b = 1 ∧ t2b = 1 ∧ pc′1 = `7 ∨

pc1 = `7 ∧ (f2b = 0 ∨ t2b = 0) ∧ pc′1 = `8 ∨

pc1 = `8 ∧ pc′1 = `9 ∧ f2a ′ = 0 ∨

pc1 = `9 ∧ pc′1 = `1).

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 85

Note that the second disjunct above leaves the value of t1b unrestricted, as denoted

by t1b′ = ND . For the second thread we define:

next2(v, v
′) = (pc2 = `1 ∧ pc′2 = `2 ∧ f1b′ = 1 ∨

pc2 = `2 ∧ pc′2 = `3 ∧ t1b′ = 0 ∨

pc2 = `3 ∧ f1a = 1 ∧ t1b = 0 ∧ pc′2 = `3 ∨

pc2 = `3 ∧ (f1a = 0 ∨ t1b = 1) ∧ pc′2 = `4 ∨

pc2 = `4 ∧ pc′2 = `5 ∧ f2b′ = 1 ∨

pc2 = `5 ∧ pc′2 = `6 ∧ t2b′ = 0 ∨

pc2 = `6 ∧ f2a = 1 ∧ t2b = 0 ∧ pc′2 = `6 ∨

pc2 = `6 ∧ (f2a = 0 ∨ t2b = 1) ∧ pc′2 = `7 ∨

pc2 = `7 ∧ pc′2 = `8 ∧ f2b′ = 0 ∨

pc2 = `8 ∧ pc′2 = `9 ∧ f1b′ = 0 ∨

pc2 = `9 ∧ pc′2 = `1).

In the original problem there are two properties directed by which the program should

be repaired. The first property requires that the two threads do not enter their critical

sections at the same time. This property is specified with the following LTL formula.

ϕ1(v) = G ((pc1 = `4 → pc2 6= `4) ∧

(pc1 = `8 → pc2 6= `7))

The second property requires that neither of the threads can be in a deadlock state.

This property is specified as follows.

ϕ2(v) = G ((pc1 = `3 → F (pc1 = `4)) ∧

(pc1 = `7 → F (pc1 = `8)) ∧

(pc2 = `3 → F (pc2 = `4)) ∧

(pc2 = `6 → F (pc2 = `7)))

Safety game Doing the program repair using the first property amounts to applying

the safety proof rule from Figure 7.2 to find inv(v). Since there is no interaction with

the environment, adam(v, v′) will simply be equivalent with skip(v, v′). To apply our

proof rule, we use next(v, v′) for eve(v, v′) and ϕ1(v) as the winning condition obj . We

use the following template for the existential clause:

Templ(rel)(v, v′, v′′) = (t1b ′′ =?1).

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 86

E-HSF computes the solution ?1 = 1, and correspondingly we obtain a modified ver-

sion of next1(v, v
′) where the non-deterministic assignment t1b ′ = ND from the second

disjunct is replaced by t1b′ = 1.

Fair LTL game The second property relies on fairness assumptions. To deal with the

fairness, we apply a transformation technique from [97] that reduces fair parallelism se-

mantics to the usual parallelism semantics. The idea is to use the equivalence P |=fair Φ

if and only Tfair(P) |= Φ, where P is the original program, Tfair is the fair transforma-

tion function, Tfair(P) is the transformed program with embedded tracking of fairness,

and Φ is the property to check. The transformation does not change the initial states of

the program, but it significantly modifies the semantics of the transition relation of the

program. A counter variable is introduced for each thread from the program, and the

first statement of each loop is strengthened by adding a guard and an update involving

the counter variables. See [97] for details. For our example program, the transformation:

• introduces the counters k1 and k2,

• adds the guard k1 ≤ k2 and the update constraint (k′1 = ND ∧ k′2 = k2 − 1) to the

first, third and ninth disjunct from next1(v, v
′),

• adds the guard k2 ≤ k1 and the update constraint (k′1 = k1 − 1∧ k′2 = ND) to the

first, third and sixth disjunct in next2(v, v
′).

Let initT (v, k1, k2) = init(v) be the initial condition of the transformed program.

We refer to the transformed transition relations as nextT 1(v, k1, k2, v
′, k′1, k

′
2) and

nextT 2(v, k1, k2, v
′, k′1, k

′
2), and present them below.

nextT 1(v, k1, k2, v
′, k′1, k

′
2) =

(pc1 = `1 ∧ pc′1 = `2 ∧ f1a ′ = 1

∧ k1 ≤ k2 ∧ k′1 = ND ∧ k′2 = k2 − 1 ∨

. . . ∨

pc1 = `3 ∧ f1b = 1 ∧ t1b = 1 ∧ pc′1 = `3

∧ k1 ≤ k2 ∧ k′1 = ND ∧ k′2 = k2 − 1 ∨

. . . ∨

pc1 = `7 ∧ f2b = 1 ∧ t2b = 1 ∧ pc′1 = `7

∧ k1 ≤ k2 ∧ k′1 = ND ∧ k′2 = k2 − 1 ∨

. . .)

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 87

nextT 2(v, k1, k2, v
′, k′1, k

′
2) =

(pc2 = `1 ∧ pc′2 = `2 ∧ f1b′ = 1

∧ k2 ≤ k1 ∧ k′1 = k1 − 1 ∧ k′2 = ND ∨

. . . ∨

pc2 = `3 ∧ f1a = 1 ∧ t1b = 0 ∧ pc′2 = `3

∧ k2 ≤ k1 ∧ k′1 = k1 − 1 ∧ k′2 = ND ∨

. . . ∨

pc2 = `6 ∧ f2a = 1 ∧ t2b = 0 ∧ pc′2 = `6

∧ k2 ≤ k1 ∧ k′1 = k1 − 1 ∧ k′2 = ND ∨

. . .)

The second property is more complicated than the first property since it involves nesting

of temporal operators. Like the case for the first property, we assume adam(v, v′) to

be equivalent with skip(v, v′). We make nextT (v, v′) to play the role of eve(v, v′), and

G ((pc1 = `3 → F pc1 = `4) ∧ (pc1 = `7 → F pc1 = `8) ∧ (pc2 = `3 → F pc2 =

`4) ∧ (pc2 = `6 → F pc2 = `7)) is now a winning condition obj .

We reuse the template used for the previous game and we get exactly the same so-

lution. That is, we determine t1b′ = ND to t1b ′ = 1 in the second disjunct of

nextT 1(v, k1, k2, v
′, k′1, k

′
2).

6.5.3 Synthesis of synchronization game with safety objective

Synthesis of synchronization in multi-threaded programs [118] can be automated using

our approach. For illustration, we use the example program from Figure 1 in [118] and

represent it using a tuple (init(v),next(v, v′), error(v)) for the case when three threads

are involved in computation. The program variables are v = (x, y1, y2, z, pc1, pc2, pc3),

the initial states are described by init(v) = (x = 0∧z = 0∧pc1 = `1∧pc2 = `1∧pc3 = `1).

The transition relation of the program is

next(v, v′) = (next1(v, v
′) ∧ pc′2 = pc2 ∧ pc′3 = pc3 ∨

next2(v, v
′) ∧ pc′1 = pc1 ∧ pc′3 = pc3 ∨

next3(v, v
′) ∧ pc′1 = pc1 ∧ pc′2 = pc2)

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 88

such that

next1(v, v
′) =

(pc1 = `1 ∧ pc′1 = `2 ∧ x′ = x+ z ∧ skip(y1, y2, z) ∨

pc1 = `2 ∧ pc′1 = `3 ∧ x′ = x+ z ∧ skip(y1, y2, z))

next2(v, v
′) =

(pc2 = `1 ∧ pc′2 = `2 ∧ z′ = z + 1 ∧ skip(x, y1, y2) ∨

pc2 = `2 ∧ pc′2 = `3 ∧ z′ = z + 1 ∧ skip(x, y1, y2))

next3(v, v
′) =

(pc3 = `1 ∧ pc′3 = `2 ∧ x = 1 ∧ y′1 = 3 ∧ skip(x, y2, z) ∨

pc3 = `1 ∧ pc′3 = `2 ∧ x = 2 ∧ y′1 = 6 ∧ skip(x, y2, z) ∨

pc3 = `1 ∧ pc′3 = `2 ∧ (x ≤ 0 ∨ x ≥ 3) ∧ y′1 = 5 ∧

skip(x, y2, z) ∨

pc3 = `2 ∧ pc′3 = `3 ∧ y′2 = x ∧ skip(x, y1, z) ∨

pc3 = `3 ∧ pc′3 = `4 ∧ y1 6= y2 ∧ skip(x, y1, y2, z)).

Different interleavings of the three threads lead to different values of y1 and y2. An

assertion in the third thread at location `3 requires that the values given to y1 and y2

are not equal, i.e., we have

error(v) = (pc3 = `3 ∧ y1 = y2).

For the given program, some interleavings lead to the values of y1 and y2 being equal,

while other interleavings lead to distinct values for the two variables. The goal of [118]

is to add synchronization to the program such that the assertion holds on all executions.

To apply our proof rule to this problem, we encode the choice between executing a single

step and executing an atomic section using auxiliary variables. The transition relation of

the program is augmented with guards deciding a single step or an atomic section based

on the values of the auxiliary variables. For our example, we use four auxiliary variables

(c11, c21, c31, c32). We obtain an extended tuple of variables w = (v, c11, c21, c31, c32). A

constraint cij = ` is used in thread i to decide that the control flows from location `j to

location `. Correspondingly, the transition relation of the first thread is augmented to:

next1(w,w
′) =

(pc1 = `1 ∧ c11 = `2 ∧ pc′1 = `2 ∧ x′ = x+ z ∧ skip(. . .) ∨

pc1 = `1 ∧ c11 = `3 ∧ pc′1 = `3 ∧ x′ = x+ 2 ∗ z ∧ skip(. . .) ∨

pc1 = `2 ∧ pc′1 = `3 ∧ x′ = x+ z ∧ skip(. . .))

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 89

The transition relations of the second and third thread are instrumented similarly. We

instantiate the safety game proof rule such that the system role is played by the in-

strumented program transition relation and the environment role is to provide inputs to

the program (similar to the previous case, this example program does not expect any

inputs).

init(w) = init(v)

eve(w,w′) = (next1(w,w
′) ∨ next2(w,w

′) ∨ next3(w,w
′))

adam(w,w′) = skip(w,w′)

Furthermore, we represent the search of initial parameter values using a strengthening

of the original initial condition with an assertion mid(w, t) such that:

init(w)→ ∃t : mid(w, t)

(mid(w, t), eve(w,w′), adam(w,w′)) |= G ¬error(w)

We use E-HSF and provide the following template for the existential clause involving

the initial states.

Templ(rel)(w, t) = (c11 =?11 ∧ c21 =?21

∧ c31 =?31 ∧ c32 =?32).

A solution to mid(w, t) sets the auxiliary variables to target program locations so that

the objective of the game is satisfied, i.e., the error states are not reachable. E-HSF

returns the following witness for the existential quantifier clause:

rel(w, t) = (c11 = 3 ∧ c21 = 3 ∧ c31 = 4 ∧ c32 = 3).

We note that our proof rule does not represent an optimization problem. The solutions

we obtain correspond to a synthesized program that is not necessarily the most efficient

one, i.e., the longest atomic sections may be picked instead of smaller steps. Dealing

with optimality is a subject for future work.

6.6 Evaluation

In this section we describe how we used E-HSF as a proof-of-concept engine of our

proposed quantified Horn constraints based approach to solving infinite-state games.

E-HSF uses two SMT solvers for handling non-linear constraints: the Z3 solver [47] and

the Barcelogic solver [20, 22]. For our experiments we used a computer with an Intel

Core 2 Duo 2.53 GHz CPU and 4 GB of RAM. Table 7.1 shows the results corresponding

to the case studies described in the previous sections: Cinderella-Stepmother games with

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 90

safety objectives (G1 and G2), with reachability objectives (G3) and with more general

LTL objectives (G4 and G5). Lastly, we show results on the program repair/synthesis

games (G6, G7, G8 and G9). A T/O-mark stands for time out after 15 minutes.

Name Game Player Objective Result z3 Barcelogic
G1 Cinderella (c = 3) Cinderella G ¬overflow X 3.2s 1.2s
G2 Cinderella (c = 2) Cinderella G ¬overflow X 1m52s 1m52s
G3 Cinderella (c = 1.4) Stepmother F overflow X 18s 1m14s
G4 Cinderella (c = 1.4) Cinderella win(0) X 7m16s SysError
G5 Cinderella (c = 1.4) Cinderella win(0) ∨ win(2) X 4.7s 4.7s
G6 Repair-Lock Program G ¬error X 0.3s 0.3s
G7 Repair-Critical Program G ¬error X 17.7s 16.9s
G8 Repair-Critical Program G (at p → F ¬at p) X 53.3s 3m6s
G9 Synch-Synth Program G ¬error X T/O 1s

Table 6.1: Statistics for the case studies

For each game we report the player and the objective for which we synthesize strategies

(see Columns 3 and 4). Column 5 shows the result obtained from our tool: an X-mark

stands for a strategy successfully synthesized by our tool using either Z3 or Barcelogic as

solving back-ends. In one case (G5), due to the general LTL objective we obtain a large

Büchi automaton. Our normal encoding times-out for both Z3 and Barcelogic. How-

ever, our method is able to synthesize a winning strategy quickly when we exploit the

explicit evaluation optimization(from Section 3.4.1) where we treat infinite datatypes

symbolically using a decision procedure, and finite domain datatypes, like the program

counter variable of the Büchi automaton, explicitly without abstraction. Because the

control locations of the Büchi automaton pcB range over a finite domain, this optimiza-

tion allows the tool to track the states of pcB explicitly, and this simplifies the proof

obligations.

We believe our approach will benefit from future improvements in constraint solving.

The cases when either Z3 or Barcelogic times out are challenging SMT problems and of

potential interest to the SMT-solving community.

6.7 Related work

There is a rich literature on decision procedures for graph games with application to for-

mal methods [50, 83, 103, 116]. In particular, many techniques, both explicit-state [116]

and symbolic [68, 101], are known for games on finite graphs. Decidability results are

also known for games on certain restricted classes of infinite graphs, such as pushdown

graphs [27, 120] and prefix-recognizable graphs [28].

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 91

Known approaches to games on graphs that represent state spaces of general infinite-

state programs can be divided into two categories: those based on symbolic execution

and those based on abstraction-refinement. De Alfaro et al [46] offer an example of the

first kind of approach. In this work, a symbolic semi-algorithm is used to explore the

state space of the game directly. In contrast, we reduce the problem of solving a game

to Horn constraint solving, leaving the constraints to be solved by a dedicated solver

relying on CEGAR and interpolation.

The second category of methods [7, 53, 54, 61, 62, 65] lift predicate abstraction and CE-

GAR, originally proposed for safety verification, to games. The core idea here is the use

of abstract transition systems where overapproximate (“may”) and underapproximate

(“must”) transitions are permitted, and which are model-checked against properties with

3-valued semantics. In contrast to existing approaches of this sort, we do not directly

construct a program abstraction with must-transitions or 3-valued semantics. Instead,

we use a Skolem relation that is iteratively refined. Moreover, our backend solver uses

disjunctively well-founded transition invariants [105] to resolve liveness goals for players,

which (so far as we are aware) existing approaches do not do. This algorithmic difference

has a significant impact in practice.

Our approach is perhaps more closely related to a recent paper by Cook and Koski-

nen [39], which uses a combination of CEGAR with a form of Skolemization for veri-

fication of branching-time properties of programs. However, this method only studies

verification of CTL — the class of properties that we handle is significantly larger (e.g.,

it includes the full µ-calculus).

Games have a particularly close connection to program synthesis and repair, areas that

have seen a flurry of activity in the last few years. However, in recent as well as classical

algorithms in these areas, the focus is tends to be either on finite-state systems [78,

103, 111], or on functional, rather than reactive, programs [82, 115, 118]. In contrast,

the natural application of our approach is in the repair and synthesis of infinite-state

reactive programs.

Finally, our work here was inspired by the rich tradition of on deductive program syn-

thesis [90, 103, 110]. The main difference between this line of work and ours lies in our

focus on automation. For example, Slanina [110] also offers a deductive rule for games

with response objectives. However, the proof rule demands global ranking functions

and justice and compassion assumptions, which are known to be difficult to discharge

automatically.

Chapter 6. Solving Games on Infinite Graphs as Horn Constraint Solving 92

6.8 Conclusion

We have presented a constraint based approach to computing winning strategies in

infinite-state games. The approach consists of: (1) a set of sound and relatively complete

proof rules for solving such games, and (2) automation of the rules on top of an existing

automated deduction engine. We demonstrate the practical promise of our approach

through several case studies using examples derived from prior work on program repair

and synthesis.

Many avenues for future work remain open. The system we have presented is a prototype.

Much more remains to be done on engineering it for greater scalability. In particular, we

are especially interested in applying the system to reactive synthesis questions arising

out of embedded systems and robotics. On the theoretical end, exploring opportunities

of synergy between our approach and abstraction-based [61, 65] and automata-theoretic

approaches to games [116] remains a fascinating open question.

Chapter 7

Program synthesis via Solving

Recursive Games as

Horn Constraint Solving

7.1 Introduction

The last decade has seen remarkable advances in automated software verification [8,

122]. An essential lesson from these developments is that to be scalable, techniques for

reasoning about software need to be compositional. In other words, an analysis for a large

program needs to be constructed from analyses for modules (commonly, procedures) in

the program.

Specifically, successful software analysis tools like Slam [8] and Saturn [122] use pro-

cedure summarization [108] to compositionally analyse large systems code bases. The

idea here is to compute, for each procedure p in a program, a summary: a reachability

relation between the input and output states of p. If p calls a procedure q, then the

summary of q is used to compute the summary of p. The approach can handle recursion:

if p and q are mutually recursive, then the relationship between the summaries of p and

q is given by a system of recursive equations. To compute summaries of p and q, we

find a fixpoint of this system.

The use of summaries in automated verification of programs is, by now, well-

understood [3, 42]. Less is known about the use of summarization in the emerging

setting of automated program synthesis [12, 82, 111, 115]. The goal in synthesis is to

generate missing expressions in a partial program so that a set of requirements are satis-

fied. The problem is naturally framed in terms of a graph game [57]. This game involves

93

Chapter 7. Program synthesis via Solving Recursive Games 94

two players — the program and its environment — who take turns changing the state

and stack of the program. The program wins the game if all executions of the game

satisfy a user-defined requirement, no matter how the environment behaves. Synthesis

amounts to the computation of a strategy that ensures victory for the program.

There is a large literature, going back to the 1960s, on game-theoretic program synthe-

sis [25, 103, 116]. However, most of these approaches are: (1) restricted to the synthesis

of programs over finite data domains; and (2) do not support compositional reasoning

about procedural programs.

While Chapter 6 offers a synthesis method that permits programs over unbounded data,

it does not support compositional reasoning. An approach for recursive infinite-state

games — games played on the configuration graphs of programs with recursion and

unbounded data — has remained elusive so far.

In this chapter, we present such an approach. The key idea here is a generalisation

of traditional summaries, called game summaries, that allow compositional reasoning

about strategies in the presence of procedures and recursion. Our contributions include

a set of sound and complete rules for compositional, deductive synthesis using game

summaries, and a way to automate a sound approximation to these rules on top of an

existing automated deduction system.

Concretely, a game summary sum for a program is a relation that relates states of the

program to sets of states. For a state s and a set of states f , we have sum(s, f) whenever:

1. s is a reachable state.

2. Suppose the game starts from s in a certain procedural context. Then the program

has a strategy to ensure that in all executions of game, the first unmatched return

state — the state to which the game returns from the initial context — is in f .

The generalisation to game summaries is called for as the use of traditional summaries

leads to incompleteness in the game setting. Game summaries were previously explored

in branching-time model checking of pushdown systems [4–6], but their use in synthesis,

or for that matter analysis of infinite-state programs, is new.

Our proof rules for compositional inference of game summaries utilize quantifier alter-

nation: an existential quantifier is used to nondeterministically guess moves for the

program, and a universal quantifier is used to capture the adversarial environment. The

quantifiers are second-order because summaries are higher-order relations relating states

to sets. As in the traditional verification setting, a summary sum is propagated across

Chapter 7. Program synthesis via Solving Recursive Games 95

procedure calls and returns through inductive reasoning. The computation exploits com-

positionality: to generate the parts of sum involving states of a procedure q, the rule

generates the parts of the summary that involve procedures that q calls, and adds these

summaries to sum once and for all. Like the corresponding proof rules for verification,

the rule is agnostic to whether the input transition relations encode recursion.

To verify that a safety property p is satisfied in all executions of the game, we show that

for all s, f such that sum(s, f), s satisfies p. A winning strategy for Eve is obtained

as an instantiation of the existential quantifiers used in the deduction. Synthesis with

respect to termination requirements necessitates the additional use of a disjunctively

well-founded transition invariant [105].

We show that our rules are sound, meaning that if they derive a strategy, then Eve

actually wins under the strategy. They are also relatively complete, meaning that the

rules can always derive a winning strategy when one exists, assuming a suitably pow-

erful language of assertions over local and global program variables. Importantly, this

completeness proof does not require an encoding of the stack using auxiliary program

variables.

We present an implementation of a sound approximation to our rules on top of the

E-HSF automated deduction engine from Chapter 3. Specifically, our implementation

feeds our proof rules to the E-HSF engine for solving constraints in the form of forall-

exists quantified Horn clauses that permit existential quantification in clause heads.

Solving the repair problem now amounts to finding an interpretation to unknown sets

and relations over program variables. E-HSF performs this task with some guidance

from user-provided templates, and by using a combination of counterexample-guided

abstraction-refinement (CEGAR), interpolation and SMT-solving.

We evaluate our method on an array of systems programs, including device driver bench-

marks drawn from the SV-COMP software verification competition [15]. Some of our

benchmarks contain up to 11K lines of C code structured into up to 181 procedures.

For each of these benchmarks, we set up a synthesis problem by starting with a device

driver that satisfies its requirements and eliding certain expressions from the code. Our

tool is now used to find values of these expressions so that the resulting code satisfies

its specification.

The experimental results are promising: in all cases, our method is able to return suc-

cessfully within a few seconds, depending on amount of nondeterminism to be resolved.

The exploitation of compositionality is essential to these results, as inlining procedures

in these examples would lead to programs that are so large as to be beyond the reach

of existing program verifiers, let alone known repair/synthesis techniques.

Chapter 7. Program synthesis via Solving Recursive Games 96

Now we summarise the main contributions of the chapter:

• We present an approach to the compositional, deductive synthesis of programs with

infinite data domains as well as recursion. The method is based on the use of the

new notion of game summaries. We give a set of sound and complete proof rules

for synthesis using game summaries under safety and termination requirements.

• We offer an implementation of a sound but incomplete approximation of our in-

ference rules on top of the E-HSF deduction engine. We illustrate the promise of

the system using an array of challenging benchmarks running into thousands of

lines of code.

This chapter is organised as follows. In Section 7.2, we present a motivating example

that illustrates our approach. Section 7.3 formally defines our synthesis problem. Sec-

tion 7.4 introduces game summaries. Section 7.5 gives our sound and complete proof

rules for compositional synthesis. Section 7.6 presents our implementation of the rules

and experimental results. Related work is presented in Section 7.7; we conclude with

some discussion in Section 7.8.

7.2 Motivation

Our program synthesis problem can be viewed as a game [57] between two players: a

program player, whose goal is to satisfy the program’s correctness requirements, and an

environment player, which aims to prevent the program player from doing so. The two

players take turns changing the configuration (state and stack) of the program. The

transitions of the program come from the user-supplied partial program, with nondeter-

minism used to capture our lack of knowledge of certain expressions. The environment’s

transitions model inputs that a hostile outside world feeds to the program. As the

game is played on the configuration graph of a recursive program, we call it a recursive

game. Our goal is to find a winning strategy for the program player, i.e., to reduce the

nondeterminism in the program’s transitions so that the resulting program satisfies the

requirements no matter what the environment does.

Now we show that the standard notion of summaries, ubiquitous in verification of pro-

grams with procedures, can be inadequate when solving recursive games.

We consider the source code in Figure 7.1 that describes an interaction between an

environment player that controls all statement except at line PL and the program player

that only controls the non-deterministic assignment statement at line PL. The goal of

Chapter 7. Program synthesis via Solving Recursive Games 97

void main(void) {

E: if (env_nondet()) {

A: foo();

B: x = 0;

} else {

C: foo();

D: x = 1;

}

F: assert(x == y);

}

int x=-1, y=-1;

int foo() {

P: if (prog_nondet()) {

Q: y = 0;

} else {

R: y = 1;

}

S: }

Figure 7.1: Program that exhibits inadequacy of procedure summaries.

the program player is to find a strategy that resolves the non-determinism at line PL

such that regardless of how the environment player resolves the non-determinism at line

EL the assertion is always satisfied.

We observe that a standard summary for foo can only relate values of the variables

in scope foo at the start and exit states of its execution. That is, if a triple (x, y, pc)

represents a program state then we obtain the following summary for foo.

sum((x, y, pc), (x′, y′, pc)) = (pc = P ∧ x′ = x ∧ (y′ = 0 ∨ y′ = 1) ∧ pc′ = S)

Hence, when reasoning about the (existence of) winning strategy for the program player

we lack crucial information about the calling context in which foo is executed. As a

result, the summary for foo cannot distinguish if the top of the stack stores the value A

or B for the program counter of main. That is, When applying sum((x, y, pc), (x′, y′, pc))

in the calling context with pc = A we obtain a state in which y = 0 ∨ y = 1. Hence the

subsequent assignment x = 1; leads to an assertion violation.

In contrast, when applying the notion of game summaries we relate each entry state

of foo with states of main at the return sites A and B. Thus, the game summary can

discriminate between the call site on the branch that executes x = 0; and the call site

on the branch with x = 1;. As a result out method is able to identify a winning strategy

for the program player.

7.3 Preliminaries

In this section, we formally define procedural programs, recursive games, and the syn-

thesis problem we are interested in.

Chapter 7. Program synthesis via Solving Recursive Games 98

Procedural programs A program consists of a finite set of procedures P , where

main ∈ P is a distinguished main procedure. For simplicity we assume that the pro-

gram has no global variables (yet these can be easily added at the expense of lengthier

presentation). Let v be a tuple of local variables that are in scope of each procedure.

We use an assertion init(v) to describe the initial valuation of the local variables of main,

that is, we assume there is only one such evaluating. We use step(v, v′) to represent intra-

procedural transitions of all program procedures, i.e., the union of intra-procedural tran-

sition relations of all procedures. An assertion call(v, v′) represents argument passing

transitions of all call sites, i.e., the union of argument passing transition relations at

all call sites in the program. The left diagram below shows how the valuation of the

program variables in scope changes during a call transition. For simplicity, we assume

that the valuation of global variables can be modified during the argument passing.

v

v′ call(v, v′)

v′′

· v

v′

ret(v, v′′, v′)

For return value passing we use the relation ret(v, v′′, v′) where v represents the callee

state at the exit location, v′′ represents caller’s state at the corresponding call site, and

v′ is result of passing the return value (while keeping unaffected caller’s local unchanged)

and advancing the caller’s program counter value beyond the call site. To model the

fact that only local states are put on the stack, we assume that only the local variables

of v′′ occur in the return value passing relation, i.e., g′′ does not occur in the assertion

ret(v, v′′, v′). The right diagram above shows how the valuation of the program vari-

ables in scope changes during a return transition. We assume that an assertion safe(v)

represents a set of safe valuations, and thus provides the means for specifying temporal

safety properties.

Recursive games We model the interaction between the program and its environment

as a recursive game: a game where two players Eve and Adam (standing respectively

for the program and the environment) take turns in performing computation steps1. In

this paper, we assume that Adam executes call and return transitions, as well as some

of the intra-procedural steps. We capture two-player games by modifying our defini-

tion of programs as follows. We assume that instead of the monolithic intraprocedural

transition relation step(v, v′′), we are given two separate transition relations, eve(v, v′)

and adam(v, v′), respectively belonging to Eve and Adam. Among the intra-procedural

steps we assume a strict alternation between Eve and Adam. That is, when considering

1The name recursive game captures the fact that our games are played on the configuration graphs of
recursive programs, which can be infinite even when program variables range over finite data domains.

Chapter 7. Program synthesis via Solving Recursive Games 99

an intra-procedural segment of the computation we assume that the first step executed

in the environment, the second step is executed by the program, and so on.

Our partition of computation steps into program and environment steps is chosen to

simplify the presentation in the following sections, however it does not restrict the ap-

plicability of our results. For example, in a similar way we can model the scenario where

the roles of the program and the environment are exchanged, i.e., the program controls

calls and returns while the environment controls some of the intra-procedural steps.

Strategies and plays Let S be a set of valuations of v. We refer to each s ∈ S as a

states. A stack st is a finite sequence of states, i.e., st ∈ S∗. We use “ · ” for sequence

concatenation. We represent the empty stack by ε. A configuration (s, st) ∈ S × S∗

consists of a state and a stack. A configuration (s, ε) such that init(s) is called an initial

configuration. A configuration that is in the domain of the program transition relation

eve is called a program configuration, otherwise it is an environment configuration. Note

that the sets of program and environment configurations are mutually disjoint.

We define a transition relation next on configurations that takes into account both

program and environment transitions below.

next((s, st), (s′, st ′)) = ((eve(s, s′) ∨ adam(s, s′)) ∧ st = st ′

∨ call(s, s′) ∧ st ′ = (s · st)

∨ ∃s′′ : ret(s, s′′, s′) ∧ st = (s′′ · st ′))

We define a computation tree as a node-labeled tree that satisfies the following condi-

tions. The root is labeled by an initial configuration. Every pair of parent/child nodes

(s, st) and (s′, st ′) is related by next((s, st), (s′, st ′)).

A play π is a sequence of configurations that labels a branch of a computation tree. We

write πi and si to refer to the i-th configuration, the i-th state, and the i-th stack of the

play, respectively. A play is safe if each of its states s satisfies safe(s).

A safe strategy for Eve (respectively, Adam) is a computation tree such that each node

that is labeled by an environment (respectively, program) configuration (s, st) contains

the entire set {(s′, st ′) | next((s, st), (s′, st ′))} as its children, and each play is safe. A

terminating strategy for Eve (respectively, Adam) is defined similarly and requires that

each play is finite.

Chapter 7. Program synthesis via Solving Recursive Games 100

7.4 Game summaries

Our proof rules are based on the notion of game summaries, which generalize summaries

used in program verification and analysis and permit compositional reasoning in the

setting of games. Given a play π, we define a reachability relation ;π that connects

positions whose configurations are in the same calling context. Formally, we define

i;π j = (i ≤ j ∧ st i = st j ∧ ∀k : i < k < j → ∃st ′ : st ′ · st i = stk) .

For a configuration πi we define the set of first unmatched returns (FUR) as the set of

configurations that are obtained by following the return transition out the πi’s calling

context. Formally, we obtain the following set.

{π′j+1 | ∃π′ : π1 = π′1 ∧ . . . ∧ πi = π′i ∧ i;π′ j ∧ ∃s : st j = s · st j+1}

In the set comprehension above, we ensure that π′j+1 is the FUR configuration by asking

for a play π′ that overlaps with π until the position i, connects π′j+1 with πi within the

same calling context, and actually results from a return transition.

A game summary relates states with (over-approximations of) sets of states occurring

in their FUR configurations.

We define the following auxiliary predicate S that imposes a certain totality and mono-

tonicity condition on game summaries. When considering a pair of configurations in the

same calling context, the game summary sum needs to provide corresponding state sets

and these state sets need to be non-increasing.

S(π, i, j) = i;π j → ∃Ri∃Rj : sum(si, Ri) ∧ sum(sj , Rj) ∧Ri ⊇ Rj)

We extend the predicate to range over a prefix of a play as follows.

H(π, k) = (∀i∀j : 0 ≤ i ≤ j ≤ k → S(π, i, j))

The following lemma is crucial for proving the soundness of the proof rule for proving

the existence of safe strategies.

Lemma 2. For each play π and each of its positions k we have H(π, k).

Proof. Let π be a play and k be a position in this play. We prove the lemma by induction

over k.

Chapter 7. Program synthesis via Solving Recursive Games 101

First, we consider the base case k = 0. Since init(s0), from S1 follows S(π, 0, 0) via

R0 = R0 = ∅.

For the induction step we assume H(π, k) and prove H(π, k + 1). After expanding

definitions of H the proof goal is ∀i∀j : 0 ≤ i ≤ j ≤ k + 1→ S(π, i, j). For i and j such

that 0 ≤ i ≤ j ≤ k we obtain S(π, i, j) from H(π, k) directly. In the rest of this proof

we consider the case 0 ≤ i ≤ j = k + 1, i.e., our proof goal becomes

∃Ri∃Rk+1 : sum(si, Ri) ∧ sum(sk+1, Rk+1) ∧Ri ⊇ Rk+1

for arbitrary 0 ≤ i ≤ k + 1 such that i ;π k + 1. We proceed by performing a case

distinction on how πk transitions to πk+1.

In case adam(sk, sk+1) we rely on the induction hypothesis to obtain Ri and Rk such

that sum(si, Ri), sum(sk, Rk), and Ri ⊇ Rk. The consequence of S2 yields Rk+1 such

that sum(sk+1, Rk+1) and Rk ⊇ Rk+1, which together with Ri ⊇ Rk proves our goal.

For eve(sk, sk+1) we first consider that adam(sk−1, sk) since the program step is always

preceded by an environment step, so we have k− 1 ≥ 0. From the induction hypothesis

we obtain corresponding Ri ⊇ Rk−1. Thus, the premise of S2 holds, as sum(sk−1, Rk−1)∧
adam(sk−1, sk). Hence there exists Rk such that sum(sk, Rk) and Rk−1 ⊇ Rk, as well

as there exists Rk+1 such that sum(sk+1, Rk+1) and Rk ⊇ Rk+1. Hence, we meet our

proof goal.

If call(sk, sk+1) then i = k+1 since πk+1 is an entry configuration. Hence from S(π, k, k)

and S3 we directly prove our goal.

With ret(sk, sk+1) we first observe that there is a call configuration πc and an entry

configuration πe such that call(πc, πe). This call yields the exit configuration πk and

the return configuration πk+1. Since c ;π k + 1 we have i ;π c. From the induction

hypothesis we obtain corresponding Ri and Rc such that Ri ⊇ Rc. Similarly, from

e;π k we obtain corresponding Re ⊇ Rk. For S5 we obtain the premise sum(sk, Rk) ∧
ret(sk, sk+1), and hence Rk(sk+1). By transitivity, we have Re(sk+1). We instantiate

the premise of S4 as follows.

sum(sc, Rc) ∧ call(sc, se) ∧ sum(se, Re) ∧Re(sk+1)

As a consequence we get Rk+1 such that sum(sk+1, Rk+1) and Rc ⊇ Rk+1. Hence, we

have Ri ⊇ Rk+1, which proves the goal.

Chapter 7. Program synthesis via Solving Recursive Games 102

7.5 Proof rules

In this section, we present a set of deductive proof rules for synthesizing safe and ter-

minating strategies for compositional program synthesis. These proof rules determine

whether Eve has a winning strategy by solving implication and well-foundedness con-

straints on auxiliary assertions over system variables. The rules are sound as well as

relatively complete.

7.5.1 Safe strategies

We consider a synthesis problem where Eve has a winning strategy if only states from

safe(v) are visited by all plays. We present the corresponding proof rule in Figure 7.2.

The proof rule relies on a game summary sum. We connect the game summary with the

reachable states by resorting to reasoning by induction on the number of steps required

to reach a state from its entry state. S1 requires that for any initial state s0 of the

program, sum(s0, ∅). S2 represent the induction step for intra-procedural steps. Let us

assume a state s1 is given together with a set of states R1 such that sum(s1, R1). We

require that for every state s2 satisfying adam(s1, s2) there exists a set of states R2 such

that sum(s2, R2) and R1 ⊇ R2, and there exist a state s3 such that eve(s2, s3). We also

require that there exists a set of states R3 such that sum(s3, R3) and R2 ⊇ R3.

Assume a state s1 and its corresponding set of states R1 such that sum(s1, R1) is given.

For any state s2 such that call(s1, s2), S3 requires that there exists a set of states R2

such that sum(s2, R2).

S4 represent the induction step for a call step. Given states s1 and s2 together with

sets of states R1 and R2, let us assume call(s1, s2), sum(s1, R1) and sum(s2, R2). For

any s3 ∈ R2, we require that there exists a set of states R3 such that sum(s3, R3) and

R1 ⊇ R3. S1 and S3 ensure that sum(v,R) is defined at entry states of the program

and each procedural level. S2 and S4 ensure that the set of states associated with each

reachable state shrinks while traversing on the same procedural level.

S5 represent the induction step for a return step. For a return step (s1, s2) such that

sum(s1, R1), we require that s2 is in R1.

Since the winning condition requires all states to satisfy safe(v), each states s such that

sum(s,R) need to satisfy safe(s). This condition is enforced by S6.

Example 1. We show how the safety proof rule can be applied using the example in

Figure 7.1.

Chapter 7. Program synthesis via Solving Recursive Games 103

Find sum such that:

S1: init(v) → sum(v, ∅)
S2: sum(v1, R1) ∧ adam(v1, v2) → ∃R2 : sum(v2, R2) ∧R1 ⊇ R2 ∧

∃v3 : eve(v2, v3) ∧
∃R3 : sum(v3, R3) ∧R2 ⊇ R3

S3: sum(v1, R1) ∧ call(v1, v2) → ∃R2 : sum(v2, R2)

S4: sum(v1, R1) ∧ call(v1, v2) ∧
sum(v2, R2) ∧R2(v3)→ ∃R3 : sum(v3, R3) ∧R1 ⊇ R3

S5: sum(v1, R) ∧ ret(v1, v2) → R(v2)

S6: sum(v,R) → safe(v)

(init(v), eve(v, v′), adam(v, v′), call(v, v′), ret(v, v′, v′′)) |= G safe(v)

Figure 7.2: Proof rule RuleSafe for synthesis with respect to a safety requirement
given by assertion safe(v).

Since the initial state of main is (E,−1,−1), by S1 we have sum((E,−1,−1), ∅). As-

suming Adam decides to move from E to A, we apply S2 to derive sum((A,−1,−1), ∅).
To strictly adhere with the alternation of players, we assume that Eve does a skip.

From pc = A, Adam makes a call to foo and the program control will go to the state

(P,−1,−1). S3 ensures that there exists a set of statesR1 such that sum((P,−1,−1), R1).

From sum((P,−1,−1), R1), let Adam make a skip and let Eve move to R thereby reach-

ing the state (R,−1,−1). S3 ensures that there exists a set of states R2 such that

sum((R,−1,−1), R2) and R1 ⊇ R2. From sum((R,−1,−1), R2), let once again Adam

make a skip and let Eve move to S by updating value of y to 1 thereby reaching the state

(S,−1, 1). S3 ensures that there exists a set of states R3 such that sum((S,−1, 1), R3)

and R2 ⊇ R3. The return step from (S,−1, 1) in foo to (B,−1, 1) in main together

with S5 ensures that (B,−1, 1) is in R3 and by transitivity in R2 and R1. From

sum((E,−1,−1), ∅), call((E,−1,−1), (P,−1,−1)), and sum((P,−1,−1), {(B,−1, 1)}), S4

ensures that there exists R4 such that sum((B,−1, 1), R4). Continuing in a similar way

from sum((B,−1, 1), R4) by applying S2, we reach a state (F, 0, 1) which violates the

assertion.

However, from sum((P,−1,−1), R1), if Adam makes a skip and Eve moves to Q instead

R, the assertion will be eventually satisfied. If Adam decides to move from E to B (instead

of E to A), Eve needs to move to R instead Q for the assertion to be satisfied. Therefore,

the safe strategy for Eve should use information on the top of the stack to know if it

should move to Q or R from P. For example, replacing prog nondet() by pc = A provides

a winning strategy for Eve.

Chapter 7. Program synthesis via Solving Recursive Games 104

Theorem 8 (Correctness of rule RuleSafe). The proof rule RuleSafe is sound and

relatively complete. �

Proof. We split the correctness proof into two parts: soundness and relative complete-

ness.

Soundness If there exists sum that satisfies premises of RuleSafe, then the program

has a strategy to win the safety game.

For a proof by contradiction we assume that sum satisfies the premises of RuleSafe

and the program does not have a safe strategy. Hence there exists a safe strategy for

the environment in which there exists a play π that violates the safety condition at

position p. By Lemma 2 for the position p we obtain Rp such that sum(sp, Rp). Hence

from S6 follows safe(sp), which is a contradiction to our assumption that sum satisfies

the premises of RuleSafe.

Relative completeness If the program has a strategy to win the safety game, then

there exists sum that satisfies premises of RuleSafe.

Let us assume that Eve has a safe strategy, i.e., the conclusion of RuleSafe holds.

This strategy σ alternates between universal choices of Adam and existential choices of

Eve. We prove the completeness claim by showing how to construct sum satisfying the

premises of the rule. Let sum(s,R) holds for each state s that occurs in a configuration

(s, st) of some play where R is the corresponding set of first unmatched return states.

Since the initial state, say s, occurs in the strategy, sum(s,R) is defined such that R = ∅
and hence S1 is satisfied.

Now we consider an arbitrary pair (s0, R0) such that sum(s0, R0). The strategy guar-

antees that for every successor s1 of s0 wrt. Adam there exists a successor s2 wrt.

Eve. For every such s2, there exists a set of FURs R2 such that sum(s2, R2) since s2

is an Adam state. In addition, R2 ⊆ R0 since the set of FURs may only shrink across

intra-procedural steps. i.e., sum satisfies S2.

Let us take an arbitrary pair (s0, R0) such that sum(s0, R0), and a state s1 such that

call(s0, s1). For the set of FURs R1 of s1, we have sum(s1, R1) since s1 is an Env state.

This shows sum(v,R) satisfies S3.

Next, let us assume that for arbitrary states s0 and s1, we have sum(s0, R0) and

sum(s1, R1), and call(s0, s1). It follows that for any s2 ∈ R1 and a set of its FURs

Chapter 7. Program synthesis via Solving Recursive Games 105

R2, sum(s2, R2) holds since s2 is an Env state. In addition, since s2 is in the same

procedural level as s0, R2 ⊆ R0, i.e. S4 is satisfied.

Now let us assume that for arbitrary states s0 and s1, we have ret(s0, s1) and sum(s0, R0).

By definition of FURs, we see that s1 should be in R0, satisfying S5.

Finally, for all pairs (s,R) such that sum(s,R), we have safe(s) since we consider a safe

strategy. Therefore, sum also satisfies S6.

7.5.2 Terminating strategies

Let us now consider a synthesis problem where Eve has a winning strategy if a state

from which no further move can be made is eventually reached by each play. Reasoning

about such eventuality properties demands the use of well-founded orders.

We connect the invariant assertion with the reachable states by resorting to reasoning

by induction on the number of steps required to reach a state from its entry state.

T1 requires that for any initial state s0 of the program, sum(s0, s0, ∅). T2 represent

the induction step for intra-procedural steps. Let us assume a state s1 is given together

with its entry state s0 and a set of states R1 such that sum(s0, s1, R1). We require

that for every state s2 satisfying adam(s1, s2) there exists a set of states R2 such that

sum(s0, s2, R2) and R1 ⊇ R2, and there exist a state s3 such that eve(s2, s3). We also

require that there exists a set of states R3 such that sum(s0, s3, R3) and R2 ⊇ R3. We

also require that (s1, s3) is in round . Assume for a state s1, sum(s0, s1, R1) is given. For

any state s2 such that call(s1, s2), T3 requires that there exists a set of states R2 such

that sum(s2, s2, R2). T4 represent the induction step for a call step. Given states s1 and

s2 together with sets of states R1 and R2, let us assume call(s1, s2), sum(s0, s1, R1) and

sum(s2, s2, R2). For any s3 ∈ R2, we require that there exists a set of states R3 such

that sum(s0, s3, R3) and R1 ⊇ R3. We also require that (s1, s3) is in round . T1 and T3

ensure that sum is defined at entry states of the program and each procedural level. T2

and T4 ensure that the set of states associated with each reachable state shrinks while

traversing on the same procedural level. T5 represent the induction step for a return

step. For a return step (s1, s2) such that sum(s0, s1, R1), we require that s2 is in R1. To

ensure that the game progresses when aiming at termination, we keep track of pairs of

states across every call site in descent . This is done in T3. Finally, to ensure termination

by each play we require that both descent and round represent a well-founded relation.

Thus, it is impossible to return to sum infinitely many times. This is captured by T6

and T7.

Chapter 7. Program synthesis via Solving Recursive Games 106

Find sum, round , and descent such that:

T1: init(v) → sum(v, v, ∅)

T2: sum(v1, v2, R1) ∧ adam(v2, v3)→ ∃R2 : sum(v1, v3, R2) ∧R1 ⊇ R2

∧ ∃v4 : eve(v3, v4) ∧ round(v2, v4)

∧ ∃R3 : sum(v1, v4, R3) ∧R3 ⊇ R2

T3: sum(v1, v2, R1) ∧ call(v2, v3) → ∃R2 : sum(v3, v3, R2) ∧ descent(v1, v3)

T4: sum(v1, v2, R1) ∧ call(v2, v3)

∧ sum(v3, v3, R2) ∧R2(v4) → ∃R3 : sum(v1, v4, R3) ∧R1 ⊇ R3 ∧ round(v2, v4)

T5: sum(v1, v2, R) ∧ ret(v2, v3) → R(v3)

T6: wf (round)

T7: wf (descent)

(init(v), eve(v, v′), adam(v, v′), call(v, v′), ret(v, v′, v′′)) |= F dst(v)

Figure 7.3: Proof rule RuleReach for synthesis with respect to the termination
requirement.

Theorem 9 (Correctness of rule RuleReach). The proof rule RuleReach is sound

and relatively complete. �

Proof. We split the proof into two parts: soundness and relative completeness.

Soundness We prove the soundness by contradiction.

Assume that there exist an assertions sum(v1, v2, R), round(v1, v2) and descent(v1, v2)

that satisfy the premises of the rule, yet the conclusion of the rule does not hold. That

is, there is no winning strategy for Eve.

Hence, there exists a strategy σ for Adam in which each play does not terminates. This

strategy σ alternates between existential choices of Adam and universal choices of Eve.

Let aux (v) be a set of states for which σ provides existentially chosen successors wrt.

Eve. Note that no play terminates from any s ∈ aux (v) since no play determined by σ

terminates.

We derive a contradiction by relying on a certain play π that is determined by σ. The

play π is constructed iteratively. We start from some root state s0 of σ, which satisfies

Chapter 7. Program synthesis via Solving Recursive Games 107

the initial condition init(v). Note that sum(s0, s0, R0), due to T1, and aux (s0) due to

σ.

Each iteration round extends the matched play s0..s obtained so far in three ways:

• by two states, say s1 and s2 where adam(s, s1) and eve(s1, s2),

• by a state, say s1 where call(s, s1), or

• by a sequence of states s1..s2 where we have call(s, s1), sum(s1, R1), and s1..s2 is

a play from s1 to one of its FURs s2 ∈ R1.

We maintain a condition that for the last state s of each such play, sum(s0, s, R) and

aux (s) where s0 = entry(s), i.e., s0 is the entry state of the calling context of s.

Let s be the last state of the play π constructed so far, and s0 = entry(s). Due to our

condition, we have sum(s0, s, R) and aux (s). We iteratively construct a play π taking

one of the following steps at a time:

• σ determines a successor state s1 such that adam(s, s1), and T2 guarantees that

there exists a state s2 such that eve(s1, s2), round(s, s2), and sum(s0, s2, R2) such

that R2 ⊆ R. The play is extended by s1, s2. Furthermore, aux (s2) due to G.

• σ determines a successor state s1 such that call(s, s1), and T3 guarantees that there

exists a set of FURs R1 of s1 such that sum(s1, s1, R1), and also descent(s0, s1).

The play is extended by s1. Furthermore, aux (s1) due to σ.

• σ determines a sequence of successor state s1 such that call(s, s1), where

sum(s1, s1, R1) is given together with some s2 ∈ R1. Here, T4 guarantees that

there exists a set of FURs R2 for s2 such that sum(s0, s2, R2) where R2 ⊆ R, and

also round(s, s2). The play is extended by s1..s2. Furthermore, aux (s2) due to σ.

By iteratively constructing π following the above steps, we obtain a play that satisfies

the strategy σ. Hence, one of the following follows:

• there exists an infinite sequence of Adam states at some procedural level if the

infinite play is due to infinite intra-procedural steps by Adam which contradicts

with T6.

• there exists an infinite sequence of entry states if the infinite play is due to infinite

call steps by Adam which contradicts with T7

Chapter 7. Program synthesis via Solving Recursive Games 108

Relative completeness Let us assume that Eve has a winning strategy, say σ. We

show how to construct sum(v1, v2, R), round(v1, v2) and descent(v1, v2) satisfying the

premises of the rule by taking an arbitrary play π determined by σ.

Let sum(v1, v2, R) be the set of all triplets (s0, s, R) such that s is a state inπ for which

σ provides a universally chosen successor w.r.t. Adam, s0 = entry(s), and R is the set

of FURs in σ starting at s. Let round(v1, v2) be the set of all pairs of states (s1, s2)

such that s1 and s2 are consecutive Adam states on the same procedural level. Let

descent(v1, v2) be the set of all pairs of states (s1, s2) such that s1 and s2 are entry

states of two consecutive procedural levels.

Since an initial state is an Adam state, sum(v1, v2, R) is defined for any initial state,

satisfying T1.

Let us take an arbitrary summary sum(s0, s1, R1). σ guarantees that for every suc-

cessor s2 of s1 wrt. Adam there exists a successor s3 wrt. Eve. For every such s3,

sum(s0, s3, R3). Since the set of FURs may only shrink across intra-procedural steps,

R3 ⊆ R1. In addition, we have round(s1, s3) since s1 and s3 are consecutive Adam states

on the same procedural level, i.e. sum(v1, v2, R) and round(v1, v2) satisfy T2.

For an arbitrary Adam state s1 with sum(s0, s1, R1) and a state s2 such that call(s1, s2),

we get sum(s2, s2, R2) since s2 is an Adam state. Since s0 and s2 are entry states to the

caller and callee context respectively, we have descent(s0, s2),i.e. T3 is satisfied.

Let us consider a pair of states s1 and s2 such that sum(s0, s1, R1), sum(s2, s2, R2), and

call(s1, s2). For any s3 ∈ R2, we have sum(s0, s3, R3) since s3 is an Adam state by

definition of FURs, and s0 is in the same procedural level with all states in R1 including

s2. It follows that any FUR of s2 is also FUR of s0 implying R2 ⊆ R0. In addition, we

have round(s1, s3) since s1 and s3 are consecutive Adam states on the same procedural

level, i.e. T4 is satisfied.

Now let us consider a state s1 such that sum(s0, s1, R1) for s0 = entry(s1) and ret(s1, s2)

for some state s2. By definition of FURs, we see that s2 is in R1, satisfying T5.

Now we show by contradiction that round(v1, v2) is well-founded. Assume otherwise,

i.e., there exists an infinite sequence of states s1, s2, ... induced by round(v1, v2) and

Eve still terminates. As noted previously, for each pair of consecutive Adam states si

and si+1 there exists an intermediate sequence of state s′i...s
′′
i such that the sequence

s1, s
′
1, .., s

′′
1, s2, ..., si, s

′
i, .., s

′′
i , si+1, ... is a play. Since this play does not terminate, we

obtain a contradiction to the assumption. Hence, we conclude that round(v1, v2) is

well-founded, satisfying T6.

Similarly, we show by contradiction that descent(u, v) is well-founded, satisfying T7.

Chapter 7. Program synthesis via Solving Recursive Games 109

7.6 Evaluation

In this section we describe an experimental evaluation of our compositional synthesis

approach on infinite-state programs.

Implementation Our prototype implementation is based on two modules. The first

module is a C frontend, derived from the CIL library [96], that transforms C code into

verification conditions represented as a set of forall-exists quantified Horn constraints.

This transformation is based on a sound approximation of our proof rules. The second

module is the E-HSF solver which is used as deduction engine for solving the set of

Horn constraints generated for each program.

Benchmarks For evaluation, we used benchmarks from the repository of the SV-

COMP verification competition [15]. We selected 10 driver files from the directories

ntdrivers and ntdrivers-simplified with sizes ranging between 576 and 11K lines

of code. Each benchmark contains assertions that correspond to safety specifications.

Due to their complexity and size, these driver benchmarks have been considered a litmus

test for verification tools during the last decade [1, 16, 71].

For each benchmark file, our experiments consist of 3 conceptual steps: (1) We mark

a C expression in the input file where non-determinism is to be resolved. (We call the

code region that contains this expression a hole.) (2) We use the frontend to generate

a program representation in Horn clause form. (3) We solve the Horn clauses using

E-HSF and the solution returned by E-HSF corresponds to synthesised-code to fill the

hole in the code. If E-HSF succeeds in finding a solution for the Horn clauses, our

approach guarantees that the device driver code with the hole replaced by the E-HSF’s

solution satisfies the safety specification present in the original benchmark.

First, we describe in detail the SV-COMP example kbfiltr simpl1, however in an

abridged form due to space reasons. Similar to other C benchmark files, kbfiltr simpl1

contains code corresponding to the driver and the test harness.

See Figure 7.4 for the function IofCallDriver, a function that is invoked repeat-

edly on many execution paths of the driver. This function has two arguments and

some of the variables accessed in its body have global scope, i.e., the variables s, IPC,

lowerDriverReturn, MPR1, MPR3, NP, SKIP1 and SKIP2. The safety requirement is in-

strumented in the code using a finite-state automaton representation, where the variable

s corresponds to the current state of the automaton. The variable s is assigned integer

values corresponding to different states of the automaton, i.e., UNLOADED = 0, NP = 1,

Chapter 7. Program synthesis via Solving Recursive Games 110

419: NTSTATUS IofCallDriver(PDEVICE_OBJECT DvObj, PIRP Irp) {

420: NTSTATUS returnVal2 ;

...

456: if (?) { /* expression to synthesize */

457: s = IPC;

458: lowerDriverReturn = returnVal2;

459: } else {

460: if (s == MPR1) {

461: if (returnVal2 == 259L) {

462: s = MPR3;

463: lowerDriverReturn = returnVal2;

464: } else {

465: s = NP;

466: lowerDriverReturn = returnVal2;

467: }

468: } else {

469: if (s == SKIP1) {

470: s = SKIP2;

471: lowerDriverReturn = returnVal2;

472: } else { assert(0); }

473: }

474: }

475: return (returnVal2);

476: }

Figure 7.4: Part of function IofCallDriver.

DC = 2, SKIP1 = 3, SKIP2 = 4, MPR1 = 5, MPR3 = 6 and IPC = 7. The file contains 10

assertions, including the assertion shown on line 472. For our experiment, we marked

the code region from line 456 as non-deterministic. (The original SV-COMP benchmark

file contained the conditional test s==NP on line 456.)

For applying our method, we provide a template corresponding to the hole expression

that reflects the choice of automaton states

Templ(rel)(v) =

(?UNLOADED ∗ UNLOADED + ?NP ∗ NP + ?DC ∗ DC + ?SKIP1 ∗ SKIP1

+?SKIP2 ∗ SKIP2 + ?MPR1 ∗ MPR1 + ?MPR3 ∗ MPR3 + ?IPC ∗ IPC = s)

together with a template constraint

0 ≤ ?UNLOADED ≤ 1 ∧ 0 ≤ ?NP ≤ 1 ∧ 0 ≤ ?DC ≤ 1 ∧ 0 ≤ ?SKIP1 ≤ 1

∧ 0 ≤ ?SKIP2 ≤ 1 ∧ 0 ≤ ?MPR1 ≤ 1 ∧ 0 ≤ ?MPR3 ≤ 1 ∧ 0 ≤ ?IPC ≤ 1

∧ ?UNLOADED + ?NP + ?DC + ?SKIP1 + ?SKIP2 + ?MPR1 + ?MPR3 + ?IPC = 1

that reflects a comparison with an automaton state and excludes arithmetic operations

on them.

The task of E-HSF is to find suitable values for the template parameters, i.e., the

unknown coefficients ?UNLOADED, ?NP, ?DC, ?SKIP1, ?SKIP2, ?MPR1, ?MPR3, and ?IPC, and thus

determine the hole expression. E-HSF returns in 1s with the solution NP = s.

Chapter 7. Program synthesis via Solving Recursive Games 111

Results For our experiments we used a computer with an Intel Core i7 2.3 GHz CPU

and 16 GB of RAM. See Table 7.1 for our experimental results. For each of the 10

SV-COMP benchmark files, we list the benchmark name and three synthesis scenarios

named after a function where the synthesis region is located (Column 1). We also report

the size of the file (Column 2) and results of running E-HSF (Column 4,5,6). For each

file we also report verification results using the complete driver code. For example, the

result from the first row of the benchmark parport indicates that verifying the driver

code succeeds after 13.5s. (The benchmark indeed satisfies its safety specification.)

For the three code regions, IofCalldriver, PptDispatch, and KeSetEvent, our tool

synthesises a solutions after 17.7s, 18.7s, and 22.1s, respectively.

In all case, our method is able to succeed within 1.5-2 times overhead compared to

the verification time. We inspected the synthesized expressions and observed that in

most cases we obtain the original expressions that was erased when constructing the

benchmark. In the remaining cases the synthesized expressions were logically equivalent

to the original expressions.

Overall, our results indicate the feasibility of our synthesis approach across a range of

different drivers and code regions to synthesize.

7.7 Related work

The last few years have seen much work on constraint-based software synthesis [82, 111,

115, 118]. Like our paper, these approaches advocate synthesis from partial programs,

and leverage modern SMT-solving and invariant generation techniques. However, most

of these approaches are not compositional. Exceptions include work on component-

based synthesis, where programs are synthesized by composing routines from a software

library in an example-driven way [77], and modular sketching [109]. The former work

is restricted to the synthesis of loop-free programs. The latter work allows the use of

summaries for library functions called from a procedure with missing expressions, but

requires that the library procedures do not contain unknown expressions themselves.

In contrast, our approach synthesizes programs with procedures that call each other in

arbitrary ways.

There is a rich literature on synthesis and repair of finite-state reactive systems based on

game-theoretic techniques [25, 78, 86, 103, 116], using both explicit-state [116] and sym-

bolic [101] approaches. Also well-known are algorithms for pushdown games [27, 120],

which can be expanded into synthesis algorithms for reactive programs with procedures

Chapter 7. Program synthesis via Solving Recursive Games 112

Benchmark LOC Time (sec) Steps
Total SMT

kbfiltr simpl1 576 0.9

IofCallDriver 1.1 0.5 3
StubDriverInit 1.4 0.6 12
KbFilterPnP 1.3 0.5 4

kbfiltr simpl2 1001 1.2

IofCallDriver 1.9 0.9 3
StubDriverInit 2.1 0.6 12
KbFilterPnP 1.9 0.5 4

diskperf simpl1 1095 2.7

IofCallDriver 3.6 1.5 8
FwdIrpSync 3.9 1.2 12
KeSetEvent 3.6 1.1 11

floppy simpl3 1123 3.8

IofCallDriver 3.3 0.9 1
FloppyPnp 3.4 1.0 1
KeSetEvent 4.1 1.4 6

floppy simpl4 1598 5.6

IofCallDriver 6.7 1.2 1
FloppyPnp 6.8 1.3 1
KeSetEvent 7.5 1.9 6

cdaudio simpl1 2124 8.1

IofCallDriver 11.7 3.7 13
HPCdrDevice 11.9 3.9 12
KeSetEvent 12.9 4.1 16

diskperf 4462 3.2

IofCallDriver 3.6 0.9 10
FwdIrpSync 4.4 1.2 14
KeSetEvent 4.2 1.1 14

floppy 8285 6.3

IofCallDriver 7.8 2.8 11
FloppyPnp 7.7 2.9 11
KeSetEvent 9.2 3.1 16

cdaudio 8827 11.3

IofCallDriver 14.2 4.1 22
HPCdrDevice 10.9 3.4 19
KeSetEvent 11.6 4.3 24

parport 10934 13.5

IofCallDriver 17.7 4.2 14
PptDispatch 18.7 3.8 13
KeSetEvent 22.1 4.4 18

Table 7.1: Evaluation of our method on device driver programs from SV-COMP

and finite-domain variables [60]. Synthesis of finite-state reactive systems from compo-

nents has also been studied [85]. The elemental distinction between these approaches

and ours is that our programs can handle data from infinite domains.

Chapter 7. Program synthesis via Solving Recursive Games 113

Game summaries have previously been explored in the context of branching-time model

checking of pushdown systems [4–6]. Pushdown systems can be viewed as recursive

programs over finite data domains. Branching-time model checking of pushdown systems

is a computationally hard problem — Exptime-complete in the size of the pushdown

system. This is why the traditional definition of summaries, which gives an algorithm

that is polynomial in the system size, does not suffice here. [4, 6] give an algorithm for

this problem based on game summaries. However, this algorithm relies on the fact that

pushdown systems have a finite number of control states and stack symbols, and assumes

an explicit, rather than symbolic, representation of summaries. Two keys contribution

of our work are an extension of the idea of game summaries to a setting with infinite

data domains, and its application in synthesis.

7.8 Conclusion

We have presented a constraint based approach to computing winning strategies in

infinite-state recursive games. The approach consists of: (1) a notion of game summaries

which generalizes the traditional procedure summaries, (2) a set of sound and relatively

complete proof rules for solving such games, and (3) automation of the rules on top of

an existing automated deduction engine. We demonstrate the practical promise of our

approach by using a set of benchmarks, which consists of 10 device driver programs,

derived from the SV-COMP repository.

Chapter 7. Program synthesis via Solving Recursive Games 114

Chapter 8

Future Work

We have proposed a new method for solving forall-exists quantified Horn constraints

extended with well-foundedness conditions. We then show the practical applicability

of our method by presenting some important problems in formal methods that our

method has a potential not only to formalize declaratively and elegantly but also to

solve efficiently. These include verification of branching-time temporal properties of

infinite-state programs and computing winning strategies in two-player graph games

over the state space of infinite-state programs.

However, more work remains before claiming an automated technique that takes a pro-

gram (or a partial program) written in a given programming language and performs

verification (or synthesis) with respect to a given temporal property. We describe a few

directions for future work below.

More temporal logics The most commonly used temporal logic in the industry is

LTL. An interesting work will be extending our method of solving games with general

LTL objectives to a full Horn constraints based LTL verification method. Then, com-

bining the resulting LTL verification method with the existing CTL verification method

can be a further line of research for the verification of CTL*, which is more expressive

than both LTL and CTL.

More games applications There are various application domains in formal meth-

ods whose analyses are amenable to game-theoretic approaches. One is verification of

autonomous systems as autonomous systems by definition comprises agent(s) and envi-

ronment players. We are also especially interested in applying our method to various

reactive synthesis questions such as controller synthesis arising out of embedded systems

and robotics.

115

Chapter 8. Future Work 116

Chapter 9

Summary and Conclusion

We started by introducing the notions of programs, games, well-foundedness and forall-

exists quantified Horn constraints.

We then described the algorithm E-HSF for solving forall-exists quantified Horn con-

straints with well-foundedness conditions. The algorithm makes use of a set of user

provided templates to discover witnesses for existentially quantified variables by apply-

ing a counterexample-guided abstraction refinement(CEGAR). The refinement loop of

E-HSF collects a global constraint that declaratively determines which witnesses can

be chosen from the space of witnesses provided by a template. The chosen witnesses are

used to replace existential quantification, and then the resulting universally quantified

Horn constraints are passed to a solver for such constraints. We claimed the correct-

ness of E-HSF by presenting a condition under which the algorithm is sound, and by

discussing how the global constraint collected in each refinement loop of the CEGAR

algorithm ensures progress of refinement.

Next, we described how our solving algorithm can be applied for verification of proper-

ties given in temporal logics CTL and CTL+FO. We provided proof rules for generating

forall-exists quantified Horn constraints from an infinite-state program, given as a tran-

sition system, and a temporal property, given in CTL and CTL+FO. The proof rules

for temporal quantifiers for both logics are adopted from existing proof rules. However,

we introduced novel yet simple and declarative proof rules for first-order quantifiers

of CTL+FO. This gives an automated method for verifying branching-time temporal

properties. We demonstrated the practical applicability of the method for both logics by

applying a prototype implementation of the method on a set of industrial benchmarks

from the PostgreSQL database server, the SoftUpdates patch system, the Windows OS

kernel.

117

Chapter 9. Summary and Conclusion 118

Then, we presented a Horn constraint-based approach to computing winning strategies

in two-player graph games over the state space of infinite-state programs. The approach

handles games with winning conditions given by safety, reachability, and general Linear

Temporal Logic (LTL) properties. For each property class, we gave a deductive proof

rule that describes a winning strategy for a particular player. We showed that the

proof rules are sound and relatively complete. While these proof rules are our main

contribution, we also provided a prototype implementation of our rules on top of the

E-HSF deduction engine. We demonstrated the practical applicability of the proof

rules through case studies, including a challenging “Cinderella-Stepmother game”, and

examples derived from prior works on program synthesis and repair.

Finally, we proposed an extension to our method of computing winning strategies for

infinite-state graph games to recursive games where games are played on the configu-

ration graphs of programs with recursion and unbounded data. We introduced a gen-

eralization of traditional summaries, called game summaries, that allow compositional

reasoning about strategies in the presence of procedures and recursion. We provided

sound and relatively complete proof rules for solving recursive games with safety and

reachability objectives. A sound approximation of the proof rules is automated using

E-HSF. We demonstrated the practical promises of our method by applying it over a

set of benchmarks from SV-COMP verification competition.

This dissertation demonstrates that solving forall-exists quantified Horn constraints can

provide a framework not only to formalize declaratively and elegantly but also to solve

efficiently various problems in the area of temporal program verification and synthesis.

In addition, we hope that our work might lead to advent of successful tools for solving

existential properties, analogous to the successful tools for solving universal properties.

Bibliography

[1] A. Albarghouthi, Y. Li, A. Gurfinkel, and M. Chechik. Ufo: A framework for

abstraction- and interpolation-based software verification. In CAV, 2012.

[2] R. Alur, P. Cerný, P. Madhusudan, and W. Nam. Synthesis of interface specifica-

tions for java classes. In POPL, pages 98–109, 2005.

[3] R. Alur and S. Chaudhuri. Temporal reasoning for procedural programs. In

VMCAI, pages 45–60, 2010.

[4] R. Alur, S. Chaudhuri, and P. Madhusudan. A fixpoint calculus for local and

global program flows. In POPL, pages 153–165, 2006.

[5] R. Alur, S. Chaudhuri, and P. Madhusudan. Languages of nested trees. In CAV,

pages 329–342, 2006.

[6] R. Alur, S. Chaudhuri, and P. Madhusudan. Software model checking using lan-

guages of nested trees. ACM Trans. Program. Lang. Syst., 2011.

[7] T. Ball and O. Kupferman. An abstraction-refinement framework for multi-agent

systems. In LICS, pages 379–388. IEEE, 2006.

[8] T. Ball and S. K. Rajamani. The SLAM project: debugging system software via

static analysis. In POPL, 2002.

[9] G. Banda and J. P. Gallagher. Constraint-based abstract semantics for temporal

logic: A direct approach to design and implementation. In Proceedings of the 16th

International Conference on Logic for Programming, Artificial Intelligence, and

Reasoning, LPAR’10, 2010.

[10] F. Belardinelli, A. Lomuscio, and F. Patrizi. An abstraction technique for the

verification of artifact-centric systems. In KR, 2012.

[11] T. A. Beyene, M. Brockschmidt, and A. Rybalchenko. Ctl+fo verification as

constraint solving. In SPIN, 2014.

119

Bibliography 120

[12] T. A. Beyene, S. Chaudhuri, C. Popeea, and A. Rybalchenko. A constraint-based

approach to solving games on infinite graphs. In POPL, 2014.

[13] T. A. Beyene, S. Chaudhuri, C. Popeea, and A. Rybalchenko. Recursive games

for compositional program synthesis. In VSTTE, 2015.

[14] T. A. Beyene, C. Popeea, and A. Rybalchenko. Solving existentially quantified

Horn clauses. In CAV, 2013.

[15] D. Beyer. Second competition on software verification - (Summary of SV-COMP

2013). In TACAS, pages 594–609, 2013.

[16] D. Beyer and M. E. Keremoglu. CPAchecker: A tool for configurable software

verification. In CAV, 2011.

[17] D. Beyer and S. Löwe. Explicit-state software model checking based on CEGAR

and interpolation. In FASE, 2013.

[18] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,

and X. Rival. A static analyzer for large safety-critical software. In PLDI, 2003.

[19] M. Bodlaender, C. Hurkens, V. Kusters, F. Staals, G. Woeginger, and H. Zantema.

Cinderella versus the Wicked Stepmother. In IFIP TCS, pages 57–71, 2012.

[20] M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodŕıguez-Carbonell, and A. Rubio.

The Barcelogic SMT solver. In CAV, pages 294–298, 2008.

[21] J. Bohn, W. Damm, O. Grumberg, H. Hungar, and K. Laster. First-order-CTL

model checking. In FSTTCS, 1998.

[22] C. Borralleras, S. Lucas, A. Oliveras, E. Rodŕıguez-Carbonell, and A. Rubio. SAT

modulo linear arithmetic for solving polynomial constraints. J. Autom. Reasoning,

48(1):107–131, 2012.

[23] A. R. Bradley, Z. Manna, and H. B. Sipma. Polyranking for polynomial loops.

Automata, Languages and Programming, pages 1349–1361, 2005.

[24] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani. The

MathSAT 4SMT solver. In CAV, 2008.

[25] J. R. Büchi and L. Landweber. Solving sequential conditions by finite-state strate-

gies. Trans. Amer. Math. Soc., 138:295–311, 1969.

[26] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic model check-

ing: 1020 states and beyond. In Logic in Computer Science, 1990. LICS ’90,

Proceedings., Fifth Annual IEEE Symposium on e, pages 428–439, Jun 1990.

Bibliography 121

[27] T. Cachat. Symbolic strategy synthesis for games on pushdown graphs. In ICALP,

pages 704–715. 2002.

[28] T. Cachat. Uniform solution of parity games on prefix-recognizable graphs. Elec-

tronic Notes in Theoretical Computer Science, 68(6):71–84, 2003.

[29] C. Cadar, D. Dunbar, and D. R. Engler. KLEE: Unassisted and automatic gener-

ation of high-coverage tests for complex systems programs. In OSDI, 2008.

[30] S. Chaki, E. M. Clarke, O. Grumberg, J. Ouaknine, N. Sharygina, T. Touili, and

H. Veith. State/event software verification for branching-time specifications. In

IFM, volume 3771, pages 53–69. Springer, 2005.

[31] K. Chatterjee and L. Doyen. Energy parity games. TCS, 2012.

[32] E. Clarke, Y. Lu, B. Com, H. Veith, and S. Jha. Tree-like counterexamples in

model checking. In In Proceedings of the 17 th Annual IEEE Symposium on Logic

in Computer Science (LICS’02). IEEE Computer Society, 2002.

[33] E. M. Clarke. Temporal logic model checking: Two techniques for avoiding the

state explosion problem. In Proceedings of the 2Nd International Workshop on

Computer Aided Verification, CAV ’90, 1991.

[34] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state

concurrent systems using temporal logic specifications. ACM Trans. Program.

Lang. Syst., 8(2):244–263, 1986.

[35] E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs.

In TACAS, 2004.

[36] E. M. Clarke, D. Kroening, N. Sharygina, and K. Yorav. SATABS: SAT-based

predicate abstraction for ANSI-C. In TACAS, 2005.

[37] M. Colón, S. Sankaranarayanan, and H. Sipma. Linear invariant generation using

non-linear constraint solving. In CAV, 2003.

[38] B. Cook, H. Khlaaf, and N. Piterman. Faster temporal reasoning for infinite-state

programs. 2014.

[39] B. Cook and E. Koskinen. Reasoning about nondeterminism in programs. In

PLDI, 2013.

[40] B. Cook, E. Koskinen, and M. Vardi. Temporal property verification as a program

analysis task. Form. Methods Syst. Des., 41(1):66–82, Aug. 2012.

Bibliography 122

[41] B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems code.

In PLDI, 2006.

[42] B. Cook, A. Podelski, and A. Rybalchenko. Summarization for termination: no

return! Formal Methods in System Design, 35(3), 2009.

[43] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for

static analysis of programs by construction or approximation of fixpoints. In

POPL, 1977.

[44] B. Cui, Y. Dong, X. Du, K. N. Kumar, C. R. Ramakrishnan, I. V. Ramakrishnan,

A. Roychoudhury, S. A. Smolka, and D. S. Warren. Logic programming and model

checking. In PLILP/ALP, 1998.

[45] A. Da Costa, F. Laroussinie, and N. Markey. Quantified CTL: expressiveness and

model checking. In CONCUR, 2012.

[46] L. De Alfaro, T. Henzinger, and R. Majumdar. Symbolic algorithms for infinite-

state games. In CONCUR, pages 536–550. Springer, 2001.

[47] L. M. de Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, 2008.

[48] S. Demri, A. Finkel, V. G. Govert, and V. Drimmelen. Model checking ctl* over

flat presburger counter systems. JANCL, 2010.

[49] E. A. Emerson. Handbook of theoretical computer science (vol. b). chapter Tem-

poral and Modal Logic. 1990.

[50] E. A. Emerson and C. Jutla. Tree automata, mu-calculus and determinacy. In

FOCS, pages 368–377. IEEE, 1991.

[51] E. A. Emerson and K. S. Namjoshi. Automatic verification of parameterized syn-

chronous systems (extended abstract). In Proceedings of the 8th International Con-

ference on Computer Aided Verification, CAV ’96, pages 87–98. Springer-Verlag,

1996.

[52] F. Emmes, T. Enger, and J. Giesl. Proving non-looping non-termination automat-

ically. In IJCAR, 2012.

[53] H. Fecher and M. Huth. Ranked predicate abstraction for branching time: Com-

plete, incremental, and precise. In ATVA, pages 322–336. Springer, 2006.

[54] H. Fecher and S. Shoham. Local abstraction–refinement for the µ-calculus. STTT,

13(4):289–306, 2011.

Bibliography 123

[55] F. Fioravanti, A. Pettorossi, M. Proietti, and V. Senni. Generalization strate-

gies for the verification of infinite state systems. Theory and Practice of Logic

Programming, 13:175–199, 2 2013.

[56] P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In CAV,

pages 53–65, 2001.

[57] E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite

Games: A Guide to Current Research, 2002.

[58] S. Graf and H. Säıdi. Construction of abstract state graphs with PVS. In CAV,

1997.

[59] S. Grebenshchikov, N. P. Lopes, C. Popeea, and A. Rybalchenko. Synthesizing

software verifiers from proof rules. In PLDI, 2012.

[60] A. Griesmayer, R. Bloem, and B. Cook. Repair of boolean programs with an

application to C. In CAV, pages 358–371. Springer, 2006.

[61] O. Grumberg, M. Lange, M. Leucker, and S. Shoham. Don’t know in the µ-

calculus. In VMCAI, pages 233–249, 2005.

[62] O. Grumberg, M. Lange, M. Leucker, and S. Shoham. When not losing is better

than winning: Abstraction and refinement for the full µ-calculus. Information and

Computation, 205(8):1130–1148, 2007.

[63] A. Gupta, T. A. Henzinger, R. Majumdar, A. Rybalchenko, and R.-G. Xu. Proving

non-termination. In POPL, 2008.

[64] A. Gupta, R. Majumdar, and A. Rybalchenko. From tests to proofs. In TACAS,

2009.

[65] A. Gurfinkel and M. Chechik. Why waste a perfectly good abstraction? In TACAS,

pages 212–226. 2006.

[66] A. Gurfinkel, O. Wei, and M. Chechik. Yasm: A software model-checker for

verification and refutation. In T. Ball and R. B. Jones, editors, CAV, Lecture

Notes in Computer Science, pages 170–174. Springer, 2006.

[67] S. Hallé, R. Villemaire, O. Cherkaoui, and B. Ghandour. Model checking data-

aware workflow properties with CTL-FO+. In EDOC, 2007.

[68] A. Harding, M. Ryan, and P.-Y. Schobbens. A new algorithm for strategy synthesis

in LTL games. In TACASs, pages 477–492. Springer, 2005.

Bibliography 124

[69] Z. Hassan, A. R. Bradley, and F. Somenzi. Incremental, inductive ctl model

checking. In Proceedings of the 24th International Conference on Computer Aided

Verification, 2012.

[70] T. A. Henzinger, R. Jhala, and R. Majumdar. Counterexample-guided control. In

ICALP, pages 886–902, 2003.

[71] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from

proofs. In POPL, 2004.

[72] J. Heusser and P. Malacaria. Quantifying information leaks in software. In ASAC,

2010.

[73] K. Hoder, N. Bjørner, and L. de Moura. µZ- an efficient engine for fixed points

with constraints. In CAV, 2011.

[74] I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable and undecidable frag-

ments of first-order branching temporal logics. In LICS, 2002.

[75] A. J. C. Hurkens, C. A. J. Hurkens, and G. J. Woeginger. How Cinderella won

the bucket game (and lived happily ever after). Mathematics Magazine, 84(4):pp.

278–283, 2011.

[76] M. Janota, W. Klieber, J. Marques-Silva, and E. M. Clarke. Solving QBF with

counterexample guided refinement. In SAT, 2012.

[77] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-guided component-based

program synthesis. In ICSE, 2010.

[78] B. Jobstmann, A. Griesmayer, and R. Bloem. Program repair as a game. In CAV,

pages 226–238, 2005.

[79] M. Jurdziński. Small progress measures for solving parity games. In STACS, pages

290–301, 2000.

[80] T. Kahsai, J. A. Navas, A. Gurfinkel, and A. Komuravelli. The seahorn verification

framework. In CAV, 2015.

[81] Y. Kesten and A. Pnueli. A compositional approach to CTL* verification. Theor.

Comput. Sci., 331(2-3):397–428, 2005.

[82] V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Complete functional synthesis. In

PLDI, 2010.

[83] O. Kupferman and M. Y. Vardi. Robust satisfaction. In CONCUR, pages 383–398,

1999.

Bibliography 125

[84] O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to

branching-time model checking. J. ACM, 47(2):312–360, 2000.

[85] Y. Lustig and M. Y. Vardi. Synthesis from component libraries. STTT, 15(5-

6):603–618, 2013.

[86] P. Madhusudan. Synthesizing reactive programs. In CSL, pages 428–442, 2011.

[87] Z. Manna and A. Pnueli. Completing the temporal picture. Theor. Comput. Sci.,

83(1):91–130, 1991.

[88] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.

Springer-Verlag New York, Inc., New York, NY, USA, 1992.

[89] Z. Manna and A. Pnueli. Temporal verification of reactive systems: safety. 1995.

[90] Z. Manna and R. Waldinger. A deductive approach to program synthesis.

TOPLAS, 2(1):90–121, 1980.

[91] D. Martin. Borel determinacy. The Annals of Mathematics, 102(2):363–371, 1975.

[92] K. L. McMillan. Symbolic Model Checking. 1993.

[93] K. L. McMillan. Lazy abstraction with interpolants. In CAV, 2006.

[94] K. L. McMillan and A. Rybalchenko. Computing relational fixed points using

interpolation. Technical report, 2012. available from authors.

[95] K. S. Namjoshi. Certifying model checkers. In CAV, 2001.

[96] G. C. Necula, S. McPeak, S. P. Rahul, and W. Weimer. CIL: Intermediate language

and tools for analysis and transformation of C programs. In CC, 2002.

[97] E.-R. Olderog and K. R. Apt. Fairness in parallel programs: The transformational

approach. ACM Trans. Program. Lang. Syst., 10(3), 1988.

[98] A. C. Patthak, I. Bhattacharya, A. Dasgupta, P. Dasgupta, and P. Chakrabarti.

Quantified computation tree logic. Information processing letters, 82(3):123–129,

2002.

[99] É. Payet and F. Spoto. Experiments with non-termination analysis for Java Byte-

code. Electr. Notes Theor. Comput. Sci., 253(5), 2009.

[100] W. Penczek, B. Wozna, and A. Zbrzezny. Bounded model checking for the universal

fragment of ctl. Fundam. Inf., 2002.

[101] N. Piterman, A. Pnueli, and Y. Sa’ar. Synthesis of reactive(1) designs. In VMCAI,

pages 364–380, 2006.

Bibliography 126

[102] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual

Symposium on Foundations of Computer Science, 1977.

[103] A. Pnueli and R. Rosner. On the synthesis of a reactive module. In POPL, pages

179–190. ACM, 1989.

[104] A. Podelski and A. Rybalchenko. A complete method for the synthesis of linear

ranking functions. In VMCAI, 2004.

[105] A. Podelski and A. Rybalchenko. Transition invariants. In LICS, 2004.

[106] A. Rensink. Model checking quantified computation tree logic. In CONCUR, 2006.

[107] A. Schrijver. Theory of linear and integer programming. Wiley-Interscience series

in discrete mathematics and optimization. Wiley, 1999.

[108] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.

Program Flow Analysis: Theory and Applications, 1981.

[109] R. Singh, R. Singh, Z. Xu, R. Krosnick, and A. Solar-Lezama. Modular synthesis

of sketches using models. In VMCAI, 2014.

[110] M. Slanina. Control rules for reactive system games. In AAAI Spring Symposium

on Logic-Based Program Synthesis, 2002.

[111] A. Solar-Lezama, L. Tancau, R. Bod́ık, S. A. Seshia, and V. A. Saraswat. Combi-

natorial sketching for finite programs. In ASPLOS, pages 404–415, 2006.

[112] F. Song and T. Touili. Efficient ctl model-checking for pushdown systems. In In

CONCUR, 2011.

[113] F. Song and T. Touili. Pommade: Pushdown model-checking for malware detec-

tion. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software

Engineering, pages 607–610. ACM, 2013.

[114] S. Srivastava and S. Gulwani. Program verification using templates over predicate

abstraction. In PLDI, 2009.

[115] S. Srivastava, S. Gulwani, and J. S. Foster. From program verification to program

synthesis. In POPL, pages 313–326, 2010.

[116] W. Thomas. On the synthesis of strategies in infinite games. In STACS, pages

1–13, 1995.

[117] M. Y. Vardi. Verification of concurrent programs: The automata-theoretic frame-

work. Ann. Pure Appl. Logic, 51(1-2):79–98, 1991.

Bibliography 127

[118] M. T. Vechev, E. Yahav, and G. Yorsh. Abstraction-guided synthesis of synchro-

nization. In POPL, 2010.

[119] I. Walukiewicz. Model checking ctl properties of pushdown systems. In S. Kapoor

and S. Prasad, editors, FSTTCS, Lecture Notes in Computer Science, pages 127–

138. Springer, 2000.

[120] I. Walukiewicz. Pushdown processes: Games and model-checking. Information

and computation, 164(2):234–263, 2001.

[121] C. M. Wintersteiger, Y. Hamadi, and L. M. de Moura. Efficiently solving quantified

bit-vector formulas. Formal Methods in System Design, 2013.

[122] Y. Xie and A. Aiken. Saturn: A scalable framework for error detection using

boolean satisfiability. ACM TOPLAS, 29(3), 2007.

[123] W. Zielonka. Infinite games on finitely coloured graphs with applications to au-

tomata on infinite trees. Theoretical Computer Science, 200(1):135–183, 1998.

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Dissertation
	1.2 Contributions and Outline

	2 Preliminaries
	3 Solving Forall-Exists Quantified Horn Constraints
	3.1 Introduction
	3.2 Solving algorithm
	3.3 Solving illustration
	3.4 Optimisations
	3.5 Implementation
	3.6 Related work
	3.7 Conclusion

	4 CTL Verification as Horn Constraint Solving
	4.1 Introduction
	4.2 CTL basics
	4.3 Proof system
	4.4 Constraint generation
	4.5 Evaluation
	4.6 Related work
	4.7 Conclusion

	5 CTL+FO Verification as Horn Constraint Solving
	5.1 Introduction
	5.2 CTL+FO basics
	5.3 Proof system
	5.4 Constraint generation
	5.5 Evaluation
	5.6 Related work
	5.7 Conclusion

	6 Solving Games on Infinite Graphs as Horn Constraint Solving
	6.1 Introduction
	6.2 The Cinderella-Stepmother game
	6.3 Proof rules
	6.4 Case study: Cinderella-Stepmother games
	6.5 Case study: program repair/synthesis games
	6.6 Evaluation
	6.7 Related work
	6.8 Conclusion

	7 Program synthesis via Solving Recursive Games as Horn Constraint Solving
	7.1 Introduction
	7.2 Motivation
	7.3 Preliminaries
	7.4 Game summaries
	7.5 Proof rules
	7.6 Evaluation
	7.7 Related work
	7.8 Conclusion

	8 Future Work
	9 Summary and Conclusion
	Bibliography

