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Zusammenfassung

In dieser Arbeit werden kalte Gase sowie das Elektronengas mittels zweier
Methoden studiert, die im Prinzip dasselbe Ziel verfolgen: Die Beschrei-
bung solcher Parameterregime, in denen die Wenigteilchenphysik über die
kollektiven Vielteilcheneffekte dominiert. Die Operatorproduktentwick-
lung (OPE) aus der Quantenfeldtheorie wird verwendet, um das Hochfre-
quenzverhalten derjenigen Korrelationsfunktion zu extrahieren, welche die
Antwort eines zweidimensionalen Fermi Gases mit Kontaktwechselwirkung
auf eine externe Radiofrequenzstörung bestimmt. Aus diesem Hochfrequen-
zverhalten werden Summenregeln für das nullte und erste Moment des Ra-
diofrequenzspektrums hergeleitet, welche diese Momente in Beziehung zur
Teilchenzahl und dem Kontakt des Systems setzen. Die Eigenschaften der
Spektralfunktion des zweidimensionalen Fermi Gases im nicht-entarteten
Regime werden mittels einer Virialentwicklung bestimmt. Aus der Spek-
tralfunktion werden Observablen wie die Zustandsdichte und die Im-
pulsverteilung errechnet. Diese zeigen exzellente Übereinstimmung mit
Tan’s universellen Relationen. Im zweiten Teil dieser Arbeit wird die
Virialentwicklung auf sowohl bosonische als auch fermionische dreidimen-
sionale Quantengase angewendet. Virialkoeffizienten, Kontakte und Im-
pulsverteilung werden bis zur dritten Ordnung in der Fugazität bestimmt,
was Dreiteilchenkorrelationen in exakter Form einbezieht. Die Resultate
stimmen exzellent mit (schon vorher) bekannten universellen Relationen
überein. Im dritten Teil dieser Arbeit wird die OPE sowohl auf das zwei-
dimensionale als auch das dreidimensionale wechselwirkende Elektronengas
angewendet. In der Impulsverteilung und dem statischen Strukturfaktor
ergibt sich ein algebraischer Abfall bei hohen Impulsen, in Übereinstimmung
mit schon bekannten Resultaten von J. Kimball.
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Abstract

In this thesis, cold gases as well as the electron gas are analyzed with two
expansion techniques that have, in essence, the same aim: To describe pa-
rameter regimes where the few-body aspect dominates over the collective
many-body behavior. The Operator Product Expansion (OPE) of quan-
tum field theory is used to extract high-frequency properties of the cor-
relation function that determines the radio-frequency (RF) response of a
two-dimensional Fermi gas with zero-range interactions. Exact sum rules
that relate the zeroth and first moment of the radio-frequency spectrum
to the particle number and the contact of the gas, are derived from these
properties. A quantum cluster (virial-) expansion is employed to study the
properties of the spectral function of the two-dimensional Fermi gas at small
to moderate degeneracy. From the spectral function, observables like the
density of states and the momentum distribution are calculated and are
found to be in excellent agreement with Tan’s universal relations. In the
second part of the thesis, the cluster expansion is applied to both bosonic
and fermionic three-dimensional quantum gases. Virial coefficients, con-
tacts and momentum distribution are calculated up to third order in the
fugacity. This includes three-particle correlations exactly. The results are
are in excellent agreement with known universal relations. In the third part
of this thesis, an OPE is applied to the problem of the interacting electron
gas in both two and three dimensions. A power-law decay of the momen-
tum distribution and the static structure factor at high momenta is found,
compatible with earlier findings by J. Kimball.
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Chapter 1

Introduction

”In the beginning there was
nothing, which exploded.”

(Terry Pratchett - Lords and
Ladies )

In this thesis, the many-body problem will be analyzed in the limits where the
few-body aspects of the system dominate. In these cases, the complexity of the
problem simplifies greatly and few-body results can be used to describe the many-
body system. This makes it, for example, possible to extract exact relations for
various correlation functions. Such exact relations are valuable, because they al-
low to obtain information about many-body correlations from experiment, which
might not be accessible otherwise. From a theoretical standpoint, they are also of
use because they allow to test numerical results for internal consistency. For the
numerical results that will be shown in this thesis, such exact relations were indeed
always used as a test.

Specifically, we use the operator product expansion (OPE) of quantum field the-
ory, developed by Wilson and Kadanoff [1, 2], to extract exact relations from short-
distance and short-time correlations of various correlation functions. The OPE is
an expansion of local operators at different points in space-time, with respect to
their separation. Recently, it was shown to converge both in relativistic [3, 4] and
non-relativistic [5] conformal theories. Consider the product of two operators A and
B at points x and y in space-time. The generic OPE of this operator product then
reads

A(x)B(y) =
∑

cn(x− y)On(y), (1.1)

where we chose to expand around the point y. The so called Wilson coefficients cn
are complex valued functions of the separation x − y. The OPE orders operators

1



Chapter 1 Introduction

by their scaling dimensions, with operators of lowest scaling dimensions appearing
earlier in the expansion. The lower the scaling dimension of an operator, the earlier
it contributes in the expansion (ordered in ”powers” of x−y). The scaling dimension
of an operator can be obtained from the knowledge of the scaling of the operator
product of On and its hermitian conjugate at small separations in times. For an
operator composed of NF fermionic fields, for example, this correlation function
scales like1 t−∆nexp

(
−iNFmr

2

2t

)
, which defines the scaling dimension ∆n. This, for

example, leads to the fact that the operator ψ in d spatial dimensions has scaling
dimension d/2. Since the OPE in eq. 1.1 is an operator relation, it holds between
any state (it is said to hold in the so called weak sense [6]). To determine the
coefficients cn(x − y), we can hence use the simplest states that still allow for the
extraction of a Wilson coefficient at a given order. In this thesis for example, we will
only need to calculate two-body diagrams of both sides of the equation to extract
the Wilson coefficients to the order we are interested in. Once the Wilson coefficient
is fixed by this matching procedure, we can then infer the short-distance behavior
of the correlator in any state. Of course, in the many-body system, we are unable
to calculate the expectation values of the local operators on the right-hand side
exactly. However, even without the explicit evaluation of these expectation values,
the OPE gives rise to non-trivial exact relations between observables, which in turn
can be also tested experimentally. For further introduction to the OPE, see the
contributions of E. Braaten in [7], as well as the contribution of Y. Nishida and D.
Son in the same reference. We will use the OPE in chapter 2.2 to extract the high-
frequency behavior of the radio-frequency spectrum of a two-dimensional Fermi gas.
In chapter 4, we will meet the OPE again while deriving high-momentum properties
of the momentum distribution and static structure factor for the Coulomb gas.

The other method used in this thesis is the quantum cluster expansion, which we
will also call virial expansion for simplicity2. It relies on the observation that in the
limit of high temperatures, the fugacity z = eβµ, where µ is the chemical potential
and β = 1/kBT denotes inverse temperature, is a small parameter. Hence, one can
expand the grand-canonical partition function Z in terms of the fugacity, which
results in an expansion of the form

Z = Tre−β(H−µN) =
∞∑
N=0

zN trNe−βH , (1.2)

1In most of this thesis, we will set ~ = 1
2The difference between the two is very minor. The virial expansion expands in terms of small

densities [8] nλdT , the cluster expansion in terms of small fugacities z.

2



where trN denotes the trace over a sector of the Hilbert space that contains N par-
ticles. For small enough fugacities z � 1, truncating the expansion (1.2) becomes
a good approximation, which greatly simplifies the problem, because in order to
evaluate the traces, one now only needs to solve a few-body problem. The virial
expansion can not only be defined for thermodynamic quantities, but also for cor-
relation functions [9] in a diagrammatic formulation. In chapter 2.3, this allows us
to calculate the single-particle spectral function of a two-dimensional Fermi gas. In
chapter 3, we will use the virial expansion to extract three-body correlations in the
momentum distribution of three-dimensional Bose/Fermi gases. In the bosonic case,
these correlations are linked to the Efimov effect [10, 11].
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Chapter 2

Two-dimensional Fermi gases

”Put On 2-D Glasses Now.”

(Futurama - ”2-D Blacktop”
opening text)

In both two and three dimensions, the ability to tune the interaction strength of
a Fermi gas opens the possibility to probe different types of physics. In the three-
dimensional system at low temperatures, for example, one finds a BCS-like super-
fluid at large and negative inverse scattering lengths, where the pairing of Fermions
with opposite momentum close to the Fermi surface gives rise to superfluidity. At
positive scattering lengths, there exists a true two-body bound state called the
dimer. When the inverse scattering lengths become large on the positive 1/kFa-
side, the energy of this bound state provides the dominant scale in the system. The
system is now well approximated as a gas of structureless bosonic dimers. This is the
so called BEC-side. Since there is no phase transition between these different val-
ues of the scattering length, the system exhibits the so called BCS-BEC crossover
[7]. At zero density however, the two (BEC and BCS) limits are separated by a
multicritical point [12, 13].

Fluctuations are generally more pronounced in two dimensions, which results, if
the two-body potentials falls of sufficiently fast at large distances, in the absence of
spontaneous symmetry breaking of a continuous symmetry at T 6= 0 [14, 15]. This
is referred to as the Hohenberg-Mermin-Wagner theorem. The superfluid-normal
transition in two dimensions is of the BKT-type [16, 17]. This that means correlation
functions decay with a power-law at large distances, rather than approaching a
constant, as is the case for true long range order. Mean field theory suggests that
the transition temperature is around Tc ≈ 0.1TF for ED/EF ≈ 10 [18], where ED
denotes the energy of a two-body bound state (see sec. 2.1 below). The Fermi

4



2.1 The model

energy in two dimensions and for a two-component balanced gas is given by EF =
k2
F /2m = πn/m, where n is the density and m is the mass of the atoms. The critical

temperature as a function of ED was calculated in [19], and they find Tc/TF → 0
as the two-body bound state energy ED is lowered from the BEC regime to the
BCS regime. The realization of (quasi-) two-dimensional cold atom systems using
deep one-dimensional optical lattices allows to study the peculiarities of the two-
dimensional system also experimentally. Recently, the critical temperature was
measured experimentally over a wide range of the crossover [20]. The enhanced
fluctuations in two dimensions suggest that the effects of a pseudo-gap might be
more pronounced. This will be one of our concerns in section 2.3.

In this chapter, we will extract some exact relations, as well as numerical predic-
tions, for the two-dimensional Fermi gas. In sec. 2.1, a short introduction to our
model and the relevant physical parameters will be given. In sec. 2.2, universal re-
lations that hold for the radio-frequency transition rate of a two-dimensional Fermi
gas will be derived. Sec. 2.3 will study the high-temperature limit of the spectral
function of the system. Various other quantities, such as the density of states and
the momentum distribution, will be extracted from the spectral function.

2.1 The model

This chapter will cover all the definitions and conventions we will need for our study
of the high-frequency tail of the RF spectrum, as well as the high-temperature expan-
sion of the spectral function. The low-energy scattering properties of a generic two-
dimensional system can be characterized by the two-dimensional scattering length
a2 [21]. For low energies, where s-wave scattering dominates, the two-particle scat-
tering amplitude between two fermions of different species can be approximated by
[22]

f(k) ≈ 4
− cot δ0(k) + i

= 4π
ln(1/k2a2

2) + iπ
. (2.1)

Note that this scattering amplitude has a pole in the upper half of the complex
k plane for all real a2. This means that in a system characterized by the two-
dimensional scattering length in the above way, we always have a two-particle bound
state – also called the dimer – with binding energy1 ED = 1/ma2

2. In the case of cold
atoms, two-dimensional systems are created by confining the motion of the particles

1A sign convention: Binding energies are positive, the energy of the bound state in question is the
negative of the binding energy.

5



Chapter 2 Two-dimensional Fermi gases

in one direction, which we chose to be the z-axis. Assuming an harmonic confinement
with large oscillator frequency ωz, it can be shown [22] that the two-dimensional
scattering length is determined by the three-dimensional scattering length of the
atoms via

a2(a) = lz

√
π

B
e−
√

π
2
lz
a (2.2)

The oscillator length of the confining potential lz =
√

1/mωz is a measure for the
strength of the confinement, and B = 0.905.. is a universal constant. The three-
dimensional scattering length a can be tuned by means of a Feshbach resonance.
The above formula can be obtained as a limiting case of the relation

lz
a

=
∫ ∞

0

du√
4πu3

(
1− e−

εb
ωz
u√

1−exp(−2u)
2u

)
, (2.3)

that relates the ratio εb/ωz of the confinement induced bound state and oscilla-
tor frequency to the three-dimensional scattering length for arbitrary strength of
the confinement. Assuming strong confinement εb/ωz � 1, we recover (2.2) when
identifying 1

ma2
2

= ED = εb. The motion of the system becomes effectively two-
dimensional, when ωz � µ, kBT , where µ is the chemical potential, and T is tem-
perature. In this case, the atoms can only occupy the ground state of the harmonic
oscillator and the motion of the atoms in the z-direction is frozen out. The motion
in the x−y plane is then well described by the scattering amplitude (2.1). An effec-
tive theory that catches the scattering behavior (2.1) just contains local interactions
between the different fermion species. The Hamiltonian density for this local theory
reads

H =
∑
σ

ψ†σ

(
− ∇

2

2m

)
ψσ +

∑
σ,σ′

gσσ′

2 ψ†σψ
†
σ′ψσ′ψσ, (2.4)

where all the fields are at the same position x. σ and σ′ run over the number of
present fermion species (typically two, or three in the case of RF spectroscopy in
section 2.2). The Hamiltonian operator H =

∫
d2xH(x) can be obtained from (2.4)

by integration over all space. In order to model atoms in different internal spin
states, the masses of the different species σ were chosen to be equal. The results
can be easily generalized to contain non-equal masses mσ. The Lagrangian density,
from which it is easier to read off the Feynman rules of the theory, is given by

L =
∑
σ

ψ†σ

(
i∂t + ∇

2

2m

)
ψσ −

∑
σ,σ′

gσσ′

2 ψ†σψ
†
σ′ψσ′ψσ. (2.5)
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2.1 The model

= +

Figure 2.1: Integral equation for the scattering amplitude A of fermions of species 1
and 2. The integral equation corresponds to an infinite series of ladder
diagrams.

It should be noted that this Lagrangian can be rewritten in terms of an auxiliary,
non-dynamical, field d [23, 24, 25]. This has the effect of reorganizing some diagrams
of, for example, the operator product expansion in section 2.2. In this chapter, the
auxiliary field trick is only employed for the calculation of the RF spectrum of a
diatomic molecule. During the cluster expansion performed in chapter 3 however,
the auxiliary field simplifies the calculation of symmetry factors for certain Feynman
diagrams. In the remainder of this section, we will only deal with the case of two
species σ = 1, 2 for the sake of notational simplicity. The case of three species is a
straightforward generalization. The Feynman rules of the theory (2.5) for the case
σ = 1, 2 are given in Appendix2 A. Calculating the two-body scattering amplitude of
different species via the Lippmann-Schwinger equation, diagrammatically depicted
in fig. 2.1, reveals the need to regularize the theory. For more insight on the
calculation of the scattering amplitude via the Lippmann-Schwinger equation, I
refer to my diploma thesis on the one-dimensional Tan relations [27], where this
issue was discussed in detail. Everything that changes in the case discussed here
is the replacement of one-dimensional by two-dimensional momentum integrals. A
cutoff-regulated coupling constant can be chosen to be

g ≡ g12(Λ) = −2π
m

1
log a2Λ . (2.6)

Another regularization scheme that works well in the present case is dimensional
regularization [28]. In either renormalization scheme, the two-body scattering am-
plitude in the center of mass frame of two atoms of species 1 and 2 with momentum

2For the real time action defined by the Lagrangian (2.5), we will always use the conventions of
the Appendix A. When continuing to imaginary time, however, it is more convenient to get rid
of the various imaginary units i attached to the propagators and vertices. In this case, we will
use the conventions given in the book by Abrikosov et al. [26].
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Chapter 2 Two-dimensional Fermi gases

k and −k and (not necessarily on-shell) collision energy E is given by

A(E) = 4π
m

1
log(−ma2

2E) . (2.7)

In this thesis, the standard choice of the complex logarithm is implied, so that its
branch cut in the complex plane lies on the negative real axis. Setting the energy on
shell via E 7→ k2/m+ iε, with an infinitesimal ε > 0 to specify on which side of the
branch cut the argument lies, one reproduces the standard form (2.1) of the two-
dimensional scattering amplitude for a contact interaction in two dimensions. In
the many-body system with a balanced population and total density n, the typical
energy scale for colliding momenta is the Fermi energy EF = k2

F /2m, where the
Fermi momentum is given by kF =

√
2πn. This is why, for the many-body problem,

one takes

g12(kF ) = −2π
m

1
log a2kF

(2.8)

to be the relevant measure of the coupling constant. In sec. 2.3, where the non-
degenerate limit of the single particle spectral function is discussed, we will also use
this definition to quantify the coupling constant.

It is interesting to note that the naive version of the theory (2.5) is indeed scale
invariant. However, due to the need of a regularization scheme and the resulting
flow (2.6) of the coupling constant, this scale invariance is broken. A naive but
intuitive way of thinking about this is that once we introduce the cutoff scale Λ
in our integrals, we also introduce a scale into the Hamiltonian, and rescaling of
the integrals via t 7→ tλ2, x 7→ xλ in the Lagrangian density does not leave it
invariant (which it would if we were to integrate over R2). This behavior of having
a symmetry at the ultra violet level, which is then broken due to renormalization
of the quantum fluctuations, is called an anomaly. The most prominent example of
such a behavior is perhaps the so called chiral anomaly of quantum chromodynamics
[29]. An introductory discussion of the anomaly discussed here can be found in [30].
It turns out that due to this anomaly, the trace of the stress-energy tensor does not
have the form a scale invariant theory and receives corrections from the contact (see
below) [31].

Like in one and three dimensions [32, 33, 34], it can be shown from an Operator
Product Expansion3, that the momentum distribution of the two-component 2D

3The OPE for the momentum distribution in two dimensions is complicated by the phenomenon
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2.1 The model

Fermi gas has a high-momentum tail that decays like

nσ(k) −→ C

k4 + ... (2.9)

for large momenta k. The coefficient C is the same for both species. Other ap-
proaches to prove the behavior (2.9) include the use of Tan’s selector distributions
[36, 37] or clever use of zero-distance boundary conditions [38] for the many-body
wavefunction. The coefficient C, called the contact, contains information about the
amplitude for two particles to be close together. It can be related to thermodynamic
quantities of the system [36, 39, 40, 38]. Those thermodynamic universal relations
include, for example, a generalization of the pressure relation of the ideal gas and
a relation that expresses the energy of the system as a functional of the momen-
tum distribution only. The static structure factor also contains the contact in its
high-momentum tail. Using the Hellman-Feynman theorem

∂E

∂ log a2
=

〈
∂H

∂ log a2

〉
(2.10)

together with the relation

dg

d log a2
=︸︷︷︸

(2.6)

mg2

2π , (2.11)

one can, from the adiabatic theorem [36, 38]

C = 2πm ∂E

∂ log a2
, (2.12)

infer the definition of the contact in second quantized form:

C = m2
∫
d2R

〈
g2ψ†1ψ

†
2ψ2ψ1(R)

〉
≡
∫
d2R

〈
C(R)

〉
(2.13)

Given the definition (2.13), it is easy to see that the contact is related to the 1− 2
pair correlation function at zero distances. More specifically, the contact defines

called operator mixing (see [35] for a short introduction). One finds that the leading order
non-analytic term in the short-distance expansion of the one-particle density matrix is given by
a term ∼ |r|2 log |r|ψ†1ψ

†
2ψ2ψ1, which gives a ∼ 1/k4 decay after Fourier transform. The OPE

will not be performed here, since enough derivations for eq. (2.9) are available in the given
references. We will also encounter operator mixing for the quartic derivative operators in the
2D electron gas in sec. 4.5.2.
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Chapter 2 Two-dimensional Fermi gases

the average number of ↑↓ pairs in a small sphere around the origin (homogeneous
system) via [38]

Npair
s→0−→ C

4πs
2 log2 s, (2.14)

where s denotes the radius of the sphere. Hence, it is indeed a measure for the
probability of two particles being close together. In section 2.2, we will relate the
contact to the high-frequency tail of the radio frequency response function, when
one of the spin states is transferred to a third spin state via a radio frequency pulse.
In addition, the universal relations provide a beautiful way to test self-consistency
of our numerical results in section 2.3.

Having defined our model and the contact, we are now prepared to approach the
problems in the following sections. In section 2.2, additional universal relations
for RF spectroscopy, that involve the contact, will be derived. We will be able to
make use of one of these very relations already in chapter 2.3, that deals with the
high-temperature limit of the spectral function of the two-dimensional Fermi gas.

2.2 Radio-frequency spectroscopy

Essentially, the idea of radio-frequency (RF) spectroscopy in cold atoms is to transfer
a spin state into another one via a (typically) radio-frequency pulse. The energy
that is needed for the transition is recorded. This can give information about, for
example, the underlying dispersion relations for the atom, and quite generally, how
interaction effects change the energy landscape for the particles [41, 42]. It can
also be used to control of the population (im)balance between different spin states
[43]. Due to the Zeemann effect, different hyperfine states have different energies,
where the energy difference depends on the strength of the magnetic field. At
given magnetic field B and for an isolated atom, let ~ω0 = ~ω0(B) be the energy
needed to transfer a hyperfine state into the final hyperfine state we aim for. For
consistency with later terminology, let us call the initially populated state |2〉 and
the final spin state |3〉. If the atom is not subject to interactions, ω0 defines the
energy needed to transfer the atom from state |2〉 to |3〉. However, interactions may
change this picture drastically. How this is coming about is illustrated in figure
2.2 for the case of momentum resolved RF spectroscopy. Imagine a particle with
momentum k. When the initial and final state are non-interacting, the particle
dispersions are just the ones of free particles ε2(k) = ε3(k) = k2/2m. The typical
momentum of a RF photon is very small compared to typical atomic momenta,
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2.2 Radio-frequency spectroscopy

(a) (b)

Figure 2.2: A sketch of the principles behind momentum resolved RF spectroscopy.
An atom with momentum k is excited from its initial state |2〉 (red)
to a final state |3〉 (green). In the case 2.2(a) of no interactions, the
particle dispersions are just the ones of free particles. In the case 2.2(b)
of strong initial and final state interactions, which are not necessarily of
the same strength, the ”dispersion relations” change. Note that in this
naive picture, we ignore the fact that it is no longer sensible to talk about
a dispersion relation in the case of strong interactions, since momentum
is not a good quantum number.

so zero momentum transfer during the transition is a very good approximation:
kinitial = kfinal. Thus, the energy needed to transfer |2〉 into |3〉 is constant for non-
interacting particles, as shown in figure 2.2(a). In the case where both the final and
initial states are interacting with possibly different interaction strengths, the notion
of a dispersion relation is not well defined anymore, because the momenta of the
particles are not conserved during a scattering process. However, there still might be
peaked structures in the spectral function of the system that resemble a dispersion
relation. These are the curves that are illustrated in figure 2.2(b). The energy
needed to transfer |2〉 into |3〉 will now be, in particular, a function of momentum.
Momentum resolved RF spectroscopy can be used to measure the spectral function
of an interacting state, if the respective final state is non-interacting. In order to
achieve the momentum resolution in experiment, the momentum distribution of the
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Chapter 2 Two-dimensional Fermi gases

final state particles is determined via a time-of-flight measurement after the action
of the RF pulse. This is the method used in the experiments by Fröhlich et al. to
measure the spectral function of the two-dimensional Fermi gas [44]. In this section
we will only deal with the non-momentum resolved case, where we implicitly average
over all momenta.

In this part of the thesis, the contact parameter will be connected to high-
frequency properties and sum rules of the RF spectrum. The problem, for example
the relevant correlator that will be expanded later on, will be set up in a formal
manner in 2.2.1. Linear response theory is a key ingredient that is needed for this
formal setup. In section 2.2.2, the short time operator product expansion (OPE)
for the RF correlator is performed. In section 2.2.3, the high-frequency behavior
of the RF response function is extracted from the OPE and connected to the con-
tact. In section 2.2.4, exact sum rules for the RF spectrum are derived. Finally,
in section 2.2.5, the analytically solvable example of RF spectroscopy of a single
dimer is treated. It is used as a check of the results of the preceding sections. As
we will see, in the limit of big dimer binding energies, our predictions fit very well
with the experiments by Sommer et al. [45]. All the results obtained in sec. 2.2
were published in an article [46] together with Eric Braaten, Christian Langmack
and Wilhelm Zwerger.

2.2.1 Linear response

In this section, we will concentrate on a two-dimensional system composed of two
interacting species σ = 1, 2. They interact with interaction strength g = g12. Spin
species |2〉 is converted, via a radio-frequency transition, to a third internal spin state
|3〉 (σ = 3). As discussed in the previous section, this allows to extract information
about various correlations of the interacting system. For a naive visualization of
generic processes that might happen, see figure 2.3. The third spin may also be
subject to so called final state interactions g′ = g13 6= 0, g′′ = g23 6= 0. A crucial
assumption in the following will be that the final spin state |3〉 is –initially– un-
populated. This will allow, for the given problem, to set g′′ = 0. In a formal way,
this can be seen from the OPE that will follow. If we were to include the coupling
g23, the first operators that would have a Wilson coefficient that is connected to
the interactions of 2 and 3 are the operators ψ†1ψ

†
2ψ
†
3ψ3ψ2ψ1 and Galilean invariant

derivatives of ψ†2ψ
†
2ψ2ψ2. Both operators only contribute at higher orders in our

expansion. In consequence, we can omit the coupling g23 altogether. Note that this
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2.2 Radio-frequency spectroscopy

Figure 2.3: An illustration of the system we have in mind. Due to the confinement
in z direction, our gas forms a pancake structure, as indicated by the
gray region. When the confinement becomes strong enough, the gas
effectively becomes two-dimensional. During RF spectroscopy, RF pho-
tons hit atoms in state |2〉 (red) which are transferred into state |3〉
(green). The first spin state |1〉 (blue) can have interactions with atoms
of species 2 and 3. In a naive two particle picture, processes could in-
clude the breaking of a 1− 2 bound state (purple) into 1− 3 scattering
states, for which the RF photon is required to provide energy in addition
to the one of the bare transition, or the conversion of a 1 − 2 scatter-
ing state into a 1 − 3 dimer (teal). Of course, both dimer - dimer and
scattering - scattering state transitions are allowed as well.

were not true if we were to allow for initial population of species 3. An intuitive
picture of why the coupling g23 only comes in at higher orders is the following: Due
to the Pauli exclusion principle and the exchange correlation hole connected to it
[47], it is far less likely to find two particles of species 2 close together, than it is to
find a particle of species 1 and species 2 in close proximity. Consequently, after the
RF pulse transfers an atom from state |2〉 to |3〉, the first 1 − 3 interaction occurs
at a shorter timescale than the first 2− 3 interaction.

The – explicitly time dependent – Hamiltonian of the external radio-frequency
field that drives the transitions from species 2 to 3 is given by

HΩ = Ω√
2

∫
ddx

[
eikL·x−iωtψ†3(x)ψ2(x) + e−ikL·x+iωtψ†2(x)ψ3(x)

]
. (2.15)

The so called Rabi frequency Ω is connected to the dipole matrix element of states
|2〉 and |3〉 (also see [48]), as well as the intensity of the RF field. It determines the
frequency at which the population gets coherently transferred between the states. As
mentioned earlier, we will omit the momentum kL of the RF photon in the following,
since it is close to zero compared to typical atomic momenta. The full Hamiltonian
of the problem is given by sum of the Hamiltonians defined by equations (2.15) and
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Chapter 2 Two-dimensional Fermi gases

(2.4):

H = H(2.4) +HΩ ≡ H0 +HΩ (2.16)

Note that since we did not include an energy offset in the kinetic term of the Hamil-
tonian (2.4), what we will be calculating in the following is a shifted RF spectrum,
because ω = ωL − ω0 is the frequency difference between the photon and the bare
transition from |2〉 to |3〉. Typical RF experiments measure the change of the occu-
pation in species |3〉 due to the presence of the RF field. The associated RF current,
that describes the rate of change in the population of species 3, is given by

Γ̂ = Ṅ3 = i [H,N3] = i

[
H,

∫
ddy ψ†3(y)ψ3(y)

]
= i

∫
ddy

([
H0, ψ

†
3(y)ψ3(y)

]
+
[
HΩ, ψ

†
3(y)ψ3(y)

])
, (2.17)

where the Heisenberg equation of motion for the particle number operator N3 was
used. Using the equal time anti-commutation relations for the fields ψσ, a short
calculation reveals ∫

ddy
[
H0, ψ

†
3ψ3(y)

]
= 0 (2.18a)

∫
ddy

[
HΩ, ψ

†
3ψ3(y)

]
= Ω√

2

∫
ddx

[
ψ†2ψ3(x)eiωt − ψ†3ψ2(x)e−iωt

]
. (2.18b)

Equation (2.18a) reflects the fact that the unperturbed theory conserves particle
number. This is also true for the other two species σ = 1, 2, and can be easily seen
from the Hamiltonian density (2.4). It does not contain a term that can convert the
different species into each other. Linear response theory, essentially an expansion
in a time dependent perturbation (see [49] for a very nice introduction), in HΩ(t)
results in the following expression for the RF current:

Γ = 〈Γ̂(t)〉 = −i
∫ ∞
−∞

dt′Θ(t− t′)
〈 [

Γ̂(t), HΩ(t′)
] 〉

(2.19)

The time evolution of the operators on the right hand side of the equation is gener-
ated only by H0. The expectation value is here taken to be in the canonical ensemble
of the unperturbed part [49] 〈..〉 = Z−1tr[e−βH0 ..], where β = 1/kBT . Note that
linear response theory will provide a good description of the system only as long as
the effect of the perturbation does not dominate its dynamics. For our case, this
means it will be valid for times where the population change in species 2 and 3 will
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be small. Inserting eqs. (2.17), (2.18a) and (2.18b) into eq. (2.19) yields

Γ = −iΩ
2

2

∫ ∞
−∞

dt′Θ(t− t′)
∫
ddx ddx′

〈
eiω(t−t′)[ψ†2ψ3(x, t), ψ†3ψ2(x′, t′)

]
+eiω(t+t′)[ψ†2ψ3(x, t), ψ†2ψ3(x′, t′)

]
+ e−iω(t+t′)[ψ†3ψ2(x, t), ψ†3ψ2(x′, t′)

]
+e−iω(t−t′)[ψ†3ψ2(x, t), ψ†2ψ3(x′, t′)

]〉
. (2.20)

Keeping in mind that both the canonical average and the time evolution are gen-
erated by H0, and that the unperturbed Hamiltonian conserves particle number
[H0, Nσ] = 0, we see that the two terms in the middle vanish due to the unequal
number of creation and annihilation operators of the same species. In addition, the
retarded commutators are only functions of the time difference t−t′, which allows the
substitution (t− t′)→ t to simplify notation. Thus, within linear response, the RF
current is actually independent of time. We can further identify the fourth term to be
the complex conjugate of the first one via the relation [A†B,C†D]† = −[B†A,D†C].
The result for the RF current reads

Γ(ω) = Ω2<
[ ∫ ∞
−∞

dtΘ(t)eiωt
∫
ddxddx′

〈[
ψ†2ψ3(x, t), ψ†3ψ2(x′, 0)

]〉]
= Ω2=

[
i

∫ ∞
−∞

dtΘ(t)eiωt
∫
ddxddx′

〈[
ψ†2ψ3(x, t), ψ†3ψ2(x′, 0)

]〉]
.

(2.21)

The RF spectrum is thus defined by the spectral function of the operator A =
∫
ψ†2ψ3.

Note that Γ(ω) should not be confused with the Fourier transform of Γ(t) in equation
(2.17). The implicit ω dependence was always there, contained in the perturbation’s
Hamiltonian HΩ. In the following sections, we will usually prefer the second form of
the RF spectrum above. We see that the RF response is determined by the Fourier
transform of the retarded Green’s function of the operator

∫
ψ†2ψ3.

Up to this point, we have only used the assumption that particles of species 3 are
absent at time zero to simplify notation by setting the coupling constant g23 to zero.
However, in an, with respect to species 3, empty initial state, the second part of the
retarded commutator does not actually contribute, since the annihilation operator
ψ3 is to the right of the creation operator ψ†3. Thus, we can, under the assumption
of no initial population of particles of species 3, connect the retarded correlator to
the time-ordered one:

Γ(ω) = Ω2=
[
i

∫
dt ei(ω+iε)t

∫
ddxddx′

〈
Ttψ

†
2ψ3(x, t)ψ†3ψ2(x′, 0)

〉]
,

(2.22)
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where a small ε > 0 was introduced to enforce time integration only to run from 0
to ∞. Actually, had we been completely careful about the derivation, this small ε
could be traced back to the adiabatic switching on procedure of the perturbation,
that is implicit in the linear response formalism. See [49] for details. The symbol Tt
stands for the time ordered product of the operators, with the additional constraint
that operators at equal times shall be ordered like in equation (2.22). Defining the
RF operator

Orf(ω,R) =
∫
dteiωt

∫
ddr Ttψ

†
2ψ3

(
R + r

2 , t
)
ψ†3ψ2

(
R − r

2 , 0
)
, (2.23)

we can express the RF spectrum as the imaginary part of the equilibrium expectation
value of Orf:

Γ(ω) = Ω2
∫
ddR=

[
〈Orf(ω + iε,R)〉

]
(2.24)

We performed the substitution r = x−x′ and R = (x+x′)/2, which has determinant
one and therefore does not contribute any numerical factors. To extract the high-
frequency behavior of the RF spectrum, the RF operator Orf will be expanded in
an operator product expansion. Our derivation until now did not actually depend
on the dimensionality of the system. In fact, in the next subsection 2.2.2, I will
present a way to obtain the OPE that only depends on the dimensionality of the
system via the form of the scattering amplitude. The results will thus also hold
for the three-dimensional case. The asymptotic behavior of Γ(ω) at large ω for the
three-dimensional case, as well as the sum rules that can be derived from it, were
already known before we started our project on the two-dimensional case. Those
relations were derived by Punk et al. [50, 51] and Braaten et al. [52]. For Bosons, a
similar approach also revealed sub-leading corrections that are related to the Efimov
effect [53]. The relations for the three-dimensional case will be stated in sections
2.2.3 and 2.2.4 for comparison with the two-dimensional case, on which our main
focus lies.

2.2.2 Operator Product Expansion for the response function

In this section, a short-time (high-frequency) OPE for the operator Orf, defined
in equation (2.23), will be established. It will allow extraction of high-frequency
behavior and sum rules for the RF transition rate Γ(ω). The short-time and -
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distance OPE in the present case has the general form

ψ†2ψ3

(
R + r

2 , t
)
ψ†3ψ2

(
R − r

2 , 0
)

=
∑
n

c̃n(r, t)On(R, 0), (2.25)

where the On are local operators and c̃n(r, t) are the Wilson coefficients. The high-
frequency OPE for Orf can thus, using equation (2.23), be written as

Orf(ω,R) =
∑
n

cn(ω)On(R), (2.26)

where the On(R) are the same local operators as in eq. (2.25) (acting at time t = 0)
and the Wilson coefficients are

cn(ω) =
∫
dteiωt

∫
ddr c̃(r, t). (2.27)

It will be advantageous to directly perform the matching in frequency space. The
integration

∫
ddr is also directly performed to simplify some diagrams. It makes Orf

a ”half momentum conserving” vertex in the sense that the sum of the momenta
of the particles of species 2 has to equal the sum of momenta of species 3, also
see appendix A.2 on the Feynman rules for operator vertices. In addition, due to
the integration

∫
dt exp iωt, the vertex that acts at time t corresponds to an energy

injection −ω. The vertex at time zero is not integrated over, and thus has no energy
conservation rules.

Since the OPE (2.26) is an operator equation, it has to hold between arbitrary
states. The simplest possible state is the vacuum state. The matrix element of
the RF operator in this state is zero, which sets the Wilson coefficient of (linearly
independent) operators that do not vanish in the vacuum to zero. For states that
only contain a particle of species 1, the argument is completely analogous. Keep in
mind that we are only looking at a subspace-OPE, because, during the matching
process, we will be ignoring any initial and final states that contain particles of
species 3. The simplest non-vanishing matrix element of the left hand side of eq.
(2.26) is given by states that only contain one particle of species 2. The matching
in this so called one-particle sector will be performed in the next subsection.

One-particle sector

It is useful to invest some preliminary thought on which operators one expects on
the right hand side of the OPE (2.26). Quite generally, we expect the operators that
contribute to the OPE to be ordered by their scaling dimensions (also see below),
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where operators with higher scaling dimension should have Wilson coefficients that
decay faster as ω → ∞. This scheme might be complicated by an anomalous
dimension for some operators [35, 33]. The symbol L shall stand for dimensions of
length (inverse momentum). Including all operators4 of scaling dimensions L−d−2

and L−2d that can still have a non-zero Wilson coefficient, we have the following
ansatz for the OPE (2.26):

Orf(ω,R) = c2†2(ω)ψ†2ψ2(R) + ci,∂n2(ω) ∂i
(
ψ†2ψ2

)
(R) + ci,J2(ω) J2,i(R)

+c2†D2(ω)ψ†2iDψ2(R) + cD2†2(ω) (iDψ2)† ψ2(R)
+c∂2n2,ij(ω) ∂i∂j

(
ψ†2ψ2

)
(R) + c2†∂22,ij(ω)

(
ψ†2
←→
∂i
←→
∂j ψ2

)
(R)

+c∂J2,ij(ω)
(
∂iJ2,j(R) + ∂jJ2,i(R)

)
+c1†2†21(ω)ψ†1ψ

†
2ψ2ψ1(R) + . . . (2.28)

The shorthands

ψ†2iDψ2(R) = ψ†2

(
i∂t + ∇

2

2m

)
ψ2(R) (2.29a)

(iDψ2)† ψ2(R) = ψ†2

(
−i
←−
∂t +

←−
∇2

2m

)
ψ2(R) (2.29b)

J2,i(R) = − i

2m
(
ψ†2
←→
∂i ψ2

)
(R) = − i

2m
(
ψ†2∂iψ2 − (∂iψ†2)ψ2

)
(R) (2.29c)

were introduced to simplify notation. Einstein summation convention is implied
here for the indices i, j: ∑

i,j

AijBij ≡ AijBij (2.30)

Note that it is not strictly necessary to group the derivatives on the operators
like in (2.28). Any other linearly independent set is equally fine. The advantage
of the choice above is that it makes the dependence on the current operators of
species 2 explicit. The scaling dimensions of the operators can be calculated as
follows: A space derivative ∂i, by definition, contributes L−1. In the non-relativistic
case, a time derivative ∂t contributes L−2. From the requirement that the action be
dimensionless, we can infer the dimension of a field ψσ to be L−d/2. Since our theory

4As you might have noticed, this is strictly speaking not true. In the case d = 3, we are missing
quite a lot of operators of dimension L−6. Since focus lies on the two-dimensional case, let us
omit these operators. Their Wilson coefficients can be shown to decay like ω−3, which makes
our results for the three-dimensional case correct up to ω−3. This will suffice to give non-trivial
results even in the 3D case.
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2.2 Radio-frequency spectroscopy

(a) Orf (b) Local one-particle operators

Figure 2.4: Diagrams for the matching in the one-particle sector. 2.4(a) describes
the matrix element of the RF operator Orf we want to expand. 2.4(b)
is the diagram for all the one-particle operators ∼ ψ†2ψ2 on the right
hand side of the OPE (2.28). The full lines stand for an atom of species
2, the dashed line for the propagation of an atom of species 3. In both
diagrams, the external legs have incoming energy and momentum (E,p)
and outgoing (E′,p′).

is Galilean invariant, only Galilean invariant combinations of ∂t and ∇ were used
in the OPE (2.28). When allowing for all combinations, we will only find Galilean
invariant combinations during the matching process. The only two-particle operator
up to dimension L−2d, in the subspace of no population of species 3, is the operator
ψ†1ψ

†
2ψ2ψ1. It is also referred to as contact density, because it is closely related to

the contact in equation (2.13).

To match the Wilson coefficients of the one-particle operators, the OPE (2.28) is
now evaluated in scattering states 〈E′,p′|, |E,p〉 that contain an incoming particle
of species 2 with energy and momentum (E,p) and and outgoing particle of species
2 with energy and momentum (E′,p′). The shorthand 〈...〉 = 〈E′,p′|...|E,p〉 will be
used to keep the formulas clean. An alternative way of thinking about the matrix
elements is that we calculate the amputated Green’s functions of all the operators on
the left-hand and right-hand side with the afore mentioned incoming and outgoing
energies and momenta.

Matrix element of Orf Using the Feynman rules for the operator Orf given in
appendix A.2, we have for its matrix element, which is diagrammatically shown in
figure 2.4(a):
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Chapter 2 Two-dimensional Fermi gases

〈Orf(ω,R)〉 = ei(p−p′)·R i

E′ + ω − (p+p′)2

8m + iε

≈ ei(p−p′)·R
{
i

ω
− i

ω2

[
E′ − (p + p′)2

8m

]
+O(ω−3)

}

= ei(p−p′)·R
{
i

ω
− i

ω2

[
E′ − p′2

2m

]
− i

8mω2
[
p− p′

]2
− i

4mω2
[
(p′ − p) · (p′ + p)

]
+O(ω−3)

}
(2.31)

For the last equality, the identity

−(p + p′)2

8 = −p′2

2 + (p− p′)2

8 + (p′ − p) · (p′ + p)
4 (2.32)

was used. The important point is that equation (2.31) holds ∀R,p,p′ ∈ Rd and
all energies E,E′ that are still small enough to justify the expansion with respect
to large frequencies ω. This allows us to compare this matrix element to matrix
elements of the local one-particle operators as function of all of these variables.

Matrix elements of the right-hand side operators The matrix elements of
the one-particle operators, in the states with incoming momentum and energy (E,p)
and outgoing momentum and energy (E′,p′), can all be diagrammatically repre-
sented by diagram 2.4(b). In appendix A.2, it is demonstrated how to derive the
Feynman rules for the operator vertices. The Feynman rules for the one-body oper-
ators are essentially given in the matrix elements below. They only depend on the
incoming and outgoing energies and momenta of the lines that are connected to the
vertex. The matrix element of the only dimension L−d operator is given by

〈
ψ†2ψ2(R)

〉
= ei(p−p′)·R. (2.33)

The matrix elements of dimension L−d−1 operators are

〈
∂i
(
ψ†2ψ2

)
(R)

〉
= i(pi − p′i)ei(p−p′)·R (2.34a)

〈J2,i(R)〉 = pi + p′i
2m ei(p−p′)·R. (2.34b)
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Last, but not least, the matrix elements of the one-particle operators of dimension
L−d−2 calculate to

〈
ψ†2iDψ2(R)

〉
=

(
E − p2

2m

)
ei(p−p′)·R (2.35a)

〈
(iDψ2)† ψ2(R)

〉
=

(
E′ − p′2

2m

)
ei(p−p′)·R (2.35b)〈

∂i∂j
(
ψ†2ψ2

)
(R)

〉
= −(pi − p′i)(pj − p′j)ei(p−p′)·R (2.35c)〈(

ψ†2
←→
∂i
←→
∂j ψ2

)
(R)

〉
= −(pi + p′i)(pj + p′j)ei(p−p′)·R (2.35d)〈(

∂iJ2,j(R) + ∂jJ2,i(R)
)〉

= − i

2m

[
(p′i − pi)(pj + p′j)

+(p′j − pj)(pi + p′i)
]
ei(p−p′)·R. (2.35e)

To compare these matrix elements to the matrix element of Orf, the identities

(p′ − p) · (p′ + p) = 1
2δij

[
(p′i − pi)(pj + p′j) + (p′j − pj)(pi + p′i)

]
(2.36a)

(p− p′)2 = δij(pi − p′i)(pj − p′j) (2.36b)

are useful. δij is the Kronecker symbol. Using equations (2.36) and comparing the
matrix element on the left-hand side, equation (2.31), with the matrix elements on
the right-hand side, given by equations (2.33) - (2.35), we obtain the following result
for the OPE of Orf in the one-particle sector:

Orf(ω,R)|1p. = i

ω
ψ†2ψ2(R)− i

ω2 (iDψ2)† ψ2(R) + i

8mω2 δij ∂i∂j
(
ψ†2ψ2

)
(R)

+ 1
4ω2 δij

[
∂iJ2,j(R) + ∂jJ2,i(R)

]
+O(ω−3) (2.37)

The Wilson coefficients of all the other one-particle operators in (2.28) are zero. The
only Wilson coefficient that is still undetermined is the one of the contact density
ψ†1ψ

†
2ψ2ψ1. Matrix elements containing two or more particles are required to fix this

coefficient.

Two-particle sector

The simplest possible states that have a non-vanishing matrix element of ψ†1ψ
†
2ψ2ψ1

are two-particle states that contain one particle of species 1 and one particle of
species 2. Since this operator does not contain any time or space derivatives, it
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suffices to use states that have vanishing incoming and leaving momenta ±0 and
energies 0. It is useful to define the following integrals:

I(E) =
∫

q

i

E − q2

m + iε
(2.38)

K(E,ω) =
∫

q

i

E + ω − q2

m + iε

i

E − q2

m + iε
(2.39)

= i

ω

(
I(E)− I(E + ω)

)
M(E,ω) =

∫
q

(
i

E − q2

m + iε

)2
i

E + ω − q2

m + iε
(2.40)

=
(
i

ω

)2 (
I(E + ω)− I(E)

)
+ i

ω

∫
q

(
i

E − q2

m + iε

)2

The symbol
∫

q is a shorthand for integration over momenta:
∫

q ≡
∫
ddq/(2π)d. Note

that I(E) is convergent neither in two nor in three dimensions. However, within
a consistent renormalization scheme, the differences of I are finite. The integral I
is also the one that occurs in the Lippmann-Schwinger equation, diagrammatically
shown for the 1− 2 scattering amplitude A in figure 2.1:

1
A(E) = −1

g
− iI(E) (2.41)

1
D(ω) = − 1

g′
− iI(ω) (2.42)

As mentioned earlier, in this thesis, cutoff regularization is used for the problem.
The two-dimensional regularization scheme is given by (2.6). The three-dimensional
cutoff regulated coupling constant is defined via

g(Λ) = 4πa/m
1− 2aΛ

π

(2.43)

and completely analogous for g′. The amplitude D(ω) is the scattering amplitude
for particles of species 1 and 3. In explicit form, it reads

D(ω) = 4π
m

1
log(−ma′22 ω) (2D) (2.44)

D(ω) = 4π/m
− 1
a′ +
√
−mω

(3D) (2.45)

where the binding energy E′D = 1/ma′2 of the 1−3 bound state is given by the two-
(or three-)dimensional 1 − 3 scattering length a′. Completely analogous formulas
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 2.5: Diagrams contributing to the matrix element of Orf(ω,R) in two-particle
states. The big gray blob is the two-particle scattering amplitude for 1-2
scattering iA, the big gray rectangle is the 1-3 scattering amplitude iD.
The incoming and outgoing energies are (0,±0).

hold for the 1−2 scattering amplitude A. The dependence on the scattering lengths
will be mostly omitted from here on out, the amplitudes will be expressed in terms
of the binding energies ED and E′D. Diagrammatically, a gray blob indicates the
amplitude iA for scattering of particles 1 and 2. A gray box will stand for iD, the
scattering of particles 1 and 3.

Matrix element of Orf For the matrix element of the RF operator Orf in the
states with (0,±0), we have eight possible diagrams that contribute. They are
shown figure 2.5. The full matrix element is given by the sum of these diagrams.
There are exactly eight diagrams because of the 2·2·2 possibilities to have scattering
before, in between, and after the action of the vertices.

A word about the energy integration in all the diagrams that will follow: Consider,
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Chapter 2 Two-dimensional Fermi gases

for example, diagram 2.5(d). The lines in between the two amplitudes are not
determined by energy and momentum conservation at the gray blobs. We thus have

2.5(d) = (iA(0))2
∫
dq0
2π

∫
q

(
i

q0 − q2

2m + iε

)2
i

ω + q0 − q2

2m + iε

i

−q0 − q2

2m + iε

= (iA(0))2
∫

q

(
i

−q2

m + iε

)2
i

ω − q2

m + iε
. (2.46)

For the second equality, the fact that all but one pole lie in the lower half complex
q0-plane, is used. Since the integrand decays fast enough at infinity, it is possible
to close the contour in the upper half q0 plane. The arc does not contribute due to
the fast decay. Evaluation of the integral via the residue theorem is now possible.
The winding number of the contour around the pole is positive, and the Residue
contributes a factor −2πi times all the other propagators evaluated at −q2/2m+ iε.
All the undetermined energy integrations in other diagrams will be determined in
the precisely same way. The same method was already implicitly used to eliminate
the integration over the loop energy in the Lippmann-Schwinger equations (2.41)
and (2.42).

If we were using states where the particles have incoming and outgoing four-
momenta (E/2,±p) and (E′/2,±p′), diagram 2.5(a) would contain a delta function
on the incoming and leaving four momenta of the particle of species 1. This can
be understood from the fact that we contract those two external legs with each
other. In our case of zero incoming and leaving four-momenta, we write δ(0,0) as a
shorthand for this delta function. In addition, the inner leg of the species 2 particle
in diagrams 2.5(b) and 2.5(c) goes on shell, which is not a major complication, since
this also happens for the diagrams of ψ†2ψ2, as we will see below. The contributions
of diagrams 2.5(a) - 2.5(h) to the matrix element of Orf, expressed via the integrals
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(2.38)-(2.40), are given by

2.5(a) = i

ω
δ(0,0) (2.47a)

2.5(b) = i

iε

i

ω
iA(0) (2.47b)

2.5(c) = i

iε

i

ω
iA(0) (2.47c)

2.5(d) = (iA(0))2M(0, ω) (2.47d)

(2.40)= (iA(0))2

( i
ω

)2 (
I(ω)− I(0)

)
+ i

ω

∫
q

(
i

−q2

m + iε

)2


2.5(e) =
(
i

ω

)2
iD(ω) (2.47e)

2.5(f) = i

ω
iD(ω)iA(0)K(0, ω)

(2.39)=
(
i

ω

)2 (
I(0)− I(ω)

)
iD(ω)iA(0) (2.47f)

2.5(g) = i

ω
iD(ω)iA(0)K(0, ω)

(2.39)=
(
i

ω

)2 (
I(0)− I(ω)

)
iD(ω)iA(0) (2.47g)

2.5(h) = (iA(0))2iD(ω)
(
K(0, ω)

)2
(2.39)=

(
i

ω

)2
iD(ω)

(
I(0)− I(ω)

)2(iA(0))2. (2.47h)

The diagrams were expressed in terms of the Lippmann-Schwinger integral I to
simplify matching process with the one particle operators.

Matrix elements of the right-hand side operators The right-hand side of the
OPE (2.28) is now evaluated in the same states containing one particle of species 1
and one particle of species 2. The incoming and outgoing momenta and energies are
of course again (0,±0). All the operators with Wilson coefficients that are already
matched to zero will not be evaluated.

One-particle operators The four diagrams for the evaluation of the matrix ele-
ments of the local one-particle operators are presented in figure 2.6. The resulting
expressions for these diagrams are given in table 2.1. The matrix element is again
the sum of all the corresponding diagrams. The contributions of the two second
derivative operators ∂i∂j

(
ψ†2ψ2

)
and (∂iJ2,j + ∂jJ2,i) are zero, because energy and
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(a) (b)

(c) (d)

Figure 2.6: Diagrams for the matrix elements of local one-particle operators (already
matched in section 2.2.2).

2.6(a) 2.6(b) 2.6(c) 2.6(d)〈
ψ†2ψ2(R)

〉
δ(0,0)

i
iε iA(0) i

iε iA(0) (iA(0))2 ∫
q

(
i

−q2
m

+iε

)2

〈
(iDψ2)†ψ2(R)

〉
0 0 0 (iA(0))2iI(0)〈

∂i∂j(ψ†2ψ2)(R)
〉

0 0 0 0〈
(∂iJj + ∂jJi)(R)

〉
0 0 0 0

Table 2.1: Matrix elements of local one-particle operators in two-particle states.

momentum conservation at the scattering vertices fix incoming and leaving mo-
menta at the operator vertex to be equal, cf. eqs. (2.35c) and (2.35e). The kinetic
one-particle operator (iDψ2)†ψ2 has only one non-zero matrix element, because, in
diagrams 2.6(a)-2.6(c), the external legs are on-shell. Since its Feynman rule is
basically the free equation of motion, this yields vanishing matrix elements.

Comparing the results of table 2.1 with equations (2.47a)-(2.47d), we see that
diagrams 2.6(a)-2.6(c) entirely match diagrams 2.5(a) - 2.5(c) when using the already
determined (see eq. (2.37)) Wilson coefficients

c2†2(ω) = i

ω
(2.48)

cD2†2 = − i

ω2 . (2.49)
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(a) (b)

(c) (d)

Figure 2.7: Diagrams for the matrix element of ψ†1ψ
†
2ψ2ψ1(R).

For diagram 2.5(d), given by equation (2.47d), the only part that is not matched by
the one-particle operators is the one that contains the Lippmann-Schwinger integral
I(ω). This remaining part, as well as the other four diagrams 2.5(e)-2.5(h), will be
matched by the lowest dimensional two-particle operator, as we will see below.

Two-particle operators The matrix element of the lowest dimensional two-
particle operator ψ†1ψ

†
2ψ2ψ1 is given by the sum of the diagrams shown in figure

2.7. The Feynman rule of the operator is connected to the total incoming and the
total outgoing momentum of the attached lines: ei(Pin−Pout)·R. In particular, it
yields a factor of one for vanishing total momentum, as is the case for the external
states we are using. Evaluation of the diagrams yields

〈
ψ†1ψ

†
2ψ2ψ1(R)

〉
=

(
1 + iA(0)I(0)

)2 (2.41)= A(0)2

g2 , (2.50)

where the Lippmann-Schwinger equation (2.41) was used to simplify the expression.
The following remark about renormalization is important: the operator of the con-
tact density C = m2g2ψ†1ψ

†
2ψ2ψ1 has finite matrix elements as Λ → ∞, in contrast

to the bare operator. Because of this, it will be more useful to absorb the g2 from
the Wilson coefficient directly into the definition of the operator later on.

The part of the matrix element of the RF operator Orf that is not yet matched
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by the matrix elements of the one particle operators is given by the sum

〈Orf〉|rest = (iA(0))2
(
i

ω

)2
I(ω)︸ ︷︷ ︸

still unmatched part of 2.5(d)

+ iD(ω)
(
i

ω

)2 [
1 +

(
I(0)− I(ω)

)
iA(0)

]2
︸ ︷︷ ︸

sum of diagrams 2.5(e)−2.5(h)

(2.41), (2.42)= A2(0) i
ω2

[ 1
g′

+ 1
D(ω)

]
+ iD(ω)

(
i

ω

)2 [A2(0)
g2

−2I(ω)iA(0)− 2iI(ω)iI(0)A2(0) + i2I2(ω)A2(0)
]

(2.41), (2.42)= A2(0) i
ω2

[ 1
g′

+ 1
D(ω)

]
+ iD(ω)

(
i

ω

)2
A2(0)

×
[ 1
g2 +

�����������

2
( 1
g′

+ 1
D(ω)

) 1
A(0)

−2
( 1
g′

+ 1
D(ω)

)(1
g

+
�

�
�1

A(0)

)
+
( 1
g′

+ 1
D(ω)

)2 ]
= A2(0) i

ω2

[(2
g
− 1
g′

)
−D(ω)

(1
g
− 1
g′

)2
]
. (2.51)

The Lippmann-Schwinger equations (2.42) and (2.41) were used to eliminate the
integrals I in favor of the amplitudes A and D. This is also the reason why our
matching process works for both the two- and three-dimensional problem. We just
have to plug in the expressions for the amplitudes in the end to get the corresponding
result. As you might have noticed, this part of the matrix element is not finite.
However, the divergence cancels against the part that was matched by the kinetic
operator (iDψ2)†ψ2, such that the total matrix element is indeed well defined. This
point will be clarified further in the next subsection 2.2.3, when the high-frequency
behavior of the RF spectrum is extracted from the OPE.

Comparison of the unmatched part (2.51) with the matrix element of the operator
ψ†1ψ

†
2ψ2ψ1, given in equation (2.50), yields

c1†2†21(ω) = g2 i

ω2

[(2
g
− 1
g′

)
−D(ω)

(1
g
− 1
g′

)2
]

(2.52)

for its Wilson coefficient. The Wilson coefficient carries the right renormalization
to make the matrix elements finite. Let us from now on absorb the coupling g2

into the operator and talk about C(R) = m2g2ψ†1ψ
†
2ψ2ψ1 instead. Note that in two
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dimensions, apart from factors of mass, the coupling g is dimensionless, while in three
dimensions, it carries dimensions of length. Thus, in both cases, the renormalized
operator C(R) carries dimensions of L−4. This change in scaling dimensions under
renormalization is often referred to as an anomalous dimension. Since the operator
C(R) acquires such an anomalous dimension in the three-dimensional case, this is
actually, in retro-respect, a justification for not including the higher order terms
∼ ω−3 into the OPE.

In summary, we have determined the large-frequency OPE of the RF operator
Orf(ω,R) – in the subspace of no population of species 3 – to be

Orf(ω,R) = i

ω
ψ†2ψ2(R)− i

ω2 (iDψ2)† ψ2(R) + i

8mω2 δij ∂i∂j
(
ψ†2ψ2

)
(R)

+ 1
4ω2 δij

[
∂iJ2,j(R) + ∂jJ2,i(R)

]
+ i

ω2
1
m2

[(2
g
− 1
g′

)
−D(ω)

(1
g
− 1
g′

)2
]
C(R) +O(ω−3). (2.53)

The implications for the asymptotic high-frequency behavior of the RF current Γ(ω)
will be discussed in the next subsection.

2.2.3 Large-frequency behavior

For the two-dimensional Fermi gas, Sommer et al. [54] proposed that the high-
frequency tail of the RF spectrum decays quadratically ∼ ω−2 for large frequencies.
As we will see below, this is true only in the special case of vanishing final state
interactions g′ = 0. Our results can be understood as a natural generalization that
takes into account the effect of interactions between particles 1 and 3 after the
excitation of a type-2 atom.

In the case of the three-dimensional Fermi gas, a high-frequency tail of the RF
response function was predicted [55, 50, 51] that decays like ω−3/2 (for vanishing
final state interactions). This result was extended in [52] via the same methods
presented here. In the case of finite final state interactions g′ 6= 0, one has a high-
frequency tail that decays like ω−5/2. As we will see below, we are able to extract
all of these results from the OPE given in equation (2.53). In consequence, the
three-dimensional case serves as a crosscheck for our results in two dimensions.

The RF response is defined as the imaginary part of the (equilibrium) expectation
value of the RF operator Orf, cf. eq. (2.24). As a first step in extracting the high-
frequency properties of the RF spectrum, the expectation value of the OPE (2.53)
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is taken. For this, we will exploit the equation of motion5 of the kinetic operator
(iDψ2)†ψ2, which can be extracted from the action (2.5) by varying the fields ψ2 or
ψ†2. Equivalently, one can take the commutator of the fields with the Hamiltonian.
In our case of vanishing g23, the equation of motion is given by〈

(iDψ2)†ψ2(R)
〉

= 1
g
〈C(R)〉. (2.54)

Plugging the equation of motion (2.54) into the expectation value of the OPE (2.24)
yields

〈Orf(ω,R)〉 = i

ω

〈
ψ†2ψ2(R)

〉
+ i

8mω2 δij
〈
∂i∂j

(
ψ†2ψ2

)
(R)

〉
+ 1

4ω2 δij
〈[
∂iJ2,j(R) + ∂jJ2,i(R)

]〉
+ i

ω2
1
m2

[(1
g
− 1
g′

)
−D(ω)

(1
g
− 1
g′

)2
]
〈C(R)〉+ . . .

= i

ω
n2(R) + i

8mω2

[
∇2n2(R)− 4im∇ · J2(R)

]
+ i

ω2
1
m2

[(1
g
− 1
g′

)
−D(ω)

(1
g
− 1
g′

)2
]
〈C(R)〉+ . . . (2.55)

where n2(R) is the local density of type-2 atoms. Likewise, J2(R) is the correspond-
ing local current density.

The next simplification arises from the integration of the OPE over all positions R.
The term containing the curvature of the density and the divergence of the current
density can be shown6 to vanish when requiring canonical boundary conditions for
the quantum fields ψσ. From a physical point of view, we can also infer, from the
fact that we use equilibrium expectation values together with current conservation

∂N2
∂t︸ ︷︷ ︸
=0

+
∫
ddR∇ · J2(R) = 0, (2.56)

that the term containing the current density has to vanish. Note that in the RF
experiment, there is a change in the population of species 2, because it is excited

5Note that we have not used the equation of motion during the matching process, since the
equation of motion is, by definition, not fulfilled for particles that are not on-shell. The one-
particle matrix elements we used to match the one-particle operators indeed had general (off-
shell) energies E,E′, and so do the loop integrations.

6Expand the terms with respect to their definitions in terms of the fields. Use Gauss’ theorem
to turn the volume integral into an integral over the surface of Rd. The integral has to vanish,
because, due to the canonical boundary conditions, the fields should vanish at infinity.
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2.2 Radio-frequency spectroscopy

into state |3〉. However, this effect is of higher order and not covered in the linear
response formalism we employ. In a similar fashion, we can also state that the
divergence of the density gradient vanishes locally in a translationally invariant
state. The system will be approximated to be translation invariant in section 2.3
on the spectral function of the two-dimensional Fermi gas. Taking into account the
above arguments, the integrated version of the OPE can be simplified to∫

ddR
〈
Orf(ω,R)

〉
= i

ω
N2 + i

ω2

[(1
g
− 1
g′

)
−D(ω)

(1
g
− 1
g′

)2
]
C

m2

+O(ω−3). (2.57)

N2 is the total number of particles of species 2, C is the extensive contact defined
by equations (2.13) and (2.9).

The only still unperformed step in order to connect the OPE to the high-frequency
behavior of the RF spectrum, is to set ω → ω + iε and take the imaginary part of
the resulting expression in the limit of ε→ 0. In order to do so, we need to plug in
the explicit forms (2.44) and (2.45) of the 1− 3 two particle scattering amplitude in
two or three dimensions, respectively. Both the contact C and the particle number
N2 are real numbers ≥ 0. Due to the identities [56]

lim
ε→0

1
ω + iε

= P 1
ω
− iπδ(ω) (2.58)

⇒ lim
ε→0

1
(ω + iε)2 = P 1

ω2 + iπδ′(ω), (2.59)

where P denotes the principal part and δ′(ω) the distributional derivative of the delta
function, the imaginary parts of the terms with a pure 1/(ω + iε) and 1/(ω + iε)2

behavior vanish for large frequencies ω →∞. The equalities above are also a way to
understand how the sum rules, that are derived in the next subsection 2.2.4, come
about.

Three-dimensional case In order to convince ourselves that our results are con-
sistent with earlier findings [52, 50, 55], the three-dimensional case will be treated
first. The amplitude D takes the form (2.45), and, after a short calculation, one
finds

Γ(ω) = Ω2 C

4πm

(1
a
− 1
a′

)2
=
[

1
(ω + iε)2

1
− 1
a′ +
√
−mω − iε

]
+ . . .

= Ω2 C

4π
√
m

(1
a
− 1
a′

)2 1
ω

3
2

1
1
a′2 +mω

+ . . . (2.60)
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Chapter 2 Two-dimensional Fermi gases

for the high-frequency behavior of the RF spectrum Γ(ω). The fact that ω →∞ > 0
and ε > 0 was used in the above equation to uniquely determine on which side of the
branchcut the argument of the square root lies. The imaginary part of the 1/(ω+iε)
and 1/(ω+ iε)2 terms vanishes for ω > 0 due to eqs. (2.58) and (2.59). Note that a
and a′ denote the three dimensional scattering lengths. Equation (2.60) is exactly
the ∼ 1/ω5/2 tail given in [52]. In the limit of vanishing final state interactions
1/a′ →∞, this simplifies to a ∼ 1/ω3/2 tail as given in [51].

Two-dimensional case As we have seen, our results are consistent with ear-
lier findings for RF spectroscopy on a three dimensional Fermi gas. In the two-
dimensional case, all that changes in the OPE (2.57) is the form of the amplitude
D, which now has an inverse logarithmic form, given by eq. (2.44). Insertion of the
amplitude into the OPE yields

Γ(ω) = Ω2 C

m2

(
−m4π log(a2

2/a
′2
2 )
)2 4π

m
=
[ 1

(ω + iε)2
1

log(−mωa′22 − iε)︸ ︷︷ ︸
= 1

log(−mωa′22 )−iπ

]
+ . . .

= Ω2 C

4mω2
log2(a2

2/a
′2
2 )

log2(mωa′22 ) + π2 + . . . , (2.61)

where (2.6) was used to rewrite the coupling constants g and g′ in terms of the two-
dimensional scattering lengths. The imaginary part of 1/(ω + iε) and 1/(ω + iε)2

does again not contribute for ω > 0. In summary, we have, for the two-dimensional
contact-interacting Fermi gas, derived the

High-frequency asymptotics of the RF spectrum

The radio-frequency absorbtion spectrum Γ(ω) of the two-dimensional
Fermi gas at high frequencies decays as

Γ(ω) ω→∞−→ Ω2 C

4mω2
log2(ED/E′D)

log2(ω/E′D) + π2 , (2.62)

where Ω is the Rabi frequency of the transition from state |2〉 to state
|3〉, and the constant C is the contact of atom species 1 and 2, defined
in equation (2.13). ED = 1/ma2

2 (E′D = 1/ma′22 ) denotes the energy
of the two-particle bound state in the initial (final) state, where a2

(a′2) is the corresponding two-dimensional scattering length.
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2.2 Radio-frequency spectroscopy

One key observation is that the asymptotic RF spectrum (2.62) vanishes when
the interaction strengths of the initial and final states are equal: ED = E′D. This
can be understood from the fact that the RF pulse merely rotates a spin in this case
[57]. In other words the initial and final states have the same energy. This results in
an RF spectrum that is proportional to a δ function peak, which can be understood
even from the simple picture, involving the dispersion relations of the initial and
final states, that is presented in figure 2.2. Another interesting limit, that will also
be useful later on in our discussion of the high-temperature properties of the system
in sec. 2.3, is the one of vanishing final state interactions E′D →∞, a′2 → 0. In this
case, we are just left with the simple scaling behavior

Γ(ω) ω→∞−→ Ω2 C

4mω2 , (2.63)

which is indeed consistent with the form ∼ 1/ω2, originally proposed in [54]. Ex-
perimentally, this means that in the case of vanishing final state interactions, one
can fit a 1/ω2 tail to the high frequency part of the measured spectrum to extract
the contact, and hence various thermodynamic properties, of the system [58]. The
contact measured in this way fits zero-temperature Quantum Monte carlo predic-
tions [59] quite well [58]. As it turns out however, in the experiments conducted in
[54, 44, 58], the anomalous logarithmic scaling (2.62) fits the high-frequency tails
even better7, indicating that final state interactions are not negligible.

The logarithmic scaling violations ∼ 1/ω2 log2 ω in (2.62) can be traced back to
the logarithmic form of the scattering amplitude. For the scattering amplitude to
be finite (non-zero), we had to break the scale invariance of the theory with the
running coupling constant (2.6). The logarithmic scaling violations – that differ
from a simple power law – can be seen as an implicit consequence of the breaking
of scale invariance during renormalization of the quantum fluctuations.

2.2.4 Sum rules

As we will see in this subsection, not only can the contact be extracted from the high-
frequency tail (2.62), it can also be connected to a property of the RF spectrum
that is called the clock shift. Historically, the clock shift got its name from its
connection to a tiny change in the energy of hyperfine transitions due to interaction

7On a personal note: It is an extraordinary moment in a theorist’s life, when the experimentalist
tells him that his theoretical results solved (some of the) problems the experimentalist was
experiencing.
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Chapter 2 Two-dimensional Fermi gases

effects between, for example, cesium atoms. These atoms are also used to keep the
standard time. The clock shift quantifies a systematic error in these atomic clocks.
However, because of the sum rules that will be derived below, and the possibility
to extract the contact parameter from them, the clock shift for the two-dimensional
Fermi gas turns out to provide useful information rather than being a nuisance. For
the three-dimensional gas, analogous sum rules, that connect the clock shift to the
contact, were derived in [50, 48] using a commutator approach. They were later
re-derived in [52] using the techniques presented below.

The clock shift is defined as the ratio of the first and zeroth moment of the RF
spectrum. The first moment

∫
dωωΓ(ω) will contain information about the contact

of the system. The zeroth moment
∫
dωΓ(ω) will turn out to be connected to the

number of species-2 atoms in the gas before the RF pulse excites some of the atoms
into the state |3〉. In order to keep the derivation as general as possible, consider an
integral over the RF spectrum with weighting function f :

If =
∫ ∞
−∞

dωf(ω)Γ(ω) (2.64)

The aim is to express this integral as a contour integral in the complex ω-plane.
The results that follow are valid when the weight function f(ω) is analytic and, in
addition, real on the real axis =[ω] = 0. Furthermore, the weight function has to
fulfill f(ω∗) = f∗(ω). The weighting functions of interest, 1 and ω, have all of these
properties. As a reminder: the RF spectrum Γ(ω) is connected to the imaginary
part of the matrix element of the RF operator Orf(ω + iε) via equation (2.24). In
the complex ω-plane, the correlator 〈Orf(ω)〉 will have singularities on the real axis,
namely branch cuts and / or poles. Consider now the contour integral

IC = Ω2

2

∫
γA+γB

dωf(ω)
〈∫

d2ROrf(ω,R)
〉
, (2.65)

where the contour γA runs slightly above, and the contour γB slightly below the
real axis. In addition, the contours run in opposite direction. An illustration of the
contours and a typical branch cut structure is shown in figure 2.8(a). To show that
the contour integral is equal to the one over all real frequencies, IC = If , we require
the property (

i

∫
d2R 〈Orf(ω,R)〉

)∗
= i

∫
ddR 〈Orf(ω∗,R)〉. (2.66)

This property can be proven by use of a Lehmann representation. Define the
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2.2 Radio-frequency spectroscopy

(a) Original contour (b) Deformed to a large circle

Figure 2.8: Contours of integration (green) in the complex ω-plane. Poles and
branch cuts on the real axis are colored red. 2.8(a) shows the two
counter-running contours just below and above the real axis. They are
equivalent to the integral (2.64). 2.8(b) shows the contours deformed
into a large circle. As its radius approaches infinity ,the OPE (2.57)
becomes exact on the circle.

operator A =
∫
ddxψ†2ψ3(x) and choose a ω in the upper complex plane. We have,

for the matrix element of Orf:

i

∫
ddR 〈Orf(ω,R)〉 = i

∫ ∞
0

dt eiωt
〈
A(t)A†(0)

〉
= i

∫ ∞
0

dt eiωt
∑
n,m

e−βEn

Z
eit(En−Em)|〈n|A|m〉|2

= −
∑
n,m

e−βEn

Z

|〈n|A|m〉|2

ω − (Em − En) (2.67)

The indices n stand for the sum connected to the trace of the expectation value,
containing N2 particles of species 2 and no particles of species 3. The index m

originates from the insertion of an identity operator in the subspace of N2 − 1
species-2 particles and 1 atom of type 3. From the form (2.67), since all quantities
except for the complex frequency are evidently real, we can immediately read off the
property (2.66). In essence, it is connected to the fact that retarded and advanced
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Chapter 2 Two-dimensional Fermi gases

Green’s functions are connected to each other via complex conjugation. We can
parametrize γA and γB by ω̄ + iε and ω̄ − iε, ω̄ ∈ R respectively. To account for
the difference in directions, we have to introduce an additional minus sign in the γB
integral. Starting from (2.65), we have

IC = Ω2

2

∫
d2R

∫ ∞
−∞

dω̄f(ω̄) [Orf(ω̄ + iε,R)−Orf(ω̄ − iε,R)]

(2.66)= Ω2

2 (−i)
∫
d2R

∫ ∞
−∞

dω̄f(ω̄) [iOrf(ω̄ + iε,R)− (iOrf(ω̄ + iε,R))∗]

= Ω2
∫
d2R

∫ ∞
−∞

dω̄f(ω̄)= [iOrf(ω̄ + iε,R)] (2.64)= If .

The fact that f is analytic near the real axis, such that f(ω̄ + iε) = f(ω̄ − iε) when
ε→ 0, was used.

When there are no poles in the upper or lower complex plane, the contour integral
IC is equal to the integral over a large circle at infinity, depicted in figure 2.8(b).
From the Lehmann representation (2.67), we see that there can only be poles or
branch cuts in the upper or lower complex plane, if there exists an energy eigenvalue
En with non-vanishing imaginary part. Since our Hamiltonian H0 is Hermitian,
this will not be the case. Note, however, that the arguments above do not hold
for so called optical models, where one tries to model a decay via the inclusion
of complex coupling constants g, g′ (see, for example [60]). The property (2.66)
will, in particular, not be valid, since that would amount to the introduction of an
exponentially growing instability for every decay channel that is being modeled. On
a large circle with radius |ω| → ∞, the operator product expansion (2.57) becomes
exact. For the derivation of sum rules of the form (2.64), it is thus sufficient to look
at the contour integral of (2.57) on an infinite circle.

As a final piece of preparatory work, consider the integral

B(x) =
∫ 2π−ε̄

ε̄
dt

4π/m√
(π − t)2 + log2 x

= 4π
m

log

 π − ε̄+
√

(π − ε̄)2 + log2 x

−π + ε̄+
√

(π − ε̄)2 + log2 x

 , (2.68)

where, in particular, x > 1. This makes the integral always well defined, even in the
limit ε̄→ 0. For x→∞, B(x) vanishes:

lim
x→∞

B(x) = 0 (2.69)
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2.2 Radio-frequency spectroscopy

In the following, B(x) will be used as an upper bound for some of the contour
integrals. Hence, in the x→∞ limit, these integrals have to be zero.

Sum rule for f(ω) = 1 The aim is to derive the sum rule for the normalization∫
dωΓ(ω) of the RF spectrum. From the derivation of the 3D sum rules that used

a commutator approach, we can infer, since the commutators in question do not
change, that the normalization of the spectrum has to be connected to the number
of particles of species 2 [50, 48]. This is exactly what we will find. The circular
contour is denoted by γC . It can be parametrized as

γC(t) = Λωe−it, t ∈]ε̄, 2π − ε̄[
γ̇C(t) = −iΛωe−it. (2.70)

Λω is a high-frequency cutoff that will be sent to infinity in the end of the calculation.
The small ε̄ is related to the ε in (2.64) by the trigonometric identity

sin ε̄ = ε

Λω
. (2.71)

The evaluation of the 1/ω term in the OPE (2.57) is straightforward:

Ω2

2 N2

∫
γC

dω
i

ω
= πΩ2N2 (2.72)

In a similar fashion, the integral over the pure 1/ω2 term is given by

Ω2

2
C

m2

(1
g
− 1
g′

)∫
γC

dω
i

ω2 = Ω2

2
C

m2

(1
g
− 1
g′

) 1
Λω

∫ 2π−ε̄

ε̄
dt eit

Λω→∞−→ 0. (2.73)

The only term left is the ∼ D(ω)/ω2 piece. Defining the shorthand

A =
(1
g
− 1
g′

)2 Ω2

2m2C ≥ 0 (2.74)

and plugging in the form (2.44) of the two-dimensional dimer propagator, the con-
tour integral reads

A

∫
γC

dω
−i
ω2D(ω) = − A

Λω

∫ 2π−ε̄

ε̄
dt

eit4π/m
log

(
Λωei(π−t)

E′D

) . (2.75)

The branch cut of the logarithm is indeed never crossed when choosing −1 = eiπ.
We will now show that, in the limit of Λω → ∞, the absolute value of the contour
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integral is bounded from above by zero. To this end, the triangular inequality
|
∫
dtf(t)| ≤

∫
dt|f(t)| is used:

∣∣∣∣A ∫
γC

dω
−i
ω2D(ω)

∣∣∣∣ ≤ A

Λω

∫ 2π−ε̄

ε̄
dt

∣∣∣∣∣∣∣
4π/m

log
(

Λω
E′D

)
+ i(π − t)

∣∣∣∣∣∣∣
= A

Λω
B
(

Λω
E′D

)
Λω→∞−→ 0, (2.76)

where the integral B was defined in equation (2.68). Higher order contributions in
the OPE have even faster vanishing behavior at infinite frequency. As a reminder:
The contour integral along the infinite circle can be equated, as shown in (2.68),
with the integral of the RF spectrum over all frequencies. Hence, we have shown
that the normalization of the RF spectrum is essentially the product of the Rabi
frequency and the number of particles of species 2.

Sum rule for f(ω) = ω In this paragraph, the sum rule for the first moment∫
dωωΓ(ω) of the RF spectrum will be derived. The technique used will be same as

in the preceding paragraph. From the known three-dimensional results [52, 50, 48],
one expects the sum rule to be proportional to the contact between species 1 and
2. The contour integral of the ∼ 1/ω term in (2.57) evaluates to

Ω2

2 N2

∫
γC

dω ω
i

ω
= Ω2

2 N2Λω
∫ 2π−ε̄

ε̄
dte−it

= Ω2

2 N2Λω
1
i

[
e+iε̄ − e−iε̄

]
(2.71)
≈ Ω2N2Λω

ε

Λω
ε→0−→ 0, (2.77)

where the small angle ε̄ was expanded to first order in terms of the small imaginary
part ε of the original contour. Note that the integral is only zero because we are
asking for the imaginary part of iOrf(ω + iε). The corresponding real part in fact
diverges. This can be understood from the identity (2.59). The integral

∫
dωωδ(ω),

belonging to the imaginary part of 1/ω+ iε, indeed vanishes. However, the real part∫
dωωP 1

ω is infinite.
For the pure ∼ 1/ω2 term, we have

Ω2

2
C

m2

(1
g
− 1
g′

)∫
γC

dω ω
i

ω2 = πΩ2 C

m2

(1
g
− 1
g′

)
. (2.78)
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The contribution is finite and proportional to the contact, as well as to the difference
in interaction strengths between the initial and final state. As we will see below,
it is the only non-vanishing contribution to the first moment of the RF spectrum.
Note that if we would plug in the form (2.45) for the three dimensional coupling
constants g and g′, the result would be consistent with the sum rule for the three
dimensional case [52, 50, 48].

Again using the shorthand A defined in eq. (2.74), we find the contour integral
of the ∼ D(ω)/ω2 piece to be

A

∫
γC

dω ω
−i
ω2D(ω) = −A

∫ 2π−ε̄

ε̄
dt

4π/m
log

(
Λωei(π−t)

E′D

) . (2.79)

As before, the form (2.79) avoids crossing the branch cut of the logarithm. The
triangle inequality |

∫
dtf(t)| ≤

∫
dt|f(t)| yields

∣∣∣∣A ∫
γC

dω ω
−i
ω2D(ω)

∣∣∣∣ ≤ A

∫ 2π−ε̄

ε̄
dt

∣∣∣∣∣∣∣
4π/m

log
(

Λω
E′D

)
+ i(π − t)

∣∣∣∣∣∣∣
= AB

(
Λω
E′D

)
Λω→∞−→ 0. (2.80)

The integral was again shown to be bounded from above by the integral B defined
in eq. (2.68). Since B vanishes in the limit of infinite cutoff, the contour integral of
the ∼ D(ω)/ω2 piece has to be zero as well. Higher order terms in the OPE vanish
faster for increasing frequencies than the ones we considered so far. Thus, they do
not contribute to the sum rule. Note that higher order moments of the RF spectrum
will in general be divergent, because the RF spectrum does not decay fast enough
to suppress any power of frequency. Another comment concerns the sum rules in
three dimensions: They were almost derived here. The only additional ingredient,
that needs to be shown explicitly, is that the ∼ D(ω)/ω2 piece vanishes also in the
case of three-dimensional fermions.

Sum rules for RF spectroscopy To summarize the findings on the zeroth and
first moments of the radio-frequency spectrum, the explicit form (2.6) for the cou-
pling constants g and g′ is plugged into eq. (2.78). From the equality (2.68) of the
contour integral with the integral over the imaginary part of Orf, see eqs. (2.64),
(2.65), and our results from the preceding paragraphs, we can infer the
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Sum rules for the RF spectrum of the 2D Fermi gas

The radio-frequency absorbtion spectrum Γ(ω) of the two-dimensional
Fermi gas, in the case of an initially empty final state, fulfills the exact
relations ∫ ∞

−∞
dω Γ(ω) = πΩ2N2 (2.81a)

∫ ∞
−∞

dω ωΓ(ω) = Ω2

2m log
(
a′2
a2

)
C. (2.81b)

N2 is the number of initially present type-2 atoms. Ω is the Rabi
frequency for the transition from spin state |2〉 to |3〉. a′2 and a2 are
the two-dimensional scattering lengths with atoms of species 1 in the
final and initial state, respectively. The parameter C is the contact
between species 1 and 2, defined in (2.13).

For an initially empty final state, these sum rules receive no corrections from final
state interactions between states |2〉 and |3〉, since the corresponding terms in the
OPE are of higher order. The sum rules provide another means for extraction of
the contact parameter of the system. In experiment, one usually measures the clock
shift, defined as the ratio between the two moments (2.81a) and (2.81b):

〈ω〉 =
∫
dωωΓ(ω)∫
dωΓ(ω) =

log
(
a′2
a2

)
C

2πmN2
(2.82)

This way, the dependence on the Rabi frequency Ω of the transition drops out. It is
interesting to note that, reminiscent to the three-dimensional case, the first moment
of the RF spectrum diverges in the limit of vanishing final state interactions a′2 → 0.
This can be understood from the high-frequency asymptotics, given in (2.62). When
a′2 → 0, the ∼ 1/ω2 tail results in a logarithmic divergence in the first moment of
the spectrum. The presence of final state interactions pushes this behavior ”over the
edge” to be convergent, since the spectrum decays like ∼ 1/ω2 log2 ω in this case.
In the case of equal interactions in both the initial and final state, the clock shift
vanishes. As pointed out earlier in sec. 2.2.3, this is due the fact the RF pulse just
applies a rotation in spin space in this case [57]. In particular, the vanishing of the
clock shift stays true in the case of non-interacting initial and final states.
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2.2 Radio-frequency spectroscopy

(a) (b)

Figure 2.9: Diagrams for the calculation of the RF response of a 1 − 2 dimer. The
double bold lines are the external amputated 1 − 2 dimer lines. The
dashed-bold line stands for the propagation of a 1− 3 dimer.

2.2.5 RF spectroscopy on the dimer and comparison to experiment

A simple – analytically solvable – case is the one for RF spectroscopy on a single
1− 2 dimer at rest. It can be used to test the sum rules (2.81a) and (2.81b), as well
as the high frequency asymptotics (2.62). This possibility of a consistency check will
be our primary motivation to look at the RF spectrum of the dimer. As it turns out,
this case also compares well to experiment when the dimer binding energy is large
compared to the Fermi energy. The calculation is performed in the two dimensional
case, three dimensional results can be obtained in an analogous manner. For this
section, it is useful to introduce the auxiliary dimer fields d12 = ψ2ψ1, d13 = ψ3ψ1

(for details on the auxiliary field trick, see sec. 3.1.2). The propagator of this
auxiliary field turns out to be connected to the scattering amplitude (2.7) via

Gd12(E) = A(E)
(−ig)2 , (2.83)

and completely analogous for Gd13(E).
The radio-frequency spectrum of the dimer is determined by the expectation value

of the RF correlatorOrf in the state containing an external dimer of energy−ED < 0,
cf. eq. (2.24). This expectation value can be expressed via the diagrams in figure 2.9.
The external dimer lines are amputated. This means that, due the LSZ reduction
formula [28], we have to include a factor

√
ZD for every external dimer leg, where

ZD stands for the residue of the dimer propagator at the bound state pole. It can
be identified with the wave function renormalization of the dimer field d12. From
(2.83), we can infer that the dimer residue for the two-dimensional case is given by

ZD = 4πED
mg2 . (2.84)
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Hence, the expectation value of the RF operator Orf can, using the integrals (2.39)
and (2.40), be expressed as

i

∫
d2R〈Orf(ω,R)〉 = i(−ig)2ZD

[
M(−ED)

+(−ig′)2iGd13(ω − ED)K2(−ED)
]
. (2.85)

As you might have noticed, the above expression, when naively evaluated, gets an
additional factor of volume from the integration over all positions R. This factor of
volume is canceled by the normalization of the center of mass motion part (which,
in the present case, carries zero momentum) of the dimer state. Using the identities
given in eqs. (2.39) and (2.40), we can express everything in terms of the Lippmann-
Schwinger integral I, which, in turn, we can re-express in terms of the scattering
amplitudes via eqs. (2.42) and (2.41). The only integral that we need to solve by
hand is the term ∫

q

(
i

−ED − q2

m

)2

= − m

4πED
, (2.86)

which can be done with elementary methods. Collecting all the terms yields

i

∫
d2R〈Orf(ω,R)〉 = −ED

ω2

 ω

ED
+ log

(
1− ω

ED

)
−

log2
(
1− ω

ED

)
log

(
ED−ω
E′D

)
(2.87)

for the expectation value of the RF operator in a state with external on-shell dimers.
A short comment on the pole and branch cut structure of this expectation value:
At first, ω = 0 might seem to be a pole in the complex plane, but it is actually
not. This can be seen when expanding the logarithms log(1−ω/ED) ≈ −ω/ED for
ω → 0. The only true pole is the one at ω = (ED − E′D), which, as will become
more clear below, corresponds to transitions from the initial dimer to a dimer in the
final state. For ω > ED, the expectation value (2.87) has a branch cut. This branch
cut corresponds to transitions that break up the dimer in the initial state into two
atoms in the final state. The bound-bound pole always lies left of the branch cut
that starts at ω = ED, because E′D ≥ 0.

According to eq. (2.24), the RF spectrum for spectroscopy on a single dimer
can be obtained from the imaginary part of (2.87) via the replacement ω + iε and
the limit ε → 0. For ω > ED, this prescription sets the imaginary part of the
logarithms to −π. For ω < ED, the logarithmic terms ∼ log(1− ω/ED) are real in
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the limit ε → 0. Expansion of (2.87) in a Laurent series around the bound-bound
pole ω = ED −E′D reveals the following form for the leading term close to the pole:

i

∫
d2R〈Orf(ω + iε,R)〉 ≈

EDE
′
D log2

(
E′D
ED

)
(ED − E′D)2

−1
ω + iε− (ED − E′D) (2.88)

From eqs. (2.59), we can infer that, after taking the imaginary part, this corresponds
to a δ function peak at ω = ED − E′D. Collecting all the previous thoughts and
performing the limits, we find the RF transition rate for spectroscopy of a single
dimer:

ΓD(ω) = πΩ2
EDE

′
D log2

(
E′D
ED

)
(ED − E′D)2 δ(ω − (ED − E′D))

+πΩ2
ED log2

(
E′D
ED

)
ω2
[
log2

(
ω−ED
E′D

)
+ π2

]Θ(ω − ED) (2.89)

Plot of the RF transition rate and comparison to experiment Figure 2.10
shows a plot of the RF spectrum defined by (2.89). The theory prediction is shown as
a black curve, experimental data points are gray. The experimental data, provided
to us by Zwierlein and collaborators [61], can be found in [45], figure 1(a), second
to lowest plot. The data shown here extend to larger ω than the ones in ref. [45].
The data in fig. 2.10 were recorded at a magnetic field of 690.7(1) G. The broad
Feshbach resonance for the spin states in question lies at a magnetic field of 694.4(5)
G [45, 62], which implies that, in three dimensions, the system would be close to
unitarity. The ratio of lattice depth to recoil energy was 18.6(7), which implies that
the Fermi gas should be well described by two-dimensional physics. E′D/ED = 9.4
is the ratio of final and initial state binding energies for the given parameters. The
binding energy of the initial state dimer is around six times larger than the Fermi
energy of the system [61]. The dimer binding energy is thus by far the largest scale
in the initial state system. In this so called BEC limit, one expects the system to
be well approximated as a gas of structureless dimers. Thus, it makes sense that, at
least to leading order, the spectrum is well described by the two-body result (2.89).
The only parameter that was adjusted in figure 2.10 is the Rabi frequency Ω, which
just redefines the normalization of the spectrum. A least square fit in Ω was used
to fit the height of the experimental data.

As was mentioned before, also the anomalous logarithmic decay ∼ 1/ω2 log2 ω can
be seen in experiment [61, 45, 63].
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Chapter 2 Two-dimensional Fermi gases

Figure 2.10: Plot of the RF transition rate (2.89) in the case of E′D = 9.4ED, which
was chosen to match the experimental parameters (see text). The
height of the theory curve (black) was adjusted by a least square fit
to the height of the experimental data (gray points). The δ-peak at
ω = ED − E′D corresponds to the transition from a (12)-dimer into a
(13)-dimer. The hump starting at ω/ED = 1 corresponds to transitions
that break up the (12)-dimer into a two-atom scattering state.

Comparing the dimer spectrum to the universal relations Extracting the
parameters that determine the sum rules (2.81a) and (2.81b), as well as the high-
frequency asymptotics (2.62), is straightforward in the case of a single dimer. The
number of type-2 atoms in a (12)-dimer is of course N2 = 1. The contact of the
dimer can be inferred from the adiabatic theorem, which, for the two-dimensional
case, reads [36, 38]

C = 2πma2
∂E

∂a2

(12)−dimer︷︸︸︷= 4πmED. (2.90)

The first test regards the high-frequency asymptotics of the dimer RF spectrum,
given in eq. (2.89). Expanding (2.89) in high frequencies ω � ED, E

′
D yields

ΓD(ω) = πΩ2
ED log2

(
E′D
ED

)
ω2
[
log2

(
ω
E′D

)
+ π2

] + . . . , (2.91)

44



2.2 Radio-frequency spectroscopy

which equates to (2.62) when using the contact (2.90). The sum rules for the dimer
can be derived from the form (2.87) of the RF correlator in case of an initially present
dimer. The same contour integration methods as presented in sec. 2.2.4 are used.
The result is consistent with (2.81a) and (2.81b) for N2 = 1 and C = 4πmED. The
calculation is not presented here. The only slight difference to the one performed
in sec. 2.2.4 is that some of the upper bounds are slightly more involved, should
you not choose to expand the integrand around |ω| = ∞ first. The sum rules were
also tested via numerical integration of the moments of the spectrum (2.89), and
are again in agreement with our predictions (2.81a), (2.81b).

2.2.6 Summary

In this section, we have treated the problem of radio-frequency spectroscopy for a
two-dimensional Fermi gas. Exact relations, that relate the contact to sum rules
and high frequency asymptotics of the RF transition rate, were derived. Linear
response theory was used to write the transition rate in second quantized form.
A short-time operator product expansion of the correlator Orf, that defines the
transition rate, provided the basis for the derivation of the exact relations. The
high-frequency asymptotic behavior of the spectrum followed directly from the OPE.
This asymptotic behavior will be used, in the special case of vanishing final state
interactions, to check the numerical results for the single-particle spectral function
in the next section 2.3. For the sum rules, we had to translate the moments of the
RF spectrum into weighted contour integrals along an infinite circle, where the OPE
becomes exact.
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2.3 Virial expansion for the spectral function

The picture behind the three-dimensional BCS-BEC crossover, in the superfluid
regime, is an evolution from weakly bound cooper pairs on the BCS side to strongly
bound bosonic molecules on the BEC side. One may ask whether pairing influences
physics even above the superfluid transition temperature. On the BEC side of the
crossover, the answer is trivially yes, since there exists a two-body bound state.
Its occupancy is governed by the ratio ED/kBT , where ED = 1/ma2 is the dimer
binding energy, and a denotes the three-dimensional scattering length that is tuned
through the crossover. On the BCS side, the answer cannot be given so easily.
Even though mean-field theory (BCS theory) predicts pairing and condensation to
take place at the same temperature, it has been proposed that the true underlying
system exhibits pairing at a temperature larger than the critical temperature. A
remnant of the pairing gap is expected to influence the physics of the normal phase.
This phase is called the pseudo-gap phase. A back-bending of the dispersion relation
akin to a BCS-type dispersion ω(q) =

√
(εq − µ)2 + ∆2 is suggested to provide a

”smoking gun” sign for the existence of such a pseudo-gap phase. Here, εq = q2/2m
is again the free particle dispersion, µ is the chemical potential and ∆ is a super-
fluid order parameter. In the pseudogap phase, this superfluid parameter is replaced
by a pseudogap parameter ∆pg > 0, which is finite above the superfluid transition
temperature. The back-bending should, in addition, result in diminished spectral
weight in the density of states. However, one has to be careful about the interpre-
tation of the back-bending, since, as pointed out by Schneider and Randeria [64],
back-bending at large momentum is a generic feature of an interacting Fermi gas.
In the three-dimensional case, evidence for the existence of the pseudo-gap phase
was found in experiments using momentum-resolved radio-frequency spectroscopy
[65, 66]. On the theory side, some works find evidence [67, 68], while a self-consistent
Luttinger-Ward description [51], which was found to describe the thermodynamic
properties of the system well, does not find evidence of a pseudo-gap for the two sep-
arate temperature scales for the (pre-)formation of pairs and the pairing instability
that leads to the superfluid transition.

Experimental evidence for a pseudo-gap in two dimensions was found by Feld et
al. [69]. They measured the one-particle spectral function using momentum resolved
RF spectroscopy and found signs of a back-bending of the dispersion relation on the
order of the Fermi momentum at temperatures as high as T/TF = 0.45. One of our
main observations in this section will be that back-bending alone cannot be taken as
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2.3 Virial expansion for the spectral function

a clear sign of a pseudo-gap. Even in a high-temperature expansion, a back-bending
in the occupied spectral function, which is the one measured experimentally, can
be found in the bound state branch of the spectrum. The reason is that the two-
dimensional system exhibits a two-body bound state at all 2D scattering lengths a2.
The spectra thus always have some features of the BEC side of the three-dimensional
crossover.

The density of states, which will be formally defined in sec. 2.3.3, might provide
a better measure for the existence of a pseudo-gap. The presence of a pseudo-
gap implies diminished spectral weight around the Fermi surface. The weight is
expected to diminish continuously as T → Tc, and form a true gap for T < Tc.
Indeed, as shown by Marianne Bauer et al. [19] using a self-consistent Luttinger-
Ward calculation, such a pseudo gap in the density of states exists on the BCS
side of the crossover. In the spectral functions calculated in [19], the lower spectral
weight also clearly comes from the quasi particle branch of the spectral function,
which is the one that is expected to be responsible for pseudo-gap physics.

As mentioned earlier, bound pairs exist at all temperatures and values of the
interaction strength in 2D, in particular also above the superfluid BKT transition
temperature Tc. However, in the limit of high temperatures, most fermions are
unpaired and the system is well described by quasi-particle excitations. Below a
temperature which we will call T ∗, most fermions are in a bound state, giving rise
to significant deviations from the simple quasi-particle picture. Indeed, as we will
see in 2.3.2, the bound state generates very broad spectral weight in the occupied
spectral function of the system. The densities of fermions in a dimer nd and unbound
fermions nf can be estimated through the assumption of a chemical equilibrium in
a gas of non-interacting fermions and non-interacting dimers [70]. The estimate for
fixed total density n = 2nf + 2nd is given by the two-dimensional version of the
so-called Saha formula

n2
f

nd
= mkBT

4π e−ED/T . (2.92)

Defining the temperature T ∗ to be the temperature where the number of fermions
in dimers 2nd is equal to the number of unpaired fermions 2nf , we obtain

T ∗

TF
= ED/EF

W (ED/EF ) (2.93)

for the estimate of T ∗. TF = k2
F /2m is the Fermi temperature and W denotes

the Lambert W function. Below T ∗, the majority of the particles is paired in a
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dimer. Thus, we expect the effects of pairing to be dominant for T � T ∗ and less
pronounced for T � T ∗.

In the following, our aim will be to establish a virial expansion of the spectral
function of the two-dimensional Fermi gas. To this end, the self-energy is calculated
to first order in the fugacity. From it, we extract the spectral function and the
density of states. Results for the momentum distribution and the (non momentum-
resolved) RF spectrum, in the case of a non-interacting final state, are obtained in
a similar fashion. Particular emphasis is put on the fact that the Tan relations have
to hold order by order within the cluster expansion. A short sketch of proof for
this claim will be given. The momentum distribution exhibits the C/k4 tail that
is expected from the Tan relations in two dimensions [36, 38, 46]. The tail of the
RF spectrum is also found to be compatible with the high-frequency tail derived
in sec. 2.2. The quasi-particle properties (such as lifetime and effective mass) of
the non-bound branch in the spectral function are analyzed in sec. 2.3.6. The
results presented in this section were published in ref. [71], together with Johannes
Hofmann. Shortly before the publication of the article [71], ref. [72] appeared, which
partly overlaps with the results presented here. Where there is overlap, their findings
for the spectral function are consistent with ours, which I checked numerically.

2.3.1 Virial expansion and pairing for a two-dimensional gas

The virial expansion provides a tool to analyze the physics of the Fermi gas at
high temperatures. In the two-dimensional case, the requirement that the thermal
de-Broglie wavelength is small compared to the typical inter-particle spacing reads
λT � n−1/2, where n is the particle density. Our focus will lie on the two component
Fermi gas with balanced population: n1 = n2 = n/2. The expansion

Z =
∑
N

zN trNe−βH (2.94)

of the grand canonical partition function with respect to the fugacity z = eβµ results
in the following expression for the density:

n = 2
λ2
T

(
b1z + 2b2z2 + . . .

)
(2.95)

The prefactor of 2 is present to account for the two spin species in the balanced
case. b1 and b2 are the first and second virial coefficients. In the non-interacting
case, the j-th virial coefficient in two dimensions is given by b

(0)
j = (−1)j−1/j2.
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2.3 Virial expansion for the spectral function

This can be easily shown using, for example, the methods presented in chapter 3.
The alternating sign is only present for the fermionic case. Since the first virial
coefficient involves a ”cluster” of only one particle, corrections due to interactions
only enter from second order on. The second order correction is the well-known
Beth-Uhlenbeck [73] term

∆b2 = b2 − b(0)
2 = eβED + 1

π

∫ ∞
0

dk
∂δ(k)
∂k

e−β
k2
m , (2.96)

where the phase shift in two dimensions is given by cot δ(k) = (2/π) ln a2k, cf. eqs.
(2.1), (2.7). This result can also be derived diagrammatically using the formalism
that was introduced by Leyronas [9] (also see chapter 3 for the 3D case). In con-
trast to the three-dimensional case, however, the bound state contribution eβED is
present for all scattering lengths, since the existence of the bound state is not re-
stricted to one side of the crossover. For a given chemical potential, the attractive
interaction between the particles tends to increase the density with respect to the
non-interacting case. A plot of the fugacity as a function of temperature T/TF for
different interaction strengths is shown in figure 2.11(a). The interaction strengths
were chosen in order to represent the BEC side (ln kFa2 = −0.5, ED/EF = 5.43..)
of the crossover, the ”unitary” regime (ln kFa2 = 0, ED/EF = 2), and the BCS side
(ln kFa2 = 1, ED/EF = 0.27..) of the crossover. The Saha estimate for the tem-
perature T ∗, at which the density of paired and unpaired fermions is equal, is also
included (as a dashed line) for comparison. For all the different coupling strengths
ln kFa2 = −0.5, 0, 1, the fugacity has a maximum below T ∗/TF and tends to zero
as T/TF → 0. The small fugacities might suggest that virial expansion is valid
even as T/TF → 0. However, the criterion z < 1 is not sufficient in the present
case, as can be seen from eq. (2.96). The bound state contribution ∼ eβED con-
tributes an exponentially growing piece for |a2| → 0. Thus, the better criterion for
the validity of the virial expansion is that z2eβED is still smaller than one, which
translates to µ < −ED/2. This is also the criterion used in [72], where the third
virial coefficient was extracted using a calculation similar to the one done by Ley-
ronas [9] for the three-dimensional case. From figure 2.11(b), we can infer that,
for all three coupling strengths, the chemical potential gets lower than −ED/2 at
roughly T = 0.5TF , which constitutes a lower bound for the extrapolation of the
virial expansion. Even though this suggests that the virial expansion in our case
might be valid to temperatures as low as 0.5TF , let us take a saver bet and regard
the virial expansion to be valid down to T = TF . This way, the series (2.95) can at
least in principle have an inversion with respect to T/TF .
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Figure 2.11: Plots of the fugacity and the chemical potential as functions of tem-
perature. Fig. 2.11(a) shows the fugacity as a function of temperature
(at fixed density). The vertical dashed lines are the values of the Saha
estimate of the pairing temperature T ∗, see eq. (2.93). Fig. 2.11(b)
shows a plot of the chemical potential as a function of temperature.
The horizontal dashed lines indicate half of the dimer binding energy
−ED/2EF . Due to the exponential contribution of the bound state in
b2, also see eq. (2.96), the chemical potential needs to be smaller than
these values.
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It should be noted, that also for thermodynamic quantities like the energy and
contact [74, 75] of the harmonically trapped 2D gas, the virial expansion was found
to give good results down to remarkably low temperatures T ≈ TF . In the 3D case
with an harmonic trap, the results were even extrapolated down to temperatures
T ≈ 0.5TF [76].

The results that follow in the next subsections describe the experiments conducted
in [69] only qualitatively. We will not compare our data quantitatively, since the
experiments were conducted in a temperature range T/TF = 0.27 − 0.65, which
is lower than the temperature we regard the virial expansion to be valid to. The
interaction strengths probed in [69] range from ln kFa2 = −2 to ln kFa2 = 1. As
we see in figure 2.11(b), the chemical potential obtained from a virial expansion is
negative. We thus expect the physics to be dominated by the pairing aspect of the
system. For ln kFa2 = 1, the chemical potential gets close to zero however, so there
is a possibility that further corrections might push it over the edge to be positive.
As we will see in the following sections however, at least the regime ln kFa2 ≤ 0 is
very well approximated by a first order virial expansion of the self-energy.

2.3.2 Virial expansion of the spectral function

In this section, we will extract features of the single-particle spectral function, which
we mostly refer to as just the spectral function, within a virial expansion. The
virial expansion presented here will capture one- and two-body physics, in complete
analogy to the density expansion (2.95) up to order z2.

Definition and examples

Let us start with a comprehensive summary of the spectral function. It is defined
as the imaginary part of the retarded single-particle Greens function [26, 77]:

Aσ(ω,q) = −2=
[
GRσ (ω,q)

]
, (2.97)

where GRσ (ω,q) is the Fourier transform of the retarded anti-commutator

GRσ (ω,q) =
∫
dteiωt

∫
ddxe−iq·xGRσ (t,x) (2.98)

GRσ (t,x) = −iΘ(t)
〈{
ψσ(t,x), ψ†σ(0,0)

}〉
. (2.99)

Since we are considering the balanced case of equal densities for both species, n1 =
n2 = n/2, let us drop the indices σ from the Greens- and spectral functions, because
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GR1 (t,x) = GR2 (t,x) in this case. One can show that A(ω,q) ≥ 0 for all energies
and momenta. Together with the normalization property [77]∫

dω

2πA(ω,q) = 1, (2.100)

one can interpret it as the spectral probability density of creating either a particle
or a hole excitation with energy ω at a given momentum q. In the non-interacting
case with dispersion εq, the spectral function just reduces to a δ-function peak at
ω = εq.

In the experiment [69], momentum resolved RF spectroscopy, which is the ana-
logue of angle resolved photon emission spectroscopy (ARPES) in the condensed
matter context [65, 66, 69], was used to measure the spectral function. The mo-
mentum resolution is achieved when the final state is non-interacting, since one can
then, after the RF-pulse is finished, expand the cloud of final state particles in a bal-
listic manner to measure the momentum distribution. The experiment of course can
only probe (when the final state is initially unpopulated) transitions from occupied
states, which is why it in fact measures the occupied spectral function

A−(ω,q) = nF (ω)A(ω,q)

= 2π
Z

∑
n,m

e−βEm |〈n|ψ(q)|m〉|2δ(ω − Em + En), (2.101)

where nF (ω) = 1/(eβω + 1) is the Fermi distribution and Z denotes the canonical
partition function. That the RF spectrum in this case is indeed proportional to
the occupied spectral function (2.101) can be readily shown via the same logic
that went into the derivation of the RF correlator (2.21) in sec. 2.2.1. The only
difference is that, in eq. (2.17), we are now asking for the rate of change of the
occupation of a particle with momentum q, i.e. ṅ3(q), rather than just the rate of
change in the total number of particles Ṅ3. The assumption of a non-interacting
final state then simplifies the RF transition rate to the occupied spectral function
(2.101) multiplied by a constant (the squared Rabi frequency Ω2) and evaluated at
the arguments A−(εq − ω − µ,q) (also see [51]).

Two instructive cases are the zero-temperature limits of the BCS and BEC regimes,
both within mean-field theory. In this approximation, the spectral function for both
cases can be calculated analytically. The many-body wave function in these cases
corresponds to a product of Cooper pair wave functions in the BCS case [78], and a
product of dimer wave functions in the BEC case [79]. Within BCS theory [78], the
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spectral function is given by

A(ω,q) = 2πv2
qδ

(
ω +

√
(εq − µ)2 + ∆2

)
+2πu2

qδ

(
ω −

√
(εq − µ)2 + ∆2

)
, (2.102)

where vq and uq are the Bogoliubov parameters. They have the normalization
property u2

q + v2
q = 1 and are related to the free dispersion and gap via

uqvq = ∆
2
√

(εq − µ)2 + ∆2
. (2.103)

In particular, the chemical potential in this case has to be positive in order to
produce finite densities. The dispersion relations defined by the δ-peaks of the
spectral function (2.102) are gapped, with a gap of size 2∆. It is impossible to
create a particle or hole excitation in the energy range −∆ < ω < ∆ (∆ > 0).
The hole excitations are characterized by the δ-function with prefactor v2

q. Their
dispersion starts with a parabolic local minimum of the energy around q = 0 and
then ”bends back” towards negative energies at momenta on the order of the Fermi
momentum q ∼ kF . When back-bending of the dispersion relation happens in the
normal phase, it is often taken as a hallmark sign of a pseudo gap phase (also see
the introductory remarks of the section 2.3).

The BEC limit works completely analogously. In the limit where the binding
energy of the molecule is much larger than the Fermi energy, ED � εF , such that
the chemcial potential is approximately given by half of the energy gain to form a
molecule, µ ≈ −ED/2 < 0, the spectral function is given by [51, 79]

A(ω,q) = 2πZqδ(ω + εq − µ) + 2π(1− Zq)δ(ω − εq + µ). (2.104)

The factor Zq = n|φ(q)|2 is determined by the bound state function of a single
molecule in momentum space φ(q), where q is the relative momentum between the
two Fermions forming the molecule. In the two dimensional case discussed here,
|φ(q)|2 takes the explicit form

|φ(q)|2 = 4πa2
2

(1 + (qa2)2)2 . (2.105)

The dispersion relations defined by the spectral function (2.104) are again gapped
with a gap of size ED. In contrast to the BCS case (2.102) however, the spectral
function (2.104) in the BEC limit does not show any back-bending at finite momen-
tum. In both the BEC and BCS limit, the pairing gap is also visible in the density
of states, see sec. 2.3.3.
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Cluster expansion for the spectral function

To obtain an approximation for the spectral function of the strongly interacting
Fermi gas in the non-degenerate regime, we will now expand the self-energy of the
single-particle Greens function up to first order in the fugacity. The formalism
for the diagrammatic virial expansion, originally proposed by Leyronas in order to
calculate the third virial coefficient of an interacting Fermi gas [9], is discussed in
detail in chapter 3. For the reader’s convenience, I will also give a short summary
of the underlying ideas here.

Our starting point is the Dyson equation. It connects the self-energy Σ(ω,q),
which corresponds to the one-particle irreducible (1-PI) contribution to the single-
particle Green’s function, to the Green’s function8:

G(ω,q) = 1
ω + µ− εq − Σ(ω,q) + i0+ (2.106)

At finite temperatures, a Wick rotation of time to the imaginary axis is usually
better suited to deal with the problem. This implies that we replace ω+ i0+ → iωn

in the above equation, where ωn = (2n + 1)π/β, n ∈ N, is a fermionic Matsubara
frequency [78]. The key insight underlying the diagrammatic virial expansion is that
the free propagator can, when transformed to imaginary time via

G0(τ,q) = 1
β

∑
n

e−iωnτ

iωn + µ− εq
, (2.107)

be written as

G0(τ,q) = e−τ(εq−µ) (−Θ(τ) + nF (εq − µ))

= eτµ

−Θ(τ)e−τεq︸ ︷︷ ︸
≡G(0)(τ,q)

+
∞∑
n=1

(−1)n−1zne−(nβ+τ)εq︸ ︷︷ ︸
≡G(n)(τ,q)

 . (2.108)

Here, nF (εq − µ) denotes the Fermi distribution

nF (εq − µ) = 1
eβεq/z + 1 , (2.109)

which was expanded in terms of the fugacity for the case z = eβµ � 1 in the second
line of eq. (2.108). The term G(0)(τ,q) is purely retarded, i.e. it may only run

8Note that in this section, we are using the conventions in the book of Abrivkosov [26], since they
are more suited to deal with problems which are formulated in imaginary time.
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Figure 2.12: Diagrams for the virial expansion of the self-energy. Figure 2.12(a)
shows the diagrammatic representation of eq. (2.108). The free propa-
gator is expanded in terms of the propagators G(n), diagrammatically
indicated by lines that are slashed n times. Each slash corresponds to
a power in the fugacity. To count the order in fugacity of any given
diagram, one just needs to count the number of slashes. Lines running
backward in imaginary time always require at least one slash. Figure
2.12(b) shows the leading order contribution to the self-energy. The
gray blob is the two-particle scattering amplitude.

forward in imaginary time. It is the only term that does not contribute a power in
the fugacity to a given diagram. The other terms G(n) (diagrammatically indicated
by a line that is slashed n-times, see fig. 2.12(a)) contribute a power zn, and every
back-running line needs to contribute at least one power in the fugacity. This is
what organizes the expansion in increasing powers of the fugacity. The higher we go
in powers of the fugacity, the more diagrams we have to include. For the expansion
of the self-energy, i.e. the sum of all possible 1PI graphs, it turns out that only
the diagram shown in figure 2.12(b) contributes to order z. The gray blob indicates
repeated scattering of the two fermions running forward, and is thus essentially
given by the vacuum scattering matrix A given in eq. (2.7). There is a single back-
running line of a Fermion of the opposite species that comes from the medium. This
is the line that makes the diagram of order one in the fugacity. In summary, we
have for the first order term in the expansion of the self-energy Σ with respect to
the fugacity z:

Σ(1)(iωn,q) = z

∫ β

0
dτ

∫
k
eiωnτeµτe−εq(β−τ)A(τ,k + q) (2.110)
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Chapter 2 Two-dimensional Fermi gases

Thus, up to corrections9 of order z2 and higher, the self-energy can, after analytic
continuation iωn → ω + iε, be expressed as a Boltzmann-weighted integral of the
vacuum scattering amplitude:

Σ(1)(ω + iε,q) = z

∫
k
e−βεkA(ω + iε+ µ+ εk − εk+q/2)

=︸︷︷︸
k→k+q

4πz
m

∫
k

e−βεk+q

log
(
−ω+µ+εk/2−εq

ED
− iε

)
= 2z

∫ ∞
0

dkk
e−β

k2
2m−β

q2
2m I0

(
βkq
m

)
log

(
−ω+µ+k2/4m−q2/2m

ED
− iε

) (2.111)

The modified Bessel function I0(βkq/m) is the result of the angular integration. In
order to obtain numerical results, the ε→ 0 limit is taken via (cf. eq. (2.58))

=

 1
log

(
−ω+iε

ED

)
 = Θ(ω)

 π

log2
(
ω
ED

)
+ π2

+ πEDδ(ω + ED) (2.112a)

<

 1
log

(
−ω+iε

ED

)
 = Θ(ω)

 log
(
ω
ED

)
log2

(
ω
ED

)
+ π2

+ Θ(−ω)P 1
log

(
−ω
ED

) , (2.112b)

where P again denotes the principal part. Alternatively, one can just take the
imaginary part, which is numerically well-behaved, and obtain the real part via a
Kramers-Kronig transform:

< [Σ(ω,q)] = −
∫ ∞
−∞

dω′

π

= [Σ(ω,q)]
ω′ − ω

(2.113)

The momentum integration can be solved in a numerically very fast fashion when
rotating the contour of integration away from the real k-axis (k → keiφ), which
smoothens the integrand. It should be noted that in the imaginary part of the self-
energy (2.111), the bound state contribution that comes from evaluation of the δ
function in eq. (2.112a), is restricted to frequencies ω + µ ≤ ωth + µ = εq − ED.
The spectral function A(ω,q) can now be connected to the expanded self-energy

9To perform the imaginary time integral in eq. (2.110), one can write the imaginary time integral
as a convolution of the scattering amplitude and the free propagator. As it turns out there
is a contribution from the pole of the free propagator of order z, and a contribution from the
scattering amplitude pole and branch cut that goes like z2. The result, truncated at order z,
thus coincides what one would get from the naive identification A(x) =

∫ β
0 dτexτA(τ).
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2.3 Virial expansion for the spectral function

Σ(1)(ω,q) via its definition (2.97) and the Dyson equation (2.106):

A(ω,q) = −2
=
[
Σ(1)(ω,q)

]
(ω + µ− εq −<

[
Σ(1)(ω,q)

]
)2 + (=

[
Σ(1)(ω,q)

]
)2 (2.114)

Note that the virial expansion for the self-energy produces a result for the spectral
function that still contains all orders of the fugacity. This is because the full Green’s
function is the sum of all connected diagrams, which means that it is the sum of all
one-particle-reducible graphs with arbitrarily many 1PI (self-energy) insertions.

Numerical results

Let us now turn to the numerical results for the spectral function that is obtained
from a leading order virial expansion of the self energy. The spectral functions
will be calculated for the three different interaction strengths that we identified as
examples for the BEC side (ln kFa2 = −0.5), the unitary regime (ln kFa2 = 0), and
the BCS side (ln kFa2 = 1). For T = TF , density plots of the spectral functions at
these different interaction strengths are shown in figures 2.13 and 2.14 (left column).
For ln kFa2 = −0.5 and ln kFa2 = 0, the spectral function exhibits a double peak

structure. The upper branch, which will be referred to as the quasi-particle branch,
because it follows the quadratic dispersion εq = q2/2m of free particles, is the more
pronounced one. At q = 0, it is located at ω + µ = 0. The lower branch, which is
associated with the two-particle bound state with binding energy ED = 1/ma2

2, and
therefore starts at the threshold value −ED, extends over a much broader region
towards negative frequencies. Its height is also much smaller than the height of
the quasi-particle peak, as is also illustrated in figure 2.15 , which shows a cut of
the spectral function at zero momentum. Figure 2.15 also shows that the bound
state branch is asymmetric. Coming from the threshold value of the energy, it
reaches its maximum quickly and then falls of slowly towards negative frequencies.
In figure 2.13, the maxima of the two branches were determined numerically with an
algorithm that looks for a local maximum above and below the threshold dispersion
ωth + µ = −ED + εq. In most cases, the local maximum found also coincides with
the global maximum in the respective data range. For some momentum values
at ln kFa2 = 0 however, the quasi particle peak is actually still higher than the
maximum of the bound state branch even below the threshold, so a global maximum
finder would not work in this case. The resulting maxima are indicated by white
dashed lines. The same algorithm was also used to find the maxima of the two
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Figure 2.13: Density plots of the spectral function at T/TF = 1. The left column
shows the spectral function A(ω,q), the right column contains the oc-
cupied spectral function A−(ω,q). The white dotted line indicates the
threshold dispersion for the bound state branch: ωth + µ = −ED + εq.
The dashed white lines show the maxima of the quasi-particle and
bound state branch, respectively.
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Figure 2.14: Density plots of the spectral function at T/TF = 1 and ln kFa = 1.
Only the threshold dispersion is shown, since for this interaction
strength, the bound state maximum is not clearly distinguishable from
the quasi-particle peak at all momenta.

branches in the plots for the occupied spectral function (right column in figure
2.13). As the coupling strength is shifted towards the BCS side of the crossover
(ln kFa2 = 1), the bound-state and quasi-particle branch begin to merge. The well
defined local maximum below the bound state threshold also ceases to exist in a
certain momentum range, and instead gets deformed to a mere shoulder on the
much bigger quasi-particle peak. This is why in figure 2.14, the white dashed lines
are not shown.

The occupied spectral function, which is the one measured in experiments, also
exhibits a double peak structure. Due to the multiplication with a Fermi function
nF (ω+µ−µ) ≈ ze−β(ω+µ), cf. eq. (2.101), the maximum of the lower branch bends
back at roughly 2kF . This back-bending has nothing to do with the formation of a
pseudo-gap however, it is a result of the asymmetric shape of the bound state branch
and the reshuffling of weight due to the multiplication with a Fermi distribution.
At high momenta, the lower branch is also responsible for the high frequency and
momentum tails in the rf-spectrum and momentum distribution of the system (also
see secs. 2.3.4 and 2.3.5). It is thus linked to the short range correlations of the
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Figure 2.15: Spectral functions A(ω,0) as functions of frequency at momentum zero.
Shown are different interaction strengths (rows) and different temper-
atures (columns). For increasing temperatures, the peaks get broad-
ened and the maximum of the bound state branch shifts to smaller
frequencies.

system, encoded by the contact.
Variations in temperature also change the shape of the spectral functions as func-

tions of ω + µ, as shown in figure 2.15, which shows slices of the spectral function
at momentum zero. The spectral functions are plotted for temperatures T = TF

and T = 4TF . At higher temperatures, both the quasi-particle and the bound-state
peak get broadened. In addition, the maximum of the bound state branch shifts
towards lower frequencies (relative to the chemical potential). Taking into account
(2.111), this is to be expected, since a higher range of momenta of the scattering
partners becomes accessible at higher temperatures, allowing for more pronounced
redistribution of weight. Because of the apparent broadening, it might seem that
quasi-particles are not well defined at higher temperatures. It is important to note
that this is not the case, since, in order to have well defined quasi particles, it is the
ratio 1/τ(q)ω(q) of the lifetime (inverse width of the peak) and the quasi particle
energy (position of the peak) that needs to be small in comparison to one. The
chemical potential, at all given interaction strengths, is much smaller at T = 4TF
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2.3 Virial expansion for the spectral function

than it is at T = TF , see figure 2.11(b). This shifts the starting value of the dis-
persion ω(q) higher up and, as it turns out (see sec. 2.3.6 for details), this is more
than sufficient to cancel the broadening effects that we see in figure 2.15 (also see
[80] for an analogous discussion in 3D).

2.3.3 Density of states

The effects of pairing (in the sense of a two-body bound state) should be visible in
the density of states ρ(ω), which, as the name suggests, is a measure for the number
of accessible states that exist for an excitation with a given energy ω. The density
of states can be obtained from an average of the spectral function over all momenta

ρ(ω) =
∫

q
A(ω,q). (2.115)

This is intuitively clear, because the spectral function counts the number of excita-
tions that exist for a certain momentum q and energy ω. The simplest limit where
the density of states is known analytically is the non-interacting Fermi gas. In this
case, with our normalization of the spectral function, it is given by

ρfree(ω) = mΘ(ω + µ). (2.116)

This is the well-known result that the density of states of a non-interacting Fermi
gas is a constant in two dimensions. Recalling the two mean-field results (2.102)
and (2.104) for the spectral function in the BCS and BEC limit, respectively, we
can study the density of states in these limits. This provides qualitative behaviors
which we can compare against our results. Keep in mind however, that both of these
mean-field results have been calculated for the zero-temperature case. Integrating
the spectral functions (2.102) and (2.104) over all momenta, we get the density of
states shown in fig. 2.16. The gap is clearly visible in both cases. The gap extends
from µBEC ≈ −ED/2 < 0 to −µBEC in the limit of tightly bound dimers. In BCS
theory, the gap is of size 2∆(T = 0), centered around the Fermi energy. Beyond the
critical temperature T > Tc, the gap of course vanishes, since the spectral function
(2.102) reduces to the one of a free Fermi gas when the gap vanishes (v2

k = 0 for
∆ = 0). In particular, BCS theory can not predict diminished spectral weight
around the Fermi surface for T > Tc, because ∆(T > Tc) ≡ 0.
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Figure 2.16: Density of states that results from integration of the mean-field spectral
functions (2.102) (green) and (2.104) (red).

Non-degenerate limit of the density of states

To obtain the density of states within a virial expansion, and thus in the non-
degenerate limit, it should be sufficient to integrate the spectral functions shown
in figs. 2.14 and 2.13 over all momenta. While true in principle, the two calcu-
lations were done separately in practice, because of the strongly peaked nature of
the spectral function. The density plots were created using a constant momentum
and frequency grid, which was too widely spaced to give an accurate numerically
integrated result. Instead, for the calculation of the density of states, the spectral
function was sampled very often near the quasi particle and bound branch peaks,
which captures the numerical weight of the peaks far more accurately.

The evolution of the density of states with respect to coupling strength and tem-
perature is shown in fig. 2.17. There is a dip in spectral weight around ω = −µ,
which gets washed out at higher temperatures. Beyond our rough estimate T ∗ for
the temperature where the number of ”free” fermions equals the number of fermions
bound into dimers, cf. eq. (2.93) and fig. 2.11, the dip is no longer clearly visible.
The dip is wider for higher binding energies, because the ”gap” between the onset of
the bound state and quasi-particle branch is roughly of size ED. Over all, the den-
sity of states qualitatively resembles the one for the superfluid BEC regime, shown
in red in fig. 2.16. The virial expansion does not capture any pseudo-gap features,
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Figure 2.17: Density of states for different coupling strengths ln kFa2 = −0.5, 0, 1
(rows) and different temperatures T = 1, 2, 4, 8TF (columns). For de-
creasing two-dimensional scattering length a, the pairing gap is more
pronounced. The black dashed line indicates the value 0.5 for the free
Fermi gas (cf. eq. (2.116)).

i.e. diminished spectral weight, around the chemical potential ω = µ. As noted
earlier, a self-consistent Luttinger-Ward calculation [19] has shown clear signs of a
pseudo-gap even at T = 0.45TF and log kFa2 = 0.8. Due to the nature of the virial
expansion, we can not go to temperatures lower than the Fermi temperature TF in
the present case.

2.3.4 Momentum distribution

The spectral function allows for the calculation of other interesting, experimentally
observable, quantities. One of them is the momentum distribution, which is given
by the integral of the occupied spectral function A−(ω,q) over all frequencies:

nσ(q) =
∫
dω

2πA−(ω,q) (2.117)

The index σ was introduced again to specify that we are not talking about the
total momentum distribution n(q) = n1(q) + n2(q). As mentioned in secs. 2.1
and 2.2, the two-dimensional, contact-interacting Fermi gas fulfills some universal
relations, that connect the contact, cf. eq. (2.13) with various observables. One
of them is the momentum distribution. With our present intensive normalization
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∫
q nσ(q) = nσ = Nσ/V , the momentum distribution has a tail that vanishes likes
C/q4 as q → ∞. C = C/V is called the contact density. Via the adiabatic relation
(2.12), the contact can be related to the derivative of the grand canonical potential
Ω with respect to the two-dimensional scattering length. Within a virial expansion,
its leading order ∼ z2 can thus be calculated via

C = 2πma2
∂Ω/V
∂a2

= −2z2m2T 2a2
∂b2
∂a2

+O(z3). (2.118)

The leading order is only connected to the second virial coefficient. Higher orders
require knowledge of higher virial coefficients bn, which in turn require the solution
of the n-particle scattering problem.

Interlude: Are the Tan relations still valid within the virial expansion?

The question, in the present context, can be rephrased to read: Does the momentum
distribution – calculated from a virial expansion – still have a high-momentum tail
that vanishes like C̃/q4? And is the coefficient in front of that tail still obtainable
from the adiabatic theorem? To spoil the answer right away: Yes, and this is
where the derivation of the universal relations from an operator product expansion
[46, 32] very helpful. The positive answer can be traced back to the fact that the
universal relations, as derived from an OPE, are valid for systems with any number
of particles. Within the virial expansion approach, we describe expectation values
of some quantity, for example the momentum distribution, as a sum of canonical
expectation values, and then truncate at some finite power:〈

ψ†σψσ(q)
〉

= 1
Z
∑
N

zN trN
[
e−βHψ†σψσ(q)

]
︸ ︷︷ ︸

≡
〈
ψ†σψσ(q)

〉
N

. (2.119)

We know that the Tan relations hold separately in each N -particle sector in the
canonical ensemble. In the case of the momentum distribution:〈

ψ†σψσ(q)
〉
N
→ CN

q4 = m2g2〈ψ†1ψ
†
2ψ2ψ1(0)〉N
q4 (2.120)

And we can extract, for each N -particle sector, the contact from the adiabatic
theorem in a state with N particles:

CN = 2πma2
∂EN/V

∂a2
, (2.121)
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where EN = 〈H〉N . Since the universal relations hold in any N -particle sector,
they have, as a result of the grand canonical expectation values essentially being
the sum of canonical ones, also to hold order by order in z. Note that with our
sketchy explanation, we swept under the rug two points. First, normalizing the two
particle sector with volume might yield pathological results. Second, the partition
function also depends on the two-dimensional scattering length. A more careful
treatment reveals that the arguments still hold true, because of the nature of the
partial derivate with respect to the scattering length. The adiabatic theorem only
holds for the work that is needed when changing the scattering length. Effects
of re-population of the microscopic states are taken to be zero (hence the term
”adiabatic”). A change in the partition function falls into this category. For a more
detailed discussion of the matter, see my diploma thesis [27].

Results for the momentum distribution

Knowing that our results have to fulfill the adiabatic theorem and the universal C/q4

tail in the momentum distribution, we can now test our numerical results against
these relations. The contact, to leading order z2, as calculated from the adiabatic
theorem (2.118) at T = TF , is shown in figure 2.18(a). The dashed orange line
indicates the contact for a gas of dimers:

Cdimergas = 4π
a2

2
nd (2.122)

The three values ln kFa2 = −0.5, 0, 1 of the coupling are marked with the cor-
responding colors. For the momentum distributions, the asymptotic behavior of
q4nσ(q) is shown in figure 2.18(b). The dashed lines are the predictions of the contact
from the adiabatic theorem. They are in perfect agreement with the independently
obtained results for nσ(q). In fig. 2.18(b), the momentum distributions saturates
the later, the higher the value of the binding energy ED. This is to expected, as the
scale for the high momentum tail is generally set by q � max(1/λT , 1/kF ,

√
ED).

A plot for the momentum distribution itself is not shown, as it almost resembles
a Gaussian function (see sec. 3.5.3 for the corresponding three-body calculation in
3D, which looks the same).

It is interesting to note that, at least for our spectral functions, the spectral
weight in the lower branch of the spectral function, that was seen to bend back at
roughly 2kF , is responsible for the 1/q4 tail. In order to fulfill the Tan relations,
the spectral function had to bend back somewhere. The only other possibility being
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Figure 2.18: Contact at T = TF and asymptotic behavior of the momentum distri-
bution at T = TF . 2.18(a) shows the contact to order z2, as obtained
from the adiabatic theorem (2.118). The orange dashed line indicates
the contact for a gas that is solely composed of dimers. The three val-
ues of the coupling strengths ln kFa2 = −0.5 (black) ln kFa2 = 0 (red)
and ln kFa2 = 1 (green) are marked separately. In figure 2.18(b), the
dimensionless version of the momentum distribution q4nσ(q) is plotted.
The asymptotic behavior agrees perfectly with the dashed lines, which
are the predictions from fig. 2.18(a).

that it starts off as an inverted parabola as in the superfluid BEC case (2.104). As
emphasized before, a back-bending in the occupied spectral function should not be
confused with a pseudo gap.

2.3.5 Radio-frequency spectrum

In sec. 2.2.2, we derived the high-frequency asymptotic behavior of the RF transition
rate for a two-dimensional Fermi gas. In the case of vanishing final state interactions,
we can obtain the RF transition rate from the occupied spectral function via [51]

Γ(ω) = Ω2
∫

q
A−(εq − ω − µ,q), (2.123)

where Ω again denotes the Rabi frequency, which will be set to one in the following.
Our intensive normalization of the RF spectrum thus reads (see the sum rule (2.81a))∫

dω

2πΓ(ω) = n

2 =︸︷︷︸
balanced gas

n2. (2.124)
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Figure 2.19: RF spectra at T = TF and for vanishing final state interactions. Fig.
2.19(a) extracts the asymptotic high-frequency tail, given in eq. (2.125)
and compares it to the predicted values of the contact from the adia-
batic theorem, see fig. 2.18(a). Fig. 2.19(b) shows the evolution of the
full rf transition rates with respect to coupling strength. As the dimer
binding energy is reduced, the free-free and bound-free peak begin to
overlap.

With this normalization, the asymptotic behavior at large frequencies ω, and for
vanishing final state interactions, reads

Γ(ω)→ C
4mω2 . (2.125)

As we have derived in sec. 2.2.3, final state interactions introduce logarithmic
scaling corrections ∼ 1/ω2 ln2 ω to this tail. A plot of the RF spectra at T = TF ,
resulting from (2.123) and tested against the universal relation (2.125), is shown
in figure 2.19(a). The dashed lines are the predictions of the contact for the three
different coupling strengths ln kFa2 = −0.5; 0; 1, as obtained from the adiabatic the-
orem (2.118). The universal relation (2.125) indeed holds true, as is to be expected
from the arguments given in the previous subsection 2.3.4.

In figure 2.19(b), the corresponding RF spectra are shown for the parameter values
T = TF and ln kFa2 = −0.5; 0; 0.5; 1; 1.5. As a reminder: Due to the vanishing final
state interactions in the present case, there are only ”free-free” and ”bound-free”
transitions. The peak at zero frequency belongs to the ”free-free” transitions from
the quasi-particle branch. The incoherent spectral weight starting at the bound
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state energy ED corresponds to ”bound-free” transitions that break up a dimer.
Coming from the BEC side (ln kFa2 = −0.5) of the crossover and going to smaller
binding energies (larger ln kFa2), the bump of the dimer-free transitions becomes
sharper and finally overlaps with the free-free peak. Because the spectrum needs
to reduce to the one of free particles in the limit ED → 0, a behavior like this is
to be expected. Note that we always have a peak of finite width, rather than the
δ-function peak mentioned in sec. 2.2.3, because the particles are thermally excited.

2.3.6 Analysis of the quasi-particle properties

This section will deal with the properties of the quasi-particle branch of the spectral
function. In particular, we will find that quasi-particles are well defined excitations
in the limit of high temperatures. The assumption that this is true is of impor-
tance when trying to describe the (transport)-properties of the system within a
Boltzmann-equation framework.

The quasi-particle dispersion ω(q) –the energy which the quasi particle peak is
centered around– is defined by the position of the pole [81] of the Green’s function
(2.106):

ω(q) + µ− εq −< [Σ(ω(q),q)] != 0 (2.126)

Figure 2.20(a) shows the deviation of the solution ω(q) from the free particle
dispersion at T = TF and for the three coupling constants ln kFa2 = −0.5, 0, 1. The
deviations are never really large, even though they are indeed the largest in the
BCS limit for momenta of roughly q/kF ≈ 3. This might indicate a precursor to
the back-bending one expects for a pseudo-gap (compare this to the behavior of the
spectral function shown in [19]). The quasi particle dispersion starts at the value

ω(0) = −µ+ < [Σ(ω(0),0)] , (2.127)

which is a quadratic minimum with an effective mass [81], that can be related to
the real part of the self-energy via

m∗

m
=

1− ∂<Σ
∂ω

1 + ∂<Σ
∂εq

∣∣∣∣∣∣
ω=ω(0),q=0

. (2.128)

The effective mass obtained from our self-energies is plotted, as a function of temper-
ature, in figure 2.20(b). The effective mass is, for all shown couplings, only slightly
enhanced. In the BCS limit, where it gets the largest (when T ≈ TF ), its maximum
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Figure 2.20: Deviation of the quasi-particle energy ω(q) from the dispersion of free
particles at T = TF . Fig. 2.20(a) shows the deviation from the free
dispersion relation for different coupling strengths. The dotted lines
correspond to the low-momentum dispersion with effective mass m∗,
see eq. (2.128). The dashed lines correspond to the universal result for
high momenta, given by eq. (2.133). Fig. 2.20(b) shows the evolution of
the effective mass – again for the typical couplings ln kFa2 = −0.5, 0, 1
– with temperature.

value is m∗ ≈ 1.08m. Small effective mass corrections are also found in the strongly
interacting Fermi gas in 3D [82]. In the limit of high temperatures, the effective
mass approaches the bare mass for all the couplings. Note that in the limit of zero
temperature at ln kFa2 = 0 for the so-called attractive polaron [83], effective mass
corrections are expected to become as large as m∗/m ≈ 1.5.

The quasi-particle peak can be approximated by a Lorentzian

A(ω,q) = 2 −= [Σ(ω(q),q)]
(ω + µ− εq −< [Σ(ω(q),q)])2 + (−= [Σ(ω(q),q)])2 (2.129)

in the vicinity of ω(q). The width of the Lorentzian, given by the imaginary part
of the self energy, defines a characteristic inverse lifetime of a state with momentum
q:

1
τq

= −= [Σ(ω(q),q)] (2.130)

For T = TF , the inverse lifetime as a function of momentum is shown in fig.
2.21(a) for the coupling strengths ln kFa2 = −0.5, 0, 1. The lifetime is smallest for
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Figure 2.21: Quasi particle lifetime as function of momentum and temperature. Fig.
2.21(a): Inverse quasi particle lifetime as a function of momentum at
T = TF and ln kFa2 = −0.5, 0, 1. The dashed line indicates the univer-
sal high momentum limit (2.134). Fig. 2.21(b): Evolution of the ratio
of inverse quasi particle lifetime and energy 1/τ0ω(0) at zero momen-
tum with temperature.

low momenta and ln kFa2 = 1. This result might seem counter-intuitive at first,
because one would generally expect ln kFa2 = 1 to be weakly interacting limit. The
important thing to note is that [81, 80], as already shortly discussed in sec. 2.3.2,
quasi particles are well defined when the ratio of inverse lifetime to excitation energy
becomes small:

1
ω(q)τq

� 1 (2.131)

The ratio 1/ω(0)τ0 for the state with vanishing momentum is shown as a function of
temperature in fig. 2.21(b). The ratio vanishes very weakly, namely logarithmically,
at high temperatures. Despite of the slow vanishing, this still shows that quasi-
particles are well defined in the limit of high temperatures. As mentioned earlier,
this is a basic requirement for a kinetic description of the two-dimensional Fermi
gas. Analogous behavior is found for the 3D Fermi gas [80].

Following Nishida [84], an OPE for the Green’s function at high momentum and
frequency reveals universal behavior of the self-energy in this parameter regime.
The leading order term10 of the self-energy, in the case of a homogeneous gas, is
10The OPE is not performed here, since Nishida already did the work for us in [84]. All we need to
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2.3 Virial expansion for the spectral function

governed by the density of the other species, which in our case just is given by n/2:

Σ(ω,q) = A(ω − εq/2)n2 + . . . , (2.132)

where A is the two-particle scattering amplitude given in eq. (2.7). From the
asymptotic form (2.132) of the self-energy, we can infer the asymptotic forms of the
dispersion relation and lifetime. In order to do so, we take the real and imaginary
part of (2.132), evaluated at the leading order result ω(q) ≈ εq of the dispersion
relation:

ω(q) + µ = εq + 2πn
m

log
[
εq

2ED

]
log2

[
εq

2ED

]
+ π2

+O
( 1
q log2 q

)
(2.133)

1
τq

= 2πn
m

π

log2
[
εq

2ED

]
+ π2

+O
( 1
q log3 q

)
(2.134)

Both relations are indicated by the dashed lines in figures 2.20(a) and 2.21(a). The
virial expansion, like is to be expected from the arguments given in sec. 2.3.4, obeys
these universal relations. Note that, in particular, the ratio

1
τqω(q)

q→∞−→ 2EF
εq

π

log2
[
εq

2ED

] � 1 (2.135)

always gets small at large momenta. Thus, independent of temperature, the ex-
citations of a two-dimensional Fermi gas always have well defined quasi-particle
properties in the high-momentum limit.

In conclusion, we have shown that, in the limit of high temperatures, both the low-
momentum and high-momentum excitations can be described well as quasi-particles.
A kinetic treatment of the two-dimensional Fermi gas, employing a Boltzmann equa-
tion ansatz, is thus justified. This allows to study non-equilibrium properties, such
as transport and the connected viscosities, of the system.

2.3.7 Summary

In this section, we have employed a virial expansion to study the non-degenerate
limit of the two-dimensional Fermi gas. The spectral functions turned out to have
two branches with spectral weight. The lower branch is connected to the two-atom
bound state, which exists for all two-dimensional scattering lengths a2. The upper

do is to plug in the two-dimensional scattering amplitude (2.7), instead of the three-dimensional
one, into his results.
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Chapter 2 Two-dimensional Fermi gases

branch almost resembles the one of free Fermions, but with a finite lifetime (width of
the peak) and slightly enhanced effective mass. The density of states exhibits a dip
in spectral weight around ω = −µ, which gets washed out at higher temperatures.
The dip is connected to the existence of the two-particle bound state, a pseudo-gap
can not be seen in the temperature range that is accessible to the virial expansion.
The virial expansion was also shown to fulfill the Tan relations, that connect the
contact of the system to various other properties. In particular, the calculation of the
contact via the adiabatic relation gave perfect agreement with the high-momentum
tail of the momentum distribution, as well as the high-frequency tail of the RF
transition rate.
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Chapter 3

High-temperature expansions for
three-dimensional quantum gases

”Work, Work.”

(Peon of the orcish horde,
computer game WarCraft 3.)

With the possibility to tune the s-wave scattering length at will by means of
a Feshbach resonance, cold gases have opened the possibility to study a system
both in the non-interacting limit, characterized by a vanishing scattering length
a = 0, as well as the strongly interacting unitary limit a = ±∞. We will take the
approximation of pure contact interactions in the following, such that the interaction
strength is solely characterized by the two-particle scattering length a. In particular,
this means that we neglect effective range corrections in the low-energy expansion
of the s-wave scattering amplitude:

f(k) = 1
− 1
a + 1

2rek
2 + · · · − ik

(3.1)

When omitting all terms of order k2 and higher in the above equation, one repro-
duces the scattering amplitude for a pure contact interaction. The approximation of
contact interactions (characterized solely by the scattering length) works well in the
regime where collision momenta are much smaller than the inverse van-der-Waals
length `vdW , which typically sets the size of the effective range [13, 85]. While
the fermionic system is stable at arbitrary scattering lengths, the (unitary) bosonic
system is unstable, because the three-particle decay rate, that governs the loss of
particles via

dn

dt
= −Γ3n ≡ −L3n

3 (3.2)
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Chapter 3 High-temperature expansions for three-dimensional quantum gases

scales like Γ3 ∼ n2a4 (for more details, see below). In addition, the bosonic many-
body system suffers from the Thomas collapse [86], which states that the three-
body spectrum, even for a contact interaction that just produces an infinitesimally
small two-body binding energy, is unbounded from below. This inevitably leads to a
thermodynamic instability of the system, and will be one of our concerns later on,
since this unboundedness is in particular also present for the Efimov effect.

The Efimov effect, named after its discoverer [10, 11], is the observation that the
bosonic three-body problem with contact interactions has a spectrum with infinitely
many three-particle bound states. These three-body bound states are called Efimov
trimers. Within the so called universal theory, which omits short-distance details of
the interaction potential, the spectrum has a discrete geometric scaling symmetry
in the sense that once one knows the energy of one Efimov trimer at unitarity
(1/a = 0), denoted by E(0)

T = −κ2
∗/m, κ∗ ∈ R, one knows the positions of all other

three-body bound states [25]:

E
(n)
T = −κ

2
∗
m
e

2π
s0
n
, n ∈ Z (3.3)

where is0 is the first imaginary root of the transcendental equation [25]

s cos
(
sπ

2

)
− 8√

3
sin
(
sπ

6

)
= 0. (3.4)

The above equation can be solved to arbitrary numerical precision, and yields
s0 = 1.0062378.. for the first digits of s0. The energies of the geometric spectrum
(3.3) are thus separated by powers of e

2π
s0
n = 515.035001... At unitarity, the spec-

trum possesses an accumulation point of infinitely shallow trimers at zero energy.
Furthermore, it is unbounded from below. This is an artifact of the zero-range ap-
proximation, that excludes microscopic short-range details of the interaction. These
microscopic details of the interaction potential at short distances, implicitly encoded
in the effective range parameter re, provide a lower cutoff to the spectrum. Within
universal theory, one neglects such short-distance non-universal effects for the sake
of simplicity. The most important observation for us – as we are going to employ
universal theory in order to obtain our results – is that there always exists a lowest
lying Efimov trimer in physical reality. We will thus in the following just specify
one state in the Efimov spectrum to be the deepest one, and implicitly subtract all
deeper lying trimer bound states. For an open-channel dominated resonance, for
example, refs. [87, 88, 89] find κ∗`vdW ≈ 0.2 for the binding wave number of the
deepest trimer state at unitarity, where `vdW is the van-der-Waals length. Non-
universal effects become more important for the lower lying trimers, such that, for
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Figure 3.1: Sketch of a typical Efimov spectrum. The energy axis is rescaled with the
eighth root |E|1/8, while the axis for inverse scattering length is rescaled
with the fourth root 1/a1/4. This reduces the scaling factor between two
consecutive Efimov states (black lines) to (515.035)1/8 ≈ 2.18 and allows
to see more than just two of them. The gray shaded region indicates
the three-atom continuum, the green shaded region is the atom-dimer
continuum (see text).

example, the scaling factor between the lowest and second-to lowest Efimov state
might no longer be approximately 515 [87, 88, 89], which is the scaling factor in the
universal theory.

The Efimov effect is also present away from unitarity, a schematic plot of the
full spectrum as a function of scattering length is shown in fig. 3.1. Shown are
four of the infinitely many trimer states. The trimer states only exist below the
so called three-atom threshold E = 0, as well as below the atom-dimer threshold
E = −1/ma2. Above these thresholds, the corresponding three-atom (gray shaded
region) and atom-dimer (green shaded region) continua start. In these regimes,
the system can be viewed as consisting of three unbound atoms, or an atom and a
dimer, that scatter off each other, respectively. The energy of the trimer at unitarity
defines the three body parameter κ∗. The scattering length where the trimer hits
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Chapter 3 High-temperature expansions for three-dimensional quantum gases

the three-atom continuum is labeled by a−, whereas the scattering length where the
trimer hits the atom-dimer continuum is called a∗. Within universal theory, these
quantities are not independent, but related to each other by the relations [25]

1
a−

≈ −0.6633κ∗ (3.5)

1
a∗
≈ 14.132κ∗. (3.6)

Thus, under the assumption that universal theory can be applied, fixing one of these
quantities fixes the other two as well. Experimentally, for example, one usually tries
to measure a− in order to determine the three-body parameter [90, 91, 92, 93]. Here,
since we are going to cut off our spectra by choosing a lowest Efimov trimer, the
parameters κ∗, a− and a∗ without an index shall correspond to the deepest trimer.
This trimer is implicitly given the index zero, while the infinitely many trimers
that lie closer to E = 0 shall be labeled by positive integers n ∈ N, in ascending
fashion. Note that the relations (3.5) and (3.6) receive corrections in theories that
incorporate non-universal effects. For example, ref. [87] finds 1/a− = −0.47κ∗ for
an open-channel dominated resonance.

In a recent experiment [94], the momentum distribution of a Bose gas was mea-
sured after ramping the system to the unitary regime. The three-body loss rate
of the resulting strongly interacting Bose gas with a finite temperature was found
to take on a finite value [95, 96, 97]. This allows for an experimental study of this
system in a quasi-equilibrated state, provided that the experiment is performed over
time scales larger than the equilibration time (governed by two-body collisions), but
shorter than the timescales for the three-body decay. At first this possibility is sur-
prising, because the three body loss rate at T = 0 was found to increase with the
fourth power of the scattering length [98, 99]:

Γ3 ∼ n2a4C(a), (3.7)

where C(a) is a function that encodes loss resonances (at negative scattering lengths)
due to the presence of three-body bound states in the Efimov spectrum. In par-
ticular, the loss resonances allow to experimentally determine the parameter a−
of the deepest trimer from the (by magnitude) smallest negative scattering length
where the loss rate is sharply peaked and follows the a4 trend. Naively, eq. (3.7)
suggests that it is impossible to ramp a Bose gas to unitarity without the quick loss
of the majority of the particles. However, it was also found in finite temperature
calculations [100, 101, 102] that the three-body loss rate of the unitary Bose gas
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saturates to ∼ λ4
T ∼ 1/T 2. This indeed opens a window for the two-body collision

rate Γ2 ∼ nλT , which equilibrates the gas, to be larger than the three-body collision
rate Γ3 ∼ n2λ4

T , which is responsible for losses [103, 104]. This window is is exactly
the non-degenerate regime nλ3

T � 1. Hence, the system ideally suited to be dealt
within a high temperature expansion.

As derived by Braaten, Kang and Platter [53] from an OPE approach, the mo-
mentum distribution of a contact-interacting Bose gas decays like

n(q) = C2
|q|4 + F (|q|) C3

|q|5 + . . . (3.8)

for large momenta |q| → ∞. Note that we have chosen an intensive normalization∫
q n(q) = n, where n is the density of the system. The quantities C2 and C3 are thus

equal to the contacts C2 and C3 in [53], multiplied by a factor of inverse volume.
The leading order momentum dependence is, as for the fermionic system [32, 37],
of the order q−4, with a decay coefficient C2 ∼ 〈ψ†ψ†ψψ〉 that is a measure for two-
particle correlations at small distances. As opposed to the fermionic system (with
equal masses), however, the next order is not q−6. The sub-leading tail is rather of
order q−5, multiplied by a log-periodic function

F (|q|) = A sin
(

2s0 log
(
q

κ∗

)
+ 2φ

)
, (3.9)

where A = 89.26260, φ = −0.669064 and s0 again defined by eq. (3.4). The
so called three-body contact C3 ∼ 〈ψ†ψ†ψ†ψψψ〉 encodes three-body correlations
at short distances, and is, due to the Pauli principle, zero in fermionic systems.
For mass-imbalanced Fermi gases with mass ratios M/m > 13.6, there exists an
analogous operator that contains spatial derivatives, see Nishida and Son in [7].
The three-body parameter shows up in eq. (3.9), which indicates that the sub-
leading tail encodes three-body correlations that are connected to the Efimov effect.
In the momentum distribution that was measured in ref. [94], no clear C/q4 decay
for large momenta could be found. The reason is simply, as we will also see in the
following, that the experiment was not able to measure the momentum distribution
at high enough momenta. They are probing intermediate momenta which are still
dominated by the oscillatory tail defined by eqs. (3.8) and (3.9). This was also
pointed out in ref. [105], where the assumption that the asymptotic form (3.8) is
valid for q ' kF (kF = (6π2n)1/3 is the Fermi momentum of a single component
Fermi gas at the same density n like the bosonic one) was used to extract numerical
fits for the quantities C2 and C3. Because the momentum distribution of a single
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Chapter 3 High-temperature expansions for three-dimensional quantum gases

Efimov trimer, which was calculated by Werner and Castin [106], was found to
saturate very late at values q > 30κ∗, this assumption might seem a bit dangerous.
However, we will see in our numerical results that the error of this assumption is
reasonably small in the unitary limit.

The two- and three-body contacts are also related to the energy density E = E/V

of the system via the adiabatic theorems [53]

C2 = −8πm ∂E
∂
(

1
a

)
∣∣∣∣∣∣
κ∗

(3.10)

C3 = −m2 κ∗
∂E
∂κ∗

∣∣∣∣
a
, (3.11)

where the partial derivatives are supposed to keep all system variables, such as
temperature or particle number, fixed. In particular, the energy density can be
replaced by other thermodynamic potentials, such as the free energy or the grand
potential. We will use the above equations to calculate predictions for the two- and
three-body contacts, and then compare them to the high-momentum tails of the
momentum distributions that we obtain in an independent fashion. Note that the
adiabatic theorem for Fermions [32, 38, 37] is basically given by eq. (3.10), but with
the factor of 8 on the right hand side replaced by a factor of 4.

In this chapter, we study the non-degenerate regime of both fermionic and bosonic
quantum gases in the approximation of contact interactions. Since we are interested
in the non-degenerate regime nλ3

T � 1 (n is the density of the system, λT =√
2π/mkBT is the thermal wavelength), we can use a cluster expansion (also see

chapter 1) to obtain results for both the momentum distribution and density up to
third order in the fugacity z = eβµ. Here, β = 1/kBT again denotes the inverse
temperature, while µ is the chemical potential of the gas. A calculation to order
z3, which takes into account correlations up to the three-body sector, requires the
solution of the three-body scattering problem. In particular, since the Efimov effect
requires three or more bosons to be present, the third order in the fugacity is the
first order that is sensitive to correlations that are related to Efimov physics, which
is our main motivation to not already stop at z2. It should be noted that knowledge
of the cluster expansion of the density to j-th order is equivalent to the knowledge
of the first j virial coefficients b1, ..., bj :

n = 1
λ3
T

(
b1z + 2b2z2 + · · ·+ jzjbj + . . .

)
, (3.12)
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Fermions Bosons

Grand potential Ω/V = −2kBT
λ3
T

∑
j

bjz
j −kBT

λ3
T

∑
j

bjz
j

Density expansion n = 2
λ3
T

∑
j

jbjz
j 1

λ3
T

∑
j

jbjz
j

High q tail n(q)→ C2
q4

C2
q4 + F (q) C3

q5

Adiabatic theorem C2 = −4πm ∂Ω/V
∂( 1

a)

∣∣∣∣∣
T,µ

−8πm ∂Ω/V
∂( 1

a)

∣∣∣∣∣
T,µ,κ∗

Adiabatic theorem C3 = no analog −m2 κ∗
∂Ω/V
∂κ∗

∣∣∣∣
T,µ,a

Table 3.1: Summary on the different versions of the formulas for two-component
fermions and single component bosons in three dimensions.

where we gave the result for bosons. For unpolarized two-component fermions n↑ =
n↓ = n/2, the density on the left-hand side is replaced by the density n/2 of one spin
species. Since it is hard to keep track of all the different versions of these formulas
for fermions and bosons, a summary of the adiabatic theorems, tails etc. is given in
table 3.1.

A word about fermions: While our main interest lies certainly with the bosonic
system, we will (because we are getting them almost for free) also extract the results
for a Fermi gas. For the virial coefficients, this reproduces the known results derived
by Leyronas [9]. We will see that our fermionic momentum distributions, when in-
tegrated over all momenta, match these known results as well. This gives additional
reassurance that the numerical solution of the three-body problem, as well as the
integration afterwards, yields correct results. Note that we do not consider fermions
with unequal masses and, in particular, a mass ratio m1/m2 > 13.6, for which the
existence [107] of three-body bound states might drastically change the results. A
study in this direction might be very interesting though, and it should in principle
be possible to perform it using the methods that are presented in this chapter.

This chapter is structured as follows: In sec. 3.1 we introduce the models and
set up the conventions we will be working with. In sec. 3.2, the three body T -
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Chapter 3 High-temperature expansions for three-dimensional quantum gases

matrix and the Skorniakov–Ter-Martirosian (STM) equation, which is the defining
integral equation for the three body T -matrix, are introduced. In sec. 3.3, we
carefully set up the formalism, as introduced by Leyronas [9], for the diagrammatic
virial expansion (which is already used in secs. 2.3 and 4.7.2 of this thesis). We
then group the diagrams by orders in the fugacity and evaluate them in an analytic
fashion as far as possible. The diagrams will contain the three-body T -matrix, and
thus have to be evaluated numerically in the end. In sec. 3.4, we shortly discuss
the essential ideas for the implementation of the C + + code that was used to
solve the three-body problem and the integrals that appear in the z3 diagrams. In
sec. 3.5, we present the resulting momentum distributions and virial coefficients
for two-component fermions. The results for the virial coefficients turn out to be
consistent with earlier findings [9]. In addition, the results for the contacts and
the momentum distribution are consistent with ref. [108], which appeared shortly
before this thesis. Finally, in sec. 3.6 the behavior of the momentum distributions
and virial coefficients of the Bose gas is discussed for different scattering lengths
and temperatures. Values for the two- and three-body contacts are predicted from
the adiabatic theorems, and compared to the tail of the momentum distribution,
which shows beautiful agreement with the universal prediction (3.8) for the tail. In
sec. 3.7, the results are summarized and an outlook on possible future projects is
given. As of the writing of this thesis, Johannes Hofmann and myself have made
the bosonic results available as an electronic preprint [109].

3.1 Model(s) and conventions

The virial expansion we perform later on will require the solution of the two- and
three-body scattering problem in the vacuum. In the following, we introduce the
models for contact-interacting bosons and fermions. We also give a short summary
on the definitions regarding the imaginary time Green’s function, because the virial
expansion revolves around expanding this Green’s function in a clever way.

3.1.1 Bosons

Since we are going to work mostly in the imaginary time formalism later on, which
is better suited to deal with finite temperatures, we directly define the theory in
imaginary time, i.e. we give the Lagrangian for the Euclidian action SE . The action
SE =

∫ β
0
∫
ddxLE(τ,x), where LE is the Lagrangian density, defines the (grand
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canonical) partition function via the path integral Z =
∫
DψDψ̄e−SE . Note that

we shall mostly work in the canonical formalism and follow the conventions of [26],
but knowing the connections between canonical and path integral formalism is still
useful.

As discussed in [25, 23, 24], the three-boson system can be effectively described
by the Lagrangian

LE(τ,x) = ψ̄ (∂τ − µ)ψ +H(ψ̄, ψ) (3.13)

H(τ,x) = ψ̄

(
−∇

2

2m

)
ψ + g2

4 ψ̄ψ̄ψψ + g3
36 ψ̄ψ̄ψ̄ψψψ, (3.14)

where we have rotated the theory to imaginary time and all quantum fields ψ̄ and
ψ are evaluated at imaginary time τ and position x. Note that the real-time action
looks similar, but with a global minus sign in front of all the non-time derivative
terms, while the time derivative gets replaced by ∂τ → i∂t. The global sign switch
can be attributed to the fact that for the real-time problem, the ”generating func-
tional” is defined as Z ∼

∫
DψDψ̄eiS . The Wick rotation changes the meaning of

time evolution, and while ψ̄ takes the role of ψ† in the rotated theory, it should not
be mistaken as the hermitian conjugate of ψ:

ψ(τ,x) = e(H−µN)τψ(x)e−(H−µN)τ (3.15)
ψ̄(τ,x) = e(H−µN)τψ†(x)e−(H−µN)τ , (3.16)

where H =
∫
ddxH(τ = 0,x), with H defined in (3.14) and N =

∫
ddxψ̄ψ(τ = 0,x).

Note that the symmetry factors in the couplings just turn out to be convenient
definitions, they are not strictly necessary. The Lagrangian (3.13), up to the three-
body sector [25], is equivalent to the following Lagrangian with an auxiliary field d

(that has bosonic commutation relations):

LE = ψ̄

(
∂τ −

∇2

2m − µ
)
ψ − g2

4 d̄d+ g2
4 d̄ψψ + g2

4 ψ̄ψ̄d+ g3
36 ψ̄d̄dψ (3.17)

We will also call the field d the auxiliary dimer field, because the leading order (in
g3) of its equation of motion (which can be obtained by varying (3.17) with respect
to d̄) is d = ψψ + . . . . The auxiliary field is not necessary for the calculations that
will follow, however it makes our life a little easier both diagrammatically and also
when calculating symmetry factors of the diagrams that contribute to our virial
expansion.
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Chapter 3 High-temperature expansions for three-dimensional quantum gases

In refs. [24, 23], it was found that in order to make quantities like the two- and
three-body scattering amplitudes cutoff-independent, g2 and g3 need a renormaliza-
tion prescription. We follow [25] and choose

g2(Λ) = 8πa/m
1− 2aΛ

π

, (3.18)

in order to reproduce the standard quantum mechanical two-body s-wave scattering
amplitude with scattering length a. Λ is a sharp UV-cutoff for the momentum
integrals. Regarding renormalization in the three-body sector, it was demonstrated
[25, 23, 24] that the choice

g3(Λ) = −9mg2
2(Λ)

Λ2 H(Λ) (3.19)

H(Λ) =
cos

(
s0 log

(
Λ
Λ∗

)
+ arctan s0

)
cos

(
s0 log

(
Λ
Λ∗

)
− arctan s0

) (3.20)

makes the three-body scattering amplitude (almost) cutoff-independent. As is em-
phasized in refs. [110, 53], the choice H̃(Λ) = 0.879H(Λ) provides even more numer-
ical accuracy. Λ∗ can be thought of as the new infrared quantity that characterizes
the coupling strength g3, and it can be determined from matching against quantities
like the atom-dimer scattering length aAD [23] or the energy κ2

∗/m of the lowest Efi-
mov trimer. In fact, we will use the term three-body parameter interchangeably for
both κ∗ and Λ∗, since one determines the other up to a periodicity that is connected
to the periodicities showing up in the Efimov effect. Note that the form (3.20) for
H(Λ) is only valid at large ratios Λ/Λ∗ →∞. The renormalization group flow of the
coupling constant g3 can be shown to obey a so called limit cycle [25] with diverging
values at certain points, which reflects the appearance of new Efimov trimers as one
increases the cutoff Λ. Once we have the form (3.19), we can of course immediately
infer that Λ4g3 is indeed log-periodic in Λ, since H(Λ) is. The RG limit cycle offers
one more neat feature, which we will make use of: The possibility of setting g3 ≡ 0
for certain combinations Λ/Λ∗ = (eπ/s0)ne

1
s0

(π2−arctan s0). In most numerical calcu-
lations performed later on, typical values were n = 2, 3. Doing this is of course not
mandatory, and we checked the results against other combinations of Λ/Λ∗.

3.1.2 Fermions

In complete analogy to the bosonic case, the Lagrangian that reproduces the quan-
tum mechanical low energy s-wave scattering behavior of two fermions of different
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species σ =↑, ↓ is defined by

LE(τ,x) =
∑
σ

ψ̄σ (∂τ − µ)ψσ +H(ψ̄σ, ψσ) (3.21)

H(τ,x) =
∑
σ

ψ̄σ

(
−∇

2

2m

)
ψσ + g2ψ̄↑ψ̄↓ψ↓ψ↑. (3.22)

Due to the Pauli principle, there is no relevant three body operator that has to be
taken into account in this effective Lagrangian. In order to describe a system with
balanced populations n↑ = n↓, the chemical potential was chosen to be equal for
both species. It should be noted that the theory needs (like in the bosonic case) to
be renormalized in order to yield finite and cutoff-independent results. We choose
the prescription

g2(Λ) = 4πa/m
1− 2aΛ

π

, (3.23)

which reproduces the quantum mechanical result for two-body s-wave scattering
with scattering length a. Up to a factor of two, this is the same two-body coupling
constant as in the bosonic case, cf. eq. (3.18). This difference has its origin in the
distinguishability of the scattering partners in the fermionic case, while two identical
bosons are indistinguishable. An non-dynamical auxiliary field d can be introduced
via the Lagrangian

LE =
∑
σ

ψ̄σ

(
∂τ −

∇2

2m − µ
)
ψσ − g2d̄d+ g2d̄ψ↓ψ↑ + g2ψ̄↑ψ̄↓d (3.24)

Varying with respect to d̄, we find that the equation of motion is d = ψ̄↓ψ̄↑. This
again motivates the name auxiliary dimer field. The Lagrangian (3.24) is completely
equivalent to the Lagrangian (3.21), which can be seen by plugging in the equation
of motion for the auxiliary field. In contrast to the bosonic case, since there is no
three-body term in the Lagrangian density (3.24), no infrared parameters other than
the scattering length a are needed to completely specify our theory.

3.1.3 Imaginary time Green’s function

This section will give a short review of the definitions that are necessary to define an
imaginary-time Green’s function, as well as its representation in terms of so called
S-matrices. Following the conventions of [26], we define the imaginary-time Green’s
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function as

G(x− x′, τ − τ ′) = −
〈
Tτψ(x, τ)ψ̄(x′, τ ′)

〉
bosons (3.25)

Gσ(x− x′, τ − τ ′) = −
〈
Tτψσ(x, τ)ψ̄σ(x′, τ ′)

〉
, fermions (3.26)

where Tτ denotes time ordering (in imaginary time τ). The Green’s function of
an auxiliary field is defined in an analogous fashion. For bosons, the imaginary
time ordering just changes the order of fields in such a way that the earlier acting
field stands more to the right. For fermions however, due to the anti-commutation
rules, there is also a sign change whenever the fields need to be re-ordered. The
expectation value is defined by the usual grand-canonical density matrix 1:

〈...〉 = 1
Z

Tre−β(H−µN) (3.27)

Z = Tre−β(H−µN) (3.28)

The Green’s function can be proven to be (anti-)periodic in imaginary time with
period β, which results in the fact that, in frequency space, energies are replaced
by the so-called (fermionic) bosonic Matsubara frequencies: E → iωn, where ωn =
2nπ/β in the bosonic case and ωn = (2n+ 1)π/β in the fermionic case.

We define the time-evolution of an operator in the interaction picture2 by

ψ(τ,x) = eτ(H0−µN)ψ(x)e−τ(H0−µN) (3.29)
ψ̄(τ,x) = eτ(H0−µN)ψ†(x)e−τ(H0−µN), (3.30)

where H0 is the kinetic part of the Hamiltonian. For the fermionic fields, just add a
spin index σ in the above definition. Furthermore, we define the expectation value
〈..〉0 in the same way as in eqs. (3.27) and (3.28), with the Hamiltonian H replaced
by H0. The Green’s function (3.25) can then be expressed in terms of the fields in

1Note that for the two- and three-body problem in the vacuum, this expectation value can get re-
placed by an actual specification of the incoming and leaving states and the respective momenta
and energies.

2For the non-interacting system, this definition of course coincides with the Heisenberg time
evolution defined in eq. (3.16).
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the interaction picture and the non-interacting expectation value [26]:

G(x− x′, τ − τ ′) =


−Z0
Z

〈
S(β, τ)ψ(x, τ)S(τ, τ ′)ψ̄(x′, τ ′)S(τ ′, 0)

〉
0

τ − τ ′ > 0

∓Z0
Z

〈
S(β, τ)ψ(x, τ)S(τ, τ ′)ψ̄(x′, τ ′)S(τ ′, 0)

〉
0

τ − τ ′ < 0

=


−
〈
S(β, τ)ψ(x, τ)S(τ, τ ′)ψ̄(x′, τ ′)S(τ ′, 0)

〉
0,con

τ − τ ′ > 0

∓
〈
S(β, τ)ψ(x, τ)S(τ, τ ′)ψ̄(x′, τ ′)S(τ ′, 0)

〉
0,con

τ − τ ′ < 0
,

(3.31)

where the + for τ − τ ′ < 0 corresponds to the fermionic case (add spin indices σ for
that case, too). The S-matrix is defined as

S(τ, τ ′) = Tτe
−
∫ τ
τ ′ dτ̃Hint(τ̃)

= 1−
∫ τ

τ ′
dτ̃Hint(τ̃) +

∫ τ

τ ′
dτ̃1Hint(τ̃1)

∫ τ̃1

τ ′
dτ̃2Hint(τ̃2)

+ · · ·+ (−1)n
∫ τ

τ ′
dτ̃1Hint(τ̃1) . . . ..

∫ τ̃n−1

τ ′
dτ̃nHint(τ̃n) + . . . ,(3.32)

where the interaction part Hint contains all the interaction vertices (which are the
same as the interaction vertices of the Lagrangian), and its time dependence is
defined via the interaction picture in eqs. (3.29) and (3.30). In the second line
of eq. (3.31), we implicitly stated that it is possible to express this expectation
value as the sum of all contractions (Wick’s theorem [26, 28]). Furthermore, it was
indicated that only the contractions that result in connected diagrams contribute
(linked cluster theorem [26, 28]).

Note that in most quantum field theory books, eq. (3.32) is just used as a step to
get to an end result where the imaginary time integrations all have the same upper
and lower bounds, which is then easily translated into momentum and frequency
space. Since we are going to work with ”mixed” diagrams that are in imaginary time
and momentum space, however, the form (3.32) will prove to be the most useful one
for us. It allows to associate times τi to a given vertex, such that 0 ≤ τi ≤ τi+1.
Furthermore, the form (3.32) also turns out to be convenient for determining signs
(fermionic problem) and symmetry factors (bosonic problem) of a given diagram.

3.1.4 Introduction to the diagrammatic virial expansion

The basic ideas on how to turn the virial expansion into an expansion of Feynman
diagrams have already been shortly outlined in sec. 2.3 of this thesis, where we have
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used this formalism to calculate the spectral function of a two-dimensional Fermi gas
in the non-degenerate regime. However, I have also promised a more detailed intro-
duction to the subject, which will be presented here. We define the free propagator
G like the full Green’s function in eq. (3.25), but with a non-interacting expec-
tation value 〈..〉0. The free propagator in momentum and (Matsubara-)frequency
space takes the particularly simple form

G(iωn,q) = 1
iωn + µ− εq

, (3.33)

where εq = q2/2m is the free dispersion, and µ is the chemical potential. The
bosonic Matsubara frequencies are even multiples of π/β, while the fermionic (add
index σ =↑, ↓ in eq. (3.33)) ones are odd multiples. The corresponding free propa-
gator can be obtained by summation over all Matsubara frequencies:

G(τ,q) = 1
β

∑
ωn

e−iωnτ
1

iωn + µ− εq
(3.34)

The usual trick [49] to evaluate these sums is to turn the sum into a contour in-
tegral and weight the function that is summed over by a Bose- or negative Fermi-
distribution, which have poles at the bosonic and fermionic Matsubara frequencies
iωn, with residue 1/β. Due to the residue theorem, when the function does not have
any additional poles enclosed by the contour, the contour integral is then equal to
the sum over the Matsubara frequencies. For τ < 0, the contour can be deformed
into a large circle with infinite radius, at the cost, however, of including the pole at
z = εq − µ that comes from the Green’s function. This yields

G(τ,q) = −e−τ(εq−µ)nB(εq − µ) −β < τ < 0 (3.35)
Gσ(τ,q) = e−τ(εq−µ)nF (εq − µ) −β < τ < 0, (3.36)

where the additional sign change comes from the fact that the small contour around
the Green’s function pole runs clockwise. From the periodicity / anti-periodicity

G(τ) = ∓G(β + τ) − β < τ < 0 (3.37)

of the Green’s function, where the minus corresponds to fermions, we can infer its
values for 0 < τ < β:

G(τ,q) = −e−τ(εq−µ)(1 + nB(εq − µ)) 0 < τ < β (3.38)
Gσ(τ,q) = e−τ(εq−µ)(−1 + nF (εq − µ)) 0 < τ < β. (3.39)
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For τ = 0, we need to specify from which direction the zero is approached. The
usual convention is to interpret τ = 0 as τ = 0−, such that the Green’s function
takes the form (3.35) or (3.36). The full result of the bosonic free propagator now
reads

G(τ,q) = −e−τ(εq−µ)
[
Θ(τ) + nB(εq − µ)

]
= −e−τ(εq−µ)

[
Θ(τ) +

∞∑
n=1

zne−nβεq

]

≡
∞∑
n=0

znG(n)(τ,q), (3.40)

where we have expanded the Bose distribution for small fugacities z = eβµ and
defined the expanded propagators G(n) by

G(n)(τ,q) =

−e
τµe−τεqΘ(τ) n = 0

−eτµe−(nβ+τ)εq n ∈ N
. (3.41)

In a similar fashion, the fermionic free propagator can be expanded as

Gσ(τ,q) =
∞∑
n=0

znG(n)
σ (τ,q) (3.42)

G(n)
σ (τ,q) =

−e
τµe−τεqΘ(τ) n = 0

(−1)n−1eτµe−(nβ+τ)εq n ∈ N
, (3.43)

where the alternating sign just comes from the expansion of the Fermi distribution
with respect to the fugacity. Note that the zeroth order in the fugacity is, up to the
factor eτµ, the free propagator in the vacuum.

A diagrammatic expansion of the full Green’s function will in general contain free
propagators that run forward, as well as some that run backward in imaginary time.
A backward running line can most often be attributed to a particle coming from the
medium and participating in a scattering process (hole scattering). The exception
to this is that when τ < 0, the ordering of the external legs enforces one backward
running line as well. To expand a given diagram in terms of the fugacity, we can
use the expansions (3.42) and (3.42). Diagrammatically, we denote the expanded
propagators G(n) by a line that is slashed n-times (see fig. 2.12(a) in chapter 2.3).
The free propagator is the sum of all these slashed propagators. Since the propagator
G(0) is purely retarded, i.e. it may only run forward in imaginary time, a line that
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(a) (b) (c)

Figure 3.2: Example diagrams for the Green’s function that are generated by the
perturbative expansion (3.32), written in terms of an auxiliary field.
When expanded in terms of fugacity, diagrams 3.2(a) and 3.2(b) are at
least O(z), since the propagator that flows back can only contribute from
order z on, cf. eqs. (3.43), (3.41). Diagram 3.2(c) is an exercise for the
reader: At which order in z will it first contribute?

runs backwards has to at least be slashed once when expanded. Of course, both
forward and backward running lines can be slashed arbitrarily often. To calculate
the order of a given diagram in the fugacity, we just need to count the total number of
slashes. In sec. 3.3, the big simplification will arise when we truncate the expansion
at a given order in the fugacity (as mentioned earlier, we will choose z3 to include
three-body correlations). Truncating at any finite order in the fugacity only allows
for a finite amount of backward running lines in the ”mother”-diagram, which then
results in the fact that only certain classes of diagrams contribute to the expansion
of the Green’s function. This is exemplified in figure 3.2, which shows perturbative
diagrams that the are generated by both the bosonic and fermionic Lagrangians
(3.17) and (3.24). Note that the bare auxiliary field, since it is non-dynamical, does
not have a well defined propagation direction. Since the propagator G(0) does not
increase the cost in powers of fugacities, expanded diagrams may always contain a
series of ladder diagrams that describe repeated scattering of two or more particles
that are already present in the diagram. Diagrams 3.2(a) and 3.2(b) are examples
for this statement, since they can in principle contribute at the same order in the
fugacity. In fact, they are the first two building blocks of the infinite series that
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defines the two-body scattering amplitude, and are thus related to the self-energy
diagram 2.12(b) in sec. 2.3. We will show how to sum such series of (forward
running) ladder diagrams in the next subsection. Essentially, this amounts to the
solution of the scattering problem in the vacuum.

3.2 Two- and Three-body T -Matrix

The next preparatory step for a virial expansion of the density and momentum
distribution to third order in the fugacity is the definition of the two- and three-
body T -matrices. These scattering matrices, which, as mentioned earlier, describe
the repeated scattering of two or three particles, will constitute the non-trivial part
in the diagrams that define the cluster expansion of the density and momentum
distribution. As we will see in section (3.3), we will be able to rewrite the imaginary
time integrations in our diagrams in terms of a Bromwich integration, which is an
integration over complex energies. This is the reason why we only will care about
the solution of the three-body problem in energy space. We will start with the
discussion of the scattering matrices for bosons. For fermions, since the derivations
are completely analogous, we will only shortly list the changes (symmetry factors
and signs) and give the final expressions.

3.2.1 Bosons

Since the two-body scattering problem shows up in the three-body scattering prob-
lem, it makes sense to first quickly study the two-body problem. After that, we
will introduce the diagrammatic series that defines the three-body problem and the
integral equation that has to be solved to sum the series. We will also define the
angular momentum decomposition of the the three-body T -matrix, which will prove
useful for an analytic treatment (as far as possible) of the diagrams in sec. 3.3.

Two-body scattering matrix

The example diagrams 3.2(a) and 3.2(a) contain sub-diagrams that resemble the
two-body scattering problem in the vacuum. To be more precise, they can be
summed to contain the full dimer propagator in the vacuum, where we define this
quantity by the diagrammatic series shown in fig. 3.3(a). Note that since we want to
describe the series that is contained as a sub-diagram, the bosonic lines correspond
to the first order propagators G(0), defined in eq. (3.41). We will go into much
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= + + + . . .

(a)

= +

(b)

Figure 3.3: Diagrams that define the full dimer propagator.

detail in this section, because understanding the principles of the two-body sector is
all it takes to understand the diagrammatic virial expansion. The three-body sector
will not offer anything conceptually new. The Feynman-rules that are generated by
the Lagrangian (3.17) are summarized in appendix B. Note that while for the bare
propagator of the auxiliary field, it does not make sense to talk about a propagation
direction, the full dimer propagator will has an energy dependence which allows to
define a propagation direction. This is of course just a remnant of the fact that the
bosonic atoms in the loop have a propagation direction in time. This is the reason
why we will draw the full dimer with an arrow. The leading terms of diagram 3.3(a),
evaluated in imaginary time and momentum, are given by3:

−e2µ(τ−τ ′)Gdd(τ − τ ′,p) = − 4
g2
δ(τ − τ ′ − 0+)

+ 2e2µ(τ−τ ′)Θ(τ − τ ′)
∫

k
e−(τ−τ ′)(εk+εp−k)

− g2e
2µ(τ−τ ′)Θ(τ − τ ′)

∫ τ−τ ′

0
dt

∫
k,k′

e−t(εk+εp−k)e−(τ−τ ′−t)(εk′+εp−k′ )

+ . . . , (3.44)

where we included symmetry factors in the following way: Each vertex (that is
contributing −g2/4) corresponds to a combination of either dψ̄ψ̄ or ψψd̄. For any
pair of these vertices, we have two choices for the first contraction, while the second
contraction is fixed by our earlier choices. This effectively contributes a symmetry
factor of two for each of the loops. We also have defined the dimer Green’s function

3As a reminder: Like in the earlier sections of this thesis, we use the shorthand
∫

q =
∫

ddq

(2π)d for
momentum integrations.
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in a way that makes its connection to the real time vacuum dimer propagator clear.
The choice of factoring out the e2µ(τ−τ ′) turns out to be convenient for the diagrams
we will encounter in section 3.3. In particular, note that every order in g2 (except
the very first term, where, because of the delta function, we can always multiply
a term e2µ(τ−τ ′) by hand) will have the same factor e2µ(τ−τ ′), because the sum of
all propagation times is always τ − τ ′. Note that in eq. (3.44), we have directly
written down the series for the negative Green’s function, which, comparing to the
definition (3.25) of the imaginary time Green’s function, corresponds directly to the
contraction of dd̄. While for the bosonic problem, this way seems a little superficial
at first, keeping explicit track of signs is needed for determining signs of the fermionic
diagrams.

One more observation regarding the series in (3.44) is the following: At any order
of loops, we can always rearrange the momentum integrations in a way that pulls
out a global factor e−(τ−τ ′)εp/2. This can be arranged via the substitutions (which
have determinant one) of the form k → k + p/2. The result is that the dimer
Green’s function is connected to its center of mass counter part via Gdd(τ − τ ′,p) =
e−(τ−τ ′)εp/2Gdd(τ − τ ′,0). This of course just reflects the fact that our theory is
Galilean invariant (in the vacuum).

Taking a closer look at the series (3.44), we see that it can also be brought into
the form of an integral equation, where we now concentrate on the center of mass
frame:

Gdd(τ − τ ′,0) = 4
g2
δ(τ − τ ′ − 0+)− g2

2

∫ τ−τ ′

0
dt

∫
k
e−2tεkGdd(τ − τ ′,0) (3.45)

Diagrammatically, the integral equation for the dimer propagator is shown in fig.
3.3(b). The integral equation above is, up to constants multiplying, the Lippmann-
Schwinger integral equation for the two-body scattering amplitude. As was already
mentioned, we will need the Laplace transformed version of this function for later
use in our diagrams. Gdd is indeed a retarded function, as is apparent from the
presence of the Θ(τ−τ ′) functions in eq. (3.44), which came from expanding the free
propagators to order zero in the fugacity. The Laplace transformation is thus well
defined, and the convolution theorem4 for Laplace transforms (which states that the

4For a short compilation of useful properties regarding the Laplace transform, see appendix C.
Note that in contrast to the usual mathematical literature [111], we define the Laplace transform
with another sign in the exponent: f(s) =

∫∞
0 dtestf(t). s thus has to lie (before analytic

continuation) in the left half <s < 0 of the complex plane.
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Figure 3.4: Connection between T2-matrix and dimer propagator: The effective
Feynman rule for this diagram is −T2.

Laplace transform of a convolution gives the product of Laplace transforms) yields

Gdd(s,0) = 4
g2

+ g2
2

∫
k

1
s− 2εk

Gdd(s,0), (3.46)

where we have applied the convolution theorem to the imaginary time version (3.45)
of the integral equation for the dimer propagator. The property that the propagator
Gdd at finite momentum is related to its center of mass counter part multiplied with
e−(τ−τ ′)εp/2 translates to

Gdd(s,p) = Gdd

(
s− p2

4m,0
)
≡ Gdd

(
s− p2

4m

)
(3.47)

in (complex) energy space. This is the usual Galilean invariant form of the scattering
amplitude in momentum and energy space. In order to make comparison to the
results of Leyronas [9], let us define the two-body T-matrix

T2(s) = g2
2
4 Gdd(s). (3.48)

Note that −T2(s) is the effective Feynman-rule for the vertex shown in fig. 3.4.
We already accounted for the symmetry factor of four, that comes from the 2 · 2
choices to connect the vertices with the external legs. It should also be noted that
T2(s) = −A(s), where A is the amplitude used in the other chapters of this thesis.
The integral equation for T2, that results from eqs. (3.48) and (3.47), involves a
divergent loop-integral. This divergence is exactly canceled by the renormalization
prescription (3.18) of the two-body coupling constant g2. The remaining parts yields
the standard result

T2(s) = 8π
m

1
1
a −
√
−ms

(3.49)
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=

+

+

+

Figure 3.5: STM integral equation for the three-body T -matrix T3, which is depicted
diagrammatically by a gray box.

for the scattering of two contact-interacting bosons in the vacuum. Note that
T2 also inherits the Galilean invariance of the dimer propagator, implying that
T2(s,p) = T2(s − p2/4m). As mentioned earlier, we will always express our dia-
grams in terms of the T2-matrix, because it makes comparison to the expressions
given in [9] straightforward. For the determination of signs (fermions) and symme-
try factors (bosons) of a given diagram however, I find it more convenient to work
with the full dimer propagator instead.

In summary, we have seen how sub-diagrams that are connected to the scattering
problem in the vaccuum appear in our virial expansion. For the three-body sector,
we will not go through such a detailed derivation again, and rather just define the
series we are going to meet in our diagrams directly in (complex) energy space. The
tricks employed here, such as factoring out convenient factors and using Galilean
invariance, will of course be implicitly used in the next subsection as well.

Three-body scattering matrix

In the three-body sector and in the perturbative expansion that is generated by the
S-matrices, cf. eqs. (3.31) and (3.32), we are going to meet sub-diagrams that are
generated by the diagrammatic integral equation shown in fig. 3.5. This integral
equation for the scattering of three particles is called the Skorniakov Ter-Martirosian
(STM) equation [112]. Since we already have included the interaction vertices into
the T2 matrix, we will exclude them from the three-body T -matrix. Let p and k be
the incoming and outgoing momenta of the atom, such that P − p and P − k are
the incoming and leaving momenta of the dimers. Further, let s be the total center
of mass energy and εp, εk the energies of the incoming and outgoing atoms. The
three-body T -matrix T3 that we will encounter in our diagrams solves the following
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STM equation:

T3(s,εp, εk,P,p,k) =
[

1
s− εp − εk − εP−p−k

+ g3
9g2

2

]

+
∫

q

[
1

s− εp − εq − εP−p−q
+ g3

9g2
2

]
T2

(
s− εq −

εP−q
2

)
T3(s, εq, εk,P,q,k)

(3.50)

Note that inclusion of the two-body vertices into the externally attached T2-matrix
does not yield exactly the same amplitude that one gets from the diagrams in fig. 3.5
by simple amputation of the external legs using the LSZ-reduction formalism [28].
This was done in ref. [25]. This procedure would not prove useful in our case, since,
as we will see in sec. 3.3, the external dimer legs of this amplitude are not on-shell.
Calling the three-body amplitude in [25] A3(..), we have: A3(...) = −16πT3(...)/a.

From Galilean invariance (or similar arguments to the ones given in the preceding
section on the two-body scattering), it follows that the amplitude T3 can be related
to its center of mass counterpart t3(s,p,k) = T3(s, εp, εk,0,p,k) via

T3(s, εp, εk,P,p,k) = t3

(
s− εP

3 ,p− P
3 ,k−

P
3

)
. (3.51)

This allows us to concentrate on the solution of the three-body problem in the center
of mass frame. The center of mass amplitude t3(s,p,k) is a function of the (complex)
energy s, the magnitudes p and k of the momenta, and the angle cos θ = p̂ · k̂, where
the hat denotes a unit vector. We now decompose (l = 0, 1, 2, ..) the amplitude into
angular momentum components via

t3(s,p,k) =
∑
l

(2l + 1)Pl(cos θ)t(l)3 (s, p, k) (3.52)

t
(l)
3 (s, p, k) = 1

2

∫ 1

−1
d cos θ Pl(cos θ)t3(s,p,k), (3.53)

where the Pl(cos θ) are the Legendre polynomials. Appendix D provides details on
the projection of the STM equation (3.50) onto angular momentum channels. The
key observation is that the resulting effective STM equation for t(l)3 does not mix
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3.2 Two- and Three-body T -Matrix

different angular momenta:

t
(l)
3 (s, p, k) =

[
m

pk
Ql

(
m

pk

[
s− p2

m
− k2

m

])
−mH(Λ)

Λ2 δl0

]

+ 4
πm

∫ Λ

0
dq

q2

1
a −

√
−ms+ 3

4q
2[

m

pq
Ql

(
m

pq

[
s− p2

m
− q2

m

])
−mH(Λ)

Λ2 δl0

]
t
(l)
3 (s, q, k) (3.54)

The cutoff function H(Λ) was defined in eq. (3.20), and takes care of the renormal-
ization of the three-body vertex. The Ql(z) denote the so called Legendre functions
of the second kind, defined by

Ql(z) = 1
2

∫ 1

−1
dx
Pl(x)
z − x

. (3.55)

For integer index, which is the case for us, they can be defined [113, 114] such that
they are analytic for z ∈ C/[−1, 1], with a branch cut discontinuity ranging from −1
to 1. For more details on the Legendre functions of the second kind, see appendix
D.

Which bound states does the STM equation (3.54) predict? To answer that,
assume that s ≈ −EB, EB > 0 is close to a bound state. Near the pole, the
amplitude takes the form [25]

t
(l)
3 (s, p, k) ≈

B
(l)
EB

(p, k)
s+ EB

, (3.56)

where we have assumed a simple pole. We can now insert (3.56) into the STM equa-
tion (3.54), and multiply by s+ EB ≈ 0, which eliminates the inhomogeneity from
the integral equation. Making the factorization ansatz5 B

(l)
EB

(p, k) = B
(l)
EB

(p)B(l)
EB

(k),
the STM equation near a bound state pole reduces to

B
(l)
EB

(p) = 4
πm

∫ Λ

0
dq

q2

1
a −

√
mEB + 3

4q
2[

m

pq
Ql

(
m

pq

[
−EB −

p2

m
− q2

m

])
−mδ0l

H(Λ)
Λ2

]
B

(l)
EB

(q). (3.57)

5This is justified by two things: mathematically, because the form of the integral equation allows
for it. Physically, because t3 is connected to the Green’s function of three atoms. The residues
of its poles, in turn, are connected to the product of the momentum space wave functions [115]
of the atoms in the respective bound state.
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Numerically, the usual procedure for the solution of (3.57) is to put the integration
onto a discrete grid. The above equation only has solutions when the determinant
of the energy dependent kernel matrix is zero. We can thus use a root finder for
the determinant to find the bound states. Note that while the above equation also
defines the residue, it does so only up to a normalization constant, which is why we
use eq. (3.57) only to determine the positions of the poles. It turns out that the
amplitude supports infinitely many three-body bound states (poles) in the l = 0
channel, while for l 6= 0, no bound states are present. The three-body bound states
are of course the Efimov trimers (see fig. 3.1, which was created using the above
considerations). In practice, we also use equation (3.57) to find κ∗ (the wavenumber
of the Efimov state that we specify to be deepest) for a given Λ∗, where Λ∗ is the
adjustable three-body parameter in eq. (3.20).

3.2.2 Fermions

For fermions, both the two- and three-body scattering problem are conceptually the
same as for their bosonic counterparts. We will therefore just state the results, and
discuss the subtle differences to the bosonic problem. The two-body T -matrix T2

for the scattering of an ↑ and a ↓ fermion is given by

T2(s) = 4π
m

1
1
a −
√
−ms

. (3.58)

It solves the Lippmann-Schwinger equation, but is of course now generated by the
Lagrangian (3.24). Since there is, due to the distinguishability of the ↑ and ↓
fermions, no need for symmetry factors, the fermionic T2 differs from the bosonic
one (see eq. (3.49)) by a factor of two. Diagrammatically, the two-body T -matrix
is again represented by fig. 3.4, where the external lines have to be labeled with ↑
and ↓.

The STM equation for the scattering matrix of three atoms, labeled by T3,σ for
the scattering of an atom of species σ off a dimer (that contains one particle of
each species), is diagrammatically represented by fig. 3.5 without the parts that
contain a three-body vertex, because the fermionic Lagrangian does not include a
three-body term, cf. eq. (3.24). Projection onto angular momentum components
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(see the bosonic T3 section and appendix D for details) yields the STM equation

t
(l)
3,σ(s, p, k) =

[
m

pk
Ql

(
m

pk

[
s− p2

m
− k2

m

])]

− 2
πm

∫ Λ

0
dq

q2

1
a −

√
−ms+ 3

4q
2[

m

pq
Ql

(
m

pq

[
s− p2

m
− q2

m

])]
t
(l)
3,σ(s, q, k). (3.59)

Like in the bosonic case, we exclude the external interaction vertices from the ex-
pression. Comparing the fermionic STM equation (3.59) to the bosonic one, which
is given in eq. (3.54), we see that they basically only differ by a factor of −2 in
the kernel of the integral equation and the missing three-body terms ∼ g3. The
minus sign comes from a crossing of two fermionic lines, resulting in the fact that
the contraction of the fields that act at the vertices contributes a minus sign. This
sign change has profound consequences. The fermionic three-body equation does
not support any three-body bound states. As a consquence, for example, the ratio
aAD/a, where aAD is the atom-dimer scattering length, defined via

aAD = 8
3maT3,σ

(
− 1
ma2 , 0, 0,0,0,0

)
, (3.60)

is constant with respect to variation of the scattering length a. I find aAD/a =
1.179.., which is consistent with the result aAD/a = 1.18 [112, 116]. This is in
stark contrast to the bosonic atom dimer scattering length, which shows resonant
behavior whenever a trimer-line line hits the atom-dimer continuum at a∗ (see fig.
3.1), and variation in between. It should be noted that the fermionic picture will
change a lot when introducing a mass-difference for the two-species. It has been
shown [107] that for a mass ratio m↑/m↓ > 13.6, the fermionic three-body problem
supports three-particle bound states. For a field-theoretic treatment of the problem,
see the contribution of Nishida and Son in ref. [7].

Last but not least, note that the transformation properties (3.47) and (3.51) of the
two- and three-body T -matrices for transformations into the center of mass frame
also hold in the fermionic case. This is once again a consequence of the Galilean
invariance of the theory defined by the Lagrangian (3.24).
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3.3 Diagrammatic cluster expansion for momentum
distribution and density

With all the preparatory work done, we are now going to aim for the virial expan-
sion of the momentum distribution and the density to third order in the fugacity
z. The expansion of the density allows for the extraction of the virial coefficients,
which define the thermodynamic properties of the system. As mentioned in the in-
troduction, one of the motivations for the calculation of the momentum distribution
is the experiment [94], where the momentum distribution of a unitary Bose gas was
measured. In sec. 3.3.1, we are going to discuss the bosonic case in great detail. In
sec. 3.3.2, we give a less detailed description of the fermionic diagrams, and merely
discuss the important changes, as well as the resulting expressions.

3.3.1 Bosons

The momentum distribution and density of a bosonic system can, in the transla-
tionally invariant case, be related to the imaginary time Green’s function G via

n(q) = − lim
τ→0−

G(q, τ) =
〈
Tτ ψ̄(q, 0+)ψ(q, 0)

〉
(3.61)

n = − lim
τ→0−

G(0, τ) =
〈
Tτ ψ̄(x, 0+)ψ(x, 0)

〉
, (3.62)

which follows directly from the definition (3.25) of G. Note that since n =
∫

q n(q),
we can also obtain the density from the momentum distribution. I used this in the
numerical calculations to test the consistency of the results. As discussed in sec.
3.1.4, we can perform a diagrammatic virial expansion of the full Green’s function
G to order z3 via inclusion of all diagrams that have at most three lines that run
backward in imaginary time. One of these lines always has to be an external one,
since the ordering of the fields in eqs. (3.61) and (3.62) forces an annihilation before
the creation of a particle. Diagrammatically, we will indicate the imaginary time
τ = 0 by a cross. For the momentum distribution, the external lines will have
momentum q, while for the density they are integrated over all possible momenta.

Using our knowledge of the diagrammatic cluster expansion, see sec. 3.1.4, we
anticipate that the expansions of the momentum distribution and density can be
structured like

n(q) = zn
(1p)
1 (q) + z2

[
n

(1p)
2 (q) + n

(2p)
2 (q)

]
+z3

[
n

(1p)
3 (q) + n

(2p)
3 (q) + n

(3p)
3 (q)

]
+O(z4), (3.63)
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(a) O(z) (b) O(z2) (c) O(z3)

Figure 3.6: Diagrams for the one-particle contributions to the expansion of the den-
sity and momentum distribution.

where the density trivially has the analogous structure, because it can be obtained
from the momentum distribution by integration over all momenta. The nomencla-
ture was chosen to be suggestive in the sense that njpi describes the contribution to
order zi from diagrams that belong to the j-particle sector. We are now going to
determine these contributions in ascending order in the particle number.

Momentum distribution

Except for the one-particle sector, which is simple enough to treat everything at
once, we will first only consider the evaluation of the diagrams for the momentum
distribution. The diagrams for the density are the same, and thus results for the
density can be obtained by integration of the diagrams for the momentum distribu-
tion over all external momenta q. In general, it will turn out to be most convenient
to integrate an intermediate result over all q, since the end results for the momentum
distribution are tailor made for numerical evaluation.

One-particle diagrams Since there are no interactions involved, the one-particle
sector is very simple. The diagrams that contribute to the density up to order z3 are
shown in figure 3.6. The contribution to the momentum distribution from a single
closed loop that is slashed ` times can be directly read off from the definition of the
slashed propagator, given in eq. (3.41):

n
(1p)
` (q) = − lim

τ→0−
G(`)(τ,q) = e−`βεq . (3.64)

A sign convention for later use: Our diagrams are supposed to be diagrams for
the Greens function. To obtain the density or momentum distribution, we need to
multiply the result of any given diagram by −1. The result for the density follows
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(a) O(z2) (b) O(z3) (c) O(z3) (d) O(z3)

Figure 3.7: Contributions to the cluster expansion of momentum distribution and
density from the two-particle sector. The diagrams all originate from
the same mother-diagram.

directly from integration of eq. (3.64):

n
(1p)
` =

∫
q
e−`βεq = 1

`3/2
1
λ3
T

. (3.65)

Should we make our gas non-interacting by g2, g3 → 0, in which case only diagrams
of the form 3.6(a)-3.6(c) exist, we can extract the standard result b(0)

` = 1/`5/2 for
the virial coefficients of a non-interacting Bose gas from the above formula by com-
parison with the definition of the density expansion in terms of the virial coefficients
(see table 3.1).

Two-particle diagrams The contributions from the two-particle sector all come
from the same mother-diagram, which contains an infinite series of what can be
considered two-particle scattering in the vacuum. The first terms of this series were
shown in figs. 3.2(a) and 3.2(b). The resulting diagrams for the two-body sector
are shown in figure 3.7.

Before turning to the evaluation of the diagrams, let us pause a moment (maybe
even get a coffee?). Didn’t we forget a diagram? After all, the effective dimer
propagator contains bubbles with two bosons. What keeps us from slashing those
lines, too? As it turns out: Nothing. We even have to. However, these diagrams
will turn out to belong to the terms that are generated by the three-body T -matrix,
and thus belong to the three-body sector. We will come back to this issue in the
paragraph on the three-particle diagrams, but, to avoid confusion, it was worth
mentioning.
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3.3 Diagrammatic cluster expansion for momentum distribution and density

Diagram 3.7(a) We will start with the evaluation of the ∼ z2 diagram 3.7(a).
This will nicely demonstrate how to treat all the other diagrams we are going to
meet. Some conventions: The important (imaginary) times in diagram 3.7(a) are,
going from left to right:

• The action of the external vertex (cross) at τ0 = 0

• The action of the first interaction vertex at τ1 ≥ 0

• The action of the second interaction vertex at β ≥ τ2 ≥ τ1

Instead of using the formalism discussed in secs. 3.1.3 and 3.1.4, and expressing
the diagrams in terms of these absolute times, we will rather choose to express the
diagram in terms of the time differences:

• t1 = τ1 − 0

• t2 = τ2 − τ1

• with the constraints 0 < t1 + t2 < β, 0 < t1, 0 < t2

In the following, we will always define a set of time differences A, that fulfills the
properties above, even for the case where we need more than two time differences.
The precise definition of A can be found in appendix C (with τ = β). With these
definitions, and labeling the loop momentum k, we can express the contribution of
diagram 3.7(a) to the full Green’s function as

G(0−,q)
∣∣∣∣
3.7(a)

= −z2
∫
A
dt1dt2

∫
k
G(0)(t1,q)e2µt2T2(t2,q + k)

G(1)(−t2,k)G(1)(−t1 − t2,q)

= z2
∫
A
dt1dt2

∫
q
T2(t2,q + k)e−t1(εq+εk)e−(β−t1−t2)(εq+εk).

(3.66)

In the second line, we have plugged in the explicit definitions of the slashed propaga-
tors and also inserted a factor of 1 = e−t1εket1εk . We did this to use the generalized
convolution theorem for Laplace transforms, in the form that is given in appendix C.
Our integral is now exactly of this form, and we can re-express the two integrations
over imaginary times in terms of a Laplace-back-transform of a product of Laplace
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transforms6, such that it only contains a single integration over complex energies:

G(0−,q)
∣∣∣∣
3.7(a)

= z2
∫
BW

ds

2πie
−βs

∫
k

T2(s,k + q)
(s− εk − εq)2 (3.67)

The Bromwich contour, indicated by
∫
BW , runs parallel to the imaginary axis and

to the left of all the singularities. To save space, we shall also indicate the Bromwich
integration by ∫

s
f(s) ≡

∫
BW

ds

2πif(s) (3.68)

T2(s,q + k) is the Laplace transform of the two-body T -matrix, and is explicitly
given in eq. (3.49). We have also used that the Laplace transform of an exponential
is given by ∫ ∞

0
dteste−tε = − 1

s− ε
<s < ε. (3.69)

The Bromwich contour takes care of the condition on the real part. Once we have
written down the complete contour integral, we can analytically continue the Laplace
transforms and evaluate the Bromwich contour in a conveniently chosen way.

A short comment on symmetry factors: Are we sure that eq. (3.66) contains the
right prefactor, as it would be also generated by the perturbative expansion (3.32)?
Yes we are. If you are interested in the derivation, please consult appendix E. Here
and in the following, let us just state the diagrams together with the right prefactors.

Starting again from eq. (3.67), we perform the substitutions p = q + k and
s′ = s−εp (afterwards renaming s′ → s) in order to perform the angular integrations:

G(0−,q)
∣∣∣∣
3.7(a)

= z2
∫
s
e−βsT2(s)

∫
p

e−
β
2 εp

(s+ εp
2 − εq−p − εq)2

= z2

(2π)2

∫
s
e−βsT2(s)

∫ ∞
0

dp
2p2e−β

p2
4m(

p2

4m

)2
+
(
q2

m − s
)2
− p2

2m

(
q2

m + s
) .

(3.70)

We have now already (because diagram 3.7(a) is the only diagram (with interactions)
that is allowed up to order z2) established the virial expansion of the momentum
distribution to order z2! We have

n
(2p)
2 (q) = − 1

z2G(0−,q)
∣∣∣∣
3.7(a)

, (3.71)

6For the definitions regarding the Laplace transform and its associated back-transform, see ap-
pendix C
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where n
(2p)
2 (q) enters the momentum distribution via eq. (3.63). For the other

diagrams, we will proceed with less detailed explanation. The principle ideas are
always the same as the ones presented here.

Diagrams 3.7(b) and 3.7(d) The evaluation of these diagrams is grouped to-
gether in one paragraph, because they result in the same expression. Using the same
tricks as for diagram 3.7(a), we have:

G(0−,q)
∣∣∣∣
3.7(b)

= −z3
∫
A
dt1dt2

∫
k
G(0)(t1,q)e2µt2T2(t2,q + k)

G(2)(−t1 − t2,q)G(1)(−t2,k)

= ze−βεqG(0−,q)
∣∣∣∣
3.7(a)

, (3.72)

where the result for diagram 3.7(a) was given in eq. (3.70). Similarly, we get

G(0−,q)
∣∣∣∣
3.7(d)

= −z3
∫
A
dt1dt2

∫
k
G(1)(t1,q)e2µt2T2(t2,q + k)

G(1)(−t1 − t2,q)G(1)(−t2,k)

= ze−βεqG(0−,q)
∣∣∣∣
3.7(a)

(3.73)

Diagram 3.7(c) For the last ∼ z3 diagram from the two particle sector, we have:

G(0−,q)
∣∣∣∣
3.7(c)

= −z3
∫
A
dt1dt2

∫
k
G(0)(t1,q)e2µt2T2(t2,q + k)

G(1)(−t1 − t2,q)G(2)(−t2,k)

= z3
∫
s
e−βs

∫
k

T2(s,q + k)
(s− εk − εq)2 , (3.74)

where we have used the generalized convolution theorem for Laplace transforms.
The substitutions s′ = s − εq+k (s′ → s afterwards) and p = k + q/3 allow to
perform the angle integration:

G(0−,q)
∣∣∣∣
3.7(c)

= z3

2π2

∫
s

∫ ∞
0

dp
p2e−β(s+ 3p2

4m + q2
6m )T2(s)(

s− p2

4m

)2
− 8

9
q2

m

(
s+ p2

4m

)
+ 16

81
q4

m2

(3.75)

Summarizing the results of the O(z3) two-particle diagrams, we get:

n
(2p)
3 (q) = − 1

z3

[
G(0−,q)

∣∣∣∣
3.7(c)

+ 2ze−βεqG(0−,q)
∣∣∣∣
3.7(a)

]
, (3.76)
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(a) O(z3) (b) O(z3) (c) O(z3)

(d) O(z3) (e) O(z3)

Figure 3.8: Diagrams from the three-particle sector that contribute to the virial
expansion of the momentum distribution and density up to order z3.
The gray box is the three-body T -matrix.

where G(0−,q)
∣∣∣∣
3.7(a)

is given in eq. (3.70).

Note that the results for all the two-particle diagrams of third order in the fugacity
decay exponentially as q → ∞. This means that these diagrams do not contribute
to the universal C2/q

4 asymptotic behavior at large momenta, cf. eq. (3.8).

Three-particle diagrams The only part of the expansion of the momentum
distribution that is still left to determine is the one coming from the three-particle
sector: n(3p)

3 (q). The diagrams that contribute are shown in fig. 3.8. Since these
are the first diagrams to contain the three-body T -matrix, these are also the first
ones to encode true three-body correlations, in particular correlations related to the
Efimov effect. The three-body contribution to the momentum distribution can be
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→

(a)

=

(b)

Figure 3.9: The leading order term (we set g3 = 0 for simplicity) in the series that
generates the STM equation is shown in 3.8(a). This replacement of
the gray box by the leading order term in diagram 3.8(b) generates the
missing diagram we were concerned about in the two-particle sector, as
shown in figure 3.9(b).

expressed in terms of these diagrams via

z3n
(3p)
3 (q) = −

[1
2G(0−,q)

∣∣∣∣
3.8(a)

+ G(0−,q)
∣∣∣∣
3.8(b)−3.8(e)

]
, (3.77)

where the last term is a short hand for the sum of the contributions of diagrams
3.8(b)-3.8(e). The calculation of the symmetry factors in presented in appendix
E.1.2.

A quick comment on the ”missing” slashed diagram from the two-body sector:
In the first born approximation, the three-body T -matrix is just given by the in-
homogeneity of the STM integral equation. Diagrammatically, this corresponds to
the replacement shown in fig. 3.9(a). If we make this very replacement in diagram
3.8(b), we are producing the diagram shown in fig. 3.9(b). By untwisting the ar-
tificially back-running line, we are generating the very diagram we were concerned
about earlier in the beginning of the discussion of the two-body diagrams.

Diagram 3.8(a) The imaginary time differences t1, ..., t4 are defined in the same
spirit as for the two-body diagrams. Their definition can be read off from the
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expression that we are going to give for diagram 3.8(a). We will denote the loop
momenta by k and p. The resulting expression for diagram 3.8(a) is

G(0−,q)
∣∣∣∣
3.8(a)

= z3
∫
A

∏
i

dti

∫
k,p

G(0)(t1 + t2,q)G(1)(−t1 − t2 − t3,q)

e2µt2T2(t2,k + p)e3µt3T3(t3, εq, εq,k + p + q,q,q)
e2µt4T2(t4,k + p)G(1)(−t2 − t3 − t4,k)G(1)(−t2 − t3 − t4,p)

= z3
∫
s
e−βs

∫
k,p

T 2
2 (s− εq,k + p)T3(s, εq, εq,k + p + q,q,q)

(s− εk − εp − εq)2 .

(3.78)

For the second equality, we inserted convenient factors of one and used the gener-
alized convolution theorem (C.5) for Laplace transforms. Galilean invariance, cf.
eqs. (3.47) and (3.51), implies that the integral can be expressed in terms of the
amplitude in the center of mass frame as:

G(0−,q)
∣∣∣∣
3.8(a)

= z3
∫
s
e−βs

∫
k,p

T 2
2

(
s− εq −

εk+p
2

)
(s− εk − εp − εq)2

t3

(
s−

εq+p+k
3 ,

2
3q − p

3 −
k
3 ,

2
3q − p

3 −
k
3

)
(3.79)

We can reduce the above integral to only two integrations by performing the sub-
stitutions

s′ = s−
εq+p+k

3 (3.80)(
p′

k′

)
=

 −1
313 −1

313

−1
213

1
213

( p− q
k− q

)
=

 2
3q − 1

3k− 1
3p

1
2k− 1

2p

 (3.81)

The determinant of the transformation contributes a factor 33. Renaming s′ →
s,k′ → k,p′ → p, the contribution from diagram 3.8(a) reads

G(0−,q)
∣∣∣∣
3.8(a)

= 33z3
∫
s
e−βs

∫
k,p

e−3βεq−p
T 2

2

(
s− 3

2εp
)
t3(s,p,p)

(s− 3
2εp − 2εk)2

= 32z3m3

2qβ(2π)3

∑
l

(2l + 1)
∫
s
e−βs

∫ ∞
0

dpp
T 2

2

(
s− 3p2

4m

)
t
(l)
3 (s, p, p)√

−ms+ 3p2

4

e−
3β
2m (q2+p2) sinh

(3pqβ
m

)
(3.82)

For the last line, we have solved the elementary integral over k and used that
t3(s,p,p) = ∑

l Pl(p̂ · p̂)t(l)3 (s, p, p) only contains forward scattering, such that all
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3.3 Diagrammatic cluster expansion for momentum distribution and density

the Legendre polynomials evaluate to one. Afterwards we have integrated over the
angles of p.

Interlude: Cutting off the spectrum As you might have noticed, we just
trail-blazed ahead and said that we can use the convolution theorem for the Laplace
transform in eq. (3.78). But what does the Bromwich contour mean? In principle,
the STM equation (3.57) generates infinitely many deep poles that are connected to
the presence of the Efimov trimers! To cure this issue, which leads to thermodynamic
collapse, we will choose one of the bound states branches at unitarity to correspond
to the deepest trimer that exists in physical reality. Of course, the deepest to next-to
deepest trimer scaling might, because the non-universal influence of short-distance
physics provides the cutoff to the spectrum, not have the scaling factor of 22.72. For
example, a factor of ∼ 21.0 is found for the case of 133Cs [91].

What we are implicitly doing in eq. (3.82) is to define a modified three-body
T -matrix via subtraction of the deeper lying bound state poles weighted with their
residues

t̃
(0)
3 (s, p, k) = t

(0)
3 (s, p, k)−

−∞∑
n=−1

B
(0)
En

(p)B(0)
En

(p)
s+ En

t̃
(0)
3 (t, p, k) = t

(0)
3 (t, p, k) +

−∞∑
n=−1

etEnB
(0)
En

(p)B(0)
En

(p), (3.83)

where En > 0 defines the bound state energy of the n-th Efimov trimer that lies
lower than our choice of the deepest branch. This means that in practice, one only
includes the infinitely many trimer states above some lowest trimer energy. When
connecting to experiment, the scattering length a− of the deepest trimer branch is
matched against the experimentally measured one. Since only the l = 0 sector of
the three-body T -matrix shows the Efimov effect, we have directly regularized this
sector. The residues B(0)(p) are the ones defined in eq. (3.56), such that they fulfill
the modified STM equation (3.57). To conclude this short interlude: Whenever you
see t3(s, ...) in our diagrams, think of t̃3(s, ...) defined above.

Diagram 3.8(b) We will now proceed with diagram 3.8(b). The game of inserting
convenient factors of one, using the convolution theorem, Galilean invariance and
some substitutions to solve the integrals will (here and in the following) be same as
for diagram 3.8(a). The momentum of the loop that connects to the T3-matrix will
be called k, the momentum of the loop that connects to the dimer is p. We will
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suppress the arguments of the T3-matrix in the imaginary time representation here
and in the following, these can be inferred from the Bromwich result. We have:

G(0−,q)
∣∣∣∣
3.8(b)

= z3
∫
A

∏
i

dti

∫
k,p

G(0)(t1,q)e2µt2T2(t2,q + p)e3µt3T3(t3, ...)

e2µt4T2(t4,q + p)G(1)(−t1 − t2 − t3 − t4,q)G(1)(−t3,k)
G(1)(−t2 − t3 − t4,p)

= z3
∫
s
e−βs

∫
k,p

T 2
2 (s− εk,q + p)T3(s, εk, εk,q + p + k,k,k)

(s− εk − εp − εq)2

(3.84)

Expressing this in terms of the center of mass amplitudes and using the substitutions
(3.80) for s and(

p′

k′

)
=

 13 0
−1

313
2
313

( p + q
k

)
=

 p + q
2
3k− 1

3p− 1
3q

 (3.85)

for the momenta, where the determinant of the transformation contributes a factor
(3/2)3, the integral can be simplified to

G(0−,q)
∣∣∣∣
3.8(b)

= 32z3m

(2π)4β

∑
l

(2l + 1)
∫
s
e−βs

∫ ∞
0

dp

∫ ∞
0

dk pk t
(l)
3 (s, k, k)[

e−
3β
8m (k−p)2 − e−

3β
8m (p+k)2

]
T 2

2

(
s− 3

4mk
2
)

[
3k2

4m + (p−2q)2

4m − s
] [

3k2

4m + (p+2q)2

4m − s
] , (3.86)

where we again used the fact that for forward scattering, the Legendre polynomials
in the angular decomposition of t3(s,k,k) all evaluate to one.

Diagram 3.8(c) The loop momentum for the loop that is connected with the two
T2-matrices is labeled p, while the other loop shall be k. With these definitions,
diagram 3.8(c) reads

G(0−,q)
∣∣∣∣
3.8(c)

= z3
∫
A

∏
i

dti

∫
k,p

G(0)(t1 + t2,q)e2µt2T2(t2,k + p)e3µt3T3(t3, ...)

e2µt4T2(t4,q + p)G(1)(−t1 − t2 − t3 − t4,q)G(1)(−t2 − t3,k)
G(1)(−t2 − t3 − t4,p)

= z3
∫
s
e−βs

∫
k,p

T2(s− εq,k + p)T2(s− εk,q + p)
(s− εk − εp − εq)2

T3(s, εq, εk,q + p + k,q,k). (3.87)
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Expressing the amplitudes via their respective center of mass versions, together with
the usual s-substitution (3.80) and the substitution

(
p′

k′

)
=

 −1
313 −1

313

−1
313

2
313

( p− q
k− q

)
=

 2
3q − 1

3k− 1
3p

2
3k− 1

3p− 1
3q

 (3.88)

for the momenta, such that the determinant contributes a factor 33, yields

G(0−,q)
∣∣∣∣
3.8(c)

= 33z3
∫
s
e−βs

∫
k,p

e−3βεq−p
T2(s− 3

2εk)T2(s− 3
2εp)

(s− 2εk − 2εp − k·p
m )2

t3(s,p,k)

= 2m3

βq

32z3

(2π)4

∑
l

(2l + 1)
∫
s
e−βs

∫ ∞
0

dp

p

∫ ∞
0

dk T2

(
s− 3

4mk2
)

T2

(
s− 3

4mp2
)[
e−

3β
2m (p−q)2 − e−

3β
2m (p+q)2

]
Q̃l

(
m

pk

[
s− p2

m
− k2

m

])
t
(l)
3 (s, p, k). (3.89)

For the second equality, we have used the angular momentum decomposition (3.52)
of the t3-matrix, set the z-axis for the k integration to be p̂, and then defined
Q̃l(z) = −dQl(z)/dz, which, as follows from the definition of the Legendre functions
of the second kind in (3.55), is the solution to the angle integration of the k-part. For
the angle integration associated with p, we just have taken q̂ as z-axis, which makes
this angular integration straightforward to solve and yields the usual exponentials.

Diagram 3.8(d) The loop momentum connecting the two T2-matrices is again
labeled p, the other one k. We get

G(0−,q)
∣∣∣∣
3.8(d)

= z3
∫
A

∏
i

dti

∫
k,p

G(0)(t1,q)e2µt2T2(t2,q + p)T3(t3, ...)e3µt3

e2µt4T2(t4,k + p)G(1)(−t1 − t2 − t3,q)G(1)(−t3 − t4,k)
G(1)(−t2 − t3 − t4,p)

= z3
∫
s
e−βs

∫
k,p

T2(s− εq,k + p)T2(s− εk,q + p)
(s− εk − εp − εq)2

T3(s, εk, εq,k + p + q,k,q) (3.90)

Comparing this to the expression for diagram 3.8(c), given in eq. (3.87), we see
that the two diagrams are almost equal, with the exception that the momenta q
and k are interchanged in the T3-matrix. This is of course already suggested by the
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similarity of the two diagrams. Thus, using the exact same substitutions like for
diagram 3.8(c), we can once again eliminate all angle integrations:

G(0−,q)
∣∣∣∣
3.8(d)

= 2m3

βq

32z3

(2π)4

∑
l

(2l + 1)
∫
s
e−βs

∫ ∞
0

dp

p

∫ ∞
0

dk T2

(
s− 3

4mk2
)

T2

(
s− 3

4mp2
)[
e−

3β
2m (p−q)2 − e−

3β
2m (p+q)2

]
Q̃l

(
m

pk

[
s− p2

m
− k2

m

])
t
(l)
3 (s, k, p). (3.91)

Diagram 3.8(e) For the last diagram, I was not able to eliminate all the angle
integrations, which makes this diagram the by far most expensive one during numer-
ical evaluation. We label the loop momentum that is connected to first T2-vertex p,
and the one that leaves the second T2-vertex k. We get the following expression:

G(0−,q)
∣∣∣∣
3.8(e)

= z3
∫
A

∏
i

dti

∫
k,p

G(0)(t1,q)e2µt2T2(t2,q + p)T3(t3, ...)e3µt3

e2µt4T2(t4,k + q)G(1)(−t1 − t2 − t3 − t4,q)G(1)(−t3 − t4,k)
G(1)(−t2 − t3,p)

= z3
∫
s
e−βs

∫
k,p

T2(s− εp,k + q)T2(s− εk,q + p)
(s− εk − εp − εq)2

T3(s, εk, εp,k + p + q,k,p) (3.92)

We now express the integral, using eqs. (3.47) and (3.51), in terms of the center of
mass amplitudes. Afterwards, we make the substitution (3.80) for the s-integration
and (

p′

k′

)
=

 2
313 −1

313

−1
313

2
313

( p− q
k− q

)
=

 2
3p− 1

3k− 1
3q

2
3k− 1

3p− 1
3q

 (3.93)

for the momentum integrations, which yields a factor 33. The resulting expression
reads

G(0−,q)
∣∣∣∣
3.8(e)

= 33z3
∫
s
e−βs

∫
k,p

e−3βεq+p+k
T2(s− 3

2εk)T2(s− 3
2εp)

(s− 2εk − 2εp − k·p
m )2

t3(s,k,p),

(3.94)

which depends on all three possible angle combinations q̂ · k̂, q̂ · p̂, k̂ · p̂. We are
now going to employ a trick to get rid of one angle integration. Since our diagrams
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never depend on the direction of q, we have:

n(q) = n(|q|) ⇒ n(q) = 1
4π

∫
dΩqn(q),

where
∫
dΩq means the integration over all directions q̂ on the surface S2 of the unit

sphere. Hence, we can rewrite the integral as

G(0−,q)
∣∣∣∣
3.8(e)

= 33z3

(2π)64π

∫
ds

2πie
−βs

∫ ∞
0

dk k2
∫ ∞

0
dp p2e−

3β
2m (k2+p2+q2)

T2(s− 3
4mk2)T2(s− 3

4mp2)
∑
l

(2l + 1)t(l)3 (s, k, p)

∫
dΩq

∫
dΩk

∫
dΩp e

− 3β
m

(k·p+k·q+p·q) Pl(k̂ · p̂)
(s− k2

m −
p2

m −
k·p
m )2

.

(3.95)

We first integrate over the direction of q̂, which only appears in the exponential.
We choose k + p as the z−axis for this angular integration so that cos θq = q · (k +
p)/|q||k + p|. The q-integration now just yields an hyperbolic sine:∫

dΩqe
− 3β
m

q·(k+p) = 2π
∫ 1

−1
d cos θqe−

3β
m
q|k+p| cos θq

= 4πm
3βq

sinh
(

3βq
m

√
k2 + p2 + 2p · k

)
√
k2 + p2 + 2p · k

. (3.96)

The rest of the integral in equation (3.95) now only depends on one angle. We
integrate over all angles but this one, which yields

G(0−,q)
∣∣∣∣
3.8(e)

= 33z3

(2π)4
2m
3βq

∫
ds

2πie
−βs

∫ ∞
0

dk k2
∫ ∞

0
dp p2

∫ 1

−1
d cos θ

e−
3β
2m (k2+p2+q2)T2(s− 3

4mk2)T2(s− 3
4mp2)

∑
l

(2l + 1)t(l)3 (s, k, p)

Pl(cos θ)e−
3β
m
kp cos θ

(s− k2

m −
p2

m −
kp
m cos θ)2

sinh
(

3βq
m

√
k2 + p2 + 2pk cos θ

)
√
k2 + p2 + 2pk cos θ

. (3.97)

This concludes our discussion of the diagrams that contribute to the cluster expan-
sion of the momentum distribution up to third order in the fugacity. Fear not. With
the work we invested here, the density and all fermionic diagrams now come almost
for free.
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Density

The density expansion can be obtained from the expansion of the momentum dis-
tribution by integration over all momenta. We have already presented the results
for the one-particle diagrams in sec. 3.3.1. We will therefore directly start with the
two-particle sector.

Two-particle diagrams It will prove useful to not directly integrate the final
results for the momentum distribution over all momenta, but rather take an inter-
mediate result where the integrals are straightforward to solve.

Diagram 3.7(a) Integrating the expression (3.67) for diagram 3.7(a) over all mo-
menta, we have:

G(0−,0)
∣∣∣∣
3.7(a)

= z2
∫
s
e−βs

∫
q

∫
k

T2(s− εk+q/2)
(s− εk − εq)2 (3.98)

where the T2 matrix is now expressed in the center of mass frame. Via the substi-
tutions

s′ = s−
εk+q

2 (3.99)(
k′

q′

)
=

 13 −13

13 13

( k
q

)
=

 k− q
k + q

 (3.100)

and renaming to the original names afterwards, we can decouple the momentum
integrations:

G(0−,0)
∣∣∣∣
3.7(a)

= z2

23

∫
s
e−βsT2(s)

∫
q

∫
k

e−β
q2
4m

(s− k2

4m)2

= 2z2

λ3
T

m2

4π
√

2

∫
s
e−βs

T2(s)√
−ms︸ ︷︷ ︸

=−∆b2=−(b2−b(0)
2 )

= −z2n
(2p)
2 (3.101)

By comparison of the density expansion (see table 3.1) which defines the virial
coefficients, we have identified the interaction correction ∆b2 to the second virial
coefficient. Indeed, when we deform the Bromwich contour in the way that is shown
in fig. 3.10, such that the contour has a possible contribution from the dimer pole
at a > 0 and two contours that run infinitesimally close above and below the real
axis (with the branchcut of the two-body T -matrix in between), we reproduce the
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(a) Undeformed Bromwich contour (b) Deformed Bromwich contour

Figure 3.10: Derivation of the Beth-Uhlenbeck result for ∆b2 via deformation of
the Bromwich contour. Red color corresponds to branch cuts or poles
(when a > 0) of the integrand, green color to the contour of integration.
The deformed result can be written in terms of three contours γP , γU ,
γO. γP gives the residue at the pole, γU and γO give the discontinuity
of T2(s)/

√
−ms at the branch cut.

well-known Beth-Uhlenbeck result [73] for ∆b2. To see this, we just use the residue
theorem for the contour γP (which contributes the negative residue because of the
winding number). In addition, we parametrize (k > 0, ε > 0) the other two contours
as

γO(k) = k2

m
+ iε (3.102)

γU (k) = k2

m
− iε (3.103)

γ̇O(k) = γ̇U (k) = 2k
m
, (3.104)

such that
∫
γO
.. −

∫
γU
.. is the contribution we need to calculate. Insertion of the

above parametrization and evaluating the square roots and the residue yields

∆b2 = 23/2
[
Θ(a)e

β

ma2 + 1
π

∫ ∞
0

dke−β
k2
m

−a
1 + a2k2︸ ︷︷ ︸

= ∂δ0
∂k

]
, (3.105)
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where the s-wave phase shift is obtained from cot δ0(k) = −1/ka. This is indeed
the result found by Beth and Uhlenbeck [73, 117].

Diagrams 3.7(b)-3.7(d) All two-particle diagrams to order z3 turn out to give
the same contribution to the density. Starting from equation (3.67) and multiplying
the integrand by ze−βεq to get the expression for diagram 3.7(b), we have:

G(0−,0)
∣∣∣∣
3.7(b)

= z3
∫
s
e−βs

∫
q

∫
k
e−βεq T2(s− εk+q/2)

(s− εk − εq)2 (3.106)

We eliminate the dependence on the angle via the substitutions (3.99) for s and(
k′

q′

)
=

 1
213 −1

213
1
313

2
313

( k
q

)
=

 1
2k− 1

2q
1
3k + 2

3q

 (3.107)

for the momenta. The determinant of the substitution contributes a factor 23.
The q-integration is now a Gaussian integral without angle dependence and can be
performed as well. The result is:

G(0−,0)
∣∣∣∣
3.7(b)

= z3

λ3
T

23

3 3
2

∫
s
e−βsT2(s)

∫ ∞
0

dk k2

2π2
e−

β
3mk

2

(s− k2

m )2
(3.108)

Diagram 3.7(d) trivially yields the same contribution, because diagrams 3.7(b) and
3.7(d) also have the same contribution to the momentum distribution, cf. eqs.
(3.73), (3.73).

Integrating (3.74) for diagram 3.7(c) over all momenta q yields

G(0−,0)
∣∣∣∣
3.7(c)

= z3
∫
s
e−βs

∫
q

∫
k
e−βεk

T2(s− εk+q/2)
(s− εk − εq)2 , (3.109)

which is just the same as (see eq. (3.106)) the expression for diagram 3.7(b) with
k and q interchanged. Therefore, all three diagrams contribute equally to the third
order in the density, and we have:

n
(2p)
3 = − 3

z3G(0−,0)
∣∣∣∣
3.7(b)

, (3.110)

with G(0−,0)
∣∣∣∣
3.7(b)

given by eq. (3.108).

Three-particle diagrams The three-body sector will turn out to only have two
independent contributions to the density at order z3.
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Diagrams 3.8(a) and 3.8(b) Starting from the first line of eq. (3.82), we make,
since we are now integrating over all q, the substitution q′ = q − p and rename
q′ → q afterwards, which yields

G(0−,0)
∣∣∣∣
3.8(a)

= 33z3
∫
s
e−βs

∫
q,k,p

e−3βεq
T 2

2 (s− 3
2εp)

(s− 3
2εp − 2εk)2 t3(s,p,p) (3.111)

= 3 3
2 z3

λ3
T

∫
s
e−βs

∫
k,p

T 2
2 (s− 3

2εp)
(s− 3

2εp − 2εk)2 t3(s,p,p)

= 3 3
2 z3

λ3
T

m2

8π

∫
s
e−βs

∫ ∞
0

dp p2

2π2

[
T2(s− 3

4mp
2)
]2√

−ms+ 3
4p

2∑
l

(2l + 1)t(l)3 (s, p, p), (3.112)

where we have again used Pl(0) = 1 for the forward scattering in t3(s,p,p). For
diagram 3.8(b), we just compare the two equations (3.78) and (3.84) for the contri-
butions of diagram 3.8(a) and 3.8(b). After integration over all q, they differ only
by the name of the integration variables. It follows that diagram 3.8(b) gives the
same contribution to the density as diagram 3.8(a).

Diagrams 3.8(c) - 3.8(e) For the contribution of diagram 3.8(c), we integrate
the first line of eq. (3.89) over all q and make the substitution q′ = q − p, which
yields, after renaming q′ → q:

G(0−,0)
∣∣∣∣
3.8(c)

= 33z3
∫
s
e−βs

∫
q,k,p

e−3βεq
T2(s− 3

2εk)T2(s− 3
2εp)

(s− 2εk − 2εp − k·p
m )2

t3(s,p,k) (3.113)

= 3 3
2 z3

λ3
T

∫
s
e−βs

∫ ∞
0

dk

2π2k
2
∫ ∞

0

dp

2π2 p
2T2

(
s− 3k2

4m

)
T2

(
s− 3p2

4m

)
1
2

∫ 1

−1
d cos θk

∑
l(2l + 1)Pl(cos θk)t(l)3 (s, p, k)
(s− k2

m −
p2

m −
kp
m cos θk)2

= 3 3
2 z3m2

λ3
T

∫
s
e−βs

∫ ∞
0

dk

2π2

∫ ∞
0

dp

2π2T2

(
s− 3k2

4m

)
T2

(
s− 3p2

4m

)
∑
l

(2l + 1)Q̃l
(
m

pk

(
s− p2

m
− k2

m

))
t
(l)
3 (s, p, k), (3.114)

For the third equality, we have again used the shorthand Q̃l(z) = −dQl(z)/dz
together with the representation (3.55) of the Legendre functions of the second
kind.
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By comparison of eqs. (3.87) and (3.90) (the contributions of diagrams 3.8(c)
and 3.8(d) before substitutions) we see that they are the same but with q and k
interchanged in the T3-matrix. We can thus, using all the substitutions we used for
diagram 3.8(c), bring 3.8(d) into the form (3.113) with p and k interchanged. The
contribution of diagram 3.8(d) to the density is hence given by (3.114).

For diagram 3.8(e), we start from eq. (3.94) and make the substitution q′ =
q + k + p, which, after renaming, yields

G(0−,0)
∣∣∣∣
3.8(e)

= 33z3
∫
s
e−βs

∫
q,k,p

e−3βεq
T2(s− 3

2εk)T2(s− 3
2εp)

(s− 2εk − 2εp − k·p
m )2

t3(s,k,p), (3.115)

which is just (3.113) with p and k interchanged. Hence, also diagram 3.8(e) con-
tributes the same to the density like diagram 3.8(c).

In summary, the three-particle contributions to the density are given by

n
(3p)
3 = − 1

z3

[3
2G(0−,0)

∣∣∣∣
3.8(a)

+ 3G(0−,0)
∣∣∣∣
3.8(c)

]
, (3.116)

where the contribution 3.8(a) is given by eq. (3.112) and the contribution 3.8(c) by
eq. (3.114). We have thus established the virial expansion of the density of a bosonic
gas up to third order in the fugacity. As you might have noticed, our derivation did
not really depend on the details of T2 and t3. This is why the calculations here could
be easily extended to cases that include, for example, effective range corrections in
the two-body sector. In fact, since we never really specified the definitions of T2 and
T3, all we need is Galilean invariance and a three-body T -matrix that, in the center
of mass frame, depends on one angle.

3.3.2 Fermions

With the exception of the signs of the diagrams, which are calculated in appendix
E, the virial expansion of both the momentum distribution and the density of the
contact-interacting Fermi system comes for free. The only thing that changes is
that we need to use the definitions (3.58) and (3.59) of the fermionic T2 and t3

matrices. We will establish the virial expansion for n↑(q) = n(q)/2 (population
balanced system) and draw the diagrams for n↑(q), and likewise for the density.
Note that due to the anti-commuting nature of the fermions, we now have

n↑(q) = lim
τ→0−

G↑(τ,q) = lim
τ→0−

〈
Tτ ψ̄(0,q)ψ(τ,q)

〉
. (3.117)
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3.3 Diagrammatic cluster expansion for momentum distribution and density

As was the case for bosons, cf. eq. (3.63), we decompose the cluster expansion of
the fermionic momentum distribution like

n↑(q) = zn
(1p)
↑,1 (q) + z2

[
n

(1p)
↑,2 (q) + n

(2p)
↑,2 (q)

]
+z3

[
n

(1p)
↑,3 (q) + n

(2p)
↑,3 (q) + n

(3p)
↑,3 (q)

]
+O(z4), (3.118)

where the same suggestive naming scheme applies. Since the density can be ob-
tained from the momentum distribution by integration over all momenta, the same
decomposition holds for the density.

Momentum distribution

For the fermionic system, there are only very slight diagrammatic changes. The
external line now is always an ↑-fermion. The dimer line always needs a particle of
each spin-species at each vertex.

One-particle diagrams Up to order z3, the one particle diagrams are given by
figs. 3.6(a)-3.6(c). More generally, we have for the contribution n

(1p)
↑,` (q):

n
(1p)
↑,` (q) = lim

τ→0−
G(`)(τ,q) (3.43)= (−1)`−1e−`βεq (3.119)

In complete analogy to the bosonic case, when integrated over all q, this yields
b
(0)
` = (−1)`−1/`5/2 for the virial coefficients (set 2n↑ = n, and compare to table

3.1) of the non-interacting Fermi gas.

Two-particle diagrams The two-particle diagrams are given by diagrams 3.7(a)-
3.7(d), where the loop carries a ↓-fermion. The calculation of the signs in appendix
yields

G↑(0−,q)
∣∣∣∣
3.7(a)

= −(3.70) = z2n
(2p)
↑,2 (q) (3.120)

G↑(0−,q)
∣∣∣∣
3.7(b)

= (3.72) = G↑(0−,q)
∣∣∣∣
3.7(d)

(3.121)

G↑(0−,q)
∣∣∣∣
3.7(c)

= (3.75) (3.122)

where the equation numbers refer to the expressions that we would obtain in the
bosonic case. Of course, we have to perform the replacement T2,Bose → T2,Fermi

in these formulas. For the contribution n
(2p)
↑,3 (q), just sum over the three Green’s

functions of diagrams 3.7(b)-3.7(d) above.
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Chapter 3 High-temperature expansions for three-dimensional quantum gases

(a) O(z3) (b) O(z3) (c) O(z3)

(d) O(z3) (e) O(z3) (f) O(z3)

Figure 3.11: Diagrams from the three-particle sector that contribute to the virial
expansion of the momentum distribution and density of the fermionic
system up to order z3. The gray box is the three-body T -matrix. We
have ordered the diagrams so that they correspond to the labeling of
Leyronas [9].

Three-particle diagrams The three-body sector contains six diagrams in the
fermionic case, which we show in fig. 3.11. With the signs that we obtain from the
calculation in appendix E, we get:

n
(3p)
↑,3 (q) = 1

z3

[
− G(0−,q)

∣∣∣∣
3.8(a)

+ G(0−,q)
∣∣∣∣
3.8(c)

+ G(0−,q)
∣∣∣∣
3.8(d)

−G(0−,q)
∣∣∣∣
3.8(b)

− G(0−,q)
∣∣∣∣
3.8(b)

+ G(0−,q)
∣∣∣∣
3.8(e)

]
= 1

z3 [−(3.82) + (3.89) + (3.91)− (3.86)− (3.86) + (3.97)] (3.123)

where the Green’s function without a spin index denote the corresponding results
for bosons, and we ordered to terms so that they correspond to 3.11(a), 3.11(b),..,
3.11(f). In the second line, we give the references to the relevant equations for
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3.4 Comments on numerical implementation

convenience. Like before, we have to use the fermionic two- and three-body T -
matrices in these equations. The sign switches between the diagrams are related
to the diagrammatic structure: An even and an uneven amount of crossings of
fermionic lines has to give a different prefactor, since the related contraction needs
an uneven or even amount of anti-commutations to be untangled. This is explained
in more detail in appendix E, where also the global sign is fixed.

Density

The results for the density are obtained – analogous to the bosonic results – via
integration of (intermediate) steps for the momentum distribution. We already have
obtained the one-particle results. The two- and three-body results can be read off
from eqs. (3.120)-(3.122) and (3.123) by comparison to the corresponding bosonic
(see sec. 3.3.1) results for the density. We get

n
(2p)
↑,2 = − 1

z2 (3.101) (3.124)

n
(2p)
↑,3 = 3

z3 (3.108) (3.125)

for the two-particle contributions to the density. The numbers on the right hand
side refer to the expressions for the bosonic case. Similarly, we also give the final
result for the fermionic three-body contribution in terms of the equations for the
bosonic contributions to the density:

n
(3p)
↑,3 = 3

z3 [−(3.112) + (3.114)] (3.126)

3.4 Comments on numerical implementation

This is a short outline on how the code that performs the momentum and Bromwich
integrations is implemented. We will only outline key ideas, for details on the
implementation of a Gauss-Legendre quadrature and the numerical solution of linear
integral equations, see the book ”Numerical Recipes” [118].

The key observation for the momentum distribution is the following: We have
brought the integrands of diagrams 3.8(a)-3.8(e) into a form, where the three-body
T -matrix only depends on the momenta that are integrated over. We now put the
integrations (also the s-integration!) on a Gauss-Legendre grid (for convenience
a quadratic one in momentum), and calculate the three-body T -matrix once for
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Chapter 3 High-temperature expansions for three-dimensional quantum gases

every energy (on the grid) and angular momentum we want, i.e. we solve the STM
equation

t(l)
si =

[
1−K(l)

si

]−1
g(l)
si (3.127)

in matrix form, where the matrix means t(l)
si,mn = t

(l)
3 (si, pm, kn) element-wise, and

similarly for the kernel matrix K and the inhomogeneity g. This means that for an
energy grid of size n, we need to solve n× lmax STM equations, where lmax means
the highest angular momentum we want to include. In practice, I chose lmax = 10,
from lmax = 7 on, I could not really see any deviations by including higher l. When
we want to evaluate the momentum distribution, do we need to invert the matrix
STM equations now over and over? No, the t3 matrix never depends on q in the
integrand. So we invert once, save the solutions to the memory and can evaluate
the momentum distributions for many different q.

The bound states (Efimov trimers) are found by putting the integral equation
(3.57) on a grid and solving

det
[
1−K(0)

E

] != 0 (3.128)

with a simple rootfinder.
The residues of the three-body t3-matrix are not calculated similarly. We rather

use a numerical integration on a contour around the pole. This is very precise
and has the advantage that it is stable against errors in the position of the bound
state energy. When the bound state energies lie numerically too deep, we move
the Bromwich integration to the right of the pole, and rather include the residue(-
matrix) calculated in the formerly described way.

Last but not least, to extract the two- and three-body contacts, we use a numerical
derivative (in practice a so-called four-point rule) with respect to 1/a or κ∗ on the
virial coefficients that are extracted from the density diagrams.

3.5 Results for fermions

For comparison to the behavior of the bosonic case, on which the main focus lies,
let us shortly discuss the fermionic case as well. We will discuss the behavior of
the third virial coefficient and the contact as functions of the scattering length.
We will not discuss the second virial coefficient, since, up to a factor of two, it is
the same as the bosonic one [119, 120]. Regarding the third virial coefficient, we
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Figure 3.12: Interaction contribution to the third virial coefficient of the fermionic
system. We obtain the exact same results as Leyronas [9]. Black dots
indicate the values of the virial coefficient as obtained from the inte-
grating the O(z3) parts of the momentum distributions that are shown
in fig. 3.14, over all q.

reproduce the results obtained by Leyronas [9], which is a nice test for the numerical
implementation. We will then turn to the discussion of the fermionic momentum
distribution at different scattering lengths. Our results for the contacts are indeed
compatible with the tails we see in the momentum distribution. Our results for
the contacts are also compatible with the findings of ref. [108], which calculates
the momentum distribution and contacts from the spectral function of the Fermi
gas, expanded to second order in the fugacity. This provides a strong test for our
numerics.

3.5.1 Third virial coefficient

The interaction correction ∆b3 = b3 − b(0)
3 to the third virial coefficient comes from

the diagrams 3.7(b)-3.7(d) in the two-particle sector and 3.11(a)-3.11(f) in the three-
body sector. Its behavior as a function of inverse scattering length is shown in fig.
3.12. In particular, including angular momenta up to l = 10, we obtain the result

∆b3
(
λT
a

= 0
)

= −0.355103 (3.129)

for the third virial coefficient of the unitary Fermi gas, in complete accordance with
earlier findings [9, 121, 122]. At all scattering lengths, the third virial coefficient is

121



Chapter 3 High-temperature expansions for three-dimensional quantum gases

negative, which means it tends to reduce the density at given chemical potential.
This behavior can be seen as a consequence of the Pauli principle.

3.5.2 Contact parameter

Having established the behavior of the third virial coefficient as a function of scat-
tering length, we can immediately ask for the behavior of the contact parameter,
which dominates the short-time and -distance correlations of the system. From the
adiabatic theorem, cf. table 3.1, we have for the contact density C = C/V :

C = 16π2

λ4
T

 ∂b2

∂
(
λT
a

)z2 + ∂b3

∂
(
λT
a

)z3 +O(z4)


≡

[
C(2)z2 + C(3)z3 +O(z4)

]
, (3.130)

where the contribution from b1 was annihilated by the derivative, because b1 does
not depend on the scattering length. The same implicitly holds for the one-particle
contributions to b2 and b3. In the second line, we have the defined the order zn

contributions C(n) to the contact. Because we know the behavior of the virial
coefficients as functions of scattering length (for b2, see sec. 3.6.1 and divide by a
factor of 2), we can now, by differentiation with respect to the scattering length,
infer the contacts C(2) and C(3). The resulting behavior is shown in figure 3.13. As
is to be expected from the negativity of the third virial coefficient, C(3) (red line) is
negative throughout the crossover. In contrast, the contribution C(2) (green line) is
positive (and larger in value). The cancellation of these terms to a finite and positive
result is illustrated by the black line, which is the sum of the two contributions for
z = 0.4. The value of the fugacity has been chosen such that z2eβED < 1 for
the values of scattering length we are going to use in our plots of the momentum
distribution in the next subsection. This requirement is in complete analogy to one
for the virial expansion of the two-dimensional Fermi gas in sec. 2.3.

3.5.3 Momentum distribution

In figure 3.14(a), the momentum distribution of a particle of species ↑ is shown
at three different scattering lengths. They correspond to the BCS-side (red), the
unitary limit (green) and the BEC-side (blue) of the crossover. The momentum
variable ζ = λT q is made dimensionless via multiplication with the thermal wave-
length, which is the natural scale for the virial expansion. As mentioned in the
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Figure 3.13: Contact contributions of order z2 (green line) and z3 (red line) as ob-
tained from differentiation of the virial coefficients. The black line
shows the full contact up to order z3 at fugacity z = 0.4.

preceding section, we chose a fugacity of z = 0.4, which makes the virial expansion
well defined for all of the values λT /a = −1, 0, 1. The momentum distributions all
look more or less like a Gaussian function, with the height increasing from the BCS
to the BEC side. Since our momentum distributions are normalized to give the den-
sity after integration over all q, this just reflects the fact that attractive interactions
tend to increase the density at given chemical potential. It should be noted that
these momentum distributions are of course not pure Gaussian functions, because
they exhibit a power-law tail at high momenta.

In figure 3.14(b), due to multiplication with ζ4, the high-momentum tail ∼ C/q4

becomes visible. The straight lines indicate the predictions of the contacts as ob-
tained from the adiabatic theorem (3.130), and correspond to the values of the black
line in fig. 3.13 at the corresponding scattering lengths. The prediction agrees per-
fectly with the tails we find. Notice the general behavior of the saturation: The
multiplied momentum distribution always swings above its asymptotic value once,
and then approaches it slowly from above. In the regime λT /|a| < 1, the saturation
to the universal tail always happens around qλT ≈ 10. For large inverse scattering
lengths, we expect the saturation to occur later, also see sec. 2.3.4 for the cor-
responding discussion in the two-dimensional case. The high-momentum behavior
will qualitatively change for the bosonic case, due to the presence of the log-periodic
sub-leading tail that is connected to three-body correlations at short distances, cf.
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Figure 3.14: 3.14(a): Fermionic momentum distributions at fugacity z = 0.4 and
scattering lengths λT

a = −1(red), 0(green), 1(blue), as a function of di-
mensionless momentum ζ = qλT . Points indicate numerical results, the
line in between is a cubic spline interpolation to guide the eye. 3.14(b)
makes – via multiplication with ζ4 – the C/q4 tail visible. The straight
lines are the predictions for the contacts from the adiabatic theorem.

eqs. (3.8) and (3.9).

3.6 Results for bosons

The bosonic system has an additional parameter compared to the fermionic system:
The binding wave number κ∗ of the deepest Efimov trimer at unitarity, which is
connected to our choice of the lowest trimer branch in eq. (3.83). The product λTκ∗,
which encodes the ratio between the temperature and this trimer binding energy,
indeed strongly determines the behavior of the system. This is to be expected,
since an attractive force that leads to bound states tends to increase the density at
given chemical potential. Compared to fermions, the new aspect about the bosonic
system is that the bound states even exist at unitarity and on the negative a-side,
where no two-body bound states exist. Since in the limit of large trimer binding
energies, the virial coefficients will contain exponentially large terms ∼ eβ|ET |, we
talk about reduced quantities instead. This means, we multiply the quantities by an
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3.6 Results for bosons

exponential reduction factor that contains the largest binding energy of the system:

e−βΞ =


1 a < a−

e−β|ET | a− ≤ a ≤ a∗
e−β|ED| a∗ < a

(3.131)

Of course, the validity of the virial expansion is very limited in the regime κ∗λT � 1,
because we need exponentially small fugacities to produce finite densities. This is
completely analogous to the case of the Fermi gas we have studied in the preceding
section, as well as in section 2.3, where the presence of the two-body bound state
on the BEC side also sets upper bounds for the fugacity. We will still show results
for the trimer dominated limit, but keep in mind that this has to be understood as
an extrapolation.

In the scattering dominated limit κ∗λT � 1, we expect corrections from the
effective range to become important. This can be understood from connection
κ∗ ≈ 0.2/`vdW [87, 89], where `vdW is the van-der-Waals length. The size of the
effective range is typically also set by the van-der-Waals length. This means that for
momenta k ≈ `−1

vdW , s-wave scattering no longer is dominant. Hence, for too large
temperatures, our description of the system via the universal Lagrangian (3.17),
which only includes s-wave scattering, becomes questionable. We will come back to
this point during the discussion of the third virial coefficient. However, it should be
noted that due to the relation κ∗ ≈ 0.2/`vdW [87, 89], there indeed exists a broad
regime where κ∗ < λ−1

T < `−1
vdW , and hence the discussion of this limit is justified.

3.6.1 Virial coefficient

We begin by discussing the second virial coefficient. Its interaction contribution is
given by the Beth-Uhlenbeck result [73] in eq. (3.105), and can be brought into the
analytic form [120, 119]

∆b2 =
√

2e
β

ma2

[
1 + erf

( 1
a
√
mkBT

)]
, (3.132)

where erf is the error function. The result above is valid for both a > 0 and
a < 0. The reduced second virial coefficient of a Bose gas is shown in fig. 3.15(a),
where the axis of the scattering length is rescaled with the fourth square root.
This is convenient for comparison to the third virial coefficient over the Efimov
spectrum, which is usually rescaled by a fourth square root as well. In the dimer
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Figure 3.15: 3.15(a): Second virial coefficient of the Bose gas, as obtained from eq.
(3.132). 3.15(b): Third virial coefficient of the Bose gas. Black lines
indicate cuts at mkBT/κ2

∗ = 10n, n ∈ Z. White dashed lines indicate
cuts at unitarity, the three-atom threshold 1/κ∗a− and the atom-dimer
threshold 1/κ∗a∗.

dominated regime, the reduced second virial coefficient saturates to 23/2, which of
course implies that the full virial coefficient ≈ 23/2eβED becomes exponentially large.
It is important to note that the lack of variation around unitarity is a consequence
of the rescaling, the second virial coefficient has finite slope at unitarity (which is
important for the contact!).

A plot of the reduced third virial coefficient is shown in fig. 3.15(b). This virial
coefficient is obtained via numeric evaluation of diagrams 3.7(b)-3.8(e) for the den-
sity, cf. sec. 3.3.1. Angular momenta up to l = 10 were included in the calculation.
The axes where chosen such that on the mkBT/κ2

∗ axis, we can think of varying
temperature. On the 1/κ∗a axis, we are probing different regions of vacuum physics,
and do not vary temperature. The three white dashed lines indicate the three-atom
threshold, unitarity, and the atom-dimer threshold. It should be noted that follow-
ing the white dashed line at unitarity produces a plot that is consistent with the
results of Werner and Castin [123]. The black transparent plane at zero was inserted
to aid the eye to see the zero crossing of the third virial coefficient, which happens
in the regime κ∗λT � 1 (mkBT/κ2

∗ � 1). As already mentioned earlier, this is the
regime where effective range corrections might become important, and those may
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3.6 Results for bosons

even keep the third virial coefficient from becoming negative. This is only specula-
tive though, one would need to perform a calculation similar to the one presented
here and compare the results. One could use the effective field theory developed in
[124], or the model that was used in [87, 88]. In the limit of small effective range,
those two theories become equivalent.

In the trimer dominated regime mkBT/κ2
∗ � 1, the reduced third virial coeffi-

cient varies rapidly at the scattering lengths that define the atom-dimer and three-
atom thresholds. It jumps from almost zero values to the trimer dominated result
e−β|ET |b3 = 3

√
3, which was analytically derived by Pais and Uhlenbeck [117] (see

the section regarding strong binding) and recently re-derived by Werner and Castin
for the unitary Bose gas [123].

In the regime mkBT/κ2
∗ = O(1), the virial coefficient still varies notably around

the scattering and atom-dimer thresholds 1/a− and 1/a∗, although not as intensely
as in the trimer dominated regime.

3.6.2 Contact parameters

By the adiabatic theorems given in eqs. (3.10) and (3.11), the knowledge of the
third virial coefficient implies the knowledge of the two- and three-body contacts that
determine the magnitudes of the leading and sub-leading high momentum tails given
in eq. (3.8). The contacts measure short-distance correlations and are connected to
the probability that two or three bosons can be found at the same point in space
[53]. In complete analogy to the fermionic case (see eq. (3.130)), we define

C2 = C2
V

= 16π2

λ4
T

 ∂b2

∂
(
λT
a

)z2 + ∂b3

∂
(
λT
a

)z3 +O(z4)


≡

[
C

(2)
2 z2 + C

(3)
2 z3 +O(z4)

]
(3.133)

for the two-body contact, and likewise for the three-body contact:

C3 = C3
V

= π

λ5
T

(λTκ∗)
∂b3

∂(λTκ∗)
z3 +O(z4) ≡ C(3)

3 z3 +O(z4) (3.134)

The second order contribution C(2)
2 can be obtained analytically from the use of the

adiabatic theorem on eq. (3.132). The result is

C
(2)
2 = 8π23/2

λ3
T

√ m

πβ
+ e

β

ma2

a
erfc

(
− 1
a
√
mkBT

) , (3.135)
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where erfc is the complementary error function. In the dimer dominated limit 1/a→
∞, this simplifies to

z2C
(2)
2

a→0+
−→ 16π

a

23/2eβEDz2

λ3
T

= C2,DimernD, (3.136)

where we used the fact that the contact of a single dimer is given by 16π/a and the
density of dimers in the dimer dominated limit can be obtained from the second
virial coefficient (3.132) and the assumption that every atom is bound in a dimer in
this limit: n = 2nD. The last assumption of course only makes sense if the system
is not dominated by trimers, i.e. at a < a∗. The result (3.136) could also have been
obtained from a simple meanfield-ansatz E = −EDnD, together with the adiabatic
theorem (3.10).

The behavior of the the reduced dimensionless second (C(2)
2 ) and third order (C(3)

2 )
contributions to the two-body contact C2 is shown in figure 3.16. In the trimer
dominated limit κ∗λT � 1 (mkBT/κ2

∗ � 1), the second order contribution only
becomes comparable to (or dominant over) the third order contribution when the
trimer state is non-existent. It should be noted that the second order contributions,
on the positive a side, is exponentially large itself ∼ eβ|ED|. It is just the even larger
trimer energy that pushes the reduced contact to zero when multiplying by e−βΞ. It
is clear from eq. (3.135), that the second virial coefficient never explicitly depends
on κ∗, hence, in figure (3.16(a)), what we are seeing is mainly the interplay between
the reduction exponent Ξ and the dimer binding energy ED.

The reduced third order contribution C(3)
2 rises to large values in the trimer limit,

getting larger as the scattering length is increased. This reflects the fact that the
trimer energy gets larger (in magnitude) as the scattering length is increased. As
can be already inferred from the behavior of the third virial coefficient, it then
drops to almost zero when the atom-dimer threshold is crossed. This is the regime
where the second order contribution starts to dominate. From the negative slope
of the third virial coefficient with respect to κ∗, it is clear that also C

(3)
2 must

have a zero crossing, which is located in the scattering dominated limit κ∗λT � 1
(mkBT/κ2

∗ � 1). As mentioned before, these results have to be taken with a grain
of salt, since effective range corrections might change the picture. Note that the
full two-body contact in our theory always stays positive, when we choose fugacities
such that the density stays positive (otherwise the virial expansion breaks down
anyway). We will come back to this in a moment.

The qualitative behavior of the leading order contribution to the three-body con-
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Figure 3.16: General behavior of the reduced two-body contact of the Bose gas. Fig.
3.16(a) shows the second order contribution in fugacity. Fig. 3.16(b)
shows the third order contribution. White dashed lines again indi-
cate the three-atom threshold, unitarity, and the atom-dimer threshold.
Black lines are cuts at mkBT/κ2

∗ = 10n, n ∈ Z.
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Chapter 3 High-temperature expansions for three-dimensional quantum gases

Figure 3.17: Reduced third order contribution to the three-body contact of the Bose
gas. Black and dashed white lines mean the same as in figure 3.16.

tact is shown in figure 3.17. Its dependence with respect to mkBT/κ2
∗ always looks

similar for different scattering lengths (only scaled). For positive scattering lengths,
the reduced three-body contact decreases, which reflects the fact that the trimer
binding energy gets closer to the dimer binding energy, which then dominates the
form of spectrum (but multiplication with e−βΞ suppresses this dependence again).
In contrast to the two-body body contact, the three-body contact never changes
sign. From the viewpoint of the tail of the momentum distribution, this is plausible
since the three-body contact just describes sub-dominant oscillations around the
C2/q

4 tail of the momentum distribution, and thus doesn’t determine the overall
sign of the virial coefficient. One could also derive it from the fact that the three-
body contact, like the full two-body contact, is a positive definite quantity, as can
be inferred from its operator definition [53]. While sub- leading corrections are al-
lowed to have a different sign, the leading order term needs to be positive in order
to ensure this property.

In order to understand the interplay between the second and third order terms of
the two-body contact better, we show the behavior of the full contact C2 in the third
order of the virial expansion, at unitarity and as a function of T/TF , in figure 3.18.
The contact is now made dimensionless with respect to kF = (6π2n)1/3, and made
intensive via division of N . These are the units used in experiment [94]. Exactly
like in section 2.3, the chemical potential, and hence the fugacity, is determined by
fixing the ratio T/TF in the density expansion (3.12). For completeness, fig. 3.18(b)
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Figure 3.18: Full Contacts of the Bose at unitarity, truncated after the third order
in the cluster expansion. (a): Two-body contact as a function of T/TF
for different values of κ∗. (b): Three-body contact as a function of
T/TF for different values of κ∗.The green lines denote asymptotic high
temperature results, see text. Other colors, from lowest to largest values
in both figures: κ∗/kF = 1, 2, 3, 4, 5.

shows the corresponding three-body contact at unitarity and as function of T/TF .
The green lines correspond to the asymptotic high temperature results

C2
NkF

T→∞−→ 64
3
TF
T

(3.137)

C3
Nk2

F

T→∞−→ 4s0√
3π2

(
TF
T

)2
. (3.138)

The result for the two-body contact can be readily derived from the use of the
analytic result (3.135) in the limit T → ∞, which yields λ4

TC
(2)
2 = 32πz2. Re-

expressing this in terms of T/TF (using the leading order nλ3
T ≈ z of the den-

sity expansion (3.12)) yields (3.137). For (3.138), we have used the analytic result
b3 ≈ 3

√
3 s0

2π log
(
eγE+2πC/s0 κ2

∗
mkBT

)
, given by Werner and Castin [123] for the high

temperature limit of the third virial coefficient of the unitary bose gas. γE is the
Euler-gamma and C = 0.648. After the use of the adiabatic theorem, this yields
C3λ

5
T = z33

√
3s0, which can again be re-expressed in terms of T/TF . As is appar-

ent from fig. 3.18, the contacts increase by several orders of magnitude when the
temperature is lowered, and then saturate near T/TF = 1.
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Chapter 3 High-temperature expansions for three-dimensional quantum gases

3.6.3 Momentum distribution

Having completed our discussion of the two- and three-body contacts, we can now
turn to the results for the momentum distribution. In particular, our aim is to study
the asymptotic behavior at high momenta, and compare it to the universal relations
(3.8) and (3.9). We will see that while the saturation to the log-periodic tail is very
slow, the assumption of relatively early saturation, that was made in [105] in order
to fit C2 and C3 is not too far off. In the end, we will compare the numerical results
to experiment, which will yield a surprising result.

For our theory curves, we parametrize

n(q) = eβΞ
[
zn1(q) + z2n2(q) + z3n3(q) +O(z4)

]
. (3.139)

This has the advantage that we can directly discuss the behavior of the non-trivial
n3(q) part, which encodes the three-body correlations. For the high momentum tails,
n1(q) does not contribute because it is a Gaussian. n2(q) gives the leading order
tail ∼ C

(2)
2 /q4, but does not encode the three-body correlations we are interested

in. If required, it can always be obtained from eq. (3.70). As a reminder: The third
order diagrams we need to solve, in order to obtain n3(q), are 3.6(c), 3.7(b)-3.7(d),
and 3.8(a)-3.8(e).

Momentum distribution at different scattering lengths

Figure 3.19 shows the third order part of the momentum distribution at different
scattering lengths and as function of dimensionless momentum ζ = λT q at κ∗λT = 3
, which implies that the binding energy of the deepest trimer at unitarity and the
temperature are roughly the same. λT /a = −6.55 (fig. 3.19(a)) was chosen to
represent the negative a-side, and λT /a = 6.55 (fig. 3.19(c)) represents the positive
side. As in the fermionic case, the third order parts n3(q) resemble a Gaussian
function. The qualitative behavior of the momentum distribution multiplied by
q4, however, is vastly different to the fermionic case, because the log-periodic sub-
leading tail makes the momentum distributions oscillate around the asymptotic
value of the two-body contact. The momentum distributions match perfectly with
our predictions for the contacts e−βΞC

(3)
2 and e−βΞC

(3)
3 from the adiabatic theorem,

as well as the resulting tail (3.8). It is interesting to note that the fastest saturation
to the tail happens at unitarity (fig. 3.19(b)), where 1/a does not provide a scale
for the asymptotic behavior of the OPE. For finite a, the behavior at intermediate
momenta differs a lot from the unitary case.
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Figure 3.19: Momentum distributions at λTκ∗ = 3 and different scattering lengths
as functions of dimensionless momentum ζ = qλT . Figures (α) show
n3(q). Figures(β) enhance the high momentum tail via multiplication
of ζ4. The orange line denotes the C(3)

2 /q4 prediction, the green line the
full prediction (3.8). Figures (γ) extract the sub-leading log-periodic
high momentum tail, divided by A (see (3.8)).
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Momentum distribution at unitarity

Figure 3.20 illustrates the variation of the momentum distribution with κ∗λT . The
dimensionless momentum is again ζ = qλT . The reference momentum distribution
at κ∗λT = 3 from fig. 3.19(b) was again included for convenience. The different
values of κ∗λT were chosen to represent the scattering dominated regime (κ∗λT = 1),
the balanced regime (κ∗λT = 3), and the trimer dominated regime (κ∗λT = 6.42).
At unitarity, the scales of saturation barely change with temperature, and are an
order of magnitude smaller than in the case of finite scattering lengths. In particular,
as shown in the figures (β), the q4n(q) momentum distribution always swings over
the asymptotic value defined by the two-body contact e−βΞC

(3)
2 , and then oscillates

around this value in a decaying manner. We also see that the assumption that the
momentum distribution is almost saturated at the first hump, that was used in ref.
[105] to fit the two- and three-body contacts to experiment, is reasonably justified
in the trimer dominated limit, where the error is on the order of five percent. In
the scattering dominated limit, this assumption becomes more dangerous, as can
be inferred from figure 3.20(a)(β). Here, the error will be larger, because both the
position of the first hump, as well as its height show a pronounced deviation from the
universal prediction (green line). It should be noted that fig. 3.20 over-pronounces
this effect, because the scattering limit is the one where the second order corrections
become comparable to the third order result. Hence, while the position of the first
minimum still gives an error, the error in the height of the first peak is smaller.

Comparison to experiment

As a final application of the calculations done in this chapter, we will compare the
momentum distributions from the virial expansion to the experiment [94], where
the momentum distribution of the unitary Bose gas was measured after a ramp
to unitarity. Instead of averaging our results over the trap using the local density
approximation, like we did in our article [109], we are going to use the average den-
sities in experiment and compare to directly to our calculation for the homogeneous
system. For comparison, we will also show the trap-averaged results (for details,
consult appendix F).

Table 3.2 shows the experimental parameters for the two momentum distributions
that were measured in [94]. It has to be emphasized that the temperature in the
experiment is unknown7, and hence we can not directly insert the ratio T/TF . To

7More specifically: The experimental temperature is unknown after the ramp. Before the ramp,
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Figure 3.20: Third order contribution to the momentum distribution as function of
dimensionless momentum ζ = qλT . Green and orange lines as in fig.
3.19. The different values of κ∗λT represent the scattering dominated
regime (κ∗λT = 1), the regime where collision momenta are on aver-
age equal to the trimer binding energy (κ∗λT = 3), and the trimer
dominated limit (κ∗λT = 6.42).
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〈n〉 (cm−3) TF (nK) κ∗/kF

5.5× 1012 135.2 5.52

1.6× 1012 59.4 8.33

Table 3.2: Experimental parameters in [94]. κ∗/kF is inferred from the values of the
density, together with the known value [90] of a− = 759(6)a0, where a0 is
the Bohr radius. The universal relation κ∗a− = −1.50763 (see eq. (3.5))
then yields κ∗ = 38µm−1.

cure this issue, we calculate the momentum distributions at various values of κ∗λT .
Then, via the relations λTkF = 2

√
πTF /T and κ∗/kF = λTκ∗/kFλT , we can infer

the value T/TF (because we have fixed κ∗/kF and λTκ∗). Inversion of eq. (3.12)
then yields the fugacity z, and we can calculate the momentum distributions by
summing the contributions from all the diagrams.

To compare the momentum distributions to experiment, we normalize both the
experimental and the numerically obtained momentum distributions, as functions
of the dimensionless momentum κ = q/kF , to unity:

∫
d3κ

(2π)3n(κ) = 1. (3.140)

We then plot all the numerically obtained momentum distributions and compare
them against the ones obtained from experiment. In practice, numerical data be-
tween λTκ∗ = 0.125 (scattering dominated limit) and λTκ∗ = 44.8 (extreme trimer
limit) was created, ranging over fifty different momentum distributions. No mo-
mentum distribution in the given range, when using the values of κ∗/kF given in
table 3.2, seems to fit the experimental data well. Remarkably, when reducing these
values by a factor of 22.7 however, and hence setting κ′∗/kF = κ∗/22.7kF , we find
agreement for the momentum distributions with κ′∗λT = 1 (for κ′∗/kF = 5.52/22.7)
and κ′∗λT = 1.4 (for κ′∗/kF = 8.33/22.7). These values correspond to T/TF = 0.9
(κ′∗/kF = 8.33/22.7) and T/TF = 0.75 (κ′∗/kF = 5.52/22.7), and hence the virial

[94] states temperatures of around 10nK, meaning T/TF ≈ 0.1(n = 5.5× 1012cm−3)− 0.2(n =
1.6× 1012cm−3) before the ramp.
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Figure 3.21: (a) Momentum distributions of the homogeneous unitary Bose gas in
comparison to the measurements of ref. [94] for the densities 〈n〉 =
5.5 × 1012cm−3 (orange line) and 〈n〉 = 1.6 × 1012cm−3 (green line).
The dimensionless momentum is κ = q/kF . The continuous red line
denotes a momentum distribution at κ′∗λT = 1 and fugacity z = 0.35.
The blue line is a momentum distribution at κ′∗λT = 1.38 and fugacity
z = 0.29. (b) Momentum distributions after trap-averaging. Color
coding as in (a), however the fugacities are now z = 0.44 (blue line)
and z = 0.54 (red line). The values of κ∗λT are the same, but for the
trap center.

expansion in this regime has to be understood as an extrapolation. The temper-
atures extracted in this way are much larger than the ones before the ramp. The
data given in ref. [94] implies T/TF = 0.17 (κ′∗/kF = 8.33/22.7) and T/TF = 0.07
(κ′∗/kF = 5.52/22.7) for the temperatures before the ramp to unitarity.

In fig. 3.21(a), the resulting momentum distributions are shown. It should be
noted that a trap-averaging procedure fits the experimental values even a little
better, but changes the picture only slightly, as can be seen from fig. 3.21(b), which
shows the momentum distributions after the trap averaging process. However, the
values of the fugacity and T/TF turn out to be different. In table 3.3, our findings for
T/TF , nλ3

T , and the fugacity z are shown. For completeness, also the trap-averaged8

8The trap averaging procedure assumes that the system only is in local equilibrium [102], as well
as the local density approximation. The biggest weakness in this scheme right now is that we
have to assume a constant value of κ∗λT throughout the trap, which is certainly violated when
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κ′∗/kF κ∗λT T/TF nλ3
T z

5.52/22.7 1.0 0.74 1.18 0.35

5.52/22.7 trap 1.0 0.55 2.93 0.54

8.33/22.7 1.38 0.9 0.89 0.29

8.33/22.7 trap 1.38 0.66 2.22 0.44

Table 3.3: Experimental quantities involving temperature. For the trap averaged
results read: κ∗λT is the value in the trap center, T/TF and nλ3

T are trap
averages over the Thomas Fermi profile. z is the fugacity, that is assumed
to be constant throughout the trap (assumption of only local equilibrium
[102]).

values are given, for details on the calculation see appendix F. One could improve
upon the results given here by refining the grid in κ∗λT , which could yield even nicer
fitting curves, and more precise values for T/TF . Another possibility would be to
develop a code that actually can take into account a local dependence of κ∗λT over
the trap.

Turning to the interpretation of our results, our findings might mean two things:
Either the virial expansion is not a good approximation in the experimental regime.
Even though this turns out to be true mathematically, the virial expansion for Fermi
gases has proven to be a good extrapolation to values as low as T/TF ≈ 0.5 [76].
Figure 3.22 supports this further: It shows the fugacity of the homogeneous system
as a function of T/TF for both experimental values of κ∗/kF . In both cases, the
extracted value of T/TF is still far away from the maximum, which we can interpret
as lower bound for the validity of the virial expansion (also see the discussion in
sec. 2.3.1). Another possible explanation is that the experiment is not populating
the deepest trimer branch during the ramp and in the time where the momentum
distribution is recorded. This might have to do with the ramp times, which are
roughly 5µs. Investigating this matter more closely would be interesting. Last,

the gas only equilibrates locally.
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Figure 3.22: Fugacity z as function of T/TF , as obtained from the inversion of the
density expansion in eq. (3.12) in the homogeneous case. Black dots
denote the values we extract from the (homogeneous) momentum dis-
tributions that fit the experiment the best. The red line corresponds
to κ∗/kF = 5.22/22.7, while the blue line is for κ∗/kF = 8.33/22.7.

but not least, note that the fitting procedure employed in [105] can not distinguish
between the trimer branches, and hence our results do not contradict any existing
work.

3.7 Outlook

In summary, we have performed a virial expansion of both a fermionic and a bosonic
quantum gas with large scattering length. The virial expansion has allowed us to
calculate virial coeffcients, contact parameters, and the momentum distribution in
the non-degenerate regime. We have presented the formalism that is necessary to
solve, as far as possible, all the diagrams up to third order in the fugacity. The
fermionic case was studied for comparison with the bosonic case and to test our
numerical routines.

In the bosonic case, we have calculated the third virial coefficient as a function
of scattering length and temperature, and we observe a rapid variation around the
three-atom and atom-dimer thresholds. The third virial coefficient of the bosonic gas
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becomes negative in the scattering dominated limit. In order to prevent the system
from collapsing, we have assumed that the spectrum is bounded from below, even
though we are using universal theory for the calculations. It would be interesting to
see if theories that incorporate an effective range, and hence have no need for such
an artifical cutoff-procedure, still produce a negative third virial coefficient at large
temperatures. In principle, the formalism for such a calculation would be the same
as the one presented here. From the adiabatic theorems, we have predicted values
for the two- and three-body contacts and compared them to the bosonic momentum
distribution. We see beautiful agreement with the universal predictions of the tails.
Saturation to the tails happens fastest at unitarity.

Last, but not least, we have compared our calculations to the experiment [94].
Since the temperature after the ramp to unitarity is unknown, we had to guess
the temperature by looking at the predicted momentum distributions for different
values of κ∗λT . We found good agreement under the assumption that the relevant
three-body parameter in experiment is scaled down by a factor of 1/22.7. This could
possibly indicate that the experiment does not populate the lowest trimer branch.
Since the virial expansion assumes thermodynamic equilibrium, it is not capable of
explaining why or how this would happen. Further investigation in this direction,
using time dependent methods, might provide understanding if our assertion is
correct, and if yes why.

One could extend the calculations presented here to the fermionic case with two
species of different mass, such that the ratio is bigger than 13.6. In this case, we also
expect Efimov-like behavior [107, 7], and it is worthwhile to not already truncate
the expansion at z2, because the z3 sector is by definition the first one to include
three-particle correlations in an exact manner.
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Chapter 4

Short-distance properties of Coulomb
systems

”Something unknown is doing
we don’t know what.”

(Sir Arthur Eddington)

In the following, let us switch gears completely and discuss short-distance / high-
momentum properties of the Coulomb system. In particular, we will study the
short-distance behavior of the one-particle density matrix and the density-density
correlator. The short-distance singularities in these correlation functions give rise
to power law tails of the associated Fourier transforms, namely the momentum dis-
tribution and the static structure factor. The motivation to study this problem
came from the contact-interacting Fermi gases, where the operator product expan-
sion (OPE) was successfully employed to (re-)derive and extend a set of formulas
that are known as the ”Tan universal relations” [32, 27]. These universal relations
were used extensively in the preceding chapters. They relate the quantity known as
the contact, which is connected (see eq. (2.13)) to the zero-distance pair correlation
function ∼ ψ1ψ2ψ2ψ1(R), to various high-momentum / high-frequency tails of the
system. Via the adiabatic theorem (see (2.12) for the 2D case), these tails can also
be connected to the thermodynamics of the system (see my diploma thesis for a
detailed derivation in the 1D case [27]). Since the proof of the adiabatic theorem
relies on the contact-interacting nature of the system, we will not be able to connect
the high-momentum tails of the Coulomb-interacting system, the nature of which is
extremely long ranged, to its thermodynamics.

The Coulomb problem is inherently interesting, because it describes the physics
of the basic (in a non-relativistic picture) constituents of matter, such as electron-
electron, nucleus-nucleus, as well as nucleus-electron interactions. The long ranged
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Coulomb potential ∼ e2/r, where −e is the charge of an electron, and r is the
distance between the two interaction partners, acts instantaneously1. The Coulomb
problem has been the subject of extensive study [125] regarding the stability of
ordinary matter. Stability requires the (neutral) systems energy to scale extensively,
i.e. linearly with the number of constituents. Super-linear scaling would lead to a
collapse, sub-linear scaling would destroy the possibility that charged matter can
accumulate in the form of liquids or solids. The proof of the linear scaling, and, in
consequence, the stability of matter, relies on the Pauli-principle, i.e. the fermionic
nature of the electrons. The exact mass and statistics of the nuclei does not play a
role in this proof.

The jellium model approximates a metal as a gas of freely moving electrons,
together with a smeared out positively charged background that ensures the charge
neutrality of the system. In the ground state, the relevant dimensionless coupling
strength is rs = r0/a0, where2 a0 = ~2/me2 is the Bohr radius and r0 is the average
distance between the electrons. In three dimensions, r0 is connected to the electronic
density via r0 = (3/4πn)

1
3 . In two dimensions, we have r0 = (1/πn)

1
2 . The jellium

model predicts cohesion energy and compressibility of some metals reasonably well
[78, 126, 47]. Despite its simplicity however, very few exact results are known
even for this highly simplified problem. Because of the long-ranged nature of the
Coulomb potential, perturbation theory works in the opposite regime, where one
would usually (at least from the cold gases viewpoint) expect it to work: It is the
high-density limit rs � 1, where perturbation around a non-interacting Fermi gas
works. This can be understood by writing the Hamiltonian of the jellium model, in
units of Ry = e2/2a0 (distances in units r0), as

H = − 1
r2
s

∑
i

∇2
i + 1

rs

∑
i<j

2
|ri − rj |

+Hb, (4.1)

where the sums label the electrons. Hb accounts for both, the energy of the homo-
geneous background, as well as its interactions with the electrons. For the jellium
model, this results in Hb being a constant (but, to cancel the mutual Coulomb re-
pulsion of the electrons, infinite) shift of the energy, which is why we do not give

1In the Maxwell equations when using the Coulomb gauge, causality is still valid because the
components of the electric field that result from the gauge field via ∼ ∂tA(x) travel with the
speed of light c and the instantaneous part gets canceled out as well.

2In most of this chapter, ~ will still, like in the preceding chapters, be set to one. When discussing
the classical limit, however, ~ needs to be restored. It is thus useful to keep the dependence of
the defining quantities of the system on ~ explicit.
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its form explicitly. In the high density limit rs → 0, the kinetic energy in the
Hamiltonian (4.1) dominates. As a result, the Coulomb interaction can indeed be
treated perturbatively in this limit, which makes a Fermi liquid description appli-
cable (except for the Kohn-Luttinger effect [127], which is a mechanism that can
cause superfluidity even for purely repulsive fermions). This implies, for example,
a jump in the momentum distribution at |q| = kF , where the height of the jump
is given by the quasi particle residue 0 < Z < 1. Typical values for metals are,
however, in the range of 1 < rs < 5, and perturbation theory has to be understood
as an extrapolation. Despite this fact, the qualitative features of electrons in metals
are still captured correctly in this picture. In the low-density limit rs → ∞, the
interaction energy in the Hamiltonian (4.1) becomes dominant. Minimization of the
interaction term leads to the expectation that the electron liquid forms a Wigner
crystal at sufficiently low densities. Intermediate phases are expected to show up as
well, in fact, in two dimensions, a direct transition from the liquid to the Wigner
crystal was ruled out by thermodynamic arguments [128]. The precise nature of the
intermediate phases, however, stays an open topic even today.

The experimental realization of two-dimensional electron gases (2DEG) using
”quantum wells” [129], has also made the two-dimensional jellium problem relevant.
In particular, note that we do not discuss the Coulomb problem in two-dimensional
space, i.e. we do not solve the Helmholtz equation of a point charge in two di-
mensions to obtain the potential. We are rather thinking about the experimental
situation, where the electrons are confined to two-dimensional motion, while the
electric field can still permeate all three spatial dimensions. Hence, we still have a
∼ e2/r potential in the 2D case.

In view of the complexity of the – already highly simplified – jellium problem, any
exact relation one can derive may prove useful. As mentioned above, we will employ
an OPE to (re-)derive such exact relations for the high-momentum tails of the static
structure factor and the momentum distribution of the electron in the approximation
given by the jellium model. It should be noted that Kimball [130, 131, 132] derived
this behavior in the seventies, using an assumption of factorization of the many-
body wave function when two electrons come close together. Previous work on the
subject was done by Kato [133], and the behavior of the wave function at small
relative distances was generalized in refs. [134, 135]. Since the derivation presented
below only involves operator identities, we can extend the validity of these relations
to all temperatures and phases, regardless of particle number. The only possibility
for the system to avoid tails of the form we will derive, is, as we will see below, a
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vanishing of the pair correlation function at zero distance. This is in close analogy
to the case of contact-interacting Fermi gases, where a vanishing contact is the
only possibility to avoid the C/k4 tail in the momentum distribution. The contact
indeed vanishes, for example, in the non-interacting system, consistent with the
expectation that the momentum distribution is given by a Fermi function, which
decays exponentially. The derivation given here also offers the advantage that we
can even prove the factorization of the wave functions, as assumed by Kimball
[130, 131, 132]. Moreover, even though his results are correct, part of the proof,
being pedantic, relied on an infinite recursion [130], and no clear criterion to break
out of this recursion was offered. Furthermore, even though the OPE itself is quite
involved, the connection to the tails is straight forward once the OPE is established.
The calculation of the tails from a wave function approach is more involved, because
one needs to take into account all the possibilities that different particle coordinates
come close together. All the results which are derived here can be readily extended
to the attractive case via the replacement e → −e. In particular, this would allow
for the inclusion of the nuclei.

The chapter is structured as follows: in sec. 4.1, we will see that the hydrogen
atom provides the simplest example for the high momentum tails in the electronic
momentum distribution and structure factor. These tails are of the exact form that
we will discover in later sections. In sec. 4.2, the jellium model is introduced in
a field theoretic language. Correlation functions that are relevant later on are de-
fined. In sec. 4.3, a comprehensive summary of the two-body scattering problem
with ∼ 1/r interactions in two and three dimensions is given. Essentially, solving the
two-particle scattering problem amounts to solving the continuous part of the spec-
trum of the hydrogen Hamiltonian, which is rarely discussed in quantum mechanics
courses. In sec. 4.4, we establish the short-distance OPE for the density-density
correlator, which is then connected to the static structure factor. In sec. 4.5, the
(quite involved) OPE for the one-particle density matrix is established, and is then
connected to the momentum distribution. In sec. 4.6, we will prove the approximate
factorization of the ground state wave function when the coordinates of two parti-
cles are close by. Finally, since the high-momentum tails contain the zero-distance
value g(0) of the pair-correlation function, sec. 4.7.2 will study its behavior in the
analytically solvable limits of high temperatures and in the classical limit. While
those are typically taken to be equivalent, we will learn that in the case of Coulomb
interactions, the limits T →∞ and ~→ 0 do not commute.
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4.1 Hydrogen atom as the simplest example

The hydrogen atom provides an analytically solvable example for the exact relations
that we are about to derive. The only difference to the relations that will follow is
that the reduced mass of the system is m, rather than m/2, and that the interaction
is attractive rather than repulsive. This can be accounted for by the replacement
1/a0 → −2/a0 in the asymptotic relations (4.44) and (4.77) that are given in secs.
4.4 and 4.5. The wave functions of the relative motion, that are part of the discrete
(bound) spectrum of the Hamiltonian (in the approximation of infinite proton mass)
are, in spherical coordinates r = (r cosϕ sin θ, r sinϕ sin θ, r cos θ), given by [136]

ψnlm(r) =
( 2
a0n

) 3
2
√

(n− l − 1)!
2n(n+ l)! Ylm(θ, ϕ)

( 2r
a0n

)l
e
− r
a0nL2l+1

n−l−1

( 2r
a0n

)
, (4.2)

where n is the principal quantum number, l is the angular quantum number and m
denotes the magnetic quantum number. Ylm(θ, ϕ) denotes the spherical harmonics
and L2l+1

n−l−1(z) stands for the generalized Laguerre polynomials [113]. The Fourier
transform

Υnlm(q) =
∫
d3re−iq·rψnlm(r) (4.3)

was first calculated by Podolski and Pauling [137]. In spherical coordinates q =
(q cosφ sinϑ, q sinφ sinϑ, q cosϑ), the momentum space wave functions are given by

Υnlm(q) = 22l+4π(a0n)
3
2 (−i)ll!

√
n(n− l − 1)!

(n+ l)! Ylm(ϑ, φ)

× ζ l

(ζ2 + 1)l+2C
l+1
n−l−1

(
ζ2 − 1
ζ2 + 1

)
, (4.4)

where ζ = qa0n and C l+1
n−l−1(z) is a Gegenbauer polynomial [113] (sometimes called

”ultra-spherical function”, because it can be viewed as the natural generalization of
the spherical harmonics to higher dimensions). The absolute square of the momen-
tum space wave function (4.4) defines the momentum distribution of the electron.
Expansion of |Υnlm(q)|2 in a series around q = ∞ reveals that it decays asymp-
totically like 1/q8+2l. Thus, l = 0 (s-wave states) constitute the slowest decaying
contribution. For the s-wave states, the leading term in the series reads

ne−(q) = |Υn00(q)|2 =
(8π
a0

)2 |ψn00(0)|2
q8 +O

( 1
q10

)
. (4.5)

145



Chapter 4 Short-distance properties of Coulomb systems

The s-wave states are the only ones where the electron has a non-vanishing proba-
bility density |ψnlm(0)|2 = 1/π(a0n)3 at the origin (proton).

The same – using terminology from cold atoms – ”contact density” also shows
up in the atomic form factor ρnlm(q), which is defined as the Fourier transform of
the electronic density distribution |ψnlm(r)|2. For s-wave states, the leading order
term in a series around q =∞, which can be extracted from the Fourier transform
of a short-distance expansion [138] of the density distribution defined by the wave
function (4.2), is given by

ρn00(q) = 16π
a0

|ψn00(0)|2
q4 +O

( 1
q6

)
. (4.6)

Higher angular momentum states contribute only at higher orders 1/q4+2l in the
momentum tail. As was the case for the momentum distribution, the coefficient of
the leading order tail is associated with the probability density for the electron and
proton to sit at the same spot. Since the leading orders in both cases come from
l = 0 states, the tails are spherically symmetric.

In the following sections, we will see that the many-body systems exhibits simi-
lar behavior. The ”contact” probability density |ψn00(0)|2 will be replaced by the
contact value g(0) of the pair correlation function. In addition, the leading order
short-range contributions will also be found to spherically symmetric.

4.2 Model and conventions

To study the problem within the OPE framework, we will now set up the model
and define the correlators in second quantized form. The Hamiltonian of the jellium
model is, in second quantized form, given by [78]

H = Hb +
∑
σ

∫
ddxψ†σ

[
−~2∇2

2m

]
ψσ(x)

+1
2
∑
σ,σ′

∫
ddxddx′ ψ†σ(x)ψ†σ′(x

′) e2

|x− x′|ψσ
′(x′)ψσ(x), (4.7)

where the summation over σ, σ′ =↑, ↓ sums over the two possible electronic spins.
The factor 1/2 in front of the interaction term accounts for a double counting,
and Hb, as mentioned earlier, accounts for the homogeneous, positively charged
background [78]. Since the Hamiltonian is only given by one- and two-particle terms,
the energy it defines can be rewritten in terms of the one- and two-particle reduced
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density matrices γ(1) and γ(2) [125]. The one-body density matrix, in position and
spin-resolved form, reads

γ(1)
σ (x,x′) =

〈
ψ†σ(x)ψσ(x′)

〉
. (4.8)

Because the Hamiltonian (4.7) does not contain any spin flip processes, we have
simplified the one-body density matrix to the diagonal form in spin space ∼ δσσ′ .
The one-body density matrix defines the momentum distribution of the system via

nσ(q) = 1
V

∫
ddxddx′ e−iq·(x

′−x) 〈γσ(x,x′)
〉

= 1
V

∫
ddRddr e−iq·r

〈
ψ†σ

(
R − r

2

)
ψσ

(
R + r

2

)〉
, (4.9)

where the intensive normalization
∫

q nσ(q) = nσ, that gives the density nσ of species
σ after integration over all momenta, was chosen. In the second line, we have, via
the substitution [R = (x + x′)/2; r = x′ − x], already brought the correlation
function into a form that will convenient for the OPE in sec. 4.5. The substitution
has determinant one and does not change the prefactor.

In order to characterize the interaction energy in the Hamiltonian (4.7), the ”di-
agonal” elements γ(2)

σσ,σ′σ′(x,x; x′,x′) are sufficient. They define the dimensionless,
spin-resolved pair distribution function gσσ′(x,x′):

nσ(x)nσ′(x′)gσ,σ′(x,x′) =
〈
ψ†σ(x)ψ†σ′(x

′)ψσ′(x′)ψσ(x)
〉

(4.10)

The pair distribution function gσ,σ′(x,x′) is a measure for the probability that a
particle with spin projection σ′ can be found at location x′, given that there is a
particle with spin projection σ sitting at location x. We say that the system is com-
pletely uncorrelated, when gσσ′(x,x′) ≡ 1 ∀x,x′ ∈ Rd. Note that, in order to stay as
general as possible, we did not use any assumptions about translational invariance.
The assumption of translational invariance will be violated in, for example, a Wigner
crystallized phase. For non-crystallized homogeneous phases, the pair correlation
function approaches unity for large enough separations |x− x′| → ∞: g(x,x′)→ 1,
which reflects the fact there exists a finite correlation length in a liquid or gaseous
phase. The total pair distribution function, defined as

g(x,x′) =
∑
σσ′

nσ(x)nσ′(x′)
n(x)n(x′) gσσ′(x,x′), (4.11)

also approaches unity in this limit. It is the sum of the spin-resolved pair distribution
functions, weighted by the according densities. The static structure factor S(q) of
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the system is defined as the Fourier transform of the density-density correlator [126]:

S(q) = 1
N

∫
ddxddx′ e−iq·(x

′−x) 〈n (x)n
(
x′
)〉
− (2π)dnδ(q)

= 1
N

∫
ddRddr e−iq·r

〈
n

(
R − r

2

)
n

(
R + r

2

)〉
− (2π)dnδ(q). (4.12)

We have again used the substitution [R = (x + x′)/2; r = x′ − x], that will be
convenient for the OPE in sec. 4.4. The δ-function ensures that S(q = 0) is finite
and comes from the fact the static structure factor only encodes density fluctuations
around the average density. At q 6= 0, this contribution can obviously be neglected.
In the translational invariant case g(x,x′) = g(x′ − x), the static structure factor
S(q) simplifies further to give

S(q) = 1 + n

∫
ddre−iq·r(g(r)− 1). (4.13)

The one outside the integral comes from the self correlation term, i.e. the δ function
of the fields when we anti-commute them into the order given in (4.10).

The behavior of the pair correlation function at small separations |x − x′| → 0
discriminates between the contributions from equal and opposite spins. For equal
spins, because of the Pauli principle, gσσ(x,x′) vanishes quadratically as |x−x′| → 0.
For particles of opposite species, the behavior at vanishing separation is, as we will
see in sec. 4.4, dominated by the Coulomb interaction. Allowing for a finite spin
polarization ζ = (n↑ − n↓)/n, the contact value g(0) of the total pair distribution
function can be written as

g(0) = 1
2(1− ζ2)g↑↓(0), (4.14)

where we have simplified the expression to the translational invariant case. In
the case of no translational invariance, here and in the following, one should read
g(0,R) instead. The dependence on the ”center of mass” coordinate (see eq. (4.12))
R = (x + x′)/2 will be suppressed from now on.

4.3 Two-body scattering

Having concluded our section on the model itself, as well as the correlators of inter-
est, let us study the two-electron scattering problem next. The two-body scattering
matrix will be needed for the matching process performed in sections 4.4 and 4.5.
We will not go into full detail, but rather shortly test the validity of the results of
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= + + ...

(a)

= +

(b)

Figure 4.1: Different ways to obtain the two-electron scattering amplitude. 4.1(a)
shows the series that has been summed in refs. [139, 140, 141] (3D) and
[142] (2D). 4.1(b) shows the Lippmann-Schwinger integral equation. A
wavy line with momentum transfer q contributes a factor −iV (q), where
V (q) is defined in eq. (4.16).

refs. [139, 140, 141] (3D case) and [142] (2D case), which derive a one parameter
representation of the Coulomb Green’s function. This is instructive, as we get to
know the functions H2 and H3, as well as their important ”reduction property”
(see eqs. (4.19) and (4.26) below). We will use these functions and, implicitly, the
reproduction property during the matching process in sections 4.4 and 4.5.

The two-body scattering amplitude in the center of mass frame can be expressed
diagrammatically as an infinite series (see diagram 4.1(a)) of re-scattering between
the two interaction partners. Re-summing the series on the right-hand side yields
the well-known Lippmann-Schwinger integral equation for the scattering amplitude
iA (which is connected to the T matrix by T = −A), shown in fig. 4.1(b). For the
Coulomb problem with center of mass energy E = k2

0/m, the Lippmann-Schwinger
equation reads

iA(k0,p,p′) = −iV (p− p′) +
∫

q

V (p− q)
k2

0
m −

q2

m + iε
iA(k0,q,p′), (4.15)

where, using the residue theorem, the integration over the undetermined loop energy
q0 was already performed. V (q) denotes the Fourier transform of the Coulomb
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potential. It is given by

V (q) =
∫
ddxe−iq·x

e2

|x| =


2πe2

|q| (2D)

4πe2

|q|2 (3D),
(4.16)

where have explicitly chosen the repulsive version of the potential to account for
electron-electron scattering. As noted earlier, just replace e2 → −e2 in the attractive
case. Diagrammatically, the action of the potential is indicated by a wavy line that
contributes −iV (q). All the other Feynman rules are the same as in chapter 2.2,
also see appendix A.

4.3.1 Three-dimensional scattering problem

In order to solve the Lippmann-Schwinger equation in the three-dimensional case,
let us define the auxiliary function (x ∈ [0, 1])

H3(k0,p,p′, x) = (1− x)2(k2
0 − p2)(k2

0 − p′2)− 4xk2
0(p− p′)2 (4.17)

⇒ d

dx

x

H3(k0,p,p′, x) = (1− x2)(k2
0 − p2)(k2

0 − p′2)
H2

3 (k0,p,p′, x) . (4.18)

The key property of H3, which allows, using an inductive proof [139, 141], for re-
summation of the scattering series in fig. 4.1(a), is∫

q

1
(p− q)2

−4k2
0

q2 − k2
0 − iε

d

dx

x

H3(k0,q,p′, x) = − ik0
2π

1
H3(k0,p,p′, x) , (4.19)

together with the observation that one can rewrite

1
(p− p′)2 = −4k2

0

∫ 1

0
dx

d

dx

x

H3(k0,p,p′, x) = − 4k2
0

H3(k0,p,p′, 1) . (4.20)

The above equalities can be shown using elementary integration methods. The ε > 0
is important to determine the sign of the final expression in eq. (4.19). We will call
(4.19) the reduction property. With the definition of H3 at hand, we can now define
the scattering amplitude in the three dimensional case as

iA(k0,p,p′) = 16πie2k2
0

∫ 1

0
dxxiξ

d

dx

x

H3(k0,p,p′, x) , (4.21)

where ξ = me2/2k0. To test if this truly is the solution to the Lippmann-Schwinger
equation (4.15), we just plug it into the former, together with the 3D version (4.16)
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of the Fourier-transformed Coulomb potential:

iA(k0,p,p′) = −i 4πe2

(p− p′)2

+
∫ 1

0
dxxiξ

∫
q

4πe2

(p− q)2
16πie2k2

0
k2

0
m −

q2

m + iε

d

dx

x

H3(k0,q,p′, x)

(4.20),(4.19)= i
16πe2k2

0
H3(k0,p,p′, 1)

−i16πe2k2
0iξ

∫ 1

0
dxxiξ−1 x

H3(k0,p.p′, x)
PI= i16πe2k2

0

∫ 1

0
dxxiξ

d

dx

x

H3(k0,p,p′, x) = (4.21) (4.22)

The last equality can be readily shown by partial integration. The anti-derivative
of the integrand vanishes at x = 0, and the x = 1 term cancels against the bare
Coulomb potential. This concludes the section on scattering of two electrons in
three dimensions. The integral representation (4.21) of the scattering amplitude
will lead to the fact that most two-particle matrix elements are, in secs. 4.4 and
4.5, also written in terms of an integral representation.

4.3.2 Two-dimensional scattering problem

The two-dimensional case can be treated in a completely analogous manner (see refs.
[142, 143, 144] for a detailed derivation), we just have to come up with the right
function H2 that fulfills the two-dimensional analogue of the reduction property
(4.19), as well as eq. (4.20) in order to re-express the Coulomb potential. To this
end, define

H2(k0,p,p′, x) =
√
−H3(k0,p,p′, x) (4.23)

⇒ d

dx

x
1
2

H2(k0,p,p′, x) = − 1
2
√
x

(1− x2)(k2
0 − p2)(k2

0 − p′2)
H3

2 (k0,p,p′, x) , (4.24)

where H3 is given in equation (4.17). Like in the 3D case, we can easily express the
Coulomb potential in terms of the auxiliary function H2:

1
|p− p′| = 2k0

∫ 1

0
dx

d

dx

x
1
2

H2(k0,p,p′, x) = 2k0
H2(k0,p,p′, 1) (4.25)

Setting k2
0 → k2

0 + iε, in order to make the square roots that appear in the problem
well defined, we can also show that H2 indeed possesses the convenient reduction
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property∫
q

1
|p− q|

2k0
q2 − k2

0 − iε
d

dx

x
1
2

H2(k0,q,p′, x) = i

2π
x−

1
2

H2(k0,p,p′, x) . (4.26)

We follow the same path as in the three-dimensional case, and define the two-
dimensional amplitude iA in terms of H2 via

iA(k0,p,p′) = −4πie2k0

∫ 1

0
dxxiξ

d

dx

x
1
2

H2(k0,p,p′, x) , (4.27)

where ξ = me2/2k0 is the same as in the three-dimensional case. Insertion of the
above amplitude into the Lippmann-Schwinger equation (4.15), this time with the
2D form (4.16) of the Coulomb potential, yields

iA(k0,p,p′) = −i 2πe2

|p− p′|

+
∫ 1

0
dxxiξ

∫
q

2πe2

|p− q|
−4πie2k0
k2

0
m −

q2

m + iε

d

dx

x
1
2

H2(k0,q,p′, x)

(4.25),(4.26)= −4πie2k0
H2(k0,p,p′, 1) + 4πie2k0iξ

∫ 1

0
dxxiξ−1 x

1
2

H2(k0,p,p′, x)

PI= −4πie2k0

∫ 1

0
dxxiξ

d

dx

x
1
2

H2(k0,p,p′, x) = (4.27). (4.28)

For the last equality, we have again used partial integration. Like in the 3D case,
the anti-derivative vanishes at x = 0, and the x = 1 piece cancels against the bare
Coulomb potential.

Armed with the two-body scattering amplitudes for both two and three dimen-
sions, we are prepared to perform the OPE for the correlators of interest up to the
two-electron sector. In particular, the trick of expressing the amplitudes as single
parameter integrals will be applied to the two-particle matrix elements during the
matching process in secs. 4.4 and 4.5.

4.4 Operator Product Expansion for the static
structure factor

The static structure factor was already introduced in sec. 4.2. It is the Fourier
transform of the density-density correlator, cf. (4.12), and thus measures fluctua-
tions in the electronic density distribution. The aim in the following will be to make
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exact statements about its asymptotic behavior at high momenta |q| → ∞. Before
proceeding, we define the spin-resolved static structure factor as

Sσσ′ = 1
N

∫
ddRddr e−iq·r

〈
nσ

(
R − r

2

)
nσ′

(
R + r

2

)〉
−(2π)dnσnσ

′

n
δ(q). (4.29)

For σ 6= σ′, we call it the inter-species structure factor. Correspondingly, for σ = σ′,
it is the intra-species structure factor. The sum of the spin resolved structure factors
gives the static structure factor defined in eq. (4.12):

S(q) =
∑
σ,σ′

Sσσ′(q) (4.30)

Since the static structure factor S(q) is given as the Fourier transform of the density-
density correlator, its asymptotic behavior at high momenta is governed by short-
distance singularities of the density-density correlator. This mapping of singularities
is a generic property of the Fourier transform [138]. The short-distance singular
behavior of the density-density correlator, in turn, is – in a state-independent fashion
– encoded in its OPE. Establishing the OPE will be the aim in the following. Note
that we will focus on the OPE of the inter-species density-density correlator n↑(R−
r/2)n↓(R+r/2), since, because of the Pauli principle, the density-density correlator
for equal species only contains sub-leading singularities as |r| → 0. Hence, the high-
momentum corrections for S↑↑(q) only come in at higher order in 1/|q|.

For the jellium problem, by dimensional analysis, the OPE for operators Oa and
Ob, which are separated by a small distance and have scaling dimensions ∆a and
∆b, has to look like

Oa
(

R − r
2

)
Ob
(

R + r
2

)
=

∑
n

r∆n−∆a−∆bfn

(
r

a0
, êr

)
On(R), (4.31)

where ∆n denotes the scaling dimension of the operator On. The Wilson coefficient
cn(r) was split into a naive scaling part and a dimensionless function fn. The func-
tion fn(r/a0, êr) only depends on the dimensionless combination r/a0, and possibly
the direction of r = rêr. The operators with the lowest scaling dimensions are again
expected to contribute at the lowest orders. These remarks apply both to the OPE
of the density-density correlator, as well as to one of the one-particle density matrix,
which is discussed in sec. 4.5.
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For the inter-species density-density correlator, the OPE with operators up to
scaling dimension 2d+ 1 (length dimension L−2d−1) takes the form

ψ†↑ψ↑

(
R − r

2

)
ψ†↓ψ↓

(
R + r

2

)
= c↑†↓†↓↑(r)ψ†↑ψ

†
↓ψ↓ψ↑(R)

+
∑
A,i

cAi(r)∂Aiψ
†
↑(R1)ψ†↓(R2)ψ↓(R3)ψ↑(R4)

∣∣∣∣∣∣
RA=R

+ . . . , (4.32)

where A = 1, .., 4 labels the vectors RA and i its components. For both two and three
dimensions, the Wilson coefficients of the first order derivative operators combine
in such a way that they reproduce the result that would be obtained from a Taylor
expansion:

ψ†↑ψ↑

(
R − r

2

)
ψ†↓ψ↓

(
R + r

2

)
= c↑†↓†↓↑(r)ψ†↑ψ

†
↓ψ↓ψ↑(R)

+ r
2 ·
[
ψ†↑ψ↑∇ψ

†
↓ψ↓ −

(
∇ψ†↑ψ↑

)
ψ†↓ψ↓

]
(R) + . . . , (4.33)

which can be inferred from diagrams 4.2(a) and 4.3(a) that we will meet in the
matching process in the following. The derivation of these analytic terms will thus
not be given explicitly. After Fourier transform, the analytic terms will not con-
tribute to the high-momentum tail of the static structure factor. All one-particle
operators are of course trivially matched to zero, because the matrix elements of
the left-hand side of (4.33) require the presence of at least one particle of each
spin-species to be non-zero.

4.4.1 Matching

We will now determine the Wilson coefficient of the contact operator ψ†↑ψ
†
↓ψ↓ψ↑. To

this end, we first calculate the matrix elements of the interspecies density-density
correlator in (off-shell) scattering states |k0,±0〉, which contain one ↑ and one ↓
electron with relative momentum zero and total off-shell energy k0. We expand the
result with respect to small k0 (or small r) and match it against the matrix elements
of the contact. The Feynman rules of the operators can be derived following the
same logic that is presented in appendix A.2. For two particles with incoming
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(a) (b)

(c) (d)

Figure 4.2: Diagrams for the matrix element of ψ†↑ψ↑(R − r/2)ψ†↓ψ↓(R + r/2).

momenta p↑,p↓ and outgoing momenta p′↑,p′↓, the resulting rules are:

ψ†↑ψ↑(R − r/2)ψ†↓ψ↓(R + r/2) : eiR·(p↑+p↓−p′↑−p′↓)+i
r
2 ·(p↓−p′↓+p′↑−p↑)

ψ†↑ψ
†
↓ψ↓ψ↑(R) : eiR·(p↑+p↓−p′↑−p′↓)

ψ†↑ψ↑∇ψ
†
↓ψ↓(R) : i(p↓ − p′↓)e

iR·(p↑+p↓−p′↑−p′↓)(
∇ψ†↑ψ↑

)
ψ†↓ψ↓(R) : i(p↑ − p′↑)e

iR·(p↑+p↓−p′↑−p′↓) (4.34)

Matrix element of the density-density correlator

The matrix element of the inter-species density-density correlator n↑(R−r/2)n↓(R+
r/2) is the sum of the four diagrams 4.2(a) - 4.2(d). In order to keep the formulas
short, it is useful to define an auxiliary integral

Zd(r, k0) =
∫

q
eiq·r

i
k2

0
m −

q2

m + iε
iA(k0,q,0), (4.35)

where the index d = 2, 3 stands for the dimensionality of the momentum integration
and the form of the scattering amplitude iA [in d = 2: (4.27), in d = 3 : (4.21)]. To
linear order in k0|r|, the integral evaluates to

Zd(r, k0) =


−2iξ

∫ 1

0
dx

xiξ−1/2

1 + x
+ 4ξk0|r|

∫ 1

0
dxxiξ

d

dx

x1/2

1 + x
+O(|r|2) (2D)

−4iξ
∫ 1

0
dx

xiξ

(1 + x)2 + 4ξk0|r|
∫ 1

0
dxxiξ

d

dx

x

(1 + x)2 +O(|r|2) (3D)

(4.36)
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For more details on the evaluation of the integral Zd(r, k0), see appendix G.1.
Using the Feynman rule (4.34), the sum of the four diagrams in fig. 4.2 can now

be expressed in the compact form〈
k0,±0

∣∣∣ψ†↑ψ↑(R − r/2)ψ†↓ψ↓(R + r/2)
∣∣∣ k0,±0

〉
= (1 + Zd(r, k0))2. (4.37)

Expansion of the result to linear order in |r| yields〈
k0,±0

∣∣∣∣ψ†↑ψ↑(R − r/2)ψ†↓ψ↓(R + r/2)
∣∣∣∣k0,±0

〉

=



(
1− 2iξ

∫ 1

0
dx

xiξ−1/2

1 + x

)2

+8ξk0|r|
∫ 1

0
dx′ x′ iξ

d

dx′
x′1/2

1 + x′

(
1− 2iξ

∫ 1

0
dx

xiξ−1/2

1 + x

)
+O(|r|2)

(
1− 4iξ

∫ 1

0
dx

xiξ−1x

(1 + x)2

)2

+8ξk0|r|
∫ 1

0
dx′ x′ iξ

d

dx′
x′

(1 + x′)2

(
1− 4iξ

∫ 1

0
dx

xiξ−1x

(1 + x)2

)
+O(|r|2)

(2D)

(3D)

PI=



[
1 + 2|r|

a0

](
2
∫ 1

0
dxxiξ

d

dx

x1/2

1 + x

)2

+O(|r|2)

[
1 + |r|

a0

](
4
∫ 1

0
dxxiξ

d

dx

x

(1 + x)2

)2
+O(|r|2)

(2D)

(3D)

(4.38)

For the third part of the equation, partial integration was used to compactify the
expressions. ξ = me2/2k0 was plugged in to make the dependence on |r|/a0 ap-
parent. The off-shell energy k0 carries information about the specifics of the state
and can not be part of a Wilson coefficient. The small |r| expansion of the matrix
element was factorized into a part that indeed is independent of k0, and a part that
carries information about the state. As we will see, the latter is exactly the matrix
element of the contact operator.

4.4.2 Matrix element of the contact operator

The matrix element of the contact operator ψ†↑ψ
†
↓ψ↓ψ↑(R) in the states |k0,±0〉 is

given by the sum of the four diagrams shown in fig. 4.3. Due to the fact that
incoming and outgoing total momentum of the vertex vanish in the states |k0,±0〉
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4.4 Operator Product Expansion for the static structure factor

(a) (b)

(c) (d)

Figure 4.3: Diagrams for the matrix element of ψ†↑ψ
†
↓ψ↓ψ↑(R).

(see the Feynman rule (4.34)), the matrix element of the contact simplifies to〈
k0,±0

∣∣∣ψ†↑ψ†↓ψ↓ψ↑(R)
∣∣∣ k0,±0

〉
= (1 + Zd(0, k0))2, (4.39)

where the auxiliary integral Z(0, k0) is given by eq. (4.36) with |r| = 0. Following
the same path as in equation (4.38), we can simplify the sum of the four diagrams
4.3(a)-4.3(d) via partial integration to:〈

k0,±0
∣∣ψ†↑ψ†↓ψ↓ψ↑(R)

∣∣k0,±0
〉

=



(
2
∫ 1

0
dxxiξ

d

dx

x1/2

1 + x

)2

= 1
16ξ4 +O(k6

0) (2D)

(
4
∫ 1

0
dxxiξ

d

dx

x

(1 + x)2

)2
= 1

4ξ4 +O(k6
0) (3D)

(4.40)

The leading order term of a series expansion around k0 = 0 (ξ =∞) will prove useful
when matching the matrix elements of the contact for the OPE of the momentum
distribution. For details on how to perform the series expansion, see appendix G.2.1,
where we expand the scattering amplitudes in an analogous fashion. Note that in the
states with zero external momenta, diagrams 4.3(a)-4.3(d) vanish for the first order
derivative operators given in 4.33. Because of this, by comparison of eqs. (4.40) and
(4.38), the Wilson coefficient of the contact (up to order |r|) is determined:

c↑†↓†↓↑(r) =


1 + 2|r|

a0
+O(|r|2) (2D)

1 + |r|
a0

+O(|r|2) (3D)
(4.41)
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Chapter 4 Short-distance properties of Coulomb systems

We have thus successfully established the OPE (4.33) of the density-density corre-
lator to order |r|.

4.4.3 Results for the OPE and correlation functions

In the previous subsections, we have proven that the OPE of the interspecies density-
density correlator takes the explicit form

ψ†↑ψ↑

(
R − r

2

)
ψ†↓ψ↓

(
R + r

2

)
=

+
(

1 + 23−d |r|
a0

)
ψ†↑ψ

†
↓ψ↓ψ↑(R)

+ r
2 ·
[
ψ†↑ψ↑∇ψ

†
↓ψ↓ −

(
∇ψ†↑ψ↑

)
ψ†↓ψ↓

]
(R) +O(|r|2), (4.42)

where d = 2 corresponds to the two-dimensional, and d = 3 to the three-dimensional
case. By definition (4.10), the OPE (4.42) results in the

Universal short-distance expansion of the pair correlation
function

The homogeneous electron gas displays the following universal short-
distance behavior in its pair-correlation function:

g(|r|) =


(

1 + 2|r|
a0

+ . . .

)
g(0) (2D)(

1 + |r|
a0

+ . . .

)
g(0) (3D)

, (4.43)

Using the terminology of ref. [145], we call this the cusp condition.

In the mathematical literature, this condition is also often called the Kato-cusp
condition [133, 135]. The result was restricted to the rotational invariant and ho-
mogeneous case. Both the two- and three-dimensional result agree with the results
obtained by Kimball [130, 131, 132]. Due the Pauli principle, the contact value
g(0) of the pair correlation function only receives contributions from g↑↓(0) and
g↓↑(0). Equation (4.43) implies that the pair correlation function of electrons at
short distances exhibits a dip, and then rises with slope 2d−3g(0)/a0. For the case
of an attractive Coulomb interaction, we have to replace a0 → −a0 (and possibly
a numerical factor to take into account a different reduced mass). From the fact
that the Coulomb attraction is strongest near the origin, we expect that the value
of g(0) is greater than one. Thus, in the attractive case, eq. (4.43) implies that the
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4.4 Operator Product Expansion for the static structure factor

pair correlation function has a maximum at |r| = 0 and then falls off with slope
∼ −g(0)/a0. For simplicity, the name cusp condition is also be used in the repulsive
case. It is interesting to note that one observes (see [27, 34]) a similar behavior
for a one-dimensional, contact-interacting Fermi gas, with the Bohr radius a0 being
replaced by the one dimensional scattering length a1.

The cusp condition (4.43) is violated by various approximations that have been
used for the jellium problem. The most renowned one is the random phase approx-
imation (RPA) [146], which becomes exact in the long wavelength limit. Of course,
the inadequacy of the RPA at short distances arises from the fact that the RPA was
designed to probe the opposite momentum regime that is probed here. However,
since (4.43) constitutes an exact result, various extensions of RPA [147] that obey
the cusp condition have been developed. These extensions include so-called local
field corrections [147]. Within these schemes however, the price for capturing the
correct short-range physics is the violation [148] of the ”compressibility sum rule”
S(q) ∼ q2 as |q| → 0.

As we have seen in sec. 4.2, the static structure factor is the Fourier transform of
the density-density correlator, cf. eqs. (4.12),(4.29). The short-distance singularity
∼ |r| in the pair correlation function implies3 the following

Asymptotic behavior of the static structure factor at large
momenta

The static structure factor of the homogeneous electron gas decays
like

S(q)− 1 =


−4π
a0

ng(0)
|q|3 +O

(
|q|−4

)
(2D)

−8π
a0

ng(0)
|q|4 +O

(
|q|−5

)
(3D)

(4.44)

at large momenta. The leading order correction comes solely from the
inter-species part S↑↓(q) of the static structure factor, whereas the
dominant 1 comes from the self-correlation part of the intra-species
static structure factor S↑↑(q).

3The Fourier transform (in the sense of distributions [56]) of |r| is −2π/|q|3 and −8π/|q|4 in two
and three dimensions, respectively. This can be shown by applying ∇2

q to eq. (4.16).
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Chapter 4 Short-distance properties of Coulomb systems

In the inhomogeneous system (with equal populations n↑ = n↓), as can be seen
from eq. (4.42), we have to replace

n↑n↓g↑↓(0) → 1
V

∫
ddR

〈
ψ†↑ψ

†
↓ψ↓ψ↑(R)

〉
(4.45)

n

2 g(0) → 1
N

∫
ddR

〈
ψ†↑ψ

†
↓ψ↓ψ↑(R)

〉
(4.46)

in eq. (4.44). The Wigner crystal phase would be an example where we indeed need
the general, non-translation invariant, form above.

Another example is the case of hydrogen (see sec. 4.1): the absolute square of the
relative wave function is indeed the analogue of the pair correlation function, as it
describes the probability of finding the electron at position r, given that the proton
sits at the origin. In this case, we have∫

d3R
〈
ψ†↑ψ

†
↓ψ↓ψ↑(R)

〉
= |ψn00(0)|2, (4.47)

and our results (4.43) and (4.44) indeed reproduce the behavior observed in hydro-
gen, provided we replace 1/a0 → −2/a0. This replacement takes into account both
the different reduced mass (mr = m instead of m/2) and the different sign for the
attractive interaction.

4.5 Operator Product Expansion for the momentum
distribution

The study of the hydrogen problem in sec. 4.1 already strongly suggests that there
is also a universal high-momentum tail in the momentum distribution of the electron
gas. Indeed, as found by Kimball [130, 131, 132], such a tail exists. In this section, we
will establish an OPE for the one-particle density matrix, that proves this behavior
in a state-independent fashion. The short-distance singularities of the one-particle
density matrix define the large-momentum asymptotic behavior of the momentum
distribution nσ(q), which is the Fourier transform of the former, cf. eq. (4.9). As is
the case for cold Fermi gases, the leading order tail of the momentum distribution
will be the same for both species σ =↑, ↓.

Regarding the general structure of the OPE and its Wilson coefficients, the same
remarks as in sec. 4.4 apply. In particular, the Wilson coefficients are again expected
to be powers of |r|, possibly multiplied by dimensionless functions of |r|/a0. The
one-particle sector will, as shown below, contribute terms that look like a Taylor
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4.5 Operator Product Expansion for the momentum distribution

expansion of the fields. With this in mind, we can write the OPE of the one-body
density matrix as

ψ†σ

(
R − r

2

)
ψσ

(
R + r

2

)
=

[
e−i

r
2 ·∇ψ†σ(R)

] [
ei

r
2 ·∇ψσ(R)

]
+c↑†↓†↓↑(r)ψ†↑ψ

†
↓ψ↓ψ↑(R) + . . . , (4.48)

where we indicate the analytic terms as the product of the two fields with translation
operators acting on them.

4.5.1 Matching

In this section, we will prove the form (4.48) of the OPE of the one particle density
matrix. In particular, the explicit form of the Wilson coefficient of the contact
operator is calculated. The postulated form of the bilinear field combinations with
derivatives acting on them is proven first, via the matching between states that
contain a single particle. These derivative terms will also be grouped together in
a convenient way. This makes the evaluation of the diagrams that appear in the
two-body sector more straightforward.

To determine the Wilson coefficient of the contact operator, we will then perform
the matching in states that contain a single ↑- and a single ↓-electron. For both the
two- and three-dimensional case, a calculation involving the full matrix elements
like in sec. 4.4 is in principle possible. However, the calculations are, in both
dimensions, extremely long. Great simplification arises when we only determine
the leading orders of the matrix elements in k0, at the cost however, that we have
to introduce a somewhat artificial infrared cutoff. Since this procedure still allows
to determine the Wilson coefficient of the contact uniquely, it is sufficient for our
purpose.

One-particle sector

The simplest states with non-vanishing matrix elements of the one-particle density
matrix ψ†σ

(
R − r

2
)
ψσ
(
R + r

2
)

are states that contain an electron of species σ. The
incoming energy and momentum are called E,p, the outgoing ones are E′,p′. The
Feynman rules for the bilocal and local vertices are:

ψ†σ

(
R − r

2

)
ψσ

(
R + r

2

)
: eip·(R+ r

2 )e−ip′·(R− r
2 ) (4.49)(

∂mi ψ
†
σ

)
∂nj ψσ(R) : (−ip′i)m(ipj)neiR·(p−p′) (4.50)
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(a) (b)

Figure 4.4: Diagrams for the matching of the one-particle sector. 4.4(a) represents
the diagram for ψ†σ

(
R − r

2
)
ψσ
(
R + r

2
)
. 4.4(b) is the diagram for all the

local one particle operators on the right-hand side. Incoming energy and
momentum are E,p, outgoing energy and momentum are E′,p′.

The partial derivatives ∂mi denote the derivative with respect to the coordinate Ri,
m times. Note that neither the vertex of the one-particle density matrix, nor the
local one-body terms conserve energy or momentum, since they are not integrated
over in time or space, cf. appendix A.2.

Left-hand side The matrix element of the one-particle density matrix in the
states |E,p〉 and |E′,p′〉 is diagrammatically depicted in fig. 4.4(a). Its (amputated)
value〈

E′,p′
∣∣∣∣ψ†σ (R − r

2

)
ψσ

(
R + r

2

) ∣∣∣∣E,p〉

= eip·(R+ r
2 )e−ip′·(R− r

2 ) = eiR·(p−p′)

 ∞∑
m=0

(
i
2rTp

)m
m!

 ∞∑
u=0

(
i
2rTp′

)u
u!


= eiR·(p−p′)

 ∞∑
n=0

(
i

2

)n n∑
k=0

(
rTp

)n−k
(n− k)!

(
rTp′

)k
k!

 (4.51)

can be directly inferred from the Feynman rule (4.49). In the second and third line,
the scalar products were expressed in terms of the standard matrix multiplication.
The matrix element was brought into a form that will be convenient for the matching
of the local one-body operators. In particular, this form avoids –as best as possible–
an index battle for all the different derivatives.

Right-hand side In order to keep the calculation short, let us directly match
derivative operators with ansatz-Wilson coefficients that are constructed to fit the
result (4.51). Diagrammatically, the matrix elements are all given by fig. 4.4(b).
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We are asking for the matrix element of the operators(
rT∇x′

)k
ψ†σ(x′)

(
rT∇x

)n−k
ψσ(x)

∣∣∣∣
x=x′=R

, (4.52)

where n and k are positive integers such that n− k > 0. The Feynman-rule (4.50)
implies that the matrix element in the states with incoming momentum p and
outgoing momentum p′ is given by〈

E′,p′
∣∣∣∣ [(

rT∇x′
)k
ψ†σ(x′)

(
rT∇x

)n−k
ψσ(x)

]∣∣∣∣
x=x′=R

∣∣∣∣E,p〉
= in(−1)k

(
rTp′

)k (
rTp

)n−k
eiR·(p−p′), (4.53)

which matches eq. (4.51) with coefficient (−1)k/2nk!(n − k)!. This shows that the
OPE of the one-particle density matrix, in the one-particle sector, can indeed be
written as

ψ†σ

(
R − r

2

)
ψσ

(
R + r

2

)
=
[
e−i

r
2 ·∇ψ†σ(R)

] [
ei

r
2 ·∇ψσ(R)

]
=
∞∑
n=0

1
2n

n∑
k=0

(−1)k
k!(n− k)!

[(
rT∇x′

)k
ψ†σ(x′)

(
rT∇x

)n−k
ψσ(x)

]
x=x′=R

≡
∞∑
n=0
Dσn(r,R). (4.54)

In the last line, we have defined operators Dσn(r,R) that are the sum of all n-th order
derivatives that contribute, together with their Wilson coefficients. This definition
will turn out to be convenient during the matching in the two-particle sector.

4.5.2 Two-particle sector

In this section, we will perform the matching in the two-body sector. As mentioned
earlier, we expand the matrix elements in a series around k0 = 0 (ξ = ∞), which
greatly simplifies the matching process. In order to get the leading order behavior
of the matrix elements, we need to find the leading order term of the two-body
scattering amplitudes iA, given by eqs. (4.27) and (4.21), for the two- and three-
dimensional case, respectively. We will be using states with vanishing external
momentum, and the important amplitudes in the following will be

iA(k0,q,0) =


2πie2

4qξ2 +O
( 1
ξ4

)
(2D)

4πie2

2q2ξ2 +O
( 1
ξ4

)
(3D)

(4.55)
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(a) (b)

(c) (d)

Figure 4.5: Diagrams for the matrix elements of the local one-body operators. We
set the external and leaving momenta of the particles to ±0, which
greatly simplifies the expressions. The center of mass energy of the
entering and leaving particles is k2

0/m.

For details on the expansion around ξ = ∞, please consult appendix G.2.1. The
propagators (q2 − k2

0)−1 ≈ q−2 that appear in the diagrams will also be only taken
at leading order in k0. Note that this procedure introduces infrared divergences,
which we regulate via the replacement 1/q → 1/

√
q2 + µ2, where µ > 0.

Matrix elements of the local one-particle operators

Before considering the actual matrix elements of the one-particle operators on the
right-hand side of the OPE, we will derive an effective Feynman-rule for the op-
erators Dσn(r,R) that were defined in eq. (4.54). Due to the nature of the states
we will be using, we only need the Feynman rule for equal incoming and outgoing
momentum p. Using the Feynman rule (4.50), we get the simple result

Dσn(r,R) : 1
2n

n∑
k=0

(−1)k
(
−irTp

)k (
irTp

)n−k
k!(n− k)! = (ip · r)n

n! . (4.56)

In particular, for n > 0 and vanishing leaving and entering momenta at the vertex,
Dσ
n sets the diagram to zero.
The matrix elements of the operators Dσn(r,R) in states |k2

0/m,±0〉 with zero
relative momentum are given by the sum of the four diagrams shown in fig. 4.5.
Using the Feynman rule (4.56), we get, for a given operator Dσn(r,R), the following
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expressions:

4.5(a) = δ0,nδ(0,0) (4.57)

4.5(b) = δ0,n
i

k2
0
m + iε

iA(k0,0,0) (4.58)

4.5(c) = δ0,n
i

k2
0
m + iε

iA(k0,0,0) (4.59)

4.5(d) =
∫

q

(iq · r)n
n!

 i
k2

0
m −

q2

m + iε

2

(iA(k0,q,0))2, (4.60)

where we have used the symmetry of the scattering amplitude iA(k0,p,p′) =
iA(k0,p′,p). For diagram 4.5(d), the integration over the loop energy was also
already evaluated. Diagrams 4.5(a)-4.5(c) vanish for n ≥ 1. Note that diagrams
4.5(a)-4.5(c) have to trivially match the corresponding diagrams 4.6(a)-4.6(c) of the
bilocal operators, since there is no loop integration. As we will see below, this is
indeed what happens, so let us now concentrate on the non-trivial diagram 4.5(d).
The first observation regarding this diagram is that is vanishes for odd n, since the
q-integration is odd in this case. Let us denote the contribution of diagram 4.5(d)
to the matrix element of Dσn(r,R) by Dσn|4.5(d) in the following. In preparation for
sec. 4.5.2, we have to calculate this contribution up to n = 4.

The – with respect to k0 – expanded version of the n = 0 contribution is given by
(also see eq. (4.55))

Dσ0 |4.5(d) =


π2

4a2
0ξ

4

∫
d2q

(2π)2
1

(q2 + µ2)3 = π

16a2
0ξ

4
1

2µ4 (2D)

4π2

a2
0ξ

4

∫
d3q

(2π)3
1

(q2 + µ2)4 = π

48a2
0ξ

4
3
µ5 (3D)

, (4.61)

where we grouped the result in a way that will allow for easy comparison to the
bilocal diagram in section 4.5.2. The big advantage of the expansion technique is, as
you can see, that the appearing integrals become solvable with elementary methods.
Proceeding in the same way for n = 2, we get

Dσ2 |4.5(d) =


−1

2
π2

4a2
0ξ

4

∫
d2q

(2π)2
(q · r)2

(q2 + µ2)3 = π

16a2
0ξ

4

(
−r2

8µ2

)
(2D)

−1
2

4π2

a2
0ξ

4

∫
d3q

(2π)3
(q · r)2

(q2 + µ2)4 = π

48a2
0ξ

4

(
−r2

2µ3

)
(3D)

. (4.62)
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For n = 4, a small complication arises in the two-dimensional case:

Dσ4 |4.5(d) =



1
4!

π2

4a2
0ξ

4

∫
d2q

(2π)2
(q · r)4

(q2 + µ2)3 = π

16a2
0ξ

4

(
− r

4

32

(3
4 + log µΛ

))
(2D)

1
4!

4π2

a2
0ξ

4

∫
d3q

(2π)3
(q · r)4

(q2 + µ2)4 = π

48a2
0ξ

4

(
r4

8µ

)
(3D)

(4.63)

While the three-dimensional integral can be solved directly, we have to introduce a
ultraviolet cutoff Λ in order to regulate the diagram in the two-dimensional case.
The equal sign for 2D is not exact, but the neglected terms are of order µ2/Λ2 and
higher. Since these terms vanish in the limit Λ → ∞, we can safely omit them. In
contrast to the artificial infrared cutoff µ that we had to introduce because we wanted
to make our life easer, the ultraviolet cutoff Λ is needed for all values of k0. As will
become clear in sec. 4.5.2 – since the matrix elements of the one-particle density
matrix are finite – this is a case of so called operator mixing [35]. We mentioned
this phenomenon already shortly in sec. 2.1, because the OPE for the one-particle
density matrix of a contact-interacting Fermi gas shows similar behavior. In this
case, the operator of the kinetic energy mixes with the contact, resulting in finite
matrix elements for both of them. For our electronic case here, it is only the fourth
derivative operator that needs renormalization, while the matrix elements of the
contact given in eq. (4.40) are finite. Let us postpone the rest of this discussion
until the calculation of the matrix elements of the left-hand side.

Matrix element of the one-particle density matrix

The matrix element of the one-particle density matrix is given by the sum of the
diagrams shown in figure 4.6. The external lines still have the same incoming and
outgoing momenta (±0) and center of mass energies (k2

0/m) as before. Bringing
the diagrams into a form where incoming and outgoing momenta at the bilocal
vertex are equal, and hence simplifying the Feynman rule (4.49) to eip·r, we get the
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4.5 Operator Product Expansion for the momentum distribution

(a) (b)

(c) (d)

Figure 4.6: Diagrams for the matrix element of the bilocal one-particle density ma-
trix. We again set the external incoming and outgoing momenta of the
particles to ±0, and the center of mass energy of the entering and leaving
particles to k2

0/m.

following contributions:

4.6(a) = δ(0,0) (4.64)

4.6(b) = i
k2

0
m + iε

iA(k0,0,0) (4.65)

4.6(c) = i
k2

0
m + iε

iA(k0,0,0) (4.66)

4.6(d) =
∫

q
eiq·r

 i
k2

0
m −

q2

m + iε

2

(iA(k0,q,0))2, (4.67)

Diagrams 4.6(a) - 4.6(c) exactly match the contribution of diagrams 4.5(a)-4.5(c)
for Dσ0 = ψ†σψσ. Thus, the only piece we have left to determine is the loop integral in
diagram 4.6(d). The three-dimensional integration can be solved straightforwardly
using the residue theorem. The two-dimensional case4 is tabulated in [149] and

4The integral is tabulated only indirectly, however they have: Iaux =
∫∞

0 dq qJ0(qr) cos(aq)(q2 +
µ2)−1 = cosh(a)K0(µr) for a < r < ∞. We see that we can produce our 2D integral I2D by
a→ 0 and the combination I2D ∼

[
∂2
µIaux − ∂µIaux

]
/µ2. Filling in the constants and usage of

recurrence relations [113] for the modified bessel functions Kn(rµ) yields the result.
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yields a modified Bessel function. The loop integration results in

4.6(d) =


π2

4a2
0ξ

4

∫
d2q

(2π)2
eiq·r

(q2 + µ2)3 = π

16a2
0ξ

4
r2K2(µr)

4µ2 (2D)

4π2

a2
0ξ

4

∫
d3q

(2π)3
eiq·r

(q2 + µ2)4 = π

48a2
0ξ

4
3 + 3µr + (µr)2

µ5 e−µr (3D)

=



π

16a2
0ξ

4

[
1

2µ4 −
r2

8µ2 + r4

32

(3
4 − logµ− log re

γE

2

)]
+O(r6) (2D)

π

48a2
0ξ

4

[
3
µ5 −

r2

2µ3 + r4

8µ −
r5

15

]
+O(r6), (3D)

(4.68)

where γE = 0.577216.. is the Euler-Mascheroni constant. The part that is still left
to match, denoted by A, is given by the difference of (4.68) and the sum of the
contributions of the local one-body operators Dσn|4.5(d), cf. eqs. (4.61), (4.62) and
(4.63):

A = (4.68)−
4∑

n=0
Dσn|4.5(d)

=



−
(2π
a0

)2 r4

128π

(
γE −

3
2 − log 2 + log r + log Λ

) 1
16ξ4︸ ︷︷ ︸

Contact

(2D)

−
(4π
a0

)2 r5

2880π
1

4ξ4︸︷︷︸
Contact

(3D)
(4.69)

We have grouped the result in a way that allows easy comparison with the matrix
elements of the contact operator (see eq. (4.40)). It will also allow straightforward
comparison to the results of Kimball [130, 131, 132] once we Fourier-transform – in
order to get the results for momentum distribution – the OPE back to momentum
space. From (4.69), we can immediately infer the Wilson coefficients (up to order
r6) of the contact operator ψ†↑ψ

†
↓ψ↓ψ↑(R):

c̃↑†↓†↓↑(r) =


−
(2π
a0

)2 |r|4

128π

(
γE −

3
2 − log 2 + log |r|+ log Λ

)
(2D)

−
(4π
a0

)2 |r|5

2880π (3D),
(4.70)

where symbol c̃ shall indicate that this is the ”bare” Wilson coefficient.
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4.5 Operator Product Expansion for the momentum distribution

A comment on operator mixing What about the cutoff dependence of the
Wilson coefficient in the two-dimensional case? We see that, by construction, the
cutoff dependent term cancels the divergence of the operator Dσ4 , such that the
matrix elements of the sum

Dσ
4 (r,R) + c̃↑†↓†↓↑(r)ψ†↑ψ

†
↓ψ↓ψ↑(R) (4.71)

are finite. That this is indeed true for all matrix elements, and not just a pathologic
result we are getting from our expansion around k0 = 0, is shown in more detail
in appendix G.2.2. Of course, in principle we would need to renormalize (which
means subtract the appropriate parts proportional to the contact) all the operators
that are part of the sum Dσ4 separately and find their respective Wilson coefficients
to see that the result indeed coincides with what we have. This is just a technical
complication, and we will avoid this way because it doesn’t deliver any insight. If
anything, we would get buried under an avalanche of indices.

Following Collins [35], we will denote the renormalized version of an operator OA
by [OA]. Studying the sum (4.71) more closely, we realize that we can define a
renormalized version of the operator Dσ

4 (r,R) by

[Dσ
4 (r,R)] = Dσ

4 (r,R)−
(2π
a0

)2 |r|4

128π log Λψ†↑ψ
†
↓ψ↓ψ↑(R). (4.72)

In the above definition, we subtracted the bare minimum that is needed to make
the operator finite. This procedure is usually called minimal subtraction [35]. This
is the scheme we are going to use. Note however, that we could also over-subtract
a little. For example, we could also put all parts of (4.71) except the ∼ |r|4 log |r|
term into the renormalized version of Dσ

4 . Equation (4.72) nicely illustrates why
the phenomenon is called operator mixing: The operator Dσ

4 mixes with the contact
operator ψ†↑ψ

†
↓ψ↓ψ↑(R) in order to have finite matrix elements. Note that since the

contact operator itself has finite matrix elements (which is different from contact-
interacting Fermi gases in two and three dimensions), its renormalized version is
equal to the bare version:

[ψ†↑ψ
†
↓ψ↓ψ↑(R)] = ψ†↑ψ

†
↓ψ↓ψ↑(R) (4.73)

The definition (4.72) of course just shifts the log Λ term away from the bare Wilson
coefficient (4.70) into the definition of the operator that represents all contributing
quartic derivatives.
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Chapter 4 Short-distance properties of Coulomb systems

4.5.3 OPE of the one-particle density matrix

Putting together the results of the previous subsection, we can now infer that the
OPE of the one-particle density matrix, in the case of an electron gas, is given by

ψ†σ

(
R − r

2

)
ψσ

(
R + r

2

)
=
[
e−i

r
2 ·∇ψ†σ(R)

] [
ei

r
2 ·∇ψσ(R)

]

− ψ†↑ψ
†
↓ψ↓ψ↑(R)


(2π
a0

)2 |r|4

128π

(
log |r| − log 2e−γE − 3

2

)
(2D)(4π

a0

)2 |r|5

2880π (3D)


+O(|r|d+3), (4.74)

where the one-body term is a suggestive short-hand for the sum of the operators Dσ
n

up to order n = d+2. In the case of two dimensions, the operator Dσ
4 is replaced by

its minimally subtracted version (4.72). The leading order non-analytic terms are,
in both dimensions, given by the contact operator. When taking the expectation
value of (4.74), this will give a term proportional to the ↑ − ↓ pair correlation
function at zero distance.

4.5.4 Momentum distribution at large momenta

The momentum distribution is, by eq. (4.9), just the Fourier transform of the one-
particle density matrix. The Fourier transforms of the non-analytic terms are given
by [56] ∫

d2re−iq·r|r|4 log |r| = −128π
|q|6 (4.75)∫

d3re−iq·r|r|5 = −2880π
|q|8 . (4.76)

The Fourier transforms of the analytic terms will not contribute [138] in the limit of
large |q|, which is the one we are interested in, since they give gradients of the delta
function. In particular, the ∼ |r|4ψ†↑ψ

†
↓ψ↓ψ↑(R) terms in the two-dimensional case

also count as analytic contributions under Fourier transform. Taking the expectation
value of (4.74) and Fourier transforming, we have the following result for the

170



4.5 Operator Product Expansion for the momentum distribution

Momentum distribution at large momenta

The momentum distribution nσ(q) of the electron species with spin
σ asymptotically vanishes like

nσ(q) |q|→∞−→



(2π
a0

)2 C

|q|6 (2D)

(4π
a0

)2 C

|q|8 (3D),
(4.77)

where a0 is the Bohr radius and C =
∫
ddR〈ψ†↑ψ

†
↓ψ↓ψ↑(R)〉/V is an

intensive integral that contains the pair correlation function of an ↑
and an ↓ electron at zero distance. The decay coefficient C is the
same regardless of the spin species σ.

The big advantage of our derivation is the fact that (4.77) holds for any state, and
thus both in the plasma and possible crystallized phases. The only possibility for
the system to avoid the tails given in (4.77) is a vanishing pair correlator at zero
distance. In the translational invariant case, the tails simplify to

nσ(q)→



(2π
a0

)2 n↑n↓g↑↓(0)
|q|6 (2D)

(4π
a0

)2 n↑n↓g↑↓(0)
|q|8 (3D).

(4.78)

From the form (4.78), it is immediately clear that our results reproduce the ones
given by Kimball [130, 131, 132].

In the case of hydrogen, we have to normalize the momentum distribution in
an extensive fashion. As mentioned in sec. 4.4, we also have to replace 1/a0 →
−2/a0 because of the attractive interaction and the different reduced mass. The
coefficient C of the tail is given by eq. (4.47), which is the analogue of the pair
correlation function at zero distance in the case of hydrogen. With these definitions,
the results (4.77) and (4.5) for the momentum distribution of the hydrogen atom at
high momenta are indeed equivalent.

Our calculation does of course not yield any numerical values for the size of the
coefficients of the tails. To answer this question, one still needs to solve a many-body
problem in order to get the contact value g(0) of the pair correlation function. For
a discussion of known numerical limits, see sec. 4.7.1. Furthermore, we will employ
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Chapter 4 Short-distance properties of Coulomb systems

a virial expansion to obtain some analytic results for the behavior of g(0) in the
classical and high-temperature limits in sec. 4.7.2.

4.6 Short-distance properties of the Many Body Wave
function

The fundamental insight that was already implicitly used by Kimball [130, 131, 132]
during the proof of the tails of both the static structure factor and the momentum
distribution is the following: The many-body wave function, when two of its coor-
dinates are much closer together than the average inter-particle distance, factorizes
into a two-body contribution and a remainder. This is somewhat intuitively clear,
as the mutual Coulomb repulsion of the two particles dominates the physics in this
limit. In the following, our aim will be to prove this intuitive assumption by the
means of a short-distance OPE. The factorization was also discussed by Lepage
[150], using the language of effective field theories. Bogner and Roscher [151] used
an approach similar to an OPE to derive the tails of both the Coulomb gas the
contact-interacting Fermi gas. Note that a similar proof as the one given below
should also work in the context of contact-interacting Fermi gases, resulting in the
factorization condition that Werner and Castin [38] used during their derivation of
the Tan relations.

To illustrate the idea of our proof, assume we know the the OPE of the operator

ψ↑

(
−r

2

)
ψ↓

(r
2

)
=

∑
n

cn(r)On(0), (4.79)

where, for simplicity, we have chosen to ignore the usual dependence on the center
coordinate R and set R = 0. The N -body wave function Ψ, in an arbitrary state
|ΨN 〉, can, when two coordinates of an ↑ − and a ↓ −electron come sufficiently close
together, be written as

Ψ
(
−r

2 , ↑;
r
2 , ↓; r3, σ3; . . .

)
= 1√

N↑!N↓!

〈
0
∣∣∣∣∣ψ↑

(
−r

2

)
ψ↓

(r
2

) N∏
l=3

ψσl(rl)
∣∣∣∣∣ΨN

〉

=
∑
n

cn(r)√
N↑!N↓!

〈
0
∣∣∣∣∣On(0)

N∏
l=3

ψσl(rl)
∣∣∣∣∣ΨN

〉
, (4.80)

where the first equality is just the defining projection to position space. For the
second equality, we have plugged in the short-distance OPE (4.79) for the operator
that annihilates two fermions of type ↑ and ↓ that are close by. In the limit of
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+

(a)

+

(b)

Figure 4.7: Diagrams for the matching of the spin singlet operator. The incoming
momenta are ±p and the center of mass energy is p2/m. The outgoing
state is the vacuum.

|r| → 0, and assuming that there is only one leading order operator, eq. (4.80)
indeed implies factorization of the wave function! To study the precise form of both
the remainder and the short-distance part, we need an explicit expression for the
leading order term and its Wilson coefficient.

In order to proceed, we rewrite ψ↑ (−r/2)ψ↓ (r/2) as the sum of a singlet term

ψ

(
−r

2

)
ψ

(r
2

)
≡ 1

2

[
ψ↑

(
−r

2

)
ψ↓

(r
2

)
− ψ↓

(
−r

2

)
ψ↑

(r
2

)]
(4.81)

and a triplet term that has a relative plus sign between the two operators. The
triplet combination is symmetric under exchange of the spin indices. Since the
fermion fields anti-commute, the leading order term in its OPE is suppressed by
an order in |r|. We thus only need to consider the OPE of the spin-singlet part.
As we will see below, the leading order term in the OPE of the singlet part is just
the singlet operator ψψ(0) evaluated at zero distance. To prove this, we take the
matrix element of the operators ψ(−r/2)ψ(r/2) and ψψ(0) between the vacuum
and a state with particles of incoming momenta ±p, and (on-shell) center of mass
energy p2/m. Diagrammatically, the matrix elements are shown in fig. 4.7. By the
Lippmann-Schwinger equation for the scattering wave function (see [136] or [115]
for details), we can turn the matrix element into the scattering wave function:

〈0|ψ
(
−r

2

)
ψ

(r
2

)
|p, ↑;−p, ↓〉 = 〈r|1 +G0T |p, ↑;−p, ↓〉 = ψp(r) (4.82)

It follows trivially that the matrix element of the local singlet operator is just given
by scattering wave function ψp(0) at zero separation. We can determine the Wilson
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Chapter 4 Short-distance properties of Coulomb systems

coefficient of the singlet operator by matching this in the zero-energy limit. From
this procedure, it follows that the Wilson coefficient solves the (zero-energy) two-
body s-wave Schrödinger equation[

−∆ + 1
a0r

]
cψψ(r) = 0. (4.83)

The boundary condition, because of the matching procedure, is cψψ(0) = 1. The
solution of this differential equation can be expanded to leading order in |r|:

cψψ(r) =


1 + |r|

a0
+O(|r|2) (2D)

1 + |r|
2a0

+O(|r|2) (3D)
(4.84)

We have thus found the leading order term in the OPE of the singlet operator. From
the arguments given below eq. (4.80), this leads to the approximate factorization

lim
|r|→0

Ψ
(
−r

2 , ↑;
r
2 , ↓; . . .

)
= cψψ(r)Ψ(0, ↑; 0, ↓; . . . ) (4.85)

in the limit of small separation of a ↑ and a ↓-electron. In particular, cψψ is deter-
mined by the solution of the two-body problem at small distances. This is indeed
the crucial insight, that Kimball used to prove the tails of the momentum distri-
bution (see eq. (4.78)) and the static structure factor (see eq. (4.44)). For the
derivation of the tails from the factorization of the wave function, please consult the
papers of Kimball [130, 131, 132]. For the structure factor, the derivation is quite
straightforward. For the momentum distribution, the counting of coordinates that
come close together is a bit involved.

Using the idea of the factorization of the wave function, detailed derivations of
the high-momentum tails of the contact-interacting Fermi gas were given by Werner
and Castin [38] and Zhang [152]. Of course, the two-body part (coming from the
Wilson coefficient) in this case solves another Schrödinger equation, namely the free
one with Bethe-Peierls boundary conditions.

4.7 The pair distribution function at zero distance

In the preceding sections, we have established that the high-momentum tails of
both, the static structure factor and the momentum distribution, are governed by
the contact value g(0) of the pair distribution function. The aim of this section will
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4.7 The pair distribution function at zero distance

be to study the behavior of this value. In sec. 4.7.1, its known behavior as a function
of the parameter rs is summarized. In sec. 4.7.2, we will derive its high-temperature
(T →∞) and classical limits (~→ 0) from a virial expansion. While they are very
often taken to be same, since the thermal de-Broglie wavelength

λT = ~
√

2π
mkBT

(4.86)

vanishes in either of the two limits, we will see that in the case of the Coulomb gas,
those limits are not identical. We have restored ~ in order to be able to discuss the
classical limit in the following.

4.7.1 Known results for the tails

As was emphasized before, the big advantage of our OPE derivation of the high-
momentum tails (4.78) and (4.44) is that, since the OPE is an operator identity, it
holds for arbitrary states of the system. This, in particular, implies the presence
of the tails (as long as g(0) 6= 0) at all temperatures. Let us focus on the zero-
temperature case first, and the regime of moderate rs values, where the system is
in a uniform Fermi liquid phase. The momentum scale for the validity of the tails
is then set by the Fermi wave vector kF = 1/αr0, where r0 is the average inter-
particle spacing and α = (4/9π)1/3 ≈ 0.521 in three dimensions and α = 1/

√
2 in

two dimensions.
Let us define a dimensionless strength s of the tails of the momentum distribution

via nσ(q)→ s(kF /|q|)2d+2 as |q| → ∞. We have [153]

s(rs) =


2α6g(0)r2

s (2D)

9
2α

8g(0)r2
s (3D)

(4.87)

The dimensionless strength of the tail, as a (continuous) function of rs, vanishes in
both the limit rs → 0 and rs →∞. In particular, as long as the system is not fully
spin-polarized (because in this case g(0) is trivially zero due to the Pauli principle),
even the Wigner crystal shows the power law tails in the momentum distribution
and static structure factor. The contact value g(0) in this low-density regime is
expected to vanish exponentially with rs. In the opposite limit of high densities,
one has g(0) = 1/2 + O(rs) [154], and thus the dimensionless strength of the tails
vanishes quadratically in rs. From these two limits, we can conjecture that s(rs)
must have a maximum somewhere in between the two limits.
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Recent Quantum Monte Carlo simulations indicate that the size of the dimen-
sionless strength is surprisingly small. In ref. [155], they found s(rs = 10) ≈ 0.006
for the two-dimensional case. In the three-dimensional case, studied in ref. [156],
the value is of the same order s(rs = 10) ≈ 0.009. This is in stark contrast to
strongly interacting cold Fermi gases. For example, the dimensionless strength of
the tail of a one-dimensional Fermi gas [34, 27], at infinite short range repulsion,
s(∞) = 32 log 2/(3π2) ≈ 0.749 exceeds those values by roughly two orders of mag-
nitude.

4.7.2 Classical and high-temperature limits

In this section, we will derive analytical results for the contact value g(0) of the
pair distribution function of a homogeneous and non spin-polarized system. A
virial expansion technique will our tool to extract these results. Note that one can
also obtain one of the results we are about to derive from a diagrammatic virial
expansion like the ones performed in section 2.3 and chapter 3 of this thesis. This
diagrammatic method reproduces the result of the high-temperature limit of g(0)
given below. We will not go into detail on the diagrammatic method, however, and
merely show the contributing diagrams. For details, I refer you to our article [157].

In the remainder of this section, we will consider the Coulomb gas in the non-
degenerate regime

kBT � ~2n2/d

m

⇒ n1/dλT � 1. (4.88)

Within this regime, we can approximate observables of the system with an expansion
in fugacity z = eβµ ≈ nλdT /2 � 1. Note that while, due to the long ranged nature
of the Coulomb potential, a virial expansion is not well-defined for all observables,
we will see that the expansion of the contact value g(0) is well behaved. The non-
degeneracy condition in eq. (4.88) does not contain any information about the
coupling strength e2 of the Coulomb system. Furthermore, it is satisfied both the
high-temperature limit T → ∞, as well as the classical limit ~ → 0. A purely
classical scale for Coulomb systems that weighs temperature against the interaction
strength is the so called Bjerrum length `B:

`B = e2

kBT
(4.89)
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The Bjerrum length, when increasing temperature and keeping ~ finite, becomes
eventually shorter than the thermal wavelength. Thus, when taking T →∞ before
~→ 0, one has

n−1/d � a0 � λT � `B (4.90)

for the hierarchy of length scales in the non-degenerate regime. However, if we take
~→ 0 before T →∞, we instead get

n−1/d � `B � λT � a0. (4.91)

This is a result of the fact that the Bjerrum length is independent of ~. The
contact value of the pair correlation function will turn out to yield different values
in these two regimes, proving that the classical and the high-temperature limit do
not commute in the case of a Coulomb system.

Virial expansion for the Contact value of the pair correlation function

In the following, we will establish the form of the contact value g(0) of the pair
correlation function within a virial expansion. To this end, we will consider the inter-
species value g↑↓(0), because the contribution from the equal species part vanishes
due to the Pauli principle. Rewriting the definition (4.10) of the spin-resolved pair
correlation function more explicitly in terms of a grand-canonical trace, we have

n2

4 g↑↓(x,x
′) = 1

Z
∑
N↑,N↓

zN↑zN↓trN↑,N↓
[
e−βHψ†↑(x)ψ†↓(x

′)ψ↓(x′)ψ↑(x)
]

= z2tr1,1
[
e−βHψ†↑(x)ψ†↓(x

′)ψ↓(x′)ψ↑(x)
]

+O(z3), (4.92)

where the first equality is completely general (when summing over states with well-
defined particle number), and the second equality is the leading order result in an
expansion with respect to the fugacity. Since we want to consider the non-spin
polarized case, we set the chemical potentials, and hence the fugacities, of the two
electronic species to be the same: z↑ = z↓ = z. The canonical trace in the second
line of eq. (4.92) runs over all two-particle eigenstates that contain an ↑ − and a
↓ −electron. Because we are considering the repulsive Coulomb problem, there are
no bound states and the trace only runs over the continuous part of the spectrum.
Before we completely specify the quantum numbers the trace depends on, let us
label the eigen-energies Eα by a symbolic quantum number index α, and take a
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Chapter 4 Short-distance properties of Coulomb systems

closer look at the trace:∑
α

e−βEα〈α|ψ†↑(x)ψ†↓(x
′)ψ↓(x′)ψ↑(x)|α〉 =

∑
α

e−βEα |ψα(x, ↑; x′, ↓)|2

=
∑
α

e−βEα |ψα(R, r)|2 (4.93)

We are just summing over the two-particle wave function at x and x′. In the second
line, we switched to the coordinates R = (x+x′)/2 and r = x−x′. Thus, the contact
value of the pair correlation function is just determined by the value |ψα(R,0)| of
the wave function when the two electrons sit on top of each other.

Contact value of the wave function and conversion of sums into integrals
The solutions of the two-particle problem factorize into a center of mass piece χCMS

and a relative wave function ψ, where χCMS(R) = eiP·R/
√
V . We enclose the system

into a large box of volume V , and the factor 1/
√
V ensures normalization of the

center of mass wave function. We now turn the sum over α into a sum over center
of mass momenta P (to be more precise P is a wave number, but we will use loose
nomenclature). In addition, we sum over the energies ~2p2/m in the center of mass
frame, as well as a complete set of eigenfunctions of the Laplace operator ∆Sd−1 on
the surface of the sphere. Like in the standard hydrogen problem, the relative wave
function ψ factorizes into the pure angular part Y , and a radial part χ:

ψpm(r) = NYm(ϕ)χpm(r) (2D) (4.94)
ψplm(r) = NYlm(θ, ϕ)χpl(r), (3D) (4.95)

where the constant N was introduced to ensure normalization. Ylm denotes the
spherical harmonics. In two dimensions, the magnetic quantum number is all that
is left of the angular momentum, and we have Ym(ϕ) = eimϕ/

√
2π for the normalized

eigenfunctions of the Laplace operator ∆S1 . With these definitions, the leading order
contact value of the pair correlation function reads

n2

4 g↑↓(0) = z2
∫

P
e−β

~2P2
4m |χCMS,P(R)|2︸ ︷︷ ︸

= 2d/2
λd
T


∑
pm

e−β
~2p2
m |ψpm(0)|2 (2D)

∑
plm

e−β
~2p2
m |ψplm(0)|2 (3D)

(4.96)

The summation over the center of mass momenta was turned into an integral. We
will treat the relative motion more carefully in the following, in order to ensure that
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4.7 The pair distribution function at zero distance

the long range nature of the Coulomb potential has no subtle effects that would
render the standard treatment of these sums wrong.

We will now follow a procedure that is outlined in [70], in order to turn the mo-
mentum (implicitly: energy) sum into an integral. The advantage of this procedure
is that it provides a concise scaling of the normalization of the relative wave function
with volume. The radial parts solve the Schödinger equations

p2χpm(r) =
[
∂2
r −

1
r
∂r + m2

r2 + 1
a0r

]
χpm(r) (2D) (4.97)

p2χpl(r) =
[
− 1
r2∂rr

2∂r + l(l + 1)
r2 + 1

a0r

]
χpl(r). (3D) (4.98)

In both two and three dimensions [113, 136], the solution can be expressed in terms
of Kummer’s hypergeometric function 1F1(a, b; z). There is a second linearly in-
dependent solution which is proportional to a confluent hypergeometric function.
However, since this solution diverges at the origin in a non-normalizable fashion,
we set its coefficient to zero. Explicitly, with the help of the Sommerfeld parameter
ξ = me2/2~2p, the solutions read

χpm(r) = e−ipr
(2ipr)m

Γ(1 + 2m) 1F1

(1
2 − iξ +m, 1 + 2m; 2ipr

)
(2D) (4.99)

χpl(r) = e−ipr
(2ipr)l+1

r
1F1(1− iξ + l, 2l + 2; 2ipr) (3D) (4.100)

In the 2D case, we kept the Γ-function to ensure that the result is well defined when
m takes on negative values −1,−2, ... The first thing to note is that, as was already
implicitly mentioned for the case of 3D hydrogen, only the solutions with vanishing
angular momentum have a finite value at the origin:

χpm(0) ∼ δ0m (4.101)
χpl(0) ∼ δ0l (4.102)

This means that the summation over angular momenta in eq. (4.96) is trivially
evaluated, and we will focus purely on vanishing angular momenta in the following.
We now demand the solution to vanish at the boundary r = R of our large spherical
box: χp0(r = R) != 0. We will send R → ∞ in the end of the calculation. A
series expansion of the solutions (4.99) and (4.100) around r = ∞ reveals that the
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condition χp0(r = R) = 0 implies

pR−ξ log 2pR+ arg Γ
(1

2 + iξ

)
− 3π

4︸ ︷︷ ︸
≡σ2(p)

= nπ (2D) (4.103)

pR−ξ log 2pR+ arg Γ(1 + iξ)︸ ︷︷ ︸
≡σ3(p)

= nπ (3D), (4.104)

where n is an integer. Note that the ”phase shifts” σd diverge logarithmically when
R → ∞, which reflects the fact that, because of the long ranged nature of the
Coulomb potential, we can never talk about ”free” incoming and outgoing scattering
states. Using the above equations for two successive integers, and taking the limit
of large R, we see that the distance dp

dp = π

R+ ∂pσd(p)
(4.105)

of two consecutive values of p goes to zero as R→∞. Now, let g(p) be the number
of states in [p, p+ dp], such that g(p)dp = 1. This density of states provides us with
a clear prescription on how to replace the sum over the discrete values of p with an
integral: ∑p .. ≈

∫∞
0 dp g(p)...

To ensure proper normalization
∫ R

0 dr rd−1|N |2|χp0(r)|2 = 1 of the radial wave
functions, it is enough to study the large r part of the integrand, since this is what
dominates the integral. Indeed, we have [113]

r|χp0(r)|2 = e2πξ + 1
2pπ + osc. +O

(1
r

)
(2D) (4.106)

r2|χp0(r)|2 = e2πξ − 1
πξ

+ osc. +O
(1
r

)
(3D), (4.107)

where the presence of some rapidly oscillating (as r →∞) terms, that will average
to zero when integrating over the large r region, is indicated in plain text. Since the
integral should be normalized to one, we have

|N |2 =


1
R

2pπ
e2πξ + 1 +O

( 1
R2

)
(2D)

1
R

πξ

e2πξ − 1 +O
( 1
R2

)
(3D),

(4.108)

where we indicated that this formula receives corrections of the order 1/R2. Using
the solutions (4.99) and (4.100), we are now in the position to give the contact values

|ψp0(0)|2 = 1
R

p

e2πξ + 1 (2D) (4.109)

|ψp00(0)|2 = 1
R

ξp2

e2πξ − 1 (3D) (4.110)
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4.7 The pair distribution function at zero distance

of the relative function. The angular terms Y00(θ, ϕ) = 1/
√

4π and Y0(φ) = 1/
√

2π
were also already included. Using the density of states g(p), where g−1(p) is given
by eq. (4.105), and the replacement ∑p →

∫∞
0 dpg(p), the virial expansion (4.96)

for the contact value of the pair correlation function can be rewritten as

n2

4 g↑↓(0) = z2 2d/2
λdT


∫ ∞

0
dp

[
R

π
+ ∂pσ2(p)

π

]
e−β

~2p2
m |ψp0(0)|2 (2D)

∫ ∞
0

dp

[
R

π
+ ∂pσ3(p)

π

]
e−β

~2p2
m |ψplm(0)|2 (3D)

= z2

π

2d/2
λdT


∫ ∞

0
dp e−β

~2p2
m

p

e2πξ + 1 +O
( logR

R

)
(2D)

∫ ∞
0

dp e−β
~2p2
m

ξp2

e2πξ − 1 +O
( logR

R

)
, (3D)

(4.111)

where the corrections of order logR/R come from the derivatives of the ”phase
shifts” σd(p), and vanish in the limit of infinite volume. As a reminder: ξ =
me2/2~2p is the Sommerfeld parameter, and depends on the integration variable
p.

Evaluation of the integral and results for the contact value The integrals
in eq. (4.111) can be brought, via the substitution x = β~2p2/m and using λT /a0 =
2π`B/λT , into the form

n2

4 g↑↓(0) = z2 2d/2
λ2d
T

∫ ∞
0

dx



e−x

e

√
2π3/2`B√
xλT + 1

(2D)

π`B
λT

e−x

e

√
2π3/2`B√
xλT − 1

(3D)

(4.112)

This form is advantageous, because it makes the dependence on the dimensionless
quantity `B/λT evident. Note that for the T → ∞ limit, we have `B/λT → 0. In
the classical limit ~→ 0 however, we have `B/λT →∞.

Let us treat the limit T →∞ first (implying the hierarchy of length scales given
in eq. (4.90)). The integrand has the series expansion

e−x

e
2π3/2`B
λT
√
x + 1

= e−x
[

1
2 −

π3/2

23/2√x
`B
λT

+O
(
`2B
λ2
T

)]
(4.113)

π`B
λT

e−x

e
2π3/2`B
λT
√
x − 1

= e−x
[ √

x√
2π
− π

2
`B
λT

+O
(
`2B
λ2
T

)]
. (4.114)
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Chapter 4 Short-distance properties of Coulomb systems

(a) (b)

Figure 4.8: Diagrams that contribute to the contact value g(0) in a virial and per-
turbative expansion. The propagators of the bubble have to run back,
since all the fields act at imaginary time τ = 0. As a consequence, they
need to be slashed at least once, making the leading order diagram order
z2. For details on the formalism, see chapter 3.

Performing the x-integration term by term, and plugging in the leading order virial
result z = nλdT /2 for the fugacity in terms of the density, we get the following result
for the contact value g(0) = g↑↓(0)/2:

g(0) =


1
2

(
1− π2
√

2
`B
λT

+ . . .

)
(2D)

1
2

(
1−
√

2π `B
λT

+ . . .

)
(3D)

(4.115)

The leading order term is the same result as for a classical non-interacting gas. The
first correction vanishes at large temperatures like ∼ 1/

√
T . Note that the tails in

the OPE are expected to occur at momenta q � λ−1
T , and thus get pushed very far

out. The prefactor of the tails, however, is of order one in this regime. Note that
we can also obtain the result (4.115) using the same diagrammatic virial expansion
technique that was used extensively in chapter 3 and sec. 2.3. Also performing an
expansion in the coupling strength e2, the diagrams that contribute are shown in
fig. 4.8. After evaluation of the loop integrals, this exactly yields (4.115) for the
contact value g(0), which is a nice reassurance that we did not make any mistake
during our discussion of the normalization of the wave function.
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4.7 The pair distribution function at zero distance

The classical limit ~→ 0, where the Rydberg dominates over temperature Ry�
kBT , describes non-degenerate plasmas at relatively low temperatures. Charged
dust particles [158] in space are, for example, described by this limit. The exponen-
tial term in the denominator of the integrand in eq. (4.112) now dominates, so we
can just omit the one. The result of this integration is a Meier-G function, which,
after again using z = nλdT /2 and g(0) = g↑↓(0)/2, results in the following leading
order behavior of the pair correlation function at zero distance:

g(0) =


2π21/3

31/2

(
`B
λT

)1/3
e
− 3π

21/3 ( `B
λT

)2/3
+ . . . (2D)

4π221/3

31/2

(
`B
λT

)4/3
e
− 3π

21/3 ( `B
λT

)2/3
+ . . . (3D)

(4.116)

In the limit ~ → 0, the contact value vanishes exponentially! Note that the high-
momentum tails of both the momentum distribution (4.78) and the static structure
factor (4.44) contain the inverse Bohr radius, which diverges as ~ → 0. However,
once again, the typical scale q � λ−1

T where the tails appear is pushed out to infinity.
Furthermore, since the contact value g(0) vanishes exponentially, the total weight of
the tails vanishes. This is the explanation why a purely classical calculation leads to
different tails [159] than the ones observed in eqs. (4.78) and (4.44). For example,
the static structure factor of the classical electron gas decays like 1/q2 for momenta
κ < q < `B, where κ =

√
n`B is the so called Debye-Hückel length [159].

A little discussion is in order. Why do we have contradictory findings for the
classical limit and the high-temperature limit? In fact, the path that lead us to
discover the difference of those limits was Prof. Zwerger asking for the classical
limit of g(0). Since λT → 0 both in the classical and high-temperature limit, I
actually assumed those limits to be the same. I got the result (4.115), while his
calculation predicted the contact value to vanish exponentially. This was puzzling
at first, but if we think about the meaning of the results (4.115) and (4.116), we
can indeed understand this paradox. In the limit (4.115), we are asking for the
infinite temperature limit of a quantum mechanical gas. The typical energies of the
colliding particles are thus extremely large, and hence they barely feel the Coulomb
repulsion, even while passing through each other. In the limit (4.116) however, we
are asking for the classical limit of the probability of two particles sitting on top
of each other. The Coulomb potential is infinitely repulsive at short distances, and
while that does not concern a quantum particle, classical particles can never enter
the point where the energy would actually be infinite! This is all the non-commuting
limits boil down to.
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Chapter 4 Short-distance properties of Coulomb systems

4.8 Summary

In this chapter, we have discussed the high-momentum tails of the momentum distri-
bution and the static structure factor in the repulsive Coulomb problem, i.e. for an
electron gas. The momentum distribution nσ(q) was shown to decay like ∼ 1/|q|6

in two dimensions and ∼ 1/|q|8 in three dimensions. The leading contribution is
rotationally invariant and the prefactor of the tails is proportional to the contact
value g(0) of the pair correlation function, which is a measure for the probability
that two electrons occupy the same point in space. A generalized version of this
statement even holds true in the non-translational invariant case. The contact value
g(0) was also found to be the prefactor of the tails of the static structure factor S(q),
which scales like S(q) − 1 ∼ 1/|q|3 in two dimensions, and S(q) − 1 ∼ 1/|q|4 in
three dimensions. Our derivation has the advantage that, due to the OPE being a
relation for operators, it holds for any state. The results are all compatible with the
results already known from Kimball’s work [130, 131, 132].

We also derived, by means of an OPE of the operator ψ↑(x)ψ↓(y), the factorization
of the wave function when two of the coordinates come close together. This is a nice
justification of the Ansatz that Kimball used to prove the tails.

In the last part, we studied the classical and high-temperature limits of the contact
value g(0) of the pair correlation function. It turned out that these limits are not
identical. An intuitive explanation on why this is the case was given.

In conclusion, the maybe most important message of this chapter is that the
OPE is indeed applicable to a non-relativistic system with Coulomb interactions.
Besides the advantage that the OPE offers relations at the operator level, the OPE
opens the opportunity to also study dynamical correlators. For this problem, an
approach relying on the factorization of the wave function is not sufficient. One
could, for example, think about studying the frequency and momentum dependence
of the spectral function or the dielectric constant. Possible sum rules could also
be derived, using methods analogous to the ones used in sec. 2.2 of this thesis. I
have to admit, however, that the complexity of the scattering amplitude and the
associated loop integrals will make such calculations quite involved.
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Conclusion

”No electron was harmed in the
making of this thesis.”

(I hope so, at least.)

In this thesis, methods of quantum field theory were used to study the behavior
of various systems in regimes where few-body correlations are important. For the
two-dimensional, contact-interacting Fermi gas, we have used an operator product
expansion to derive exact asymptotic relations and sum rules for RF-spectroscopy.
Subsequently, a quantum cluster (virial-) expansion was used to extract the behavior
of the spectral function in the non-degenerate limit. Various quantities that are
connected to the spectral function were obtained, and the virial expansion was
shown to fulfill the universal Tan relations.

We then changed our focus away from the two-dimensional case, and studied
three-dimensional quantum gases in the approximation of contact-interactions. We
again employed a virial expansion to extract three-body correlations in both the
fermionic and the bosonic case. Due to the novelty of the formalism, the calculation
of the momentum distribution, the contact parameters and the virial coefficients
was meticulously presented. The results are in excellent agreement with known
universal relations. For bosons at unitarity, comparison to experiment revealed that
in order to reproduce the experimentally measured momentum distributions, we
need to assume that only the next-to deepest trimer state is populated.

In the last part, we have re-derived asymptotic relations for the momentum dis-
tribution and the static structure factor of the Coulomb gas. We have shown that
the wave-function at short distances indeed factorizes, and have calculated the pair
correlation function at zero distance for the classical and high-temperature limits.
They were shown not to commute, which can be understood even intuitively.
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Appendix A

Feynman rules for two-dimensional
Fermions

A.1 Feynman rules of the theory

This appendix contains a compilation of the Feynman rules for the theory of two-
dimensional contact interacting fermions defined by the Lagrangian (2.5). The con-
ventions are for the real-time formalism. Since we are working in the equal mass
case mσ = m ∀σ, the bare propagator is the same for all the particles, independent
of their species quantum number σ. Furthermore, since we will in practice only ever
set g12 ≡ g and g13 ≡ g′ to nonzero, we will just give the Feynman rules for the case
σ = 1, 2. For the third species, everything is completely analogous. To each bare
fermion line, like the one in figure A.1(a), associate a Green’s function

G(q0,q) = i

q0 − q2

2m + iε
(A.1)

To each two body vertex between particles of species σ and σ′, an example of
which is depicted in figure A.1(b), attach a factor −ig. Note that gσσ = 0 for all
σ, since fermions of the same species can not, due to the Pauli exclusion princi-
ple, have contact interactions. Finally, integrate over each momentum that is not
determined from energy and momentum conservation at each vertex with the mea-
sure

∫
dq0/2π

∫
d2q/(2π)2. We often have to sum a series of loop diagrams that,

when summed to all orders in the interaction, gives the solution to the Lippmann-
Schwinger equation (see figure 2.1). For the resulting amplitude, we have the fol-
lowing effective Feynman rule: To each gray blob, like the one depicted in figure
A.1(c), that stands for an infinite series of ladder diagrams, associate an amplitude
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(a) i
q0−q2/2m+iε (b) −ig (c) iA(E,P)

Figure A.1: Feynman rules for the theory defined by the Lagrangian 2.5 for two
species σ = 1, 2. The amplitude A is given by equations (A.2) and
(A.3).

iA. In the center of mass frame, we have

A(E) = 4π
m

1
log(−ma2

2E) . (A.2)

We can use Galilean invariance to show that the general amplitude A(E,P) with
center of mass momentum P and energy E is connected to its center of mass coun-
terpart via

A(E,P) = A
(
E − P2

4m

)
. (A.3)

A.2 Feynman rules for operator vertices

In sec. 2.2.2, it is important to know which operators contribute which factors to the
amplitudes that are matched against each other. A sketch of the derivation of these
Feynman rules will be given here for the case of the RF operatorOrf(ω+iε,R). Quite
generally, a vertex is only momentum- and/or energy-conserving when it is being
integrated over in space and/or time. This is also the reason why the interaction ver-
tices that appear in the Feynman diagrams are momentum- and energy-conserving.
The local operators on the right hand side of the OPE (2.28) are not integrated over
in time or space, thus they neither conserve energy nor momentum. The matter is a
little more subtle for the RF operator, because one of its vertices is integrated over
all times, and both vertices are integrated over their relative distance. As we will see
below, this results in a specific rule relating incoming and outgoing momenta. The
essential ingredient for the derivation of the Feynman rules of the operator vertices
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is the Fourier decomposition of the quantum fields ψσ(x, t):

ψσ(x, t) =
∫
ω,k

e−i(ωt−k·x)ψσ(k, ω) (A.4)

ψσ(k, ω) =
∫
dt

∫
ddxei(ωt−k·x)ψσ(x, t) (A.5)

Corresponding formulas for the adjoint fields ψ†σ can be obtained from the above
formulas via complex and hermitian conjugation. The derivation of the Feynman
rules of the one-body operators is completely analogous. They can be read off
from eqs. (2.33), (2.34) and (2.35), that contain their matrix elements in one body
states. The two-body operator ψ†1ψ

†
2ψ2ψ1 that defines the contact density has the

following Feynman rule: Let the momenta of the incoming lines, that are connected
to the vertex, be p1, p2. The corresponding outgoing momenta shall be denoted
by p′1, p′2. Under these conditions, the vertex ψ†1ψ

†
2ψ2ψ1(R) contributes a factor

ei(p1+p2−p′1−p′2)·R.
For the derivation of the Feynman rule of the RF operator, we insert the Fourier

decomposition (A.4) into the defining equation (2.23):

Orf(ω,R) =
∫
dteiωt

∫
ddr

∫
(η,u),(η′,u′),(ν,v),(ν′,v′)

e−it(ν−ν
′)

eiR·(v−v′−u′+u)ei
r
2 ·(v−v′+u′−u)

ψ†2(v′, ν ′)ψ3(v, ν)ψ†3(u′, η′)ψ2(u, η)

= 2πδ(ω − (ν − ν ′))(2π)dδ
(1

2
[
(u′ + v)− (v′ + u)

])
e−iR·(v

′−v+u′−u) ×
∫

(η,u),(η′,u′),(ν,v),(ν′,v′)

ψ†2(v′, ν ′)ψ3(v, ν)ψ†3(u′, η′)ψ2(u, η) (A.6)

From the expression above, the Feynman rule in momentum space can be read off:

• Make sure that the outgoing energy of the second vertex is ω lower than the
energy entering the vertex: ν = ν ′ + ω

• Make the sum of momenta of the inner 3-lines equal to the sum of the momenta
of the outer 2-lines: (u′ + v) = (v′ + u). This is what I referred to as ”half
momentum conserving” in sec. 2.2.2.

• Multiply by a factor e−iR·(v′−v+u′−u)
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Of course, when fields of different momentum and energy are contracted with the
fields above, this sets their four momenta equal. A small subtlety is the following:
The factor 1/2 in the δ function in eq. (A.6) might contribute a factor 2d. However,
this factor 1/2 never really contributes in our diagrams. In the one particle diagrams,
this is very easy to see, because u′ = v implies 2v = u + v′, which cancels the 1/2
inside the delta function. For the two particle diagrams, it is either the same reason
as given before, or another momentum conserving δ-function, for example the one
of the vertex iD, contributes in a way that cancels the two again. This involved
treatment of momenta at the vertices is the price for symmetrizing the RF correlator
in the distance r of the two vertices. The physical advantage of this procedure is
that this yields current densities rather than derivatives like (∇ψ†2)ψ2 in the OPE.
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Appendix B

Feynman rules in imaginary time

This appendix gives a short compilation of the Feynman rules that follow from the
Lagrangian densities (3.17) (bosonic case) and (3.24) (fermionic case). In principle,
the Feynman-rules are the same as in ref. [25], except for the omission of the various
factors of i. In fig. B.1, we state the Feynman rules for the (bare) contractios and
vertices. Except for the Feynman rule of the slashed propagator, all rules are given
in Matsubara-frequency and momentum space.

(a) 1
iωn+µ−εq

(b) G(1)
(σ)(τ,q), cf.

eqs. (3.41) (Bose)
and (3.43) (Fermi)

(c) −4/g2 (Bose),
−1/g2 (Fermi)

(d) −2 · g2/4
(Bose), −g2

(Fermi)

(e) −2 · g2/4
(Bose), −g2

(Fermi)

(f) −g3/36 (only
Bose)

Figure B.1: Feynman rules defined by the imaginary time actions in eqs. (3.17)
(Bose) and (3.24) (Fermi). Symmetry factors have not been made ex-
plicit. All Feynman rules, except for (B.1(b)), are given in momentum
space. We will only encounter the slashed propagators in the imaginary
time / momentum representation, which is why we gave this Feynman-
rule in the mixed representation.
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Appendix B Feynman rules in imaginary time

The Feynman rule for the auxiliary field is most easily derived from the path
integral formalism, in the canonical formalism one needs a little additional care,
because the auxiliary field is non-dynamical.
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Appendix C

Some properties of the Laplace
transform

This appendix is a compilation of definitions and properties regarding the Laplace
transform. All of the properties and the proofs regarding those can be found in the
book [111]. We define the Laplace transform of a function f(t), that is only non-zero
for t > 0, by

f(s) =
∫ ∞

0
dtestf(t) (C.1)

f(t) =
∫
BW

ds

2πie
−tsf(s), (C.2)

where in (C.1), we need to choose s such that the integral exists. Afterwards, we can
analytically continue the result to other s. The inverse formula (C.2) only holds true
if the Bromwich integral exists. Note that our definition of the Laplace transform
has the opposite sign as in [111]. For our convention, the Bromwich integral in
(C.2) runs parallel to the imaginary axis, to the left of all non-analyticities of f(s).
Depending on the analytic structure of f(s), one can also deform the contour into
a convenient other contour, as long as the integral is still well-defined.

In the sections on the two- and (implicitly) three-body scattering problem, as well
as during the study of the diagrams that contribute to the virial expansion up to
third order in the fugacity, we make frequent use of the convolution theorem for the
Laplace transform:

h(τ) =
∫ τ

0
dtg(t− τ)f(t)

⇒ h(s) = f(s)g(s) (C.3)

We can also generalize this convolution theorem to the case of more than a single
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Appendix C Some properties of the Laplace transform

function. To this end, we define the set

A =
{

(t1, ..., tn) : ti ≥ 0 ∀i ∈ {1, ..., n} and
n∑
i=1

ti ≤ τ
}

(C.4)

as a shorthand. Repeated application of the convolution theorem for two functions
yields∫

A

∏
i

dti g

(
τ −

∑
i

ti

)
f1(t1)...fn(tn) =

∫
BW

ds

2πie
−τsg(s)f1(s)...fn(s), (C.5)

where we have written the convolution theorem in the back-transformed way. Setting
τ = β, the above form is tailor-made for the imaginary time integrations that show
up in the diagrams of the virial expansion, cf. sec. 3.3. This, as realized by
Leyronas [9], allows us to express all the imaginary time integrations in terms of a
single contour integration.
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Appendix D

Projection of the STM equation onto
angular momenta

In this appendix, we will perform the projection of the STM equation (3.50) (in the
center of mass frame P = 0), and show that it indeed yields (3.54). In particular,
different angular momentum channels do not mix, which simplifies the numerical
treatment of the problem by a great deal.

D.1 Legendre functions of the second kind

In order to perform the angular projection, let us first review (for details, see [113])
some properties of the Legendre functions of the second kind Ql(z), defined in eq.
(3.55), which we repeat here for convenience:

Ql(z) = 1
2

∫ 1

−1
dx
Pl(x)
z − x

. (D.1)

We will focus on integer indices, since the Pl(x) have integer indices in our problem
(one can, in principle, generalize the above formula to non-integer ones, such that
the Legendre polynomials are replaced by Legendre functions [113]). From the
definition (D.1) and the completeness of the Legendre polynomials on the interval
[−1, 1], it follows that

1
z − x

=
∞∑
l=0

(2l + 1)Pl(x)Ql(z), (D.2)

where −1 ≤ x ≤ 1 and z ∈ C/[−1, 1]. We use the above form to eliminate the
propagators containing an angle in the denominator. Similar to the Legendre poly-
nomials Pl(x), the Legendre functions of the second kind can be obtained from a
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Appendix D Projection of the STM equation onto angular momenta

recursion relation [113]. For integer indices, this recursion relation is solved by [114]

Ql(z) = 1
2Pl(z) log

(
z + 1
z − 1

)
−Wl−1(z) (D.3)

Wl−1(z) =
l∑

k=1

1
k
Pl−k(z)Pk−1(z) (D.4)

W−1(z) = 0, (D.5)

which is how I generated the Legendre functions for numerical evaluation in my
C + + code. For example, the first two Legendre functions are

Q0(z) = 1
2 log

(
z + 1
z − 1

)
(D.6)

Q1(z) = 1
2z log

(
z + 1
z − 1

)
− 1 (D.7)

For analytic evaluation of the angle integrations that appear in the three-body sector
of the virial expansion, we define

Q̃l(z) = − d

dz
Ql(z) = 1

2

∫ 1

−1
dx

Pl(x)
(z − x)2 (D.8)

D.2 Projecting the STM equation onto angular
momentum channels

Equation (3.53) defines the angular projection t
(l)
3 (s, p, k) of the three-body T -

matrix. We now want to derive a reduced STM equation for these angular mo-
mentum components t(l)3 . Defining p̂ · k̂ = cos θpk, we project the STM equation
(3.50) (with vanishing center of mass momentum P = 0) onto angular momentum
l by multiplying both sides by Pl(cos θpk)/2 and integrating over

∫ 1
−1 d cos θpk. The

resulting equation reads

t
(l)
3 (s, p, k) =1

2

∫ 1

−1
d cos θpkPl(cos θpk)

 m
pk

m
pk

(
s− p2

m −
k2

m

)
− cos θpk

+ g3
9g2

2


+ 1

2

∫ 1

−1
d cos θpkPl(cos θpk)

∫ ∞
0

dq

(2π)3 q
2
∫ 1

−1
d cos θqk

∫ 2π

0
dφ m

pq

m
pq

(
s− p2

m −
q2

m

)
− cos θpq

+ g3
9g2

2

T2

(
s− 3q2

4m

)
∞∑
L=0

(2L+ 1)PL(cos θqk)t(L)
3 (s, q, k), (D.9)
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D.2 Projecting the STM equation onto angular momentum channels

where we imply the suggestive definitions cos θqk = q̂ · k̂ and cos θpq = p̂ · q̂. We
also used the angular decomposition (3.52) to expand T3 in terms of Legendre poly-
nomials on the right-hand side. Note that the three cosines are not independent of
each other, since the unit vectors q̂, p̂, k̂ form a spherical triangle. We have chosen
k̂ as the z-axis for the q-integration, and we choose φ to be the angle between the
projection of p̂ onto the plane perpendicular to k̂ and the same projection of q̂.
This means that we choose the projected p̂ as the x-axis for the q-integration. The
law of cosines for spherical triangles (easily derived from x̂ · ŷ for two general unit
vectors in spherical coordinates) allows us to re-express cos θpq in terms of the other
angles:

cos θpq = cos θqk cos θpk + sin θqk sin θpk cosφ (D.10)

Furthermore, eqs. (D.2) and (D.1) allow us to rewrite the propagators in the in-
homogeneity and the q-integral in eq. (D.9) in terms of the Legendre functions of
the second kind. The propagator in the q-integral contains a series of Legendre
polynomials Pn(cos θpq). We can re-express these via the addition theorem [113]

Pn(cos θqk cos θpk + sin θqk sin θpk cosφ) = Pn(cos θqk)Pn(cos θpk)

+ 2
n∑

m=1

(n−m)!
(n+m)!P

m
n (cos θqk)Pmn (cos θpk) cosmφ (D.11)

for Legendre polynomials. The Pmn (x) are associated Legendre functions. The first
important simplification now arises from the integration

∫ 2π
0 dφ: Since m ≥ 1 is

integer in the above formula, the second term of the addition theorem will always
vanish when integrated over φ. Using all of the above considerations, we can simplify
the integral equation to

t
(l)
3 (s, p, k) =

[
m

pk
Ql

(
m

pk

[
s− p2

m
− k2

m

])
+ g3

9g2
2
δ0l

]

+ 1
2

∫ 1

−1
d cos θpkPl(cos θpk)

∫ ∞
0

dq

(2π)2 q
2
∫ 1

−1
d cos θqk[∑

n

(2n+ 1)Pn(cos θpk)Pn(cos θqk)
m

pq
Ql

(
m

pq

[
s− p2

m
− q2

m

])
+ g3

9g2
2

]

T2

(
s− 3q2

4m

) ∞∑
L=0

(2L+ 1)PL(cos θqk)t(L)
3 (s, q, k), (D.12)

where we have already used the orthogonality relation∫ 1

−1
dxPl(x)Pm(x) = 2δlm

2l + 1 (D.13)
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Appendix D Projection of the STM equation onto angular momenta

for the Legendre polynomials to simplify the inhomogeneity. We can now use the
same orthogonality relation on the cos θpk integration, which collapses the sum over
n and yields a Kronecker delta δ0l in front of the g3 term under the integral. After-
wards, we integrate over cos θqk, which collapses the remaining sum over L. Plugging
in the definition (3.19) of g3 in terms of H(Λ) then yields the reduced STM equation
(3.54) for the angular component t(l)3 of the three-body T -matrix. For fermions, the
procedure is completely the same as the one presented here.
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Appendix E

Symmetry factors and signs for
chapter 3

This appendix presents the calculation of symmetry factors and signs for the dia-
grams that show up in the virial expansion.

E.1 Bosons

The one particle sector of course does not yield any symmetry factors. We will
directly start with the two-particle sector. To obtain the symmetry factors, it is,
in my opinion, useful to not directly express the diagrams in terms of the two-
body T -matrix T2, but to rather take the dimer propagator Gdd, defined by the
integral equation (3.46), and in the end plug in the definition (3.48) of T2 in terms
of Gdd. The advantage of this procedure is that we do not need to worry about the
effective symmetry factors that are contained in T2. The procedure will always be to
determine the symmetry factors for the mother diagrams that are generated by the
perturbative expansion (3.32). The expansion in terms of the fugacity (”slashing”
the lines) is done in sec. 3.3.1.

E.1.1 Two-Particle Diagrams

We will start out with the mother diagram of diagrams 3.7(a)-3.7(d). It is shown in
fig. E.1, together with a suggestion for the counting of the symmetry factor. The
logic behind the counting is the following: The two interaction vertices correspond
−g2d̄ψψ/4 and −g2dψ̄ψ̄/4, while the external vertex is ψψ̄. The contraction of the
two dimer fields yields the vacuum dimer propagator (times e2µt2), when we already
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Appendix E Symmetry factors and signs for chapter 3

2

2

1

Figure E.1: Calculating the symmetry factor for the diagram that defines the two-
particle sector. For the logic, see the text.

insert1 the expanded propagators G(0) for the loops contained in this contraction.
For each of the external legs, we have two choices with which ψ or ψ̄ of the vertices
we want to contract. The inner loop is then fixed by our earlier choices and does
not contribute anything else. We thus get:

G(0−,q) = −4
(
g2
4

)2 ∫
A

∫
k
G(t1,q)G(−t1 − t2,q)e2µt2Gdd(t2,k + q)G(−t2,k)

(3.48)= −
∫
A

∫
k
G(t1,q))G(−t1 − t2,q)e2µt2T2(t2,k + q)G(−t2,k) (E.1)

Expanding the propagators yields diagrams 3.7(a)-3.7(d).

E.1.2 Three-Particle Diagrams

We will determine the prefactors of the three-body diagrams 3.8(a)-3.8(e) by using
the ”born approximation” for the T3-matrix. This means that we replace the gray
box in diagrams 3.8(a)-3.8(e) by the two leading order terms in diagram 3.5. This
indeed generates all the mother diagrams for the approximated T3 amplitude. Of
course you could now say: But I can just directly read off symmetry factors from
the diagrams when treating the T3 vertex like dψt3(...)d̄ψ̄! Very observant of you.
But while this procedure is capable of producing relative symmetry factors, we can
not prove that it is indeed the T3 matrix defined by eq. (3.50) that enters in our
diagrams. To fix the global prefactor, we still need to look at the mother-diagrams.
The reason of course that our logic in truth is reversed: We look at all diagrams

1If your are not comfortable with that, please view the diagrams here and in the following as
containing the bare dimer propagator. If you do the math, this of course works out to give the
same symmetry factors as the ones obtained here.
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2
2

2

1

1

(a) 8

2

2

1

2

1

(b) 8

2

2

2

1

2

(c) 16

2

2

2

2

1

(d) 16

2

2

1

2 2

(e) 16

Figure E.2: Mother-diagrams that contain the leading order (that contains the prop-
agation of a mediating atom) of the STM equation. We propose a count-
ing scheme and state the resulting symmetry factor below the diagram.

that are generated by the perturbative expansion of the Green’s function. Then
we figure out which ones will be allowed to third order in the fugacity, and also
sum up the effective vacuum two-particle scattering series. Then we determine the
symmetry-factors of the appearing diagrams.

The diagrams that are generated by the term in the STM equation that contains
the two-body vertices are shown in fig. E.2, together with a proposed counting
scheme and the resulting prefactors. For the general logic behind the counting, see
the two-body sector.

Similarly, the diagrams that are generated by the leading order term (that contains
the three-body vertex) in the STM equation are shown in figure E.3. Note that
diagram E.2(b) and E.3(b) do not have the same multiplicity. In the virial expansion
however, they do have the same prefactor. Diagrammatically, the reason is that we
have two choices which atom line of the innermost loop in E.2(b) we want to slash.
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1

1

2

1

(a) 2

2

2

1

1

(b) 4

2

1

1

2

(c) 4

2

1

2

1

(d) 4

2
2

1 1

(e) 4

Figure E.3: Mother-diagrams that contain the leading order (that contains g3) of the
STM equation. We propose a counting scheme and state the resulting
symmetry factor below the diagram.

In formulas, it comes from the fact that the expansion of the propagators in the
inner loop reads

G(t3,k)G(t3,−k) = G(0)(t3,k)G(0)(t3,−k) + 2zG(0)(t3,k)G(1)(t3,−k) + . . . (E.2)

The first term generates a diagram that is contained in the vacuum dimer propagator
and therefore does not contribute again.

We have now determined all the relative factors. To fix the global prefactor, i.e.
prove that is indeed the T3 defined by (3.50) that enters our diagrams, we now
look at the sum of the contributions to the Green’s function generated by diagrams
E.2(a) and E.3(a). We now also expand the propagators in terms of the fugacity,
i.e. we slash the lines like in figure 3.8(a). Further, we use the same time differences
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t1, .., t4 (and the associated set A) as in section 3.3.1. We have:

E.2(a) + E.3(a)

= −z3
∫
A

∏
i

dti

∫
k,p

G(0)(t1 + t2 + t3,q)G(1)(−t1 − t2,q)
(
g2

2
4

)2

e2µt2Gdd(t2,k + p)e2µt4Gdd(t4,k + p)G(1)(−t2 − t3 − t4,k)

G(1)(−t2 − t3 − t4,p)
[
− 8

16G
(0)(t3,p + k− q)− 2g3

36g2
2
δ(t3 − 0+)

]
(3.48)= −z

3

2

∫
A

∏
i

dti

∫
k,p

e−t2εqT2(t2,k + p)e−t4εqT2(t4,k + p)e−t1(εq+εk+εp)

e−(β−t1−t2−t3−t4)(εq+εk+εp)
[
e−t3(εk+p−q+2εq) − g3

9g2
2
δ(t3 − 0+)

]
(E.3)

The δ(t3 − 0+) makes sure that the vertex of the three-body interaction is indeed
ordered like ψ̄d̄dψ. The numerators of the fractions are the symmetry factors of the
diagrams. We also grouped the interaction vertices of the two-body interaction in
such a way that makes it easy to identify the definition (3.48) of the T2-matrix. We
used this equation in the second equality, canceled all the exponentials that contain
a µ against each other, and and multiplied by convenient factors of one to bring the
integral into a form that now allows to apply the generalized convolution theorem
(C.5) for the Laplace transform:

E.2(a) + E.3(a) = z3

2

∫
BW

ds

2πie
−βs

∫
k,p

T 2
2 (s− εq,k + p)

(s− εq − εk − εp)2[
1

s− εk+p+q−q−q − εq − εq
+ g3

9g2
2

]
︸ ︷︷ ︸

=̂T3(s,εq,εq,k+p+q,q,q)

, (E.4)

The term in the square brackets indeed is the inhomogeneity of the STM equation
(3.50). Since diagrams E.2(a) and E.3(a) have a relative multiplicity of 1/2 versus
the other diagrams (after expanding in terms of the fugacity, remember the two
choices for the slash in E.2(b)!), the other diagrams just have a simple prefactor
of one. The expression (E.4) is compatible with the one we are using for diagram
3.8(a) in eq. (3.78). This concludes our calculation on how the three-body T -matrix
enters the diagrams, as well as the symmetry factors of the diagrams.

205



Appendix E Symmetry factors and signs for chapter 3

E.2 Fermions

We will directly start with the diagrams for the two-particle sector, since the one-
particle sector trivially can not yield sign switches. In the following, we will make
clear that when we draw diagrams very carefully, we can read off a sign switch
from the number of crossings of the lines in the diagram. To understand this, recall
that [26] when we use Wick’s theorem on the correlator of four fermionic fields, we
get a sign whenever the contraction lines cross (because an even or odd number of
anti-commutations are needed to disentangle the fields). Hence, an even number of
crossings corresponds to no sign switch, and an odd number of crossings yields a
minus sign:〈

Tτψ(1)ψ(2)ψ(3)ψ(4)
〉
0 =

〈
Tτψ(1)ψ(2)ψ(3)ψ(4)

〉
0 +

〈
Tτψ(1)ψ(2)ψ(3)ψ(4)

〉
0

=
〈
Tτψ(1)ψ(4)

〉
0
〈
Tτψ(2)ψ(3)

〉
0 −

〈
Tτψ(1)ψ(3)

〉
0
〈
Tτψ(2)ψ(4)

〉
0

, (E.5)

where i = (τi,xi, σi) carries all information about the quantum numbers. Note that
due to the expansion of our virial propagators in terms of the G(n), cf. eq. (3.43),
which alternate in sign with the order of the expansion (even orders carry a −, odd
orders carry a +), there are additional signs switches with respect to the sign of
the mother diagrams. Having already invested the work for the bosonic case, we
will actually be able to just give the signs with respect to the bosonic expressions
without ever doing a real calculation. If you prefer to directly derive the results for
the fermionic case, consult the bosonic section of this appendix, and use

T2 = g2
2Gdd (E.6)

for the T2 matrix in terms of the fermionic dimer (vacuum) propagator.

E.2.1 Two-particle diagrams

To determine the sign of the mother diagram E.1 for the fermionic case, where the
external line is now an ↑-fermion and the loop consists of a ↓-fermion, it is convenient
to use the S-matrix expansion (3.31) of the Green’s function. The diagram is related
to the connected contraction of the correlator

〈Tτ ψ̄↑ψ̄↓d︸ ︷︷ ︸
t1+t2

d̄ψ↓ψ↑︸ ︷︷ ︸
t1

ψ̄↑ψ↑︸ ︷︷ ︸
t0=0

〉0, (E.7)
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If we just use the effective Feynman-rule that 〈dd̄〉0 shall corresponds to an inser-
tion of the vacuum dimer propagator, we actually get the diagram from the above
correlator (otherwise just the first term in a series expansion of the vacuum dimer
propagator). Here is the contraction that the mother diagram E.1 corresponds to:

E.1Fermi = 〈Tτ ψ̄↑ψ̄↓d d̄ψ↓ψ↑ ψ̄↑ψ↑〉0 (E.8)

Since the dimer counts as a bosonic field (its equation of motion is d = ψ↓ψ↑, also see
sec. 3.1.2), commuting it through the correlator will not yield a sign and we draw
the contraction above. We have zero crossings of the contraction lines, meaning that
the sign of this contraction is (−1)0 = 1.

A back-running fermionic line contributes a Green’s function G (instead of −G
in the bosonic case, or the forward-running fermionic case), so the diagram can
symbolically be written as

−G(−Gdd)GG = GGddGG, (E.9)

while the bosonic contribution to the Green’s function (which carries an additional
external minus sign from G ∼ −〈ψ̄ψ〉) is symbolically given by

−GGddGG. (E.10)

We now want to fix the sign of the fermionic diagram 3.7(a). Slashing two times
results in two additional minus signs with respect to the bosonic version of the
diagram, because the slashed propagators alternate in sign in fermionic case. Thus,
in summary2 we have that

3.7(a)Fermi = −3.7(a)Bose, (E.11)

where the diagram numbers always correspond to the results for the Green’s func-
tion. Note that the above equation that the expressions for the momentum distri-
bution and density are equal. Now, since diagrams 3.7(b)-3.7(d) are just slashed one
more time, we get an additional sign for them and get

3.7(b)Fermi = 3.7(b)Bose (E.12)
3.7(c)Fermi = 3.7(c)Bose (E.13)
3.7(d)Fermi = 3.7(d)Bose (E.14)

2Note that this does not correspond to the sign Leyronas gives to the diagram in the article [9].
Our diagrams 3.7(b)-3.7(d) agree with his results however. Furthermore, I can only reproduce
the standard Beth-Uhlenbeck result for the second virial coefficient with the sign given here.
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E.2.2 Three-particle diagrams

We will first take a look at the contractions again, and then, in the same spirit as in
the two-particle sector, fix a global sign by comparison to the bosonic contribution to
the Green’s function. To express the three-body diagrams in terms of contractions,
we write the diagrammatic three-body T -matrix insertion as the effective vertex

ψ̄σd̄(t)
[
t3,σ(t, ...)

]
dψσ(0), (E.15)

where t3,σ(t, ...) is a function that solves the STM equation, and only (imaginary)
time arguments are shown. Since all the three-body diagrams have three slashes,
the only variation in sign will come from the signs of the effective contractions. This
fixes the relative signs between the diagrams. Afterwards, we will determine the sign
of diagram 3.11(a), which then fixes the global sign and allows to give the results
in terms of the bosonic ones (as always in this section: replaced with the fermionic
T -matrices).

Diagrams 3.11(a)-3.11(f) corresponds to different effective contractions of the cor-
relator

〈 ψ̄↑ψ̄↓d︸ ︷︷ ︸
t1+t2+t3+t4

ψ̄σd̄︸︷︷︸
t1+t2+t3

dψσ︸︷︷︸
t1+t2

d̄ψ↓ψ↑︸ ︷︷ ︸
t1

ψ̄↑ψ↑︸ ︷︷ ︸
t0=0

〉0. (E.16)

Once again omitting all the details, we have:

3.11(a) ∼ 〈Tτ ψ̄↑ψ̄↓d ψ̄↑d̄dψ↑ d̄ψ↓ψ↑ ψ̄↑ψ↑〉0 sign: (−1)4 (E.17)

3.11(b) ∼ 〈Tτ ψ̄↑ψ̄↓d ψ̄↑d̄dψ↑ d̄ψ↓ψ↑ ψ̄↑ψ↑〉0 sign: (−1)3 (E.18)

3.11(c) ∼ 〈Tτ ψ̄↑ψ̄↓d ψ̄↑d̄dψ↑ d̄ψ↓ψ↑ ψ̄↑ψ↑〉0 sign: (−1)3 (E.19)

3.11(d) ∼ 〈Tτ ψ̄↑ψ̄↓d ψ̄↑d̄dψ↑ d̄ψ↓ψ↑ ψ̄↑ψ↑〉0 sign: (−1)0 (E.20)

3.11(e) ∼ 〈Tτ ψ̄↑ψ̄↓d ψ̄↓d̄dψ↓ d̄ψ↓ψ↑ ψ̄↑ψ↑〉0 sign: (−1)0 (E.21)

3.11(e) ∼ 〈Tτ ψ̄↑ψ̄↓d ψ̄↓d̄dψ↓ d̄ψ↓ψ↑ ψ̄↑ψ↑〉0 sign: (−1)1 (E.22)

This proves the claim that I was making earlier: We can effectively see the the sign
switches by looking at the topology of a diagram. When two fermionic lines cross,
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E.2 Fermions

this means a relative minus sign. To determine the global sign of diagram 3.11(a),
we write it symbolically (two-body vertices again missing, but since there are two
of them, the do not contribute a sign) as

3.11(a) = (−G)(−Gdd)T3(−Gdd)GGG, (E.23)

while the bosonic version (see the bosonic section E.1.2 of this appendix, but ignore
the symmetry factor 1/2) reads

3.8(a) = −GGddT3GddGGG. (E.24)

Since the expansion of the three back-running propagators yields three sign changes
with respect to the bosonic version, we have that 3.11(a) = −3.8(a) (with symmetry
factors ignored). Note that we are again comparing the diagrams for the Green’s
functions, which means that the contributions to the density are of equal sign. In
summary, by either comparing topologies or writing down the diagrams in explicit
form, we have:

3.11(a) = −3.8(a) (E.25)
3.11(b) = 3.8(c) (E.26)
3.11(c) = 3.8(d) (E.27)
3.11(d) = −3.8(b) (E.28)
3.11(e) = −3.8(b) (E.29)
3.11(f) = 3.8(e) (E.30)

with the usual replacement of the meaning of the T -matrices. Note that similar
arguments as the ones discussed here lead to the different sign of the kernel in the
fermionic STM equation.
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Appendix F

Trap averaging procedure

This appendix outlines how we have mapped our momentum distributions for the
homogeneous system to the case of an harmonic confinement. We will assume that
the density distribution of the cloud is given by a Thomas-Fermi profile, and that
equilibrium is only achieved locally, which results in a position independent fugacity
[102].

F.1 Useful definitions

We define a wavevector kF in the same way as for a single component Fermi gas:

kF = (6π2n)1/3. (F.1)

The corresponding temperature is

kBTF = ~2k2
F

2m = ~2

2m(6π2n)2/3. (F.2)

The degeneracy parameter of the gas now be written as:

λ3
Tn = 4

3
√
π

(
TF
T

)3/2
, (F.3)

where λT =
√

2π~2/mkBT is the thermal wavelength. In particular, we have:

λTkF = 2π1/2

√
TF
T
. (F.4)

F.1.1 Thomas-Fermi profile

The density of the cloud is given by the Thomas-Fermi profile [102]:

n(r) = n(0)
(

1− r2

R2

)
, (F.5)
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F.1 Useful definitions

where

n(0) = µTF
g

= 1
8π

1
a2

hoa

(15Na
aho

)2/5
= 15N

8πR3 , (F.6)

where N is the total particle number, and, furthermore:

R = aho

(15Na
aho

)1/5
. (F.7)

Here, aho =
√
~/mω is the harmonic oscillator length of the confining potential and

a is the initial scattering length of the gas [102]. The average density of the trap is
given by:

〈n〉 = 3N
4πR3 (F.8)

The density n(0) at the trap center can be related to kF as

n(0) = 5
2〈n〉 = 5

12π2k
3
F . (F.9)

We assume that the density profile after the ramp still is of the Thomas-Fermi form.
In particular, note that

κ∗
k0

=
(2

5

)1/3 κ∗
kF
. (F.10)

Here, we have defined the Fermi wave vector given by the density in the center of
trap: k0 = kF (n(0)). We will neglect possible particle losses, but keep in mind that
〈n〉 only measures the initial total density before the ramp to unitarity [94].

Assuming only local equilibrium in the trap [102], one has:

kBT (r) ∼ ~2k2
F

m
∼ ~2n(r)2/3

m
. (F.11)

This implies that the following quantity is constant at each point in the trap:

λ3
T (r)n(r) = b1z + 2b2z2 + 3b3z3 = D = const. (F.12)

Thus, under this assumption the fugacity z is constant and independent of the
position in the trap. The inclusion of a local dimensionless three-body parameter
distorts this picture: the fugacity certainly can depend on the position in the trap, in
particular due to the variation of the local density with respect to this dimensionless
three-body parameter. In the following, we neglect these effects for simplicity and
set κ∗/kF equal to its value at the trap center, at all positions in the trap.
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Appendix F Trap averaging procedure

F.2 Local density approximation

Our numerical results are given as a function of the dimensionless momentum qλT

and the dimensionless three-body parameter κ∗λT . In the local density approxi-
mation, the momentum distribution is obtained by integrating the homogeneous
solution over the cloud profile with a spatially varying temperature:

nT (q) = A

∫
d3un

(
q, κ∗, T (u)

)
, (F.13)

where we define u = r/R and n(k) is the dimensionless momentum distribution
which has the norm

λ3
T

∫
d3q

(2π)3n(q) = D. (F.14)

The constant A is determined from the normalization condition used in the experi-
ment:

1
k3
F

∫
d3q

(2π)3nT (q, κ∗) = A

k3
F

∫
d3q

(2π)3

∫
d3un

(
q, κ∗, T (u)

)
= A

k3
F

∫
d3un

(
u, κ∗, T (u)

)
= 4πAn(0)

k3
F

∫ 1

0
duu2 (1− u2)

= 2A
9π = 1. (F.15)

Hence, we have:

A = 9π
2 (F.16)

We know the total density of particles in the trap in the experiment [94], and we
know a− from ref. [90], hence we can infer κ∗/kF (or κ∗/k0). We specify a value of
κ∗λT (implicitly, we thus specify T/TF ). Since at the trap center, n(0) = 5

2〈n〉, the
local dimensionless temperatures and κ∗ are:

T

Tr=0
=
(2

5

)2/3 T

TF
(F.17)

κ∗λ0 =
(2

5

)1/3
κ∗λTF =

(2
5

)1/3
knλTF

κ

kF
= 2π1/2

(2
5

)1/3
√
TF
T

κ

kF
(F.18)

qλ0 = 2π1/2
(2

5

)1/3
√
TF
T

q

kF
. (F.19)
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F.2 Local density approximation

If we assume that λ3
Tn = D = const, the temperature at a distance u from the trap

center is

T (u) = T0(1− u2)2/3 (F.20)
κ∗λT (u) = κ∗λ0(1− u2)−1/3. (F.21)

The local momentum distribution is thus

n
(
q, κ∗, T (u)

)
= n

(
qλ0(1− u2)−1/3, κ∗λ0(1− u2)−1/3). (F.22)

For simplicity, we neglect the position-dependence of κ∗λT and set κ∗λT (u) = κ∗λ0.
The trap-averaged momentum distribution is then given by the integral

nT (q/kF , κ∗/kF ) ∼
∫ 1

0
duu2 n

(
qλ0

(1− u2)1/3 , κ∗λ0

)
. (F.23)

Normalizing this to one yields the results for the momentum distribution which
we can compare to experiment. Unless reducing the experimental κ∗/kF by 22.7,
we never find good agreement for our fifty different momentum distributions with
temperature guesses in the range κ∗λT0 = 0.125 and κ∗λT0 = 44.8.
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Appendix G

Auxiliary calculations for the OPEs of
the Coulomb problem

In the part G.1 of this appendix, we discuss auxiliary integrals that are needed
during the matching in secs. 4.4 and 4.5. In part G.2.1, we carefully derive the
series expansion of the scattering amplitude iA around ξ = ∞. In the last part
G.2.2, we show that, in two dimensions, the quartic derivative operator Dσ

4 is indeed
renormalized by subtraction of a term containing the contact operator.

G.1 Static Structure Factor

During the matching for the OPE of the density-density correlator, the short-
distance expansion of the auxiliary integral (4.35) is needed. In particular, it also
defines the matrix elements of the Contact operator via equation (4.39), and is thus
also of relevance for the OPE of the one-particle density matrix. The auxiliary
integral we want to solve is

Zd(r, k0) =
∫

q
eiq·r

i
k2

0
m −

q2

m + iε
iA(k0,q,0)

= −4π
a0

∫ 1

0
dxxiξ

d

dx



d = 2 : x
1
2

1 + x

∫
q

eiq·r√
q2 −

(
1−x
1+x

)2
k2

0

1
q2 − k2

0

d = 3 : 4x
(1 + x)2

∫
q

eiq·r

q2 −
(

1−x
1+x

)2
k2

0

1
q2 − k2

0

.

(G.1)

Note that the above expression should be read as k2
0 → k2

0 + iε (ε > 0) whenever a
k0 appears, so that poles and cuts lie on a well defined side of the real q-axis. In
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G.1 Static Structure Factor

order to solve the integrations above, let us treat the two- and three-dimensional case
separately. In the following, we will use the shorthands a2 = k2

0[(1−x)/(1+x)]2 +iε,
b2 = k2

0 + iε. The three-dimensional case is the more straightforward one:

I3 =
∫

d3q

(2π)3
eiq·r

q2 − a2
1

q2 − b2

= 1
ir(2π)2

∫ ∞
−∞

dq
qeiqr

q2 − a2
1

q2 − b2

= 1
2πr

∑
z0=a,b

Res
[
zeizr

z2 − a2
1

z2 − b2

]∣∣∣∣∣
z=z0

= 1
4πr

1
b2 − a2

(
eibr − eiar

)
= i

4π
1

a+ b
− r

8π +O(r2) (G.2)

In the second line, we extended the lower bound of the integral to −∞ and traded
this for the ∼ e−iqr term that came from the angular integration. For the third line,
we realized that we can view the integral as part of a contour that is closed in the
upper complex plane. Because of the iε prescription, only two of the poles lie in the
upper complex plane, namely z = a and z = b. Since the arc at infinity does not
contribute (for this we had to close the contour in the upper complex q-plane!), the
integral is equal to the sum of the residues at the enclosed poles. In the last line,
we expanded the result to order r, since this is all we need to determine the leading
order Wilson coefficient of the contact operator.

Using the same shorthands as before, the two-dimensional integral we need to
solve is given by:

I2 =
∫

d2q

(2π)2
eiq·r√
q2 − a2

1
q2 − b2

=
∫
dq

2π
q√

q2 − a2
J0(qr)
q2 − b2

=
∫
dq

4π

∫ 1

0
dy

qJ0(qr)y−1/2

(q2 − ya2 − (1− y)b2)3/2 (G.3)

In the second line, we performed the angle integration. In the third line, we intro-
duced a Feynman parameter. The anti-derivative of the integrand (with respect to
y) is given by 2√y/[(q2 − b2)

√
q2 − ya2 − (1− y)b2], and thus we had to include an

additional factor 1/2 in the third line. The q-integral is tabulated in ref. [149], in
the section on Hankel transforms of order zero:∫ ∞

0
dx

xJ0(yx)
(x2 + c2)3/2 = e−cy

c
(G.4)
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Appendix G Auxiliary calculations for the OPEs of the Coulomb problem

The small subtlety here is that we are calculating a complex extension of the tabu-
lated integral. We have c2 = −ya2 − (1 − y)b2. The iε prescription determines the
phase of c: c = −i

√
ya2 + (1− y)b2. Thus, we have for I2:

I2 = i

4π

∫ 1

0
dy
y−1/2eir

√
ya2+(1−y)b2√

ya2 + (1− y)b2

= i

4πb

∫ 1

0
dy y−1/2

∞∑
n=0

(ibr)n
n!

[
1− y

(
1− a2

b2

)]n−1
2

= i

2πb

∞∑
n=0

(ibr)n
n! 2F1

(
1− n

2 ,
1
2 ,

3
2; 1− a2

b2

)

= i

2π
arccos ab√
b2 − a2

− r

2π +O(r2) (G.5)

In the second line, the integral representation [113]

Γ(β)Γ(γ − β)
Γ(γ) 2F1(α, β, γ; z) =

∫ 1

0
dy yβ−1(1− y)γ−β−1(1− zy)−α (G.6)

of the hypergeometric function 2F1(α, β, γ; z) was used. The integral representation
is valid for <γ > <β > 0 and arg(1− z) < π, which in our case translates to |z| ≤ 1.
Indeed, from our definitions of a2 = k2

0[(1 − x)/(1 + x)]2 + iε, b2 = k2
0 + iε, we see

that for x ∈ [0, 1] the argument 1−a2/b2 of the hypergeometric function fulfills this
restriction. In the last line, the result was expanded to order r, which is all we need
to determine the Wilson coefficient of the contact to leading order.

G.2 Momentum Distribution

G.2.1 Expansions of the matrix elements to leading orders in the
off-shell energy

The matching of the momentum distribution greatly simplifies when taking the
the leading orders of the matrix elements (in states with zero vanishing external
momenta) in a series around k0 = 0 (ξ = ∞). For this, we in particular need the
expansion of the amplitude iA(k0,q,0 (defined in eqs. (4.27) and (4.21) for the 2D
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G.2 Momentum Distribution

and 3D case, respectively):

iA(k0,q,0) =


2πie2

−1
q

+ 2iξ
∫ 1

0
dx

xiξ−1/2√
q2(1 + x)2 − k2

0(1− x)2

 (2D)

4πie2
[
− 1
q2 + 4iξ

∫ 1

0
dx

xiξ

q2(1 + x)2 − k2
0(1− x)2

]
(3D)

=



2πie2

−1
q

+ 2i
∫ 1

0
dy

y
−i−1+ 1

2ξ√
q2
(
1 + y

1
ξ

)2
− ( 1

2a0ξ
)2
(
1− y

1
ξ

)2

 (2D)

4πie2

− 1
q2 + 4i

∫ 1

0
dy

y
i−1+ 1

ξ

q2
(
1 + y

1
ξ

)2
− ( 1

2a0ξ
)2
(
1− y

1
ξ

)2

 (3D)

(G.7)

In the first line, partial integration was used to rewrite the amplitude in an advan-
tageous form for what follows. In the second line, the substitution x = y1/ξ ⇒ dx =
dyy−1+1ξ/ξ is performed. We also replaced k0 = 1/2a0ξ, which is just the definition
of ξ. The last form now has a straightforward series expansion around ξ =∞:

iA(k0,q,0) =


2πie2

[
−1
q

+ 2i
∫ 1

0
dyy−1+i+ε

(
1
2q −

log2 y

16qξ2 +O
( 1
ξ4

))]
(2D)

4πie2
[
− 1
q2 + 4i

∫ 1

0
dyy−1+i+ε

(
1

4q2 −
log2 y

16ξ2q2 +O
( 1
ξ4

))]
(3D)

=


2πie2

4qξ2 +O
( 1
ξ4

)
(2D)

4πie2

2q2ξ2 +O
( 1
ξ4

)
(3D)

(G.8)

In order to make the integrals well-defined, we need an ε > 0. I want to stress that
this ε > 0 prescription is not ambiguous. It is indeed a subtle leftover from the
iε prescription that was used in the Lippmann-Schwinger equation (4.15). This iε
determined the sign of the k0 term, and if we would have been completely careful, we
would need to write me2/2

√
−k2

0 − iε ≈ iξ+ε for the exponent in the one parameter
integral representations (4.27) and (4.21) of the scattering amplitudes.

G.2.2 Renormalization of the operator Dσ
4 (r, R)

In the following, we want to show that (4.72) indeed renormalizes the operator
Dσ

4 (r,R) to all orders, and – in particular – for any external state. For this, consider
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diagram 4.5(d) in two dimensions, now with arbitrary values k2
0/m of the external

energy:

4.5(d) =
∫

q

(iq · r)4

4!

 i
k2

0
m −

q2

m + iε

2

(iA(k0,q,0))2

= 1
4!

(4π
a0

)2 3πr4

4

∫ 1

0
dxxiξ

d

dx

x
1
2

1 + x

∫ 1

0
dx′

d

dx′
x′

1
2

1 + x′∫ Λ

0
dq

q5

(q2 − k2
0 − iε)2

1√
q2 −

(
1−x
1+x

)2
k2

0

1√
q2 −

(
1−x′
1+x′

)2
k2

0︸ ︷︷ ︸
≡I(0,Λ)

, (G.9)

where we have evaluated the angular integration over cos4 φ, which gave 3π/4. We
also have defined an integral I(x, y), where x denotes the lower bound of the integral
and y the upper bound. Now, from the form the integrand, we see that there exists
a momentum scale Λ′ (set by k0), after which we can savely replace the integrand
by its leading order series expansion 1/q. We split up the integral I(0,Λ) as

I(0,Λ) = I(0,Λ′) + I(Λ′,Λ)

= I(0,Λ′) +
∫ Λ

Λ′
dq

1
q

+O(Λ−1,Λ′−1)

= finite + log Λ +O(Λ−1) (G.10)

Plugging this into (G.9) yields

4.5(d) = finite + log Λ
4!

(4π
a0

)2 3πr4

4

∫ 1

0
dxxiξ

d

dx

x
1
2

1 + x

∫ 1

0
dx′

d

dx′
x′

1
2

1 + x′

= finite + πr4 log Λ
8a2

0

∫ 1

0
dxxiξ

d

dx

x
1
2

1 + x

∫ 1

0
dx′

d

dx′
x′

1
2

1 + x′
(G.11)

The matrix element of the subtracted term in eq. (4.72) is given by the sum of
the four diagrams 4.3(a)-4.3(d), the result of which is given in eq. (4.40). Plugging
everything in, we get:

−
(2π
a0

)2 |r|4

128π log Λ
∑

diags. 4.3
= −πr

4 log Λ
8πa2

0

[∫ 1

0
dxxiξ

d

dx

x
1
2

1 + x

]2

(G.12)

which indeed exactly cancels the divergent part of Dσ
4 (r,R)! Note that finite exter-

nal momenta ±p complicate the above calculation, however the basic argumentation
stays the same. Of course, in this case the momentum scale Λ′, after which we as-
sume it to be safe to use a series expansion for the integrand, will be set by the
maximum of k0 and |p|.
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Clock shift in a strongly interacting two-dimensional Fermi gas

Christian Langmack1, Marcus Barth2, Wilhelm Zwerger2, and Eric Braaten1

1Department of Physics, The Ohio State University, Columbus, OH 43210, USA
2TechnischeUniversitätMünchen, PhysikDepartment, James-Franck-Strasse, 85748 Garching,Germany

(Dated: September 3, 2012)

We derive universal relations for the radio-frequency (rf) spectroscopy of a two-dimensional Fermi
gas consisting of two spin states interacting through an S-wave scattering length. The rf tran-
sition rate has a high-frequency tail that is proportional to the contact and displays logarithmic
scaling violations, decreasing asymptotically like 1/(ω2 ln2 ω). Its coefficient is proportional to
ln2(a′2D/a2D), where a2D and a′2D are the 2-dimensional scattering lengths associated with initial-
state and final-state interactions. The clock shift is proportional to the contact and to ln(a′2D/a2D).
If | ln(a′2D/a2D)| � 1, the clock shift arises as a cancellation between much larger contributions
proportional to ln2(a′2D/a2D) from bound-bound and bound-free rf transitions.

PACS numbers: 03.75.Ss, 05.30.Fk, 67.85.-d.

Spectroscopy of the internal levels of atoms is a cen-
tral subject of atomic physics. The associated transition
frequencies of a single atom are known with the precision
of atomic clocks. In fact, atomic clocks use a hyperfine
transition in cesium to keep our standard of time. In a
gas, the atoms experience energy shifts due to interac-
tions with the surrounding atoms, resulting in transition
frequencies that differ from those of free atoms. Such
density-dependent interaction shifts are a major source
of systematic errors in atomic clocks, and are thus called
clock shifts. Precision spectroscopy aims to avoid these
shifts as far as possible, e.g. by working at extremely
low densities or by using a purely spin-polarized gas of
fermions in the ultracold limit where the remaining S-
wave collisions are forbidden by the Pauli principle [1].
Alternatively, the atoms may be stored in an optical lat-
tice, where both the center-of-mass motion and the in-
teractions are completely quenched [2].

In investigations of many-body physics using ultracold
gases, the clock shift is, however, a signal of interest
rather than a nuisance. It can be especially interest-
ing when the atoms are strongly interacting, i.e. their
scattering length is large compared to both the range of
interactions and the average interparticle distance. The
interaction energy [1, 3] and the pairing gap [4] have been
measured for strongly-interacting fermionic atoms near a
Feshbach resonance. The generic setup for these experi-
ments involves a gas containing atoms in just two hyper-
fine states |1〉 and |2〉. A radio-frequency (rf) pulse, tuned
to the hyperfine splitting between |2〉 and a third, unoc-
cupied state |3〉 will then transfer atoms from |2〉 into |3〉.
If, for example, states |1〉 and |2〉 form a molecular bound
state, the rf pulse has to be detuned compared to the bare
hyperfine splitting by a frequency ω associated with the
binding energy of the molecule. At the two-body level,
effects like these can be analyzed in a straightforward
manner, even in the presence of strong final-state inter-
actions between |1〉 and |3〉 [5]. In a genuine many-body
situation, however, analytic methods for calculating the

rf transition rate Γ(ω) are not available. Exact relations
for Γ(ω) that hold independent of density and interaction
strength are therefore of considerable interest.

For strongly interacting fermions with two spin states
in three dimensions (3D), a number of exact rela-
tions that connect thermodynamic variables to large-
momentum and high-frequency tails of correlation func-
tions have been derived by Tan [6, 7]. These relations
all involve the contact C, which basically measures the
probability for pairs of fermions in states |1〉 and |2〉 to
be very close together. More precisely, the contact may
be defined by the universal power-law tail

nσ(k) −→ C/k4, σ = 1, 2 (1)

of the momentum distribution of either spin state at large
momentum k. The Tan relations are universal in the
sense that they apply to any state of the system, e.g.
few-body or many-body, homogeneous or in a trapping
potential, Fermi-liquid or superfluid state, provided only
that the length scales associated with the temperature
and number densities are large compared to the range of
interactions. The origin of this universality is that the
Tan relations are a consequence of operator identities,
some of which follow from the operator product expan-
sion of quantum field theory [8]. There are also uni-
versal relations governing rf spectroscopy. Specifically,
the average clock shift, i.e. the first moment of Γ(ω), is
proportional to the contact C [9] or, equivalently, to a
derivative of the total energy with respect to the scat-
tering length [10]. Moreover, the rf transition rate Γ(ω)
has a high-frequency tail that is proportional to C and
decreases like 1/ωn, where the exponent n is either 5

2 or
3
2 depending on the strength of the final-state interac-
tions between |1〉 and |3〉 [11–13]. Some of the universal
relations have been verified experimentally, e.g. by com-
paring the values of C obtained from the tail of the mo-
mentum distribution in Eq. (1) and from the rf transition
rate at large ω [14].

In our present work, we derive universal relations for
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rf spectroscopy in two-dimensional Fermi gases. These
systems have been investigated in several recent experi-
ments [15–17]. Beyond the motivation provided by these
experiments, universal relations that constrain the rf
transition rate in two dimensions (2D) are of interest
also for other reasons. First, rf spectroscopy measure-
ments can be performed within a rather short time scale.
It thus allows access to not only equilibrium but also ex-
cited states of the many-body system, e.g. the polaron on
the repulsive branch of a Feshbach resonance [18] or Bose
gases in the regime of strong repulsion. A second reason
is that a 2D gas with zero-range interactions provides an
example of a non-relativistic many-body system that is
scale invariant at the classical but not at the quantum
level. This breaking of the scale invariance by quantum
effects is an elementary example of an anomaly [19]. It
implies that the coupling constant g (which will be de-
fined explicitly below) is in fact a running coupling con-
stant g(µ) = −2π/ ln(a2Dµ) that changes logarithmically
with the momentum scale µ, reminiscent of the coupling
constant of Quantum Chromodynamics. The associated
intrinsic length a2D sets the scale for the two-body scat-
tering amplitude which, at low energies, has the charac-
teristic form [20, 21]

f(q) =
4π

ln(1/q2a22D) + iπ
. (2)

For any positive value of a2D, this amplitude has a pole
at q = i/a2D, which signifies the presence of a diatomic
molecule with binding energy Ed = ~2/ma22D that we
will call the (12)-dimer.

In experiments with ultracold atoms, the 2D gas arises
from a 3D system by adding a strong transverse confin-
ing potential that restricts the atoms to the ground state
in the third dimension. For harmonic trapping with an-
gular frequency ωz, the relation between a2D and the ex-
perimentally tunable 3D scattering length a is given by
`/a = f1(`2/a22D), where `2 = ~/mωz and the function
f1(x) is given in section V.A of Ref. [21].

A system consisting of fermions with the two spin
states |1〉 and |2〉 can be described by a quantum field
theory with the interaction Hamiltonian

Hint = (g/m)
∫
d2R ψ†1ψ

†
2ψ2ψ1(R). (3)

Here g is the bare coupling constant, which can be iden-
tified with the running coupling constant at the momen-
tum scale of the ultraviolet cutoff. Within this frame-
work, universal relations for both equilibrium properties
and rf spectra can be derived using the operator prod-
uct expansion (OPE) [8]. In particular, the tail of the
momentum distribution in Eq. (1) follows from the OPE
for ψ†σ(R + 1

2r)ψσ(R − 1
2r). The leading contribution

that is non-analytic as r → 0 comes from the operator
ψ†1ψ

†
2ψ2ψ1(R), whose coefficient exhibits a logarithmic

singularity in 2D of the form |r|2 log |r|. As a result,

nσ(k) behaves asymptotically like C/k4 with no logarith-
mic corrections, as in 3D and also in 1D [22]. The contact
C =

∫
d2R C(R) is an integral of the contact density

C(R) = g2〈ψ†1ψ†2ψ2ψ1(R)〉 , (4)

which is the expectation value of a local operator that an-
nihilates and recreates a pair of fermions. The structure
of these results is identical to the 3D case and, indeed,
many of Tan’s universal relations may be generalized to
2D [23]. Universal relations for current correlators, struc-
ture factors, and hydrodynamic correlators in 2D have
also been derived using the OPE [24].

We now consider the rf spectroscopy of the 2D system
consisting of fermions in states |1〉 and |2〉. Beyond the
interaction described by a2D, we also include final-state
interactions between |1〉 and |3〉 with 2D scattering length
a′2D. We will refer to the diatomic molecule consisting of
|1〉 and |3〉, which has binding energy E′d = ~2/ma′2D2,
as the (13)-dimer. The transfer rate Γ(ω) between |2〉
and |3〉 can be expressed in terms of the imaginary part
of a time-ordered correlation function:

Γ(ω) = Ω2
∫
d2R Im (i 〈Orf(ω + iε,R)〉) , (5)

where Ω is the Rabi frequency of the rf transition and
Orf(ω,R) is an operator that depends on a complex vari-
able ω:

Orf(ω,R) =
∫
dt eiωt

∫
d2r

×T ψ†2ψ3

(
R + 1

2r, t
)
ψ†3ψ2

(
R− 1

2r, 0
)
. (6)

(The time-ordering symbol T acts on all operators to the
right.) The bilocal operator can be expanded in terms of
local operators by using the OPE:

Orf(ω,R) =
∑
nCn(ω)On(R). (7)

Local operators can be assigned scaling dimensions. The
quantum fields ψσ have dimension 1. The gradient∇ and
the time derivative ∂/∂t increase the dimension by 1 and
2, respectively. At large frequency ω, higher dimension
operators in the OPE have Wilson coefficients Cn(ω) that
decrease with higher powers of ω. The Wilson coefficients
Cn(ω) in Eq. (7) can be calculated by matching Green
functions of the bilocal rf operator on the left side of
the OPE with Green functions of the local operators on
the right side. For operators of dimensions 2 and 4, it is
sufficient to match the Green functions in the 1-atom and
2-atom sectors. Our final result for the expectation value
of Orf(ω,R) at large complex ω, including all operators
with dimensions up to 4, is

〈Orf(ω,R)〉−→ i

ω
n2(R) +

i ∇2n2(R) + 4m∇ · J2(R)

8mω2

+
i ln(a′2D/a2D) ln(a2D

√−mω )

2πmω2 ln(a′2D
√−mω )

C(R), (8)
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where n2 and J2 are the number density and current
density for |2〉. If the system is in a steady state, ∇ · J2

vanishes because of current conservation. The integral
of ∇2n2 vanishes by the divergence theorem. The terms
shown explicitly in Eq. (8) are not affected by final-state
interactions between |2〉 and |3〉, which first enter into
the coefficients of dimension-6 operators.

We can derive various universal relations from the OPE
in Eq. (8). The tail of the rf transition rate at large
positive frequencies ω can be obtained by extrapolating
Eq. (8) to the real axis, taking the imaginary part, and
then inserting it into Eq. (5):

Γ(ω) −→ ln2(E′d/Ed)Ω
2C

4mω2
[

ln2(ω/E′d) + π2
] . (9)

Higher dimension operators in the OPE give contribu-
tions to the high-frequency tail that decrease faster than
ω−3. These contributions are suppressed by a posi-
tive power of an energy scale of the many-body sys-
tem divided by ω. The relevant energy scales of the
many-body system include Ed, the thermal energy kBT ,
and the two Fermi energies 4π2n1/m and 4π2n2/m.
The factor ln2(E′d/Ed) in Eq. (9) can be interpreted as
16π2/g2(1/a′2D), where g(1/a′2D) is the running coupling
constant at the momentum scale 1/a′2D. If a′2D = a2D,
the high-frequency tail in Eq. (9) vanishes identically.
In this case, Γ(ω) just consists of an unshifted peak
πΩ2N2δ(ω), because the rf pulse merely rotates |2〉 and
|3〉 in spin space [10]. The nontrivial dependence on ω
in Eq. (9) is a consequence of the anomalous scale in-
variance. If | ln(ω/E′d)| � π, the high-frequency tail in
Eq. (9) has the simple scaling behavior Γ(ω) ∼ 1/ω2.
However at much larger or much smaller frequencies,
there are logarithmic scaling violations and the asymp-
totic behavior is Γ(ω) ∼ (ω2 ln2 ω)−1. Simple scaling
behavior also arises in the limit of negligible final-state
interactions in which ln(E′d/ω) → ∞. In this limit,
the high-frequency tail in Eq. (9) reduces to Ω2C/4mω2.
This relation has been used in recent experiments with
40K atoms to extract the contact density in the normal
state of the 2D Fermi gas [25]. The contact density and
its dependence on a2D is close to that obtained from vari-
ational Monte Carlo calculations at T = 0 [26].

Sum rules can be derived by expressing weighted inte-
grals of Γ(ω) as contour integrals in the complex-ω plane:

∫ +∞

−∞
dωf(ω)Γ(ω) =

Ω2

2

∫
d2R

∮
dωf(ω)〈Orf(ω,R)〉, (10)

where the ω contour runs from +∞ to −∞ just below
the real axis and then from −∞ to +∞ just above the
axis. If the contour is deformed into a circle of infinite
radius, the OPE in Eq. (8) will be exact everywhere on
the contour. Choosing f(ω) = 1 and f(ω) = ω, we obtain

FIG. 1. Rf transition rate for the (12)-dimer as a function
of ω/Ed for the case E′

d = 9.4Ed. There is a delta function
at ω = −(E′

d − Ed) from the bound-bound transition. The
threshold for bound-free transitions is at ω = Ed. The grey
dots in the bound-free region are data from Zwierlein and
collaborators [27], normalized by a least-squares fit to the
theory curve.

∫ +∞

−∞
dω Γ(ω) = πΩ2N2, (11a)

∫ +∞

−∞
dω ωΓ(ω) =

ln(a′2D/a2D)Ω2C

2m
. (11b)

These sum rules are exact: they receive no contributions
from higher dimension operators in the OPE. The first
sum rule guarantees that interactions do not change the
integrated rf signal. The second sum rule determines
the clock shift 〈ω〉, which is defined as the ratio of the
integrals in Eqs. (11):

〈ω〉 = − ln(E′d/Ed)C
4πmN2

. (12)

Note that both the clock shift and the tail of the rf tran-
sition rate in Eq. (9) are unaffected by final-state inter-
actions between |2〉 and |3〉.

The universal relations in Eqs. (9) and (11) can be il-
lustrated by considering rf spectroscopy on the two-body
system consisting of a single (12)-dimer with binding en-
ergy Ed. The rf transition rate is

Γ(ω) =
πΩ2E′dEd ln2(E′d/Ed)

(E′d − Ed)2
δ(ω − Ed + E′d)

+
πΩ2Ed ln2(E′d/Ed)

ω2[ln2((ω − Ed)/E′d) + π2]
θ(ω − Ed). (13)

By evaluating the integrals in Eqs. (11), we verify that
the sum rules are satisfied exactly with N2 = 1 and C =
4πmEd, the contact for the (12)-dimer obtained from the
adiabatic universal relation dEd/da2D = −C/(2πma2D)
[23]. The universal relation for the tail in Eq. (9) holds
for |ω| � Ed. The clock shift for the (12)-dimer has a
negative contribution proportional to ln2(E′d/Ed) from
bound-bound transitions. If | ln(E′d/Ed)| � 1, there is
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a large canceling contribution from bound-free transi-
tions, such that the total clock shift agrees with Eq. (12).
Near the threshold, the bound-free transition rate has
the behavior 1/ ln2((ω −Ed)/E′d). This follows from the
inverse-logarithmic behavior of the two-body scattering
amplitude for |1〉 and |3〉 analogous to Eq. (2). Recent
experiments using 6Li atoms in 2D [17] are in good agree-
ment with the bound-free transition rate in Eq. (13) for
a single (12)-dimer in the presence of final-state interac-
tions. The data in Fig. 1 [27] were measured near the
3D Feshbach resonance for |1〉 and |2〉 at a magnetic field
of 690.7 G and a lattice depth to recoil energy ratio of
18.6(7), and they extend out to higher ω than in Ref. [17].
The ratio E′d/Ed is around 9.4 and Ed is about a factor
6 larger than the Fermi energy [27]. This places the sys-
tem in the BEC limit of the many-body problem where
the two-body result in Eq. (13) applies.

We now consider the many-body system in the limit in
which E′d is much greater than Ed and the other relevant
energy scales. The bound-bound and free-bound region
is then well separated from the free-free and free-bound
region of the rf spectrum. There could be additional
structure in the region of ω between −(E′d − Ed) and 0
associated with clusters of three or more atoms. However,
if this region is featureless, it is useful to define a clock
shift for the rf transition rate restricted to a range of
frequencies −ω0<ω<ω0 that excludes the bound-bound
peak. We choose ω0 and E′d−ω0 to be much greater than
the energy scales of the system. This clock shift is given
by a ratio of integrals analogous to those in Eq. (11).
They can be expressed as contour integrals analogous to
those in Eq.(10), except that the contour runs from +ω0

to −ω0 just below the real axis and then back to +ω0 just
above the axis. If the contour is deformed into a circle of
radius ω0, we can apply the OPE in Eq. (8) and obtain
the sum rules
∫ +ω0

−ω0

dω Γ(ω) = πΩ2N2 − [Im Ei(−L0 + iπ)]

×
(

ln
a′2D
a2D

)
Ω2C

πmE′d
+ . . . , (14a)

∫ +ω0

−ω0

dω ωΓ(ω) =

(
ln
a′2D
a2D
− 2

π
ln2 a

′
2D

a2D
arctan

π

L0

)
Ω2C

2m

+ . . . , (14b)

where Ei(x) is the exponential integral function and
L0 = ln(ω0/E

′
d). One advantage of finite-frequency sum

rules such as those in Eqs. (14) is that they can be evalu-
ated using measured rf spectra without extrapolations to
larger frequencies. As indicated by “+ . . .” in Eqs. (14),
these sum rules are not exact. They receive contributions
from higher dimensional operators in the OPE that are
suppressed by powers of an energy scale of the system
divided by ω0 or E′d. For example, the higher dimen-
sion contribution in Eq. (14a) is suppressed by a fac-
tor of C/mE′dN2. The corrections that are suppressed

by inverse powers of ω0 can be minimized by choosing
ω0 as large as possible while still avoiding contributions
from the bound-bound peak. Neglecting the contribu-
tions from higher dimension operators, the clock shift
obtained from Eqs. (14) reduces to

〈ω〉 =

(
1

π
ln2 E

′
d

Ed
arctan

π

|L0|
− ln

E′d
Ed

)
C

4πmN2
. (15)

If | ln(E′d/Ed)| � 1, this clock shift is much larger than
that in Eq. (12). The clock shift in Eq. (15), which ex-
cludes the contribution from bound-bound transitions, is
the one that is more relevant to the limit of weak final-
state interactions. The factor ln2(E′d/Ed) diverges in the
limit a′2D → 0, indicating that the clock shift in this case
is quadratically logarithmically sensitive to the range of
interactions.

In summary, we have presented universal relations for
the rf spectroscopy of strongly interacting fermions in
a 2D Fermi gas. They are of direct relevance to cur-
rent experiments with ultracold atoms, providing rigor-
ous connections between rf spectrocopy, thermodynam-
ics, and various correlation functions. They reveal as-
pects of these many-body systems that are directly re-
lated to the breaking of scale invariance in 2D and will
hopefully provide inspiration for further investigations of
these unusual systems.
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Short-distance properties of Coulomb systems
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We use the operator product expansion to derive exact results for the momentum distribution
and the static structure factor at high momentum for a jellium model of electrons in both two and
three dimensions. It is shown that independent of the precise state of the Coulomb system and for
arbitrary temperatures, the asymptotic behavior is a power law in the momentum, whose strength
is determined by the contact value of the pair distribution function g(0). The power-law tails are
quantum effects which vanish in the classical limit ~ → 0. A leading order virial expansion shows
that the classical and the high-temperature limit do not agree.

PACS numbers: 71.10.Ca, 05.30.Fk, 31.15.-p

I. INTRODUCTION

The basic constituents of ordinary matter are electrons
and nuclei combined in such a way that there is no net
overall charge. Within a non-relativistic approximation
and treating the nuclei as point particles, the interaction
is fully described by an instantaneous Coulomb potential
∼ e2/r at arbitrary distances. In spite of the long-range
nature of this interaction and the divergent attractive
force between electrons and nuclei at short distances, one
expects an overall neutral Coulomb system to be stable
in the sense that the ground state energy (or free energy
at finite temperature) is finite and scales linearly with the
total numberN of particles. It is one of the major accom-
plishments of theoretical physics to show that - beyond
the exactly solvable case of the hydrogen atom - these
expectations can indeed be proven rigorously. The proof
crucially relies on the fact that electrons are fermions and
are thus constrained by the Pauli principle1. Since nei-
ther the size and mass nor the statistics of the nuclei play
a role in this context, a simple approximation which cap-
tures much of the basic physics of Coulomb systems is the
well-known jellium model, where the nuclei are treated as
a homogeneous background that precisely cancel the neg-
ative charge of the Coulomb gas of electrons2. At zero
temperature, this model is fully specified by the stan-
dard dimensionless interaction strength rs = r0/a0. Here
a0 = ~2/me2 is the Bohr radius while r0 is the average
spacing between electrons, connected with the electron
density n via r0 = (3/4πn)1/3 in 3D and r0 = (1/πn)1/2

in 2D, respectively. Despite the fact that the periodic
arrangement of the nuclei is ignored, the jellium model
provides a reasonable starting point to describe elemen-
tary properties of metals like their cohesion energy or
compressibility2–4. Unfortunately, however, beyond the
fundamental issue of stability and extensivity, there are
hardly any exact results even for this highly simplified
model. It is only in the high-density limit rs ≪ 1 where a
perturbative expansion around the non-interacting Fermi
gas is possible. A simple argument for this is provided

by writing the jellium Hamiltonian

H = − 1

r2s

∑

i

∇2
i +

1

rs

∑

i<j

2

|ri − rj |
+Hb (1)

in dimensionless form, with Ry= e2/2a0 as the unit of en-
ergy and particle coordinates ri measured in units of r0
(both the energy Hb of the background as well as the in-
teraction energy between electrons and the background
are constants and thus need not be written explicitly).
Clearly, as rs → 0, the kinetic energy dominates and the
Coulomb interaction can be treated within perturbation
theory. The expected ground state is a Fermi liquid, with
a finite jump 0 < Z < 1 of the momentum distribution at
a spherical Fermi surface |k| = kF

5. While typical values
of rs ≈ 1−5 in metals7 are outside the range of perturba-
tion theory, at least the qualitative features of electrons
in metals are captured correctly in this picture. For very
large values of rs, the uniform electron liquid is expected
to eventually form a Wigner crystal, which minimizes the
interaction energy in (1). In addition, non-trivial phases
such as anisotropic quantum liquid crystals are likely to
appear at intermediate values of rs. Indeed, in two di-
mensions a direct transition from a uniform electron liq-
uid to a Wigner crystal as a function of rs can be ruled
out by a quite general thermodynamic argument8. More-
over, even in the Wigner crystal, the electron spin gives
rise to strong quantum fluctuations due to ring exchange
processes, leading to a complex magnetic structure, see
e.g. Refs.9–11.
In view of the still poorly understood phase diagram

of even the simplest model for a many-body system with
Coulomb interactions, it is of considerable interest to
derive exact relations that hold independent of the in-
teraction strength and the particular state in question.
Our aim in the present work is to show that such rela-
tions follow directly from the operator product expan-
sion (OPE) of quantum field theory. They constrain
the short-distance physics of Coulomb systems in a man-
ner which is analogous to the so-called Tan relations12–14

for fermions with interactions that have effectively zero
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range. Physically, these relations rely on the fact that at
sufficiently short distances only the two-body interaction
is relevant. At the level of the many-body ground state
wave function for Coulomb systems, this observation goes
back to Kimball15–17. Beyond providing a concise deriva-
tion of these relations, a novel and quite non-trivial as-
pect of our present derivation via the OPE is the fact
that the relations will be shown to be valid at the level
of operators. As a result, they apply to any state of the
system, e.g., to a Fermi liquid or a Wigner crystal, at
zero or at finite temperature and also in a few-body situ-
ation. The only change is the value of the ’contact’ g(0),
a dimensionless measure of the probability that two elec-
trons with opposite spin are found at a coincident point
in space.
In order to illustrate the universal features in the short-

distance behavior of Coulomb systems, it is instructive
to consider the hydrogen atom as a simple and exactly
solvable system. In fact, the basic relations that will
subsequently be proven for the many-body case show up
already in this elementary textbook problem18. The wave
function for relative motion in the hydrogen atom has the
well-known form19

ψnlm(r) =

(
2

a0n

)3/2
√

(n− l − 1)!

2n(n+ l)!
Ylm(θ, ϕ)

×
(

2r

a0n

)l
e
− r

a0nL2l+1
n−l−1

(
2r

a0n

)
, (2)

where Ylm(θ, ϕ) and L2l+1
n−l−1(x) are spherical harmonics

and generalized Laguerre polynomials, respectively (we
assume the proton to be infinitely heavy, so the reduced
mass is equal to the electron mass m). Its Fourier trans-
form Υnlm(q) has been calculated by Podolsky and Paul-
ing20. It is given by

Υnlm(q) =22l+4π(a0n)
3/2(−i)ll!

√
n(n− l − 1)!

(n+ l)!
Ylm(ϑ, φ)

× ζl

(ζ2 + 1)
l+2

Cl+1
n−l−1

(
ζ2 − 1

ζ2 + 1

)
, (3)

where ζ = q a0n, and Cl+1
n−l−1(x) denotes a Gegenbauer

polynomial. The momentum distribution of the elec-
tron is the absolute square of the momentum space wave
function. Using Eq. (3), |Υnlm(q)|2 turns out to de-
crease asymptotically as 1/q8+2l for large momentum
ζ = q a0n≫ 1. The leading order term

|Υn00(q)|2 =

(
8π

a0

)2 |ψn00(0)|2
q8

+O(1/q10) (4)

in the momentum distribution therefore only involves the
contribution from s-states. They are the only ones with a
finite probability density |ψn00(0)|2 = 1/π(a0n)

3 for the
electron and proton to be found at a coincident point in
space.

Remarkably, the same ’contact’ density also appears
in the high-momentum tail of the atomic form factor
ρnlm(q), which is the Fourier transform of the electronic
density distribution. Its leading contribution at large q

ρn00(q) =

∫
d3r e−iq·r|ψn00(r)|2

=
16π

a0

|ψn00(0)|2
q4

+O(1/q5) (5)

comes again from s-states, while higher angular momenta
are associated with faster decaying power laws. As for
the momentum distribution, the coefficient of the high-
momentum tail contains the contact density |ψn00(0)|2.
Moreover, both the momentum distribution and the form
factor depend only on the magnitude q = |q| of the wave
vector, i.e., they have spherically symmetric tails since
only s-states contribute. As will be shown in the follow-
ing, the power laws found in the hydrogen atom and the
fact that the physics at short distances is rotation in-
variant also show up in the many-body context, even for
inhomogeneous or anisotropic phases. More precisely, the
momentum distribution is replaced by the Fourier trans-
form of the one-particle density matrix, while the atomic
form factor becomes the static structure factor S(q) of
the many-body system.
The article is structured as follows: in Sec. II, we in-

troduce the jellium model, the one- and two-particle den-
sity matrix as well as some basics of the operator prod-
uct expansion. In Sec. III, the OPE is used to derive
the exact short-distance behavior of general many-body
wave functions. Moreover, it is shown that this implies
power-law tails in both the momentum distribution and
the static structure factor which depend on the particular
state in question only through the value of the contact
g(0). A direct computation of the short-distance OPE of
the density-density correlator and the one-particle den-
sity matrix is presented in Sec. IV. Finally, an explicit
calculation of the contact in both the classical and the
high-temperature limit is given in Sec. V. It is shown that
for a Coulomb system these limits give opposite results
and thus are not equivalent. The article is concluded by a
summary and outlook, Sec. VI. The Feynman rules of the
diagrammatic calculation and some details of the evalu-
ation of some few-particle matrix elements are discussed
in Apps. A and B.

II. JELLIUM AND OPE

In second-quantized form, the Hamiltonian of the jel-
lium model is given by

H = Hb +

∫
ddxψ†

σ

−~2∇2

2m
ψσ(x)

+
1

2

∫
ddx

∫
ddx′ ψ†

σ(x)ψ
†
σ′ (x

′)
e2

|x− x′|ψσ′(x′)ψσ(x),

(6)
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where a summation over spin indices σ =↑, ↓ is implied.
Since the Hamiltonian involves only one- and two-body
interactions, the expectation value of the energy in a state
described by an arbitraryN -body density matrix only in-
volves the reduced one- and two-particle density matrices
γ(1) and γ(2)1. In a spin-resolved form and in a position
space representation, the former can be expressed as

γ(1)σ (x,x′) = 〈ψ†
σ(x)ψσ(x

′)〉 . (7)

Its Fourier transform with respect to x−x′ then gives the
momentum distribution (see Eq. (30) below). Regarding
the two-particle density matrix γ(2)(1, 1′; 2, 2′), one only
needs the diagonal elements 1=1′, 2=2′, which define a
dimensionless, spin-resolved pair distribution function

nσ(x)nσ′(x′) gσ,σ′(x,x′) =
〈
ψ†
σ(x)ψ

†
σ′ (x

′)ψσ′(x′)ψσ(x)
〉
.

(8)
The pair distribution function is a measure of the prob-
ability to find an electron with spin projection σ′ at
position x′ given an electron with spin projection σ is
at x. For a completely uncorrelated system one has
g(x,x′) ≡ 1. Note that there is no assumption here
about translation invariance, which is certainly broken
in the Wigner crystal. The total pair distribution func-
tion

g(x,x′) =
∑

σ,σ′

nσ(x)nσ′ (x′)gσσ′ (x,x′)
n(x)n(x′)

(9)

of a spin one half Fermi gas is a weighted sum of contri-
butions gσ,σ′ . They all approach unity as x − x′ → ∞
and so does g(x,x′). For small separations x−x′ → 0, in
turn, the pair distribution function for equal spins van-
ishes quadratically because of the Pauli principle. Taking
into account the possibility of a non-vanishing spin po-
larization ζ = (n↑ − n↓)/n, one finds

g(0) =
1

2

(
1− ζ2

)
g↑↓(0) (10)

for the total pair distribution function at vanishing sepa-
ration in the translationally invariant case. Note that in
a situation where the electronic state is not translation
invariant, the local value g(0) = g(R, 0) of the pair dis-
tribution function depends also on the ’center-of-mass’
coordinate R = (x + x′)/2, a dependence which is sup-
pressed in the following.
Both the one-particle density matrix and the pair dis-

tribution function can be expressed as expectation values
of operators at different points in space. The operator
product expansion - specified here to the relevant case of
equal times - provides an expansion of an operator prod-
uct OaOb at nearby points in space in terms of local
operators:

Oa(R − r

2
)Ob(R+

r

2
) =

∑

n

Wn(r)On(R). (11)

It is important to emphasize that Eq. (11) is an op-
erator relation, i.e., it is valid for expectation values

between any state. The state-independent coefficients
Wn(r) are ordinary c-numbers and are called the Wilson
coefficients. They depend both on n and the specific op-
erators Oa and Ob which appear on the left-hand side of
Eq. (11). The scaling dimension ∆n of a local operator
On that contains NO fermion creation and annihilation
operators is defined by the property that the correlation
between On and its hermitian conjugate at points sep-
arated by a small distance r and time t asymptotically
scales as t−∆n exp

[
−iNOmr2/2t

]
. For example, the op-

erator ψ†
σ has scaling dimension ∆ = d/2. The values of

∆n determine the dependence of the Wilson coefficients
at small separation r via

Wn(r) = r∆n−∆a−∆b f(r/a0, êr), (12)

where f is a function of the dimensionless ratio r/a0
and the unit vector êr, which reflects a possible angular
dependence. The operators On with the lowest scaling
dimension therefore govern the behavior of an operator
product at small separation. In particular, Wilson coeffi-
cients which are non-analytic in r give rise to power law
tails of the associated correlator OaOb at large momen-
tum.
Regarding the question whether the OPE (11) is a

convergent rather than an asymptotic expansion, precise
statements have only been given in the context of rela-
tivistic21 and, in particular, conformal field theories. In
the latter case the OPE can be shown to have infinite
radius of convergence22,23. For non-relativistic quantum
field theories, like in our present problem, mathemati-
cally precise results on the convergence of the OPE are
unfortunately not available. The OPE for the specific
case of Coulomb systems may however be justified a pos-
teriori by the fact that our main results like the short
distance behavior of the many body wave function (20)
and the cusp condition (24) agree with results derived in
a mathematically precise manner via different methods24.
In practice, the Wilson coefficients may be determined

by performing few-particle calculations. Indeed, since
they are state-independent, it is sufficient to calculate the
matrix element of Eq. (11) between simple (few-particle)
states for which 〈On〉 6= 0. The coefficients Wn(r) then
follow by matching both sides of Eq. (11). As will be
shown below, an operator of particular interest in the
present context is the two-particle operator

Oc(R) = ψ†
↑ψ

†
↓ψ↓ψ↑(R) . (13)

In analogy to the notion used for fermions with short
range interactions, we shall refer to this as the contact
operator. It has a finite expectation value in the presence
of Coulomb interactions and thus the scaling dimension
∆c = 2d of the contact operator is the one inferred from
simple dimensional analysis. This is quite different from
the case where the interactions have zero range and Oc

acquires an anomalous dimension two25. The contact is
a central quantity which determines the leading short-
distance singularities of Coulomb systems and, in partic-
ular, the magnitude of the high-momentum tails of both
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the momentum distribution and the structure factor. In
a translation invariant situation, the contact is equal to
n2 times the local value of the pair distribution function
g(0). Before proceeding to derive these results from the
OPE in explicit form, we note that our derivation remains
unchanged if the sign of the interaction is reversed. All
the results of this article can thus be extended to the case
of an attractive Coulomb interaction by simply changing
e2 → −e2.

III. OPE FOR THE MANY-BODY
WAVEFUNCTION

The crucial physical insight, already implicit in the
work of Kimball15–17, relies on the intuition that the
many-body wavefunction factorizes into a two-body con-
tribution and a remainder whenever two particle coor-
dinates come closer than the average interparticle dis-
tance. In this limit, the two particles only feel their mu-
tual Coulomb repulsion at short distance, with negligible
corrections from the medium. This type of argument has
in fact been used by various authors26,27 in the derivation
of the Tan relations for Fermi gases with short range in-
teractions. In order to prove the validity of this intuitive
picture, we use the operator product expansion for the
special case of the operator

Oa(x)Ob(y) = ψ↑(x)ψ↓(y). (14)

Inserting the general form (11) of the OPE, the N -
particle wavefunction Ψ corresponding to an arbitrary
N -particle state |ΨN 〉 can be expanded as a formal power
series

Ψ(−r

2
, ↑; r

2
, ↓; r3, σ3; . . .)

=
1√

N↑!N↓!
〈0|ψ↑(−

r

2
)ψ↓(

r

2
)

N∏

l=3

ψσl
(rl)|ΨN 〉

=
∑

n

Wn(r)
1√

N↑!N↓!
〈0|On(0)

N∏

l=3

ψσl
(rl)|ΨN〉, (15)

whereWn(r) are the Wilson coefficients in an OPE of the
operator ψ↑(x)ψ↓(y), which can be written as the sum
of a spin singlet operator

ψ(x)ψ(y) =
1

2
(ψ↑(x)ψ↓(y) − ψ↓(x)ψ↑(y)) (16)

and a triplet operator which is symmetric in the spin
indices. The leading order term in the OPE is associ-
ated with the operator ψψ(0), whereas a similar contri-
bution of the triplet operator vanishes since the fermion
fields anticommute. Both singlet and triplet operators
contribute in higher orders involving additional deriva-
tives. The Wilson coefficient of the leading order can be
obtained by taking the expectation value of Eq. (16) be-
tween the vacuum and a two-particle state with (on-shell)

+

(a)

+

(b)

FIG. 1. (a) Contribution to the two-particle matrix element
of the operator ψ(− r

2
)ψ( r

2
), denoted by the white circles. (b)

Same for the operator ψψ(0). The T-matrix is denoted by a
gray rectangle.

energy p2/m. The corresponding diagrams are sketched
in Fig. 1. (A brief summary of the Feynman rules in mo-
mentum space for the jellium Hamiltonian (6) is given in
App. A.) We can express this matrix element as a one-
body scattering wave function

〈0|ψ(−r

2
)ψ(

r

2
)|p, ↑;−p, ↓〉

= 〈r|1 +G0T |p, ↑;−p, ↓〉 = ψp(r), (17)

using the bare retarded two-particle propagator G0 and
the T-matrix T . In the second line, we have used the
Lippmann-Schwinger equation for the scattering wave-
function ψp(r) with energy p2/m. Similarly, the matrix
element of the operator ψψ(0) is ψp(0)

28. We determine
its Wilson coefficient by matching this matrix element to
leading order in the energy p2/m of the external state. As
a result, it turns out that Wψψ(r) solves the two-particle
s-wave Schrödinger equation at zero energy

[
−∇2 +

1

a0r

]
Wψψ(r) = 0 (18)

with boundary condition Wψψ(0) = 1. The solution of
Eq. (18) up to linear order in r is

Wψψ(r) =





1 +
r

2a0
+ . . . (3D)

1 +
r

a0
+ . . . (2D)

. (19)

The OPE therefore provides a concise derivation of the
intuitive short-distance factorization

lim
r→0

Ψ(−r

2
, ↑; r

2
, ↓; . . .) =Wψψ(r)Ψ(0, ↑;0, ↓; . . .) (20)

of the many-particle wavefunction (15) if two particles
of opposite spin are close to each other. This factoriza-
tion was previously considered by Lepage for two-particle
systems in the context of effective field theories31. Re-
cently, this was used to derive high-momentum tails for
the unitary Fermi gas and the Coulomb gas32.
Focusing on pure states, e.g., the ground state of jel-

lium, the result (20) together with the fact that the two-
particle wave function Wψψ(r) is non-analytic at short
distances implies power-law tails in the ground state mo-
mentum distribution and the static structure factor. In-
deed, for a pure state, the dimensionless and intensive
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momentum distribution is given by

n(q) =
N

V

∫
ddR

∫
ddr

N∏

l=2

ddrl e
−iq·r

×Ψ∗(R − r

2
, r2, . . . , rN )Ψ(R+

r

2
, r2, . . . , rN ). (21)

Its asymptotic behavior for large momentum is deter-
mined by the integration regions in which both R + r/2
and R− r/2 approach one of the particle coordinates rl
for l = 2, . . .N simultaneously. By substituting the re-
sult (20) in Eq. (21), the resulting high-momentum tail
of the momentum distribution turns out to be given by

n(q) =





(
4π

a0

)2
n2g(0)

q8
+ . . . (3D)

(
2π

a0

)2
n2g(0)

q6
+ . . . (2D)

, (22)

in accordance with the results in Refs.15–17,32.
The pair distribution function in first-quantized form

reads (specifying to the translation invariant case)

n2g(r) = N(N − 1)

∫ N∏

l=3

ddrl|Ψ(0, r, r3, . . . , rN )|2.

(23)

Inserting Eq. (20) in the definition of the pair correlation
function, Eq. (23), we obtain

g(r) =





(
1 +

r

a0

)
g(0) + . . . (3D)

(
1 +

2r

a0

)
g(0) + . . . (2D)

. (24)

The pair distribution function at short distance there-
fore exhibits a dip, rising linearly with slope g(0)/a0.
For an attractive Coulomb force, where a0 → −a0, the
dip is replaced by a cusp. The result (24) agrees with
the one obtained previously by Kimball15–17. Following
Rajagopal et al.33, we call this the cusp condition. It is
interesting to note that a result which is completely anal-
ogous to that in Eq. (24) holds for Fermi systems with
zero range interactions in one dimension, with the 1D
scattering length a1 replacing the Bohr radius34. More-
over, it is important to mention that various approximate
schemes which have been developed to treat the jellium
problem at least in its Fermi liquid phase in fact violate
the cusp condition (24). This is true in particular for the
standard RPA approximation, which is exact in the long
wavelength limit but violates the cusp condition, see e.g.
Ref.39. It is obeyed within extensions of the RPA which
include local field corrections like the one developed by
Singwi, Tosi, Land and Sjölander40, at the expense, how-
ever, of violating the compressibility sum rule S(q) ∼ q2

at long wavelengths q → 04,41.

The short-distance nonanalyticity in the pair distribu-
tion function leads to an asymptotic power law in the
static structure factor

S(q) = 1 + n

∫
ddr e−iq·r (g(r)− 1) . (25)

Substituting Eq. (24), the static structure factor behaves
like

S(q)− 1 =





−8π

a0

ng(0)

q4
(3D)

−4π

a0

ng(0)

q3
(2D)

, (26)

at large momentum, where we have used that the Fourier
transform of r in three and two dimensions is −8π/q4 and
−2π/q3, respectively, in the sense of distributions. The
results in Eq. (26) are again in accordance with those
obtained in Refs.15–17,32.
The tails (22) and (26) in both the momentum distri-

bution and the static structure factor are present for any
state of the Coulomb system, a property that will be de-
rived in detail in the following section. Here, we focus
on the particular case of zero temperature and moderate
values of rs, where the jellium ground state is a uni-
form Fermi liquid. The characteristic momentum scale
beyond which the asymptotic behavior applies is then
set by the Fermi wave vector kF , which is related to the
average interparticle distance r0 via kF = 1/(αr0), with

α = (4/9π)1/3 ≃ 0.521 in 3D and α = 1/
√
2 ≃ 0.707

in 2D. Introducing a dimensionless strength s of the tail
in the momentum distribution via nσ(q) → s (kF /q)

2d+2

one obtains35

s(rs) =





9

2
α8 g(0)r2s (3D)

2α6 g(0)r2s (2D)

. (27)

The dimensionless strength s is a continuous function
of rs, vanishing in both limits rs → 0 and rs → ∞. In-
deed, the power-law tail in the momentum distribution
is present even in the Wigner crystal, as long as the spin-
polarization ζ remains less than one (recall Eq. (10)).
The contact in this limit is expected to vanish in an ex-
ponential manner with rs. In the opposite limit of high
density, the fact that g(0) = 1/2+O(rs)

36 yields s ∼ r2s .
The function s(rs), therefore, must have a maximum,
whose value appears to be much smaller than one. In-
deed, according to recent quantum Monte Carlo calcula-
tions of the momentum distribution in the Fermi liquid
phase of the jellium model in 2D37 and 3D38, the re-
sulting dimensionless strengths s(10) ≃ 0.006 (2D) or
≃ 0.009 (3D) of the power law tail are surprisingly small
even at rs = 10. In particular, they are almost two or-
ders of magnitude smaller than the corresponding value
s(∞) = 32 ln 2/(3π2) ≃ 0.749 of a Fermi gas with infinite
short range repulsion in 1D34.
In contrast to zero range interactions, where the value

of the contact determines the complete thermodynamics
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by a simple coupling constant integration12, the ground
state energy of the jellium model requires knowledge of
the pair distribution function at all distances. Interpo-
lation schemes for the static structure factor and thus
the complete pair distribution function g(r) which prop-
erly account for both the long- and short-distance behav-
ior of the homogeneous, unpolarized electron gas have
been proposed by Gori-Giorgi, Sacchetti and Bachelet42

and may be used to develop improved versions of the
exchange and correlation energy functionals in density
functional theory43,44.

IV. DIRECT OPE OF THE CORRELATORS

In the following, we will show how the OPE can be
used to perform an expansion of the one-particle den-
sity matrix and the pair distribution function (7) and (8)
at the operator level. Apart from providing an alterna-
tive derivation of the high-momentum tails which avoids
discussing the many-particle wavefunction, this method
makes evident a point stressed already in our introduc-
tion: the short-distance properties derived here are valid
completely independent of the state of the system. In
particular, they hold in arbitrary few- or many-body
states or in equilibrium at any temperature.

We start by considering the static structure factor,
which - for q 6= 0 - is just the Fourier transform

S(q) =
1

N

∫
ddR

∫
ddr e−iq·r〈n

(
R− r

2

)
n
(
R+

r

2

)
〉

(28)
of the density correlator. Equations (8) and (28) imply
that its asymptotic behavior for large momentum q is
dominated by the short distance behavior of the pair dis-
tribution function. The pair distribution function is con-

nected to the ↑↓ density correlator ψ†
↑ψ↑

(
− r

2

)
ψ†
↓ψ↓

(
r
2

)

via definition (8). As shown in detail in App. B, the
short-distance OPE of this correlator to linear order in r
is

ψ†
↑ψ↑

(
−r

2

)
ψ†
↓ψ↓

(r
2

)

=





(
1 +

r

a0

)
ψ†
↓ψ

†
↑ψ↑ψ↓(0) + . . . (3D)

(
1 +

2r

a0

)
ψ†
↓ψ

†
↑ψ↑ψ↓(0) + . . . (2D)

, (29)

where we have omitted the analytic term of order r since
it does not contribute to the high-momentum asymp-
totics. At this order, additional four-fermion operators
involving only one particle species do not contribute be-
cause of the anticommutation relations obeyed by the
fermion fields. The OPE (29), together with the defini-
tions of the pair correlation function (8) and the static
structure factor (28), reproduces the high-momentum be-
havior (26). In particular, when taking the expectation

value of (29), the contact operator ψ†
↓ψ

†
↑ψ↑ψ↓(0) pro-

duces the pair correlation function at zero separation.
The momentum distribution nσ(q) describes the prob-

ability to find a particle of spin σ with momentum q. In
second quantization, it is defined as the Fourier transform
of the one-particle density matrix:

nσ(q) =
1

V

∫
ddx

∫
ddy e−iq·(y−x) 〈γ(1)σ (x,y)〉

=
1

V

∫
ddR

∫
ddr e−iq·r〈ψ†

σ

(
R− r

2

)
ψσ

(
R+

r

2

)
〉.
(30)

The non-analytic Wilson coefficients in a short-distance
expansion of the one-particle density matrix therefore de-
termine the high momentum tail of nσ(q). A quite elab-
orate calculation, which is discussed in detail in App. B,
shows that the OPE of the one-particle density matrix is
given by

ψ†
σ

(
−r

2

)
ψσ

(r
2

)
=





[
e−

r
2 ·∇ψ†

σ (0)
] [
e
r
2 ·∇ψσ (0)

]
− r5

2880π

(
4π

a0

)2

ψ†
↓ψ

†
↑ψ↑ψ↓(0) + . . . (3D)

[
e−

r
2 ·∇ψ†

σ (0)
] [
e
r
2 ·∇ψσ (0)

]
− r4 log r

128π

(
2π

a0

)2

ψ†
↓ψ

†
↑ψ↑ψ↓(0) + . . . (2D)

. (31)

The first Wilson coefficients of the bilinear operators are
the coefficients in a Taylor expansion of the operators on
the left-hand side. The contact operator Oc defined in
Eq. (13) is the leading order term associated with a non-
analytic Wilson coefficient of order O(r5) and O(r4 log r)
in 3D and 2D, respectively. Substituting Eq. (31) in (30),

we obtain

nσ(q) =





(
4π

a0

)2
n↑n↓g↑↓(0)

q8
+ . . . (3D)

(
2π

a0

)2
n↑n↓g↑↓(0)

q6
+ . . . (2D)

(32)

for an arbitrary state with a possible non-vanishing spin
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polarization ζ. Summing over σ =↑, ↓, we recover the
previous result for the momentum distribution at large
momentum in the spin-balanced Coulomb gas, Eq. (22).
The fact that the non-analytic terms in Eq. (31) appear
at the level of operators shows that the tails in the mo-
mentum distribution are also present in phases where
translation invariance is broken, in a few-body situation,
or at arbitrary temperatures. In a Wigner crystal, for
instance, the product n↑n↓g↑↓(0) has to be replaced by

1

V

∫
ddR 〈ψ†

↓ψ
†
↑ψ↑ψ↓(R)〉 , (33)

which is again an intensive quantity in the thermody-
namic limit N, V → ∞ at fixed average densities n↑, n↓.
In a few-body situation, in turn, these densities vanish
but there is still a finite expectation value of the contact
operator. For the hydrogen atom for instance, one finds

∫
d3R 〈ψ†

↓ψ
†
↑ψ↑ψ↓(R)〉 = |ψn00(0)|2, (34)

in agreement with the result derived in the introduction.

V. HIGH-TEMPERATURE VERSUS
CLASSICAL LIMIT

Beyond the derivation of exact relations which con-
strain the short-distance properties of Coulomb systems
in quite general terms and which - as has been shown in
the preceding sections - all involve the contact 〈Oc(R)〉,
quantitative results for specific phases of jellium or non-
trivial few-body Coulomb systems require to calculate
the value of the contact as a function of both the in-
teraction strength rs and temperature T . Since relevant
values of rs are beyond the regime where perturbation
theory can be applied, this can only be achieved numeri-
cally, for instance via quantum Monte Carlo calculations,
see e.g. Refs.37,38 for some recent results. In the follow-
ing, we calculate the value of the contact in the classical
and the high-temperature limit. Surprisingly, it turns
out that for Coulomb interactions these two limits are
not equivalent. In fact, they turn out to be completely
opposite.
Consider the Coulomb gas in the regime

kBT ≫ ~2n2/d

m
, (35)

where the thermal energy is much larger than the de-
generacy energy. This is the standard limit of a non-
degenerate gas, in which the average interparticle spac-
ing n−1/d is much larger than the thermal wavelength
λT = ~(2π/mkBT )1/2:

n1/dλT ≪ 1. (36)

In this limit, thermodynamic properties can be calculated
by expanding in powers of the fugacity z = exp (βµ) =

nλdT /2 ≪ 145. The non-degeneracy condition (36) does
not involve the strength e2 of the interaction and is satis-
fied both in the infinite temperature and in the classical
limit. Now, for systems with Coulomb interactions, there
is a second and purely classical, so-called Bjerrum length
ℓB = e2/(kBT ), which - keeping ~ finite - eventually be-
comes shorter than the thermal length at sufficiently high
temperatures. As a result – already noted in Ref.46 – the
order in which the limits T → ∞ or ~ → 0 is taken mat-
ters. Taking T → ∞ before ~ → 0 results in the following
hierarchy of length scales:

n−1/d ≫ a0 ≫ λT ≫ ℓB. (37)

In turn, taking the classical limit ~ → 0 before T → ∞,
we find:

n−1/d ≫ ℓB ≫ λT ≫ a0. (38)

As will be shown below, these two limits give quite dif-
ferent results for the value of the contact. Since the gas
is non-degenerate in both cases, the contact value of the
pair distribution function can be calculated to leading
order in the virial expansion, which just involves an in-
tegration

n2g(0) = z2
2d/2

λdT

∫
ddp

(2π~)d
e−βp

2/m|ψp(0)|2 , (39)

of the square of the relative Coulomb wavefunction
|ψp(0)|2 at the origin with the classical Boltzmann dis-
tribution for the relative momentum p. Here, z = eβµ is
the fugacity while |ψp(0)|2 is given by19

|ψp(0)|2 =





2πξ

e2πξ − 1
(3D)

2

e2πξ + 1
(2D)

, (40)

with ξ = me2/2~p. In the infinite temperature limit, the
integration gives

g(0) =





1

2

(
1−

√
2π
ℓB
λT

+ . . .

)
(3D)

1

2

(
1− π2

√
2

ℓB
λT

+ . . .

)
(2D)

. (41)

The leading order term is the expected result for a classi-
cal ideal gas. The corrections involve the ratio ℓB/λT and

thus vanish for large temperatures like ∼ 1/
√
T . Note

that, although g(0) is of order one in this limit, the high-
momentum tails in this limit are present only for very
large q ≫ λ−1

T .
More relevant for low temperature, non-degenerate

plasmas is the classical limit ~ → 0 for which Ry≫ kBT .
This limit is reached, for example, for Coulomb gases of
charged dust particles in astrophysics47. In this limit the
integration in (39) gives rise to a contact which vanishes
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exponentially like

g(0) =





4π221/3

31/2

(
ℓB
λT

)4/3

e
− 3π

21/3

(
ℓB
λT

)2/3

+ . . . (3D)

2π21/3

31/2

(
ℓB
λT

)1/3

e
− 3π

21/3

(
ℓB
λT

)2/3

+ . . . (2D)

.

(42)

Equations (41) and (42) are the main results of this sec-
tion. The Wilson coefficients of the momentum distri-
bution and the static structure factor diverge as 1/a20 ∼
1/~4 and 1/a0 ∼ 1/~2 as ~ → 0. The high momentum
tails are expected to occur for q ≫ λ−1

T . Thus, their char-
acteristic momentum scale is pushed to infinity as ~ → 0.
The total weight of the tails, containing both the Wil-
son coefficients and g(0), is exponentially suppressed and
guarantees a well defined kinetic energy in this limit. We
point out that different high-momentum tails are present
in the classical system. Indeed, the structure factor of
the classical electron gas decreases as 1/q2 at intermedi-
ate momentum κ < q < 1/lB, where κ =

√
nlB is the

inverse Debye-Hückel length48.

A. Diagrammatic derivation

In the infinite temperature limit, the virial expansion
of the contact g(0) in Eq. (41) can also be obtained using
a diagrammatic formalism. This method was originally
introduced by Vedenov and Larkin to derive the equa-
tion of state of an electron gas49, and was recently used
by various groups to determine the virial expansion of a
Fermi gas with short-range interactions50–53.
The perturbation series of an arbitrary correlator in-

volves all Feynman diagrams that connect to the operator
insertions. In the absence of a small parameter, this gives
rise to a very large number of diagrams. The key point of
the method is that in the infinite temperature limit, this
number is drastically reduced by exploiting the causal
structure of the propagators, which are defined as

G(τ,k) =

{
−(1− nk)e

−(εk−µ)τ τ > 0

nke
−(εk−µ)τ τ < 0

, (43)

where nk = 1/(eβ(εk−µ) +1) is the Fermi-Dirac distribu-
tion. In imaginary time, they carry the whole dependence
on the fugacity and, thus, an expansion of a diagram in
the fugacity corresponds to an expansion of the propaga-
tors:

G(τ,k) = G(0)(τ,k) +G(1)(τ,k) +O(z2), (44)

with

G(0)(τ,k) = −Θ(τ) eµτe−εkτ and (45)

G(1)(τ,k) = z eµτe−εk(β+τ). (46)

0 β

(a)

0 βt

(b)

FIG. 2. (a) O(e0) and (b) O(e2) contribution to g(0). Imag-
inary time runs from the left to the right. Black dots de-
note the density operator, the wavy line the instantaneous
Coulomb interaction, and (slashed) lines the particle propa-
gator as explained in the text.

Θ is the Heaviside step function. The coefficients G(i)

with i = 1, 2, . . . can be treated as separate diagrammatic
elements, e.g. by denoting them by a line that is slashed
i times. The order of a diagram in z is then set by the
sum

∑
i iNi, where Ni is the number of propagators of

type i. It is important to note that the leading order
term (45) is purely retarded, and while the calculation
of a general order may be unwieldy, only a very limited
number of diagrams contribute to the virial expansion of
a correlator to leading order in z.
Figure 2 shows the two leading order contribution in

e2 to the pair correlation function

g↑↓(0) =
1

n↑n↓
〈Tτn↑(β)n↓(0)〉 , (47)

where we define the density operator in the usual sense
nσ = − limτ→0− Tτψσ(τ)ψ†

σ(0) to avoid an ordering am-
biguity3. Figure 2(a) corresponds to the noninteracting
result

ga↑↓(0) = 1, (48)

where we use the relation nσ = zσλ
−d
T . The O(e2) con-

tribution in Fig. 2(b) reads

gb↑↓(0) =





−
√
2π
ℓB
λT

(3D)

− π2

√
2

ℓB
λT

(2D)

, (49)

which coincides with our previous result (41). Note that
higher order contributions to g(0) contain infrared diver-
gences. They can be removed by summing the divergent
parts of an infinite number of ring diagrams49, which
gives rise to Debye-Hückel corrections that are of higher
order in the density.

VI. SUMMARY AND CONCLUSIONS

In summary, we used a short-distance operator prod-
uct expansion to derive the high-momentum tail of the
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structure factor and the momentum distribution of the
Coulomb gas. Since these results are based on operator
identities, they hold for pure states as well as for mix-
tures, and, in particular, for different phases, such as a
Fermi liquid or aWigner crystal. The key idea behind the
derivation of our exact results is the separation of short
and long distance scales. The functional dependence on
the high-energy scales can be calculated exactly while
the low-energy contribution factorizes. This multiplica-
tive constant is the contact value of the pair distribution
function, consistent with the intuitive expectation that
the short-distance physics is determined by the probabil-
ity to find two particles at the same point. These results
are in close analogy to the Tan relations for zero range
interactions12, in which an analogous contact enters the
coefficients of the high-momentum tails.
Furthermore, we calculated the contact in explicit form

for non-degenerate Coulomb gases, using a virial expan-
sion. It turns out that there are two possible limits which
yield quite different results: in the high-temperature
limit, the contact approaches the ideal Fermi gas value
with power-law corrections in the temperature. By con-
trast, in the classical limit, the contact vanishes exponen-
tially as ~ → 0, a behavior which is crucial to ensure a
well-defined transition to the classical regime in which the
Coulomb repulsion between the particles prevents them
from being at coincident points.
The universal relations obtained in the present article

are by far not exhaustive. Indeed, many more relations
could be derived within the framework introduced here.
A short-time OPE analogous to Refs.54–56 would give re-
sults for dynamical correlators, such as, for example, the
current response function or the dynamic structure fac-
tor, which display short-range correlations that are not
captured in a random phase approximation57. A simi-
lar analysis can be carried out for the spectral function,
which possesses a high-frequency tail as derived in58,59.
Beyond applying the OPE to the Coulomb gas, it should
be straightforward to generalize the results in this article
to other many-fermion systems with long-range interac-
tions, such as quantum gases of dipolar particles, which
have recently been studied experimentally60–62.
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Appendix A: Feynman Rules

This appendix summarizes the Feynman rules of the
Hamiltonian (6) in momentum space. An energy ω and a
momentum q are assigned to each internal and external
line. The bare propagator is denoted by a continuous
line and contributes a factor G0(ω,q) = i/(ω − q2/2m+
i0). We represent the interaction between two fermions
by a wavy line. It contributes a factor 4πie2/q2 in 3D
and 2πie2/q in 2D, where q is the difference between
the center of mass momenta of the ingoing and outgoing
fermions. Finally, each undetermined momentum and
energy is integrated with measure

∫
ddq/(2π)d

∫
dω/2π.

The T-matrix insertion iT (p,p′, k) is denoted by a
gray rectangle, where p and p′ are the center of mass
momentum of the ingoing and outgoing atoms, respec-
tively. We denote the center of mass energy of the ingo-
ing atoms by E = k2/m. Note that this energy is not
necessarily on-shell, i.e. we do not impose the condition
k2 = p2 = p′2. The T-matrix solves the Bethe-Salpeter
equation, depicted diagrammatically in Fig. 3(a), and
reads29,30,63,64

iT (p,p′, k)

=





−16iπe2k2
∫ 1

0

dxxiξ
d

dx

x

H(p,p′, k)
(3D)

−4iπe2k

∫ 1

0

dxxiξ
d

dx

x1/2

H1/2(p,p′, k)
(2D)

, (A1)

whereH(p,p′, k) = 4k2(p−p′)2x−(k2−p2)(k2−p′2)(1−
x)2 and ξ = me2/2k is called the Sommerfeld parameter.

Appendix B: Operator Product Expansion

In this appendix, we collect the matrix elements and
momentum integrals needed to perform the OPE for the
Coulomb gas. For simplicity, we set ~ = 1 in the fol-
lowing. Since the operator product expansion is state-
independent, it is sufficient to evaluate the matrix ele-
ments of the operator products (7) and (8) and the local
operators between selected few-particle states. The Wil-
son coefficients are determined by matching the terms in
an expansion of these expectation values in the external
parameters of the state. The Wilson coefficients of the
bilinear operators, i.e., operators that contain one field
operator and its hermitian conjugate, are the coefficients
in a Taylor expansion of the operator product, which can
be obtained by matching the matrix elements between
a one-particle state. To compute the contact’s Wilson
coefficient, we choose a two-particle state with zero rel-
ative momentum and (off-shell) energy k2/m, which we
denote by 〈k|O|k〉. These matrix elements are the sum
of four diagrams with either scattering or no scattering
in the initial and final states. Some of them are depicted
in Fig. 3.
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= +

(a) (b) (c) (d) (e)

FIG. 3. (a) Bethe-Salpeter equation for the T-matrix, which is indicated by a gray rectangle. (b-e) Contribution to the two-
particle matrix elements of (b) the density-density correlator n↑(− r

2
)n↓( r

2
), (c) the contact of the pair distribution function

g(0), (d) the one-particle density matrix ψ†
σ(− r

2
)ψσ(

r
2
), and (e) bilinear operators, respectively.

a. Structure factor

As explained in Sec. IV, the short-distance behavior
of the pair correlation function is inferred from an OPE

of the ↑↓ density correlator n↑(− r
2 )n↓( r2 ). The matrix

element of this operator between a two-particle state can
be expressed in terms of diagram 3(b). The complete
matrix element is the sum of four diagrams with either
scattering or no scattering in the initial and final states:

〈k|n↑(−
r

2
)n↓(

r

2
)|k〉 =

[
1 +

∫
dω

2π

∫
ddq

(2π)d
eiq·riT (0,q, k)G0(ω,q)G0(E − ω,−q)

]2

=





(
1 +

r

a0

)[
4

∫ 1

0

dxxiξ
d

dx

x

(1 + x)2

]2
+O(r2) (3D)

(
1 +

2r

a0

)[
2

∫ 1

0

dxxiξ
d

dx

x1/2

1 + x

]2
+O(r2) (2D),

(B1)

where we used the integrals

∫
d3q

(2π)3
eiq·r

(q2 − a2)(q2 − b2)
=

i

4π

1

a+ b
− r

8π
+O(r2) (B2)

and
∫

d2q

(2π)2
eiq·r

(q2 − a2)1/2(q2 − b2)
=

i

2π

arccos ab√
b2 − a2

− r

2π
+O(r2). (B3)

The factor in square brackets in Eq. (B1) depends on the details of the states and must not contribute to the Wilson

coefficients. It is matched by the expectation value of the contact ψ†
↓ψ

†
↑ψ↑ψ↓(0). Consider the diagram in Fig. 3(c):

∫
ddq

(2π)d

∫
dω

2π
(iT (0,q, k))G0(ω,q)G0(E − ω,−q) =





−4iξ

∫ 1

0

dx
xiξ

(1 + x)2
(3D)

−2iξ

∫ 1

0

dx
xiξ−1/2

1 + x
(2D)

. (B4)

The full matrix element of ψ†
↓ψ

†
↑ψ↑ψ↓(0) contains three additional diagrams:

〈k|ψ†
↓ψ

†
↑ψ↑ψ↓(0)|k〉 =





[
4

∫ 1

0

dxxiξ
d

dx

x

(1 + x)2

]2
≈ 1

4ξ4
(3D)

[
2

∫ 1

0

dxxiξ
d

dx

x1/2

1 + x

]2
≈ 1

16ξ4
(2D)

, (B5)

where we have expanded the result to leading order in k.
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(a) (b) (c)

FIG. 4. Leading-order contributions to the structure factor (a,b) and momentum distribution (c).

b. Momentum distribution

To obtain the asymptotic form of the momentum distribution (30), one performs an OPE of the nonlocal operator
ψ†
σ(− r

2 )ψσ(
r
2 ), whose expectation value gives the one-particle density matrix γ( r2 ,− r

2 ), cf. Eq. (7). Since insertions
of this operator on external legs are matched by bilinear operators, the only relevant diagram that contributes to the
Wilson coefficient of the contact operator involves scattering in both initial and final state as shown in Fig. 3(d). As
we are only interested in the leading order non-analyticity of the Wilson coefficient of the zero distance pair correlator,
we expand the T-matrix, as well as our diagram, as a power series in k around k = 0. This procedure introduces
infrared divergences, which we regulate by introducing an infrared cutoff µ. The expansion of the T-matrix with
respect to k ∼ 1/ξ is given by

iT (0,q, k) =





i
2πe2

ξ2q2
= lim

µ→0
i

2πe2

ξ2(q2 + µ2)
(3D)

i
πe2

2ξ2q
= lim

µ→0
i

πe2

ξ2
√
q2 + µ2

(2D).

(B6)

In addition, we expand our propagators as 1/(q2 − k2) = 1/(q2 + µ2) + O(k2). In the limit k → 0, diagram 3(d) is
given by

∫
ddq

(2π)d

∫
dω

2π
eiq·r(iT (0,q, k → 0))2G0(ω,q)

2G0(E − ω,−q)

=





π

48a20ξ
4

[
3

µ5
− r2

2µ3
+
r4

8µ
− r5

15

]
+O(r6) (3D)

π

16a20ξ
4

[
1

2µ4
− r2

8µ2
+
r4

32

(
3

4
− log

eγEµr

2

)]
+O(r5) (2D).

(B7)

The matrix elements of the one-particle operators (Fig. 3(e)) match the analytic terms in this expansion. The
remainder is of order O(r5) and O(r4 log r) and is matched by the contact operator:

WOc(r) =





−
(
4π

a0

)2
r5

2880π
+O(r6) (3D)

−
(
2π

a0

)2
r4

128π

(
−3

2
+ log

eγEr

2

)
+O(r5) (2D)

. (B8)

c. Green’s function OPE

In addition to the derivation outlined in the previous
section, the high-momentum tail of the structure factor
can also be obtained from a short-time and -distance
OPE of the time-ordered density Green’s function

iGn(ω,q) =

∫
dt

∫
ddx eiωt−iq·x 〈Tn(t,x)n(0,0)〉.

(B9)

For q 6= 0, it is related to the structure factor by

S(q)− 1 =
1

n
lim
t→0−

∫
dω

2π
e−iωt iGn(ω,q). (B10)

The integral is evaluated by closing the contour in a large
semicircle in the lower half of the complex ω-plane. Only
Wilson coefficients with poles in both half-planes con-
tribute to the high-momentum tail. In the limit of negli-
gible external scales, diagrams have vanishing residue if
they can be traversed from one operator insertion to the
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other by following the fermion lines. The Wilson coef-
ficient of the operator Oc are read off directly from the
diagrams in Figs. 4(a) and 4(b):

WOc(ω,q)

=





8πe2

q2
1

(ω − εq + i0)(−ω − εq + i0)
(3D)

4πe2

q2
1

(ω − εq + i0)(−ω − εq + i0)
(2D)

, (B11)

where εq = q2/2m, and the external lines couple to the
contact g↑↓(0). Performing the contour integration re-
produces the result (26).
We can apply a similar argument to determine the

high-momentum tail of the momentum distribution,
which is related to the single-particle Green’s function
iGσ(t,x) = 〈Tψσ(t,x)ψ†

σ(0,0)〉 by3

nσ(q) = − lim
t→0−

∫
dω

2π
e−iωt iGσ(q, ω). (B12)

This relation was used to derive the momentum distribu-
tion of a Fermi gas with short-range interactions54. The
first nonzero contribution is given by the contact opera-
tor, which has the Wilson coefficient (cf. Fig. 4(c))

WOc(ω,q)

=





(
4πe2

q2

)2 −1

(ω − εq + i0)2(−ω − εq + i0)
(3D)

(
2πe2

q

)2 −1

(ω − εq + i0)2(−ω − εq + i0)
(2D)

.

(B13)

Calculating the residue in Eq. (B12) yields the previous
result (32).
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Pairing effects in the nondegenerate limit of the two-dimensional Fermi gas
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The spectral function of a spin-balanced two-dimensional Fermi gas with short-range interactions
is calculated by means of a quantum cluster expansion. Good qualitative agreement is found with a
recent experiment by Feld et al. [Nature (London) 480, 75 (2011)]. The effects of pairing are clearly
visible in the density of states, which displays a suppression of spectral weight due to the formation of
a two-body bound state. In addition, the momentum distribution and the radio-frequency spectrum
are derived, which are in excellent agreement with exact universal results. It is demonstrated that
in the limit of high temperature, the quasiparticle excitations are well defined, allowing for a kinetic
description of the gas.

PACS numbers: 05.30.Fk, 67.85.-d, 67.10.Hk

I. INTRODUCTION

Feshbach resonances in ultracold atoms provide us
with the possibility of tuning the strength of the interpar-
ticle interaction at will, allowing us to probe vastly differ-
ent types of physics. For a Fermi gas at low temperature,
this ranges from a BCS-type superfluid at small attrac-
tive interaction to a Bose-Einstein condensate (BEC) of
tightly bound dimers as the interaction strength is in-
creased. This BEC-BCS crossover has been the subject
of intense research over the past decade [1]. An interest-
ing question is whether pairing affects the properties of
a Fermi gas above the superfluid transition temperature
as well. In contrast to standard BCS theory, which pre-
dicts pairing and condensation to appear simultaneously,
it has been conjectured that pairing occurs at a temper-
ature larger than the superfluid transition temperature,
and that the remnant of a pairing gap remains in the
normal phase. This regime is known as the pseudogap
phase. It is expected that in the pseudogap phase, the
single-particle excitation spectrum assumes a BCS-type
dispersion relation ω(q) =

√
(εq − µ)2 + ∆2, where εq =

q2/2m, µ is the chemical potential, and ∆ is a superfluid
order parameter, which predicts a “back-bending” of the
dispersion relation around the Fermi momentum. For a
three-dimensional unitary Fermi gas, the single-particle
excitation spectrum has been probed using momentum-
resolved radio-frequency spectroscopy [2], and evidence
of pseudogap behavior has been reported [3]. Various
theoretical works indicate the existence of a pseudo-
gap [4, 5], while some others do no observe this [6]. Gen-
erally, fluctuations are more relevant in two-dimensional
(2D) systems, suggesting that pseudogap effects are more
pronounced in 2D. Indeed, Feld et al. recently re-
ported the observation of a pairing pseudogap in a two-
dimensional Fermi gas [7].

∗ marcus.barth@ph.tum.de
† hofmann@umd.edu

Experimentally, quasi two-dimensional Fermi gases are
created by trapping the system in a strongly oblate
trapping geometry. For a harmonic trapping potential,
the strength of the confinement is set by the ratio of
the harmonic oscillator length in the confining direction,
lz =

√
1/mωz, and the 2D scattering length a2, which

is related to the 3D scattering length via the transcen-
dental equation lz/a3 = f1(l2z/a

2
2). The function f1 is

for example given in Sec. V of Ref. [8]. In this paper,
we set ~ = kB = 1. In the limit of strong confinement
in which lz is much smaller compared to a2, the perpen-
dicular degree of freedom decouples from the dynamics,
rendering the system effectively two-dimensional. Note
that in contrast to the 3D case, a2 is always positive and
there exists a two-body bound state with binding energy
Eb = 1/ma22 for all scattering lengths. In recent years,
it has become possible to prepare and probe Fermi gases
in the strictly two-dimensional regime [9, 10], and we re-
strict our attention to this purely 2D case.

Momentum-resolved rf spectroscopy induces a transi-
tion from an initial occupied spin state to an unoccu-
pied state of same momentum, followed by a time-of-
flight measurement to extract the momentum distribu-
tion of the out-coupled atoms. This transition rate is di-
rectly related to the spectral function, which encodes the
single-particle excitation spectrum. While the spectral
function is fundamental to the description of many-body
systems, it is usually a very challenging and complex task
to calculate this quantity theoretically. Quite generally,
the analysis of strongly interacting Fermi gases is com-
plicated by the lack of a small parameter which could
be used in a perturbative expansion, and in many cases,
one has to resort to complex numerical calculations to
obtain quantitatively reliable results. The experiment [7]
has thus far been analyzed using different resummation
schemes for the spectral function [11–13]. In this paper,
we apply a quantum cluster expansion to the spectral
function, which provides a systematic expansion about
the nondegenerate or high-temperature limit. This virial
expansion has already been successfully applied to ex-
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2

tract thermodynamic properties of the two-dimensional
gas in a trap [14] as well as the spectral function in the
three-dimensional gas [15]. We find that even the lead-
ing order provides a qualitative description of the mea-
sured data [7]. We discuss the properties of the spectral
function in detail, focusing in particular on the density
of states and the implications of an incoherent spectral
weight found at negative frequencies.

This paper is structured as follows: In Sec. II, we start
by discussing the phenomenology of the spectral func-
tion and its characteristic behavior throughout the BCS-
BEC crossover. Section III introduces the virial expan-
sion. It is established that the virial expansion should
be quantitatively reliable up to temperatures as low as
the Fermi temperature, and we outline how the spectral
function is calculated within the virial expansion. Sec-
tion IV presents the results of this calculation. While the
onset of a gap is clearly visible in the density of states, we
argue that the observed backbending of the lower branch
is not a feature of the spectral function, but a conse-
quence of the asymmetric structure of the bound state
branch and the thermal occupation of states. The den-
sity of states is presented in Sec. IV A. Section IV B ex-
tracts the momentum distsribution and the rf transition
rate from the spectral functions. Our results reproduce
known universal results valid in the high-momentum and
high-frequency limits, respectively, which are linked to
the incoherent weight of the spectral function at large
and negative frequency. Furthermore, in Sec. IV C, we
compute the quasiparticle properties. The paper is con-
cluded by a summary in Sec. V.

II. THE SPECTRAL FUNCTION

We begin by discussing the properties of the spectral
function, which contains information about the single-
particle spectrum. The spectral function is defined as
the imaginary part of the retarded single-particle Green’s
function:

A(ω,q) = −2 ImG(ω,q). (1)

It describes the probability density of creating either a
particle or a hole excitation with momentum q and en-
ergy ω. For a noninteracting gas with dispersion ω(q),
the spectral function is a δ-function centered at ω(q).
In the presence of interactions, the peak acquires a finite
width, which is proportional to the inverse lifetime of the
excitation. As an example, consider the Fermi gas at low
temperature and large scattering length, i.e., in the BCS
regime. The spectral function takes the form

A(ω,q) = 2πv2qδ(ω +
√

(εq − µ)2 + ∆2)

+ 2πu2qδ(ω −
√

(εq − µ)2 + ∆2). (2)

Here, vq and uq are the Bogoliubov parameters, and the
chemical potential is positive µ = k2F /2m > 0, whereby

BEC

BCS

ΜBEC - ΜBCS 0 - ΜBEC

0.0
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0.6

0.8
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Ρ
HΩ

L�2
m

Ω

FIG. 1. (Color online) Sketch of the density of states at zero
temperature in the BCS and the BEC limits.

the Fermi momentum kF is related to the density n via
kF =

√
2πn. For any fixed momentum, it is not possible

to create an excitation in the energy range between ±∆:
the single-particle spectrum is gapped. Note that the
hole-part of the spectral function, which starts at ω =

−
√
µ2 + ∆2, bends back at q = kF towards negative

frequency at large momentum. Interactions are expected
to renormalize the scale at which the backbending occurs
to some k0 6= kF .

As the strength of the interaction is increased, there is
a crossover from the BCS to the BEC regime, in which
the quasiparticles are not Cooper pairs but two-particle
bound states. In this limit, the spectral function is

A(ω,q) = 2πZq δ(ω + εq − µ)

+ 2π(1− Zq) δ(ω − εq + µ), (3)

where the chemical potential is half the bound-state en-
ergy, µ = −Eb/2, and the residue is Zq = |ϕ(q)|2n, with
|ϕ(q)|2 = 4πa22/(1+q2a22)2 being the square of the bound-
state wave function in momentum space. Note that there
is no backbending at finite momentum in the dispersion
relation, but the spectral function still possesses a gap of
size Eb [16].

The pairing gap is also manifested in the density of
states. The density of states counts the excitations with
energy ω, and is obtained by integrating the spectral
function over momentum:

ρ(ω) =

∫
d2q

(2π)2
A(ω,q). (4)

In BCS theory below the superfluid transition temper-
ature, this density of states exhibits a gap of width 2∆
around the Fermi energy, while in the BEC limit the gap
size is given by the binding energy Eb of the two-body
bound state. The density of states at zero temperature
for both limits is sketched in Fig. 1. As the temper-
ature increases beyond the critical temperature, mean-
field theory predicts the gap to vanish.

Pairing is possible even above the critical temperature,
which can affect the properties of the normal phase. In
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the high-temperature limit, the quasiparticle excitations
are well defined and the fermions are unpaired. Below
a certain temperature T ∗, most fermions are bound in
pairs, giving rise to significant deviations from a simple
quasiparticle picture. On the BCS side of the crossover,
this regime is known as the pseudogap phase. The hall-
mark of the pseudogap phase is a depletion of spectral
weight in the density of states around the Fermi surface
at ω = µ. The pseudogap grows as the temperature is
lowered and eventually forms a full gap below Tc. Often,
a backbending of the dispersion relation akin to that in
the BCS model is taken as a phenomenological sign of a
pseudogap phase. This, however, has to be treated with
caution, since the backbending at large momentum is a
generic feature of an interacting Fermi gas, as pointed
out by Schneider and Randeria [17]. On the BEC side,
one also may find a depletion of spectral weight, which in
this case is associated with the formation of a two-body
bound state and occurs at ω = −µ. While the pseudogap
is considered to be a many-body effect, the depletion on
the BEC side can be understood already from a two-body
calculation, as will also be shown in Sec. IV A.

In the BEC limit, the density of fermions nf and of
fermions bound in dimers nd can be estimated using a
thermodynamic argument assuming a noninteracting gas
of fermions and dimers [18, 19]. It is given by the so-
called Saha formula

n2f
nd

=
mT

4π
e−Eb/T , (5)

where the total density of particles n = 2nf +2nd is kept
fixed. We can define a temperature T ∗ at which there is
an equal number of dimers and unpaired fermions in the
normal phase of the gas. This temperature is

T ∗

TF
=

Eb/EF
W (Eb/EF )

, (6)

where TF = k2F /2m denotes the Fermi temperature and
W is the Lambert-W function. Below this temperature,
fermions are predominantly paired and we expect pro-
nounced pairing effects on the properties of the gas.

Experimentally, the single-particle excitations of cold
atomic gases have been measured using momentum-
resolved radio-frequency spectroscopy, which is analo-
gous to angle-resolved photoelectron spectroscopy in con-
densed matter physics [2, 3, 7]. The experiment detects
the hole excitations, i.e., the rate of transition from occu-
pied to unoccupied states. According to Fermi’s golden
rule, the transition rate is proportional to

A−(ω,q) = 2π
∑

n,m

e−βEm |〈n|cq|m〉|2 δ(ω − En + Em).

(7)

This quantity is known as the occupied spectral function.
Here, the annihilation operator cq destroys a particle
with momentum q. The full spectral function also in-
cludes processes that probe the transition from an unoc-
cupied state to an occupied state if one particle is added
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FIG. 2. (Color online) (a) Fugacity as a function of temper-
ature for fixed density. The dashed lines indicate the Saha
estimate for T ∗, Eq. (6). (b) Chemical potential as a function
of temperature. Dashed lines correspond to half the bound-
state energy −Eb/2EF .

to the system. The occupied spectral function is related
to the full spectral function by a Fermi-Dirac distribution
f(ω) = 1/(expβω + 1):

A−(ω,q) = f(ω)A(ω,q). (8)

In the following, we use a quantum cluster expansion
to calculate the spectral function in the nondegenerate
limit.

III. THE VIRIAL EXPANSION

The virial expansion provides a systematic method for
analyzing a Fermi gas at high temperature. The virial
expansion is applied to a nondegenerate gas for which
the thermal energy ET = T outweighs its kinetic energy
EK = πn/m: ET � EK . Equivalently, this corresponds
to the limit in which the thermal deBroglie wavelength
λT =

√
2π/mT is small compared to the interparticle

spacing n−1/2: λT � n−1/2. In this limit, the grand
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FIG. 3. (Color online) (a) Spectral function at T = TF and ln kF a2 = 0.0. (b) Occupied spectral function for the same
parameters. The white dashed lines in both figures mark the maxima of the quasiparticle and the lower branch. The white
dotted line corresponds to the threshold dispersion ωth(q) + µ = −Eb + εq.

canonical partition function

Z = tre−β(H−µN) =

∞∑

N=1

zN trNe
−βH (9)

can be expanded in terms of the fugacity z = eβµ � 1.
The traces trN on the right-hand side of Eq. (9) are re-
stricted to the N -particle Fock spaces. Thus, the coeffi-
cients of the expansion are determined by clusters that in-
volve one-, two-, and three-body processes, and so on. In
this sense, the virial expansion bridges the gap between
known few-particle results and the behavior of a compli-
cated many-body system. In particular, the expansion is
valid even in a strongly interacting regime. The number
density can be obtained directly from Eq. (9):

n =
2

λ2T

(
b1z + 2b2z

2 + · · ·
)
, (10)

where b1 and b2 are known as the virial coefficients. The
prefactor of 2 counts the two spin species.

For a noninteracting gas, a direct calculation of the

virial coefficients gives b
(0)
n = (−1)n−1/n2. Interactions

enter only in second and higher orders. The correction
to the second order is given by the well-known Beth-
Uhlenbeck term [20]

∆b2 = b2 − b(0)2 =
1

π

∫ ∞

0

dk
∂δ(k)

∂k
e−βk

2/m + eβEb ,

(11)

where the scattering phase shift is cot δ(k) =
(2/π) ln a2k. The interaction correction (11) consists of

a bound state contribution and a contribution due to
scattering states. The attractive interaction between the
particles increases the virial coefficients compared to the
noninteracting case and thus tends to increase the den-
sity at a given chemical potential. In Fig. 2(a), we show
the fugacity as a function of T/TF as determined from
Eq. (10). The curves for different coupling strengths have
a maximum and then tend to zero with decreasing tem-
perature. For comparison, we also include the Saha esti-
mate for T ∗ as a dashed line in Fig. 2(a). The virial ex-
pansion appears to be valid even in a temperature range
below T ∗. This suggests that the leading-order term is
sufficient to quantify pairing effects on the Fermi gas.

In Fig. 2(b), we show the chemical potential for the
same coupling strengths as in Fig. 2(a). For all three of
them, the chemical potential exceeds the dimer chemi-
cal potential −Eb/2 at roughly T/TF = 0.5. Since the
second-order calculation includes only two-body effects,
it should be energetically cheaper for the particles to just
form a dimer bound state. This inconsistency provides
a clear lower bound T/TF = 0.5 on the extrapolation
of the second order results to low temperatures. We re-
gard the virial expansion to be valid down to a temper-
ature of TF , consistent with the findings of other appli-
cations of the virial expansion to Fermi gases [14, 15].
We argue that the results of our virial expansion qual-
itatively describe the experiment of Ref. [7], which was
carried out in a temperature range T/TF = 0.27–0.65
for scattering lengths in the range between ln kFa2 = −2
and 1. For these interaction strengths, the chemical po-
tential is negative and there exists no Fermi surface [21].
The single-particle spectrum should be dominated by the
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dimer pairing, which is precisely what is captured by the
virial expansion.

The starting point of our calculation is the virial ex-
pansion of the self-energy, i.e., the one-particle irre-
ducible contribution to the single-particle Green’s func-
tion. It is related to the Green’s function by a Dyson
equation [22],

G(ω,q) =
1

ω + µ− εq − Σ(ω,q)
. (12)

To linear order in z, the self-energy is given by a
Boltzmann-weighted integral of the T -matrix element
(similar to the bosonic case [23]):

Σ(1)(iωn,q) = z

∫
d2k

(2π)2
e−βεP T2(iωn + µ+ εk,k + q),

(13)

where ωn = (2n+1)πT are fermionic Matsubara frequen-
cies. Equation (13) describes the self-energy correction
due to scattering with a single thermally excited particle-
hole pair. In the Appendix, we provide a short deriva-
tion of this result. To obtain the retarded self-energy,
we analytically continue Eq. (13) to real frequencies
iωn → ω + i0, replacing the T -matrix element in Mat-
subara representation by its real frequency counterpart

T2(ω,q) = −2π

m

1

ln a2
√
−m(ω − εq/2)− i0

. (14)

The remaining momentum integration in Eq. (13) is per-
formed numerically. We emphasize that the analytic
continuation is performed analytically and the numerical
calculation determines the self-energy at real frequency.
The imaginary part of Eq. (13) is computed directly us-
ing Mathematica. The real part is then obtained by a
numerical Kramers-Kronig transformation.

IV. RESULTS FOR THE SPECTRAL
FUNCTION

In this section, we present results for the spectral func-
tion calculated to leading order in the virial expansion.
Figure 3(a) shows the spectral function for a balanced
Fermi gas at T = TF and ln kFa2 = 0. The spectral func-
tion exhibits a double-peak structure with two clearly
distinguishable branches. The upper one, which we shall
refer to as the quasiparticle branch, starts around zero
frequency. The lower branch is associated with the ex-
istence of a bound state and starts at a threshold fre-
quency ωth + µ = −Eb. The weight of both branches
is shifted upwards with increasing momentum and dis-
plays a quadratic momentum dependence. The bound-
state branch is strongly asymmetric: it quickly reaches its
maximum below ωth, but falls off slowly with decreasing
frequency. This behavior is illustrated in Fig. 4, which
shows the spectral function at fixed momentum q = 0

ln kF a2 =-0.5

T=TF

ln kF a2 =0

ln kF a2 =1

T=4TF

A
HΩ

,0
L

-8 -6 -4 -2 0 2 -8 -6 -4 -2 0 2

HΩ+ΜL�ΕF

FIG. 4. (Color online) Spectral function A(ω, 0) at fixed
momentum q = 0 and scattering lengths (rows) ln kF a2 =
−0.5, 0, and 1. The first column is at T = TF , the second at
T = 4TF .

as a function of temperature and scattering length. We
see that the bound-state branch and the quasiparticle
branch begin to merge as the scattering length is in-
creased. With increasing temperature, the quasiparticle
peak gets sharper and the effects of pairing become less
relevant, a statement that will be made more precise in
the following sections.

The asymmetric line shape of the lower branch drasti-
cally changes the form of the occupied part of the spectral
function, which is the one measured experimentally. It is
shown in Fig. 3(b). The maximum of the lower branch
increases quadratically at small momentum, but turns
downwards at higher momentum. For small tempera-
tures, the branch reaches its maximum at a momentum
as low as the Fermi momentum. We emphasize that this
is an effect of the thermal occupation of states and cannot
be taken as a sign of a pseudogap. It is rather a generic
feature of the occupied spectral function that is intrinsi-
cally linked to the enhanced short-range correlations in
the system [17]. The spectral weight at large momen-
tum is the origin of high-momentum and high-frequency
tails in the momentum distribution and the rf transition,
respectively, two quantities that can be readily obtained
from the spectral function. We examine the aforemen-
tioned properties closely in Sec. IV B. We conclude by
studying the properties of the quasiparticle branch in
Sec. IV C: we determine the quasiparticle dispersion as
well as its effective mass and lifetime and compare them
with exact results.

A. Density of states

Pairing effects are apparent in the density of states.
Figure 5 shows the density of states for different scat-
tering lengths and temperatures. At low temperature,
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FIG. 5. (Color online) Densities of states at temperatures (columns) T/TF = 1, 2, 4, and 8 for scattering lengths (rows)
ln kF a2 = −0.5, 0, and 1.0. The pairing gap is more pronounced as the scattering length decreases.

a depletion of spectral weight around ω = −µ is clearly
visible, indicating that this effect is associated with the
formation of a molecular bound state. This effect in-
creases as the scattering length is lowered towards the
BEC side of the crossover. For positive frequency, the
density of states is very close to that of a free Fermi gas,
which in 2D is simply given by

ρ(ω) = mΘ(ω + µ). (15)

For comparison, we also show the temperature evo-
lution of the density of states in Fig. 5. The dip in
the spectral weight increases with decreasing tempera-
ture and resembles the density of states in the superfluid
BEC regime shown in Fig. 1. The transition occurs at
a temperature scale T ∗ that is in good agreement with
our estimate (6); see Fig. 2(a). The two-body calcula-
tion does not show, however, the typical depletion for a
pseudogap around ω = µ.

B. Negative-frequency weight and universal
relations

We noted at the beginning of this section that the
back-bending of the lower branch in the occupied spectral
function is by itself not a sufficient sign of the pseudo-
gap. It is rather a universal property of fermions with
short-range interactions that exists independently of the
phase or indeed temperature, and, in particular, it holds
for any N -particle ensemble. At large momentum, the
negative-energy weight gives the dominant contribution
to the momentum distribution

nσ(q) =

∫
dω

2π
A−(ω,q), (16)

resulting in a high-momentum tail nσ(q)→ C/q4, where
C is the so-called contact density [24], which is a measure

for the number of fermion pairs with opposite spins at
short distances [25, 26]. The contact density is related to
the derivative of the grand canonical potential through
the adiabatic relation [25, 27]

C = 2πma2
∂Ω/V

∂a2

∣∣∣∣
T,µ

= −2z2m2T 2a2
∂b2
∂a2

∣∣∣∣
T

+ O(z3).

(17)

To leading order in z, the contact density can be de-
termined from the second virial coefficient b2 given in
Eq. (11). The universal high-momentum tail for the mo-
mentum distribution is indeed obeyed by the virial ex-
pansion: in Fig. 6(a), the asymptotic behavior of the
momentum distribution for different coupling strengths
is shown. The high-momentum tail is clearly visible
and fits well with the contact determined from the adi-
abatic theorem (17). Quite generally, the scale at which
the relation for the high-momentum tail holds is set by
q � max(1/λT , 1/a2, 1/kF ), which explains that the
green curve for lnkFa2 = −0.5 in Fig. 6(a) saturates
much later than for the two larger values of a2. In
Fig. 6(b), we report the contact density to second or-
der as obtained from the adiabatic relation (17). The
dashed line denotes the bound state contribution

Cbound =
4π

a22
nd, (18)

which dominates for most scattering lengths. The bound
state contribution is a homogeneous function of the
fermion density: Cbound ∼ n2. Although small compared
to the bound state part, the remaining interaction contri-
bution violates this simple scaling behavior. This affects
the oscillation frequency of collective modes at low tem-
perature [28–30].

The spectral function also determines the total rf tran-
sition rate. Provided that the final state does not interact
with the two other species and is initially not populated,
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FIG. 6. (Color online) (a) Momentum distribution for T = TF and (top to bottom) ln kF a2 = −0.5 (black), ln kF a2 = 0 (red,
gray) and ln kF a2 = 1 (green, light gray) as obtained from the spectral function. To make the high-momentum tail visible, we
multiplied the momentum distribution by q4. Dashed lines are the values of the contact density as calculated from (17). (b)
Contact density to leading order in the virial expansion at T = TF . Points mark the values of the contact for the parameters
used in figures (a) and (c). The dashed orange (gray) line is the contact for a gas of dimers. (c) rf spectra at the same parameter
values. The spectra are multiplied by ω2 to extract the high-frequency tail. Dashed lines and parameters as in (a).

the transition rate is given by [6]

Γ(ω) = Ω2

∫
d2q

(2π)2
A−(εq − ω − µ,q), (19)

which is just an integral over the occupied part of the
spectral function evaluated at the free particle energies
shifted by the transition frequency. In the following, we
set the Rabi frequency Ω of the transition equal to 1,
resulting in the normalization

∫
dω

2π
Γ(ω) =

n

2
. (20)

At large frequency, the rf transition rate displays a uni-
versal tail [10, 31]

Γ(ω)→ C
4mω2

. (21)

It should be noted that final-state interactions introduce
a logarithmic scaling violation ∼ 1/ω2 ln2 ω [31]. From
Eq. (19), we see that the high-frequency tail is a direct
consequence of the incoherent negative weight at large
momentum, just as for the momentum distribution. The
asymptotic form is again very well reproduced by the
virial expansion as can be seen from Fig. 6(c) which shows
the asymptotic behavior of the transition rate at T = TF .
In Fig. 7, we report the corresponding rf spectra. The
peak at ω = 0 corresponds to transitions from the quasi-
particle branch. The large incoherent weight starting at
the binding energy Eb corresponds to excitations that
break up a dimer. For smaller binding energies (larger
ln kFa2), the bump of the dimer-free transition becomes
sharper and begins to overlap with the free-free peak.
This is to be expected, as for Eb → 0, the spectrum
needs to reproduce the one of free particles, which corre-
sponds to a peak at ω = 0. Due to thermal excitations,
the peak has always a finite width.

It is indeed no coincidence that the universal relations
are obeyed by the cluster expansion. As stressed at the

beginning of this section, the exact relations hold for
any contact interacting system of N particles. A sim-
ple power counting in the fugacity shows that each or-
der in the virial expansion will reproduce the asymptotic
tail at the same order of the contact. The fact that our
calculation reproduces the universal relations with high
accuracy is not only a stringent test of our computation
but also shows that the quantum cluster expansion cap-
tures the correct short-time and distance structure of the
system.

FIG. 7. (Color online) rf spectrum at T = TF for scat-
tering lengths ln kF a2 = −0.5, 0.0, 0.5, 1.0, and 1.5. The
peak at zero frequency is the transition from the quasiparti-
cle branch. For energies larger than the bound-state energy
(indicated by the black curve), there is an extended spectral
weight due to bound-free transitions, which merges with the
zero-frequency peak at large scattering length on the BCS
side of the crossover.
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FIG. 8. (Color online) (a) Quasiparticle dispersion relation, (b) effective mass, and (c) inverse quasiparticle lifetime. The
parameters are T = TF and ln kF a2 = −0.5 (black), 0.0 (red, gray) and 1 (green, light gray). The dashed lines indicate the
asymptotic forms (30) and (31). The dotted lines are the low-momentum limits of the dispersion relation with an effective
mass (24). (d) Ratio of inverse quasiparticle lifetime and energy 1/τ0ω(0) at zero momentum.

C. Quasiparticle branch

Let us now consider the quasiparticle branch. The
spectral weight of this branch is centered around the
quasiparticle energy ω(q), which is given by the pole in
the Green’s function [32]

ω(q)− εq + µ− Re Σ(ω(q),q) = 0. (22)

In Fig. 8(a), we plot the dispersion relation ω(q) + µ as
a function of the momentum q/kF for T = TF and three
different scattering lengths ln kFa2 = −0.5, 0, and 1. The
dispersion relation starts at

ω(0) + µ = Re Σ(ω, 0)|ω=ω(0) (23)

and is quadratic at small momentum with an effective
mass

m∗

m
=

1− ∂Re Σ

∂ω

1 +
∂Re Σ

∂εq

∣∣∣∣∣∣∣∣
ω=ω(q),q=0

. (24)

Figure 8(b) shows the effective mass as a function of
temperature for various scattering lengths. Our calcula-
tion indicates a slightly enhanced effective mass m∗/m =
1.05. At high temperature, the effective mass approaches
the mass of the free Fermi gas. A small effective mass
is quite typical even for strongly interacting Fermi gases
at low temperature [33]. In the zero-temperature limit,
effective mass corrections in 2D are expected to get as
large as m∗/m ≈ 1.5 at ln kFa2 = 0 for the so-called
attractive polaron [34].

In the vicinity of ω(q), the spectral function assumes
a Lorentzian shape:

A(ω,q) =
2/τq

(ω − εq + µ− Re Σ(ω,q))2 + (1/τq)2
. (25)

The width of the Lorentzian, which is determined by the
imaginary part of the self-energy, describes the rate at

which a momentum state scatters into other momentum
states [35]

1

τq
= −Im Σ(ω(q),q). (26)

The inverse lifetime is plotted in Fig. 8(c) at T = TF for
various scattering lengths. The quasiparticles are well
defined if the inverse lifetime is much smaller compared
to the excitation energy:

1

τq
� ω(q). (27)

In Fig. 8(d), we plot the ratio 1/τ0ω(0). It vanishes with
the logarithm of temperature at high temperature. This
shows that in the limit of high temperature, the low-
energy excitations of the two-dimensional Fermi gas are
indeed well-defined quasiparticles, allowing for a kinetic
description of its non-equilibrium properties. This is con-
sistent with an analogous result for the three-dimensional
unitary Fermi gas [36].

As pointed out by Nishida [37] for the three-
dimensional Fermi gas at a large scattering length, the
self-energy at large momentum and frequency is univer-
sal, i.e., it is independent of the microscopic details of the
system’s state. The functional form can be calculated
analytically by means of an operator product expan-
sion [26, 37–39]. The magnitude of this high-momentum
and high-frequency tail is set by the density:

Σ(ω,q) = Wn(ω,q)n+ · · · , (28)

where Wn(ω,q) is the so-called Wilson coefficient of the
density. It is given by the two-particle scattering ampli-
tude:

Wn(ω,q) = T2(ω,q). (29)

The relation (28) dictates the asymptotic form of the
dispersion relation

ω(q) + µ = εq +
2πn

m

ln εq/2Eb

ln2 εq/2Eb + π2
+ O

(
1

q ln2 q

)

(30)
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and the lifetime

1

τq
=

2πn

m

π

ln2 εq/2Eb + π2
+ O

(
1

q ln3 q

)
. (31)

This relation is obeyed by the virial expansion and indi-
cated by dashed lines in Figs. 8(a) and 8(c). In particular,
since in the high-momentum limit

τq ω(q) =
1

π
ln

εq
2Eb

� 1, (32)

excitations at large momentum are always well-defined
quasiparticles. This result holds at all temperatures.

In addition, Eq. (28) implies that the spectral function
decays with the inverse power of frequency at high ω �
q2/2m:

A(ω,q) =
2πn

m

1

ω2

2π

ln2 ω/Eb + π2
+O(1/ω3). (33)

To the best of our knowledge, this is a novel universal
relation for fermions with short-range interactions in 2D.
The next-to-leading order is proportional to the contact
parameter. Calculating this contribution would require
the inclusion of three-particle processes.

V. CONCLUSION AND OUTLOOK

In conclusion, we have calculated the spectral func-
tion of a spin-balanced two-dimensional Fermi gas with
short-range interactions to leading order in a virial ex-
pansion. This order takes into account two-particle ef-
fects and reproduces the salient features of the spectral
function, which is dominated by a quasiparticle branch
and a branch at lower energy that is associated with the
two-particle bound state. Our results give a good quali-
tative description of recent experiments [7].

It turns out that the virial expansion can be applied
to temperatures as low as the Fermi temperature TF , a
regime where pairing affects the single-particle spectrum
and the density of states. While the onset of a pairing
gap is visible in the density of states, it is interesting to
note that the back-bending of the lower branch of the oc-
cupied spectral function with increasing momentum does
not appear to be a sufficient sign of a pseudogap, for this
is not seen in the full spectral function. It is an artifact of
combining the finite width of the lower branch with the
thermal occupation that weighs the measured spectra to
lower frequencies.

The spectral function is related to various observable
quantities, notably the momentum distribution and the
rf transition rate, both of which were calculated in this
paper, and excellent agreement with exact universal re-
sults was found. Furthermore, we analyzed the quasipar-
ticle branch and determined the quasiparticle properties.
Effective-mass corrections are found to be very small,
while the lifetime of the quasiparticle branch approaches
very large values as the temperature is increased.

= + + + . . .

(a)

T2

0 im.timeτ

(b)

FIG. 9. (a) Diagrammatic representation of Eq. (A2). The
bare propagator (thick line) is a series of expanded propa-

gators G
(n)
0 (continuous thin lines). The number of slashes

counts the expansion order n in the fugacity. (b) Diagram for
the self-energy expanded to first order in the fugacity z.

The present work could be straightforwardly extended
in several ways, for example by including the effects of
harmonic confinement in two- or quasi-two-dimensional
geometries. It would also be interesting to extend the
range of validity to even lower temperatures by perform-
ing the quantum cluster expansion to next-to-leading or-
der, which takes into account three-particle processes.
Note added: Recently, we became aware of Ref. [40],

where some of our results have been derived indepen-
dently.
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Appendix A: Diagrammatic Formalism

In this appendix, we derive the leading-order contri-
bution (13) to the virial expansion of the self-energy us-
ing a diagrammatic formalism. In Ref. [41], the relation
(10) for the number density was taken as a starting point
to calculate the virial coefficients of a three-dimensional
contact-interacting Fermi gas up to third order using a di-
agrammatic approach. Some resummation schemes, such
as the T -matrix approximation, seem to reproduce the
results of the leadingorder virial expansion at high tem-
perature [42]. It should be noted that the diagrammatic
formalism is not restricted to contact interactions, but
can also be applied to other systems such as the elec-
tron gas [43]. Here, we apply the same formalism to
the two-dimensional Fermi gas. The starting point is the
free-fermion propagator, which in imaginary time is given
by

G0(τ,q) = e−(εq−µ)τ (f(εq − µ)−Θ(τ)) , (A1)

where Θ(τ) denotes the Heaviside function. Expanding
the Fermi distribution f(εq − µ) with respect to the fu-
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gacity z in the above equation yields

G0(τ,q) = eµτ
∑

n≥0
G

(n)
0 (τ,q) zn, (A2)

where

G
(n)
0 (τ,q) =

{
−Θ(τ)e−εqτ n = 0

(−1)n−1e−εqτe−nβεq n ≥ 1
. (A3)

Following Leyronas [41], we depict the n-th order term

G
(n)
0 diagrammatically by a line that is slashed n times

[see Fig. 9(a)].

A given Feynman diagram with G
(n)
0 appearing Nn

times is of order
∑
n nNn in the fugacity. Since G

(0)
0 is a

retarded Green’s function, it is not allowed to propagate
backwards in imaginary time. The leading order in z
is thus given by the diagram with the least number of
advanced propagators. The self-energy to first order in
the fugacity can be inferred directly from Fig. 9(b), which
is the only one-particle irreducible diagram containing
only one backward-propagating propagator. It describes
the interaction with a single particle-hole pair:

Σ(1)(iωn,q)

= z

∫ β

0

dτ

∫
d2k

(2π)2
eiωnτeµτe−εq(β−τ)T2(τ,k + q),

(A4)

which gives the result in Eq. (13). The T -matrix T2 is
the ladder series of all forward-propagating lines. It is of
zeroth order in z and equivalent to the vacuum T matrix.
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[12] V. Pietilä, D. Pekker, Y. Nishida, and E. Demler, Phys.
Rev. A 85, 023621 (2012).

[13] R. Watanabe, S. Tsuchiya, and Y. Ohashi, Phys. Rev.
A 88, 013637 (2013).

[14] X.-J. Liu, H. Hu, and P. D. Drummond, Phys. Rev. B
82, 054524 (2010).

[15] H. Hu, X.-J. Liu, P. D. Drummond, and H. Dong, Phys.
Rev. Lett. 104, 240407 (2010).

[16] M. Randeria, J.-M. Duan, and L.-Y. Shieh, Phys. Rev.
Lett. 62, 981 (1989).

[17] W. Schneider and M. Randeria, Phys. Rev. A 81, 021601
(2010).

[18] L. Landau and E. Lifshitz, Course of Theoretical
Physics, Statistical Physics, Part 1, Vol. 5 (Butterworth-
Heinemann, Oxford, 2010).
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Efimov correlations in strongly interacting Bose gases
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We compute the virial coefficients, the contact parameters, and the momentum distribution of a
strongly interacting three-dimensional Bose gas by means of a virial expansion up to third order in
the fugacity, which takes into account three-body correlations exactly. Our results characterize the
non-degenerate regime of the interacting Bose gas, where the thermal wavelength is smaller than the
interparticle spacing but the scattering length may be arbitrarily large. We observe a rapid variation
of the third virial coefficient as the scattering length is tuned across the three-atom and the atom-
dimer thresholds. The momentum distribution at unitarity displays a universal high-momentum
tail with a log-periodic momentum dependence, which is a direct signature of Efimov physics. We
provide a quantitative description of the momentum distribution at high momentum as measured
by [P. Makotyn et al., Nat. Phys. 10, 116 (2014)].

PACS numbers: 67.85.-d, 67.10.-j, 67.10.Hk, 34.50.Cx

The classical problem in Newtonian mechanics of find-
ing analytical stable orbits of three planets has only few
known solutions which, moreover, exist only for certain
special conditions [1]. Curiously, a generic analog of this
problem in quantum mechanics – three neutral bosons of
mass m with a universal short-range interaction – was
solved analytically by Efimov four decades ago [2–4]. If
the effective range of the interparticle interaction (set
by the van der Waals length `vdW ) is small compared
to other length scales, the two-body interaction is solely
characterized by the scattering length a. In the unitary
limit of infinite scattering length, Efimov found an infi-
nite number of three-particle bound states with energy

E
(n)
T =

κ2
∗
m (eπ/s0)−2n, manifesting a discrete scale invari-

ance. Here, κ∗ is a universal three-body parameter, n is
an integer, and eπ/s0 ≈ 22.7. While originally predicted
in nuclear physics, Efimov states were observed in atom-
loss experiments and radiofrequency spectroscopy mea-
surements in Bose gases [5–9], three-component Fermi
gases [10–14] as well as mass-imbalanced mixtures [15–
17]. Recently, also the Efimov trimer of 4He has been
observed experimentally [18]. Efimov physics is thus a
very general phenomenon, and beside these many experi-
mental realizations Efimov states are also predicted to ex-
ist, for example, in universal p-wave interacting quantum
gases [19], in condensed matter quantum magnets [20],
or in mass-imbalanced two-component Fermi gases [21].
Most theoretical work focusses on few-body aspects of
Efimov physics and experiments are commonly explained
using universal few-body theory [4]. In this Letter, by
contrast, we study the interacting Bose gas at finite den-
sity and temperature and establish signatures of three-
body correlations in this system.

Most experiments on Bose gases in equilibrium are re-
stricted to the weak-interaction regime with few excep-
tions [22]. This is due to enhanced three-body losses at

finite interaction strength which deplete the gas with a
rate Ṅ = L3n

2N , where L3 can be determined from the
solution of the three-body problem [4]. At zero temper-
ature, the loss coefficient scales as L3(T = 0) ∼ a4 [23–
25] and saturates to L3(T ) ∼ λ4

T ∼ 1/T 2 [26] in the

unitary limit at high temperature (λT =
√

2π/mT de-
notes the thermal wavelength, and we set ~ = kB = 1).
In a series of recent hallmark experiments, the loss rate
of a strongly interacting Bose gas at finite temperature
was measured [27–29]. It turns out that in the non-
degenerate limit nλ3

T � 1, the two-body scattering rate
γ2 = nσv ∼ nλT is much larger compared to the three-
body loss rate γ3 = L3n

2 ∼ n2λ4
T , so that the gas can

reach an equilibrium state before a significant fraction of
particles is lost. Indeed, this is corroborated by a recent
experiment that quenches a weakly interacting BEC to
the unitary limit and measures the momentum distribu-
tion, which approaches a stationary equilibrium distribu-
tion shortly after the quench [29]. In the non-degenerate
regime, we furthermore expect that the thermal pressure
counteracts the attractive force and the system is ther-
modynamically stable [30–33] with possible phase tran-
sitions at lower temperature [34, 35]. Hence, the ex-
periments [27–29] demonstrate that strongly interacting
Bose gases can be experimentally prepared and studied.
Strongly interacting Bose gases are of fundamental inter-
est as they are the first interacting quantum many-body
system where three-body correlations turn out to be es-
sential.

In this Letter, we characterize the strongly interact-
ing Bose gas in the normal phase by performing a virial
expansion, allowing us to link few-body physics to the
properties of an interacting many-body system in the
grand-canonical ensemble in a systematic way. The virial
expansion is valid if the thermal wavelength of the gas is
much smaller compared to the interparticle spacing (cor-

ar
X

iv
:1

50
6.

06
75

1v
1 

 [
co

nd
-m

at
.q

ua
nt

-g
as

] 
 2

2 
Ju

n 
20

15

249



2

= + + +

(a)

(b) (c) (d) (e) (f) (g) (h)

(i) (j) (k) (l) (m)

FIG. 1. (a) Integral equation for the three-body scattering
matrix, denoted by a gray box. Simple lines denote atom
propagators and double lines dimer propagators. (b)-(m):
Diagrams that contribute to the density and the momentum
distribution up to third order in the fugacity.

responding to a small degeneracy parameter nλ3
T � 1)

and is therefore ideally suited to describe current experi-
mental work [27–29]. The virial expansion expresses the
grand-canonical partition function as a sum of separate
traces over the N -particle sectors:

Z = Tre−β(H−µN) =
∞∑

N=0

zN trNe
−βH . (1)

In the non-degenerate regime nλ3
T � 1, the fugacity

z = eβµ is a small parameter and the expansion in Eq. (1)
can be truncated after the first few terms. By perform-
ing the expansion up to third order in z, we fully in-
clude three-body correlations. Previous early work on
the virial expansion of Bose gases dates back to the late
1950s [36, 37], and more recent applications are [38–40].
A previous numerical study of the virial coefficients was
carried out by Bedaque and Rupak [38], but they have
not included all the relevant diagrams, see Fig. 1. Note
that the virial coefficients of the unitary Bose gas can
even be determined analytically [39]. The virial expan-
sion has also been successfully applied to Fermi gases, see
Ref. [41] for a review. In the following, we provide nu-
merical results for the first three virial coefficients (both
at unitarity and at finite scattering length) as well as the
two-body and the three-body contact coefficients which
characterize the short-distance and short-time structure
of the system. An essential new point of our analysis is
that we develop the virial expansion for the full Green’s
function, which allows us to compute the momentum dis-
tribution. The momentum distribution exhibits a uni-
versal high-momentum tail that shows direct three-body
Efimov correlations. We compare our calculations with
a recent experiment by Makotyn et al. [29].

The Lagrangian density of an interacting Bose gas with

(a)

-2 -1 0 1 2
0

1

2

3

(b)

0
1
2
3
4
5
6

(c)

-3 -2 -1 0 1 2 3

(d)

10-1 100 101
-2
0
2
4
6

κ*λT

(|a-|/a)
1/4

(λT /a)
1/4

b 2
e-

β
E
D

b 3
e-

β
E

E
T1
/8

b 3
e-

β
E
T

FIG. 2. (a) Second virial coefficient as a function of scattering
length. The red and green lines denote the asymptotic results
in the BEC and BCS limits. (b) Third virial coefficient as a
function of scattering length for fixed three-body parameter
(bottom to top) κ∗λT = 0.5, 1, 2, 3, 5, and 10. (c) Bound state
spectrum of a Bose gas. Blue lines denote trimer branches
and the red line is the dimer bound state energy. (d) Third
virial coefficient of a unitary Bose gas as a function of the
three-body parameter. The green and red lines correspond
to the analytical asymptotic expressions [39]. The points are
numerical results and the connecting lines are a guide to the
eye.

large scattering length takes the form [4]

L = φ†
(
i∂t +

∇2

2m

)
φ+

g2

4
d†d − g2

4

(
d†φφ+ φ†φ†d

)

− g3

36
φ†d†dφ, (2)

where φ† creates a boson and d is an auxiliary dimer
field. The bare coupling constants g2 and g3 depend on
the cutoff-regulator Λ in such a way that they match low-
energy observables in the two- and three-particle sector.

We choose 1
g2

= m
8πa − mΛ

4π2 and g3 = −9mg2
2
H(Λ)

Λ2 with

H(Λ) ∼ cos(s0 ln Λ/Λ∗+arctan s0)
cos(s0 ln Λ/Λ∗−arctan s0) , where Λ∗ is a renormal-

ized three-body parameter, manifesting a renormaliza-
tion group limit cycle [4, 42, 43]. For positive scattering
length, the two-particle scattering amplitude has a dimer
bound state pole with energy ED = 1

ma2 . The parameter
Λ∗ is related to the Efimov binding energy at unitarity
via κ∗ = 0.38Λ∗ [44]. Each trimer branch hits the con-
tinuum of scattering states at the three-body threshold
scattering length a− and terminates at positive scattering
length at the atom-dimer threshold a∗. The theory (2)
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has an infinite number of arbitrarily deep Efimov bound
states. We avoid the Thomas collapse [45] in our calcu-
lations by specifying a lowest Efimov trimer state, the
energy of which we denote by ET . Here, we extend a
diagrammatic representation of the virial expansion in-
troduced in Ref. [46] for Fermi gases to the Bose case.
The diagrammatic virial expansion is based on an ex-
pansion in imaginary time, where it turns out that the
full dependence on the fugacity z is encoded in the free
propagator, which can be expanded in powers of z. In
Fig. 1, we denote the nth-order contribution to the prop-
agator by a line that is slashed n times. The key insight
underlying the expansion is that the zeroth order contri-
bution has only a retarded component, i.e., it can only
propagate forward in imaginary time. Backward propa-
gating lines contribute higher powers of z. This provides
a diagrammatic representation for the virial expansion
of any correlation function. The Feynman diagrams con-
structed in this way contain subdiagrams that involve re-
peated scattering of either two or three forward-running
particles. These are the scattering matrices of the few-
body problem, and we denote them by a double line and
a box, respectively.

We begin by computing the virial expansion of the
density. The density is related to the virial coefficients
via [36]

λ3
Tn = b1z + 2b2z

2 + 3b3z
2 + O(z4). (3)

The diagrams contributing to the density up to O(z3)
are shown in Fig. 1, with Fig. 1(b) contributing to b1,
Figs. 1(c) and 1(e) to b2, and all other diagrams con-
tributing to the third virial coefficient b3. Diagrams 1(b)-

1(d) give the standard result b
(0)
n = n−5/2 for the virial

coefficients of a non-interacting three-dimensional Bose
gas, while Fig. 1(e) yields the Beth-Uhlenbeck interac-
tion correction to the density [38]. The diagrams can be
evaluated analytically to some degree: we decompose the
three-body scattering matrix into Legendre polynomials,
allowing us to perform the angle integration directly. In
our calculation, we retain the first ten angular compo-
nents, finding no change in the result when including
higher harmonics within our numerical accuracy. The re-
maining momentum integrals are performed numerically.
The three-body amplitude in the integrand is obtained
from a solution of the Skorniakov–Ter-Martirosian inte-
gral equation [47] shown in Fig. 1(a). Figure 2 shows
the second and the third virial coefficient. The second
virial coefficient [Fig. 2(a)] agrees with the analytical re-
sult [38], providing an independent check of our calcula-
tions. Figure 2(b) shows the third virial coefficient as a
function of scattering length for various κ∗. We rescale
the scattering length by a− for each κ∗ and plot the re-
duced virial coefficient e−βEb3, where E is the lowest
bound state energy (E = ET for a < a∗ and E = ED for
a > a∗). In the scattering-dominated limit κ∗λT � 1,
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FIG. 3. (a) Two-body contact as a function of temperature.
(b,c) Three-body contact at unitarity as a function of (b) tem-
perature and (c) three-body parameter. The lines in Figs. (a)
and (b) correspond to (bottom to top) κ∗/kn = 1, 2, 3, 4, and
5. The green lines in (a) and (b) denote the asymptotic high-
temperature results. The red and green lines in (c) denote
the asymptotic results as stated in the main text.

the virial coefficient increases smoothly as the scatter-
ing length is tuned across the unitary limit and then de-
creases for a > a∗, assuming negative values. In the
trimer limit κ∗λT � 1, the reduced virial coefficient is
very small if no Efimov bound state is contained in the
spectrum, and rapidly jumps to the trimer-dominated
result e−βET b3 = 3

√
3 [39] otherwise, displaying only

a very weak dependence on the scattering length. Fig-
ure 2(d) shows the third virial coefficient at unitarity as
a function of the three-body parameter, which is in excel-
lent agreement with the analytical results [39], providing
yet another test for our numerics. The virial coefficients
presented here completely characterize thermodynamic
quantities such as density, compressibility, and pressure
of the non-degenerate Bose gas. Note that the universal
zero-range description (2) holds if the scattering length
and the thermal wavelength are large compared to the
effective range, which is set by the van der Waals length:
a, λT > `vdW (however, a and λT can have arbitrary
ratios). Since the three-body parameter is found to be
universal with κ∗ ≈ 0.2/`vdW [48, 49], we expect that
for κ∗λT � 1, there are effective range corrections to the
results of this paper.

There exists a large set of universal relations that de-
scribe thermodynamic quantities and the short-time and
short-distance structure of a quantum gas. All of these
relations involve a universal quantity called the contact,
which is a measure of correlations at short distances. We
distinguish the two-body contact C2 and the three-body
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contact C3. These extensive quantities are related to the
energy of the system by the adiabatic theorems [50–52]:

C2 = −8πm
∂E

∂a−1

∣∣∣∣
κ∗

=
V

λ4
T

∑

n≥2

c2,nz
n (4)

C3 = −mκ∗
2

∂E

∂κ∗

∣∣∣∣
a−1

=
V

λ5
T

∑

n≥3

c3,nz
n, (5)

where c2,n = 16π2∂bn/∂(λT /a) and c3,n = πκ∗∂bn/∂κ∗,
and we abbreviate c3,3 = c3. The three-body contact
manifests direct Efimov correlations. In Fig. 3, we plot
the intensive contact parameters C2/Nkn [Fig. 3(a)] and
C3/Nk

2
n [Fig. 3(b)] as a function of rescaled tempera-

ture T/Tn, where kn = (6π2n)1/3 and Tn = k2
n/2m. For

T � Tn, the contacts approach the asymptotic results
C2/Nkn = 64Tn/3T and C3/Nk

2
n = 4s0T

2
n/
√

3π2T 2

[green lines in Fig. 3]. As the temperature is lowered,
both C2 and C3 increase very strongly, with C2 satu-
rating at low temperature. In addition, we show the
three-body contact as a function of κ∗λT in Fig. 3(c).
The numerical results agree with the analytical limits
c3 = 3

√
3(κ∗λT )2eβET for large κ∗λT and c3 = 3

√
3s0

for small κ∗λT .
A particular universal relation connects the two- and

three-body contacts to the high momentum tail of the
momentum distribution, which behaves as [51, 53, 54]

n(q) =
C2
q4

+
C3
q5
F (q) + O(1/q6), (6)

where C2/3 = C2/3/V is the intensive contact density and
F (q) is a log-periodic function of the momentum given
by F (q) = A sin(2s0 ln q/κ∗ + 2φ), where A = 89.26260
and φ = −0.669064. A recent experiment by Makotyn et
al. [29] measures the momentum distribution of a Bose
gas quenched to unitarity in a time-of-flight measure-
ment, and a comparison with the asymptotic result (6)
indicates that the observed momentum distribution is
consistent with the universal three-body tail [55]. Here,
we provide a full calculation of the momentum distribu-
tion to third order in the fugacity.

The momentum distribution is defined as the zero-time
limit G(0−, q) of the imaginary time propagator, and we
parametrize:

n(q) = eβET
[
n1(q)z + n2(q)z2 + n3(q)z3 + O(z4)

]
. (7)

Formally, the diagrams that contribute to the momentum
distribution up to third order in z can be represented
in the same way as for the density in Fig. 1, although
the black dot now denotes the number operator which
inserts a momentum q into the diagram, changing the
structure of the calculation fundamentally. Note that
the momentum distribution can be computed for a single
trimer [54, 56]. Figure 4 shows our result for the O(z3)
part n3 of the momentum distribution at unitarity with
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FIG. 4. Third order contribution n3(ζ) to the momentum dis-
tribution of a homogeneous unitary Bose gas with κ∗λT = 3
as a function of dimensionless momentum ζ = qλT . Points
denote numerical results, the continuous blue line is a guide
to the eye. The orange and green lines denote the asymp-
totic Tan relations (6) obtained with e−βET c2,3 = 825.2 and
e−βET c3 = 48.1.

three-body parameter κ∗λT = 3. Figure 4(a) shows the
full momentum distribution as a function of rescaled di-
mensionless momentum ζ = qλT . Figure 4(b) amplifies
the high-momentum tail. This is further illustrated in
Fig. 4(c) which shows the momentum distribution with
subtracted leading-order two-body tail. The continuous
red and green lines denote the asymptotic two- and three-
body form of the Tan relation (6), respectively, where the
O(z3) contact parameters are extracted from the virial
coefficients in an independent calculation, providing a
strong check of our results. It is important to note that
there are two momentum scales at unitarity: kn (set by
the density) and kκ =

√
2mET (set by the trimer en-

ergy). The onset of the asymptotic tail is set by kκ
rather than kn, which marks the asymptotic regime in
Fermi gases [57].

We can compare our results with the experiment by
Makotyn et al. [29], which measures the momentum dis-
tribution following a quench to the unitary limit for
two different initial densities 〈n1〉 = 5.5 · 1012 cm−3 and
〈n2〉 = 1.6 · 1012 cm−3. Following Ref. [40], we assume
a constant phase space density nλ3

T and average our re-
sults over a Thomas-Fermi density profile. Since our cal-
culations are performed at fixed κ∗λT , we keep κ∗/kn
fixed at its value at the trap center. This neglects log-
arithmic corrections to the fugacity, which in our fit is
constant throughout the trap [40]. The experiment was
performed using 85Rb, which has a three-body parame-
ter κ∗ = 38(1)µm−1 [58]. Remarkably, our results are in
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FIG. 5. Momentum distribution of a unitary Bose gas. Or-
ange and green line: experimental measurement by Makotyn
et al. [29] at two densities 〈n1〉 = 5.5 ·1012 cm−3 (orange line)
and 〈n2〉 = 1.6 · 1012 cm−3 (green line). κ = q/kn denotes the
dimensionless momentum. The continuous red and blue lines
are the result of the trap-averaged virial expansion with fu-
gacities z1 = 0.5 and z2 = 0.4, respectively. The momentum
distribution is normalized to unity

∫
d3κn(κ)/(2π)3 = 1.

very good agreement with the experiment provided that
we exclude the lowest trimer branch from our calculation
and set κ′∗ = κ∗/22.7. In this case, the virial expansion
agrees well with the experimental data with z1 = 0.5 and
z2 = 0.4. The small values of the fugacity justify the use
of the virial expansion. The results are shown in Fig. 5.

In summary, we have characterized the strongly inter-
acting Bose gas in the normal phase by computing the
first three virial coefficients, the two-body and the three-
body contact, as well as the momentum distribution. Our
results provide a systematic framework to compute three-
body correlation effects in an interacting many-body sys-
tem and are of direct relevance to ongoing and future
experiments on Bose quantum gases.
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R. E. Grisenti, T. Jahnke, D. Blume, and R. Dörner, Sci-
ence 348, 551 (2015).

[19] Y. Nishida, S. Moroz, and D. T. Son, Phys. Rev. Lett.
110, 235301 (2013).

[20] Y. Nishida, Y. Kato, and C. D. Batista, Nat. Phys. 9,
93 (2013).

[21] D. S. Petrov, Phys. Rev. A 67, 010703 (2003).
[22] N. Navon, S. Piatecki, K. Günter, B. Rem, T. C. Nguyen,

F. Chevy, W. Krauth, and C. Salomon, Phys. Rev. Lett.
107, 135301 (2011).

[23] P. O. Fedichev, M. W. Reynolds, and G. V. Shlyapnikov,
Phys. Rev. Lett. 77, 2921 (1996).

[24] E. Nielsen and J. H. Macek, Phys. Rev. Lett. 83, 1566
(1999).

[25] B. D. Esry, C. H. Greene, and J. P. Burke, Phys. Rev.
Lett. 83, 1751 (1999).

[26] J. P. D’Incao, H. Suno, and B. D. Esry, Phys. Rev. Lett.
93, 123201 (2004).

[27] R. J. Fletcher, A. L. Gaunt, N. Navon, R. P. Smith, and
Z. Hadzibabic, Phys. Rev. Lett. 111, 125303 (2013).

[28] B. S. Rem, A. T. Grier, I. Ferrier-Barbut, U. Eismann,
T. Langen, N. Navon, L. Khaykovich, F. Werner, D. S.
Petrov, F. Chevy, and C. Salomon, Phys. Rev. Lett. 110,
163202 (2013).

[29] P. Makotyn, C. E. Klauss, D. L. Goldberger, E. A. Cor-
nell, and D. S. Jin, Nat. Phys. 10, 116 (2014).

[30] H. T. C. Stoof, Phys. Rev. A 49, 3824 (1994).

253



6

[31] E. J. Mueller and G. Baym, Phys. Rev. A 62, 053605
(2000).

[32] G. S. Jeon, L. Yin, S. W. Rhee, and D. J. Thouless,
Phys. Rev. A 66, 011603 (2002).

[33] W. Li and T.-L. Ho, Phys. Rev. Lett. 108, 195301 (2012).
[34] S. Piatecki and W. Krauth, Nat. Commun. 5, 3503

(2014).
[35] W. van Dijk, C. Lobo, A. MacDonald, and R. K.

Bhaduri, arXiv:1412:5112 (2014).
[36] A. Pais and G. E. Uhlenbeck, Phys. Rev. 116, 250 (1959).
[37] R. Dashen, S.-K. Ma, and H. J. Bernstein, Phys. Rev.

187, 345 (1969).
[38] P. F. Bedaque and G. Rupak, Phys. Rev. B 67, 174513

(2003).
[39] Y. Castin and F. Werner, Canadian Journal of Physics

91, 382 (2013).
[40] S. Laurent, X. Leyronas, and F. Chevy, Phys. Rev. Lett.

113, 220601 (2014).
[41] X.-J. Liu, Physics Reports 524, 37 (2013).
[42] P. F. Bedaque, H.-W. Hammer, and U. van Kolck, Phys.

Rev. Lett. 82, 463 (1999).
[43] P. Bedaque, H.-W. Hammer, and U. van Kolck, Nuclear

Physics A 646, 444 (1999).
[44] This holds for our choice of the deepest trimer.
[45] L. H. Thomas, Phys. Rev. 47, 903 (1935).

[46] X. Leyronas, Phys. Rev. A 84, 053633 (2011).
[47] G. Skorniakov and K. Ter-Martirosian, Sov. Phys. JETP

4 (1957).
[48] R. Schmidt, S. P. Rath, and W. Zwerger, EPJ B 85, 1

(2012).
[49] J. Wang, J. P. D’Incao, B. D. Esry, and C. H. Greene,

Phys. Rev. Lett. 108, 263001 (2012).
[50] S. Tan, Annals of Physics 323, 2952 (2008).
[51] E. Braaten, D. Kang, and L. Platter, Phys. Rev. Lett.

106, 153005 (2011).
[52] F. Werner and Y. Castin, Phys. Rev. A 86, 053633

(2012).
[53] S. Tan, Annals of Physics 323, 2971 (2008).
[54] Y. Castin and F. Werner, Phys. Rev. A 83, 063614

(2011).
[55] D. H. Smith, E. Braaten, D. Kang, and L. Platter, Phys.

Rev. Lett. 112, 110402 (2014).
[56] F. F. Bellotti, T. Frederico, M. T. Yamashita, D. V. Fe-

dorov, A. S. Jensen, and N. T. Zinner, Phys. Rev. A 87,
013610 (2013).

[57] J. T. Stewart, J. P. Gaebler, T. E. Drake, and D. S. Jin,
Phys. Rev. Lett. 104, 235301 (2010).

[58] R. J. Wild, P. Makotyn, J. M. Pino, E. A. Cornell, and
D. S. Jin, Phys. Rev. Lett. 108, 145305 (2012).

[59] http://www.it.umd.edu/hpcc.

Appendix H List of publications

254



Bibliography

[1] Kenneth G. Wilson. Non-lagrangian models of current algebra. Phys. Rev.,
179(5):1499–1512, Mar 1969.

[2] Leo P. Kadanoff. Operator algebra and the determination of critical indices.
Phys. Rev. Lett., 23(25):1430–1433, Dec 1969.

[3] Gerhard Mack. Convergence of operator product expansions on the vacuum in
conformal invariant quantum field theory. Communications in Mathematical
Physics, 53(2):155–184, 1977.

[4] Duccio Pappadopulo, Slava Rychkov, Johnny Espin, and Riccardo Rattazzi.
Operator product expansion convergence in conformal field theory. Physical
Review D, 86(10):105043, 2012.

[5] Walter D Goldberger, Zuhair U Khandker, and Siddharth Prabhu. Ope
convergence in non-relativistic conformal field theories. arXiv preprint
arXiv:1412.8507, 2014.

[6] Kenneth G. Wilson and Wolfhart Zimmermann. Operator product expan-
sions and composite field operators in the general framework of quantum
field theory. Communications in Mathematical Physics, 24:87–106, 1972.
10.1007/BF01878448.

[7] Wilhelm Zwerger. The BCS-BEC crossover and the unitary Fermi gas, volume
836. Springer Science & Business Media, 2011.

[8] Kerson Huang. Statistical Mechanics, 2nd Edition. Wiley, 1987.

[9] Xavier Leyronas. Virial expansion with feynman diagrams. Physical Review
A, 84(5):053633, 2011.

[10] V. Efimov. Energy levels arising from resonant two-body forces in a three-body
system. Physics Letters B, 33(8):563, 1970.

255



Bibliography

[11] V. Efimov. Weakly bound states of three resonantly-interacting particles. Sov.
J. Nucl. Phys., 12:589, 1971.
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