
Metaheuristic Approaches for
Resource-Constrained Project Scheduling with

Flexible Resource Profiles

Martin Tritschler

TECHNISCHE UNIVERSITÄT MÜNCHEN

Fakultät für Wirtschaftswissenschaften
Lehrstuhl für Operations Management

Metaheuristic Approaches for Resource-Constrained
Project Scheduling with Flexible Resource Profiles

Dipl.-Wirtsch.-Ing. Martin Tritschler

Vollständiger Abdruck der von der Fakultät für Wirtschaftswissenschaften der
Technischen Universität München zur Erlangung des akademischen Grades
eines

Doktors der Wirtschaftswissenschaften
(Dr. rer. pol.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Martin Grunow

Prüfer der Dissertation: 1. Univ.-Prof. Dr. Rainer Kolisch
2. Prof. John J. Kanet, PhD

University of Dayton, USA

Die Dissertation wurde am 30.9.2015 bei der Technischen Universität München
eingereicht und durch die Fakultät für Wirtschaftswissenschaften am 15.6.2016
angenommen.

For Ka Yan

Acknowledgments

First of all, I would like to thank Prof. Dr. Rainer Kolisch, who gave me the
opportunity to conduct research in the fascinating field of project scheduling
and greatly supported me during the whole process of creating this dissertation.
I also have to thank Dr. Anulark Naber for providing guidance and feedback.
Furthermore, I would like to thank my second examiner Prof. John J. Kanet as
well as the chairman of the examination committee Prof. Dr. Martin Grunow.
Special thanks go to my colleagues at the Chair of Operations Management
for establishing a great work environment with valuable discussions: Claus
Brech, Alexander Döge, Dr. Jia-Yan Du, Dr. Thomas Fliedner, Martin Fink,
Dr. Markus Frey, Dr. Daniel Gartner, Dr. Ferdinand Kiermaier, Christian Ruf,
and Dr. Sebastian Schiffels. Moreover, I am grateful to have good friends
who encouraged me to take this challenge. Finally, I would like to express
my deepest gratitude to my girlfriend Ka Yan Wu and of course my parents
Young-Ae Kang-Tritschler and Jürgen Tritschler—your constant support is
truly appreciated.

Munich, September 2015

ii

Abstract

English: The resource-constrained project scheduling problem with flexible
resource profiles (FRCPSP) is an optimization problem from the field of project
management. It consists of scheduling activities in order to minimize the project
makespan. For each activity, we have to determine its duration and a flexible
resource profile that fulfills the activity’s resource requirements. This flexible
resource profile specifies the quantity of resources allocated to the activity
in each time period and is not limited to a rectangular shape. In this work,
metaheuristic approaches for the FRCPSP are developed and evaluated. First,
a hybrid metaheuristic is proposed. It contains a problem-adapted schedule
generation scheme, which is embedded into a genetic algorithm. The best
solutions are further improved in a variable neighborhood search based on
an analysis of resource flows. Second, two model-based metaheuristics are
introduced. They implement a mathematical decomposition of the FRCPSP
into two parts: a master problem to schedule activities and a subproblem to
determine resource profiles. Both model-based metaheuristics use disjunctive
arcs to represent solutions to the master problem and apply linear programming
techniques to determine optimal resource profiles. The performance of all
proposed methods is demonstrated in a computational study with benchmark
methods from literature.

iii

iv

German: Das ressourcenbeschränkte Projektplanungsproblem mit flexiblen
Ressourcenprofilen (FRCPSP) ist ein Optimierungsproblem aus dem Bereich
des Projektmanagements. Hierbei müssen Aktivitäten eingeplant werden mit
dem Ziel, die Projektdauer zu minimieren. Für jede Aktivität müssen die Dauer
sowie ein Ressourcenprofil, das den Ressourcenbedarf der Aktivität abdeckt,
bestimmt werden. Dieses flexible Ressourcenprofil definiert die allokierte Men-
ge an Ressourcen pro Zeitperiode und ist nicht auf eine rechtwinklige Form
beschränkt. Im Rahmen dieser Arbeit werden metaheuristische Lösungsver-
fahren für das FRCPSP entwickelt und evaluiert. Erstens wird eine hybride
Metaheuristik vorgestellt. Sie beinhaltet einen problemangepassten Schedule
Generation Scheme, der in einen Genetischen Algorithmus eingebettet ist. Die
besten gefundenen Lösungen werden mit einer Variable Neighborhood Search
basierend auf einer Analyse von Ressourcenflüssen weiter verbessert. Zweitens
werden zwei modellbasierte Metaheuristiken vorgestellt. Sie benutzen eine ma-
thematische Dekomposition des FRCPSP in zwei Teile: ein Masterproblem zur
Bestimmung des Projektablaufplans und ein Subproblem zur Bestimmung der
Ressourcenprofile. Beide modellbasierten Metaheuristiken benutzen disjunktive
Vorgangsbeziehungen, um Lösungen des Masterproblems zu repräsentieren,
und setzen Techniken der linearen Programmierung zur Bestimmung optimaler
Ressourcenprofile ein. Die Leistungsfähigkeit der vorgestellten Verfahren wird in
einer numerischen Studie mit bestehenden Benchmark-Methoden demonstriert.

Contents

Acknowledgments ii

Abstract iii

Table of Contents v

List of Figures viii

List of Tables x

1 Introduction 1
1.1 Scientific Scope and Contributions 3
1.2 Overview . 6

2 Problem Description 7

3 Literature Review 12
3.1 Continuous Resources . 13
3.2 Discrete Resources . 13
3.3 Related Problems . 14

4 The Hybrid Metaheuristic 16
4.1 Solution Characteristics . 16

4.1.1 Non-greedy Resource Allocation 16
4.1.2 Delayed Scheduling . 17

4.2 Hybrid Metaheuristic . 19

v

CONTENTS vi

4.2.1 Flexible Resource Profile Parallel Schedule Generation
Scheme . 19
4.2.1.1 Input Parameters 19
4.2.1.2 Algorithm . 20
4.2.1.3 Example . 24

4.2.2 Genetic Algorithm . 26
4.2.2.1 Initial Population 27
4.2.2.2 Operators . 27

4.2.3 Variable Neighborhood Search 28
4.2.3.1 Activity Selection 28
4.2.3.2 Resource Transfer 30
4.2.3.3 Solution Improvement 31
4.2.3.4 Example . 31

5 The Self-adaptive Genetic Algorithm 34
5.1 Overall Design . 34
5.2 Serial Schedule Generation Scheme 35
5.3 Parallel Schedule Generation Scheme 35

6 Model-based Metaheuristics 36
6.1 Decomposed Models . 38

6.1.1 Master Problem . 38
6.1.2 Subproblem . 41
6.1.3 Reduced Subproblem . 42

6.2 Genetic Algorithms . 45
6.2.1 Overall Design . 46

6.2.1.1 Benders Genetic Algorithm 48
6.2.1.2 Reduced Subproblem Genetic Algorithm 49

6.2.2 Solution Representation 49
6.2.2.1 Start Periods and Durations 50
6.2.2.2 Blocks . 51
6.2.2.3 Example . 52

6.2.3 Initial Population . 55

CONTENTS vii

6.2.4 Improvement Operators 55
6.2.4.1 Reduction Operator 55
6.2.4.2 Repair Operator 56
6.2.4.3 Example . 57

6.2.5 Genetic Operators . 58

7 Computational Study 60
7.1 Study Design . 60
7.2 Test Data . 61
7.3 Implementation . 62
7.4 Results . 64

7.4.1 Solution Quality: All Instances 64
7.4.2 Solution Quality: Hard Instances 69
7.4.3 Instance Parameters . 71
7.4.4 Components of the Hybrid Metaheuristic 74
7.4.5 Components of the Model-based Metaheuristics 77
7.4.6 Computation Time . 79
7.4.7 Models . 81

8 Conclusions 83
8.1 Summary and Concluding Remarks 83
8.2 Further Research . 85

A Abbreviations 88

B Notation 90

C Lower Bound of Outsourcing 94

Bibliography 96

List of Figures

4.1 Project featuring a single resource with availability of b = 7 and
a minimum block length of li = 2 for all activities 17

4.2 Examples of solutions for the project given in Figure 4.1 17
4.3 Project featuring a single resource with availability of b = 3 and

a minimum block length of li = 3 for all activities 18
4.4 Examples of solutions for the project given in Figure 4.3 18
4.5 Project featuring a single resource with availability of b = 5 and

a minimum block length of li = 2 for all activities 25
4.6 Solution f generated by the FSGS for the project from Figure 4.5 25
4.7 Improved solution f ′ resulting from solution f of Figure 4.6 . . 32

6.1 Intervals in the RSP . 44
6.2 Overall design of the BGA and the RGA 47
6.3 Project featuring a single resource with availability of b = 8 and

a minimum block length of li = 2 for all activities 53
6.4 Master problem solution for encoding from Table 6.2 54
6.5 Resource profile for the master problem solution from Figure 6.4 54
6.6 Resource profile after applying the repair operator on the solution

from Figure 6.5 . 58

7.1 Best results obtained . 65
7.2 Influence of the order strength 72
7.3 Influence of the resource factor 72
7.4 Influence of the resource strength 73
7.5 Influence of the minimum block length 73

viii

LIST OF FIGURES ix

7.6 Convergence of the HM . 76
7.7 Average time to generate one solution in ms. 79

List of Tables

6.1 Notation used in the models . 37
6.2 Encoded master problem solution for project from Figure 6.3 . . 54

7.1 Average gap to Tmin in percent 66
7.2 Average deviation from the best MIP solution in percent (nega-

tive values are better) . 67
7.3 Hard problem instances: Average gap to Tmin in percent 70
7.4 HM components: Average gap to Tmin in percent 74
7.5 VNS: Improved instances (Inst. %) and makespan reduction per

improved instance in periods (∆Cmax) and in percent (∆Cmax%) 75
7.6 Improvement operators: Average gap to Tmin in percent 77
7.7 Improvement operators: Improved instances (Inst. %) and make-

span reduction per improved instance in periods (∆Cmax) and
in percent (∆Cmax%) . 77

7.8 Average time to generate one solution in ms. 80
7.9 HM components: Average time to generate one solution in ms. . 80
7.10 Statistics for the subproblem . 82
7.11 Statistics for the reduced subproblem 82

x

Chapter 1

Introduction

In today’s business world many value adding activities are organized in projects.
In general, a project is “a temporary endeavor undertaken to create a unique
product, service, or result” (Project Management Institute, 2013, p. 3). This
dissertation deals with a hard optimization problem from the field of project
management: the resource-constrained project scheduling problem with flexible
resource profiles (FRCPSP). The FRCPSP is part of the project planning phase
in the overall project life cycle, after the project has been defined but prior
to its execution (Lewis, 2006). In the FRCPSP, a single project with a given
set of non-preemptive activities has to be scheduled in order to minimize the
project duration or makespan. A planning horizon of discrete time periods
is considered. The project is constrained by limited resource availability and
technological finish-to-start precedence relations with zero time-lags between
activities. These precedence relations require that an activity can only start
after all of its predecessors have been completed.

The FRCPSP is a generalization of the well-known resource-constrained
project scheduling problem (RCPSP), which is categorized as PS |prec|Cmax in
the classification of Brucker et al. (1999). Whereas in the underlying RCPSP,
the activity durations are given and the resource-usage of each activity is both
known and constant for the entire activity duration, the FRCPSP reflects
the common real-world case that only the total resource requirements of each
activity are known in advance. The resource requirements are a measure of
the effort required to complete the activity, usually expressed in units such as

1

CHAPTER 1. INTRODUCTION 2

person-days (Demeulemeester and Herroelen, 2002). How to fulfill these resource
requirements is part of the planning problem. Hence, besides scheduling the
activities, also the activity durations and the continuous quantity of resources
allocated to each activity per period have to be determined. As these allocated
resource quantities may vary between periods, an activity’s “resource profile”,
as denoted by Naber and Kolisch (2014b), becomes flexible and is not limited
to a rectangular shape as in the RCPSP.

Consider for example a project with an activity that requires 12 person-days
of human labor as resource in order to be completed. A project manager may
determine an activity duration of 6 days and a rectangular-shaped resource
profile of 2 employees on each day to fulfill the resource requirement. However,
the project manager may as well decide upon an activity duration of 5 days and
a flexible resource profile of 3 employees for the first 3 days and 1.5 employees,
i.e., 1 employee working full-time and 1 employee working half-time on the
activity, for the last 2 days.

The flexible resource profiles allow that the quantity of resources allocated
to an activity can change while the activity is processed. Resources released by
an activity may be allocated to other activities. The optimal makespan of an
FRCPSP project with flexible resource profiles is always at least as good as
in the case of solely rectangular-shaped resource profiles (Naber and Kolisch,
2014b). However, the makespan may as well be lower due to better resource
utilization and resulting shorter activity durations. The FRCPSP extends the
planning scope of classic project scheduling and is suitable for settings in which
the assumption of constant resource usage is too restrictive.

Indeed, the FRCPSP has been applied to a wide range of real-world projects.
These include pharmaceutical research (Kolisch et al., 2003), software develop-
ment (Kuhlmann, 2003), construction (Schramme, 2014), and baggage handling
at airports (Frey et al., 2014). Since Blazewicz et al. (1983) have shown that al-
ready the underlying RCPSP is NP-hard, no methods are known that can solve
the FRCPSP to optimality in polynomial time of the problem size. A study by
Naber and Kolisch (2014b) shows that for FRCPSP problem instances with as
little as 20 activities, a commercial mathematical solver using a mixed integer
program (MIP) is unable to always find optimal solutions within a time limit

CHAPTER 1. INTRODUCTION 3

of 2 hours. Motivated by the problem’s high practical relevance and justified1 by
the problem complexity, research on metaheuristic approaches for the FRCPSP
is of particular interest. Metaheuristics are “solution methods that orchestrate
an interaction between local improvement procedures and higher level strategies
to create a process capable of escaping from local optima and performing a
robust search” (Gendreau and Potvin, 2010, p. vii). Metaheuristics have been
successfully applied to a wide range of hard optimization problems before.

1.1 Scientific Scope and Contributions

During the last decades, numerous metaheuristics have been proposed for the
RCPSP, as described in Kolisch and Hartmann (2006). However, methods for
the FRCPSP are still relatively scarce, despite the problem’s huge potential. The
goal of this dissertation is to provide new approaches for solving the FRCPSP
to operations management and operations research. From the categorization of
scientific research by Mitroff et al. (1974), contributions to modeling and model
solving are made. In this work, I develop and evaluate novel metaheuristic
approaches for the FRCPSP. The metaheuristics are grouped into two categories.

The idea of the approaches in the first category is to solve the problem by
simultaneously scheduling activities and determining resource profiles. For this
purpose, the schedule generation scheme (SGS) from the RCPSP is extended
and adapted to the FRCPSP. The SGS is a constructive heuristic that, according
to Kolisch (1996), generates a feasible schedule by iteratively extending a partial
schedule. In the FRCPSP, an SGS also has to allocate resources in order to
determine the flexible resource profiles and the variable activity durations. Two
metaheuristics that apply SGSs are proposed.

The hybrid metaheuristic (HM) introduces the flexible resource profile
parallel schedule generation scheme (FSGS). The design of the FSGS incorpo-
rates insights on FRCPSP solution characteristics by following the concepts of
non-greedy resource allocation and delayed scheduling. Non-greedy resource

1Referring to the accepted standard for research on heuristic methods in operations
management according to Bertrand and Fransoo (2002)

CHAPTER 1. INTRODUCTION 4

allocation is to not always allocate the maximum resource quantities to activi-
ties. Delayed scheduling is to not always start activities as early as possible.
By applying both concepts, the FSGS can generate solutions that a standard
SGS is unable to obtain. The FSGS is integrated into a hybrid metaheuristic
framework that combines the advantages of two different search methods, a
general approach that has shown to yield high performance on numerous hard
optimization problems, according to Raidl et al. (2010). The FSGS is embedded
into a genetic algorithm (GA) by using the activity list solution representation
of Hartmann (1998) in combination with two additional parameters that con-
trol the non-greedy resource allocation and the delayed scheduling. The GA
explores the vast search space before the search is intensified around promising
solutions in a variable neighborhood search (VNS). The VNS locally improves
the best solutions from the GA by transferring resource quantities between
activities in order to reduce their durations. Specifically, resource quantities
are transferred to activities that correspond to the critical path in the resource
flow network of Artigues et al. (2003).

To the best of my knowledge, neither a variable neighborhood search nor
any other methods that use resource transfers or resource flows have yet been
proposed for the FRCPSP.

The self-adaptive genetic algorithm (SGA) is the second proposed
metaheuristic that uses SGSs. It directly adapts the method of Hartmann
(2002) to the FRCPSP. Two general types of SGSs exist, the serial and the
parallel SGS. The SGA uses both types to generate a broad variety of schedules
and it employs a self-adaptive parameter to select between the types.

All currently existing metaheuristics for the FRCPSP rely on SGSs. However,
the heuristic generation of flexible resource profiles—the central distinguishing
element of the FRCPSP—bears limitations. Whereas in the RCPSP, the set
of schedules generated by the serial SGS always contains an optimal solution
(Kolisch, 1996), this is not necessarily the case in the FRCPSP (Fündeling
and Trautmann, 2010). The heuristic resource allocation mechanism may be
unable to determine the right combination of resource profiles and activity
durations. Determining optimal resource profiles for a given schedule with
specified activity start periods and durations is already a problem by itself,

CHAPTER 1. INTRODUCTION 5

specifically a continuous linear program. In fact, the FRCPSP consists of
two interdependent parts: combinatorial scheduling and continuous resource
allocation.

The metaheuristics in the second category exploit this structure by decom-
posing the problem and determining optimal resource profiles. Using Benders
decomposition (Benders, 1962), a master problem (MP) is proposed for the
combinatorial scheduling part and a subproblem (SP) is proposed for the con-
tinuous part of creating the resource profiles by allocating resources. In classic
Benders decomposition, the MP and the SP are repeatedly solved to optimality
in an iterative process. However, as the MP constitutes a scheduling problem
with high symmetry, numerous iterations would be required. Furthermore,
repeatedly solving the MP to optimality becomes time consuming after Benders
cuts have been added. Hence, metaheuristics are considered as appropriate
to obtain good approximate MP solutions in much faster time (Raidl, 2015).
Two model-based metaheuristics are proposed: the Benders genetic algo-
rithm (BGA) and the reduced subproblem genetic algorithm (RGA).
Other authors also use the equivalent term “matheuristics” for metaheuristics
that integrate mathematical programming (Maniezzo et al., 2009).

Both model-based metaheuristics are GAs that gradually improve a popula-
tion of encoded MP solutions and derive the fitness from the makespan and
the resulting resource profiles. A new solution representation using disjunctive
arcs (Shaffer et al., 1965) is proposed. The solution representations of existing
methods for the FRCPSP cannot be applied in the decomposition, because
information on the resource allocation is not yet available at the time the MP
solutions are decoded.

Since the MP is not repeatedly solved to optimality anymore, the fitness
evaluation becomes the by far most time consuming operation in the GAs.
The BGA and the RGA use different approaches to reduce this time. The BGA
follows the idea of Sirikum et al. (2007) to approximate the fitness from Benders
optimality cuts without determining a resource profile for each encoded MP
solution. The RGA, on the other hand, determines resource profiles for all MP
solutions by solving the reduced subproblem (RSP) instead of the SP. The RSP
is a compact reformulation of the SP. It exploits the structure of resource

CHAPTER 1. INTRODUCTION 6

profiles, which consist of intervals with constant allocated resource quantities.
In general, a feasible MP solution may result in an infeasible resource profile
that violates the resource constraints. Hence, the BGA and the RGA integrate
heuristic improvement operators to locally improve such solutions.

As far as I know, neither a problem decomposition nor a model-based
metaheuristic have yet been proposed for the FRCPSP. The disjunctive arc
solution representation is also new to the FRCPSP.

I evaluate the performance of the proposed metaheuristics in a computational
study and compare them to benchmark methods from literature on problem
instances with up to 200 activities. Using statistical analysis, I interpret the
results and draw conclusions.

1.2 Overview

The remainder of this dissertation is organized as follows. Chapter 2 provides
a description of the FRCPSP. Then the problem is distinguished from related
project scheduling problems in Chapter 3. This chapter also provides a review
of relevant literature on the topic. The HM is introduced in Chapter 4, which
is based on Tritschler et al. (2015a). First, Section 4.1 illustrates important
solution characteristics of the FRCPSP. Then Section 4.2 describes the HM
and how the insights on the solution characteristics are integrated in the design
of the HM’s components. The SGA is outlined in Chapter 5, which is based
on Tritschler et al. (2014a). In Chapter 6, the model-based metaheuristics
are introduced. This chapter is based on Tritschler et al. (2015b). First, the
mathematical models are provided in Section 6.1, then the BGA and the RGA
are described in Section 6.2. In the computational study presented in Chapter 7,
the proposed methods are evaluated and compared to benchmark methods.
Chapter 7 is based on Tritschler et al. (2015a,b). The dissertation closes in
Chapter 8 with a summary of the main findings, concluding remarks, and an
outlook to future research.

Chapter 2

Problem Description

This chapter provides a problem description closely following the FRCPSP
definition of Naber and Kolisch (2014b). A formal mathematical model is
presented in Chapter 6. The notation is summarized in Appendix B.

A project in the FRCPSP contains a given set V = {1, ..., n} of n non-
preemptive activities. The project additionally features the dummy source
activity 0 for the project start and the dummy sink activity n + 1 for the
project end. Using a planning horizon of discrete time periods t ∈ T , we have
to determine for each activity i ∈ V a start period si ∈ T and an integer
duration di that leads to a completion period ci ∈ T defined as:

ci = si + di − 1 (2.1)

In practice, activity durations are usually measured in discrete work periods of
uniform duration, e.g., workdays or workweeks (Project Management Institute,
2013). In accordance with practice and the predominant methodology for the
underlying RCPSP, the planning horizon is assumed to be a discrete-time grid.
Each activity starts at the beginning of its start period and completes at the
end of its completion period. In the remainder of this work, only the entire
periods are mentioned in order to maintain simplicity. All activities are subject
to finish-to-start precedence relations with zero time-lag from the given
set Ec. These precedence relations are denoted as conjunctive arcs in order to
differentiate them from the additional disjunctive arcs that are introduced in

7

CHAPTER 2. PROBLEM DESCRIPTION 8

Chapter 6. A precedence relation (i → j) ∈ Ec requires that activity j may
only start after its predecessor i has been completed: ci < sj. Precedence
relations are assumed to be acyclic. The common activity-on-node network
representation for projects is employed. Activities are represented as nodes
and precedence relations as arcs. Given that the dummy source activity starts
and completes in period 0, the objective of the FRCPSP is to minimize the
makespan Cmax :

Cmax = max
i∈V

(ci) (2.2)

The dummy sink activity starts and completes in period Cmax + 1. In addition,
a project contains a given set R of resources. For each activity i ∈ V, we
have to determine a resource profile for each required resource r ∈ Ri. This
resource profile specifies the continuous quantity of allocated resources qirt in
each period t. Due to the nonpreemption requirement, qirt has to be positive
from si to ci. A resource profile consists of one or multiple blocks of consecutive
periods with a constant quantity of allocated resources. According to Naber
and Kolisch (2014b), resource profiles have to adhere to constraints that reflect
practical restrictions:

1. The total quantity of resource r allocated to activity i has to fulfill
the activity’s resource requirement wir:

∑ci
t=si qirt ≥ wir. Resource

quantities are assumed to be linearly additive. Their total quantity
may exceed the resource requirement in order to guarantee problem
feasibility. Demeulemeester and Herroelen (2002) refer to the term “work
content”. As resources are not limited to human resources, the broader
term “resource requirement” of Naber and Kolisch (2014b) is used.

2. The quantity of resource r allocated to activity i per period has to be
within the range of the lower resource usage bound q

ir
and the upper

resource usage bound qir. From a technological perspective, a certain
minimum number of employees may be required to process an activity.
Their number may also be bounded from above, as there is simply not
enough space to accommodate them or the activity becomes impractical.

CHAPTER 2. PROBLEM DESCRIPTION 9

The constraint is also motivated from a project management perspective.
Allocating too small resource quantities may extend the duration of an
activity beyond a reasonable scale. Both usage bounds may as well be
equal, resulting in a resource profile of rectangular shape.

3. The quantity of resource r allocated to activity i has to remain constant for
at least a minimum block length (Fündeling, 2006) of lir consecutive
periods. Hence, each block needs to have a duration of at least lir periods.
In practice, the minimum block length prevents constant fluctuations in
the number of employees assigned to an activity, as this may otherwise
cause additional efforts for coordination, travel, and job orientation.

Due to the minimum block length, the decision on when to start blocks plays a
central role in the FRCPSP. Consider that an ongoing activity starts a new
block with a reduced quantity of allocated resources in period t. In order to
directly allocate the released resources to a second parallel activity, the second
activity also has to start a new block. However, this is only possible if the
second activity’s block up to period t − 1 fulfills the minimum block length.
Hence, it is important to synchronize the blocks of different activities in order
to ensure a high resource utilization. Furthermore, it can happen that an
activity’s resource requirement is already fulfilled before its current block ends.
If the block has to be continued to meet the minimum block length, the activity
duration is extended and an overallocation of resources results.

Each resource r is renewable with a constant resource availability of
br units in each period. Besides machines, tools, and equipment, especially
human labor is considered as a renewable resource, according to Demeulemeester
and Herroelen (2002): the number of employees available to a project on a
single day is limited, but their availability is renewed on each day. All resources
are regarded as continuously divisible. As mentioned in Józefowska et al.
(2000), typical examples of continuously divisible resources include money and
various power sources, for instance, electric, pneumatic, and hydraulic power.
Naber and Kolisch (2014b) state that also human resources or machines may
be considered as continuously divisible resources if an employee or machine
can process multiple activities in parallel. In this case, a fractional resource

CHAPTER 2. PROBLEM DESCRIPTION 10

quantity is allocated to each activity. For example, if 1 employee equally works
on 2 activities in parallel for a period of 1 day, 0.5 man-days are allocated
to each activity in that period (Naber and Kolisch, 2014b). Józefowska et al.
(2000) argue that continuous divisibility can also be assumed if the number
of available units of a discrete resource is very high. Similarly, in tactical
workforce or resource planning, resources are usually considered as continuously
divisible. Naber and Kolisch (2014b) categorize resources into three types:

1. A principal resource k is the main resource of an activity and its
allocated quantity may define the quantities of other resources. An
activity requires at most one principal resource, but a project may contain
multiple activity-specific principal resources.

2. A dependent resource r of activity i is a resource whose allocated
quantity qirt depends on the allocated quantity qikt of the activity’s
principal resource k through a linear resource function with coefficient αir
and constant βir:

qirt ≥ αir · qikt + βir (2.3)

Dependent resources must be allocated concurrently with their principal
resource from the start to the completion period of the activity without
interruption. Again, an overallocation of resources is allowed to ensure
problem feasibility. An activity may require multiple dependent resources.

3. An independent resource of an activity is a resource whose allocated
quantity is independent from other resources. An activity may also require
multiple independent resources.

Let us proceed with the previous example in which employees are the principal
resource. Assume that an employee needs 1 unit of a certain tool as dependent
resource in order to perform activities. If the employee is assigned in 1 period
to 2 parallel activities 0.5 man-days each, the tool is also shared proportionally
between both activities. A linear resource function is assumed, as the marginal

CHAPTER 2. PROBLEM DESCRIPTION 11

requirements for tools and equipment are constant. In this setting, an inde-
pendent resource may be a facility, such as a production hall, that is required
regardless of the number of employees and tools.

To summarize, the FRCPSP is to determine a makespan-minimal solution f
that specifies for each activity i ∈ V a start period si, a duration di, and a
resource profile for each required resource r ∈ Ri that fulfills all constraints.

Additional parameters can be derived for each activity. The lower bound
of duration d is defined as:

di = max
r∈Ri

(
max(

⌈wir
qir

⌉
, lir)

)
(2.4)

Similarly, the upper bound of duration di is calculated by using q
ir
instead

of qir. Each activity’s earliest start period si and its earliest completion
period ci are determined by precedence-based critical path calculations that
use di as activity duration and ignore the resource constraints. As detailed in
Naber and Kolisch (2014b), these calculations are strengthened by applying
an extension of the resource-based method of Schrage (1970). It considers the
minimum number of periods that is required to fulfill the resource requirements
of all predecessors of each activity with respect to the resource constraints.
The latest start period si and the latest completion period ci are derived
by backwards calculations from an upper bound of the makespan with di as
activity duration. The resulting time window Ti of activity i consists of all
periods from si to ci. Finally, Tmin defines a lower bound of the makespan,
obtained from the earliest completion periods:

Tmin = max
i∈V

(ci) (2.5)

The FRCPSP is closely related to other project scheduling problems. It
contains the RCPSP as a special case featuring only rectangular-shaped resource
profiles with equal lower and upper resource usage bounds and a fixed activity
duration as well as solely independent resources. Hence, as noted in Kolisch
et al. (2003), the FRCPSP is also NP-hard. In the following literate review,
the FRCPSP is differentiated from other project scheduling problems.

Chapter 3

Literature Review

The FRCPSP was initially studied by Kolisch et al. (2003), who propose the
problem in the context of real-world pharmaceutical research projects. They
provide an MIP formulation as well as a priority rule heuristic that uses a
schedule generation scheme (SGS). According to Kolisch (1996), the SGS is a
constructive heuristic that generates a feasible schedule by iteratively extending
a partial schedule. Kolisch (1996) distinguishes the serial SGS, proposed
by Kelley (1963), and the parallel SGS, originating from Kelley (1963) and
Bedworth and Bailey (1982). In both methods, a priority rule is employed
to determine the sequence in which activities are scheduled. The method of
Kolisch et al. (2003) can use both SGS types. Their employed SGSs implement
the greedy principles of scheduling activities as early as possible and allocating
the largest possible resource quantities. An SGS that adheres to these principles
is denoted as a standard SGS in the remainder of this dissertation.

The coming sections provide a review of literature on the FRCPSP. The
FRCPSP with continuous resource quantities is covered in Section 3.1 and
the variant with discrete resource quantities in Section 3.2. Related project
scheduling problems are considered in Section 3.3.

12

CHAPTER 3. LITERATURE REVIEW 13

3.1 Continuous Resources

For the FRCPSP with continuously divisible resource quantities, as presented
in Chapter 2, four MIP models are proposed by Naber and Kolisch (2014b).
The authors also apply a priority rule heuristic with a standard serial SGS to
compute an upper bound of the makespan. Naber and Kolisch (2014a) consider
the generalization to a continuous time axis. Schramme (2014) deals with a
problem variant that features neither minimum block lengths nor dependent
resources. Besides an MIP model, he provides a GA with a non-greedy serial
SGS. The FSGS proposed in Chapter 4 of this dissertation differs from the SGS
of Schramme (2014), as the FSGS specifically addresses the minimum block
length and determines activity durations as a result of the resource allocation,
whereas Schramme (2014) considers activity durations as input parameters.
The SGS of Schramme (2014) schedules activities as early as possible for the
objective of makespan minimization. For other non-regular objectives, activity
starts may as well be delayed.

3.2 Discrete Resources

The FRCPSP with discrete resource quantities differs from its continuous
counterpart. The works of Fündeling (2006), Fündeling and Trautmann (2010),
and Baumann et al. (2015) deal with a problem variant in which resource
quantities are discrete and the resource requirements have to be exactly fulfilled.
Thus, the set of resource profiles is finite and the problem becomes purely
combinatorial. Naber and Kolisch (2015) point out that the exact requirements
for discrete resources in combination with the minimum block length can lead
to longer activity durations. Due to the resulting higher optimal makespans,
methods for this discrete problem variant cannot be directly compared to
methods for the FRCPSP with continuous resources.

An MIP model is proposed by Baumann et al. (2015), who also consider a
relaxation of the integrality requirements. Fündeling (2006) provides priority
rule heuristics and proposes standard serial and parallel SGSs, as well as a
parallel SGS that allocates resources to the maximum number of activities by

CHAPTER 3. LITERATURE REVIEW 14

first fulfilling their lower resource usage bounds. He also describes a branch-
and-bound method. The work of Fündeling and Trautmann (2010) is based
on the standard serial SGS of Fündeling (2006). Both works assume that all
activities in a project require the same principal resource. For projects entirely
limited to a single resource, Ranjbar and Kianfar (2010) employ a GA with a
serial SGS that uses a priori generated resource profiles. Resource profiles are
limited to rectangular, non-increasing, non-decreasing, and triangular shapes
and are generated by an enumeration procedure. For multi-project scheduling
limited to a single resource, Zhang and Sun (2011) briefly outline a priority rule
heuristic that uses a parallel SGS. For a related problem with several additional
constraints from a practical application in software development, Kuhlmann
(2003) proposes multiple GAs. Meyer (2003) covers a problem application in
pharmaceutical research and proposes a priority rule heuristic.

3.3 Related Problems

The underlying RCPSP has been broadly covered in literature. For literature
reviews refer to Brucker et al. (1999), Hartmann and Briskorn (2010), and
Węglarz et al. (2011). Heuristics and metaheuristics are compared in Hartmann
and Kolisch (2000) and Kolisch and Hartmann (2006).

The concept of allowing multiple processing modes for activities was intro-
duced by Elmaghraby (1977). In this context, Węglarz et al. (2011) distinguish
two basic activity processing models: the processing time vs. resource amount
model and the processing rate vs. resource amount model.

In the first model, activity processing time is a nonincreasing function of
the quantity of allocated resources, which is assumed constant throughout the
entire processing time (Węglarz et al., 2011). In this category, the multi-mode
resource-constrained project scheduling problem (MRCPSP), introduced by
Talbot (1982), is similar to the FRCPSP. Each activity can also be processed in
multiple different modes. However, the MRCPSP only features a predetermined
set of modes with rectangular-shaped resource profiles from which one mode
has to be selected. As resources in the FRCPSP are continuously divisible, the
problem at hand cannot be simply converted to the MRCPSP by exhaustively

CHAPTER 3. LITERATURE REVIEW 15

generating modes (Naber and Kolisch, 2014b). Metaheuristics for the MRCPSP
are compared in van Peteghem and Vanhoucke (2014).

The FRCPSP also differs from the discrete time-resource tradeoff prob-
lem (DTRTP), first proposed by De Reyck et al. (1998). In the DTRTP, activity
durations are a function of resource usage. As this resource usage is assumed
constant and integer for the entire duration of an activity, resource profiles are
limited to rectangular shapes. A branch-and-bound approach for the problem is
provided by Demeulemeester et al. (2000), while metaheuristics are proposed by
De Reyck et al. (1998) and Ranjbar and Kianfar (2007). Ranjbar et al. (2009)
consider the DTRTP with multiple resources, which constitutes a special case
of the MRCPSP. They solve the problem by using an SGS-based metaheuristic
that selects modes from a set of feasible modes.

In the second activity processing model, the activity processing rate is an
increasing function of the quantity of allocated resources (Węglarz et al., 2011).
Specifically, the allocated resource quantities are continuous and may vary
during the processing time. Early works in this category are, e.g., Węglarz
(1981) and Leachman et al. (1990). For RCPSP variants with variable activity
intensities, MIP models are proposed by Kis (2006), Haït and Baydoun (2012),
and Bianco and Caramia (2013). A discrete–continuous project scheduling
problem that contains one continuous and multiple discrete resources is analyzed
by Józefowska et al. (2000).

According to Naber and Kolisch (2014b), concepts of the FRCPSP are also
applied in aggregate project planning on the tactical level. In rough-cut capacity
planning, considered by Hans (2001) and Baydoun et al. (2014), multiple single
operations are grouped into aggregate activities with variable duration but
given resource requirements. Similarities to the FRCPSP can also be found in
the context of project crashing. By allocating additional resource quantities,
Deckro and Hebert (1989) reduce the duration of activities.

Chapter 4

The Hybrid Metaheuristic

In this chapter, the hybrid metaheuristic (HM) for the FRCPSP is presented.
Characteristics of optimal solutions are analyzed in Section 4.1 and the gained
insights are then applied in the design of the HM in Section 4.2.

4.1 Solution Characteristics

Approaches beyond the greedy principles mentioned in Chapter 3 are required
to generate optimal solutions for the FRCPSP. The examples provided in this
section apply to both the standard serial and the standard parallel SGS. To
maintain simplicity, only one resource is considered in the examples and the
resource index is omitted from the notation.

4.1.1 Non-greedy Resource Allocation

The greedy principle of always allocating the maximum resource quantity does
not necessarily lead to the minimum makespan, as noted by Fündeling and
Trautmann (2010). It may prevent the start of other activities or increase
their durations. An optimal solution may feature periods in which the resource
allocation to an activity is reduced, whereas in other periods it is increased in
order to utilize the available resources.

For the project illustrated in Figure 4.1, Figure 4.2a illustrates a solution
resulting from greedy resource allocation. Activity 1 starts with its maximum

16

CHAPTER 4. THE HYBRID METAHEURISTIC 17

0

1

20, 3, 5

2

10, 3, 5
3

i

wi, qi, qi

Figure 4.1: Project featuring a single resource with availability of b = 7 and
a minimum block length of li = 2 for all activities

b

1 2 3 4 5 6
0

2

4

6

t

qit

1 2

(a)

b

1 2 3 4 5 6
0

2

4

6

t

qit

1

2

(b)

Figure 4.2: Examples of solutions for the project given in Figure 4.1

resource allocation of 5 units. Hence, activity 2 cannot start until period 5 and
the resulting makespan is 6 periods. Figure 4.2b shows a solution resulting from
a non-greedy resource allocation of only 31

3 resource units to both activities in
periods 1 to 3. In periods 4 and 5, the resource quantity allocated to activity 1
is increased to the maximum of 5 units in order to utilize the available resources.
The resulting makespan of 5 periods is optimal.

4.1.2 Delayed Scheduling

Scheduling activities as early as possible does not necessarily lead to the
minimum makespan either. By delaying the start of an activity to a later
period, the activity may be able to exploit a higher resource availability, which
otherwise could not be utilized. This effect is caused by the minimum block
length, as shown in Tritschler et al. (2014b) and Baumann et al. (2015).

CHAPTER 4. THE HYBRID METAHEURISTIC 18

0

1

3, 1, 1

2

9, 1, 3

3

4, 1, 1

4 i

wi, qi, qi

Figure 4.3: Project featuring a single resource with availability of b = 3 and
a minimum block length of li = 3 for all activities

b

1 2 3 4 5 6 7 8

1

2

3

0 t

qit

3

1
2

(a)

b

1 2 3 4 5 6 7 8

1

2

3

0 t

qit

3

1 2

(b)

Figure 4.4: Examples of solutions for the project given in Figure 4.3

For the project given in Figure 4.3, Figure 4.4a depicts a solution in which
all activities start as early as possible. Activity 2 starts in period 4, where due
to the processing of activity 3 only 2 resource units are available. Respecting
the minimum block length of 3 periods, 1.8 resource units are allocated for
5 periods to activity 2, resulting in a makespan of 8. Allocating additional
resource quantities to activity 2 in period 7 would only further increase the
makespan due to the minimum block length. By delaying the start of activity 2
to period 5, where 3 resource units are available, an optimal solution with the
minimum makespan of 7 is obtained, as shown in Figure 4.4b.

CHAPTER 4. THE HYBRID METAHEURISTIC 19

4.2 Hybrid Metaheuristic

An adequate combination of different algorithmic approaches that exploits
synergies between the methods is an important step towards achieving high
performance on hard optimization problems (Raidl et al., 2010). The proposed
HM combines three components. Section 4.2.1 introduces the flexible resource
profile parallel schedule generation scheme (FSGS) and explains how it ap-
plies the concepts from Section 4.1. The FSGS is integrated into the genetic
algorithm (GA) shown in Section 4.2.2. Whereas the GA explores the large
search space, its best solutions are further locally improved with the variable
neighborhood search (VNS) presented in Section 4.2.3.

The general assumption is that a feasible solution exists. The availability of
each resource has to fulfill the lower bound of resource usage of each activity.

4.2.1 Flexible Resource Profile Parallel Schedule Gen-
eration Scheme

The FSGS implements non-greedy resource allocation and delayed scheduling.
Just as depicted in the example from Figure 4.2b, the FSGS can both realize
periods in which the resource allocation to an activity is limited and periods
in which it is maximized again. The set of generated solutions contains only
feasible solutions. However, due to the heuristic creation of resource profiles, it
may not always contain the optimal solution. The coming sections first describe
the FSGS input parameters, then explain the algorithm, and finally illustrate
it with an example.

4.2.1.1 Input Parameters

The FSGS uses three input parameters of length n:

• Activity list λ: The sequence of activities for resource allocation is
defined by the activity list λ of Hartmann (1998). λ is any precedence
feasible permutation of the activities from set V .

CHAPTER 4. THE HYBRID METAHEURISTIC 20

• Resource allocation limit list ρ: To facilitate non-greedy resource
allocation, list ρ = (ρ1, . . . , ρn) contains for each activity i ∈ V an integer
ρi ∈ {0, 1, . . . , ρi} that defines the limit wir/(di + ρi) for the allocated
resource quantity qirt. Instead of directly encoding the numerous continu-
ous resource quantities for each resource and period, just one integer value
is required per activity. The resulting activity duration is not necessarily
di + ρi but is determined by the actual quantity of resources allocated
per period in the FSGS. The upper bound ρi of ρi prevents too low limits
and resulting excessive prolongations of activities:

ρi = min(di − di, ci − si) (4.1)

• Start delay list σ: To delay the start of activities, list σ = (σ1, . . . , σn)
contains for each activity i ∈ V an integer σi ∈ {0, 1, . . . , σi} so that the
start of activity i is delayed by σi periods. The delay is relative to the
period in which the FSGS would otherwise schedule the activity. This
is not necessarily the earliest precedence-feasible and resource-feasible
period. The upper bound σi of σi is calculated from the earliest and latest
start periods and, thus, allows free start periods within the activity’s
time window:

σi = si − si (4.2)

4.2.1.2 Algorithm

The FSGS extends the period-based approach of the parallel SGS to flexible
resource profiles, minimum block lengths, and dependent resources. The FSGS
increments time periods and considers in each iteration a period t. Resources are
allocated to an activity in the order of principal, dependent, and independent
resources. An activity is completed as soon as the resource requirements and the
minimum block lengths of all of its required resources are met. The duration di
of activity i results from the allocated resource quantities per period. For
simplicity, let us assume for now that resource r of activity i is either principal
or independent, i.e, r ∈ Rpi

i .

CHAPTER 4. THE HYBRID METAHEURISTIC 21

Algorithm 1 Steps of the FSGS in period t

1. for i ∈ VA in sequence of λ, r ∈ Rpi
i do

if lir(t−1) ≥ lir then
qirt = q

ir
else

qirt = qir(t−1)

2. for i ∈ VA ∪ VE in sequence of λ, r ∈ Rpi
i : ϕr > 0 do

(a) if i ∈ E and ∀r′ ∈ Ri : ϕr′ ≥ q
ir′

then
if delayi ≥ σi then

qirt = min(ϕr, wir
di+ρi

)
else

delayi = delayi + 1
(b) if i ∈ VA and lir(t−1) ≥ lir then

if qirt + ϕr ≥ qir(t−1) then
q′irt = max(q

ir
,min(qirt + ϕr,

ξir
lir
, wir
di+ρi

))
if d ξir

q′irt
e ≥ lir and (d ξir

q′irt
e < d ξir

qir(t−1)
e or qir(t−1) >

wir
di+ρi

)
qirt = q′irt

else
qirt = qir(t−1)

else
qirt = qirt + ϕr

if d ξir
qirt
e < 2 · lir then

qirt = max(q
ir
, ξir/d ξirqirt e)

3. for i ∈ VA in sequence of λ, r ∈ Rpi
i : ϕr > 0 do

Repeat Step 2b with q′irt = max(q
ir
,min(qirt + ϕr,

ξir
lir
, qir))

CHAPTER 4. THE HYBRID METAHEURISTIC 22

For each period t, the FSGS performs the steps given in Algorithm 1.
λ provides the sequence of activities for resource allocation in all steps. ρ limits
the resource allocation in Steps 2a and 2b. The start of activities is delayed
by σ in Step 2a. The FSGS distinguishes two sets of activities. The activities
of set VA are active in period t, that means they are currently processed.
The activities of set VE are eligible for scheduling in period t, since all their
predecessors have been completed up to t− 1. The block up to period t− 1
is denoted as the “current block”, whereas the block starting in period t is
the “new block”. Algorithm 1 uses additional variables: ϕr is the current
leftover availability of resource r, ξir is the current remaining requirement of
activity i for resource r, delayi is the number of periods by which the start of
activity i has been delayed for, and lirt is the length of the block of activity i
and resource r until period t. All sets and variables are constantly updated but
these update operations are not stated in the algorithm to maintain brevity.

Step 1 Continue active activities to ensure nonpreemption: For each
resource r of activity i ∈ VA for which the minimum block length lir has
been met, a quantity equal to the lower resource usage bound qirt = q

ir

is allocated. If lir has not been met, the current block is continued by
allocating the quantity of the previous period qirt = qir(t−1).

Step 2 Allocate remaining resources: Resources are distributed among ac-
tive and eligible activities in a non-greedy manner according to sequence λ.
Two disjunct cases apply:

Step 2a Start eligible activities: Eligible activities are started based on the
delays from σ. Activity i ∈ VE starts if the lower usage bound of each
required resource is met and the start of the activity has already been
delayed for at least σi periods. ρi limits the allocated resource quantity
to qirt = min(ϕr, wir/(di + ρi)).

Step 2b Modify resource allocation of active activities: This step only
applies to resources required by active activities i ∈ VA for which the
minimum block length has been met. For such resources, a quantity equal
to the lower usage bound has already been allocated in Step 1. Now,

CHAPTER 4. THE HYBRID METAHEURISTIC 23

additional resource quantities are allocated. Three different cases apply:
(1) A new block has to be started due to insufficient resources. (2) The
current block is continued. (3) A new block is started in order to change
the resource allocation. The operations of each case are described below:

(1) If the current leftover quantity ϕr of resource r does not suffice to
continue the current block, qirt = qirt + ϕr is set and consequently a new
block starts.

(2) If ϕr suffices to continue the current block, the algorithm checks
whether to allocate the same quantity as in the previous period, i.e.,
qirt = qir(t−1), or to start a new block in case (3).

(3) A new block with q′irt = max(q
ir
,min(qirt + ϕr, ξir/lir, wir/(di + ρi)))

is only started by setting qirt = q′irt if the following condition (I) and
at least one out of conditions (II) or (III) apply: (I) The remaining re-
source requirement ξir is sufficient to accommodate at least one minimum
block length: dξir/q′irte ≥ lir. (II) The new block resulting from an in-
creased resource quantity q′irt is shorter than the continued current block:
dξir/q′irte < dξir/qir(t−1)e. (III) The allocated quantity in the current
block is larger than the limit defined by ρi: qir(t−1) > wir/(di + ρi). Con-
dition (III) can only apply if Step 3 has been performed at the beginning
of the current block. Resulting from condition (III), the new block with
a decreased resource quantity q′irt again adheres to the limit defined by ρi.
Conditions (I) and (II) are taken from Naber and Kolisch (2014b).

Next, if less than two minimum block lengths remain to complete the
activity, i.e., dξir/qirte < 2 · lri, the resource allocation is kept constant
until the activity completes. Starting a new block in the next periods
would otherwise increase the duration of the activity. To prevent an
overallocation of resources, qirt = max(q

ir
, ξir/dξir/qirte) is set.

Step 3 Utilize slacks: After completing Steps 1 and 2, a feasible partial sched-
ule up to period t has been generated. However, due to the resource
allocation limits, the available resources may not be fully utilized in
period t. These leftover resource quantities (slacks) are now exploited

CHAPTER 4. THE HYBRID METAHEURISTIC 24

by temporarily exceeding the allocation limit. The resources are allo-
cated to active activities in the sequence of λ if the minimum block
length permits it. For this purpose, Step 2b is repeated with the modifi-
cation q′irt = max(q

ir
,min(ϕr + qirt, ξir/lir, qir)), which allows allocating

resources up to qir.

Let us now consider dependent resources. The allocated quantity of de-
pendent resource r is calculated from the allocated quantity qikt of principal
resource k by qirt = α · qikt + β. If ϕr is lower than qirt, then qirt = max(q

ir
, ϕr)

is set and, as a consequence, the allocated quantity of the principal resource is
updated to qikt = (qirt − β)/α. This modification of the principal resource in
return requires to recalculate the quantities of other dependent resources. The
process is repeated until qikt adheres to the availability and the resource usage
bounds of all dependent resources.

4.2.1.3 Example

Consider the project illustrated in Figure 4.5. As the project only contains a
single resource, the resource index is omitted in the notation. For λ = (3, 1, 4, 2),
ρ = (1, 0, 0, 0), and σ = (0, 0, 0, 0), the FSGS generates the solution f shown in
Figure 4.6. In all periods not mentioned in the explanations below, Step 1 of
Algorithm 1 applies.

In period 1, resources are first allocated to activity 3 due to its posi-
tion in λ. As d3 = max(d12/4e, 2) = 3 and ρ3 = 1, a resource quantity of
min(5, 12/(3 + 1)) = 3 is allocated in Step 2a. The remaining 2 resource units
are allocated to activity 1 in Step 2a. Activity 3 completes in period 4. In
period 5, first 2 resource units are allocated to activity 1 in Step 1. This is
sufficient for activity 1 to complete. Then, the remaining 3 resource units
are allocated to start activity 4 in Step 2a. In period 6, activity 4 contin-
ues with the same allocated quantity as in period 5 due to Step 1. Hence,
activity 2 can only start with an allocated quantity of 2 units from Step 2a.
Activity 4 completes in period 9. In period 10, activity 2 requires additional
ξ2 = 5 resource units to complete. First, a resource quantity q2,10 = 2 that is
equal to the lower usage bound is allocated in Step 1. As the length of the

CHAPTER 4. THE HYBRID METAHEURISTIC 25

0

1

10, 2, 4

2

13, 2, 3

3

12, 3, 4

4

15, 2, 3
5

i

wi, qi, qi

Figure 4.5: Project featuring a single resource with availability of b = 5 and
a minimum block length of li = 2 for all activities

b

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

0 t

qit

3

1

4

2

Figure 4.6: Solution f generated by the FSGS for the project from Figure 4.5

current block of 4 is greater than the minimum block length l2 = 2, Step 2b
increases the quantity to q′2,10 = max(q2,min(q2,10 + ϕ, ξ2/l2, w2/(d2 + ρ2))) =
max(2,min(2 + 3, 5/2, 15/(5 + 0)) = 2.5. The new resulting block has a length
of 2, which equals the minimum block length and is 1 period shorter than the cur-
rent block if it were continued. As the new block does not overallocate resources,
the resource quantity is not changed by operation max(2, 2.5/d2.5/2.5e) = 2.5.
The activity completes in the next period, resulting in a makespan of 11.

CHAPTER 4. THE HYBRID METAHEURISTIC 26

4.2.2 Genetic Algorithm

A GA is a population-based metaheuristic inspired by the principles of natural
evolution. Since their first proposal by Holland (1975), GAs have been suc-
cessfully applied to a wide range of hard optimization problems including the
RCPSP, as reported in Reeves (2010) and Kolisch and Hartmann (2006).

Within the HM, the FSGS is embedded into a GA. This proposed GA uses
the FSGS’s three input parameter lists as solution representation. An encoded
solution (λ, ρ, σ) is decoded by the FSGS into a feasible FRCPSP solution f .
The resulting makespan is the fitness value.

The GA first creates an initial population of solutions as described in
Section 4.2.2.1. In each generation, the elite solution with the lowest makespan
is inserted unmodified into the next generation. Using the elite solution’s
makespan, the GA updates the upper bounds si, ci, ρi, and σi. Thus, the
bounds are tightened with each makespan improvement. Then the GA selects
a set of solutions for the next generation by stochastic universal sampling
as of Baker (1987). This fitness-proportionate selection procedure overcomes
several limitations of simple roulette wheel selection (Reeves, 2010). The
selected solutions are modified by the operators described in Section 4.2.2.2
and constitute the next generation. The whole process is repeated until the
given maximum number of solutions FGA has been generated. The GA returns
as result the list ~fgen. It contains the encoded elite solution (λ, ρ, σ) of each
GA generation as well as each corresponding decoded elite solution f . The list
entries are unique regarding the encoded solutions. Hence, if two generations
feature the identical encoded elite solution, it is only stored once in ~fgen. The
list is sorted in ascending order of generation count and, as a consequence, also
in non-increasing order of makespan. ~fgen is used after the GA’s completion as
input for the VNS.

The GA is chosen as the metaheuristic framework for the FSGS because of
two reasons. First, crossover as the GA’s main operation is rather coarse-grained
and can lead to huge modifications in the encoded solutions. This behavior is
desired because ~fgen shall contain different encoded solutions, although their
makespans may be similar or identical. A fine-grained local improvement of

CHAPTER 4. THE HYBRID METAHEURISTIC 27

these solutions is later obtained by the VNS. Second, efficient permutation-
based crossover operators are present in literature and can easily be applied to
all three input parameters of the FSGS.

4.2.2.1 Initial Population

In the initial population, the activity list λ is constructed by iteratively adding
one activity whose predecessors are already contained in λ. The dummy source
activity is implicitly assumed to be always present in the list. Diversity is
introduced into the population by selecting the next activity randomly as well
as by the priority rules employed in Fündeling (2006), namely longest path fol-
lowing (LPF), most work remaining (MWR), and most total successors (MTS).
For 75% of the population, ρi is set with a probability of 10% to a uniform
random integer value within the bounds ρ

i
and ρi. For the rest of the population

ρi = 0 applies. All σi are set to 0 in order to prevent delayed activity starts in
the initial population.

4.2.2.2 Operators

The proposed GA uses the partially-matched two-point crossover of Hartmann
(1998) to recombine solutions. The operator maintains the precedence order
of λ. It randomly selects two crossover points in lists λ, ρ, and σ of two
parent solutions and generates two new feasible child solutions. Then the GA
applies three mutation operators. The mutation probabilities are listed in the
implementation details given in Section 7.3. To mutate λ, the operator of
Hartmann (1998) is used. It exchanges an activity in λ with the one at the
next position with a certain probability if the exchange is precedence-feasible.
Each ρi is mutated with a certain probability by either replacing it by a uniform
random integer within its constantly updated bounds or increasing (decreasing)
it by one. Both cases are selected with equal probability. Finally, each σi is
replaced with a certain probability by a uniform random integer within its
constantly updated bounds.

CHAPTER 4. THE HYBRID METAHEURISTIC 28

4.2.3 Variable Neighborhood Search

The VNS, introduced by Mladenović and Hansen (1997), is a metaheuristic
that combines local search with systematic change of neighborhoods. In the
HM, the VNS is used to further locally improve the GA’s best solutions by
transferring resource quantities between selected pairs of activities (i, j). Given
that potential to reduce the makespan exists, resource quantities are removed
from the resource profiles of activity i and added to the resource profiles of
activity j.

The VNS is an appropriate metaheuristic for this purpose, as its concept of
nested neighborhoods represents combinations of multiple pairwise resource
transfers. Whereas in the original method of Mladenović and Hansen (1997),
a random perturbation is used to escape local minima, the proposed VNS
escapes local minima by moving to the next solution from the GA’s result
list ~fgen. Thus, the VNS intensifies the search along the GA’s search trajectory
on solutions of already high quality.

Section 4.2.3.1 describes the heuristic selection of activity pairs, Section
4.2.3.2 explains the resource transfer between activities, and Section 4.2.3.3
presents the overall VNS framework along with a definition of neighborhoods.
The VNS is illustrated in an example in Section 4.2.3.4.

4.2.3.1 Activity Selection

For most activity pairs a resource transfer is either infeasible or does not reduce
the makespan. Hence, the VNS only operates on a subset of heuristically
identified activity pairs. These activity pairs (i, j) ∈ Vpair are selected such that
resource quantities are transferred from “non-critical” activity i to “critical”
activity j in order to reduce the duration of j. Critical activities, as defined
below, correspond to a longest path in the resource flow network of Artigues
et al. (2003). This longest path is interpreted as the solution’s critical path
(Kelley, 1963). Therefore, reducing the durations of critical activities may also
reduce the makespan. Set Vpair for solution f is constructed in five steps:

CHAPTER 4. THE HYBRID METAHEURISTIC 29

1. Prevent cycles: Due to the flexible resource profiles, the resource quan-
tity allocated to an activity over time may first decrease and then increase
again. In this case, there is a resource flow from the activity via other
activities to itself. Hence, the resulting resource flow network contains
cycles and the calculation of a longest path becomes NP-hard (Garey
and Johnson, 1979, p. 213). To derive an acyclic resource flow network, so-
lution f is transformed into solution f rec in which all activities irec ∈ Vrec

feature resource profiles of rectangular shape for all required resources.
Resource profiles that contain more than one block are split into multiple
new activities that each represent one single block. In each period in
which an activity from solution f starts a new block, a new corresponding
activity irec ∈ Vrec starts in solution f rec.

2. Generate resource flow network: An acyclic resource flow network
is derived from f rec. A modified version of the algorithm of Artigues
et al. (2008, p. 34) is used to calculate the resource flows. An arc from
activity irec to activity jrec, with irec, jrec ∈ Vrec, is set if there is a positive
resource flow from irec to jrec. Different from Artigues et al. (2008), the
algorithm first selects irec depending on whether it corresponds to the
same original activity from V as jrec and then depending on the earliest
completion period. The weight of the arc is set to min(sjrec − sirec , direc).

3. Identify critical activities: A given maximum number of longest paths
in the resource flow network is calculated by depth-first search. For each
resulting longest path, an activity j ∈ V of solution f is critical if it
corresponds to an activity jrec ∈ Vrec that is on this longest path. Set VC
contains all critical activities j ∈ V related to the longest path.

4. Select activity pairs: Set Vpair contains activity pairs (i, j) in which
activity i is non-critical, activity j is critical and has a duration above its
minimum duration, and set T pair

ij of periods for resource transfer is non-
empty. T pair

ij are the periods in which activity i has an allocated quantity
above its lower usage bound, while activity j has a quantity below its
upper usage bound for shared principal or independent resource r:

CHAPTER 4. THE HYBRID METAHEURISTIC 30

Vpair =
{

(i, j)
∣∣∣ i /∈ VC ∧ j ∈ VC ∧ dj > dj ∧ T pair

ij 6= ∅
}

(4.3)

T pair
ij =

{
t ∈ T

∣∣∣∃r ∈ Rpi
i ∩R

pi
j : (qirt > q

ir
∧ qjrt < qjr)

}
(4.4)

5. Break ties: In case of multiple longest paths, multiple sets Vpair may
occur. To break ties, select the set with the highest makespan reduction
potential:

∑
(i,j)∈Vpair

(dj − dj) (4.5)

4.2.3.2 Resource Transfer

For (i, j) ∈ Vpair , r ∈ Rpi
i ∩ R

pi
j and t ∈ T pair

ij , the maximum transfer quan-
tity χijrt is defined as:

χijrt = min(qirt − qir, qjr − qjrt) (4.6)

χijrt is the minimum of the maximum sendable and receivable resource quanti-
ties. The quantity of the principal resource determines the required quantities
of dependent resources.

A new feasible solution f ′ is generated from the existing solution f by
performing v resource transfers for v activity pairs (i, j) ∈ Vpair . The FSGS
generates solution f ′ from the representation (λ, ρ, σ) of solution f . However,
in each period t ∈ T pair

ij , the allocated resource quantity in Steps 2a and 2b
of Algorithm 1 is modified to qirt = max(q

ir
,min(qir, qirt − χijrt)) for sending

activity i and to qjrt = max(q
jr
,min(qjr, qjrt + χijrt)) for receiving activity j.

In Step 2b of Algorithm 1, a new block is already started if the remaining
resource requirement ξir suffices to fulfill at least one minimum block length.
The resource transfer is only performed if both activities meet the minimum
block length. This requirement is not considered in the activity selection, as
the block lengths resulting from multiple resource transfers are unknown in
advance. Information on the performed resource transfers is saved such that
the resulting solution f ′ can be used as input for additional resource transfers.

CHAPTER 4. THE HYBRID METAHEURISTIC 31

4.2.3.3 Solution Improvement

In the VNS, neighborhood number v of feasible solution f consists of all feasible
solutions that can be generated from f by v resource transfers for activity pairs
(i, j) ∈ Vpair . The VNS integrates two components: (1) the first-improvement
variable neighborhood descent of Hansen and Mladenović (2005), which is a
local search method employing a purely deterministic neighborhood change
mechanism, and (2) a perturbation method to escape local minima by using ~fgen

from the GA:

1. The VNS starts in neighborhood v = 1 of the last solution f from ~fgen.
This solution has the best makespan found by the GA. Each local search
step in neighborhood v is to generate a new solution f ′ from the current
incumbent f by v resource transfers with activity pairs from Vpair . If
the makespan is not improved within the given maximum number of
generated solutions per neighborhood, the VNS proceeds to the next
neighborhood v = v + 1. If the makespan of f ′ is reduced, the VNS
moves from f to f ′ and continues the search in neighborhood v = 1 of
solution f ′.

2. If f is not improved within the given maximum number of non-improving
solutions or if the maximum allowed neighborhood has been reached, the
VNS escapes the local optimum f by selecting the next unique solution f ′

from ~fgen and moving to f ′. Thus, the VNS exploits the results of the
GA and operates on solutions of already high quality instead of using
randomly generated solutions.

The VNS terminates and returns the overall best-found solution if ~fgen has
been fully processed or the given maximum number of solutions FVNS has been
generated.

4.2.3.4 Example

Assume that solution f from Figure 4.6 is processed by the VNS. In the activity
selection, solution f is transformed into solution f rec with rectangular-shaped

CHAPTER 4. THE HYBRID METAHEURISTIC 32

b

1 2 3 4 5 6 7 8 9 10 11 12

1

2

3

4

5

0 t

qit

3

1

4

2

Figure 4.7: Improved solution f ′ resulting from solution f of Figure 4.6

resource profiles. The resource profile of activity 2 in f consists of 2 blocks.
Hence, it corresponds to 2 activities with rectangular shaped resource profiles
in f rec: activity 2rec

a ∈ Vrec from periods 6 to 9 and activity 2rec
b ∈ Vrec from

periods 10 to 11.
The resulting resource flow network contains two longest paths of length 11:

(1, 2rec
a , 2rec

b) and (3, 4, 2rec
b). For the first longest path with critical activities

VC = {1, 2}, activities 1 and 2 are parallel to activity 4. Hence, transfer
periods T pair

4,1 = {5} and T pair
4,2 = {6, 7, 8, 9} result. This leads to activity pairs

Vpair = {(4, 1), (4, 2)} with a reduction potential of (d1 − d1) + (d2 − d2) =
(5− 3) + (6− 5) = 3 periods. The second longest path (3, 4, 2rec

b) with critical
activities 3, 4, and 2 has no reduction potential. For all critical activities, the
only parallel activity which is not critical itself is activity 1. As the allocated
resource quantity of activity 1 is equal to its lower usage bound in all periods,
no resource transfer is possible.

Using Vpair , the VNS starts in neighborhood v = 1 of f . This neighborhood
contains all solutions resulting from v = 1 resource transfer. The first resource
transfer for activity pair (4, 1) with T pair

4,1 = {5} in period 5 is not performed,
as activity 1’s remaining resource requirement of 2 units does not suffice
to accommodate the minimum block length. For the resource transfer of
activity pair (4, 2) with T pair

4,2 = {6, 7, 8, 9}, the minimum block lengths of
activities 4 and 2 prevent a transfer in periods 6 and 7. In period 8, a

CHAPTER 4. THE HYBRID METAHEURISTIC 33

transfer1 of χ4,2,8 = min(3−2, 3−2) = 1 units is feasible, resulting in 3 resource
units allocated to activity 2 and 2 units allocated to activity 4, as shown in
solution f ′ of Figure 4.7. Due to the minimum block length, both activities
have the same resource allocation in period 9 and complete in period 10. As a
result, the makespan is reduced by 1 period to the optimum of 10.

1The resource index is omitted in χ4,2,8.

Chapter 5

The Self-adaptive Genetic
Algorithm

The self-adapting genetic algorithm (SGA) of Tritschler et al. (2014a) is briefly
presented in this section. Since it is a metaheuristic that also integrates SGSs,
it is employed to directly compare the HM’s performance. Section 5.1 outlines
its overall design before details on the applied SGSs are given in Sections 5.2
and 5.3.

5.1 Overall Design

The SGA adapts the approach of Hartmann (2002) to the FRCPSP. It uses an
activity list solution representation and SGSs to decode the representation into
feasible solutions. As a study by Fündeling (2006) on the FRCPSP showed
no clear dominance of the serial or the parallel SGS on all considered problem
instances, the SGA uses both SGS types. Both types are standard SGSs, as
they schedule activities as early as possible and allocate the maximum resource
quantities. The parameter that determines the applied SGS type is part of the
solution representation and undergoes evolution itself. As a result, the SGA
can self-adapt the SGS type to the problem instance. To summarize, a solution
is represented by λ and the SGS type.

34

CHAPTER 5. THE SELF-ADAPTIVE GENETIC ALGORITHM 35

In the initial population, λ is generated as described in Section 4.2.2.1 by
using the priority rules LPF, MWR, and MTS as well as random activity
selection. The SGS type is randomly assigned with equal distribution. In each
generation, solutions are selected depending on their fitness, which equals to
the makespan. Elitism is used as done in the HM’s GA from Section 4.2.2.
The crossover and mutation operators of Hartmann (2002) are applied on the
selected solutions in order to create the next generation.

5.2 Serial Schedule Generation Scheme

The SGA uses the serial SGS of Naber and Kolisch (2014b). Following the
sequence of λ, the algorithm schedules in each iteration a single activity i as
early as possible and allocates resources as much as possible. In each period,
the algorithm allocates the maximum possible resource quantity to activity i
until its resource requirements and the minimum block length are fulfilled
and the activity completes. If resource constraints are violated, the algorithm
returns to the period in which the current block starts and reallocates resources.
If resources do not suffice to fulfill the minimum resource usage bounds, the
starting period of i is revised. The algorithm terminates when all activities
have been completed.

5.3 Parallel Schedule Generation Scheme

The parallel SGS increments time periods and considers in each iteration a
decision period t. First, it allocates resources to active activities to guarantee
their nonpreemption and to ensure that minimum block lengths are met. The
remaining resources are then distributed among active activities that qualify
for a change in resource allocation and eligible activities. To determine the
resource quantities allocated to each activity, the sequence of activities in λ
and the lower resource usage bounds are considered. The algorithm terminates
when all activities have been completed.

Chapter 6

Model-based Metaheuristics

This chapter introduces two model-based metaheuristics for the FRCPSP. The
methods integrate concepts from Benders decomposition (Benders, 1962) into
GAs.

To the best of my knowledge, I am not aware of any applications of Benders
decomposition to the FRCPSP or the underlying RCPSP. For the related
MRCPSP, Boschetti and Maniezzo (2009) propose a Benders decomposition
heuristic in which both the mode assignment master problem and the schedul-
ing subproblem are solved by heuristics. Li (2015) combines mathematical
programming and constraint programming in a hybrid Benders decomposition
for project scheduling with multi-purpose resources. He solves the scheduling
subproblem, which is a pure feasibility problem, by constraint programming
techniques and infers “logic-based” cuts to the master assignment problem
to exclude infeasible assignments. For other optimization problems, Raidl
(2015) provides a most recent literature review of metaheuristics that integrate
Benders decomposition or other mathematical decomposition techniques.

Before the proposed model-based metaheuristics are presented in Section 6.2,
the applied mathematical models are introduced in Section 6.1. Table 6.1
summarizes the notation of the models.

36

CHAPTER 6. MODEL-BASED METAHEURISTICS 37

Table 6.1: Notation used in the models

Indices
i, j Activity
r, k Resource, specifically the principal resource k
t Time period
Sets
EC Precedence relations: Conjunctive arcs
H Solved subproblems
R Resources
Ri Required resources of activity i
T Discrete time horizon
Ti Time window for activity i
T δr Interval start periods for resource r
T δir Interval start periods for activity i and resource r
V Activities
Ω Tuples of activity i, principal k, and dependent resource r
Parameters
br Availability of resource r in each period
ci, ci Earliest and latest completion period of activity i
di, di Lower and upper bounds of duration of activity i
eirt Start of the interval of act. i and res. r that contains per. t
grt Duration of the interval of res. r that contains per. t
girt Duration of the interval of act. i and res. r that contains per. t
lir Minimum block length of activity i and resource r
q
ir
, qir Lower and upper usage bounds of activity i for resource r

si, si Earliest and latest start period of activity i
Tmin Lower bound of the makespan
wir Requirement of activity i for resource r
αir, βir Coefficient and constant of linear resource function
πo, πp Penalties for outsourcing and allocated resource quantity
γhrt, ζ

h
irt, θ

h
irt, ι

h
ikrt, Dual values associated to SP constraints (6.17) to (6.23)

κhir, µ
h
irt, ν

h
irt

Binary variables
zit 1 if activity i is active in period t, 0 otherwise
δirt 1 if activity i is allowed to change its allocated quantity of

resource r from period t− 1 to t, 0 otherwise
Integer variables
Cmax Project makespan
Continuous vars.
ort Outsourcing of resource r in period t
qirt Quantity of resource r allocated to activity i in period t
η MP objective function value

CHAPTER 6. MODEL-BASED METAHEURISTICS 38

6.1 Decomposed Models

Using the reformulation of Benders (1962), the FRCPSP is decomposed into
a master problem (MP) and a subproblem (SP). In the MP, activities are
scheduled by determining their start periods and durations and additionally
the minimum block length is enforced. In the subproblem (SP), the resource
profiles are created by allocating resources. The idea of Benders decomposition
is that the two separate problems are easier to solve than the original problem.
Constraints in the form of Benders cuts are only gradually added to the MP
in an iterative process. By fixing the “complicating” (Benders, 1962) decision
variables of a solution to the MP, the resulting SP is a linear program (LP).
When the SP is solved to optimality, the optimal dual values associated to each
SP constraint can consequently be derived. From these dual values, a Benders
cut is generated and added to the MP. The collective set of Benders cuts guides
the MP in successive iterations towards improved MP solutions. Ultimately
the procedure is expected to converge towards an optimal complete solution.

The MP is introduced in Section 6.1.1 and the SP in Section 6.1.2. Sec-
tion 6.1.3 provides the reduced subproblem (RSP). The RSP is a reformulation
of the SP with a reduced number of constraints and variables.

6.1.1 Master Problem

The purpose of the MP is to determine for each activity a start period and
a duration as well as intervals of periods that have to feature a constant
resource allocation in order to fulfill the minimum block length. Depending
on these decisions, resources are allocated by solving the SP, from which a
Benders optimality cut is derived and added to the MP. If the allocated resource
quantities per period exceed the resource availability in the SP, the cut imposes
a penalty for the resource constraint violation into the MP objective function
value. The MP is modeled as follows:

Minimize η (6.1)

subject to

CHAPTER 6. MODEL-BASED METAHEURISTICS 39

∑
t∈Ti

zit ≥ di ∀i ∈ V (6.2)
∑
t∈Ti

zit ≤ di ∀i ∈ V (6.3)
∑
i∈V

q
ir
· zit ≤ br ∀r ∈ R, t ∈ T (6.4)

zi(si−1) = zi(ci+1) = 0 ∀i ∈ V (6.5)

δirt ≥ −zi(t−1) + zit ∀i ∈ V , r ∈ Ri, t ∈ Ti ∪ {ci + 1} (6.6)

δirt ≥ zi(t−1) − zit ∀i ∈ V , r ∈ Ri, t ∈ Ti ∪ {ci + 1} (6.7)

δirt ≤ zi(t−1) + zit ∀i ∈ V , r ∈ Ri, t ∈ Ti ∪ {ci + 1} (6.8)

Cmax ≥ t · zit ∀i ∈ V , t ∈ Ti (6.9)∑
τ≤t

zjτ ≤ dj(1− zit) ∀(i, j) ∈ Ec, t ∈ Ti ∩ Tj (6.10)
∑
τ≥t+1

ziτ + di(zit − zi(t+1)) ≤ di ∀i ∈ V , t ∈ Ti (6.11)

t+lir−1∑
τ=t

δirt ≤ 1 ∀i ∈ V , r ∈ Ri, t ∈ Ti (6.12)

η ≥ Cmax ∀h ∈ H (6.13)

−
∑
r∈R

∑
t∈T

γhrt · br

+
∑
i∈V

∑
r∈Ri

∑
t∈Ti

ζhirt · qir · zit

−
∑
i∈V

∑
r∈Ri

∑
t∈Ti

θhirt · qir · zit

+
∑

(i,k,r)∈Ω

∑
t∈Ti

ιhikrt · βir · zit

+
∑
i∈V

∑
r∈Ri

κhir · wir

−
∑
i∈V

∑
r∈Ri

∑
t∈Ti∪
{ci+1}

µhirt · qir · δirt

−
∑
i∈V

∑
r∈Ri

∑
t∈Ti∪
{ci+1}

νhirt · qir · δirt

zit ∈ {0, 1} ∀i ∈ V , t ∈ Ti (6.14)

δirt ∈ {0, 1} ∀i ∈ V , r ∈ Ri, t ∈ Ti ∪ {ci + 1} (6.15)

CHAPTER 6. MODEL-BASED METAHEURISTICS 40

The MP is an MIP with the objective (6.1) of minimizing the continuous
variable η. The model features two binary decision variables. zit is 1, if activity i
is active in period t, or 0, otherwise. Consequently, si is the earliest period
with zit = 1 and ci the latest period. If δirt is 0, the allocated quantity of
resource r to activity i remains constant from period t− 1 to t. If its value is 1,
the allocated resource quantity may change and, thus, a new block may start.
However, whether a block actually starts in the resource profile is determined
by the SP.

Constraints (6.2) and (6.3) ensure that activity durations are within the
bounds di and di. Constraint (6.4) ensures that the sum of the lower resource
usage bounds q

ir
of active activities does not exceed the resource availability br.

This prevents cases of resource constraint violations that are already obvious
in the MP. In constraint (6.5), zit is set to 0 in periods si − 1 and ci + 1, which
are required by constraints (6.6) to (6.8). Constraint (6.6) sets δirt = 1 in the
activity start period si, while constraint (6.7) sets δirt = 1 in period ci + 1
after the completion period of the activity. Both constraints together ensure
that the first block of activity i starts in si while the last block completes
in ci. Constraint (6.8) assures that additional blocks may only start while the
activity is active. Constraints (6.9) to (6.15) are taken from model FP-DT1
of Naber and Kolisch (2014b) and are briefly summarized. Constraint (6.9)
determines Cmax as the last period in which any activity is active. The model
features precedence relations (6.10) and non-preemption constraints (6.11).
Constraint (6.12) enforces the minimum block length lir. The binary decision
variables are defined in (6.14) and (6.15).

The Benders optimality cuts are given in constraint (6.13). For each
subproblem h ∈ H that has been solved to optimality, one Benders optimality
cut is generated. The cut forces η to be greater than or equal to the sum
of Cmax and the objective function value of the dual SP, which is expressed as
the summation of the products of the SP right-hand-sides multiplied by the
optimal dual values γhrt, ζhirt, θhirt, ιhikrt, κhir, µhirt, and νhirt that are associated to
SP constraints (6.17) to (6.23), respectively. Due to the formulation of the SP,
Benders feasibility cuts (Benders, 1962) are not required, as explained in the
next section.

CHAPTER 6. MODEL-BASED METAHEURISTICS 41

6.1.2 Subproblem

The SP determines the resource allocation after the values of zit and δirt have
been set in the MP. The SP is modeled as a linear program:

Minimize πo ·
∑
r∈R

∑
t∈T

ort + πq ·
∑
i∈V

∑
r∈Ri

∑
t∈Ti

qirt (6.16)

subject to

∑
i∈V

qirt − ort ≤ br ∀r ∈ R, t ∈ Ti (6.17)

qirt ≥ q
ir
· zit ∀i ∈ V , r ∈ Ri, t ∈ Ti (6.18)

qirt ≤ qir · zit ∀i ∈ V , r ∈ Ri, t ∈ Ti (6.19)

qirt − αir · qikt ≥ βir · zit ∀(i, k, r) ∈ Ω, t ∈ Ti (6.20)∑
t∈Ti

qirt ≥ wir ∀i ∈ V , r ∈ Ri (6.21)

qirt − qir(t−1) ≤ qir · δirt ∀i ∈ V , r ∈ Ri, t ∈ Ti ∪ {ci + 1} (6.22)

qir(t−1) − qirt ≤ qir · δirt ∀i ∈ V , r ∈ Ri, t ∈ Ti ∪ {ci + 1} (6.23)

ort ≥ 0 ∀r ∈ R, t ∈ T (6.24)

qirt ≥ 0 ∀i ∈ V , r ∈ Ri, t ∈ Ti (6.25)

The SP objective (6.16) is to determine a resource profile that minimizes
the weighted sum of the allocated resource quantity and outsourcing. By
introducing outsourcing, represented as the continuous decision variable ort,
the resource constraints are relaxed. In other words, allocating a continuous
resource quantity qirt that exceeds the resource availability br is allowed. Specif-
ically, ort defines the additional quantity of resource r allocated in period t

beyond the resource availability br, similar to the critical resource variables
of Deckro and Hebert (1989). The outsourcing ensures that the SP is always
feasible and Benders feasibility cuts are not required. As resource profiles
without outsourcing are desired, ort is penalized in the objective function with
a sufficiently large cost factor πo. This penalty ensures that a feasible solution

CHAPTER 6. MODEL-BASED METAHEURISTICS 42

results in a better objective function value in the MP than a resource infea-
sible solution with outsourcing. The allocated resource quantity qirt is only
minimized in order to identify slacks. The slack is the quantity of unallocated
resources per period. Without minimizing qirt, slacks may not be observed
as it is possible to overallocate resources. Since the objective function should
effectively only penalize outsourcing but not the allocated resource quantity, a
sufficiently small cost factor πq is required such that the weighted sum of the
resource quantities is smaller than one period: πq ·

∑
i∈V

∑
r∈Ri

∑
t∈Ti qirt < 1.

This ensures that an MP solution with a smaller makespan always receives
a better objective function value than a solution with a higher makespan,
regardless of the quantity of allocated resources.

The resource constraint (6.17) introduces outsourcing beyond the resource
availability. The model can easily be generalized to time-variant resource
availabilities by considering different values of br for each time period. Con-
straints (6.18) to (6.23) are taken from Naber and Kolisch (2014b) and are
briefly summarized. The lower and upper bounds on allocated resource quan-
tity are defined in constraints (6.18) and (6.19), respectively. For each tuple
(i, k, r) ∈ Ω, the allocated quantity qirt of dependent resource r is defined as a
linear function of the allocated quantity qikt of the principal resource k (6.20).
The resource requirement is modeled in (6.21). The start of a block is defined
through a change up (6.22) or down (6.23) in the allocated resource quantity.
In periods with δirt = 1, a new block can but not necessarily has to start. In
periods with δirt = 0, the current block has to continue. Finally, the domains
of the continuous decision variables are defined in (6.24) and (6.25).

6.1.3 Reduced Subproblem

The RSP is a reformulation of the SP that takes advantage of the block structure
of resource profiles. The RSP is defined on intervals of periods with a constant
quantity of allocated resources instead of single periods. Each interval is solely
represented by its start period, whereas its remaining periods with constant
resource allocation are not explicitly modeled. Based on the fixed MP variables,
two reduced sets of periods are defined:

CHAPTER 6. MODEL-BASED METAHEURISTICS 43

T δir =
{
t ∈ T

∣∣∣ zit = 1 ∧ δirt = 1
}

(6.26)

T δr =
{
t ∈ T

∣∣∣ ∑
i∈V

zit ≥ 1 ∧
∑
i∈V

δirt ≥ 1
}

(6.27)

Set T δir from (6.26) contains the interval start periods of activity i and
resource r. These are periods in which activity i is active and may change
its allocated quantity of resource r by starting a new block. T δr from (6.27)
contains the interval start periods of resource r. These are periods in
which any active activity may change its allocated quantity of resource r.

An interval for activity i and resource r is defined as the contiguous
periods beginning in an interval start period from T δir up to (exclusive) either
the next interval start period from T δir or period ci + 1. Let eirt ∈ T δir denote the
interval start period of the interval for activity i and resource r that contains
period t and let girt indicate the duration of this interval. Similarly, an interval
for resource r are the contiguous periods beginning in an interval start period
from T δr up to (exclusive) either the next interval start period from T δr or
period Cmax + 1. The duration of the interval for resource r that contains
period t is given by grt. Since eirt, girt, and grt are parameters, the RSP is a
linear program:

Minimize πo ·
∑
r∈R

∑
t∈T δr

ort · grt + πq ·
∑
i∈V

∑
r∈Ri

∑
t∈T δir

qirt · girt (6.28)

subject to

∑
t∈T δir

qirt · girt ≥ wir ∀i ∈ V , r ∈ Ri (6.29)

∑
i∈V
zit=1

qireirt − ort ≤ br ∀r ∈ R, t ∈ T δr (6.30)

qirt ≥ αir · qikt + βir ∀(i, k, r) ∈ Ω, t ∈ T δir (6.31)

ort ≥ 0 ∀r ∈ R, t ∈ T δr (6.32)

q
ir
≤ qirt ≤ qir ∀i ∈ V , r ∈ Ri, t ∈ T δir (6.33)

CHAPTER 6. MODEL-BASED METAHEURISTICS 44

1

2

1 2 3 4 5
𝑡

Figure 6.1: Intervals in the RSP

The RSP objective (6.28) is to determine a resource profile that minimizes the
weighted sum of the allocated resource quantity and outsourcing. The optimal
objective function value is identical to that of (6.16). In order to quantify the
outsourcing and the allocated resource quantity of an interval, the continuous
variables ort and qirt are multiplied by the corresponding interval durations.

Constraint (6.29) ensures that the resource requirements are fulfilled. As
only the interval start periods from T δir are considered, the allocated resource
quantity is multiplied by the duration girt of the interval of activity i and
resource r. The resource constraints (6.30) are only defined in interval start pe-
riods t ∈ T δr for resource r. However, an activity’s resource allocation may not
be defined in all of these periods. Therefore, qireirt is used. It is the resource allo-
cation in the interval start period eirt of the interval of activity i and resource r
that contains period t. Similar as in the SP, time-variant resource availabilities
may easily be introduced. Constraint (6.31) represents the resource function
for each tuple (i, k, r) ∈ Ω of activity i’s principal resource k and dependent
resource r. Constraint (6.32) defines the outsourcing ort and constraint (6.33)
imposes the lower and upper resource usage bounds on variable qirt.

The example in Figure 6.1 illustrates the interval concept for two activities
and a single resource. The horizontal lines indicate periods with zit = 1. The
diamonds at both ends of the horizontal lines and the vertical dashed line
for activity 1 illustrate (the beginning of) periods with δirt = 1. Activity 1
features two intervals for the single resource: the first from period 1 to 2 and
the second from 3 to 4. Activity 2 only features a single interval from period 1
to 4. Hence, constraint (6.29) for activity 2 is only defined at the activity’s
interval start period 1. The resource features an interval from period 1 to 2 and

CHAPTER 6. MODEL-BASED METAHEURISTICS 45

another from 3 to 4. The resource constraints (6.30) are defined at the interval
start periods 1 and 3 of the resource. Since activity 2’s resource allocation
is not defined in period 3, the resource quantity qireirt for its interval start
period eirt = 1 is used in constraint (6.30).

The RSP does not explicitly contain the MP variables zit and δirt. It also
does not feature constraints for periods with zit = 0. In contrast, the MP
is defined for the whole time window Ti. Due to complementary slackness
properties, periods with zit = 0 may as well feature non-zero dual values, which
would then be missing in Benders cuts. Therefore, the RSP is only used to
determine resource profiles but not to generate Benders optimality cuts.

6.2 Genetic Algorithms

Since the MP constitutes a scheduling problem with high symmetry, numerous
iterations of the classic Benders decomposition method are likely required to
solve the FRCPSP. Repeatedly solving the MP to optimality in each iteration
becomes time consuming, especially after Benders optimality cuts have been
added. Therefore, two metaheuristics are proposed to determine MP solutions:
The Benders genetic algorithm (BGA) and the reduced subproblem genetic
algorithm (RGA). Both GAs gradually improve a population of encoded MP
solutions. Since they, directly or indirectly, derive the fitness of MP solutions
from the resulting resource profiles by solving the SP or the RSP, they are
categorized as model-based metaheuristics.

As the MP is not repeatedly solved to optimality anymore, the fitness
evaluation becomes the most time consuming operation. Although solving
a single SP is in the order of milliseconds, the high number of SPs makes
the fitness evaluation computationally expensive. The BGA and the RGA
take different measures to overcome this. The BGA approximates the fitness
from Benders optimality cuts, instead of determining resource profiles for all
encoded MP solutions. As a result, fewer SPs have to be solved. According
to Poojari and Beasley (2009), a population-based metaheuristic, such as the
proposed BGA, is particularly useful in this context, as multiple Benders
optimality cuts are generated in a single iteration. The RGA, on the other

CHAPTER 6. MODEL-BASED METAHEURISTICS 46

hand, determines resource profiles for all MP solutions by solving the RSP,
which requires less computation time than the SP.

MP solutions may result in infeasible resource profiles with outsourcing. In
case such an infeasible solution has a low makespan, it is worthwhile to repair
the infeasibility if the makespan is maintained or only marginally increased.
Similarly, if an MP solution features slacks, there may be potential to further
reduce the makespan. In both cases MP solutions have to be modified. Instead
of solely relying on the GA’s evolutionary process, two heuristic improvement
operators are introduced. They directly use information on the resource profiles
to locally improve MP solutions.

The next section explains the BGA’s and the RGA’s overall design before
details on specific components are provided in the following sections.

6.2.1 Overall Design

A high level outline of the BGA and the RGA is provided in Figure 6.2. The
steps that differ between the two methods are highlighted in gray.

Both methods encode solutions to the MP by using the representation
proposed in Section 6.2.2. The encoded solutions are always feasible with
regards to constraints (6.2) to (6.12). Beginning with the creation of an initial
population, described in Section 6.2.3, a population of encoded MP solutions
is evolved over multiple generations until the given maximum number of
solutions F has been generated. In each generation, the population is split into
two disjunctive subsets depending on the makespan: the top solutions and
the bottom solutions. The top solutions are the most promising part of the
population and are regarded as the source of improvement. MP solutions with
a makespan that is at most 10% higher than the best makespan of the initial
population are added to this set. Its size is limited to 20% of the population size.
By just slightly improving these high quality solutions, a new best solution may
be found. Therefore, the improvement operators, described in Section 6.2.4, are
applied to locally improve the top solutions. The remaining bottom solutions
have worse makespans and are mainly regarded as a source of diversity in the
population. The fitness of an MP solution is the sum of its makespan and

CHAPTER 6. MODEL-BASED METAHEURISTICS 47

Generate initial
population

Improve solutions

Select solutions

Crossover

Mutation

Split population

Top solutions
BGA: Solve SP

RGA: Solve RSP

Bottom solutions
BGA: Use cuts

RGA: Solve RSP

BGA: Generate
Benders cut and add

it to cut pool

Figure 6.2: Overall design of the BGA and the RGA

the SP or RSP objective function value. Hence, MP solutions that result in
infeasible resource profiles with outsourcing are penalized with a worse fitness.
The elite solution with the best fitness of the current generation is inserted
unmodified into the next generation. Using on the elite solution’s makespan,
both GAs update the upper bounds si, ci, and di, which are therefore tightened
with each makespan improvement. The solutions for the next generation are
selected depending on their fitness by stochastic universal sampling of Baker
(1987), an improved version of roulette wheel selection (Reeves, 2010). The
selected solutions are then recombined and modified by the genetic operators
from Section 6.2.5. The BGA’s and the RGA’s different approaches to calculate
the fitness are detailed in the next two sections.

CHAPTER 6. MODEL-BASED METAHEURISTICS 48

6.2.1.1 Benders Genetic Algorithm

The BGA determines the fitness for the top and bottom solutions differently.
The fitness of top solutions is obtained by solving the SP to optimality
with sp∗ denoting the optimal value of the SP objective function (6.16):

Cmax + sp∗ (6.34)

Since solving a high number of SPs would become computationally expensive,
the fitness of the large subset of bottom solutions is only approximated. For
these solutions, the BGA follows the approach of Sirikum et al. (2007) to use η
from the MP objective (6.1) as a lower bound of the fitness (6.34). η is obtained
from Benders optimality cuts that are present in the cut pool. A Benders
optimality cut is generated and added to the cut pool, each time the SP
is solved for a top solution. The cut pool also contains cuts from previous
generations. As the BGA only generates valid MP solutions, constraints (6.2)
to (6.12), (6.14), and (6.15) can be ignored. In addition, the terms of the
Benders optimality cuts (6.13) solely contain parameters. Hence, determining
the value of the single remaining variable η in expression (6.35) is considerably
faster than solving the SP:

(6.1) subject to (6.13) (6.35)

In order to strengthen the fitness, the lower bound of outsourcing or from Ap-
pendix C is also considered. Let η∗ denote the optimal value of expression (6.35).
The fitness of the bottom solutions is:

max
(
η∗, Cmax + πo

∑
r∈R

or
)

(6.36)

To limit the SP model size, an upper limit for the makespan applies. It is set
at 120% of the best makespan of the initial population. Since solutions that
exceed this bound are unlikely to produce high quality offspring, their fitness
is penalized with a sufficiently large factor without solving the SP.

CHAPTER 6. MODEL-BASED METAHEURISTICS 49

6.2.1.2 Reduced Subproblem Genetic Algorithm

The RGA reduces the computation time by using the RSP instead of the SP.
It determines resource profiles for all MP solutions by solving the RSP to opti-
mality. Let rsp∗ denote the optimal value of the RSP objective function (6.28).
The fitness of top and bottom solutions is:

Cmax + rsp∗ (6.37)

The RGA limits the RSP model size by applying the same upper limit for the
makespan as in the BGA.

6.2.2 Solution Representation

When an MP solution is decoded by the GAs, its resource profile has not been
determined yet. Especially for the BGA, the resource profile may not even
be determined at all. Common solution representations, such as the activity
list or random keys (Hartmann, 1998), cannot be used in the decomposition
because they specifically require knowledge on the resource allocation to gen-
erate schedules. For example, if an activity list is employed, values for qirt
are required in order to decide whether activities that are not connected by
precedence relations are scheduled in parallel or sequentially. However, due to
the decomposition, qirt can only be determined after the scheduling decisions
have been made. A representation using a vector of explicit start times is
not appropriate either, because genetic operators would commonly violate the
precedence relations, as criticized by Kolisch and Hartmann (2006).

A new solution representation for the FRCPSP is proposed. An MP
solution is represented by a tuple (A,B,D) that consists of list A encoding
disjunctive arcs, list B encoding blocks, and list D encoding activity durations.
Section 6.2.2.1 first describes how start times and durations are represented
by A and D. Then, Section 6.2.2.2 explains the encoding of blocks in B. The
solution representation is illustrated in an example in Section 6.2.2.3.

CHAPTER 6. MODEL-BASED METAHEURISTICS 50

6.2.2.1 Start Periods and Durations

To determine activity start periods, disjunctive arcs as of Shaffer et al. (1965)
are used. A disjunctive arc (i→ j) ∈ ED is an additional precedence relation
between two activities i and j that are not (transitively) connected by regular
precedence relations from set EC, the conjunctive arcs. In contrast to Alvarez-
Valdés and Tamarit (1989), Bell and Han (1991), and similar approaches for
the RCPSP, disjunctive arcs are not employed to resolve resource constraints by
destroying minimal forbidden sets. Instead, the disjunctive arcs only determine
activity start periods in the MP. Therefore, the solution representation can be
limited to at most one incoming disjunctive arc for each activity j. Multiple
incoming disjunctive arcs would be redundant, because the start period is
determined by the completion period of the latest predecessor.

Set Ed of disjunctive arcs is encoded as list A that features at position j
activity j’s predecessor i from disjunctive arc (i→ j). In case that j has no
incoming disjunctive arc, the value at list position j is empty. Furthermore,
activity durations are directly represented by list D = (d1, . . . , dn) that has
activity i’s duration di at list position i.

Let Pj denote the set of predecessors of activity j defined by conjunctive and
disjunctive arcs. The start and completion periods as well as the corresponding
variable zit are decoded by creating an earliest start schedule that specifically
respects the disjunctive arcs:

sj = max(max
i∈Pj

(ci) + 1, sj) (6.38)

ci = si + di − 1. (6.39)

zit =

1 if si ≤ t ≤ ci

0 otherwise
(6.40)

The decoding procedure checks whether MP constraint (6.4) is fulfilled in
each period, such that the sum of the minimum resource usage bounds of active
activities does not exceed the resource availability. If the constraint is violated,
two activities i and j that are active in that period are randomly chosen and a

CHAPTER 6. MODEL-BASED METAHEURISTICS 51

disjunctive arc (i→ j) is added. This step is repeated until the constraint is
fulfilled.

The addition of disjunctive arcs may cause cycles in the precedence network.
To detect cycles, the fast algorithm of Tarjan (1972) is applied on new child
solutions after the mutation. To break a cycle, a randomly selected disjunctive
arc is simply removed from it.

By inserting disjunctive acs, the start of activities can be delayed after the
completion of other activities. Thus, the optimal solution from Figure 4.4b in
Section 4.1.2 can be generated. To allow a fully free selection of activity start
periods, the representation can easily be extended by adding an offset to the
activity start periods. This option is evaluated in the computational study in
Section 7.4.5.

6.2.2.2 Blocks

The MP specifies periods with δirt = 1 in which a new block in the resource
profile may start. According to the notation introduced in Section 6.1.3, these
periods are interval start periods t ∈ T δir for activity i and resource r. These
interval start periods are encoded as offsets relative to the activity’s start
period si in list Bir. For example, if an activity starts in period 10 and features
an interval start in period 15, the resulting offset in Bir is 5. List B contains
Bir for each combination of activity i and principal or independent resource r.
Dependent resources are not encoded but the corresponding periods of the
principal resource are used. The periods si and ci + 1 are not encoded either,
as δirt = 1 holds due to constraints (6.6) and (6.7). δirt is decoded as follows:

δirt =

1 if t ∈ {si, ci + 1} or t− si ∈ Bir

0 otherwise
(6.41)

If the start and completion periods of an activity change, the activity’s blocks
may have to be reassigned such that they are synchronized with the blocks of
other activities. This ensures that whenever an activity changes its allocated
resource quantity, other activities may do so as well. Since a GA’s random
evolutionary process cannot efficiently update the underlying interval start

CHAPTER 6. MODEL-BASED METAHEURISTICS 52

periods, a heuristic is proposed. Its idea is that a block at one activity is
associated with the start, the completion or a block of another activity. The
heuristic sets interval start periods at these events while maintaining the
minimum block length. B is updated in three steps:

1. Synchronize blocks to activities: Whenever an activity i starts in a
period t or has completed in the previous period, add a new interval start
period t to all other active activities that share resources with activity i.
If two newly added interval start periods for an activity j and a resource r
have a distance smaller than the minimum block length ljr, remove one
interval start period randomly.

2. Enforce the minimum block length: For each activity j and re-
source r, remove existing interval start periods that have a distance
smaller than ljr to the interval start periods added in Step 1.

3. Synchronize blocks to other blocks: For each interval start period t
for resource r that remains after Step 2, add a new interval start period t
to all other active activities that also require resource r. A new interval
start period for an activity i and a resource r is only added if it has a
distance of at least lir to activity i’s existing interval start periods. Again,
if two newly added interval start periods have a distance of less than lir
to each other, remove one interval start period randomly.

6.2.2.3 Example

To illustrate the representation, consider the project from Figure 6.3. It contains
a single resource with availability of 8 units and 5 non-dummy activities, each
with a minimum block length of 2 periods. The resource index is omitted.

Table 6.2 presents an encoded MP solution. List A represents three disjunc-
tive arcs (2 → 3), (1 → 4), and (3 → 5). Figure 6.4 illustrates the resulting
MP solution in which the scheduled activities are depicted as horizontal lines.
Activities 1 and 2 start immediately in period 1. Due to disjunctive arc (2→ 3),
activity 3 can only start in period 5 after activity 2 is completed. Similarly,
activity 4 starts in period 7 and activity 5 in period 10.

CHAPTER 6. MODEL-BASED METAHEURISTICS 53

3

0

2

1

4

6

5

26, 3, 7

16, 3, 8

22, 3, 8

18, 3, 4

8, 2, 4

𝑖

𝑤𝑖 , 𝑞𝑖 , 𝑞𝑖

Figure 6.3: Project featuring a single resource with availability of b = 8 and
a minimum block length of li = 2 for all activities

Then B is decoded. Activity 2 receives the interval start period 3, which
is 2 periods after the start of the activity. Activity 3 features interval start
period 8, which is 3 periods after the start of the activity. New interval start
periods, illustrated as dashed vertical lines in Figure 6.4, are set according to
Steps 1 to 3 from Section 6.2.2.2:

1. As activity 3 starts in period 5, activity 1 receives the interval start
period 5 in Step 1. In a similar manner, activity 4 causes the interval
start period 7 for activity 3 and activity 5 causes the interval start
period 10 for activity 4.

2. In Step 2, activity 3’s interval start period 8 is deleted, as it is less than
one minimum block length away from the interval start period 7, which
has been added in the Step 1.

3. In Step 3, activity 2’s interval start period 3 causes activity 1 to obtain
the interval start period 3.

By solving the SP or the RSP, the exemplary resource profile illustrated in
Figure 6.5 is obtained. In periods 10 and 11, the resource allocation of 9 units
exceeds the availability of 8 units, leading to 2 units of outsourcing. Note that
the blocks of activities 1 and 2 continue across the interval start period 3.

CHAPTER 6. MODEL-BASED METAHEURISTICS 54

Table 6.2: Encoded master problem solution for project from Figure 6.3

i 1 2 3 4 5
A 2 1 3
B 2 3
D 6 4 5 5 2

3

4

51

2

1 2 3 4 5 6 7 8 9 10 11 12
𝑡

Figure 6.4: Master problem solution for encoding from Table 6.2

6

4

2

1

0

7

3

8

5

𝑞𝑖𝑡

1

2

3

4 5

𝑏

9

1 2 3 4 5 6 7 8 9 10 11 12
𝑡

Figure 6.5: Resource profile for the master problem solution from Figure 6.4

CHAPTER 6. MODEL-BASED METAHEURISTICS 55

6.2.3 Initial Population

As a random initial population would mostly lead to inconsistent MP solutions
and resource profiles with outsourcing, both GAs employ the HM’s FSGS to
create an initial population as described in Section 4.2.2.1.

From the resulting solutions of the FSGS, activity start and completion
periods are adopted by setting disjunctive arcs and durations accordingly.
Activities may start earlier as determined by the FSGS in order to ensure an
earliest start schedule with respect to the disjunctive arcs. For each period
in which a new block starts in the FSGS solution, an interval start period is
encoded in B. The heuristically determined resource profiles are not used.

6.2.4 Improvement Operators

A valid MP solution can result in an infeasible resource profile with outsourcing.
The resource allocation may exceed the availability because too many activities
are scheduled in parallel or the activity durations are too short. An MP solution
may also result in a resource profile with slacks if activity durations are longer
than actually required. To locally improve such solutions, two operators are
proposed.

6.2.4.1 Reduction Operator

The purpose of this operator is to improve the makespan by reducing activity
durations. It is only applied to top solutions because by reducing their already
low makespans, a new best solution is more likely to be obtained. The operator
calculates for each activity i with di > di the slack of each required resource r:

ci∑
t=si

max(br −
∑
j∈V
zjt=1

qjrt, 0) (6.42)

The operator then checks by how many periods the duration of the activity
may be reduced if the slacks are additionally allocated. Of course, a reduction
is only possible if all required resources suffice. From the activities that may
be reduced by at least one period, the operator randomly selects one activity

CHAPTER 6. MODEL-BASED METAHEURISTICS 56

and reduces its duration by the identified number of periods. To obtain the
new resource allocation, the RSP is solved to optimality. The SP is not applied
because Benders cuts are not required. If the resulting resource profile features
outsourcing, for example due to the minimum block length, the modified
solution is discarded and the original is maintained.

6.2.4.2 Repair Operator

The purpose of this operator is to repair infeasible solutions by eliminating
outsourcing. As its goal is to obtain feasible solutions with low makespans, it
is only applied to the top solutions due to their already low makespans. The
operator increases activity durations or reduces the number of parallel activities
by inserting disjunctive arcs.

Following the interval definition from Section 6.1.3, the operator identifies
groups of contiguous intervals with outsourcing for principal or independent
resource r. In each such group, at least one activity that requires r has to be
constantly active in all intervals of the group. Let us denote the interval start
period of the first interval in the group as t1 and the last period of the last
interval as t2. Then the operator randomly applies one out of two heuristics.

• Increase activity duration: An activity is considered as a candidate if
it is active in all intervals of the group and if increasing its duration, and
thus reducing the allocated resource quantity per period, may eliminate
the outsourcing. Two necessary conditions have to be fulfilled for each
resource r:

t2∑
t=t1

(qirt − qir) ≥
t2∑
t=t1

ort (6.43)

di +
⌈ t2∑
t=t1

ort
qir

⌉
≤ di (6.44)

Condition (6.43) ensures that a reduction of the currently allocated
resource quantity qirt can compensate the outsourcing. Condition (6.44)
ensures that the minimum activity duration that is required to compensate
the outsourcing does not exceed the upper bound of activity duration.

CHAPTER 6. MODEL-BASED METAHEURISTICS 57

From the identified candidates, the operator randomly selects one activity
and sets its duration to a random value between (6.45) and (6.46). The
first number (6.45) is the minimum required duration to compensate
the outsourcing. It assumes that a resource quantity equal to the upper
resource usage bound can be allocated. The second number (6.46) is the
maximum required duration. It assumes that only a quantity equal to
the minimum resource usage bound can be allocated:

di +maxr∈Ri
(⌈ t2∑

t=t1

ort
qir

⌉)
(6.45)

min
(
di, di +maxr∈Ri

(⌈ t2∑
t=t1

ort
q
ir

⌉))
(6.46)

• Insert disjunctive arc: From the set of activities that are active in all
intervals of the group, the operator randomly selects one activity j. It
inserts a disjunctive arc (i→ j) from another activity i that is active in
the last interval of the group and completes in a period greater than or
equal to t2. As a result, the start of activity j is delayed after period t2.

In both cases, the RSP is solved to obtain a new resource profile. If the resulting
solution still features outsourcing, the procedure is repeated until the given
maximum number of iterations is reached.

6.2.4.3 Example

Assume that the repair operator processes the solution from Figure 6.5. The
operator identifies only one interval with outsourcing from periods t1 = 10 to
t2 = 11. Two operations are possible to repair the resource infeasibility:

• Increase activity duration: Activities 4 and 5 are active in periods 10
and 11 and fulfill the required conditions (6.43) and (6.44). The operator
randomly selects activity 5. As terms (6.45) and (6.46) both equal to 3
periods, activity 5’s duration is increased to 3 periods.

CHAPTER 6. MODEL-BASED METAHEURISTICS 58

1

2

3

4 5

𝑏

1 2 3 4 5 6 7 8 9 10 11 12
𝑡

6

4

2

1

0

7

3

8

5

𝑞𝑖𝑡

9

Figure 6.6: Resource profile after applying the repair operator on the solution
from Figure 6.5

• Insert disjunctive arc: Either disjunctive arc (4→ 5) or (5→ 4) may
be inserted, since both activities 4 and 5 are active during the whole
interval and complete in period t2 = 11.

Figure 6.6 illustrates the resulting resource profile for the case that the duration
of activity 5 is increased from 2 to 3 periods.

6.2.5 Genetic Operators

The crossover operator creates two child solutions from two parent solutions in
two steps. First, the activities of each parent solution are sorted according to
their start periods in ascending order. Activities with similar or equal start
periods are close to each other in the resulting activity sequence. Second, the
partially-matched two-point crossover of Hartmann (1998) is applied on the
sorted activity sequences. The encoding (A,B,D) is modified according to
the crossover of the activities in the sequence. The benefits of this two-step
approach are increased locality and the recombination of contiguous partial
schedules.

The probabilities of the mutation operators are provided in the implemen-
tation details in Section 7.3. Disjunctive arcs are mutated by iterating through

CHAPTER 6. MODEL-BASED METAHEURISTICS 59

list A and modifying each entry j with a certain probability. A new random
disjunctive arc (i→ j) is inserted by randomly selecting an activity i from the
set of all activities that do not have direct or transitive precedence relations
from set EC with j. Additionally, no incoming disjunctive arc may be set with
equal probability.

Each activity duration di ∈ D is modified with a certain probability by
either increasing or decreasing it by 1 period with equal probability. di is kept
within the bounds di and di.

For each Bir in B, one random interval start period is added with a certain
probability. A distance of at least lir to the start period and of at least lir − 1
to the completion period of the activity is maintained. If there is already an
interval start period in the designated period, it is removed. Other interval
start periods with a distance of less than lir to the newly inserted one are also
removed.

Chapter 7

Computational Study

This chapter presents the computational study. The study design is outlined in
Section 7.1, the test data is described in Section 7.2, and implementation details
are provided in Section 7.3. Finally, the results are analyzed and interpreted in
Section 7.4.

7.1 Study Design

The computational study evaluates the performance of six methods:

• HM: The hybrid metaheuristic from Chapter 4.

• BGA: The Benders genetic algorithm from Chapter 6.

• RGA: The reduced subproblem genetic algorithm from Chapter 6.

• SGA: The self-adaptive genetic algorithm from Chapter 5.

• PRS: As a benchmark, a parallel random sampling heuristic is employed.
It resembles the method of Kolisch et al. (2003). The PRS constructs
activity lists by random sampling and generates solutions with the SGA’s
standard parallel SGS.

• SRS: The serial random sampling heuristic is the same as the PRS but
uses the SGA’s standard serial SGS.

60

CHAPTER 7. COMPUTATIONAL STUDY 61

The methods are compared based on a maximum number of generated solu-
tions per problem instance. This widely accepted methodology has previously
been applied in studies on the RCPSP (Hartmann and Kolisch, 2000; Kolisch
and Hartmann, 2006) and on the MRCPSP (van Peteghem and Vanhoucke,
2014). According to Kolisch and Hartmann (2006), this termination criterion
has the advantages that it is platform independent and allows direct comparison
with future studies. Limits of 1,000, 5,000, 15,000 and 25,000 solutions are used.
If an SGS is applied, each started schedule generation process is counted once.
This also applies to the HM’s VNS. For the BGA and the RGA, each generated
MP solution is counted regardless of whether the SP or the RSP are solved or
not. Solutions resulting from the improvement operators are counted as well.
If a method determines a makespan equal to Tmin, the instance is solved to
optimality and the method terminates immediately.

As a reference to compare the other methods, the results of MIP model
FP-DT3 from Naber and Kolisch (2014b) are used. The authors considered
the best solution obtained after a time limit of 2 hours of single-threaded CPU
time per problem instance.

Before solving a problem instance, the preprocessing of Naber and Kolisch
(2014b) is applied. It removes redundant precedence relations, tightens resource
usage bounds, revises resource requirements, calculates the earliest start and
completion periods, and derives the lower bound of the makespan Tmin from
Chapter 2. Latest start and completion periods and an upper bound of the
makespan are not calculated because the metaheuristics obtain these values.

7.2 Test Data

The computational study is conducted on 2,909 problem instances from test
sets A and B of Fündeling and Trautmann (2010). Details on the generation
of the instances are provided in Fündeling (2006).

Test set A contains instances with up to 4 resources, derived by Fündeling
(2006) from the RCPSP instance sets J30, J60 and J90 of the PSPLIB (Kolisch
and Sprecher, 1997). The study only includes instances of test set A with at
most 55 activities because for larger instances no MIP results are available.

CHAPTER 7. COMPUTATIONAL STUDY 62

The remaining 509 instances of test set A are denoted as instance set A≤55.
The subscript indicates the number of activities.

Test set B consists of instance sets B10, B20, B40, B100, and B200 with 10,
20, 40, 100, and 200 activities, respectively, and up to 4 resources. Fündeling
and Trautmann (2010) generated 480 problem instances in each set by using
a factorial design of the problem parameters order strength, resource factor,
and resource strength. Demeulemeester and Herroelen (2002) define the order
strength (OS) as the number of existing precedence relations divided by the
maximum possible number of precedence relations. The higher the OS is, the
more precedence relations are in the project network and the more sequential is
the resulting schedule. OS values of 0.25, 0.5, and 0.75 were used. The resource
factor (RF) indicates the number of required resources per activity (Kolisch
and Sprecher, 1997). Its values were set to 0.25, 0.5, 0.75, and 1. For example,
a value of 0.5 indicates that each activity requires 2 out of the 4 resources. The
resource strength (RS) measures the scarcity or constrainedness of resources by
comparing the resource requirements to the resource availability (Kolisch and
Sprecher, 1997). RS values of 0, 0.25, 0.5, and 0.75 were used. A lower value
indicates a higher scarcity. For RS = 0, there is, according to Fündeling and
Trautmann (2010), for each resource at least one activity that may exclusively
occupy the resource due to the upper bound of resource usage qir. For RS = 1,
the resource availability does not constrain the scheduling. The minimum block
length was randomly assigned to values between 2 and 4 periods.

All activities of a problem instance feature the same minimum block length
and require the same principal resource k. To ensure that a feasible solution
exists, the resource function coefficients are set to αir = (qir − qir)/(qik − qik)
and βir = q

ir
− q

ik
αir for each dependent resource r, as in the study of Naber

and Kolisch (2014b).

7.3 Implementation

The study is conducted on a desktop PC with a 3.3GHz Intel Core i3-2120
CPU and 16GB RAM running the 64-bit edition of Windows 8. Elapsed time
for a single-threaded execution of each method is considered. All methods

CHAPTER 7. COMPUTATIONAL STUDY 63

are implemented in Java 8. The parameters of the metaheuristics have been
determined in a preliminary study. No parameter tuning software or automated
algorithm configurators have been used.

To adapt the HM’s GA to different problem sizes, its population is defined
by the function min(10 · n, 400) of the number of activities n. The mutation
rate for the activity list λ is 5%, as suggested by Hartmann (1998). The same
mutation rate is also applied for the resource allocation limit list ρ. For the
start delay list σ, a low mutation rate 0.5% is used. As the GA and the VNS are
sequentially executed, their interplay is facilitated by the number of solutions
assigned as termination criterion to each method. The VNS solution limit is
set to FVNS = bF · min(n/200, 0.25)c solutions with F denoting the overall
solution limit. The GA solution limit of FGA = F − FVNS is rounded down
to the closest multiple of the population size in order to ensure that the GA
always generates full generations. The remaining solutions are added to FVNS .
The following limits apply for the VNS: 1,000 non-improving solutions per
incumbent solution, 200 generated solutions per neighborhood, a maximum
neighborhood of 5, and 5 longest paths in the activity selection.

The SGA’s population size is set to min(5 · n, 200). In line with Hartmann
(2002), mutation rates for the activity list and for the SGS flag of 5% are used.

The BGA and the RGA have a population size of 500. Good results have
been obtained by using a 3% probability for the mutation of the disjunctive
arcs in A and 5% for the mutation of the durations in D and blocks in B.
Moreover, the repair operator is limited to at most 5 iterations per solution and
the reduction operator to a single iteration. The size of the cut pool is limited
to 1,000. The limit is maintained by removing cuts on a first-in/first-out basis.
Solutions that exceed the BGA’s and RGA’s upper limit for the makespan are
penalized to (Cmax)2 without solving the SP or RSP.

The SP and the RSP are solved by IBM ILOG CPLEX 12.6.2 integrated
through the Concert Technology Java API. The SP is implemented as a single
LP in which only the constraint right-hand-sides are subsequently modified
each time it is solved for a new MP solution. For the RSP, a new LP is
built for each evaluated MP solution. Since LP columns and rows change
significantly depending on the intervals defined by zit and δirt, completely

CHAPTER 7. COMPUTATIONAL STUDY 64

rebuilding the model in one operation is mostly faster than performing multiple
small modifications. Both models are solved single-threaded with activated
presolve. The penalty factor for outsourcing is πo = 10. The factor for resource
allocation is πp = 10−4 for instances with fewer than 100 activities. For larger
instance, it is set to πp = 10−5 because the weighted sum of allocated resource
quantities would otherwise exceed 1 (see Section 6.1.2).

Naber and Kolisch (2014b) solved their MIP model FP-DT3 with CLPEX
on a faster computer with a 3.4GHz Intel Core i7-3770 CPU and 16GB RAM.

7.4 Results

Whenever stating statistical significance, the α = 0.05 significance level applies.
The statistical significance of the difference in the results is tested by a Kruskal-
Wallis one-way analysis of variance. For pairwise comparisons, Mann-Whitney U
tests with Bonferroni correction are used as post-hoc analysis. Non-parametric
statistical tests are applied instead of their parametric counterparts because
normal distribution and homogeneity of variances are not always given.

The results are presented throughout the next sections. In Section 7.4.1,
the methods’ solution quality is analyzed on all instances. In Section 7.4.2, the
analysis is focused on a subsample of hard problem instances in order to better
differentiate the methods. Sections 7.4.4 and 7.4.5 provide an assessment of the
metaheuristics’ components. The required computation times are compared
in Section 7.4.6. Finally, the models of the model-based metaheuristics are
evaluated in Section 7.4.7.

7.4.1 Solution Quality: All Instances

A summary of the best results obtained is presented in Figure 7.1. The figure
visualizes the average gap to the lower bound of the makespan Tmin for the
highest solution limit of 25,000 generated solutions per problem instance of
sets B10 to B200. The results of the BGA and the RGA as well as of the PRS
and the SRS are shown as combined averages.

CHAPTER 7. COMPUTATIONAL STUDY 65

3

4

5

6

7

8

10 20 40 100 200

G
a
p
 t

o
T

m
in

(%
)

Number of activities

HM

BGA/RGA

SGA

PRS/SRS

Figure 7.1: Best results obtained

More details on the gap to Tmin are provided in Table 7.1. In addition,
Table 7.2 lists the average deviation from the best MIP solution. Optimal MIP
solutions are available for all instances of set B10, whereas for sets B20, B40,
and A≤55 not all MIP solutions are optimal. No MIP results are available for
instance sets B100 and B200. An optimal solution may also feature a gap to Tmin.
Both tables show results for each instance set with limits of 1,000 to 25,000
generated solutions as well as the average result across all limits in bold. The
last bold row of each table provides the overall results across all instance sets
and solution limits. The difference in the results is statistically significant in
all bold table rows. The model-based metaheuristics are only compared up to
100 activities because the BGA’s computation time becomes restrictively high.

Let us start with the HM. It yields better overall results than all other
methods with statistical significance. The HM achieves the largest advantages
over the other SGS-based methods on the small instance sets. On set A≤55,
the HM’s average gap to Tmin is more than 2 percent points lower than the SGA’s
gap. For set B10, the values reported in Table 7.2 constitute the optimality gaps,

CHAPTER 7. COMPUTATIONAL STUDY 66

Table 7.1: Average gap to Tmin in percent

Set / Sol. HM BGA RGA SGA PRS SRS

A≤55 5.60 6.04 5.91 7.82 8.41 9.83
1,000 6.27 6.25 6.22 8.30 9.09 10.68
5,000 5.58 6.07 6.01 7.83 8.45 9.89

15,000 5.30 5.96 5.75 7.63 8.10 9.47
25,000 5.25 5.88 5.67 7.53 7.98 9.28

B10 5.40 5.44 5.46 6.57 6.81 6.88
1,000 5.62 5.73 5.72 6.61 6.83 6.91
5,000 5.38 5.40 5.43 6.56 6.82 6.87

15,000 5.31 5.32 5.35 6.56 6.81 6.87
25,000 5.28 5.30 5.34 6.56 6.81 6.87

B20 4.24 4.49 4.48 4.77 5.34 5.40
1,000 4.60 4.71 4.72 4.90 5.73 5.84
5,000 4.23 4.52 4.51 4.78 5.37 5.39

15,000 4.10 4.39 4.37 4.71 5.16 5.23
25,000 4.04 4.35 4.31 4.70 5.10 5.16

B40 4.08 4.71 4.67 4.29 6.21 6.74
1,000 4.35 4.79 4.78 4.55 6.84 7.44
5,000 4.09 4.72 4.70 4.31 6.26 6.85

15,000 3.96 4.68 4.62 4.18 5.94 6.41
25,000 3.93 4.66 4.58 4.13 5.81 6.26

B100 3.94 4.45 4.45 4.05 7.15 8.09
1,000 4.07 4.47 4.47 4.21 7.68 8.68
5,000 3.94 4.45 4.45 4.08 7.21 8.14

15,000 3.89 4.45 4.44 3.97 6.92 7.84
25,000 3.87 4.44 4.43 3.93 6.80 7.71

B200 3.41 3.55 7.12 8.20
1,000 3.46 3.65 7.53 8.67
5,000 3.40 3.57 7.16 8.27

15,000 3.39 3.51 6.95 7.98
25,000 3.39 3.48 6.83 7.88

Overall 4.46 5.04 5.00 5.20 6.86 7.55

CHAPTER 7. COMPUTATIONAL STUDY 67

Table 7.2: Average deviation from the best MIP solution in percent (negative
values are better)

Set / Sol. HM BGA RGA SGA PRS SRS

A≤55 0.03 0.41 0.30 2.12 2.64 3.89
1,000 0.64 0.61 0.57 2.52 3.26 4.66
5,000 0.01 0.44 0.38 2.13 2.67 3.95

15,000 -0.24 0.34 0.15 1.95 2.37 3.57
25,000 -0.27 0.26 0.09 1.88 2.26 3.40

B10 0.24 0.27 0.29 1.31 1.55 1.59
1,000 0.44 0.55 0.54 1.34 1.56 1.62
5,000 0.22 0.24 0.27 1.30 1.55 1.58

15,000 0.15 0.16 0.19 1.30 1.55 1.58
25,000 0.14 0.15 0.18 1.30 1.55 1.58

B20 0.28 0.50 0.49 0.75 1.28 1.31
1,000 0.60 0.71 0.71 0.86 1.63 1.70
5,000 0.27 0.53 0.52 0.75 1.31 1.30

15,000 0.15 0.41 0.39 0.70 1.12 1.15
25,000 0.10 0.37 0.34 0.69 1.07 1.09

B40 -1.88 -1.34 -1.38 -1.73 -0.05 0.32
1,000 -1.66 -1.27 -1.28 -1.53 0.49 0.93
5,000 -1.88 -1.33 -1.36 -1.72 -0.01 0.42

15,000 -1.98 -1.38 -1.43 -1.82 -0.29 0.04
25,000 -2.01 -1.39 -1.47 -1.85 -0.40 -0.09

Overall -0.33 -0.03 -0.07 0.63 1.37 1.81

since all MIPs were solved to optimality. On this instance set, the HM achieves
for a limit of 25,000 generated solutions an optimality gap of 0.14%, which is
more than 9 times lower than the SGA’s gap. This relates to optimal solutions
for 95% of all instances. The HM further improves the makespan on set B10

when increasing the solution limit from 15,000 to 25,000 solutions, whereas
all other SGS-based methods are stagnant or likely trapped to suboptimality.
With growing instance size, the difference to the SGA becomes smaller, though.
For the medium instance set B40, the HM finds many new best-known solutions
that have not been determined by the MIP. For the large sets B100 and B200,
the average gaps to Tmin of the HM and the SGA decrease, indicating good
search performance, whereas they increase for the random sampling heuristics.

CHAPTER 7. COMPUTATIONAL STUDY 68

The model-based metaheuristics BGA and RGA produce similar results
with statistically insignificant differences on all instance sets. Hence, the BGA’s
approach of approximating the fitness results in a competitive solution quality,
while effectively reducing the number of SPs to solve. On instance set B10,
the results are nearly identical to the results of the HM. Both model-based
methods also further improve the makespan from 15,000 to 25,000 generated
solutions. In contrast to the SGS-based methods, the BGA and the RGA may
also generate infeasible solutions with resource profiles that feature outsourcing.
While the results are similar on small instances, the HM obtains significantly
better results on the larger instance sets B40 and B100. On these larger instances,
the infeasible resource profiles seem to hinder the search progress.

The HM, the BGA, and the RGA expand the search space when compared to
the SGA that only employs standard SGSs. This expansion leads to statistical
significant improvements on the small instance set B10, where the SGA behaves
similarly to the random sampling heuristics. Overall, all four metaheuristics
provide significantly better results than the heuristics, especially for large
problem instances.

The PRS and the SRS perform best on instance sets B20 and B40. For
smaller problem instances, the applied standard SGSs are the limiting factor
to obtain better solutions. If a resulting makespan in instance set B10 is
just 1 period above the optimum, the relative gap to Tmin is much bigger than
in instance sets B20 and B40. For the largest instances in sets B100 and B200,
the mainly random search leads to worse results due to the sheer number
of possible activity list permutations and the fixed limit on the number of
generated solutions.

Regarding the overall results from Table 7.1, the methods are ranked from
best to worst as follows. The relation < indicates that the first method has a
lower gap to Tmin than the second method:

HM < RGA < BGA < SGA < PRS < SRS (7.1)

CHAPTER 7. COMPUTATIONAL STUDY 69

A slightly different ranking results if statistical significance is considered.
Let relation ≺ indicate that the first method’s gap to Tmin is with statisti-
cal significance lower than the second’s one. If the difference is statistically
insignificant, the relation = applies. The resulting ranking from best to worst is:

HM ≺ RGA = BGA = SGA ≺ PRS = SRS (7.2)

7.4.2 Solution Quality: Hard Instances

The instance sets contains numerous easy problem instances for which both
the standard serial and the standard parallel SGS obtain a makespan equal
to Tmin after a single run with the LPF priority rule. The instance sets B10

to B200 contain 36–42% easy instances, whereas the PSPLIB instances in
set A≤55 only contain 5%. The HM and the SGA solve all easy instances to
optimality. Similarly, the BGA and the RGA find optimal solutions for all
except two instances. Since the performance of the metaheuristics can hardly
be differentiated on the easy instances, the instances are excluded from the
analysis presented in this section. The remaining 1,950 problem instances are
considered as hard problem instances. They are distributed across set A′≤55 with
485 problem instances, as well as sets B′10 with 287, B′20 with 279, B′40 with 309,
B′100 with 292, and B′200 with 298 problem instances.

Table 7.3 provides the average gap to Tmin for the hard problem instances.
Its structure is identical to the tables in the previous section. Now the difference
in the results is statistically significant in all table rows. The most remarkable
change in the results are the larger gaps to Tmin for all methods. As this is
also observed for the optimal MIP solutions of set B′10, the hard instances seem
to simply feature a larger gap between the optimal makespan and Tmin. The
widened spread between the metaheuristics and heuristics is clearly due to the
search performance. Especially on the largest instances, the HM obtains on
average up to 7 percent points lower gaps to Tmin.

Excluding the easy instances does not change the relative performance of
the methods. Hence, rankings (7.1) and (7.2) remain the same for the hard
instances.

CHAPTER 7. COMPUTATIONAL STUDY 70

Table 7.3: Hard problem instances: Average gap to Tmin in percent

Set / Sol. HM BGA RGA SGA PRS SRS

A′≤55 5.88 6.34 6.21 8.21 8.82 10.32
1,000 6.58 6.56 6.52 8.71 9.54 11.21
5,000 5.86 6.37 6.31 8.22 8.86 10.38
15,000 5.56 6.26 6.04 8.00 8.50 9.94
25,000 5.51 6.17 5.96 7.91 8.38 9.74

B′10 9.03 9.09 9.13 10.99 11.40 11.50
1,000 9.39 9.57 9.55 11.05 11.42 11.56
5,000 9.00 9.03 9.08 10.97 11.40 11.48
15,000 8.87 8.90 8.95 10.97 11.39 11.48
25,000 8.84 8.86 8.93 10.97 11.39 11.48

B′20 7.30 7.72 7.70 8.21 9.18 9.30
1,000 7.91 8.09 8.09 8.43 9.85 10.04
5,000 7.28 7.77 7.76 8.22 9.24 9.27
15,000 7.05 7.55 7.52 8.10 8.87 9.00
25,000 6.95 7.48 7.42 8.09 8.77 8.88

B′40 6.34 7.32 7.26 6.67 9.65 10.47
1,000 6.75 7.43 7.42 7.07 10.61 11.54
5,000 6.35 7.34 7.30 6.69 9.73 10.64
15,000 6.16 7.27 7.18 6.49 9.22 9.95
25,000 6.10 7.24 7.12 6.42 9.03 9.73

B′100 6.47 7.32 7.30 6.65 11.74 13.30
1,000 6.68 7.34 7.34 6.92 12.60 14.25
5,000 6.47 7.31 7.30 6.70 11.83 13.38
15,000 6.39 7.31 7.29 6.53 11.37 12.89
25,000 6.36 7.30 7.28 6.47 11.18 12.67

B′200 5.49 5.72 11.44 13.20
1,000 5.57 5.88 12.10 13.94
5,000 5.48 5.74 11.51 13.30
15,000 5.47 5.66 11.18 12.85
25,000 5.46 5.61 10.99 12.69

Overall 6.65 7.41 7.36 7.76 10.22 11.26

CHAPTER 7. COMPUTATIONAL STUDY 71

7.4.3 Instance Parameters

Let us now asses the influence of the instance parameters on the solution
quality. Figures 7.2 to 7.5 visualize the gap to Tmin for different values of order
strength (OS), resource factor (RF), resource strength (RS), and minimum
block length. The averages across all solution limits for instance sets B10 to
B200 are shown.

All methods are relatively robust against changes in the OS and produce
similar results for different network structures. For example, the results of the
HM only change within a range of 0.5 percent points. In line with the results
reported by Fündeling (2006), instances with fewer precedence relations and
more resulting scheduling possibilities are not significantly harder to solve. In
the classic RCPSP, the resource constraints often prevent activities that are not
connected by precedence relations to be scheduled in parallel. In the FRCPSP,
given that the lower bounds of resource usage are sufficiently low in relation to
the resource availability, such activities can actually be scheduled in parallel,
likely resulting in a high resource utilization.

The parameters RF and RS have a much higher impact on the results.
Problem instances in which activities require a high number of resources
or resources are scarce, are either more difficult to solve or the difference
between the optimal makespan and Tmin is higher. Especially if resources are
relatively scarce (RS = 0), the gap to the lower bound noticeably increases. In
this setting, the metaheuristics produce significantly better results than the
heuristics with up to 9 percent points lower gaps to Tmin. If resources are nearly
abundant (RS = 0.75), all methods solve the majority of instances to optimality.
A lower minimum block length just leads to slightly better results. For example,
reducing the minimum block length from 4 to 2 periods lets the HM’s gap
to Tmin decrease by just 0.6 percent points. Similar as with the OS, the choice
of the resource usage bounds may mitigate the effects of the minimum block
length.

In summary, the methods show similar behavior for changing instance
parameters. Clear differences are only visible for the case of RS = 0, in which
the metaheuristics perform better.

CHAPTER 7. COMPUTATIONAL STUDY 72

0

2

4

6

8

10

12

14

16

18

20

0.25 0.50 0.75

G
a
p
 t

o
T

m
in

(%
)

Order strength

HM

BGA/RGA

SGA

PRS/SRS

Figure 7.2: Influence of the order strength

0

2

4

6

8

10

12

14

16

18

20

0.25 0.50 0.75 1.00

G
a
p
 t

o
T

m
in

(%
)

Resource factor

HM

BGA/RGA

SGA

PRS/SRS

Figure 7.3: Influence of the resource factor

CHAPTER 7. COMPUTATIONAL STUDY 73

0

2

4

6

8

10

12

14

16

18

20

0.00 0.25 0.50 0.75

G
a
p
 t

o
T

m
in

(%
)

Resource strength

HM

BGA/RGA

SGA

PRS/SRS

Figure 7.4: Influence of the resource strength

0

2

4

6

8

10

12

14

16

18

20

2 3 4

G
a
p
 t

o
T

m
in

(%
)

Minimum block length

HM

BGA/RGA

SGA

PRS/SRS

Figure 7.5: Influence of the minimum block length

CHAPTER 7. COMPUTATIONAL STUDY 74

Table 7.4: HM components: Average gap to Tmin in percent

Set HM GA-FSGS PR-FSGS GA-SGS

A≤55 5.60 5.69 6.92 7.88
B10 5.40 5.41 5.60 6.85
B20 4.24 4.28 5.02 5.09
B40 4.08 4.17 5.84 4.54
B100 3.94 4.09 5.23 4.16
B200 3.41 3.58 4.24 3.69

Overall 4.46 4.55 5.49 5.39

7.4.4 Components of the Hybrid Metaheuristic

To assess the impact of the HM components on solution quality, four combina-
tions are compared:

• HM: The complete hybrid metaheuristic.

• GA-FSGS: The FSGS is embedded into the GA without the VNS. This
combination is used to evaluate the impact of the VNS.

• PR-FSGS: The FSGS is embedded into a multi-start priority rule heuris-
tic. The purpose of this combination is to assess the GA’s impact. λ is
determined by the priority rules LPF, MTS, and MWR as well as random
selection, similar as in Fündeling and Trautmann (2010). ρ and σ are
determined randomly within their bounds.

• GA-SGS: The GA operates only on λ and is combined with the SGA’s
standard parallel SGS. This combination is used to evaluate the FSGS.

Table 7.4 lists the gap to Tmin averaged across all solution limits. The
difference in the results is statistically significant in all table rows. Considering
the overall results, the GA-FSGS generates better results than the PR-FSGS
and the GA-SGS with statistical significance. Indeed, non-greedy resource
allocation and delayed scheduling result in significantly better solutions. Also
the GA leads to a significantly higher solution quality. Similar results with
larger differences between the methods but the same statistical significances

CHAPTER 7. COMPUTATIONAL STUDY 75

Table 7.5: VNS: Improved instances (Inst. %) and makespan reduction per
improved instance in periods (∆Cmax) and in percent (∆Cmax%)

Set Inst. % ∆Cmax ∆Cmax%

A≤55 5.59 1.06 2.27
B10 1.56 1.06 2.44
B20 7.57 1.23 1.39
B40 20.63 1.34 0.85
B100 54.24 2.12 0.57
B200 61.84 3.84 0.55

Overall 22.91 2.58 1.34

are also obtained on the subset of hard problem instances. The improvements
of the complete HM compared to the GA-FSGS are statistically insignificant
when considering all instances. However, this analysis also includes instances
on which the VNS is not even executed. Since the VNS operates within the
HM after completion of the GA, the VNS is not started in case the GA has
already solved an instance to optimality.

The potential of the VNS becomes visible when investigating only the
instances on which the VNS is actually executed. The question is: Given the
same solution limit, is it better to apply the VNS or to only use the GA?
Table 7.5 lists the percentage of instances for which the HM including VNS
yields a lower makespan than the GA-FSGS (Inst. %). The larger the problem
size, the more instances are improved by the VNS, peaking at 62% on instance
set B200. Note that the VNS solution limit FVNS is also highest on this
instance set. On average, the VNS further improves 23% of the instances. For
the sake of completeness, this number corresponds to 12% of all instances,
however, then also including instances on which the VNS is not executed.
Table 7.5 also provides the absolute makespan reduction per improved instance
in periods (∆Cmax) and in percent of the GA-FSGS’s makespan (∆Cmax%).
Although the absolute makespan reduction in periods increases with the problem
size, the relative makespan reduction declines because larger problem instances
also feature higher makespans.

CHAPTER 7. COMPUTATIONAL STUDY 76

0

0.25

0.5

0.75

1

1.25

1.5

0 5,000 10,000 15,000 20,000 25,000

G
a
p
 t

o
b
es

t
H

M
 s

o
lu

ti
on

 (
%

)

Generated solutions

Figure 7.6: Convergence of the HM

Next, the HM solution representation is analyzed. The HM features on
average in 59% of its best solutions a resource allocation limit ρi > 0 and in
25% a start delay σi > 0 for at least one activity. Consider again that the
resource allocation is not necessarily reduced for the whole duration of an
activity and that the start delay is relative to the period in which the FSGS
would otherwise schedule the activity. Nevertheless, the results indicate that
the HM actually uses the FSGS features in the search process.

Finally, the convergence behavior of the HM is illustrated in Figure 7.6.
The x-axis is the number of generated solutions and the y-axis is the average
gap to the best solutions found. The figure visualizes the average for a limit
of 25,000 generated solutions on instance sets B10 to B200. Since the VNS’s
start is determined by its variable solution limit FVNS , the vertical dashed line
indicates the earliest start at 18,000 generated solutions. Left of the line, only
the GA operates and shows a typical convergence behavior. Right of the line,
the VNS noticeably improves the results but its improvement rate declines over
time, similar as in the GA. The preliminary study indicated that earlier starts
of the VNS do not further improve the shown results.

CHAPTER 7. COMPUTATIONAL STUDY 77

Table 7.6: Improvement operators: Average gap to Tmin in percent

Set Operators No operators

A≤55 5.86 6.12
B10 5.33 5.48
B20 4.38 4.58
B40 4.65 4.77
B100 4.44 4.46

Overall 4.94 5.10

Table 7.7: Improvement operators: Improved instances (Inst. %) and make-
span reduction per improved instance in periods (∆Cmax) and in percent
(∆Cmax%)

Set Inst. % ∆Cmax ∆Cmax%

A≤55 12.80 1.07 3.26
B10 10.40 1.15 2.63
B20 27.65 1.26 1.53
B40 21.91 1.53 1.02
B100 10.04 1.23 0.40

Overall 16.19 1.25 1.77

7.4.5 Components of the Model-based Metaheuristics

To evaluate the impact of the improvement operators, the results of the BGA
and the RGA with improvement operators are compared to the results obtained
without the operators. Table 7.6 provides the average gap to Tmin for a limit
of 15,000 generated solutions per problem instance. As the differences between
the BGA and the RGA are marginal, their combined average is shown. The
improvement operators are able to generate better solutions but the differences
are statistically insignificant.

The percentage of improved problem instances (Inst. %) is listed in Table 7.7.
Again, only instances are considered on which the improvement operators are
actually executed. Instances are excluded for which a makespan equal to Tmin

is determined within the initial population before the improvement operators
are used. The operators have potential, as they achieve to improve on average

CHAPTER 7. COMPUTATIONAL STUDY 78

16% of the considered instances. This relates to 9% of all instances, then also
including the ones on which the operators are not executed. However, the
operators’ performance declines after a peak on set B20. It seems that the
simple heuristic approaches come to their limits on large problem instances.

Next, the split of the population between the top solutions and bottom
solutions is investigated. On average, across all instance sets and solution limits,
18% of the solutions in the population belong to the top solutions and the
remaining 82% to the bottom solutions. Close to the top solutions’ size limit
of 20%, the population features a sufficiently large number of solutions that
have a low makespan. Again, the results for the BGA and the RGA are nearly
identical with differences of ±1 percent point. 19% of all solutions exceed the
BGA’s and the RGA’s upper limit for the makespan.

Lastly, let us consider an extension of the solution representation. As noted
in Section 6.2.2.1, free activity start periods can be introduced by adding a
start offset to the representation. To evaluate the resulting impact without
interference of other factors, only the RGA is compared to variant RGA-SO
that uses a start offset list. Similar to the HM’s list σ, each activity’s list entry
delays the activity start by the specified number of periods. Two settings are
tested for the HM’s mutation operator for σ from Section 4.2.2.2: a mutation
rate of 0.5% and one of 5%. Now, a different upper bound is applied. Since
disjunctive arcs can already delay activities, the additional offsets are limited
to the maximum of the minimum block lengths per problem instance. With
this setup, the RGA-SO is capable of generating the optimal solution to the
example depicted in Baumann et al. (2015, p. 536), which the original RGA
cannot obtain. Nevertheless, the computational results of both methods are
virtually identical with statistically insignificant differences. For the 0.5%
mutation rate, the RGA and the RGA-SO differ in the gap to Tmin by at most
only ±0.03 percent points for each instance set. The overall result is with 0.01
percent points minimally better for the RGA. Using the 5% mutation rate, the
RGA-SO performs worse. Its overall result is 0.07 percent points worse than
the RGA’s. Thus, we can conclude that the delayed scheduling resulting from
the disjunctive arcs is sufficient and no additional start offset is required.

CHAPTER 7. COMPUTATIONAL STUDY 79

0

2

4

6

8

10

10 20 40 100 200

M
il
li
se

co
n
d
s

p
er

 s
ol

u
ti

on

Number of activities

HM

BGA

RGA

SGA

PRS

SRS

Figure 7.7: Average time to generate one solution in ms.

7.4.6 Computation Time

Besides solution quality, also the computation time is analyzed. Figure 7.7
provides an overview of the average time required to generate one solution
per problem instance. It visualizes the average elapsed time per solution for a
limit of at most 25,000 solutions per problem instance of sets B10 to B200. The
values on the x-axis are not equidistant. The data is listed in Table 7.8. The
difference in the results is statistically significant in all table rows.

Computation time is highly implementation specific but the results give
an indication on the scalability of the methods. Although not perfectly linear,
the SGS-based methods scale well. For example, by doubling the number of
activities, the HM’s computation time grows by a constant factor of 2.5, when
considering the range from 10 to 100 activities. From 100 to 200 activities,
the factor increases to 2.86. A profiler analysis of the Java implementation
revealed that this slight increase is mainly due to storage and handling of qirt
in the VNS and not due to the general algorithmic approach.

CHAPTER 7. COMPUTATIONAL STUDY 80

Table 7.8: Average time to generate one solution in ms.

Set HM BGA RGA SGA PRS SRS

A≤55 0.14 5.55 1.89 0.05 0.06 0.02
B10 0.08 3.50 1.53 0.04 0.04 0.02
B20 0.20 8.33 2.94 0.09 0.09 0.05
B40 0.50 21.80 4.86 0.21 0.21 0.10
B100 1.55 76.91 10.20 0.84 0.69 0.31
B200 4.44 2.61 1.85 0.70

Overall 1.15 23.22 4.28 0.64 0.49 0.20

Table 7.9: HM components: Average time to generate one solution in ms.

Set GA VNS

A≤55 0.11 0.24
B10 0.08 0.17
B20 0.18 0.28
B40 0.38 0.65
B100 1.19 2.72
B200 3.58 9.08

Overall 0.92 2.19

The computation times of the HM’s GA and VNS are listed in Table 7.9.
The GA’s time develops roughly similar to the SGA’s time from Table 7.8.
The VNS requires more time due to the repeated solution analysis in the
activity selection. As the VNS is not executed on all solutions, its average
computation time may exceed that of the HM.

The key driver for computation time of the SGS-based methods is the
applied SGS. Since the HM’s FSGS performs more complex operations, its
required time is higher. All methods that employ the parallel scheme, including
the FSGS, require more time than the SRS that relies on the serial SGS. A
likely reason is the resource allocation. In each decision period, the parallel SGS
first continues active activities before it allocates additional resource quantities
to active and eligible activities. In the serial SGS, an activity may as well be
scheduled after the latest period of the current partial schedule, where no other
activity is active. In this case, the resource allocation for the whole duration

CHAPTER 7. COMPUTATIONAL STUDY 81

of the activity can be done in a single operation. Furthermore, dependent
resources may cause the quantities of allocated principal or other dependent
resources to be revised. In the parallel SGS, this revision may take place in
each decision period and cause increased computation time when compared to
the serial SGS.

Unsurprisingly, the model-based metaheuristics require more time than the
SGS-based methods. Due to the BGA’s high computation time, instance set B200

is not compared for the model-based methods. The BGA’s computation time is
not competitive with the other methods, as already the RGA is between 2 to 7
times faster. This difference is mainly caused by the underlying models, as
discussed in the next section.

7.4.7 Models

The SP and the RSP mainly determine the model-based metaheuristics’ com-
putation time. Table 7.10 and Table 7.11 provide the average number of LP
columns and rows before presolve, the average time to build or modify one
LP prior to solving as well as the actual solve time including presolve. The
averages across all instance sets and a limit of 25,000 generated solutions per
instance are shown.

The RSP dominates the SP in all categories and is clearly the better
model formulation for determining resource profiles. As the CPLEX presolve
eliminates more than 90% of the SP’s LP columns and rows, the SP model size
after presolve is in the same order of magnitude as the size of the RSP. Still,
the RSP is smaller and faster to solve.

The RSP’s solve time grows moderately with the model size but its build time
increases noticeably. As the RSP’s constraints and variables may completely
change depending on the intervals from the MP solutions, the model is rebuilt
each time. On the one hand, the low solve time demonstrates the efficiency of
the model, but on the other hand the high build time also indicates limitations
of the implementation. The build time mainly determines the RGA’s overall
computation time. The BGA’s ratio of build time to solve time is smaller,
since only the constraint right-hand-side coefficients have to be modified in

CHAPTER 7. COMPUTATIONAL STUDY 82

Table 7.10: Statistics for the subproblem

Set Columns Rows Build (ms) Solve (ms)

A≤55 1,904 7,540 14.99 7.17
B10 1,215 4,343 6.64 3.30
B20 3,655 14,087 19.05 11.10
B40 11,858 47,971 73.05 35.47
B100 65,004 272,669 385.86 235.42

Overall 15,662 64,877 93.85 54.76

Table 7.11: Statistics for the reduced subproblem

Set Columns Rows Build (ms) Solve (ms)

A≤55 89 85 1.31 0.41
B10 73 73 1.13 0.42
B20 146 145 2.09 0.34
B40 287 282 4.33 0.90
B100 705 694 9.98 1.55

Overall 258 254 2.00 0.72

subsequent iterations. When comparing the SP’s combined build and solve
time to the BGA’s average time per solution from Table 7.8, the time savings
from the reduced number of solved SPs become obvious.

Chapter 8

Conclusions

This chapter summarizes the main research findings, provides concluding
remarks, and outlines directions for further research.

8.1 Summary and Concluding Remarks

This work considered the resource-constrained project scheduling problem with
flexible resource profiles (FRCPSP) for continuous resource quantities and
discrete time periods. Chapter 1 gave an introduction to the topic and defined
the research scope. The FRCPSP was described in Chapter 2. The problem
was distinguished from related project scheduling problems in Chapter 3,
where also existing solution approaches and relevant literature were reviewed.
In Chapters 4 to 6, four metaheuristics were proposed. The methods were
evaluated and compared to benchmark methods in the computational study
presented in Chapter 7.

The hybrid metaheuristic (HM) from Chapter 4 embeds the flexible resource
profile parallel schedule generation scheme (FSGS) into a metaheuristic frame-
work that combines a genetic algorithm (GA) with a variable neighborhood
search (VNS). The computational results demonstrated that the HM achieves
significantly better results than all other compared methods. On small problem
instances with 10 activities, for which the optimal solutions are known, the HM’s
results are near-optimal with an optimality gap of just 0.14%. The FSGS and

83

CHAPTER 8. CONCLUSIONS 84

the GA have significant positive impact on the overall results. Especially the
applied concepts of non-greedy resource allocation and delayed scheduling allow
the FSGS to generate significantly better solutions than a parallel standard
schedule generation scheme (SGS). Although the VNS’s impact on the overall
results is smaller, it further improves on average every fifth problem instance
that has already been processed by the GA before. Thus, the hybridization
yields benefits. In comparison to existing metaheuristics, the VNS introduces
new concepts to the FRCPSP by using resource transfers and a critical path
analysis of resource flows.

The self-adaptive genetic algorithm (SGA) from Chapter 5 directly adapts
the method of Hartmann (2002) to the FRCPSP. However, by employing
standard SGSs, the SGA is not able to reach the HM’s average solution quality.
Specifically on small problem instances, the standard SGSs are the limiting
factor and the HM’s problem-adapted FSGS achieves significant advances.

Two model-based metaheuristics, the Benders genetic algorithm (BGA) and
the reduced subproblem genetic algorithm (RGA), were proposed in Chapter 6.
Whereas the HM and the SGA simultaneously schedule activities and determine
resource profiles, the model-based methods rely on a problem decomposition
into a master problem and a subproblem. In the master problem, activities are
scheduled by determining their start periods and durations and additionally
the minimum block length is enforced. In the subproblem, resource profiles are
created by allocating resources. Both GAs use a novel solution representation
based on disjunctive arcs to encode master problem solutions. The computa-
tional results indicated that the BGA’s approach to derive the fitness from
Benders optimality cuts and a lower bound of the resource constraint violations
results in nearly the identical solution quality as the RGA’s approach to al-
ways calculate resource profiles. However, by using the reduced subproblem, a
compact reformulation of the subproblem, the RGA achieves significantly lower
computation times. As valid master problem solutions may result in infeasible
resource profiles, improvement operators were proposed. While they are able
to slightly improve solutions, they do not have a statistically significant impact
on the results.

CHAPTER 8. CONCLUSIONS 85

All proposed metaheuristics yield significantly better solutions than two
benchmark random sampling heuristics. Especially for large problem instances
or instances with scarce resources, the metaheuristics achieve substantial ad-
vantages. The metaheuristics also find new best-known solutions that have not
been determined by a mixed integer program on a commercial solver. Except
for the BGA, the required computation time of all proposed metaheuristics can
be regarded as low.

A common denominator in the findings from this work is that in highly
constrained problems, such as the FRCPSP, the coverage of the search space
requires careful consideration when designing metaheuristics. At the one
end of the spectrum of considered approaches are metaheuristics that use
standard SGSs. These methods are fast and always generate feasible solutions.
However, their search space excludes certain optimal solutions that require non-
greedy resource allocation and delayed scheduling. To overcome this limitation,
the FSGS was introduced and embedded into a metaheuristic framework.
The FSGS expands the search space of a standard parallel SGS while still only
generating feasible solutions. On the other end of the spectrum are the model-
based metaheuristics. Their benefit of always determining optimal resource
profiles comes at the cost of higher computation time and solutions that violate
the resource constraints.

8.2 Further Research

After a critical review of the proposed methods, further research may be di-
rected at specific improvements: First, an optimized procedure for revising
resource quantities of dependent resources in the FSGS from Chapter 4 and
the standard SGSs from Chapter 5 may reduce the required computation time.
Second, combining components of the HM and the model-based metaheuristics
may have potential. The HM’s VNS from Chapter 4 can also be applied on
the resource profiles obtained by an LP in order to improve master problem
solutions. Similarly, the heuristic improvement operators from Chapter 6 may
benefit from the critical-path analysis of resource flows and the more sophisti-
cated search framework of the VNS. Third, a new interval-based subproblem

CHAPTER 8. CONCLUSIONS 86

formulation that is directly compatible with the BGA’s fitness evaluation using
Benders optimality cuts may reduce the computation time of the model-based
metaheuristics.

Further research beyond the scope of this dissertation may consider ap-
proaches for the FRCPSP with both continuous and discrete resources. Besides
unifying two separate strands of literature, the practical applicability of the
methods could be further increased, as all types of real-world resources are
appropriately represented. From a theoretical perspective, a generalization to a
continuous time axis may lead to new insights and further reduce the makespan.
Moreover, it would be interesting to compare the proposed metaheuristics on
larger problem instances of a more comprehensive FRCPSP instance library.

All in all, the metaheuristics provided and the concepts depicted in this
work shall encourage researchers as well as practitioners to apply the versatile
FRCPSP to further problem settings from business practice.

Appendices

87

Appendix A

Abbreviations

BGA Benders genetic algorithm
DTRTP Discrete time-resource tradeoff problem
FRCPSP Resource-constrained project scheduling problem with flexi-

ble resource profiles
FSGS Flexible resource profile parallel schedule generation scheme
GA Genetic algorithm
GA-FSGS The FSGS embedded into the HM’s GA
GA-SGS The standard parallel SGS embedded into the HM’s GA
HM Hybrid metaheuristic
LP Linear program
LPF Longest path following
MIP Mixed integer program
MP Master problem
MRCPSP Multi-mode resource-constrained project scheduling problem
MTS Most total successors
MWR Most work remaining
OS Order strength
PRS Parallel random sampling (heuristic)
PR-FSGS The FSGS embedded into a multi-start priority rule heuristic
RCPSP Resource-constrained project scheduling problem
RF Resource factor

88

APPENDIX A. ABBREVIATIONS 89

RGA Reduced subproblem genetic algorithm
RGA-SO The RGA using an additional start offset
RS Resource strength
RSP Reduced subproblem
SGA Self-adapting genetic algorithm
SGS Schedule generation scheme
SP Subproblem
SRS Serial random sampling (heuristic)
VNS Variable neighborhood search

Appendix B

Notation

Indices

i, j Activity
r, k Resource, specifically the principal resource k
t Time period

Sets

EC Precedence relations: Conjunctive arcs
ED Precedence relations: Disjunctive arcs
H Solved subproblems
Pi Predecessors of activity i
R Resources
Ri Required resources of activity i
Rpi
i Required principal and independent resources of activity i
T Discrete time horizon
Ti Time window for activity i
T δr Interval start periods for resource r
T δir Interval start periods for activity i and resource r
T pair
ij Time periods for resource transfer of activity pair (i, j)
V Activities (excluding dummy start and sink)
VA Active activities
VC Critical activities

90

APPENDIX B. NOTATION 91

VE Eligible activities
Vpair Selected activity pairs (i, j)
Vrec Activities with rectangular resource profiles
Ω Tuples of activity i, principal k, and dependent resource r

Constants and parameters

br Availability of resource r in each period
ci, ci Earliest and latest completion period of activity i
di, di Lower and upper bounds of duration of activity i
eirt Interval start period of the interval of activity i and resource

r that contains period t
grt Duration of the interval of resource r that contains period t
girt Duration of the interval of activity i and resource r that

contains period t
lir Minimum block length of activity i and resource r
n Number of non-dummy activities
or Lower bound of outsourcing for resource r
q
ir
, qir Lower and upper usage bounds of activity i for resource r

si, si Earliest and latest start period of activity i
Tmin Lower bound of the makespan
wir Requirement of activity i for resource r
αir, βir Coefficient αir and constant βir of linear resource function

for dependent resource r of activity i
πo Penalty for outsourcing
πq Penalty for allocated resource quantity
γhrt, ζ

h
irt, θ

h
irt Dual values associated to SP constraints (6.17) to (6.23)

ιhikrt, κ
h
ir, µ

h
irt

νhirt

Binary decision variables

zit 1 if activity i is active in period t, 0 otherwise

APPENDIX B. NOTATION 92

δirt 1 if activity i is allowed to change its allocated quantity of
resource r from period t− 1 to t, 0 otherwise

Integer decision variables

ci Completion period of activity i
Cmax Project makespan
di Duration of activity i
si Start period of activity i

Continuous decision variables

ort Outsourcing of resource r in period t
qirt Quantity of resource r allocated to activity i in period t
η MP objective function value

General variables

f FRCPSP solution
F Maximum number of generated solutions as termination

criterion

Variables of the hybrid metaheuristic

delayi Number of periods that activity i has been delayed for
f rec FRCPSP solution featuring only rectangular resource profiles
~fgen List containing the unique best encoded solution for each

GA generation as well as the corresponding decoded solution
FGA Maximum number of generated solutions for the HM’s GA
FVNS Maximum number of generated solutions for the HM’s VNS
lirt Number of periods in the block of resource r for activity i

up to period t
v Neighborhood number and number of resource transfers
λ Activity list
ρ Resource limit list
ρi Resource limit of activity i

APPENDIX B. NOTATION 93

ρi Upper bound of resource limit of activity i
σ Start delay list
σi Start delay of activity i
σi Upper bound of start delay of activity i
χijrt Transfer quantity of resource r from activity i to activity j

in period t
ϕr Current leftover quantity of resource r
ξir Current remaining requirement of activity i for resource r

Variables of the model-based metaheuristics

A Encoded disjunctive arcs
Bir Encoded interval start periods for activity i and resource r
B All encoded interval start periods: Bir for each activity i

and required principal or independent resource r
D Encoded durations
rsp∗ Optimal value of the RSP objective function (6.28)
sp∗ Optimal value of the SP objective function (6.16)
η∗ Optimal value of expression (6.35)

Appendix C

Lower Bound of Outsourcing

The total sum of outsourcing for resource r is defined as:

∑
t∈T

ort (C.1)

The lower bound of outsourcing or of (C.1) can be calculated for a valid
MP solution without solving the SP/RSP or knowing the quantity of allocated
resources:

• Based on the MP solution, the periods up to Cmax are separated into
disjunct timeframes without “overlapping” activities. That means, the
first period t of such a timeframe has the property that all activities
that are active in this period also start in this period. Similarly, the last
period t′ of the timeframe has the property that all activities that are
active in this period also complete in this period.

• Outsourcing occurs if the compound resource requirement of the activities
that are scheduled in the timeframe from t to t′ exceeds the compound
resource availability. Term (C.2) is the minimum resulting outsourcing
in this timeframe. It contains the lower resource usage bound q

ir
for

activities that have not been completed up to period t′ because the actual

94

APPENDIX C. LOWER BOUND OF OUTSOURCING 95

quantities of allocated resources are unknown since a resource profile has
not been determined.

max(
∑
i∈V
si≥t
ci≤t′

wir +
∑
i∈V
si≥t
ci>t

′

t′∑
τ=si

q
ir
−

t′∑
τ=t

br, 0) (C.2)

• The lower bound of outsourcing or is obtained by summing up term (C.2)
for all identified timeframes of the MP solution.

Bibliography

Alvarez-Valdés, R. O. and Tamarit, J. (1989). Heuristic algorithms for resource-
constrained project scheduling: A review and an empirical analysis. In
Słowiński, R. and Węglarz, J., editors, Advances in project scheduling, vol-
ume 9 of Studies in production and engineering economics, pages 113–134.
Elsevier, Amsterdam and New York.

Artigues, C., Demassey, S., and Neron, E. (2008). Resource-constrained project
scheduling: Models, algorithms, extensions and applications. Control systems,
robotics and manufacturing series. ISTE and Wiley, London and Hoboken.

Artigues, C., Michelon, P., and Reusser, S. (2003). Insertion techniques for static
and dynamic resource-constrained project scheduling. European Journal of
Operational Research, 149(2):249–267.

Baker, J. E. (1987). Reducing bias and inefficiency in the selection algorithm.
In Proceedings of the Second International Conference on Genetic Algorithms
and Their Application, pages 14–21, Hillsdale. L. Erlbaum Associates Inc.

Baumann, P., Fündeling, C.-U., and Trautmann, N. (2015). The resource-
constrained project scheduling problem with work-content constraints. In
Schwindt, C. and Zimmermann, J., editors, Handbook on Project Management
and Scheduling Vol.1, International Handbooks on Information Systems, pages
533–544. Springer International Publishing, Cham.

Baydoun, G., Haït, A., and Pellerin, R. (2014). A rough-cut capacity planning
model with overlapping. In Fliedner, T., Kolisch, R., and Naber, A., editors,

96

BIBLIOGRAPHY 97

Proceedings of the 14th International Conference on Project Management
and Scheduling, pages 28–31, Munich. TUM School of Management.

Bedworth, D. D. and Bailey, J. E. (1982). Integrated production control systems:
Management, analysis, design. Wiley, New York.

Bell, C. E. and Han, J. (1991). A new heuristic solution method in resource-
constrained project scheduling. Naval Research Logistics, 38(3):315–331.

Benders, J. F. (1962). Partitioning procedures for solving mixed-variables
programming problems. Numerische Mathematik, 4(3):238–252.

Bertrand, J. W. M. and Fransoo, J. C. (2002). Operations management
research methodologies using quantitative modeling. International Journal
of Operations & Production Management, 22(2):241–264.

Bianco, L. and Caramia, M. (2013). A new formulation for the project scheduling
problem under limited resources. Flexible Services and Manufacturing Journal,
25(1-2):6–24.

Blazewicz, J., Lenstra, J. K., and Kan, A. R. (1983). Scheduling subject
to resource constraints: classification and complexity. Discrete Applied
Mathematics, 5(1):11–24.

Boschetti, M. and Maniezzo, V. (2009). Benders decomposition, lagrangean
relaxation and metaheuristic design. Journal of Heuristics, 15(3):283–312.

Brucker, P., Drexl, A., Möhring, R., Neumann, K., and Pesch, E. (1999).
Resource-constrained project scheduling: Notation, classification, models,
and methods. European Journal of Operational Research, 112(1):3–41.

De Reyck, B., Demeulemeester, E., and Herroelen, W. (1998). Local search
methods for the discrete time/resource trade-off problem in project networks.
Naval Research Logistics, 45(6):553–578.

Deckro, R. F. and Hebert, J. E. (1989). Resource constrained project crashing.
Omega, 17(1):69–79.

BIBLIOGRAPHY 98

Demeulemeester, E., De Reyck, B., and Herroelen, W. (2000). The discrete
time/resource trade-off problem in project networks: a branch-and-bound
approach. IIE Transactions, 32(11):1059–1069.

Demeulemeester, E. and Herroelen, W. (2002). Project scheduling: A re-
search handbook, volume 49 of International Series in Operations Research &
Management Science. Kluwer Academic Publishers, New York.

Elmaghraby, S. E. (1977). Activity networks: project planning and control by
network models. John Wiley & Sons, New York.

Frey, M., Kiermeyer, F., and Kolisch, R. (2014). Baggage flows at airports: A
survey and generic model. Technical report, TUM School of Management,
Technische Universität München, Munich.

Fündeling, C.-U. (2006). Ressourcenbeschränkte Projektplanung bei vorgegebe-
nen Arbeitsvolumina (Resource-constrained project scheduling with given
work contents). Gabler Edition Wissenschaft Produktion und Logistik. Dt.
Univ.-Verl, Wiesbaden.

Fündeling, C.-U. and Trautmann, N. (2010). A priority-rule method for project
scheduling with work-content constraints. European Journal of Operational
Research, 203(3):568–574.

Garey, M. R. and Johnson, D. S. (1979). Computers and intractability: A
guide to the theory of NP-completeness. Series of books in the mathematical
sciences. W.H. Freeman, San Francisco.

Gendreau, M. and Potvin, J.-Y., editors (2010). Handbook of metaheuristics,
volume 146 of International Series in Operations Research & Management
Science. Springer, New York, 2nd edition.

Haït, A. and Baydoun, G. (2012). A new event-based MILP model for the
resource-constrained project scheduling problem with variable intensity ac-
tivities. In IEEE International Conference on Industrial Engineering and
Engineering Management, Hong Kong. Institute of Electrical and Electronics
Engineers.

BIBLIOGRAPHY 99

Hans, E. W. (2001). Resource loading by branch-and-price techniques. Twente
University Press, Enschede.

Hansen, P. and Mladenović, N. (2005). Variable neighborhood search. In Burke,
E. and Kendall, G., editors, Search Methodologies, pages 211–238. Springer
US, Boston.

Hartmann, S. (1998). A competitive genetic algorithm for resource-constrained
project scheduling. Naval Research Logistics, 45(7):733–750.

Hartmann, S. (2002). A self-adapting genetic algorithm for project scheduling
under resource constraints. Naval Research Logistics, 49(5):433–448.

Hartmann, S. and Briskorn, D. (2010). A survey of variants and extensions of
the resource-constrained project scheduling problem. European Journal of
Operational Research, 207(1):1–14.

Hartmann, S. and Kolisch, R. (2000). Experimental evaluation of state-of-
the-art heuristics for the resource-constrained project scheduling problem.
European Journal of Operational Research, 127(2):394–407.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University
of Michigan Press, Ann Arbor.

Józefowska, J., Mika, M., Różycki, R., Waligóra, G., and Węglarz, J. (2000).
Solving the discrete-continuous project scheduling problem via its discretiza-
tion. Mathematical Methods of Operations Research, 52(3):489–499.

Kelley, J. E. (1963). The critical-path method: Resources planning and schedul-
ing. In Muth, J. F. and Thompson, G. L., editors, Industrial Scheduling,
pages 347–365. Prentice-Hall, New Jersey.

Kis, T. (2006). RCPS with variable intensity activities and feeding precedence
constraints. In Józefowska, J. and Węglarz, J., editors, Perspectives in
Modern Project Scheduling, volume 92 of International Series in Operations
Research & Management Science, pages 105–129. Springer US, New York.

BIBLIOGRAPHY 100

Kolisch, R. (1996). Serial and parallel resource-constrained project scheduling
methods revisited: Theory and computation. European Journal of Opera-
tional Research, 90(2):320–333.

Kolisch, R. and Hartmann, S. (2006). Experimental investigation of heuristics
for resource-constrained project scheduling: An update. European Journal
of Operational Research, 174(1):23–37.

Kolisch, R., Meyer, K., Mohr, R., Schwindt, C., and Urmann, M. (2003). Ablauf-
planung für die Leitstrukturoptimierung in der Pharmaforschung (Scheduling
of lead structure optimization in pharmaceutical reserach). Zeitschrift für
Betriebswirtschaft, 73(8):825–848.

Kolisch, R. and Sprecher, A. (1997). PSPLIB - a project scheduling problem
library. European Journal of Operational Research, 96(1):205–216.

Kuhlmann, A. (2003). Entwicklung eines praxisnahen Project-Scheduling-
Ansatzes auf der Basis von genetischen Algorithmen (Development of a
practical project scheduling approach based on genetic algorithms). Logos-
Verlag, Berlin.

Leachman, R. C., Dtncerler, A., and Kim, S. (1990). Resource-constrained
scheduling of projects with variable-intensity activities. IIE Transactions,
22(1):31–40.

Lewis, J. P. (2006). Fundamentals of project management. American Manage-
ment Association, New York, 3rd edition.

Li, H. (2015). Benders decomposition approach for project scheduling with multi-
purpose resources. In Schwindt, C. and Zimmermann, J., editors, Handbook
on Project Management and Scheduling Vol.1, International Handbooks
on Information Systems, pages 587–601. Springer International Publishing,
Cham.

Maniezzo, V., Stützle, T., and Voß, S. (2009). Matheuristics: Hybridizing
metaheuristics and mathematical programming, volume 10 of Annals of
Information Systems. Springer, New York.

BIBLIOGRAPHY 101

Meyer, K. (2003). Wertorientiertes Projektmanagement in der Pharmaforschung.
Berichte aus der Betriebswirtschaft. Shaker, Aachen.

Mitroff, I. I., Betz, F., Pondy, L. R., and Sagasti, F. (1974). On managing
science in the systems age: Two schemas for the study of science as a whole
systems phenomenon. Interfaces, 4(3):46–58.

Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Comput-
ers & Operations Research, 24(11):1097–1100.

Naber, A. and Kolisch, R. (2014a). A continuous-time model for the resource-
constrained project scheduling with flexible profiles. In Fliedner, T., Kolisch,
R., and Naber, A., editors, Proceedings of the 14th International Conference
on Project Management and Scheduling, pages 166–168, Munich. TUM School
of Management.

Naber, A. and Kolisch, R. (2014b). MIP models for resource-constrained project
scheduling with flexible resource profiles. European Journal of Operational
Research, 239(2):335–348.

Naber, A. and Kolisch, R. (2015). MIP models for resource-constrained project
scheduling with flexible resource profiles: Comparisons between Baumann
and Trautmann (2013) and Naber and Kolisch (2014). Technical report,
TUM School of Management, Technische Universität München, Munich.

Poojari, C. A. and Beasley, J. E. (2009). Improving Benders decomposition using
a genetic algorithm. European Journal of Operational Research, 199(1):89–97.

Project Management Institute (2013). A guide to the Project Management Body
of Knowledge (PMBOK Guide). Project Management Institute, Newtown
Square, 5th edition.

Raidl, G. R. (2015). Decomposition based hybrid metaheuristics. European
Journal of Operational Research, 244(1):66–76.

Raidl, G. R., Puchinger, J., and Blum, C. (2010). Metaheuristic hybrids. In
Gendreau, M. and Potvin, J.-Y., editors, Handbook of metaheuristics, volume

BIBLIOGRAPHY 102

146 of International Series in Operations Research & Management Science,
pages 469–496. Springer, New York.

Ranjbar, M., De Reyck, B., and Kianfar, F. (2009). A hybrid scatter search for
the discrete time/resource trade-off problem in project scheduling. European
Journal of Operational Research, 193(1):35–48.

Ranjbar, M. and Kianfar, F. (2007). Solving the discrete time/resource trade-off
problem in project scheduling with genetic algorithms. Applied Mathematics
and Computation, 191(2):451–456.

Ranjbar, M. and Kianfar, F. (2010). Resource-constrained project scheduling
problem with flexible work profiles: A genetic algorithm approach. Transac-
tion E: Industrial Engineering, 17(1):25–35.

Reeves, C. (2010). Genetic algorithms. In Gendreau, M. and Potvin, J.-Y.,
editors, Handbook of metaheuristics, volume 146 of International Series in
Operations Research & Management Science, pages 109–139. Springer, New
York.

Schrage, L. (1970). Solving resource-constrained network problems by implicit
enumeration—nonpreemptive case. Operations Research, 18(2):263–278.

Schramme, T. (2014). Modelle und Methoden zur Lösung des ressourcenbe-
schränkten Projektablaufplanungsproblems unter Berücksichtigung praxisrele-
vanter Aspekte (Models and methods to solve the resource-constrained project
scheduling problem under consideration of practical aspects). Paderborn
University, Paderborn.

Shaffer, L. R., Ritter, J., and Meyer, W. (1965). The critical-path method.
Mcgraw-Hill, New York.

Sirikum, J., Techanitisawad, A., and Kachitvichyanukul, V. (2007). A new
efficient GA-Benders’ decomposition method: For power generation expansion
planning with emission controls. IEEE Transactions on Power Systems,
22(3):1092–1100.

BIBLIOGRAPHY 103

Talbot, B. F. (1982). Resource-constrained project scheduling with time-resour-
ce tradeoffs: The nonpreemptive case. Management Science, 28(10):1197–
1210.

Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM
Journal on Computing, 1(2):146–160.

Tritschler, M., Naber, A., and Kolisch, R. (2014a). A genetic algorithm for
the resource-constrained project scheduling problem with flexible resource
profiles. In Fliedner, T., Kolisch, R., and Naber, A., editors, Proceedings of
the 14th International Conference on Project Management and Scheduling,
pages 230–233, Munich. TUM School of Management.

Tritschler, M., Naber, A., and Kolisch, R. (2014b). A hybrid metaheuristic for
the resource-constrained project scheduling problem with flexible resource
profiles. In International Conference on Operations Research 2014, Aachen.
German Operations Research Society.

Tritschler, M., Naber, A., and Kolisch, R. (2015a). A hybrid metaheuristic for
resource-constrained project scheduling with flexible resource profiles. Work-
ing paper, TUM School of Management, Technische Universität München,
Munich.

Tritschler, M., Naber, A., and Kolisch, R. (2015b). Model-based metaheuris-
tics for resource-constrained project scheduling with flexible resource pro-
files. Working paper, TUM School of Management, Technische Universität
München, Munich.

van Peteghem, V. and Vanhoucke, M. (2014). An experimental investigation of
metaheuristics for the multi-mode resource-constrained project scheduling
problem on new dataset instances. European Journal of Operational Research,
235(1):62–72.

Węglarz, J. (1981). Project scheduling with continuously-divisible, doubly
constrained resources. Management Science, 27(9):1040–1053.

BIBLIOGRAPHY 104

Węglarz, J., Józefowska, J., Mika, M., and Waligóra, G. (2011). Project
scheduling with finite or infinite number of activity processing modes – a
survey. European Journal of Operational Research, 208(3):177–205.

Zhang, L. and Sun, R. (2011). An improvement of resource-constrained multi-
project scheduling model based on priority-rule based heuristics. In 8th
International Conference on Service Systems and Service Management, pages
1–5, Tianjin. Institute of Electrical and Electronics Engineers.

	Acknowledgments
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Scientific Scope and Contributions
	Overview

	Problem Description
	Literature Review
	Continuous Resources
	Discrete Resources
	Related Problems

	The Hybrid Metaheuristic
	Solution Characteristics
	Non-greedy Resource Allocation
	Delayed Scheduling

	Hybrid Metaheuristic
	Flexible Resource Profile Parallel Schedule Generation Scheme
	Input Parameters
	Algorithm
	Example

	Genetic Algorithm
	Initial Population
	Operators

	Variable Neighborhood Search
	Activity Selection
	Resource Transfer
	Solution Improvement
	Example

	The Self-adaptive Genetic Algorithm
	Overall Design
	Serial Schedule Generation Scheme
	Parallel Schedule Generation Scheme

	Model-based Metaheuristics
	Decomposed Models
	Master Problem
	Subproblem
	Reduced Subproblem

	Genetic Algorithms
	Overall Design
	Benders Genetic Algorithm
	Reduced Subproblem Genetic Algorithm

	Solution Representation
	Start Periods and Durations
	Blocks
	Example

	Initial Population
	Improvement Operators
	Reduction Operator
	Repair Operator
	Example

	Genetic Operators

	Computational Study
	Study Design
	Test Data
	Implementation
	Results
	Solution Quality: All Instances
	Solution Quality: Hard Instances
	Instance Parameters
	Components of the Hybrid Metaheuristic
	Components of the Model-based Metaheuristics
	Computation Time
	Models

	Conclusions
	Summary and Concluding Remarks
	Further Research

	Abbreviations
	Notation
	Lower Bound of Outsourcing
	Bibliography

