
Faculty of Informatics

Chair for Computer Vision and Pattern Recognition

Convex Variational Methods for
Semantic Image Analysis

Julia Diebold





Technische Universität München

Fakultät für Informatik

Lehrstuhl für Bildverarbeitung und Mustererkennung

Convex Variational Methods for
Semantic Image Analysis

Julia Diebold
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Abstract

Semantic image analysis – also referred to as class-specific image analysis – is a
fundamental component in any computer vision system. In the course of the last
years, a continuous effort has been made by the research community to derive al-
gorithms which can analyze and understand visual scenes. The development of
formalisms which can extract image information matching the human perception
is a challenging task. Mathematically sophisticated methods have been developed
to make the algorithms more powerful. However, in particular for complex images,
current methods often yield unsatisfactory results.

In this thesis we extend state-of-the-art image analysis methods to allow for a
more efficient and more reliable semantic analysis. At first, we consider the anal-
ysis of binary line drawings. We algorithmically localize target figures and show
that diffusion improves the localization, as it makes the resulting energy easier to
optimize. In the following, we focus on the extension of variational segmentation
methods and the minimization of convex energy functionals. The advantage of such
a formulation is that globally optimal solutions – in the sense of the energy – can
be determined by applying established methods of convex optimization.

Semantic segmentation aims at jointly computing a partitioning of the image
plane and a semantic labeling of the various regions in terms of previously learned
object classes. In this thesis we consider energy functionals which are composed of
a regularization term and a data fidelity term and propose improvements for both
parts.

Regularization term The regularization term models prior knowledge. We pro-
pose midrange geometric priors which make use of geometric information, e.g ., that
‘sky’ lies above ‘ground’ or that ‘wolf’ and ‘sheep’ usually do not occur together.
By penalizing the co-occurrence of specific labels within a certain spatial neighbor-
hood the novel priors are beneficial for various segmentation scenarios. We show
how to formulate the problem as a convex optimization problem and employ a novel
primal-dual algorithm to find the globally optimal solution.

Data fidelity term Our data fidelity terms model the characteristics of the ob-
ject classes. A discriminative model can be learned from a set of labeled training
images or from user input, e.g ., bounding boxes or scribbles. For non-interactive
applications we introduce a framework which automatically selects the required fea-
tures and efficiently estimates the class probabilities. The data fidelity term is then
computed as the negative logarithm of the class probabilities. Our proposed fully
automatic algorithm achieves state-of-the-art semantic classifications and segmen-



vi

tations at drastically reduced computation time. If no training images are available
user input can be used to learn the color model. We therefore introduce a novel
approach based on RGB-D data and interactive user input via scribbles. We extend
the idea of spatially varying color distributions in a plane to additionally incorpo-
rate depth information. By locally adapting the influence of nearby scribbles around
each pixel we further improve the result.

Each segmentation method can be applied to video tracking, in particular video
inpainting. Instead of processing the video frame by frame we propose a framework
for temporally consistent video completion and introduce a flow-based propagation
of the user scribbles. We achieve competitive results five times faster and with
substantially less user input than required in competing methods.

The developed methods for semantic image analysis are implemented either in
Matlab or in C++ with parallelization on GPU and compare well to state-of-the-
art methods. All included works were published in highly ranked journals and
international conferences.



Zusammenfassung

Semantische Bildanalyse – auch als klassenspezifische Bildanalyse bekannt – ist ein
wesentlicher Bestandteil in jedem Bildverarbeitungssystem. Die Wissenschaftsge-
meinde hat im Laufe der vergangenen Jahre kontinuierlich an neuen Algorithmen
gearbeitet, die bildliche Darstellungen analysieren und verstehen können. Die Erfor-
schung von Formalismen, die Bildinformationen ähnlich der menschlichen Wahrneh-
mung erkennen können, ist eine anspruchsvolle Aufgabe. Es wurden mathematisch
ausgefeilte Verfahren entwickelt, welche die Algorithmen leistungsstärker machen.
Insbesondere bei komplexen Eingabebildern liefern dem Stand der Technik entspre-
chende Methoden allerdings keine zufriedenstellenden Ergebnisse.

In dieser Arbeit erweitern wir aktuelle Bildverarbeitungsverfahren, um eine effizi-
entere und zuverlässigere semantische Bildanalyse zu ermöglichen. Zunächst betrach-
ten wir die Analyse von binären Strichzeichnungen. Wir suchen algorithmisch nach
vorgegebenen Formen und zeigen, dass die Lokalisierung durch Diffusion verbessert
wird, da die Energie dadurch einfacher zu optimieren ist. Anschließend konzentrieren
wir uns auf die Erweiterung von Variationsansätzen für Bildsegmentierung und die
Minimierung von konvexen Energiefunktionalen. Der Vorteil einer solchen Formu-
lierung ist, dass bewährte Optimierungsverfahren eingesetzt und so global optimale
Lösungen – im Sinne von Energie – bestimmt werden können.

Basierend auf zuvor gelernten Objektklassen berechnet die semantische Segmen-
tierung gleichzeitig die Zerlegung der Bildebene und des semantischen Labels der
verschiedenen Regionen. In dieser Doktorarbeit betrachten wir Energiefunktionale,
welche aus einem Regularisierungsterm und einem Datenterm zusammengesetzt sind
und stellen Verbesserungen für beide Teile vor.

Regularisierungsterm Der Regularisierungsterm modelliert Vorwissen. Wir brin-
gen geometrische Informationen mit sogenannten midrange geometric priors ein.
Beispielsweise befindet sich der

’
Himmel‘ über dem

’
Boden‘ und

’
Wolf‘ und

’
Schaf‘

treten gewöhnlich nicht zusammen auf. Durch die Bestrafung des gemeinsamen Auf-
tretens spezifischer Label innerhalb einer bestimmten räumlichen Nachbarschaft ver-
bessern die neuen Priors die Segmentierung verschiedenster Szenarien. Wir zeigen,
wie das Problem als konvexes Optimierungsproblem formuliert werden kann und
verwenden einen neuen Primal-Dualen Algorithmus um die global optimale Lösung
zu bestimmen.

Datenterm Unsere Datenterme bilden die charakteristischen Merkmale von Ob-
jektklassen ab. Ein diskriminatives Modell kann aus einer Reihe von gelabelten Trai-
ningsbildern oder aus Benutzereingaben, z. B. Objektrahmen oder Scribbles, gelernt
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werden. Für Anwendungen ohne Benutzerinteraktion stellen wir ein Konzept vor,
das automatisch die benötigten Merkmale (sogenannte Features) auswählt und die
Wahrscheinlichkeit der Klassen effizient schätzt. Der Datenterm wird anschließend
als negativer Logarithmus der Klassenwahrscheinlichkeit bestimmt. Unser vollauto-
matischer Algorithmus erzielt dem Stand der Technik entsprechende semantische
Klassifikationen und Segmentierungen bei drastisch reduzierter Rechenzeit. Wenn
keine Trainingsbilder verfügbar sind, kann das Farbmodell mittels Benutzereingaben
gelernt werden. Wir stellen dazu einen neuen Ansatz vor, welcher auf RGB-D-Daten
und interaktiven Benutzereingaben via Scribbles basiert. Wir erweitern die Idee der
räumlich variierenden Farbverteilungen in einer Ebene, um zusätzlich Tiefeninfor-
mation mit einzubeziehen. Da wir in der Umgebung jedes Pixels den Einfluss von
nahegelegenen Scribbles lokal anpassen, können wir das Ergebnis weiter verbessern.

Jedes Segmentierungsverfahren kann für Videotracking eingesetzt werden, ins-
besondere für Video Inpainting. Anstatt die Einzelbilder des Videos zu verarbeiten,
stellen wir ein Konzept für zeitlich konsistente Videovervollständigung sowie eine
flussbasierte Verschiebung der Scribbles vor. Wir erzielen wettbewerbsfähige Ergeb-
nisse bei einer um den Faktor fünf reduzierten Laufzeit und wesentlich geringeren
Benutzereingaben als Konkurrenzverfahren.

Die entwickelten Methoden für die semantische Bildanalyse sind entweder in
Matlab oder in C++ mit Parallelisierung auf GPU implementiert und können ei-
nem Vergleich mit dem neuesten Stand der Technik standhalten. Alle erwähnten
Arbeiten wurden in hochrangigen Fachzeitschriften und internationalen Konferen-
zen publiziert.
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Chapter 1
Introduction

1.1 Semantic Image Analysis

The word semantics finds its origins in the ancient Greek word σημαντικός (seman-
tikos), the study of meaning. In the context of semantic image analysis, the goal is
to determine the regions and objects of which the image is composed and to label
them according to their meaning.

Humans are using semantic analysis in their everyday life. From experience, they
learn the meaning of objects. They perceive and memorize which objects are likely
to occur together in a scene and learn to categorize their surrounding. Kids have,
for example, already acquired the intuition that the ball which is used in a soccer
stadium is called a soccer ball, whereas on a basketball court the team is playing
with a basketball. Moreover, small kids already know the meaning of things like
‘water’, ‘banana’ or ‘cat’ and are able to classify the objects which are depicted in
picture-books. They are able to distinguish an ‘apple’ from a ‘pear’ although both
have a similar size, color and even their shape is comparable.

Humans need this ability of precise cognition to survive in the everyday life.
Figure 1.1 shows a typical road traffic scene where cars and pedestrians are moving
along next to each other. When a person looks at this image, he or she immediately
starts with a semantic image analysis (compare Figure 1.1 b): “The image shows a
road traffic scene. The traffic lights are red. Several green street signs indicate the
names of the intersecting streets. Some pedestrians are walking on the pavements.
The road is separated by a traffic island. High palm trees are lining the streets.”
Signs, road markings and traffic lights help to guide the road users. Still, it is quite
hard to fully realize all actions in order to avoid dangers.

To support the humans in complicated situations, semantic image analysis gained
increasing interest in recent years. Some examples include: driver assistance sys-
tems assisting car drivers with the recognition of signs, traffic lights or pedestrians;
medical vision systems supporting surgical operations; or industrial applications
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Figure 1.1: Semantic labeling and interpretation of a typical road traffic scene.
“Multiple cars are driving on the road guided by signs, road markings and traffic lights.
Pedestrians are walking on the pavements between street lamps and palm trees.” Humans
are confronted with such scenes in their daily life. Drivers as well as pedestrians have to
analyze the road traffic and interpret the observed scene to ensure road safety.

facilitating quality control.

In general, human-machine communication systems and robots assisting humans
in their daily life became a very popular field of research in the recent past. To
teach a computer to analyze an image and to semantically interpret the scene is
a challenging task. Extensive research is required to develop advanced algorithms
which are able to imitate the human perception. Some specific tasks with clear
requirements are already solved. An example is the automated speed limit sign
recognition which is available in production vehicles. This task is clearly limited in
the sense that only a given number of different speed limit signs exist and that they
all have a characteristic size, shape and color. Thus, the algorithm is specifically
designed for the recognition of these particular objects.

As opposed to this, a reliable and efficient automated recognition of pedestrians
is still an open problem. The reason is that pedestrians cannot be described by
clear criteria. They can be children or adults, they have different hair and skin
colors and they wear clothes with all kinds of patterns and styles. Regarding the
shape, most of the people on the streets are pictured as elongated regions in images.
However, when the person bends down to a child the captured shape corresponds
more to a bulb. Hence, in contrast to the speed limit signs which can be specified in
detail, it is a very complex task to define general criteria matching the perception
of pedestrians.

An object that is easier to describe is a car. Although sizes and colors differ,
cars are built from similar components: ‘license plate’, ‘wheel’, ‘window’, ‘light’,
‘door’, ‘mirror’, etc. Therefore, an algorithm can be tuned to recognize the single
components and to draw a conclusion about the object category. Still, to receive
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a) Target figure b) Mandala

Figure 1.2: How many butterflies are depicted in the mandala? Humans will
most likely answer ‘eight’ whereas an algorithm might only find one resemblant butterfly.
Namely, the butterfly at the top on the right.

correct object classifications, various additional factors have to be considered for the
analysis of outdoor scenes. A major challenge are the lighting conditions varying
with weather and time and affecting the visibility of the scene and the color ap-
pearance. During the night, traffic lights might be turned off and trees that were
shining light green during the day may appear almost black. Moreover, also the
season of the year has to be kept in mind. Typically gray streets can turn white
when covered with snow during winter. Thus, if an algorithm is tuned to recognize
white color on the road as road markings, it will completely fail during a winter
with snow-covered streets. Humans learn to correctly interpret such situations by
memorizing experiences starting from their childhood. This knowledge has to be
included in the computing system to allow for a reliable semantic image analysis in
real-life scenarios.

The development of formalisms which enable the computing system to get close
to the human perception is still a challenging task. Computers have an excellent
computational power, however, necessary qualities for scene understanding are miss-
ing. The human brain constantly builds connections that help to improve the cog-
nitive skills. Computing systems, in contrast, only have the connections which are
provided by the respective algorithms. If a person is asked, how often the butterfly
in Figure 1.2 a) appears in the mandala in Figure 1.2 b), the immediate answer will
most likely be ‘eight’. When the same task is demanded from a computing system,
the algorithm might output ‘one’. Namely, the butterfly at the top on the right.
Only this butterfly is identical to the figure shown in Figure 1.2 a). All others are
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rotated versions. Thus, if all eight butterflies should be detected, it has to be clearly
defined in the algorithm that rotations of the shape are allowed. In contrast to
humans, computing systems have to be explicitly trained to identify coherences and
transfer their knowledge to a novel problem.

The challenge of computer vision is therefore to develop algorithms that can
perceive relations and principles. The development of formalisms including prior
knowledge allows the computing system to recognize repeated patterns and repeti-
tive structures. Over the past years, extensive research has been made to derive and
refine such algorithms. However, in particular for complex images current methods
often yield unsatisfactory results.

In this thesis we extend state-of-the-art image analysis methods to allow for a
more efficient and more reliable semantic analysis. We show that diffusion improves
the localization of target figures in binary line drawings, as it makes the resulting en-
ergy easier to optimize. Then, we focus on the extension of variational segmentation
methods towards semantic scene analysis by incorporating suitable prior information
in a convex fashion.

1.2 Literature Overview

In the course of the last years, a continuous effort has been made by the research
community to design machines imitating human sensory. There has been growing in-
terest in the research of semantic image analysis. In the following literature overview
we distinguish between contour matching techniques and semantic segmentation.

1.2.1 Contour Matching Techniques

A commonly addressed problem in the field of image analysis is finding objects in
images. Many different methods were proposed to approach this problem. Among
others, contour matching techniques became a popular choice for finding an object’s
position in a given image. The literature can be split into two main categories,
namely the search for deformable and the search for rigid templates.

Deformable templates are particularly popular for handwritten numeral recogni-
tion (see e.g ., the works of Burr [36] and Jain and Zongker [74]). In 1997, Beveridge
and Riseman [26] studied rigid templates for solving 2D line matching problems.
They applied local search to find the best match of the rotated, translated and
scaled template with the illustration. Both, the template and the illustration are
represented as sets of 2D straight line segments. In 1962, Hough [72] presented a
smart technique for the detection of shapes that can be expressed in some parametric
form. Later in 1981, Ballard [19] proposed the generalized form of the Hough Trans-
form. When template or illustration, however, contain embedded shapes the Hough
Transform is not applicable. Another well known contour matching technique is
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chamfer matching [21]. The algorithm matches edges from two different images by
applying a distance transform to the illustration. This transform propagates local
information to neighboring areas such that each pixel value denotes the distance to
the nearest contour pixel. I.e., the binary image is converted into a non-binary one.

In our work [8], we proposed to replace the distance transform with a more in-
formative diffusion field which diffuses the image while retaining the contour infor-
mation. Moreover, we experimentally demonstrated that transforming the template
rather than the illustration can be beneficial in certain settings.

1.2.2 Semantic Segmentation

Segmentation of images based on semantics is a significant component for scene
understanding, surveillance systems and 3D scene reconstruction (see e.g ., [30, 70,
139]). The accuracy of the segmentation algorithms heavily depends on the imposed
prior knowledge and the quality of the appearance model. Extensive research has
been made to achieve precise and reliable semantic segmentations.

Regularization Term

The integration of label priors into multi-label segmentation approaches has been
a common means of improving segmentation algorithms. Numerous works focused
on the development of sophisticated regularizers. In general, one can differentiate
global and local label priors.

Global constraints impose prior knowledge on the union of all pixel labels in the
image. An example is the minimum description length (MDL) prior of Leclerc [86],
which penalizes the number of labels appearing in the segmentation result. Its first
continuous formulation was given by Zhu and Yuille [175], and a convex relaxation
by Yuan et al . [173].

Shape priors. Global object shape priors were proposed in Cremers et al . [46] and
Lempitsky et al . [89]. Both consider binary image segmentation tasks and include
knowledge about the object’s shape in the segmentation process.

Connectivity priors. State-of-the-art segmentation approaches commonly use a
length regularization that suppresses small structures and therefore tend to cut off
thin elongated structures in the image. To overcome this shrinking bias, connectivity
priors were recently developed by Vicente et al . [162], Nowozin and Lampert [113]
and Stühmer et al . [150].

Proportion priors. To preserve the size ratios of segmented regions across mul-
tiple images, Nieuwenhuis et al . [110] introduced so-called proportion priors. The
constraints relate different region sizes and restrict the relative size of, e.g ., body or
object parts.
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Volume constraints. Klodt and Cremers [76] introduced the concept of moment
constraints for interactive image segmentation. They demonstrated that constraints
on moments of different order can be imposed as convex constraints within the
optimization framework. In particular, the lower-order moments correspond to the
overall volume, the centroid, and the variance or covariance of the shape.

Hierarchical constraints. Another type of global constraints for semantic seg-
mentation are hierarchical constraints, which were introduced by Delong et al . [51]
and Souiai et al . [144]. These constraints penalize the co-occurrence of objects from
different scene contexts. For example, the co-occurrence of indoor objects, such as
‘desk’ or ‘chair’ and outdoor objects such as ‘cow’ or ‘car’, is penalized.

Ordering constraints. For the task of geometric scene labeling, ordering con-
straints were introduced into multi-label optimization. Liu et al . [93] focused on a
specific five-part model including the regions ‘sky’, ‘ground’, ‘left’, ‘right’ and ‘cen-
ter’. Felzenszwalb and Veksler [57] generalized the five regions layout and introduced
the tiered layout. In 2011, Strekalovskiy and Cremers [147] unified and generalized
existing formulations such as the five-regions and the tiered layout by proposing a
spatially continuous framework for label order constraints.

Co-occurrence priors. Co-occurrence priors were suggested by Ladicky et al . [82]
and Souiai et al . [145] to impose prior knowledge on label combinations that are
likely to co-occur in a given image. For example, the knowledge that a piano and a
horse are very unlikely to appear in the same image. The approach by Ladicky et
al . [82] is formulated in the discrete setting and suffers from metrication errors
which often occur in discrete optimization: region boundaries tend to run either
horizontally, vertically or diagonally (compare [111]). In contrast, Souiai et al . [145]
integrated the co-occurrence priors into a single convex continuous optimization
approach leading to smooth boundaries.

Local constraints In contrast to global label priors, local priors penalize labels
by means of distance functions on adjacent labels. A simple prior is, e.g ., the
linear label distance d(i, j) = c|i− j| for two labels i and j and a constant c. In the
continuous setting, this formulation corresponds to total variation regularization. In
the discrete case, convex distance functions on ordered label spaces can be minimized
globally optimally by Ishikawa’s approach [73].

Metric priors. A popular metric prior is the Potts model [123], which penalizes
label changes of neighboring pixels. However, in the case of metric distance functions
global optimality is in general not given for more than two labels. To solve the multi-
label problem, general metric label distance functions are optimized in [32, 40, 88].

Nonmetric priors. For segmentation, semi-metric distance functions are
indispensable to handle label distances without imposing the triangle inequal-
ity. A convex optimization approach for such distance functions was given by
Strekalovskiy et al . [149]. Based on these nonmetric distances the authors for-
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mulated a co-occurrence prior on directly neighboring pixels. The drawback of
this approach is that the strong locality of the prior allows for regions to appear
very close to each other despite high co-occurrence penalties. In particular, since
the distance function does not obey the triangle inequality, costs of direct label
transitions can be reduced by taking a ‘detour’ over a third unrelated but less
expensive label. This leads to the undesired introduction of thin artificial ‘ghost
regions’.

What has been less explored so far are relative spatial priors imposing constraints
on spatial relations between different objects. Gould et al . [65] proposed relative
location priors. The authors formulated a two stage optimization problem. In
the first step, superpixels are computed together with an occurrence based label
likelihood. Based on the most likely label each superpixel then votes for labels at
other superpixels in the image based on the relative location prior. Considering
more complex spatial label relationships, we proposed a single stage optimization
problem [7] which models presence and relative location likelihoods at the same time.
By generalizing the nonmetric priors [149] for arbitrary relative spatial relations, we
were able to avoid the thin artificial ghost regions.

Data Fidelity Term

A precise and accurate appearance model is a central component for every image
segmentation task. During the last decade, sophisticated and powerful data fidelity
terms have been developed. Depending on the application different requirements
have to be met. We therefore distinguish between non-interactive and interactive
approaches.

Non-Interactive Dense object detection approaches, like e.g ., the works of
Ladicky et al . [83] and Shotton et al . [139], focus on detecting objects at a pixel level
and already provide a preliminary segmentation. In contrast, conventional object
detectors deal with the task of finding bounding boxes around each object [49, 95,
164]. The major challenge is to find the most representative features to distinguish
dissimilar objects in terms of their shape and textural differences.

In 2001, Viola and Jones [164] presented simple but robust Haar-like features
for real-time face detection. These Haar-like features are simple to implement,
computationally low cost and very accurate in capturing the shape of objects.
Lowe [95] presented a distinctive scale-invariant feature transform (SIFT) and Dalal
and Triggs [49] presented so-called histograms of oriented gradients (HOG) which
are computationally more expensive. However, these proposed methods are mostly
used in the context of sliding window techniques which detect objects in a bounding
box.
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In 2006, Shotton et al . [139] proposed texture-layout filters based on textons
which jointly model patterns of texture and their spatial layout for dense object
detection. Moreover, Ladický et al . [84] combined different features for unary pixel
classification by using Joint Boosting [159]. Their approach, however, is sensitive
to a large set of parameters. Fröhlich et al . [59] proposed an iterative approach for
semantic segmentation of a facade dataset. They learned a single random forest and
incrementally added context features derived from coarser levels. This approach uses
millions of features and refines the semantic segmentation of the scene iteratively.
Hermans et al . [70] discussed 2D semantic segmentation for RGB-D sensor data in
order to reconstruct 3D scenes. They used a very basic set of features and learned
random forests for object classification.

None of the above approaches, however, provides a justification for the chosen
set of features. In our publication [9], we therefore introduced a framework which
analyzes a given feature set, automatically selects a small number of the most sig-
nificant features and efficiently estimates the class probabilities. The data fidelity
term is then computed as the negative logarithm of the class probabilities. Our
proposed fully automatic algorithm achieves state-of-the-art semantic classifications
and segmentations at drastically reduced computation time.

Interactive Fully automatic image segmentation methods are usually tailored to
a very specific task. Examples include the approaches for indoor segmentation by
Silberman and Fergus [140] as well as the facade segmentation approach by Teboul et
al . [154]. Interactive methods, in contrast, can be applied to various tasks and have
recently attracted a lot of interest. A common way to develop general purpose
segmentation tools is to incorporate user input [92, 109, 163]. These approaches
demand the user to interact and specify the objects and regions which should be
segmented.

The user interaction can be designed in various different ways. The most pop-
ular input modalities are bounding boxes [92, 128, 163], contours [13, 27] and user
scribbles [22, 85, 109]. In terms of user scribbles, the user indicates the pixels which
belong to a certain object by drawing lines across the image. The indicated pixel
colors and locations can then be used to learn the color distributions and to compute
the appearance model.

Interactive methods are extremely beneficial for the segmentation of medical
image data, see e.g ., the publications of Boykov and Jolly [31] and Lombaert et
al . [94]. Moreover, they are very popular in the field of video processing, e.g ., image
sequence segmentation [110] or video completion [10]. For similar composed scenes
it can be sufficient that the user only scribbles the first frame. The provided input
can then be propagated to subsequent frames. E.g ., in their work [85], Lang et
al . introduced a temporal continuity assumption and showed that it can be used
to propagate sparse user input to colorize similar composed videos scenes. For the
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task of video completion we suggested a semi-automatic procedure to replace the
tedious hand-labeling of inpainting regions in all video frames [10]. The user input
is required as user scribbles drawn on the first frame of each scene. These scribbles
are then automatically relocated throughout the video sequence via optical flow and
the inpainting masks are defined by applying the interactive segmentation algorithm
proposed by Nieuwenhuis and Cremers [108] in a frame-wise manner.

Various works studied foreground/background [27, 91, 92, 163, 166] as well as
multi-label [109, 130, 136] segmentation of RGB and medical images. What has been
less explored so far is the extension of interactive segmentation methods to RGB-D
images. In 2012, Shao et al . [136] proposed an interactive multi-label RGB-D seg-
mentation formulation, particularly designed for the application of furniture seg-
mentation. To further extend interactive methods to RGB-D images, we extended
the spatially varying color distributions in a plane [108] to be volumetrically varying
in 3D [5].

1.3 Outline of the Thesis

This cumulative thesis is structured into three parts.

Part I provides an introduction and motivation of the thesis. In Chapter 1 the
research topic is motivated and a review of relevant literature is provided. Chapter 2
summarizes the contributions of this thesis and provides an overview of all research
papers that were published during this thesis. Chapters 3 provides an introduction
to the methodology employed in this thesis.

Part II includes the five peer-reviewed publications summarized in Table 1.1 that
were published in the context of this thesis. Chapter 4 presents the journal article [8]
tracing out target figures hidden in teeming figure pictures. Chapter 5 presents the
journal article [7] introducing midrange geometric priors for variational semantic seg-
mentation. The conference publications [5, 9] in Chapters 6 and 7 focus on the data
term and present an automatic (non-interactive) respectively interactive method
for the computation of accurate color descriptions. The conference publication [10]
presented in Chapter 8 shows an application for video analysis.

Part III concludes the thesis with a summary, a discussion of the results, the
limitations and future research opportunities.
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Table 1.1: Overview of included publications. Part II includes the following five
peer-reviewed publications that were published in highly ranked journals and international
conferences.

Chap. Publication Status

4 [8] J. Diebold, S. Tarı, and D. Cremers Published
The Role of Diffusion in Figure Hunt Games in 2015
Journal of Mathematical Imaging and Vision (JMIV)

5 [7] J. Diebold, C. Nieuwenhuis, and D. Cremers Published
Midrange Geometric Interactions for Semantic Segmentation in 2015
International Journal of Computer Vision (IJCV)

6 [9] C. Hazırbaş, J. Diebold, and D. Cremers Published
Optimizing the Relevance-Redundancy Tradeoff for Efficient in 2015
Semantic Segmentation
Scale Space and Variational Methods in Computer Vision (SSVM)

7 [5] J. Diebold, N. Demmel, C. Hazırbaş, M. Möller, and Published
D. Cremers in 2015
Interactive Multi-label Segmentation of RGB-D Images
Scale Space and Variational Methods in Computer Vision (SSVM)

8 [10] M. Strobel, J. Diebold, and D. Cremers Published
Flow and Color Inpainting for Video Completion in 2014
German Conference on Pattern Recognition (GCPR)



Chapter 2
Contributions

This thesis summarizes the work presented in [5, 7, 8, 9, 10], which is the result
of the joint work with Nikolaus Demmel, Michael Strobel, Caner Hazırbaş, Claudia
Nieuwenhuis, Michael Möller, Prof. Sibel Tarı, and Prof. Daniel Cremers. All in-
cluded papers are peer-reviewed publications and were published in highly ranked
journals and international conferences.

In the field of computer vision and image analysis multiple kinds of input data
might be given. In this thesis we study the analysis of the data illustrated in Fig-
ure 2.1: Chapter 4 covers the analysis of binary line drawings [8], Chapters 5 to 7
focus on the semantic analysis of RGB(-D) images [5, 7, 9] and Chapter 8 investi-
gates the analysis of video sequences [10].

A popular way to approach the study of binary line drawings are contour match-
ing techniques. We particularly address the search task of tracing out target figures
hidden in teeming figure pictures known as figure hunt games [8]. An example is
illustrated in Figure 1.2 and in Figure 2.1 a). We experimentally demonstrate that
the key idea is to diffuse the information localized on a contour to a plane in which
the contour is embedded. Diffuse representations can be obtained in a variety of
ways. Particularly suited to the considered task, we propose a diffuse representa-
tion which diffuses the image while retaining the contour information. Moreover,
we introduce a coarse-to-fine strategy to speed up the search process. Extensive
evaluations show that we can handle various illustrations and diverse target figures.

For the analysis of RGB(-D) images and video sequences, a semantic segmenta-
tion of the image plane is a central component. Since the accuracy of the segmen-
tation algorithms heavily depends on the imposed prior knowledge and the quality
of the appearance model, in this thesis we study the derivation of a novel regular-
izer [7] and also discuss the development of a precise and accurate data fidelity term
for non-interactive [9] as well as interactive [5] applications.

We incorporate prior knowledge into the segmentation algorithm by introducing
midrange geometric constraints for variational semantic segmentation [7]. The pro-
posed constraints allow to discourage the occurrence of labels in the vicinity of each
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a) Binary line drawing b) RGB-image c) Depth image

d) Video sequence

Figure 2.1: Studied input data. This thesis studies the semantic analysis of multiple
kinds of input data: a) Binary line drawings, b,c) RGB(-D) images and d) video sequences.

other, e.g ., ‘wolf’ and ‘sheep’. It is up to the user to specifically define the spatial ex-
tent of the constraint between each two labels. We call these constraints ‘midrange’
since they generalize both global and local co-occurrence priors to co-occurrence pri-
ors with arbitrary spatial relationships. By capturing richer semantic information
on spatial relations, the proposed constraints allow to obtain improved segmenta-
tion results. Our experimental results show that the novel constraints are beneficial
for many segmentation scenarios, such as the segmentation of scenes, part-based
articulated or rigid objects. Since our definition of neighborhood regards a larger
number of pixels, our approach does not suffer from thin artificial ghost regions, as
opposed to purely local priors.

Beside the regularization term, the appearance model is an essential component
for every image segmentation task. Depending on the application a non-interactive
or an interactive approach is desired. In terms of non-interactive methods a ma-
jor challenge is the selection of the feature set. State-of-the-art methods usually,
however, do not provide any justification for their chosen features. We therefore
investigate a systematic information-theoretic feature analysis method [9]. The cen-
tral idea is to only choose the most significant features by optimizing the relevance
and redundancy tradeoff of the respective feature set. Integrated in a variational
multi-region segmentation approach, we evaluate our method on five popular bench-
marks. Our experimental results demonstrate that the right selection of the feature
set allows for state-of-the-art semantic classifications and segmentations at drasti-
cally reduced computation time.
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Whereas non-interactive approaches are mostly tailored to a very specific prob-
lem, interactive methods can be applied to more general segmentation tasks. In
this thesis we additionally investigate the application of interactive segmentation,
namely interactive RGB-D multi-label segmentation [5]. We extend the concept
of spatially varying color distributions proposed for RGB images in three different
ways: a) We introduce active scribbles to overcome the problem of non-uniformly
distributed user scribbles. b) We incorporate depth information to capture the real
scene geometry. c) We consider the depth as an additional color channel. We show
that the incorporation of active scribbles in the concept of spatially varying color
distributions on RGB images already improves the segmentation results. Moreover,
we demonstrate that the additional depth information leads to reliable segmenta-
tions with significantly less user input. Overall, the experimental evaluations on
our benchmark dataset point out that the proposed volumetrically varying color
distributions in 3D yield much more distinct color descriptions and thus better seg-
mentation results than spatially varying color distributions in a plane.

In terms of video data, we particularly consider the task of video completion. At
first, we introduce spatially varying color distributions to replace the tedious hand-
labeling of inpainting regions in all video frames [10]. Rather than hand-labeling the
inpainting region in every single frame, we demonstrate a flow-based propagation of
the user input followed by an automatic segmentation step. Then, we additionally
propose a framework for temporally consistent video completion by a combination of
color- and flow-based inpainting. Our proposed semi-automatic technique requires
substantially less user input and allows for a temporal consistent video completion
at drastically reduced runtime compared to competing approaches.

2.1 Own Publications

Tables 2.1, 2.2 and 2.3 summarize the peer-reviewed research papers that were pub-
lished during this thesis in highly ranked journals and international conferences. The
publications are grouped into journal articles (Table 2.1), conference publications
with oral presentation (Table 2.2) and additional publications (Table 2.3).

In the course of this thesis two journal articles were published. The article [7] was
published in the International Journal of Computer Vision (IJCV) for the Special
Issue on Graphical Models for Scene Understanding. It extends the publication [2]
which was presented at the ICCV Workshop on Graphical Models for Scene Under-
standing. Moreover, the article [8] extends the works [3, 4] and was published in the
Journal of Mathematical Imaging and Vision (JMIV) for the Special Issue on Scale
Space and Variational Methods in Computer Vision.

The publications [4, 9] were selected for an oral presentation at the Conference on
Scale Space and Variational Methods (SSVM) and for submission to the Journal of
Mathematical Imaging and Vision (JMIV). Furthermore, the research paper [10] was
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selected for an oral presentation at the German Conference on Pattern Recognition
(GCPR).

Beyond that, the book chapter [1] was written in the context of the Workshop
Women in Shape at the Institute for Pure and Applied Mathematics (IPAM) at
the University of California, Los Angeles and the research paper [5] was presented
as a poster at the Conference on Scale Space and Variational Methods (SSVM).
Furthermore, the research paper [6] was submitted to the International Conference
on Computer Vision (ICCV) and achieved the ratings: poster, poster, oral/poster.
The final decision will be announced on September 3, 2015.
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Table 2.1: Journal articles. In the context of this thesis the following peer-reviewed
journal articles were published.

Authors Title Publication medium

[7] Diebold et al. Midrange Geometric Interactions
for Semantic Segmentation

International Journal of Com-
puter Vision (IJCV)

[8] Diebold et al. The Role of Diffusion in Figure
Hunt Games

Journal of Mathematical
Imaging and Vision (JMIV)

Table 2.2: Conference publications with oral presentation. The following double-
blind peer-reviewed conference papers were published within the scope of this thesis and
selected for an oral presentation.

Authors Title Publication medium

[4] Bergbauer et al. Wimmelbild Analysis with Ap-
proximate Curvature Coding
Distance Images

Scale Space and Variational
Methods in Computer Vi-
sion (SSVM)

[9] Hazırbaş et al. Optimizing the Relevance-
Redundancy Tradeoff for
Efficient Semantic Segmentation

Scale Space and Variational
Methods in Computer Vi-
sion (SSVM)

[10] Strobel et al. Flow and Color Inpainting for
Video Completion

German Conference on Pat-
tern Recognition (GCPR)

Table 2.3: Additional publications. In the course of this thesis the following peer-
reviewed research papers were published.

Authors Title Publication medium

[1] Bal et al. Skeleton-Based Recognition
of Shapes in Images via
Longest Path Matching

Research in Shape Modeling

[2] Bergbauer et al. Proximity Priors for Varia-
tional Semantic Segmenta-
tion and Recognition

IEEE International Conference on
Computer Vision (ICCV), Work-
shop on Graphical Models for Scene
Understanding (GMSU)

[3] Bergbauer et al. Top-down visual search in
Wimmelbild

Proceedings of SPIE, Human Vi-
sion and Electronic Imaging XVIII

[5] Diebold et al. Interactive Multi-label Seg-
mentation of RGB-D Images

Scale Space and Variational Meth-
ods in Computer Vision (SSVM)





Chapter 3
Convex Variational Methods

This thesis investigates convex variational methods for semantic image analysis. To
provide a first introduction to the methodology employed in this thesis, this chapter
discusses the basic concepts of convex variational methods.

3.1 Semantic Image Segmentation

3.1.1 Problem Definition

Semantic segmentation aims at jointly computing a partitioning of the image plane
and a semantic labeling of the various regions in terms of previously learned object
classes. Let the input image be denoted by I : Ω → Rc, mapping the image plane
Ω ⊂ R2 to Rc. The dimension c depends on the image type: c = 1 for gray scale
images, c = 3 for RGB images and c = 4 for RGB-D images. Moreover, Ω is mapped
to {0, 1} in the special case of binary line drawings: I : Ω→ {0, 1}.

Image segmentation denotes the task of partitioning the image plane Ω into a
set of n pairwise disjoint regions Ωi:

Ω =
n⋃
i=1

Ωi with Ωi ∩ Ωj = ∅ ∀ i, j = 1, . . . , n with i 6= j. (3.1)

This task is usually solved by computing binary labeling functions ui : Ω→ {0, 1}
such that Ωi =

{
x
∣∣ ui (x) = 1

}
[41, 42]. Figure 3.1 illustrates a partitioning of the

input image a) into four disjoint regions in b). The labeling functions ui – also known
as region indicator functions – take the value one within the related region Ωi and
the value zero outside. Thus,

∑n
i=1 ui (x) = 1 for all x ∈ Ω.

3.1.2 Optimization Problem

For computing the binary labeling functions ui, i = 1, . . . , n an energy functional
can be formulated. In this thesis we focus on the minimization of energy functionals
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a) Input image b) Segmentation of the image plane Ω into 4 regions

Figure 3.1: Segmentation of the image plane Ω into 4 pairwise disjoint regions Ωi,
i = 1, . . . , 4. The binary labeling functions ui take the value one within the related
region Ωi and zero outside.

of the following form:

E (u1, . . . , un) =
n∑
i=1

(
D (ui, I) + λR (ui)

)
(3.2)

with ui : Ω→ {0, 1} such that
∑n

i=1 ui (x) = 1 for all x ∈ Ω and some positive
weighting parameter λ ∈ R. The first term D (ui, I) denotes the data fidelity term
that models the relationship between the observation I and the solution ui. The
second term R (ui) imposes some regularity on the solution. Moreover, certain
assumptions on the solution are included by means of this term. The parameter λ
regulates the tradeoff between the regularity constraints and the fidelity to the
observation.

3.2 Total Variation Regularization

In 1992, Rudin, Osher and Fatemi proposed the popular Rudin-Osher-Fatemi (ROF)
model [129] for edge preserving image denoising and introduced the total variation
regularization for the solution of problems in the field of computer vision.

3.2.1 Total Variation

The total variation of a function u ∈ L1 (Ω) is classically defined by duality as
follows [63]:

Definition 1 (Total variation (TV)) Let Ω ⊂ RN with N ≥ 2 be a bounded domain.
Then, the total variation (TV) of a function u ∈ L1 (Ω,R) is defined by:

TV (u) := sup

{∫
Ω

u divξ dx : ξ ∈ C1
0

(
Ω,RN

)
, ‖ξ‖∞ ≤ 1

}
, (3.3)
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where ξ = (ξ1, . . . , ξN)>, divξ =
∑N

i=1
∂ξi
∂xi

(x), dx is the Lebesgue measure and

C1
0

(
Ω,RN

)
the space of continuously differentiable functions with compact support

in Ω.

TV (u) is finite if and only if its distributional derivative Du of u is a bounded
vector-valued Radon measure in Ω. In this case TV (u) = |Du| (Ω), also known as
TV (u) =

∫
Ω
|Du|. In particular, for u ∈ W 1,1 (Ω) the total variation of u can be

written as [40, 146]:

TV (u) =

∫
Ω

|∇u|dx. (3.4)

Moreover, let u = χA be the characteristic function of a subset A ⊂ Ω with smooth
boundary. Then, the supremum in Equation (3.3) reduces to [18]

TV (u) = sup

{∫
A

divξ dx : ξ ∈ C1
0

(
Ω,RN

)
, ‖ξ‖∞ ≤ 1

}
, (3.5)

and it can be shown that the perimeter of the set A in Ω, is the total variation of
its characteristic function [171]. We write:

TV (u) = PerΩ (A) . (3.6)

In the recent past, various modifications and improvements of the original total
variation regularization have been contributed by the community. Several publica-
tions have, for example, been devoted to incorporate higher order derivatives in the
regularization term [33, 87, 115, 132, 134]. Second order derivatives, for example,
were demonstrated to be beneficial in certain cases, e.g ., to overcome the staircasing
effect, a tendency of TV to produce piecewise constant regions with artificial edges.
In particular, the combination of first and second order derivatives has been studied,
and we refer the reader to the work of Steidl [146] and the references therein. An-
other popular subclass of total variation (TV) approaches are nonlocal TV models.
In 2009, Gilboa and Osher [61] proposed a framework for nonlocal image and signal
processing and demonstrated that nonlocal operators can better handle textures and
repetitive structures than local ones.

3.2.2 Rudin-Osher-Fatemi Model

The Rudin-Osher-Fatemi (ROF) model is a famous model for image denoising. In
their work [129], Rudin et al . suggested the following optimization problem for
estimating the denoised version u of a given corrupted image f :

min
u

{∫
Ω

(f − u)2 dx+ λTV (u)

}
, (3.7)
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a) Noisy input image b) Tikhonov model c) ROF model

Figure 3.2: TV regularization preserves edges. The noisy input image a) is denoised
by using b) the Tikhonov model and c) the ROF model with λ = 30. While the ROF
model preserves the edge information in the recovered image, the Tikhonov regularization
technique not only removes the noise but also blurs prominent structures such as edges.

where λ ∈ R is a positive weighting parameter and TV (u) denotes the total variation
of u given in Definition 1. The first summand in Equation (3.7) can be interpreted
as the data fidelity term D (u, f) (compare Equation (3.2)) measuring the fidelity to
the data. It ensures that the recovered image u is similar to the input image f . The
second summand is a smoothing term and corresponds to λ times the regularizer
R (u). Overall, the optimization problem seeks for a solution u that fits the data
and has a small total variation such that noise is removed.

Figure 3.2 compares the results of the ROF model using total variation reg-
ularization to the Tikhonov model [156]. The restored image with the Tikhonov
technique in Figure 3.2 b) looks oversmoothed. For ease of interpretation, assume
u ∈ W 1,1 (Ω). In contrast to the ROF model using the L1-norm of the gradient of
the image: R (u) = TV (u) =

∫
Ω
|∇u|dx, the Tikhonov model uses an L2-norm reg-

ularization term: R (u) =
∫

Ω
|∇u|2dx. The L2-norm regularization removes noise,

but does not allow discontinuities of the image. Thus, important structures such as
edges are blurred. In contrast, the total variation regularization in c) puts a strong
penalization on oscillations and random fluctuations, but at the same time preserves
the edge information in the recovered image.

Edges usually indicate the position and shape of individual objects in the image
plane. Thus, edge preservation is crucial for most imaging problems. Due to the
favorable performance, TV regularization has been extended to a variety of tasks in
the field of computer vision and image analysis beyond image denoising.
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3.2.3 Functions of Bounded Variation

To optimize the energy functional in Equation (3.2) the feasible set for the labeling
functions ui, i = 1, . . . , n has to be specified. By definition (compare Section 3.1.1),
the functions ui map the image domain Ω to the binary set {0, 1}. However, for the
task of image analysis not all such functions are useful. As an example, arbitrary
oscillations should be prevented whereas informative edges should be preserved. We
therefore seek to find a simple functional space for ui, i = 1, . . . , n that permits
edges but is not too loose to include arbitrary details.

Rudin et al . [129] proposed the Banach space of functions with bounded varia-
tions (BV space), which allows jumps but also has a sufficient control over arbitrary
oscillations [18]:

Definition 2 (Bounded variation (BV) space) The space of functions with bounded
variation, also known as bounded variation space or BV space is defined as

BV (Ω) =
{
u ∈ L1 (Ω) : TV (u) <∞

}
. (3.8)

In the optimization problem (3.2), we want to allow for jumps in the indicator
functions which correspond to sharp transitions between adjacent regions. There-
fore, we specify the feasible set as follows:

min
ui∈BV (Ω;{0,1})

n∑
i=1

(
D (ui, I) + λR (ui)

)
s.t.

n∑
i=1

ui (x) = 1 ∀ x ∈ Ω, (3.9)

where λ ∈ R and the restriction to the binary set {0, 1} is given by:

BV (Ω; {0, 1}) =
{
u ∈ L1 (Ω; {0, 1}) : TV (u) <∞

}
. (3.10)

3.3 Convexity

In this thesis we focus on the solution of convex optimization problems. Convex
problems are popular in diverse research areas as convexity yields several nice prop-
erties of the optimization problem. Figure 3.3 illustrates a) a non-convex and b) a
convex function. As indicated in b), each local minimum of a convex function is a
global minimum. Thus, the global minimum of a convex optimization problem can
be efficiently computed independent of the initialization with a good precision. In
contrast, several local minima make the solution of non-convex problems sensitive
to the initialization.

Convex minimization aims at minimizing convex functions over convex sets. A
convex set, respectively function can be defined as follows [126]:

Definition 3 (Convex set) Let D ⊂ Rd be a set. Then D is said to be convex if

λx1 + (1− λ)x2 ∈ D ∀ x1, x2 ∈ D and ∀ λ ∈ (0, 1) .
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a) Several local minima b) Local minima are global minima

Figure 3.3: Convex versus non-convex function. In contrast to a non-convex function,
any local minimum of a convex function is also a global minimum.

Figure 3.4: Illustration of the definition of a convex function f . By definition, the
evaluation of a convex function f at any convex combination of two points x1 and x2 is
less or equal the same convex combination of f (x1) and f (x2). In other words, the line
segment connecting (x1, f (x1)) and (x2, f (x2)) is always located above the graph of f .

Definition 4 (Convex function) Let f : D → R be a function, where D is a convex
set. Then f is convex on D if and only if

f (λx1 + (1− λ)x2) ≤ λf (x1) + (1− λ) f (x2) ∀ x1, x2 ∈ D and ∀ λ ∈ (0, 1) .

An illustration is given in Figure 3.4.

3.3.1 Convex Relaxation

In practice, only a few problems can be formulated as a convex optimization problem.
To make use of the above discussed advantages of convex minimization, so-called
convex relaxation techniques became popular. By dropping certain constraints from
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the overall optimization problem, these techniques usually generalize the given prob-
lem to a convex problem which is then easier to solve. To ensure that the solution of
the relaxed problem is close to the solution of the original problem, tight relaxations
were proposed which ensure certain optimality bounds.

In order to achieve a convex optimization problem, we need to ‘convexify’ the
feasible set (3.10) of the energy functional (3.9). Rather than optimizing over the
non-convex set BV (Ω; {0, 1}), we relax the feasible set and optimize over the convex
hull BV (Ω; [0, 1]):

min
ui∈BV (Ω;[0,1])

n∑
i=1

(
D (ui, I) + λR (ui)

)
s.t.

n∑
i=1

ui (x) = 1 ∀ x ∈ Ω, (3.11)

with λ ∈ R and

BV (Ω; [0, 1]) =

{
u ∈ L1 (Ω; [0, 1]) :

∫
Ω

|Du| <∞
}
. (3.12)

This minimization problem is convex if the functionals D and R are convex.

3.3.2 Existence of Solutions

An essential question in the context of optimization is the existence of optimal
solutions. Consider, e.g ., a topological space (X , τ) and an extended real-valued
functional f : X → R∪{+∞}. The solution set of the minimization problem minX f ,

arg min f =

{
ū ∈ X : f (ū) = inf

u∈X
f (u)

}
, (3.13)

can be possibly empty. In terms of optimization problems, the existence of solu-
tions can usually be examined via a generalization of the fundamental theorem of
optimization. In order to state this theorem, firstly, we introduce the definition of
lower level sets and lower semicontinuous functionals [16].

Definition 5 (Lower level set) Let (X , τ) be a topological space and let f : X →
R ∪ {+∞}. For any α ∈ R, the lower α-level set of f is given by

levαf = {u ∈ X : f (u) ≤ α} . (3.14)

Definition 6 (Lower semicontinuity) Let (X , τ) be a topological space and let
f : X → R∪{+∞}. For any u ∈ X , we denote by Vτ (u) the family of the neighbor-
hoods of u for the topology τ . The functional f is said to be τ -lower semicontinuous
at u if

∀ λ < f (u) ∃ Vλ ∈ Vτ (u) such that f (v) > λ ∀ v ∈ Vλ. (3.15)

If f is τ -lower semicontinuous at all u ∈ X , then f is said to be τ -lower semicontin-
uous on X .
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Theorem 1 (Fundamental theorem of optimization) Let (X , τ) be a topological
space and let f : X → R ∪ {+∞} be an extended real-valued functional which is
τ -lower semicontinuous and such that for some α ∈ R, levαf is τ -compact.

Then, infX f > −∞ and there exists some ū ∈ X which minimizes f on X :
f (ū) ≤ f (u) ∀ u ∈ X , i.e.,

f (ū) = inf
u∈X

f (u) . (3.16)

Because of its importance, this theorem is often referred to as the Weierstrass
theorem [16]. With the help of this theorem the existence of minimizers can be
verified for most common variational formulations as for instance done in the work
of Burger and Osher [35] for a class of TV reconstruction problems.

3.3.3 Binarization

By allowing the variables ui, i = 1, . . . , n in Equation (3.11) to take on intermediate
values between zero and one, the optimum u∗ = (u∗1, . . . , u

∗
n) of the relaxed problem

usually is not binary. To obtain a binary solution to the original optimization
problem (3.9), we assign each pixel x to the label L with maximum value after
optimizing the relaxed problem:

L (x) = arg max
i=1,...,n

{u∗i (x)} , x ∈ Ω. (3.17)

In our experiments, we observed that the computed relaxed solutions u∗ are binary
at the vast majority of the pixels. I.e., for most pixels x ∈ Ω and i = 1, . . . , n:
u∗i (x) < 0.01 or u∗i (x) > 0.99.

3.4 Extremality Condition

A common approach to determine the minima and maxima of a differentiable func-
tion is to locate the points where the first derivative equals zero. The French math-
ematician Pierre de Fermat summarized this in the following theorem [37]:

Theorem 2 (Fermat’s theorem (stationary points)) Let g : (a, b) → R be a con-
tinuous function and suppose that x0 ∈ (a, b) is a local extremum of g. If g is
differentiable in x0 then g′ (x0) = 0.

In this thesis we aim to minimize the energy functional E (compare Equa-
tion (3.2)). E is called a functional as it maps from a set of functions u to the real
numbers, i.e., E is a ‘function of a function’. The field of mathematical analysis that
deals with maximizing or minimizing functionals is known as calculus of variations.
The interest is therefore extremal functions in contrast to extremal points. Similar
to Fermat’s theorem in calculus, the extremal functions in calculus of variations may
be obtained by finding functions where the functional derivative is equal to zero.
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3.4.1 Gâteaux Derivative

A formulation of the functional derivative which is commonly used in the calculus of
variations has been developed by the French mathematician René Gâteaux († 1914).
He generalized the concept of the directional derivative for functions and proposed
the so-called Gâteaux derivative [23, 60]:

Definition 7 (Gâteaux derivative) Let X be a Banach space and F : X → R. F is
said to be Gâteaux differentiable at u ∈ X if there is a bounded linear operator
DF : X → R such that for every h ∈ X,

DF (u) (h) = lim
ε→0

F (u+ εh)− F (u)

ε
=

d

dε
F (u+ εh)

∣∣∣∣
ε=0

. (3.18)

The operator DF is called the Gâteaux derivative of F at u.

If F is Gâteaux differentiable and if the problem infu∈X F (u) has a solution u0,
then, analogous to Fermat’s theorem, we have

DF (u0) = 0. (3.19)

Conversely, if F is convex, then a solution u0 of DF (u0) = 0 is a solution of
the minimization problem. The equation DF (u0) = 0 is called an Euler-Lagrange
equation [18].

3.4.2 Euler-Lagrange Equation

The Euler-Lagrange equation is a necessary condition for the extremum of a partic-
ular form of (sufficiently smooth) energy functionals and has been developed by the
two mathematicians Leonhard Euler and Joseph-Louis Lagrange in the 1750s. It
can be derived by reducing the variational problem to a problem in the differential
calculus. Let F be an integral of the form:

F (u) =

∫ x1

x0

L (x, u, u′) dx, (3.20)

where the values x0, x1, u (x0), u (x1) are given. The function L is to be twice
continuously differentiable with respect to its three arguments x, u, u′ and the second
derivative u′′ of the function u is also assumed continuous [45].

Definition 8 (Euler-Lagrange equation) Suppose that u is the desired extremal
function yielding the minimum of the integral F in Equation (3.20). As a necessary
condition for the existence of an extremum the function u has to satisfy the Euler-
Lagrange equation given as follows:

Lu −
d

dx
Lu′ = 0. (3.21)
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The differential expression Lu − d
dx
Lu′ is called the variational derivative of L

with respect to u and can be seen analogous to that of the gradient in ordinary
minimum problems. For a detailed derivation, we refer to Courant and Hilbert [45].

3.4.3 Subdifferential

In the field of convex optimization, subdifferentials are popular as a generalization
of the derivative to functions which are not differentiable. Thus, the subdifferential
calculus can be employed for solving convex minimization problems [16].

Definition 9 (Subdifferential) Let (V, ‖ · ‖) be a normed space with topological dual
space (V ∗, ‖ · ‖∗) and f : V → R ∪ {+∞} be a closed convex proper function. We
say that an element u∗ ∈ V ∗ belongs to the subdifferential of f at u ∈ V if

∀ v ∈ V f (v) ≥ f (u) + 〈u∗, v − u〉(V ∗,V ) . (3.22)

We then write u∗ ∈ ∂f (u).

Using this definition we can formulate the following theorem stating the central
role of the subdifferential calculus in convex optimization [16].

Theorem 3 Let (V, ‖·‖) be a normed space and f : V → R ∪ {+∞} be a closed
convex proper function. Then, for an element u ∈ V the following statements are
equivalent:

(i) f (u) ≤ f (v) ∀ v ∈ V ;

(ii) ∂f (u) 3 0.

The above theorem gives a necessary and sufficient condition for an element
u ∈ V to be a solution of the convex minimization problem minv∈V f (v). This
necessary and sufficient condition

∂f (u) 3 0 (3.23)

is an extension to nonsmooth convex functions of the classical first-order condition
of optimality for convex C1 functions, namely

∇f (u) = 0 (3.24)

and can be seen as a generalization to the classical Fermat rule (compare Theorem 2).
Thus, for a given convex optimization problem, the problem of finding the optimal
solution can be approached by using the subdifferential calculus and solving the
generalized equation ∂f (u) 3 0 [16].
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Abstract We consider the task of tracing out target figures hidden in
teeming figure pictures known as figure hunt games. Figure hunt games
are a popular genre of visual puzzles; a timeless classic for children, artists
and cognitive scientists. We argue and experimentally demonstrate that
diffusion is a key to algorithmically search for a target figure in a binary
line drawing. Particularly suited to the considered task, we propose a
diffuse representation which diffuses the image while retaining the contour
information.

Keywords Screened Poisson PDE and variants · Level sets · Non-linear
diffusion · Figure hunt games · Teeming figure pictures · Applications of
variational and PDE methods

4.1 Introduction

In 1986, the British illustrator Martin Handford created the distinctive red-and-
white dressed character Wally. Since that day, Where’s Wally? became an ex-
tremely popular series of children’s books consisting of diverse illustrations, depict-
ing dozens of people. Readers are challenged to find Wally in illustrations where an
abundant number of small figures including Wally are brought together.

Where’s Wally? is only a sample, though the most famous, in a popular genre of
visual puzzles called figure hunt games. Figure hunt games have been a timeless clas-
sic for children, artists and cognitive scientists. As early as 1926 Kurt Gottschaldt
experimented with intentionally designed hidden figures – simple drawings where
simple shapes such as polygons are embedded within more complex organizations
– to study the influence of experience on perception and the extent to which holes
influence the perception of parts [64]. Gottschaldt type puzzles (Figure 4.1 top row)
together with the Where’s Wally? type ones (Figure 4.1 bottom row) form the focus
of this paper. This sub-genre of the figure hunt can be generalized based on two
factors as exemplified in Figure 4.1. The first factor is the co-dimension: The indi-
vidual figures in the top-row illustrations are one-dimensional objects drawn on top
of each other whereas the ones in the bottom-row illustrations are two dimensional.
The second factor is the number of targets. In the first column, each illustration
contains a single target, whereas in the second column several targets (hangers and
bees, respectively) are placed among distractors.

In the course of this paper, we will discuss how a computer program can trace
out the contours of the hidden clover or hangers and locate the desired animals.
The question might for example be: “Can you trace out the hidden cloverleaf?”
or “How many hangers are there?”, “Where is the sea star?” or “Are there other
animals hidden among the bees?”. We shall adopt the most straightforward solution:
searching the entire illustration; hypothesize a pose and scale for the target figure and
measure how well it fits. Among other things, this requires 1) a randomized search
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a) Hidden cloverleaf b) Several hangers

c) Hidden elephant d) Multiple bees

Figure 4.1: Samples of figure hunt games. Games with a single target (left column)
vs. several targets (right column) and Gottschaldt type puzzles (top row) vs. Where’s
Wally? type ones (bottom row).

algorithm that will return multiple answers; 2) a fitness function which distinguishes
a bad fit from a good fit. We will argue and experimentally demonstrate that
replacing illustrations and/or target figures with diffuse forms significantly helps.
Thus, the paper shows the effect of diffusion for the particular considered task of
figure hunt games. A secondary issue is how to speed up the search process. To this
end, we will experiment with a coarse-to-fine strategy using diffuse forms.

A preliminary conference version examining only the Gottschaldt type puzzles
has appeared in SSVM 2013 [4]. In this paper, we concentrated on a thorough
evaluation including detailed insights about the experiments in terms of parameters
and applied methods.

Related Work Finding an object’s position in an image is a commonly addressed
problem. There are many methods. For example, one may treat the output of an
edge detector as an illustration and try to fit the target shape’s boundary to the
correct position. Such a fitting can even be done using the generalized form of the
Hough Transform [19] provided that the shape can be expressed in some parametric
form. Such methods, however, are not applicable when the illustration contains
embedded shapes (Figure 4.1 a-b), or when the target figure is a complex form with
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embedded subfigures. The closest contour matching technique to ours is chamfer
matching [21]. In chamfer matching, the template is correlated with the distance
transform of the illustration. In case of clutter, chamfer matching requires addi-
tional improvements, e.g ., learning [98]. As one improvement, we propose to replace
the distance transform with a more informative diffuse field which implicitly codes
curvature. Moreover, our experiments indicate that applying the transformation to
the target rather than the illustration may also offer benefits in certain settings. We
provide a complete evaluation. Distance transforms have also been instrumental in
level set methods. Most typically, shape knowledge is coded via the signed distance
transform, embedding the 1−D shape boundary as the zero-level set of a function
defined on a connected bounded open subset of R2 [114, 116]. Level set methods,
however, are not applicable when there are embedded shapes.

It is possible to replace the sharp interface model in level set based segmentation
methods with diffuse ones. For example, smooth distance fields that exhibit expo-
nential decay rather than linear growth are obtained by solving a screened Poisson
PDE. These kind of distance fields are more informative in the sense that they im-
plicitly code curvature in addition to distance. The whole topic has a recent revival
with a wide range of applications and new theoretical insights [15, 17, 68, 152].
The earliest work by Tarı et al . [153] addresses the connection between screened
Poisson and image segmentation by the Ambrosio-Tortorelli approximation [11] of
the Mumford-Shah model [105]. This particular work has recently been used in [75]
to address a search problem where a small fragment of the illustration is searched
in order to reveal the underlying global repetition structure in abstract ornaments.
The curvature-coding field we propose improves search and does not require solving
a PDE.

In reconstructing frescos, Fornasier et al . [58] addressed the problem of locating
small fragments within a whole. For each small piece of plaster that still showed an
element of the design of the fresco, the authors were able to find where it belonged.
This is quite an elegant method, but the non-additive and non-linear nature of the
binary illustrations that we consider prevents its use.

To the best of our knowledge, discovery of hidden figures as we describe has
not been studied within the mathematical imaging community. Nevertheless,
Saarbrücken group’s recent inpainting based steganography application [99] ad-
dresses the opposite problem: to hide a secret image by embedding it into arbitrary
cover images. Both the secret and the cover are dense images, and the recovery of
the secret is possible only via a password. That is, ordinary observer cannot detect
whether an image contains a secret or not. Object camouflage is also a problem of
interest in the computer graphics community [43].
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a) Input b) Averaging c) Erosion d) Erosion and
image (mean filter) averaging

Figure 4.2: Erosion followed by averaging. When pure averaging – e.g . mean filter
– is applied to a binary line drawing, the contour location vanishes. In contrast, when
erosion with subsequent averaging is applied, the contour location information is retained.

4.2 Formalization

We consider the task of figure hunt games: tracing out target figures hidden in
binary illustrations. Let Ω ⊂ R2 be the image domain, and let F , I : Ω→ {0, 1} be
the target figure and the illustration, respectively. The goal is to localize a target
figure, such as the butterfly Figure 4.2 a) in an illustration, such as the mandala
Figure 4.4 a). Values 1 (white) correspond to the background and 0 (black) to the
foreground.

We start by uniformly eroding the white space, or equivalently, dilating the tar-
get figure (e.g . Figure 4.2 a) and/or the illustration. Hence, the drawing becomes
thicker (see Figure 4.2 c). Then, we diffuse by computing a local isotropic aver-
age. It is sufficient to compute the local average only for the points falling on the
thickened figural loci or in a slightly wider band surrounding it. This transforms
the sketch-like binary drawing to a gray-tone picture which may be referred as a
diffuse drawing Fd (Figure 4.2 d). In the following, we use the term diffusion to
entitle the transformation of the binary drawing to a gray-tone picture, although
this transformation does not necessarily describe a diffusion in the technical sense.

The key idea is to propagate information restricted to figural loci to neighboring
areas. Thus, it becomes possible to judge whether a background location is close to
or far away from a figural loci. If the averaging and the erosion radii are identical, the
highest value is attained on the figural loci; from thereof values decrease as a function
of distance in the normal direction. Thus, diffusion produces iso-intensity contours,
each following the figural loci from a fixed distance. The lower the intensity, the
further away the iso-intensity curve from the figural loci. The second column in
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a) Deformed b) Zoom of c) Placed d) Matching
target fig. FD illustration I target fig. FP cost Ecost

Figure 4.3: Matching cost. Visualized computation of the matching cost. In the top
row, the diffuse target is searched in a binary illustration. In the bottom row, the diffuse
target is searched in a diffused illustration.

Figure 4.2 depicts the result of local isotropic averaging applied to the original thin
drawing. There, one cannot observe the distance-coding behavior, i.e. the initial
thickening is a crucial step.

4.2.1 Matching Cost

Once the target figure F (Figure 4.2 a) is converted to a diffused form Fd (Fig-
ure 4.2 d), the best match is determined by the deformation parameters (i.e. loca-
tion, orientation and scale) yielding the best matching cost. The matching cost is
measured as the sum of the gray-value differences between the illustration I and the
placed target figure FP (Figure 4.3 c). A visualization is shown in Figure 4.3. We
introduce the matching cost by means of the binary illustration (top row) as well
as the diffused illustration (bottom row). A discussion about the role of diffusion
follows in Section 4.3.

The placed target figure FP is obtained by the combination of the deformed
target figure FD (Figure 4.3 a) and the illustration I (Figure 4.3 b). Depending
on the application, FP can be computed by means of the binary illustration or the
diffused illustration. In Matlab coding language FP can be obtained as follows:

I binary illustration I diffused illustration

FP := FD; FP := I;

FP(I 6= 1) = I; FP(FD 6= 1) = FD;
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a) Illustration I b) Band B surr. the figural loci

Figure 4.4: Optimal match. a) Perfect hint of the target figure in the illustration I;
b) Set B defined by a band surrounding the figural loci.

Hereby, FD is obtained by the deformation of the diffused target figure Fd with
the respective deformation parameters:

FD = FD(Fd, deformation parameters) (4.1)

The visual matching cost in Figure 4.3 d) is defined as the absolute value of the
pixel-wise difference between the illustration I (Figure 4.3 b) and the placed target
figure FP (Figure 4.3 c). In general, Ecost can be obtained as follows:

Ecost =
1

|B|
∑
x∈B
|I(x)−FP(x)| , (4.2)

where I : Ω → [0, 1] is the (binary/diffused) illustration, FP : Ω → [0, 1] the placed
target figure and B ⊂ Ω the set indicating the band surrounding the figural loci.

The set B is illustrated in white in Figure 4.4 b). B is the collection of pixels
which belong to gray values of the deformed target figure (Figure 4.3 a). Hence,
the sum is taken over those locations that fall within the band surrounding the
figural loci within which the diffuse field has been constructed. Moreover, the cost
is normalized by dividing it by the number of locations that contributed to its
computation.

Example Let the illustration be the mandala consisting of butterflies shown in
Figure 4.4 a). As target figure we take the butterfly in Figure 4.2 a). A perfect
hint for the position of the butterfly is indicated in blue right on the bottom of the
mandala in Figure 4.4 a). The components of the matching cost (4.2) for this figure
hunt are illustrated in Figure 4.4 b) and Figure 4.3. The resulting matching cost is
visualized in Figure 4.3 d).
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To find a solution with minimal matching cost, we optimize the set of defor-
mation parameters leading to the deformed target figure FD. We determine these
optimizing parameters via a probabilistic algorithm which returns multiple solu-
tions. We use genetic algorithm based optimization which is readily available in
the Matlab environment. It minimizes an energy functional by varying its input
variables. A detailed discussion follows in the next section.

4.2.2 Optimization Via a Genetic Algorithm

A genetic algorithm is a search heuristic that mimics the process of natural evolution.
The evolution starts with a population of random generated initial solutions of the
problem. In every step new populations are created, such that a fitness function is
minimized. The populations are evolved towards an optimal solution by selection,
combination and modification of the intermediate results:

• Selection identifies good solutions in a population and discards the rest (e.g .
by measuring against the fitness function).

• Combination – also known as crossover – creates new solutions from existing
ones.

• Modification (or mutation) introduces new features into the solution to main-
tain diversity in the population.

This process is repeated as long as either a satisfactory matching cost has been
reached, or a maximum number of generations has been produced.

In figure hunt games, the best matching of the target figure with the illustration
can be described by the deformation parameters leading to the best matching cost.
Therefore, we aim to solve the following optimization problem:

min
(θ,tr,tc,hr,hc)∈D

E(θ, tr, tc, hr, hc) (4.3)

where D ⊂ R5 is the domain of the deformation parameters:

• θ being the rotation angle,

• tr, tc describing the translation in row/column direction,

• hr, hc for scaling in direction of rows/columns.

The energy E to be minimized is defined as follows:

E(θ, tr, tc, hr, hc) := Ecost, (compare Equation (4.2))

with FD = FD(Fd, θ, tr, tc, hr, hc). (4.4)

In order to find the optimal set of values in this five dimensional search space,
we make use of the genetic algorithm built in Matlab:
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ga(fitnessfcn, nparams, [], [], [], [], lb, ub, [], IntCon)

The output of the algorithm includes the parameter set (θ, tr, tc, hr, hc) corre-
sponding to the best matching cost Ecost for a given figure hunt problem. The input
variables have the following meaning:

• fitnessfcn = {@energy functional, illustration, target figure}, where the en-
ergy functional is a function which takes the parameter set as well as the illus-
tration and the target figure as input and returns the corresponding matching
cost Ecost

• nparams: number of parameters to optimize (= 5)

• lb/ub: lower/upper bound (e.g . θ ∈ [0, 360])

• IntCon: integer constraints on parameters (= [2, 3]: parameters tr, tc should
be integers)1

In every step of the genetic algorithm, new populations are created. Hereby, the
lower/upper bound constraint as well as the integer constraints have to be fulfilled.
The selection, combination and modification process is guided by the values of the
energy functional, aiming to obtain a minimal matching cost Ecost. We are aware
that the genetic algorithm also has disadvantages. In particular, the algorithm is
non-deterministic and there is no proof of optimality known. While alternative
algorithms are conceivable, we chose the genetic algorithm because it provides a
good tradeoff between speed and quality of computed solutions.

4.3 The Role of Diffusion

In every step of the genetic algorithm, new populations are created such that the
matching cost is minimized. To propagate information restricted to figural loci to
neighboring areas we use a diffused representation of the target figure (and the
illustration). Thus, it becomes possible to know whether a location is close or far
away from one of the desired locations.

Diffusion of the target figure (and the illustration) helps in two different ways:

1. Uninformative pixels become informative.
Binary line drawings like the ones shown in Figure 4.1 contain large empty
(white) regions without any information. By diffusing the drawing, the infor-
mation restricted to the figural loci becomes visible within a neighborhood.
This allows the search for the cloverleaf in Figure 4.1 a) and the hangers in
Figure 4.1 b).

1The integer constraints on tr, tc can also be omitted with the drawback of higher computa-
tional costs. However, our experiments showed a sufficient accuracy when restricting the translation
to integers.
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Wrong fit: Ecost = 0.7166 Ecost = 0.2898 Ecost = 0.2148

Almost correct: Ecost = 0.5447 Ecost = 0.2327 Ecost = 0.0763

Correct fit: Ecost = 0.3049 Ecost = 0.2017 Ecost = 0.0342

a) Position b) Binary c) Diffused F , d) Diffused
of F F , I binary I F , I

Figure 4.5: Expressive energy by diffusion. Observe the energy drop in the last
column.

2. Improved search process.
A strong diffusion may simplify and hence speed up the search process (e.g .
to get the rough positions of the bees in Figure 4.7). In addition, diffusion
convexifies the energy and thereby improves the localization.

4.3.1 Spreading the Edge-Information

In order to minimize the matching cost, a correlation between the quality of the
match and the cost is required. This correlation is not given, if the binary represen-
tations of the target figure and the illustration are used.

Figure 4.5 compares the matching costs of three different matches: 1) wrong
fit; 2) almost correct fit; 3) correct fit. The first column indicates the position of
the butterfly within the mandala. The second column depicts the matching cost
obtained by means of the binary illustration and target figure. Columns three and
four give the matching costs obtained with the diffused target figure together with
the binary and the diffused illustration. Observe that the matching costs computed
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Figure 4.6: Comparison of matching costs. The decay of the energy represents the
convergence towards a good fit. Compare the first graph to the last.

with the non-diffused drawings (column b), are almost equal. In particular, the
visualized energies of a wrong fit and an almost perfect fit are indiscernible. Hence,
there is no reliable optimization criterion. It is unclear whether an intermediate
match leads to a good fit. In contrast, the energy of the wrong fit in column c,d) is
significantly higher (lighter) than the energy of the (almost) correct fit. This means
that the cost becomes informative.

Figure 4.6 demonstrates the different matching costs visualized in Figure 4.5.
To be able to make decisions about the goodness of a fit, the matching cost corre-
sponding to a bad fit should be substantially higher than the one corresponding to a
good fit. In particular, a graph indicating the matching cost of a wrong, an almost
correct and a correct fit should first have a strong decay followed by a weak decay.
Figure 4.6 shows the graphs corresponding to the three columns b-d) of Figure 4.5.
Whereas the two rightmost graphs show the expected decay, the first graph does
not imply the position of the target figure. The reason is that the binary figures
include lots of uninformative (white) pixels and therefore cannot decide whether
a fit is good. In contrast, the diffusion propagates information about the figural
loci from purely local to a neighborhood (compare Figure 4.2). Hence, the desired
location can be observed from some distance and leads to an informative energy.

With the diffused representations, the genetic algorithm has a clear optimization
criterion and thus returns the optimal match of the chosen target figure in the given
illustration.
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Figure 4.7: How many bees are there in the image?

4.3.2 Improved Localization and Speed-Up

A diffused representation not only propagates edge information to a neighborhood, it
also simplifies the search process. This behavior comes from the fact that diffusion
improves localization by convexifying the energy. Similar blurring strategies are
known by continuation approaches such as graduated non-convexity [28].

A typical example is the swarm of bees in Figure 4.7. To count the number of
bees, a strong diffusion can be applied, leading to an accumulation of gray splotches.
Taking one of them as target figure, the genetic algorithm quickly detects the
splotches throughout the bee swarm. In a second step, a finer search can be applied
around the detected positions to obtain a more precise hint of the bees. Extensive
experiments will be shown in Section 4.5.1. A crucial point is the preservation of
the original contour features. Despite diffusing the binary drawings the contour lo-
cation has to be preserved. This is not given for all diffusion methods. Edges can be
washed-out without coding the original contour location or discretization artifacts
can be amplified.

To choose the best diffusion method for the particular considered task, we will
discuss different diffusion methods in the next section.

4.4 Diffusion Methods

We discussed that diffusion is an essential step for the algorithmic solution of a
figure hunt game. During our studies we tested several diffusion approaches. In the
course of this section we will give a detailed discussion of the four most interesting
ones:
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• Averaging

• Distance function

• v-transform [153]

• Erosion followed by averaging

In the following, let Ω ⊂ R2 denote the image domain and I : Ω → {0, 1} be the
binary image.

4.4.1 Averaging

In order to spread the edge-information, the most intuitive way is to apply a diffusion
filter, e.g ., the mean filter, where each pixel value is replaced by the mean of the
pixel values in its neighborhood. Let σ > 0 be a parameter. The averaging is a
basic convolution of I, where each pixel (x, y) ∈ Ω is assigned the average value of
its neighborhood of size σ × σ. Hence, the diffused version can be obtained by:

(I ∗ k)(x, y) =

∞∫
−∞

∞∫
−∞

I(x− a, y − b) k(a, b) da db, (4.5)

where (x, y) ∈ Ω and

k (a, b) =

{
1
σ2 if |a| ≤ σ

2
and |b| ≤ σ

2
,

0 otherwise
(4.6)

is a standard kernel of the mean filter. For the boundary condition, zero padding is
used, i.e. the boundary of the image is augmented by zeros.

The butterfly diffused by averaging is shown in Figure 4.2 b). The parameter σ
was set to σ = 3. In the zoomed part of the figure (second row), one cannot identify
the original location of the contour. The contour is completely blurred, and it merges
with the background. One would rather like to spread the edge information but at
the same time keep the information about the original edge location. Hence, we
propose a second method: erosion followed by averaging, which will be described in
Section 4.4.4.

4.4.2 Distance Function

Another option for spreading the edge information is the usage of the distance
function (sometimes referred to as the distance transform). The distance function D
of a binary image I associates each pixel p of the domain Ω of I with its distance
to the nearest zero-valued pixel:

[D(I)] (p) = min {d(p, q) | I(q) = 0} . (4.7)
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[D(I)] (p)
p = (x1, y1)I

q = (x2, y2)

a) Input image I b) Distance transform of I

Figure 4.8: Exemplary distance transform.

a) Input b) Distance c) Masked d) Zoom of c)
image transform dist. transf.

Figure 4.9: Distance transform of the butterfly line drawing. By restricting the values
to a band surrounding the figural loci, the desired diffused target figure results. However,
the zoom shows a strong effect of discretization noise.

The distance function of an image of a black line on a white background is illustrated
in Figure 4.8.

Here, the metric d for a space E is a function associating a nonnegative real
number with any two points p and q of E and satisfying the three conditions of a
norm. E.g . the Euclidean distance d:

d [(x1, y1), (x2, y2)] =
√

(x2 − x1)2 + (y2 − y1)2, (4.8)

where p = (x1, y1) and q = (x2, y2).

The distance transform of the butterfly is shown in Figure 4.9 b). Each pixel
includes information about its distance to the contour. The desired diffused version,
however, requires the information to be restricted to a band around the contour.
Thus, we omit the values beyond a band surrounding the figural loci and stretch the
remaining gray-values to fill the whole range from 0 to 255. The resulting ‘masked’
version is shown in Figure 4.9 c) with a closeup in d). The closeup reveals the effect
of discretization noise which remained (even amplified) despite the diffusion.
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a) Input img. b) v-transform c) Masked b) d) Zoom of c)

Figure 4.10: v-transform of the sketch-like binary butterfly.

4.4.3 v-Transform [153]

To obtain a gray-tone picture of a sketch-like binary drawing, one other option is to
use the v-transform. It is the minimizer of the following functional

1

2

∫ ∫
Ω

{
ρ ‖∇v‖2 +

(1− v)2

ρ

}
dxdy (4.9)

subject to v(x, y) = 0 on {(x, y) : I(x, y) = 0}.
Numerically, we solve for v iteratively using the following update step:

vt+1 =

(
1 +

τ

ρ2

)−1

·
(
vt +

τ

ρ2
+ τ∇2vt

)
(4.10)

where τ denotes the step size.
For the butterfly drawing, the resulting gray-tone picture computed with the

parameters τ = 0.5 and ρ = 3 is shown in Figure 4.10 b). Again, diffused pixels are
spread throughout the whole image. Hence, we mask the image and omit values too
far away. The result is displayed in Figure 4.10 c) with a closeup in d).

Unlike the usual distance transform (Section 4.4.2), v is an implicit coder of the
curvature, a valuable geometric feature, without explicit estimation of higher order
derivatives. (One of the original goals in proposing v was to bridge low level and
high level vision [151, 153]).

In this paper, in the setting of our specific task, we advocate a much simplistic
way of obtaining an analogous behavior in a band around the contour of the drawing.
We present this idea in the next section. Our computation does not require the
computation of the entire v function on the entire domain Ω by solving a PDE.

4.4.4 Erosion Followed by Averaging

To keep the edge information while blurring the contour, we combine pure averaging
presented in Section 4.4.1 with the morphological operation ‘erosion’. The intuitive
idea is to: 1) broaden the edge of the binary line drawing; 2) smooth the thicker edge.
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If the averaging and the erosion radii are identical, the highest value is attained on
the figural loci; from thereof values decrease as a function of distance in the normal
direction. Figure 4.2 c,d) illustrate the broadened edge and the diffused version for
the butterfly drawing.

In the first step, an erosion is applied to broaden the contour line of the binary
line drawing. In principle, one is used to the term ‘dilation’ for enlarging. To
stick with the standard terminology referring to the white space, we use the term
‘erosion’ (instead of ‘dilation’ of the black space). In the following, we show a
detailed explanation of the applied erosion.

Let S be the structuring element. We denote the erosion of the image I by S
via εS(I):

εS(I) =
∧
s∈S

I−s, (4.11)

the minimum of the translations of I by the vectors −s of S. In other words, the
eroded value at a given pixel x is the minimum value of the image in the window
defined by the structuring element S when its origin is at x:

[εS(I)] (x) = min
s∈S

I (x+ s) . (4.12)

The butterfly eroded by the set

S =
{

(x, y) ∈ Z2
∣∣ ‖(x, y)‖ ≤ S

}
(4.13)

with S = 1 is shown in Figure 4.2 c).
In the next step, the eroded image is smoothed (as in Section 4.4.1):

(εS(I) ∗ k)(x) =

∫
R2

[εS(I)](x− a) k(a) da, (4.14)

where x ∈ Ω and k is a standard kernel of the mean filter as defined in Equa-
tion (4.6) with σ = 2S + 1. Again, zero padding is used to augment the boundary.
The butterfly obtained by erosion with S = 1 (in Equation (4.13)) and subsequent
averaging with σ = 3 is shown in Figure 4.2 d).

Advantages

Within a band surrounding the figural loci, our diffuse drawing (obtained by erosion
of the white space followed by averaging) mimics a curvature coding distance field
similar to the v-transform, the solution of a screened Poisson PDE [153]. We avoid
solving Poisson PDEs or variants for two reasons. Firstly, our approximation is both
easier and faster to compute. But more importantly, a Poisson based distance field,
being the steady state solution to a biased diffusion equation is too much influenced
by long-range interactions among opposing boundaries. This may be detrimental if
several figural loci overlap as in Figure 4.1 top row.
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a) Input b) Pure c) Distance d) v-transform e) Erosion
image averaging transform & averaging

Figure 4.11: Comparison of introduced diffusion approaches. The proposed erosion
followed by averaging e) gives the most informative diffused image whilst being much
simpler than c) or d).

4.4.5 Overview

In Figure 4.11, we compare our diffuse drawing to the alternatives: pure averaging,
usual distance image and the v-transform. All diffuse drawings are restricted to a
band surrounding the figural loci. Whereas the pure averaging b) returns a blurred
image where the contour location vanished, the other diffusion approaches keep the
edge information while blurring. However, the effects of discretization noise remain
(even amplified) in the usual distance image c), whereas the iso-intensity contours
in our diffuse model e) smoothly follow the boundary. Additionally, our diffuse
model e) is obtained by a simplistic approach. In contrast, the approach d) requires
solving a PDE.

4.5 Experimental Results

In this section, we show extensive validations and demonstrate the performance of
the proposed concept for solving figure hunt games.

The parameters used for the experiments are summarized in Table 4.1. Unless
specified otherwise, diffusion is computed by erosion followed by averaging with
Equations (4.12)-(4.14) where S = 1 (and σ = 3).

4.5.1 Propagation of the Contour Information

Depending on the application, one has to specify a) the intensity of the diffusion
and b) if the placed target figure FP should be computed by means of the binary or
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Figure 4.12: All hypotheses of 1000 independent runs of the algorithm on a coarse scale.

the diffuse illustration. Therefore, we categorize the figure hunt games as follows:

• Where’s Wally? type images (Figure 4.1 bottom row)

• Gottschaldt type puzzles (Figure 4.1 top row)

Where’s Wally? Type Images

Where’s Wally? type illustrations consist of several objects being placed next to
each other like Figures 4.7, 4.15. Different questions can arise here, like e.g .: “How
many bees are in the bee swarm?”, “Can you find the objects not belonging to the
scene?” or “How many cars of the same type are there?”. These questions can be
allocated to two general problem settings:

1. Get a rough idea about the drawing (Figure 4.33 d).

2. Find the exact position of a given target figure (Figure 4.33 c).

Both problems can be approached in a first step by localizing the approximate
positions of the objects using a strong diffusion (see e.g . Figures 4.12, 4.16). If
additionally, the exact locations of the objects are desired, the resulting approximate
positions can be used to constrain the search space for the search on the fine scale.

Swarm of Bees In order to analyze the swarm of bees, we searched for a strongly
diffused version of the target figure marked by the blue circle in Figure 4.7 in the
diffused illustration shown in the background of Figure 4.12. For the diffusion we
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Figure 4.13: Matching cost corresponding to the 84 distinct locations. The matching
cost is plotted against the hypotheses, ordered by increasing cost.

use Equation (4.14) and set S = 5. The ranges of the parameters (θ, tr, tc, hr, hc) are
set as follows: θ ∈ [0, 360], tr ∈ [−Ir, Ir], tc ∈ [−Ic, Ic], hr ∈ [0.7, 1.5] and hc := hr.

Due to the strong diffusion, we are able to quickly detect the rough locations of
the bees – marked by green circles in Figure 4.12 – in this large illustration (766×556
pixels). The number of circles around each bee is an evidence that good fits are found
more often than bad ones. In the next step, we omit the duplicates and mark each
location by exactly one circle. We obtain 84 distinct circles corresponding to 84
objects in the bee swarm.

By analyzing the matching costs corresponding to the 84 hypotheses we obtain
the plot in Figure 4.13. For the first 74 hypotheses the energy increases steadily. In
contrast, the energy ascends steeply for the last 10 hypotheses. Hence, we declare the
worst 10 fits as objects not belonging to the bee swarm and indicate their position
in orange. Figure 4.14 shows the 84 determined locations, whereof the worst 10 fits
are indicated in orange. Observe that all orange marked objects are no bees.

In a second step, the approximate locations could be used to obtain a more exact
location and orientation of the bees. Such a search on a fine scale will be explained
in the next paragraph by means of the collection of cars.

Collection of Cars To find all cars of the same type as the target car (Fig-
ure 4.15 b) we use a strong diffusion for the target figure and the illustration,
which is exemplary shown in Figure 4.15 c). Therefore, we use Equation (4.14)
and set S = 4. On the coarse scale, the algorithm returns the locations illustrated
in Figure 4.16. In a second step we use these locations to initialize the algorithm for
the search on a fine scale. For each position obtained by the search on the coarse
scale, an additional search with a slightly diffused target figure and illustration is
carried out (S = 1). Thereby, we constrain the search space to a small area around
these positions.
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Figure 4.14: Several dissimilar objects found. The number of bees in the bee swarm
can easily be counted by using our search algorithm together with a strong diffusion. We
detected 84 objects, including 10 objects which do not belong to the bee swarm.

b) Target figure

a) Illustration with best three results c) Coarse scale

Figure 4.15: Three cars of the same type are detected with the search on the fine
scale. The search was initialized by the positions obtained by the search on the coarse
scale (Figure 4.16). Additionally, the search space was constrained to a small area around
these positions.

Figure 4.16: Coarse-to-fine approach. The search for a single target in a collection of
multiple individual objects is performed in two steps: Search on 1) coarse scale; 2) fine
scale. The search on the coarse scale returns the approximate positions of objects similar
to the target figure.
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Figure 4.17: Distinctive jump in the energy. The graph of the matching costs cor-
responding to the hypotheses resulting from the search on the fine scale has a distinctive
jump at the fourth hypothesis.

Let (Tr, Tc) be a position obtained by the search on the coarse scale and let
|F| = Fc × Fr be the size of the target figure F . For the search on the fine scale,
we restrict the parameter ranges of tr and tc as follows:

tr =

[
Tr −

⌈
Fr

4

⌉
, Tr +

⌈
Fr

4

⌉]
, (4.15)

tc =

[
Tc −

⌈
Fc

4

⌉
, Tc +

⌈
Fc

4

⌉]
. (4.16)

The matching costs corresponding to the resulting hypotheses are plotted in
Figure 4.17. A distinctive jump of the cost can be observed at the fourth hypothesis.
The three hypotheses with the best energy are thresholded and the binary shapes
are depicted in blue in Figure 4.15 a). Three cars of the given type occur in the
image.

This two-step approach allows to get a rough analysis of the illustration followed
by a precise definition of the deformation parameters in the second step. For the
search on the coarse scale, a strong diffusion of both the illustration and the target
figure is helpful to have as much information as possible throughout the image.
For the subsequent search on the fine scale slightly diffused versions are used. The
parameters used for both steps are summarized in Table 4.1.

Gottschaldt Type Puzzles

Gottschaldt type puzzles are line drawings where several lines overlap, like in Fig-
ures 4.18, 4.21. A figure hunt game might for example challenge to find the cloverleaf
hidden in the line drawing in Figure 4.18. Another task might be to find one of the
target figures drawn in Figure 4.22 in the collection of hangers, Figure 4.21. Two
different problem settings can appear:
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Figure 4.18: Hidden cloverleaf. Can you trace out the hidden cloverleaf?

a) Diffused illustration b) Diffused c) Cutout of d) Difference
target figure illustration b) - c)

Figure 4.19: Black spots at intersections. The diffused illustration shows black patches
at the intersection of the lines. However, the diffused target figure does not include those
dark spots. Hence, the visual matching cost d) of a perfect fit includes white spots.

1. The target figure F is a cutout of the illustration I (compare Figure 4.22 b).
I.e. it reflects a complete segment of the illustration.

2. The target figure F does not reflect a complete segment of the illustration I
(e.g . Figure 4.22 a). I.e. at a perfect position of F in the illustration, I has
additional crossing lines (compare Figure 4.23).

The first type of problems where F is a cutout of I is mentioned in Section 4.5.3
and an example is shown in Figure 4.32.

For the second type of problems, a diffusion of both, the target figure and the
illustration may lead to unwanted effects: Due to several overlaps of the lines within
the drawing, dark black patches appear at the intersections. However, the diffused
target figure does not reflect a complete segment of the illustration and hence does
not have such black patches along the contour line. See Figure 4.19 for an exemplary
illustration. Hence, the matching cost of a perfect fit in a Gottschaldt type puzzle
is considerably higher than the matching cost of a perfect fit in a Where’s Wally?
type image. For these cases, we recommend the computation of the matching cost by
means of the binary illustration (compare Figure 4.3 top row). By only diffusing the
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a) Binary target fig. b) Diffused target fig. c) Binary target fig., d) Diffused target fig.,
and illustration and illustration diffused illustration binary illustration

Figure 4.20: Diffusion of target figure and/or illustration computed by means of
Equation (4.14) with S = 1. Hypotheses resulting from 10 individual runs of the algorithm.
Strong green color indicates low matching cost. Observe that the best hypotheses are
obtained by only diffusing the target figure.

Table 4.2: Average results by means of the binary/diffused target figure and illustra-
tion: Average deviation of the placed target figure from the optimal position, area spread
percental to the size of I and average runtime per run. The best results are given in bold.

Average deviation Area spread perc. to |I| Average runtime

a) Binary F , I 12.464 0.327 38.428
b) Diffused F , I 23.588 0.471 38.395
c) Binary F , diffused I 14.809 0.289 39.961
d) Diffused F , binary I 7.344 0.271 38.297

target figure, information restricted to figural loci can be propagated to neighboring
areas and at the same time the black-spot-problem can be preserved.

In Figure 4.20 and Table 4.2 we demonstrate the results of the different com-
binations of a binary and a diffused target figure and illustration by means of the
cloverleaf line drawing (Figure 4.18). Strong green colors indicate a position which
leads to a lower energy compared to the other hypotheses. The orange box indicates
the overall size of the spread, i.e. the area where hypotheses are placed. The area
spread percental to the size of the illustration I and the average deviation from the
optimal position are summarized in Table 4.2. All hypotheses obtained with the
binary target figure together with the binary illustration a) are misplaced and have
approximately the same matching cost. In contrast, for the remaining cases, the
hypotheses belonging to the correct position have a significantly lower energy than
the misplaced hypotheses. Due to the diffusion in b-d) the contour information is
propagated to the neighborhood making uninformative (white) pixels informative.
Due to the black-spot-problem, the output in b) has the largest average deviation
and area spread. The best matches are obtained in d) for the usage of the diffused
target figure together with the binary illustration (Figure 4.21).
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Figure 4.21: Collection of hangers.

a) Different hangers b) Segment c) Pentagon

Figure 4.22: Possible target figures to search for: two types of hangers, a segment or
a pentagon.

Hidden Cloverleaf To find the hidden cloverleaf, we use the approach in Fig-
ure 4.20 d) and compute the matching cost by means of the binary illustration
(Figure 4.3 top row). The best hypothesis is depicted in Figure 4.23 a). The aver-
age runtime is 38.3 seconds.

Collection of Hangers The same combination of the diffused target figure and
the binary illustration is used for the computation of the matching cost in the search
for the hangers. The search for the hanger leftmost in Figure 4.22 a) leads to the
hypotheses shown in Figure 4.23 b). Strong green colors indicate a position which
leads to a lower energy compared to the other hypotheses.

4.5.2 Proof of Concept

In this section, we will demonstrate that our approach can handle the similarity
transformations translation, rotation and scaling. Furthermore, based on our results
we will show that the genetic algorithm together with the defined cost is reliable for
the particular problem.



56 Chapter 4. The Role of Diffusion in Figure Hunt Games

a) Best hypothesis b) 32 best hypotheses

Figure 4.23: Hypotheses obtained by spreading the edge information via diffusion. In b)
strong green colors indicate a position which leads to a lower energy compared to the other
hypotheses.

Julia Bergbauer Wimmelbild Analysis 5

or: look for (arbitrary) segment (unknown for human)
=> segment hard for human, easy for algo

extract / cut-out

Figure 4.24: Several target figures taken from a mandala consisting of butterflies.

Robustness to Pose Variations

To observe the robustness with respect to pose, we consider a simple mandala pattern
(Figure 4.24). Possible target figures are indicated by the blue boxes and arrows. For
the first experiment the butterfly is chosen as target figure. We diffuse the target
figure as well as the illustration by erosion followed by averaging (Section 4.4.4)
with S = 1. Figure 4.25 shows the hypotheses of 100 individual runs of the genetic
algorithm described in Section 4.2.2. To enhance the visibility, the hypotheses are
thresholded and the binary shapes are drawn in shades of green. The different
shades of green show the energy weighted by the number of detections. Strong
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Figure 4.25: Robustness to pose variations. Independent of their location and rota-
tion, all butterflies are found. Correct fits appear more often and have a lower energy.

green colors indicate: a) a position which leads to a lower energy compared to the
other hypotheses; and b) a match which has been returned more often in comparison
to the other ones. Independent of the position and orientation, all butterflies in the
mandala are successfully detected. Figure 4.25 provides experimental evidence that
our method is robust to pose variations in the translational and rotational sense.

Robustness to Scale Variations

To evaluate the robustness to scaling we consider a composition of circles/triangles
of varying size. One of the circles/triangles is selected as the target figure, see
Figure 4.26. The goal is to find all occurrences irrespective of their scaling.

In Figure 4.27, we depict the energetically best 99 percent of circles detected
after 1200 runs of the genetic algorithm. The same color coding as in Figure 4.25
was used. Observe that the method can handle scale variations. In particular,
an unexpected and a very interesting solution is obtained: the innermost circle
defined by the twelve smallest circles. This emergent circle may not be immediately
perceivable.

In Figure 4.28, we depict selected triangles obtained by several runs of the algo-
rithm. Observe that triangles with diverse edge length have been detected, e.g . the
red triangle was elongated twice in x-direction and contracted in y-direction. The
parameters used for these experiments together with the obtained average runtimes
are summarized in Table 4.1.
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a) Illustration b) Target figure

Figure 4.26: Illustrations including figures of different scales. The goal is to find
all circles/triangles of arbitrary scale.

Figure 4.27: Robustness to scale variations. Circles of various scales are detected.

Figure 4.28: Robustness to scale variations. Triangles of arbitrary scale are detected.
Due to clarity, only part of the best hypotheses are depicted in different colors.
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Tendency to Return Good Fits

We evaluated whether the good fits (those of lower matching cost) are obtained more
often than the bad fits. This is important as the algorithm is not a deterministic
one.

We performed independent runs of the genetic algorithm, each run producing
several hypotheses. We then computed the average of the batches of independent
runs. As the results shown in Figures 4.25, 4.27 compellingly demonstrate, the algo-
rithm has a tendency to return good fits more often than the bad ones. Furthermore,
none of the bad fits has a nice green color. Hence, we can conclude:

1. The genetic algorithm has a tendency to return good fits:

(a) Good fits appear more often than bad fits.

(b) The same wrong fit is not detected several times.

2. The matching cost is an indicator for the goodness of the match:

(a) A low matching cost indicates a good fit.

(b) A large matching cost indicates a bad fit.

The Most Descriptive Diffusion Approach

In Section 4.3 we discussed the role of diffusion as key-ingredient of algorithmic
search for target figures in a drawing. In this section we will compare the exper-
imental results obtained with the introduced diffusion methods by means of the
cloverleaf line drawing (Figure 4.18). For the diffusions the parameters are set as
given in Section 4.3.

The hypotheses of 60 individual runs of the genetic algorithm obtained by using
the different diffusion approaches introduced in Section 4.3 are depicted in Fig-
ure 4.29. Strong green colors indicate a match which has been returned more often
in comparison to the other ones. In contrast to the figures shown above, the color-
coding does not include the energy of the single hypotheses. The orange box again
indicates the overall size of the spread. The area spread percental to the size of the
illustration I and the average deviation from the optimal position are summarized
in Table 4.3.

The hypotheses in Figure 4.29 a-c) have all about the same color, i.e., none of
the hypotheses was found more often than the others. In contrast, the hypotheses
obtained with our proposed diffusion approach d) accumulate at the correct position.
This fact reflects in the average deviation and the area spread indicated by the orange
boxes and summarized in Table 4.3. Compared to the other diffusion approaches,
the proposed erosion and averaging leads to a significantly smaller average deviation
from the optimal fit and to the smallest area spread. The average runtimes are about
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a) No diffusion b) Distance transform c) v-transform d) Erosion & averaging

Figure 4.29: Results of 60 runs with different diffusion approaches. Strong green
colors indicate a match which has been returned more often in comparison to the other
ones. The color-coding does not include the energy of the single hypotheses. Hence, with
the proposed diffusion approach erosion and averaging, it is more likely that the target
figure is placed at the correct position.

Table 4.3: Smallest deviation with erosion and averaging. Average results of 60
runs with the different diffusion approaches shown in Figure 4.29. The best results are
given in bold.

Average deviation Area spread perc. to |I|

a) No diffusion 16.481 0.354
b) Distance transform 12.432 0.277
c) v-transform (τ = 0.5, ρ = 4) 12.732 0.324
d) Erosion and averaging 7.632 0.258

the same for the different diffusion approaches, however, using the v-transform the
runtime increases due to the required solution of the PDE by a factor of twenty.

The resulting numbers point to the fact that our proposed diffusion approach
erosion and averaging gives the best results.

4.5.3 Diverse Target Figures

Up to now, we focused on well-known shapes being included in the illustration. Of
course our algorithm can also handle segments cut out of the illustration or target
figures which are actually not contained in the drawing.

Figure 4.30 a) shows the target figure, pi, detected in the line drawing Figure 4.18.
The algorithm determined the location where pi obtained the best matching cost.
Hypotheses of 15 runs, weighted by the matching cost, are shown in Figure 4.31. The
hypothesis leading to the best cost is thresholded and the binary shape is depicted
in blue on the illustration and shown as a closeup in Figure 4.30 c). Indeed, the
letter ‘pi’ is hidden in the line drawing.
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a) Target figure b) Zoom of the c) Located target
drawing figure

Figure 4.30: Closest match. A very good match is found. Indeed, the letter ‘pi’ is
hidden in the line drawing.

Figure 4.31: Hypotheses for pi
weighted by their matching costs.

Figure 4.32: A yet hidden symmetry
appears when using the target figure at
the top left in Figure 4.24.

Another option is to search for a cutout of the drawing, like e.g ., the segment
shown top left in Figure 4.24. The results of 100 independent runs searching for
this segment are illustrated in Figure 4.32. The collection of butterfly locations
in Figure 4.25 already revealed the outer circular structure of the pattern. The
collection of these results leads to an emergence of a diamond scepter (as common
in a mandala) together with a weak inner circular arrangement. A yet hidden
symmetry appears.

4.6 Summary and Conclusion

We addressed the task of tracing out target figures in sketch-like binary teeming
figure pictures. Some results of our algorithm are summarized in Figure 4.33. We
can search for the unique occurrence of a target figure (left column) as well as for
various similar objects (right column). Particularly suited to the task, we propose
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a) Hidden cloverleaf b) Several hangers

c) Hidden elephant d) Multiple bees

Figure 4.33: Desired results. The proposed algorithm is able to localize the target
figures.

a simple heuristic for generating diffuse drawings that imitate curvature coding
distance images which are typically computed as solutions to elliptic PDEs. Our
work extends the applications of diffusion based ideas to an interesting problem.
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Abstract In this article we introduce the concept of midrange geomet-
ric constraints into semantic segmentation. We call these constraints
‘midrange’ since they are neither global constraints, which take into ac-
count all pixels without any spatial limitation, nor are they local con-
straints, which only regard single pixels or pairwise relations. Instead,
the proposed constraints allow to discourage the occurrence of labels in
the vicinity of each other, e.g . ‘wolf’ and ‘sheep’. ‘Vicinity’ encompasses
spatial distance as well as specific spatial directions simultaneously, e.g .
‘plates’ are found directly above ‘tables’, but do not fly over them. It is
up to the user to specifically define the spatial extent of the constraint
between each two labels. Such constraints are not only interesting for
scene segmentation, but also for part-based articulated or rigid objects.
The reason is that object parts such as for example arms, torso and legs
usually obey specific spatial rules, which are among the few things that
remain valid for articulated objects over many images and which can be
expressed in terms of the proposed midrange constraints, i.e. closeness
and/or direction. We show, how midrange geometric constraints are for-
mulated within a continuous multi-label optimization framework, and we
give a convex relaxation, which allows us to find globally optimal solutions
of the relaxed problem independent of the initialization.

Keywords Variational · Image segmentation · Convex optimization ·
Directional relations · Geometric relations · Midlevel range interactions

5.1 Introduction

Semantic segmentation denotes the task of segmenting and recognizing objects based
on class-specific information and/or knowledge of typical object relations. Ulti-
mately, we aim at assigning an object label from a given pool of labels to each pixel
in the image. In contrast to common segmentation problems, where little or no
prior information is available, semantic segmentation makes use of knowledge such
as color models, geometric relationships or the likelihood of object constellations,
which can be learned from training data. Based on such information we can increase
the accuracy of segmentation results and at the same time recognize specific objects
instead of only detecting their boundaries.

Especially, the task of segmenting articulated objects is difficult. Animals usu-
ally share some common color or texture model, but humans usually wear variable
clothes, which makes them hard to segment. Shape priors are often suited well to
describe such objects, but they are usually too rigid and do not allow for large pose
variations or occlusions. Besides, they are challenging for optimization due to their
long-range relations between pixels leading to high-order potentials. We believe that
constraints such as geometric relations between objects are generic enough to de-
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a) Original image b) Color-based c) Segmentation d) Ground truth
segmentation with novel priors segmentation

Figure 5.1: Midrange geometric constraints improve semantic segmentation re-
sults. Midrange geometric constraints between labels allow the user to define specific spa-
tial regions (by means of orientation and distance) within which constraints are enforced,
i.e. specific label combinations are penalized. These constraints improve segmentation
results, e.g . by imposing penalties for the head being below the jacket or for head and
hands being close to the trousers.

scribe a wide range of objects and poses and still limit the ambiguity of color and
texture models, features or object detectors, which usually operate on a single pixel
or very limited pixel context.

Previous optimization approaches for semantic segmentation mainly make use of
two types of constraint ranges: local or global ones. Local constraints are usually
formulated on a pixel or pairwise pixel level, e.g . color likelihood constraints only
consider the deviation of the local pixel color and the precomputed model. In
contrast, global constraints are formulated based on the whole image, e.g . size [104,
110] and volume constraints [157, 158] or co-occurrence priors [82, 145]. What has
been less explored so far in the context of optimization approaches are midlevel
range interactions, i.e. interactions between pixels which are locally confined to a
specific user-defined region around each pixel of a specific size, shape and direction.

We see mainly three fields of application of our novel constraints. First, there is
the task of scene understanding, where geometric information is very useful to assign
correct labels, e.g . knowing that ‘sky’ lies above ‘ground’, that ‘wolf’ and ‘sheep’
usually do not occur together or that ‘boats’ are usually surrounded by ‘water’.
Second, there is the task of segmenting objects which consist of several parts, e.g .
humans consist of ‘head’, ‘arms’, ‘legs’ and ‘torso’, or cars consist of ‘windshield’,
‘doors’, ‘headlights’, ‘bumpers’ and ‘tires’. For such objects there usually exist
specific relations between their parts concerning their location, size and distance.
Third, there are scenarios, where we have very specific knowledge of where different
objects are located with respect to each other, e.g . when segmenting human clothes.
There are no specific object parts, but specific rules about relative positions, and
many labels can be missing in contrast to parts of objects.

In all three scenarios, the integration of geometric information into semantic
segmentation will improve the labeling results, see Figure 5.1 for an example. The
main challenge in this article is the formulation and efficient solution of a convex
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energy optimization problem, which allows for the integration of such additional
geometric constraints.

5.1.1 Related Work

There has been growing interest in the topic of semantic segmentation in recent
years, which combines different disciplines such as object detection, various features,
shape priors, scene context information and learning. Especially the joint handling of
several tasks such as segmentation, recognition and scene classification is beneficial
for achieving results of higher quality, but has only recently been made possible by
increased computing power.

The typical pipeline of such systems is the following: in the first step, some object
detection, region segmentation or superpixel algorithm is used to obtain basic region
proposals. In a second step different features are computed from these proposals,
which are finally fed into a object classifier such as a random forest, a support vector
machine or a neural network (e.g . [39]).

For example, in [12], Arbelaez et al . combined object detectors, poselets and
different features such as color, shape and texture to a powerful semantic segmen-
tation system, which can handle articulated objects in particular. The power of
employing millions of features within a random forest approach was demonstrated
by Fröhlich et al . in [59]. To learn such complex feature hierarchies from large
amounts of training data, deep learning was used by Girshick et al . [62]. Instead of
non-linear classifiers, Carreira et al . [38] demonstrated that second order statistics in
conjunction with linear classifiers improve semantic segmentation results. A holistic
approach to semantic segmentation and the full scene understanding problem which
also includes geometric relations such as location or the spatial extent of objects or
the type of scene was given by Yao et al . in [172].

In contrast to this typical pipeline processing, we aim at formulating a single
optimization problem, which contains all information we have within a single energy.
In this way we will be able to guarantee optimality bounds of the solution. To
avoid ambiguous solutions which depend on the initialization we will give a convex
relaxation of the energy.

The particular novelty of this article in contrast to previous discrete or continuous
optimization approaches to semantic segmentation [2, 50, 82, 110, 112, 144, 145, 149]
is the introduction of midrange geometric constraints between regions concerning
relative location, distances and directions.

Ladicky et al . [82] and Souiai et al . [145] introduced co-occurrence priors into
semantic segmentation which penalize the simultaneous occurrence of specific label
combinations within the same image. In contrast to our approach, these constraints
do not consider any spatial information such as location, direction or distance of
objects. [82, 145] model co-occurrence by an additional cost function which can be
seen as potentials of the highest order. MRF algorithms for high-order vision prob-
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lem include [77, 79]. While higher order potentials are generally hard to optimize,
the proposed approach is of order two and can be relaxed to a convex optimization
problem which can be optimized with standard methods.

Strekalovskiy et al . [149] took in a way the opposite path and only penalize
directly adjacent label combinations. It can be understood as a highly local co-
occurrence prior. As the geometric relations in this approach are limited to directly
adjacent pixels, they do not include distances or directions. In contrast to previous
methods, the method does not require the distance penalty to be a metric but allows
combinations which do not adhere to the triangle inequality. While labels ‘wolf’ and
‘grass’, for example, are common within an image and labels ‘sheep’ and ‘grass’ as
well, sheep are rarely found next to wolves, which violates the triangle inequality.
This often leads to one pixel wide ghost regions of hallucinated objects, which make
transitions between two regions cheaper. Our approach does not suffer from ghost
regions since our definition of neighborhood regards a larger number of pixels, which
makes ghost regions very expensive.

Another type of global constraints for semantic segmentation are hierarchical
constraints, which were introduced by Delong et al . [51] and Souiai et al . [144]
and penalize the occurrence of objects from semantically different groups or scenes.
Constraints relating different region sizes, e.g . of object parts, were introduced by
Nieuwenhuis et al . [110]. These constraints are also global and integrate a notion
of proportion and size into the segmentation, but they do not take into account
distance or directional relations such as that the head of a person usually is above
the body.

Topological constraints, which require that some label lies within another label,
were proposed within a discrete optimization framework by Delong and Boykov [50]
and within a continuous optimization framework by Nosrati et al . [112]. Geometric
scene labeling has been studied by Felzenszwalb and Veksler [57] considering label-
ings that have a tiered structure. So-called ordering constraints, which require labels
to only occur within a certain direction of other labels, were applied to geometric
scene labeling by Liu et al . [93] for a specific five-part model. Strekalovskiy and
Cremers [147] unified the existing approaches such as the five-regions and the tiered
layout and proposed generalized ordering constraints. None of these constraints
include any notion of label distance and thus cannot be considered as midrange
constraints due to their global nature.

Finally, relative location based geometric relations have been introduced before
into segmentation. In Gould et al . [65] the authors propose a two-stage process,
which first uses an appearance model to assign labels and then employs a relative
location prior based on the most likely label for each pixel in the first step to improve
the segmentation. In contrast to our approach, this is a two-stage process and thus
does not allow for any optimality guarantees. In the context of learning, relative
spatial label distances have also been successfully applied, e.g . in [80, 131].
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5.1.2 Contributions and Organization

In this article, we show how midrange geometric constraints characterized by label
direction and distance can be integrated into variational semantic segmentation
approaches. We give a convex relaxation of the energy minimization problem, which
can be solved with fast primal-dual algorithms [122] in parallel on graphics hardware
(GPUs). Results on various images and benchmarks show that the novel constraints
improve semantic segmentation results.

The article is organized as follows: In Section 5.2 we give a formal definition of
the multi-label segmentation problem together with different appearance models. In
Section 5.3 we introduce the novel midrange geometric priors followed by a convex
relaxation of the optimization problem in Section 5.4. In Section 5.5 we present
results on various datasets and compare our segmentation results to state-of-the-art
approaches.

5.1.3 Extensions and Improvements over the Previously
Published Variant of our Model [2]

This journal paper extends our previously published ICCV workshop paper [2] by a
more general formulation of the proximity priors to midrange geometric constraints
and by more detailed and thorough evaluations on various image datasets.

The novel midrange geometric constraints are beneficial for the segmentation of
part-based articulated and for part-based rigid objects as well as for the segmenta-
tion of scenes. The novel formulation allows to define different structuring elements
for each label in contrast to only a single one in [2] (Sections 5.3.2, 5.3.3). We give
an overview of different appearance models (Section 5.2.2), an analysis of differ-
ent choices of structuring elements and the penalty matrix (Sections 5.3.3, 5.3.4)
as well as a detailed explanation of the impact of different structuring elements
(Section 5.3.5).

Additionally, we provide extensive evaluations including failure cases in Sec-
tion 5.5. We present additional experiments on part-based articulated (Section 5.5.1)
and part-based rigid objects (Section 5.5.2) on the CMU-Cornell iCoseg dataset [22],
the People dataset [124] and the Penn-Fudan pedestrian database [167]. Moreover,
we show results for the recognition of facades on the eTRIMS image database [81]
and for the task of geometric class labeling of indoor images [93] (Section 5.5.3).
Furthermore, we provide detailed insights about our experiments including the cho-
sen parameters such as the structuring element Si for label i, its size d and the
choice of the penalty matrix A.
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5.2 Variational Multi-label Segmentation

We begin with the formal definition of the multi-label segmentation problem and
show several choices for the appearance term.

Although any numerical algorithm used for the implementation of the method
presented below requires a discretization of the image domain, our general multi-
label segmentation framework can be formulated continuously. We present the con-
tinuous setup below and give more details regarding the discretization and imple-
mentation in Section 5.4.2.

5.2.1 The Multi-label Optimization Problem

Let I : Ω→ Rd denote the input image defined on the image domain Ω ⊂ R2. The
general multi-label image segmentation problem with n ≥ 1 labels consists of the
partitioning of the image domain Ω into n regions {Ω1, . . . ,Ωn}. This task can
be solved by computing binary labeling functions ui : Ω→ {0, 1} in the space of
functions of bounded variation (BV ) such that Ωi =

{
x
∣∣ ui (x) = 1

}
. The BV

space is important, since it allows jumps in the indicator functions which correspond
to sharp transitions between adjacent regions. We compute a segmentation of the
image by minimizing the following energy [174] (see [111] for a detailed survey and
code)

E(Ω1, ..,Ωn) =
λ

2

n∑
i=1

Perg (Ωi) +
n∑
i=1

∫
Ωi

fi (x) dx. (5.1)

fi denotes the appearance model for the respective region Ωi. Different ways to
define fi are discussed in Section 5.2.2. Perg (Ωi) denotes the perimeter of each set Ωi,
which is minimized in order to favor segments of shorter boundary. These boundaries
are measured with either an edge-dependent or a Euclidean metric defined by the
non-negative function g : Ω→ R+. For example,

g (x) = exp

(
−|∇I (x) |2

2σ2

)
, σ2 =

1

|Ω|

∫
Ω

|∇I (x) |2dx

favors the coincidence of object and image edges.
To rewrite the perimeter of the regions in terms of the indicator functions we

make use of the total variation and its dual formulation [111, 120]:

Perg(Ωi) =

∫
Ω

g(x)|Dui| = sup
ξi: |ξi(x)|≤g(x)

−
∫

Ω

ui div ξi dx.

Since the binary functions ui are not differentiable Dui denotes their distributional
derivative. Furthermore, ξi ∈ C1

c (Ω;R2) are the dual variables and C1
c denotes the
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space of smooth functions with compact support. We can rewrite the energy in (5.1)
in terms of the indicator functions ui : Ω→ {0, 1} [111, 174]:

E(u1, .., un) = sup
ξ∈K

n∑
i=1

∫
Ω

(fi − div ξi)ui dx, (5.2)

where K =

{
ξ ∈ C1

c

(
Ω;R2×n) ∣∣∣ |ξi(x)| ≤ λg(x)

2

}
.

5.2.2 Choices of Appearance Models

In this article, we use different appearance models for the appearance term fi in (5.2)
depending on the task to solve.

Color Likelihoods

The simplest model is based on an estimated color probability distribution, e.g . by
means of Parzen density estimators. Given a set of scribbles or training data we can
extract RGB or HSV sample data for each label in the image or database. A Parzen
density for a specific object class i with mi color samples, each denoted by Iij ∈ R3,
is then given by

fi(x) := − logPi (I (x)) :=
1

mi

mi∑
j=1

1√
(2π)3|Σ|

exp−((I−Iij)TΣ−1(I−Iij)) . (5.3)

The density depends on the covariance matrix Σ of the multivariate Gaussian, which
is usually a diagonal matrix and can be adapted by the user. Large values on the
diagonal will assign a higher probability to less common colors. Low values on
the diagonal will, in contrast, make the distribution more peaked. |Σ| denotes the
determinant of Σ. In order to avoid infinity values in the appearance term caused
by color probabilities of 0 we modify the expression as follows

fi(x) := − log
(
Pi
(
I (x)

)
· (1− ε) + ε

)
, (5.4)

where ε is a very small constant close to 0.

Spatially Varying Color Likelihoods

In the case of scribble based segmentation we can make use of additional spatial
information to estimate color likelihoods. The idea is that close to the scribble
we are quite certain about the color in this location, which will be similar to the
closest scribble points. On the contrary, far from the scribbles we have to deal with
uncertainty in the color density estimation. This level of confidence depends on the
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distance to the closest scribble point of the current label. It can be integrated into the
Parzen density estimator in (5.3) by computing a different covariance matrix Σi(x)
at each pixel proportional to the distance to the closest scribble of label i:

Σi (x) = α min
j=1,..,mi

|x− xij|2, (5.5)

where {xij, j = 1, ..,mi} is the set of user scribbles for region i and α ∈ R. This
yields a space-dependent color density estimator. Details of this approach are given
in [108].

Texton Likelihoods

In order to integrate not only color, but also shape and context information, Shot-
ton et al . [139] proposed to learn a discriminative model to distinguish between
object classes. This model is based on texton features, which incorporate shape
and texture information jointly. Training is done by means of a shared boosting
algorithm. Using the softmax function, the predicted confidence values Hi (x) can
be interpreted as a probability distribution. By taking the negative logarithm, we
obtain the appearance model

fi(x) = − log
( exp (Hi (x))∑n

j=1 exp (Hj (x))

)
, (5.6)

which is also known as unary pixel potential. This model is computed with the
ALE library [82, 83] and used for the experiments on the Penn-Fudan, eTRIMS and
MSRC dataset in order to guarantee comparability to other approaches.

5.3 The Novel Midrange Geometric Priors

We motivate the midrange geometric priors by means of the simple artificial teddy
bear example in Figure 5.2 a). Common segmentation approaches group pixels
mainly according to their color, hence the ears of the bear are associated with the
region ‘shoes’ (Figure 5.2 b). The desired result, however, would rather connect the
ears to the head instead of the shoes as shown in Figure 5.2 c).

To obtain the desired solution, we make use of a dilation, an operation from
mathematical morphology. To examine if two regions are close to each other in
a certain direction we dilate one of the regions in this direction and compute the
overlap between the dilation and the second region. For the teddy example, we
want to penalize that head and shoes are close without considering any specific
direction. Therefore, we enlarge the region ‘shoes’ in all directions simultaneously
and compute the overlap with the region ‘head’ as shown in Figure 5.2. In this
way, we do not only consider directly neighboring pixels as close but we consider
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a) Original
b) Color-based
segmentation

c) Desired
segmentation

d) ‘Head’ e) ‘Shoes’ f) Dilation g) Overlap

Figure 5.2: Introducing midrange geometric priors. First row: Color-based seg-
mentation often fails. The ears of the bear are b) assigned the label ‘shoes’ instead of
c) being combined with the label ‘head’. Second row: The novel priors can be used to
penalize the ‘closeness’ of two labels, in this example d) ‘head’ and e) ‘shoes’. f) Dilation
of the indicator function ‘shoes’; g) Overlap of the dilated region ‘shoes’ (blue) and the
region ‘head’ (yellow). Appropriate penalties for such overlap (red) introduce semantic
information into the segmentation.

proximity with respect to arbitrary neighborhoods of any size, shape or direction,
which allows us to introduce midrange geometric constraints. The size and shape
of these neighborhoods is determined by the structuring element of the dilation and
can thus be easily adapted.

5.3.1 A Continuous Formulation of the Dilation

Dilation is one of the basic operations in mathematical morphology. Since we ul-
timately aim at introducing the dilation operation into a continuous energy opti-
mization problem instead of using a suboptimal two-step procedure, we require a
continuous formulation of the dilation, which can be defined as follows:

Definition 10 (Dilation of an image [143]) Let I : Ω → Rd be an image and S a
structuring element. The dilation of I by S is denoted by δS (I). The dilated value
at a given pixel x ∈ Ω is given as follows:

[δS (I)] (x) = sup
z∈S

I(x+ z). (5.7)
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Thus, the dilation result at a given location x in the image is the maximum
value of the image within the window defined by the structuring element S, when
its origin is at x.

5.3.2 Introducing Midrange Geometric Constraints

To compute the proximity of two labels, we first introduce the notion of an extended
region indicator function ui denoted by di : Ω → {0, 1}, which dilates the indicator
function in a specific direction and distance (see Figure 5.2 and Definition 10):

di(x) := [δSi(ui)] (x) = sup
z∈Si

ui(x+ z). (5.8)

The set Si determines the type of geometric spatial relationship we want to
penalize for label i, i.e. distance and direction, for example ‘less than 20 pixels
above’. Si is often denoted by structuring element. We will give a more detailed
explanation of Si in Section 5.3.3.

To detect if two regions i and j are close to each other, we compute the overlap
of the extended indicator function di and the indicator function uj, as shown in
bright red in Figure 5.2 g). For each two regions i and j we can now penalize their
proximity by means of the following energy term:

Egeom(u) =
∑

1≤i<j≤n
A(i, j)

∫
Ω

di (x)uj (x) dx. (5.9)

The penalty matrix A ∈ Rn×n
≥0 indicates the penalty for the occurrence of label j in

the proximity of label i. Information on how to define or learn this matrix are given
in Section 5.3.4.

5.3.3 Structuring Elements

The dilation operation requires a structuring element (SE) for probing and expand-
ing label indicator functions. The option to use structuring elements of different
sizes and shapes is one of the major benefits of the proposed algorithm.

There are many different ways to define SEs. We can specify one set Si for
each label i. If Si is for example a line we can penalize the proximity of specific
labels in specific directions, e.g . the occurrence of a book below a sign (compare
Figure 5.4 c). Symmetric sets of specific sizes consider the proximity of two labels
without preference of a specific direction. Sparse sets Si as shown in Figure 5.3 c,d)
lead to similar results but can speed up the runtime. Examples for structuring
elements are shown in Figure 5.3 and their application in Figure 5.4.

The larger Si the more pixels are considered adjacent to x. Let the occurrence of
label j in the proximity of label i be denoted by i ∼Si j. If training data is available
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(0,0)

(0,-1)

(0,1)

(0,-2)

(0,-d)

(0,2)

(0,d)

(0,0)

(1,1)

(d,-d)

(d,d)

(0,-1)

(-1,1)

(0,0) (1,0)

(1,-k) (d,-k)

(0,0)(-1,0)(-2,0)(-3,0)(-d,0)

Figure 5.3: Horizontal, vertical and sparse structuring elements. Knowledge of
the occurrence of regions above/below or left/right within a distance d can be included
by using different structuring elements. Each structuring element has an origin which is
indicated in dark gray. a) The vertical line dilates a region d pixels upward and downward,
b) the horizontal line centered on the rightmost pixel enlarges a region d pixels to the right.
c,d) To save computation time sparse structuring elements can be used. White pixels are
chosen randomly and left out, i.e. they are not included in the set S. c) A sparse element,
which dilates to the bottom, right and left. d) A sparse element, which dilates equally in
all directions and thus only regards pixel distance.

a) Original image b) - d) Indicator function extended by different sets Si.

Figure 5.4: Impact of structuring elements. Different sets Si convey different geo-
metric priors. The light pink color illustrates the extended ‘sign’ region. b) Symmetric
sets Si only consider object distances, but are indifferent to directional relations. c) If Si is
chosen as a vertical line centered at the bottom, the indicator function of the region ‘sign’
is extended to the bottom of the object, e.g . penalizing ‘book’ appearing closely (within
d pixels) below ‘sign’. d) Horizontal lines penalize labels to the left and right.
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Figure 5.5: SEs and penalty matrix A learned on the Penn-Fudan training set
(label colors according to benchmark conventions). We penalize the labels ‘lower clothes’,
‘legs’ and ‘shoes’ above ‘face’, as well as ‘hair’, ‘face’, ‘upper clothes’ and ‘arms’ below
‘shoes’.

we can learn the probabilities P (i ∼Si j) for different types and sizes of SEs and
then define Si as the SE which provides the highest information gain for label i.

The information gain for a label i and structuring element S can be computed
by means of the Shannon entropy [135]:

H(i,S) = −
∑

j∈{1,..,n}
j 6=i

P (i ∼S j) · log
(
P (i ∼S j)

)
. (5.10)

The probabilities P (i ∼S j) can e.g . be obtained by estimating the relative fre-
quencies of the labels within the range of the selected structuring element S in the
training data. We can either treat the relative frequencies as a joint probability
distribution, which requires normalization by the sum of all elements, or we can
treat it as a conditional distribution, which requires normalization per label sepa-
rately. In the first case, the occurrence probability of each label is inherently part
of the estimated probability distribution, i.e. labels occurring rarely in the training
data also occur rarely close to other labels. The second case removes the influence
of the frequency of label occurrences and only judges if a second label is common
within the vicinity of a first label, which is already given. A slightly different way,
which does not involve probability distributions, is to count all pairwise label co-
occurrences in the training data weighted by their inverse distance in a matrix BS ,
to normalize BS and then to estimate P (i ∼S j) by BS(i, j). For the Penn-Fudan
dataset and different types and sizes of SEs for each label (except the ‘background’),
for example, we use the latter approach and obtain the SEs in Figure 5.5.

Note that the optimal structuring element Si for label i will be dependent on
the viewpoint. According to whether a scene is captured from a front or a top view,
the size, shape and position of the objects in the scene varies in the captured image.
Hence, to define one structuring element Si for all labels i in a benchmark, some
uniformity of the training and test images has to be assumed.

If a learning approach is not desired or not possible due to lack of training images
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Figure 5.6: Penalty matrix A learned on the MSRC training data (objects are color
coded corresponding to benchmark convention in first row and column). The lighter the
color the more likely is the co-occurrence of the corresponding labels within the relative
spatial context, and the lower is the corresponding penalty.

or non-uniformity of the dataset, appropriate sets Si can easily be chosen manually
as done for the experiments in Figures 5.9 and 5.10 in Figure 5.7.

5.3.4 Specification of the Penalty Matrix

To introduce the novel geometric priors into the original optimization problem
in (5.2), we have to define the penalty matrix A ∈ Rn×n

≥0 in (5.9). Each entry A(i, j),
i 6= j indicates the penalty for the occurrence of label j in the proximity of label i,
where the proximity is defined by the respective structuring element Si. For i = j
we set A(i, i) := 0.

If training data is available we can learn the probabilities P (i ∼Si j) as de-
scribed in Section 5.3.3 and define the entries A(i, j) for label j being close to
label i, e.g . by A(i, j) := min(− log(P (i ∼Si j)),m) with a fixed number m ∈ N.
This assigns a penalty close to zero to frequent and a penalty of m to less frequent
co-occurrences. For the MSRC benchmark and a symmetric set S of size 9 × 9 for
all labels, for example, we estimate P (i ∼S j) by BS(i, j) (compare Section 5.3.3)
and define A(i, j) := min(− log(BS (i, j)), 20) and obtain the penalty matrix in Fig-
ure 5.6. The first column in Figure 5.6, e.g ., indicates that the occurrence of ‘build-
ing’ close to ‘tree’ or ‘sky’ is very likely (light colored cells), whereas the occurrence
of ‘building’ close to ‘sheep’ is very unlikely (dark colored cell).

If there is no appropriate training data available or if a learning approach is
not desired, the penalty matrix A can easily be defined by hand as done for the
experiments in Figures 5.9 and 5.10 in Figure 5.7.
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Set Si Matrix A

, d = 15 Head 0 12 0 12 0

, d = 20 Arms 12 0 0 12 0

, d = 50 Shirt 12 12 0 0 0

, d = 20 Legs 24 24 0 0 0

- Background 0 0 0 0 0

Set Si Matrix A
- Head 0 0 0 0 0 0 0

, d = 20 Jacket 10 0 0 0 0 0 0

, d = 20 Trousers 10 0 0 50 0 0 0

- Hands 0 0 0 0 0 0 0

- Feet 0 0 0 0 0 0 0

- Background 0 0 0 0 0 0 0

, d = 25 Weapon 10 0 0 0 0 0 0

Figure 5.7: Penalty matrix A and corresponding structuring elements (SE) de-
fined to improve the segmentation results in Figures 5.9 and 5.10. For each label a specific
SE with specific size d has been chosen by the user. For each label pair the corresponding
matrix entry indicates the penalty in case these labels appear close to each other in the
specified direction.

5.3.5 Real-World Examples

We demonstrate the impact of the novel midrange geometric priors by means of two
examples shown in Figures 5.8, 5.9 and 5.10. The corresponding color-legend can
be found in Figure 5.11.

Figure 5.7 gives an overview of the structuring elements and the penalty matrices
defined for the segmentation of the soccer player and the fighters. For each label i
an individual structuring element Si with specific size d has been defined by the
user. In the example of the soccer player we penalize the label ‘head’ being close
to ‘arms’, below ‘shirt’ or below ‘legs’, as well as ‘arms’ below ‘shirt’ or ‘legs’. For
the fighters, we penalize the occurrence of ‘head’ below ‘jacket’, close to ‘trousers’
or close to ‘weapon’. Furthermore, we penalize ‘hands’ next to ‘trousers’.

Figure 5.8 shows the generation of the extended indicator functions di by means
of different structuring elements from the original indicator functions ui.

Figures 5.9 and 5.10 show how segmentation results can be improved by imposing
midrange geometric constraints by penalizing the overlap of the specified indicator
functions.
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a) Original image b) ui c) Set Si d) di = δSi(ui)

Figure 5.8: Effect of different sets Si shown by means of the extended region indicator
functions di. a) Original images and b) indicator functions ui for the ‘weapon’ region of
the fighters and the ‘shirt’ and ‘legs’ region of the soccer player. c) Sets Si chosen for
the dilation. Top: Symmetric sets Si consider proximity in all directions. Center: If S
is chosen as a vertical line centered at the bottom, the indicator function of the region
‘shirt’ is extended to the bottom of the object, e.g . penalizing ‘head’ appearing below
‘shirt’. Bottom: Horizontal lines penalize labels to the left and right and can be extended
to probe downwards to the left and right. Sparse sets save runtime. d) Extended indicator
functions obtained with Si.
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a) Original image b) Color-based result c) Novel geometric priors

d) ‘Head’ e) ‘Weapon’ f) Extended ‘weapon’ g) Overlap of d,f)

Figure 5.9: Penalization of the proximity of the labels ‘head’ and ‘weapon’ for the
fighter image to improve the color-based segmentation in b), see Figure 5.11 for a color
legend. d,e) Region indicator functions ui for ‘head’ and ‘weapon’. f) Extended region
indicator function di for ‘weapon’. g) Bright red indicates the penalized overlap. The
overlap of the head with the weapon forces the weapon to retract in the area of the head.
Using several geometric constraints together yields the result in c).

a) Original image b) ‘Head’ c) ‘Arms’ d) ‘Shirt’

e) Color-based f) Extended ‘shirt’ g) Overlap of b,c,f) h) Novel priors

Figure 5.10: Effect of novel geometric constraints, which improve the color-based
segmentation in e) for the soccer player image, see Figure 5.11 for a color legend. b-d) Re-
gion indicator functions ui for ‘head’, ‘arms’ and ‘shirt’. f) Extended indicator function di
for the shirt region. g) The overlap of the head and the arms with the dilated shirt force
the shirt in the top of the image to retract and the head to disappear from the trousers.
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5.4 Integrating the Geometric Constraints into a

Convex Optimization Problem

After introducing and defining the novel midrange geometric constraints (5.9) with
A ∈ Rn×n

≥0 it remains to integrate these constraints into the original convex opti-
mization problem for segmentation (5.2)

min
u∈G

E(u) + Egeom(u) = (5.11)

min
u∈G

sup
ξ∈K

n∑
i=1

∫
Ω

(fi − div ξi)ui dx+
∑

1≤i<j≤n
A(i, j)

∫
Ω

diuj dx (5.12)

s.t. di(x) = [δSi(ui)] (x) = sup
z∈Si

ui(x+ z), (5.13)

G =

{
u ∈ BV (Ω; {0, 1}n)

∣∣∣ n∑
j=1

uj (x) = 1 ∀ x ∈ Ω

}
, (5.14)

K =

{
ξ ∈ C1

c

(
Ω;R2×n) ∣∣∣ |ξi(x)| ≤ λg(x)

2

}
. (5.15)

5.4.1 A Convex Relaxation of the Midrange Geometric
Constraints

In the following we will propose a convex relaxation of the segmentation prob-
lem (5.2) combined with the proposed priors in (5.9) as stated in (5.11)-(5.15).
To obtain a convex optimization problem, we require convex functions over convex
domains.

Relaxation of the Binary Functions ui

The general multi-labeling problem is not convex due to the binary region indica-
tor functions ui : Ω → {0, 1} in (5.14). To obtain a convex problem where each
pixel is assigned to exactly one label, instead of optimizing over the set G in (5.14)
optimization is carried out over the convex set

U =

{
u ∈ BV (Ω; [0, 1]n)

∣∣∣ n∑
j=1

uj (x) = 1 ∀ x ∈ Ω

}
.

Relaxation of the Dilation Constraints

The dilation constraints in (5.13) are relaxed to

di (x) ≥ ui (x+ z) ∀ x ∈ Ω, z ∈ Si. (5.16)
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By simultaneously minimizing over the functions di we can assure that at the opti-
mum di fulfills the constraints in (5.13) exactly. The inequality (5.16) can easily be
included in the segmentation energy by introducing a set of Lagrange multipliers βiz
and adding the following energy term:

min
d∈D

max
β∈B

n∑
i=1

∑
z∈Si

∫
Ω

βiz (x)
(
di (x)− ui (x+ z)

)
dx, (5.17)

B =
{
βiz
∣∣ βiz : Ω→ [−∞, 0] ∀ z ∈ Si, i = 1, .., n

}
,

D = BV (Ω; [0, 1]n) .

Relaxation of the Product of the Indicator Functions

The product of the dilation di and the indicator function uj in (5.12) is not con-
vex. A convex, tight relaxation of such energy terms was given by Strekalovskiy et
al . [148]. To this end, we introduce additional dual variables qij and Lagrange
multipliers αij:

Q =
{
qij
∣∣ qij : Ω→ R4, 1 ≤ i < j ≤ n

}
, (5.18)

A =
{
αij
∣∣ αij : Ω→ [−∞, 0]4 , 1 ≤ i < j ≤ n

}
.

Resulting Optimization Problem

After carrying out these relaxations we finally obtain the following convex energy
minimization problem

min
u∈U
d∈D
α∈A

max
ξ∈K
β∈B
q∈Q

n∑
i=1

{∫
Ω

(
fi (x)− div ξi (x)

)
ui(x) dx+

∑
z∈Si

∫
Ω

βiz(x)
(
di (x)− ui (x+ z)

)
dx

+
n∑

j=i+1

∫
Ω

q1
ij(x)

(
1− di(x)

)
+ q2

ij(x) di(x) + q3
ij(x)

(
1− uj(x)) + q4

ij(x)uj(x)

+ α1
ij(x)

(
q1
ij(x) + q3

ij(x)
)

+ α2
ij(x)

(
q1
ij(x) + q4

ij(x)
)

(5.19)

+ α3
ij(x)

(
q2
ij(x) + q3

ij(x)
)

+ α4
ij(x)

(
q2
ij(x) + q4

ij(x)− A(i, j)
)
dx
}
.

The projections onto the respective convex sets of ξ, d, β and α are done by sim-
ple clipping while that of the primal variable u is a projection onto the simplex
in Rn [103].
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5.4.2 Implementation

In the previous sections, we proposed our method in a continuous framework with
the image domain Ω ⊂ R2. For this reason we discretize the problem using a regular
Cartesian grid [41] as is commonly done, e.g . [121]. In order to find the globally
optimal solution to this relaxed convex optimization problem, we employ the primal-
dual algorithm published in [122]. Optimization is done by alternating a gradient
descent with respect to the functions u, d and α and a gradient ascent for the dual
variables ξ, β and q interlaced with an over-relaxation step in the primal variables.
The step sizes are chosen optimally according to [120].

Due to the inherent parallel structure of the optimization algorithm [122], each
pixel can be updated independently. E.g ., the update of the indicator function u(x):
un → un+1 can be computed in parallel for each pixel x ∈ Ω. Hence, the approach
can be easily parallelized and implemented on graphics hardware. We used a parallel
CUDA implementation on an NVIDIA GTX 680 GPU.

We stopped the iterations when the average update of the indicator function u(x)
per pixel was less than 10−5, i.e. if

1

|Ω|
∣∣uk − uk−1

∣∣ < 10−5. (5.20)

By relaxing the indicator variables, i.e. allowing the primal variables ui to take on
intermediate values between 0 and 1, we may end up with non-binary solutions. In
order to obtain a binary solution to the original optimization problem, we assign each
pixel x to the label L with maximum value after optimizing the relaxed problem:

L (x) = arg max
i
{ui (x)} , x ∈ Ω. (5.21)

We observed that the computed relaxed solutions u are binary almost everywhere.
For the benchmark experiments, the computed solutions ui(x) < 0.01 or ui(x) > 0.99
for 97-98% of all pixels x ∈ Ω and i = 1, . . . , n and for 2-3% ui(x) ∈ [0.01, 0.99].

5.5 Experiments and Results

We have shown how to integrate midrange geometric priors into a variational multi-
label approach and gave a convex relaxation of the resulting optimization problem.
One of the major advantages of the proposed algorithm is that we can utilize sets Si
of different sizes and shapes which allow us to define specific neighborhoods of
different spatial extent and direction for each label. In the following we will show
qualitative and quantitative results for a number of articulated part-based objects
such as humans, animals or clothes from the CMU-Cornell iCoseg [22], People [124]
and Penn-Fudan dataset [167], for rigid part-based objects such as cars or bicycles as
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Figure 5.11: Color legend used in all experiments except for the benchmarks which have
their own color coding.

well as for a variety of scenes in the MSRC benchmark, for the recognition of facades
on the eTRIMS image database [81] and for the task of geometric class labeling of
indoor images [93].

For the iCoseg and People dataset, we defined the labels: ‘hair’, ‘face’, ‘shirt’,
‘jacket’, ‘hands’, ‘trousers’, ‘feet’, ‘socks’, ‘shoes’, ‘weapon’ and ‘background’. The
corresponding colors are indicated in Figure 5.11 and consistently used for all ex-
periments except for the benchmarks which have their own standard color legends.1

5.5.1 Part-based Articulated Objects: Humans, Animals,
Clothes

Articulated objects such as humans, animals and clothes are hard to segment cor-
rectly since there are few things that remain constant over a set of images and thus
suitable for formulating useful constraints, for example color, shape or absolute lo-
cation priors are not suitable. Yet, what is typical for many of these objects is that
they obey relative geometric constraints, which relate to specific directions and dis-
tances and which can be formulated within the proposed framework of the midrange
geometric constraints. Especially humans, animals and clothes are good examples
for objects, which are difficult to segment, but still follow strict rules imposed on
their parts, e.g . the head is usually above the feet and trousers can be found below
the shirt and hands are usually close to arms.

Figures 5.12, 5.13 and 5.14 show segmentation results for humans, clothes and

1The Pascal VOC dataset is not appropriate for the evaluation of the proposed midrange
geometric priors since the images of the Pascal VOC segmentation task consist of only very few
(often only one) objects and large ‘background’ areas. 64%/90% of the images contain less or
equal one/two objects. The proposed constraints, however, allow to discourage the occurrence
of labels in the vicinity of each other, e.g . that ‘sky’ lies above ‘ground’ or that the ‘shoes’ of a
person appear below the ‘head’. We therefore chose datasets with more than three labels for the
benchmark evaluations.
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a) Original images

82.15 90.95 81.76 56.44 75.58

b) Color-based segmentation (solution of Equation (5.2))

91.14 (+8.99) 92.78 (+1.83) 89.57 (+7.81) 61.57 (+5.13) 79.94 (+4.35)

c) Segmentation with novel constraints

Figure 5.12: Part-based articulated objects such as humans or clothes. Improved
segmentation results can be obtained by introducing the proposed novel midrange geo-
metric constraints in order to introduce prior knowledge of relative location, direction and
distance of body parts, e.g . we penalize ‘trousers’ above ‘body’, ‘head’ and ‘arms’ below
‘legs’ and ‘shirt’ next to ‘shoes’. The dice-score (and the improvement over the color-based
segmentation) is given in white in the bottom left image corner.
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a) Original images

85.58 75.79 86.92 81.83

b) Color-based segmentation (solution of Equation (5.2))

90.00 (+4.42) 87.87 (+12.08) 88.00 (+1.08) 83.85 (+2.02)

c) Segmentation with novel constraints

Figure 5.13: Part-based articulated objects such as animals or humans. We
obtain improved segmentation results for further articulated objects based on the proposed
midrange geometric constraints, e.g . we penalize ‘feet’ close to ‘beak’ or ‘shoes’ above
‘hair’. The bottom left corner of each image shows the dice-score (and the improvement
over the color-based segmentation).

animals. Since no training data is available for the iCoseg and People dataset,
we manually defined the structuring elements Si and the penalty matrix A. For
example, we penalize ‘arms’ and ‘trousers’ next to one another using a 31 × 31
sparse symmetric structuring element as well as ‘hair’ and ‘face’ next to ‘hands’
by a 51 × 51 sparse symmetric element Si (compare Figure 5.3 d) for d = 15, 25).
Furthermore, we penalize ‘head’ below ‘body’ by a 25 pixel high vertical element
centered at the bottom. Each structuring element is selected such that it reflects
the common label proximities of the specific dataset. ‘Arms’, e.g ., mostly appear
closer to ‘trousers’ than ‘hands’ next to ‘hair’. Thus, the structuring elements are
chosen such that ‘hands’ and ‘hair’ are penalized within a larger distance (d = 25)
than the labels ‘arms’ and ‘trousers’ (d = 15).

For the experiments on the Penn-Fudan dataset (Figure 5.14) we used the learn-
ing approach introduced in Section 5.3.3 and obtained the penalty matrix A and
structuring elements Si shown in Figure 5.5. For example, we penalize the label
‘shoes’ appearing closely (within 50 pixels) below ‘hair’ and the label ‘face’ appear-
ing closely above ‘lower clothes’. Figure 5.14 shows that the proposed constraints
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43.49 43.17 47.88 41.27 53.24

52.72 47.86 46.43 54.85 58.02

57.70 50.21 42.72 63.97 68.89

a) Original b) Ind. min- c) [82] d) Bo and e) Solution f) Proposed g) Ground
image imizing (5.6) pixel-b. Fowlkes [29] of Eq. (5.2) priors truth

Figure 5.14: Improved results on the Penn-Fudan dataset using the learned penalty
matrix A and structuring elements Si shown in Figure 5.5. The proposed novel midrange
geometric constraints allow to obtain improved segmentation results by capturing richer
semantic information on spatial object inter-relations of part-based articulated objects
such as humans.
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improve the semantic labeling of the images compared to c) the pixel-based approach
by Ladicky et al . [82], d) the approach by Bo and Fowlkes [29] who provided the
ground truth annotations and e) the color-based segmentation (solution of Equa-
tion (5.2)). In the top row, e.g ., the incorrect label transition from ‘face’ to ‘lower
clothes’ is penalized with the novel constraints and the correct label ‘upper clothes’
is selected.

To allow for a quantitative analysis, we provide the dice-scores (and the improve-
ment over the color-based segmentation) in the bottom left corner of each image.
The dice-score [52] is given as

2 · True Positives · 100

2 · True Positives + False Negatives + False Positives
. (5.22)

Since no multi-label ground truth segmentations are available for the iCoseg and
People datasets, we therefore created accurate ground truth labelings (compare Fig-
ure 5.1 d). The qualitative results show improvements up to 12% of the novel
constraints over the color-based segmentation. The novel midrange geometric priors
capture richer semantic information and thus allow for a correct semantic interpre-
tation. A discussion of the quantitative results on the Penn-Fudan dataset will be
given in Section 5.5.6.

5.5.2 Part-based Rigid Objects

An obvious application of the proposed priors are rigid objects consisting of several
parts, which is often the case for man-made objects such as cars or bicycles. Using
the proposed framework we can improve segmentation results of these objects with
all their parts by integrating the proposed priors. Figure 5.15 shows results for a set
of part-based rigid objects. For example we penalize ‘headlight’ and ‘window’ next
to each other and ‘tires’ next to ‘headlight’ by using 41× 41 sparse symmetric ele-
ments Si (compare Figure 5.3 d) for d = 20). The dice-scores (cf. Equation (5.22))
show a significant improvement of more than 6% compared to the color-based seg-
mentation.

5.5.3 Scene Segmentation

The proposed constraints are not only useful for part-based objects but can as well
be applied to scene segmentation. The same geometric rules that apply to object
parts also apply to whole objects within scenes, for example we know that the sky is
above the ground and that sheep do not appear close to wolves. In the following, we
show results for a variety of scenes in the MSRC benchmark, for the task of facade
recognition on the eTRIMS dataset [81] and for the task of geometric scene labeling
of indoor images [93].
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a) Original images

83.30 80.34 80.19

b) Color-based segmentation (solution of Equation (5.2))

90.94 (+7.63) 86.91 (+6.57) 92.35 (+12.17)

c) Segmentation with novel constraints

Figure 5.15: Part-based rigid objects such as cars or bicycles. We obtain improved
segmentation results by imposing the novel geometric priors. For example we penalize
‘tires’ above ‘window’ or ‘handlebar’ close to ‘tires’.

MSRC Scene Segmentation

In Figure 5.16 we show several results from the MSRC benchmark. We compare our
results to previous approaches, which incorporate semantic constraints. The global
co-occurrence priors by Ladicky et al . [82] penalize the simultaneous occurrence of
specific label sets, but they exhibit two drawbacks: a) The quality of the results
depends on the quality of the superpixel partition, which is done prior to any seg-
mentation. This can lead to segmentations such as the cat in Figure 5.16 fifth row,
where only the black image parts are considered as ‘cat’. b) They altogether disre-
gard spatial information. Since the penalty is independent of the size of the regions
and their location in the image, the prior is sometimes not strong enough to prevent
incorrect label combinations. As a consequence, if more pixels vote for a certain
label then they may easily overrule penalties imposed by the co-occurrence term.
This can lead to segmentations such as the sheep with cow head (see Figure 5.16
first row) despite a large co-occurrence cost for ‘sheep’ and ‘cow’. Other examples
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building building building

a) Original b) Solution c) Global co-oc. d) Local non- e) Proposed
of Eq. (5.2) prior [82] metric prior [149] geometric priors

Figure 5.16: Improved results on the MSRC benchmark. Midrange geometric priors
capture richer semantic information on spatial object inter-relations such as distances,
direction and relative location than previous approaches such as global co-occurrence [82]
or local co-occurrence [149].
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are the sign above the book (third row) or the cat below the water (seventh row)
despite large costs for ‘sign’ and ‘book’ or ‘water’ and ‘cat’.

The local nonmetric prior by Strekalovskiy et al . [149] can be understood as a
purely local co-occurrence prior since it only considers directly adjacent pixels as
close. If two sheep are standing further apart as in the second row then this case is
not penalized by the prior, which can lead to a sheep and a cow close to each other.
Besides, this method can easily produce ghost regions, see Section 5.5.5.

There is no notion of distance, direction or proximity in each of the ap-
proaches [82, 149]. In contrast, the proposed label cost penalty is proportional
to the size of the labeled regions and also effects object labels at larger spatial dis-
tances. Hence, the proposed priors are more flexible and allow for the integration of
more specific information, which improves segmentation results as shown in the last
column e) of Figure 5.16. The result of the cat (see Figure 5.16 fifth row), e.g ., shows
that we can avoid problems which appear due to prior superpixel segmentations.

Facade Parsing on the eTRIMS Dataset

We applied our method for the recognition of facades on the 8-class eTRIMS facade
dataset [81]. The following eight object classes are considered: ‘sky’, ‘building’,
‘window’, ‘door’, ‘vegetation’, ‘car’, ‘road’ and ‘pavement’.

In Figure 5.17 we present five examples of facade segmentations. In columns
one and two, the incorrect label transition from ‘window’ (blue) to ‘door’ (yellow)
is corrected with the novel constraints by penalizing the appearance of ‘window’
close to ‘door’. In columns three and four, the wrong labeled ‘sky’ pixels (cyan)
in the middle of the building disappear by claiming that no other region appears
above ‘sky’. The combination of both constraints improves the segmentation in the
rightmost column, where both the incorrect ‘sky’ and the incorrect ‘door’ pixels are
removed with the novel constraints.

A first quantitative comparison is provided by the dice-scores. A concrete bench-
mark analysis will be given in Section 5.5.6.

Geometric Class Labeling of Indoor Images

In tasks like 3D reconstruction or vision-guided robot navigation a rough labeling
of the environment is essential. In particular, the geometric classes such as ‘floor’
or ‘right wall’ are of importance. We therefore applied our novel constraints on the
dataset of indoor images from Liu et al . [93] with the five-regions layout: ‘left wall’
(yellow), ‘floor’ (green), ‘right wall’ (pink), ‘ceiling’ (blue) and ‘center’ (cyan).

Knowing, for example, that except the ceiling no other region appears above
the left wall, the incorrect labels within the region ‘left wall’ can be removed. The
midrange geometric constraints can, e.g ., be defined such that they penalize ev-
erything above ‘ceiling’ and everything above ‘left’/‘right’/‘center’ except ‘ceiling’.
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a) Original image

75.06 52.66 62.00 66.60 76.07

b) Color-based segmentation (solution of Equation (5.2))

75.91 (+0.85) 59.26 (+6.59) 63.13 (+1.13) 70.50 (+3.89) 77.50 (+1.43)

c) Segmentation with novel constraints

d) Ground truth

Figure 5.17: Improved labeling of facades on the eTRIMS benchmark. By penalizing
‘window’ (blue) close to ‘door’ (yellow) and by claiming that no other region appears above
‘sky’ (cyan) the incorrectly labeled ‘door’, ‘window’ and ‘sky’ pixels disappear.
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Results for six different images with the corresponding dice-scores are shown in
Figure 5.18. A quantitative benchmark analysis will be given in Section 5.5.6.

5.5.4 Analysis of Failure Cases

In order to evaluate the strengths and weaknesses of our approach we looked into
a number of failure cases on the MSRC benchmark and compared our results to
the index minimizing the appearance model (5.6) and the results by Ladicky et
al . [82] and Strekalovskiy et al . [149], see Figure 5.19 for some examples. After
close investigation of many cases we can formulate one main reason for incorrect
labelings:

The appearance term (see Section 5.2.2, Equation (5.6)) used by all three ap-
proaches favors incorrect labels over the correct one (Figure 5.19 c). Take for ex-
ample the ‘building’ which occurs in the first row in all three results instead of the
correct label ‘boat’. Since the appearance term clearly favors the white color to be-
long to a ‘building’ and ‘building’ and ‘water’ is not an uncommon combination in
the penalty matrix we obtain incorrect labels. The same happens for the examples
in the central and bottom row, where the appearance term yields lots of incorrect
labels. Since the appearance term favors ‘building’ over ‘sign’ in the bottom row (see
column c) and the proposed priors do not favor ‘sign’ close to ‘sky’ over ‘building’,
the incorrect segmentation results. This happens in a similar way in the central row,
where the appearance term suggests ‘car’ next to ‘road’ and ‘water’. Since ‘car’ is
more likely to occur above ‘road’ than ‘water’ the water is assigned the label ‘road’.

Even though none of the methods yields good results for these images, the pro-
posed novel constraints at least yield a reasonable combination of labels in contrast
to the other methods. These failure cases suggest that improvements of the method
can be gained by using better appearance models.

5.5.5 Preventing Ghost Labels

‘Ghost labels’ denote thin artificial regions which are easily introduced if label dis-
tances are learned from training data, see for example [149]. If the distance function,
i.e. the penalty matrix A, does not obey the triangle inequality ‘ghost labels’ can
appear. They reduce costs of direct label transitions by taking a ‘detour’ over a
third, unrelated but less expensive label. For example, the labels sheep and grass
are common next to each other, and the same holds for cow and grass, but cows
usually do not occur directly next to sheep, so the triangle inequality is violated.

Examples are given in Figure 5.20 b) with a close-up in Figure 5.20 c). The seg-
mentation result obtained by [149], e.g ., contains very thin ‘boat’ regions at the edge
of the ‘grass’ label, because the transition between the labels ‘water’ and ‘boat’ and
‘boat’ and ‘grass’ is in sum less costly than the direct transition between ‘water’ and
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86.59 89.84 94.43

90.32 92.27 94.04

85.60 89.01 90.91

83.88 88.55 90.51

81.84 86.82 91.84

87.09 89.58 93.35

a) Original b) Index min- c) Solution d) Proposed e) Ground truth
image imizing (5.6) of Eq. (5.2) geometric priors segmentation

Figure 5.18: Corrected layout of labels. The novel priors allow a correct segmentation
of the corridors by including directional relations such as that the floor usually is below
the ceiling.
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a) Original b) Ground c) Index min- d) Global co- e) Local non- f) Proposed
truth imizing (5.6) occ. prior [82] metric pr. [149] geom. priors

Figure 5.19: Analysis of failure cases. For a thorough evaluation we looked into
the failure cases of our approach and compared to the index minimizing the appearance
term (5.6) and the results of [82] and [149]. We identified one main reason: the appearance
term favors incorrect labels.

a) Original b) Local [149] c) Zoom of b) d) Geom. prior e) Zoom of d)

Figure 5.20: Midrange geometric priors prevent ghost labels. If the transition of
two labels is cheaper via a third label artificial labels will be introduced as shown in b)
and as close-up in c). The proposed geometric priors consider regions with more than
one-pixel distance still as adjacent and thus avoid ghost labels.
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‘grass’. The computed label distance matrix denotes the following distances [149]:

d(‘grass’, ‘water’) = 7.0 > 4.7 = d(‘grass’, ‘boat’) + d(‘boat’, ‘water’),

thus, the more costly label transition from ‘grass’ to ‘water’ is avoided by introducing
infinitesimal ‘boat’ regions.

The proposed geometric priors prevent ghost regions since the size of the struc-
turing element is usually larger than two pixels and thus considers more than a
single pixel wide margin as close to the object. This leads to overlaps in indicator
functions which are larger than a single pixel and thus much more expensive than
in the approach by Strekalovskiy et al . [149], see for example our results in Fig-
ure 5.20 d) with a close-up in Figure 5.20 e). Our learned penalization matrix A,
e.g ., indicates the following penalties:

A(‘grass’, ‘water’) = 6.2 < 9.6 = A(‘grass’, ‘boat’) + A(‘boat’, ‘water’).

Thus, the direct transition from ‘grass’ to ‘water’ is favored in the optimization
process.

5.5.6 Benchmark Evaluation

In the following we will show quantitative results on the aforementioned bench-
marks and compare our segmentations to state-of-the-art approaches for seman-
tic labeling. For the benchmark analysis, we computed three different evalua-
tion scores. The scores denote the average accuracy on the benchmark given as

True Positives · 100
True Positives+False Negatives

per pixel and per class and the dice-score averaged over all

images. The dice-score [52] additionally takes the false positives into account and is
given in Equation (5.22).

We measure the labeling accuracies using the different evaluation scores and
using different evaluation regions. The evaluation region can be the whole image
domain or restricted to a band surrounding the region boundaries. The restricted
evaluation regions are called trimap [78]. An exemplary trimap with an evaluation
band width of 13 is illustrated in gray in Figure 5.21 c).

Penn-Fudan Benchmark Scores

The Penn-Fudan pedestrian benchmark [167] includes 169 images with an aver-
age resolution of 290 × 116 pixels and 12 different labels such as ‘hair’, ‘face’, ‘left
leg’ or ‘right leg’. We follow Bo and Fowlkes [29] and combine the left and right
hand/leg/shoe to one region each, resulting in the 8 different labels: ‘hair’, ‘face’,
‘upper clothes’, ‘lower clothes’, ‘arm’, ‘leg’, ‘shoes’, ‘background’2. For the bench-
mark experiments, we divided the image set randomly into 60% training and 40%

2Note that Bo and Fowlkes [29] additionally neglected the region ‘shoes’.
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a) Original image b) Ground truth segm. c) Trimap of b) d) Trimap segm. of b)

Figure 5.21: Ground truth and trimap segmentations. We evaluate the perfor-
mance using different evaluation domains: b) The whole image domain; c,d) trimap of b)
generated by taking a 13 pixel band surrounding the object boundaries.

Table 5.1: Penn-Fudan benchmark scores. The proposed constraints outperform the
related state-of-the-art segmentation algorithms on the Penn-Fudan benchmark. The best
results are given in bold.
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whole image domain trimap (width 13)
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Index minimizing (5.6) 66.97 67.81 55.63 58.09 64.28 53.28
Solution of Equation (5.2) 72.83 70.61 59.98 65.93 68.03 58.58
Ladicky et al . [82] pixel-based 71.84 67.36 57.21 64.62 64.70 55.52
Bo and Fowlkes [29] - 57.29 - - - -
Luo et al . [97] - 54.7 - - - -
Proposed midrange geometric priors 73.84 70.78 60.65 67.00 68.26 59.15

test images and learned the penalty matrix A and structuring elements Si (see Fig-
ure 5.5) as described above in Section 5.3.3. The parameter lambda is set to λ = 0.8.

In Tables 5.1 and 5.2 we compare the performance of our method with the ap-
proaches by Ladicky et al . [82] for the pixel-based prior, Bo and Fowlkes [29] with the
shape-based model and the recently proposed work of Luo et al . [97] for pedestrian
parsing. Furthermore, we present the accuracy of the index minimizing the appear-
ance model (5.6) and the solution of the approach without geometric priors, i.e. the
solution of Equation (5.2). We evaluate the performance of the approaches on the
whole image domain and on the trimap with band width 13. Table 5.1 shows that
the proposed midrange geometric constraints outperform the related state-of-the-art
segmentation algorithms. In Table 5.2 we additionally compare the confusion ma-
trices on both evaluation domains. Green colored values indicate that the proposed
method outperforms the comparative approach for this region. The proposed priors
achieve the best performance for the vast majority of regions.
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Table 5.2: Confusion matrix on the Penn-Fudan dataset obtained for the evaluation
on the whole image domain and on the trimap. The elements (i, j) represent the percent-
age of pixels labeled i by the method and j in the ground truth. We compare the difference
between our method and the comparison ones along the diagonal (shown in bold). The val-
ues are given in green when the proposed method outperforms the comparative approach,
in red otherwise.

Evaluation on the Evaluation on the
whole image domain trimap (width 13)
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Upper Clothes 9 1 1 78 5 6 0 0 10 1 2 73 6 7 0 0
Lower Clothes 7 0 0 7 78 2 1 5 8 0 0 7 76 2 1 6
Arms 16 0 4 23 5 53 0 0 16 0 4 23 5 53 0 0
Legs 19 0 0 0 22 3 51 6 19 0 0 0 22 3 51 6
Shoes 9 0 0 0 5 0 3 83 9 0 0 0 5 0 3 83

Index minimizing (5.6) 8 3 1 9 5 -4 1 0 13 4 1 12 6 -4 1 0
Solution of Eq. (5.2) 2 0 1 2 0 -2 0 -1 2 0 1 2 0 -2 0 -1
[82] pixel-based 3 1 5 1 0 3 12 2 4 2 5 0 0 3 12 2
Bo and Fowlkes [29] -9 36 10 3 7 27 9 - - - - - - - - -
Luo et al . [97] -13 36 17 0 3 28 1 - - - - - - - - -

MSRC Segmentation Benchmark Results

In the following we will show quantitative results on the MSRC database and com-
pare our segmentations to state-of-the-art approaches for semantic labeling.

The MSRC benchmark comprises 591 images with a resolution of 320× 213 pix-
els which contain 21 different labels such as ‘cow’, ‘book’, ‘building’ or ‘grass’. To
conduct experiments on this benchmark, we follow Ladicky et al . [82] and divide
the image set randomly into 60% training and 40% test images. For the benchmark
experiments we chose a symmetric set S of size 9 × 9 for all labels (compare Fig-
ure 5.3 d) and selected λ = 0.3. The proximity matrix A is learned on the training
set as described above in Section 5.3.4 and illustrated in Figure 5.6.

To evaluate the segmentation accuracy of the proposed method, in Table 5.3 we
compare the benchmark scores of our method to state-of-the-art segmentation algo-
rithms with co-occurrence priors: the approaches by Gould et al . [65] with relative
location priors, Ladicky et al . [82] for the pixel-based and the co-occurrence and hier-
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archical prior, Lucchi et al . [96] for the data pairwise global and local models, Vezh-
nevets et al . [161] for the weakly and fully supervised approach and Strekalovskiy et
al . [149] with the nonmetric distance functions for multi-label problems. Moreover,
we present the accuracy of the index minimizing the appearance model (5.6) and
the solution of Equation (5.2). The results indicate that we outperform the other
co-occurrence based methods in average class and pixel accuracy.

Note that the high score of the approach by Strekalovskiy et al . [149] does not
reflect the ghost label problem since a) these regions contain only very few pixels,
and b) these pixels occur in mostly unlabeled regions of the ground truth near
object boundaries, see the second column in Figure 5.19. However, the introduction
of entirely unrelated objects, albeit small ones, is often problematic for applications.

The benchmark results in general suggest rather small improvements for the in-
tegration of geometric spatial priors. This is somewhat surprising since the images
show strong improvements and the prior corresponds to typical human thinking. As
already mentioned by Lucchi et al . [96] who stated similar findings this is proba-
bly due to the rather crude ground truth of the benchmark with large unlabeled
regions especially at object boundaries, compare Figure 5.19 b). These regions are
not counted in the score, but nevertheless leave a lot of room for misclassification
or improvements. Therefore, we think that the benchmark score should not be
overstressed here.

To provide a second evaluation measure, we additionally computed the classi-
fication error on the precise ground truth provided by [100]. In Figure 5.22 we
compare the pixel-wise classification error for different widths of the evaluation re-
gion. We consider trimaps with 3 to 21 pixels wide bands surrounding the object
boundaries (cf. Figure 5.21). The classification error decreases with increasing width
of the trimap. The smallest error is achieved with the proposed midrange geometric
priors.

Qualitative comparisons with the two best scoring of the above mentioned
methods by Ladicky et al . [82] with co-occurrence and hierarchical prior and by
Strekalovskiy et al . [149] on the MSRC database are given in Figure 5.16. The
results show that the proposed method reduces the number of mislabeled objects.

eTRIMS Facade Parsing Benchmark Results

In Section 5.5.3 we already demonstrated some qualitative results for the task of
segmenting facades. The 8-class eTRIMS facade dataset [81] consists of 60 images
with a resolution of 512 × 768. Again, we split the dataset into 60/40 for training
and testing and set λ = 0.6.

In Table 5.4 we compare the accuracy per pixel on the whole image domain as
well as for different band widths of the trimap. For all evaluation domains the best
score is achieved with the proposed priors. The relatively minor improvement in the
percentages reflects our observation that significant improvements of the semantic
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Figure 5.22: Pixel-wise classification error on the MSRC benchmark. With in-
creasing width of the evaluation region, the pixel-wise classification error decreases. The
best classification is achieved with the proposed midrange geometric priors. For the com-
putation of the trimaps, the more precise ground truth labeling of [100] has been used.

segmentation do not necessarily lead to a substantial improvement of the score. In
Figure 5.17 4th column, e.g ., a major part of the image – namely the mislabeled
‘sky’ pixels – is corrected by the proposed constraints. The dice-score for this image,
however, only improved by 3.9%.

Score for the Task of Geometric Class Labeling of Indoor Images

The definition of the geometric classes in a scene is another interesting application
area. For our experiments we use the indoor dataset from Liu et al . [93] which
consists of 300 indoor images with a resolution of 640 × 480 pixels. To guarantee
comparability we use their appearance model and set λ = 1.

In Table 5.5 we compare our results to the approaches by Liu et al . [93] and
Strekalovskiy and Cremers [147] who use the same appearance model. We achieved
an overall accuracy of 87.24%, compared Liu et al . with 85% and Strekalovskiy and
Cremers with 85.3%.
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Table 5.4: The highest scores on the eTRIMS benchmark are achieved with the
proposed priors. The scores are the accuracies per pixel computed on different trimap
segmentations and the whole image domain. The best results are given in bold.

Trimap Trimap Trimap Trimap Accur.
width 9 width 13 width 17 width 21 per pixel

Index minimizing (5.6) 63.09 67.90 71.28 73.58 80.56
Solution of Equation (5.2) 69.33 73.35 76.17 78.08 84.36
Ladicky et al . [82] pixel-based 68.79 72.84 75.75 77.76 84.22
Proposed midrange geometric priors 69.37 73.46 76.34 78.31 84.82

Table 5.5: Improved score for the task of geometric class labeling. The pro-
posed midrange geometric constraints outperform the approaches by Liu et al . [93] and
Strekalovskiy and Cremers [147] which use the same appearance model. The best results
are given in bold.

Accur. per pixel Accur. per class Dice-score

Index minimizing (5.6) 84.99 79.97 77.67
Solution of Equation (5.2) 86.64 81.59 79.51
Liu et al . [93] 85 - -
Strekalovskiy and Cremers [147] 85.3 - -
Proposed midrange geometric priors 87.24 81.90 80.17

5.5.7 Runtimes

We finally investigate the runtime of the proposed method.

Apart from the size of the Si, the runtime mainly depends on the number of
labels used for the segmentation. For the MSRC benchmark 21 labels have been
used. Usually, images consist of less than ten different labels, e.g . images of persons
can include hair, head, body, arms, hands, trousers, legs, shoes or background.

We obtain average runtimes of 7.7 seconds on the iCoseg [22] and the People [124]
dataset (see Table 5.6) compared to 2.3 seconds if we do not use the novel priors.
The images have a resolution of around 500× 333 pixels and the sets Si have a size
of around d = 25.

Table 5.6: Average runtimes for multi-label segmentation of an image of the iCoseg [22]
and the People [124] dataset containing 4 to 9 labels.

Average Runtime

Without Geometric Prior 2.29 s
With Geometric Prior 7.74 s
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a) Original b) Ground c) |S| = 0 d) |S| = 5 e) |S| = 7 f) |S| = 10 g) |S| = 225
truth 13 s 152 s 163 s 176 s 914 s

Figure 5.23: Minimizing runtime. To minimize runtime in case of large label numbers
we use sparse structuring elements (SE). The evolution of the solution for an increasing
number of entries in a structuring element S of size 15 × 15 shows that very few entries
(here 10 entries in a 15 × 15 SE) are already sufficient to obtain accurate results. The
runtimes denote the average runtime on the MSRC benchmark for 21 labels with the
respective number of entries |S|.

The MSRC benchmark, in contrast, contains 21 labels, which in theory can
appear all at the same time in a single image. This leads to lots of label pairs, most
of which are highly unlikely. To reduce the runtime of the approach we used sparse
structuring elements Si yielding equivalent results to full elements in around 180
seconds on average (note that we do not work on superpixels). We can conclude
that already very sparse sets Si containing around ten entries yield results very
similar to the full set Si (compare Figure 5.23).

5.6 Conclusion
In this article we introduced a framework for the integration of midrange geomet-
ric priors into semantic segmentation and recognition within a variational multi-
label approach. Midrange geometric priors impose constraints on directions and/or
distances in which label pairs usually occur. We call them midrange, since the
constraints are neither global by taking all pixels into consideration such as co-
occurrence priors nor are they purely local by only regarding single pixels or pairwise
pixel interactions. Instead, the user is able to define the range and specific shape of
the interactions between pixels that are penalized. We have shown how morpholog-
ical operations such as the continuous formulation of the dilation operation can be
employed to formulate these constraints within a continuous optimization approach.
We gave a convex relaxation, which guarantees independence of the initialization.

The proposed approach does not require the computation of superpixels and
prevents the emergence of one pixel wide ‘ghost labels’. Experiments show that the
proposed novel constraints are beneficial for many segmentation scenarios, e.g . for
part-based articulated objects such as humans, animals or clothes, for part-based
rigid objects, especially man-made items, and for semantic scene segmentation.
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Abstract Semantic segmentation aims at jointly computing a segmen-
tation and a semantic labeling of the image plane. The main ingredient
is an efficient feature selection strategy. In this work we perform a sys-
tematic information-theoretic evaluation of existing features in order to
address the question which and how many features are appropriate for
an efficient semantic segmentation. To this end, we discuss the tradeoff
between relevance and redundancy and present an information-theoretic
feature evaluation strategy. Subsequently, we perform a systematic experi-
mental validation which shows that the proposed feature selection strategy
provides state-of-the-art semantic segmentations on five semantic segmen-
tation datasets at significantly reduced runtimes. Moreover, it provides
a systematic overview of which features are the most relevant for various
benchmarks.

Keywords Feature analysis · Feature selection · Image segmentation ·
Semantic scene understanding

6.1 Introduction

6.1.1 Semantic Segmentation and Feature Selection

Semantic segmentation – sometimes also referred to as class-specific segmentation –
aims at jointly computing a partitioning of the image plane and a semantic label-
ing of the various regions in terms of previously learned object classes. Numerous
works are focused on the development of sophisticated regularizers for this problem:
co-occurrence priors [82, 145] have been suggested to learn and penalize the joint
occurrence of semantic labels within the same image. Proximity priors [2] have been
proposed to penalize the co-occurrence of labels within a certain spatial neighbor-
hood. Hierarchical priors [144, 172] have been introduced to impose certain label
hierarchies – for example that an office is composed of chairs and tables, whereas an
outdoor scene is composed of water, grass, cows, etc. Proportion priors [110] have
been proposed to learn and impose priors on the relative size of object parts. The
quantitative performance in terms of segmentation accuracy of respective methods,
however, is generally dominated by respective data terms. In this paper we therefore
focus on the data term.

A multitude of data terms have been proposed over the last years to take texture,
color, spatial location and even depth into account in the construction of appropriate
observation likelihoods associated with each pixel. Not surprisingly, depending on
the object class and image benchmark, some features are more relevant than others.
While in principle taking more and more features into account should improve the
segmentation accuracy, in the interest of computational efficiency, the redundancy
among features should be minimized. How can we quantify relevance and redun-
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Figure 6.1: Impact of features on the classification accuracy. The labels indicate the
type of feature added to the feature set: Haar-like (H), color (C), texton (T), location (L)
and depth (D). For each benchmark a green dot indicates the feature set which is selected
by the proposed approach.

dancy of features? How can we devise a systematic feature selection strategy to
identify a small set of optimal features for semantic image segmentation? And how
can we automatically determine the number of features to use?

In this work we make use of information-theoretic quantities in order to charac-
terize and optimize the relevance and redundancy tradeoff of respective features for
semantic segmentation. An overview of the studied features is given in Section 6.2.
For two continuous random variables X and Y , the mutual information

MI(X;Y ) =

∫
Y

∫
X

p(x, y) log
p(x, y)

p(x)p(y)
dxdy, (6.1)

is a measure of the mutual dependency of X and Y , where p denotes their proba-
bility density function. A feature fi is relevant for the class labeling c if the mutual
information MI(fi; c) of the feature and the class label is large. Moreover, it is
redundant with respect to another feature fj if the mutual information MI(fi; fj)
is high. In the following we will show that an appropriate information-theoretic
feature selection strategy will lead to semantic segmentation methods which provide
state-of-the-art performance at substantially reduced computation time. Figure 6.1
shows the improvement of classification accuracy on different benchmarks with in-
creasing size of the feature set. The features are ordered based on their relevance
and redundancy.
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This paper is organized as follows: we introduce the studied features in Sec-
tion 6.2. In Section 6.3 we propose an information-theoretic feature analysis method
and in Section 6.4 we show the list of ranked and selected features for five different
benchmarks. Finally, we compare our runtime as well as qualitative and quantitative
results to state-of-the-art methods (Section 6.5).

6.1.2 Related Work

The literature on object detection can be roughly grouped into two complementary
approaches. Conventional object detectors deal with the task of finding bounding
boxes around each object [49, 95, 164]. In contrast, dense object detection ap-
proaches [70, 139] focus on detecting objects at pixel level. We focus on the choice
of the best visual object recognition features for dense object detection.

Shotton et al . [139] proposed texture-layout filters based on textons which jointly
model patterns of texture and their spatial layout for dense object detection. As
they use a large set of features in their computations, their method is not applicable
in real-time. On the contrary, our method only chooses the most significant features.
Thus, we are able to improve the detection performance at a highly reduced runtime.

In 2012, Fröhlich et al . [59] proposed an iterative approach for semantic segmen-
tation of a facade dataset. This approach uses millions of features and refines the
semantic segmentation by iteratively adding context features derived from coarser
levels to a Random Forests classifier. As a result, this approach is fairly slow. In
contrast, we determine the optimal set of features and are thus able to receive similar
detection accuracies with a significantly smaller set of features at a reduced runtime.

Couprie et al . [44] introduced a multiscale convolutional network to segment
indoor RGB-D images. They implicitly compute and select features by constructing
complex and deep architectures. In contrast, our method is based on a transparent
selection criterion.

Recently, Hermans et al . [70] discussed 2D semantic segmentation for RGB-D
sensor data in order to reconstruct 3D scenes. They use a very basic set of features.
However, this basic set of features is determined by experiments and no clear selec-
tion criterion is given. In general, none of the above approaches gives justification for
their chosen set of features. We specifically address this problem and give detailed
explanations on how to choose the best feature set for dense object detection.

6.1.3 Contributions

We present an information-theoretic feature analysis method which resolves the
following challenges:

• We answer the questions which features are the most significant for object recog-
nition and how many features are needed for a good tradeoff between accuracy
and runtime.
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• The proposed feature analysis method is easy to use and immediately applica-
ble to different datasets. It runs fast in real-time even on large datasets with
high-resolution images. All parameters are determined automatically from the
information-theoretic formulation.1

• We evaluate our method on five different datasets and compare our classifica-
tion and segmentation results with the state-of-the-art methods by Shotton et
al . [138], Fröhlich et al . [59], Couprie et al . [44] and Hermans et al . [70]. The
proposed feature selection strategy provides state-of-the-art semantic classifi-
cations and segmentations at significantly reduced runtimes.

6.2 The Feature Set

We consider 17 shape and texture features composed of 6 Haar-like, 2 color, 4 texton,
2 location and 3 depth features. The features are computed in a patch surrounding
the image pixels. Thereby, different patch sizes of the features are used. We convert
the images from the RGB(-D) to the CIELab color space and compute the features
on the channels: L, a, b (and D). Depth maps are normalized and converted to gray
scale.

Haar-like features We use six types of Haar-like features [164]: horizontal and
vertical edge (HE/VE) and line (HL/VL), center surround (CS) and four square (FS)
illustrated in Figure 6.2 a).

Color features We use the average of the relative patch (RP) and the relative
color (RC) feature shown in Figure 6.2 b).

Texton features As texton features we use Gaussian filter (G), Laplacian of
Gaussian (LoG) and the first order derivatives of Gaussian filter (DoG) in x and
y direction with different bandwidths (see Figure 6.2 c).

Location features We use normalized canonical location features (see Fig-
ure 6.2 d) computed for each pixel p in the image I.

Depth features We use the relative depth (RD), the relative depth compari-
son (DC) and the height of a pixel (PH) [70], illustrated in Figure 6.2 e).

1Our code is publicly available at vision.in.tum.de/data/software

vision.in.tum.de/data/software
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HE VE HL VL CS FS RP RC

a) Haar-like (H) b) Color (C)

G LoG DoGx DoGy

I
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x y

h

RD DC PH

c) Texton (T) d) Location (L) e) Depth (D)

Figure 6.2: The feature set. Illustration of the 17 shape and texture features which are
studied in various patch sizes on different image channels. We analyze the significance of
the features and explain which and how many of them to use.

6.3 Feature Ranking and Selection for Object

Recognition

Among the discussed features, which are the most significant for object recognition?
And how many are needed for a good tradeoff between accuracy and runtime? To
this end, we first rank the features according to their significance, then we analyze
them and propose an automatic selection criterion.

6.3.1 Feature Ranking

In the first step, a set of training images is used to compute a ranked set of fea-
tures FR of the full feature set F where the ranking is based on significance. As
described in the introduction, features are significant if they are relevant for the
classification performance but as little redundant as possible. Ideally, the optimal
set of features {f1, .., fN} is obtained by maximizing the expression

max
{f1,..,fN}∈F

∑
fi∈F

MI(fi; c)−
1

N

∑
fi,fj∈F

MI(fi; fj), (6.2)

where the first term aims at maximizing the relevance of each feature in terms
of the mutual information with respect to the target class c and the second term
aims at minimizing the redundancy between pairs of features. We call a feature
significant if it maximizes the relevance for the classification task while minimizing
the redundancy with respect to the other features. First of all, the joint optimization
over all features is computationally demanding. Secondly, it does not provide us with
a ranking of features by significance.

To address these drawbacks, we revert to a greedy strategy for feature selection
introduced by Peng et al . [119] in the context of biological feature analysis and
handwritten digit recognition.
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For a fixed target class c, let Fm−1 = {f1, . . . , fm−1} be the best feature set with
m − 1 features. To identify the best additional feature fm ∈ F \ Fm−1, we simply
optimize its relevance-redundancy tradeoff with respect to the existing features:

fm = arg max
fi∈F\Fm−1

[
MI(fi; c)−

1

m− 1

∑
fj∈Fm−1

MI(fi; fj)

]
. (6.3)

This leads to a set of features FR = {f1, . . . , fN} which are ranked with respect to
their significance for the target class c.

6.3.2 Automatic Feature Selection

Let the first n features in FR be denoted by FR (n) := {f1, . . . , fn}. In the following
step, we determine n∗ ∈ {1, . . . , N} such that FR(n∗) consists of only the most
significant features. Therefore, we initially apply an incremental feature analysis
returning the classification accuracy Acc(n) for each feature set FR (n). Algorithm 1
sketches the steps we carried out to obtain

(
Acc(1), . . . , Acc(N)

)
.

To figure out how many features n∗ ∈ {1, . . . , N} to choose, the following con-
ditions have to be met: a) For optimizing the runtime a small n∗ is preferred, while
b) for the optimization of the accuracy a large n∗ is desired. Hence, n∗ should be
small but still lead to a satisfying accuracy. We therefore propose the following
optimization criterion:

n∗ = arg max
n∈{1,...,N}

(
Acc (n)

)α
(N + 1− n)

1
β , (6.4)

where α, β ≥ 1 (we set α = 5, β = 2). This function jointly maximizes the accu-
racy Acc(n) and minimizes the number of features n. Taking Acc(n) to the power
of α emphasizes the jumps in the accuracy in which we are interested. Taking the
βth root of (N+1−n) prevents too strong influence of the size of FR(n). By varying
the values of α and β, the method can be adapted to the user’s interest focusing on
optimal runtime and/or accuracy.

This two-step approach leads to the feature set FR(n∗) which consists of only the
most significant features for the respective dataset. Compared to other approaches
which mostly use arbitrary large feature sets, we are able to obtain competitive
classification accuracies at a remarkably reduced runtime.

Related works such as [59, 70] mostly tune the parameters used for training the
Random Forests. In contrast, we use default settings for all benchmarks. Our ex-
perimental results (Section 6.5) show that the choice of the right features is more
important than the best parameter settings for Random Forests. Reduced redun-
dancy in the feature set keeps the accuracy high while it decreases the runtime
significantly.
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Algorithm 1 Incremental Feature Analysis

1: procedure AnalyzeFeatures(D,FR) . D: Dataset, FR: Ranked Features
2: n = 0, Acc = ∅ . Acc: Classification Accuracy
3: while n < N do
4: n← n+ 1
5: Extract the features FR(n) on the training set.
6: Train K Random Trees {T1(·), . . . , TK(·)} on the training samples.

7: For each class c ∈ {1, . . . , C} estimate the class probabilities P̃
at each pixel p on the validation set: . C : #Classes

P̃ (c | p,FR (n)) =

K∑
k=1

[
Tk
(
p,FR (n)

)
== c

]
K

. (6.5)

8: Predict the class label c∗(p) for each pixel p with:

c∗(p) = arg max
c∈{1,...,C}

P̃ (c | p,FR(n)).

9: Compute Acc(n) with the predicted class labels c∗ on the validation set:

Acc(n) =
Number of correctly classified pixels

Total number of labeled pixels
.

10: end while
11: return Acc . List of accuracies

(
Acc(1), . . . , Acc(N)

)
12: end procedure

6.3.3 Implementation

The algorithm runs fast in real-time even on large datasets with high-resolution
images. The whole algorithm runs on a single CPU. We restricted the system to
the minimal number of parameters. This makes the application independent from
parameter tuning for different benchmarks. Except for the patch size of the features
and the grid size ∆ss all other parameters are fixed. Therefore, the proposed method
is easy to use and immediately applicable for different datasets.

6.4 Which and How Many Features?

We apply the proposed feature ranking and selection method using the 17 shape
and texture features introduced in Section 6.2 on five different benchmarks. In the
following we discuss the resulting significance of the different features. We made
similar observations on all benchmarks.
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The following benchmarks are studied: (i) the 8-class facade dataset eTrims [81],
(ii) the 7-class Corel and (iii) Sowerby datasets [69] and (iv) the 12-class NYUv1 [70,
140] as well as (v) the 13-class NYUv2 [44, 141] RGB-D benchmark. For the eTrims
dataset we follow Fröhlich et al . [59] and split the dataset by a ratio of 60/40
for training and testing. We split the Corel and Sowerby benchmark by a ratio
of 60/40, the NYUv1 dataset by a ratio of 50/50 and the NYUv2 by 55/45 for
training and testing, similar to [44]. For each benchmark 20% of the training set is
used as validation set. On the Corel benchmark we follow Shotton et al . [138] and
normalize the color and intensity of the images.

For the eTrims, Corel and Sowerby benchmarks we use 50 trees to train the
Random Forests, each having at most a depth of 15. For the NYUv1 and NYUv2
benchmark we follow Hermans et al . [70] and use 8 trees, each having at most a
depth of 10.

To reduce the computational cost during the training process, filter responses are
computed on a ∆ss×∆ss grid on the image [138]. We set ∆ss = 3 for the Corel and
Sowerby benchmark and ∆ss = 5 for the eTrims, NYUv1 and NYUv2 benchmark.

6.4.1 Which Features

The ranked set of features FR, listed in Table 6.1, is computed for each dataset with
the method proposed in Section 6.3.1. The following observations can be made on
the relevance of the studied features:

Haar-like features (orange) In the literature Haar-like features are commonly
evaluated on a gray-scale image or on the luminance channel. Table 6.1, however,
shows that for all five benchmarks the top ranked Haar-like features are particularly
those ones evaluated on the ‘a’ and ‘b’ color channel.

Color features (turquoise) Independently of the benchmark, almost all color
features appear among the top ranked features. Hence, color features should defi-
nitely be used for training object classifiers.

Texton features (gray) Several texton features are ranked on a top position.
Most of the higher ranked texton features (≤ 20) are computed on the ‘L’ channel.
We conclude that texton features are more distinctive on the luminance channel.

Location features (blue) All location features are ranked in the lower half (≥
17). However, for the eTrims and Corel benchmark, they significantly enhance the
classification accuracy (cf. Figure 6.1).

Depth features (purple) are only available for the NYUv1 and NYUv2 bench-
mark (columns 4,5). All depth features are ranked among the top nine features and
strongly boost the accuracy (cf. Figure 6.1).
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Table 6.1: Ranked features FR for the eTrims, Corel, Sowerby, NYUv1 and NYUv2
benchmark. Different colors are set for Haar-like (H), color (C), texton (T), location (L)
and depth (D) features. The features are labeled as follows: {feature type} {feature
name} {patch size} {color channel}. For an interpretation see Section 6.4.1.

Rank eTrims Corel Sowerby NYUv1 NYUv2

1 C RP 25 b C RP 11 a C RC 7 a D PH 25 D D PH 25 D

2 H VL 25 a C RC 11 b C RP 7 L C RP 25 a T G 3 L

3 C RC 25 L H CS 11 L T DoGy 13x5 L D DC 25 D T LoG 17 L

4 C RP 25 a T DoGy 13x5 L H CS 7 a H FS 25 b C RP 25 a

5 T LoG 3 L C RP 11 L C RC 7 b C RC 25 b T LoG 5 L

6 T G 3 L C RC 11 a C RP 7 a D RD 25 D C RC 25 L

7 H CS 25 L T DoGx 9x25 L H VL 7 b H FS 25 L T G 5 L

8 C RC 25 b C RP 11 b C RC 7 L C RP 25 L D RD 25 D

9 T DoGy 25x9 L H HE 11 a T DoGx 9x25 L H CS 25 a D DC 25 D

10 C RP 25 L H CS 11 a T DoGy 25x9 L T LoG 17 L H FS 25 L

11 T DoGy 13x5 L T G 9 b H HL 7 a H VE 25 b T DoGy 25x9 L

12 C RC 25 a C RC 11 L T G 9 b T LoG 3 L T G 9 L

13 T G 9 a H CS 11 b H CS 7 b T DoGx 9x25 L T LoG 9 L

14 T G 5 L T DoGy 25x9 L T LoG 3 L T LoG 5 L T DoGx 5x13 L

15 T LoG 5 L T LoG 3 L T LoG 5 L H CS 25 b T LoG 3 L

16 T LoG 9 L T LoG 5 L C RP 7 b C RC 25 a C RP 25 b

17 T DoGx 9x25 L T LoG 9 L H CS 7 L T LoG 9 L L y

18 T G 9 L H FS 11 a T LoG 9 L H HL 25 L T DoGx 9x25 L

19 H VL 25 b H VL 11 a T DoGx 5x13 L T DoGy 25x9 L H HE 25 a

20 L y T DoGx 5x13 L T G 3 L C RP 25 b L x

21 T DoGx 5x13 L T G 5 L T G 9 a T G 9 a T G 5 b

22 T G 9 b T G 9 a T G 3 a H FS 25 a T G 3 b

23 L x H VL 11 b T G 3 b T G 3 b C RP 25 L

24 H HE 25 L T G 3 L L x T G 5 a T DoGy 13x5 L

25 T G 5 b T G 3 a L y C RC 25 L H VL 25 L

26 T G 5 a L x T G 9 L L x T G 5 a

27 T G 3 b L y H VL 7 L L y T G 3 a

28 T G 3 a H VE 11 a T G 5 b H VE 25 a T G 9 b

29 T LoG 17 L T G 9 L T G 5 L T DoGy 13x5 L T G 9 a

30 H FS 25 a H HL 11 a T G 5 a T DoGx 5x13 L H FS 25 a

31 H VL 25 L T G 5 b H HE 7 a H HE 25 L H HL 25 L

32 H FS 25 b T G 3 b T LoG 17 L T G 5 b H CS 25 a

33 H HL 25 a T G 5 a H VL 7 a T G 9 b H FS 25 b

34 H VE 25 a H HL 11 b H FS 7 b H VL 25 b C RC 25 a

35 H HE 25 a T LoG 17 L H VE 7 a T G 3 a H VE 25 a

36 H CS 25 b H FS 11 b H FS 7 a T G 9 L H CS 25 b

37 H CS 25 a H HE 11 b H HE 7 b T G 5 L H HE 25 b

38 H HE 25 b H VE 11 b H VE 7 b T G 3 L H VE 25 b

39 H VE 25 b H FS 11 L H FS 7 L H VL 25 L C RC 25 b

40 H HL 25 b H VL 11 L H HL 7 b H HE 25 a H VL 25 a

41 H FS 25 L H VE 11 L H VE 7 L H HE 25 b H HL 25 a

42 H VE 25 L H HE 11 L H HE 7 L H VL 25 a H VL 25 b

43 H HL 25 L H HL 11 L H HL 7 L H HL 25 a H HL 25 b

44 H HL 25 b H HE 25 L

45 H VE 25 L H VE 25 L

46 H CS 25 L H CS 25 L
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We gained a valuable insight into the significance of various features for the task
of pixel-wise object recognition. In summary, Haar-like features should particularly
be evaluated on the color channels. Color features are important in general. Texton
features should be considered especially on the ‘L’ channel. Location features can
be essential and depth features are the most distinctive ones (when available).

6.4.2 How Many Features

In the following we answer the question on the best size of the feature set. For
each benchmark, Figure 6.1 illustrates the classification accuracies Acc(n) with in-
creasing n. n indicates the size of the feature set FR (n) which leads to Acc(n)
(cf. Algorithm 1). The green dots indicate the numbers n∗ which are chosen by
the proposed optimization criterion in Equation (6.4). The intention is to chose n∗

small, but large enough to obtain an optimal tradeoff between accuracy and number
of features.

For the eTrims benchmark, e.g ., the accuracy has a significant jump from n = 22
to n = 23. For values of n larger than 23, only very minor improvements can be
achieved. Hence, one would prefer n∗ to be equal to 23. As marked by the green
dot in Figure 6.1, the proposed optimization criterion (6.4) selects n∗ = 23. The
accuracy plot computed for the Corel benchmark has a peak at n = 27. Thus, the
selected n∗ = 27 gives the best tradeoff between the accuracy and the size of the
feature set. The accuracy plot for the NYUv2 benchmark shows a jump from n = 7
to n = 8. All values n ∈ [9, 46] only provide an insignificant increase of Acc(8).
Thus, n∗ = 8 is the perfect value for n and selected by Equation (6.4).

The accuracy plots obtained for the Sowerby and the NYUv1 benchmark show
a less significant jump than the plots of the other benchmarks. For the Sowerby
benchmark, the proposed method selects n∗ = 8. Still, this value can be seen as
optimal. For smaller values of n, the accuracy is not good enough. For larger values
of n, up to n = 23, the accuracy improves only very little, whereas the feature set
grows much more. The small gain in accuracy would have to be paid for by a much
larger runtime. The same holds for the NYUv1 benchmark.

6.5 Experimental Results

Our framework chooses the feature set small but still large enough to obtain a
satisfying accuracy. The above observations already show an experimental proof of
the proposed feature ranking and selection method. In the following, we compare
our runtime, classification and segmentation accuracies as well as qualitative results
with state-of-the-art methods.
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Table 6.2: Comparison of runtimes for object classification in seconds. The training
time is given for the whole training set whereas the testing time is averaged over all test
images. The proposed method significantly outperforms the other methods in terms of
training and testing runtime.

eTrims Corel Sowerby NYUv1 NYUv2

Train Test Train Test Train Test Train Test Train Test

Shotton et al . [138] - - 1800 1.10 1200 2.50 - - - -
Fröhlich et al . [59] - 17.0 - - - - - - - -
Hermans et al . [70] - - - - - - - 0.38 - 0.38
Couprie et al . [44] - - - - - - - - 172800 0.70
Proposed 143 6.6 20 0.27 2 0.07 133 0.32 183 0.26

6.5.1 Significantly Improved Runtime

We ran our experiments on an Intel R© CoreTM i7-3770 3.40GHz CPU equipped with
32 GB RAM which is similar to the hardware used by competing approaches. Ta-
ble 6.2 compares the training and testing runtimes for the classification task. Our
framework runs much faster than state-of-the-art methods. In particular for the
Sowerby and NYUv2 benchmark, we reduce the training time by a factor of 600
and 900, respectively. Furthermore, our method accelerates the testing runtime on
all benchmarks.

6.5.2 Competitive Classification and Segmentation Results

In Table 6.3 we compare the classification and segmentation accuracies to Shotton et
al . [138], Fröhlich et al . [59], Hermans et al . [70] and Couprie et al . [44]. To obtain
a smooth segmentation result we minimize the following energy [40]:

E(Ω1, . . . ,ΩC) =
C∑
c=1

(
Per (Ωc) + λ

∫
Ωc

fc (p) dp
)
, (6.6)

where Ω1, . . . ,ΩC denote the partitions of the image plane, Per (Ωc) the perimeter of
each set Ωc which is minimized to favor segments of shorter boundary and fc (p) =

− log P̃ (c | p,FR(n∗)) the data term, where P̃ are the class probabilities estimated
with the proposed method. λ is a weighting parameter and optimized during the
computation.
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Table 6.3: Quantitative results compared in terms of accuracies. The accuracies are
computed as the percentage of correctly labeled pixels on the test set. At significantly re-
duced runtime our method achieves competitive classification and segmentation accuracies
with state-of-the-art methods.

eTrims Corel Sowerby NYUv1 NYUv2

Class. Segm. Class. Segm. Class. Segm. Class. Segm. Class. Segm.

Shotton et al . [138] - - 68.4 74.6 85.6 88.6 - - - -
Fröhlich et al . [59] - 77.22 - - - - - - - -
Hermans et al . [70] - - - - - - 65.0 71.5 - 54.2
Couprie et al . [44] - - - - - - - - - 52.4
Proposed 77.1 77.9 74.4 78.2 87.1 88.8 65.0 66.5 44.0 45.0

a) Original image b) Classification c) Proposed d) Proposed e) Ground truth
of [138]/[70] classification segmentation

Figure 6.3: Accurate qualitative classification and segmentation results are
achieved with the proposed framework. We compare our classification result to Shot-
ton et al . [138] on the Corel benchmark (first row) and to Hermans et al . [70] on the
NYUv1 benchmark (second row).

Table 6.3 indicates that our classification and segmentation accuracies are com-
petitive with the state-of-the-art approaches. For each benchmark, our method
achieves the best accuracies at a remarkably speeded up runtime (cf. Table 6.2).

Most importantly our scores are a) obtained at a significantly improved run-
time and b) by using an automatically chosen feature set. We neither tuned the
parameters nor the feature set manually to obtain better scores on the specific
benchmarks. The proposed method is designed to autonomously compute accurate
classifications/segmentations at a significantly reduced runtime for all benchmarks.

Figure 6.3 shows exemplary qualitative classification and segmentation results
obtained with the proposed method. In column b), we additionally provide the
classification results of the related methods.
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6.6 Conclusion

We introduced a framework for automatic feature selection for semantic image seg-
mentation. Starting from a large set of popular features, we sequentially construct
a ranked set of features by maximizing the relevance of each feature for the classifi-
cation task while minimizing its redundancy with respect to the previously selected
features. Subsequently, we define an automatic criterion to choose a small number
of the most significant features. Integrated in a variational approach to multi-region
segmentation, we obtain a fully automatic algorithm which provides state-of-the-art
semantic classifications and segmentations on five popular benchmarks at drastically
reduced computation time.
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Abstract We propose a novel interactive multi-label RGB-D image seg-
mentation method by extending spatially varying color distributions [108]
to additionally utilize depth information in two different ways. On the one
hand, we consider the depth image as an additional data channel. On the
other hand, we extend the idea of spatially varying color distributions in a
plane to volumetrically varying color distributions in 3D. Furthermore, we
improve the data fidelity term by locally adapting the influence of nearby
scribbles around each pixel. Our approach is implemented for parallel
hardware and evaluated on a novel interactive RGB-D image segmenta-
tion benchmark with pixel-accurate ground truth. We show that depth
information leads to considerably more precise segmentation results. At
the same time significantly less user scribbles are required for obtaining
the same segmentation accuracy as without using depth clues.

Keywords Multi-label segmentation · RGB-D images · Interactive
segmentation · Spatially varying color distributions · Total variation

7.1 Introduction

A major challenge in computer vision is to compute accurate image segmentations,
that is, the accurate partitioning of images into meaningful regions. Possible fields
of application cover medical imaging, image editing software, object tracking and
scene reconstructions. The definition of meaningful regions, however, highly de-
pends on what application the segmentation is needed for. Thus, fully automatic
image segmentation methods are usually tailored to very specific tasks and try to
extract particular objects the methods have learned some prior knowledge about,
e.g . indoor [44, 70, 140] or facade [71, 154] segmentation.

One way to develop general purpose segmentation tools are interactive segmen-
tation methods, where the user indicates the object to be segmented. In this work,
we consider user inputs by so called scribbles, i.e. separate points the user indicated
to belong to a certain object. Alternative interactive user input modalities not con-
sidered in this work include bounding boxes [92, 128, 163] or contours [13, 27]. Due
to their adaptability, interactive segmentation methods have recently attracted a
lot of interest. Recent works focus on foreground/background [27, 91, 92, 163, 166]
as well as on multi-region segmentation [109, 130, 136], and mostly consider RGB
images as input data.

Despite the segmentation constraints given by the user, accurate segmentation
remains a challenging task. Extensive studies have led to significant improvements
of segmentation quality in recent years [91, 166]. Nevertheless, modern approaches
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a) Color image b) Depth image c) RGB d) Proposed RGB-D
with scribbles segmentation [108] segmentation

Figure 7.1: Depth information significantly improves the segmentation result.

often still fail for complex scenes, where objects with similar colors and difficult
lightning conditions appear. Moreover, a good segmentation often requires a rather
large number of scribbles.

Considering the recent increase and availability of depth-sensing cameras such
as the Kinect, we investigate the segmentation of RGB-D images to overcome some
of the aforementioned problems. We will mainly focus on the distinction of objects
based on color and depth information. While some research has been done on
extending interactive segmentation methods to medical imaging data (e.g . [31, 94]),
very little work has been done on the interactive segmentation of RGB-D images.
The only other approach we found which explicitly addresses interactive multi-label
RGB-D segmentation is the method by Shao et al . [136] on the semantic modeling
of indoor scenes. Although this method is related to our approach in the sense that
it also formulates the segmentation of RGB-D images as a variational approach, it is
tailored towards the application of furniture segmentation. Therefore, the algorithm
can use learned a-priori information about the objects to be segmented and the
user interaction merely serves as a possible correction step for the first automatic
segmentation step.

We investigate the application of interactive RGB-D multi-label segmentation
and enhance the recently published work by Nieuwenhuis and Cremers [108] by
including depth information. We propose to extend the spatially varying color dis-
tributions [108] to RGB-D images in two different ways: a) We consider the depth
as an additional color channel. b) We enhance the spatially varying color distri-
butions from varying in a plane to be volumetrically varying. Figure 7.1 d) shows
an example of the improvements that can be obtained by taking the depth into
account. In the above example, it is almost impossible to distinguish the radiator
from the lamp (Figure 7.1 c), because both objects have a similar color and are
close in the image plane. The proposed volumetrically varying color distributions
(Figure 7.1 d) incorporate the depth information, which yields much more distinct
color descriptions and thus better segmentation results.
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7.2 Variational Interactive Segmentation of RGB

Images

7.2.1 Multi-label Segmentation

Let I : Ω→ Rd denote the input image, mapping the image domain Ω ⊂ R2 to Rd,
with d = 3 for an RGB and d = 4 for an RGB-D image. Image segmentation denotes
the task of partitioning the image plane into a set of n pairwise disjoint regions Ωi:
Ω =

⋃n
i=1 Ωi. The regions Ωi can be computed by minimizing the following energy:

E (Ω1, . . . ,Ωn) =
1

2

n∑
i=1

Perg (Ωi) + λ
n∑
i=1

∫
Ωi

fi (x) dx, (7.1)

where Perg (Ωi) denotes the perimeter of each set Ωi, which is minimized in order to
favor segments of shorter boundaries. These boundaries are measured with either a
Euclidean or an edge-dependent metric defined by the non-negative function g : Ω→
R+. For example, g(x) = exp

(
− γ|∇I(x)|

)
, favors the coincidence of object border

and image edges. fi denotes the appearance model and λ is a weighting parameter
which regulates the influence of the second term.

7.2.2 Convex Relaxation

The usual strategy to address the nonconvex energy minimization problem arising
from (7.1) is to use convex relaxation: One represents the disjoint regions Ωi by
indicator functions vi, with vi(x) = 1 if x ∈ Ωi and vi(x) = 0, else. Since the vi are
indicator functions, we can make use of the fact that the total variation (TV) of an
indicator function is nothing but the perimeter of the set described by the functions.
Hence, we can reformulate Equation (7.1) as

E (v1, . . . , vn) =
1

2

n∑
i=1

∫
Ω

g (x) |Dvi (x)|dx+ λ
n∑
i=1

∫
Ω

vi (x) fi (x) dx, (7.2)

where Dvi is the distributional derivative of vi. Determining the optimal segmenta-
tion can be stated as solving the minimization problem

(ṽ1, . . . , ṽn) = arg min
vi

E (v1, . . . , vn) s.t. vi(x) ∈ {0, 1},
∑
i

vi(x) = 1, ∀x. (7.3)

Since the nonconvexity of the above problem comes from the integer constraint
vi(x) ∈ {0, 1}, a standard convex relaxation is to replace this constraint by vi(x) ∈
[0, 1].

The key to obtain a good segmentation method based on (7.3) is to determine fi
that lead to a good data fidelity term guiding the segmentation. In the following,
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we recall the computation of the fi motivated by maximum a-posteriori probability
(MAP) estimates as suggested in [108].

7.2.3 Likelihood Estimation Based on User Scribbles

Let I : Ω → R3 and u : Ω → {1, . . . , n} be a labeling, such that Ωi =
{x ∈ Ω | u (x) = i}. Motivated by a MAP estimate Nieuwenhuis and Cremers [108]
proposed to compute the fi (x) as the negative log-likelihood of the estimated prob-
ability distribution:

fi (x) = − log P̂ (I (x) , x | u (x) = i) . (7.4)

The expression P (I (x) , x | u (x) = i) denotes the joint probability density of
observing a color value I (x) at location x given that x is part of region Ωi. Based
on the ideas of kernel based probability estimates (cf. [142] for an overview), it can
be estimated from the user scribbles by

P̂ (I (x) , x | u (x) = i) =
1

mi

mi∑
j=1

k

(
x− xij

I (x)− I (xij)

)
, (7.5)

where {xij, j = 1, . . . ,mi} is the set of user scribbles for region i, and k a suitable
kernel function. The probability estimate in (7.5) only has to be computed for
pixels x /∈ {xij, j = 1, . . . ,mi}. For x ∈ {xij} we keep the label given by the user
scribble. We discuss the particular choice of k in more detail below.

7.3 From RGB to RGB-D Images

7.3.1 Pre-Processing the Depth Image

Prior to using the depth image, two pre-processing steps have to be conducted. One
has to decide how to handle missing depth information and which range of the depth
values to use.

Depth inpainting. Depth cameras such as the Kinect provide metric depth values
in addition to color. However, depth information is usually not available for all
pixels. We fill in the missing depths in a preprocessing step with an inpainting
technique provided in the toolbox of Silberman et al . [141]. The implementation is
a slight adaptation of the colorization proposed by Levin et al . [90]. For an example
see Figure 7.2 b,c).
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a) Color b) Depth c) Filled depth d) Ground truth e) Trimap

Figure 7.2: Exemplary RGB-D input, scribbles, ground truth and trimap la-
beling. a) Color image with scribbles, b,c) (filled) normalized depth image, d) ground
truth segmentation, e) trimap used for measuring the pixel labeling accuracy in a band
surrounding the object boundaries [78]. The evaluation region is colored gray and was
generated by taking a 25 pixel band surrounding the boundaries of the objects.

Normalization. For Kinect-like cameras the value range of the depth values z(x)
in meters is roughly [0.5, 6]. To be independent of physical units, for each image we
normalize the actual depth range to [0, 1]. Similarly, to be independent of the image
resolution, we normalize Ω to [0, 1]2.

7.3.2 Depth as an Additional Color Channel

Following Nieuwenhuis and Cremers [108], we use Gaussian kernels with different
bandwidths to model the joint probability distribution (7.5). Incorporating the
depth image as an additional data channel leads to the following distribution for
P̂ (I (x) , D (x) , x | u (x) = i):

1

mi

mi∑
j=1

kρi(x) (x− xij)︸ ︷︷ ︸
distance kernel

kσ (I (x)− I (xij))︸ ︷︷ ︸
color kernel

kτ (D (x)−D (xij))︸ ︷︷ ︸
depth kernel

, (7.6)

with the bandwidths ρi, σ and τ . Due to the comparability of their values, the
color channels R, G and B are modeled by the same bandwidth σ. A separate fixed
bandwidth τ is used for the depth channel. The bandwidth of the spatial kernel ρi
on the other hand is chosen proportional to the distance to the closest scribble of
label i [108]: ρi (x) = αminj=1,...,mi |x− xij|. Analogous ideas arise in generalized k-
nearest neighbor probability density estimates (cf. [142]), where a similar dependence
of the kernel variance on the distance to the nearest samples is considered. Note that
although a single multivariate Gaussian could be used for modeling the probability
density, this would require an estimation of the covariance matrix, e.g . on a training
data set.

7.3.3 Active Scribbles

To overcome the fact that scribble positions are generally not distributed uniformly
throughout the image, we furthermore introduce the idea of active scribbles. A
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general problem of (7.5) and (7.6) is, that the estimated distribution is heavily
influenced by the total numbermi of scribbles in class i. This leads to the undesirable
behavior that adding many scribbles in one particular region of the image actually
reduces the likelihood of far-away-points belonging to the same class. To avoid this,
we determine for each pixel x and each class i all scribbles xij, j = 1, . . . ,mi that
are within a radius of three times the distance to the closest scribble. We call these
scribbles active. The distance is computed in 2D or 3D depending on the availability
of depth. If less than 80% of the scribbles are active, we compute the probability
density (7.6) of the active and inactive scribbles separately and combine the two by
0.8·P̂a (I (x) , D (x) , x | u (x) = i) + 0.2·P̂p (I (x) , D (x) , x | u (x) = i), where the
subscripts a and p denote the estimates based on the active and passive (inactive)
scribbles respectively. Otherwise we use all scribbles to compute (7.6).

7.3.4 Revised Pixel Distance by Depth Values

The main contribution of [108] was to introduce spatially varying color distributions,
i.e. using a distance kernel in (7.6). The motivation for this kernel was that while
an object often looks locally similar, its typical color distribution may change with
the position that is considered. With the help of the distance kernel, scribbles that
are close to the current position gain more influence than those that are far away.
A limitation of this approach for RGB images is that the true 3D geometry cannot
be represented: Due to the lack of depth information in RGB data, the method
considered in [108] is a projection of a volumetrically varying color distribution onto
the image plane.

The depth image allows us to compute color distributions that truly depend
on the objects’ position in space and thus lead to more distinct color descriptions.
For illustration purposes Figure 7.3 a,b) considers a 2D color image. Pixels close
in the image are not necessarily close in the 3-dimensional space as we can see in

a) Color image b) Zoom of a) c) Back-projection d) Zoom of c)
(2D dist. in orange) (3D dist. in orange)

Figure 7.3: Recovering the scene geometry with depth information. Illustration
of the distance in the 2-dimensional color image compared to the real distance in the
3-dimensional space. The incorporation of depth information in the computation of the
distance kernel allows to capture the real object geometry.
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Figure 7.3 c,d). To better reflect the real object geometry, we therefore improve the
computation of the distance kernel kρi(x) (x− xij) by using the depth information.

Back-Projection. To perform the distance computation in the 3-dimensional
space, the 3-dimensional pixel position X has to be computed from the pixel coor-
dinates x and the normalized depth value D (x). While a physically correct back-
projection would be perspective and therefore dependent on the intrinsic parameters
of the camera, we found a planar back-projection that simply uses D (x) as the third
coordinate to be the better choice for two reasons: It not only compared favorable
in our numerical experiments but also is easier to compute as it does not require the
knowledge of camera parameters.

Thus, in Equation (7.6), instead of evaluating the distance kernel kρi(x) (x− xij)
at x ∈ [0, 1]2 we incorporate the depth as a third dimension and evaluate the distance

kernel at X =
(
x,D (x)

)>
:

kρi(X) (X −Xij) with ρi (X) = α min
j=1,...,mi

|X −Xij|. (7.7)

7.3.5 The Novel Formulation

Combining the ideas of Sections 7.3.2 and 7.3.4 we propose the following appearance
model for RGB-D images

fi (x) = − log P̂ (I (x) , D (x) , x | u (x) = i) , (7.8)

with

P̂ (I (x) , D (x) , x | u (x) = i)

=
1

mi

mi∑
j=1

kρi(X) (X −Xij)︸ ︷︷ ︸
distance kernel

kσ (I (x)− I (xij))︸ ︷︷ ︸
color kernel

kτ (D (x)−D (xij))︸ ︷︷ ︸
depth kernel

. (7.9)

Here {xij, j = 1, . . . ,mi} denotes the set of user scribbles for region i, X the three-

dimensional position X =
(
x,D (x)

)> ∈ [0, 1]3 and ρi (X) = αminj|X − Xij|,
σ and τ denote the kernel bandwidths. The effect of both ways of incorporating
depth information into the segmentation framework will be studied in detail in the
experimental results (Section 7.5).

Finally, let us mention that the two ways the depth information is utilized in the
above model is actually equivalent to using a single Gaussian kernel for the depth
information. The single kernel would have a bandwidth that contains a spatially
varying part as well as a constant part. Since the latter is rather difficult to interpret,
we decided to motivate the proposed approach from two different perspectives. Thus,
the depth information appears in our proposed model twice.
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7.4 Implementation

To find the globally optimal solution to this relaxed convex optimization problem,
we employ the primal-dual algorithm published in [55, 120, 122]. It consists of
updating a primal and a dual variable in an alternating fashion. The update of each
variable decouples for each pixel such that the approach can easily be parallelized
and implemented on graphics hardware.

Since we are solving the relaxed problem, there may be pixels x at which vi(x)
take on intermediate values between 0 and 1, i.e. we may end up with non-binary
solutions. In our numerical experiments, we observed that the computed relaxed
solutions vi(x) < 0.001 or vi(x) > 0.999 for 98% of all pixels x ∈ Ω and i = 1, . . . , n.
In order to obtain a binary solution, we assign each pixel x to the label L with
maximum value after optimizing the relaxed problem.

7.5 Experimental Results

In this section we demonstrate the effectiveness of all proposed RGB-D image adap-
tions in several numerical experiments. The numerical study is divided into three
parts: First, we discuss the data used for the numerical experiments. Second, we
compare RGB to RGB-D segmentation and demonstrate that the segmentation ac-
curacy is improved by the additional depth information. Alternatively, less user
scribbles are required by the RGB-D segmentation method to obtain the same ac-
curacy as an RGB method. In a third part we demonstrate that not just one but
all of our proposed extensions improve the segmentation results in the sense that
the addition of each component individually yields an improvement in segmentation
quality.

7.5.1 Experimental Data

As extensively discussed in [130], not every benchmark is suited for testing inter-
active segmentation. Typical interactive segmentation benchmarks (such as the
iCoseg benchmark [22] for foreground/background segmentation or the IcgBench
dataset [130] for multi-label segmentation) do not provide RGB-D data, and hence
could not be used for our experiments. Popular RGB-D benchmarks such as the
NYUv2 dataset [141] are not suitable for interactive segmentation since the scenes
are typically composed of very many small objects.

Therefore, we chose the Object Segmentation Database (OSD) [125] as the start-
ing point for numerical experiments. We, however, found that the images contained
in the OSD were not challenging enough. They all have the same background and
same colors. Furthermore, the objects are relatively small compared to the image
size and the given depth. Hence, we decided to use 12 images from the OSD along



126 Chapter 7. Interactive Multi-label Segmentation of RGB-D Images

with 16 images we captured ourselves using an RGB-D sensor. The new images were
intentionally taken with challenging color and texture similarities between different
objects. For all 28 images, we fixed the scribbles and manually created an accurate
ground truth labeling.1 An example is given in Figure 7.2.

7.5.2 Depth Information is Crucial

We use the aforementioned image data set to compare our algorithm (using λ = 10,
γ = 5, α = 1000, σ = 0.05, τ = 0.2 for all experiments) to the results obtained
by Santner et al . [130] and Nieuwenhuis and Cremers [108]. Due to the similarity
of our approach with the one in [108], we used the same parameters (without the
additional depth information) for the implementation of [108]. For the framework
in [130], we took the parameters that were mentioned to be the best general purpose
choice.2 Using exactly the same scribbles (see Figure 7.4 a) for all three interactive
segmentation methods, we obtain the results shown in Figure 7.4 c-e).

We have to mention that our comparison is unfair in the sense that the other
methods do not make use of the depth information. However, as we could not find
other suitable interactive RGB-D segmentation methods, we chose this comparison
to illustrate the importance of depth information for image segmentation tasks.

For images with challenging color and lighting conditions, like e.g . in Figure 7.4
first row, an RGB based method can hardly find the correct segmentation of the
scene. The depth channel, however, provides essential information regarding the
spatial relation between the pixels in the image. Thus, the incorporation of the
depth image results in significant improvements of the segmentation quality over
the RGB based methods. For images in which the depth channel does not provide
additional information, such as the image in the bottom row of Figure 7.4, the
proposed method yields the same result as [108], as expected.

Another benefit which comes from the additional depth information is that less
user scribbles are required compared to an RGB based segmentation method. Fig-
ure 7.5 exemplary illustrates this behavior: running our method with the scribbles
shown in Figure 7.5 d) we obtain the segmentation result in e). We incrementally
add scribbles in order to obtain a similar result with [108], see Figure 7.5 c). Due
to the strong color similarity between foreground and background, the RGB based
method requires significantly more user scribbles to obtain a similar result.

Finally, let us mention that the runtime of our method is – same as [108, 130] –
around one second on 640 × 480 images. The major computational time is needed
for the optimization which is independent of our proposed components.

1Our framework as well as the RGB-D images, the scribbles and the ground truth labelings
are publicly available on our website: vision.in.tum.de/data/software

2CIELab color space, LBP features with a patch size of 16 and a radius of 3, Random Forests
with 200 trees, 750 iterations, λ = 0.2 and α = 15.

vision.in.tum.de/data/software
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a) Color image b) Depth image c) Santner d) Nieuwenhuis, e) Proposed f) Ground
with scribbles et al . [130] Cremers [108] truth

Figure 7.4: Depth information improves the segmentation. The scribbled RGB-D
input data is shown in the columns a,b). Columns c-e) compare the proposed RGB-D
segmentation to the RGB segmentations of [108, 130].

a) Color image b) Depth image c) Scribbles d) Proposed e) Segmentation
needed with [108] scribbles result

Figure 7.5: Depth yields less user input. The depth information provides valuable
information which reduces the required user input. To retrieve a similar result as in e),
the user needs to place more scribbles with [108] c) than with the proposed volumetrically
varying color distributions d).
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Table 7.1: The proposed method outperforms the previous ones. The dice scores are
compared by means of the regular ground truth segmentations as well as the trimap width
of 25 (compare Figure 7.2). The usage of active scribbles is abbreviated by ‘AS’.

Input Segmentation method Reg. GT Trimap

RGB Santner et al . [130] 72.56 67.69
RGB Nieuwenhuis and Cremers [108] (Figure 7.6 b) 87.09 86.17

RGB [108] with proposed AS (2D) (Figure 7.6 c) 87.79 88.40
RGB-D [108] + AS (3D) + depth for 3D distance (Figure 7.6 d) 91.51 93.63
RGB-D [108] + AS (3D) + depth as color channel (Figure 7.6 e) 92.93 93.07
RGB-D Combination of all proposed components (Figure 7.6 f) 93.70 94.84

7.5.3 Impact of the Proposed Components

To quantify the results on our benchmark dataset, we compute the dice-scores sug-
gested in [108, 130] on the regular ground truth as well as on a trimap surrounding
the object boundaries: Let S denote the labeling obtained for an image, GT the
respective ground truth labeling. Then the dice-score is computed as

dice (S) =
1

n

n∑
i=1

2|GTi ∩ Si|
|GTi|+ |Si|

, (7.10)

where the index i denotes the label i and | · | the area of a segment.

Table 7.1 shows the dice scores averaged over all images obtained by [130], [108],
and a step by step addition of the proposed algorithm components. The scores
not only give us the possibility of quantitatively evaluating the results obtained by
the different methods, but also allow to study the effect of each of the proposed
extensions of [108], namely using active scribbles, using depth as an additional data
channel and using depth for the 3D distance.

It is interesting to see that the usage of active scribbles – which does not require
any depth information – already improves the score on the regular ground truth
by 0.7% and on the trimap by 2.2%. Additionally including the depth for either
the 3D distance or as an additional color channel again improves the score. The
best results are obtained when combining all three components as we can see in the
last row of Table 7.1. To visualize the results from Table 7.1, Figure 7.6 shows a
qualitative comparison of the different components. As we can see, in each column,
from left to right the result improves.
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a) Input with b) Result of c) [108] + AS d) [108] + AS e) [108] + AS + f) Full model
scribbles [108] + 3D dist. depth as col. ch.

Figure 7.6: Each of the proposed components improves the segmentation. We
compare the segmentations obtained with different components of the proposed method.
The usage of active scribbles is abbreviated by ‘AS’. f) The combination of all components:
active scribbles, depth for 3D distance and depth as an additional color channel leads to
the best result.

7.6 Conclusion

We proposed a powerful extension of the spatially varying color distributions [108].
Our contributions include the idea of active scribbles to overcome the problem of
non-uniformly distributed user scribbles. Furthermore, we improve the estimation
of the data fidelity term by incorporating the depth as an additional color channel
as well as using it to construct volumetrically varying color distributions in 3D. We
have demonstrated that each of the proposed components contributes separately
and improves the segmentation results. Due to the additional depth information,
reliable segmentations are obtained with significantly less user input. For future
work, one could also use a regularization that takes into account the geometry of
the 3D surface as suggested in [127].
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Abstract We propose a framework for temporally consistent video com-
pletion. To this end we generalize the exemplar-based inpainting method
of Criminisi et al . [48] to video inpainting. Specifically we address two im-
portant issues: Firstly, we propose a color and optical flow inpainting to
ensure temporal consistency of inpainting even for complex motion of fore-
ground and background. Secondly, rather than requiring the user to hand-
label the inpainting region in every single image, we propose a flow-based
propagation of user scribbles from the first to subsequent video frames
which drastically reduces the user input. Experimental comparisons to
state-of-the-art video completion methods demonstrate the benefits of the
proposed approach.

Keywords Video completion · Video inpainting ·Disocclusion · Temporal
consistency · Segmentation · Optical flow

8.1 Introduction

Videos of natural scenes often include disturbing artifacts like undesired walking
people or occluding objects. In the past ten years, the technique of replacing dis-
ruptive parts with visually pleasing content grew to an active research area in the
field of image processing. The technique is known as video inpainting and has its
origin in image inpainting. While image inpainting has been researched very active
in the past years the problem of video inpainting has received much less attention.
Due to the additional temporal dimension in videos, new technical challenges arise
and make calculations much more complex and time consuming. At the same time,
video completion has a much larger range of applications, including professional
post-productions or restoration of damaged film.

In this work, we focus on two central challenges in video completion, namely
temporal consistency and efficient mask-definition.

8.1.1 Related Work

The literature on image inpainting can be roughly grouped into two complemen-
tary approaches, namely inpainting via partial differential equations (PDEs) and
exemplar-based inpainting. PDE-based inpainting was first proposed by Masnou
and Morel [101, 102] and popularized under the name of inpainting by Bertalmio et
al . [24, 25]. The key idea is to fill the inpainting region by propagating isolines
of constant color from the surrounding region. These techniques provide pleasing
results for filling small regions, for example to remove undesired text or scratches
from images. For larger regions, however, the propagation of similar colors creates
undesired smoothing effects. To account for this shortcoming, texture synthesis
techniques were promoted, most importantly exemplar-based techniques [14, 53, 54]
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Flow 
Inpainting

Frame i Frame i+1

Color 
Inpainting

Color 
Inpainting

?

Optical Flow

?

Figure 8.1: Sketched approach. We propose an efficient algorithm for semi-automatic
video inpainting. In particular, we impose temporal consistency of the inpainting not
by a tedious sampling of space-time patches but rather by a strategy of flow- and color
inpainting. We inpaint the optical flow and subsequently modify the distance function in
an exemplar-based image inpainting such that consistency with corresponding patches in
previous frames is imposed.

which can fill substantially larger inpainting regions by copy-pasting colors from the
surrounding areas based on patch-based similarity. Criminisi et al . [47, 48] presented
an approach which combines the two methods to one efficient image inpainting al-
gorithm. The algorithm works at the image patch level and fills unknown regions
effectively by extending texture synthesis with an isophote guided ordering. This au-
tomatic priority-based ordering significantly improves the quality of the completion
algorithm by preserving crucial image structures.

Patwardhan et al . [117, 118] and Werlberger [168] extended and adapted Crim-
inisi et al .’s [48] method for video inpainting. The approach of Patwardhan et al .
is using a 5D patch search and takes motion into account. Their approach leads to
satisfying results as long as the camera movement matches some special cases. We
are not restricted to specific camera motion.

The idea of using graph cuts for video inpainting was recently introduced by
Granados et al . [67]. They propose a semi-automatic algorithm which optimizes the
spatio-temporal shift map. This algorithm presents impressive results however, the
approach only has very limited practicability as the runtime takes between 11 and
90 hours for 200 frames.

Newson et al . [106, 107] provided an important speed-up by extending the Patch-
Match algorithm [20] to the spatio-temporal domain thereby drastically accelerating
the search for approximate nearest neighbors. Nevertheless, the runtime for high-
resolution videos is about 6 hours for 82 frames.



134 Chapter 8. Flow and Color Inpainting for Video Completion

8.1.2 Contributions

We propose a method for video completion which resolves several important chal-
lenges:

• We propose a method to interactively determine the inpainting region over
multiple frames. Rather than hand-labeling the inpainting region in every
single frame, we perform a flow-based propagation of user scribbles (from
the first frame to subsequent frames), followed by an automatic foreground-
background segmentation.

• We introduce temporal consistency not by sampling spatio-temporal patches,
but rather by a combination of color- and flow-based inpainting. The key idea
is to perform an inpainting of the optical flow for the inpainting region and
subsequently perform an exemplar-based image inpainting with a constraint
on temporal consistency along the inpainted optical flow trajectories – see
Figure 8.1. As a consequence, the proposed video completion method can
handle arbitrary foreground and background motion in a single approach and
with substantially reduced computation time.

• The inpainting is computed without any pre- or post-processing steps. An
efficient GPU-based implementation provides pleasing video completion results
with minimal user input at drastically improved runtimes compared to state-
of-the-art methods.

8.2 Interactive Mask-Definition

In [24, 67, 169, 170] manual labeling of the inpainting region in all frames of the
videos is needed. This makes video editing an extremely tedious and somewhat
unpleasant process. We present a simple tool for interactive mask-definition with
minimal user input. The requirements for such a tool include: (i) an intuitive user
interface (ii) a robust mask definition and (iii) a real-time capable algorithm.

The method of Nieuwenhuis and Cremers [108] provides a user-guided image
segmentation algorithm that generates accurate results even on images with difficult
color and lighting conditions. The user input is given by user scribbles drawn on the
input image. The algorithm analyzes the spatial variation of the color distributions
given by the scribbles. Thanks to their parallel implementation, computation times
of around one second per frame can be obtained.

Based on this user input, we (i) automatically relocate the scribbles throughout
the video sequence via optical flow and (ii) frame-wise apply the image segmentation
method according to Nieuwenhuis and Cremers [108].
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a) Frame Ii b) Flow to Ii+1 c) Propag. scribbles d) Segmentation

Figure 8.2: Automatic segmentation by scribble propagation via optical flow.
Scribbles are placed on the first frame and propagated to the next frames by optical flow.
Segmentation is computed based on the transported scribbles.

8.2.1 Scribble Relocation via Optical Flow

To transport scribbles over time we use the optical flow method of Brox et al . [34]
which computes the displacement vector field (u, v) by minimizing an energy func-
tional of the form:

E (u, v) = EData + α ESmooth (8.1)

with some regularization parameter α > 0. The data term, EData, measures the
global deviations from the gray value and gradient constancy assumption. The
smoothness term, ESmooth, is given by the discontinuity-preserving total variation.

Figure 8.2 b) shows the optical flow between two frames of the image sequence by
Newson et al . [107]. We use this flow to transport the scribbles from frame to frame
(Figure 8.2 a,c). Green scribbles are placed on the region to be inpainted and yellow
ones on the search space for the inpainting algorithm. Optionally, red scribbles
can be used to mark unrelated image parts in order to shrink the search space.
Depending on the user scribbles, a two- or three-region segmentation according to
Nieuwenhuis and Cremers [108] is computed.

8.2.2 Segmentation According to Nieuwenhuis and Cremers

Let I : I → Rd denote the input frame defined on the domain I ⊂ R2. The task of
segmenting the image plane into a set of n pairwise disjoint regions Ii: I =

⋃̇n

i=1Ii,
Ii ∩ Ij = ∅ ∀ i 6= j can be solved by computing a labeling u : I → {1, . . . , n},
indicating which of the n regions each pixel belongs to: Ii =

{
x
∣∣ u (x) = i

}
. The

segmentation time for a video sequence can be speed-up by initializing the indicator
function u with the resulting segmentation of the previous frame.

We compute a segmentation of each video frame by minimizing the following
energy [108]:

E(I1, . . . , In) =
λ

2

n∑
i=1

Perg (Ii) + λ

n∑
i=1

∫
Ii
fi (x) dx,
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where fi (x) = − log P̂
(
I(x), x

∣∣u (x) = i
)
. Perg (Ii) denotes the perimeter of each

set Ii, λ is a weighting parameter. The expression P̂
(
I(x), x

∣∣u (x) = i
)

denotes the
joint probability for observing a color value I at location x given that x is part of
region Ii and can be estimated from the user scribbles. For further details of the
segmentation algorithm we refer to [108].

To summarize, our inpainting method brings along a tool which allows the user
to quickly define the respective regions on the first video frame, and all the remaining
calculations are working automatically. In contrast, state-of-the-art methods require
the user to manually draw an exact mask on each single video frame [24, 67, 169,
170] or work with an inflexible bounding box [137].

8.3 Flow and Color Inpainting for Video Comple-

tion

The major challenge in video inpainting is the temporal dimension: the inpainted
regions have to be consistent with the color and structure around the hole, and addi-
tionally temporal continuity has to be preserved. When applying image inpainting
methods frame by frame, the inpainted videos show artifacts, like ghost shadows
or flickering [137]. Several investigations have been done in the past years towards
a temporally coherent video completion. State-of-the-art methods, however, have
some drawbacks: several pre- and post-processing steps are required [106, 137], only
specific camera motions can be handled [67, 106, 118, 169] and the calculations are
extremely time consuming [66, 67, 106, 169].

We propose a novel approach inspired by the exemplar-based image inpainting
by Criminisi et al . [48] overcoming these problems. We apply inpainting to the
optical flow and define a refined distance function ensuring temporal consistency in
video inpainting. No additional pre- or post-processing steps are required.

8.3.1 Inpainted Flow for Temporal Coherence

In a temporally consistent video sequence, the inpainted region follows the flow of
its surrounding region. Figure 8.3 a) shows a person who should be removed from
the video sequence. The desired patches clearly should not follow the hand of the
person, but the flow of the sea. To find the best matching patches, Criminisi et
al . [48] consider the colors around the hole. We additionally claim a similarity to
the patch which naturally flows into this position. This flow is obtained by inpainting
the original flow – see Figure 8.3 d).
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a) Overlayed frames b) Inpainted frames c) Optical flow in a) d) Inpainted flow c)

Figure 8.3: Inpainted flow ensures temporal consistency. In order to ensure tempo-
ral consistency, we propose to inpaint the optical flow and additionally request the found
patch to be similar to its origin. The inpainted flow d) should be approximately the flow
of the inpainted video sequence.

8.3.2 Flow Inpainting

For the inpainting of the optical flow we extended the Telea-Inpainting [155] to
optical flow. Telea-Inpainting is a fast PDE based approach and hence particularly
suited to fill missing parts in optical flow images. Let Ω denote the hole in the
optical flow z which has to be replaced, δΩ the contour of the hole and Ωc the search
region (complement of Ω). Telea-Inpainting approximates the value of a pixel p on
the boarder of the fill-front δΩ by a first order Taylor expansion combined with a
normalized weighting function w(p, q) for q ∈ Bε(p) and ε > 0:

ẑ(p) =

∑
q∈Bε(p)∩Ωc w(p, q)[z(p)−∇z(q)(p− q)]∑

q∈Bε(p)∩Ωc w(p, q)
.

The pixel values are propagated into the fill region along the isophotes by solving
the eikonal equation: |∇T | = 1 on Ω, T = 0 on δΩ using the Tsitsiklis algorithm
[133, 160]. The solution T of the eikonal equation describes the distance map of the
pixels inside Ω to its boundary δΩ.

8.3.3 Exemplar-Based Inpainting

For the general inpainting, we focused on the exemplar-based inpainting method
for region filling and object removal by Criminisi et al . [48]. This well known best-
first algorithm uses texture synthesis and successfully propagates continuities of
structures along isophotes to the inpainting region.

Computation of the filling priorities. Let Ω denote the hole to be replaced
and δΩ the contour of the hole. For each pixel p along the contour δΩ, a filling
priority P (p) is computed. P (p) is defined as the product [48]:

P (p) = ((1− ω)C(p) + ω)D(p). (8.2)
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ω ∈ R is a weighting factor. C(p) :=
∑
q∈Ψp∩(I−Ω) C(q)

|Ψp| is called the confidence term

and D(p) :=
|∇I⊥p ·np|

α
the data term. |Ψp| denotes the area of the patch Ψp, α is a

normalization factor and np is a unit vector orthogonal to δΩ in the point p.

The confidence term C(p) measures the amount of reliable information surround-
ing the pixel p. The intention is to fill first those patches which have more of their
pixels already filled. Wang et al . [165] introduced the weighting factor ω to control
the strong descent of C(p) which accumulates along with the filling. The data term
D(p) is a function of the strength of isophotes hitting the contour of the hole. This
factor is of fundamental importance because it encourages linear structures to be
synthesized first. The pixel p̂ with the highest priority: p̂ = arg maxp∈δΩ P (p) defines
the center of the target patch Ψp̂ which will be inpainted.

Search for the best matching patch. In the next step, the patch Ψq̂ which best
matches the target patch Ψp̂ is searched within the source region Φ. Formally [48]:

Ψq̂ = arg min
Ψq∈Φ

d (Ψp̂,Ψq) , (8.3)

where the distance d (·, ·) is defined as the sum of squared differences (SSD) of the
already filled pixels in the two patches.

This distance, however, is only designed for image inpainting. For the problem of
video inpainting the additional temporal dimension is not considered. We present a
refined distance function, modeled explicitly to maintain temporal consistency along
the video frames. The detailed definition follows in the next Section 8.3.4.

Copy and refresh. When the search for the best matching patch Ψq̂ is completed,
the target region Ψp̂ ∩ Ω is inpainted by copying the pixels from Ψq̂ to the target
patch Ψp̂. Besides, the boundary of the target region is updated.

The above steps are done iteratively until the target region is fully inpainted.

8.3.4 Flow Preserving Distance Function

The main difficulty of generalizing classical exemplar-based inpainting to videos is
maintaining temporal consistency. Therefore, we modify the distance function (8.3)
by Criminisi et al . [48]. The key idea of our approach is that scenes do not change
vastly and changesets can be determined by optical flow. So we assume to already
have a well inpainted frame and for further frames to inpaint we demand similarity
to this reference frame. The connection between the reference frame and the current
inpainting point is obtained via the inpainted optical flow ẑ of the original scene
(compare Section 8.3.2).
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The corresponding distance function reads as follows:

d̂(Ψp̂,Ψq) := d(Ψp̂,Ψq) +
β

|Ψp̂ ∩ Φ|
d(Ψẑ−1(p̂),Ψq). (8.4)

The first term ensures local consistency, as proposed by Criminisi et al . The
second one enforces similarity to a previous inpainted frame and hence temporal
consistency. Ψẑ−1(p̂), using inverse optical flow, points back to the already inpainted
image and ensures temporal consistency.

This distance function enables us to reduce complexity of the patch match since
we do not have to choose a set of 3D patches. Our algorithm can greedily choose
the best patch for the current hole to fill yet can select from all frames to exploit
time redundancy. An illustration is shown in Figure 8.1.

8.3.5 Overview of the Algorithm

Interactive Mask Definition. Let I[k] denote the k’th video frame. The user is
asked to roughly scribble (see Section 8.2) the desired regions in the first frame I[0].
These scribbles are propagated via optical flow (Figure 8.2 b) throughout the video.
Depending on the user scribbles a two-region segmentation in object Ω (green) and
search space Φ (yellow) or a three-region segmentation with additional region Φr

(red) for neglecting parts is computed: I = Ω ∪̇ Φ ( ∪̇ Φr).
This processing gives an accurate mask in an easy and quick manner. State-of-

the-art methods do not tackle how to obtain an accurate mask definition.

Video Completion by Flow and Color Inpainting. In the proposed image
inpainting algorithm one can choose the number of frames to be inpainted at the
same time. This allows to exploit redundancy in the video sequence.

Using the inpainted optical flow ẑ of the original video sequence we fill the
target region Ω step by step according to Criminisi et al . using our new distance
function (8.4). Our distance function ensures, that the chosen patch is both locally
consistent and similar to its origin in a previous inpainted frame. This leads to a
temporal consistent inpainted video sequence without any flickering.

8.4 Experiments and Results

In the following we will show results on various datasets and compare our results to
state-of-the-art approaches for video inpainting. The evaluations show that we can
handle different object and camera motions.

Depending on the video size we choose a patch-size between 8 × 8 and 12 × 12
and inpaint 3 to 8 frames at the same time to exploit time redundancy. We choose β
around 1.1 to weight local and temporal consistency.
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a) Frame 1 b) Frame 2a c) ∆1 d) Frame 2b e) ∆2

Figure 8.4: Transition comparison. ∆1 shows the transition between a) and b). The
transition is computed without regularization and shows strong video flickering. In con-
trast, the transition ∆2 with our approach between a) and d) is smooth and does not show
disruptive flickering.

a) Input frames (sequence stairs)

b) Results by Patwardhan et al . [118]

c) Our results

Figure 8.5: Comparison to Motion SSD dataset with slight camera movement.

In Figure 8.4 we compare two adjacent frames with and without our proposed
consistency term. Without the flow consistency term the results have large devia-
tions from one frame to the next one. In the final video such deviations are observed
as disruptive flickering. In contrast, the video sequence inpainted with our proposed
term shows smooth transitions between the frames. We obtain great results for
complex scenes with detailed structures and different types of camera motions at
substantially reduced runtime. Figures 8.5 and 8.6 compare our results to the results
of Patwardhan et al . [118] and Newson et al . [107]. Table 8.1 compares the runtime
of our method with the state-of-the-art methods [67, 106, 107, 118, 169].
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c) Sequence Young Jaws

Figure 8.6: Our results compared to state-of-the-art methods. Evaluations on the
sequences Fountains, Les Loulous and Young Yaws by Newson et al . [107] show that we
obtain the same precision of results, whereas our runtime is much faster. Furthermore, we
are not restricted to a static mask and can easily remove different objects – see our results
of the Young Jaws sequence.
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Table 8.1: Runtimes. Although our approach includes an interactive mask-definition we
outperform state-of-the-art methods up to a factor of five.

Beach Umbrella Jumping Girl Stairs Young Jaws

264×68×98 300×100×239 320×240×40 1280×720×82

Wexler et al . [169] 1h - - -
Patwardhan et al . [118] ≈ 30 min ≈ 1h 15min ≈ 15 min -
Granados et al . [67] 11 hours - - -
Newson et al . [106] 21 min 62 min - -
Newson et al . [107] 24 min 40 min - 5h 48 min
Proposed approach 4.6 min 8 min 5 min 20 sec 3h 20min

8.4.1 Implementation and Runtime

Runtime is a big challenge to all video inpainting algorithms. Especially on high
resolution videos a large amount of data has to be processed. Our parallel imple-
mentation takes around 2 to 150 seconds per frame, depending on the resolution of
the input video on a NVIDIA GeForce GTX 560 Ti. This outruns state-of-the-art
algorithms, requiring much more computing power (like Granados et al . [67] on a
mainframe with 64 CPUs) and runtime (compare Table 8.1).

8.5 Conclusion

We propose an interactive video completion method which integrates two inno-
vations: Firstly, we replace the tedious hand-labeling of inpainting regions in all
video frames by a semi-automatic procedure which consists of a flow-based prop-
agation of user scribbles from the first to subsequent frames followed by an au-
tomatic foreground-background segmentation. Secondly, we propose a novel solu-
tion for assuring temporal consistency of the inpainting. Rather than performing
a computationally intense sampling of space-time patches, we perform an optical
flow inpainting followed by a flow-constrained image inpainting. An efficient GPU
implementation provides a semi-automatic video inpainting method which requires
substantially less user input and provides competitive video inpainting results which
is around five times faster than competing methods.
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Conclusion





Chapter 9
Summary

In this thesis we have focused on convex variational methods for semantic image
analysis. In the course of the last years, researchers have been investigating how
the human visual system interprets images and how algorithms can approximate
the human perception. Humans use their experience to classify and understand new
observations. Therefore, extensive research has been made to develop algorithms
incorporating prior knowledge. Semantic image segmentation uses, e.g ., shape pri-
ors, hierarchical constraints and geometric relationships to increase the accuracy of
segmentation results.

In Chapter 1 we have provided an introduction and have motivated the topic of
semantic image analysis. Moreover, we have presented a review of relevant literature
in the field of convex variational methods and semantic image analysis.

In Chapter 2 we have discussed the contributions of this thesis as well as the
research papers that were published within the scope of this thesis.

In Chapter 3 we have given an introduction to the methodology employed in this
thesis. We have provided a discussion of the basic concepts of convex variational
methods, such as total variation regularization, convexity, existence of solutions and
extremality conditions.

In Chapters 4 to 8 we have presented five selected research papers. All included
papers are peer-reviewed publications and have been published in highly ranked
journals and international conferences. In the following we summarize the chapters
one by one.

The Role of Diffusion in Figure Hunt Games In Chapter 4 we have addressed
the task of tracing out target figures in sketch-like binary teeming figure pictures,
a popular genre of visual puzzles in which simpler shapes are hidden within more
complex organizations. We have discussed how these figures that are hidden in
a distractive context can be discovered algorithmically. We have experimentally
demonstrated that the key idea is to diffuse the figures (and illustrations). The
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diffusion propagates information about the figural loci from purely local to a neigh-
borhood. Hence, the desired location can be observed from some distance.

Particularly suited to this task, we have proposed a simple approach for gener-
ating diffuse drawings. Our diffuse model keeps the edge information while blurring
the contour and imitates curvature coding distance images which are typically com-
puted as solutions to elliptic PDEs. Our proposed approach can be used to search
for the unique occurrence of a target figure as well as for various similar objects.
By introducing a coarse-to-fine strategy we have been able to speed up the search
process.

Midrange Geometric Interactions for Semantic Segmentation In Chap-
ter 5 we have introduced midrange geometric priors for semantic segmentation and
recognition within a variational multi-label framework. Instead of introducing co-
occurrence probabilities of label combinations, the proposed priors incorporate spe-
cific geometric spatial relationships of label pairs, i.e., their direction and distance.
It is up to the user to specifically define the spatial extent of the constraint between
each two labels. We have called them midrange, since the constraints generalize both
global co-occurrence priors, which take into account all labels irrespective of their
spatial location, and local co-occurrence priors which are only imposed on directly
adjacent pixels.

We have shown how the continuous formulation of the morphological dilation
operation can be employed to formulate these constraints within a continuous opti-
mization approach. Moreover, we have given a convex relaxation, which guarantees
independence of the initialization. In addition, the proposed approach does not re-
quire the computation of superpixels and prevents the emergence of thin artificial
ghost regions. Extensive experiments have demonstrated that the proposed novel
constraints are beneficial for many segmentation scenarios. In particular for part-
based articulated objects such as humans, animals or clothes, for part-based rigid
objects, especially man-made items, and for semantic scene segmentation.

Optimizing the Relevance-Redundancy Tradeoff for Efficient Semantic
Segmentation In Chapter 6 we have presented a comprehensive study on fea-
ture ranking and selection for semantic image segmentation and have introduced a
framework for systematic feature analysis.

Therefore, we have discussed various types of features to build up the optimal
feature set for an efficient and accurate semantic segmentation. We have shown
that by exploiting redundancies in feature sets the computational cost for learning
and testing can be significantly decreased. Moreover, we have demonstrated that
the key idea is to optimize the relevance-redundancy tradeoff in the feature set.
Starting from a large set of popular features, a ranked set of features is sequentially
constructed by maximizing the relevance of each feature for the classification task.
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At the same time its redundancy is minimized with respect to the previously selected
features.

Experiments on different benchmarks have provided a deep understanding on
how many and what kind of features to use for semantic segmentation. If available,
depth features, for example, provide essential information and strongly boost the
accuracy. By integrating the proposed feature analysis into a variational formulation
of the multi-labeling problem we have obtained a fully automatic framework for se-
mantic classifications and segmentations. Experiments on five popular benchmarks
have demonstrated that our algorithm achieves state-of-the-art semantic classifica-
tions and segmentations at drastically reduced computation time.

Interactive Multi-label Segmentation of RGB-D Images In Chapter 7 we
have discussed the extension of interactive multi-label segmentation to RGB-D im-
ages. Among the various types of user interaction, we have particularly focused on
the user input via scribbles and have built upon the spatially varying color distri-
butions proposed by Nieuwenhuis and Cremers [108].

To overcome the problem of non-uniformly distributed user scribbles we have
introduced the idea of active scribbles. The experimental evaluations on our bench-
mark dataset have shown that the benchmark score is improved already when using
active scribbles in the framework of Nieuwenhuis and Cremers [108] on RGB images.

Moreover, we have proposed a powerful extension of the spatially varying color
distributions [108] to RGB-D images. Our extensions improve the estimation of the
data fidelity term and can be divided into two parts: a) We have considered the
depth image as an additional color channel. b) We have used the depth information
to incorporate the true 3D geometry.

Our experimental results have demonstrated that each of the proposed compo-
nents contributes separately and improves the segmentation results. Due to the
additional depth information, more distinct color descriptions are achieved and re-
liable segmentations are obtained with significantly less user input.

Flow and Color Inpainting for Video Completion In Chapter 8 we have
introduced the concept of interactive segmentation for the task of video completion.
We have replaced the tedious hand-labeling of inpainting regions in all video frames
by a semi-automatic procedure. The user indicates the region of interest by placing
scribbles on the first frame. The scribbles are then transported from the first to
subsequent frames by using optical flow and an automatic foreground-background
segmentation is computed.

Next to the efficient mask-definition, we have additionally focused on temporal
consistency which is one of the major challenges in video inpainting. State-of-the-art
methods mostly perform computationally intense sampling of space-time patches. In
contrast, we have introduced an efficient solution for assuring temporal consistency
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of the inpainted frames. Our approach is based on an optical flow inpainting followed
by a flow-constrained image inpainting.

Our semi-automatic video inpainting method has two major advantages: a) It
requires substantially less user input than competitive approaches. b) It achieves
competitive video inpainting results at around five times faster runtime than com-
peting methods.



Chapter 10
Limitations and Future Research

In this thesis we have proposed novel methods for several scenarios in the field of
semantic image analysis. Our proposed approaches achieve promising results and
compare favorably to competitive state-of-the-art methods. Nevertheless, we also
see some limitations and possible extensions which might be interesting to address
in future research.

In the following we discuss the limitations of the presented approaches and
present some ideas for possible extensions and future work.

Algorithmic search in binary line drawings In our publication [8] we have
formulated and solved an optimization problem in order to detect the best matching
of the target figure with the illustration. We have determined the parameters leading
to the optimal fit via a probabilistic algorithm. More specifically, we have used
a genetic algorithm based optimization which is readily available in the Matlab
environment. A genetic algorithm is a search heuristic. The algorithm is non-
deterministic and there is no proof of optimality known. In [8] we have chosen the
genetic algorithm because it provides a good tradeoff between speed and quality of
computed solutions.

For future work we suggest to work on a new formulation which can be solved
globally optimal by applying established methods of convex optimization.

Midrange geometric constraints The midrange geometric constraints intro-
duced in [7] have been designed for the segmentation of RGB images. Considering
the recent increase and availability of depth-sensing cameras such as the Kinect, one
could investigate the extension to RGB-D input data. In the current approach, the
penalty matrix is specified by considering the occurrence of labels in the vicinity
of each other. ‘Vicinity’ is defined by the pixel distance in the image plane. To
examine if two regions are close to each other, a dilation operation is used.

With RGB-D input data, some information about the 3-dimensional structure of
the scene is provided by the depth image. To take advantage of the additional depth
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information, one could consider the reformulation of the proposed constraints. In
particular, one could transfer the ‘vicinity’ of two labels in the plane to the volume
and incorporate the depth information for the specification of the penalty matrix.

Data fidelity term for efficient semantic segmentation In our work [9] we
have addressed the question which and how many features are appropriate for an effi-
cient semantic segmentation. To this end, we have first ranked the features according
to their significance, then we have analyzed them and have proposed an automatic
selection criterion. For the feature ranking, we have applied a min-redundancy
max-relevance (mRMR) criterion [119]. The mRMR algorithm, however, is an in-
cremental search scheme that maximizes a certain criterion with respect to a single
feature at a time. For the task of image classification, however, several features usu-
ally are interacting. This may cause a suboptimal feature set as irrelevant features
might be selected earlier than relevant and/or redundant features.

For future applications, we therefore suggest to experiment with a different rank-
ing strategy. Estévez et al . [56], for example, suggested a feature selection method
called GAMIFS, a genetic algorithm guided by mutual information for feature selec-
tion, particularly designed for problems where groups of features are relevant. It is a
hybrid method combining a genetic algorithm with a normalized mutual information
feature selection.

Interactive RGB-D segmentation For the task of interactive segmentation we
have extended the concept of spatially varying color distributions proposed for RGB
images to RGB-D input data [5]. We have incorporated the depth information in two
ways to obtain more distinct color distributions: a) We have considered the depth
image as an additional data channel. b) We have computed the color distributions
based on the object’s position in the 3D space.

For the computation of the regularizer the proposed approach, however, only
makes use of the RGB image. For future work, one could think about using the
depth information for the regularization too. Rosman et al . [127], for example,
suggested a regularization that takes into account the geometry of the 3D surface.

Image sequence segmentation and video completion Most video completion
approaches require immense user input to specify the inpainting region. To overcome
this problem, we have introduced a semi-automatic procedure with minimal user
input [10]. The user input is given by user scribbles drawn on the input image. The
scribbles are automatically relocated throughout the video sequence via optical flow
and a frame-wise image segmentation method is applied.

While the current approach computes the segmentation frame-by-frame sepa-
rately, for future work, one could extend the segmentation algorithm to treat the
video as a 3D data cube. For complex video sequences, the 3D volume might provide
additional information leading to more accurate segmentation results.
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[150] J. Stühmer, P. Schröder, and D. Cremers. Tree Shape Priors with Con-
nectivity Constraints Using Convex Relaxation on General Graphs. In IEEE
International Conference on Computer Vision (ICCV), Dec. 2013, pp. 2336–
2343. doi: 10.1109/ICCV.2013.290 (cited on p. 7).

[151] S. Tarı and M. Genctav. From a Modified Ambrosio-Tortorelli to a Ran-
domized Part Hierarchy Tree. In Scale Space and Variational Methods in
Computer Vision (SSVM). Lecture Notes in Computer Science. Vol. 6667.
Springer Berlin Heidelberg, 2012, pp. 267–278. isbn: 978-3-642-24784-2. doi:
10.1007/978-3-642-24785-9_23 (cited on p. 45).

[152] S. Tarı and M. Genctav. From a Non-Local Ambrosio-Tortorelli Phase
Field to a Randomized Part Hierarchy Tree. In Journal of Mathematical
Imaging and Vision (JMIV), 49(1):69–86. Springer US, 2014. doi: 10.1007/
s10851-013-0441-8 (cited on p. 34).

[153] S. Tarı, J. Shah, and H. Pien. Extraction of Shape Skeletons from
Grayscale Images. In Computer Vision and Image Understanding, 66(2):133–
146. Elsevier Science Inc., May 1997. doi: 10.1006/cviu.1997.0612 (cited
on pp. 34, 43, 45, 46).

[154] O. Teboul, L. Simon, P. Koutsourakis, and N. Paragios. Segmen-
tation of building facades using procedural shape priors. In IEEE Interna-
tional Conference on Computer Vision and Pattern Recognition (CVPR),
June 2010, pp. 3105–3112. doi: 10.1109/CVPR.2010.5540068 (cited on
pp. 10, 118).

[155] A. Telea. An Image Inpainting Technique Based on the Fast Marching
Method. In Journal of Graphics Tools, 9(1):23–34. Taylor & Francis, 2004.
doi: 10.1080/10867651.2004.10487596 (cited on p. 137).

[156] A. N. Tikhonov. On the stability of inverse problems. In USSR Academy
of Sciences. Vol. 39. (5), 1943, pp. 195–198 (cited on p. 22).
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