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Abstract

In this thesis we propose a proof of concept algorithm for preconditioning Riemann–
Hilbert Problems. It is based on the idea of converting the problemof deforming a contour
into the problem of finding shortest paths subject to certain topological constraints in
a graph with suitable chosen weights. To evaluate the effectiveness of the contours
computed by our algorithm, we compare them with contours derived analytically using
the method of nonlinear steepest descent.
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Kurzfassung

In dieser Dissertation wird ein "Proof of Concept" Algorithmus für die Vorkonditio-
nierung von Riemann–Hilbert Problemen vorgestellt. Der Algorithmus basiert auf der
Idee, die Konturderformation als ein Problem kürzester Wege aufzufassen, die gewis-
sen toplogischen Beschränkungen in einem Graph mit passend gewählten Gewichten
genügen. Um die Effektivität der von unserem Algortihmus berechneten Konturen
zu bestimmten, vergleichen wir sie mit Konturen, die analytisch mit der Methode des
"nonlinear steepest descent“ bestimmt werden.
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1. Introduction

Quite many integrable systems can be formulated as a Riemann–Hilbert problem (RHP).
For example there are RHPs for orthogonal polynomials, special functions, Painlevé
transcendents, nonlinear PDEs, combinatorial problems and even discrete functions
(Its 2003). They have proven a successful tool for application such as deriving asymptotic
connection formulae for Painlevé transcendents. Just recently with the development of a
solver based on a spectral collocation method by Olver (2011b), RHPs also became of
interest for numerical analysis. Thereby it turned out that numerical stability, and with
it accurate results, for this solver could in most cases only be achieved by deforming the
RHP using the method of nonlinear steepest descent (NSD) before it is used as input for
the solver. In fact Olver and Trogdon (2012) argue: “One can expect that whenever the
method of nonlinear steepest descent produces an asymptotic formula, the numerical
method can be made asymptotically stable”.

On the upside this enables the numerical treatment of a wide variety of RHPs, but
there is also the downside that it effectively limits the audience of the numerical method
to people who have the required expert knowledge to perform these deformations1.
To improve this situation we propose in this thesis an algorithmic approach for this
preconditioning step of deforming the RHP, which would upgrade the solver to a black
box method for calculating numerical solutions of RHPs. We provide a "proof of concept"
of such an algorithm, which supports only some of the deformations available for NSD.

The basic idea of our algorithmic approach is to cast the problem of deforming a RHP
into the problem of finding a system of shortest paths in a weighted graph subject to
some topological constraints. For now we are not able prove that the algorithm, we
present in this thesis, will yield a deformation that is within a certain range of the optimal
one. But instead we apply our algorithm to a few RHPs and compare the results with
deformations which can be found in the literature and have been derived by people using
the method of nonlinear steepest descent. In these example both ways of deriving the
deformations yield similar contours and also their effectiveness for preconditioning the
RHP is quite similar. After this brief introduction we give a more detailed view of what
we want to achieve.

1Copying the deformations form the literature is also not as easy at may sound, because the deformations
are seldom written for an audience that has no knowledge of NSD.
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Riemann–Hilbert problems

To fix the notation, we consider RHPs given by an oriented contour Γ and amatrix-valued
jump function G : Γ0 → GL(m,C). Thereby an oriented contour is a union of simple
smooth curves2 Γj (j = 1, . . . , k) in C, with Γj having a designated direction in which
it is traversed. Traversing a curve in its designated direction gives us a left and right
hand side of the curve which we also denote by + side and − side. Γ0 is obtained by
removing the finitely many points of self-intersection from Γ and we denote the jump
matrix corresponding to the part Γj of the contour by

Gj = G|Γ0∩Γj .

and call the set of all tuples (Γj ,Gj) the data of a RHP. This data determines a holomorphic
function Φ : C \ Γ→ GL(m,C) satisfying

Φ+(z) = Φ−(z)G(z) for z ∈ Γ0,

Φ(∞) = I.

Here, Φ±(z) denotes the non-tangential limit of Φ(z′) as z′ → z from the positive re-
spectively negative side of the contour. The positive side is also the left hand side of
the contour and analogous the negative side is also the right hand side. Existence and
uniqueness of the solution Φ can be shown by using some analytic properties of the
jump function G and symmetries in the jump function and the contour, see e.g. (Fokas,
Its, Kapaev and Novokshenov 2006, p. 104ff) for an overview of the corresponding
theory. Under certain regularity assumptions, solving the RHP is equivalent to solving
the singular integral equation

Φ−(z) = I +
1

2πi

∫
Γ

Φ−(y)(G(y)− I)

y − z− dy. (1.1)

Thereby the solution of the RHP is then given by

Φ(z) = I +
1

2πi

∫
Γ

Φ−(y)(G(y)− I)

y − z dy.

In the scalar case (m = 1) or in case G is Abelian

G(z1)G(z2) = G(z2)G(z1) ∀z1,2 ∈ Γ

there exists the explicit integral representation

Φ(z) = exp

(
1

2πi

∫
Γ

logG(y)

y − z dy

)
(1.2)

for the solution of a RHP (Fokas et al. 2006). In many cases the full solution Φ(z) is not
of particular interest, but instead a derived quantity as e.g. the residue at∞ is of interest

res
z=∞

Φ(z) = lim
z→∞

z(I − Φ(z)).

2A simple smooth curve is a curve, which does not intersect itself and is given by a continuous map.
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Example 1: modified Korteweg–de Vries

A relative simple example is the RHP for modified Korteweg–de Vries (mKDV) equation

yt − 6y2yx + yxxx = 0 for x ∈ R, t ≥ 0

y(x, t = 0) = y0(x).

According to (Deift and Zhou 1993), the corresponding RHP consists of the contour
Γ = R (from −∞ to +∞) and the jump matrix

G(z;x, t) =

(
1− r(z)r(−z) −r(−z)e−θ(z;x,t)
r(z)eθ(z;x,t) 1

)
with the phase function

θ(z;x, t) = i(2zx+ 8z3t)

and r(z) being a function of the Schwartz space satisfying

sup
z∈R
|r(z)| < 1.

r is also called the reflection coefficient. Thereby the RHP also depends on regularity
conditions on y0(x). The solution of the ODE can be obtained from the solution of the
RHP using the connection

y(x, t) = 2i lim
z→∞

zΦ1,2(z).

Example 2: Painlevé II

Another example is the RHP representing the Painlevé II equation

uxx = xu+ 2u3.

As it is a second-orderODE, its general solution u(x) = u(x; s1, s2) in the complex domain
will depend on two independent complex parameters s1 and s2. These parameters also
appear in the RHP which is given as follows, see also (Fokas et al. 2006). The contour
consists of the six rays (see Fig. 1.1)

Γj = {reiπ(2j−1)/6 : r ≥ 0} (j = 1, . . . , 6),

and the jump matrices

Gj(z) =



(
1 sje

−θ(z)

0 1

)
j even,

(
1 0

sje
+θ(z) 1

)
j odd,
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Γ1

Γ2
Γ3

Γ4

Γ5

Γ6

Figure 1.1.: The six rays Γj of the RHP associated with the Painlevé II ODE.

with the phase function

θ(z) =
8i

3
z3 + 2ixz.

The 6 parameters sj (j = 1, . . . , 6) of the jump matrices have to satisfy

s1 − s2 + s3 + s1s2s3 = 0, s4 = −s1, s5 = −s2, s6 = −s3,

so by fixing s1 and s2 all parameters are already well defined. The solution Φ of the RHP
yields

u(x; s1, s2) = −2 res
z=∞

Φ1,2(z) = 2 lim
z→∞

zΦ1,2(z).

We should note here, that the independent variable x of the ODE is just a parameter of
the phase function θ in the RHP, whoose independent variable is z. Therefore the RHP
enables a pointwise evaluation of the Painlevé II function u(x; s1, s2).

Condition of Problems

As we will discuss the condition of RHPs and other problems throughout this thesis, we
would like to briefly recall its definition as e.g. given in (Deuflhard 2003). The condition
describes the error amplification between input and output data. If f is the problem we
want to compute, x is the input data and ε is the error of the input data, then the absolute
condition number κAbs is defined as the smallest number satisfying

‖f(x+ ε)− f(x)‖ ≤ κAbs‖ε‖ for ε→ 0.

Likewise the relative condition number κRel is defined as the smallest number satisfying

‖f(x+ ε)− f(x)‖/‖f(x)‖ ≤ κRel‖ε‖/‖x‖ for ε→ 0.
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Unless stated otherwise, we always consider the relative condition number which we will
denote by κ. Given a stable numerical method it estimates the error caused by round-off
in the last significant digit of the output data by

# loss of significant digits ≈ log10 κ

In general, no numerical method is able to calculate an accurate solution for a badly
conditioned system, i. e. a problem with a large condition number. It can be possible
though that additional structure of the problem can be exploited to cast the problem into
one that is not badly conditioned.
Due to the lack of an explicit formula for the condition number of a RHP, we are not

able to directly compute it for a given RHP. Instead we approximate it throughout this
thesis in the following way. We apply the solver from (Olver 2011b) to the RHP using
20 collocation points for each curve of the contour and compute the condition number
of the linear system created by the solver. Though this is just a rough approximation of
the condition number of the RHP, it is good enough for our purposes as we are only
interested in its magnitude.

Nonlinear Steepest Descent

We presented both example RHPs in their original or vanilla form. Though this form is
relatively simple, it is most of the time not the most useful one to either derive analytical
results or to calculate a numerical solution. Usually one of two numerical problems
occurs for the original form. Either the numerical solution converges very slowly or
the solver encounters a badly conditioned linear system. The first problem occurs for
example for the mKDV RHP whereas the second one occurs for the Painlevé II RHP.
Both problems have been successfully resolved by deforming the contour using the
method of nonlinear steepest descent (NSD), e.g. Olver and Trogdon (2012) use it for
both the Painlevé II and mKDV RHPs. How big the impact of such a deformation on
the convergence speed and the condition number is, can be observed in Fig. 1.2 for the
mKDV RHP and in Fig. 1.3 for the Painlevé II RHP. The contours in these figures as well
as all other colored illustrations of RHPs throughout this thesis are created using the
following style.

Visualization Style 1 (RHP Contours).

• The color encodes ||Gj(z)− I||F along Γj with a logarithmic scale.

• The values of ||Gj(z)− I||F are truncated to [10−16, 1016].

• We use the color coding green ≈ 10−16, yellow ≈ 100 and red ≈ 1016.

• The blue points indicate the location of the stationary points of the phase function in G.

Originally NSD was developed in (Deift and Zhou 1993) for the asymptotic analysis
of RHPs, i.e. the behaviour of Φ(z) for x → ∞, with x being a parameter of the jump
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function G. We will not discuss in detail how NSD works, but its basic idea is as follows.
Just as for the two examples we have presented, the jump matrices of RHPs are often of
the form

Gj(z) =

(
1 e±θ(z)

0 1

)
, Gj(z) =

(
1 0

e±θ(z) 1

)
or a product of these two forms. Thereby it is common for θ to be a holomorphic complex
function. The goal of the nonlinear steepest descent method is to deform the contour
such that for each part Γj holds

Re θ(z) ≥ 0,Re θ(z)→ +∞ along z ∈ Γj if Gj contains e−θ(z)

Re θ(z) ≤ 0,Re θ(z)→ −∞ along z ∈ Γj if Gj contains e+θ(z)

A contour satisfying these conditions yields jump matrices Gj decaying exponentially
fast to the identity matrix3 along Γj .
Further examples where NSD is used as a preconditioning step before a numerical

solution is calculated can be found in (Trogdon and Olver 2012) [nonlinear Schrödringer
RHP ], (Trogdon, Olver and Deconinck 2012) [KDV and mKDV RHP ] and (Olver and
Trogdon 2014) [orthogonal polynomial RHP ]. The results in these papers indicate that
preconditioning a RHP by deforming it is a mandatory step before an accurate numerical
solution can be calculated. The only exception so far are cases with small values of the
involved parameters. For example for the Painlevé II RHP accurate results can be obtained
for about |x| ≤ 5. Deriving these deformations is not an easy task, as it requires quite
some expert knowledge about NSD. Furthermore, there is usually not one deformation
for a RHP but several. For example for mKDV there are three different deformations.
Which of them has to be used depends on the parameters x and t.

Main Goal

We want to develop a preconditioning algorithm for RHPs which works as a "black box".
It takes a RHP as input and without any further information form the user, it computes a
deformed RHP which is well conditioned and yields a fast converging solution. Thus it
completely eliminates any manual steps currently involved in the preconditioning step.
What we present in this thesis is a "proof of concept" for such an algorithm. We consider
a subset of all the tools available for NSD, develop an algorithm using this subset and
verify that it is able to successfully precondition RHPs for which analytically derived
deformations exists that also use just this subset of tools.

To give just a glimpse of how such and algorithm couldwork, we consider the following.
NSD is about finding a curve Γj such that Gj → I is as fast as possible along Γj . This
problem can be discretized by finding the shortest path Pj in a graph with edgeweights
given by integrating ||Gj − I|| along the edges. So if we can find for each part Γj a system
3Gj(z) = I means effectively that there is no jump for Φ at z
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Figure 1.2.: Visualization according to style 1; Left: Original (top) and deformed contour
(bottom) of the mKDV RHP for t = 1,x = −5 and r(z) = 1

2e
−z2 ; the blue

points at the stationary points of the phase function θ (i. e. points x satisfying
θ′(x) = 0 ) also visualize the scaling applied to the top plot, which gives an
impression how fastG→ I in the deformed contour compared to the original.
The condition number κ is about 20 for both contours. Right: The numerical
solution of the deformed contour converges a lot faster than the one of the
original contour. The reference solution, which we use to determine the
error, is the numerical solution of the deformed contour calculated with 600
collocation points.
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κ ≈ 1016 κ ≈ 103

Figure 1.3.: Visualization according to style 1; original (left) and deformed (right) contour
of the Painlevé II RHP for s1 = 1, s2 = 2 and x = −20; Deforming the contour
has a quite big influence on the condition number. The original contour does
not allow to calculate even a single accurate digit of the solution whereas we
can expect 13 accurate digits for the deformed contour.

of shortest paths Pj in a way such that the union of these paths yield a valid deformation
of the corresponding RHP, then this system of paths should resemble a deformation
obtained by NSD.
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Outline

Chapter 2 As the example RHPs we presented are "just" equivalents of ODEs / PDEs , the
question might arise whether all the work involved for calculating numerical solu-
tions of RHPs is actually worth the effort or if using standard solvers for ODEs /
PDEs is not an easier approach. Therefore we provide a motivational example of a
problem, which is very challenging to solve in its ODE formulation. Solving it in a
RHP setting should be easier as it avoids the main problem which occurs in ODE
formulation.

Chapter 3 We present the general process of optimizing a contour by casting it to the problem
of finding the shortest path in a graph subject to topological constraints. In order
to prevent the main ideas being hidden behind technical details, we do not yet
optimize the contours of RHPs. Instead we consider the problem of optimizing the
contour of a contour integral. To be specific, we use the Cauchy’s integral formula
to illustrate our ideas. As RHPs are equivalent to singular integral equations and in
the scalar case can even be solved by contour integrals, this seems to be a suitable
simplification of our main goal.

Chapter 4 By extending these ideas from the previous chapter to RHPs, we develop a "proof of
concept" algorithm, which optimizes the contour of RHPs. It optimizes the contour
with regard to reducing its condition number. We call it "proof of concept" as it
does not support all the tools available for NSD and therefore its use is limited to
deformations which do not require the omitted tools. The algorithm is presented
with great detail.

Chapter 5 We evaluate the performance of our algorithm by comparing automatically com-
puted deformations with analytically derived ones. For the examples we present
here, both ways of obtaining deformations yield very similar contours and are
equally or very similar effective for preconditioning RHPs.

Chapter 6 As already stated our "proof of concept" algorithm has a few limitations. We discuss
these limitations and provide an outlook how the algorithm could be improved in
future work.

Chapter 7 Finally, we provide a short summary of our results.

Appendix A As a little bonus for the interested reader, we present a short documentation (in-
cluding examples) for our implementation of the contour deformation algorithm
for RHPs discussed in § 4. This implementation was also used to to calculate the
results shown in § 5. It is available at https://github.com/tauu/AutoDeform .

https://github.com/tauu/AutoDeform
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2. Motivation

In the two examples for RHPs, we have given in the introduction, the RHP corresponded
to a 1 dimensional ODE (Painlevé II) respectively a PDE (mKDV). If we view these
problems just from the points of numerical analysis one might ask oneself if there is an
advantage in solving them using the RHP formulation instead of using the wide variety
of numerical solvers, which are already available for ODEs and PDEs. To motivate the
numerical study of RHPs in this chapter we give an example of an ODE, which can be
solved using standard methods, but doing so is very challenging. The main numerical
problem which we encounter thereby would not appear in the RHP formulation of the
ODE. We would like to note here, that not all RHPs have a corresponding ODE / PDE
and this is just one reason to be interested in the numerical study of RHPs.

2.1. Problem Description

We consider the BVP given by the Painlevé V ODE

(xσxx)2 = (σ − xσx − 2σ2
x + (2k + n)σx)2 − 4σ2

x(σx − k)(σx − k − n) (2.1)

and the boundary conditions

σ(x) ' k
(n+1)!

(
k + n

n

)
xn+1 for x→ 0

σ(x) ' k(x− n) + k2n
x for x→∞

(2.2)

with k, n ∈ N and σ : [0,∞)→ R. Wewant to calculate a numerical solution on the whole
interval [0,∞) which is as accurate as possible with IEEE double-precision arithmetic.
This particular BVP appears in RandomMatrix Theory, see (Tracy and Widom 1994).

To simplify the notation we define the following functions.

σ1
0(x) =

k

(n+ 1)!

(
k + n

n

)
xn+1

σ1
∞(x) = k(x− n) +

k2n

x

(2.3)

σ1
0 and σ1

∞ are the first terms of the asymptotic expansions of σ for x→ 0 respectively
x→∞. Correspondingly we will use σj0 and σj∞ to refer to the sum of the first i terms of
the asymptotic expansion for x→ 0 respectively x→∞. We will call j the level of the
asymptotic expansion.
The RHP corresponding to the Painlevé V ODE is available in (Fokas et al. 2006).
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Outline

Our approach to solve this problem is to use a standard BVP solver. To make this possible
we have to reduce the solution interval [0,∞) to a finite one. Therefore we calculate
further levels of the asymptotic expansions σ0 and σ∞ in § 2.2. These are used to get
accurate boundary conditions for a finite subset of [0,∞). Outside of this interval we
calculate the solution by evaluating one of the asymptotic expansions. The next step is to
construct initial values for the BVP solver. It turns out that constructing initial values for
the whole interval is not feasible. Therefore the BVP is split into a left and right part in
§ 2.3. Initial values can be constructed for each of these parts. In § 2.4 we will discuss
how we can calculate a reference solution. Finally we determine the accuracy of our
numerical solution by comparing it against our reference solution in § 2.5.

The methods described in this chapter can in principal be used for any value of k and
n. Nevertheless we will see later that we have to determine some parameters to be able
to calculate a numerical solution. Determining the parameters for general k and n is
difficult, therefore we perform numerical experiments just for one case: k = 80, n = 40.

2.2. Asymptotic Expansion

At first we define the operator R that maps a function to its residue in the Painlevé V
equation (2.1).

R : C2(R)→ C(R)

σ 7→ (xσxx)2 − (σ − xσx − 2σ2
x + (2k + n)σx)2

+ 4σ2
x(σx − k)(σx − k − n)

(2.4)

Using this operator we can now prove the form of further levels of the asymptotic
expansions.

Lemma 1. If we define

σj0(x) =

j∑
i=1

wi
1

(n+ i)!

(
k + n

n

)
xn+i

σj∞(x) =
1∑

i=−j
wix

i

and fix the values w1 = k,w0 = −kn,w−1 = k2n then there is a unique way to choose the
remaining constants wi ∈ R such that

Rσj0(x) = O(x2n+j) for x→ 0 , Rσj∞(x) = O(x−2−j) for x→∞ (2.5)

for all j ∈ N.
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Sketch of Proof. All calculations needed to prove this lemma are very long and technical
but not difficult. Therefore instead of the actual calculations we will only show the
Mathematica code for these calculations and their results. We start by defining two
replacement patterns to extract the first/last term of a sum, the operator R and the
asymptotic expansions.

1 (∗ u t i l i t y pa t t e rns to e x t r a c t the f i r s t / l a s t term of a sum ∗ )
2 e x t r a c t f i r s t = {
3 HoldPattern [Sum[ f_ , { i , lo_ , up_ } ] ] : > ( f /. i −> lo )
4 } ;
5 e x t r a c t l a s t = {
6 HoldPattern [Sum[ f_ , { i , lo_ , up_ } ] ] : > ( f /. i −> up)
7 } ;
8 (∗ operator R ∗ )
9 R[ s_ ] := ( x D[D[ s , x ] , x ] )^2 − ( s − x D[ s , x ] −
10 2 D[ s , x ]^2 + (2 k + n ) D[ s , x ] )^2 +
11 4 D[ s , x ]^2 (D[ s , x ] − k ) (D[ s , x ] − k − n ) ;
12 (∗ σj0 ∗ )
13 as [ 0 , 1 ] := k/(n + 1 ) ! (Binomial [ k + n , n ] ) x^(n + 1 ) ;
14 as [ 0 , j _ ] := as [ 0 , 1 ] + Sum[w[ i ]/ (n + i ) !
15 (Binomial [ k + n , n ] ) x^(n + i ) , { i , 2 , j } ] ;
16 (∗ σj∞ ∗ )
17 as [ Inf ini ty , 1 ] := k ∗ ( x − n ) + k^2 n/x ;
18 as [ Inf ini ty , j _ ] := as [ Inf in i ty , 1 ] + Sum[w[ i ] x^i , { i , −j , −2}]

Furthermore we add the global assumption that n and j are positive numbers.

1 $Assumptions = {n > 0 , j > 0 } ;

We prove the lemma by induction over j. But before we start with the induction, we note
that for all j ∈ N

Rσj0(x) =
t∑
i=r

vix
i Rσj∞(x) =

q∑
i=p

uix
i (2.6)

for some values of vi, ui, r, t, p, q, as σ0
j and σ

j
∞ are sums of powers of x and R consists

of finite differentiation, multiplications and additions of it. Now let us begin with the
induction. At first we calculate the residue of both asymptotic expansions for j = 1 and
determine the lowest, respectively the largest exponent of x.

1 Exponent [
2 Expand @ R @ as [ 0 , 1 ] ,
3 x ,
4 Min
5 ] // Simplify
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6 (∗ r e su l t : 1 + 2 n ∗ )
7
8 Exponent [
9 Expand @ R @ as [ Inf in i ty , 1 ] ,

10 x ,
11 Max
12 ] // Simplify
13 (∗ r e su l t : −3 ∗ )

Due to (2.6) the Mathematica results yield

Rσ1
0(x) = O(x2n+1) for x→ 0 , Rσ1

∞(x) = O(x−3) for x→∞

which is (2.5) for j = 1. For the induction step we assume that (2.5) holds for a specific
j ∈ N. Combined with (2.6) we get

Rσj0(x) =

t∑
i=2n+j

vix
i Rσj∞(x) =

−2−j∑
i=p

uix
i

for some vi, ui ∈ R and t, p ∈ N. To prove that (2.5) also holds for j+1weuseMathematica
to find a suitable choice for wj+1 and w−j−1 by solving

Rσj+1
0 = Rσj+1

0 − Rσj0 + Rσj0 = Rσj+1
0 − Rσj0 +

t∑
i=2n+j

vix
i = O(x2n+j+1)

Rσj+1
∞ = Rσj+1

∞ − Rσj∞ + Rσj∞ = Rσj+1
∞ − Rσj∞ +

−2−j∑
i=p

uix
i = O(x−2−j−1)

for vj+1 respectively u−j−1. The corresponding code is

1 (∗ evaluate Rσj+1
0 − Rσj0 +

∑t
i=2n+j vix

i

2 ∗ r e spe c t i v e l y Rσj+1
∞ − Rσj∞ +

∑−2−j
i=p uix

i ,
3 ∗ s p l i t the r e su l t in to summands and reduce every sum
4 ∗ to i t s f i r s t / l a s t term (= term with lowest / highes t exponent )
5 ∗ the l a s t term of σj+1

0 , σj+1
∞ i s s p l i t apart from the sum,

6 ∗ to help Mathematica s impl i fy ing the r e su l t
7 ∗ )
8 res0 = Level [
9 Expand [ R[ as [ 0 , j ] + w[ j +1]/(n+ j +1 ) ! (Binomial [ k+n , n ] ) x^(n+ j +1) ]

10 − R @ as [ 0 , j ] + Sum[ v [ i ] x^i , { i , 2 n+ j , t } ] ] ,
11 1] //. e x t r a c t f i r s t ;
12 r e s I n f = Level [
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13 Expand [ R[ as [ Inf ini ty , j ] + w[− j −1] x^(− j −1) ]
14 − R @ as [ Inf in i ty , j ] + Sum[ u [ i ] x^i , { i ,p,−2− j } ] ] ,
15 1] //. e x t r a c t l a s t ;
16 (∗ lowest / highes t exponent of x in res0 / r e s I n f ∗ )
17 l e0 = Min @ Exponent [ res0 , x ,Min] // Simplify
18 (∗ r e su l t : j + 2n ∗ )
19 l e I n f = Max @ Exponent [ r e s In f , x ,Max] // Simplify
20 (∗ r e su l t : −2 − j ∗ )
21 (∗ c o e f f i c i e n t of xj+2n / x−2−j

22 ∗ ( the Coe f f i c i e n t funct ion does not work i f
23 ∗ the exponent i s a sum of symbols )
24 ∗ )
25 c0 = res0 /. x^e_ : > I f [ e === le0 , 1 , 0 ] ;
26 c In f = r e s I n f / . x^e_ : > I f [ e === l e In f , 1 , 0 ] ;
27 (∗ determine a l l poss ib l e values of wj+1, w−j−1

28 which e l imina te s t h i s c o e f f i c i e n t ∗ )
29 Solve [ Total @ c0 == 0 , w[ j +1 ] ]
30 (∗ r e su l t : wj+1 = − (n+1)!(j+n+1)!vj+2n

2jk(n2+n)(j+n+1)(k+n
n )

2 ∗ )

31 Solve [ Total @ c In f == 0 , w[− j −1]]
32 (∗ r e su l t : w−j−1 =

u−j−2

4k2n
∗ )

So if we know wi with |i| ≤ j satisfying (2.5), then there is exactly one possible choice for
wj+1, w−j−1 such that

Rσj+1
0 (x) = O(x2n+j+1) for x→ 0 , Rσj+1

∞ (x) = O(x−2−j−1) for x→∞.

The lines 30 and 32 of the last code listing suggest an easy method to calculate the
constants wi. If we know the values of the constants wi for −j ≤ i ≤ j for which

Rσj0(x) =

−2+3(j+n)∑
i=2n+j

vix
i

Rσj∞(x) =

−2−j∑
i=−2−3j

vix
i

(2.7)

is satisfied with vi ∈ R then wj+1 and w−j−1 are given by

wj+1 = − vj+2n(1 + n)!(1 + j + n)!

2jk(1 + j + n)(n+ n2)

(
k + n

n

)2

w−j−1 =
v−2−j
4k2n
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As both equations (2.7) are satisfied for j = 1 with the definitions given in (2.3) we can
use the following recursive definition of wj to calculate it.

1 w[ j _ ?Negative ] :=
2 w[ j ] = Coeff ic ient [
3 Expand @ R @ as [ Inf in i ty , − j − 1 ] ,
4 x ,
5 −1 + j
6 ] / (4 k^2 n )
7
8 w[ j _ ? Posi t ive ] :=
9 w[ j ] = − ( Expand @ R @ as [ 0 , j − 1]
10 /. x^( e_ ) : > I f [ e === 2 n + j − 1 , 1 , 0 ]
11 ) (1+n ) ! ( j +n ) !
12 / (2 ( j −1) k ( j +n ) (n+n^2) Binomial [ k+n , n ]^2 )

Remark. Line 10 is essentially the same as Coefficient [ ... , x, 2 n + j − 1] but the Coefficient
function does not work correctly if the requested exponent contains a symbol1. Therefore this
workaround is used.

As the time and memory consumption to calculate the next term of these asymptotic
expansion increases quite fast with the level of the asymptotic expansion we were only
able to calculate σj0 up to j = 17 and σj∞ up to j = 42.

2.3. Interval Splitting

The standard approach to solve the BVP given by (2.1) and (2.2) would be to apply a stan-
dard BVP solver. As no standard BVP solver is able to solve a BVP over an infinite interval
like [0,∞], we have to reduce the interval to a finite one first. This is possible because we
do not need to solve the ordinary differential equation in regions, where the asymptotic
expansion approximates the solution σ up to machine precision. Consequently we can
define new boundary conditions as follows:

σ(a) = σi0(a) σ(c) = σj∞(c) (2.8)

with 0 < a < c <∞ chosen such that∣∣∣∣σ(a)− σi0(a)

σ(a)

∣∣∣∣ < eps

∣∣∣∣∣σ(c)− σj∞(c)

σ(c)

∣∣∣∣∣ < eps

holds with eps being the machine precision2 and the interval [a, c] is as small as possible.
We will refer to the BVP defined by (2.1) and (2.8) with BVPc. To solve it, we have tried

1Bug exists at least in Mathematica 7 - 10
2For double precision number we have eps ≈ 10−16.
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to apply the following BVP solvers

• BVPSOL (version of 11.0.2006); multiple shooting method, available at
http://www-m3.ma.tum.de/Software/ODEHome

• bvp4c (version of Matlab 2009a); collocation method integrated in Matlab

• bvp5c (version of Matlab 2009a); successor of bvp5c, integrated in Matlab

• bvp6c (version of 12.06.2006); improved version of bvp4c, available at
http://www.mathworks.com/matlabcentral/fileexchange/11315

• sbvp (version 1.0); collocation method, available at
http://www.mathworks.de/matlabcentral/fileexchange/1464

• a solver based on the chebops package (version v3_1111), available at
http://www.comlab.ox.ac.uk/projects/chebfun/chebops.html.

(2.9)
It turns out that none of these solvers is successful in calculating a numerical solution.
The main problem is that it is difficult to create good initial values for this BVP. For x
close to a or c it is possible to use the asymptotic expansions to determine initial values,
but for the major part of the interval [a, c] we have no information about the solution and
are therefore limited to use an interpolation method to create initial values. This is no
easy task as can be seen in Fig. 2.1.

0 200 400 600
10−62

10−38

10−14

1010

x

σ
(x

)

0 200 400 600

1,000

2,000

3,000

x

γ
(x

)

Figure 2.1.: Visualization of σ (left) and γ (right) for k = 80, n = 40; σ behaves completely
different at both ends of the interval [a, c] and the order of magnitude of σ is
very different at both borders. γ should be far easier to approximate using
an interpolation. (We will later on determine a = 0.15 and c = 550.)

http://www-m3.ma.tum.de/Software/ODEHome
http://www.mathworks.com/matlabcentral/fileexchange/11315
http://www.mathworks.de/matlabcentral/fileexchange/1464
http://www.comlab.ox.ac.uk/projects/chebfun/chebops.html
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Therefore we modify the BVP to make it easier to create initial values. By defining

γ(x) := σ(x)− k(x− n) (2.10)

we obtain a function which can be approximated much easier by an interpolation than σ,
see also Fig. 2.1 (right). Inserting definition (2.10) into the equations (2.1) and (2.8) yields
the new BVP, BVPr, given by

(xγxx)2 = −4γx(k + γx)2(−n+ γx) + (s+ (−2k + n− x)γx − 2γ2
x)2

γ(d) = σi0(d)− k(d− n)

γ(e) = σj∞(e)− k(e− n)

(2.11)

with some constant d < e and d, e ∈ R, i, j ∈ N, which have yet to be determined. For this
problem almost all solvers in list (2.9) also do not yield a solution, the only exception is
sbvp. Although sbvp can solve this BVP, there remains a problem. Using the numerical
solution γN of (2.11), we can define

σNr (x) = γN (x) + k(x− n)

and use it as an approximation for σ(x). But as we can see in Fig. 2.2 there is an area
around dwhere evaluating γN (x) + k(x− n) will not yield a good approximation of σ
due to substantial cancellation. As σi0(x) is also not a good approximation of σ in this
area, we do not yet have an accurate solution of BVPc.

0 1 2 3 4 5 6
10−65

10−41

10−17

107

1031

x

σ

σ17
0
γ

Figure 2.2.: Comparison of σ, γ, σ17
0 (x) for x close to 0 for k = 80, n = 40

To fill this gap we introduce the additional BVP: BVPl given by (2.1) and

σ(a) = σi0(a) σ(b) = σNr (b)
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where b ∈ [a, c] is chosen such that it is the smallest point at which σNr can be evaluated
without subtractive cancellation. Once again we were only able to solve this BVP with
sbvp.3 The numerical solution of BVPl will be denoted by σNl . In summary we can now
define the numerical solution σN of BVPc as follows

σN (x) =


σi0(x) for 0 ≤ x ≤ a
σNl (x) for a < x ≤ b
σNr (x) for b < x < c

σj∞(x) for c ≤ x <∞

(2.12)

Obviously σN is only well defined if c < e, so we add this as an additional restriction for
the choice of e. How the constants a, b, c, d, e, i and j are determined is described in the
next section.

Parameter values for the case k = 80,n = 40

BVPr: borders c,d,e and level j

At first we consider the left border d. As

σi0(x) << eps k(x− n) (2.13)

holds with eps being the machine precision in the whole region where σi0(x) is a good
approximation of σ(x) we can simplify the left boundary condition in (2.11) to

γ(d) = −k(d− n)

Therefore we have to choose d such that∣∣∣∣ σ(d)

k(d− n)

∣∣∣∣ ≤ eps .

The largest value we can choose is d = 1.5, see also Fig. 2.3.
Next we consider the right border e. Fig. 2.4 shows the relative difference between two

consecutive levels of σj∞(x)− k(x−n). According to the figure, σ42
∞(x)− k(x−n) should

approximate γ(x) with machine precision for x ≥ 600 and it does not seem likely that
higher levels of σj∞ will yield a significantly lower value. So we set j = 42 and e = 600.

We have to verify that c < e as otherwise (2.12) would not be well defined. Analogous
to what we did for the border e, we plot the relative difference of consecutive levels
of σj∞ and see that σ42

∞ approximates σ(x) with machine precision for c = 550 < e.
Consequently we set c = 550.
3Amodified version of BVPSOL is also able to solve BVPl, but it requires different initial values than the
ones presented here.
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Figure 2.3.: Magnitude of k(x− n) compared to σ(x)

BVPl: borders a,b and level i

Analogous to the approach we used for the borders e and c, we compare the relative
difference between two consecutive levels of σi0, see Fig. 2.6, and determine a = 0.15 and
i = 17. The remaining parameter b is determined later in § 2.5.

2.4. Reference Solution

To estimate the error of the numerical solution of the Painlevé V equation, we compare
it against a reference solution. To ensure the accuracy of the reference solution we use
Mathematica’s ability to perform calculations with arbitrary precision. With a high
enough precision, we will get a solution which is accurate up to machine precision and
is used as a reference solution.
Unfortunately there are only some very basic BVP solvers available for Mathematica

and none suits our problem very well. Therefore instead of solving the BVPs, we solve
an equivalent initial value problem consisting of equation (2.1) and the initial values.

σ(x1) = σj0(x1)

σx(x1) =
d

dx
σj0(x)|x=x1

(2.14)

Thereby we use the built-in extrapolation solver of Mathematica, as it is the fastest
built-in solver for multi machine precision calculations, according to the Mathematica
documentation (Mathematica n.d.). As base integration method for the extrapolation
solver we use the LinearlyImplicitMidpointmethod. The level j is set to the highest
level that we were able to calculate, which is 17. Furthermore a good choice for the initial
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Figure 2.4.: Comparison of consecutive levels of σj∞ − k(x− n)

point x1 and the precision for the calculations has been determined by some experiments.
The most interesting choices are shown in Tab. 2.1. x2 is the point at which the solver
essentially stopped due to a too small step size. As we can see, in general smaller values
of x1 yield larger values for x2 if a sufficiently high precision is used. As the calculation
time for one of the settings presented in Tab. 2.1 is already about one month even though
we do not get close to c, it does not seem practical to calculate a reference solution for the
whole interval [a, c]. Instead we use the best setting we found (x1 = 10−5 and 24-fold
machine precision) and use the resulting solution as a reference solution for the interval
[10−5, 65] and denote it by σR. For x > 65 the accuracy of this reference solution seems
to be less than machine precision.

x1 n-fold machine precision x2

10−5 24 81.63
10−4 20 63.19
10−5 20 81.6
10−6 20 58.22

Table 2.1.: We calculated reference solution with the setting presented in this table.
Thereby x1 is the initial point and x2 the point at which the solution blows up
if the solver uses the corresponding precision.
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Figure 2.5.: Comparison of consecutive levels of σj∞

2.5. Numerical Results

The results we present here are for the parameters k = 80, n = 40 and are calculated
with the BVP solver sbvp. To determine the accuracy of the numerical solutions and
initial values, we compare them to the reference solution in the interval [0, 65].

BVPr

To calculate a numerical solution we need initial values for the BVP solver. These are
created using the interpolation polynomial p given by

p ∈ Pr+l+1

di

dxi
p(x)

∣∣∣
x=d

=
di

dxi
− k(x− n)

∣∣∣
x=d

for 0 ≤ i ≤ l

di

dxi
p(x)

∣∣∣
x=e

=
di

dxi
σ42
∞(x)− k(x− n)

∣∣∣
x=e

for 0 ≤ i ≤ r

(2.15)

The best choice for the parameters d, e, l and r that we were able to find is

d = 0.4 l = 1

e = 550 r = 21.
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Figure 2.6.: Comparison of consecutive levels of σi0

Though we have determined earlier that e > 600 is optimal, we set the border e to a lower
value, because higher values yield a less accurate numerical solution. Initial values are
created by sampling p with a step size of 0.1 for x lower than 12 and with a step size of 1

for x greater than 12. We would like to note here that even small alterations to this set of
parameters can cause the BVP solver to not converge to a solution anymore. E.g. we did
not get a solution for any value of r apart from the one we presented.

Fig. 2.7 shows the accuracy of the initial values, γN and σNr (x).

BVPl

Just as for BVPr we need initial values for the BVP solver. Basically there are three
different sources for initial values in this case. The first is σ17

0 (x), the second is σNr (x)

and the third is an interpolation between these two. Fig. 2.8 shows the accuracy of the
first two. As we can see the first two options yield bad initial values between 1.0 and 1.7,
but for the remaining interval always one source yields good initial values. Therefore we
use the interpolation polynomial that satisfies the following conditions in the interval
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Figure 2.7.: Left: Accuracy of the initial values for BVPr Right: Accuracy of γN and σNr ;
The accuracy of σNr decreases close to x = 0 due to numeric cancellation, but
is very accurate for x ≥ 6. Therefore, we choose b = 6.

[1.0, 1.7] to get better initial values for this interval.

p ∈ P3

p(1.0) = log(σ17
0 (1.0))

p(1.7) = log(σNr (1.7))

d
dxp(x)

∣∣∣
x=1.0

=
d
dx log(σ17

0 (x))
∣∣∣
x=1.0

d
dxp(x)

∣∣∣
x=1.7

=
d
dx log(σNr (x))

∣∣∣
x=1.7

In summary the initial values α are then given by

α(x) =


σ17

0 (x) for x ≤ 1.0

exp(p(x)) for 1.0 < x < 1.7

σNr (x) for 1.7 ≤ x ≤ 6

This uncommon interpolation is chosen because σ17
0 (1.0) and σNr (1.7) have very differ-

ent orders of magnitude, which results in a poor approximation quality for common
interpolation methods. In the interval [0.15, 1.0] we use a step size of 0.001 and in the
remaining interval a step size of 0.01. Fig. 2.8 shows the accuracy of the initial values
and of the numerical solution σNl calculated with them.

Combined Solution

Finally, Fig. 2.9 shows the accuracy of σN (x) as well as a plot of σ. The solution has a
very good accuracy of 14-15 significant digits in most regions for which we were able
calculate a reference solution. Just for x close to 0 the accuracy is a bit lower.
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Figure 2.8.: Left: Accuracy of initial values for BVPl. Right: Accuracy of σNl .
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Conclusion

Though it is possible to compute a numerical solution to BVPc with an accuracy of 14-15
digits, this chapter demonstrates that it is a very challenging task and it involves quite a
lot of work. If we recall from § 2.4, that even 24-fold machine precision was not enough
to solve the initial value problem for Painlevé V (2.14) in the interval [0, 80], we observe
that this initial value problem has a condition number of 10384 for this interval with
respect to the initial conditions. As we have already stated in the introduction, the RHP
formulation allows a pointwise evaluation of the corresponding ODE and thus avoids
the enormous error amplification occurring for initial value problems. Furthermore
we do not need initial values or further terms of the asymptotic expansion to calculate
a numerical solution of the RHP. What we would need though is a deformation to
precondition the Painlevé V RHP, but as we will see in the next chapters, there is a good
chance that this could be determined automatically by an algorithm.
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3. Toy Problem: Cauchy’s Integral Formula

3.1. Introduction

Before we start discussing how the contour of RHPs can be optimized, we will first
discuss an easier problem which demonstrates the basic ideas in a more simple way. As
we already mentioned in § 1 a RHP is equivalent to a singular contour integral equation.
So an obvious simplification of finding an optimal contour for a RHP would be the
problem finding an optimal contour for the evaluation of a contour integral. And that is
exactly what we will do in this chapter. Thereby we pick a particular contour integral,
namely the Cauchy integral.

This results presented in this chapter have been published in (Bornemann andWechslberger
2013) and it is for the most part identical to the paper.

To escape from the ill-conditioning of difference schemes for the numerical calculation
of high-order derivatives, numerical quadrature applied to Cauchy’s integral formula
has on various occasions been suggested as a remedy (for a survey of the literature, see
Bornemann 2011). To be specific, we consider a function f that is holomorphic on a
complex domain D 3 0; Cauchy’s formula gives1

f (n)(0) =
n!

2πi

∫
Γ
z−n−1f(z) dz (3.1)

for each cycle Γ ⊂ D that has winding number ind(Γ; 0) = 1. If Γ is not carefully chosen,
however, the integrand tends to oscillate at a frequency of order O(n−1) with very large
amplitude (Bornemann 2011, Fig. 4). Hence, in general, there is much cancelation in
the evaluation of the integral and ill-conditioning returns through the backdoor. The
condition number of the integral is (Deuflhard 2003, Lemma 9.1)

κ(Γ, n) =

∫
Γ |z|−n−1|f(z)| d|z|∣∣∫

Γ z
−n−1f(z) dz

∣∣
and Γ should be chosen as to make this number as small as possible. Equivalently, since
the denominator is, by Cauchy’s theorem, independent of Γ, we have to minimize

d(Γ) =

∫
Γ
|z|−n−1|f(z)| d|z|. (3.2)

1Without loss of generality we evaluate derivatives at z = 0.
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0

Figure 3.1.: Path Γ with ind(Γ; 0) = 1 in a grid-graph of step size h.

Bornemann (2011) considered circular contours of radius r; he found that there is a
unique r∗ = r(n) solving the minimization problem and that there are different scenarios
for the corresponding condition number κ∗(n) as n→∞:

• κ∗(n)→∞, if f is in the Hardy space2 H1;

• lim supn→∞ κ∗(n) 6 M , if f is an entire function of completely regular growth
which satisfies a non-resonance condition of the zeros and whose Phragmén–
Lindelöf indicator possessesM maxima (a small integer).

Hence, though those (and similar) results basically solve the problem of choosing proper
contours for entire functions, much better contours have to be found for the class H1.
In this chapter, we solve the contour optimization problem within the more general

class of grid paths of step size h (see Fig. 3.1; we allow diagonals to be included) as
they are known from Artin’s proof of the general, homological version of Cauchy’s
integral theorem (Lang 1999, IV.3). Such paths are composed from horizontal, vertical
and diagonal edges taken from a (bounded) grid Ωh ⊂ D of step size h. Now, the
weight function (3.2), being additive on the abelian group of path chains3, turns the
grid Ωh into an edge-weighted graph such that each optimal grid pathW∗ becomes a
shortest enclosing walk (SEW); “enclosing” because we have to match the winding number
condition ind(W∗; 0) = 1. An efficient solution of the SEW problem for embedded graphs
was found by Provan (1989) and serves as a starting point for our work.

2The Hardy spaceH1(BR) is the set of all function f which are holomorphic in the disc BR and satisfy

sup
0<r<R

1

2π

∫ 2π

0

|f(reiπθ)| dθ <∞.

3We use the standard choice of joining paths for the group action.
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Outline

In § 3.2 we discuss general embedded graphs in which an optimal contour is to be
searched for; we discuss the problem of finding a shortest enclosing walk and recall
Provan’s algorithm. In § 3.3 we discuss some implementation details and tweaks for the
problem at hand. Finally, in § 3.4 we give some numerical examples; these can easily be
constructed in a way that the new algorithm outperforms, by orders of magnitude, the
optimal circles of Bornemann (2011) with respect to accuracy and the direct symbolic
differentiation with respect to efficiency.

3.2. Contour Graphs and Shortest Enclosing Walks

By generalizing the grid Ωh, we consider a finite graph G = (V,E) embedded to D, that is,
built from vertices V ⊂ D and edges E that are smooth curves connecting the vertices
within the domain D. We write uv for the edge connecting the vertices u and v; by (3.2),
its weight is defined as

d(uv) =

∫
uv
|z|−n−1|f(z)| d|z|. (3.3)

A walkW in the graph G is a closed path built from a sequence of adjacent edges, written
as (where +̇ denotes joining of paths)

W = v1v2 +̇ v2v3 +̇ · · · +̇ vmv1;

it is called enclosing the obstacle 0 if the winding number is ind(W ; 0) = 1. The set of all
possible enclosing walks is denoted by Π. As discussed in § 3.1, the condition number is
optimized by the shortest enclosing walk (not necessarily unique)

W∗ = argmin
W∈Π

d(W )

where, withW = v1v2 +̇ v2v3 +̇ · · · +̇ vmv1 and vm+1 = v1, the total weight is

d(W ) =

m∑
j=1

d(vjvj+1).

The problem of finding such a SEW was solved by Provan (1989): the idea is that
with Pu,v denoting a shortest path between u and v, any shortest enclosing walkW∗ =

w1w2 +̇w2w3 +̇ · · · +̇wmw1 can be cast in the form (Provan 1989, Thm. 1)

W∗ = Pw1,wj +̇wjwj+1 +̇Pwj+1,w1

for at least one j. Hence, any shortest enclosing walkW∗ is already specified by one of
its vertices and one of its edges; therefore

W∗ ∈ Π̃ = {Pu,v +̇ vw +̇Pw,u : u ∈ V, vw ∈ E}.
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Provan’s algorithm finds W∗ by, first, building the finite set Π̃; second, by removing
all walks from it that do not enclose z = 0; and third, by selecting a walk from the
remaining candidates that has the lowest total weight. Using Fredman and Tarjan’s
(1987) implementation of Dijkstra’s algorithm to compute the shortest paths Pu,v, the
run time of the algorithm is known to be (Provan 1989, Corollary 2)

O(|V | |E|+ |V |2 log |V |). (3.4)

3.3. Implementation Details

We restrict ourselves to graphs Ωh given by finite square grids of step size h, centered at
z = 0 — with all vertices and edges removed that do not belong to the domain D. Since
Provan’s algorithm just requires an embedded graph but not a planar graph, we may
add the diagonals of the grid cells as further edges to the graph (see Fig. 3.1).4 For such
a graph Ωh, with or without diagonals, we have |V | = O(h−2) and |E| = O(h−2) so that
the complexity bound (3.4) simplifies to

O(h−4 log h−1).

3.3.1. Edge Weight Calculation

Using the edge weights d(uv) on Ωh requires to approximate the integral in (3.3). Since
not much accuracy is needed here,5 a simple trapezoidal rule with two nodes is generally
sufficient:

d(uv) =

∫
uv
|z|−(n+1)|f(z)|d|z|

=
|u− v|

2
(d(u) + d(v)) +O(h3) = d̃(uv) +O(h3)

with the vertex weight
d(z) = |z|−(n+1)|f(z)|. (3.5)

Although d̃(uv) will typically have an accuracy of not more than just a few bits for the
rather coarse grids Ωh we work with, we have not encountered a single case in which a
more accurate computation of the weights would have resulted in a different SEWW∗.

4These diagonals increase the number of possible slopes which results, e.g., in improved approximations
of the direction of steepest descent at a saddle point of d(z) (Bornemann 2011, §9) or in a faster U-turn
around the end of a branch-cut, see Fig. 3.5. The latter case leads to some significant reductions of the
condition number, see Fig. 3.4.

5Recall that optimizing the condition number is just a question of order of magnitude but not of precise
numbers. Once the contour Γ has been fixed, a much more accurate quadrature rule will be employed to
calculate the integral (3.1) itself, see § 3.3.5.
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Ai(z) exp(1/(1 + 8z)1/5)(1− z)11/2J0(z)

Figure 3.2.: W∗ (red) vs. Wv∗ (blue): the color coding shows the size of log d(z); with red for large values
and green for small values. The smallest level shown is the threshold, below of which the
edges of W∗ do not contribute to the first couple of significant digits of the total weight.
The plots illustrate thatW∗ andWv∗ differ typically just in a small region well below this
threshold; consequently, both walks yield about the same condition number. On the right note
the five-leaved clover that represents the combination of algebraic and essential singularity at
z = −1.

3.3.2. Reducing the Size of Π̃

As described in § 3.2, Provan’s algorithm starts by building a walk for every pair (v, e) ∈
V × E and then proceeds by selecting the best enclosing one. A simple heuristic, which
worked well for all our test cases, helps to considerably reduce the number of walks to
be processed: Let

v∗ = argmin
v∈V

d(v)

and defineWv∗ as a SEW subject to the constraint

Wv∗ ∈ Π̃v∗ = {Pv∗,u +̇uw +̇Pw,v∗ : uw ∈ E}.

ObviouslyW∗ andWv∗ do not need to agree in general, as v∗ does not have to be traversed
byW∗. However, since v∗ is the vertex with lowest weight, both walks differ mainly in a
region that has no, or very minor, influence on the total weight and, consequently, also
no significant influence on the condition number. Actually,W∗ andWv∗ yielded precisely
the same total weight for all functions that we have studied (Fig. 3.2 comparesW∗ and
Wv∗ for two typical examples). Using that heuristic, the run time of Provan’s algorithm
improves to O(|E| + |V | log |V |) because its main part reduces to applying Dijkstra’s
shortest path algorithm just once. In the case of the grid Ωh this bound simplifies to

O(h−2 log h−1).
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3.3.3. Size of the Grid Domain

The side length l of the square domain supporting Ωh has to be chosen large enough to
contain a SEW that would approximate an optimal general integration contour. E.g., if f
is entire, we choose l large enough for this square domain to cover the optimal circular
contour: l > 2r∗, where r∗ is the optimal radius given in Bornemann (2011); a particularly
simple choice is l = 3r∗. In other cases we employ a simple search for a suitable value of
l by calculatingW∗ for increasing values of l until d(W∗) does not decrease substantially
anymore. During this search the grid will be just rescaled, that is, each grid uses a fixed
number of vertices; this way only the number of search steps enters as an additional
factor in the complexity bound.

3.3.4. Multilevel Refinement of the SEW

Choosing a proper value of h is not straightforward since wewould like to balance a good
approximation of a generally optimal integration contour with a reasonable amount of
computing time. In principle, we would construct a sequence of SEWs for smaller and
smaller values of h until the total weight ofW∗ does not substantially decrease anymore.
To avoid an undue amount of computational work, we do not refine the grid everywhere
but use an adaptive refinement by confining it to a tubular neighborhood of the currently
given SEWW∗ (see Fig. 3.3):

1: calculateW∗ within an initial grid;

2: subdivide each rectangle adjacent toW∗ into 4 rectangles;

3: remove all other rectangles;

4: calculateW∗ in the newly created graph.

As long as the total weight ofW∗ decreases substantially, steps 2 to 4 are repeated. It
is even possible to tweak that process further by not subdividing rectangles that just
contain vertices or edges ofW∗ having weights below a certain threshold. By geometric
summation, the complexity of the resulting algorithm is

O(H−4 logH−1) +O(h−2 log h−1)

where H denotes the step size of the coarsest grid and h = H/2k the step size after k
loops of adaptive refinement. An analogous approach to the constrainedWv∗-variant of
the SEW algorithm given in §3.2 reduces the complexity further to

O(H−2 logH−1) +O(h−1 log h−1),

which is close to the best possible boundO(h−1) given by the work that would be needed
to just list the SEW.
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Figure 3. Multilevel refinement of W⇤ ( f (z) = 1/G(z), n = 2006)

would need: Fig. 4 shows an example with the order n = 300 of differentiation
but accurate solutions using just about 200 nodes which is well below what the
sampling condition would require for circular contours (Bornemann 2011, §2.1).
Of course, trapezoidal sums would also benefit from some recursive device that
helps to neglect those nodes which do not contribute to the numerical result.

4. Numerical Results

Table 1 displays condition numbers of SEWs W⇤ on rectangular grids as com-
pared to the optimal circles Cr⇤ for a couple of functions; Fig. 5 shows some of the
corresponding contours. For entire f we observe that W⇤, like the optimal circle Cr⇤ ,
automatically traverses the saddle points of d(z). It was shown in Bornemann

Figure 3.3.: Multilevel refinement ofW∗ (f(z) = 1/Γ(z), n = 2006)
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Figure 3.4.: Illustration of the spectral accuracy of piecewise Clenshaw–Curtis quadrature on SEW con-
tours for a function with a branch-cut singularity. For larger n, we observe a significant
improvement by adding diagonals to the grid. We get to machine precision for n = 10 and
loose about two digits for n = 300. (Note that for optimized circular contours the loss would
have been about 6 digits for n = 10 and about 15 digits for n = 300; cf. Bornemann 2011,
Thm. 4.7).

3.3.5. Quadrature Rule for the Cauchy Integral

Finally, after calculation of the SEW Γ = W∗, the Cauchy integral (3.1) has to be evaluated
by some accurate numerical quadrature. We decompose Γ into maximally straight line
segments, each ofwhich can be a collection ofmany edges. On each of those line segments
we employ Clenshaw–Curtis quadrature (Clenshaw and Curtis 1960) in Chebyshev–
Lobatto points6. Additionally we neglect segments with a weight smaller than 10−24

times the maximum weight of an edge of Γ, since such segments will not contribute
to the result within machine precision. This way we not only get spectral accuracy but
also, in many cases, less nodes as would be needed by the vanilla version of trapezoidal
sums on a circular contour: Fig. 3.4 shows an example with the order n = 300 of
differentiation but accurate solutions using just about 200 nodes which is well below
what the sampling condition would require for circular contours (Bornemann 2011, §2.1).
Of course, trapezoidal sums would also benefit from some recursive device that helps to
neglect those nodes which do not contribute to the numerical result.

3.4. Numerical Results

Tab. 3.1 displays condition numbers of SEWsW∗ as compared to the optimal circles Cr∗
for five functions; Tab. 3.2 gives the corresponding CPU times and Fig. 3.5 shows some
of the contours. (All experiments were done using hardware arithmetic.) The purpose of these
examples is twofold, namely to demonstrate that:

6The n Chebyshev–Lobatto points for the interval [−1, 1] are {xj = cos(πj/n); j = 0, . . . , n}
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Table 3.1.: Condition numbers for some f(z): r∗ are the optimal radii given in Bornemann (2011); W∗
was calculated in all cases on a 51 × 51-grid with l = 3r∗ (in the last two cases l was found
as in § 3.3.3). For 1/Γ(z), the peculiar order of differentiation n = 2006 is one of the very
rare resonant cases (specific to this entire function) for which circles give exceptionally large
condition numbers (cf. Bornemann 2011, Table 5). In the last example, differentiation is for
z = 1/

√
2.

f(z) n κ(W∗, n) κ(Cr∗ , n)

ez 300 1.1 1.0

Ai(z) 300 1.3 1.2

1/Γ(z) 300 1.7 1.6

1/Γ(z) 2006 7.8 · 104 4.7 · 104

(1− z)11/2 10 1.4 5.0 · 105

exp(1/(1 + 8z)1/5)(1− z)11/2J0(z) 100 7.2 · 102 4.3 · 1012

Table 3.2.: CPU times for the examples of Tab. 3.1. Here tW∗ and tWv∗ denote the times to computeW∗
and Wv∗ and tquad denotes the time to approximate the integral (3.1) on such a contour by
quadrature. (There is no difference betweenW∗ andWv∗ from the point of quadrature, see
Fig. 3.2.) In the last example, differentiation is for z = 1/

√
2. The timings for the grids of size

25×25 and 51×51 match nicely theO(h−4 log h−1) complexity forW∗ and theO(h−2 log h−1)

complexity forWv∗ .

f(z) n grid tW∗ tWv∗ tquad

ez 300 51× 51 4.4 · 102 s 1.5 s 0.3 s
Ai(z) 300 25× 25 2.1 · 101 s 0.5 s 1.7 s
Ai(z) 300 51× 51 4.0 · 102 s 2.1 s 2.1 s
1/Γ(z) 300 25× 25 2.0 · 101 s 0.5 s 1.5 s
1/Γ(z) 300 51× 51 3.6 · 102 s 2.4 s 1.3 s
1/Γ(z) 2006 51× 51 3.6 · 102 s 2.3 s 3.1 s
(1− z)11/2 10 51× 51 1.4 · 103 s 5.9 s 0.2 s
exp(1/(1 + 8z)1/5)(1− z)11/2J0(z) 100 51× 51 7.0 · 102 s 3.5 s 0.3 s
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Ai(z) exp(1/(1 + 8z)1/5)(1− z)11/2J0(z)

Figure 3.5.: Wv∗ (blue: Ωh without diagonals, magenta: Ωh with diagonals) vs. Cr∗ (cyan) for some
examples of Tab. 3.1: the color coding shows the size of log d(z); with red for large values
and green for small values. The smallest level shown is the threshold, below of which the
edges ofWv∗ do not contribute to the first significant digits of the total weight.

1. the SEW algorithm matches the quality of circular contours in cases where the latter
are known to be optimal such as for entire functions;

2. the SEW algorithm is significantly better than the circular contours in cases where
the latter are known to have severe difficulties.

Thus, the SEW algorithm is a flexible automatic tool that covers various classes of holo-
morphic functions in a completely algorithmic fashion; in particular there is no deep
theory needed to just let the computation run.
In the examples of entire f we observe thatW∗ andWv∗ , like the optimal circle Cr∗

would do, traverses the saddle points of d(z). It was shown in Bornemann (2011,
Thm. 10.1) that, for such f , the major contribution of the condition number comes
from these saddle points and that circles are (asymptotically, as n→∞) paths of steepest
decent. SinceW∗ can cross a saddle point only in a horizontal, vertical, or (if enabled)
diagonal direction, somewhat larger condition numbers have to be expected. However,
the order of magnitude of the condition number of Cr∗ is precisely matched. This match
holds in cases where circles give a condition number of approximately 1, as well as
in cases with exceptionally large condition numbers, such as for f(z) = 1/Γ(z) in the
peculiar case of the order of differentiation n = 2006 (cf. Bornemann 2011, §10.4).

For non-entire f , however, optimized circles will be far from optimal in general: Borne-
mann (2011, Thm. 4.7) shows that the optimized circleCr∗ for functions f from the Hardy
spaceH1 with boundary values in Ck,α yields a lower condition number bound of the
form

κ(Cr∗ , n) > cnk+α;

for instance, f(z) = (1 − z)11/2 gives κ(Cr∗ , n) ∼ 0.16059 · n13/2. On the other hand,
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Figure 3.6.: An example with essential and algebraic singularities: the condition number of the Cauchy
integral for exp(1/(1 + 8z)1/5)(1− z)11/2J0(z) for varying order n of differentiation at z =

1/
√

2; blue: optimal contourW∗ in a 51× 51 grid graph; green: circular contour with near
optimal radius r = 0.29 ≈ 1 − 1/

√
2; red: prediction of the growth rate from Bornemann

(2011, Thm. 4.7).

W∗ gives condition numbers that are orders of magnitude better than those of Cr∗ by
automatically following the branch cut at (1,∞).
The latter example can easily be cooked-up to outperform symbolic differentiation

as well: usingMathematica 8, the calculation of the n-th derivative of f(z) = exp(1/(1 +

8z)1/5)(1− z)11/2J0(z) at z = 1/
√

2 takes already about a minute for n = 23 but had to
be stopped after more than a week for n = 100. Despite the additional difficulty stemming
from the combination of an algebraic and an essential singularity at z = −1, theWv∗

version of the SEW calculates this n = 100 derivative to an accuracy of 13 digits in less
than 4 s; whereas optimized circular contours would give only about 3 correct digits here
(see Fig. 4.1).

Conclusion

We can conclude that our algorithmic approach for finding optimal contours for Cauchy’s
integral formula was indeed successful. For many examples we were able to compute
contours that yield similar condition numbers as optimal circles. The contours we
obtained were also similar to those we would get by using the method of steepest descent.
The next is now to generalize the ideas we used for Cauchy’s integral formula to RHPs,
hoping that this will result in an algorithm that yields contours similar to those obtained
by using the method on nonlinear steepest descent.
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4. The RHP Deformation Algorithm

As we have shown in the previous chapter, it is possible to reduce the problem of finding
an optimal contour for the evaluation of a contour integral to the problem of finding
the shortest path in a graph with suitable chosen weights. In this chapter we apply this
approach to the problem of finding optimal contours for RHPs. We perform the same
basic steps, we did for Cauchy’s integral formula.

§ 4.1 We formulate a conjecture for the condition number of a RHP and explain the
reasons which lead us to it. Furthermore we derive a weight which correlates a
local part of the contour with its effect on the condition number of the RHP.

§ 4.2 Using this weight, we cast the problem of reducing the condition number of a RHP
through deformations into a discrete optimization problem.

§ 4.3 For Cauchy’s integral formula any deformation of the contour was valid if it pre-
served the winding number around a certain point. Similarly, there are also con-
straints on the contour and different types of deformations for RHPs. The two
types of deformations we consider are simple and lensing deformations. Here, we
give a basic description how they work.

§ 4.4 We present an algorithm, which serves the same purpose as Provan’s shortest
enclosing walk algorithm did for Cauchy’s integral formula. It solves the discrete
optimization problem on a graph. The algorithm is described in multiple stages.
The first is a greedy algorithm that can perform simple deformations of a RHP.

§ 4.5 The next stage is extending the algorithm so that it can also perform lensing
deformations.

§ 4.6 We discus another extension that improves handling of infinite contours, i.e. con-
tours containing rays or lines.

§ 4.7 Although we build most constraints, which have to be satisfied to get a valid
deformation, into the structure of the graphs or the algorithm, we did not manage
to do so for all of them. The remaining constraint is verified by the algorithm as
described in this section.

§ 4.8 Finally, we give some further details about about our implementation of the algo-
rithm we described in the previous sections.
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We illustrate our ideas with the Painlevé II RHP (see § 1) throughout this chapter.

This main results presented in this chapter have been published in (Wechslberger and
Bornemann 2014) and the chapter is based on this paper. The first two section are very
similar to this paper, the remaining part has been heavily extended.

We recall from the introduction that we consider RHPs with the following form:

RHP 1 (example). Find a holomorphic function Φ : C \ Γ→ GL(m,C) satisfying

Φ(∞) = I

Φ+(z) = Φ−(z)G(z) for z ∈ Γ0.

Where Γ0 is obtained by removing points of self intersection from Γ. If the contour Γ

consists of several parts Γ1, . . . ,Γk we denote the jump matrix corresponding to the part
Γj by

Gj |Γ0∩Γj = G|Γ0∩Γj .

and to simplify the discussion about contour deformations later on, we assume that all
of these jump matrices Gj |Γ0∩Γj can be continued of Γj with an entire function

Gj : C→ GL(m,C).

4.1. Condition of a Riemann–Hilbert Problem

The numerical method of Olver

Olver (2011b) constructed his spectral collocation method by recasting RHPs as a partic-
ular kind of singular integral equation. Upon writing

Φ(z) = I + CΓU(z)

with the Cauchy transform of a matrix-valued function U : Γ→ GL(m,C), namely

CΓU(z) =
1

2πi

∫
Γ

U(ζ)

ζ − z dζ,

the RHP becomes the linear operator equation

AU(z) = U(z)− C−Γ U(z) · (G(z)− I) = G(z)− I. (4.1)

Here, C±Γ U(z) denotes the non-tangential limit of CΓU(z′) as z′ → z from the positive
(negative) side of the contour; there is the operator identity C+

Γ −C−Γ = I . The residue at
∞ becomes simply the integral

res
z=∞

Φ(z) =
1

2πi

∫
Γ
U(ζ) dζ.
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Without going into details, in this chapter it suffices to note that the n-point numerical
approximation of (4.1) yields a finite-dimensional linear system

AnUn = bn

where the jth component of the solution Un is a matrix that approximates U(zj) at the
collocation point zj ∈ Γ (j = 1, . . . , n). The stability of themethod is essentially described
by the condition number

κn = κ(An) = ‖A−1
n ‖ · ‖An‖

of this linear system: altogether, one would typically suffer a loss of log10 κ significant
digits. Under an additional assumption, which can be checked a posteriori within the
numerical method itself, Olver and Trogdon (2012, Assumpt. 6.1 and Lemma 6.1) proved
a bound of the form1

κn = O(κ(A))

in terms of the condition number κ(A) = ‖A−1‖ · ‖A‖ of the continuous operator A,
with constants that are midly growing in the number of collocation points n. Here,
the operator norm of A is obtained by acting on L2(Γ). Extending Un to all of Γ by
interpolation, Olver and Trogdon (2012, Eq. (6.1)) also state an error estimate of the form

‖U − Un‖L2(Γ) 6 cκ(A)n2+β−k‖U‖Hk(Γ)

with some β > 0. Since, for jump matrices G that are piecewise restrictions of entire
functions, k can be chosen arbitrarily large, one gets spectral accuracy.

Preconditioning of RHPs

Thus, stability and accuracy of the numerical method depend on κ(A), which blows up
in many problems of interest. We recall the example in Fig. 1.3, where the undeformed
version of the RHP for Painlevé II is κn ≈ 1016 for s1 = 1 and s2 = 2 and x = −20 (see
also Fig. 4.1 vor varying x).

Now, it is important to understand that κ(A) is the condition number of the RHP for the
restricted data (Γ, G) but not for the jump dataGj (j = 1, . . . , k) which are obtained from
analytic continuation. If the continued data are explicitly given, and are not themselves
part of the computational problem,2 it should be possible to deform the RHP to an
equivalent one with data (Γ̃, G̃) and

κ(Ã)� κ(A).

We call such a deformation a preconditioning one. In fact, Olver and Trogdon (2012)
argued that preconditioning is possible whenever the method of nonlinear steepest
1They employ the estimate ‖A‖ ≤

√
2(1 + ‖G− I‖L∞(Γ)‖C−Γ ‖) in their statements.

2Analytic continuation corresponds to solving a Cauchy problem for the elliptic Cauchy–Riemann differ-
ential equations; it is, therefore, an ill-posed problem.
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Figure 4.1.: Comparison of the condition number of the original contour and of a de-
formed contour optimized by the greedy algorithm of § 4.4 for the Painleve
II RHP with (s1, s2) = (1, 2). The condition number of the deformed contour
is roughly constant for all values of x while the condition number of the
original contour grows exponentially fast for decreasing values of x. Note
that condition numbers larger than 1016 (dashed line) obstruct the computa-
tion of even a single accurate digit in machine arithmetic, indicating severe
numerical instability.
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descent produces an asymptotic formula; Fig. 4.4 shows a typical sequence of such
manually constructed preconditioning deformations for the Painlevé II RHP.
Though it seems to be difficult to extract a single governing principle for all the

ingenious deformations that are used in the asymptotic analysis of RHPs, we base our
algorithmic approach on the following simple observations:

• If there are no jumps in the RHP, that is if G ≡ I , we have A = I and therefore
κ(A) = 1. By continuity, G→ I in some sufficiently strong norm would certainly
imply κ(A) → 1, such that a reasonably small ‖G − I‖ will probably yield a
moderately sized condition number κ(A).

• The method of nonlinear steepest descent has already successfully been used for
preconditioning and, as described before in § 1, it deforms the RHP into a state
where G→ I exponentially fast. This in turn also yields reasonably small ‖G− I‖.

• Numerical experiments comparing κn(A) and ‖G − I‖ indicate that there is a
connection between the two. See Fig. 4.2 for more details.

All things considered, we conjecture that an estimate for κ(A) can be cast in the form

κ(A) 6 φ(‖G− I‖W s,p(Γ)) (4.2)

for some Sobolev W s,p-norm and some monotone function φ that is independent of
(Γ, G). A good preconditioning strategy would then be to make ‖G− I‖W s,p(Γ) as small
as possible, we call it the relative strength of the jump matrix G.

In the lack of any better understanding of the precise dependence of κ(A) on the RHP
data (Γ, G) we suggest to use ‖G−I‖L1(Γ) as a measure of relative strength: optimizing it
led to significant reductions of the condition number in all of our experiments. However,
the deformation algorithm itself will just use that the measure d(Γ;G) can be written as
an integral over Γ, namely in the form

d(Γ;G) =

∫
Γ
d(G(z)) d|z|

for some function d : GL(m,C)→ [0,∞), which we call the local weight.

4.2. Preconditioning as a Discrete Optimization Problem

Since our objective is preconditioning, the relative strength of the jump matrices does
not really have to be minimized over all equivalent deformations (Γ̃, G̃) of a given RHP
(Γ, G). For all practical purposes it suffices to consider just a very coarse, finite set of
possible contours, namely paths within a planar graph.

The basic idea is as follows: first, we restrict the problem to a bounded region of the
complex plane and embed the part of the contour Γ belonging to that region as paths into
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Figure 4.2.: Comparison of κn(A) and ‖G− I‖ for the Painlevé II and III RHP for vary-
ing x; The parameters of the RHPs are s1 = 1, s2 = 2 for Painlevé II and
s

(0)
1 = 1,s(0)

2 = 2,s(∞)
2 = 3, θ0 = 3 + 43/100, θinf = 1 + 123/1000 for Painlevé

(standard example available in RHPackage), see (Fokas et al. 2006, p.201)
for the definition of the Painlevé III RHP. Here, d =

∫
Γ ‖G(z)− I‖Fd|z| and

dmax = maxz∈Γ ‖G(z) − I‖F . The behaviour of κ(A) and d is similar for
varying x and a simple polynomial applied to d even allows to closely predict
the magnitude of κn(A). In these two examples, dmax is also a good estimate
for d and consequently also for κn(A).

https://github.com/dlfivefifty/RHPackage
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a. (G,Γ)

κ ≈ 2.2 · 108

b. (G̃1, Γ̃1) = SimpleDeformation(G,Γ)

κ ≈ 360

c. (G̃2, Γ̃2) = LensingDeformation(G̃1, Γ̃1)

κ ≈ 250
d. (G̃3, Γ̃3) = LensingDeformation(G̃2, Γ̃2)

κ ≈ 140

Figure 4.3.: Application of SimpleDeformation and LensingDeformation of § 4.4 and
§ 4.5 to the Painlevé II RHP with s1 = 1, s2 = 2 and x = −10. On the top
left is the original contour of this RHP and the other contours are deformed
versions of it. All contours have been calculated on a 17× 17 grid. The color
encodes the magnitude of ‖G(z)− I‖F , with green = 10−16, yellow = 1, and
red = 104. The blue dots indicate the origin z = 0 and the stationary points of
the phase function θ at z = ±√−x/2. The reduction of the condition number
from (a) to (d) corresponds to an accuracy gain of about six digits.
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a coarse, grid-like planar graph g = (V,E) (see Fig. 4.3.a for an example of the Painlevé
II RHP: because of a super exponential decay as z →∞ along each of the rays, G− I is
already zero if evaluated on a computer outside the indicated rectangle).

Second, for each j, the analytic continuationGj of the jump data on Γj turns the graph
g into an edge-weighted graph gj by using the (edge) weights

dj(e) =

∫
e
d(Gj(z)) d|z| (e ∈ E).

Last, we replace Γj (within the bounded domain) by the shortest path (with the same
endpoints as Γj) with respect to gj subject to the following constraint: the thus deformed
RHP must be equivalent to the original one.
It is this latter constraint which adds to the algorithmic difficulty of the problem: the

Γj cannot be optimized independent of each other. We will address this problem by a
greedy strategy: the largest contribution to the weight constraints the admissible paths of
the second largest one and so on; this will be accomplished by modifying the underlying
graphs gj in the corresponding order.

Fig. 4.3.b shows the result of such an algorithmic deformation for the Painlevé II RHP
(s1 = 1, s2 = 2, x = −10): the condition number is reduced by about six orders of
magnitude. Further improvement is possible by performing a “lensing” deformation,
that is, by introducing multiple edges based on a factorization of G (see § 4.5). The
results of two such steps are shown in Fig. 4.3.c and d (more steps would not pay off).
Though the improvement of the condition number is more modest in these two steps, it is
instructive to compare the algorithmic contour in Fig. 4.3.d with the manual construction
of Olver and Trogdon (2012) shown in Fig. 4.4.

Fig. 4.1 compares, for varying values of x, the condition number of the original contour
with that of the deformed contour optimized by the greedy algorithm of § 4.4: a uniform
stabilization by preconditioning is clearly visible.

4.3. Admissible Deformations of Riemann–Hilbert Problems

We briefly recall two of the deformations that can be applied to RHPs. A more detailed
description can be found in (Fokas et al. 2006).

4.3.1. Simple Deformations

Fig. 4.5 shows an example of such a deformation. In general, simple deformations allow
to continuously move a contour part in the complex plane (thereby covering a region Ω)
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Figure 4.4.: Some manual constructions for the Painlevé II RHP taken from Olver and
Trogdon (2012, p. 20). Left: Deformation along the paths of steepest descent;
right: deformation after lensing. The contours bifurcate at the stationary
points of the phase function θ.
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Figure 4.5.: A simple deformation.

as long as the following conditions are satisfied:

(i) Γ̃ does not cross other parts of Γ,

(ii) Ω does not contain any other contour parts,

(iii) G has a holomorphic continuation in Ω.

Then, the deformed RHP in Fig. 4.5 is solved by the function

Φ̃ =

{
ΦG : x ∈ Ω,

Φ : x /∈ Ω.

Conditions (i)-(iii) can be mapped to graph-constrained deformations as follows:
Condition (i) can be handled by splitting a graph as shown in Fig. 4.6: if a path p

corresponding to a part of a contour is given, like the path highlighted in blue, we
duplicate the vertices of p and change all edges on the right side of p so that they are
connected to the newly created vertices but not to the vertices of p itself. This way no
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path in the graph can cross p anymore. We will use g[p1, p2, . . . ] to denote a graph g,
which has been split in this fashion along the paths p1, p2, . . . .

Condition (ii) is difficult to be built into the structure of a graph a priori, but it is easy to
check for it a posteriori: the circle composed by Γi and Γ̃i must not enclose an endpoint of
another arc. If all candidates for a path violate this condition, the algorithm simply stops
(this never happened in our experiments; dealing with such a situation would require to
break the deformations into smaller pieces).
Condition (iii) can be handled by removing those regions from the graph where G

does not have a holomorphic continuation.

g g[p]

Figure 4.6.: Illustration of split graphs. Left: The original graph g is about to be split
along the path p (blue). Right: After splitting g along p, we get the depicted
split graph g[p]. All vertices and edges that have been changed or created are
highlighted in red. To handle infinite contours (rays, lines), paths ending on
the boundary (green) are implicitly extended to infinity. Consequently, g is
also split at endpoints of p on the boundary, so that no path can cross this
implicit extension. For a clear visualization the split in the graph has been
enlarged by moving the vertex positions of the vertices on both sides of the
split; in the actual graphs used by the algorithm the duplicated vertices stay
at exactly the same position. All graphs are undirected, the arrow at the end
of the blue path just indicates its orientation.

Just as the graph in Fig. 4.6, all graphs in this chapter are drawn using the following
style.

Visualization Style 2 (Graphs).

• All edges are undirected.

• Arrows just indicate the orientation of the paths.

• All splits are enlarged for a clear visualization.

• Without enlargement the vertices on the left and right sides of splits coincide.
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4.3.2. Multiple Deformations and Factorization: Lensing

Γ Γ̃
undeformed

Φ

Φ

G = LDU

+

−

Φ

Φ

lensing

G

D

ΦLD

ΦL

U

L

Figure 4.7.: A lensing deformation.

Fig. 4.7 shows an example of such a deformation. To initialize, several copies of a
contour part are created at one and the same location, where each copy corresponds
to a factor of a given multiplicative decomposition of the jump matrix G. We call these
copies the factors of this part of the contour Γ. These factors are then moved around in
the complex plane subject to conditions (i)-(iii) and, additionally, the following condition:

(iv) the mutual orientation of the factors must be preserved.

For example, in Fig. 4.7 the order of the decomposition G = LDU requires that the
factor U is to the left of the factor D and that the factor D is to the left of the factor L. To
preserve this orientation in our deformation algorithm, we calculate the shortest path
for just one of the factors. For the other factors we use a modification of the shortest
enclosing circle algorithm of (Provan 1989), see § 4.5.

4.4. The Greedy Algorithm

In this section we describe an algorithm that can performed simple deformations of
RHPs (as described in § 4.3.1), using the idea of § 4.2.

4.4.1. Notation

• d(e)/d(p) : weight of the edge e / the path p

• p1 +̇ p2 : path p1 joined with path p2

• ←−p : reversed path p

• p[u, v] : subpath from vertex u to vertex v within the path p
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• sp(g, u, v) : shortest path from vertex u to v in the weighted graph g

• int(W ) : interior of a walk, that is, all vertices v with ind(W, v) = ±1

• p+/p− : path that forms the left/right side of the split along p in g[p]

• p+[w]/p−[w] : vertex in p+ / p− that corresponds to w ∈ p+ ∪ p− (see Fig. 4.13)

• B(g) : set of vertices which form the boundary of the graph g

• nv(g, a) : set of vertices in g which are at the position a ∈ C

• nvB(g, a) : subset of vertices in B(g) with the same argument as a

4.4.2. Optimized Simple Deformations

The idea of algorithm 1 goes as follows:

1. (lines 11 to 13) For each of the contour parts Γj and the corresponding jump matrices
Gj (which are assumed to have a holomorphic continuation to the rectangular
region supporting the grid), a separate weighted graph gj with edge weights

d(e) =

∫
e
d(Gj(z)) d|z|

is created, see Fig. 4.8. A copy of these inital graphs is stored in g? for later and the
graphs g are modified by the algorithm.

2. (lines 16 to 18) For eachΓj a shortest path is calculated that shares the same endpoints,
see Fig. 4.9. The thus separately optimized paths, however, will in general not satisfy
condition (i) of § 4.3, that is, they will cross each other. Therefore, some of the paths
have to be modified to match this condition, which increases the corresponding
weight.

3. (lines 19 to 21) By keeping the path P of dominant total weight fixed, we restrict such
modifications to the other parts that contribute less to the condition number.

4. (lines 28 to 30) By splitting all graphs along P and repeating the calculation of the
shortest paths in the split graphs (step 2, lines 16 to 18), we come up with paths
that do not cross P , see Fig. 4.10.

5. (line 15) This procedure is then repeated, until all paths are fixed and, hence, non-
crossing. (In each round of this loop another path gets fixed.)
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6. (line 33) Finally, the algorithm constructs the deformed contour data from the just
calculated set of paths. For paths and subpaths that do not share an edge with
another path we simply use the path and the corresponding jump matrix as new
contour data. Subpaths which occur in more than one path will be mapped to
new contour data by performing an “inverse lensing”: the new jump matrix is
calculated as the (properly ordered) product of all the jump matrices sharing that
subpath. For example, if the paths Pi and Pj have a common subpath s and Pi is to
the left of Pj , the function MapToRHP creates a new contour part s with the jump
matrix GjGi.

7. (lines 22 to 26) In a situation as shown in Fig. 4.10, where the new optimal paths
share a subpath with the already fixed ones, further improvement is possible by
optimizing the shared subpath with respect to the weight obtained from combining
the corresponding jump matrices (that is, the just mentioned “inverse lensing”).
This procedure (algorithm 6) is illustrated schematically in Fig. 4.17; the application
of this procedure to the example of Fig. 4.10 is shown in Fig. 4.11.

8. (line 31) The paths in P may not be valid paths in g?i [P (F )] if two of them share a
subpath. An example for this situation is shown in Fig. 4.12. To compensate for
this effect, we calculate the left and right sides (P+ and P−) of splits created by the
paths in P after a path has been fixed . The paths in P+ and P− are used instead
of those in P for mapping paths to a RHP (line 33) and calculating shortest paths
(line 17). Fig. 4.13 provides an illustration of the difference between P ,P+,P−,(Pi)+

and (Pi)−.

After this general overview of the algorithm, in the next sections we will discuss the
individual steps

§ 4.4.4 : calculating shortest paths (line 17)

§ 4.4.5 : improving a shared subpath (line 24)

§ 4.4.6 : calculating left and right side of splits (line 31)

in more detail. For the sake of simplicity, the presented steps are not optimized with
respect to runtime. A list of possible optimizations is available in § 4.8.7. Though the
main algorithm 1 does not put any restrictions on the contour, we will describe the just
mentioned steps only for the type of contour discussed in the next section.
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Figure 4.8.: Create separate weighted graphs for each contour part Γj with weights
depending on the jump matrix Gj (line 12 in algorithm 1).

Figure 4.9.: Calculate the shortest paths for eachGj separately, highlighted in blue (line 17
in algorithm 1). The one with the largest total weight is shown in magenta
(line 19). The color encodes the magnitude of ‖Gj(z) − I‖F , with green =
10−16, yellow = 1, and red=1016.
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Figure 4.10.: Recalculate the shortest paths (line 17 in algorithm 1) in the graphs split
along the optimal path of largest weight from Fig. 4.9, here shown in white.
The new shortest paths are highlighted in blue, the one of maximal weight
in magenta.

Figure 4.11.: Improvement of the subpath shared by the fixedwhite path and themagenta
path of Fig. 4.10 (algorithm 6). After this improvement, both paths are fixed
and the graphs are split along their union (the white Y-shaped contour).
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Figure 4.12.: Visualization according to style 2; Example for a path in P being an invalid
path in g[P ]; left: Splitting the graph g along P1 (blue) creates additional
vertices (red). middle left: Next, the graph is split along the path P2 (green).
middle right: This creates additional vertices (red) in g[P1, P2] and cuts P1.
The vertices of P1 (blue) no longer define a valid path as some edges of
P1 were removed by the split along P2. right: As P1 is not a valid path in
g[P1, P2], we use the path P+

1 (cyan) whenever we need the left side of the
split along P1.

Figure 4.13.: Show case for the notations p±,P ,P±; left: The graph g is split along the
path p (blue), which creates the left side p+ (blue) and the right side p−
(cyan). p±[v] is used to denote the 1 to 1 relation between vertices in p+

and p−. E.g. the vertices u (green) and w (orange) can also be denoted
by p+[u] = p+[w] = u and p−[u] = p−[w] = w. right: Here the graph g
is split along P = (p, p), so it is split along the same path p (blue) twice.
(Pi)± refers to the left/right side of the split along Pi at the time they were
created, which yields (P1)+ = (P2)+ (blue), (P1)− (cyan) and (P2)− (red).
In contrast P±i refers to the the left / right side corresponding to the split
along Pi after all splits have been created. This yields P−1 (cyan), P+

1 = P−2
(red) and P+

2 (blue). Just as before (Pi)±[v] refers to a vertex on a specific
side of a split. Once again the vertices u (green) and w (orange) can also be
denoted by (P1)+[u] = (P1)+[w] = u and (P1)−[u] = (P1)−[w] = w.
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Algorithm 1 Optimized Simple Deformation
1: function SimpleDeformation(G,Γ)
2: n = |Γ| . number of contour parts
3: P = () . fixed new paths
4: P+ = () . left side of paths in P
5: P− = () . right side of paths in P
6: p = () . candidates for new paths
7: F = () . already processed contour parts
8: Q = (1, . . . , n) . unprocessed contour parts
9: g = () . graphs corresponding to contour parts
10: g? = () . initial graphs without splits
11: for all i ∈ Q do
12: gi = graph with edge weights d(e) = ‖Gi − I‖L1(e)

13: end for
14: g? = g

15: while Q 6= () do
16: for all i ∈ Q do
17: pi = ShortestPath(gi,Γ, i, P

+, P−, F ) . shortest path for Γi in gi
18: end for
19: i? = argmax

i∈Q
d(pi)

20: Pi? = pi?
21: Q = Q\(i?)
22: for all i ∈ F do . try to improve the path if there is an intersection
23: if Pi? ∩ P+

i 6= ∅ or Pi? ∩ P−i 6= ∅ then
24: (P, F,Q) = ImproveSharedSubpath(g?, G,Γ, P, P+, P−, F, i, i?)

25: end if
26: end for
27: F = F ∪ (i?)

28: for all i ∈ Q do
29: gi = g?i [P (F )] . split graphs along paths P ordered by F
30: end for
31: (P+, P−) = CalculateSides(P, F ) . update left and right sides
32: end while
33: (G̃, Γ̃) = MapToRHP(G,P+) . create new contour parts
34: return (G̃, Γ̃)

35: end function
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4.4.3. Admissible Contour Types

Our implementation currently supports contours consisting of
points Pa = {a}

intervals Ia,b = [a, b]

rays Rc(a) = {a+ rc : r ∈ R+
0 }

lines Lc = {rc : r ∈ R}
oriented circles Csr (a) = {a+ reiβ : β ∈ [0, 2π]}

with a, b, c ∈ C, r ∈ R+, s ∈ {+,−}. This list of contour part types is sufficient to
handle the contours of all the RHPs we used in our numerical experiments and it can
even handle all RHPs we saw during our research. Some special types of contours (arcs,
circles with an attached ray) have to be emulated with multiple intervals.
Furthermore, we use the convention that parts of a RHP, which originate from a

lensing decomposition (see § 4.3.2) are given from left to right. By just factorizing the
jump function and not altering the contour, we get a contour which contains identical
curves. This convention is used to encode the order from left to right of the factors of the
decomposition.

Thereby points are not associated with jumps. They are merely used as a simple way to
preserve the information about the centers of circles. This information would otherwise
be lost if we discretize the circle with a path, but e.g. if there is a singularity at the center
of the circle we need its position ensure that we do not move a path across it. Each of the
just mentioned continuous contour parts is associated with one specific type of path in a
graph g = (V,E). These types are

point paths PP = {v : v ∈ V }
interval paths PI = {v1 . . . vk : v1, vk /∈ B(g)}

ray paths PR = {v1 . . . vk : v1 /∈ B(g), vk ∈ B(g)}
line paths PL = {v1 . . . vk : v1, vk ∈ B(g)}

circle paths PC = {v1v2 . . . v1 : v1 ∈ V }
with v1, . . . , vk ∈ V . So we encode the fact that a ray / line path extends to infinity

by using a start / end vertex on the boundary of the graph. Furthermore, the direction
with which a line or ray path approaches infinity corresponds to the argument of the
position of the vertex on the boundary. Rays in the opposite direction (from infinity to a
finite point) are also supported by our implementation of the algorithm but we will not
discuss them here. They are handled analogous to the rays which we will discuss.

4.4.4. Calculate Shortest Paths

Algorithm 2 calculates a shortest path for the contour part Γj in the graph g. To do so it
has to handle a few different cases, which we divide into two groups.

Group 1: "no lensing" (lines 3 to 19)
This group contains all cases, in which we do not have to take the lensing restriction (iv)
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Γ1
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Figure 4.14.: Visualization according to style 2; Situation with multiple shortest paths
for a single contour part; left: We have a contour with two parts Γ1 and
Γ2, which is discretized by a graph g (grey). Each of the endpoints of the
contour can be mapped to exactly one vertex (green). middle: The path
p (blue) for the contour part Γ1 passes through the right endpoint of Γ2.
Therefore after fixing p, we have two vertices (green) in g[p], to which we can
map the right endpoint of Γ2 right: For each of these mappings algorithm 2
calculates a shortest path, this is q1 (magenta) and q2 (red) (line 9). But as
the last vertex of q2 is within the area enclosed by Γ1 and p, q2 is not a valid
choice and is discarded (line 32).

from § 4.3.2 into account. That means that either Γj is not part of a lensing deformation
or that there is not yet a fixed path for any factor of the lensing deformation, to which Γj
belongs.
For the first case, in which Γj is a point, we just map the point to a vertex. The next

three cases (interval, ray, line) are handled in a similar way. We determine all possible
mappings of the endpoints to vertices (lines 7, 8, 11, 12, 15 and 16) and then calculate the
shortest path for all of these mappings (lines 9, 13 and 17). If an endpoint is not finite, it
is mapped to a vertex on the boundary of the graph. There is more than one mapping for
an endpoint, if the graph is split along a path which passes through one of the endpoints.
See Fig. 4.14 for an example. The last case in this group is Γj being a circle (line 19). We
handle this case by calculating circles enclosing the center of the circle with the correct
orientation using algorithm 5, which is simply the shortest enclosing walk algorithm of
(Provan 1989) without the last step of choosing the shortest walk.

Group 2: "lensing" (lines 20 to 31)
This part handles lensing deformations and is discussed later on in § 4.5, where we also
provide all the other information regarding how lensing deformations are performed by
the algorithm.

Final Steps (lines 32 to 34)
After a set of pathsW has been calculated in group 1 or 2, we return the shortest valid
path in this set, (lines 32 and 33). A path is valid if it does not violate condition (ii) of
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§ 4.3.1 and this is checked by algorithm 3. This algorithm creates a temporary contour Γ̃

replacing all parts of Γ with their corresponding fixed path in P and Γj with a path inW
(lines 3 to 6). Afterwards we verify that no endpoint is certainly3 in an area between the
original contour Γ and the deformed contour Γ̃ (line 7). The definition of V(Γ) and further
details which have to be considered to determine whether condition (ii) is violated or
not are discussed in § 4.7.

Optimality of the paths
We should note that algorithm 2 does not necessarily return the shortest possible path in
all cases. For the case that Γj is a circle Csr (a) (line 19) we get according to (Provan 1989),
that the shortest walk inW is also the shortest walk enclosing a. But if further restrictions
on the path have to be honoured (e.g. endpoints of other parts of the contour have to
be enclosed), it can happen that the shortest walk inW is not a valid choice and gets
discarded by SelectValidPaths in line 32. A similar situations could occur for the cases
handled by lines 27 and 29. As we will discuss later, the shortest path inW is also the
shortest path to the left / right of Γj , but this shortest path may also be discarded in
line 32.
Nevertheless the shortest path in W is in all of these cases a lower bound for the

shortest path in g which honours all restriction on a path for Γj . Therefore we do at least
know how far we could be away from the optimal path. In addition we did not encounter
a situation during our numerical experiments where a better shortest path algorithm
would have yielded better results. Therefore, it did not seem to be worthwhile to invest
time in finding or researching better shortest path algorithms. Instead we postpone
this task until the need for it arises. Especially as exchanging one of the shortest paths
algorithms, can be done without altering any other part of the algorithm.

What if Q = ∅?
In principle, it could happen that SelectValidPaths discards all paths in line 32, although
it never happened in our experiments. Nevertheless, algorithm 1 is prepared for this
situation. If no valid path can be found, it just ignores Γj in the current step of the
algorithm. As the weight of the empty path is 0 in line 19, a path for another part of the
contour will be fixed during this step. By fixing another path we add another split to the
graph, which is also another restriction that will be honoured next time algorithm 2 tries
to find a shortest path. This additional restriction can help the shortest path algorithms
to find a valid shortest path.

To illustrate this process, we consider the following example. Let us assume algorithm 2
tries to calculate the shortest path for Γj and it turns outW contains only paths such
that one but not both endpoints of another part Γk = Ia,b is in the area between the path
and Γj . None of the paths inW is valid and algorithm 1 fixes a paths for another part of

3For the remaining continuous contour parts in Γ̃ there might me several possible mappings for their
endpoints to vertices. If that is the case, we consider a path to be valid as long as there is for every
endpoint a mapping which does not cause a violation of condition (ii), see Fig. 4.14 for an example.
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the contour, until it eventually fixes a path p for Γk. Then the next time algorithm 2 tries
to find a shortest path for Γj , the setW will be different. Due to the just created split
along p it is no longer possible, that exactly one endpoint of Γk in in the area between a
path inW and Γj .

Should no valid path be available in algorithm 1, line 19, the algorithm aborts. That
did not happen during our numerical experiments though.

What ifW = ∅?
Well then the implementation contains a bug. There always has to be at least one candi-
date for a path to replace Γj , otherwise Γ would not be a valid contour for a RHP in the
first place.
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Algorithm 2 finds a shortest path for a part of the contour
1: function ShortestPath(g,Γ, j, P+, P−, F )
2: if @ i ∈ F with Γi = Γj then . check for lensing case
3: switch Γj do . standard case
4: case Pa
5: W = nv(g, a)

6: case Ia,b
7: L = nv(g, a) . map endpoints to vertices
8: R = nv(g, b)

9: W = {sp(g, l, r) : l ∈ L, r ∈ R} . shortest paths for mappings
10: case Rc(b)
11: L = nv(g, a)

12: R = nvB(g, c)

13: W = {sp(g, l, r) : l ∈ L, r ∈ R}
14: case Lc
15: L = nvB(g,−c)
16: R = nvB(g, c)

17: W = {sp(g, l, r) : l ∈ L, r ∈ R}
18: case Csr (a)

19: W = enclosingCircles(g, a, s)
20: else . lensing case

21: i =

{
max{h : h ∈ F, h < j,Γh = Γj} if {h : h ∈ F, h < j,Γh = Γj} 6= ∅
∞ else

22: k =

{
min{h : h ∈ F, h > j,Γh = Γj} if {h : h ∈ F, h > j,Γh = Γj} 6= ∅
−∞ else

23: if i < j < k then . there is a fixed path for Γj / Γk to the left /right of Γj
24: lqr = P+

i

25: W = {sp(g
[
P+
k +̇
←−
P−i

]
, l, r)} . path between P−i and P+

k

26: else if i < j then . there is a fixed path for Γi to the left of Γj
27: W = EnclosingPaths(g, P+

i , P
−
i ,−1)

28: else if j < k then . there is a fixed path for Γk to the right of Γj
29: W = EnclosingPaths(g, P+

k , P
−
k ,+1)

30: end if
31: end if
32: Q = SelectValidPaths(Γ, P+, F,W, j) . remove invalid choices for Γj
33: p = argminq∈Q d(q) . select valid paths with lowest weight
34: return p
35: end function
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Algorithm 3 selects paths from a set, which are valid choices for a part of the contour
1: function SelectValidPaths(Γ, P, F,W, j)
2: n = |Γ| . number of contour parts

3: Γ̃ = (Γ̃1, . . . , Γ̃n) with Γ̃h =

{
Ph if h ∈ F
Γh else

4: Q = {} . filtered subset ofW containing only valid choices for Γj
5: for all q ∈W do
6: Γ̃j = q . new contour which uses the paths in P and q
7: if V(Γ) ∈ V(Γ̃) then . check if q violates condition (ii) in § 4.3.1
8: Q = Q ∪ q . q is valid choice for Γj
9: end if
10: end for
11: return Q
12: end function

Algorithm 4 determines paths enclosing the left / right side of another path
1: function EnclosingPaths(g = (V,E), p+, p−, s)
2: lv+ . . . r = p+ . split left/right side of path into endpoints (l,r) and
3: lv− . . . r = p− . one vertex in between on the left/right side (v+/ v−)
4: T = {sp(g, l, u) +̇uw +̇ sp(g, w, r) : uw ∈ E}

5: W =

{
{t : t ∈ T, ind(

←−
t +̇ p+, v−) = −1 if s = −1

{t : t ∈ T, ind(
←−
t +̇ p−, v+) = +1 if s = +1

6: returnW
7: end function

Algorithm 5 calculates circles enclosing a given point
1: function EnclosingCircles(g = (V,E), a, s)
2: T = {sp(g, v, u) +̇uw +̇ sp(g, w, v) : uw ∈ E v ∈ V }
3: v = nv(g, a)

4: W = {t : t ∈ T or←−t ∈ T, ind(T, v) = s}
5: returnW
6: end function
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4.4.5. Shared Subpath Improvement

Algorithm 6 tries to improve a shared subpath s of the paths P±j and Pj? . We recall that
Pj? is the path that is fixed in the current iteration of the algorithm andP±j is the left/right
side of a path that has been fixed in a previous iteration. Both paths were chosen by
algorithm 1 to optimize the weight corresponding to their jumpsGj respectivelyGj? , but
this does not necessarily mean that the subpath s is optimal with regard to the combined
jump across both contour parts occurring at s. So the algorithm creates a graph with
weights corresponding to the combined jump across Pj and Pj? and calculates a shortest
path as a replacement for s within this graph. Just as in algorithm 2 there are several
different cases, which require their own method to calculate a new valid subpath. The
individual steps are the following.

Setup (lines 2 to 9)
The first step is to reset the state (P, F,Q) to the state, in which algorithm 1 calculated
Pj . This is done by algorithm 8, which discards Pj as well as all paths fixed after Pj and
adjusts the lists F and Q as well as the left (P+) and right (P−) sides of the paths in P
accordingly (line 2). Afterwards a graph g̃ is created with weights corresponding to the
combined jump at the longest shared subpath of Pj and Pj? (lines 3 to 6). See Fig. 4.15
for details about how the combined jump is determined by algorithm 7. After this setup
phase a shortest path between the endpoints of s is calculated to replace s in Pj .

Shortest Path Group 1: "No Lensing" (lines 10 to 17)
The first three cases, Γj being an interval, ray or line, are all handled by calculating the
shortest path connecting the endpoints of s in the just created graph g̃ (line 13).
For the last case, Γj being a circle, the shortest path connecting the endpoints of s

does not necessarily yield a new path that encloses the center of the circle. Therefore
we construct a path q connecting the endpoints of s with the center of the circle and
determine a path to the right or to the left of the just constructed path depending on the
orientation of the circle (line 16). This might not yield the shortest possible valid path,
but it also limits the effect of the new subpath on the full path. We want that the new
subpath improves the region of the original subpath, but not that it completely alters
the circle path Pj . The last step is to collapse the split along q, i.e. map the vertices of q−
to q+ for all paths in S̃, to ensure that we have valid paths in g̃ (line 17). This method is
visualized by Fig. 4.16.

Shortest Path Group 2: "Lensing" (lines 18 to 32)
This part handles lensing deformations and is discussed later on in § 4.5, where we also
provide all the other information regarding how lensing deformations are performed by
the algorithm.

Create New Path (lines 33 to 41)
To create the new and improved path for Pj we start with creating a set of all paths,
which we get by replacing the subpath s of Pj with a path in S̃ (line 33). As the subpaths
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orientation of Pj and Pj? at shared subpath s

same orientation opposite orientation

s ⊆ P+
j

s ⊆ P−j

Figure 4.15.: Visualization according to style 2; Illustration of the different cases in Com-
binedJump (algorithm 7) The paths P+

j (blue) / P−j (cyan) and Pj? (red) share
a subpath s (violet) and we want to determine the combined jump across
Pj and Pj? at s with the orientation of Pj . Using "inverse lensing" we get
the following. top left: Pj? is to the left of Pj? , so inverse lensing gives the
combined jump G̃ = GjGj? (line 3). bottom left: Pj? being to the right of Pj
yields the combined jump G̃ = Gj?Gj (line 6) right: Inverting both the jump
matrix Gj? and the orientation of Pj? does not alter the jump and reduces
the cases on the right side to the cases on the left side yielding top right:
G̃ = GjG

−1
j?

(line 9) and bottom right: G−1
j?
Gj (line 12).

in S̃ can intersect the left and right subpaths pl and pr of Pj , the just created paths can
contain circular subpaths (see Fig. 4.17, top right). These subpaths do not serve any
purpose and are dropped (line 34). Afterwards, all invalid paths are discarded and the
shortest path P̃j of the remaining paths is selected to replace Pj . If the new path P̃j
differs from the original path Pj , then the original path and state is returned, which
causes the main algorithm 1 to continue as if nothing happened (line 38). Otherwise the
new path and reseted state is returned and henceforth replaces the previous state in the
main algorithm 1, effectively discarding all paths fixed after Pj (line 40).

Why reset the state?
At first glance it may not seem very efficient to reset the state, because it discards all paths
that have already been fixed after Pj . But in our experiments we did rarely encounter a
case in which any path except for Pj? was discarded. The shared subpath improvement
step is intended for the case that fixing Pj? changed the shortest path for Γj? in a way
such that its weight becomes the dominating part for the condition of the RHP. Due to
the policy that the path with the largest weight is fixed in each step, the shortest path for
Γj? will then be fixed immediately after Pj has been fixed. Consequently only the path
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Figure 4.16.: Visualization according to style 2; Example of ImproveSharedPath (algo-
rithm 6) for the case of Γj being a circle C+

r (c); Left: The circle Pj (blue)
enclosing c (green) shares a subpath s (violet) with the path Pj? (red). Right:
The algorithm splits g̃ along the path q (orange) formed by the shortest
paths connecting the endpoints of s with c (line 15) and creates candidates
for a valid shortest path to the right of q in g̃, e.g. the cyan path (line 16). As
the first edge of the cyan path is part of q−, it is mapped to q+ (line 17) to
get a path that forms an improved circle enclosing c in g̃ if combined with
the remaining left and right subpaths of Pj (blue).

Pj? is discarded.
Furthermore discarding Pj? is also advantageous compared to just replacing the sub-

path s with the just calculated new path. Changing Pj increases in general the freedom
we have to choose Pj? . Therefore calculating a completely new path for Pj? potentially
yields a better result than just replacing the subpath. Often the newly calculated path
Pj? also shares a longer subpath than s with Pj and so algorithm 1 will try to further
improve the shared subpath of Pj and Pj? . See Fig. 4.17 for an example.
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Figure 4.17.: Visualization according to style 2; An illustration of applying one round
of ImproveSharedSubpath (algorithm 6). Top left: a graph in which the
two paths Pi (blue) and Pj (red) share a subpath (violet). Top right: after
replacing the shared subpath in Pi with a shortest path (orange) connecting
the endpoints (green) of the shared subpath with regard to the combined
weight of both jumps, we get a newpath forPiwhich contains a circle. Bottom
left: this circle gets removed from the blue path. Bottom right: an updated
shortest path for Pj (red) results in a new shared subpath (violet) that could
be further improved by applying ImproveSharedSubpath recursively.
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Algorithm 6 Shared Subpath Improvement
1: function ImproveSharedSubpath(g?, G,Γ, P, P+, P−, F, j, j?)
2: (P̃ , F̃ , Q̃, P̃+, P̃−) = ResetState(P, F,Q)

3: s± = longest shared subpath of P+
j and Pj? or P−j and Pj?

4: G̃ = CombinedJump(G,P+, P−, s±, j, j?) . combine jumps of both parts
5: g = copy of g?j with edge weights de = ‖G̃− I‖L1(e)

6: g̃ = g[P̃ (F̃ )]

7: s = subpath of Pj corresponding to s±
8: l . . . r = s . left (l) and right (r) endpoint of s
9: pl +̇ s +̇ pr = Pj . split Pj into left, shared and right subpaths
10: if @i ∈ F̃ with Γi = Γj then . check for lensing case
11: switch Γj do . standard case
12: case Ia,b or Rc(b) or Lc
13: S̃ = {sp(g̃, l, r)}
14: case Cor (a)

15: q = sp(g̃, l, nv(g, a)) +̇ sp(g̃,nv(g, a), r)

16: S̃ = EnclosingPath(g̃[q], q+, q−,−o)
17: S̃ = UndoSplit(q, S̃)

18: else . lensing case

19: i =

{
max{h : h ∈ F̃ , h < j,Γh = Γj} if {h : h ∈ F̃ , h < j,Γh = Γj} 6= ∅
∞ else

20: k =

{
min{h : h ∈ F̃ , h > j,Γh = Γj} if {h : h ∈ F̃ , h > j,Γh = Γj} 6= ∅
−∞ else

21: if i < j < k then . there are paths for Γi to the left and Γk to the right of Γj

22: S̃ = {sp(g̃

[
P̃+
k +̇
←−
P̃−i

]
, l, r)}

23: else if i < j then . there is a path for Γi to the left of Γj
24: q =←−pl +̇ P̃−i +̇←−pr
25: S̃ = EnclosingPath(g̃[q], q+, q−,−1)

26: S̃ = UndoSplit(q, S̃) . remove split along q from all paths in S̃
27: else if j < k then . there is a path for Γk to the right of Γj
28: q =←−pl +̇ P̃+

i +̇←−pr
29: S̃ = EnclosingPath(g̃[q], q+, q−,+1)

30: S̃ = UndoSplit(q, S̃) . remove split along q from all paths in S̃
31: end if
32: end if
33: W = {pl +̇ s̃ +̇ pr : s̃ ∈ S̃ ∪ {s}}
34: W = DropCircleSubpaths(W ) . drop circular subpaths from paths inW
35: T = SelectValidPaths(Γ, P̃+, F,W, j) . remove invalid choices for Γj
36: P̃j = argmint∈T d(t) . select valid paths with lowest weight
37: if P̃j = Pj then
38: return P, F,Q
39: else
40: return P̃ , F̃ , Q̃
41: end if
42: end function
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Algorithm 7 determines the combined jump of two paths with a shared subpath
1: function CombinedJump(G,P+, P−, s, j, j?)
2: if s ⊆ P+

j then
3: G̃ = GjGj? . Pj? is to the left of Pj , same orientation of Pj? and Pj at s
4: end if
5: if s ⊆ P−j then
6: G̃ = Gj?Gj . Pj? is to the right of Pj , same orientation of Pj? and Pj at s
7: end if
8: if ←−s ⊆ P+

j then
9: G̃ = GjG

−1
j?

. Pj? is to the left of Pj , opposite orientation of Pj? and Pj at s
10: end if
11: if ←−s ⊆ P−j then
12: G̃ = G−1

j?
Gi . Pj? is to the right of Pj , opposite orientation of Pj? and Pj at s

13: end if
14: return G̃
15: end function

Algorithm 8 resets the state (P, F,Q, P̃+, P̃−) to the state in which Pj was fixed
1: function ResetState(P, F,Q, j)
2: h = index of j in F
3: F̃ = F (1 : h− 1) . drop Pj and all paths which were fixed after it
4: Q̃ = (1, . . . , |Γ|) \ F
5: P̃ = ()

6: P̃ (F̃ ) = P (F̃ )

7: (P̃+, P̃−) = CalculateSides(P̃ , F̃ )

8: return P̃ , F̃ , Q̃
9: end function
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4.4.6. Calculate Left and Right Sides of Splits

In this section we discuss algorithm 9 which determines the left (P+) and right (P−)
sides of splits in the graph g[P (F )], which has been split along all paths in P in the order
as they appear in F . This is also the order in which the algorithm processes the paths.

1. (lines 6 to 8) The left and right side of the current path p is initialized with its left /
right side ((Pi)+ / (Pi)−) immediately after the split was created.

2. (lines 9 to 18) If any of the vertices v in p is contained in the left side of an already
processed path and both paths have the same orientation at v, the left side of the
processed path is adjusted by replacing v with p−[v]. The same adjustment is also
made if v is part of the right side of a processed path and both paths have opposite
orientations at v. An illustration of these adjustments is shown in Fig. 4.18. See
Fig. 4.29, for more details about SimilarOrientation and how it is defined in corner
cases.

3. (line 19) The current path is added to the list of already processed paths. After all
paths have been processed, P+ and P− contain the left and right sides of the splits
created by the paths P in the graph g[P (F )].
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Algorithm 9 determine left and right side of paths after multiple splits
1: function CalculateSides(P, F )
2: P+ = () . left side of paths in P
3: P− = () . right side of paths in P
4: Q = () . indexes of paths in P+,P−
5: for all i ∈ F do
6: p = Pi . initialize P+

i and P−i
7: P+

i = p+

8: P−i = p−
9: for all v ∈ p do
10: for all j ∈ Q do
11: if v ∈ P+

j and SimilarOrientation(P+
j , p, v) then

12: replace v in P+
j by p−[v] . top left case in Fig. 4.18

13: end if
14: if v ∈ P−j and not SimilarOrientation(P−j , p, v) then
15: replace v in P−j by p−[v] . bottom right case in Fig. 4.18
16: end if
17: end for
18: end for
19: Q = Q ∪ (i)

20: end for
21: return (P+, P−)

22: end function
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orientation of Pi and Pj at shared subpath s

same orientation opposite orientation

g[Pi] g[Pi, Pj ] g[Pi] g[Pi, Pj ]

s ⊆ (Pi)+

s ⊆ (Pi)−

Figure 4.18.: Visualization according to style 2; An illustration of all cases, which have to
be considered in algorithm 9. The graph g is split along the two paths Pj
(blue) and Pi (red) which share a subpath s (violet). Thereby g is split along
Pj first, yielding the left side (Pj)+ (blue) and right side (Pj)−. Top Left: Pj
is to the right of Pi, so splitting along Pi creates new vertices (green) to the
right of s forming a new left side of the split along Pj . Consequently the
vertices of s in (Pj)+ have to be mapped to the green vertices to get the new
correct left side P+

j of the split along Pj (line 12). Bottom Right: Analog to
the previous case Pj is again to the right of Pi, but this time the right side
has to be adjusted as s is part of (Pj)− (line 15). Top Right & Bottom Left: Pj
is to the left of Pi and no adjustment to the left/right side of Pj is necessary.
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4.5. Optimized Lensing Deformations

Algorithm 10 Optimized Lensing Deformation
1: function LensingDeformation(G,Γ)
2: select Γj with highest weight
3: for D ∈ {LDU,UDL} do
4: GD = (G1, . . . , Gj−1,decomposition D of Gj , . . . , Gj+1, . . . , Gn)

5: ΓD = (Γ1, . . . ,Γj−1,Γj ,Γj ,Γj , . . . ,Γj ,Γj ,Γj︸ ︷︷ ︸
# copies = # factors in D

,Γj+1, . . . ,Γn)

6: (G̃D, Γ̃D) = SimpleDeformation(GD,ΓD)

7: end for
8: return (G̃D, Γ̃D) with lowest weight
9: end function

A single step of the optimized lensing deformation (algorithm 10) aims at improving
the dominant part of the contour by trying various decompositions4 (factorizations) of its
jump matrix to which, then, the optimized simple deformation (algorithm 1) is applied.
However, the contour parts which originate from such a lensing deformation (e.g. L, D
and U in Fig. 4.7) have to satisfy an additional constraint, namely condition (iv) of § 4.3:
their spatial order has to be preserved. To calculate shortest paths (line 17 in algorithm 1)
or improve a shared subpath (line 24 in algorithm 1) for the contour part Γj subject to
this additional condition, we distinguish between the following three cases:

We recall that F is the list which contains the indices of all contour parts for which a
path has been fixed and that we use the convention that contour parts originating from
a lensing deformation have to be given from left to right. Furthermore the difference
between the split paths P and the left / right sides P+ / P− of the associated splits is of
particular importance for lensing deformations; see Fig. 4.21.

• Case 1: @ i ∈ F with Γi = Γj

As no path belonging to the lensing deformation at Γj has been fixed, there are no
constraints yet to be observed and we can simply calculate the shortest path for
Γj in the same way as we do for regular contour parts (lines 3 to 19 in algorithm 2
and lines 10 to 17 in algorithm 6 ).

• Case 2: ∃ i, k ∈ F with Γi = Γj = Γk and i < j < k

We select i and k to be the indices of the contour parts closest to the left respectively
to the right of Γj (lines 21 to 22 in algorithm 2 / lines 19 to 20 in algorithm 6). The

4Our current implementation considers only the LDU and UDL decompositions, as these two turned out
to be sufficient for our examples. Nevertheless it is easy to add further decompositions.
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shortest path for Γj , subject to the constraint that it is to the right of Γi and to the
left of Γk, can only contain vertices inside the circle formed by joining P−i and P+

k .
Therefore, we split the graph along this circle which effectively disconnects the
inside of the circle from the rest of the graph. In this graph we can then calculate
the shortest path connecting either the endpoints of Γj (line 25 in algorithm 2) or
the endpoints of the shared subpath s (line 22 in algorithm 6). An illustration of
this case can be seen in Fig. 4.19.

• Case 3: ∃ i ∈ F with Γi = Γj

Without loss of generality, we assume that we have to construct a shortest path for
Γj subject to the constraint that it is to the right of an already fixed path Pi (i < j).
Now, let c be a point that is located between the left and right side of the split in the
graph gj caused by Pi. Then, the order constraint is identical to finding the shortest
path Pj for which the circle formed by joining pj and P+

i encloses c. Lemma 2,
stated at the end of this section, will show that pj is actually given by

Π = {sp(gj , v
l
i, u) +̇uw +̇ sp(gj , w, v

r
i ) : uw edge in gj},

Pj = argmin{d(p) : p ∈ Π; ind(p +̇
←−
P+
i , c) = 1}.

Thereby vli / vri is the left / right endpoint of P+
i . Hence, Pj can be constructed by

a minor modification of the polynomial algorithm for shortest enclosing walks in
embedded graphs (Provan 1989). An implementation of this modification except
for the last step of choosing the shortest path is provided by algorithm 4 and used
to calculates a shortest path for the just mentioned case by algorithm 2 in lines 27
and 29. Fig. 4.20 (Top Left) provides an illustration of this case.
If we just want to improve a subpath s of Pj , we are faced with the problem of find-
ing a shortest path s̃ connecting the endpoints of s such that with q = pr +̇

←−
P+
i +̇←−pl

the circle q +̇ s̃ encloses a point c in between the split along q in gj [q]. Consequently
algorithm 6 creates the temporary path q and a split graph gj [q] and uses the
modified shortest enclosing walks algorithm 4 to determine s̃ (lines 24 to 26). See
Fig. 4.20 for an illustration of this case.

Lemma 2. Let q = (q1, . . . , qn) be a path in a weighted planar graph g = (V,E), let c be a point
considered5 to be in the split along q in g[q] and define

Π = {sp(g[q], q1, u) +̇uv +̇ sp(g[q], v, qn) : uv ∈ E}.

Then the shortest walk p? in g, subject to the constraint ind(p? +̇←−q±, c) = ±1, satisfies

p? = argmin{d(p) : p ∈ Π; ind(p +̇←−q±, c) = ±1}. (4.3)
5We can chose any point on q for c and treat it as if it were to the right of q+ and to the left of q−.



73 4.5. Optimized Lensing Deformations

Figure 4.19.: Visualization according to style 2; Illustration of case 2; top row visualizes
algorithm 2 and bottom row visualizes algorithm 6. Top Left: We search for
a path Pj which is to the right of Pi (blue) and to the left of Pk (red). This
path has to be in the area enclosed by P−i (cyan) and P+

k (red). Top Right:
After splitting the graph along q = P+

k +̇
←−
P−i (orange), we can determine

the path we are searching for by calculating the shortest path between the
endpoints of P−i / P+

k (green) (line 25). Bottom Left: In this case we already
have a path Pj (magenta), which is to the left of Pk (red) and to the right of
Pi (blue), and we want to improve a subpath s of it (green). Bottom Right:
Splitting the graph along q = P+

k +̇
←−
P−i (orange) enables us to determine an

improved subpath by calculating the shortest paths between the endpoints
of s (green) (line 22).
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Figure 4.20.: Visualization according to style 2; Illustration of case 3; top left visualizes
algorithm 2 and the rest visualizes algorithm 6. Top Left: We search for
a path Pj which is to the right of the split caused by Pi (blue). This path
is the shortest path p such that←−p +̇P+

j forms a path enclosing c (green).
For paths containing c we treat c as if it would be in between the split to
determine the angle (line 27). Top Right: We have a path Pi (blue) and
a path Pj (red) to the right of it. The subpath s (violet) of Pj should be
optimized. Bottom Left: To optimize the subpath, the graph is split along
←−pl +̇P−1 +̇←−pr = q (orange) and the shortest path s̃ in gj [q], with which q
forms a circle enclosing c (green) is determined (lines 24 to 25). Bottom Right:
As the first edge (brown) of the new subpath s̃ (violet) is part of q− (yellow)
this edge has to be mapped back to q+ to make s̃ a valid path in gj (line 26).
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Figure 4.21.: Visualization according to style 2; Example depicting the importance to
distinguish between P and P+/P− for lensing deformations. Left: a graph
split once along q (blue). Middle: a graph split two times along the same
path q (blue). Right: Setting P = (q, q) yields the following left and right
sides of splits in g[P ]: P−1 (cyan), P+

1 = P−2 (red) and P+
2 = q (blue). So if

we search for a path which is to the right of the split caused by P1 we have
to actually search for a path which is to the right of P+

1 . E.g. the red path is
to the right of the path P1 in g[P ] but not to the right of the associated split.

Proof. We restrict ourselves to the case ind(p +̇←−q ) = 1, because the proof for the other
case differs just in the sign of some winding numbers. We will assume to the contrary
that p? is not given by (4.3) and will get a contradiction.

If there is more than one shortest walk p?, we choose the one which encloses the least
number of vertices. If p? /∈ Π, then there has to be a vertex v ∈ p? with p? = l +̇ v +̇ r

such that sl = sp(g[q], q1, v) and sr = sp(g[q], v, qn) satisfy the following conditions

ind(sl +̇ r +̇←−q , c) 6= 1, ind(l +̇ sr +̇←−q , c) 6= 1. (4.4)

If no such vertex v exists, then either l or r is a shortest path for all partitions l +̇ v +̇ r of
p?. Consequently there has to be an edge uw ∈ p?, such that p? = l +̇uw +̇ r and l, r are
both shortest paths.
We will now show that there is no such vertex v.

Step 1. To begin with, we prove forW = p? +̇←−q that

sl ∩ int(W ) = ∅, sr ∩ int(W ) = ∅. (4.5)

If (4.5)would not hold then either sl or sr contains a path p = (p1, . . . , pm)with p2, . . . , pm−1 ∈
int(W ) and p1, pm ∈ p?. As sl and sr are shortest paths, such a subpath p has to be the
shortest path from p1 to pm. Consequently, the walk

W ′ = p?[q1, p1] +̇ p +̇ p?[pm, qn] +̇←−q

would satisfy

d(W ′) ≤ d(W ), ind(W ′, c) = 1, | int(W ′)| < | int(W )|,
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which contradicts our choice of p?. Therefore, (4.5) holds.

Step 2. We now prove that

ind(W l
1, c) = 1 withW l

1 = l +̇←−sl ,

ind(W r
1 , c) = 1 withW r

1 = r +̇←−sr .
(4.6)

To this end, we consider the walk

W l = l +̇←−sl +̇ sl +̇ r +̇←−q

which consists of the two circles

W l
1 = l +̇←−sl , W l

2 = sl +̇ r +̇←−q ,

and satisfies

ind(W, c) = ind(W l, c) = ind(W l
1, c
′) + ind(W l

2, c
′) = 1. (4.7)

If sl ∩W = ∅, then neither W l
1 nor W l

2 contains any vertex more than once. As g is a
planar graph, these walks correspond to simple closed curves in the complex plane and
therefore their winding numbers around c can only be −1, 0 or 1. If we also take (4.7)
and (4.4) into account, the only possible option is

ind(W l
1, c) = 1, ind(W l

2, c) = 0.

Unfortunately, sl ∩W = ∅ does not necessarily have to be satisfied. But sl cannot cross l
and r +̇←−q because of (4.5), which means that

sl = sp(g[q], q1, v) = sp(g[q,
←−
l , q +̇←−r ], q1, v).

Hence, we can find the following walks in g[q,
←−
l , q +̇←−r ]

U l1 = l+ +̇←−sl , U l2 = sl +̇ r+ +̇←−q+,

which are equivalent toW l
1 andW l

2 but do not contain duplicate vertices. If we move the
paths along the splits

←−
l and q +̇←−r a little bit apart, then U l1 and U l2 correspond to simple

connected curves, too. As we can move the split paths apart without crossing c or any
other part of U l1 or U l2, these walks can only have winding numbers of −1, 0 or 1 with
respect to c. This means thatW l

1 andW l
2 can only have these winding numbers even if

sl ∩W 6= ∅. This proves the first relation in (4.6). The second one follows likewise.

Step 3. We claim that
qn ∈ int(W l

1), qn /∈ int(W r
1 ),

q1 ∈ int(W r
1 ), q1 /∈ int(W l

1).
(4.8)
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c

q

l

r
sl

sr

v

Figure 4.22.: Illustration of Step 4 in the proof of lemma 2.

Combining (4.5) and (4.6) yields int(W ) ⊆ int(W l
1). Therefore, all vertices inW either

have to be in int(W l
1) or inW l

1. It follows that we just have to show that qn /∈ W l
1. We

consider the following closed walk

W ′ = W l
1 +̇W r

1 = l +̇ r +̇←−sr +̇←−sl

with
ind(W ′) = ind(W l

1) + ind(W r
1 ) = 2.

If qn ∈ W l
1, then sl[qn, v] = ←−sr and, consequently, W ′ contains a circle that does not

enclose any vertex. Removing this circle fromW ′ results in the walk

W ′′ = l +̇ r +̇←−sl [qn, q1]

without changing the winding number. So ind(W ′′) = 2, and the argument that we have
used before to show ind(W l

1, c) ∈ {−1, 0, 1} works for W ′′, too. Consequently, we get
qn /∈W l

1. The second claim in (4.8) follows likewise.

Step 4. (see Fig. 4.22) We combine the results of the previous steps to show that our
initial assumption leads to a contradiction. As c ∈ int(W l

1) ∩ int(W r
1 ) by (4.6), the two

circlesW l
1 andW r

1 have a non empty intersection. Furthermore, because of (4.8), none of
them is completely contained within the other. It follows thatW l

1 andW r
1 have to cross

each other at two or more points. One of these can be v, but there is actually no other
vertex at which the circles could cross: sl cannot cross r and, vice versa, sr cannot cross l
due to (4.5); also sl and sr cannot cross because they are both shortest paths.
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4.6. Extensions for infinite contours

There are a two improvements for contours which extend towards infinity, which can be
applied to algorithm 2. Currently it finds paths which share the same endpoints for all
the factors of a lensing deformation of a ray or line type contour part. But we do have
more freedom to choose a vertex corresponding to an endpoint at infinity. The direction
with which a factor approaches infinity can be changed as long as the spatial order of
the factors is preserved and the corresponding jump matrix decays to the identity matrix
along the new direction. Choosing a different direction for each factor may be beneficial,
because in general the direction of steepest descent is different for each of them. To verify
that the spatial ordering of factors is preserved we create a list of all infinite contour
parts and sort them by the direction with which they approach infinity. The resulting
list for the original and deformed contour have to be the same up to cyclic shifting (to
compensate for the jump of the argument function). If not all parts of the contour have a
fixed path yet, we consider only the parts which do. See Fig. 4.23 for an example.

Taking this information into account, the first improvement to algorithm 2 is as follows.
If the algorithm encounters a lensing case with an infinite part of the contour, it does not
use the methods for the lensing case (lines 20 to 31). Instead it uses the methods for the
"no lensing" case (lines 3 to 19), whereby the mapping functions in lines 12, 15 and 16
are altered to return all vertices which satisfy the following constraints

(i) The weight of the vertex6 is lower than 10−16.

(ii) Choosing the vertex preserves the spatial order of infinite contour parts.

(iii) The direction with which the original part of the contour approaches infinity and
the argument of the position of the vertex do not differ more than a given threshold.

The first constraint should select a direction along which the jump matrix decays to the
identity matrix and the last constraint prevents pointless paths like e.g. a path starting
and ending at the same vertex7. For the second constraint there are two cases in which it
is violated. The first case is that choosing the vertex does not preserve the spatial order
and the second case it that choosing it has the effect that there are no longer any vertices
which satisfy all constraints for another endpoint. If there is no vertex satisfying all
constraints for one factor at one of its infinite endpoints, then this endpoint is mapped to
the same vertex for all factors belonging to the same lensing decomposition. The vertex
is chosen so that it corresponds to the direction of the original part of the contour. An
example for these vertex mappings is shown in Fig. 4.24.
In accordance with this change, we have to alter algorithm 6, too. If without loss of

generality the left endpoint of the subpath s is part of the boundary of gj and it is also the
6Analogous to the edge weight, the weight of a vertex v is d(v) = ‖G(v)− I‖
7Let us assume Γ is just a single line. Without constraint (iii) both its left and right endpoint could be
mapped to the same vertex, yielding a very short, but pointless path.
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left endpoint of Pj , then we do not just search the shortest path connecting the endpoints
of s. Instead we determine the shortest path connecting the right endpoint of s with any
vertex which is a suitable endpoint for Pj as described before.

A second improvement, which is rather cosmetic, is to enable the same freedom for
all ray and line type contour parts even if they are not factors of a lensing decomposi-
tion. As most of the time the contour parts are already given such that their direction
roughly resembles the path of steepest descent for their corresponding jump matrices,
this freedom does not make a big difference but it results in nicer looking contours.
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Γ1 Γ2

Γ3

Figure 4.23.: Visualization according to style 2; Left: Contour consisting of three rays,
whereby the two rays on the right side originate from a lensing decomposi-
tion. Sorting them by increasing angle with which they approach infinity
yields (Γ3,Γ2,Γ1). We keep in mind that factors of a lensing decomposition
are given ordered left to right. Middle: After the contour optimization
algorithm fixed the paths P1 (blue) and P3 (red) for Γ1 and Γ3 respectively, it
remains to find a path P2 to the left of P3. Since we consider each vertex on
the boundary to be connected to infinity, any shortest path connecting the
left endpoint of P2 (violet) and one of the green vertices on the boundary
is a valid candidate for P2. These green vertices are also all the vertices for
which sorting the paths by the argument of their endpoint on the boundary
yields (P3, P2, P1), which is the same as the one of the original contour.
Right: A large difference between the argument of the right endpoint of
P2 and the angle with which Γ2 approaches infinity, blocks a significant
area of the graph for other paths. The part of the graph between P2 and P3

can not be used by other paths. Therefore we limit this deviation. In our
implementation we choose a maximum deviation of±π/4. For our example
this reduces the set of possible endpoints for P2 to the green vertices. The
green path is an example for a valid choice for P2. The hardcoded value
of π/4 could be improved by analysing the oscillator of the jump function.
However we do not expect a significant improvement from doing so. There-
fore this is left as future work. We would also like to note here, that this
examples illustrates only how to choose vertices in order to preserve the
spatial ordering of all parts of the contour. There are further points that
have to be taken into account, as illustrated in Fig. 4.24.
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Γ1 Γ2 Γ3

Figure 4.24.: Illustration of a lensing deformation for an infinite contour; A line from
−∞ to +∞ is decomposed into the 3 factors Γ1,Γ2,Γ3, which are given left
to right. That means Γ1 to the left of Γ2 which in turn is to the left of Γ3.
The background contains a contour plot of the weight corresponding to
the jump matrix associated with the lensing factor. The color of the weight
is the same as used by Style 1. The blue vertices are valid mappings for
the left endpoint of a factor. They have a weight lower than 10−16 and
choosing one of these mapping does not leave another factor without a valid
mapping. At the right endpoint we have a different situation. Though there
are vertices (brown) with a sufficiently low weight for each of the factors,
we cannot choose one of them for each factor and preserve the spatial order
of the factors at the same time. Therefore the right endpoint of all factors is
mapped to the same vertex (violet) which corresponds to direction of Γj .
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4.7. Deformation Verification

In this section we discuss some details of the method we use to verify that constraint
(ii) from § 4.3.1 is satisfied for the paths calculated by algorithms 2 and 6. We recall this
means that there is no endpoint of another part of the contour in the region between the
original and the deformed version of a part of the contour. At first glance this does seem
to be fairly easy. For the most part this is actually true, but there are a few not so obvious
but important details that have to be considered.
To verify the constraint for a contour consisting of n parts (continuous, discrete or a

mix of both), we map the contour to the n× nmatrix

V : Γ = Γ1 ∪ · · · ∪ Γn 7→

ν(Γ1,Γ1) · · · ν(Γ1,Γn)
...

...
ν(Γn,Γ1) · · · ν(Γn,Γn)


where the i, j element ν(Γi,Γj) contains all the angles we get bymoving a line connecting
Γi to an endpoint of Γj from the beginning of Γi to its end. These angles are the same
for the original and the deformed contour if and only if constrained (ii) is satisfied. See
Fig. 4.25 for a few examples.

The exact definition of ν(Γi,Γj) can be found in appendix B, it is rather long but pretty
much straight forward. There are four different cases, which occur when we evaluate it:

1. Γi and Γj are continuous

2. Γi and Γj are discrete

3. Γi is continuous and Γj is discrete

4. Γi is discrete and Γj is continuous

Of these four cases the first one does not pose any problems. The third and fourth one
can be reduced to the first two by mapping the endpoints of Γj to the corresponding
coordinates of the vertex or the coordinates to the corresponding vertices respectively.
The remaining case 2 is of interest. If both Γi and Γj are paths, which we denote now Pi
and Pj , then there can be an endpoint v of Pj which is also part of Pi or which is at the
same location as another vertex in Pi. To determine the angle of Pi around v we have to
decide if we consider v to be left or to the right of Pi. Fig. 4.26 contains examples of the
different cases which have to be considered for this decision. To handle all the cases we
need an order from left to right of all the vertices at the same location as v with respect
to Pi. Such an order is calculated by algorithm 11.

Order of Vertices at Splits

Algorithm 11 calculates a sorted list of all vertices which are at the same location as
v ∈ q in the graph g[P ]. Thereby the vertices are sorted from left to right with left and
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Γ1

Γ2

α

Γ1

Γ2

β γ α

Γ1

α

β
Γ1

α

β

α

β

Γ1

Γ2

Figure 4.25.: Visualization according to style 2; Top Left: ν(Γ1,Γ2) = (α) Top Middle:
ν(Γ2,Γ1) = (β, γ) Top Right: ν(Γ1,Γ2) = (α) with Γ2 being the blue path
Bottom Left: ν(Γ1,Γ2) = (α, β) with Γ1 being the blue path and Γ2 the red
path Bottom Middle: ν(Γ2,Γ1) = (α, β) with Γ2 being the blue path; The
right endpoint of Γ1 can be mapped to either the red or the green vertex,
resulting in different angles. This information can be used to filter invalid
vertex mappings. Bottom Right: The green path is a valid choice for Γ1

as it does preserve the angle α in contrast to the red path which does not
preserve it.
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Figure 4.26.: Visualization according to style 2; All 4 graphs show different situations
which can occur, when we determine the angle between a path p (red) and
the left endpoint of the path q (blue), which is its first vertex v (green).
All graphs are split along the blue, cyan and orange paths. Furthermore
vertices and edges which are used by two paths are coloured violet. With
this visualization it is not too difficult to decide if v is to the left or to the
right of p. But we should keep in mind that this information was also used
to create this illustration. Top Left: v is contained in p, but it is considered
to be right of p, as the first edge of q is on the right side of p. Top Right: v
is also considered to be right of p. If p contains an edge of q+, this edge is
considered to be on the right side and if p contains an edge of q−, this edge
is considered to be to the left of p. Analogously, if p contains the reversed
edge of q+ / q− the edge is considered to be of the left / right side. Bottom
Left: In this case v is not contained in p. Instead p contains a vertex (violet)
which is at the same location as v. Since v is on the right side of the split
along the cyan path and p is on the left side of it, we can determine that v is
to the right of p. Bottom Right: The graph is split two times along the violet
path in opposite directions. Therefore, there is no direct relation between a
vertex in p and v as in the previous case. To decide if v is to the left or to
the right of p we determine an order of all vertices at the location of v with
respect to p using algorithm 11.
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Algorithm 11 Order of vertices at splits
1: function vertexOrder(g, P, q, v)
2: O = (v) . initial ordering of vertices at v
3: N = (v) . list of vertices added to O in the previous iteration
4: F = () . list of vertices added to O in the current iteration

5: I =

{
(j) if v ∈ pj− ∈ P = (p1, p2, . . . )

(0) else
6: R(v) := q . reference path to determine the orientation at v
7: while N 6= ∅ do
8: for all pi ∈ P = (p1, p2, . . . ) do . process all paths in P
9: p = pi
10: for all w ∈ (p+ ∪ p−) ∩N do . which contain a vertex in N
11: if p+[w] 6= p−[w] then
12: if w ∈ p+ then
13: u = p−[w]

14: if SimilarOrientation(p+, R(w), w) then
15: r = True . u is to the right of w with respect to R(w)

16: R(u) := p− . set p− as reference path for u
17: else
18: r = False . u is to the left of w with respect to R(w)

19: R(u) :=←−p− . set←−p− as reference path for u
20: end if
21: else . w ∈ p−
22: u = p+[w]

23: if SimilarOrientation(p−, R(w), w) then
24: r = False . u is to the left of w with respect to R(w)

25: R(u) := p+ . set p+ as reference path for u
26: else
27: r = True . u is to the right of w with respect to R(w)

28: R(u) :=←−p+ . set←−p+ as reference path for u
29: end if
30: end if
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Algorithm 11 Ordering of vertices at splits (continued)
31: l = index of w in O

32: m =

{
(j) if u ∈ pj− ∈ P = (p1, p2, . . . )

(0) else
33: if u /∈ F then
34: if r = True then . sort u into O andm into I

35: k =

|O| if l = |O| or Ij > i for l < j ≤ |O|
−1 + argmin

l<j≤|I|
Ij < i else

36: insert u andm immediately after position k into O and I
37: else

38: k =

1 if l = 1 or Ij > i for 1 ≤ j < l

1 + argmax
1≤j<l

Ij < i else

39: insert u andm immediately before position k into O and I
40: end if
41: Append u to F
42: end if
43: end if
44: end for
45: end for
46: N = F ; F = ()

47: end while
48: Return O
49: end function
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right being defined by the path q. The basic idea of the algorithm is to start with a list
O containing only the vertex v. Then all vertices uwhich are on the left / right side of
a split which contains v are sorted into O. This process is repeated for all vertices just
sorted into O until there are no more vertices to sort. In more detail the algorithm works
as follows.

1. (lines 2 to 6) The data structures which are initialized in these lines have the following
contents. O is the ordered list of all vertices, N a list containing all vertices sorted
into O during the previous iteration and F contains all vertices which have been
sorted into O in the current iteration. I contains for each vertex w in O the in index
j of the path pj ∈ P for which w ∈ (pj)− holds. Last, Rmaps each vertex w in O to
a reference path which contains w and has an orientation similar to q at w.

2. (lines 8 to 13 and 22) For all paths in P we determine if the left or right side of their
corresponding split in g[P ] contains a vertex w in N . If they do, u is set to be the
vertex coressponding to w on the other side of that split.

3. (lines 14 to 30) We determine if u is to the left or to the right ofwwith respect toR(w).
We know that p−[w] is to the right of p+[w] in reference to p. If p and R(w) have
a similar orientation, then p−[w] is also to the right of p+[w] with respect to R(w),
otherwise the opposite is true. In addition, we also store a reference path for the
vertex u. Since all reference paths are chosen to have an orientation similar to each
other and the initial reference path is q, the sorting is done with respect to q. What
we mean by two paths having a similar orientation is explained in Fig. 4.29.

4. (lines 31 to 40) The next step is to figure out how far to the left / right u is. In general
uwill be immediately to the left / right of w. Only if we move from an inner split to
an outer split there can be vertices in between u and w. See Fig. 4.28 for an example
and further details.

5. (line 7) This process is repeated for all newly inserted vertices (N ) until there are no
more vertices to sort into O.

6. (line 11) The purpose of this line is to filter out all paths which do not create a new
vertex at the location of v. E.g. if a split starts / ends at v, the algorithm would
process this path, but the path does not create a vertex which can be added to O.

Remark. The list O calculated by algorithm 11 can always be used to determine which vertices
are to the left and to the right of v with respect to q and it will determine a total ordering if such
an ordering exists. But that is not always the case. See Fig. 4.27 for an example.
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Figure 4.27.: Visualization according to style 2; The graphs are split along p1 (blue), p2

(red) and p3 (purple) in a way such that there are 4 vertices in the split graph
which are at the same location; two green, one purple and one red vertex
(left) respectively two green, one blue and one pink (right). Left: In this
case we can determine a total ordering of all 4 vertices in reference to the
blue path. Right: Though we can say that both green vertices are right of
the pink vertex in reference to the blue path, both green vertices are equally
to the right of the blue path. Therefore we cannot determine a total ordering
of the 4 vertices in reference to the blue path.

Figure 4.28.: Visualization according to style 2; An example which illustrating the effect
of line 35 in algorithm 11. The input to the algorithm is in this case the
graph g, the paths P = (p1(blue), p2(magenta)), a reference path q (red)
and the vertex v (green). During the first iteration, the algorithm initializes
O = (v), I = (2) and inserts u1 = p2+ [v] (cyan) to the left of v in O and 1

to the left of 2 into I , respectively. This yields O = (u1, v), I = (1, 2) after
the first iteration. During the second step, the algorithm recognizes that
u2 = p1+ [u1] (orange) is to the right of u1. As g is split along p1 first and
along p2 afterwards, u2 is also to the right of v. Due to I2 > i = 1 the
algorithm takes this fact into account (line 35) and determines that u2 has
to be inserted immediately after position k = 2 into O.
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Figure 4.29.: Visualization according to style 2; The plots illustrates the situations when
two paths p = . . . avb . . . (blue) and q = . . . rvs . . . (red) have a similar or
not similar orientation at their common vertex v (green). In the cases on the
left, p and q have a similar orientation at v and in the cases on the right they
do not. Essentially, if p and q have a similar orientation, either the right side
of p is part of the right side of q or vice versa the right side of q is part of the
right side of p. Top: If p and q have a common subpath (violet) containing
v, they have a similar orientation at v if the subpath is traversed by both
in the same direction. Otherwise they do not have a similar orientation at
v. Middle: This is a generalization of the previous case. If p and q do not
have a common subpath, they have a similar orientation if q is to the left
of p and ] bvs = α < β = ] bvr or if q is to the right of p and β < α. The
conditions for a not similar orientation are analogous. Bottom: The case
α = β can occur, but only if q wraps around a split, since we do not allow
paths containing circles. In this case we check if s is to the right or to the left
of q at r to determine whether we are in a limiting case of α < β or β < α.
Remark. This check is performed with algorithm 11, which also involves com-
paring the orientation of paths. Therefore we could end up in an infinite loop, if
this situation also occurs when we execute algorithm 11 at the vertex r. This in
turn means that s is also an endpoint of another path. Consequently, there are
two endpoints of contour parts, which are mapped to adjacent vertices (s and v).
Our implementation of algorithm 1 detects this situation and subdivides the edge
between those vertices in the setup phase, thus avoiding infinite loops. We could
also resolve the case leading to infinite loops properly, but that is far more work.
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4.8. Implementation Details

4.8.1. The Weights

The weight d(e) of an edge e should be an approximation of∫
e
‖G(z)− I‖ d|z| (4.9)

with a suitable matrix norm. Our experiments indicate that we generally need fewer col-
location points if we aim at minimizing all components of G− I instead of just focussing
on its largest component, for which reason we choose the Frobenius (or Hilbert-Schmidt)
norm. The integral is sufficiently well approximated by the two point trapezoidal quadra-
ture rule (we recall that the aim of optimizing the weight is just preconditioning, that is,
getting a particular good order of magnitude of the condition number). We thus take

d(e) =
1

2
|b− a|(‖G(b)− I‖F + ‖G(a)− I‖F )

as the weight of an edge ewith the endpoints a and b.

4.8.2. The Graph

The algorithm of § 4.4 is based on planar graphs. If the graphs were not planar, paths
could cross each other even without having any vertices in common and, therefore, the
graph splitting described in § 4.3 would not ensure that paths calculated by algorithm 1
do not cross each other. We choose planar graphs built from rectangular grids to which a
vertex in the center of each box is added that is connected to the vertices of the border of
that box. Such a graph is chosen to subdivide a rectangle that contains all finite endpoints
of Γ. We take this rectangle large enough so that outside of it ‖G− I‖F is below machine
precision on all arcs with an infinite endpoint, see Fig. 4.30. For numerical purposes, the
jump matrix G is then indistinguishable from the identity matrix in the exterior of this
rectangle: the RHP needs to be solved only in the interior.

If the contour contains an infinite endpoint, we add a leaf edges to each vertex on the
boundary of the graph. Every path for an infinite part of the contour will contain one of
these leaf edges but none of the other paths will. This facilitates mapping paths back to
a contour of a RHP, as shown by the example in Fig. 4.31.

4.8.3. Contour Simplification

The algorithm described in § 4.4 returns a contour composed of a set of paths in the
underlying graph. The collocationmethod of Olver (2011b), which is finally employed for
the numerical solution of the RHP, would have to place individual Chebyshev points on
each smooth (that is, linear) part of this piecewise linear contour. For efficiency reasons
it would thus be preferable to have a contour with fewer breakpoints. Consequently,
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Figure 4.30.: The rectangle to be covered by the grid is determined by the condition
‖G− I‖F > 10−16 along Γ. The color coding is as in Fig. 4.3.

Figure 4.31.: Visualization according to style 2; Example illustrating one advantage of
adding leaf edges to the base rectangular graph; Left: Example RHP con-
sisting of two rays which is discretized by the next two graphs. Middle:
After applying the contour optimization algorithm, we get the two paths
P−1 (blue) and P+

2 (red). These paths are mapped to a RHP with the violet
contour. As we can see there are parts of the violet contour which do not
have a corresponding edge. Furthermore some vertices on the boundary
of the graph are mapped to rays, but not all of them. Right: Applying the
contour optimization on a graph with added leaf edges (green), results in
similar paths P−1 (blue) and P+

2 (red). The paths are mapped to the same
contour (violet) as in the example in the middle, but this time there is at
least one edge for each part of the contour. In addition all vertices are just
mapped to points, with points on the boundary being always mapped to
infinity. Overall this situation can be handled more elegantly as it contains
less implicit information.
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Figure 4.32.: Improvement of the convergence rate by contour simplification: the sim-
plified contour needs only about half the number of collocation points to
reach the same accuracy as the optimized contour of Fig. 4.3.d (the color
coding is the same as there). This simplification does not, however, worsen
the order of magnitude of the condition number which grows from about
140 to just about 200. The similarity with the manually constructed contour
in Fig. 4.4 is even more striking after this simplification step.

for each optimized path, we calculate a coarse piecewise linear approximation that has
about the same weight. Quite often just a straight line connecting the endpoints of a path
is already a sufficient approximation. Fig. 4.32 shows an example of this simplification
process when applied to the final contour of Fig. 4.3: it cuts the number of collocation
points bymore than a factor of twowhile keeping the order of magnitude of the condition
number constant.

4.8.4. Restrictions on Paths

Splitting a graph along a path containing a circle needs to be treated differently from a
regular path without circles. See Fig. 4.33 for details. We want to avoid the associated
extra complexity. In general a simpler algorithm is easier to check for errors, which is of
particular interest as we want the algorithm to be treated as a black box. Furthermore,
the paths calculated by algorithms 2 and 6 do not contain circles anyway. Just temporary
paths as e.g. the one in line 25 of algorithm 2 can contain any. The cases in which paths
of this type arise can be handled without splitting a path along them. Fig. 4.34 illustrates
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Figure 4.33.: Visualization according to style 2; Illustration of a split along a path con-
taining a circle with negative orientation. Left: Graph g with and a path p
(blue) containing a circle. Right: Splitting g along p yields this graph g[p]

and creates new vertices as well as new or modified edges (red). The vertex
v (green) visited twice by p requires some attention. As it is visited twice,
two new vertices are created for it and not just one. Therefore we lose some
properties, if we allow this type of path for splitting graphs. p+ = p is no
longer true in g[p] and there is no longer a one to one mapping between
vertices in p+ and p−. Obviously a vertex does not define a unique position
in such a path. All of this would have to be taken into account by the algo-
rithms we presented in this chapter. As we want to avoid this complexity,
we simply do not allow splitting a graph along a path containing circles.

an example. Therefore we do not support splitting graphs along paths containing a circle
and the algorithms presented in this chapter do not take paths of this type into account.
Splitting a graph along circles is supported though.

4.8.5. Restriction to Machine Precision

The shortest path algorithms inMathematica require theweights of a graph to bemachine
precision numbers. Though we are only interested in the magnitude of the total weight
of a path, machine precision numbers cause problems. If the range of values of the
weights in a path P is larger than 1/eps (with eps being machine epsilon8), then all
subpathsP [u, v] ofP , for which d(P [u, v]) < eps d(P ) holds, do not necessarily have to be
shortest paths. The shortest path algorithm can not distinguish between the shortest path
connecting u and v and any other path Q connecting u and v having d(Q) < eps d(P ).
Therefore, these subpaths are often similar to random walks, which is not desirable.
Random walks contain more turns, which leads to contours with more parts and makes
solving the resulting deformed RHP more expensive. Furthermore, random walks will
likely not coincide with other paths and therefore theywill not trigger the shared subpath
8For IEEE 754 double-precision arithmetic, we have eps ≈ 2 · 1016.
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Figure 4.34.: Visualization according to style 2; Top Left: Situation handled by line 25 of
algorithm 2 with a graph split along the paths Pi (blue) and Pk (red). We
search for a path Pj to the right of P−i (cyan) and to the left of P+

k (red).
Per default the algorithm constructs a path q = P+

k +̇
←−
P−i and splits the

graph along it. But we want to avoid this split as q contains a subpath which
is a circle due to P−i and P+

k having a shared subpath (violet). Top Right:
Instead of splitting the graph along q we split it along circular subpaths
(orange) of q. Calculating the shortest paths (green) inside these circles
(orange) and combining the results with shared subpath (violet) of P−i and
P+
k yields the path we are looking for. In order to show this path, the graph

displayed here is not split along the orange paths. Bottom Left: Situation
handled by lines 24 to 26 of algorithm 6. We search for a path s̃ which
improves the subpath s (violet) of Pj (red) within the graph split along the
paths Pi (blue). Thereby replacing s in Pj by s̃ has to preserve the property
that Pj is to the right of P−i . In this case the algorithmwould split the graph
along q = ←−pl +̇ P̃−i +̇←−pr (with pl/pr being the red parts at the start / end
of Pj and P−i being the blue path). As q contains a circle we want to avoid
splitting along this path. Bottom Right: This is accomplished by removing
the circle from q and splitting the graph along the remaining path (orange).
In the resulting graph we search the shortest path (magenta) to the right of
the just created split and get the path s̃ we are searching for. Replacing s in
Pj by s̃ can create a circle as in this example. This circle is removed later on
(line 34).
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Figure 4.35.: Visualization according to style 2; Left: p (red) and q (blue) wiggle along
each other in the graph g[p] and don’t have a common subpath. Right: The
wiggling is removed by snapping the wiggling part to p−.

improvement algorithm 6.
Nevertheless, as matching the speed of this highly optimized implementations of the

shortest path algorithms in Mathematica is rather difficult and requires quite a lot of
work, we want to use this implementation. Therefore we perform two additional steps to
prevent the problems we have just discussed. The first step is to clip the weights of edges
to machine precision numbers. The second step is to post process all shortest paths P
we get from Mathematica. If it contains a subpath P [u, v] with d(P [u, v]) < eps d(P ), we
replace this subpath with the shortest path connecting u and v. Obviously, the resulting
path does not have to be the shortest path connecting the endpoints of P but its total
weight will be the same up to machine precision. This process eliminates random walks.

4.8.6. Removal of Wiggling Paths

A situation which occurs quite frequently is that two paths wiggle along each other in
a region, but do not have a common subpath. See Fig. 4.35 for an example. As there is
no common subpath, the algorithm will not attempt to optimize any subpath, although
the combined wiggling subpaths are promising candidates for optimization. To use this
potential we check if a new path shows this behaviour and in case it does, we snap the
new path to the one it is wiggling along. Once again see Fig. 4.35 for an example. To
check if such a wiggling behaviour occurs between two paths Pi and Pj , we take all the
edges of their left and right sides P±i , P

±
j and all select three tuples of these edges that

form triangles. The wiggling behaviour occurs at each of these triangles.
Another option would be to alter the subpath detection routine, so that it takes this

behaviour into account. But this is less useful, as in case the subpath improvement
step does not yield a better path, the two paths wiggling along each other will remain
and cause quite many small contour parts in the resulting RHP. We want to avoid this,
because it increases the computation time in comparison to one contour part for the
combined subpath.
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4.8.7. Runtime Optimizations

There are a few optimizations which speed up the runtime of the algorithms presented
in this section.

• Algorithm 1 calculates a new shortest path for each contour part after a path has
been fixed. But we can instead also just keep the path we calculated previously if it
still valid.

• Algorithm 2 calculates the shortest paths for all possible mappings of the endpoints
of Γj in lines 9, 13 and 17 and later on checks if the paths are actually valid. But
invalid mappings can also be filtered out beforehand by comparing the j-th column
of V(Γ) and V(Γ̃). Thereby Γ̃ is the intermediate deformed contour as constructed
by algorithm 3 in line 6.

• Algorithm 6 only considers improving a shared subpath of two paths. It can be
extended to improve a subpath of arbitrary many paths.



97

5. Numerical Results

In this chapter we apply our contour deformation algorithm to a few RHPs and evaluate
the resulting contours regarding its associated condition number and the convergence
speed of its numerical solution. As our algorithm is not ( yet ) able to perform all types of
deformations which are available for RHPs, we will compare our automatically derived
contours to analytically derived contours which only use the deformations described
in § 4.3. Assuming that the analytically derived contours cannot be improved (or just a
little), this should give a good impression on how big the difference is between what the
algorithm could achieve and what it actually achieves.

5.1. Painlevé II

The results for the RHP corresponding to the Painlevé II equation

uxx = xu+ 2u3

have already been show throughout this thesis, so we will only provide a short summary
of the results. We recall from the introduction that the RHP from (Fokas et al. 2006) is
given by

RHP 2 (Painlevé II). Find a holomorphic function Φ : C \Γ→ GL(2,C) satisfying Φ(∞) = I

and Φ+(z) = Φ−(z)G(z) for z ∈ Γ where Γ = Γ1 ∪ . . . ∪ Γ6, Γj = Re(2j−1)π/6(0) and

G(z) =



(
1 sje

−θ(z)

0 1

)
for z ∈ Γj and j even

(
1 0

sje
+θ(z) 1

)
for z ∈ Γj and j odd.

Thereby G contains the phase function

θ(z) =
8i

3
z3 + 2ixz

and the parameters sj (j = 1, . . . , 6), which are interrelated by

s1 − s2 + s3 + s1s2s3 = 0, s4 = −s1, s5 = −s2, s6 = −s3.
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As defined in § 4.4.3 we use the notation Rα(0) for a ray starting at 0 and approaching
infinity with an argument of α. Fig. 5.1 provides an example for a deformation for this
RHP including the intermediate steps, which are performed by our algorithm. Some
further contours calculated by the algorithm for different parameters x are shown in
Fig. 5.2. We are able to reduce the condition number of the contour in all of these cases
from more than 1016 to 102 – 103.

5.2. modified Korteweg–de Vries

We recall from the introduction that the RHP corresponding to themodifiedKorteweg–de
Vries (mKDV) equation

yt − 6y2yx + yxxx = 0 for x ∈ R, t ≥ 0

y(x, t = 0) = y0(x)

is according to (Deift and Zhou 1993) given by

RHP 3 (mKDV). Find a holomorphic function Φ : C \ Γ→ GL(m,C) satisfying Φ(∞) = I

and Φ+(z) = Φ−(z)G(z;x, t) where Γ = L1 = R and

G(z;x, t) =

(
1− r(z)r(−z) −r(−z)e−θ(z;x,t)
r(z)eθ(z;x,t) 1

)
with the phase function

θ(z;x, t) = i(2zx+ 8z3t)

and r(z) being a function of the Schwartz space satisfying

sup
z∈R
|r(z)| < 1.

According to our conjecture (4.2) regarding the condition of a RHP, this original form
of the RHP is not badly conditioned for any (x, t) ∈ R× R+

0 . For (z, x, t) ∈ R2 × R+
0 we

get

θ(z;x, t) = ki with k ∈ R⇒ |e±θ(z;x,t)| ≤ 1⇒ |r(±z)e±θ(z;x,t)| ≤ 1⇒ |Gi,j(z;x, t)| ≤ 1.

Consequently ‖G − I‖ will not be large anywhere on the contour, indicating that the
contour is well conditioned for all (x, t) ∈ R × R+

0 . In fact we were not able to find
any parameter combination that yields a bad conditioned system. Nevertheless we can
apply our algorithm to optimize the contour. As we have stated in the introduction,
the numerical solution of the original form of this RHP converges quite slowly. G is
highly oscillatory along the real axis, causing the slow convergence and by deforming
the contour those highly oscillatory areas can be avoided.
Deift and Zhou (1993) distinguish the following three regions requiring different

deformations:



99 5.2. modified Korteweg–de Vries

κ ≈ 2 · 108 κ ≈ 740

κ ≈ 560 κ ≈ 420

κ ≈ 350 κ ≈ 1000

Figure 5.1.: Visualization according to style 1; Illustration of the deformation process
for the Painlevé II RHP for x = −10, s1 = 1 and s2 = 2; Top Left: Original
contour; Top Right: Simple deformation algorithm 1 applied to the original
contour; Middle Left: Applying the lensing algorithm 10 to the previous
contour, results in a UDL factorization of the left half of the central part.
Middle Right: Applying the lensing algorithm 10 once more factorizes the
remaining right half of the central part with a LDU decomposition of the
jump matrix. Bottom Left: After converting all paths to straight lines connect-
ing their endpoints, we get this simplified contour. Bottom Right: This is a
manually deformed contour, taken from (Olver and Trogdon 2012, Fig. 4).
The deformation uses the same factorizations of the jump matrices as our
algorithm. We tried to achieve κ < 103 for this contour by adjusting the
angles with which the rays emanate from the bifurcation points, but we did
not succeed. Since we just measure the condition number of the linear system
created by the solver, this could be caused by some numerical effect and does
not necessarily mean the manually deformed RHP is worse conditioned than
the automatically deformed one. All: Applying our algorithm significantly
reduces the condition number of the contour by six orders of magnitude.
Furthermore after the simplification step, the automatically deformed con-
tour is very similar to the manually derived one. We should note that the
algorithm repeatedly creates bifurcations at the stationary points. This is
somewhat remarkable as no knowledge of these points is incorporated into
the algorithm.
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Figure 5.2.: Visualization according to style 1; Contour deformations of the Painlevé II
RHP for some values of x and fixed parameters s1 = 1, s2 = 2; The blue
points indicate the location of the stationary points of the phase function
z0 = ±i√x/2. On the left side are the contours we got after applying the
simple deformation algorithm 1 once and the lensing algorithm 10 twice. All
contours were computed on a graph with a base grid of 17× 17 vertices. We
get the contours on the right side by converting each path to a straight line.
In all cases the resulting contour consists of paths meeting at or close to the
stationary points. The condition number κ is for all contours between 350
and 1000 whereas the original contour results in κ > 1016 for x ≥ −20. As
the stationary points move apart, the aspect ratio changes and the contours
appear to flatten in the plots. To verify the correctness of the deformation we
used them to calculate the solution of the Painlevé II ODE and compared the
results with the PainleveII function from RHPackage, which does the same
using manually deformed contours.

https://github.com/dlfivefifty/RHPackage
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• "Soliton Region": x > ct1/3

• "Painlevé Region": |x| < ct1/3

• "Dispersive Region": x < −ct1/3

with some c > 0. For all of these region Trogdon et al. (2012) apply the method of
nonlinear steepest descent to the original RHP and derive contours suitable to calculate a
numerical solution. Thereby they suggest that c should be chosen on case-by-case basis,
such that the best numerical results are obtained. In contrast to that we perform the
deformation for all possible choices of t, x in the same way independent of c and the just
mentioned regions. We simply apply our algorithm and see what contour it determines
in the given situation.
This way we get in each of the regions a deformation which is very similar to the

analytically derived ones. An example for each of these regions is shown in Fig. 5.3
(Solition Region), Fig. 5.4 (Painlevé Region) and Fig. 5.5 (Dispersive Region). The rather
large negative value of x = −100 for the Dispersive region is due to the fact, that we have
observed neither a significant benefit nor a significant penalty for switching from the
deformation used in the Painlevé region to the deformation for the Dispersive region
upto x = −40. We did not evaluate the situation for x ∈ [41, 99]. Somewhere in between
is the point at which the deformation should be switched to achieve better results. The
condition numbers of all shown contours are between 5 and 40. We only consider the
case that the r(z) is an entire function. The basic idea of our algorithm would also work
if r(z) is not an entire function, but we would need to extended our implementation to
support jump matrices which are not holomorphic everywhere. That would require to
support removing edges from a graph in areas where the corresponding jump matrix is
not holomorphic.
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Figure 5.3.: Visualization according to style 1; Top: Deformations of the mKDV RHP
for t = 1, x = 5 and r(z) = 1

2e
−z2 . The blue points indicate the location

of the stationary points z0 = ±
√
t/(12x) of the phase function. The con-

tours are obtained as follows. (1) Original contour of the RHP; (2) Lensing
algorithm 10 applied to first contour; The algorithm decides to use a UDL
type factorization (the contour for D is dropped, as D turns out to be the
identity matrix). (3) Second contour simplified by converting rays to straight
lines; (4) Manual deformation taken from (Trogdon et al. 2012, Fig. 8b). It
is derived using the same UDL factorization. Even though our algorithm
does not know the concept of stationary points, the automatically deformed
contour is getting quite close to the stationary points. Bottom: Comparison
of the convergence rates of the solution at z = (|z0|+ 0.5)i for the deformed
contours; Both contours derived by manual and automatic deformation yield
numerical solutions which converge equally fast. As both contours are nearly
the same that is also too be expected. The defomed contours provide a big
improvement compared to the original contour.
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Figure 5.4.: Visualization according to style 1; Top: Deformations of the mKDV RHP
for t = 1, x = −2 and r(z) = 1

2e
−z2 . x = −2 is about the point at which the

algorithm no longer yields a contour similar to the one in Fig. 5.3. The blue
points indicate the location of the stationary points z0 = ±

√
t/(12x) of the

phase function. The contours are obtained as follows. (1) Original contour of
the RHP; (2) Lensing algorithm 10 applied to first contour; Same factorization
as in Fig. 5.3 gets chosen, but this time the two parts of the contourmeet in the
middle. (3) Second contour simplified by converting all parts to straight lines;
(4) Manual deformation taken from (Trogdon et al. 2012, Fig. 8a). It employs
the same factorization as our algorithm. The automatically deformed contour
is once again routing the contour close to the stationary points. Bottom:
Comparison of the convergence rates of the solution at z = 0.5i for contours;
The numerical solution of the manually deformed contour converges a bit
faster, just as we might expect from the fact that it gets closer to the stationary
points. The difference is quite small though, especially if we compare them
to original contour.



5. Numerical Results 104

(1) original (2) algorithm 10 applied

(3) algorithm 10 applied twice (4) simplification of (3)

0 200 400 600 800 1,0001,2001,4001,600
10−17

10−13

10−9

10−5

10−1

total number of collocation points

re
la
tiv

e
er
ro
r

original (1)
automatic (2)
automatic (4)
manual (5)
manual (6)

(5) manual deformation (2 lensing)

(6) manual deformation (1 lensing)

Figure 5.5.: Visualization according to style 1; Top / Right: Deformations of the mKDV
RHP for t = 1, x = −100 and r(z) = 1/2e−z

2 . The blue points indicate
the location of the stationary points z0 = ±

√
t/(12x) of the phase function.

(1): Original contour of the RHP; (2) Lensing algorithm 10 applied to (1);
The algorithm chooses a UDL type factorization. (3) Lensing algorithm 10
applied to (2); A LDU factorization is chosen for the middle part of the
contour. (4) Third contour simplified by converting rays to straight lines; (5)
Manual deformation from (Trogdon et al. 2012, Fig. 5b) for this case. The
deformation uses the same factorizations as our algorithm. (6) Manually
deformed contour for the Painlevé region, see Fig. 5.4; The automatically
deformed contour is once again creating bifurcations at the stationary points.
Bottom Left: Comparison of the convergence rates of the solution at z =

−|z0|+0.5i for the deformed contours; The numerical solution of themanually
deformed contour converges faster but the difference it not particularly huge.
Applying the second lensing deformation leads to a faster converging solution
for both the manually and the automatic deformed contours.
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5.3. Nonlinear Schrödinger

We consider the nonlinear Schrödinger (NLS) equation from (Deift and Zhou 1993) which
is given by

iut + uxx + 2λ|u|2u = 0 (5.1)
u(x, 0) = u0(x) (5.2)

and called "focusing" for λ = 1 respectively "defocusing" for λ = −1. The RHP corre-
sponding to this equation is given by

RHP 4 (NLS). Find a holomorphic function Φ : C \ Γ→ GL(m,C) satisfying Φ(∞) = I and
Φ+(z) = Φ−(z)G(z;x, t) where Γ = L1R and

G(z;x, t) =

(
1 + λr(z)r(z) λr(z)e−θ(z)

r(z)e−θ(z) 1

)
for z ∈ Γ ∈ L1 = R.

with the phase function
θ(z;x, t) = i(2xz + 4tz2)

and r(z) being a function of the Schwartz space satisfying

sup
z∈R
|r(z)| < 1.

If we know the solution of this RHP, we can recover the solution of the NLS using

u(x, t) = 2i lim
|z|→∞

zΦ1,2(z).

Just as for the mKDV RHP, |Gi,j(z;x, t)| ≤ 1 holds for (z, x, t) ∈ R2×R+
0 and as expected,

we were also not able to find a set of parameters which yields a badly conditioned system.
In addition the convergence of the numerical solution is again quite slow due to G
being highly oscillatory along the real axis and a suitable deformation of the contour
can avoid these highly oscillatory regions. The deformed contour we get by applying
our deformation algorithm and a manually derived contour from (Trogdon and Olver
2012) are shown in Fig. 5.6. The effect of these deformations on the convergence rate is
illustrated in Fig. 5.7.

This example is sort of a best case situation in which the algorithm produces a contour,
which very closely resembles the one derived by hand. Fig. 5.8 illustrates some randomly
chosen cases in which these contours look a bit more different. As expected the manually
deformed contour always yields a numerical solution that converges faster than the one
corresponding to the automatically deformed contour. Nevertheless the difference is
not particularly large. So the automatically deformed contours are actually quite usable.
Especially considering the fact that it takes only about 20 seconds to calculate them.
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(1) original

(2) algorithm 10 applied once

(3) algorithm 10 applied twice

(4) algorithm 10 applied twice
and simplifications

(5) manually deformed

Figure 5.6.: Visualization according to style 1; Deformations of the NLS RHP for λ =

1,t = 1,x = 5 and r(z) = 1/2 sech(z). The blue points indicate the location
of the stationary point z0 = −x/(4t) of the phase function. The contours
from top to bottom are obtained as follows. (1) Original contour of the RHP;
We should note here that the plot has been rescaled, as it is about 4 times as
wide as the others. (2) Lensing algorithm 10 applied to the original contour,
resulting in a UDL type factorization with D being the identity matrix; (3)
Lensing algorithm 10 applied to the second contour, resulting in a LDU type
factorization; (4) Simplification of the third contour; (5) Manually deformed
contour from (Trogdon and Olver 2012) using the same lensing factorizations.
Our algorithm yields a contour which is very similar to the one obtained by
manual deformations. The corresponding condition number satisfies κ ≈ 20

for all contours.
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Figure 5.7.: Comparison of the convergence rates of the solution at z = −1.5+0.5i for the
deformed contours from Fig. 5.6; The contour calculated by our algorithm is
almost as good as the one obtained by manual deformations and both are
quite an improvement compared to the original contour.
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Figure 5.8.: Visualization according to style 1; Comparison of contours obtained by the
lensing algorithm 10 twice to the original contour of the NLS RHP; The pa-
rameters which have not been stated above are λ = 1 and f(z) = 1

2 sech(z) for
all three examples. In contrast to the plots of contours in Fig. 5.6, we provide
a zoomed in view of the area around the stationary point z0 of the phase
function (blue). The plots on the right show the convergence of the numerical
solution at z0 + i for the contours: original (red), automatically deformed
(blue), manually deformed (green). Thereby z0 is again the stationary point
of the phase function. The solution converges faster if the contour resembles
themanually deformed onemore closely. In all cases the contour we obtained
with our algorithm is a big improvement compared to the original contour.
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5.4. Discrete zα

5.4.1. Original Contour

(Bobenko and Pinkall 1996) defines a discrete conformal map as a function f : Z2 → C
satisfying

(f(n,m)− f(n+ 1,m))(f(n+ 1,m+ 1)− f(n,m+ 1))

(f(n+ 1,m)− f(n+ 1,m+ 1))(f(n,m+ 1)− f(n,m))
= −1 (5.3)

which means that the cross ratio of f is −1 for each quadrilateral in the grid. Build-
ing upon this definition (Bobenko and Pinkall 1998) defines a discrete version of the
continuous zα function as the function satisfying (5.3),

αf(n,m) = 2n
(f(n+ 1,m)− f(n,m))(f(n,m)− f(n− 1,m))

f(n+ 1,m)− f(n− 1,m)

+ 2m(
f(n,m+ 1)− f(n,m))f(n,m)− f(n,m− 1)

f(n,m+ 1)− f(n,m− 1)

and the initial conditions1

f(0, 0) = 0 f(1, 0) = 1 f(0, 1) = eαπi/2 (5.4)

To study the behaviour of f as n,m→∞, (Bobenko and Its 2014) derives a RHP corre-
sponding to the difference equations for f ifm+ n is even. This RHP is given by

RHP 5 (zα). Find a holomorphic function X : C \ Γ→ GL(2,C) satisfying

X(z) = A

(
I +

(
1

z

))
z
m+n

2
σ3 for z →∞ , with A =

(• 0

• •

)
.

and X+(z) = X−(z)G(z) for z ∈ Γ where Γ = C+
1/2(1) ∪ C+

1/2(−1) and

G(z) =

(
1 eαπi/2z−α/2(z − 1)−m(z + 1)−n

0 1

)
.

We recall that C+
r (c) denotes a circle around cwith radius r and positive orientation.

The contour Γ is shown in figure (5.9). Furthermore the dots in the matrix A indicate
that we don’t have any knowledge about these entries. The branch cut for the root in the
jump function G is chosen to be [0,−i∞). If X solves the RHP we can calculate f(n,m)

using the relation

X(0) =

(
1 f(n,m)(−1)m+1

0 (−1)m

)
.

1(5.3) and the initial conditions f(n, 0) = nα and f(0,m) = (im)α also yield a unique solution, but it is
far away from the continuous zα function. See (Bobenko and Its 2014) for details.



5. Numerical Results 110

Figure 5.9.: The contours Γ (left) of the original RHP (5) and Γ̃ (right) of the normalized
RHP (6)

We cannot numerically solve RHP 5 in its current form, as the normalization at infinity
is not the same as the one assumed by the RHP solver we are using (see also § 4.1). To
normalize the RHP we pull the behaviour at infinity down to a finite region by setting

X̃(z) =

{
A−1X(z)z−

m+n
2

σ3 for |z| > 2

A−1X(z) for |z| < 2
. (5.5)

and get a deformed RHP for X̃ .

RHP 6 (zα normalized). Find a holomorphic function X̃ : C \ Γ̃→ GL(2,C) satisfying

X̃(z) = I +

(
1

z

)
for z →∞

and X̃+(z) = X̃−(z)G(z) for z ∈ Γ̃ where Γ̃ = Γ ∪ C+
2 (0) and

G(z) =


(

1 eαπi/2z−α/2(z − 1)−m(z + 1)−n

0 1

)
for z ∈ Γ

z
m+n

2
σ3 for z ∈ C+

2 (0)

This deformed RHP possesses a normalization at infinity, which is compatible with
the solver and we can still recover f(n,m) from X̃ . As

X̃(0) = A−1X(0) =

(• 0

• •

)(
1 f(n,m)(−1)m+1

0 (−1)m

)
.

it holds that
f(n,m) = (−1)m+1 X̃1,2(0)

X̃1,1(0)

Though our algorithm is successful in deforming the contour of the normalized RHP 6,
see Fig. 5.10, the condition number of the deformed RHP is still far too large to calculate a
solution with at least 1 bit of accuracy. The reason for this problem is likely the following.
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κ = 1032

max
z∈Γ
||G(z)− I||F ≈ 1013

κ = 1030

max
z∈Γ
||G(z)− I||F ≈ 108

Figure 5.10.: Visualization according to style 1; The original contour of the normalized
RHP 6 form = 30, n = 2, α = 2/3 before (left) and after (right) our algorithm
has been applied. The circles of the contour have been replaced by squares,
as linear parts in general work better than curved parts. Our algorithm
calculates a contour, which reduces the maximum weight along the contour
by 105, but this improvement has just a small effect on the condition number.
Furthermore the condition number is far larger than what we would expect
due to themaximumweight. The reason for this effect is discussed in § 5.4.2.
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5.4.2. Singular Linear System

If we consider just the (1, 1) component of X̃ form = n = 1 we get the following RHP.

RHP 7 ((1,1) component of RHP 6). Find a holomorphic function X̃1,1 : C \C+
2 (0)→ C with

X̃1,1(∞) = 1 and
X̃+

1,1(z) = X̃−1,1(z)z for z ∈ C+
2 (0)

As can be easily verified, RHP 7 does not have a unique solution. If X̃1,1 solves RHP 7,
then

Y1,1(z) =

{
X̃1,1(z) + a/z for |z| > 2

X̃1,1(z) + a for |z| < 2
(5.6)

also solves RHP 7 for all z ∈ C. For the first row2 of RHP 6 to be uniquely solvable, this
degree of freedom for X̃1,1, has to be removed by the equation for X̃1,2. But this fact is
not captured by the discretization which the solver uses. As RHP 7 does not depend on
X̃1,2 the linear system created by solver, which we discussed in § 4.1, has the following
block structure (

B 0

C D

)(
v1,1

v1,2

)
=

(
b1,1
b1,2

)
. (5.7)

TherebyB andD are square matrices and v1,1, v1,2 contain the coefficients corresponding
to X̃1,1 respectively X̃1,2. B is essentially a discretization of RHP 7. Furthermore B is a
singular matrix, due to the fact that RHP 7 does not have a unique solution. Consequently
the linear system (5.7) is also singular and causes the large condition number.
The deformations which our algorithm can currently perform, preserve the fact that

the RHP for X̃1,1 does not depend on X̃1,2. Therefore we will always end up with a
singular linear system of equations and a large condition number. But if the discretization
of the RHP can be changed in a way such that it reflects the structure of this RHP more
closely, it might be possible to calculate a solution using the contour shown in Fig. 5.10.
Nevertheless this is outside of the scope of this thesis.

5.4.3. Deformed Contour

Even though calculating a solution of the original version of the zα RHP 5 was not
successful, we want to discuss a deformed version of it. This deformed problem does
yield a correct solution and can be considered as a proof of concept that the problem we
encountered in the last section can be circumvented. Though we currently do not know
how to avoid it algorithmically. We start with the RHP in (Bobenko and Its 2014) which
is called the S - RHP and can be derived from RHP 5 through several deformation steps.
Details about the deformations are available in (Bobenko and Its 2014). Performing this
deformation automatically would at least require to extend our approach to include g-
function deformations (see § 6) and develop a better approximation of condition number
2Rows of a matrix valued RHP can be solved individually.
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for this case (Fig. 5.10 already showed that our current heuristic does not work very well
in this case).
Before we can state this RHP we need to define the following functions

H(z) =

(
1 +
√
z

1−√z

)m(
i+
√
z

i−√z

)n

h0(z) = m log
1 +
√
z

1−√z + n log
1− i√z
1 + i

√
z

for |z| < δ < 1

h∞(z) = m log
1 + 1√

z

1− 1√
z

+ n log
1− i√

z

1 + i√
z

for |z| > 1

δ
> 1

w0 = 2i sin
(
α
π

2

)
w1(z) = w0z

−α/2

w2(z) = w0e
πiαz−α/2

w(z) = w0z
−α/2
+ .

C0 =

(
1 eiπγ/2

0 1

)
Cr = C0

(
1 0

−w−1
0 1

)
Cl = C0

(
1 0

w−1
0 e−iπγ 1

)

C(z) =


Cr for − π

2 < arg z < π
4

C0 for π4 < arg z < 3
4π

Cl else

Thereby λ+ indicates that if λ is on the branch cut of the square root, we use the limit
from the side with positive real part to evaluate it. The branch cuts of the involved
function are chosen as follows

• log z : −π < arg z < π

•
√
z : −π

2 < arg z < 3π
2

• z−α/2 : −π
2 < arg z < 3π

2 .

The S - RHP is then given by
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RHP 8 (zα deformed). Find a holomorphic function S : C \ Γ→ GL(2,C) satisfying

Φ(z) = A

(
I +

(
1

z

))
z−

α
4
σ3C(z)z

α
4
σ3e−

1
2
h∞(z)σ3 for z →∞ with A =

(• 0

• •

)

and S+(z) = S−(z)G(z) for z ∈ Γ0, where Γ = Γ1 ∪ Γ2 ∪ Γ3 and

G(z) =



(
0 w(z)

−w−1(z) 0

)
for z ∈ Γ1 = R−i(0)(

1 0

H−1(z)w−1
1 (z) 1

)
for z ∈ Γ2 = R1+i(0)(

1 0

H−1(z)w−1
2 (z) 1

)
for z ∈ Γ3 = R−1+i(0)

See Fig. 5.11 for a plot of the contour. Herem+n has to be even, just as for the original
RHP 5. If S solves this RHP, the solution has the following behaviour

S(z) =

(
1 f(n,m)(−1)m+1

0 1

)
e−

iπ
2
nσ3 (I + (z)) z−

α
4
σ3C(z)z

α
4
σ3e−

1
2
h0(z)σ3 for z → 0

(5.8)
Analogous to the situation in the original RHP 5, we have to normalize the condition at
infinity before we can compute a numerical solution. Furthermore we also normalize
the behaviour at z = 0, to facilitate recovering f(n,m) from the solution of the RHP. In
both cases we use the same approach as for the normalization of the original RHP 5. We
pull the behaviour at z = 0 and z =∞ away from these points by defining a function S̃
with additional jumps.

S̃ =


A−1Se

1
2
h∞(z)σ3z−

γ
4
σ3C(z)−1z

γ
4
σ3 for |z| > r0

A−1Se
1
2
h0(z)σ3z−

γ
4
σ3C(z)−1z

γ
4
σ3 for |z| < r∞

A−1S else
(5.9)

r0 and r∞ may be chosen arbitrarily as long as r0 < 1 and r∞ > 1 holds. With these extra
jumps we get the following normalized RHP.

RHP 9 (zα deformed & normalized). Find a holomorphic function S̃ : C \ Γ̃ → GL(2,C)
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Γ1

Γ2

Γ3

Γ1

Γ2

Γ3

Γ4

Γ5 Γ6

Γ7

Γ8 Γ9

Figure 5.11.: contours Γ of RHP 8 (left) and Γ̃ (right) of RHP 9; The origin z = 0 is located
where the rays Γ1,Γ2 and Γ3 meet.

satisfying S̃(∞) = I and S̃+(z) = S̃−(z)G(z) for z ∈ Γ̃0, where Γ̃ = Γ1 ∪ Γ2 ∪ . . . ∪ Γ9

G(z) =



(
0 w(z)

−w−1(z) 0

)
for z ∈ Γ1(

1 0

H−1(z)w−1
1 (z) 1

)
for z ∈ Γ2(

1 0

H−1(z)w−1
2 (z) 1

)
for z ∈ Γ3

z−
α
4
σ3C0z

α
4
σ3e−

1
2
h∞(z)σ3 for z ∈ Γ4

z−
α
4
σ3Clz

α
4
σ3e−

1
2
h∞(z)σ3 for z ∈ Γ5

z−
α
4
σ3Crz

α
4
σ3e−

1
2
h∞(z)σ3 for z ∈ Γ6

e
1
2
h0(z)σ3z−

α
4
σ3C−1

0 z
α
4
σ3 for z ∈ Γ7

e
1
2
h0(z)σ3z−

α
4
σ3C−1

l z
α
4
σ3 for z ∈ Γ8

e
1
2
h0(z)σ3z−

α
4
σ3C−1

r z
α
4
σ3 for z ∈ Γ9

The contour Γ̃ is shown in figure Fig. 5.11. Due to the normalization (5.9) the behaviour
(5.8) for z → 0 simplifies to

S̃(0) = A−1

(
1 f(n,m)(−1)m+1

0 (−1)m

)
e−

iπ
2
nσ3 =

(
e−i

π
2
n f(n,m)(−1)m+1ei

π
2
n

0 (−1)mei
π
2
n

)
As A−1 is a lower triangular matrix andm+ n is even, we get the relation

− S̃1,2(0)

S̃1,1(0)
= −f(n,m)(−1)m+1ei

π
2
n

e−i
π
2
n

= −(f(n,m)(−1)m+1eiπn) = f(n,m)(−1)m+n+2

= f(n,m).
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After solving the RHP, we can use this relation to calculate f(n,m). Before we solve the
RHP we could apply our contour deformation algorithm, but choosing r0 = 1/8, r∞ = 8

is already enough to leave very little room for further improvements, see also Fig. 5.12
(left). In addition our goal is to automatically handle the original version of the RHP and
not the heavily deformed version. So we will just use the standard contour from RHP 9,
with all curved lines replaced by straight lines as usual. The results we get for f(m,n)

can be seen in Fig. 5.12 (right).

κ ≈ 2 ∗ 108

max
z∈Γ
||G(z)− I||F ≈ 500
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Figure 5.12.: Left: Contour of RHP 9 form = n = 10, α = 2/3, r0 = 1/8 and r∞ = 8 with
arcs converted to straight lines; It is worth noting that similar to the example
in Fig. 5.10 the condition number is larger than what we would expect for
the maximum weight. This could be a remnant of the problem discussed in
§ 5.4.2. Right: Numerical solution of f(m,n) (blue) form,n ∈ {0, 1, . . . , 10}
withm+ n being even and α = 2/3 compared to the asymptotic formula
for f(m,n) (red) derived in (Bobenko and Its 2014); The green line indicates
the ray ri2/3 , r > 0. The numerical solution has been calculated using 400
collocation nodes on each part of the contour. To estimate the error of the
numerical solution along the line m = n, we compare it against another
numerical solution calculated using 600 collocation nodes on each part
of the contour. Furthermore for m = n = 1 we can use (5.3) and (5.4) to
determine the exact value of f(1, 1) and compare it against both solutions.
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6. Future Work

Aswehave presented in the previous chapter, our algorithm is already capable of deriving
various deformations of RHPs, which have proven to be useful for preconditioning or
stabilizing the numerical method for solving them. Nevertheless there is still room for
improvement and in this chapter we will describe a few improvements that could be
made.

6.1. g–Function Deformations

The probably most useful improvement would be to include g–function deformations in
the set of supported deformation types. This particular type of deformation is used in
nonlinear steepest descent deformations, when simple and lensing deformations are not
enough to get the contour into a state where G→ I fast along each part of the contour.
We will only give a brief explanation of this deformation here. Fokas et al. (2006) provide
more details and apply this deformation among others to the Painlevé II RHP. In a
nutshell g-function deformations work as follows. Suppose we have a standard RHP, e.g.

RHP 10 (g–function example, original). Find a holomorphic function Φ : C \Γ→ GL(m,C)

with Φ(∞) = I and Φ+(z) = Φ−(z)G(z) for z ∈ Γ .

By taking a holomorphic function A : C \Γ0 → GL(m,C) with A(∞) = I , we can then
define a new function Φ̃ = ΦAwhich solves the following RHP.

RHP 11 (g–function example, deformed). Find a holomorphic function Φ̃ : C\Γ̃→ GL(m,C)

with Φ̃(∞) = I and Φ̃+(z) = Φ̃−(z)G̃(z) for z ∈ Γ̃, where Γ̃ = Γ ∪ Γ0

G̃(z) =

{
(A−)−1(z)G(z)A+(z) for z ∈ Γ

(A−)−1(z)A+(z) for z ∈ Γ0 \ Γ.

Thereby common forms for A are

A(z) =

(
1 eig(z)

0 1

)
or

(
eig(z) 0

0 e−ig(z).

)
for some function g : Γ0 → C, thus the name g-function deformation. If A is chosen
appropriately, the new jump matrix G̃ decays faster to the identity matrix along Γ than
G. We can even remove parts of the contour if Γ0 ⊂ Γ and

I = (A−)−1(z)G(z)A+(z)

(A+)−1(z) = (A−)−1(z)G(z)
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holds for z ∈ Γ0. Which means if we can solve the original RHP on a restricted contour
Γ0 ⊂ Γ, we can perform a g–function deformation on the original RHP to remove the
jump at Γ0.

Incorporating g-function deformations into our algorithm will not be an easy task, but
we believe it is possible to some extent at least. Deciding to which part of the contour a
g-function deformation should be applied is no big problem. It is most useful to apply it
to the part which is limiting the condition number or the convergence speed, which is
the part with the largest weight. The main difficulty though is to find a suitable function
g respectively A. A case for which this should be doable, is G(z) being a diagonal matrix
for z ∈ Γj ⊂ Γ. In this case an explicit solution of the RHP on the restricted contour Γj is
given by the integral representation from (1.2). As discussed this solution allows for a
g-function deformation that removes the jump at Γj from the original contour Γ.
For more general situations, we might be able to approximate a g-function. If we

consider only the aspect of reducing the condition number of the RHP, any function g
respectivelymatrixAwhich yields ‖G̃−I‖ 6 ‖G−I‖ along the contour is an improvement.
Furthermore (Olver 2011a) provides a formula to calculate candidates for a g-function and
(Trogdon et al. 2012) even already computed a g-function numerically and successfully
used it to deform the mKDV RHP. So doing this in an automatic way does seem to a
reachable goal.

6.2. Local Refinements

So far our algorithm successfully moved the contours through or close to stationary
points of the phase function in all examples. But how well the stationary points are
resolved varies a bit. Sometimes the deformed contours go almost exactly through them
and sometimes they pass by them at a close distance. Identifying possible locations of
stationary points is not very difficult even if we use only information available through
the paths and graphs already used by our algorithm. They are always located at or close
to points where two or more paths meet and the vertex at which they meet has a weight
of approximately 1 in the respective graphs.

We can exploit this situation and apply a local refinement of the contour. Let p1, p2, . . .

bet a set of paths, that meet at the vertex v. We can move this meeting point around by
choosing a vertex u in the neighbourhood of v and replacing p1, p2, . . .with shortest paths
q1, q2, . . . connecting the endpoints of p1, p2, ... with u. Selecting the vertex u? which
yields the lowest total weight of the corresponding set of paths improves the contour
further and should also resolve the stationary point close to it better. Even if there is no
stationary point close u?, this should result in a better contour nonetheless. The points
we get with our algorithm could in some cases even be better than the true stationary
points. For example, in the case of the mKDV RHP (see ), the true stationary points are
calculated using only the oscillator, but our algorithm also takes the reflection coefficient
into account.
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6.3. Recover Original Solution

For nowwe can automatically deform a contour of a given RHP and calculate its solution.
What we are not yet able to do automatically, is recovering the solution of the original
RHP. Being able to do so automatically would be a nice feature to have, even though it is
not often necessary to actually recover the original solution. Quite often only the residue
of the solution at infinity is of interest and the residue is not changed by the deformations
we are considering so far. Recovering the original solution is not a particular difficult
task. As we recall from Fig. 4.5 and Fig. 4.7, the solution of the deformed and the original
RHP are related by a simple matrix multiplication. Therefore we only have to keep track
of which matrix has to be used in which area during the deformation process.





121

7. Summary

We were able to show that our basic idea of casting the problem of finding optimal
contours into the problem of finding shortest paths in graph enables an algorithmic
approach for optimizing contours. In the case of Cauchy’s integral formula we were
able to calculate the optimal solution of the resulting discrete optimization problem.
This optimal solution induces contours, which yield similar condition numbers for the
integral as optimal circles derived analytically. Consequently, we also developed a "black
box" algorithm for calculating arbitrary derivatives of holomorphic functions with great
accuracy.

Applying the same approach to a RHP yields amore complicated discrete optimization
problem, so that we are currently not able to compute its optimal solution. But the
greedy algorithm we presented is for all the discussed example RHPs able to compute
deformations which are very similar to analytically derived deformations. Thereby just as
the method of nonlinear steepest descent, the automatic deformation process also creates
bifurcations of the contour at or close to stationary points of the phase function in the
RHP. This is remarkable as the algorithm does not have any knowledge about bifurcation
or stationary points. Furthermore the deformations produced by our algorithm in the
investigated examples are equally or at least very similarly effective for preconditioning
the RHPs, compared to the analytically derived ones. The deformations reduce the
condition number by several orders of magnitude or increase speed of the convergence of
the solution a lot. Due to the good results so far, we assume that if there is a deformation
useful for preconditioning which can be derived with the deformation types considered
by our algorithm, the algorithm will find an approximation of this deformation.
In addition, considering the close resemblance of automatically and analytically de-

rived deformations in the discussed cases, it could even be possible to use the automati-
cally derived ones as an initial draft for analytic deformations. As a final visualization of
our results we provide the numerical results we got for the two cases used in the introduc-
tion to illustrate the frequently occurring numerical instability, see Fig. 7.1 (Painlevé II)
and Fig. 7.2 (mKDV).
We should also note that no information besides the RHP itself is necessary for the

automatic deformation with our algorithm. The main limitation at the moment, is the
fact, that our algorithmic approach is not yet able to perform g–function deformations.
Whenever this type of deformation is necessary, we are not able to achieve useful results
with our automatic deformation algorithm. Lifting this limitation and achieving a truly
universal preconditioning algorithm is postponed to future work.
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original automatic deformation analytic deformation

κ ≈ 1016 κ ≈ 380 κ ≈ 1000

Figure 7.1.: Visualization according to style 1; deformations of the Painlevé II RHP for
x = −20, s1 = 1 and s2 = 2; The automatically deformed contour reduces the
condition numberκ by 14 orders ofmagnitude andproduces a contour similar
to the one created by analytic deformation using the method of nonlinear
steepest descent, including the bifurcations at the stationary points of the
phase function.
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Figure 7.2.: Visualization according to style 1; Left: Original (top) automatically de-
formed (middle) and analytically deformed contour (bottom) of the mKDV
RHP for t = 1,x = −5 and r(z) = 1

2e
−z2 ; The condition number is about 20

for all three contours. Once again both deformation methods yield similar
contours and create bifurcations at the stationary points. Right: Comparison
of the convergence rates for the numerical solution for the contours on the
left; Both deformations yield equally fast converging solutions, which is no
big surprise considering the huge similarity between both contours.
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A. Software Documentation

The software documented here is aMathematica implementation of the RHP deformation
algorithm presented in § 4. It is an addon for RHPackage developed by Sheehan Olver.

A.1. Defining a RHP

A RHP is defined with the rhproblem tag as follows

rhp = rhproblem [ {G1 ,G2 , . . . } , { Γ1 ,Γ2 , . . . } ]

thereby the Gj are jump matrices and the Γj are the corresponding contour parts. Each
Gj has to be a matrix valued function depending on exactly one complex variable. E.g.

G1 = Function [ { z } , { { 1 , z } , { 0 , 1 } } ]

Each part of the contour can have one of the following forms

(∗ l i n e between the points a ∈ C and b ∈ C ∗ )
Γ1 = Line [ { a , b } ]

(∗ ray given by a+ r ∗ b with r going from 0 to ∞ ∗ )
Γ2 = Line [ { a , Direc tedInf ini ty [ b ] } ]

(∗ ray given by a+ r ∗ b with r going from ∞ to 0 ∗ )
Γ3 = Line [ { Direc tedInf ini ty [ b ] , a } ]

(∗ union of Line [ { D i r e c t ed In f i n i t y [ a ] , 0 } ]
and Line [ { 0 , D i r e c t ed In f i n i t y [ b ] } ] ∗ )

Γ4 = Line [ { Direc tedInf ini ty [ a ] , Direc tedInf ini ty [ b ] } ]

(∗ union of l i n e segments between consecut ive
points in the l i s t { a , b , c , . . . } ∗ )

Γ5 = Line [ { a , b , c , . . . } ]

(∗ c i r c l e around c with radius r and
mathematical o r i en t a t i on o ∈ {−1, 1} ∗ )

Γ6 = Circ le [ c , r , o ]

https://github.com/dlfivefifty/RHPackage


A. Software Documentation 124

Example

The function p2rhp[x,s1,s2,s3] defined in the following code, returns the
Painlevé II RHP for the given parameters x,s1,s2 and s3.

g [ x_ , z_ ] := (8 I )/3 z^3 + 2 I x z

p2rhp [ x_ , s1_ , s2_ , s3_ ] := rhproblem [
{

Function [ { z } , { { 1 , 0 } , { s1 Exp [ g [ x , z ] ] , 1 } } ,
Function [ { z } , { { 1 , s2 Exp[−g [ x , z ] ] } , { 0 , 1 } } ,
Function [ { z } , { { 1 , 0 } , { s3 Exp [ g [ x , z ] ] , 1 } } ,
Function [ { z } , { { 1 , −s1 Exp[−g [ x , z ] ] } , { 0 , 1 } } ,
Function [ { z } , { { 1 , 0 } , {−s2 Exp [ g [ x , z ] ] , 1 } } ,
Function [ { z } , { { 1 , −s3 Exp[−g [ x , z ] ] } , { 0 , 1 } }

} , {
Line [ { 0 , Direc tedInf ini ty [Exp [ I Pi 1/ 6 ] ] } ] ,
Line [ { 0 , Direc tedInf ini ty [Exp [ I Pi 3/ 6 ] ] } ] ,
Line [ { 0 , Direc tedInf ini ty [Exp [ I Pi 5/ 6 ] ] } ] ,
Line [ { 0 , Direc tedInf ini ty [Exp [ I Pi 7/ 6 ] ] } ] ,
Line [ { 0 , Direc tedInf ini ty [Exp [ I Pi 9/ 6 ] ] } ] ,
Line [ { 0 , Direc tedInf ini ty [Exp [ I Pi 1 1/6 ] ] } ]

}
]
rhp = p2rhp [−10 ,1 ,2 ,1/3]
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A.2. Deformation operations

A.2.1. SimpleDeformation

This function is an implementation of algorithm 1 and performs automatic contour
deformation. The only required input is a RHP in the just described form of rhproblem
data structure. There are a few options available though, which are listed below in
combination with their default values.

"Nodes"−> 17
admissible values: N or {y,x} y, x ∈ R
The number of vertices in y and x direction which is used to create the base grid of the
graphs described in § 4.8.2. If only a single value is given, both directions use the same
number of vertices.

"VertexCoordinatesRange"−> Automatic
admissible values: {{a,b },{ c ,d}} a, b, c, d ∈ R
Specifies the region of the complex plane to discretize. It is either chosen automatically
(default) or the rectangle defined by a+ bi, c+ di is used. Automatic region choosing is
likely to fail for RHPs whoose contour does only consists of the real axis, as in this case
the height has to be guessed. The default guess for these cases is {−1,1}
DataRange −> {10^−16,10^16}

admissible values: {a,b}; $MinMachineNumber < a < b < $MaxMachineNumber
Weights of graphs are clipped to the specified range.

"ShowProgress"−> False
admissible values: True, False
If set to true, intermediate steps of the algorithm are printed.

Example

rhpDeform1 = SimpleDeformation [ rhp ]
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A.2.2. LensingDeformation

This function is an implementation of algorithm 10. Just as SimpleDeformation it has only
one required argument, a rhproblemdatastructure. All the options of SimpleDeformation
are also available for this function. There is only one additional option.

"decompositions"−> {"LDR", "RDL"}
admissible values: d ⊆ {"LDR", "RDL", "LR", "RL"}
This is the list of matrix decompositions, which are tried while perfomring a lensing
deformation.

Example

rhpDeform2 = LensingDeformation [ rhpDeform1 ]

Example

rhpDeform3 = LensingDeformation [ rhpDeform2 ]
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A.2.3. SimplifyContour

Both of the deformation functions create a contour by converting the calculated paths
into segments with the same combined jump. Afterwards these segments are converted
to contours of the form Line[{a,b,c ,..., d}] with a,b,c ,..., d being the positions of the
vertices in each segment. To actually solve the RHP with this contour, the contour is
further divied into the parts {Line[{a,b }],Line[{b,c }],...} . This can create quite a lot of
parts, but as we have stated in § 4.8.3, solving a contour with fewer parts is in general
faster than solving a contour with more parts. Therefore it is in general advisable to
simplify the contour with SimplifyContour before solving the RHP. The method used
for the simplification is selected with the following option.

Method −> "StraightRays"
admissible values: {"Safe" , "StraightRays","Endpoints"}
"Safe" drops all redudant points from Line[l]. If l contains three consecutive points a,b,c
on a line, the one in the middle (b) is removed from l. Choosing "Endpoints" simply
converts each part Line[{a ,..., b}] to a straight line Line[{a,b}]. "StraigRays" works the
same way as "Endpoints" but restricts its operation to parts for which a or b is infinity.

Example

rhpDeform2Simple =
SimplifyContour [ rhpDeform2 ,Method−>" Endpoints " ]
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A.3. Visualizations

A.3.1. DomainPlot

DomainPlot is part of RHPackage and plots the contour of a RHP. The arrows indicate
the orientation of each part.

Example

DomainPlot [ rhp ]

A.3.2. JumpScaleDomainPlot

This is the default visualization of RHPs and visualizes them according to the style
1. Apart from the common Mathematica options for Graphics objects there are the
following options.

PlotRange −> Automatic
admissible values: {{a,b },{ c ,d}} a, b, c, d ∈ R
This option specifies the region of the complex plane in which the contour is plotted.
The default is to determine this region automatically, but it is also possible to manually
define one. {{a,b },{ c ,d}} specifies the rectangle defined by the the points a+ bi, c+ di

in the complex plane.
"ColorRange"−>{−16,16}

admissible values: {a,c} or {a,b,c} ; a, b, c ∈ R

https://github.com/dlfivefifty/RHPackage
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This option defines which weights corresponds to colors green (10a), yellow(10b) and
red (10c). In between these values the contour is colored by blending these three colors.
If b is omitted it defaults to (a+ c)/2.

PlotPoints −> 40
The number of points used to plot each part of the contour.

"Thickness"−>0.0175
The base width used to plot all the parts of the contour.

Example

JumpScaleDomainPlot [ rhp ]

A.3.3. RHContourPlot

This plot combines for each part of the contour Γj aDomainPlot with a contour plot of
corresponding weight d(z) = ‖Gj(z)− I‖. Thereby Γj is highlighted in blue in the plot
visualizing the weight corresponding to Gj . The colorcoding is the same one which is
also used by JumpScaleDomainPlot. RHContourPlot has the two options PlotRange
and "ColorRange" which have the same effect as for JumpScaleDomainPlot.
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Example

RHContourPlot [ rhp ]

A.3.4. SolutionDCTDomainPlot

This visualization is useful to figure out where the solution of a RHP converges and
where it does not. The plot is similiar to JumpScaleDomainPlot but in this case the color
of each part of contour encodes the fraction of the last coefficient divided by the first
coefficient of the discrete cosinus transform of the solution on this part. Once again green
stands for 10−16 (converged), yellow for 1 (not converged) and red for 108 (diverging).
The solution of the RHP is calculated by calling RHSolvewith the options passed to this
function. As expected the options for this function are the combination of all options for
JumpScaleDomainPlot and RHSolve (see next section).
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Example

SolutionDCTDomainPlot [ rhpDeform2 , Interpolat ionPoints −>40]

A.4. Solving RHPs

A.4.1. RHSolve / RHSolveTop

RHPs can be solved with the RHSolve and RHSolveTop functions. The first one cal-
culates a solution of the whole RHP while the second one will only solve the first row
of the RHP. Both functions are wrappers that convert the rhproblem data structure to
the one expected by the RHSolver respectively RHSolverTop functions of RHPackage
and calls them. Before the RHP is solved, both functions convert all parts of the contour
to straight lines. The resulting contour can be seen by applying ToStraightLines to the
RHP. Remark: Currently these function don’t check that this deformation to straight
lines is actually valid. Therefore this has to be verified manually. E.g. if the RHP contains
a circle, converting the circle to straight lines may cause it to intersect other parts of the
contour.

InterpolationPoints −> Automatic
admissible values: n with n ∈ N or {n1,n2 ,...} with n1, n2, ... ∈ N
This settings specifies how many collocation points should be used to discretize each
contour part. It is possible to either speicify one value nwhich is used for all parts or a
list that contains one number for each contour part.

InterpolationPrecision −> 10^−8
admissible values: (10−16, 1)

InterpolationPoints has to be set to Automatic for this option to have any effect. The
number of collocation points for each contour part is chosen such that the jump functions
are approximated upto the given precision. This does not guarantee that the solution
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will have the same precision, but it is a good initial guess for the number of collocation
points.

"BuildSolution" −> True
admissible values: True,False
If set to False, it does not return the solution of the RHP but the data structure return by
RHSolver. This datastructure represents U as in § 4.1. The solution of the RHP is then
given by a Cauchy transform of this data structure.

Example

phi = RHSolve [ rhpDeform2Simple ] ;
phi [1+1 i ]

{ { 0 . 8 9 3822 − 0 .0512298 I , 0 .0104871 − 0 .00886034 I } ,
{ 0 . 00110543 − 0 .0730774 I , 1 .11447 + 0.063008 I } }

A.4.2. ConditionNumber

ConditionNumber returns the condition number of the linear system solved byRHSolve
/RHSolveTop. Its options are identical to RHsolve, though the default value is InterpolationPoints −> 20
. In generel 20 points turned out to be enough to give a reasonable accourate approxima-
tion of the condition number of a RHP.

Example

ConditionNumber [ rhp ]
ConditionNumber [ rhpDeform2Simple ]

2 .28081∗10^8
423 .875

A.5. Utility Functions

A.5.1. ToStraightLines

This functions converts all parts of the contour of a RHP into a set of straight lines. E.g. a
line with multiple segments (such as Γ5 in appendix A.1), indivual lines are created for
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each segment.

Example

ToStraightLines [
SimplifyContour [ rhpDeform2 ,Method−>" Safe " ]

]

A.5.2. WellPosedDebug

This is a basic check for errors in the RHP defintion or implementation. If we multiply
the jump matrices we encounter by going in positive direction around a point where
parts of the contour meet, the resulting product has to be identity matrix. This fact is
verified by this function. In the plot created by this function all points satisfying this
condition are marked green and the remaining points are marked red.
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Example

WellPosedDebug [ rhpDeform2 ]
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B. Deformation Verification: Definition of ν

This chapter contains the exact definition of ν mentioned in section 4.7 for all possible
cases.

B.1. Notation

• ] acb : the angle from the line ca to the line cb

• arg : common choice of the argument function with the range (−π, π)

• arg2π : alternative choice of the argument function with the range (0, 2π)

• v̇ : position (in C) of the vertex v

• ](g, p, a) : the angle at awhich we obtain, if we take a straight line from a to the
path p and move the endpoint on p from the beginning of p to its end

• h : ω 7→
{

2π − ω if ω > π

ω else

B.2. Only Continuous Contour Parts

Points

ν(Pa, •) = 0

Our algorithm doesn’t move points, therefore we don’t have to check any restrictions for
them.

Intervals

ν(Ia,b, Pc) = (] acb)

ν(Ia,b, Ic,d) = (ν(Ia,b, Pc), ν(Ia,b, Pd))

ν(Ia,b, Rc(d)) = (ν(Ia,b, Pd))

ν(Ia,b, Lc) = 0

ν(Ia,b, C
s
r (c)) = 0
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As changing the path between two points has no effect on whether this path is left /
right of a line or inside / outside of a circle, we do not have to check anything in the last
two cases.

Rays

ν(Rc(a), Pb) = (h(arg c− arg(b− a)))

ν(Rc(a), Ib,d) = (ν(Rc(a), Pb), ν(Rc(a), Pd))

ν(Rc(a), Rd(b)) =

{
0 if a = b

ν(Rc(a), Pb else

ν(Rc(a), Ld) = 0

ν(Rc(a), Csr (b)) = 0

The last 2 cases can also be ignored in this case. As neither lines nor circles have endpoints,
there are not restrictions to check.

Lines

ν(Lc, Pa) =


(π) if arg(−c) > arg a > arg c and arg(−c) > 0

(π) if arg2π(−c) > arg2π a < arg2π c and arg(−c) < 0

(−π) else
ν(Lc, Ia,b) = (ν(Lc, Pa), ν(Lc, Pb))

ν(Lc, Rd(a)) = (ν(Lc, Pa))

ν(Lc, Ld) = 0

ν(Lc, C
s
r (a) = 0

The second to last case cannot happen, as two lines will always intersect and intersecting
contour parts are not allowed. The last case is also not of interest, as the information
whether a circle is above or below a line is already handled by the point added for the
center of the circle.

Circles

ν(Csr (a), Pb) =

{
(s2π) if b ∈ Br(a)

(0) else

ν(Csr (a), Ib,c) = (ν(Csr (a), Pb), ν(Csr (a), Pc))

ν(Csr (a), Rc(d)) = (0)

ν(Csr (a), Lc) = 0

ν(Cs1r1 (a), Cs2r2 (b) =

{
(s12π) if b+ r2 ∈ Br1(a)

(0) else
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A circle can never contain a ray or a line. In the case of lines this does add any restrictions,
as we can always find a line around the circle, but in the case of rays we have to add the
restriction that the circle does not contain the endpoint of the ray. Otherwise it could
happen that we discretize the circle with a path that encloses this endpoint and end up
in a situation where no valid discretization for the ray exists anymore. The last definition
handles the case that a circle is inside another circle by distinguishing which of the two
is the inner and which is the outer circle. This information is not provided by the centers
of the circle, if both circles enclose both centers.

B.3. Only Paths

Obviously if one of the arguments of ν is a path, we need to know the graph which
corresponds to the path to evaluate ν. In order to avoid cluttering the notation we not
explicitly include this dependence in the following formulas.

Points : p ∈ PP

ν(p, •) = 0

Intervals : p ∈ PI

ν(p, v ∈ PP ) = (](g, p, v))

ν(p, v . . . w ∈ PI) = (](g, p, v),](g, p, w))

ν(p, v . . . w ∈ PR) = (](g, p, v))

ν(p, q ∈ PL) = 0

ν(p, q ∈ PC) = 0

Rays : p ∈ PR

ν(p, v ∈ PP ) = h(arg(w)− arg(w − v)) + ](g, p, v)

ν(p, v . . . w ∈ PI) = (ν(p, v), ν(p, w))

ν(p = u . . . , v · · · ∈ PR) =

{
0 if u = v

(ν(p, v)) else

ν(p, q ∈ PL) = 0

ν(p, q ∈ PC) = 0
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Lines : p ∈ PL

ν(p, v ∈ PP ) =

{
(π) if ](g, p, v) > 0

(−π) if ](g, p, v) < 0

ν(p, v . . . w ∈ PI) = (ν(p, v), ν(p, w))

ν(p, v . . . w ∈ PR) = (ν(p, v))

ν(p, q ∈ PL) = 0

ν(p, q ∈ PC) = 0

Circles : p ∈ PC

ν(p, v ∈ PP ) = ](g, p, v)

ν(p, v . . . w ∈ PP ) = (ν(p, v), ν(p, w))

ν(p, v · · · ∈ PR) = (0)

ν(p, q ∈ PL) = 0

ν(p, v . . . v ∈ PC) = ν(p, v)

B.4. First Argument: Path, Second Argument: Continuous Contour

In this case we cannot always determine a single value for ν. The path may contain a
vertex which is at the same location as one of the endpoints of the continuous contour.
The corresponding endpoint can be mapped to any vertex at its location, so it could
be either left or right of the path. Therefore we determine the angles for all possible
mappings. The resulting information can be used to determine valid mappings and
detect software bugs, as there has to be at least one valid mapping at all times.1 Basically
we reduce these cases to the definitions in section B.3 by mapping the endpoints of the
paths to vertices.

Points : p ∈ PP

ν(p, •) = 0

1A vertex can only be left or right of the path, and for both options a vertex has to exist as there is always
at least one vertex left and one right of a path along which a graph is split.
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Intervals : p ∈ PI

ν(p = u . . . w, Pa) =

{
0 if u̇ = a or ẇ = a

{](g, p, v) : v ∈ nv(g, a)} else

ν(p, Ia,b) = (ν(p, Pa, ν(p, Pb))

ν(p,Rc(a)) = (ν(p, Pa))

ν(p, Lc) = 0

ν(p, Csr (a)) = 0

Rays : p ∈ PR

ν(p = u . . . w, Pa) =

{
0 if u̇ = a

{h(arg(w)− arg(w − u)) + ](g, p, v) : v ∈ nv(g, a)} else

ν(p, Ia,b) = (ν(p, Pa), ν(p, Pb))

ν(p,Rc(a)) = ν(p, Pa)

ν(p, Lc) = 0

ν(p, Csr (a)) = 0

Lines : p ∈ PL

ν(p, Pa) = {ν(p, v) : v ∈ nv(g, a)}
ν(p, Ia,b) = (ν(p, Pa), ν(p, Pb))

ν(p,Rc(a)) = (ν(p, Pa))

ν(p, Lc) = 0

ν(p, Csr (a)) = 0

Circles : p ∈ PC

ν(p, Pa) = {ν(p, v) : v ∈ nv(g, a)}
ν(p, Ia,b) = (ν(p, Pa), ν(p, Pa))

ν(p,Rc(a)) = (ν(p, Pa)

ν(p, Lc) = 0

ν(p, Csr (a)) = ν(p, v)

B.5. First Argument: Continuous Contour, Second Argument: Path

The definitions for the cases in which the first argument of ν is a continuous contour are
just reduced to the cases in section B.2 by converting the paths to continuous contours.
This way we can at least verify that all endpoints are mapped to the correct vertices.
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Points

ν(Pa, •) = 0

Intervals

ν(Ia,b, v ∈ PP ) = ν(Ia,b, Pv̇)

ν(Ia,b, v . . . w ∈ PI) = ν(Ia,b, Iv̇,ẇ)

ν(Ia,b, v . . . w ∈ PR) = ν(Ia,b, Rẇ(v̇))

ν(Ia,b, q ∈ PL) = 0

ν(Ia,b, q ∈ PC) = 0

Rays

ν(Rc(a), v ∈ PP ) = ν(Rc(a), Pv̇)

ν(Rc(a), v . . . w ∈ PI) = ν(Rc(a), Iv̇,ẇ)

ν(Rc(a), v . . . w ∈ PR) = ν(Rc(a), Rẇ(v̇)

ν(Rc(a), q ∈ PL) = 0

ν(Rc(a), q ∈ PC) = 0

Lines

ν(Lc, v ∈ PP ) = ν(Lc, Pv̇)

ν(Lc, v . . . w ∈ PI) = ν(Lc, Iv̇,ẇ)

ν(Lc, v . . . w ∈ PR) = ν(Lc, Rẇ(v̇))

ν(Lc, q ∈ PL) = 0

ν(Lc, q ∈ PC) = 0

Circles

ν(Csr (a), v ∈ PP ) = ν(Csr (a), Pv̇

ν(Csr (a), v . . . w ∈ PI) = (ν(Csr (a), Pv̇), ν(Csr (a), Pẇ))

ν(Csr (a), v . . . w ∈ PR) = 0

ν(Csr (a), q ∈ PL) = 0

ν(Csr (a), q ∈ PC) =?

In the last case we cannot determine if one of the circles is inside or outside of the other
circle, as q may intersect the contionuous circle. Consequently this restricion should be
ignored when checking for valid deformations. Therefore ν is set to be an undefined
value which always yield true when compared to other values.
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C. Visualization Styles

Visualization Style 1 (RHP Contours).

• The color encodes ||Gj(z)− I||F along Γj with a logarithmic scale.

• The values of ||Gj(z)− I||F are truncated to [10−16, 1016].

• We use the color coding green ≈ 10−16, yellow ≈ 100 and red ≈ 1016.

• The blue points indicate the location of the stationary points of the phase function in G.

Visualization Style 2 (Graphs).

• All edges are undirected.

• Arrows just indicate the orientation of the paths.

• All splits are enlarged for a clear visualization.

• Without enlargement the vertices on the left and right sides of splits coincide.
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