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Chapter 1

Introduction

1.1 Challenges in Predicting Individual Customer
Behavior

"... as we know, there are known knowns; there are things we know

we know. We also know there are known unknowns; that is to say

we know there are some things we do not know. But there are also

unknown unknowns – the ones we don’t know we don’t know."

—Donald H. Rumsfeld1

Marketing executives managing the customer base are in a dilemma. Advances
in information technology have led to the accumulation of large databases that in-
clude transactional data collected at the point of sale. Research shows that access
to complete individual level purchase histories is a prerequisite to successfully tar-
geted marketing that encourages cross-buying, retains potential defectors, rewards
high-value customers and increases referrals (Fader and Hardie 2009; Germann
et al. 2014).

Yet practitioners and researchers often find that, whereas data accumulated un-
der the "big data" paradigm comprise information about a growing number of

1 U.S. Department of Defense News Briefing, February 12, 2002.
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customers, the length of transaction histories is highly variable. Most individual
purchase histories are relatively short or consist of long periods of low or no ac-
tivity. This circumstance is especially present in noncontractual settings such as
retail, which is characterized by constant fluctuations in the customer base. Fierce
price competition, similar offerings among competitors, low switching barriers,
aggressive promotional policies, and competing loyalty programs lead to cus-
tomers readily and easily defecting to competing retailers (Rust, Zeithaml, and
Lemon 2000, p. 102; Winer 2001). As a consequence, retail data often contain
only relatively sparse purchase histories for the majority of customers. Processing
this form of data with traditional marketing models is challenging, because it of-
ten results in specifications that feature more parameters than observations (Lenk
and Orme 2009).

Moreover, in retail settings with no contractual relationships, a firm cannot even
determine if a customer is just dormant or has already defected to a competitor.
Thus, the reason for a defection often remains an "unknown-unknown" to the
firm. Not only that, but abrupt changes in purchase behavior might also be due to
"known-unknowns" that are hard for firms to foresee and could be rooted in the
customers’ personal lives such as relocation, change of income, or the start of a
family.

These challenges shape both the models researchers have proposed and the meth-
ods practitioners apply to predict individual level purchase behavior. The aca-
demic models have continuously evolved over time from simple "recency, fre-
quency and monetary value" heuristics (Roel 1988), the seminal Pareto/NBD
model (Schmittlein, Morrison, and Colombo 1987) to stochastic models explor-
ing the interrelation between transaction rates, spending, and customer drop-out
(e.g., Glady, Lemmens, and Croux 2015; Mzoughia and Limam 2014; Schweidel
and Knox 2013). Simultaneously, the development of Markov Chain Monte Carlo
(MCMC) simulation techniques has given rise to hierarchical Bayesian models
that allow to parsimoniously relate individual purchase behavior to cross-sectional
heterogeneity and to obtain parameters estimates for complex models that previ-
ously have been difficult to cope with (e.g., Allenby, Leone, and Jen 1999; Aravin-
dakshan, Rubel, and Rutz 2015; Guo 2009; Jen, Chou, and Allenby 2009; Jerath,
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Fader, and Hardie 2011; Schweidel, Park, and Jamal 2014). However, these mod-
els still lack the ability to address two major challenges that arise in noncontractual
retail settings — (1) the inclusion of individual and overall seasonal effects and
(2) the derivation of an accurate predictor of customer inactivity.

Many noncontractual settings exhibit strong seasonal and cyclical patterns of in-
dividual purchase behavior. What appears at the surface to be dormancy may be a
naturally occurring pattern that will trigger purchasing when the next cycle comes
around (Kumar and Reinartz 2012, p. 308). For example, if a customer only buys
at a store when he or she is in town for vacation twice a year. Seasonality not only
influences the accuracy of forecasting purchase levels, but also affects customer
segmentation, individual targeting and the timing of marketing actions.

However, the models of the Pareto/NBD family (Fader and Hardie 2009) and re-
lated variants do no attempt to include individual and cross-sectional seasonal
effects in the model framework. This situation is surprising, because Zitzlsperger,
Robbert, and Roth (2009) find that forecasts of the standard Pareto/NBD can be
improved if the results are post-hoc seasonally adjusted by a simple ratio to a
moving average seasonal factor. Schweidel and Knox (2013) improve model fit
by including a winter dummy-variable in their latent attrition model. And, while
discussing the limitations of their evaluation of forecast algorithms, Ballings and
Van den Poel (2015, p. 257) remark that "taking seasonality into account would
only increase the predictive performance of our models."

Another challenge in noncontractual settings is to derive a probabilistic measure
of a customer’s unobservable latent state — the probability that the customer has
defected and will not be active in the future. For this purpose Schmittlein, Morri-
son, and Colombo (1987) introduced the P(alive) metric. Since then it has been
customary for researchers to derive P(alive) for models under the "buy ’til you
die" paradigm (e.g., Fader, Hardie, and Shang 2010; Jerath, Fader, and Hardie
2011; Mzoughia and Limam 2014). This information about the customer’s (un-
observable) latent state has been used frequently, e.g., for optimizing customer re-
activation campaigns (Ma, Tan, and Shu 2015), for benchmarking models (Batis-
lam, Denizel, and Filiztekin 2007; Wübben and von Wangenheim 2008), for cus-
tomer portfolio management (Sackmann, Kundisch, and Ruch 2010), for customer
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value analysis (Ho, Park, and Zhou 2006) or for examining the effect of modes of
acquisition and retention on customer lifetime (Steffes, Murthi, and Rao 2008).
Nonetheless, one can argue whether P(alive) really provides meaningful manage-
rial information as it assumes an infinite time horizon.

Practitioners often require forecasts for specific (finite) forecast horizons. As
Wübben and von Wangenheim (2008, p. 91) state: "... it is of hardly any interest
to managers whether a customer purchases after the planning horizon." Thus, cur-
rent prediction models that rely on the P(alive) metric do not provide information
about the customers’ inactivity in managerial relevant time frames and might be
subject to systematic bias.

This thesis contributes to the literature stream of probability models for customer
base analysis and follows an evolutionary model-building view (Fader and Hardie
2009). Specifically, I modify one existent and I develop two new models that ad-
dress individual and overall seasonality effects and/or provide a way to accurately
predict customer inactivity:

1. I put a twist on the classic Dynamic Model of Purchase Timing (DMPT),
by Allenby, Leone, and Jen (1999) by proposing a refined method to more
accurately predict inactive customers;2

2. I develop the Hierarchical Bayesian Seasonal Effects Model (HSM) that
addresses the inclusion of seasonality effects. It is a hierarchical seasonal
model that operates under the "always a share" assumption. The model
relates individual purchase behavior to cross-sectional heterogeneity in pur-
chase rates and seasonality;

3. Finally, I develop the Hierarchical Bayesian Seasonal Effects Model with
Drop-Out (HSMDO) that addresses both the inclusion of seasonality ef-
fects and prediction of customer inactivity. The HSMDO features a joint
seasonal purchase and customer lifetime model under the "buy ’til you die"
assumption. It relates individual purchase behavior to cross-sectional het-

2 This part of the thesis builds upon and extends my master’s thesis "Prediction of Purchase
Behavior: Benchmarking a Hierarchical Bayesian Model against Managerial Heuristics"
(2010).



1.2 Goals of the Thesis 5

erogeneity in purchase rates, drop-out rates, and seasonality. In order to
forecast customer inactivity with the HSMDO, I derive P(ZeroF), the prob-
ability of observing no purchases for a specific customer in a given time
frame F , as an alternative to P(alive).

1.2 Goals of the Thesis

The goal of this thesis is to further the understanding of hierarchical Bayesian
models by developing models that predict individual level purchase behavior in
noncontractual settings. In order to simulate managerial decision making situa-
tions I follow the validation approach of Wübben and von Wangenheim (2008)
and use the following managerial tasks for comparison: (1) forecasting short- and
long-term purchase levels, (2) predicting which customers will be inactive in the
future, and (3) rank ordering customers to identify the top 10% or 20% of the
customer base.

I address the following key research questions regarding the DMPT and the newly
proposed rule to predict customer inactivity:

1. Does the refined rule improve the accuracy of predicting inactive customers
compared to the original rule and the hiatus heuristic?

2. How accurate is the DMPT in forecasting short- and long-term purchase
levels compared to the baseline heuristic?

3. How accurate does the DMPT predict the future top 10% and 20% of the
customer base compared to the baseline heuristic?

Regarding the HSM I address the following research questions:

1. How accurate does the HSM forecast short- and long-term purchase levels
compared to SARIMA Models, the Holt-Winters Method (HW), and the
baseline heuristic?

2. How accurate does the HSM predict the future top 10% and 20% of the
customer base compared to SARIMA Models, the Holt-Winters method,
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and the baseline heuristic?

3. Does the HSM provide useful information about overall and individual sea-
sonality?

In regard to the HSMDO I address the following research questions:

1. How accurate does the HSMDO forecast short- and long-term purchase lev-
els compared to SARIMA Models, the Holt-Winters Method, the baseline
heuristic, the HSM, and the HMDO3?

2. How accurate does the HSMDO predict the future top 10% and 20% of the
customer base compared to SARIMA Models, the Holt-Winters method, the
baseline heuristic, the HSM, and the HMDO?

3. Does the HSMDO provide useful information about overall and individual
seasonality?

4. Can a measure for the likelihood of customer inactivity in a finite time hori-
zon be derived for the HSMDO?

5. Does P(ZeroF) improve the out-of-sample classification accuracy of pre-
dicting inactive customers compared to P(alive) and the hiatus heuristic?

The emphasis of the analysis is on individual customer forecasts, because they are
essential for retail managers in deriving customer lifetime value and steering in-
dividual level marketing actions such as customer reactivation, customer reward,
customer portfolio management, and cross-selling. Based on the newly developed
models marketing managers will be able to accurately forecast customer specific
future purchase patterns. They will be able to operate on a measure of individual
seasonality that indicates how strongly the customer follows the cross-sectional
seasonality, whether he purchases anti-seasonal or whether his behavior is non-
seasonal. Such a measure is particularly useful for customer segmentation, tar-
geting customers, and timing of marketing actions. Moreover, marketeers will be
able to predict individual customer drop-out and might explore how likely each of
their customers will buy in a definite time horizon of interest.

3 The Hierarchical Model with Drop-out (HMDO) is a non-seasonal variant of the HSMDO. I
use the HMDO to study the effects of different model parts on forecast accuracy.
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1.3 Structure of the Thesis

The thesis is divided into nine chapters as depicted in Figure 1.1. The first chapter
comprises the introduction including the scope and goal of this thesis as well as
this section that lays out the structure of the dissertation.

In Chapter 2, I introduce relevant managerial concepts that shape the purpose
and practical use of probabilistic models in customer relationship management.
In particular, I discuss the link between loyalty and profitability, the relevance of
customer value and, within this paradigm, core concepts such as customer lifetime
value, customer equity, customer asset management as well as specific character-
istics of relationships in noncontractual retail settings.

I outline the background of modeling and predicting purchase behavior in Chap-

ter 3. I review the literature on modeling purchase behavior with a focus on prob-
abilistic models for customer base analysis, which include individual purchase
behavior and cross-sectional heterogeneity. In addition, I discuss marketing mod-
els that include seasonal components in the context of related time series concepts.
Chapter 3 ends with a discussion of heuristic approaches for predicting purchase
behavior and their relationship to simple stochastic models.

Chapter 4 provides an introduction to Bayesian theory and Markov Chain Monte
Carlo methodology, because these methods are central to the model development
and analysis. I discuss the various sampling algorithms, diagnostics for MCMC
convergence, and measures of forecast accuracy.

Chapter 5 details the empirical settings, the three datasets I use for analysis, and
data pre-processing. In addition to descriptive statistics, I depict the distributions
of weekly interpurchase times and monthly purchase frequencies for each of the
datasets. Also, exemplary customers purchase histories are shown to illustrate the
individual level data on which the models operate.

Chapter 6 describes the Dynamic Model of Purchase Timing (DMPT) by Allenby,
Leone and Jen 1999 and my improvement for deriving a probabilistic measure for
customer inactivity. I recap the model framework consisting of (1) the hierarchical
random-effects generalized gamma model, (2) the generalized gamma component
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Figure 1.1: Structure of this Thesis

mixture, (3) the temporal dynamics and link function, and (4) the priors for each
parameter. I provide a mathematical formulation of my improved rule and perform
parameter estimation and prediction. This chapter closes with a discussion of the
results and compares them to managerial heuristics used in practice.

In Chapter 7 I propose the hierarchical Bayesian seasonal model (HSM), which
relates individual purchase behavior to cross-sectional heterogeneity in purchase
rates and seasonality. I outline the new model framework, consisting of (1) the
Poisson covariate gamma mixture, (2) hierarchical multiplicative seasonal effects,
and (3) prior distributions and hyperparameters. I use Markov Chain Monte Carlo
Gibbs sampling for estimation and prediction. Chapter 7 closes with a discussion
of the new model’s benchmark results.

The Hierarchical Bayesian Seasonal Model with Drop-out (HSMDO) is detailed
in Chapter 8. I outline the model framework, consisting of (1) a periodic drop-
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out process with an SG/Beta mixture, (2) the Poisson covariate gamma mixture,
(3) hierarchical multiplicative seasonal effects, and (4) prior distributions and hy-
perparameters. I provide a complete mathematical formulation of the model that
includes the derivation of the individual level and sample likelihood function, pre-
dictive expectations of future purchase frequencies, and two measures of customer
inactivity: P(alive) and P(ZeroF). I use Hamilton Monte Carlo (HMC) simula-
tion with the no-U-turn sampler for parameter estimation and prediction. The
chapter closes with a discussion of the new model’s results.

The central findings are summarized in Chapter 9. I derive managerial implica-
tions for the use of probability models in customer relationship management. The
chapter concludes with a discussion of the limitations of this thesis and an outlook
towards future research on predicting customer behavior.



Chapter 2

Conceptual Background on
Customer Relationship
Management

2.1 Scope and Goals of Customer Relationship
Management

Originally, the term Customer Relationship Management (CRM) was introduced
in the 1990s within the field of Information Systems research (Payne and Frow
2005). It was used to describe technology-based solutions for managing the cus-
tomer base with a tactical orientation such as salesforce automation (Law, En-
new, and Mitussis 2013; Payne and Frow 2005). The development of customer
databases and communication technologies (Xie and Shugan 2001) has enabled
firms to move beyond uniform marketing policies (Khan, Lewis, and Singh 2009)
and realize the strategic potential in implementing customized customer base anal-
ysis tools (Boulding et al. 2005). Thus, Kumar and Reinartz (2012, p. 5) define
customer relationship management as the "strategic process of selecting customers
that a firm can most profitably serve and shaping interactions between a company
and these customers."
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The long-term goal of customer relationship management is to optimize the cur-
rent and future value of customers by identifying valuable customers, increasing
their loyalty, retaining them at the lowest possible cost, or reacquiring them if
they left the relationship (Kumar, Bhagwat, and Zhang 2015). Thus, CRM im-
plies the development of an understanding of customer behavior that can be used
to refine and customize marketing instruments to increasingly fine segments or
even to individual customers (Khan, Lewis, and Singh 2009; Peppers and Rogers
1993). For this purpose, CRM often includes the collection and maintenance of
customer data (Ryals and Payne 2001) but does not necessarily require sophisti-
cated analyses, concepts, or technology to analyze the customer base (Boulding
et al. 2005).

Figure 2.1 displays the customer relationship management process according to
Kumar and Reinartz (2012). Marketing managers start the process by analyzing
the behavior of their active customer base. The analysis is shaped by the strategic
goals of the firm and is the basis for developing a strategic marketing plan. This
alignment between a firm’s business strategy and the goals of the data analysis has
been shown to be a prerequisite for a successful CRM strategy (Payne and Frow
2005). General business intelligence and concrete data analysis enable managers
to derive a marketing plan that entails a number of individual marketing actions.
For example, if managers find that their customers are especially prone to spend

Database 
Analysis Strategic Marketing Plan Segmentation/Targeting 

Execution of Marketing 
Plans Results Data Updates 

Figure 2.1: Layout of the Customer Relationship Management Process
Own Illustration Based on Kumar and Reinartz (2012, p. 170)
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more money in the weeks before winter holidays, they might develop a strategic
plan to introduce a new product category in late November and to expand the new
category’s products sales over a period of years (Kumar and Reinartz 2012, p.
170).

Based on information stored in the customer database, managers are able to define
a customer segment that is most likely to buy the items of the new product cat-
egory. Moreover, they are able to select from the group of customers those who
have spent above average in pre-Christmas seasons over the past years (Ballings
and Van den Poel 2015). Subsequently, retailers can execute marketing programs
by sending vouchers to selected customers or offer bundles to increase cross-
buying. The next step in the CRM process is to monitor the success of those
campaigns by analyzing changes in purchase behavior (Kumar and Reinartz 2012,
p. 170) and to update the database. The whole process is then repeated perma-
nently in order to continuously adapt the strategic marketing plan to changes in
customer behavior, competitive environment, strategic goals, or shifts in supply
(Neslin et al. 2013).

Research in marketing stresses the cross-functional importance of CRM for the
firm, supports the positive impact of CRM practices on profitability and busi-
ness performance (Boulding et al. 2005; Krasnikov, Jayachandran, and Kumar
2009; Ryals 2005) and showes that firms benefit from customer knowledge and
improved customer satisfaction (Mithas, Krishnan, and Fornell 2005).

2.1.1 Customer Loyalty and Profitability

The goals of CRM are in line with the relationship marketing paradigm that em-
phasizes to foster customer loyalty in order to eventually increase the company’s
profits (Reichheld and Sasser Jr. 1990a). Customers show loyalty towards prod-
ucts, services, brands, or stores. Customer loyalty comprises behavioral loyalty
such as repeat purchases (Brody and Cunningham 1968) as well as attitudinal
loyalty that includes cognitive, affective, and conative elements (Oliver 1999).
Attitudinal loyalty may manifest itself in a positive attitude towards a product, a
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high emotional attachment to a brand, or a high likelihood to recommend a ser-
vice.

In the purchase decision-making process, a mostly cognitive problem-solving ac-
tivity in which consumers move through a series of stages to make a purchase
(Zinkhan 1992), attitudinal loyalty enables consumers to drastically reduce search
time by omitting some alternatives and narrowing the focus to the brands, prod-
ucts or services to which they are loyal. Loyal customers are more likely to tol-
erate price increases and pay premium prices, to cross-buy and to spread posi-
tive word of mouth compared with short-term customers (Reichheld and Sasser
1991).

Attitudinal loyalty is related to customer satisfaction (Larivière et al. 2015). Both
constructs focus on an overall ex post evaluation of a product, service or experi-
ence (Oliver 1997). Figure 2.2 illustrates the link between customer satisfaction,
behavioral loyalty and profit as conceptualized by the service-profit chain (Heskett
et al. 1994) and the satisfaction-profit chain (Anderson and Mittal 2000). Longitu-
dinal research on the satisfaction-performance link (e.g., Bernhardt, Donthu, and
Kennett 2000; Evanschitzky, von Wangenheim, and Wünderlich 2012; Gómez,
McLaughlin, and Wittink 2004) supports the positive effect of customer satisfac-
tion on operating profit over time.

The close relationship of satisfaction and loyalty and its impact on a firm’s prof-
its emphasizes the importance of customer retention (Datta, Foubert, and Heerde
2015; Reichheld, Markey Jr., and Hopton 2000). Customer retention is defined as
a "customer’s stated continuation of a business relationship with the firm." (Kein-
ingham et al. 2007, p. 364). Customer retention management comprises a firm’s
efforts to continue it’s relationships with customers. Already "committed" and,

Attribute 
Performance 

Customer 
Satisfaction 

Customer 
Retention Profit 

Figure 2.2: The Satisfaction-Profit Chain
Own Illustration Based on Anderson and Mittal (2000, p. 107)
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thus, loyal customers can cost less to serve per period over their lifetimes than
new customers, because a company does not incur acquisition costs (Kumar and
Reinartz 2012, p. 28). Interest in customer retention and loyalty increased signif-
icantly after the work of Reichheld and Sasser Jr. (1990b) and Reichheld and Teal
(1996), who found that a 5% increase in customer retention can increase a firm’s
profitability from 25% to 85%.

However, research has criticized this contention in regard to its generalizability,
scope and implications (Dowling and Uncles 1997). Studies argue that the as-
sumption of lower costs for maintaining existing customers compared with ac-
quiring new customers only holds true for customers in a contractual relationship.
In noncontractual relationships such as those of retail stores, frequent investments
in customers (new and existing) are necessary, because customers may lose in-
terest or switch easily to competitors (Dwyer 1997;Kumar and Reinartz 2012, p.
308).

Customer segments vary in their potential return on investment. Gupta and Zei-
thaml (2006) showed that 20% of customers may provide as much as 220% of the
profits, implying that a large number of customers destroy value. This notion ex-
tends to specific customer segments that are loyal but still incur excessive resource
allocation or exhibit high item return rates (Reinartz and Kumar 2002). Increas-
ing retention or reward spending in these customers segments eventually leads to
overspending and decreased profits (Haenlein, Kaplan, and Schoder 2006). Firms
must make an effort to obtain information on individual or segment profitability.
Therefore, an important part of CRM is measuring future customer value to iden-
tify profitable segments of customers and then developing specific strategies for
reaching out and bonding to these customer groups.

2.1.2 Relationship Characteristics and Customer Retention

A framework that relates relationship characteristics to customer retention has
been developed by Bolton, Lemon, and Verhoef (2004): the Customer Asset Man-
agement of Services (CUSAMS). The CUSAMS posits that it is useful to distin-
guish between length, breadth, and depth of customer relationships in order to
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derive valid predictors for explaining customers’ value (Larivière and Van den
Poel 2007).

The "breadth" dimension of customer relationships captures customers’ "add-on"
or cross-buying behavior, the number of additional and different services pur-
chased from a company over time (Bolton, Lemon, and Verhoef 2004, p. 273).
Larivière (2008) and Scherer, Wünderlich, and von Wangenheim (2015) show that
the more different types of services a customer uses from a service provider, the
less likely he or she is to defect.

The "depth" dimension is reflected in the frequency of service usage over time
(Bolton, Lemon, and Verhoef 2004, p. 273). Bonfrer et al. (2007) find that the
frequency of service usage positively affects customer retention probability in the
cellular phone industry. The "length" of a relationship can be both consequence
and driver of customer behavior (Bolton, Lemon, and Bramlett 2006; Reinartz
and Kumar 2003; Zeithaml, Berry, and Parasuraman 1996). Lemon and von Wan-
genheim (2009) relate cross-buying to future usage of a service, showing that
relationship breadth affects future relationship depth. Several studies show that
the previous length of the customer relationship positively influences retention
(e.g., Fader and Hardie 2007; Larivière 2008; Schweidel, Fader, and Bradlow
2008).

2.1.3 Metrics of Customer Value

The value the firm receives from implementing CRM measures is the increased
success rate of applied acquisition, cross-selling and retention strategies that ulti-
mately aim at heightening profitability of the firm (Payne and Frow 2005). Thus,
firms are interested in tools to determine the most profitable and loyal customers
as well as measures to estimate their future value to the firm. This need to de-
termine the future long-term economic value of customers (Kumar and Reinartz
2012, p. 121) led to the rise of future-oriented metrics to quantify value, whereas
traditional metrics currently used within business practice are often retrospective
in nature (Zeithaml et al. 2006). Firms, for example, use measures of customer
satisfaction based on customers’ recent purchase experiences (Yi 1990), measures
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of service quality stemming from past encounters (Zeithaml 1999), or measures
of attitudinal loyalty that reflect customer sentiment (Gupta and Zeithaml 2006).
In general, such metrics provide managers with insights into why a firm is at its
current state, but they do not fully capture and extrapolate ongoing and future de-
velopments such as customer defection and acquisition, market trends, direct mar-
keting interventions, or seasonal effects (Esteban-Bravo, Vidal-Sanz, and Yildirim
2014). Retrospective measures offer only limited predictive ability in regard to fu-
ture customer profitability (Petersen et al. 2009).

Forward-looking metrics of customer value address these issues and aim to guide
company decisions with the goal of maximizing the long-term profitability of
the customer base. The concept of Customer Lifetime Value (CLV) embodies
this approach and constitutes a focal point of customer relationship management
(e.g., Jain and Singh 2002; Mulhern 1999; Reichheld and Sasser Jr. 1990b; Rust,
Lemon, and Zeithaml 2004). Customer Lifetime Value is the "the net present value
of the profits linked to a specific customer once the customer has been acquired,
after subtracting incremental costs associated with marketing, selling, production
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Figure 2.3: Conceptual Framework for Measuring CLV
Own Illustration Based on Venkatesan and Kumar (2004)
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and servicing over the customer’s lifetime." (Blattberg, Kim, and Neslin 2008,
p.106).

Closely related to the CLV concept is Customer Equity (CE), which measures the
future value of the total customer base. Rust, Lemon, and Zeithaml (2004, p. 110)
define Customer Equity as "the total of the discounted lifetime values summed
over all of the firm’s current and potential customers." Thus, CE not only reflects
forecasts of CLV for the current customer base but also includes forecasts of CLV
for potential customers that are acquired in the future (Blattberg, Thomas, and
Getz 2001; Blattberg and Deighton 1996).

Customers contribute to a firm’s profitability not only by purchasing products and
services but also by recommending the firm to others. Research documents the
impact of word of mouth (WOM) on profitability and customer acquisition (Ku-
mar, Petersen, and Leone 2010; von Wangenheim and Bayón 2007). A measure
related to CLV that captures recommendation effects is Customer Referral Value
(CRV). CRV measures "the net present value a customer creates for a firm via
his or her referrals, i.e., the value a customer generates by referring the firm’s
products to its potential customers." (Kumar 2013, p. 23).

The ability to make individual level predictions of purchase behavior is essential
for computing the future value of a firm’s customers on a systematic basis (Fader
and Hardie 2009). The CLV Framework (Figure 2.3) by Venkatesan and Kumar
(2004) illustrates the central role of the prediction of purchase frequency in deriv-
ing CLV-based metrics. Thus, an accurate model for predicting individual-level
purchase frequencies is a prerequisite for successful customer relationship man-
agement.
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2.2 Customer Relationships in Retail Settings

2.2.1 Customer Buying Behavior in Retail

Studies identified different customer decision-making approaches in brick-and-
mortar (Lysonski and Durvasula 2013) and online retail settings (Niu 2013). A
common denominator among the identified individual decision-making approaches
is that they fall along a continuum of various consumer characteristics or situa-
tional factors. These factors include the customer’s degree of involvement, the
perceived risk, the price of the products, the extent of effort necessary to obtain
information about the products, and the customer’s individual experience (e.g.,
Butler and Peppard 1998; Lamb, Hair, and McDaniel 2008).

Assael (1988) differentiates between four types of buying behavior: complex,
variety-seeking, dissonance-reducing, and habitual. Sproles and Kendall (1986)
identify eight mental decision-making styles based on a consumer styles inven-
tory (CSI). The CSI inludes the styles of consumers who are driven by price, high
quality, brand value, novelty and fashion, recreational shopping, impulse, or habit,
as well as those, who are confused by choice. The novelty and fashion–conscious
consumer matches the "variety seeker" type that appears to like new and innova-
tive products and gains excitement from seeking out new things even while con-
tinuing to express satisfaction with previously purchased brands (Mowen 1988;
Sproles and Kendall 1986). Bauer, Sauer, and Becker (2006) extended the CSI
and differentiate an individual’s decision-making style along different product cat-
egories and the respective product involvement.

A popular and parsimonious classification of individual decision-making styles
distinguishes between extended, limited, and habitual decision making (Babin
and Harris 2012, p. 252f; Lamb, Hair, and McDaniel 2008, p. 153; Solomon
2011, p. 335). The relation of habitual, limited and extended decision-making
towards customer involvement, perceived risk, price, frequency, past experience,
and information content is summarized in Figure 2.4.

Customers engage in extensive decision making when they are highly involved in
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Figure 2.4: Habitual, Limited, and Extended Decision-Making
Own Illustration Based on Solomon (2011, p. 603)

a purchase and must undertake effort to search for information, evaluate alterna-
tives and make a decision. This is often the case if the involved risk is high, such
as when a customer buys a product for the first time or contemplates the purchase
of an expensive item. Limited decision-making occurs when customers show less
involvement and limit their search for information — for example, if customers
are guided by prior beliefs about products and brands and restrict their evaluation
to only a few alternatives based on very few attributes (Babin and Harris 2012, p.
252f).

In contrast, habitual decision making occurs when customers seek extremely little
or no information at all. In this case, their purchase decision is based on habit
to satisfy a recognized need. Habitual effects are related to consumers’ recurring
desires and often manifest themselves in a retail context as a customer’s tendency
to symptomatically re-purchase distinctive products or combinations of products
(Shah, Kumar, and Kim 2014). Thus, such purchase patterns are the result of
"behavioral persistence" (Reutterer et al. 2006).

2.2.2 Challenges of Noncontractual Relationships

There is a fundamental difference between CRM in contractual and noncontrac-
tual settings (Reinartz and Kumar 2000; Schmittlein, Morrison, and Colombo
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1987). In a contractual retail setting such as food-box subscriptions or book-club
memberships, a firm can easily observe whether a customer is still active or not.
In this case, customers are usually contractually obligated to a minimum of regu-
lar purchases or a monthly fee. Customers, who decide to end their relationships
with the firm, usually opt out of renewing their contracts or cancel them directly
(Marinova and Singh 2014). These events enable the company to directly initiate
marketing actions to regain such customers.

In noncontractual settings, however, the firm cannot determine if the customer is
just dormant or has already defected to a competitor. Thus, the task to distinguish
between active and potentially inactive customers is more complicated (Haenlein,
Kaplan, and Beeser 2007). Moreover, in noncontractual settings such as retail the
firm cannot expect a steady revenue stream from customers. Customers can show
various patterns of purchase behavior at different times with long streaks of no or
very little activity. Typically, retail is characterized by constant fluctuations in the
customer base. Fierce price competition, similar offerings among competitors,
low switching barriers, aggressive promotional policies, and competing loyalty
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Own Illustration, Based on Fader and Hardie (2009)
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programs lead to customers readily and easily defecting to competing retailers
(Rust, Zeithaml, and Lemon 2000, p. 102; Winer 2001).

Fader and Hardie (2009) augment the distinction between contractual and noncon-
tractual settings by taking into account the granularity of purchase opportunities
(see Figure 2.5). The transactions within a contractual setting are not bound to
the opportunities of contract renewal, e.g., usage-based billing for mobile phones
or book clubs as described by Borle, Singh, and Jain (2008). If purchases can
only occur at certain times, the opportunities for transactions are "discrete". For
example, the renewal of a magazine subscription can usually be made only once a
year. If purchases can occur at any time, such as in retail, or the renewal period is
very short, the transactions are "continuous".

2.2.3 CRM Efforts in Noncontractual Settings

A CRM or marketing campaign typically comprises a series of interconnected
promotional efforts. Typically, these campaigns are designed to market a new
or existing product or service using a variety of marketing channels (Kumar and
Reinartz 2012, p. 209). In this context, researchers recognize the value of cus-
tomer analytics for targeting individual customers (Germann et al. 2014). How-
ever, in business practice, firms frequently analyze customer behavioral data only
at an aggregate or customer segment level to initiate mass mailings or other CRM
actions (Reutterer et al. 2006).

To facilitate strategic marketing campaigns directed at individual customers or
groups of customers, a firm must determine how much it should invest in commu-
nication efforts (Jackson and Wang 1996, p. 45). For example, those individual
customers the firm believes to have the highest future purchasing rates or the high-
est brand loyalty, would normally be selected first for retention programs (Shugan
2005; Winer 2001). Correspondingly, relationship managers should be prepared
to abandon customers they believe to be unprofitable in the future (Haenlein, Ka-
plan, and Schoder 2006). In either case, an individual level prediction of future
customer lifetime value is indispensable if a firm wants to assess the potential
return of investment of its marketing campaigns.
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The success of a marketing campaign involves reaching out to the right customer
with the right offer at the right time and through the right channel (Kumar and
Reinartz 2012, p. 210). The choice of communication channels is particularly
important in targeted one-to-one marketing actions. Firms may choose one or
more channels to communicate or interact: e.g., phone, direct mail, the Web,
wireless devices, email, direct sales, or partner networks. Studies indicate that
multichannel purchasing is positively associated with customer profitability and
that properly designed marketing campaigns increase the number of multichannel
customers (Montaguti, Neslin, and Valentini 2015).

Venkatesan and Kumar (2004) observe a non linear relationship between commu-
nication frequency and a customer’s individual purchase frequency. They find that
communication frequency beyond the optimal level results in diminishing returns.
Thus, marketing managers must avoid "Type I" and "Type II" errors when exe-
cuting marketing actions. Type I errors lead to lost revenue because the firm does
not contact customers, who could have potentially provided revenue (Venkatesan,
Kumar, and Bohling 2007). Type II errors are costly because the firm incurs costs
for contacting customers who do not respond to the marketing instrument. In or-
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der to reduce Type II errors firms may customize the communication content to
reach customers and get their attention, e.g., based on individual purchase history
or customer demographic, lifestyle, and personal characteristics (Reutterer et al.
2006).

The choice of marketing instruments depends on the short- and long-term goals of
the customer management efforts. Short-term goals may be to identify and acquire
new customers, to induce customers to switch brands or stores, or to temporarily
increase sales. Long-term goals of campaigns are to retain existing customers,
to accelerate their long-term purchase behavior, or to increase their brand and
store loyalty (Blattberg, Kim, and Neslin 2008, p. 128f; Gedenk 2002, p. 103f).
Figure 2.6 gives an overview of different kinds of promotional efforts and their
short- and long-term goals. Typically, CRM efforts focus on long-term effects
such as strengthening relationships with customers and building loyalty (Breugel-
mans et al. 2015; Dorotic, Bijmolt, and Verhoef 2012; McCall and Voorhees 2010;
Liu and Yang 2009).



Chapter 3

Background of Modeling and
Predicting Purchase Behavior

3.1 Predicting Purchase Behavior Using Probability
Models

The development of probability models to analyze customer bases serves two
main purposes. First, the models help firms to understand customer purchase
behavior and provide insights into the observed patterns of purchase. Second,
firms can predict customers’ future purchase patterns and customize marketing
activities once they have a sound model of customer behavior.

The large number of factors that affect purchase behavior and the practical diffi-
culties of capturing them accurately, simultaneously and in their totality give rise
to a stochastic view of observed purchase patterns. The main assumption is that an
observed purchase pattern is a superposition of behavior that is affected by a large
number of preceding influence factors of which many are unknown. This makes
the use of past transaction patterns for inference and prediction very attractive as
purchase patterns are "widely available", tend to be "effective predictors" and can
be "rich predictors" (Schmittlein and Peterson 1994).
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An important feature of hierarchical models is that they relate individual level
purchase behavior to cross-sectional purchase behavior. This theme is central to
all models proposed in this thesis. In the following sections, I review the relevant
literature, previous models and discuss the underlying assumptions. Also, I delin-
eate the seasonal modeling approach taken in this thesis from previous marketing
models and related time series literature.

3.1.1 "Always a Share" and "Buy ’Til You Die" Assumptions

Jackson (1985, p. 13) coined the terms "lost for good" and "always a share" to de-
scribe two types of relationships between an industrial vendor and its customers.
Under the "lost for good" assumption, a customer is either totally committed to
a vendor or completely lost and committed to another vendor. In contractual set-
tings, firms often assume that a customer is "lost for good" when the customer
does not renew a contract.

In contrast, the "always a share" model assumes customers to be permanently
active, albeit at times at low purchase frequencies. The customer may have rela-
tionships with multiple vendors simultaneously, each vendor supplying a "share"
of the customer’s total need (Jackson 1985, p. 13).

In the realm of noncontractual retail settings, the "lost for good" model is often
termed the "buy ’til you die" assumption (Fader and Hardie 2009; Schmittlein,
Morrison, and Colombo 1987). Firms commonly assume that their relationship
with a customer has only two states: "alive" and "dead". First, the customer is
alive for an unobserved period of time ending with an unobserved "death" — for
example, by defecting to another retailer. Only while he or she is "alive" the cus-
tomer makes purchases; with death, the customer becomes permanently inactive
and stops buying. The "lost for good" model classifies inactive or "dead" cus-
tomers, who are won back, as new customers. A consequence of this approach is
that individual metrics such as CLV are systematically understated for customers,
who have reentered the customer base as "new" customers (Rust, Lemon, and Zei-
thaml 2004). Conversely, an "always a share" approach systematically overstates
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CLV for customers, who have already defected, but the firm assumes that they will
continue to purchase in the future.

Researchers model the "buy ’til you die" assumption with an individual lifetime or,
alternatively, as an individual drop-out process. Such processes follow a purchase
or interpurchase time model until the customer defects due to expired lifetime
at the moment of the "death" event. Literature often uses the term "drop-out"
synonymously with "death" in this context.

3.1.2 Pareto/NBD Family of Probability Models

The NBD or compound Poisson model assumes an "always a share" scenario
(Ehrenberg 1959). Following this rationale, each customer is assumed to buy at
a continued individual rate governed by a Poisson purchase process without ever
defecting to another vendor.

The seminal Pareto/NBD model extended this reasoning with a "death" process
under a "buy ’til you die" assumption. Here, the customer’s individual lifetime
follows an exponential distribution until he drops out and becomes permanently
inactive (Schmittlein, Morrison, and Colombo 1987). The individual level pur-
chase rates and the individual death rates follow different gamma distributions.
Because the NBD model is nested inside the Pareto/NBD model, I present an
adapted mathematical formulation based on Ehrenberg (1988, p. 128) and Schmit-
tlein, Morrison, and Colombo (1987):

xi ∼ Poisson(λiT )
p.m.f.

 e−λiT (λiT )xi

Γ(xi +1)
(3.1)

λi ∼ Gamma(r,α)
p.d.f.

 e−λiαλ

r−1
i

αr

Γ(r)
(3.2)

Each individual customer i purchases xi items in time T . For each customer i, λi is
his expected long-run purchase frequency per time unit. A gamma distribution of
the λi’s captures the heterogeneity across customers. The parameters of the group-
level gamma distribution are the scale parameter α > 0 and the shape parameter
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r > 0. Integrating the λi’s out of the gamma-Poisson mixture and setting T =

1 yields a negative binomial distribution (NBD) with two parameters r and α .4

Hence the name NBD Model (Ehrenberg 1988, p. 128):

x∼ NBD(r,α)
p.m.f.


∫

∞

0
e−λα

λ
r−1 αr

Γ(r)
e−λ λ x

Γ(x+1)
dλ (3.3)

=

(
α

α +1

)r( 1
α +1

)x
Γ(r+ x)

Γ(x+1)Γ(r)
(3.4)

Schmittlein, Morrison, and Colombo (1987) extended the NBD model with a
stochastic individual customer death process. The lifetime model assumes an
exponential distributed lifespan τi > 0 with an individual death rate µi for each
customer. The death rates themselves are distributed gamma, with the group-level
scale parameter s > 0 and the shape parameter β > 0:

τi ∼ Exponential(µi)
p.d.f.

 µie−µiτi (3.5)

µi ∼ Gamma(s,β )
p.d.f.



β s

Γ(s)
µ

s−1
i e−β µi (3.6)

The mixture of the exponential and gamma distribution yields, after integrating
out the µi’s, a Pareto II distribution of the customers’ lifetimes (Schmittlein, Mor-
rison, and Colombo 1987):

τ ∼ Pareto(s,β )
p.d.f.


∫

∞

0

µe−µτβ sµs−1e−β µ

Γ(s)
dµ (3.7)

=
s
β
(β/(β + r))s+1 (3.8)

The combined purchase frequency and customer lifetime model by Schmittlein,
Morrison, and Colombo (1987) reflects the "buy ’til you die" or, equivalently in
this context, the "lost for good" paradigm. The NBD portion of the model de-
scribes the customers’ expected purchase frequencies over their lifetime, while

4 Often the NBD is given as x ∼ NBD(r, p)
p.m.f.

 (1− p)r px Γ(r+ x)/(Γ(x+ 1)Γ(r)). The form

used here is equivalent if one sets α = (1− p)/p with 0 < p≤ 1.
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the Pareto part of the model describes their exit from the relationship. Therefore,
the complete model is called the Pareto/NBD model.

One interesting property of the model is that it allows to derive the probability
that a customer i is still active or "alive" at the end of the observation period,
conditional on the observed information (xi, ti,T ). Here xi denotes the number of
purchases for customer i, ti is the time of her last purchase, and T is the length of
the observation period. Let now τi be the unobserved life time of customer i, then
conditional on her individual purchase rate λi and drop-out rate µi the probability
of being still alive at T is given by Schmittlein, Morrison, and Colombo (1987)
as:

P(alive) = P(τi > T |xi, ti,T,λi,µi) =
1

1+(µ/(λ +µ))(e(λ+µ)(T−t)−1)
(3.9)

Usually, the model parameters r,α,s and β , as well as the individual purchase
and drop-out rates µi and λi, are estimated by maximum likelihood estimation. It
should be noted that the expectation of the lifetimes τ diverges to infinity for s≤ 1
(Schmittlein, Morrison, and Colombo 1987):

E(τ|s,β ) =
∫

∞

0
τ

s
β
(β/(β + τ))s+1dτ (3.10)

=


β

s−1 if s > 1

∞ if s≤ 1
(3.11)

The assumptions underlying the Pareto/NBD model are an active field of research.
For example, Fader, Hardie, and Lee (2005a) replace the continuous-time Pareto
drop-out process with a beta-geometric (BG) model. Drop-out opportunities are
tied to each transaction, so that customer defection only occurs directly after a
transaction with an individual probability of pi. The cross-sectional heterogeneity
over all pi follows a beta distribution. The BG/NBD model simplifies the param-
eter estimation of the Pareto/NBD model while yielding similar results (Fader,
Hardie, and Lee 2005a).

A variant of this model is the BG/GCP model by Mzoughia and Limam (2014). It
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keeps the BG customer lifetime model of the BG/NBD model, but the purchases
during a customer’s lifetime are assumed to follow a Conway-Maxwell-Poisson
(COM-Poisson) distribution. This distribution has an additional parameter and
allows to capture potential under and over dispersion of purchase data.

A further variation is the BG/BB model (Fader, Hardie, and Shang 2010), which,
in addition to the above BG lifetime model, assumes transaction opportunities or
reporting of transactions to occur at discrete points in time. This leads to a beta-
Bernoulli (BB) distribution and, thus, the name BG/BB. This model improves
prediction accuracy in cases where transactions of a company are associated with
specific events or can only occur at fixed time intervals.

In their PDO/NBD model, Jerath, Fader, and Hardie (2011) generalize the Pare-
to/NBD with a discretized death process. At each point in discrete time, this
model assumes a periodic death opportunity (PDO). In the limit, if the number of
death opportunities goes to infinity, the model coincides with the Pareto/NBD. At
the other extreme with no "death opportunity," the model collapses to an NBD-
only model. Bemmaor and Glady (2012) propose a different continuous life-time
process based on the Gompertz distribution with gamma mixing and find that the
G/G/NBD Model provides a better fit to settings where offerings are strongly dif-
ferentiated. Trinh et al. (2014) forgo a customer lifetime model and revisit the
NBD assumption by developing a log-normal Poisson model for conditional trend
analysis.

Researchers have applied the Pareto/NBD model and its derivatives for examining
a wide variety of research questions in several different empirical settings. Van
Oest and Knox (2011) modified the BG/NBD model by including complaint co-
variates to forecast the behavior of customers of a U.S. internet and catalog retailer
that sells toys, novelties and party supplies. Abe (2009) examines a retailer that
sells apparel, interior decoration, electronic toys, and gourmet food. He adapts
the model by relaxing the independence assumption between purchase and the
drop-out process.

Glady, Baesens and Croux’s (2009) model includes a submodel for monetary
value that they apply to retail bank datasets containing customers’ stock exchange
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transactions. Batislam, Denizel, and Filiztekin (2007) proposed a zero-repeat-
purchaser variant of the BG/NBD to analyze the customer base of a large gro-
cery retailer in Turkey. Ho, Park, and Zhou (2006) augment the model with sur-
veyed satisfaction to derive optimal investment in customer satisfaction measures.
Fader, Hardie, and Lee (2005b) use the Pareto/NBD model for purchase frequency
and an independent gamma/gamma submodel for transaction value to derive iso-
value curves that identify customers with different purchase histories but similar
CLVs. Researchers also use the Pareto/NBD to explore the impact of relationship
characteristics and customer life-time on profitability (Reinartz and Kumar 2000;
2003).

The Pareto/NBD family of models and variants do not contain a hierarchical sea-
sonal structure. As of yet no attempt to include individual and cross-sectional
seasonal effects into the these model has been made. This situation is surprising,
because Zitzlsperger, Robbert, and Roth (2009) find that the purchase frequency
forecasts of the standard Pareto/NBD can be improved by post-hoc seasonal ad-
justment with a simple ratio to a moving average factor. Or, for example, Schwei-
del and Knox (2013) improve model fit by including a winter dummy-variable in
their latent attrition model.

Moreover, it stands to reason that the drop-out process would also be highly sus-
ceptible to seasonal influences. If, for example, a Christmas gift shop observes
at the end of December that the last purchase by one of his customers was made
3-month ago, then it is more likely that the customer has already dropped out than
it would be if the firm had observed the same period of inactivity at the end of
June.

3.1.3 Hierarchical Bayes: Generalized Gamma Models

The advent of the full hierarchical Bayesian approach and the Markov Chain
Monte Carlo (MCMC) simulation technique not only freed researchers from many
restrictive distributional assumptions but also had a large influence on model
building and model complexity. The hierarchical structure of a fully specified
Bayesian model parsimoniously mirrors the relationship between the individual
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level stochastic process and the cross-sectional heterogeneity. The MCMC method-
ology allows us to obtain parameter estimates in situations in which MLE is in-
feasible or very difficult.

Allenby, Leone and Jen’s (1999) seminal "Dynamic Model of Purchase Timing"
(DMPT) and its variants used the flexibility of the Bayesian framework to specify
individual level interpurchase times as generalized gamma (GG) and the cross-
sectional heterogeneity as inverse generalized gamma (IGG) distributed:

ti j ∼ GG(α,λi,γ)
p.d.f.



γ

Γ(α)λ
αγ

i
tαγ−1
i j e−(ti j/λi)

γ

(3.12)

λi ∼ IGG(ν ,θ ,γ)
p.d.f.



γ

Γ(ν)θ νγ
λ
−νγ−1
i e−(1/θλi)

γ

(3.13)

Here, ti j is the jth interpurchase time for customer i. The ti j are assumed to be dis-
tributed generalized gamma with parameters α,λi,γ . The individual customers’
λi follow an inverse generalized gamma distribution (IGG) with parameters ν ,θ ,

and γ to capture the cross-sectional heterogeneity. This part of the DMPT is a gen-
eralization of the Poisson-based NBD Model and the Erlang Model by Chatfield
and Goodhardt (1973).5

Furthermore, the DMPT by Allenby, Leone, and Jen (1999) assumes a continuous
mixture of GG/IGG components and temporal dynamics through a multinomial
probit model that relates lagged interpurchase times to the mixture probabilities.
Formulas 3.12 and 3.13 show only the one component case without the probit
model. In Chapter 6, I discuss the full K-component model including the probit
link and prior distributions.

The DMPT has been used in a variety of studies. For example, Kumar, Shah,
and Venkatesan (2006) use the DMPT to examine the relationship between prior
purchases and increased returns. Venkatesan and Kumar (2004) improve opti-
mal customer selection and resource allocation in a CLV framework that uses the
5 Poisson-distributed purchase frequencies are equivalent to interpurchase times that are expo-

nentially distributed. The exponential distribution is a special case of the generalized gamma
distribution with α = 1 and γ = 1. The Erlang is a standard gamma distribution with an
integer-value shape parameter.
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DMPT to predict future purchases. Shu-Chuan (2008) identifies customer churn
of an online karaoke service with a simplified DMPT aided by a recency heuris-
tic. The model has been augmented by purchase quantity information to improve
the accuracy of CLV-based customer selection (Venkatesan, Kumar, and Bohling
2007). Also, there has been some research activity to further develop the DMPT.
For example, Guo (2009) proposes a variant of the DMPT that does not include
a component mixture but instead adds product category as a covariate. Or, Jen,
Chou, and Allenby (2009) propose a direct marketing model with temporal de-
pendence of timing and quantity.

The DMPT features flexible distributional assumptions and temporal dynamics
for the purchase process. Yet, this model does not feature an explicit drop-out
process and, thus, does not directly provide information on a customer’s likeli-
hood of becoming inactive. A number of schemes have been proposed for the
DMPT to use model inconsistent behavior as a proxy measure for customer drop-
out (Reinartz, Thomas, and Kumar 2005; Wu and Chen 2000a; Allenby, Leone,
and Jen 1999). I contribute to this literature by proposing a refined method to
capture model inconsistent behavior, which aims at improving identification of
inactive customers.

3.1.4 Alternative Models and Overview

The Pareto/NBD model family and Bayesian models related to the DMPT have
inspired much research activity. Nevertheless, researchers have developed a wide
variety of alternative approaches to model purchase behavior at an individual and
group level. Some of these approaches employ different methodologies, use dif-
ferent assumptions or have different research foci.

For example, Mark et al. (2013) use a hidden Markov model to capture the evo-
lution of customer dynamics in different customer segments over time. Romero,
Van der Lans, and Wierenga (2013) propose a partial hidden Markov model that
allows customer defection and reentry into the customer base. Meade and Is-
lam (2010) use the Weibull distribution with gamma mixing and Plackett copu-
las to model dependence between interpurchase times. To model consumer re-
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sponses to direct marketing Cui, Wong, and Lui (2006) develop a Bayesian net-
work based on evolutionary programming. Gönül and Hofstede (2006) use hazard
models to derive optimal catalog decisions with a log-lognormal baseline hazard
while Manchanda et al. (2006) employ a piecewise exponential hazard function.
Boatwright, Borle, and Kadane (2003) capture the purchase process through the
Conway-Maxwell Poisson distribution, whereas Wu and Chen (2000b) developed
an in-store-decision, 2-stage-logit model that accounts for nonpurchasers, zero
repeaters (one-time buyers) and regular customers. In their model, the purchase
behavior of regular customers follows an Erlang-k distribution.

Table 3.1 comprises an overview of probability models in the field of marketing
relevant to this thesis. It includes the distributional assumptions of the purchase
process and the model of cross-sectional heterogeneity. If a model features a
drop-out process, the distribution of the life-time model and its cross-sectional
distribution are denoted as well. I include for reference the classic Pareto/NBD
model by Schmittlein, Morrison, and Colombo (1987) and the Dynamic Model of
Interpurchase Timing by Allenby, Leone, and Jen (1999).
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3.2 Forecasting Seasonal/Cyclical Time Series Data
in Marketing

The field of time series analysis heavily influences marketing research on seasonal
models. As of yet, time series forecast methods neither feature a seasonal hier-
archical structure that accommodates hundreds or thousands of individual cus-
tomers’ purchase histories nor account for the possibility of customer drop-out.
Specifically, the hierarchical approach of the Pareto/NBD or the DMPT that re-
lates cross-sectional heterogeneity and individual level purchase behavior, as dis-
cussed in the previous Section, has not been extended to seasonality. With this
thesis, I want to close this gap and propose new hierarchical seasonal models with
and without customer drop-out to forecast purchase behavior. To explicate and
delineate my seasonal models, I discuss marketing literature that considers sea-
sonality in the context of time series concepts.

3.2.1 Simple Seasonal Covariates and Seasonal Adjustment

The most common methods for including seasonality in marketing models are
the use of seasonal dummy variables as covariates (Wildt 1977) or prior seasonal
adjustment of time series data (De Gooijer and Hyndman 2006). For example,
Schweidel and Knox (2013) add a December dummy variable to a simultaneous
latent attrition and direct marketing model to examine charitable donations to a
nonprofit organization. Soysal and Krishnamurthi (2012) use a seasonal dummy
for the Christmas season to analyze the demand of an apparel retail chain that
supports seasonal fashion trends. The SCAN*PRO system, which is widely ap-
plied in retail to forecast brand unit sales, uses seasonal multipliers (Andrews et al.
2008).

The decomposition of a time series into seasonal and non-seasonal components
allows the use of traditional forecast models on the adjusted non-seasonal compo-
nent. This method is convenient for seasonal forecasting because the focal model
can be used as is, without the need to add seasonal components. However, in-
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terpreting estimation results after seasonal adjustments requires some caution in
comparison with the seasonal dummy approach.

The use of seasonal covariates and prior seasonal adjustment is related to the
Frisch-Waugh-Lovell theorem (Lovell 1963). It states that a large class of sea-
sonal adjustment procedures can be handled by seasonal covariates in a multiple
regression framework. Since, the inclusion of seasonal covariates is preferable
to the use of prior seasonal adjustment, because the latter entails an inherent ten-
dency to overstate the significance of the regression coefficients without appropri-
ate correction (Lovell 1963), the use of seasonal adjustment in marketing models
has recently been sparse: Radas and Shugan (1998) seasonally adjust a time series
by shortening and lengthening time units to model seasonal movie release patterns
in the motion picture industry. Goodman and Moody (1970) use X11 seasonal ad-
justment to optimize a manufacturer’s shipment quantities for price promotions
with fixed durations. McLaughlin (1963) forecasts the sales of a manufacturing
company and uses U.S. Bureau of the Census Method II to seasonally adjust the
data. Semon (1958) forecasts sales of household textile goods through extrapola-
tion of trend-adjusted average monthly differences.

The most widely used seasonal adjustment techniques are ratio-to-moving-average
based and relate seasonal fluctuations proportionally to an overall or partial aver-
age. This approach also forms the foundation of the Method I, Method II X0-11,
X11-ARIMA and X12-ARIMA methods as used by statistical agencies such as
the U.S. Bureau of the Census (Findley et al. 1998).6

3.2.2 Exponential Smoothing: Holt-Winters Method

The use of exponentially weighted moving averages in time series analysis is at-
tractive because of its minimal computational time and space requirements (Holt
2004b). For example, a forecast of purchase levels for the current period would
only need to calculate a weighted average of two variables: the number of actual

6 Newer variants extrapolate a year of unadjusted data at each end of the series with an ARIMA
model (see Section 3.2.3) —called "forecasting" and "backcasting"— in order to improve the
accuracy of the moving average filter.
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purchases during the previous period and the number of purchases forecasted for
the previous period. Because the forecast for the previous period’s number of pur-
chases is in itself a weighted average, the resulting forecast is an exponentially
weighted average of the complete series. This incremental update property and
the declining weight put on older data7 result in a simple, fast, and automatically
adapting forecast scheme that smooths random fluctuations in a time series.

Holt (2004c)8 extended the exponential averaging approach to decompose the se-
ries further into seasonal and trend components. Winters (1960) was the first to
put Holt’s theoretical work into practice by empirically testing the forecast accu-
racy of sales data of a construction company, a cooking utensil manufacturer and
a paint wholesaler. Today, this approach of forecasting seasonal and trend com-
ponents in time series analysis is called the Holt-Winters method (Holt 2004a;b;
Ord 2004).

The Holt-Winters method and its derivatives are popular in a wide range of ap-
plications and have yielded robust results —for example, in the M3-competition
(Makridakis and Hibon 2000). The method has been employed in marketing to
optimize the use of marketing channels in a mining company (Strang 2012), to
analyze the impact of item-level radio frequency identification (RFID) on stock-
outs (Gaukler 2010), to forecast aggregate retail sales (Alon, Qi, and Sadowski
2001), and to forecast the number of tourists traveling to Hawaii (Geurts and
Ibrahim 1975). In addition, Hardie, Johnson, and Fader (1993) use exponentially
smoothed temporal reference prices to model loss aversion and preference depen-
dence effects on brand choice.

The basic exponential model is described by the equations below, closely follow-
ing Holt’s (2004c) notation:

S̄t = A[St +(1−A)St−1 +(1−A)2St−2 +(1−A)3St−3...] (3.14)

S̄t = ASt +(1−A)S̄t−1 (3.15)

7 The weights are assumed to lay strictly between 0 and 1.
8 The paper is a reprinted version of the 1957 report to the Office of Naval Research (ONR

52).
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Here A is a constant between 0 and 1, St are the observed sales at time t and S̄t

is the estimate of the expected value of the distribution. The parameter A deter-
mines how fast the estimate adapts to changes. Equation 3.15 reflects the minimal
amount of data needed to update the forecast. Only the expected value for the pre-
vious period S̄t−1 and the current level of sales are required to compute the new
expected value for the current period S̄t .

S̄t = APtSt +(1−A)S̄t−1 (3.16)

Pt = B
S̄t

St
+(1−B)Pt−N (3.17)

The inclusion of ratio seasonals extends the basic model to equations 3.16 and
3.17 (Holt 2004c). S̄t denotes the smoothed and seasonally adjusted sales rate.
Pt is the seasonal adjustment ratio for the t th periods. A and B are weights that
determine how fast the level of sales (A) and the seasonal pattern (B) change. N is
the length of the periodic pattern. The system of equations can be solved to yield
the corresponding update formulas (Holt 2004c):

S̄t =
A(1−B)
1−AB

Pt−NSt +
1−A

1−AB
S̄t−1 (3.18)

Pt =
1−B

1−AB
Pt−N +

B(1−A)
1−AB

S̄t−1

St
(3.19)

The Holt-Winters full model then adds a trend component to the seasonal model:

S̄t = APtSt +(1−A)Rt S̄t−1 (3.20)

Rt =C
S̄t

S̄t−1
+(1−C)Rt−1 (3.21)

The trend component Rt is the adjustment ratio for the t th period, and C is the
parameter that determines the weight of past periods. The trend ratio implies a
constant percentage change. Including the trend ratio yields the following update
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formulas:

S̄t =
A(1−B)

1−AB− (1−A)C
Pt−NSt +

(1−A)(1−C)

1−AB− (1−A)C
S̄t−1Rt−1 (3.22)

Pt =
(1−B)(1− (1−A)C)

1−AB− (1−A)C
Pt−N +

B(1−A)(1−C)

1−AB− (1−A)C
S̄t−1

St
Rt−1 (3.23)

Rt =
AC(1−B)

1−AB− (1−A)C
Pt−NSt

S̄t−1
+

(1−C)(1−AB)
1−AB− (1−A)C

Rt−1 (3.24)

Some authors prefer to use a non-lagged St in Equation (3.17). Ord (2004, p. 2)
states that in order to produce a viable state-space model "... the use of lagged val-
ues should become standard practice, although the differences will be small."

Instead of the above multiplicative model, an additive variant can be derived in
a similar fashion (Holt 2004c; Winters 1960). There have been numerous varia-
tions on the original Holt and Winters Model, most notably a dampened version
by Taylor (2003). It addresses the observation that in long-term forecasting the
persistence of the trend component leads to increasingly larger error (De Gooijer
and Hyndman 2006).

Mentzer (1988) and Mentzer and Gomes (1994) propose an adaptive extended
exponential smoothing that recalculates the model parameters after each forecast
update. Simple exponential smoothing with drift is a variation of Holt’s method
with the trend parameter set to zero, whereas the "Theta" method is equivalent
to exponential smoothing with the drift set to half the slope of the data’s linear
trend (De Gooijer and Hyndman 2006). Corberán-Vallet, Bermúdez, and Vercher
(2011) formulated a seemingly unrelated regression model for multivariate time
series, that includes the Holt-Winters model as a special case for forecasting in-
dustrial production in three communities in Spain.

A major drawback of these models in their original form, in spite of their solid
forecast results, is the lack of uncertainty propagation. Hyndman et al. (2002)
compiled a taxonomy of exponential smoothing models whose forecasts are equiv-
alent to those of corresponding state-space models. The state-space models enable
the computation of prediction intervals.
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3.2.3 AR, ARMA, ARIMA and SARIMA Models

Linear stochastic models that describe the covariance structure of time series
are widely used to analyze the dynamics of practically occurring phenomena.
Specifically, the AR (autoregressive), ARMA (autoregressive moving average)
and ARIMA (autoregressive integrated moving average) family of models has
been employed in settings as diverse as telecommunication, traffic, employment,
energy, truck sales, and health care tracking (De Gooijer and Hyndman 2006).

In marketing, Thaivanich, Chandy, and Tellis (2000) model the effects of di-
rect television advertising for a toll-free referral service with an ARMA model.
Franses (1991) forecasts the primary demand for beer in the Netherlands using an
extended ARMA model. Holak and Tang (1990) use an ARIMA model to exam-
ine the influence of advertising on U.S. cigarette industry sales. This approach has
been popularized by the works of Box and Jenkins, whose notation I will follow
(Box and Jenkins 1976, p. 51):

z̃t = φ1z̃t−1 +φ2z̃t−2 + ...+φpz̃t−p +at (3.25)

Equation 3.25 is called an autoregressive (AR) process of order p. In this model,
the current value of the process z̃t is a finite, linear combination of the previous
values, the weights φ , and a shock at . The shocks are usually modeled as a white
noise process with constant variance, mean zero and uncorrelated over time. The
same relationship can be expressed using a backward shift operator B, which is
defined as Bz̃t = z̃t−1 and Bmz̃t = z̃t−m. Setting:

φ(B) = 1−φ1B−φ2B2− ...−φpBp (3.26)

the AR process can be rewritten as:

φ(B)z̃t = at (3.27)

Another perspective is to view the observed time series as dependent on a finite
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number of weighted shocks:

z̃t = at−θ1at−1−θ2at−2− ...−θqat−q (3.28)

This Equation (3.28) is called a moving average (MA) process of order q. If one
analogously to φ(B) defines θ(B) in Equation (3.26), then one can write the MA
model as:

z̃t = θ(B)at (3.29)

In time series modeling it is often advantageous to combine the AR and MA mod-
els, because the combined model allows the representation of a time series with
a lesser number of parameters. This approach leads to a mixed autoregressive-
moving average model (ARMA) that can be written as:

z̃t = φ1z̃t−1 +φ2z̃t−2 + ...+φpz̃t−p +at−θ1at−1−θ2at−2− ...−θqat−q (3.30)

φ(B)z̃t = θ(B)at (3.31)

In practice, adequate representation of actually occurring stationary time series
can often be obtained with AR, MA or ARMA models with p,q ≤ 2 (Greene
2008, p. 717; Box and Jenkins 1976, p. 11). Whereas finite MA processes are
always stationary, the stationarity of the ARMA process depends on the AR part
(Greene 2008, p. 721). The solutions of the characteristic Equation φ(B) = 0
(treating B as a complex variable) are related to the stationarity and causality of
the process. If all roots lie outside the unit circle, the process is stationary (Box
and Jenkins 1976, p. 54). If some of the solutions are within the unit circle, the
process may be stationary but not causal.

The ARMA framework can also be applied to a class of nonstationary processes
if the dth difference of the time series is stationary (Box and Jenkins 1976, p.
88):

φ(B)(1−B)d z̃t = θ(B)at (3.32)

Equation 3.32 describes an autoregressive integrated moving average (ARIMA)
process of order (p,d,q). The term "integrated" stems from interpreting the orig-
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inal time series as a summing up of the corresponding ARMA process d times
(Box and Jenkins 1976, p. 55).

The principle of the dth differencing operator (1−B)d = ∇d can be extended to
seasonal differencing. If s is the seasonal lag (e.g., 12 for monthly data) and
∇s = 1− Bs, then this equation relates a seasonal component to past seasonal
components (e.g. a month to the same month in past years) (Box and Jenkins
1976, p. 304):

Φ(Bs)Q∇
D
s z̃t = Θ(Bs)Pαt (3.33)

The errors αt are now correlated (e.g., consecutive months of one particular year)
and can be modeled with the standard ARIMA process:

φ(B)p∇
d
αt = θ(B)qαt (3.34)

Box and Jenkins (1976) call Equation (3.33) the "between periods" development
of the series and Equation (3.34) the "within periods" part of the process (p. 323).
The resulting multiplicative process (SARIMA) is of order (p,d,q)×(P,D,Q).

The ARIMA family of models has been extended to multivariate time series data
in the form of vector AR (VAR), vector ARMA (VARMA) and vector ARIMA
(VARIMA) models. De Gooijer and Hyndman (2006) note that in general VAR
models tend to suffer from "overfitting" and can provide poor out-of-sample fore-
casts, even though within-sample fit is good. One method of addressing these
issues is to put Bayesian priors on the parameters and their structure (BVAR).
Gefang (2014) uses a Bayesian doubly adaptive elastic net lasso for VAR shrink-
age. Canova (1993) proposes a BVAR for series that possess common patterns at
seasonal or other frequencies to forecast quarterly data of industrial production in
three European countries.

Unfortunately, these multivariate extensions typically assume that the individual
time series are dependent on each other and provide reliable estimates only for
a small number of interrelated time series. For example, Moriarty and Salamon
(1980) forecasts sales data of branded goods in four states by relating four ARMA
models through a seemingly unrelated regression. Takada and Bass (1998) per-
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formed multiple time series analysis with a VARMA model to examine three firms
and their competitive marketing behavior in an oligopolistic market. In contrast,
the Pareto/NBD and DMPT model families are used in marketing to forecast indi-
vidual purchase behavior and cross-sectional heterogeneity of hundreds or thou-
sands of customers.

3.2.4 Error-Correction, State-Space and Alternative Models

Researchers have used a number of other approaches for modeling time series data
that allow the inclusion of seasonal effects. Engle and Granger (1987) introduced
error-correction (EC) models for cointegrated time series analysis that relax some
of the assumptions of VARIMA models. For example, Franses (1994) extends a
deterministic Gompertz process with covariates and finds an error-correcting form
to model Dutch new car sales.

Another approach consists of state-space models characterized by relating system
and measurement equations to estimate state variables of dynamic systems (Xie
et al. 1997). The system equation is alternatively called a transition equation
because it describes the evolution of the state over time (Dagum and Quenneville
1993). The most well-known algorithm for these models is the Kalman filter,
which provides efficient one-step-ahead forecasts, prediction errors and associated
variances (De Gooijer and Hyndman 2006).

Van Everdingen, Aghina, and Fok (2005) use an augmented Kalman filter for
examining cellular phone adoption in 15 EU countries. Xie et al. (1997) use
this state-space approach to model the diffusion of new products for consumer
durables, medical equipment, and educational programs. Dagum and Quenneville
(1993) propose a seasonal Kalman filter based state-space model and apply it to
department store sales in Canada. Raynauld and Simonato (1993) propose a sea-
sonal Bayesian VAR (BVAR) using the Kalman filter framework to model the
coevolution of eight economic variables of the Federal Reserve Bank of Min-
neapolis. One advantage of the state-space approach is that it provides a unifying
framework that can express any linear model, as such many of the exponential
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smoothing models can be restated as state-space models (De Gooijer and Hynd-
man 2006).

Dynamic nonlinear or regime-switching models represent another form of state-
space models —– ones that do not use the Kalman filter. Park and Gupta (2011)
use a state-space regime-switching model to analyze yoghurt sales and find that
price promotions offered during periods with a high purchase likelihood result in
greater sales increases than promotions offered during a period with low purchase
likelihood.

3.2.5 Hierarchical Time Series Analysis and Cross-Sectional
Heterogeneity

A hierarchical time series consists of multiple individual time series that are hi-
erarchically organized and can be aggregated at different levels (Hyndman et al.
2011). For example, all product sales of a brand in one store aggregate to the
brand-level sales for that store. All brands aggregate to store-level overall sales,
and all store-level sales in one country aggregate to national sales.

Typical schemes for hierarchical time series analysis operate either bottom-up or
top-down. The bottom-up approach forecasts the lowest level data first and then
aggregates these lower-level forecasts to higher levels. With the top-down ap-
proach, an aggregate forecast at the highest level is disaggregated to the lower
levels. Whereas there is little research that includes seasonal effects for these
models, a notable exception is Withycombe (1989), who used a top-down ap-
proach to forecast sales demand of peripheral equipment for computer systems.
He first aggregates all products to an overall product line sales history, then de-
rives the seasonal indices from these aggregated data and finally propagates this
information top-down, back to the individual products. Hyndman et al. (2011)
propose a combined approach that forecasts on all levels and then combines and
reconciles these forecasts.

The modeling of cross-sectional heterogeneity, which is a main feature of the
Pareto/NBD and DMPT-related marketing models of individual purchase behav-
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ior (see Section 3.1.2), can also be interpreted as a combined bottom-up, top-down
approach. For example, the NBD model views the purchase process on an indi-
vidual customer level as a Poisson process and captures the cross-sectional het-
erogeneity by a higher-level gamma distribution on the Poisson parameters. A
related examples from time series analysis literature is Böckenholt (1998), who
proposes a finite mixture of integer-valued autoregressive Poisson models to an-
alyze scanner panel data of powder detergents. His model facilitates the analysis
of heterogeneity and serial correlation with the effects of covariates. However,
researchers have yet to extend these approaches to include seasonal effects.

3.3 Heuristic Approaches for Predicting Customer
Behavior

3.3.1 Managerial Perspective on Heuristics

Shah and Oppenheimer (2008, p. 207) refer to heuristics as "methods that use
principles of effort-reduction and simplification", whereas Gigerenzer and Gaiss-
maier (2011, p. 454) see heuristics as "a strategy that ignores part of the informa-
tion, with the goal of making decisions more quickly, frugally, and/or accurately
than more complex methods." Heuristics can also be characterized as simple and
plausible psychological mechanisms of inference that a mind can carry out under
limited time and knowledge (Gigerenzer and Goldstein 1996) or simply as "Rules
of Thumb" (Fox 2015, p. 82)

These properties make heuristics particularly attractive tools for business man-
agers, who find themselves constrained by limited time and knowledge (Newell,
Weston, and Shanks 2003). In increasingly dynamic market environments, where
strategies that were successful in the past may no longer work in the future,
heuristics provide fast, frugal and robust methods of inference (Lee and Cum-
mins 2004), especially when considering the opportunity costs managers face
(Rieskamp and Hoffrage 2008). Heuristics exploit recurrent features of the envi-
ronment, while saving costs of information search and integration (Goldstein and
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Gigerenzer 2009; Gigerenzer 2006). The notion of an cognitive "adaptive tool-
box", a repertoire of fast and frugal heuristics, is gaining traction in academia and
practice (Gigerenzer 2001; Gneezy, Gneezy, and Lauga 2014; Sevilla and Kahn
2014).

There is some evidence from cognitive psychology that heuristics can perform
surprisingly well under external constraints (Rieskamp and Hoffrage 2008). For
some tasks heuristics outperform complex strategies that require more information
and computation (Gigerenzer and Gaissmaier 2011). In area of marketing Huang
(2012) finds that heuristics can perform at least as well as a probabilistic model
for customer prioritization; Wübben and von Wangenheim (2008) could not sup-
port superior performance of the Pareto/NBD compared to simple heuristics in
a number of scenarios; and Hagerty (1987) shows that under certain conditions
naive models’ forecasts can be as good as those of more complex linear mod-
els. It is noteworthy that Marshall (2015) proposes a heuristic to approximate the
parameters of the Pareto/NBD Model.

Models and heuristics are related by the fact that every heuristic can be stated as a
model, albeit a simple one. Makridakis and Wheelwright (1977) note that it is not
uncommon for naive forecast models to provide adequate accuracy in certain sit-
uations and that more sophisticated methods may not give sufficient improvement
in relation to cost. They also emphasizes the usefulness of naive models as a basis
for comparing alternative approaches. For this reason, I include a number of com-
monly used heuristics as a benchmark in my thesis. These heuristics operate in
the realm of the recency, frequency and monetary-value (RFM) framework.

3.3.2 Recency, Frequency and Monetary Value Heuristics

The classic RFM approach characterizes customer behavior and customer value
based on information about individual customers’ past purchase behavior (Kumar
and Reinartz 2012, p.111). RFM based heuristics typically do not rely on com-
plete and detailed purchase histories, but on aggregate measures that reflect how
recently and how frequently a customer purchases, and on the total amount of his
spending (Colombo and Jiang 1999).
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RFM stands for the following three metrics upon which customers are evalu-
ated:

1. Recency is a measure of how much time has elapsed since a customer’s last
purchase;

2. Frequency is the number of purchases by a customer in a particular time
frame; and

3. Monetary value stands for the average amount spent by the customer in past
transactions.

There are many widely applied managerial heuristics that operate on one or more
of these three metrics under the general assumption that customers will continue
to behave according to their previous behavior (Venkatesan and Kumar 2004). For
example, assuming that a customer will continue to purchase at his past average
purchase rate is a basic heuristic.

Companies often rank-order their customers according to purchase frequency or
the average monetary value of purchases to prioritize their customer investment
(Roberts and Berger 1999). Such a heuristic is based on the believe that currently
high-ranked customers account for a substantial part of a company’s future profit
and that low-ranked customers are believed to be responsible for a large share
of a company’s future costs (Mulhern 1999). This practice is closely related to
the 80/20 heuristic that expresses the common belief that 80% of a firm’s profits
come from the top 20% of the customers. A more recent variant is the 220/20
rule. It states that 20% of the customers provide 220% of the profits, implying
that a large number of customers destroy value (Gupta and Zeithaml 2006).

A rule of thumb that operates solely on recency is the "hiatus" heuristic, which
predicts if a customer is about to defect (Gigerenzer and Gaissmaier 2011). Hiatus
describes the amount of time that has passed since a customer’s last purchase. If
this timespan exceeds a certain cutoff value, a company considers a customer
to be at risk of defection or as already defected. Airlines, apparel retailers and
industrial buyers use this heuristic to initiate targeted marketing actions (Wade
1988; Wübben and von Wangenheim 2008; Schmittlein and Peterson 1994).
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Combined RFM approaches that take all three metrics into consideration leave
the realm of simple heuristics, but have gained some attention from practitioners
and researchers. A common procedure described by Gönül and Hofstede (2006)
is to assign customers a score on each of the RFM dimensions. Then customers
are grouped based on their respective RFM scores. For example, customers are
divided into five groups of equal size according to the recency metric. The topmost
group is assigned a recency score of 1, the next group is assigned a score of 2
and so forth, until the bottommost group is assigned a score of 5. The same
grouping and coding is then performed on frequency and monetary value metrics.
In the end, there will be 5× 5× 5 RFM score-groups to which a customer may
belong.

The RFM technique is helpful to organizations for identifying and targeting valu-
able and for avoiding investments in unprofitable customers. It has seen widespread
industry applications (Berry and Linoff 2004; Hughes 1996; Reutterer et al. 2006).
For example, mail-order businesses often use RFM metrics to determine which
customers should get a catalog (Gönül and Hofstede 2006).

To improve segmentation results, researchers extended the RFM technique with
additional behavioral measures (Kao et al. 2011), RFM pattern recognition (Hu
and Yeh 2014), weighing of RFM variables (Nikumanesh and Albadvi 2014), or
more recently the "clumpiness" of purchases (Zhang, Bradlow, and Small 2015;
Kumar et al. 2015).



Chapter 4

Bayesian Modeling Approach and
MCMC Methodology

4.1 Hierarchical Models and Bayesian Inference

The challenge in fitting a hierarchical model is estimating the data-level coeffi-
cients along with the higher-level model parameters (Gelman and Hill 2007, p.
345). Hierarchical models can become very complex and traditional asymptotic
methods provide solutions only to specific problems without generalization (Nt-
zoufras 2009, p. 1).

The most direct and parsimonious way to approach hierarchical models is through
"Bayesian inference", a method where higher-level model parameters are treated
as prior information in estimating lower-level coefficients (Gelman and Hill 2007,
p. 346). For a long time the intractabilities involved in calculation the posterior
distribution limited Bayesian inference to simple models with mostly conjugate
priors that could be handled analytically (Rossi, Allenby, and McCulloch 2005, p.
1). The development of Markov Chain Monte Carlo (MCMC) methods changed
this, it is now possible to estimate complicated models that describe and solve
problems that could not be solved before through traditional means (Gelfand and
Smith 1990).
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The Bayesian approach considers all parameters θ of a model as random vari-
ables with prior distribution π(θ) (Ntzoufras 2009, p. 1). In contrast, traditional
statistical inference regards unknown parameters as fixed constants and infers an
estimate, given the data D, by maximizing the likelihood P(D|θ).

Prior distributions in Bayesian statistics can be interpreted in various ways, for
example as results of previous experiments, subjective knowledge or as quantified
ignorance in form of a non-informative or vague prior. The prior distribution π(θ)

is combined with the traditional likelihood P(D|θ), given the data D, to obtain
the posterior distribution π(θ |D) of the parameter of interest θ by application of
Bayes’ Theorem:

π(θ |D) =
P(D|θ)π(θ)

P(D)
(4.1)

P(D) =
∫

θ

P(D,θ)dθ =
∫

θ

π(θ)P(D|θ)dθ (4.2)

The equation can be restated in proportional terms, because P(D) is just a nor-
malizing constant that keeps the integral of the posterior density equal to one and
contains no information in itself:

π(θ |D) ∝ P(D|θ)π(θ) (4.3)

The Equation reflects the Bayesian learning process: Posterior knowledge π(θ |D)

about a parameter θ is the result of prior knowledge π(θ) and new data D in view
of the prior P(D|θ).

The posterior π(θ |D) only depends on the data through the likelihood P(D|θ)
implying that Bayesian inference adheres to the likelihood principle (Gelman et al.
2003, p. 9). The likelihood principle posits that two likelihood functions for a
given sample contain the same information about θ if they are proportional to one
another (Berger and Wolpert 1988, p. 19).

It is possible to obtain classical point estimates through the use of large sample
asymptotics. If the sample size n of the data D, for example through simple repli-
cation, increases to infinity the posterior π(θ |D) approaches normality with mean
θ0 and variance (nJ(θ0))

−1 under certain regularity and identification conditions
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(Gelman et al. 2003, p. 107). J denotes the Fisher information matrix. Because
n→∞ additionally implies that the likelihood dominates the prior and that the dis-
tance between the posterior mode and θ0 approaches zero, one obtains an estimate
for the maximum likelihood (Lunn et al. 2012, p. 54). This result, which is also
known as the Bernstein van Mises Theorem or Bayesian Central Limit Theorem,
allows the Bayesian approach to produce classical ML estimates and confidence
regions if desired (Boucheron and Gassiat 2009).

The Bayesian approach is particularly well suited for complex hierarchical mod-
els, because higher-level model parameters can act as priors for lower-level parts
of the model. In a Bayesian framework, this concept can be applied recursively
over a number of levels, down to the data-level model. The parameters defined on
the highest level of the model are called hyper-parameters and specify the initial,
often non-informative, prior distributions. The ability to parsimoniously specify
and estimate nested hierarchical models of high complexity is the reason why
such models are often referred to as hierarchical Bayesian (HB) models (Allenby,
Bakken, and Rossi 2004).

Purchase frequency models, for example, assume that observed individual pur-
chases reflect an underlying process that, if understood, allows the prediction of
future individual customer behavior. At the same time, on a higher-level, these
individual processes may be linked through a cross-sectional model of all cus-
tomer’s behavior. The NBD model (Ehrenberg 1959), for example, on the data-
level, assumes that observed purchases xi in time T by an individual customer i

are distributed Poisson with purchase rate λiT :

xi ∼ Poisson(λiT )
p.m.f.

 e−λiT (λiT )xi

Γ(xi +1)
(4.4)

On the next higher level, the model assumes customers to be heterogeneous in
their purchase rates according to a gamma distribution. In a Bayesian framework
the cross-sectional heterogeneity of the NBD model can be seen as a gamma prior
on the λi’s:

λi ∼ Gamma(r,α)
p.d.f.

 e−λiαλ

r−1
i

αr

Γ(r)
(4.5)
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A third level, that specifies the priors and their hyper parameters for the lower level
gamma distributions would complete a Bayesian formulation of the model as for
example the hierarchical Bayesian version of NBD model by Lichung, Chien-
Heng, and Allenby (2003).

4.2 Markov Chain Monte Carlo Simulation

The marginal posterior densities of the parameters of interest are difficult or of-
ten impossible to derive analytically for even simple hierarchical models of prac-
tical relevance (Ntzoufras 2009, p. 32). Additionally, hierarchical marketing
models that feature several parameters for each individual customer span a high-
dimensional parameter space with at least as many dimensions as there are cus-
tomers (Rossi, Allenby, and McCulloch 2005, p. 49). Fortunately however, itera-
tive approximation through MCMC simulation provides by far the most powerful
and flexible class of algorithm to yield accurate estimates of the posterior distribu-
tion even for complex multi-level models with high-dimensional parameter spaces
(Lunn et al. 2012, p. 58).

The main idea of the MCMC approach is to reduce the problem of sampling the
parameter vector θ from a high-dimensional posterior distribution of unknown
and often intractable form, to sequentially sampling from simpler univariate or
low-dimensional distributions. The goal is to approximates the posterior distri-
bution π(θ |D), the target distribution, by the limiting invariant distribution of the
Markov sequence (Gelman et al. 2003, p. 286).

A sequence of random variables {θ (t)}t≥0 is called a Markov Chain, if:

P(θ (t+1)|θ (t),{θ (n) : 0≤ n≤ t−1}) = P(θ (t+1)|θ (t)) (4.6)

This states that for any θ (t), the past {θ (n) : n ≤ t−1} and the future {θ (n) : n ≥
t + 1} are independent, and that the present θ (t) only depends on θ (t−1) (Neal
1993, p. 36). A proper Markov Chain is defined by the initial θ (0) and by the
transition kernel P(θ (t+1)|θ (t)) that specifies the conditional distribution of θ (t+1)



4.2 Markov Chain Monte Carlo Simulation 56

given θ (t). For repeated transitions, if t → ∞, a large class of Markov Chains
are ergodic and converge to their equilibrium or invariant distribution under mild
assumptions of irreducibility and aperiodicity (Neal 1993, p. 38, 45). Under these
conditions, the independence of future and past θ additionally ensures that the
resulting target distribution is independent of the initial θ (0) (Lunn et al. 2012,
p. 63). A number of sampling algorithms have been devised to produce such
irreducible and aperiodic Markov Chains.

The Gibbs sampler by Geman and Geman (1984) and Gelfand and Smith (1990)
is an algorithm for generating an irreducible, aperiodic and Markov Chain that
has a high dimensional stationary distribution, that only requires sampling from
univariate or low-dimensional distributions. With each iteration the Gibbs sampler
updates a component of the vector θ with a sample from its marginal distribution,
conditional on the current value of all other components (Neal 1993, p. 47). Let
π(θ ,D),θ ∈ S ⊆ ℜp denote the joint posterior distribution with θp being the p’s
component of θ that has a conditional posterior distribution:

πp(θp|θ1,θ2, ...,θp−1,θp+1, ....,θp,D) (4.7)

Gibbs sampling uses the following steps to approximate the joint posterior by
sequentially updating the components of θ (Chib and Greenberg 1996):

1. Set i = 0 and initialize θ 0 with a set of values: θ 0 = (θ
(0)
1 ,θ

(0)
2 , ...,θ

(0)
p )

2. Sample

θ
(i+1)
1 from π1(θ1|θ

(i)
2 ,θ

(i)
3 , ...,θ

(i)
p ,D)

θ
(i+1)
2 from π2(θ2|θ

(i+1)
1 ,θ

(i)
3 , ...,θ

(i)
p ,D)

θ
(i+1)
3 from π3(θ3|θ

(i+1)
1 ,θ

(i+1)
2 ,θ

(i)
4 ...,θ

(i)
p ,D) (4.8)

...

θ
(i+1)
p from πp(θp|θ (i+1)

1 ,θ
(i+1)
2 , ...,θ

(i+1)
p−1 ,D)

3. Set i = i+ 1 and repeat from step 2 until the a predetermined number of
iterations is reached.
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The number of iterations it takes the Markov Chain to overcome the influence of
the initial starting values θ (0) before converging to the target distribution is called
the "burn-in" period. If the chain converged, the samples reflect the posterior
distribution and can be used to summarize the target density by graphical means
or summary statistics. For example, the expectation of a parameter of interest
can easily be approximated by taking the average over the samples drawn for
that parameter. Under general conditions, the ergodicity of the Markov Chain
guarantees that this estimate is consistent and satisfies the central limit theorem as
the number of samples goes to infinity (Chib and Greenberg 1996).

Another method often used to sample from non-conditionally conjugate distribu-
tions is the Metropolis Hastings (MH) algorithm (Metropolis et al. 1953; Hastings
1970). Gibbs sampling can be viewed as a special case of this more general proce-
dure (Gelman et al. 2003, p. 293). The MH algorithm generates the next candidate
value of the Markov Chain from a proposal density, which is then accepted with
probability α or rejected with probability (1−α). The acceptance probability is
the relative ratio between the target density at the candidate value to the target
density at the current value (Ntzoufras 2009, p. 43):

1. Set i = 1 and initialize θ 0 with a set of values.

2. Set θ = θ (i−1)

3. Sample candidate parameter value θ ′ from a proposal distribution9 Q(θ ′|θ)

4. Calculate acceptance probability α:

α = min(1,
P(θ ′|D)Q(θ |θ ′)
P(θ |D)Q(θ ′|θ)

) (4.9)

= min(1,
P(D|θ ′)π(θ ′)Q(θ |θ ′)
P(D|θ)π(θ)Q(θ ′|θ)

) (4.10)

5. Update θ (i) = θ ′ with probability α; otherwise reject and set θ (i) = θ

9 If the proposal distribution is symmetrical, Q(θ ′|θ)=Q(θ |θ ′), the Metropolis Hastings algo-
rithm collapses into a pure Metropolis algorithm. In this case the acceptance rate is calculated
by: α = min(1, P(θ ′|D)

P(θ |D) ).
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6. Set i = i+ 1 and repeat from step 2 until the a predetermined number of
iterations is reached.

The MH algorithm will converge to its equilibrium distribution regardless the
choice of the proposal distribution Q, if it is positive over the whole support of
the target distribution. In practice the proposal acceptance rate α benefits from
a carefully chosen and tuned, yet easy to sample, proposal distribution (Gelman
et al. 2003, p. 307).

The above description of the algorithm block-updates the complete vector θ , a
component wise update, that applies MH to each or several components of θ , is
often used within a Gibbs framework. This method is called "Metropolis within
Gibbs" and is used to further reduce the dimensionality of the sampling distribu-
tions involved (Ntzoufras 2009, p. 45).

Metropolis-Hastings within Gibb already enables the approximation of many tar-
get posterior distributions of complex models within the Markov-Chain Monte
Carlo framework. Additionally there are a number of sampling techniques that
have been developed to improve convergence rates and/or efficiently handle spe-
cific distributions. For example, the "slice-sampler" (Neal 1997) is a general pro-
cedure to sample from one-dimensional conditional distributions, the "reversible
jump sampler" allows trans-dimensional Markov chain simulation (Green 1995),
or Hybrid/Hamiltonian Monte Carlo (Brooks et al. 2011, pp. 113-160) replaces
the random walk with a momentum directed exploration of the target distribution.
Hamilton Monte Carlo sampling can be more efficient and robust for models with
complex posteriors (Carpenter et al. 2015). While these methods rest on the foun-
dation that theoretically "long run" convergence is guaranteed, practical consider-
ations still play an important role in establishing if a finite Markov-Chain Monte
Carlo simulation sufficiently converged to the target posterior distribution.

4.3 Diagnostics of Markov Chain Convergence

In contrast to maximum likelihood estimation or ordinary least squares methods,
which yield point estimates, "convergence" in a Bayesian framework refers to the
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approximation of target posterior distributions (Congdon 2003, p.18). Most stan-
dard econometric models have the desirable properties to ensure theoretic ergod-
icity of the Markov Chain, so that the simulated Markov Chain converges (Chib
and Greenberg 1996). But in practice, the speed of convergence and the assess-
ment if convergence is sufficiently reached are important issues. Generally the
rate of convergence is subject to several influences and generally cannot be prede-
termined (Gelman et al. 2009). For example, highly autocorrelated Markov chains
require many iterations to fully navigate the target distribution and the length of
the burn-in phase depends on the choice of initial values, the data and the model
itself (Braun and Damien 2015). Finite machine precision and practical compu-
tational limitations in conjunction with multi-modal posterior distributions may
lead to situations where the Gibbs sampler fails to visit all modes, even though
theoretically possible (Rossi, Allenby, and McCulloch 2005, p. 100).

Figure 4.1 illustrates different scenarios that can arise in one and two chain MCMC
simulations. Generally, a trace plot shows draws from the target marginal poste-
rior distribution for a parameter (y-axis) over a number of iterations (x-axis). The
first two trace plots (Figure 4.1 a and b) depict single chain MCMC simulations for
the same parameter. The shape of trace plot (a) indicates that the range of values
drawn in the first iterations is different from that of the last iterations. Also with
later iterations the average value drawn seems to visibly increase, forming a trend.
These aspects are a clear sign that the chain did not converge in the first 2,000 it-
erations. The trace plot in Figure 4.1 (b) shows the same MCMC simulation from
iteration 3,000 to 8,000. Here the trace plot resembles a "caterpillar" pattern, that
exhibits no visible trends and a stationary range of values and variance. Such a
pattern usually indicates convergence.

In some cases though a trace-plot might seem stationary with constant variance
over a large number of iterations before the Gibbs sampler starts to explore an-
other region of the posterior. Therefore, it is common practice to use more than
one chain to simulate from the Markov chain. Multiple chains with dispersed
starting values do not only allow to assess individual chain convergence, but also
if the chains converge relative to each other. Figure 4.1 (c) shows a case where
two chains are simulated in parallel. The red chain seems relatively stable without



4.3 Diagnostics of Markov Chain Convergence 60

(a) Single Chain Not Converged
0 500 1000 1500 2000

al
ph

a[
10

0]
-5

.0
0.

0
5.

0
10

.0

(b) Single Chain Converged
3000 4000 6000 8000

al
ph

a[
10

0]
2.

0
4.

0
6.

0
8.

0

(c) Two Chains Not Converged
800 1000 1200 1400 1600

si
gm

a
0.

8
1.

0
1.

2
1.

4
1.

6

(d) Two Chains Converged
29999 35000 40000

si
gm

a
0.

6
0.

8
1.

0
1.

2
1.

4

Figure 4.1: Trace Plots of Converged (b+d) and Non-Converged (a+c)
Markov Chains for One Chain (a+b) and Two Chain Monte Carlo Sim-
ulations (c+d)

trends, and judging from that chain alone one might be mislead to assume conver-
gence. The blue chain however, seems much less stationary and thus, has not yet
converged. Much more importantly, though, the two chains have not converged
relative to each other. If inferences would be made from one of the chains it would
yield different results than those made from the other — clearly this should not
be the case for Markov chains from the same posterior target distribution. Finally,
Figure 4.1 (d) shows a much later stage of the simulation over a larger number
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of iterations. Here, the influence of the dispersed starting values have been over-
come and both chains have converged individually and relative to each other. It
is recommended practice to inspect the posterior trace plots to assess convergence
(Ntzoufras 2009; Jen, Chou, and Allenby 2009; Abe 2009; Rossi, Allenby, and
McCulloch 2005; Congdon 2003).

Additionally, a number of numerical metrics have been developed to assess the
degree to which a MCMC simulations has converged towards the target distribu-
tion (e.g., Cowles and Carlin 1996; Brooks and Gelman 1998). The Gelman and
Rubin method is based on multiple-chain sampling from dispersed starting val-
ues and relates the within-chain variation to the between-chain variation (Gelman
and Rubin 1992). It operates on the marginal distributions of the scalar param-
eters of interest and uses an analysis of variance (ANOVA) approach to estimate
the pooled posterior variance V̂ from the between- and within-chain variability
(Ntzoufras 2009, p. 144):

V̂ =
T ′−1

T ′
WSS+

BSS
T ′

κ +1
κ

(4.11)

Here, κ denotes the number of chains, T ′ the number of iterations in each chain,
BSS/T ′ is the between-chain variance and WSS is the mean of the within-chain
variances.

R̂ =
V̂

WSS
=

T ′−1
T ′

+
BSS/T ′

WSS
κ +1

κ
(4.12)

Because, the real variance of the posterior is unknown WSS is used as an (under)
estimate, so that V̂/WSS, is an (over) estimate of the scale10 reduction factor
R̂ (Gelman and Rubin 1992). As the MCMC simulation converges to its target
distribution, and if the number of iterations is large enough, R̂ converges to 1.
This idea was refined by Brooks and Gelman (1998) to account for the sampling
variability in the variance estimates. If the estimated degrees of freedom for the

10 Technically it is an variance reduction factor.
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pooled posterior variance V̂ are denoted by d, then:

R̂c =
d +3
d +1

R̂ (4.13)

This Brooks-Gelman-Rubin (BGR) statistic indicates convergence if the BGR ra-
tio R̂c < 1.1 (Brooks and Gelman 1998; Carpenter et al. 2015). It is the most
widely used statistic to assess convergence. The concept of "effective sample
size" is derived from the BGR approach and estimates the number of independent
samples (Gelman et al. 2003, p. 298):

ne f f = κT ′(V̂/BSS) (4.14)

For example, highly autocorrelated chains tend to have small effective sample size
relative to the number of iterations. It can also be useful to have an estimate of
the burn-in time before sampling (Chib and Greenberg 1996), for example, by
analyzing the rate of convergence of the Markov Chain with the target density
Raftery and Lewis (1992).

4.4 Measures of Forecast Accuracy

4.4.1 Measures of Forecast Accuracy and Aggregation

The measurement of predictive performance is based on a number of error metrics
commonly used in literature. Generally, in this thesis, the observations are split
into two subsamples: a training sample and a hold-out sample. The hold-out data
is only used for validation of model forecasts, while the learning sample is used
to estimate the model parameters. Let x j denote the hold-out observation at time
j, let f j denote the model forecast for time j, and let F denote the length of the
hold-out period. With the definition of the errors as e j = x j− f j, the error metrics
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are as follows (Hyndman and Koehler 2006):

MSE = Mean Square Error =
F

∑
j=1

e2
j/F (4.15)

RMSE = Root Mean Square Error =
√

MSE (4.16)

MAE = Mean Absolute Error =
F

∑
j=1
|e j|/F (4.17)

MAPE = Mean Absolute Percentage Error =
100
F

F

∑
j=1

∣∣∣∣e j

x j

∣∣∣∣ (4.18)

In forecast literature, the MSE is also referred to as "average squared predictor
error" (ASPE), RMSE is sometimes referred to as "rooted average squared pre-
dictor error" (RASPE), and MAE is also called "mean absolute deviation" (MAD)
(Leeflang et al. 2000).

The main focus of this thesis are individual level forecasts of purchase frequen-
cies. In order to obtain a measure of accuracy for the full customer base of a
retailer the individual level errors have to be aggregated into an overall measure.
Thus, I compute the MSE and RMSE for every customer and aggregate by mean
and median. MAE and MAPE are calculated irrespective of the customer they
belong to, over the whole customer base. MAE is used for forecasts of purchase
frequencies as MAPE is not defined for observed values of zero. In case of the
forecast of interpurchase times, MAPE is used.

4.4.2 Classification and Receiver Operating Characteristic

The dichotomous prediction of customer inactivity (or activity) is essentially a
classification task. In managerial decision making, it is often not enough to just
assign a probability or measure that indicates the likelihood of a customer becom-
ing inactive (or equivalently staying active). Instead, a manager faces a clear-cut
decision if, for example, to offer specific customers incentives, or not. For this
reason a cutoff at a fixed threshold determined by the managerial task at hand has
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to be made. This is not only true for probabilistic models, but also for heuristic
approaches. For example the hiatus heuristic, which I use as a baseline, depends
on choosing a cutoff value for the length of the hiatus. If the length of the hiatus,
the time that elapsed since the last purchase, is longer than that predetermined
threshold a customer is classified inactive.

A test that would only assess a models performance at typical or so-called "natu-
ral" cutoff values — for example, a 50% or 95% certainty level for a probability
model or a 4-month cutoff for the hiatus heuristic — would be misleading, because
the true performance of a classifier can only be assessed over the whole range of
cutoff values. The receiver operating characteristic (ROC) addresses this issue, as
it plots the performance of a classifier over the whole range of its potential cutoff
values.

A ROC analysis is a two dimensional graph in which the true positive rate is plot-
ted on the Y axis and the false positive rate is plotted on the X axis for all possible
thresholds (Fawcett 2006). If for example the task is to classify customers ac-
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cording to their likelihood of remaining inactive in the future (the positive) then a
true positive is a customer who is classified as inactive and who remained inactive
during the testing period.

The number of true positives divided by the total number of positives is the true
positive rate, while the number of false positives divided by total number of neg-
atives, is the false positive rate (Fawcett 2006). A perfect classifier would have a
true positive rate of one and a false positive rate of 0. This implies that the perfect
ROC curves goes from (0,0) to (0,1) , and then to (1,1) — compare the green line
of a perfect classifier in Figure 4.2. ROC curves along the Diagonal (0,0)− (1,1)
represent random guessing — see the red line in Figure 4.2. Any classifier worse
than random guessing, which implies going through the lower right triangle, can
be improved upon by inverting the measure, mirroring it to the left-upper triangle.
The better the classifier the further out in the left upper triangle the ROC curve
will be — for example in Figure 4.2 the green perfect classifier is further out in
the upper left triangle than the blue actual classifier.



Chapter 5

Research Data

5.1 Empirical Settings and Datasets

This thesis focuses on forecasting individual customer purchase behavior in non-
contractual retail settings. I used three large-scale datasets from distinct and di-
verse retail settings to assess the forecast accuracy of the proposed models. The
data stem from a German DIY retail chain, a German apparel retail chain and an
online DVD/CD mail-order retailer (CDNOW). In all three cases the buyer-seller
relationship is noncontractual.

The DIY retailer provided 76,260 transactional data points from 2,460 customers
over a 31-month period beginning in August 2003 and ending in February 2006.
The product range includes, for example, power tools, paint, hardware and acces-
sories. The dataset from the apparel retailer contains transactions from customers
spanning a time period of two years. The data recorded 337,321 items purchased
from January 2002 until the end of December 2003 by 27,814 customers. The
product categories cover different types of apparel for both men and women, rang-
ing from low-price convenience clothing to high-price business attire.

As an additional reference, I include a publicly available dataset provided by
Bruce Hardie (2011). This data set describes the purchase histories of 23,570
customers of the online retailer CDNOW from January 1997 to June 1998 and has
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been used multiple times in previous research (e.g., Fader, Hardie, and Lee 2005b;
Glady, Lemmens, and Croux 2015; Jerath, Fader, and Hardie 2011; Wübben and
von Wangenheim 2008). I use the 1/10th subsample containing data on a cohort of
2,357 customers that has been made available for download from Bruce Hardie’s
website (Hardie 2011). The retailer engages in the sale of music CDs and movie
DVDs via mail-order exclusively from its website.

5.2 Data Processing for the Dynamic Model of
Purchase Timing

I converted the transactional data for each customer into individual level inter-
purchase times as this is the unit of measurement used by the Dynamic Model of
Purchase Timing. An interpurchase time denotes the time elapsed between two
consecutive purchases. This operation transforms a customer’s n purchase times
into n−1 interpurchase times with no loss of information if a customer bought at
least on two occasions.

In the case of the DVD/CD and the apparel retailer, I aggregated the data in terms
of calendar weeks. I refrained from using daily interpurchase times, to mitigate
the effects of purchase decisions being split into two different purchase events
as recommended by Allenby, Leone, and Jen (1999). This issue might arise if a
customer returns a good purchased a day earlier and during the same visit buys a
substitute product. In this case, one decision to purchase an item would register
as two purchase events, resulting in an additional interpurchase time. By choos-
ing weekly aggregation, this effect is reduced. For the DIY retailer, I calculated
monthly interpurchase times, because the data did not allow for a finer granular-
ity.

In order to ensure a true cohort of customers I included only those customers in
the analysis that made their first purchase within the first month of data. Due
to the DMPT’s use of lagged covariates in the temporal dynamic part of the
model (Venkatesan, Kumar, and Bohling 2007), only customers with at least
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four recorded interpurchase times in the learning period are selected for the fi-
nal set.

For the apparel retailer, this leaves 1,033 customers with 100 weeks of data that
are split into two parts: the first 60 weeks for the learning sample and 40 weeks
for the hold-out sample. In the case of the DIY retailer, this results in 31 months
of data that include a 21-month learning period and ten months of hold-out data
for 1,316 customers. The DVD/CD retailer data yielded 309 customers with 78
weeks of data, of which 62 weeks are used for learning and 16 are reserved as
hold-out.

The frequency histograms of the average interpurchase times of all customers for
each of the three datasets are depicted in Figures 5.1, 5.2 and 5.3. Figures 5.4, 5.5
and 5.6 contain the data of one individual customer (randomly chosen) for each
of the three datasets. These graphs illustrate a customer’s complete interpurchase
history. The spikes are periods of inactivity that the retailers want to avoid —
for example, by providing incentives to customers who might potentially become
inactive.

5.3 Data Processing for the Hierarchical Seasonal
Effects Models

I specified the Hierarchical Bayesian Seasonal Effects Models in terms of pur-
chases per time unit instead of interpurchase times. Also, these models, unlike the
DMPT, are not restricted to customers with a minimum of four purchases.

In order to ensure a true cohort of customers I included only those customers
in the analysis that made their first purchase within the first month of available
data. The granularity of the DIY retailer’s customers’ monthly purchase data was
taken as-is. In the case of the DVD/CD and the apparel retailers, I aggregated the
customer data in terms of months from their individual time-stamped purchases.
Monthly data (twelve seasonal components) reduce the computational demands
of weekly (52 seasonal components) or daily (365 daily components) granularity
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substantially. I reserved four month worth of data as hold-out.

In the case of the DIY retailer, this procedure results in 31 months of data that
include a 27-month learning period and four months of hold-out data for 1,329
customers. For the apparel retailer, this leaves 1,230 customers with 24 months of
data that are split into two parts: the first 20 months for the learning sample and the
last four months for the hold-out sample. The DVD/CD retailer data yielded 781
customers with 18 months of data, of which 14 months are used for learning and
four months are reserved as hold-out. The frequency histograms of the customers’
average number of purchases for each of the three datasets are depicted in Figures
5.7, 5.8, and 5.9.

Figures 5.10, 5.11, and 5.12 illustrate the resulting data for one randomly chosen
individual customer from each dataset. The graphs depict the number of monthly
purchases the customer made over time with successive years being shown in
overlay. This illustrates the seasonal nature of the data and the relative small
amount of seasonal overlap in the datasets. For example, the CDNOW dataset
features a total of only 18 months of data. With a four month hold-out period this
leaves 14 months of data with only a two months overlap between each year as a
sample for the model to learn a seasonal structure.



Chapter 6

Dynamic Model of Purchase Timing
and Customer Inactivity

This chapter comprises the development of an improved rule for the classic "Dy-
namic Model of Purchase Timing" (DMPT) by Allenby, Leone, and Jen (1999),
a receiver operating characteristic analysis of the classifications results, and a
benchmark against managerial heuristics. First, I will recap the original model
by Allenby and colleagues (1999), then I will discuss methods of deriving mea-
sures of customer inactivity and propose a refined Bayesian estimate of customers’
behavioral consistency with the model. Finally, I assess and discuss the predic-
tive performance of both the original and refined model in relation to baseline
managerial heuristics.

6.1 General Model Framework

Allenby, Leone, and Jen (1999) proposed the DMPT to address the cross-sectional
heterogeneity of customers and allow individual disaggregate forecasts of cus-
tomer behavior. The DMPT augments a hierarchical structure that relates individ-
ual interpurchase times and cross-sectional heterogeneity by a component mixture
with temporal dynamics. For clarity, I present the model in four steps that build
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upon each other and together form the complete model:

1. the hierarchical random-effects generalized gamma model;

2. the generalized gamma component mixture;

3. temporal dynamics and link function; and

4. prior distributions and hyperparameters.

6.1.1 Hierarchical Random-Effects Generalized Gamma Model

The DMPT, in contrast to the HSM and HSMDO, operates on interpurchase times
instead of purchase frequencies per time period. In this and the following sub-
sections (6.1.1-6.1.4) I follow the original model description by Allenby, Leone,
and Jen (1999) with a slightly adapted notation. In the one component case, if
ti j is the jth interpurchase time for customer i, then ti j is distributed generalized
gamma:

ti j ∼ GG(α,λi,γ)
p.d.f.



γ

Γ(α)λ
αγ

i
tαγ−1
i j e−(ti j/λi)

γ

(6.1)

The variables α and γ are overall group level parameters, while λi is an customer
specific individual parameter. The expected value of the generalized gamma dis-
tribution using this parameterization is given by:

E[GG(α,λi,γ)] =
Γ(α +1/γ)

Γ(α)
λi (6.2)

Assuming that there is only one component, the heterogeneity across customers is
captured by an inverse generalized gamma distribution (IGG) of the λi’s:

λi ∼ IGG(ν ,θ ,γ)
p.d.f.



γ

Γ(ν)θ νγ
λ
−νγ−1
i e−(1/θλi)

γ

(6.3)

The heterogeneity across customers is governed by the overall level parameters
ν ,θ , and γ of the IGG distribution. The expected value using this parameterization
is given by:

E[IGG(ν ,θ ,γ)] =
Γ(ν−1/γ)

Γ(ν)θ
(6.4)
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6.1.2 Generalized Gamma Component Mixture

The following component mixture extends the one component case to the k com-
ponent model. If the jth interpurchase time for customer i is a mixture of k gener-
alized gamma components, Equation (6.1) becomes:

ti j ∼∑
k

φi jkGG(αk,λik,γk)
p.d.f.

 ∑

k
φi jk

γk

Γ(αk)λ
αkγk
ik

tαkγk−1
i j e−(ti j/λik)

γk (6.5)

Each of the k components has it’s set of parameters αk,λik and, γk. The individ-
ual level parameters λik follow k IGG distributions with parameters νk,θk, and
γk:

λik ∼ IGG(νk,θk,γk)
p.d.f.



γk

Γ(νk)θ
νkγk
k

λ
−νkγk−1
ik e−(1/θkλik)

γk (6.6)

The link function φ determines the mixture proportions of the k generalized gamma
distributions. To allow more abrupt changes in the predicted interpurchase times,
φ is dependent on j through time-varying covariates that will be explained in the
next step.

6.1.3 Temporal Dynamics and Link Function

For k = 3, Allenby, Leone, and Jen (1999) specified φ so that the three components
correspond to three levels of purchase frequency. The first component is stationary
for every individual i over all interpurchase times j and reflects the probability of
an individual being in a "super-active" state of purchasing:

φi j1 = 1−Φ(β01i) (super-active state) (6.7)

Φ denotes the cumulative normal distribution. The resulting link function φi j1 is
the probability that customer i at the jth interpurchase time is in state 1, similar
to a traditional multinomial probit model. The other components model active
and inactive11 purchase behavior and are tied to time-varying covariates as fol-

11 "Inactive" is the original term used by Allenby, Leone, and Jen (1999). A more precise
description would be "least active" state.
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lows:

φi j2 = Φ(β01i)(1−Φ(x′i jβ2i +β02i)) (active state) (6.8)

φi j3 = Φ(β01i)Φ(x′i jβ2i +β02i) (inactive state) (6.9)

x′i j = (log(ti j−1), log(ti j−2), log(ti j−3))
′ (6.10)

The vector x′i j consists of three lagged interpurchase times that serve as time-
varying covariates. The vector β2i has three elements that reflect the coefficients
for the three lagged interpurchase times. The intercept term of this submodel is
β02i. The strength of the relationship between the lagged interpurchase times and
the state probabilities is allowed to vary between customers. Therefore, a random-
effects specification completes the model:

β
′
i = (β01i,β02i,β

′
2i) (6.11)

βi ∼MV N(β̄ ,V )
p.d.f.

 (2π)−d/2|V |−1/2 exp[−1

2(βi− β̄ )′V−1(βi− β̄ )] (6.12)

MVN is the multivariate normal distribution with the variance-covariance matrix
V , a positive definite matrix of size d×d with d = 5.

6.1.4 Prior Distributions and Hyperparameters

The Bayesian approach requires the specification of prior distributions for param-
eters: αk,νk,θk, β̄ ,V , and γk. The subscript k denotes the different mixture com-
ponents. For identification of the mixture model order is imposed on θk, so that
θ1 > θ2 > ... > θk. The parameters g and G have been set to g = 15 and G = 15I,
where I denotes the identity matrix. IW denotes the inverted Wishart distribution,
which is the natural conjugate prior for the variance-covariance matrix of a multi-
variate normal distribution. The parameterization of g and G ensures a relatively
diffuse prior (Rossi, Allenby, and McCulloch 2005, p. 30). The definition of
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priors, then, is:

θk ∼ IGG(a0,b0,γk) (6.13)

V ∼ IW (G,g) (6.14)

β̄ ∼MV N(~0,V ) (6.15)

The values for a0 and b0 are set to 10. With νk,αk ∼Uni f orm, γ1 = 1.0,γ2 = 1.4,
and γ3 = 0.8, the prior specification is complete.

6.2 Refined Rule for Forecasting Customer
Inactivity

In noncontractual settings one cannot observe customer defection directly through
expiration or cancellation of an ongoing contract. The DMPT model in its original
form yields predictions on expected interpurchase times, but does not directly pro-
vide information on customers becoming inactive as it lacks an explicit customer
lifetime model.

Typically, a customer relationship manager wants to decide at a point in time,
after observing j interpurchase times, whether a customer i is still active or not.
Allenby, Leone, and Jen (1999) suggest classifying a customer as inactive if the
right-censored spell ri (recency) — the time that elapsed since the last purchase —
is inconsistent with the model’s prediction. Accordingly, Reinartz, Thomas, and
Kumar (2005) consider a customer still active if the expected time until the next
purchase ti, j+1 exceeds the time elapsed since the last purchase ri; otherwise, the
customer is considered inactive. However, in this form, the rule does not account
for the variance of the prediction.

Another, more conservative cutoff rule proposed by Wu and Chen (2000a) applies
only if ri exceeds the predicted interpurchase time by three standard deviations.
If this is the case the customer is deemed to be permanently inactive. This ap-
proximation introduces bias, because the predictive posterior distribution is not
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guaranteed to be normal, it might not even be symmetrical.

I improve upon these rules by using the Bayesian structure of the model to directly
compute the probability of the prediction exceeding the right-censored spell ri.
The MCMC simulation yields the full posterior distribution of the predicted in-
terpurchase times and thus, includes all moments such as expectation, variance,
and skewness. This allows me to compute the exact probability of model incon-
sistency with the right censored spell of inactivity. This probability can be used to
impose any desired level of confidence on the drop-out of a customer.

The second improvement addresses a fundamental issue that arises because of the
finite length of the hold-out period. If the predicted interpurchase time ti, j+1 would
lead to a purchase well after the hold-out period, the above rules imply that this
behavior is model consistent. Clearly, if the predicted interpurchase time indicates
a purchase beyond r+ h, it must also be larger than r. In this case the customer
would be classified as active, but one would still expect him to make no purchases
during the hold-out period. This introduces bias as making no purchases during
the (finite) hold-out period is used as a proxy for customer inactivity.

In order to avoid this bias, I propose a measure that takes into account both causes
for observing no purchases during the hold-out period: (1) model inconsistent
behavior ti, j+1 < ri and (2) model consistent behavior ti, j+1 > ri + h. Given the
length of the hold-out period h, the elapsed time since the last purchase ri, and
the predicted interpurchase time ti, j+1, the probability that customer i makes no
purchases during hold-out is as follows12:

Pinactive
i = P(ti, j+1 < ri∨ ti, j+1 > ri +h) = 1−Pactive

i (ri ≤ ti, j+1 ≤ ri +h) (6.16)

Pactive
i (ri ≤ ti, j+1 ≤ ri +h) =

∫ ri+h

ri

K

∑
k=1

φi, j,kGG(ti, j+1|αk,λik,γk)dti, j+1 (6.17)

The calculation of the integral is straightforward in a Bayesian framework, be-
cause the MCMC procedure allows one to directly sample a prediction for ti, j+1

in each iteration. After the Markov chain converges, one can evaluate the indicator
(or step) function with the condition ri ≤ ti, j+1 ≤ ri +h for each sample of ti, j+1.

12 The conditioning is omitted for brevity.



6.2 Refined Rule for Forecasting Customer Inactivity 80

The average of the results approximates the above integral in Equation (6.17). If
t(n) denotes the nth sample for ti, j+1 in the Markov chain, then for sufficiently
large N:

Pactive
i (ri ≤ ti, j+1 ≤ ri +h)

=
∫ ri+h

ri

K

∑
k=1

φi, j,kGG(ti, j+1|αk,λik,γk)dti, j+1

≈ 1
N

N

∑
n=1

1ri≤t(n)≤ri+h (6.18)

The above is a more refined way to derive a measure for model inconsistent cus-
tomer behavior (1−Pactive

i ) given the purchase history, the right censored spell,
and the length of the hold-out period. Still, as the model does not contain an ex-
plicit customer lifetime model, I expect only a slight improvement compared to the
previous rules for the DMPT. In the course of the benchmark analysis, I compare
the receiver operating characteristics of the original and this refined classification
rule over all possible cutoff values.
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6.3 Data Analysis: Parameter Estimation and
Prediction

6.3.1 Convergence and Marginal Posterior Estimates

The training of the DMPT model consists of learning about the main parame-
ters’ posterior distributions. Training uses only data from the learning period of
each retail dataset, reserving the hold-out period for validation. I obtained the
marginal posterior distributions for the model’s parameters by a MCMC proce-
dure via Gibbs sampling. The DMPT estimation results are based on MCMC runs
with 2 chains starting from dispersed initial values.

The MCMC iteratively converges towards the true posterior distribution of the
parameter space and after convergence simulates the true posterior distribution. I
assessed the approximate convergence of the algorithm by visually inspecting the
trace plots of the posterior samples after burn-in and by evaluating the Brooks,
Gelman and Rubin (BGR) statistic (Gelman and Rubin 1992; Brooks and Gelman
1998).

For both CDNOW and the apparel data, the trace plots indicate convergence after
150,000 iterations, because there are no visible "trends" and both chains are suffi-
ciently mixed. In the case of the DIY retailer, 150,000 iterations were not enough
to establish convergence. The run was extended for a total of 400,000 iterations.
The trace plots show convergence after 350,000 iterations with no visible trends
and sufficiently mixed chains.

I validated Markov chain convergence by computing the BGR statistic for the
last 50,000 nodes. In all cases, the BGR ratios stayed between 0.98 and 1.02,
which indicates that the chains have converged to the true posterior distribution
(Gelman and Rubin 1992; Brooks and Gelman 1998; Cowles and Carlin 1996).
In addition, I simulated the posterior distribution using multiple single-chain runs
with over-dispersed starting values that converged to virtually identical parameter
values.
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I performed thinning by taking every fifth sample after the burn-in period to save
memory. Therefore, the posterior distributions are based on (50,000/5)× 2 =

20,000 samples. The resulting marginal posterior densities for the main param-
eters αk, θk, and νk are shown in Figures 6.1-6.3 for each of the retailers. The
full marginal posterior densities for the dynamic effect submodel, the vector β̄ ,
and the precision matrix prec.V are depicted in the Appendix (A.1–A.6). The
estimated summary statistics for the model parameters’ marginal posterior distri-
butions, including means, standard deviations, medians, and credibility intervals
are compiled in Tables 6.1–6.3.
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Figure 6.1: DMPT/Apparel Marginal Posterior Densities for αk, νk, and θk
after 50,000 Iterations per Chain (2 Chains, 150K Burn-In)
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Figure 6.2: DMPT/CDNOW Marginal Posterior Densities for αk, νk, and θk
after 50,000 Iterations per Chain (2 Chains, 150K Burn-In)
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Figure 6.3: DMPT/DIY Marginal Posterior Densities of αk, νk, and θk after
50,000 Iterations per Chain (2 Chains, 350K Burn-In)
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Table 6.1: DMPT/CDNOW Marginal Posterior Distribution Summaries for
MCMC Simulation after 50,000 Iterations per Chain (2 Chains, 150K Burn-In)

Summary of Marginal Posterior Distributions

node mean sd MC error 2.5% median 97.5%

alpha[1] 49.460 0.520 0.010 48.070 49.610 49.990
alpha[2] 3.951 0.527 0.033 3.069 3.898 5.071
alpha[3] 3.418 0.250 0.013 2.957 3.409 3.941
nu[1] 48.890 1.078 0.018 46.010 49.220 49.970
nu[2] 40.730 6.673 0.410 26.280 42.120 49.590
nu[3] 36.440 6.762 0.421 23.280 36.150 48.840
theta[1] 1.008 0.031 0.001 0.956 1.004 1.080
theta[2] 0.062 0.010 0.001 0.047 0.061 0.088
theta[3] 0.006 0.002 0.000 0.004 0.006 0.011
bar.beta[1] 1.188 0.090 0.002 1.022 1.185 1.373
bar.beta[2] −0.358 0.389 0.011 −1.129 −0.358 0.414
bar.beta[3] 0.794 0.344 0.010 0.211 0.762 1.579
bar.beta[4] 0.314 0.264 0.008 −0.179 0.302 0.867
bar.beta[5] 0.730 0.301 0.010 0.188 0.709 1.389
prec.V[1,1] 2.183 0.405 0.008 1.484 2.155 3.060
prec.V[1,2] −0.245 0.242 0.004 −0.734 −0.240 0.226
prec.V[1,3] −0.294 0.215 0.003 −0.740 −0.286 0.118
prec.V[1,4] −0.182 0.235 0.004 −0.655 −0.177 0.277
prec.V[1,5] −0.168 0.257 0.004 −0.685 −0.165 0.332
prec.V[2,1] −0.245 0.242 0.004 −0.734 −0.240 0.226
prec.V[2,2] 1.083 0.346 0.010 0.531 1.045 1.873
prec.V[2,3] 0.148 0.240 0.006 −0.334 0.150 0.618
prec.V[2,4] 0.074 0.250 0.006 −0.415 0.071 0.577
prec.V[2,5] 0.164 0.259 0.006 −0.347 0.163 0.680
prec.V[3,1] −0.294 0.215 0.003 −0.740 −0.286 0.118
prec.V[3,2] 0.148 0.240 0.006 −0.334 0.150 0.618
prec.V[3,3] 0.927 0.329 0.010 0.411 0.878 1.690
prec.V[3,4] 0.009 0.234 0.006 −0.466 0.013 0.462
prec.V[3,5] 0.097 0.251 0.007 −0.410 0.097 0.603
prec.V[4,1] −0.182 0.235 0.004 −0.655 −0.177 0.277
prec.V[4,2] 0.074 0.250 0.006 −0.415 0.071 0.577
prec.V[4,3] 0.009 0.234 0.006 −0.466 0.013 0.462
prec.V[4,4] 1.096 0.361 0.009 0.520 1.050 1.928
prec.V[4,5] −0.069 0.251 0.005 −0.579 −0.065 0.420
prec.V[5,1] −0.168 0.257 0.004 −0.685 −0.165 0.332
prec.V[5,2] 0.164 0.259 0.006 −0.347 0.163 0.680
prec.V[5,3] 0.097 0.251 0.007 −0.410 0.097 0.603
prec.V[5,4] −0.069 0.251 0.005 −0.579 −0.065 0.420
prec.V[5,5] 1.286 0.388 0.010 0.653 1.249 2.154
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Table 6.2: DMPT/Apparel Marginal Posterior Distribution Summaries for
MCMC Simulation after 50,000 Iterations per Chain (2 Chains, 150K Burn-In)

Summary of Marginal Posterior Distributions

node mean sd MC error 2.5% median 97.5%

alpha[1] 49.870 0.132 0.002 49.520 49.910 50.000
alpha[2] 49.650 0.350 0.007 48.700 49.760 49.990
alpha[3] 4.617 0.157 0.009 4.318 4.610 4.928
nu[1] 49.670 0.327 0.003 48.810 49.770 49.990
nu[2] 49.380 0.612 0.011 47.780 49.570 49.980
nu[3] 17.440 1.844 0.099 14.100 17.330 21.230
theta[1] 1.003 0.011 0.000 0.983 1.002 1.027
theta[2] 0.497 0.006 0.000 0.485 0.496 0.511
theta[3] 0.027 0.004 0.000 0.020 0.027 0.036
bar.beta[1] 1.017 0.034 0.001 0.951 1.017 1.084
bar.beta[2] 1.389 0.190 0.011 1.042 1.378 1.791
bar.beta[3] 0.110 0.086 0.004 −0.062 0.110 0.275
bar.beta[4] 0.199 0.081 0.004 0.044 0.197 0.365
bar.beta[5] 0.254 0.083 0.004 0.091 0.255 0.415
prec.V[1,1] 4.158 0.488 0.017 3.292 4.129 5.194
prec.V[1,2] −0.626 0.270 0.010 −1.196 −0.612 −0.126
prec.V[1,3] −0.233 0.305 0.010 −0.841 −0.235 0.379
prec.V[1,4] −0.532 0.305 0.010 −1.146 −0.528 0.055
prec.V[1,5] −0.397 0.312 0.011 −1.009 −0.397 0.220
prec.V[2,1] −0.626 0.270 0.010 −1.196 −0.612 −0.126
prec.V[2,2] 1.734 0.351 0.019 1.125 1.705 2.509
prec.V[2,3] 0.907 0.279 0.012 0.357 0.905 1.465
prec.V[2,4] 0.765 0.275 0.012 0.216 0.760 1.329
prec.V[2,5] 0.726 0.267 0.011 0.201 0.727 1.275
prec.V[3,1] −0.233 0.305 0.010 −0.841 −0.235 0.379
prec.V[3,2] 0.907 0.279 0.012 0.357 0.905 1.465
prec.V[3,3] 2.823 0.463 0.021 2.003 2.789 3.800
prec.V[3,4] 0.286 0.301 0.012 −0.302 0.287 0.882
prec.V[3,5] 0.750 0.293 0.011 0.198 0.739 1.350
prec.V[4,1] −0.532 0.305 0.010 −1.146 −0.528 0.055
prec.V[4,2] 0.765 0.275 0.012 0.216 0.760 1.329
prec.V[4,3] 0.286 0.301 0.012 −0.302 0.287 0.882
prec.V[4,4] 2.846 0.482 0.023 1.977 2.817 3.868
prec.V[4,5] 0.815 0.314 0.013 0.228 0.805 1.456
prec.V[5,1] −0.397 0.312 0.011 −1.009 −0.397 0.220
prec.V[5,2] 0.726 0.267 0.011 0.201 0.727 1.275
prec.V[5,3] 0.750 0.293 0.011 0.198 0.739 1.350
prec.V[5,4] 0.815 0.314 0.013 0.228 0.805 1.456
prec.V[5,5] 2.915 0.481 0.023 2.045 2.882 3.940
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Table 6.3: DMPT/DIY Marginal Posterior Distribution Summaries for MCMC
Simulation after 50,000 Iterations per Chain (2 Chains, 350K Burn-In)

Summary of Marginal Posterior Distributions

node mean sd MC error 2.5% median 97.5%

alpha[1] 49.880 0.116 0.001 49.570 49.920 50.000
alpha[2] 49.990 0.007 0.000 49.970 49.990 50.000
alpha[3] 12.210 0.723 0.048 10.630 12.220 13.560
nu[1] 23.750 0.254 0.005 23.240 23.750 24.230
nu[2] 49.940 0.060 0.000 49.780 49.960 50.000
nu[3] 45.830 3.565 0.218 37.160 46.830 49.880
theta[1] 1.001 0.006 0.000 0.991 1.001 1.015
theta[2] 0.998 0.003 0.000 0.992 0.998 1.004
theta[3] 0.056 0.007 0.000 0.044 0.054 0.074
bar.beta[1] 1.351 0.025 0.001 1.303 1.351 1.400
bar.beta[2] −2.339 0.092 0.003 −2.533 −2.335 −2.173
bar.beta[3] 0.317 0.150 0.007 0.010 0.321 0.606
bar.beta[4] 0.091 0.158 0.008 −0.230 0.095 0.383
bar.beta[5] 0.503 0.149 0.006 0.191 0.510 0.779
prec.V[1,1] 5.635 0.595 0.013 4.551 5.607 6.871
prec.V[1,2] 1.054 0.317 0.008 0.461 1.047 1.702
prec.V[1,3] −0.238 0.309 0.007 −0.863 −0.234 0.360
prec.V[1,4] −0.066 0.308 0.007 −0.682 −0.065 0.540
prec.V[1,5] −0.056 0.285 0.006 −0.620 −0.055 0.501
prec.V[2,1] 1.054 0.317 0.008 0.461 1.047 1.702
prec.V[2,2] 1.976 0.315 0.011 1.407 1.957 2.650
prec.V[2,3] 0.732 0.267 0.011 0.222 0.722 1.279
prec.V[2,4] 0.625 0.257 0.010 0.151 0.614 1.156
prec.V[2,5] 0.827 0.244 0.009 0.382 0.814 1.341
prec.V[3,1] −0.238 0.309 0.007 −0.863 −0.234 0.360
prec.V[3,2] 0.732 0.267 0.011 0.222 0.722 1.279
prec.V[3,3] 1.804 0.374 0.014 1.173 1.767 2.638
prec.V[3,4] 0.114 0.236 0.008 −0.364 0.117 0.581
prec.V[3,5] 0.102 0.224 0.007 −0.353 0.107 0.532
prec.V[4,1] −0.066 0.308 0.007 −0.682 −0.065 0.540
prec.V[4,2] 0.625 0.257 0.010 0.151 0.614 1.156
prec.V[4,3] 0.114 0.236 0.008 −0.364 0.117 0.581
prec.V[4,4] 1.728 0.385 0.015 1.091 1.693 2.574
prec.V[4,5] −0.090 0.222 0.007 −0.568 −0.078 0.316
prec.V[5,1] −0.056 0.285 0.006 −0.620 −0.055 0.501
prec.V[5,2] 0.827 0.244 0.009 0.382 0.814 1.341
prec.V[5,3] 0.102 0.224 0.007 −0.353 0.107 0.532
prec.V[5,4] −0.090 0.222 0.007 −0.568 −0.078 0.316
prec.V[5,5] 1.529 0.319 0.012 0.989 1.500 2.229
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6.3.2 Results and Forecast Accuracy

6.3.2.1 Prediction of Customer Inactivity

Predicting whether a customer dropped out and thus remains inactive is a clas-
sification13 task. The receiver operating characteristic (ROC) analysis shows (1)
that the refined rule dominates the original rule over all cutoff values and (2) that
the results in comparison to the heuristic are mixed with neither method setting
itself apart. The refined rule within the DMPT performs better on the DIY and
CDNOW data, while the hiatus heuristic performs relatively best on the apparel
data. However, the ROC curves suggests that all classification methods perform
relative poorly for the apparel retailer’s data. This overall picture is corroborated
by the area under the curve (AUC) metric and at "natural" cutoff values.

The details of the ROC analysis are shown in Figures 6.4-6.6 for each of the three
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Figure 6.4: DMPT/CDNOW ROC Analysis of Predicting Customer
Inactivity with Model Inconsistency and Hiatus Heuristic

13 For an explanation of the ROC analysis and the classification metrics see Section 4.4.2. The
respective hiatus heuristic is described in Section 3.3.2.
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Figure 6.5: DMPT/DIY ROC Analysis of Predicting Customer Inactivity
with Model Inconsistency and Hiatus Heuristic
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Figure 6.6: DMPT/Apparel ROC Analysis of Predicting Customer
Inactivity with Model Inconsistency and Hiatus Heuristic
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retail datasets. The refined rule (blue curve) dominates the original rule (red curve)
on all three datasets, even though the differences are small. The intersections
between the green curve (hiatus heuristic) and the blue curve indicate that neither
method dominates the other completely on any of the datasets. It should be noted
that the ROC curves in Figure 6.6 suggest very poor classification accuracy for
the apparel dataset by all methods. All three curves are near the diagonal, which
signifies a near chance result.

The visual impression of the ROC curves is corroborated by the corresponding
AUC measures compiled in Table 6.4. The refined rule produces the highest AUC
for the DIY data (0.8816) and CDNOW data (71.11), while the hiatus heuristic
performs better on the apparel data (0.5879). The original rule based on model
inconsistency generates the lowest AUC for all three datasets.

I additionally calculated the forecasting accuracy at the "natural" cutoff of 95%
certainty for the DMPT (refined rule) and the commonly used four months hiatus
cutoff for the heuristic. The heuristic is then simply:

If a customer has not made a purchase for at least four months, the

customer is classified as inactive; otherwise the customer is classified

as active.

The identification of individuals as either active or inactive leads to four possible
classification results. The classification of an individual customer can be correct
or incorrect and the customer can be classified as active or inactive. The results
of the heuristic and the DMPT (refined rule) are summarized in Table 6.5. At the
"natural" cutoff values the heuristic has a higher overall classification accuracy
for the CDNOW data (64.72% vs. 61.16%) and the apparel data (87.03% vs.
85.87%), whereas the DMPT (refined rule) classifies marginally more customers

Table 6.4: ROC/AUC Analysis of Predicting Customer Inactivity

DIY Retailer Apparel Retailer CDNOW
Hiatus Heuristic: 0.8762 0.5879 0.7099
DMPT Model Inconsistency: 0.8704 0.5602 0.6960
DMPT Refined Inconsistency: 0.8816 0.5634 0.7111
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Table 6.5: DMPT - Accuracy of Predicting Customer Inactivity (%)

CDNOW Apparel Retailer DIY Retailer

DMPT Heuristic DMPT Heuristic DMPT Heuristic
True Positive Rate: 32.24 42.11 23.08 25.64 45.45 40.91
True Negative Rate: 89.17 86.62 88.33 89.44 96.91 96.91
False Negative Rate: 67.76 57.89 76.92 74.36 54.55 59.09
False Positive Rate: 10.83 13.38 11.67 10.56 3.09 3.09

Overall Error: 38.83 35.28 14.13 12.97 3.95 4.03
Overall Accuracy: 61.17 64.72 85.87 87.03 96.05 95.97

of the DIY retailer correctly (96.05% vs. 95.97%).

In regard to the correctly classified active customers (true negative rate) the results
are extremely close: the accuracy for the DIY retailer is dead even (96.91% both),
the DMPT is ahead on the CDNOW dataset (89.17% vs. 86.62%) and the heuristic
is better on the apparel retail data (89.44% vs. 88.33%).

6.3.2.2 Long- and Short-Term Predictions

The long- and short-term forecasts generated by the DMPT and the heuristic in-
dicate that neither method dominates the other. One pattern that emerges is that
the DMPT is, in general, more accurate on the median aggregated metrics and on
an overall level MAPE, while the heuristic is more accurate according to outlier
sensitive mean aggregated metrics.

In this context long-term prediction of future interpurchase times refers to a fore-
cast horizon covering the full length of the hold-out period. Short-term prediction
entails the forecast of the next single interpurchase time.

The baseline model is the heuristic:

Customers continue to buy at their mean past purchase frequency.

Table 6.6 contains the short-term forecast results for all three retail datasets. The
overall (non-individual) level accuracy (MAPE) of the DMPT is higher than the
accuracy of the managerial heuristic on all three datasets. The differences in accu-
racy range from 2.69% for the DIY retailer to 12.45% for CDNOW. The results for
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Table 6.6: DMPT - Accuracy of Short-Term Interpurchase Time Prediction

CDNOW Apparel Retailer DIY Retailer

DMPT Heuristic DMPT Heuristic DMPT Heuristic
MAPE (%) 76.26 88.71 67.36 72.45 29.63 32.32
Mean MSE 126.338 123.094 201.393 184.865 2.549 2.577
Median MSE 24.289 32.111 33.358 40.111 0.060 0.111
Mean RMSE 7.786 7.741 9.844 9.508 0.699 0.701
Median RMSE 4.928 5.667 5.775 6.333 0.245 0.333

Table 6.7: DMPT - Accuracy of Long-Term Interpurchase Time Prediction

CDNOW Apparel Retailer DIY Retailer

DMPT Heuristic DMPT Heuristic DMPT Heuristic
MAPE (%) 112.88 117.88 137.26 150.61 37.84 33.93
Mean MSE 111.860 107.405 133.136 126.191 1.943 1.834
Median MSE 25.071 36.000 34.511 41.143 0.256 0.222
Mean RMSE 7.781 7.537 8.416 8.452 0.818 0.753
Median RMSE 5.007 6.000 5.874 6.414 0.506 0.471

the aggregated individual level error metrics are mixed. The less outlier sensitive
metrics median MSE and median RMSE favor the DMPT on all three datasets.
Judged by the more outlier sensitive mean aggregated metrics the heuristic is more
accurate for the CDNOW and apparel data.

The long-term forecasts are shown in Table 6.7. The DMPT performs better than
the heuristic by MAPE for the customers of CDNOW (112.88 vs. 117.88) and
the apparel retailer (137.26 vs. 150.61). For these datasets the DMPT also out-
performs the heuristic on the less outlier sensitive error metrics median MSE and
median RMSE. The results are reversed for the DIY data, on which the heuristic
is more accurate. The heuristic is also more accurate according to the outlier-
sensitive metrics for CDNOW (mean MSE: 107.405 vs. 111.860) and the apparel
dataset (mean MSE: 126.191 vs. 133.136). The only exception is the mean RMSE

on the apparel data, where the DMPT is marginally better (8.416 vs. 8.452).
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6.3.2.3 Prediction of Future Best Customers

The heuristic outperforms the DMPT model consistently on all three datasets in
predicting the top 10% and 20% of customers. The DMPT is tested by rank-
ordering customers according to the model’s forecast of purchases frequencies for
the hold-out period. The actual future top 10% (20%) of customers are determined
by their observed purchase frequency in the hold-out period. I benchmarked the
DMPT against the following baseline heuristic:

The past 10% (20%) best customers will also be the future 10% (20%)

best customers.

Tables 6.8 and 6.9 present the results for predicting the top 10% and 20% best
customers of each customer base. The DMPT exhibits the lowest classification
rate when predicting the future top 10% of customers in the CDNOW dataset
(3.33%).

Table 6.8: DMPT - Accuracy of Future Top 10% Customer Prediction (%)

CDNOW Apparel Retailer DIY Retailer

DMPT Heuristic DMPT Heuristic DMPT Heuristic
True Positive Rate: 3.33 46.67 50.49 55.34 16.79 51.91
True Negative Rate: 89.61 94.27 94.52 95.05 90.80 94.68
False Negative Rate: 96.67 53.33 49.51 44.66 83.21 48.09
False Positive Rate: 10.39 5.73 5.48 4.95 9.20 5.32

Overall Error: 18.77 10.36 9.87 8.91 16.57 9.57
Overall Accuracy: 81.23 89.64 90.13 91.09 83.43 90.43

Table 6.9: DMPT - Accuracy of Future Top 20% Customer Prediction (%)

CDNOW Apparel Retailer DIY Retailer

DMPT Heuristic DMPT Heuristic DMPT Heuristic
True Positive Rate: 8.20 52.46 49.02 58.82 15.59 51.71
True Negative Rate: 77.42 88.31 97.35 97.86 78.92 87.94
False Negative Rate: 91.80 47.54 50.98 41.18 84.41 48.29
False Positive Rate: 22.58 11.69 2.65 2.14 21.08 12.06

Overall Error: 36.25 18.77 5.03 4.07 33.74 19.30
Overall Accuracy: 63.75 81.23 94.97 95.93 66.26 80.70
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6.4 Discussion of Results

The DMPT performs relatively best when predicting long- and short-term inter-
purchase times. In this respect, the DMPT is slightly more accurate than the
heuristic on an overall level and on most non-outlier-sensitive individual level
metrics. The heuristic is more accurate than the DMPT according to some of
the outlier sensitive error measures. This indicates that for the majority of cus-
tomers the DMPT yields better results than the heuristic, but also that there are
some customers for which the DMPT produces relatively large forecast errors.
Nonetheless, both methods are very close in forecast accuracy without one being
clearly better than the other.

My refined rule for deriving the probability of individual customer inactivity,
which takes into account the actual predictive distribution and the finite length
of the hold-out period, yields a slight but consistent improvement on previous ap-
proaches for the DMPT. The ROC analysis on three large datasets shows that the
new scheme is equal or better over the complete range of potential cutoff values.
However, compared to the hiatus heuristic the results of the DMPT, even with the
refined rule, are mixed. The refined rule performs better for the DIY and CD-
NOW data, while the hiatus heuristic is better for the apparel data according to
AUC. Neither scheme dominates the other over the full parameter space in the
ROC analysis.

It should be noted that all methods struggled with the customer base of the apparel
retailer. The prediction of customer inactivity for this dataset did not generate
results distinctly different from random guessing. One reason might be the limi-
tation of the DMPT to customers with at least four observed interpurchase times.
The restriction to this subset of customers could have distorted the classification
results.

The relatively worse performance of the DMPT in rank-ordering customers was to
be expected as the model is not designed for this task and similar results have been
reported by Huang (2012) and Wübben and von Wangenheim (2008) for the Pare-
to/NBD and BG/NBD model. It is still surprising how well the simple heuristics
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performs here as it produces more accurate forecasts on all three datasets.

As, simple heuristics can perform rather well on "big data", the decision to im-
plement more complex methods should be taken with great care. It seems that
the temporal dynamic part of the DMPT (which captures changes in purchase
trends) and the component mixture (which assumes distinct groups of customers)
adds only little information that improves out-of-sample prediction on the datasets
used in the comparison.

The mixed results of the DMPT are the motivation for developing two new hierar-
chical Bayesian models that take into account seasonal factors (HSM) and include
an explicit drop-out process (HSMDO).



Chapter 7

Hierarchical Bayesian Seasonal
Effects Model

In this chapter I develop the hierarchical Bayesian seasonal effects model (HSM).
The model predicts future purchase levels and operates under the "always a share"
assumption. The model aims at (1) improving predictive accuracy by incorpo-
rating seasonal effects, (2) capturing individual customers’ seasonal behavior in
relation to group-level seasonal behavior, and at (3) relating individual purchase
rates and cross-sectional heterogeneity. The model yields a measure of individual
seasonality, that indicates how strongly the customer follows the cross-sectional
seasonality, whether he purchases anti-seasonal, or if the customer’s behavior is
non-seasonal. In business practice such a measure is particularly useful for pur-
poses of targeting groups of customers, customer segmentation and timing of mar-
keting actions.

The "always a share" assumption implies that the customer is always alive and
does not defect, but still might exhibit long periods with few or no purchases.
Similar to the analysis of the DMPT, I use three retail datasets for parameter esti-
mation and model comparison. I assess the predictive performance of the model in
relation to baseline managerial heuristics, Holt-Winters method, SARIMA models
and discuss the results based on this comparison.
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7.1 General Model Framework

This model contributes to the literature stream of probability models for customer
base analysis and follows an evolutionary model-building view (Fader and Hardie
2009). The HSM is based on a discretely sampled inhomogeneous Poisson count-
ing process and is unique in that it combines the following features:

1. a hierarchical purchase process that relates the distribution of individual
level purchase frequency over time to cross-sectional heterogeneity;

2. a hierarchical seasonal structure that relates individual level seasonality to
cross-sectional seasonal components in a multiplicative submodel; and

3. an individual estimate for each customer’s seasonality that indicates how
strongly he follows the cross-sectional seasonality, whether he purchases
anti-seasonal, or if he exhibits non-seasonal behavior.

The hierarchical structure of model that captures individual purchase rates and
cross-sectional heterogeneity is closely related to previous work in this research
stream such as the compound Poisson model (Ehrenberg 1959), the Pareto/NBD
model (Schmittlein, Morrison, and Colombo 1987), the BG/NBD model (Fader,
Hardie, and Lee 2005a), the PDO/NBD model (Jerath, Fader, and Hardie 2011),
the G/G/NBD model (Bemmaor and Glady 2012), the BG/GCP model (Mzoughia
and Limam 2014), and related variants (Glady, Lemmens, and Croux 2015). How-
ever, as of yet no attempt to include individual and cross-sectional seasonal effects
in the Pareto/NBD model framework have been made.

The seasonal submodel of the HSM generalizes previous post-hoc ratio to mov-
ing average adjustments of forecasts obtained with the Pareto/NBD model (Zit-
zlsperger, Robbert, and Roth 2009) and the inclusion of dummy variables (Schwei-
del and Knox 2013). The models in this thesis aim at closing the gap Ballings and
Van den Poel (2015, p. 257) point out when they remark that "taking season-
ality into account would only increase the predictive performance of our mod-
els."
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In the following I present the HSM in three parts that build upon each other and
together form the complete model:

1. the Poisson covariate gamma mixture;

2. the hierarchical seasonal effects submodel; and

3. prior distributions, hyperparameters and parameter space.

7.1.1 Poisson Covariate Gamma Mixture

Each customer i with i ∈ {1..N} is assumed to buy at an individual rate λieβisk( j)

governed by a Poisson purchase process14. Customers are not defecting under an
"always a share" assumption. An individual customer i’s purchases at time j are
denoted xi j ∈ Z≥0.

The model extends the NBD Model (Ehrenberg 1988, p. 128) structure, in which
the expected long-run purchase for customer i per time unit is λi, by including the
multiplicative random-effects submodel eβisk( j) as a time-varying co-variate. The
heterogeneity across the customers’ individual purchase rates λi is captured by a
gamma distribution. The parameters of the group level gamma distribution are the
scale parameter r > 0 and the shape parameter α > 0:

xi j ∼ Poisson(λieβisk( j))
p.m.f.

 e−λie

βisk( j) (λieβisk( j))xi j

Γ(xi j +1)
(7.1)

λi ∼ Gamma(r,α)
p.d.f.

 e−λiαλ

r−1
i

αr

Γ(r)
(7.2)

The time-varying random-effects submodel βisk( j) describes the seasonal structure
of the model. The term depends both on time j and customer i and reflects both
the joint seasonal structure on a group level as well as individual level seasonal
effects as explained below.

14 This process can be seen as an discrete sampled inhomogeneous Poisson counting process
with N( j)−N( j−1)=∆N j ∼Poisson(

∫ j
j−1 λ (t)dt), where λ (t) is constant between ( j−1, j]

and therefore ∆N j ∼ Poisson(λ ( j)).
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7.1.2 Hierarchical Seasonal Effects Submodel

The individual level seasonality of each customer i is captured by a multiplicative
random effect βi. It reflects the influence of the seasonal components sk( j) on each
customers individual purchase rate λi. This results in the Poisson purchase rate
λieβisk( j) for customer i in time period j. Cross sectional heterogeneity in βi is
assumed to be distributed normal with mean one and precision15 τβ .

I constructed the model to comprehensively capture seasonal behavior. For exam-
ple, if an individual customer i exhibits amplified (pro)seasonal behavior his sea-
sonality coefficient would be βi > 1. If a customer shows an attenuated seasonal
pattern, compared to the cross-sectional seasonal components, then his coefficient
would be 0 < βi < 1. If a customer purchases fairly constantly at his individual
purchase rate λi, implying non-seasonal behavior, his coefficient βi would be near
or at zero. Finally, if a customer shows anti-seasonal purchase patterns, behaving
opposite to the overall seasonal behavior, his coefficient would be βi < 0.

Let sk denote the kth seasonal component with k ∈ {1..K}. Each point in time j is
linked16 to one of the K seasonal components by k( j) = (( j−1) mod K)+1. The
(uncentered) seasonal components ŝk are assumed to be exchangeable and dis-
tributed normal with mean zero and precision τs. The components ŝk are centered
at zero (Equation 7.4), so that sk reflect the (approximate) seasonal percentage
change compared to average purchases levels.

The structure of the seasonal submodel can then be decomposed and summarized

15 In Bayesian modeling normal distributions are often specified with the precision parameter
τ= 1/σ2 instead of the variance σ2.

16 The model allows for any form of time-varying multiplicative co-variates and is derived in
full generality. For the general case the link function may be set to the identity function
k( j) = j



7.1 General Model Framework 99

as follows:

ŝk ∼ Normal(0,τs)
p.d.f.



√
τs

2π
e−τsŝ2

k/2 (7.3)

sk = ŝk− 1
K ∑ ŝk (7.4)

βi ∼ Normal(1,τβ )
p.d.f.



√
τβ

2π
e−τβ (βi−1)2/2 (7.5)

k( j) = (( j−1) mod K)+1 (7.6)

In a Bayesian hierarchical model one can include all K seasonal components sk

and N seasonal parameters βi as they are drawn from distributions with finite pre-
cisions and that group level information allows for identification. The parameters
of the seasonal model are τs > 0 and τβ > 0.

7.1.3 Priors, Hyperparameters and Parameter Space

The hyperparameters of the prior distributions are chosen so that the precision
parameters (τs, τβ ) and the parameters of the Poisson-gamma mixture (µλ , σλ )
are given vague non-informative gamma priors (ε = 0.001). The parameters r and
α are re-parameterized in terms of a mean parameter µλ and a scale parameter
σλ . Together with the following transformations these distributions complete the
model:

r = µ
2
λ
/σλ α = µλ/σλ (7.7)

σλ ,µλ ,τs,τβ ∼ Gamma(ε,ε) (7.8)

Let N be the number of customers and K the number of seasonal components then
the model contains 2N+K+4 parameters of interest. The term 2N+K+4 results
from N individual purchase frequencies parameters λi, N individual seasonality
measures βi, K seasonal components, and four parameters σλ ,µλ ,τs and τβ , while
r and α are just transformations of σλ ,µλ .
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7.1.4 Derivation of Model Likelihood

First, I derive the individual level likelihood function. For better readability I
set sk( j) = s j and let s denote the set of sk with k ∈ {1..K}. Then conditional
on (Xi j = xi j, T, s) and using Equation (7.1), the individual level likelihood for
customer i is:

Li(λi,βi|Xi j = xi j,T,s) =
T

∏
j=1

Poisson(xi j|λieβis j) (7.9)

In order to derive the sample-likelihood function that includes all customers, let
λ and β be vectors over all customers with, e.g., λi denoting the ith element of
the vector. Using Bayes’ Theorem, the prior definitions (7.2), (7.3) and (7.5) and
aggregating over all customers yields the sample-likelihood:

L(λ ,β ,r,α, ŝ,τβ ,τs|X ,T ) =[ N

∏
i=1

Li(λi,βi|Xi j = xi j,T,sk = ŝk−
1
K ∑ ŝk)

][ K

∏
k=1

Normal(ŝk|0,τs)
]

[ N

∏
i=1

Normal(βi|1,τβ )Gamma(λi|r,α)
]

(7.10)

The joint posterior distribution results by substituting r and α (7.7), and multiply-
ing the sample likelihood (7.10) with the priors (7.8):

p(λ ,β ,r,α, ŝ,τβ ,τs|X ,T ) ∝

L(λ ,β ,r = µ
2
λ
/σλ ,α = µλ/σλ , ŝ,τβ ,τs|X ,T )Gamma(τβ |ε,ε)

Gamma(τs|ε,ε)Gamma(σλ |ε,ε)Gamma(µλ |ε,ε) (7.11)
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7.2 Data Analysis: Parameter Estimation and
Prediction

7.2.1 Convergence and Marginal Posterior Estimates

The training of the HSM consists of learning about the main parameters posterior
distributions. For training, I only use data from the calibration period of each
retailer and reserve the hold-out data for assessing the predictive performance and
for model comparison.

I obtained the posterior distributions for the model’s parameters by a MCMC pro-
cedure via Gibbs sampling. The source code and additional information about
the procedure are presented in Appendix B.1. The parameter estimates are based
on MCMC runs with four chains starting from dispersed initial values, 20,000
iterations and a burn-in phase of 10,000 samples. I performed thinning by tak-
ing every fifth sample after the burn-in period to save memory. Therefore, the
posterior distributions are based on (10,000/5)×4 = 8,000 samples.

The MCMC procedure iteratively converges towards the true posterior distribu-
tion of the parameters and after convergence simulates their true posterior dis-
tribution. I assessed approximate convergence of the algorithm by examining
auto-correlation and effective sample size; visually inspecting the trace plots of
the posterior samples; evaluating the Brooks, Gelman and Rubin statistic (BGR);
and by running multiple simulations from dispersed initial values.

Auto-Correlation and Effective Sample Size

The samples obtained for the CDNOW, DIY and apparel retailers show virtually
no or very little auto-correlation. The auto-correlation plots for the main param-
eters of the model and seasonal components are shown in Figures B.1 and B.3
(Apparel), Figures B.5 and B.7 (DIY), and Figures B.9 and B.11 (CDNOW) in
the Appendix.

The lowest two effective sample sizes for the DIY MCMC simulation are 1,305 for
τβ and 1,752 for s10, while the two lowest effective sample sizes for the apparel
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samples are 2,744 for s1 and 2,762 for τβ . On the CDNOW dataset the fewest
effective samples were collected for α (3,435) and τβ (4,455). Typically, effective
sample sizes were near their theoretical maximum of 8,000 samples. Thus, auto-
correlation is not an issue with the obtained effective sample sizes, even if τβ ’s
mixing is slightly worse than that of the other parameters (Gelman et al. 2003, p.
298).

Inspection of Trace Plots

The trace plots for all three datasets exhibit no visible "trends" and sufficient mix-
ing of all four Markov chains after a burn-in period of 10,000 iterations. The
trace plots for the main parameters of the model and all seasonal components are
shown in Figures B.2 and B.4 (Apparel), Figures B.6 and B.8 (DIY), and Figures
B.10 and B.12 (CDNOW) in the Appendix. The visual inspection of the trace
plots indicates that convergence was reached and that the posterior distribution is
adequately represented (see Section 4.3).

BGR Statistic

I validated Markov chain convergence by computing the BGR statistic for all pa-
rameters over all four chains. In all cases, the BGR ratio R̂c stayed well below
1.1 close to the ideal 1.0, which indicates that the chains have converged to the
true posterior distribution (Congdon 2003; Cowles and Carlin 1996; Gelman and
Rubin 1992). In addition, I repeatedly simulated the posterior distribution using
multi-chain runs with dispersed initial values which in all cases converged to vir-
tually identical parameter values.

Parameter Estimates and Posterior Densities

Summary statistics for the model’s parameters including means, standard devia-
tions, medians, and credibility intervals are compiled in Tables 7.1 (DIY), 7.2 (Ap-
parel), and 7.3 (CDNOW). The tables include all main model parameters r,α,τs,

and τβ ; all seasonal components sk; and the first and last two individual level pa-
rameters, βi and λi. The resulting full marginal posterior densities for the main
parameters and the seasonal components are depicted in Figures 7.4-7.9.
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Table 7.1: HSM/DIY Marginal Posterior Distribution Summaries for MCMC
Simulation after 10,000 Iterations per Chain (4 Chains, 10K Burn-In)

Summary of Marginal Posterior Distributions

node mean sd MC error 2.5% median 97.5%

r 2.1466 0.0801 0.0009 1.9934 2.1458 2.3067
alpha 0.7719 0.0322 0.0004 0.7105 0.7718 0.8366
tau.s 75.0392 33.6800 0.3766 25.0396 70.0170 156.4308
tau.beta 0.4357 0.0578 0.0007 0.3299 0.4332 0.5556
s[1] 0.0646 0.0076 0.0001 0.0499 0.0646 0.0795
s[2] 0.0356 0.0082 0.0001 0.0194 0.0356 0.0515
s[3] 0.0193 0.0075 0.0001 0.0048 0.0193 0.0340
s[4] −0.0028 0.0094 0.0001 −0.0215 −0.0028 0.0156
s[5] −0.0140 0.0104 0.0001 −0.0347 −0.0140 0.0059
s[6] −0.0941 0.0111 0.0001 −0.1165 −0.0940 −0.0731
s[7] −0.2317 0.0170 0.0002 −0.2655 −0.2317 −0.1986
s[8] −0.1710 0.0147 0.0002 −0.2005 −0.1707 −0.1430
s[9] 0.0360 0.0091 0.0001 0.0181 0.0360 0.0543
s[10] 0.1448 0.0106 0.0001 0.1242 0.1447 0.1656
s[11] 0.1270 0.0093 0.0001 0.1086 0.1269 0.1451
s[12] 0.0864 0.0086 0.0001 0.0698 0.0863 0.1034
lambda[1] 7.5565 0.5232 0.0059 6.5582 7.5444 8.6004
lambda[2] 2.6938 0.3145 0.0035 2.1105 2.6825 3.3362...

...
...

...
...

...
...

lambda[1328] 1.3800 0.2230 0.0025 0.9773 1.3683 1.8419
lambda[1329] 4.4143 0.3961 0.0044 3.6683 4.4034 5.2140
beta[1] 2.6519 0.6927 0.0077 1.3083 2.6499 4.0586
beta[2] 2.0284 0.9625 0.0108 0.2079 2.0174 4.0112...

...
...

...
...

...
...

beta[1328] 1.6031 1.1380 0.0127 −0.5582 1.5893 3.8988
beta[1329] 0.8482 0.7785 0.0087 −0.6259 0.8337 2.4201

0

50

100

150

200

5 10
lambda

N
um

be
r 

of
 C

us
to

m
er

s

0

50

100

150

−5.0 −2.5 0.0 2.5 5.0
beta

Figure 7.1: HSM/DIY Customer Base Histograms for Estimates of Individual
Customer Seasonality βi and Purchase Rate λi
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Table 7.2: HSM/Apparel Marginal Posterior Distribution Summaries for MCMC
Simulation after 10,000 Iterations per Chain (4 Chains, 10K Burn-In)

Summary of Marginal Posterior Distributions

node mean sd MC error 2.5% median 97.5%

r 1.1155 0.0456 0.0005 1.0274 1.1147 1.2071
alpha 1.7920 0.0884 0.0010 1.6237 1.7896 1.9662
tau.s 5.5811 2.4178 0.0270 1.8773 5.2332 11.2034
tau.beta 1.5209 0.1423 0.0016 1.2631 1.5174 1.8152
s[1] 0.8552 0.0291 0.0003 0.7992 0.8550 0.9118
s[2] −0.4428 0.0560 0.0006 −0.5561 −0.4420 −0.3365
s[3] −0.1999 0.0421 0.0005 −0.2847 −0.1990 −0.1214
s[4] −0.1129 0.0442 0.0005 −0.2035 −0.1115 −0.0298
s[5] −0.1183 0.0423 0.0005 −0.2028 −0.1170 −0.0370
s[6] 0.0499 0.0324 0.0004 −0.0150 0.0501 0.1117
s[7] 0.2530 0.0287 0.0003 0.1968 0.2529 0.3096
s[8] 0.0361 0.0364 0.0004 −0.0366 0.0373 0.1038
s[9] −0.7434 0.0937 0.0011 −0.9323 −0.7398 −0.5691
s[10] 0.1298 0.0432 0.0005 0.0435 0.1313 0.2112
s[11] −0.2229 0.0569 0.0006 −0.3395 −0.2212 −0.1171
s[12] 0.5162 0.0316 0.0004 0.4546 0.5157 0.5781
lambda[1] 1.6030 0.2762 0.0031 1.1176 1.5849 2.1942
lambda[2] 2.3291 0.3298 0.0037 1.7221 2.3123 3.0150...

...
...

...
...

...
...

lambda[1229] 0.5138 0.1515 0.0017 0.2625 0.4973 0.8477
lambda[1230] 1.2585 0.2373 0.0027 0.8271 1.2455 1.7630
beta[1] 0.4806 0.3756 0.0042 −0.2615 0.4820 1.2027
beta[2] 0.6415 0.3228 0.0036 −0.0060 0.6485 1.2495...

...
...

...
...

...
...

beta[1229] 0.8126 0.5390 0.0060 −0.2575 0.8187 1.8720
beta[1230] 0.6974 0.4068 0.0046 −0.1082 0.6987 1.5044
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Figure 7.2: HSM/Apparel Customer Base Histograms for Estimates of
Individual Customer Seasonality βi and Purchase Rate λi
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Table 7.3: HSM/CDNOW Marginal Posterior Distribution Summaries for
MCMC Simulation after 10,000 Iterations per Chain (4 Chains, 10K Burn-In)

Summary of Marginal Posterior Distributions

node mean sd MC error 2.5% median 97.5%

r 1.9758 0.1573 0.0018 1.6955 1.9685 2.3011
alpha 15.1102 1.3336 0.0149 12.6979 15.0641 17.8570
tau.s 3.5915 1.5494 0.0173 1.2355 3.3746 7.1694
tau.beta 811.2189 692.2109 7.7392 130.7259 595.2211 2813.8055
s[1] 1.5192 0.0421 0.0005 1.4352 1.5199 1.6004
s[2] 0.1398 0.0664 0.0007 0.0091 0.1400 0.2658
s[3] 0.2374 0.0847 0.0010 0.0704 0.2377 0.4003
s[4] −0.0270 0.0932 0.0010 −0.2158 −0.0244 0.1511
s[5] −0.1172 0.0990 0.0011 −0.3200 −0.1149 0.0696
s[6] −0.0948 0.0985 0.0011 −0.2946 −0.0942 0.0950
s[7] −0.0962 0.0967 0.0011 −0.2910 −0.0951 0.0883
s[8] −0.3143 0.1092 0.0012 −0.5325 −0.3130 −0.1056
s[9] −0.2770 0.1059 0.0012 −0.4924 −0.2752 −0.0775
s[10] −0.4787 0.1161 0.0013 −0.7114 −0.4770 −0.2585
s[11] −0.1923 0.1013 0.0011 −0.3977 −0.1904 −0.0033
s[12] −0.2990 0.1078 0.0012 −0.5159 −0.2982 −0.0961
lambda[1] 0.1702 0.0694 0.0008 0.0637 0.1606 0.3274
lambda[2] 0.1119 0.0564 0.0006 0.0303 0.1025 0.2461...

...
...

...
...

...
...

lambda[780] 0.0838 0.0484 0.0005 0.0175 0.0754 0.2033
lambda[781] 0.0848 0.0489 0.0006 0.0166 0.0759 0.2035
beta[1] 0.9998 0.0475 0.0005 0.9020 0.9996 1.0970
beta[2] 1.0034 0.0476 0.0005 0.9056 1.0030 1.1044...

...
...

...
...

...
...

beta[780] 1.0007 0.0479 0.0005 0.8991 1.0007 1.0972
beta[781] 1.0007 0.0481 0.0005 0.9024 1.0003 1.0993
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Figure 7.3: HSM/CDNOW Customer Base Histograms for Estimates of
Individual Customer Seasonality βi and Purchase Rate λi
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Figure 7.4: HSM/Apparel Marginal Posterior Densities for r, α , τs, and τβ

after 10,000 Iterations per Chain (4 Chains, 10K Burn-In)
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after 10,000 Iterations per Chain (4 Chains, 10K Burn-In)
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Figure 7.7: HSM/DIY Marginal Posterior Densities for Seasonal
Components sk after 10,000 Iterations per Chain (4 Chains, 10K Burn-In)



7.2 Data Analysis: Parameter Estimation and Prediction 109

s[1]

s[2]

s[3]

s[4]

s[5]

s[6]

0.0

2.5

5.0

7.5

10.0

0

2

4

6

0

1

2

3

4

5

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

1.4 1.5 1.6 1.7

−0.1 0.0 0.1 0.2 0.3 0.4

0.0 0.2 0.4

−0.4 −0.2 0.0 0.2

−0.4 −0.2 0.0 0.2

−0.4 −0.2 0.0 0.2

s[7]

s[8]

s[9]

s[10]

s[11]

s[12]

0

1

2

3

4

0

1

2

3

0

1

2

3

0

1

2

3

0

1

2

3

4

0

1

2

3

−0.4 −0.2 0.0 0.2

−0.75 −0.50 −0.25 0.00

−0.50 −0.25 0.00

−0.75 −0.50 −0.25

−0.6 −0.4 −0.2 0.0 0.2

−0.6 −0.4 −0.2 0.0

Chain 1 2 3 4

Figure 7.8: HSM/CDNOW Marginal Posterior Densities for Seasonal
Components sk after 10,000 Iterations per Chain (4 Chains, 10K Burn-In)
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Figure 7.9: HSM/CDNOW Marginal Posterior Densities for r, α , τs, and
τβ after 10,000 Iterations per Chain (4 Chains, 10K Burn-In)

7.2.2 Results and Forecast Accuracy

7.2.2.1 Seasonal Components and Individual Seasonality

The MCMC simulation for HSM yielded seasonal information on a cross-sectional
level as well as on an individual customer level for all three datasets (see Tables
7.1-7.3). The estimated overall seasonal components s1− s12 reflect the joint sea-
sonal cycle. They can be interpreted as the approximate (for small values) percent-
age change17 compared to the seasonal cycle average over all customers.

More important, the HSM provides individual estimates for each customer’s sea-
sonality βi. If the seasonality measure βi is close to 1.0 the customer follows
the cross-sectional seasonal patterns s1− s12. Larger βi > 1 indicate pro-seasonal
behavior with amplified purchase levels. Customers with smaller βi < 1 exhibit
attenuated seasonal behavior. A βi near zero indicates non-seasonal behavior.

17 This approximation is used throughout this thesis for interpreting seasonal components sk.
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Negative βi are associated with anti-seasonal behavior. The estimates for cus-
tomers’ individual seasonality βi and purchase rate λi are compiled in form of
histograms in Figure 7.1 (DIY), Figure 7.2 (Apparel), and Figure 7.3 (CDNOW).
For example, the seasonality measure βi can be used for targeting customer groups
and customer segmentation. Figure 7.10 shows an exemplary segmentation for the
three retail customer bases into customers that show amplified seasonality βi ≥ 1,
attenuated seasonality with βi between 0 and 1, and anti-seasonal customers with
βi < 0.

In the following, I analyze the estimates for overall seasonal components and
individual seasonality in more detail for each retailer.

Seasonal Estimates for DIY Retailer

The estimated overall seasonal components s1− s12 (compare Table 7.1) for the
DIY retailer indicate lower overall purchase levels from s4 (November) through s8

(March) and higher overall purchase levels from s9 (April) to s3 (October). Thus,
customers’ purchase frequencies are on average down approximately 23% in s7

(February) and up approximately 14% in s10 (May) from their yearly mean. This
overall pattern indicates that the DIY retailer’s customers’ activity peaks in the
summer, maybe because customers use the summer holidays for home improve-
ment or because the summer weather facilitates outdoor projects.

While overall seasonal information could have been obtained through other meth-
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Figure 7.11: HSM/DIY Retailer Purchase History Comparison of Customer
Groups Selected by Individual Seasonality Estimates βi

ods as well, the HSM also — and more importantly — yields measures of sea-
sonality that reflects how each customer’s individual behavior relates to the be-
havior of other customers. The discriminative power of this measure is illustrated
in Figure 7.11. From the DIY retailer’s customer base I selected three groups
with 50 customers each: a pro-seasonal (green), an anti-seasonal (red) and a non-
seasonal (blue) customer group. The pro-seasonal group comprises the customers
with the largest βi coefficients, the anti-seasonal group consists of customers with
the lowest (negative) βi coefficients, and for the non-seasonal group, customers
with βi closest to zero were selected. The shaded area around the lines depict
the 95% confidence limits of the group mean computed by a nonparametric boot-
strap.

The group graphs in Figure 7.11 show clearly that the model captures individual
seasonality quite well. Over time, the pro-seasonal customers’ actual purchase
levels are an almost exact mirror image of the anti-seasonal customers’ average
purchase levels, while the non-seasonal customers remain buying at fairly con-
stant purchase levels. For example, the anti-seasonal customers’ upward spikes in
time periods 7 and 19 are matched by the downward spikes of the pro-seasonal
customers in the same time periods. This actual behavior corresponds with the
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estimated overall seasonal component s7 (February) that indicates an overall re-
duction in purchase levels by 23% for periods 7 and 19. Also the pro-seasonal
group’s upward spike in time periods 11 and 23 is consistent with the +13% in-
crease in purchase levels implied by component s11 (June).

Seasonal Estimates for Apparel Retailer

The seasonal components s1− s12 (compare Table 7.2) for the apparel dataset in-
dicate, that the overall highest purchase levels are to be expected in December
(+68%; s12 = 0.5162) and January (+135%; s1 = 0.8552). In contrast, the low-
est purchase levels are to be expected in September (-53%; s9 = −0.7434) and
February (-35%; s2 = −0.4428). The dataset spans a 24 months time frame in
total and, with a four months hold-out period, provides only eight months overlap
for seasonal learning. This is reflected in the estimate for the apparel data pre-
cision parameter τβ (1.52), which is higher than that for the DIY retailer dataset
(0.44), implying that the individual βi are more concentrated.

Figure 7.12 depicts a comparison of actual purchase histories of three customer
groups selected by βi estimates, employing the same procedure as above. While
not as clear as on the DIY retailer dataset, the pro- (green) and anti-seasonal (red)
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Figure 7.12: HSM/Apparel Purchase History Comparison of Customer
Groups Selected by Individual Seasonality Estimates βi
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graphs mirror each other markedly over the time line. For example, the peak
in pro-seasonal behavior at time periods 1 and 13 (s1) coincides with the corre-
sponding slump in the anti-seasonal group. Accordingly the peak in anti-seasonal
activity in period 9 (s9) is mirrored by a simultaneous slump in purchase levels
of the pro-seasonal group. The non-seasonal customers (blue) show attenuated
seasonal behavior that falls between the other groups.

Seasonal Estimates for CDNOW Retailer

The CDNOW dataset provides only little information for seasonal learning as it
only spans 18 months in total. With four months of data reserved as hold-out
that only leaves 14 months for learning and thus two month overlap for seasonal
inference. Nonetheless, it is noteworthy that the model still produces individ-
ual estimates for all parameters (see Table 7.3). This a strength of hierarchical
Bayesian models because the estimates in view of sparse data are pulled toward
their higher level means.

Due to the lack of seasonal overlap, the individual estimates for βi are highly
concentrated (τβ = 811) around one (compare the histogram in Figure 7.3). This
is reflected in the group comparison in Figure 7.13, where the model could only
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discern pro-seasonal (green) and least-seasonal (red) customers as no values for
βi were near zero or even negative. The least-seasonal graph seems to vaguely
mirror the pro-seasonal graph with slumps coinciding with pro-seasonal peaks for
time periods 6 and 13. However, this is inconclusive and judging from the high
concentration of βi around one, the model could not isolate enough signal for
estimating individual seasonality. Thus, the majority of the seasonal learning for
the CDNOW dataset will come from the overall seasonal components s1− s12.
According to the estimates for the seasonal components s1− s12, peak activity
for CDNOW is in January (s1 = 1.5192) through March (s3 = 0.2374), while the
lowest activity is in August (s8 =−0.3143) and October (s10 =−0.4787).

7.2.2.2 Long- and Short-Term Predictions

In general, the HSM generates the most accurate short- and long-term forecasts of
purchase levels. It is more accurate than the other models for the DIY and apparel
dataset on both the individual level and overall error metrics18. The results for
the CDNOW dataset are mixed with no clearly superior method among the HSM,
the heuristic, and the SARIMA model. Holt-Winters method performs consis-
tently worst and the SARIMA model produces comparable results to the heuristic
and HSM only for the CDNOW data. I will detail the results in the following
sections.

Long-term prediction refers to a forecast horizon covering the full length of the
hold-out period (four months), while the short-term prediction entails the forecast
of the number of purchases the customer is expected to make in the first unob-
served time unit (one month).

The HSM is measured against Holt-Winters method, SARIMA models, and the
baseline heuristic. The baseline heuristic simply assumes that:

Customers continue to buy at their mean past purchase frequency.

18 For a description of the error metrics and error aggregation see Section 4.4.1.
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The SARIMA and Holt-Winters forecast results were obtained by using the R
package forecast version 5.4 (Hyndman 2014). The SARIMA and Holt-Winters
models were fitted to each customer individually, estimating the model parameters
with the algorithms described in Hyndman and Khandakar (2008).

Results for DIY Retailer

Tables 7.4 and 7.5 compile the long- and short-term results for the DIY retailer.
The DIY retailer dataset spans the largest time frame (31 months) of the exam-
ined retailers and should therefore lend itself best to seasonal learning. The re-
sults support this. The HSM outperforms the other methods both in the short- and
long-term on all error metrics. It is interesting to note that Holt-Winters method
performs consistently worst while the long-term SARIMA forecasts are more ac-
curate than the heuristic on the median aggregated metrics (median MSE: 2.520
vs. 2.536). Then again, the heuristic provides better long-term accuracy than the
SARIMA model in terms of MAE/MAD (1.696 vs. 1.702) and mean MSE (5.607
vs. 5.948). Also, the heuristic generally generates less errors than the SARIMA
model for short-term forecasts.

Results for Apparel Retailer

The apparel retailer’s dataset spans 24 months of data which provides more over-
lap than the CDNOW dataset but less than the DIY retailer’s. The forecast results
are shown in Tables 7.6 and 7.7. Again, the HSM outperforms the other forecast
methods on all metrics in both the short- and long-term, although in some cases
only by a small margin. The heuristic is more accurate than the SARIMA model
and Holt-Winters method for short-term forecasts, but compared to the SARIMA
model the heuristic’s long-term forecast results are mixed. The SARIMA model

Table 7.4: DIY Retailer - HSM Long-Term Prediction Accuracy

Holt-Winters SARIMA Heuristic HSM
MAE/MAD 2.335 1.702 1.696 1.636
Mean MSE 11.751 5.948 5.607 5.518
Median MSE 4.550 2.520 2.536 2.324
Mean RMSE 2.717 1.957 1.940 1.894
Median RMSE 2.133 1.587 1.592 1.524
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Table 7.5: DIY Retailer - HSM Short-Term Prediction Accuracy

Holt-Winters SARIMA Heuristic HSM
MAE/MAD 10.293 5.885 1.647 1.634
Mean MSE 112.750 39.451 5.182 5.107
Median MSE 114.993 36.894 1.494 1.491
Mean RMSE 10.293 5.885 1.647 1.634
Median RMSE 10.723 6.074 1.222 1.221

is more accurate in terms of MAE/MAD (0.887 vs. 0.897) and median MSE

(0.563 vs. 0.610), while the heuristic produces less error according to mean MSE

(2.514 vs. 2.732). Holt-Winters method produces the least accurate forecasts in
the long-term but generates better forecasts than the SARIMA model in the short-
term (MAE/MAD: 1.449 vs. 1.708, mean MSE: 3.312 vs. 3.948 and median

MSE: 1.855 vs. 3.063).

Results for CDNOW

The CDNOW dataset only spans 18 months in total. With four months of data
reserved as hold-out, only 14 months are available for parameter learning, im-
plying only a two months overlap for seasonal inference. Holt-Winters method
did not yield any results as the overlap was too small — this is denoted as NA.
The forecast results for the CDNOW dataset are compiled in Tables 7.8 and 7.9.
The short and long-term results show no clear pattern. The SARIMA model, the
heuristic and the HSM are very close without any model setting itself apart. For
example, in the long-term forecast in regard to mean MSE, the HSM (0.089) is
more accurate than the SAMIRA model (0.122) and the heuristic (0.125). But
in terms of MAE/MAD the SARIMA model (0.131) is more accurate than the
HSM (0.170) and the heuristic (0.206). In the short-term the SARIMA model is
inferior to both the heuristic and HSM on all metrics. Then again, in terms of
mean MSE, the HSM (0.146) is more accurate than the heuristic (0.157), while in
regard to MAE/MAD this reverses with the heuristic (0.222) generating slightly
more accurate predictions than the HSM (0.223).
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Table 7.6: Apparel - HSM Long-Term Prediction Accuracy

Holt-Winters SARIMA Heuristic HSM
MAE/MAD 1.254 0.887 0.897 0.884
Mean MSE 4.488 2.732 2.514 2.509
Median MSE 1.374 0.563 0.610 0.536
Mean RMSE 1.570 1.104 1.105 1.104
Median RMSE 1.172 0.750 0.781 0.732

Table 7.7: Apparel - HSM Short-Term Prediction Accuracy

Holt-Winters SARIMA Heuristic HSM
MAE/MAD 1.449 1.708 0.874 0.786
Mean MSE 3.312 3.948 2.367 2.306
Median MSE 1.855 3.063 0.250 0.072
Mean RMSE 1.449 1.708 0.874 0.786
Median RMSE 1.362 1.750 0.500 0.269

Table 7.8: CDNOW - HSM Long-Term Prediction Accuracy

Holt-Winters SARIMA Heuristic HSM
MAE/MAD NA 0.131 0.206 0.170
Mean MSE NA 0.122 0.125 0.089
Median MSE NA 0.000 0.005 0.008
Mean RMSE NA 0.157 0.225 0.194
Median RMSE NA 0.000 0.071 0.090

Table 7.9: CDNOW - HSM Short-Term Prediction Accuracy

Holt-Winters SARIMA Heuristic HSM
MAE/MAD NA 0.347 0.222 0.223
Mean MSE NA 0.197 0.157 0.146
Median MSE NA 0.082 0.005 0.013
Mean RMSE NA 0.347 0.222 0.223
Median RMSE NA 0.286 0.071 0.113
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7.2.2.3 Prediction of Future Best Customers

The HSM provides equal or better predictions of the future top 10% and 20% of
customers for the DIY and apparel retail data compared to the heuristic, SARIMA
and Holt-Winters method. The predictions by the HSM are also equal or better
than the heuristic for the customer base of CDNOW. Only in forecasting the top
20% of customers does the SARIMA model slightly outperform the HSM. Holt-
Winters method consistently produces the largest errors. Even though the HSM
performs best, the differences are very slight between the HSM, SARIMA, and
the heuristic. Below, I will detail the results.

The ability to identify future high- and low-value customers is tested by rank or-
dering customers according to the HSM’s forecast of purchase frequencies for the
hold-out period. The actual future top 10% (20%) of customers (positives) are
determined by their observed purchase frequency in the hold-out period. The pre-
diction of an individual customer can be correct (true) or incorrect (false).

Rank ordering provides a different view on forecast accuracy compared to the
error metrics in the previous section. For example, even if forecast errors are quite
large for a particular method, customer purchase levels relative to other customers
could be captured accurately. The methods are benchmarked against the following
baseline heuristic:

The past 10% (20%) best customers will also be the future 10% (20%)

best customers.

Results for DIY Retailer

The prediction accuracy for the top 10% and 20% of the DIY retailer’s customer
base are presented in Table 7.10. The accuracy of all methods in determining the
future top 20% customers is very close, ranging from 84.95% (HSM), 84.95%
(SARIMA), 84.80% (heuristic) to 82.09% (Holt-Winters). A similar picture re-
sults for the top 10% with accuracy ranging from 90.97% (HSM), 90.97% (heuris-
tic), 90.67% (SARIMA) to 89.16% (Holt-Winters).
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Table 7.10: DIY Retailer - Accuracy of Top 10% (20%) Customer Prediction

(%) Holt-Winters SARIMA Heuristic HSM

True Positives: 45.46 (55.09) 53.03 (62.26) 54.55 (61.89) 54.55 (62.26)
True Negatives: 93.98 (88.82) 94.82 (90.60) 94.99 (90.51) 94.99 (90.60)
False Negatives: 54.54 (44.91) 46.97 (37.74) 45.45 (38.11) 45.45 (37.74)
False Positives: 6.02 (11.18) 5.18 (9.40) 5.01 (9.49) 5.01 (09.40)

Error: 10.84 (17.91) 9.33 (15.05) 9.03 (15.20) 9.03 (15.05)
Accuracy: 89.16 (82.09) 90.67 (84.95) 90.97 (84.80) 90.97 (84.95)

Table 7.11: Apparel - Accuracy of Top 10% (20%) Customer Prediction

(%) Holt-Winters SARIMA Heuristic HSM

True Positives: 40.65 (48.78) 52.85 (59.35) 52.85 (59.76) 53.66 (60.16)
True Negatives: 93.41 (87.19) 94.76 (89.84) 94.76 (89.94) 94.85 (90.04)
False Negatives: 59.35 (51.22) 47.15 (40.65) 47.15 (40.24) 46.34 (39.84)
False Positives: 6.59 (12.81) 5.24 (10.16) 5.24 (10.06) 5.15 (09.96)

Error: 11.87 (20.49) 9.43 (16.26) 9.43 (16.10) 9.27 (15.93)
Accuracy: 88.13 (79.51) 90.57 (83.84) 90.57 (83.90) 90.73 (84.07)

Table 7.12: CDNOW - Accuracy of Top 10% (20%) Customer Prediction

(%) Holt-Winters SARIMA Heuristic HSM

True Positives: NA 39.74 (44.87) 41.03 (42.31) 41.03 (42.95)
True Negatives: NA 93.31 (86.24) 93.46 (85.60) 93.46 (85.76)
False Negatives: NA 60.26 (55.13) 58.97 (57.69) 58.97 (57.05)
False Positives: NA 6.69 (13.76) 6.54 (14.40) 6.54 (14.24)

Error: NA 12.04 (22.02) 11.78 (23.05) 11.78 (22.79)
Accuracy: NA 87.96 (77.98) 88.22 (76.95) 88.22 (77.20)
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Results for Apparel Retailer

The prediction accuracy for the apparel customer base is presented in Table 7.11.
The methods’ accuracy in determining the future top 20% customers is very close,
ranging from 84.07% (HSM), 83.90% (heuristic), 83.84% (SARIMA) to 79.51%
(Holt-Winters). A similar picture results for the top 10% with accuracy ranging
from 90.73% (HSM), 90.57% (heuristic), 90.57% (SARIMA) to 88.13% (Holt-
Winters).

Results for CDNOW

Table 7.12 compiles the rank-order results for the CDNOW dataset. The accuracy
of the HSM is equal (Top 10%: 88.22%) or better (top 20%: 77.20% vs. 76.95%)
than the accuracy of the heuristic. Likewise, the HSM is more accurate in predict-
ing the top 10% compared to the SARIMA model (88.22% vs. 87.96%). Only in
identifying the top 20% customer, does the SARIMA model slightly outperform
the seasonal model (77.98% vs. 77.20%).

7.3 Discussion of Results

The HSM operates under the "always a share" assumption. This model contributes
to the literature stream of "probability models for customer base analysis" (Fader
and Hardie 2009) and is unique in that it combines (1) individual purchase rates
and cross-sectional heterogeneity, (2) multiplicative seasonal effects, (3) individ-
ual customers’ seasonal behavior and group-level seasonal behavior, and (4) a
measure of individual seasonality.

The model is based on a discretely sampled inhomogeneous Poisson counting
process that features a multiplicative time-varying seasonal co-variate submodel.
Gibbs sampling in a MCMC framework was used to obtain parameter estimates
and forecasts for the hold-out period. In this respect the model extends the NBD
family and related variants (e.g., Schmittlein, Morrison, and Colombo 1987; Fader,
Hardie, and Lee 2005a; Jerath, Fader, and Hardie 2011; Bemmaor and Glady
2012; Mzoughia and Limam 2014; Glady, Lemmens, and Croux 2015) by includ-
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ing individual and cross-sectional seasonal effects. Also, it generalizes post-hoc
seasonal adjustment (Zitzlsperger, Robbert, and Roth 2009) and dummy-variable
approaches (Schweidel and Knox 2013) to improve forecast accuracy in this liter-
ature stream.

The model yields a measure of individual seasonality that indicates how strongly
the customer follows the cross-sectional seasonality, if he purchases anti-cyclically,
or if the customer’s behavior is non-seasonal. The analysis of the HSM shows that
it captures both individual and cross-sectional seasonality quite well (see Section
7.2.2.1). The results of targeting customer groups and segmenting the customer
base according to the model’s seasonal estimates demonstrate that this measure
has a high discriminative power, even with datasets that feature only moderate
seasonal overlap (as shown for example in Figure 7.11).

The targeting of pro-seasonal, non-seasonal and anti-seasonal customers is par-
ticularly useful to a marketing manager to improve the timing and effectiveness
of marketing actions. For example, cross-selling initiatives should be timed to
coincide with peaks in customer activity. As the time periods with peaks differ
substantially between pro- and anti-seasonal customers groups, the targeting by
seasonality could raise success rate of such campaigns. Executives could use this
information for customer portfolio management, mitigating risk by evening out
seasonal peaks and seasonal slumps by attracting or rewarding customers, who fit
the desired seasonal profile.

The empirical validation provided further insights into the forecast accuracy of
the seasonal model compared to a simple heuristic, SARIMA models, and Holt-
Winters method. The analysis of the long- and short-term forecasts shows that the
HSM consistently outperforms the other methods on the DIY and apparel data.
This holds true for both the overall and aggregated individual level error metrics.
The forecast accuracy for CDNOW’s customers does not provide a clear picture.
Neither the HSM, the SARIMA method, nor the heuristic sets itself apart from
the other forecast methods. This is in part expected as the CDNOW data contains
the least seasonal overlap among the retailers, allowing only reduced seasonal
learning. Holt-Winters method consistently produced the highest errors.
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The HSM’s ability to identify future high-value customers follows the above pat-
tern. For both the DIY and apparel data, the forecasts are equal or better than the
heuristic, SARIMA, and Holt-Winters method. The results for CDNOW’s cus-
tomers are again mixed. While the HSM is equal or better than the heuristic, the
SARIMA model is slightly more accurate in identifying the future top 20% of the
customer base.

In general, the HSM improves on the heuristic, SARIMA and Holt-Winters meth-
ods in the managerial tasks simulated in this benchmark. The other methods only
provide competitive forecast accuracy for CDNOW’s customer. This might be in
part due to the minimal seasonal overlap of CDNOW’s data, but also because it
contains a relatively high number of customers who did not purchase recently and
might have dropped out. The ability to improve forecasts for customer bases that
exhibit substantial customer drop-out is the motivation for developing a hierarchi-
cal Bayesian seasonal model with drop-out (HSMDO) in the next chapter.



Chapter 8

Hierarchical Bayesian Seasonal
Effects Model with Drop-Out

The hierarchical Bayesian seasonal effects model with drop-out (HSMDO) I de-
velop in this chapter includes a hierarchical customer lifetime model under the
"buy ’til you die" assumption. This replaces the "always a share" assumption
underlying the HSM.

The HSMDO aims at (1) improving forecast accuracy by incorporating an ex-
plicit customer lifetime model, (2) relating individual and cross-sectional drop-out
rates, (3) relating individual purchase rates to cross-sectional heterogeneity, (4) in-
cluding multiplicative seasonal effects, (5) relating individual customers’ seasonal
behavior to group-level seasonal behavior, (5) yielding a measure of individual
seasonality, and (6) providing a probabilistic measure that indicates whether a
customer is still active or will remain inactive for a certain period of time.

The HSMDO yields an individual measure of a customer’s seasonality that ac-
counts for customer drop-out. It can be used by practitioners to target customers,
segment the customer base and improve the efficiency of marketing campaigns.
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8.1 General Model Framework

The model is based on a discretely sampled inhomogeneous Poisson counting
process where death opportunities coincide with the granularity of the purchase
frequency sampling and incorporates the following features:

1. a hierarchical purchase process that relates the distribution of individual
level purchase frequencies over time to cross-sectional heterogeneity;

2. a hierarchical seasonal structure that relates individual level seasonality to
cross-sectional seasonal components in a multiplicative submodel;

3. an individual estimate for each customer’s seasonality that indicates how
strongly he follows the cross-sectional seasonality, whether he purchases
anti-seasonal or non-seasonal;

4. a hierarchical customer lifetime model that relates the distribution of indi-
vidual level customer lifetimes to cross-sectional heterogeneity;

5. an individual estimate for each customer’s probability of being active after
the observation period: P(alive);

6. a new alternative to P(alive) that yields a theoretically sound and manage-
rial relevant measure of customer activity/inactivity for finite time horizons,
P(ZeroF); and

7. model parameter estimation and prediction through Hybrid/Hamilton Monte
Carlo Methods (Brooks et al. 2011, pp. 113-160) in form of the no-U-turn
sampler (Homan and Gelman 2014).

The drop-out process I propose is closely related to previous work on the Pare-
to/NBD model and related variants (e.g., Schmittlein, Morrison, and Colombo
1987; Fader, Hardie, and Lee 2005a; Jerath, Fader, and Hardie 2011; Bemmaor
and Glady 2012; Mzoughia and Limam 2014; Glady, Lemmens, and Croux 2015)
as discussed in Section 3.1.2.

Similar to the PDO/NBD model (Jerath, Fader, and Hardie 2011), I assume dis-
crete periodic death opportunities tied to calendar time. My model differs from
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the PDO/NBD in that it is based on a discretely sampled inhomogeneous Poisson
counting process so that death opportunities coincide with the granularity of the
purchase frequency sampling. This is at no loss of generality as the data can be
re-sampled at the desired time scale before applying the model.

Ever since Schmittlein, Morrison, and Colombo (1987) introduced the P(alive)

metric, it has been customary for researchers to derive P(alive) for basically all
models that contain a form of drop-out process (Fader and Hardie 2009). P(alive)

indicates the likelihood that a customer has not dropped out and is still active
after the observation period. Unfortunately, P(alive) pertains to an infinite time
horizon, posing problems both for empirical validation and managerial relevance
(Wübben and von Wangenheim 2008; Fader, Hardie, and Shang 2010). I derive
an alternative metric P(ZeroF) for the HSMDO that solves these issues and yields
a theoretically sound probabilistic measure for customer inactivity in finite time
horizons. The conceptual idea, theoretical background, managerial implications,
and mathematical derivation is presented in Section 8.3, p. 136.

For model parameter estimation I use Hybrid/Hamilton Monte Carlo Sampling
(Brooks et al. 2011, pp. 113-160) in form of the no-U-turn sampler (Homan and
Gelman 2014) instead of Gibbs sampling that was used for the DMPT and HSM.
Hamilton Monte Carlo sampling substantially increases the effective sample size
obtained in the same amount of computational time (Carpenter et al. 2015).

Before deriving the joint model likelihood, the conditional expected purchase lev-
els, as well as the P(alive) and P(ZeroF) metrics, I present the model assumptions
and the mathematical notation in the following order:

1. the customer lifetime model with periodic drop-out opportunities:
shifted-geometric beta mixture;

2. during lifetime: individual customers purchase according to a
Poisson time-varying covariate gamma mixture;

3. the multiplicative seasonal effects co-variate model; and

4. prior distributions, hyperparameters and parameter space.
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8.1.1 Customer Lifetime Model with Periodic Drop-out
Opportunities: Shifted-Geometric Beta Mixture

The lifetime model assumes that customer i’s, with i ∈ {1..N}, relationship with
the firm can be characterized as first being alive for some period of time τi, then
dropping out and becoming permanently inactive ("dead"). Each customers unob-
served lifetime of τi follows a shifted-geometric distribution with drop-out proba-
bility per time unit of pi:

τi ∼ SGeometric(pi)
p.m.f.

 pi(1− pi)

τi−1 (8.1)

pi ∼ Beta(a,b)
p.d.f.



pa−1
i (1− pi)

b−1

B(a,b)
(8.2)

B(a,b) =
∫ 1

0 ya−1(1− y)b−1 dy = Γ(a)Γ(b)/Γ(a+b) (8.3)

Cross sectional heterogeneity in drop-out probabilities pi follows a Beta distribu-
tion with shape parameters a,b > 0. B(a,b) is the beta function or Euler integral
of the first kind. In the context of the discretely sampled Poisson counting pro-
cess, starting in time period one, a drop-out event at time τi means that customer i

drops-out immediately after the τi’s time period and remains inactive in all future
time periods starting with τi +1.

Let xi j denote the observed number of purchases customer i makes in time period
j, then a customer drop-out at τi implies that xi,τi+k = 0 for all k > 0. All customers
are assumed to be alive in time period one.

8.1.2 Poisson Covariate Gamma Mixture

While alive each customer i with i∈ {1..N} is assumed to buy at an individual rate
λieβisk( j) in time period j governed by a Poisson purchase process19. The individ-

19 This process can be seen as an discrete sampled inhomogeneous Poisson counting process
with N( j)−N( j−1)=∆N j ∼Poisson(

∫ j
j−1 λ (t)dt), where λ (t) is constant between ( j−1, j]

and therefore ∆N j ∼ Poisson(λ ( j)).
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ual purchase histories are organized so that an individual customer i’s purchases
in time period j are denoted xi j ∈ Z≥0.

The heterogeneity across customers’ base purchase rates λi is captured by a gamma
distribution. The parameters of the group level gamma distribution are the scale
parameter r > 0 and the shape parameter α > 0:

xi j ∼ Poisson(λieβisk( j))
p.m.f.

 e−λie

βisk( j) (λieβisk( j))xi j

Γ(xi j +1)
(8.4)

λi ∼ Gamma(r,α)
p.d.f.

 e−λiαλ

r−1
i

αr

Γ(r)
(8.5)

The time-varying random-effects submodel βisk( j) describes the seasonal structure
of the model. The term depends both on time j and customer i and reflects both
the joint seasonal structure on a group level as well as individual level seasonal
effects as explained below.

8.1.3 Hierarchical Seasonal Effects Submodel

While alive, the individual level seasonality of each customer i is captured by a
multiplicative random effect βi. It determines the influence of the overall seasonal
components sk( j) on each customer’s purchase rate λi. This results in Poisson pur-
chase rate λieβisk( j) for customer i in time period j. Cross sectional heterogeneity
in βi is assumed to be distributed normal with mean one and precision τβ .

Let sk denote the kth seasonal component with k ∈ {1..K}. Each point in time
j is linked20 to one of the K seasonal components by k( j) = (( j− 1) mod K)+

1. The (uncentered) seasonal components ŝk are assumed to be exchangeable
and distributed normal with mean zero and precision τs. The components ŝk are
centered at zero, so that sk reflect the (approximate) seasonal percentage change
compared to average purchases levels.

20 The model allows for any form of time-varying multiplicative co-variates and is derived in
full generality. For the general case the link function may be set to the identity function
k( j) = j
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I constructed the model to comprehensively capture seasonal behavior. For exam-
ple, if an individual customer i exhibits amplified (pro)seasonal behavior his sea-
sonality coefficient would be βi > 1. If a customer shows an attenuated seasonal
pattern, compared to the cross-sectional seasonal components, then his coefficient
would be 0 < βi < 1. If a customer purchases fairly constantly at his individual
purchase rate λi, implying non-seasonal behavior, his coefficient βi would be near
or at zero. Finally, if a customer shows anti-seasonal purchase patterns, behaving
opposite to the overall seasonal behavior, his coefficient would be βi < 0.

The structure of the seasonal submodel can then be decomposed and summarized
as follows:

ŝk ∼ Normal(0,τs)
p.d.f.



√
τs

2π
e−τsŝ2

k/2 (8.6)

sk = ŝk− 1
K ∑ ŝk (8.7)

βi ∼ Normal(1,τβ )
p.d.f.



√
τβ

2π
e−τβ (βi−1)2/2 (8.8)

k( j) = (( j−1) mod K)+1 (8.9)

In a Bayesian hierarchical model one can include all K seasonal components sk

and N seasonal parameters βi as they are drawn from distributions with finite
precisions and that group level information allows for identification. The cross-
sectional parameters of the seasonal model are τs > 0 and τβ > 0.

8.1.4 Priors, Hyperparameters and Parameter Space

The precision parameters (τs, τβ ) and the parameters of the Poisson-gamma mix-
ture (r, α) are given vague non-informative gamma priors through the choice
of hyperparameters. The parameters a and b for the beta distributions are re-
parameterized in terms of a mean parameter φµ with a uniform (between 0 and 1)
prior and a total count parameter φc with a weakly informative Pareto prior (com-
pare Gelman et al. 2003, p. 128). Together with the corresponding parameter
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transformations these prior distributions complete the model framework:

τs,τβ ,r,α ∼ Gamma(ε,ε) (8.10)

φµ ∼ Uni f orm(0,1) (8.11)

φc ∼ Pareto(εmin,εα) (8.12)

a = φµφc b = φc(1−φµ) (8.13)

The values used in this thesis for the hyperparameters ε , εmin, εα are 0.001, 0.1
and 1.5, respectively. Let N be the number of customers and K the number of
seasonal components then the model contains 3N +K +6 parameters of interest.
The term 3N +K + 6 results from N individual purchase frequencies parameters
λi, N individual seasonality measures βi, N individual drop-out probabilities pi, K

seasonal components sk, and the six cross-sectional parameters r,α,τs, τβ , φc and
φµ , while a and b are just transformations of φµ and φc.

8.2 Mathematical Derivation of the HSMDO

The individual purchase histories are organized so that an individual customer
i’s purchases in time period j are denoted xi j. The notation used to present the
observed information about a customer i is (Xi j = xi j, ti, T ), where xi j is the
number of transactions observed by customer i in time period j with 1 ≤ j ≤ T ,
and T is the number of observed time periods. The last time period when the
observed number of transactions was larger than zero is denoted ti. This implies
that xiti > 0 and xim = 0 for all ti < m≤ T . This does not imply that the customer
dropped out at ti. Let τi be the unobserved time period customer i drops out21.
Then the customer might have already dropped out at any of the time periods
T ≥ τi ≥ ti or he is still alive and drops out in the future with τi > T .

21 A drop-out event at time τi means that customer i drops-out immediately after the τi’s time
period and remains inactive in all future time periods starting with τi + 1. This implies that
xiτi+k = 0 for all k > 0. All customers are assumed to be alive in time period one.
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8.2.1 Derivation of Model Likelihood

First, I derive the individual level likelihood function. For better readability I
will drop the customer indices i, set sk( j) = s j and let s denote the set of sk with
k ∈ {1..K}. Lets first suppose the time period τ ≥ t, when the customer drops
out, is known. This implies no further purchases from τ + 1 onwards22. Then
conditional on (τ, X j = x j, t, T, s), and using Equation (8.4) the individual level
likelihood is:

L(λ ,β |τ,X j = x j, t,T,s) =
t

∏
j=1

Poisson(x j|λeβ s j)
min(τ,T )

∏
j=t+1

Poisson(0|λeβ s j)

(8.14)
Taking the expectation over τ , using Equation (8.1), partitioning the sum and
using that x j=0 for j > t yields:

L(λ ,β , p|X j = x j, t,T,s)

=

∞

∑
τ=t

[
SGeometric(τ|p)

t

∏
j=1

Poisson(x j|λeβ s j)
min(τ,T )

∏
j=t+1

Poisson(0|λeβ s j)
]

=

∞

∑
τ=T+1

[
SGeometric(τ|p)

T

∏
j=1

Poisson(x j|λeβ s j)
]
+

T

∑
τ=t

[
SGeometric(τ|p)

τ

∏
j=1

Poisson(x j|λeβ s j)
]

(8.15)

Using ∑
∞
τ=T+1 SGeometric(τ|p) = (1− p)T to eliminate the infinite sum, substi-

tuting and eliminating common factors that only depend on observed data, the

22 The customer is known to have been active in time period t, as he made at least one purchase
in t and thus P(τ < t|t) = 0.
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likelihood (8.15) is further simplified23:

L(λ ,β , p|X j = x j, t,T,s)

= (1− p)T
T

∏
j=1

Poisson(x j|λeβ s j)+

T

∑
τ=t

[
(1− p)τ−1 p

τ

∏
j=1

Poisson(x j|λeβ s j)
]

= (1− p)T
T

∏
j=1

e−λeβ s j
(

λeβ s j
)

x j

Γ
(
x j +1

) +

T

∑
τ=t

[
(1− p)τ−1 p

τ

∏
j=1

e−λeβ s j
(

λeβ s j
)

x j

Γ
(
x j +1

) ]
= (1− p)T

T

∏
j=1

e−λeβ s j
(

λeβ s j
)

x j +

T

∑
τ=t

[
(1− p)τ−1 p

τ

∏
j=1

e−λeβ s j
(

λeβ s j
)

x j
]

= (1− p)T
λ

∑
t
j=1 x je−λ ∑

T
j=1 eβ s j

eβ(∑
t
j=1 s jx j)+

T

∑
τ=t

[
p(1− p)τ−1

λ
∑

t
j=1 x je−λ ∑

τ
j=1 eβ s j

eβ(∑
t
j=1 s jx j)]

= λ
∑

t
j=1 x jeβ(∑

t
j=1 s jx j)

[
(1− p)T e−λ ∑

T
j=1 eβ s j

+
T

∑
τ=t

p(1− p)τ−1e−λ ∑
τ
j=1 eβ s j

]
(8.16)

Sampling directly from a sample-likelihood that is based on Equations (8.16),
(8.2) and (8.5)-(8.13) is still not very efficient. Fortunately, the parameter p can be
marginalized out. This allows for better exploration of the tails of the distribution
and more efficient sampling because the expectation of p does not need to be
estimated through sampling. I use Equations (8.2) and (8.3) to integrate out p,

23 For example for all τ with t ≤ τ ≤ T , the products ∏
τ
j=1 Γ(x j+1) =∏

t
j=1 Γ(x j+1) are equal,

because x j = 0 for all j > t. The same logic applies to ∑
τ
j=1 s jx j and ∑

τ
j=1 x j, in both cases

the sum can be trimmed to t instead of τ .
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yielding:

L(λ ,β ,a,b|X j = x j, t,T,s)

=
∫ 1

0
Beta(p|a,b)λ ∑

t
j=1 x jeβ(∑

t
j=1 s jx j)

[
(1− p)T e−λ ∑

T
j=1 eβ s j

+
T

∑
τ=t

p(1− p)τ−1e−λ ∑
τ
j=1 eβ s j

]
dp

=
λ

∑
t
j=1 x jeβ(∑

t
j=1 s jx j)

B(a,b)[
B(a,b+T )e−λ ∑

T
j=1 eβ s j

+
T

∑
τ=t

B(1+a,b+ τ−1)e−λ ∑
τ
j=1 eβ s j

]
(8.17)

Restoring the indices denoting the individual customer i in (8.17), using Bayes’
theorem and Equations (8.5), (8.6) and (8.8), yields the sample likelihood func-
tion24:

L(λ ,β ,r,α, ŝ,τβ ,τs,a,b|X , t,T ) =[ N

∏
i=1

Li(λi,βi,a,b|Xi j = xi j, ti,T,sk = ŝk−
1
K ∑ ŝk)

][ K

∏
k=1

Normal(ŝk|0,τs)
]

[ N

∏
i=1

Normal(βi|1,τβ )Gamma(λi|r,α)
]

(8.18)

The joint posterior distribution results by substituting a and b, and multiplying the
sample likelihood (8.18) with the priors (8.10)-(8.13):

p(λ ,β ,r,α, ŝ,τβ ,τs,φµ ,φc|X , t,T ) ∝

L(λ ,β ,r,α, ŝ,τβ ,τs,a = φµφc,b = φc(1−φµ)|X , t,T )

Gamma(τβ |ε,ε)Gamma(τs|ε,ε)Gamma(r|ε,ε)

Gamma(α|ε,ε)Pareto(φc|εmin,εα)Uni f orm(φµ |0,1) (8.19)

The specification of the HMC simulation, using the no-U-turn sampler is based
on Equation (8.19). My program code to implement the procedure is described in

24 Here λ , β , t and s denote vector quantities, with individual elements λi, βi and ti for i ∈
{1..N} and sk for k ∈ {1..K}. X is the observed N×T matrix of purchase frequencies.
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Appendix C.1, including hierarchical centering, variable definitions, transforma-
tions and generating forecasts.

8.2.2 Derivation of Expected Purchase Levels and P(alive)

In order to use the model for the prediction of individual customers’ future trans-
actions in time period T + t f , I first derive the probability of XT+tF = xT+t f condi-
tional on the customer being alive in time period T +1. Here xT+t f is number of
transactions in time period T + t f . Then for x > 025:

P(XT+t f = x|τ > T,λ ,β ,s, p,T, t f ,x > 0) = (1− p)t f−1Poisson(x|λe
β s(t f +T ))

(8.20)

The equation can be interpreted as the probability of x purchases in time-period
T + t f , conditional on the customer being alive in time period T +1 and surviving
another t f −1 periods. Taking the expectation in x and marginalizing p yields the
expected number of purchases in time period T + t f conditional on the customer
being alive in time period T +1 in the desired form:

E[XT+t f |τ > T,λ ,β ,s,a,b,T, t f ]

=

∞

∑
x=1

[∫ 1

0
(1− p)t f−1Poisson(x|λe

β s(t f +T ))Beta(p|a,b)dp
]

x

= e
β s(t f +T )

λB(a,b+ t f −1)/B(a,b) (8.21)

In the tradition of Schmittlein, Morrison, and Colombo (1987) I derive the indi-
vidual probability P(alive) = P(τ > T ) conditional on the observed data using the

25 For x = 0 the equation only extends to active customers making zero purchases. This implies
that potential future zero purchase time periods, due to earlier drop-out, are not counted. As
I work towards the expectation this is not relevant here, but I will revisit that issue when
deriving P(ZeroF).
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law of total probability and Equation (8.15), setting:

A =

∞

∑
τ=T+1

[
SGeometric(τ|p)

T

∏
j=1

Poisson(x j|λeβ s j)
]

(8.22)

B =

T

∑
τ=t

[
SGeometric(τ|p)

τ

∏
j=1

Poisson(x j|λeβ s j)
]

(8.23)

Where B is the sum of probabilities that the customer drops out at t ≤ τ ≤ T and A

is the sum of probabilities that the customer drops-out at later time period starting
with T +1, both conditional on (λ ,β ,s, p,X , t,T )26 . Then:

P(τ > T |λ ,β ,s, p, t,T )

=
A

A+B
=

1
1+B/A

=
1

1+∑
T
τ=t eλ (∑T

j=1 eβ s j−∑
τ
j=1 eβ s j )p(1− p)−T+τ−1

(8.24)

Equation (8.24) results by applying the same transformations as in going from
(8.15) to (8.16). Now integrating out p yields:

P(τ > T |λ ,β ,s,a,b, t,T )

=
∫ 1

0

Beta(p|a,b)

1+∑
T
τ=t eλ (∑T

j=1 eβ s j−∑
τ
j=1 eβ s j )p(1− p)−T+τ−1

dp

=
1

1+∑
T
τ=t eλ (∑T

j=1 eβ s j−∑
τ
j=1 eβ s j )B(a+1,b+ τ−1)/B(a,b+T )

(8.25)

26 The conditioning on X can be dropped, because of the memoryless property of the Poisson
and shifted geometric distributions.
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With (8.25) it is now possible to remove the conditioning on the customer being
alive in (8.21) and get:

E[XT+t f |λ ,β ,s,a,b, t,T, t f ]

= E[XT+t f |τ > T,λ ,β ,s,a,b,T, t f ]P(τ > T |λ ,β ,s,a,b, t,T )

=
e

β s(t f +T )
λB(a,b+ t f −1)/B(a,b)

1+∑
T
τ=t eλ (∑T

j=1 eβ s j−∑
τ
j=1 eβ s j )B(a+1,b+ τ−1)/B(a,b+T )

(8.26)

Expectation (8.26) will be used during the HMC simulation to generate the predic-
tions for individual future purchase levels in time periods T + t f with t f ∈ {1..F}.
Here F denotes the forecast horizon, the number of time periods starting with the
first unobserved time period T +1.

8.3 A New Measure for Customer Inactivity:
P(ZeroF) as an Alternative to P(alive)

8.3.1 Conceptual Background of P(ZeroF)

Ever since Schmittlein, Morrison, and Colombo (1987) introduced the P(alive)

metric, it has been common practice for researchers to derive this metric for
models that contain a form of drop-out process (Fader and Hardie 2009; Fader,
Hardie, and Shang 2010). P(alive) has been used for, e.g., optimizing customer
reactivation campaigns (Ma, Tan, and Shu 2015), validating and benchmarking
models (Batislam, Denizel, and Filiztekin 2007; Wübben and von Wangenheim
2008), customer portfolio management (Sackmann, Kundisch, and Ruch 2010),
customer value analysis (Ho, Park, and Zhou 2006), and examining the effect of
modes of acquisition and retention on customer lifetime (Steffes, Murthi, and Rao
2008).

At first glance P(alive)’s use seems attractive, because typically a customer re-
lationship manager wants to decide at a point in time T whether a customer i is
still active or not. This information is helpful to allocate marketing resources, to
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target customers for reactivation, and to calculate customer lifetime value and cus-
tomer equity. A metric that predicts individual customer inactivity is especially
appealing in noncontractual settings, where one cannot observe customer defec-
tion directly through expiration or cancellation of an ongoing contract.

But does P(alive) really provide meaningful information? All it yields is informa-
tion about the latent state of the customer. Would a CRM analyst not rather prefer
a measure for a tangible outcome that he can observe? For example, if an ana-
lyst asks "Will this customer make any purchases in the next quarter?", P(alive)

is not the correct measure. Or if a marketing manager wants to avoid offering
incentives to customers that are likely to make no purchases in the next year —
again, 1−P(alive) is not the correct measure. Remarkably, these two cases are
exemplary for situations P(alive) is currently used for.

The reason for this discrepancy is that P(alive) pertains to an infinite time hori-
zon. For example, 1−P(alive) only yields a sound theoretical probability to the
question "How likely is it that this customer never purchases again?" Conversely,
P(alive) would provide the theoretical correct measure to the question "Will this
customer make another purchase, ever?" It seems odd that managers would use a
such a measure when they are interested in the foreseeable future or a certain plan-
ning horizon. In most managerial decision situations the forecast horizon ranges
from the next quarter, the next year to maybe the next 5 or 10 years at most. This
very issue is raised by Wübben and von Wangenheim (2008, p. 91), who, while
discussing P(alive) state: "... it is of hardly any interest to managers whether a
customer purchases after the planning horizon."

Even more troubling for researchers is that predictions based on P(alive) cannot
be empirically validated. True customer inactivity cannot be observed with finite
length hold-out periods. Currently, researchers use long periods of inactivity as
a proxy for true customer inactivity in out-of-sample validation. However, this
practice might introduce systematic bias and lead to inaccurate predictions. In
that respect P(alive) is of limited diagnostic value when viewed by itself (Fader,
Hardie, and Shang 2010).

For the HSMDO, I provide a solution to the aforementioned challenges and pro-
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pose an alternative measure P(ZeroF) that is a theoretically sound probabilistic
measure for customer inactivity in finite time horizons, provides managerially rel-
evant information on observable outcomes, and is flexible because the desired
time horizon F can be chosen freely.

The main idea behind deriving P(ZeroF) is that the observation of zero purchases
in the forecast horizon has one of three reasons: (1) true customer inactivity due
to drop-out before the hold-out period, the case covered by 1−P(alive); (2) the
chance event that the individual customer, independent of his purchase rate, makes
no purchases in the hold-out period without dropping out; and (3) the customer
is alive at the beginning of the hold-out period, but drops out during he hold-out
period and makes zero purchases until drop-out. Cases (2) and (3) are not covered
by 1−P(alive). This implies that 1−P(alive) systematically underestimates the
probability of seeing zero purchases in the forecast period.

P(ZeroF) takes into account all three cases stated above. P(ZeroF) is the proba-
bility that a customer will make no purchases in the forecast period (from T +1 to
T +F) or alternatively 1−P(ZeroF) is the probability that the customer will make
at least one purchase in the next F time periods. P(ZeroF) provides the theoreti-
cally "correct"27 answers to the managerial questions I raised at the beginning of
this section. For example, 1−P(Zero3) would be the probabilistic answer28 to the
question: "Will the customer make any purchases in the next quarter?" P(Zero12)

would be the probabilistic answer to the question: "How likely is it that this cus-
tomer makes no purchases in the next year?"

In the next section I will derive P(ZeroF) for the HSMDO mathematically and
in Section 8.4.2.2 I will test if P(ZeroF)’s theoretical properties translate into
improved forecast accuracy of customer inactivity.

27 Within the confines of the probabilistic model.
28 Assuming monthly time units.
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8.3.2 Derivation of P(ZeroF) for the HSMDO

In order to derive P(ZeroF) I use the mathematical framework and variable def-
initions as in Section 8.2. Specifically, x j denotes the number of purchases the
customer made in time period j, T is the length of the observation period, t de-
notes the time period of the last observed purchase, s is the vector of the seasonal
components, p is the individual drop-out rate, λ is the individual purchase rate
and β is the individual seasonality. The customer specific index i is dropped for
brevity and s j = sk( j). Using the individual level likelihood from (8.16) condi-
tional on (X j = x j, t,T,s) and setting:

A = (1− p)T
T

∏
j=1

Poisson(x j|λeβ s j) (8.27)

B =

T

∑
τ=t

(1− p)τ−1 p
τ

∏
j=1

Poisson(x j|λeβ s j) (8.28)

C = (1− p)F
T+F

∏
j=T+1

Poisson(0|λeβ s j) (8.29)

D =

T+F

∑
τ=T+1

(1− p)τ−1 p
T

∏
j=1

Poisson(x j|λeβ s j)
τ

∏
j=T+1

Poisson(0|λeβ s j) (8.30)

The term A+B is the individual level likelihood from (8.16), while A ·C constrains
potential purchases in the forecast horizon F to zero, for customers, who remain
active throughout the forecast horizon τ > (T +F). B+D constrains purchases
in the forecast horizon to zero for customers, who drop-out during the forecast
horizon or earlier. Then the probability of observing zero purchases in forecast
horizon F , due to drop-out and/or no purchases while active, is:

P(ZeroF |λ ,β , p,X j = x j, t,T,s) =
A ·C+B+D

A+B
(8.31)

=
C+B/A+D/A

1+B/A
(8.32)
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Canceling common factors, substituting and simplifying products to exponenti-
ated sums yields:

P(ZeroF |λ ,β , p,X j = x j, t,T,s)

=
1

1+B/A

[
B/A+(1− p)F

T+F

∏
j=T+1

Poisson(0|λeβ s j)

+
T+F

∑
τ=T+1

(1− p)τ−1−T p
τ

∏
j=T+1

Poisson(0|λeβ s j)
]

=
1

1+B/A

[
B/A+(1− p)Fe−λ ∑

F
j=1 eβ s j+T

+
F

∑
τ=1

(1− p)τ−1 pe−λ ∑
τ
j=1 eβ s j+T

]
with B/A =

T

∑
τ=t

p(1− p)−T+τ−1eλ (∑T
j=1 eβ s j−∑

τ
j=1 eβ s j ) (8.33)

It is noteworthy that the term 1/(1+B/A) is equivalent to P(τ > T ) = P(alive).
This allows me to rearrange terms and restate the equation in an alternative form29:

P(ZeroF)

=
B/A

1+B/A
+

1
1+B/A

[
(1− p)Fe−λ ∑

F
j=1 eβ s j+T

+
F

∑
τ=1

(1− p)τ−1 pe−λ ∑
τ
j=1 eβ s j+T

]
= P(τ ≤ T )+P(τ > T )

[
(1− p)Fe−λ ∑

F
j=1 eβ s j+T

+
F

∑
τ=1

(1− p)τ−1 pe−λ ∑
τ
j=1 eβ s j+T

]
(8.34)

Equation (8.34) can intuitively be interpreted. The probability for observing no
purchases in T + 1 to T +F is (1) the probability that the customer dropped out
before T + 1. If (2) he did not drop-out then, he might stay active another F

periods (1− p)F making zero purchases in the meantime, or (3) he might drop-
out in any of the time periods T +1,T +2, ...,T +F , making zero purchases before
drop-out.

Finally, in order to integrate out p I will use Bayes’ Theorem to reduce the task of
integrating (8.33) to integrating over a sum. I use the individual level likelihoods

29 Dropping the conditioning for brevity.
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(8.16) and (8.17)30 to yield the following simplification:

P(ZeroF |λ ,β ,a,b,X j, t,T,s)

=
∫ 1

0
P(ZeroF |λ ,β , p,X j, t,T,s)Beta(p|a.b)dp

=
∫ 1

0

A ·C+B+D
L(λ ,β , p|X j, t,T,s)

L(λ ,β , p|X j, t,T,s)Beta(p|a,b)
L(λ ,β ,a,b|X j, t,T,s)

dp

=
∫ 1

0

(A ·C+B+D)Beta(p|a,b)
L(λ ,β ,a,b|X j, t,T,s)

dp (8.35)

Setting:

U =
∫ 1

0
(A ·C)Beta(p|a.b)dp

=
B(a,b+T +F)

B(a,b)

(
T+F

∏
j=T+1

e−λeβ s j

)
T

∏
j=1

λ x jeβ s jx je−λeβ s j

Γ
(
x j +1

)
=

B(a,b+T +F)

B(a,b)∏
T
j=1 Γ

(
x j +1

) λ
∑

T
j=1 x jeβ ∑

T
j=1 s jx j

eλ ∑
T+F
j=T+1 eβ s j

eλ ∑
T
j=1 eβ s j

(8.36)

V =
∫ 1

0
B ·Beta(p|a.b)dp

=
T

∑
τ=t

B(a+1,b+ τ−1)
B(a,b)

τ

∏
j=1

λ x jeβ s jx je−λeβ s j

Γ
(
x j +1

)
=

T

∑
τ=t

B(a+1,b+ τ−1)
B(a,b)∏

τ
j=1 Γ

(
x j +1

)λ
∑

τ
j=1 x jeβ ∑

τ
j=1 s jx je−λ ∑

τ
j=1 eβ s j

(8.37)

W =
∫ 1

0
D ·Beta(p|a.b)dp

=
T+F

∑
τ=T+1

B(a+1,b+ τ−1)
B(a,b)

(
τ

∏
j=T+1

e−λeβ s j

)
T

∏
j=1

λ x jeβ s jx je−λeβ s j

Γ
(
x j +1

)
=

T+F

∑
τ=T+1

B(a+1,b+ τ−1)
B(a,b)∏

T
j=1 Γ

(
x j +1

) λ
∑

T
j=1 x jeβ ∑

T
j=1 s jx j

eλ ∑
τ
j=T+1 eβ s j

eλ ∑
T
j=1 eβ s j

(8.38)

30 Here I restore the factor ∏
t
j=1(1/Γ(x j +1)).



8.4 Data Analysis: Parameter Estimation and Prediction 142

Substituting and canceling terms results in:

P(ZeroF |λ ,β ,a,b,X j, t,T,s) =
U +V +W

L(λ ,β ,a,b|X j, t,T,s)

=
[ B(a,b+T +F)

eλ ∑
T+F
j=T+1 eβ s j

eλ ∑
T
j=1 eβ s j

+
T

∑
τ=t

B(a+1,b+ τ−1)

eλ ∑
τ
j=1 eβ s j

+
T+F

∑
τ=T+1

B(a+1,b+ τ−1)

eλ ∑
τ
j=T+1 eβ s j

eλ ∑
T
j=1 eβ s j

]
·
[
B(a,b+T )e−λ ∑

T
j=1 eβ s j

+
T

∑
τ=t

B(1+a,b+ τ−1)e−λ ∑
τ
j=1 eβ s j

]−1
(8.39)

Now dividing by B(a,b + T )e−λ ∑
T
j=1 eβ s j

and substituting R yields the desired
form:

R =
T

∑
τ=t

B(1+a,b+ τ−1)
B(a,b+T )

eλ (∑T
j=1 eβ s j−∑

τ
j=1 eβ s j ) (8.40)

P(ZeroF |λ ,β ,a,b,X j, t,T,s)

=
[
1+R

]−1
[

R+
B(a,b+T +F)

eλ ∑
T+F
j=T+1 eβ s j

B(a,b+T )
+

T+F

∑
τ=T+1

B(a+1,b+ τ−1)

eλ ∑
τ
j=T+1 eβ s j

B(a,b+T )

]
(8.41)

Equation 8.41 is used in the HMC simulation to compute P(ZeroF) in every iter-
ation.

8.4 Data Analysis: Parameter Estimation and
Prediction

8.4.1 Convergence and Marginal Posterior Estimates

I obtained the posterior distributions for the model’s parameters by Hybrid/Hamil-
ton Monte Carlo Sampling (Brooks et al. 2011, pp. 113-160), specifically the no-
U-turn sampler (Homan and Gelman 2014). For this model the no-U-turn sampler
substantially increases the effective sample size relative to computational time
compared to Gibbs sampling that I used for the DMPT and HSM. I present my
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source code and additional information about the procedure in Appendix C.1.

The parameter estimation results are based on HMC runs with four chains start-
ing from dispersed initial values, 20,000 iterations and a burn-in phase of 10,000
samples. I performed thinning by taking every fifth sample after the burn-in pe-
riod to save memory. Therefore, the marginal posterior distributions are based on
(10,000/5)×4 = 8,000 samples.

The HMC procedure iteratively converges towards the true posterior distribution
of the parameter space and after convergence simulates the true posterior dis-
tribution. I assessed approximate convergence of the algorithm by examining
auto-correlation and effective sample size; visually inspecting the trace plots of
the posterior samples; evaluating the Gelman, Brooks and Rubin statistic; and by
running multiple simulations from dispersed initial values.

Auto-Correlation and Effective Sample Size

The samples obtained via HMC for all three datasets show virtually no auto-
correlation after the burn-in period (10,000 iterations). The auto-correlation plots
for the main parameters of the model and seasonal components are shown in Fig-
ures C.1 and C.3 (Apparel), Figures C.5 and C.7 (DIY), and Figures C.9 and C.11
(CDNOW) in the Appendix. The lowest two effective sample sizes for the DIY
HMC simulation are 6,876 for τs and 7,089 for τβ , while the two lowest effective
sample sizes for the apparel samples are 6,877 for τβ and 7,318 for s12. For the
CDNOW dataset, the procedure yielded the fewest effective samples for r (4,036)
and α (4,221). Typically effective sample sizes were near their theoretical max-
imum of 8,000 samples. Thus, auto-correlation is not an issue with the obtained
effective sample sizes (Gelman et al. 2003, p. 298).

Inspection of Trace Plots

The trace plots for all three datasets exhibit no visible "trends" and sufficient mix-
ing of all four Markov chains both individually and overall. The trace plots for
the main parameters of the model and seasonal components are shown in Figures
C.2 and C.4 (Apparel), Figures C.6 and C.8 (DIY), and Figures C.10 and C.12
(CDNOW) in the Appendix. The visual inspection of the trace plots indicates that
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convergence was reached and that the posterior distribution is adequately repre-
sented (see Section 4.3).

BGR Statistic

I validated Markov chain convergence by computing the Brooks-Gelman-Rubin
statistic for all parameters over all four chains. In all cases, the BGR ratio R̂c was
approximately 1.0 and stayed well below 1.1 close to the ideal 1.0, which indi-
cates that the chains have converged to the true posterior distribution (Congdon
2003; Cowles and Carlin 1996; Gelman and Rubin 1992). In addition, I repeatedly
simulated the posterior distribution using multi-chain runs with dispersed initial
values that in all cases converged to virtually identical parameter values.

Parameter Estimates and Marginal Posterior Densities

Summary statistics for the parameter’s marginal posterior distributions includ-
ing means, standard deviations, medians, and credibility intervals are compiled
in Tables 8.1 (DIY), 8.2 (Apparel), and 8.3 (CDNOW). The tables include all
main model parameters r,α,τs,τβ ,a, and b, as well as all seasonal components
s1− s12. Additionally, the first and last two of the individual level parameters βi,
λi, PAi = Pi(alive), and PZFi = Pi(ZeroF) are shown. The estimates for Pi(alive)

and Pi(ZeroF) are computed at each iteration of the HMC simulation via Equa-
tions (8.41) and (8.25). The full marginal posterior densities of the main model
parameters and seasonal components are depicted in Figures 8.7-8.12.
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Table 8.1: HSMDO/DIY Marginal Posterior Distribution Summaries for HMC
Simulation after 10,000 Iterations per Chain (4 Chains, 10K Burn-In)

Summary of Marginal Posterior Distributions

node mean sd MC error 2.5% median 97.5%

r 2.1803 0.0823 0.0010 2.0245 2.1778 2.3486
alpha 0.7796 0.0330 0.0004 0.7169 0.7789 0.8464
s[1] 0.0681 0.0072 0.0001 0.0542 0.0680 0.0821
s[2] 0.0394 0.0082 0.0001 0.0226 0.0396 0.0549
s[3] 0.0209 0.0076 0.0001 0.0056 0.0210 0.0355
s[4] −0.0045 0.0095 0.0001 −0.0231 −0.0044 0.0137
s[5] −0.0156 0.0104 0.0001 −0.0361 −0.0156 0.0046
s[6] −0.0953 0.0106 0.0001 −0.1161 −0.0952 −0.0750
s[7] −0.2358 0.0140 0.0002 −0.2633 −0.2356 −0.2085
s[8] −0.1758 0.0127 0.0001 −0.2013 −0.1755 −0.1515
s[9] 0.0356 0.0092 0.0001 0.0177 0.0356 0.0538
s[10] 0.1464 0.0086 0.0001 0.1294 0.1465 0.1630
s[11] 0.1286 0.0078 0.0001 0.1135 0.1286 0.1438
s[12] 0.0880 0.0077 0.0001 0.0731 0.0880 0.1032
tau_s 72.2461 31.2178 0.3765 24.3840 67.7148 144.7251
tau_beta 0.4584 0.0456 0.0005 0.3748 0.4561 0.5523
a 1.0085 3.3563 0.0379 0.0980 0.4312 5.0562
b 672.1070 2232.5177 25.2373 63.0831 286.2169 3423.5955
lambda[1] 7.5578 0.5321 0.0060 6.5502 7.5449 8.6265
lambda[2] 2.6883 0.3127 0.0035 2.1112 2.6804 3.3320...

...
...

...
...

...
...

lambda[1328] 1.3751 0.2203 0.0025 0.9713 1.3619 1.8395
lambda[1329] 4.4228 0.3981 0.0045 3.7004 4.4056 5.2614
beta[1] 2.5930 0.6660 0.0075 1.3029 2.5799 3.9609
beta[2] 1.9810 0.9348 0.0105 0.1586 1.9760 3.8561...

...
...

...
...

...
...

beta[1328] 1.5524 1.1046 0.0124 −0.6111 1.5505 3.7900
beta[1329] 0.8533 0.7806 0.0087 −0.6425 0.8547 2.3994
PA[1] 0.9986 0.0003 0.0000 0.9981 0.9986 0.9991
PA[2] 0.9986 0.0003 0.0000 0.9981 0.9986 0.9991...

...
...

...
...

...
...

PA[1328] 0.9986 0.0003 0.0000 0.9981 0.9986 0.9991
PA[1329] 0.9986 0.0003 0.0000 0.9981 0.9986 0.9991
PZF[1] 0.0014 0.0003 0.0000 0.0009 0.0014 0.0019
PZF[2] 0.0017 0.0004 0.0000 0.0011 0.0016 0.0028...

...
...

...
...

...
...

PZF[1328] 0.0128 0.0101 0.0001 0.0026 0.0098 0.0405
PZF[1329] 0.0014 0.0003 0.0000 0.0009 0.0014 0.0019
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Table 8.2: HSMDO/Apparel Marginal Posterior Distribution Summaries for
HMC Simulation after 10,000 Iterations per Chain (4 Chains, 10K Burn-In)

Summary of Marginal Posterior Distributions

node mean sd MC error 2.5% median 97.5%

r 1.7851 0.0842 0.0010 1.6271 1.7846 1.9516
alpha 2.3915 0.1237 0.0014 2.1590 2.3880 2.6372
s[1] 0.6991 0.0207 0.0002 0.6589 0.6992 0.7397
s[2] −0.5257 0.0548 0.0006 −0.6360 −0.5244 −0.4204
s[3] −0.2291 0.0400 0.0005 −0.3103 −0.2277 −0.1550
s[4] −0.1020 0.0392 0.0004 −0.1802 −0.1017 −0.0281
s[5] −0.0880 0.0378 0.0004 −0.1638 −0.0878 −0.0163
s[6] 0.0885 0.0299 0.0003 0.0288 0.0887 0.1454
s[7] 0.2970 0.0263 0.0003 0.2452 0.2971 0.3473
s[8] 0.1309 0.0337 0.0004 0.0633 0.1308 0.1957
s[9] −0.7375 0.0838 0.0010 −0.9060 −0.7350 −0.5794
s[10] 0.1210 0.0391 0.0004 0.0435 0.1211 0.1977
s[11] −0.1632 0.0493 0.0006 −0.2643 −0.1623 −0.0694
s[12] 0.5089 0.0273 0.0003 0.4560 0.5089 0.5627
tau_s 6.0677 2.6474 0.0296 2.0844 5.7092 12.3811
tau_beta 1.5511 0.1339 0.0016 1.3089 1.5445 1.8331
a 0.3886 0.7971 0.0092 0.1144 0.2388 1.5670
b 12.1896 33.3422 0.3865 1.6886 5.7570 61.2676
ambda[1] 1.5805 0.2680 0.0030 1.1021 1.5643 2.1694
lambda[2] 2.3098 0.3326 0.0037 1.6995 2.2951 3.0155...

...
...

...
...

...
...

lambda[1229] 0.5379 0.1560 0.0017 0.2692 0.5223 0.8790
lambda[1230] 1.2832 0.2453 0.0027 0.8461 1.2709 1.8007
beta[1] 0.6269 0.4040 0.0045 −0.1650 0.6259 1.4206
beta[2] 0.7230 0.3562 0.0042 0.0259 0.7201 1.4170...

...
...

...
...

...
...

beta[1229] 0.8029 0.5663 0.0063 −0.2932 0.8023 1.9022
beta[1230] 0.8027 0.4317 0.0050 −0.0399 0.8035 1.6619
PA[1] 0.9897 0.0035 0.0000 0.9810 0.9905 0.9945
PA[2] 0.8670 0.0569 0.0006 0.7249 0.8776 0.9448...

...
...

...
...

...
...

PA[1229] 0.9309 0.0297 0.0003 0.8551 0.9371 0.9686
PA[1230] 0.7600 0.1127 0.0013 0.4868 0.7824 0.9135
PZF[1] 0.0175 0.0067 0.0001 0.0084 0.0162 0.0337
PZF[2] 0.1357 0.0569 0.0006 0.0577 0.1248 0.2776...

...
...

...
...

...
...

PZF[1229] 0.1991 0.0630 0.0007 0.1100 0.1880 0.3602
PZF[1230] 0.2513 0.1083 0.0012 0.1103 0.2281 0.5169



8.4 Data Analysis: Parameter Estimation and Prediction 147

Table 8.3: HSMDO/CDNOW Marginal Posterior Distribution Summaries for
HMC Simulation after 10,000 Iterations per Chain (4 Chains, 10K Burn-In)

Summary of Marginal Posterior Distributions

node mean sd MC error 2.5% median 97.5%

r 6.2802 0.8147 0.0128 4.8697 6.2143 8.0867
alpha 16.4389 2.1999 0.0339 12.6043 16.2577 21.2661
s[1] 0.9469 0.0466 0.0006 0.8561 0.9466 1.0383
s[2] −0.0187 0.0676 0.0008 −0.1513 −0.0181 0.1129
s[3] −0.1014 0.0869 0.0010 −0.2754 −0.1001 0.0662
s[4] −0.2244 0.0946 0.0011 −0.4156 −0.2231 −0.0456
s[5] −0.2185 0.0967 0.0011 −0.4126 −0.2168 −0.0321
s[6] −0.1219 0.0951 0.0011 −0.3123 −0.1204 0.0628
s[7] −0.0442 0.0953 0.0011 −0.2351 −0.0411 0.1388
s[8] −0.1721 0.1043 0.0012 −0.3801 −0.1693 0.0288
s[9] −0.0726 0.1038 0.0012 −0.2806 −0.0714 0.1249
s[10] −0.1978 0.1134 0.0013 −0.4268 −0.1952 0.0203
s[11] 0.1319 0.1016 0.0011 −0.0713 0.1318 0.3249
s[12] 0.0929 0.1069 0.0012 −0.1191 0.0943 0.2953
tau_s 9.0783 4.0115 0.0449 3.0697 8.4102 18.8614
tau_beta 739.7070 699.7777 7.8541 104.0761 524.7925 2638.4254
a 0.4979 0.0736 0.0008 0.3733 0.4934 0.6599
b 0.8208 0.2109 0.0024 0.4973 0.7905 1.3251
lambda[1] 0.3180 0.1012 0.0011 0.1545 0.3075 0.5411
lambda[2] 0.4268 0.1537 0.0017 0.1804 0.4106 0.7685...

...
...

...
...

...
...

lambda[780] 0.3735 0.1424 0.0016 0.1518 0.3556 0.7007
lambda[781] 0.3707 0.1399 0.0016 0.1505 0.3524 0.6944
beta[1] 1.0017 0.0520 0.0006 0.8959 1.0011 1.1062
beta[2] 1.0027 0.0521 0.0006 0.9013 1.0016 1.1098...

...
...

...
...

...
...

beta[780] 1.0000 0.0523 0.0006 0.8884 1.0002 1.1096
beta[781] 0.9996 0.0531 0.0006 0.8905 0.9990 1.1108
PA[1] 0.8078 0.0467 0.0005 0.6946 0.8164 0.8753
PA[2] 0.0043 0.0078 0.0001 0.0000 0.0013 0.0263...

...
...

...
...

...
...

PA[780] 0.0071 0.0115 0.0001 0.0000 0.0028 0.0384
PA[781] 0.0070 0.0108 0.0001 0.0000 0.0029 0.0388
PZF[1] 0.5038 0.0718 0.0008 0.3936 0.4925 0.6652
PZF[2] 0.9977 0.0032 0.0000 0.9883 0.9990 1.0000...

...
...

...
...

...
...

PZF[780] 0.9965 0.0041 0.0001 0.9851 0.9981 1.0000
PZF[781] 0.9965 0.0040 0.0001 0.9851 0.9981 1.0000
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Figure 8.1: HSMDO/DIY Customer Base Histograms for Estimates of
Individual Purchase Rate λi and Customer Seasonality βi
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Figure 8.2: HSMDO/DIY Customer Base Histograms for Estimates of
Individual Customer Inactivity P(ZeroF) and 1−P(alive)
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Figure 8.3: HSMDO/Apparel Customer Base Histograms for Estimates of
Individual Purchase Rate λi and Customer Seasonality βi
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Figure 8.4: HSMDO/Apparel Customer Base Histograms for Estimates of
Individual Customer Inactivity P(ZeroF) and 1−P(alive)
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Figure 8.5: HSMDO/CDNOW Customer Base Histograms for Estimates of
Individual Purchase Rate λi and Customer Seasonality βi
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Figure 8.6: HSMDO/CDNOW Customer Base Histograms for Estimates of
Individual Customer Inactivity P(ZeroF) and 1−P(alive)
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Figure 8.7: HSMDO/CDNOW Marginal Posterior Densities for r, α , τs, τβ ,
a, and b after 10,000 Iterations per Chain (4 Chains, 10K Burn-In)
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Figure 8.9: HSMDO/CDNOW Marginal Posterior Densities Seasonal
Components sk after 10,000 Iterations per Chain (4 Chains, 10K Burn-In)
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Components sk after 10,000 Iterations per Chain (4 Chains, 10K Burn-In)



8.4 Data Analysis: Parameter Estimation and Prediction 153

s[1]

s[2]

s[3]

s[4]

s[5]

s[6]

0

5

10

15

20

0

2

4

6

0.0

2.5

5.0

7.5

10.0

0.0

2.5

5.0

7.5

10.0

0

3

6

9

0

5

10

0.65 0.70 0.75

−0.7 −0.6 −0.5 −0.4

−0.4 −0.3 −0.2 −0.1

−0.3 −0.2 −0.1 0.0

−0.2 −0.1 0.0

0.00 0.05 0.10 0.15 0.20

s[7]

s[8]

s[9]

s[10]

s[11]

s[12]

0

5

10

15

0.0

2.5

5.0

7.5

10.0

12.5

0

1

2

3

4

5

0

3

6

9

0

2

4

6

8

0

5

10

15

0.20 0.25 0.30 0.35 0.40

0.00 0.05 0.10 0.15 0.20 0.25

−1.0 −0.8 −0.6 −0.4

0.0 0.1 0.2

−0.3 −0.2 −0.1 0.0

0.40 0.45 0.50 0.55 0.60

Chain 1 2 3 4

Figure 8.11: HSMDO/Apparel Marginal Posterior Densities Seasonal
Components sk after 10,000 Iterations per Chain (4 Chains, 10K Burn-In)
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Figure 8.12: HSMDO/Apparel Marginal Posterior Densities for r, α , τs, τβ ,
a, and b after 10,000 Iterations per Chain (4 Chains, 10K Burn-In)

8.4.2 Results and Forecast Accuracy

8.4.2.1 Seasonal Components and Individual Seasonality

The HMC simulation with the no-U-turn sampler for the HSMDO resulted in sea-
sonal and customer lifetime information on a cross-sectional as well as on an in-
dividual customer level. I obtained estimates for the overall seasonal components
s1− s12 and the individual seasonality coefficients βi for all datasets (see Tables
8.1-8.3). The estimates for customers individual seasonality βi and purchase rate
λi are compiled in form of histograms in Figure 8.1 (DIY), Figure 8.3 (Apparel),
and Figure 8.5 (CDNOW).

The seasonality measure βi can be used for targeting customer groups and cus-
tomer segmentation. Figure 8.13 shows an exemplary segmentation for the three
retail customer bases into customers that show amplified seasonality βi ≥ 1, cus-
tomers that show attenuated seasonality with βi between 0 and 1, and anti-seasonal
customers with βi < 0. The comparison between tbe HSMDO segmentation to
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Figure 8.13: HSMDO Segmentation of Customer Base by Individual
Seasonality βi for each Retailer

the segmentation based on the HSM estimates (compare Figure 7.10, p. 111 and
histograms in Figures 7.1-7.3, pp. 103-105) reveals that while the number of
DIY customers in each segment remain almost identical, the possibility of drop-
out induces a shift in estimated customer segments for the apparel and CDNOW
customer base. The apparel retailers segment of pro-seasonal customers grows
(HSM: 661 vs. HSMDO: 709), while the CDNOW estimates shows the oppo-
site effect: the addition of the drop-out process leads to a smaller pro-seasonal
customers segment (HSM: 531 vs. HSMDO: 403).

In the following I analyze the estimates for overall and individual seasonality sep-
arately for each retailer in more detail.

Estimates for the DIY Retailer

The overall estimated seasonal components s1− s12 (Table 8.1) for the DIY Re-
tailer indicate lower overall purchase levels from s4 (November) to s8 (March)
and higher overall purchases level from s9 (April) to s3 (October). Compared to
the HSM, the HSMDO provides nearly identical estimates for the overall seasonal
components, showing the same seasonal pattern.

The customers’ purchase frequencies are on average down approximately31 24%

31 The seasonal components can be interpreted as the approximate (for small values) percentage
change compared to the seasonal cycle average. This approximation is used throughout this
thesis.
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Figure 8.14: HSMDO/DIY Purchase History Comparison of Customer
Groups Selected by Individual Seasonality Estimates βi

in s7 (February) and up 15% in s10 (May) from their yearly mean. This overall
pattern indicates that the DIY retailer’s customers activity peaks in the summer,
maybe because customers use the summer holidays for home improvement or
because the summer weather facilitates outdoor projects.

While overall seasonal information could have been obtained through other meth-
ods as well, the HSMDO also — and more importantly — yields measures of
seasonality that reflect how each customer’s individual behavior relates to the sea-
sonal behavior of other customers. In contrast to the HSM’s measures of sea-
sonality the HSMDO’s estimates of individual seasonality take potential customer
drop-out into account. The discriminative power of this measure is illustrated
in Figure 8.14. From the DIY retailer’s customer base I selected three groups
with 50 customers each: a pro-seasonal (green), an anti-seasonal (red) and a non-
seasonal (blue) customer group. The pro-seasonal group comprises the customers
with the largest βi coefficients, the anti-seasonal group consists of customers with
the lowest (negative) βi coefficients, and for the non-seasonal group, customers
with βi closest to zero were selected. The shaded area around the lines depict
the 95% confidence limits of the group mean computed by a nonparametric boot-
strap.
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The group graphs in Figure 8.14 show clearly that the HSMDO captures individ-
ual seasonality quite well. Over time, the pro-seasonal customers’ actual purchase
levels are an almost exact mirror image of the anti-seasonal customers levels,
while the non-seasonal customers remain buying at fairly constant purchase lev-
els. For example, the upward spikes in time periods 7 and 19 of the anti-seasonal
customers is matched by the downward spikes of the pro-seasonal customers in the
same time periods. This actual behavior corresponds with the estimated overall
seasonal component s7 (February), that indicates an overall reduction in purchase
levels by 24% for periods 7 and 19. The pro-seasonal group’s upward spike in
time periods 11 and 23 is consistent with the +13% increase in purchase levels
implied by component s11 (June).

Compared to the HSM, the HSMDO yields very similar results, however the
HSMDO discriminates the groups slightly better. For example, the HSM con-
fidence intervals for time period 19 in Figure 7.11 (p. 112) show some overlap
between the non-seasonal and anti-seasonal customers. The HSMDO confidence
intervals, in comparison, do not overlap so that the groups for that time period are
fully discriminated. These difference are very slight.

Estimates for the Apparel Retailer

The seasonal components s1− s12 (Table 8.2) for the apparel dataset indicate, that
the highest overall purchase levels are to be expected in January (+101%; s1 =

0.6991), December (+66%; s12 = 0.5089) and July (+35%; s7 = 0.2970), which
coincides with the summer and winter holiday seasons in the retailer’s market.
The lowest purchase levels are estimated in September (-52%; s9 =−0.7375) and
February (-41%; s2 =−0.5257). Compared to the apparel estimates for the HSM
(Table 7.2, p. 104) the overall seasonal components follow the same pattern but
the differences between the models are larger than on the DIY data.

The HSMDO estimate for the precision parameter τβ (1.55) of the apparel cus-
tomers’ seasonality is larger than the same estimate for the DIY retailer’s cus-
tomers (0.46). This pattern also emerges by comparing the spread of the his-
tograms for β depicted in Figures 8.1 and 8.3. This result implies that the indi-
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Figure 8.15: HSMDO/Apparel Purchase History Comparison of Customer
Groups Selected by Individual Seasonality Estimates βi

vidual βi are more concentrated for the apparel retailer. One reason might be that
apparel data spans a total time frame of 24 months and therefore, with reserving
four months for hold-out, provides only eight month seasonal overlap for seasonal
learning — less than the DIY data. Nonetheless, both the apparel and DIY esti-
mates provide more than adequate discrimination of individual seasonality.

Figure 8.15 depicts a comparison of actual purchase histories of three customer
groups selected by βi estimates, employing the same procedure as above. Al-
though not as clear as on the DIY retailer dataset, the pro- (green) and anti-
seasonal (red) graphs mirror each other markedly over the time line. For example,
the peak in pro-seasonal behavior at time periods 1 and 13 (s1) coincides with the
corresponding slump in the anti-seasonal group, equally the peak in anti-seasonal
activity in period 9 (s9) is mirrored by a simultaneous slump in purchase levels
of the pro-seasonal group. The non-seasonal customers (blue) are somewhat in
between with attenuated seasonal behavior. Comparing HSMDO group behavior
to the graphs based on the HSM estimates (Figure 7.12, p. 113) suggests only
minor differences, for example the HSMDO estimates’ peak for the pro-seasonal
customers in time period 7 is more subdued.
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Estimates for CDNOW

The CDNOW dataset provides only little information for seasonal learning as it
only spans 18 months in total. With four months of data reserved as hold-out
that only leaves 14 months for learning and thus two months overlap for seasonal
inference. It is noteworthy that under these conditions, the model still produces
sensible individual estimates for all parameters (see Table 8.3). This is one of
the strength of hierarchical models because the estimates in view of sparse data
are pulled toward their higher level means. Thus, the individual estimates for βi

are highly concentrated (τβ = 739) around one (compare the histogram in Figure
8.5).

The lack of variance in the individual seasonality estimates βi is reflected in the
group comparison depicted in Figure 8.16. The model could only discern pro-
seasonal (green) and least-seasonal (red) customers as no values for βi were near
zero or even negative. The least-seasonal graph only vaguely moves opposite to
the pro-seasonal graph, with slumps coinciding with the corresponding peaks, for
example, in time periods 6 and 13. However, this is inconclusive and judging from
the high concentration of βi around one, the majority of the seasonal learning for
the CDNOW dataset will come from the overall seasonal components s1− s12,
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Figure 8.16: HSMDO/CDNOW Purchase History Comparison of Customer
Groups Selected by Individual Seasonality Estimates βi
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with very little contribution by the individual seasonality estimates.

According to the estimates (see Table 8.3) for the seasonal components s1− s12,
peak activity for CDNOW is in November (s11 = 0.1319) through January (s1 =

0.9469), while the lowest levels are to be expected in April (s4 = −0.2244) and
May (s5 =−0.2185). The estimated overall seasonal components differ not only
in value from the HSM (Table 7.3, p. 105), but also in sign. For example, while
the HSM estimates higher than average sales in s1− s3, the HSMDO estimates
higher than average sales in s11− s1 and lower average sales in s2 and s3.

8.4.2.2 Prediction of Customer Inactivity

Predicting whether a customer is about to become inactive, or not, is a classifi-
cation task. The ROC analysis shows that P(ZeroF) dominates P(alive) over all
cutoff values and that P(ZeroF) performs substantially better than the heuristic.
This holds true for all three retailers and is corroborated by the superior AUC
of P(ZeroF) compared to the other methods. I will present the results in detail
below.

I used Equation (8.25) during the HMC simulation of the HSMDO to calculate
P(alive) for each individual customer (see Section 8.2.2). I used Equation (8.41,
p. 142) during the HMC simulation of the HSMDO to calculate P(ZeroF) for each
individual customer with F set to the length of the hold-out period (four months).
The hiatus heuristic is described in Section 3.3.2.

Results for the DIY Retailer

The ROC curves in Figure 8.17 show that P(ZeroF) (red) dominates P(alive)

(blue) over the complete range of cutoff values for the DIY retailer dataset. A
curve drawn out further toward the upper left corner implies better classifica-
tion results. Also, P(ZeroF) quite substantially outperforms the hiatus heuristic
(green) over a wide range of cutoff values. The area under the curve (AUC) for
P(ZeroF) is 0.8854 compared to 0.7871 for the hiatus heuristic (larger is better).
P(alive) is worst with an area under the curve of 0.7737.
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Figure 8.17: HSMDO/DIY ROC Analysis of Predicting Customer
Inactivity with P(ZeroF), P(alive), and the Hiatus Heuristic
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Figure 8.18: HSMDO/Apparel ROC Analysis of Predicting Customer
Inactivity with P(ZeroF), P(alive), and the Hiatus Heuristic
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Figure 8.19: HSMDO/CDNOW ROC Analysis of Predicting Customer
Inactivity with P(ZeroF), P(alive), and the Hiatus Heuristic

Results for the Apparel Retailer

The ROC analysis for the apparel retailer is depicted in Figure 8.18. Again, the
ROC of P(ZeroF) dominates the ROC of P(alive) over the full parameter space
and also substantially outperforms the hiatus heuristic over a wide range of cutoff
values. This visual impression is corroborated by the corresponding area under
the curve measures. Predictions based on P(ZeroF) yield the largest AUC with
0.7809, surpassing the hiatus heuristic with an AUC of 0.7499 and P(alive) with
an AUC of 0.7202.

Results for the CDNOW Retailer

The classification results for CDNOW are much closer as can be seen in Figure
8.19. Still, the ROC curve for P(ZeroF) dominates the ROC of P(alive) over all
cutoff values. While not completely dominating, P(ZeroF) outperforms the hiatus
heuristic over almost the full parameter space with only few exceptions. In line
with the results for the other datasets, P(alive) yielded the least accurate classi-
fication results. The area under the curve metric mirrors these results. P(ZeroF)
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Table 8.4: ROC/AUC Analysis of Predicting Customer Inactivity

DIY Retailer Apparel Retailer CDNOW
Hiatus Heuristic: 0.7871 0.7499 0.8053
HSMDO P(alive): 0.7737 0.7202 0.7976
HSMDO P(ZeroF): 0.8854 0.7809 0.8165

classification accuracy comes out ahead with 0.8165, followed by the heuristic
with 0.8053 and P(alive) in last place with 0.7976. The AUC measures for all
datasets are compiled in Table 8.4.

8.4.2.3 Long- and Short-Term Predictions

The HSMDO generates the most accurate forecasts both long- and short-term.
These results are consistent over all three retail datasets. The HSMDO and HMDO,
the models with drop-out, yield substantially better forecasts for the CDNOW
dataset than the other methods. The gap in forecast accuracy is closest on the ap-
parel data, for which the HSM achieves nearly the same accuracy as the HSMDO.
The HSMDO, HMDO and HSM are in general more accurate than the heuristic,
SARIMA, and Holt-Winters methods on all retail data tested. These results are
explained in detail below.

The following models are included in the comparison: the basic hierarchical sea-
sonal model without drop-out (HSM), the full hierarchical seasonal model with
drop-out (HSMDO), and a variant of the HSMDO without the seasonal structure
but with drop-out (HMDO). The models are compared to Holt-Winters method,
SARIMA model, and the baseline heuristic, that simply assumes that:

Customers continue to buy at their mean past purchase frequency.

Results for the DIY Retailer

Table 8.5 compiles the long-term forecast accuracy results for the DIY retailer.
The HSMDO, the model that includes both the seasonal structure and the drop-
out process, outperforms all other methods and models with the lowest errors on
all metrics. Interestingly, the HMDO produces a lower mean MSE (5.43) when
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Table 8.5: DIY Retailer - Seasonal Model Long-Term Prediction Accuracy

HW SARIMA Heuristic HSM HMDO HSMDO
MAE/MAD 2.335 1.702 1.696 1.636 1.653 1.597
Mean MSE 11.751 5.948 5.607 5.518 5.430 5.376
Median MSE 4.550 2.520 2.536 2.324 2.433 2.251
Mean RMSE 2.717 1.957 1.940 1.894 1.900 1.857
Median RMSE 2.133 1.587 1.592 1.524 1.560 1.500

Table 8.6: DIY Retailer - Seasonal Model Short-Term Prediction Accuracy

HW SARIMA Heuristic HSM HMDO HSMDO
MAE/MAD 10.293 5.885 1.647 1.634 1.601 1.589
Mean MSE 112.750 39.451 5.182 5.107 4.979 4.954
Median MSE 114.993 36.894 1.494 1.491 1.398 1.354
Mean RMSE 10.293 5.885 1.647 1.634 1.601 1.589
Median RMSE 10.723 6.074 1.222 1.221 1.182 1.164

compared to the HSM (5.518), but a higher overall MAE/MAD (1.653 vs. 1.636).
This implies that both the drop-out process and the seasonal structure contribute
to the superior performance of the HSMDO. While not as good as the HSMDO,
both the HMDO and HSM are more accurate than the heuristic, SARIMA model,
and Holt-Winters method. The SARIMA model outperforms the heuristic on the
less outlier sensitive median aggregated individual forecasts (median MSE: 2.520
vs. 2.536).

The short-term forecast accuracy for the DIY retailer is shown in Table 8.6 and
confirms the results of the long-term forecasts. Again, the HSMDO is best on all
metrics, producing the fewest errors. The HMDO is more accurate than the HSM,
and in turn the HSM outperforms the heuristic. The worst short-term forecast
accuracy resulted from the Holt-Winters and SARIMA methods. In general, the
long-term forecasts show greater deviations than the short-term forecasts.

Results for the Apparel Retailer

The apparel retailers dataset spans 24 months of data which provides less seasonal
overlap than the DIY retail data but more seasonal overlap than the CDNOW
dataset. The forecast results for the long-term predictions are shown in Table
8.7. The HSMDO performs better than Holt-Winters (HW) method, SARIMA
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Table 8.7: Apparel - Seasonal Model Long-Term Prediction Accuracy

HW SARIMA Heuristic HSM HMDO HSMDO
MAE/MAD 1.254 0.887 0.897 0.884 0.861 0.839
Mean MSE 4.488 2.732 2.514 2.509 2.634 2.510
Median MSE 1.374 0.563 0.610 0.536 0.466 0.466
Mean RMSE 1.570 1.104 1.105 1.104 1.091 1.090
Median RMSE 1.172 0.750 0.781 0.732 0.682 0.681

Table 8.8: Apparel - Seasonal Model Short-Term Prediction Accuracy

HW SARIMA Heuristic HSM HMDO HSMDO
MAE/MAD 1.449 1.708 0.874 0.786 0.844 0.764
Mean MSE 3.312 3.948 2.367 2.306 2.417 2.321
Median MSE 1.855 3.063 0.250 0.072 0.210 0.046
Mean RMSE 1.449 1.708 0.874 0.786 0.844 0.764
Median RMSE 1.362 1.750 0.500 0.269 0.458 0.215

models, the heuristic and the HMDO on all error metrics. The HSMDO is also
superior to the HSM, except for the mean MSE (2.509 vs. 2.510), where both
are approximately equal. The results between the HSM and HMDO are again
mixed, with the HMDO providing more accurate overall forecasts according to
MAE/MAD (0.861 vs. 0884) while the HSM is more accurate on the outlier
sensitive mean MSE (2.509 vs. 2.634).

The short-term forecasts compiled in Table 8.8 provide much of the same pic-
ture. HSMDO performs better than Holt-Winters method, SARIMA models, the
heuristic and the HMDO on all error metrics. The HSMDO is also superior to the
HSM, except for the mean MSE (2.306 vs. 2.321). The HSM in turn superior is
to all other methods including the HMDO.

Table 8.9: CDNOW - Seasonal Model Long-Term Prediction Accuracy

HW SARIMA Heuristic HSM HMDO HSMDO
MAE/MAD NA 0.131 0.206 0.170 0.100 0.088
Mean MSE NA 0.122 0.125 0.089 0.083 0.083
Median MSE NA 0.000 0.005 0.008 0.000 0.000
Mean RMSE NA 0.157 0.225 0.194 0.130 0.122
Median RMSE NA 0.000 0.071 0.090 0.001 0.001
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Table 8.10: CDNOW - Seasonal Model Short-Term Prediction Accuracy

HW SARIMA Heuristic HSM HMDO HSMDO
MAE/MAD NA 0.347 0.222 0.223 0.152 0.135
Mean MSE NA 0.197 0.157 0.146 0.140 0.141
Median MSE NA 0.082 0.005 0.013 0.000 0.000
Mean RMSE NA 0.347 0.222 0.223 0.152 0.135
Median RMSE NA 0.286 0.071 0.113 0.001 0.001

Results for CDNOW

The CDNOW dataset only includes 18 months of total data. This, with four
months of data reserved as hold-out, leaves only 14 months for parameter learn-
ing, implying as few as two month overlap for seasonal inference. Holt-Winters
method did not yield any results as the overlap was too small — this is denoted
as NA. The long- and short-term forecast results for the CDNOW dataset are
compiled in Tables 8.9 and 8.10.

The drop-out process seems to capture an essential part of the behavior of the
CDNOW customer base as in general both the HSMDO and HMDO provide sub-
stantially better forecasts compared to the other methods including the HSM. For
example, according to long-term MAE/MAD the models rank as follows: 0.088
(HSMDO), 0.100 (HMDO), 0.131 (SARIMA), 0.170 (HSM), 0.206 (heuristic).
This pattern holds for both the short- and long-term. Further study of the CD-
NOW dataset reveals that it contains – compared with the other datasets – a high
number of customers with their last purchase dating back a relatively long time.
This makes the forecasts for this dataset very sensitive to customer drop-out and
trend components.

It is noteworthy that the SARIMA model for long-term forecasts performs better
than the heuristic on all error metrics. Here, the SARIMA model produces a
median MSE and median RMSE of zero on par with the HMDO and HSMDO32

An explanation for this is that the SARIMA procedure identifies downward trends
for a number of customers, emulating a form of drop-out. The HSMDO provides
equal or better long-term forecasts than the HMDO. This holds also true in the

32 The difference in median RMSE between 0.000 and 0.001 is negligible.
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short-term with the only exception of mean MSE that is negligibly lower for the
HMDO (0.140 vs. 0.141).

8.4.2.4 Prediction of Future Best Customers

The results of forecasting the future top customers show that the HSMDO is equal
or better than the other methods for the DIY and CDNOW data, while the HSM is
best for the apparel data. However, the differences are small, so that none of the
methods set itself apart. The findings are explained in detail below.

Rank ordering provides a different view on forecast accuracy compared to the er-
ror metrics in the previous section. For example, even if forecast errors are quite
large for a particular method, it could still be that customer purchase levels are
captured accurately relative to other customer purchase levels. This is an impor-
tant property for many essential segmentation and customer prioritization tasks a
marketing manager might perform.

As in the previous section I benchmark the HSMDO against the heuristic, the
HSM, and the HMDO. The heuristic simply assumes that:

The past 10% (20%) best customers will also be the future 10% (20%)

best customers.

Results for the DIY Retailer

The results for the DIY retailer for predicting the top 10% and 20% of the cus-
tomer base are presented in Table 8.11. Interestingly the HMDO and HSMDO

Table 8.11: DIY Retailer - Accuracy of Top 10% (20%) Customer Prediction

(%) Heuristic HSM HMDO HSMDO

True Positives: 54.55 (61.89) 54.55 (62.26) 56.82 (63.39) 56.82 (64.53)
True Negatives: 94.99 (90.51) 94.99 (90.60) 95.24 (90.88) 95.24 (91.17)
False Negatives: 45.45 (38.11) 45.45 (37.74) 43.18 (36.61) 43.18 (35.47)
False Positives: 5.01 (9.49) 5.01 (09.40) 4.76 (9.12) 4.76 (8.83)

Error: 9.03 (15.20) 9.03 (15.05) 8.58 (14.60) 8.58 (14.15)
Accuracy: 90.97 (84.80) 90.97 (84.95) 91.42 (85.40) 91.42 (85.85)
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Table 8.12: CDNOW - Accuracy of Top 10% (20%) Customer Prediction

(%) Heuristic HSM HMDO HSMDO

True Positives: 41.03 (42.31) 41.03 (42.95) 42.31 (46.15) 42.31 (46.15)
True Negatives: 93.46 (85.60) 93.46 (85.76) 93.60 (86.56) 93.60 (86.56)
False Negatives: 58.97 (57.69) 58.97 (57.05) 57.69 (53.85) 57.69 (53.85)
False Positives: 6.54 (14.40) 6.54 (14.24) 6.40 (13.44) 6.40 (13.44)

Error: 11.78 (23.05) 11.78 (22.79) 11.52 (21.51) 11.52 (21.51)
Accuracy: 88.22 (76.95) 88.22 (77.20) 88.48 (78.49) 88.48 (78.49)

Table 8.13: Apparel - Accuracy of Top 10% (20%) Customer Prediction

(%) Heuristic HSM HMDO HSMDO

True Positives: 52.85 (59.76) 53.66 (60.16) 51.22 (57.72) 52.85 (59.76)
True Negatives: 94.76 (89.94) 94.85 (90.04) 94.58 (89.43) 94.76 (89.94)
False Negatives: 47.15 (40.24) 46.34 (39.84) 48.78 (42.28) 47.15 (40.24)
False Positives: 5.24 (10.06) 5.15 (09.96) 5.42 (10.57) 5.24 (10.06)

Error: 9.43 (16.10) 9.27 (15.93) 9.76 (16.91) 9.43 (16.10)
Accuracy: 90.57 (83.90) 90.73 (84.07) 90.24 (83.09) 90.57 (83.90)

yield identical performances in identifying the future top 10% of customers, both
being 91.42% accurate. This is more accurate than the heuristic and HSM, which,
again, yield identical results (90.97%) for the top 10% of the customer base. One
explanation for this result is, that the absolute top customers seem to purchase at
relatively high constant rates, exhibiting low seasonality.

Regarding the prediction of the top 20%, the seasonal HSMDO is more accurate
than the HMDO (85.85% vs. 85.40%) and also outperforms the other methods.
The HSM is slightly ahead of the heuristic (84.95% vs. 84.80%). The seasonal
components seem to yield more forecast relevant information for the top 20% than
for the top 10% of customers. The SARIMA model and Holt-Winters method
yield inferior results (see Table 7.10, p. 120).

Results for CDNOW

For the CDNOW retailer data the HSMDO and HMDO yielded identical accu-
racy for both the top 10% (88.48%) and top 20% (78.49%) forecasts, ahead of
HSM and the heuristic (see Table 8.12). The HSMDO and HMDO are also more
accurate than the SARIMA model in predicting the top 10% as shown in Table
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7.12, p. 120. The HSM edges out the heuristic in predicting the top 20% (77.20%
vs. 76.95%), but yields identical results for the top 10% (88.22%). This sup-
ports the view that the CDNOW retailer forecasts benefit relatively more from the
inclusion of a customer lifetime model and relatively less from the inclusion of
seasonal effects. This is not surprising as the dataset features the least seasonal
overlap.

Results for the Apparel Retailer

The model results for the apparel retailer (see Table 8.13) show that the HSM per-
forms best, even better than the models that include drop-out. This holds for both
the top 10% (90.73% accuracy) and top 20% (84.07% accuracy) forecasts. The
HMDO generates the least accurate forecasts, while the HSMDO and heuristic
provide identical results for the top 10% (90.57%) and top 20% (83.90%).

8.5 Discussion of Results

The HSMDO operates under the "buy ’til you die" assumption and contributes to
the literature stream of probability models for customer base analysis (Fader and
Hardie 2009). It is unique in that it combines (1) an explicit customer lifetime
model, (2) individual and cross-sectional drop-out rates, (3) individual purchase
rates and cross-sectional heterogeneity, (4) multiplicative seasonal effects, (5) in-
dividual customer’s seasonal behavior, and (6) a measure of customer inactivity
in finite time horizons P(ZeroF).

Similar to the PDO/NBD model (Jerath, Fader, and Hardie 2011), I assume dis-
crete periodic death opportunities tied to calendar time. My model differs in that it
is based on a discretely sampled inhomogeneous Poisson counting process, so that
death opportunities coincide with the granularity of the purchase frequency sam-
pling. Hybrid/Hamilton Monte Carlo Sampling (Brooks et al. 2011, pp. 113-160)
in form of the no-U-turn sampler (Homan and Gelman 2014) is used to estimate
model parameters instead of Gibbs sampling that was used for the DMPT and
HSM. Hamilton Monte Carlo sampling substantially increases the effective sam-
ple size obtained in the same amount of computational time.
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The HSMDO, like the HSM, includes individual and cross-sectional seasonal
effects. It generalizes post-hoc seasonal adjustment (Zitzlsperger, Robbert, and
Roth 2009) and dummy-variable approaches (Schweidel and Knox 2013) to im-
prove forecast accuracy. The analysis of the HSMDO shows that it captures both
individual and cross-sectional seasonality quite well — see Section 8.4.2.1. The
results of targeting customer groups (as shown for example in Figures 8.14, p.
156) and segmenting the customer base (see Figure 8.13, p. 8.13) according to the
model’s seasonal estimates demonstrate that this measure has a high discrimina-
tive power, even with datasets that feature only moderate seasonal overlap.

For the prediction of inactive customers, I derived a new metric P(ZeroF) for
the HSMDO that outperforms the commonly used P(alive) metric first derived
by Schmittlein, Morrison, and Colombo (1987) for the Pareto/NBD. This metric
improves upon P(alive) by providing additional flexibility through the parameter
F that specifies the length of the planning horizon, yielding a theoretical sound
measure for finite time horizons, and providing superior predictive accuracy (see
Section 8.3, p. 136). The ROC analysis in Section 8.4.2.2 demonstrates that
P(ZeroF) completely dominates P(alive) over all cutoff values in all three retail
settings. P(ZeroF) also outperforms the hiatus heuristic over a wide range of
cutoff values, yielding by far the largest AUC on all three datasets.

Not only does P(ZeroF) provide more accurate forecasts it also provides dis-
tinct information about managerial relevant outcomes. The reason for this is that
P(alive) pertains to an infinite time horizon, but in most managerial decision situ-
ations the forecast horizon ranges from the next quarter, the next year to maybe the
next five years at most. However, this does not imply that P(ZeroF) should fully
replace the P(alive) metric. P(ZeroF) should be seen as augmenting P(alive)

for the HSMDO in situations where empirical validation with finite hold-out pe-
riods is performed or when the managerial context requires a certain planning
horizon.

I compared the long- and short-term forecast accuracy of the HSMDO, the HSM, a
simple heuristic, SARIMA models, and Holt-Winters method. I also included the
HMDO, which is a variant of the HSMDO without the seasonal submodel, to gain
further insights into which part of the model has the largest effect on predictive
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performance. The HSMDO generates the most accurate forecasts both in the long-
and the short-term. These results were consistent over all retail data. Only on the
apparel data, the HSM provides results comparable to the models with drop-out.
The results of the HMDO, while not as good as the HSMDO, imply that both the
drop-out process and the seasonal structure contribute to the superior performance
of the HSMDO. Also, as expected, the seasonal models’ performances improve
with increased seasonal overlap in the data — as with the DIY and apparel retail
data. The CDNOW data features only little seasonal overlap for learning and
comprises a large number of customers who did not purchase recently. Here, the
HSMDO and HMDO, the models with drop-out yield substantially better forecasts
than all other methods. In general, the HSMDO and HSM achieve a higher short-
and long-term forecast accuracy than the heuristic, SARIMA model, and Holt-
Winters method for all three retailers.

The ability to identify the future top 10% or 20% of the customer base is another
essential classification task. The results of the empirical validation suggest that
even though the HSMDO was equal or better than the other methods for the DIY
and CDNOW data, and the HSM was best for the apparel data, the differences are
so slight that none of the methods set itself apart. These results mirror the findings
of Wübben and von Wangenheim (2008) in a benchmark study as well as the
simulation results by Huang (2012) for the Pareto/NBD. A reason for the HSMDO
not setting itself further ahead of the other methods in this classification task might
be that drop-out rates of actual top customers are distinctly lower than those of
customers with average purchase frequencies. This implies that actual drop-out
and purchase rates are not independent and that higher individual purchase rates
are associated with lower drop-out rates than the model currently predicts. Thus,
one could hypothesize that "best customers don’t die easily".



Chapter 9

Summary and Conclusions

9.1 Summary of Central Results

This thesis contributes to contemporary research on probability models for cus-
tomer base analysis (Fader and Hardie 2009). I modified one already existing
model and developed two new models to further the understanding of the interre-
lation between individual and cross-sectional purchase rates, individual and cross-
sectional seasonality, individual and cross-sectional drop-out rates, customer in-
activity, and forecast accuracy. Thus, I proposed a hierarchical Bayesian seasonal
effects model (HSM), a hierarchical Bayesian seasonal effects model with drop-
out (HSMDO), and a refined rule to predict customer inactivity for the dynamic
model of purchase timing (DMPT). In addition, I derived a measure P(ZeroF)

for the HSMDO that is superior to the P(alive) metric commonly used in mar-
keting models with an underlying customer lifetime model. In detail, I made the
following contributions:

I proposed a new refined rule to predict customer inactivity for the DMPT that
takes into account the actual predictive distribution and finite length of the hold-
out period. It yields a slight but consistent improvement on previous approaches.
The ROC analysis shows that the new rule is superior over all potential cutoff
values on three different retail datasets. However, in comparison with managerial
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heuristics the results of the DMPT’s performance in the simulated managerial
tasks are mixed. In general, the DMPT performs relatively best in predicting
long- and short-term interpurchase times while the heuristic is more accurate in
predicting future top customers.

I newly developed the HSM that hierarchically combines multiplicative seasonal
effects, individual and group-level seasonal behavior, and a measure of individual
customers’ seasonality. The model operates under the "always a share" assump-
tion and extends the NBD model structure that relates individual purchase rates
to cross-sectional heterogeneity (e.g., Schmittlein, Morrison, and Colombo 1987;
Jerath, Fader, and Hardie 2011; Bemmaor and Glady 2012; Mzoughia and Li-
mam 2014). The HSM generalizes and improves on post-hoc seasonal adjustment
(Zitzlsperger, Robbert, and Roth 2009) and seasonal dummy-variable approaches
(Schweidel and Knox 2013). My analysis shows that the model yields a measure
of individual seasonality that has a high discriminative power, even with sparse
datasets that feature only moderate seasonal overlap. This measure allows for
targeting groups of customers according to their seasonality and segmenting the
customer base into pro-seasonal, non-seasonal, and anti-seasonal customers. In
comparison to simple heuristics, SARIMA models, and the Holt-Winters method,
the HSM’s forecast accuracy in simulated managerial tasks is superior for both the
DIY and the apparel retailer dataset. For CDNOW’s customer base the forecast
results are not as clear as the HSM does not set itself apart on all error metrics.
This is in part due to the minimal seasonal overlap the CDNOW data provides for
seasonal learning, but also because the CDNOW data exhibits a large number of
customers, who potentially have already dropped out.

I newly developed the HSMDO that combines an explicit customer lifetime model
with multiplicative seasonal effects and relates individual to cross-sectional het-
erogeneity in drop-out rates, purchase rates, and seasonality. The drop-out process
I propose is closely related to previous work on the Pareto/NBD model family un-
der the "buy ’til you die" assumption (e.g., Schmittlein, Morrison, and Colombo
1987; Jerath, Fader, and Hardie 2011; Bemmaor and Glady 2012; Mzoughia and
Limam 2014; Glady, Lemmens, and Croux 2015). I assume discrete periodic
death opportunities tied to calendar time based on a discretely sampled inhomo-
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geneous Poisson counting process. In this framework drop-out opportunities coin-
cide with the granularity of the purchase frequency sampling. HSMDO parameter
estimates and predictions were obtained through Hybrid/Hamilton Monte Carlo
Methods (Brooks et al. 2011, pp. 113-160) in form of the no-U-turn sampler
(Homan and Gelman 2014). The analysis of the HSMDO shows that it yields
a measure of individual seasonality that has a high discriminative power (even
higher than the HSM) for datasets that feature moderate seasonal overlap. A com-
parison of the HSMDO, the HSM, the HMDO, a simple heuristic, SARIMA mod-
els, and the Holt-Winters method demonstrates that the HSMDO yields the most
accurate forecasts both in the long- and short-term for all three retail datasets. The
HSMDO and HMDO, the models with drop-out processes, yield substantially bet-
ter forecasts for CDNOW’s customer base compared to the models without an ex-
plicit customer lifetime model. The seasonal models’ (HSM and HSMDO) accu-
racy increases relative to the non-seasonal models with larger amounts of seasonal
overlap present in the data.

I derived a new metric P(ZeroF) to predict customer inactivity for the HSMDO. It
is an alternative to the commonly used P(alive) metric, first proposed by Schmit-
tlein, Morrison, and Colombo (1987) for the Pareto/NBD model. P(ZeroF) im-
proves upon P(alive) by (a) providing additional flexibility through the param-
eter F that specifies the length of the planning horizon, (b) yielding a theoreti-
cal sound measure for finite time horizons, and by (c) providing superior predic-
tive accuracy. The ROC analysis demonstrates that P(ZeroF) completely domi-
nates P(alive) over the complete space of potential cutoff values on all three retail
datasets. It outperforms the hiatus heuristic by providing distinctly higher AUC
measures for all three retailers. Moreover, P(ZeroF) solves the conundrum that
predictions based on P(alive) cannot be empirically validated because P(alive)

pertains to an infinite time horizon.
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9.2 Managerial Implications

With this thesis I strive not only for knowledge of academic interest, but also
provide guidance for practitioners, who want to manage their customer base ef-
fectively in noncontractual settings. I focus on obtaining practically relevant in-
formation about individual customers and providing forecasts that facilitate the
decision-making process in customer relationship management. This thesis ad-
dresses key managerial tasks for which marketing executives currently use proba-
bilistic models or heuristics. Customer relationship managers have to be aware of
the strengths and weaknesses of these methods, because their applicability and ac-
curacy highly depend on the decision context. My research provides a benchmark
that shows that the same model varies in its predictive performance over a number
of real-life decision situations that, at first glance, seem strongly related.

I want to emphasize that managers should not only assess how well a model pre-
dicts the future, but also be aware of the kind of information it yields about the
customer base. In the following, I first delineate specific managerial implications
in regard to the seasonal information the models provide and then detail the po-
tential implications of the forecast results in the three simulated managerial tasks
analyzed in this thesis: the prediction of future customer inactivity, the forecast of
purchase levels, and the prediction of future best customers.

Managerial Perspective on the Models’ Seasonal Information

The new seasonal models I propose in this thesis, the HSM and HSMDO, yield
seasonal information on both an overall customer base and an individual level.
For example, the analysis of the DIY retailer’s customer base indicates an overall
seasonal pattern with customers’ activity peaking in the summer. A reason for this
pattern might be that customers use the summer holidays for home improvement
or because the summer weather facilitates outdoor projects. The model estimates
for the apparel retailer show that the overall highest purchase levels are expected
in December, January, and July. These months coincide with winter holiday shop-
ping season and summer holidays (in the retailer’s market). While this information
could have been easily obtained through other methods as well, the models also —
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Figure 9.1: HSMDO/DIY Four Months Forecast of Average Sales Trajectories
Based on Grouping Customers by Seasonality

and more importantly — yield an individual measure of seasonality that reflects
how each customer’s behavior relates to overall seasonal behavior.

This individual level seasonal information offers important insights for managers.
For example, Figure 9.1 illustrates the differential seasonal targeting of three cus-
tomer groups of the DIY retailer’s customer base and the forecast of their pur-
chase levels. The three groups are targeted based on how their seasonal purchase
behavior relates to the overall seasonal pattern. The pro-seasonal group (green)
comprises customers with strongest seasonality, the anti-seasonal group (red) con-
sists of customers with negative seasonality. For the non-seasonal group (blue) I
selected customers with a seasonality closest to zero.

Knowledge about an individual customer’s seasonal purchase behavior can be
used by marketing managers to improve the timing and effectiveness of targeted
marketing actions. For example, cross-selling initiatives can be synchronized with
peaks in customer activity. Selecting customers by seasonality could raise the suc-
cess rate of retention programs by targeting only those customers that change their
seasonal pattern.

Moreover, marketing actions that target non-seasonal customers could be stretched
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out more evenly across the year, allowing for more efficient marketing resource
planning. Customer loyalty programs could reward pro- and anti-seasonal cus-
tomers, who buy during their low activity periods. Executives might use this in-
formation to improve customer portfolio management. To mitigate risk they might
even out seasonal peaks and slumps by attracting customers, who fit the desired
seasonal profile.

Prediction of Future Customer Inactivity

Forecasts of customer inactivity are useful for the planning of marketing actions
and the estimation of customer lifetime value. For example, proactive retention
campaigns benefit from targeting individual customers, who will most likely make
no purchases in the near future or in a certain planning horizon. If the strategic
goal is not to retain potential defectors, but to increase cross-selling, a marketing
manager might select those customers, who are most likely to purchase at least
once in a certain future time frame.

The methods compared in this thesis differ vastly in their ability to accurately
predict customer inactivity. The empirical validation clearly demonstrates the su-
periority of the HSMDO using the P(ZeroF) metric over the hiatus heuristic and
the commonly used P(alive) metric on all three retail customer bases. Also, the
analysis of the DMPT, a non-seasonal model without an explicit customer lifetime
model, shows that such models may not yield any tangible advantage in predicting
inactive customers, compared to a hiatus heuristic.

Marketing managers should be aware that P(alive) pertains to an infinite time
horizon, while in most managerial decision situations the forecast horizon ranges
from the next quarter to the next year or maybe to the next five years at most. Thus,
it seems odd that managers would use a such a measure when they are interested
in the foreseeable future or a certain planning horizon. The alternative metric,
P(ZeroF), provides additional flexibility for practitioners through the parameter
F that specifies the length of the planning horizon and superior predictive accuracy
compared to P(alive).
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Forecast Accuracy of Purchase Levels

The ability to make individual level predictions of purchase behavior is essential
for computing the future value of a firm’s customers on a systematic basis and for
assessing the potential return of investment of marketing campaigns (Fader and
Hardie 2009).

The empirical analysis shows that stochastic models outperform the heuristic both
for short- and long-term forecasts of purchase levels in all three retail scenarios.
Practitioners should refrain from using SARIMA and Holt-Winters methods for
individual customer forecasts with only sparse purchase histories as these methods
performed consistently sub-standard.

The HSMDO generates the most accurate forecasts both in the long- and the short-
term. The results are consistent over all retail datasets. Still, managers should
carefully analyze the customer base and determine if their customers behave ac-
cording to an "always a share" or to a "buy ’til you die" assumption. For example,
the models with drop-out (HSMDO and HMDO) that operate under "buy ’til you
die" paradigm yield substantially better forecasts for the CDNOW dataset, which
has a high number of customers who did not purchase recently.

Prediction of Best Customers

Companies often rank-order their customers according to purchase frequencies
to prioritize customer investments (Roberts and Berger 1999). The firm’s top
customers would normally be selected first for retention programs (Winer 2001;
Shugan 2005), while customers that are believed to be unprofitable in the future
might be abandoned (Haenlein, Kaplan, and Schoder 2006).

The results of the empirical validation of the predictive power suggest that even
though the HSMDO was equal or better than the other methods for the DIY and
CDNOW data and the HSM was best for the apparel data, the differences in accu-
racy are so slight that none of the methods sets itself apart from the heuristic. Thus,
if marketing executives aim to identify future top customers, they should weigh
the simplicity and easy-to-communicate nature of fast and frugal heuristics against
a potential gain of more complex models which sometimes is limited.
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9.3 Limitations and Implications for Future
Research

As it is the case for virtually all research efforts, this work is subject to several
limitations that need to be taken into account when evaluating the results. Fur-
thermore, some findings raise new interesting questions that are outside the scope
of this thesis, but should be addressed by future research.

The HSM and HSMDO have been validated for the datasets of an apparel retailer,
a DIY retailer and CDNOW, an online retailer. These specific empirical settings
might raise concerns about the generalizability of the inferred results. While I
believe that the results extend to related noncontractual settings (e.g., grocery,
books, furniture retailing) and hold for different product categories (e.g., food,
household products, consumer electronics), I encourage researchers and practi-
tioners to cross-validate the models in different retail settings.

Time periods covered by the data and the level of data aggregation used for param-
eter estimation may pose a limitation to model validity. For instance, additional
validation might examine how the models cope with longitudinal data that spans
more than the 31 months of DIY retail data used here. Also, I aggregated all cus-
tomer data on a monthly purchase frequency level because the DIY retail data did
not allow for finer granularity. Researchers might explore how finer or coarser
granularity of data affects the forecast results of the models.

For model validation I chose the number of seasonal components to match the
granularity of purchase frequency data (12 seasonal components). If data permits,
one could use a larger number of seasonal components, e.g., 52 weekly compo-
nents s1− s52, or fewer components, e.g., quarterly components s1− s4. I derived
the model in full generality so that the number of seasonal components can be
adjusted through the link function. It would be interesting to investigate the effect
of the number of components on the models’ forecast accuracy and on the dis-
criminative power of the individual seasonality measure. Moreover, it is possible
to view the number of components as an intrinsic model parameter that is drawn
from a prior distribution (Xiao, Kottas, and Sansó 2015). Thus, further research



9.3 Limitations and Implications for Future Research 180

might explore whether the HSMDO can be extended so that the optimal number
of components is estimated from the data.

The HSMDO operates under a "buy ’til you die" assumption and the HSM under
an "always a share" assumption. Recently, hidden Markov models have enabled
researchers to relax these assumptions. Literature proposes non-seasonal models
that fall in between these two assumptions and allow customers to switch be-
tween states of inactivity and activity (Mark et al. 2013; Romero, Van der Lans,
and Wierenga 2013). It would be interesting to explore how the seasonal mod-
els presented in this thesis would benefit from a state-switching hidden Markov
model.

Another fruitful research avenue pertains to the seasonal structure itself. For ex-
ample, one could examine if the normal assumption of the seasonal components
can be replaced or augmented by an autoregressive or moving average model of
interrelated seasonal components or by a smoothing kernel (Dutta 2015). The hi-
erarchical Bayesian structure of the HSMDO and HSM provides researchers with
a framework to parsimoniously examine alternative submodels and estimate their
parameters.

The metric P(ZeroF) is a theoretically sound approach to capture the probabil-
ity of customer inactivity in finite time horizons and proved superior to P(alive)

for the focal model of this thesis. I encourage researchers to compare the out-
of-sample accuracy of P(ZeroF) to that of P(alive) in other model frameworks,
empirical settings, and for different lengths of hold-out periods.

One of the patterns that emerged from the models’ results was that "better" cus-
tomers seem to be relatively less likely to drop-out. This pattern might imply that
the drop-out and purchase rates are not independent and are influenced by other
factors. In the realm of non-seasonal models, there has been some previous work
in this regard. For example, Glady, Lemmens, and Croux (2015) use copulas to
model the relationship between drop-out and transaction rates. Schweidel, Park,
and Jamal (2014) propose a model that links non-purchase activities to drop-out
rates. Such approaches could be extended to the HSMDO to capture the relation-
ship between seasonality, drop-out, and purchase rates.
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The new models I propose in this thesis, the HSMDO and HSM, may serve as a
canvas on which other researchers can envision and explore the exciting relation-
ships between purchase rates, drop-out rates, customer inactivity, and seasonality.
They can use these models as a basis to build new models that incorporate addi-
tional aspects of purchase behavior. For example, the models can easily be aug-
mented by time-varying and time-invariant co-variates, e.g., geographic, psycho-
graphic and demographic variables, customer specific attributes, or non-purchase
activities. The models allow to analyze the effects of co-variates adjusted by in-
dividual and group level seasonal behavior. Thus, future research might identify
effects that were previously hard to isolate and discriminate against a background
of complex seasonal patterns.
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Appendix A

DMPT: Implementation, Program
Code and Additional Figures

A.1 Implementation Details and BUGS Model Code

The source code to specify the MCMC simulator in the WinBUGS language for
the DMPT is shown in Source Code Clipping A.1. The source code covers the
full model and includes the hierarchical random-effects generalized gamma indi-
vidual purchase model, the cross-sectional inverse generalized gamma model, the
generalized gamma component mixture, the temporal dynamics submodel, and all
prior definitions. The acronym BUGS stands for Bayesian Inference Using Gibbs
sampling. The BUGS family of software packages allows for fitting arbitrarily
complex Bayesian models and producing reliable Bayesian statistics for a wide
range of statistical models using MCMC methods (Lunn et al. 2000).

The latinized names of the symbols are used in the source code clippings, e.g., α

becomes alpha. Subscripts or additional identifiers are separated by a point, e.g.,
the precision for θ in denoted prec.theta. The variable N denotes the number of
customers in the dataset and K is set to the number of mixture components. The
matrix ipt[i,j] contains the interpurchase times for each customer i. The number
of observed interpurchase times for customer i is stored in len[i].
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The heterogeneity across customers i is modeled so that the individual λi’s follow
an inverse generalized gamma distribution IGG(ν ,θ ,γ), as shown in Equation
(6.3, p. 75). While WinBUGS provides constructs for the generalized gamma dis-
tribution (gen.gamma) and the standard gamma distribution (dgamma), it does not
feature a construct for the inverse generalized gamma distribution. The definitions
in WinBUGS are as follows (Lunn et al. 2000):

gen.gamma(r,µ,β ) =
β

Γ(r)
µ

β r xβ r−1e−(xµ)β

(A.1)

dgamma(r,µ) =
µxr−1e−µx

Γ(r)
(A.2)

The gen.gamma construct does not allow for a negative β parameter. Therefore, a
reparameterization in the form of IGG(r,µ,β ) = gen.gamma (r,µ,−β ) is not fea-
sible in WinBUGS. Fortunately, one can express the IGG in terms of the standard
gamma distribution as follows (Kleiber and Kotz 2003, p. 148):

λi ∼ IGG(ν ,θ ,γ) (A.3)

λ
−γ

i ∼ dgamma(ν ,θ−γ) (A.4)

The parameterization of the generalized gamma distribution used in WinBUGS

differs from the one used by Allenby, Leone, and Jen (1999), which is repeated
here for readability:

ti j ∼ GG(α,λi,γ)
p.d.f.



γ

Γ(α)λ
αγ

i
tαγ−1
i j e−(ti j/λi)

γ

(A.5)

While the parameters r and α as well as the parameters β and γ are equivalent,
WinBUGS uses "precision" parametrization on the scale parameter µ instead of
a variance parameter λi. This implies that µ = λ

−1
i . I use a "logical node" that

transforms the parameter accordingly. Note that WinBUGS parameterizes the mul-
tivariate normal distribution with a precision matrix instead of the usual variance-
covariance matrix.

The prior on the variance-covariance matrix V is distributed inverted Wishart
with the matrix G and the g as parameters. WinBUGS provides the Wishart
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distribution, so I use that that if V ∼ IW (G,g) then V−1 ∼W (G−1,g). In ad-
dition WinBUGS expects the parameter matrix for the multivariate normal dis-
tribution and the Wishart distribution to be in precision format. With this in
mind I translated the original prior V ∼ IW (G,g) to the WinBUGS statement:
prec.V[,]∼dwish(G[, ],g).

The parameters a0 = 10, b0 = 10, g = 15, G = 15I, γ1 = 1.0, γ2 = 1.4, γ3 = 0.8
and beta.prior=~0 are chosen as in Allenby, Leone, and Jen (1999).
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Listing A.1: The DMPT Program Code in WinBUGS for K = 3 Components

1 model {
2 f o r ( c i n 1 :K) {
3 iggp . t h e t a [ c ] <− pow ( t h e t a [ c ] ,−gamma [ c ] )
4 a l p h a [ c ] ~ duni f ( 0 , 5 0 )
5 nu [ c ] ~ duni f ( 0 , 5 0 )
6 }
7 f o r ( i i n 1 :N) {
8 f o r ( c i n 1 :K) {
9 i g g . lambda [ i , c ] ~ dgamma ( nu [ c ] , i ggp . t h e t a [ c ] )

10 lambda [ i , c ] <− pow ( i g g . lambda [ i , c ] , −1/gamma [ c ] )
11 p r e c . lambda [ i , c ] <− 1 / lambda [ i , c ]
12 }
13 b e t a [ i , 1 : 5 ] ~ dmnorm ( b a r . b e t a [ ] , p r e c .V [ , ] )
14 f o r ( j i n 4 : l e n [ i ] ) {
15 k . ph ix [ i , j ]<−phi ( l o g ( i p t [ i , j −1])∗ b e t a [ i , 3 ]
16 + l o g ( i p t [ i , j −2])∗ b e t a [ i , 4 ]
17 + l o g ( i p t [ i , j −3])∗ b e t a [ i , 5 ]
18 + b e t a [ i , 2 ] )
19 p [ i , j , 1 ] <− 1−phi ( b e t a [ i , 1 ] )
20 p [ i , j , 2 ] <− phi ( b e t a [ i , 1 ] )∗ ( 1 − k . ph ix [ i , j ] )
21 p [ i , j , 3 ] <− phi ( b e t a [ i , 1 ] ) ∗ ( k . ph ix [ i , j ] )
22 k [ i , j ] ~ dcat ( p [ i , j , ] )
23 i p t [ i , j ] ~ gen.gamma ( a l p h a [ k [ i , j ] ] ,
24 p r e c . lambda [ i , k [ i , j ] ] ,
25 gamma [ k [ i , j ] ] )
26 }
27 }
28 i g g . b01<−pow ( b0 ,−gamma [ 1 ] )
29 i g g . t h e t a [ 1 ] ~dgamma ( a0 , i g g . b01 ) I ( , i g g . t h e t a [ 2 ] )
30 t h e t a [1]<−pow ( i g g . t h e t a [1 ] , −1 / gamma [ 1 ] )

32 i g g . b02<−pow ( b0 ,−gamma [ 2 ] )
33 i g g . t h e t a [ 2 ] ~dgamma ( a0 , i g g . b02 ) I ( i g g . t h e t a [ 1 ] , i g g . t h e t a [ 3 ] )
34 t h e t a [2]<−pow ( i g g . t h e t a [2 ] , −1 / gamma [ 2 ] )

36 i g g . b03<−pow ( b0 ,−gamma [ 3 ] )
37 i g g . t h e t a [ 3 ] ~dgamma ( a0 , i g g . b03 ) I ( i g g . t h e t a [ 2 ] , )
38 t h e t a [3]<−pow ( i g g . t h e t a [3 ] , −1 / gamma [ 3 ] )

40 p r e c .V[ 1 : 5 , 1 : 5 ] ~ dwish (G[ , ] , g )
41 b a r . b e t a [ 1 : 5 ] ~ dmnorm ( b e t a . p r i o r [ ] , p r e c .V [ , ] )
42 }
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A.2 DMPT: Marginal Posterior Densities Dynamic
Effects Parameters

alpha[1] sample: 20000

alpha[1]

48.5 49.0 49.5 50.0

P
(a

lp
ha

[1
])

0.
0

4.
0

8.
0

alpha[2] sample: 20000

alpha[2]

46.0 47.0 48.0 49.0 50.0

P
(a

lp
ha

[2
])

0.
0

2.
0

alpha[3] sample: 20000

alpha[3]

3.5 4.0 4.5 5.0 5.5

P
(a

lp
ha

[3
])

0.
0

2.
0

nu[1] sample: 20000

nu[1]

46.0 47.0 48.0 49.0 50.0

P
(n

u[
1]

)
0.

0
2.

0

nu[2] sample: 20000

nu[2]

40.0 42.5 45.0 47.5 50.0

P
(n

u[
2]

)
0.

0
1.

0

nu[3] sample: 20000

nu[3]

10.0 15.0 20.0 25.0

P
(n

u[
3]

)
0.

0
0.

2

theta[1] sample: 20000

theta[1]

0.95 1.0 1.05 1.1

P
(t

he
ta

[1
])

0.
0

20
.0

40
.0

theta[2] sample: 20000

theta[2]

0.45 0.475 0.5 0.525 0.55

P
(t

he
ta

[2
])

0.
0

40
.0

80
.0

theta[3] sample: 20000

theta[3]

0.01 0.02 0.03 0.04

P
(t

he
ta

[3
])

0.
0

50
.0

bar.beta[1] sample: 20000

bar.beta[1]

0.8 0.9 1.0 1.1 1.2

P
(b

ar
.b

et
a[

1]
)

0.
0

10
.0

bar.beta[2] sample: 20000

bar.beta[2]

0.5 1.0 1.5 2.0 2.5

P
(b

ar
.b

et
a[

2]
)

0.
0

2.
0

bar.beta[3] sample: 20000

-0.4 -0.2 0.0 0.2 0.4 0.6

P
(b

ar
.b

et
a[

3]
)

0.
0

4.
0

bar.beta[4] sample: 20000

bar.beta[4]

-0.2 0.0 0.2 0.4 0.6

P
(b

ar
.b

et
a[

4]
)

0.
0

4.
0

bar.beta[5] sample: 20000

bar.beta[5]

-0.2 0.0 0.2 0.4 0.6 0.8

P
(b

ar
.b

et
a[

5]
)

0.
0

4.
0

bar.beta[3] 

prec.V[1,2] sample: 20000

prec.V[1,2]

-2.0 -1.0 0.0 1.0

P
(p

re
c.

V
[1

,2
])

0.
0

1.
0

2.
0

prec.V[1,3] sample: 20000

prec.V[1,3]

-2.0 -1.0 0.0 1.0

P
(p

re
c.

V
[1

,3
])

0.
0

1.
0

prec.V[1,4]

-2.0 -1.0 0.0 1.0

P
(p

re
c.

V
[1

,4
])

0.
0

1.
0

prec.V[1,5] sample: 20000

prec.V[1,5]

-2.0 -1.0 0.0 1.0 2.0

P
(p

re
c.

V
[1

,5
])

0.
0

1.
0

prec.V[2,1] sample: 20000

prec.V[2,1]

-2.0 -1.0 0.0 1.0

P
(p

re
c.

V
[2

,1
])

0.
0

1.
0

2.
0

prec.V[2,2] sample: 20000

prec.V[2,2]

0.0 1.0 2.0 3.0 4.0

P
(p

re
c.

V
[2

,2
])

0.
0

1.
0

prec.V[2,3] sample: 20000

prec.V[2,3]

-1.0 0.0 1.0 2.0 3.0

P
(p

re
c.

V
[2

,3
])

0.
0

1.
0

prec.V[2,4] sample: 20000

prec.V[2,4]

-1.0 0.0 1.0 2.0

P
(p

re
c.

V
[2

,4
])

0.
0

1.
0

2.
0

prec.V[2,5] sample: 20000

prec.V[2,5]

-1.0 0.0 1.0 2.0

P
(p

re
c.

V
[2

,5
])

0.
0

1.
0

2.
0

prec.V[3,1] sample: 20000

prec.V[3,1]

-2.0 -1.0 0.0 1.0

P
(p

re
c.

V
[3

,1
])

0.
0

1.
0

prec.V[3,2] sample: 20000

prec.V[3,2]

-1.0 0.0 1.0 2.0 3.0

P
(p

re
c.

V
[3

,2
])

0.
0

1.
0

prec.V[3,3] sample: 20000

prec.V[3,3]

1.0 2.0 3.0 4.0 5.0 6.0

P
(p

re
c.

V
[3

,3
])

0.
0

0.
5

1.
0

prec.V[3,4] sample: 20000

prec.V[3,4]

-1.0 0.0 1.0 2.0

P
(p

re
c.

V
[3

,4
])

0.
0

1.
0

prec.V[3,5] sample: 20000

prec.V[3,5]

-1.0 0.0 1.0 2.0 3.0

P
(p

re
c.

V
[3

,5
])

0.
0

1.
0

prec.V[4,1] sample: 20000

prec.V[4,1]

-2.0 -1.0 0.0 1.0

P
(p

re
c.

V
[4

,1
])

0.
0

1.
0

prec.V[4,2] sample: 20000

prec.V[4,2]

-1.0 0.0 1.0 2.0

P
(p

re
c.

V
[4

,2
])

0.
0

1.
0

2.
0

prec.V[4,3] sample: 20000

prec.V[4,3]

-1.0 0.0 1.0 2.0

P
(p

re
c.

V
[4

,3
])

0.
0

1.
0

prec.V[4,4] sample: 20000

prec.V[4,4]

0.0 2.0 4.0 6.0

P
(p

re
c.

V
[4

,4
])

0.
0

0.
5

1.
0

prec.V[4,5] sample: 20000

prec.V[4,5]

-1.0 0.0 1.0 2.0 3.0

P
(p

re
c.

V
[4

,5
])

0.
0

1.
0

prec.V[5,1] sample: 20000

prec.V[5,1]

-2.0 -1.0 0.0 1.0 2.0

P
(p

re
c.

V
[5

,1
])

0.
0

1.
0

prec.V[5,2] sample: 20000

prec.V[5,2]

-1.0 0.0 1.0 2.0

P
(p

re
c.

V
[5

,2
])

0.
0

1.
0

2.
0

prec.V[5,3] sample: 20000

prec.V[5,3]

-1.0 0.0 1.0 2.0 3.0

P
(p

re
c.

V
[5

,3
])

0.
0

1.
0

prec.V[5,4] sample: 20000

prec.V[5,4]

-1.0 0.0 1.0 2.0 3.0

P
(p

re
c.

V
[5

,4
])

0.
0

1.
0

prec.V[5,5] sample: 20000

prec.V[5,5]

1.0 2.0 3.0 4.0 5.0 6.0

P
(p

re
c.

V
[5

,5
])

0.
0

0.
5

1.
0

Figure A.1: DMPT/Apparel Marginal Posterior Densities for Vector β̄

after 50,000 Iterations per Chain (2 Chains, 150K Burn-In)

prec.V[1,1] sample: 20000

prec.V[1,1]

2.0 3.0 4.0 5.0 6.0 7.0

P
(p

re
c
.V

[1
,1

])
0

.0
0

.5
1

.0

prec.V[1,2] sample: 20000

prec.V[1,2]

-2.0 -1.0 0.0 1.0

P
(p

re
c
.V

[1
,2

])
0

.0
1

.0
2

.0

prec.V[1,3] sample: 20000

prec.V[1,3]

-2.0 -1.0 0.0 1.0

P
(p

re
c
.V

[1
,3

])
0

.0
1

.0

prec.V[1,4] sample: 20000

prec.V[1,4]

-2.0 -1.0 0.0 1.0

P
(p

re
c
.V

[1
,4

])
0

.0
1

.0

prec.V[1,5] sample: 20000

prec.V[1,5]

-2.0 -1.0 0.0 1.0 2.0
P

(p
re

c
.V

[1
,5

])
0

.0
1

.0

prec.V[2,1] sample: 20000

prec.V[2,1]

-2.0 -1.0 0.0 1.0

P
(p

re
c
.V

[2
,1

])
0

.0
1

.0
2

.0

prec.V[2,2] sample: 20000

prec.V[2,2]

0.0 1.0 2.0 3.0 4.0

P
(p

re
c
.V

[2
,2

])
0

.0
1

.0

prec.V[2,3] sample: 20000

prec.V[2,3]

-1.0 0.0 1.0 2.0 3.0

P
(p

re
c
.V

[2
,3

])
0

.0
1

.0

prec.V[2,4] sample: 20000

prec.V[2,4]

-1.0 0.0 1.0 2.0

P
(p

re
c
.V

[2
,4

])
0

.0
1

.0
2

.0

prec.V[2,5] sample: 20000

prec.V[2,5]

-1.0 0.0 1.0 2.0

P
(p

re
c
.V

[2
,5

])
0

.0
1

.0
2

.0

prec.V[3,1] sample: 20000

prec.V[3,1]

-2.0 -1.0 0.0 1.0

P
(p

re
c
.V

[3
,1

])
0

.0
1

.0

prec.V[3,2] sample: 20000

prec.V[3,2]

-1.0 0.0 1.0 2.0 3.0

P
(p

re
c
.V

[3
,2

])
0

.0
1

.0

prec.V[3,3] sample: 20000

prec.V[3,3]

1.0 2.0 3.0 4.0 5.0 6.0

P
(p

re
c
.V

[3
,3

])
0

.0
0

.5
1

.0

prec.V[3,4] sample: 20000

prec.V[3,4]

-1.0 0.0 1.0 2.0

P
(p

re
c
.V

[3
,4

])
0

.0
1

.0

prec.V[3,5] sample: 20000

prec.V[3,5]

-1.0 0.0 1.0 2.0 3.0

P
(p

re
c
.V

[3
,5

])
0

.0
1

.0

prec.V[4,1] sample: 20000

prec.V[4,1]

-2.0 -1.0 0.0 1.0

P
(p

re
c
.V

[4
,1

])
0

.0
1

.0

prec.V[4,2] sample: 20000

prec.V[4,2]

-1.0 0.0 1.0 2.0

P
(p

re
c
.V

[4
,2

])
0

.0
1

.0
2

.0

prec.V[4,3] sample: 20000

prec.V[4,3]

-1.0 0.0 1.0 2.0

P
(p

re
c
.V

[4
,3

])
0

.0
1

.0

prec.V[4,4] sample: 20000

prec.V[4,4]

0.0 2.0 4.0 6.0

P
(p

re
c
.V

[4
,4

])
0

.0
0

.5
1

.0

prec.V[4,5] sample: 20000

prec.V[4,5]

-1.0 0.0 1.0 2.0 3.0

P
(p

re
c
.V

[4
,5

])
0

.0
1

.0

prec.V[5,1] sample: 20000

prec.V[5,1]

-2.0 -1.0 0.0 1.0 2.0

P
(p

re
c
.V

[5
,1

])
0

.0
1

.0

prec.V[5,2] sample: 20000

prec.V[5,2]

-1.0 0.0 1.0 2.0

P
(p

re
c
.V

[5
,2

])
0

.0
1

.0
2

.0

prec.V[5,3] sample: 20000

prec.V[5,3]

-1.0 0.0 1.0 2.0 3.0

P
(p

re
c
.V

[5
,3

])
0

.0
1

.0

prec.V[5,4] sample: 20000

prec.V[5,4]

-1.0 0.0 1.0 2.0 3.0

P
(p

re
c
.V

[5
,4

])
0

.0
1

.0

prec.V[5,5] sample: 20000

prec.V[5,5]

1.0 2.0 3.0 4.0 5.0 6.0

P
(p

re
c
.V

[5
,5

])
0

.0
0

.5
1

.0

Figure A.2: DMPT/Apparel Marginal Posterior Densities for Precision
Matrix V after 50,000 Iterations per Chain (2 Chains, 150K Burn-In)
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Figure A.3: DMPT/CDNOW Marginal Posterior Densities for Vector β̄

after 50,000 Iterations per Chain (2 Chains, 150K Burn-In)
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Figure A.4: DMPT/CDNOW Marginal Posterior Densities for Precision
Matrix V after 50,000 Iterations per Chain (2 Chains, 150K Burn-In)
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Figure A.5: DMPT/DIY Marginal Posterior Densities for Vector β̄ after
50,000 Iterations per Chain (2 Chains, 350K Burn-In)
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Figure A.6: DMPT/DIY Marginal Posterior Densities for Precision Matrix V
after 50,000 Iterations per Chain (2 Chains, 350K Burn-In)



Appendix B

HSM: Implementation, Program
Code and Additional Figures

B.1 Implementation Details and JAGS Model Code

The source code to specify the MCMC simulator in the JAGS modeling language
for the Hierarchical Bayesian Seasonal Effects Model is shown in Source Code
Clipping B.1. The code contains the hierarchical Poisson covariate gamma mix-
ture, the hierarchical seasonal effects submodel and all prior definitions. JAGS

stands for "Just another Gibbs sampler" and is a platform for the MCMC simula-
tion of Baysian models (Plummer 2003). The modeling language is a dialect of
the WinBUGS syntax.

The latinized names of the symbols are used in the source code, e.g., α becomes
alpha. Subscripts are separated by a point, e.g., τβ becomes tau.beta. The variable
N denotes the number of individual customers in the dataset and K is the number
of seasonal components. The link function k[ j] links each period in time j to a
seasonal component k[ j].

I used "hierarchical centering" of the parameter set ŝk=s.adj around zero (line
21), so that sk reflect the (approximate) seasonal percentage change compared to
average purchases levels. Instead of drawing the parameter set s.adj directly from
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a zero-mean distribution the model is over-parameterizing by a floating parameter
mu.s (line 18). Then s.adj is drawn from a normal with mean mu.s and precision
tau.s (lines 19-22). After centering s.adj the resulting vector s corresponds to
the original specification (compare Gelman and Hill 2007, p. 420). This method
substantially improves convergence speed of the MC simulation as the sampler
traverses the relevant parameter space of this multiplicative model more efficiently
(Gelfand, Sahu, and Carlin 1995; Roberts and Sahu 1997; Schliep and Hoeting
2015). For the same reason, the parameters beta.adj are first drawn form a normal
distribution with mean zero and precision one (line 33) and then transformed to
beta by multiplying with 1/√τβ and centering at one (line 34).

The parameters r and alpha are transformations of mu.lambda and sigma.lambda.
The parameter mu.lambda corresponds to the location and sigma.lambda corre-
sponds to the scale of the gamma(r,α) distribution. This decorrelates r and α and
improves effective sample size.

The model can be used to infer only the model parameters from observed data or
to simultaneously estimate the model parameters and generate individual forecasts
of purchase frequencies. Let T denote the number of observed time periods and
let F be the number of forecast periods. Then, the parameter T F (line 24) can
be set to T to infer only the model parameters. In order for JAGS to generate
forecasts one can set T F to T +F and organize the matrix x[i, j] in such a way
that x[i, j] = NA for j > T . In this case the model yields parameter estimates and
simultaneously generates forecasts of purchase frequencies in the forecast horizon
T +1...T +F for each customer i.
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Listing B.1: The HSM Source Code in JAGS Modeling Language

1 model {

3 # N = No . o f c u s t o m e r s
4 # K = No . o f s e a s o n a l components
5 # TF = No . o f o b s e r v e d + f o r c a s t t i m e p e r i o d s
6 # k [ j ] = L ink t i m e p e r i o d j t o component k [ j ]
7 # x [ i , j ] = Observed p u r c h a s e f r e q u e n c i e s

9 t a u . s ~ dgamma ( 0 . 0 0 1 , 0 . 0 0 1 )
10 t a u . b e t a ~ dgamma ( 0 . 0 0 1 , 0 . 0 0 1 )
11 mu . lambda ~ dgamma ( 0 . 0 0 1 , 0 . 0 0 1 )
12 sigma . lambda ~ dgamma ( 0 . 0 0 1 , 0 . 0 0 1 )

14 # Parameter t r a n s f o r m t o d e c o r r e l a t e r and a lpha
15 r <− pow (mu . lambda , 2 ) / s igma . lambda
16 a l p h a <− mu . lambda / s igma . lambda

18 mu . s ~ dnorm ( 0 , 0 . 0 0 1 )
19 f o r (m i n 1 :K) {
20 s . a d j [m] ~ dnorm (mu . s , t a u . s )
21 s [m] <− s . a d j [m]−mean ( s . a d j [ ] ) # 0 − Ce n t e r
22 }

24 f o r ( i i n 1 :N) {
25 f o r ( j i n 1 : TF ) {
26 s lambda [ i , j ] <− lambda [ i ]∗ exp ( b e t a [ i ]∗ s [ k [ j ] ] )
27 x [ i , j ] ~ dpo i s ( s lambda [ i , j ] )
28 }

30 lambda [ i ] ~ dgamma ( r , a l p h a )

32 # I m p l i e s normal ( 1 , t a u . b e t a )
33 b e t a . a d j [ i ] ~ dnorm ( 0 , 1 )
34 b e t a [ i ] <− b e t a . a d j [ i ] ∗ ( 1 / s q r t ( t a u . b e t a ) ) + 1
35 }
36 }
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B.2 HSM: Autocorrelation and Trace Plots
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Figure B.1: HSM/Apparel Autocorrelation for r,α,τs, and τβ over 10,000
Iterations per Chain (4 Chains, 10K Burn-In)
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Figure B.2: HSM/Apparel Trace Plots for r,α,τs, and τβ over 10,000
Iterations per Chain (4 Chains, 10K Burn-In)
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Figure B.3: HSM/Apparel Autocorrelation Seasonal Components sk over
10,000 Iterations per Chain (4 Chains, 10K Burn-In)
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Figure B.4: HSM/Apparel Trace Plots for Seasonal Components sk over
10,000 Iterations per Chain (4 Chains, 10K Burn-In)
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Figure B.5: HSM/DIY Autocorrelation for r,α,τs, and τβ over 10,000
Iterations per Chain (4 Chains, 10K Burn-In)
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Figure B.6: HSM/DIY Trace Plots for r,α,τs, and τβ over 10,000 Iterations
per Chain (4 Chains, 10K Burn-In)
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Figure B.7: HSM/DIY Autocorrelation for Seasonal Components sk over
10,000 Iterations per Chain (4 Chains, 10K Burn-In)
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Figure B.8: HSM/DIY Trace Plots for Seasonal Components sk over 10,000
Iterations per Chain (4 Chains, 10K Burn-In)
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Figure B.9: HSM/CDNOW Autocorrelation for r,α,τs, and τβ over 10,000
Iterations per Chain (4 Chains, 10K Burn-In)
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Figure B.10: HSM/CDNOW Trace Plots for r,α,τs, and τβ over 10,000
Iterations per Chain (4 Chains, 10K Burn-In)
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Figure B.11: HSM/CDNOW Autocorrelation for Seasonal Components sk
over 10,000 Iterations per Chain (4 Chains, 10K Burn-In)
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Figure B.12: HSM/CDNOW Trace Plots for Seasonal Components sk over
10,000 Iterations per Chain (4 Chains, 10K Burn-In)
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HSMDO: Implementation, Program
Code and Additional Figures

C.1 Implementation Details and STAN Model Code

The source code to specify the HMC simulator in the STAN modeling language
for the Hierarchical Bayesian Seasonal Effects Model with Drop-Out is shown in
Source Code Clipping C.1. The code contains the customer lifetime model, the
hierarchical Poisson covariate gamma mixture, the hierarchical seasonal effects
submodel, and all prior definitions. STAN is a probabilistic programming lan-
guage implementing full Bayesian statistical inference in a Hamilton Monte Carlo
Framework with the no-U-turn sampler (Carpenter et al. 2015; Stan 2015).

Latinized names instead of symbols are used in the source code, e.g., α becomes
alpha. Subscripts are separated by an underscore, e.g., τβ becomes tau_beta. The
variable N denotes the number of individual customers in the dataset. K is the
number of seasonal components, T is the number of observed time periods, F

is the number of forecast periods, and t[i] denotes the time period with the most
recent purchase for customer i. The link function k[ j] links each period in time j

to a seasonal component k[ j].

I use "hierarchical centering" of the parameter set ŝk=s_adj around zero (lines 38,
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43, 54, and 55), so that sk reflect the (approximate) seasonal percentage change
compared to average purchases levels. Also, the parameter vector beta is a trans-
formation of beta_adj (lines 39, 42, 56 and 57). The elements of beta.adj are first
drawn from a normal distribution with mean zero and standard deviation one and
then transformed to beta by multiplying with σβ and centering at one (compare
Gelman and Hill 2007, p. 420). Note that STAN parameterizes the normal distri-
bution with standard deviation instead of precision. Therefore, I transform tau_s

and tau_beta to their respective standard deviations sigma_s and sigma_beta in
the transformed parameters block (lines 38 and 39).

The parameters a and b for the beta distributions are re-parameterized (lines 35
and 36) in terms of a mean parameter φµ with a uniform (between 0 and 1) prior
and a total count parameter φc with a weakly informative Pareto prior (compare
Gelman et al. 2003, p. 128). This decorrelates a and b and improves effective
sample size.

The variables X_total, si_xi, si_beta and l_sum are intermediate quantities to cal-
culate the model log-likelihood. The full sample log-likelihood, the log of Equa-
tion (8.19, p. 133), is calculated in lines 50-74. This encapsulates the computation
of the individual log-likelihood (lines 60-73), which is the log of Equation (8.17,
p. 133).

The generated quantities block (lines 76-127) is used to calculate the purchase fre-
quency forecasts, P(ZeroF), and P(alive). The vectors xp_si_beta, xp_tau, xp_p,
xz_tau, and xpp_si_beta are intermediate quantities. P(alive) is calculated ac-
cording to Equation (8.25, p. 135). The forecast of purchase levels uses Equation
(8.26, p. 136). Finally, P(ZeroF) is computed using Equation (8.41, p. 142).
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Listing C.1: The HSMDO Source Code in STAN Modeling Language

1 data {

2 i n t < lower =1> N; / / No . o f c u s t o m e r s

3 i n t < lower =1> K; / / No . o f s e a s o n a l components

4 i n t < lower =1> T ; / / No . o f o b s e r v e d t ime p e r i o d s

5 i n t < lower =1> F ; / / No . o f f o r e c a s t t ime p e r i o d s

6 i n t < lower =0> k [ T+F ] ; / / Link j t o component k [ j ]

7 i n t < lower =0> x [N, T ] ; / / Observed p u r c h a s e f r e q u e n c i e s

8 i n t < lower =0> t [N ] ; / / Recency

9 }

10 transformed data {

11 i n t < lower =0> X_ t o t a l [N ] ; / / T o t a l p u r c h a s e s p e r c u s t o m e r

12 f o r ( i in 1 :N) {

13 X_ t o t a l [ i ]<−sum ( x [ i ] ) ;

14 }

15 }

16 parameters {

17 vector < lower =0 >[N] lambda ;

18 v e c t o r [N] b e t a _ a d j ;

19 v e c t o r [K] s _ a d j ;

20 rea l < lower =0> r ;

21 rea l < lower =0> a l p h a ;

22 rea l < lower =0> t a u _ s ;

23 rea l < lower =0> t a u _ b e t a ;

24 rea l < lower =0.1 > p h i _ c ;

25 rea l < lower =0 , upper=1> p h i _mu ;

26 }

27 transformed parameters {

28 v e c t o r [N] b e t a ;

29 v e c t o r [K] s ;

30 rea l < lower =0> sigma _ s ;

31 rea l < lower =0> sigma _ b e t a ;

32 rea l < lower =0> a ;

33 rea l < lower =0> b ;
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35 a<− p h i _ c∗ p h i _mu ;

36 b<− p h i _ c∗(1− p h i _mu ) ;

38 sigma _s <−1/ s q r t ( t a u _ s ) ; / / Uses sd i n s t e a d o f p r e c i s i o n

39 sigma _ be ta <−1/ s q r t ( t a u _ b e t a ) ;

41 / / i m p l i e s normal ( 1 , s igma _ b e t a )

42 be t a <−( b e t a _ ad j−mean ( b e t a _ a d j ) ) ∗ s igma _ b e t a +1; / / 1− c e n t e r

43 s<−s _ ad j−mean ( s _ a d j ) ; / / 0− c e n t e r

44 }

45 model {

46 v e c t o r [ T ] s i _ x i ;

47 v e c t o r [ T ] s i _ b e t a ;

48 v e c t o r [ T+1] l_sum ;

50 r ~ gamma ( 0 . 0 0 1 , 0 . 0 0 1 ) ;

51 a l p h a ~ gamma ( 0 . 0 0 1 , 0 . 0 0 1 ) ;

52 p h i _ c ~ pareto ( 0 . 1 , 1 . 5 ) ;

53 lambda ~ gamma ( r , a l p h a ) ; / / V ec to r o p e r a t i o n

54 t a u _ s ~ gamma ( 0 . 0 0 1 , 0 . 0 0 1 ) ;

55 s _ a d j ~ normal ( 0 , s igma _ s ) ; / / V ec t o r o p e r a t i o n

56 t a u _ b e t a ~ gamma ( 0 . 0 0 1 , 0 . 0 0 1 ) ;

57 b e t a _ a d j ~ normal ( 0 , 1 ) ; / / V ec t o r o p e r a t i o n

59 f o r ( i in 1 :N) {

60 f o r ( j in 1 : T ) {

61 s i _ x i [ j ] <− x [ i , j ] ∗ s [ k [ j ] ] ;

62 s i _ b e t a [ j ]<− exp ( b e t a [ i ] ∗ s [ k [ j ] ] ) ;

63 }

64 f o r ( t a u in t [ i ] : T ) {

65 l_sum [ t a u ]<− l b e t a ( a + 1 , b + t a u − 1)

66 − lambda [ i ] ∗ sum ( head ( s i _ be t a , t a u ) ) ;

67 }

68 l_sum [ T+1]<− l b e t a ( a , b + T ) − lambda [ i ] ∗ sum ( s i _ b e t a ) ;
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70 / / Model i n d i v i d u a l Log−L i k e l i h o o d

71 increment _ l o g _prob ( m u l t i p l y _ l o g (X_ t o t a l [ i ] , lambda [ i ] )

72 + b e t a [ i ] ∗ sum ( s i _ x i ) − l b e t a ( a , b )

73 + l o g _sum_exp ( t a i l ( l_sum ,T−t [ i ] + 2 ) ) ) ;

74 }

75 }

76 generated q u a n t i t i e s {

77 matrix < lower =0 >[N, F ] f ; / / F o r e c a s t s T + 1 . . . T+F

78 v e c t o r [N] PZF ; / / P ( Zero _F )

79 v e c t o r [N] PA ; / / P ( A l i v e )

80 v e c t o r [N] p ;

82 v e c t o r [ T ] xp_ s i _ b e t a ;

83 v e c t o r [ T+1] xp_ t a u ;

84 v e c t o r [ T+1] xp_p ;

85 v e c t o r [ F+2] xz _ t a u ;

86 v e c t o r [ F ] xpp _ s i _ b e t a ;

88 f o r ( i in 1 :N) {

89 f o r ( j in 1 : T ) {

90 xp_ s i _ b e t a [ j ] <− exp ( b e t a [ i ]∗ s [ k [ j ] ] ) ;

91 }

92 f o r ( j in t [ i ] : T ) {

93 xp_ t a u [ j ]<− lambda [ i ] ∗
94 ( sum ( xp_ s i _ b e t a ) − sum ( head ( xp_ s i _ be t a , j ) ) ) +

95 l b e t a ( a + 1 , b + j − 1) − l b e t a ( a , b + T ) ;

96 xp_p [ j ] <− lambda [ i ] ∗
97 ( sum ( xp_ s i _ b e t a ) − sum ( head ( xp_ s i _ be t a , j ) ) ) +

98 l b e t a ( a + 2 , b + j − 1) − l b e t a ( a , b + T ) ;

99 }

100 xp_ t a u [ T+1] <− 0 ;

101 xp_p [ T+1] <− l b e t a ( a +1 , b + T ) − l b e t a ( a , b + T ) ;

103 p [ i ] <− exp ( l o g _sum_ exp ( t a i l ( xp_p , T−t [ i ] + 2 ) )
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104 −l o g _sum_exp ( t a i l ( xp_ tau , T−t [ i ] + 2 ) ) ) ;

105 PA[ i ]<− 1 / ( exp ( l o g _sum_exp ( t a i l ( xp_ tau , T−t [ i ] + 2 ) ) ) ) ;

107 f o r ( j in 1 : F ) {

108 xpp_ s i _ b e t a [ j ]<−exp ( b e t a [ i ]∗ s [ k [ T+ j ] ] ) ;

110 / / F o r e c a s t s t ime−p e r i o d T+ j

111 f [ i , j ]<− exp ( ( l o g ( lambda [ i ] ) + b e t a [ i ] ∗ s [ k [ j +T ] ] +

112 l b e t a ( a , b+ j −1) − l b e t a ( a , b ) ) −
113 l o g _sum_exp ( t a i l ( xp_ tau , T−t [ i ] + 2 ) ) ) ;

114 }

115 f o r ( j in 1 : F ) {

116 xz _ t a u [ j ]<− −lambda [ i ] ∗ sum ( head ( xpp_ s i _ be t a , j ) ) +

117 l b e t a ( a + 1 , b +T+ j − 1) − l b e t a ( a , b+T ) ;

118 }

119 xz _ t a u [5]<− −lambda [ i ] ∗ sum ( xpp _ s i _ b e t a ) +

120 l b e t a ( a , b + T+ F ) − l b e t a ( a , b+T ) ;

121 xz _ t a u [6]<− l o g _sum_ exp ( segment ( xp_ tau , t [ i ] , T−t [ i ] + 1 ) ) ;

123 / / P (ZERO_F ) [ i ]

124 PZF [ i ]<−exp ( l o g _sum_ exp ( xz _ t a u ) −
125 l o g _sum_ exp ( t a i l ( xp_ tau , T−t [ i ] + 2 ) ) ) ;

126 }

127 }
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C.2 HSMDO: Autocorrelation and Trace Plots
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Figure C.1: Apparel Autocorrelation for a,b,r,α,τs, and τβ
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Figure C.2: Apparel Trace Plots for a,b,r,α,τs, and τβ
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Figure C.3: HSMDO/Apparel Autocorrelation Seasonal Components sk over
10,000 Iterations per Chain (4 Chains, 10K Burn-In)
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Figure C.4: HSMDO/Apparel Trace Plots for Seasonal Components sk over
10,000 Iterations per Chain (4 Chains, 10K Burn-In)
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Figure C.5: HSMDO/DIY Autocorrelation for a,b,r,α,τs, and τβ
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Figure C.6: HSMDO/DIY Trace Plots for a,b,r,α,τs, and τβ
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Figure C.7: HSMDO/DIY Autocorrelation Seasonal Components sk over
10,000 Iterations per Chain (4 Chains, 10K Burn-In)
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Figure C.8: HSMDO/DIY Trace Plots for Seasonal Components sk over
10,000 Iterations per Chain (4 Chains, 10K Burn-In)
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Figure C.9: HSMDO/CDNOW Autocorrelation for a,b,r,α,τs, and τβ
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Figure C.10: HSMDO/CDNOW Trace Plots for a,b,r,α,τs, and τβ
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Figure C.11: HSMDO/CDNOW Autocorrelation Seasonal Components sk
over 10,000 Iterations per Chain (4 Chains, 10K Burn-In)
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Figure C.12: HSMDO/CDNOW Trace Plots for Seasonal Components sk over
10,000 Iterations per Chain (4 Chains, 10K Burn-In)
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