

Fixed Length Distribution Matching

Patrick Schulte

Chair for Communications Engineering Technische Universität München patrick.schulte@tum.de

> May 26, 2015 Doktorandenseminar

Outline

- Motivation: Fixed Length Distribution Matching
- Contribution: Constant Composition Distribution Matcher
- New Challange: unnormalized Divergence

Distribution Matching

Emulating discrete memoryless source P_A :

- B_i iid Bernoulli(1/2).
- $\bar{\mathsf{A}}_i$ approximately iid $\sim P_\mathsf{A}$ in the sense of

$$\frac{\mathsf{D}(P_{\bar{\mathsf{A}}^n}\|P^n_{\mathsf{A}})}{n}\overset{n\to\infty}{\to} 0,\quad \frac{m}{n}\overset{n\to\infty}{\to}\mathsf{H}(\mathsf{A})$$

• invertible: B^m can be recovered from \bar{A}^n with zero error.

Definition: Achievable Rate

A matching rate R=m/n is achievable for a distribution $P_{\rm A}$ if for any $\alpha>0$ and sufficiently large n there is an invertible mapping $f:\{0,1\}^m\to \mathcal{A}^n$ for which

$$\frac{\mathbb{D}\left(P_{f(\mathsf{B}^m)}||P_\mathsf{A}^n\right)}{n} \le \alpha. \tag{1}$$

Converse,¹

There exists a positive-valued function β with

$$\beta(\alpha) \stackrel{\alpha \to 0}{\longrightarrow} 0$$

such that (1) implies

$$\frac{m}{n} \leq \frac{\mathbb{H}(A)}{\mathbb{H}(B)} + \beta(\alpha).$$

The converse 1 bounds the maximum rate that can be achieved. Since $\mathbb{H}\left(\mathsf{B}\right)=1$ we have

$$R \leq \mathbb{H}(A)$$

¹Georg, Ali "Informational divergence and entropy rate on rooted trees with probabilities"

Optimal Fixed Length Distribution Matcher²

Algorithm

- select m near m = nR
- take 2^m most probable sequences (according to P_a^n) out of $\{0,1\}^n$ and index them by $\{0,1\}^m$
- perform line search on m with respect to best divergence.
- achieves the converse bound
- ⇒ Codebook needs to be stored.

²Ali, "Algorithms for simulation of discrete memoryless sources"

Constant Composition Codes

The empirical distribution of a output sequence \mathbf{c} of length n is

$$P_{\mathsf{A},\mathbf{c}}(a) := \frac{n_a(\mathbf{c})}{n},$$

- $n_a(\mathbf{c}) = |\{i : c_i = a\}|$ number of occurrences of symbol a in \mathbf{c}
- $P_{A,c}$ is the *type* of **c**
- $\mathcal{T}_{P_A}^n$ is set of all *n*-type P_A sequences
- Codebook $C_{\operatorname{ccdm}} \subseteq \mathcal{A}^n$ is called a *constant composition code* if all codewords are of the same type, i.e. $C_{\operatorname{ccdm}} \subseteq \mathcal{T}_{P_\Delta}^n$

Constant Composition Distribution Matching

Idea

Use codewords of the same type

- Choose sequence length of the matcher output n
- Choose n-type approximation $P_{\bar{\mathsf{A}}}$ of the target distribution P_{A}
- Choose $m = \lfloor \log_2 |\mathcal{T}^n_{P_{\tilde{\mathbb{A}}}}| \rfloor$
- Construct a unique mapping $\{0,1\}^m o \mathcal{T}^n_{P_z}$

Constant Composition Distribution Matching

We can show for any mapping to constant composition codewords for normalized divergence and Rate

$$\frac{\mathbb{D}\left(P_{\bar{\mathsf{A}}^n}||P_{\mathsf{A}}^n\right)}{n} = \mathbb{H}(\bar{\mathsf{A}}) - R + \mathbb{D}\left(P_{\bar{\mathsf{A}}}||P_{\mathsf{A}}\right)$$

N-type approximation of Gerog and Bernhard ³ guarantees

$$\mathbb{D}\left(P_{\bar{\mathsf{A}}}||P_{\mathsf{A}}\right) < \frac{|\mathcal{A}|}{\min\limits_{a \in \mathsf{supp}\,P_{\mathsf{A}}} P_{\mathsf{A}}(a)n^2}$$

We obtain

$$\lim_{N\to\infty} R = \mathbb{H}(A) = \mathbb{H}(\bar{A})$$

³Georg, Bernhard, "Optimal quantization for distribution synthesis"

However ... What if we want unnormalized divergence to approach zero?

Tighter Constraints

- CCDM can't drive unnormalized divergence to zero
- Can the optimal block-to-block distribution matcher?
- ⇒ We don't know yet

Some evidence - Unassigned Probability

Conclusions

- Constant Composition Distribution Matching: normalized divergence goes to zero unnormalized divergence diverges from zero
- Optimal fixed length matcher: only normalized divergence behaviour known

References

G. Böcherer and R. A. Amjad, "Informational divergence and entropy rate on rooted trees with probabilities," in *Proc. IEEE Int. Symp. Inf. Theory (ISIT)*, Sep. 2014, pp. 176–180.

R. A. Amjad, "Algorithms for simulation of discrete memoryless sources," Master's thesis, Technische Universität München, 2013.

G. Böcherer and B. C. Geiger, "Optimal quantization for distribution synthesis," *arXiv preprint*, 2014. [Online]. Available: http://arxiv.org/abs/1307.6843

G. Böcherer and R. A. Amjad, "Block-to-block distribution matching," Feb. 2013. [Online]. Available: http://arxiv.org/abs/1302.1020