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Abstract—We consider a cache-aided communications system
in which a transmitter communicates with many receivers over
an erasure broadcast channel. The system serves as a basic
model for communicating on-demand content during periods
of high network congestion, where some content can be pre-
placed in local caches near the receivers. We formulate the cache-
aided communications problem as a joint cache-channel coding
problem, and characterise some information-theoretic tradeoffs
between reliable communications rates and cache sizes. We
show that if the receivers experience different channel qualities,
then using unequal cache sizes and joint cache-channel coding
improves system efficiency.

I. INTRODUCTION

Consider a network with one transmitter and many receivers.
Imagine that the transmitter has a library of messages (or, data
files), and suppose that each receiver will request and down-
load a message during a period of high network congestion.
In such settings, it is advantageous to move traffic away from
the congested period using caching. The basic idea of caching
is that the transmitter sends and stores “parts” of the library
in local cache memories near the receivers beforehand, during
periods with low network traffic. The caches provide this data
directly to the receivers, so that less data needs to be sent
during the congested period.

The above problem is relevant to video-streaming services,
where content providers pre-place data in clients’ caches (or,
on servers near the clients), with the goal of improving latency
and rate performance in high demand periods. The content
provider typically does not know in advance which specific
movies the clients will request, and thus the cached data cannot
depend on the clients’ specific demands.

Let us call the pre-placement of data in caches the caching
phase, and the remaining communications phase the delivery
phase. Cache memories are typically much smaller than the
library, and the caching phase occurs before the receivers
demands are known. A key engineering challenge is, therefore,
to carefully choose and cache only that data which is most
useful during the delivery phase. That is, one should cache
data that minimises the rate needed to complete the delivery-
phase downloads for any feasible receiver demands.

Cache-aided communications systems have received sig-
nificant attention in the information-theoretic literature in
recent years, and those works most closely related to this
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paper are [1]-[11]]. With the exception of [[L1]], these works
assume that the delivery phase takes place over a single rate-
limited multicast noiseless channel (a bit-pipe) that connects
the transmitter to every receiver. In practice, however, the
communications medium is sometimes better modelled by a
noisy broadcast channel (BC). This scenario is considered in
[L1], where the BC is essentially a set of parallel links with
different qualities to the various receivers, which models a
wireless fading BC.

Here we assume that the delivery phase takes place over
a memoryless erasure BC. However, in contrast to [11]], we
assume that the caching phase takes place over error-free
pipes. The motivation for this simplified assumption is that the
caching phase typically occurs during periods of low network-
congestion, where network resources are not a limiting factor.

Our main contribution in this paper is a joint cache-channel
coding scheme for the described setup for general demands,
and a characterization of the capacity-memory region when
the receivers wish to learn the same message. Our results
show that when the receivers experience different erasure
probabilities (different channel qualities), then

o it is beneficial to employ unequal cache sizes at the
receivers (larger cache memories at weaker receivers, and
smaller cache memories at strong receivers); and

« joint cache-channel coding techniques can provide sig-
nificant gains over separated cache and channel coding.

Allocating larger cache memories to the weaker receivers
is quite natural because one then needs to communicate
less data over noisier channels (see also [[L1]]). Interestingly,
there is an additional benefit to asymmetric caches that arises
when joint cache-channel coding is used during the delivery
phase. The basic idea is as follows: Consider a degraded
BC communications scenario (such as the erasure BC) with
separate cache and channel coding. Here a stronger receiver
can decode all the data that is sent to a weaker receiver
during the delivery phase. In fact, the strong receiver could
decode even more data, but it is limited by the weaker
receiver. Now suppose that part of the message intended for the
stronger receiver is stored within the weaker receiver’s cache:
one can freely piggyback this part of the stronger receiver’s
message on the message intended for the weaker receiver.
The weaker receiver is not penalised because it knows what
data is being piggybacked on its desired message, and its
channel decoder can still resolve its desired message. While,
simultaneously, the stronger receiver has decoded something



about its desired message and therefore we have improved
efficiently. Thus, thanks to the weaker receiver’s cache and
a simple joint cache-channel coding scheme, we can send
additional data to stronger receivers without any extra cost, i.e.,
extra rate-constraints. This additional benefit of asymmetric
cache memories was not observed in [11], because separate
cache-channel coding was used for the delivery phase.

II. PROBLEM DEFINITION
A. Message library and feasible receiver demands

We have a transmitter, K receivers and a library with
D messages Wi,...,Wp. The d-th message in the library
Wy is independent of all other messages and uniform 0
{0,1,...,2"% — 1}, where Ry > 0 is its rate and n is the
transmission blocklength. We represent a particular combina-
tion of receivers’ demands by a tuple d = (dy,...,dg) €
{1,...,D}X. That is, d represents the situation where re-
ceiver 1 demands (i.e., requests and downloads) message W, ,
receiver 2 demands Wy,, and so on. Let

DC{l,...,D}~.

denote the feasible set of all possible receiver demands. The
feasible set D is known to the transmitter and receivers during
the caching and delivery phases, but the specific demand tuple
d chosen from D is only revealed for the delivery phase.

B. Caching phase

For each receiver k € {1,..., K}, the size of its cache is
described by a nonnegative integer My, see below. The
transmitter sends

Zk = gk(Wh ey WD)u
to receiver k’s cache, where g, : ]_[5:1{07 1,...,2"Ra 1} —
Z}. such that
log | 2| < 27Ms. (1)

The caching phase occurs during a low congestion period,
and we assume that Z is reliably conveyed to receiver k’s
cache (for each k € {1,..., K}).

C. Erasure Broadcast Channel Model

The delivery phase occurs during a high congestion period,
which we model by an erasure BC with input alphabet &' :=
{0,1}F. Here F > 0 is a fixed positive integer, and each x €
X is an F'-bit packet. Due to congestion, some packets may
be lost when, for example, router buffers overload. We denote
the event of a lost packet with the erasure symbol A, and the
BC’s output alphabet by ) := X U{A} (the same alphabet is
used for all receivers). Fix 1 > §; > 99 > --- > d > 0. Let

Qyr, - yr|):=P[(Y1,.... Vi) = (y1, ..., yx)| X =] be
any probability law for the BC with marginals
1— 5k if Y = T
P[Yk:yk|X:x]: (Sk ifyk:A ; vV k.
0 otherwise

ITo simplify notation and help elucidate our main ideas, we assume
throughout the paper that 2" is an integer.

For our purpose only these marginal probabilities are relevant.

We discuss a caching system in the next section that is built
on separate cache and channel codes, and, for this reason, it is
useful to recall the degraded message set capacity region for ().
A channel-coding rate tuple (R, . k3, Rz, k}s-- > Rix1)
is said to be achievable on @ if the following holds: For any
€ > 0 there exists an encoder and K -decoders such that, for
all k, the transmitter can send (Ryy. ... x} —¢) information bits
per channel use to every receiver in the set {k,k+1,..., K}
with an average probability of error less than e. The set of all
achievable rates — the capacity region C — is given by the
next proposition. The proposition can be distilled from [12],
and we omit these details.

Proposition 1:

ct= {(R{l,...,K}aR{Z...,K}»'--;R{K}) :

s Rk, .k}

<1, R >0, Vk,.
£ F(l—ék) = 4 {k,....K} = Y }

D. Delivery phase

For each feasible demand d € D, let
D

fa: [J{0.1,... 2 — 1} — &am
d'=1
denote the corresponding encoder at the transmitter. Given d €
D and the library (W7, ..., Wp), the transmitter sends

X" = fa(Wh,...,Wp),

where X” = (X1,...,X,). Receiver k observes Y,” = (Vi 1,
..., Yy ) according to the memoryless law Q. Let

Ok V" x 2 —{0,1,...,2"R% 1}

denote the decoder at receiver k. Given demands d € D, cache
content Z;, and channel outputs Y,*, receiver k outputs

Wi = or,a(Yy' Zk)
as its reconstruction of the dj-th message Wy, .

E. Achievable rate-memory tuples
Let
K
U U Wi # Wa,} }
deD k=1

denote the probability of error at any receiver for any feasible
demand. We call the collection of all encoders and decoders,

Pe ::P{

{91,92,-.., 9K} and {fda@l,d;‘ﬁld;---a‘PK,d}deDa
an (n,Ry,...,Rp, My,..., Mg)-code.
We say that a rate-memory tuple (Ri,...,Rp, My,...,

M) is achievable if for any € > 0 there exists a sufficiently
large blocklength n and an (n, Ry,...,Rp, M1, ..., Mk)-
code with P, <ee.
Definition 1: We define the capacity-memory region C to
be the closure of the set of all achievable rate-memory tuples.
The main problem of interest in this paper is to determine
the capacity-memory region C for a given erasure BC Q.



III. MOTIVATING EXAMPLES

We now demonstrate the potential of unequal cache memo-
ries and joint cache-channel coding with three examples. Fix
K=2;D=1{1,...,D}? Ry = R for all d; and

6y =4/5 and 8y =1/5. )

A. Coded caching with symmetric caches

Suppose that M; = My = M, and
a:=M/Re€[0,D/2]. 3)
Split each message W in the library into three sub-messages,
W, = (W;cl) WU(lCZ) WC(IU))

of rates M /D, M /D, and R —2M/D.
Caching phase: Store the sub-messages

(WED, WD) and (WD, WD)

in the caches of receiver 1 and 2 respectively.
Delivery phase: The transmitter sends

2 1
WP e wib, )
as a common message to both receivers, where the addition

is modulo 2"M/P) Tt then sends ng) as a private message
to receiver 1 and Wfi‘;) as a private message to receiver 2.
Notice that receiver 1 can recover Wy, from the common
message and W(L;), while receiver 2 can recover Wy, from
the common message and Wé‘;). We use a good channel code
to communicate common message Wf) ® Wé;l) and private
messages WS and W3 over the BC.

Achievable rate-memory tuples: Proposition [I] asserts that
the common message (@) and Wg;) can be decoded by both
receivers and Wx) can be decoded by receiver 2 whenever

R_—-M R 2M

D D_<1. 5
F—6)  Fll=0y) = )
On substituting @), the inequality () simplifies to
4 6 M
<-F(1-9¢ - —. 6
R< 5 ( 1) + £ D (6)

All rate-memory tuples (R,...,R,M,..., M), with R and
M satistying () and (6)), are achievable.

B. Separate cache-channel coding and asymmetric caches

Now suppose that we have asymmetric caches M; = 2M
and My = 0 for some M satisfying (3)). The total cache mem-
ory available at both receivers remains unchanged, only now
the memory at receiver 2 has been reallocated to receiver 1.

Split each message W, into two sub-messages,

Wy = (WD, Wy (7)
with rates 2M /D and R — (2M /D) respectively.
Caching phase: Store (WD ... WED) in receiver 1’s

cache.
Delivery phase: We use a good channel code for Proposi-
tion [I] to reliably communicate the above sub-messages. The

transmitter sends Wfi‘i) as a common message to both receivers
(although it is only used by receiver 1), and it sends Wézl) and

Wé‘;) as a private message to receiver 2.
Achievable rate-memory tuples: Proposition [I] asserts that
reliable communication is possible if

R 2M
D B <1 ®)
Fli—o) | F(1-5)
On substituting (), the inequality (B) simplifies to
4 8 M
R<-F(1-9§ - —. 9
S5 ( 1) + 5D ©))

All rate-memory tuples (R,...,R,M,..., M), with R and
M satisfying (3) and (9) are achievable.

C. Joint cache-channel coding and asymmetric caches

As in Section[[II-B} Let My = 0 and M; = 2M, for some
M satisfying (3), and split each message Wy into two sub-
messages (7) with rates 2M /D and R—(2M/ D) respectively.

Caching phase: Store (W{Cl), RN ng)) at receiver 1.

Delivery phase: Transmission takes place in two phases. Let
b1 € [0,1]. First phase of length S1n: The transmitter sends

Wa, W)

as a common message to both receivers using a joint cache-
channel code. Second phase of length (1 — 31)n: The trans-
mitter sends Wé‘;) to receiver 2 using a point-to-point channel
code. Receiver 1 tries to decode Wé‘i) and receiver 2 tries
to decode (ngl), Wc(iczl), Wé‘;)). A key observation here is
that Wéczl) is stored in receiver 1’s cache. As we see in a
moment, for a € [0, %], this allows us to freely piggyback
receiver 2’s message Wézl) on receiver 1’s message Wé‘i)
without compromising the rate to receiver 1.

Achievable rate-memory tuples: By Tuncel’s seminal broad-
casting with side-information result [13], communication in
phase 1 (to both receivers) is very likely to be successful if
the following two conditions hold:

r-2 < ra-5)m
R < F(1—62)ph;

(10a)
(10b)

communication in phase 2 is very likely to be successful if

r-2 < P50 - ).
For M/R € [0,3D/8], constraint (T0a) is tighter than (T0D)),
and constraint (TOB) is tighter when M/R € (3D/8,D/2].
Moreover, for M/R € [0,3D/8] the choice 81 = 4/5
maximizes the set of rates R satisfying constraints (I0),
and for M/R € (3D/8,D/2] the choice 8; = (1/2)(1 —
M/(DR))~! maximizes the set of rates R satisfying con-
straints (T0). Combining these observations with  (I0)

(10c)

proves achievability of all rate-memory tuples (R,...,R,
M, ..., M), where R and M satisty (3) and
4 _ M g M 3D
firo-mens wgebwl



D. Discussion

Comparing the rate-memory tradeoffs in (@), (O) and (TT),
we see that it is advantageous to use unequal cache sizes
and joint cache-channel coding. In particular, allowing larger
caches at the weaker receivers (with higher packet erasure
probabilities) both reduces the delivery-phase rates to the
weaker receivers and increases rates to the stronger receivers.

IV. A JOINT CACHE-CHANNEL CODE FOR
ARBITRARY DEMANDS

We now describe a joint cache-channel code. We consider
any set of feasible demands D, but equal message rates

Ry =R, VdE{l,...,D}.

We first treat the case where the K weakest receivers (re-
ceivers 1 to Kg) have equal cache sizes and the remaining
receivers do not have caches:

M itk <Ky
Mk{() if k> Ko (12)
See Section for an extension to unequal cache sizes.

A. Scheme for cache sizes satisfying (12)

Preliminaries: Choose a positive integer ¢ < Ky, and let

-(%)

Split each message W into (7 + 1)-sub-messages,

Wy = (W, wity),
whereWy)6{0,1,...,2”R<i)—1} and
%, fori=1,2,...,7
R .= D)
K
R—A/lDtO, fori =71+ 1.

Caching Phase: Consider the K weakest receivers. Let
R17R27"' 7RT

denote the 7 different subsets of {1, ..., Ky} with size ¢. For
each i = 1,2,...,7, take the tuple (Wl(i),WQ(i),...,Wg))
and store it in the cache of each and every receiver in R;. Here
we have stored D(Kﬂ_l) sub-messages in receiver k’s cache

t—1
(foreach k € {1,2,..., Ky}) with a total memory requirement

() )P e

Delivery phase: The demand tuple d € D is given, and we
are required to communicate message Wy, to receiver 1, Wy,
to receiver 2, and so on.

We consider sets of (t+1)-receivers in {1,..., K¢ }. Within
these sets, each subset of ¢ receivers shares a sub-message
that is demanded (but unknown) by the remaining (¢ + 1)-th
receiver. For each set of (¢4 1)-receivers, we form the “XOR”
of the (¢ 4 1) sub-messages having the two above mentioned

properties, that is, being known at t of the receivers and
demanded by the remaining (¢ + 1)-th receiver. For example,
for the subset of receivers {1,...,t+ 1}, we form

t+1

i
k=1

where the addition is modulo 2"/ (P("21")) (or, equivalently,

(13)

a bitwise XOR operation); and for each k € {1,...,t + 1},
i1 1s such that
Ri, ={1,....k—1k+1,...,t+1} (14)

Notice that implies that W(”) is stored in the caches of
receivers 1,..., k—1,k+1,. t but not at receiver k.

We use a time-sharing scheme to send the XOR messages
as well as all other messages to be transmitted. The time-
sharing comprises K phases. Each phase k& € {1,...,K} is
constructed so that it can be decoded by Receivers k, k +
1,..., K. Phase k is of length Sxn, where

K
Y Be=1,
k=1

In phase k € {1,..., Ky}, we send
o the XOR messages that are demanded by receiver k& but
not by receivers 1 to k — 1;
« the uncached message Wézﬂ) demanded by Receiver k;

0< B <L (15)

o the first an,]; bits of sub-messages Wé;), for every ke
{Ko+1,...,K} and every i € {1,...,7} such that
k € R;. These messages are all known to receiver k and
therefore do not limit the decoding at receiver k. The
rates {C), } are parameters of a scheme. As we shall
see, when they are chosen sufficiently small, but positive,
and dx11 < O, then sending these bits does not limit the
decoding at receivers k+1,k+2, ..., K. In fact, similarly
to our motivating example in thls case, the transmitted
bits of sub-messages Wd can be freely piggybacked on
the other messages transmitted in this phase k.

In phase k € {Ky+1,..., K} we send:

o the sub-messages of Wy, that have not been sent in any
previous phase.

Achievable Rate-Memory Tuples:
Proposition 2: A rate-memory tuple (R, ...,
LMy, =M,0,. ..
¢ positive integer t;

o (B1,...,0K) satisfying (I3); and
« nonnegative real numbers {C) 1} with k € {1,...,

and k € {Ko+1,...,K};
the following (K + Kj)-conditions in (I6) hold.
1) Foreach k € {1,..., Ky —t— 1}, we have

o ((0)-(701)

(16a)

R, My =M,

,0) is achievable if for some

Ky}

R < BrF(1—dy)



and

K
R + Z Cri < Bl (1 — 6p41)

k=Ko+1
n M Ky B Ko —k
D("eh) \\ t t )]
(16b)
2) For each k € {Ky—t,...,Kp}, we have
K
R < BeF(1 - b) + 20 (16¢)
Dt
and
s MEK,
R o< - 0
+ D Cup S PO =0k) + == (16d)
E=Ko+1
3) Finally, for each k € {Ky+1,..., K}, we have
Ko
R—Y" Cup < BrF(1—01). (16¢)
k=1

Proof outline: For each k € {1,...,Ky — t}, Con-

dition ensures that receiver k can reliably decode the

submessages sent in phase k: Wd(:H) of rate R — Dto =
R —

Ko) and the (";*) x-or messages of the
form each having rate —22

M
D(Kto_*ll) ( t t
D(Ko-1Y" (Here, (K;k) is the

number of size-(¢ + 1) subsets z)fl{k,...,K } that include
index k.) There is no constraint from the piggibacked sub-
messages of rates {C} 12}?: K,41 DEcause receiver k already
knows them.

Condition (T6b) ensures that all of the stronger receivers in
{k+1,...,K} can reliably decode all sub-messages sent in
phase k, i.e., Wézﬂ), the x-or sub-messages, as well as the
piggibacked sub-messages of rates {Cky,;}g: Kot

Similarly, Condition ensures that each receiver k €
{Ko—t,...,Ko} can reliably decode the sub-messages sent
in phase k, and Condition (I6d) ensures that all of the
stronger receivers in {k +1,..., K} can also reliably decode
these sub-messages. Finally, Condition ensures that each
receiver k € {Ko + 1,..., K} can decode the sub-messages
sent in phase k. ]

Discussion: The parameters {C), 1} describe the gain that
our scheme achieves over separate cache-channel coding
schemes. If some of these rates are strictly larger than O,
then our scheme strictly outperforms separate cache-channel
coding. It is possible to choose them strictly positive whenever
the erasure probabilities d1,...,0x,+1 are not all equal.

B. Scheme for unequal cache sizes

Assume now that My > My > -+ Mg > 0. Our scheme
in the previous subsection is easily extended to this more
general setup using time-sharing. Specifically: Let 31,. .., Bk
be real numbers in the interval [0,1] that sum up to I.
Over a fraction of time f;, i« € {1,...,K}, we use our
scheme in the previous subsection assuming that only the first

Kéi) = K + 1 — 1 receivers have caches of equal cache size

M = BT (Mg _ivr — Mg —iva). (Set M1 £0)
V. SINGLE COMMON DEMAND

In this section we consider the optimistic case where all
receivers demand the same message. This corresponds to

D={(di,....dg) €{l,....,D} 1 di =dy = - = dk}.

The rates Ry, ..., Rp can be arbitrary, i.e., do not have to be
equal as in the previous section.

It can be shown that in this setup, a joint cache-channel code
based on Tuncel’s virtual binning technique [13]] achieves the
capacity-memory region.

Theorem 3: A rate-memory tuple (Ry,..
M) is achievable if and only if,

Ry gk (1=64)F +Myq), de{l,...,D}, (17)

L Rp, My, ...,

min
e{1,...,K}

for some nonnegative numbers { M, 4} that satisfy

D
> Mg <My, kefl,... K}

d=1

(18)

We thus again wish to allocate small cache sizes to strong
receivers and large cache sizes to weak receivers.

If we used separate cache-channel codes, Constraint is
replaced by

max (Rg— Mpgq) < min

1—06,)F
ke{l,... K} ke{l,...,K}( K

19)

and the benefit of having unequal cache sizes { My} at the
different receivers disappears.
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