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Abstract— In this paper, we study a setting in which
two terminals A and B respectively observe, or measure,
two memoryless, possibly statistically dependent, sources
X and Y; and they interact bidirectionally in the aim of
computing, at terminal B, a function fB(X,Y) of the two
sources. Essentially, we establish upper bounds on the
maximum gain that can be brought up by the interaction,
in terms of minimum sum rate improvement for a given
average distortion. In particular, we show that this gain is
bounded by the redundancy of the one-message minimal
rate for computing the function fB(X,Y) in the case in which
Terminal A does not know the side information Y over the
one-message minimal rate for computing the same function
with the same tolerance but with Terminal A informed
about the side information Y. That is, the redundancy of the
one-message Wyner-Ziv rate-distortion function for function
computation over the one-message conditional rate-distortion
function for function computation. In the special case of lossy
source reproduction, the bound reduces to the rate loss of
the Wyner-Ziv problem as studied by Zamir in the case of a
difference distortion measure. In the case of lossy function
computation, we use this bound to establish an alternate
bound that is generally easier to compute. Furthermore,
we also apply the results to some important special cases,
thus allowing us to gain some fundamental insights on the
benefits of the interaction for both lossless and lossy function
computations in these cases.

I. Introduction

In many realworld distributed systems, such as data
centers, peer-to-peer networks, and sensor networks, the task
of the network is to compute a function, which can then
utilized to make a decision or coordinate some action. The
traditional approach to perform computations in networks
consists in transferring the required data that is generated, or
measured, by the nodes to a single decision-making node (e.g.,
fusion center) which has the task of performing the desired
computations. This technique has the advantage of being
rather easy to implement and analyze, but is suboptimal in
general. Additional gains, that are substantial in some cases,
can be made possible if the nodes are allowed to interact, i.e.,
the information can flow from sources towards destinations
and back possibly over multiple rounds.

The benefits of interaction for two-way source coding are

studied in [1] for lossy source reproduction, and in [2] for
function computation. Important advances on the role of
nodes’ interaction for function computation have been made
recently by Ma and Ishwar, for a two-terminal problem in [3],
[4] and for larger collocated networks in [5].

In this work, we consider a setting in which two terminals
A and B respectively observe, or measure, two memoryless
sources X and Y; and they interact bidirectionally in the
aim of computing, at terminal B, a component-wise function
f (n)
B (X,Y) = ( fB(X1,Y1), . . . , fB(Xn,Yn)) of the two sources. The

sources are assumed to be possibly statistically dependent,
through a memoryless joint distribution PX,Y(x, y). The com-
putation is to be performed in a lossless or lossy manner,
depending on the scenario. The system model is shown
in Figure 1. We measure the performance in terms of the
minimum number of bits per source sample to be exchanged
in t bidirectional rounds in order to compute the function
f (n)
B (X,Y) to within some prescribed distortion DB. That is, the

minimum sum-rate Rsum,t = R1 + . . .+Rt, where Ri, i = 1, . . . , t,
is the rate, in bits per source sample, in round i. For this
model, Ma and Ishwar have shown that the interaction is
useless in terms of the minimum sum-rate if the goal is lossless
source reproduction, whereas it is useful for both lossy source
reproduction and general function computation [3], [4].
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Fig. 1. Interactive distributed source coding with t alternating
messages for the computation of function f (n)

B (X,Y) at terminal B.

Investigating closely the role of the interaction, it can be
seen that, intuitively, in the cases in which the interaction is
useful the improvement is enabled precisely by the fact that
each node furnishes to the other node a (partial) description
of the observed source, which can then be utilized to progres-
sively learn and/or refine some information about the desired



function computation. Based on this observation, we first
study the setting in which Terminal A also knows the source
Y; and we show that, as expected in this case, the interaction
is completely useless in terms of the minimum sum rate that
is required to compute the function f (n)

B (X,Y) to within some
prescribed average distortion DB. That is, the one-message
rate is optimal in this case. This result, which can also be
inferred from Kaspi’s results in [1] for the cases of lossless
and lossy source reproduction, is shown here directly to also
hold in the cases of lossless and lossy function computation.

Next, turning to the case in which Terminal A does not know
the side information Y, we establish an upper bound on the
maximum gain that can be brought up by the interaction in
this case, in terms of the maximum sum rate improvement
for the lossy computation of function f (n)

B (X,Y). We express
this bound in terms of quantities that do not depend on
the interaction and can be computed easily in many cases.
Specifically, the maximum gain of the interaction in terms
of minimum sum rate is shown to be bounded by the
redundancy of the one-message minimal rate for computing
the function f (n)

B (X,Y) in the case in which Terminal A does not
know the side information Y over the one-message minimal
rate for computing the same function with the same tolerance
but with Terminal A informed about the side information
Y. That is, the redundancy of the one-message Wyner-Ziv
rate-distortion function for function computation over the
one-message conditional rate-distortion function for function
computation. In the special case of lossy source reproduction, the
bound reduces to the rate loss of the Wyner-Ziv problem. This
rate loss is studied by Zamir in [6] in the case of a difference
distortion measure; and, so, the advantage of the interaction
in terms of minimum sum rate can be bounded by the minimax
capacity bound of [6] in this case. An important implication of
this is in showing that the loss due to the lack of the interaction,
in terms of minimum sum rate, is bounded.

Furthermore, we also apply the results to some important
special cases, thus allowing us to gain some fundamental
insights on the benefits of the interaction for both lossless
and lossy function computations in these cases. In some
cases, such as those of lossless source reproduction, lossy
reproduction of Gaussian sources as well as lossy repro-
duction of binary sources with erased side information,
the bound is zero, thus establishing that the interaction is
completely useless. In other cases, such as lossy sources
reproduction (general sources, not necessarily Gaussian), as
well as lossless and lossy function computation, the approach
provides computable bounds on the maximum gain that can
be hoped for with infinite number of interaction rounds.
For example, we obtain that the ultimate gain that can be
enabled by the interaction (in terms of minimum sum rate)
cannot exceed 0.22 bits per sample for any binary sources with
Hamming distance, and 1/2 bit per sample for any continuous
sources with squared error distortion.

II. Problem Setting and Definitions
Consider the two-terminal interactive distributed source

coding problem with alternating messages shown in Figure 1.
The sources X = (X1, . . . ,Xn) and Y = (Y1, . . . ,Yn) are
two statistically dependent discrete memoryless stationary
sources with elements taking values in finite alphabetsX and

Y, respectively, with joint probability mass function (PMF)
PX,Y(x, y) that captures the statistical dependencies among
their samples. Terminal A observes the source X = (X1, . . . ,Xn)
and does not compute any function; and Terminal B observes
the source Y = (Y1, . . . ,Yn) and wants to compute a sample-
wise function ZB = f (n)

B (X,Y) = ( fB(X1,Y1), . . . , fB(Xn,Yn))
of the sources X and Y to within some prescribed average
distortion level DB. That is, with fB : X×Y −→ ZB denoting
the function of interest at Terminal B, the desired outputs
at this location is the vector ẐB = (ẐB,1, . . . , ẐB,n) such that
E[d(n)

B (X,Y, ẐB)] ≤ DB + ε, where

d(n)
B (X,Y, ẐB) ,

1
n

n∑
i=1

dB(Xi,Yi, ẐB,i) (1)

with, for i = 1, . . . ,n, Zi = fB(Xi,Yi), ẐB,i is the estimate of the
i-th element of the vector ZB and dB : X×Y×ZB −→ R+ is
some general single-letter distortion function (note that this
measure can depend arbitrarily on X and Y). To achieve the
goal of computing the desired function at location B, the two
terminals exchange coded messages, alternately.

Definition 1: A two-terminal interactive distributed source
code for function computation with initial location A and
parameters (t,n, |M1|, . . . , |Mt|) is the tuple (φ1, . . . , φt, ψB) of
t block encoding functions φ1, . . . , φt and one block decoding
function ψB, of blocklength n, such that for j = 1, . . . , t, we
have

Enc. round j φ j :
{
X

n
×M1× . . .×M j−1 →M j, if j is odd

Y
n
×M1× . . .×M j−1 →M j, if j is even

(2a)
Dec. at Terminal B ψB : Yn

×M1× . . .×Mt −→ Z
n
B (2b)

The output of the encoding functionφ j in round j is called the
j-th message M j, and t is the number of rounds or exchanged
messages. For j = 1, . . . , t, the coding rate in round j, in bits
per source sample, is given by R j = (1/n) log2(|M j|).

Definition 2: A rate-distortion tuple (R,DB) =
(R1, . . . ,Rt,DB) is admissible for t-message interactive
function computation with initial location A if for any
ε > 0, there exist a sufficiently large n and an interactive
distributed source code with initial location A and parameters
(t,n, |M1|, . . . , |Mt|) satisfying

1
n

log2 |M j| ≤ R j + ε, j = 1, . . . , t (3)

E[d(n)
B (X,Y, ẐB)] ≤ DB + ε. (4)

The set of all admissible rate-distortion tuples is called the
rate-distortion region for t-message interactive computation
of function fB(·) with initial location A, and is denoted by
RD

A
t ( fB). For a given distortion DB, the set of all admissible

rate t-tuples R = (R1, ...,Rt) such that (R,DB) ∈ RDA
t ( fB)

be denoted by RA
t ( fB,DB). The sum-rate-distortion function

RA
sum,t( fB,DB) is given by the minimization, over all t-tuples

(R1, ...,Rt) of RA
t ( fB,DB), of the sum (R1 + . . . + Rt), i.e.,

RA
sum,t( fB,DB) = min

R ∈ RA
t ( fB ,DB)

t∑
i=1

Ri. (5)

If Terminal B initiates the procedure of messages exchange,
the definitions are similar to the above. Finally, in the limit
as t goes to infinity, both RA

sum,t( fB,DB) and RB
sum,t( fB,DB)



converge to the infinite-message sum-rate-distortion function
Rsum,∞( fB,DB) [3].

Due to space limitation, the results of this paper are either
outlined only or mentioned without proofs. Detailed proofs
for the model of this paper can be found in [7].

In the settings in which the interaction is useful, the two-
message interactive source code with initial location B strictly
outperforms the one-message code with initial location A, i.e.,
RB

sum,2( fB,DB) < RA
sum,1( fB,DB). In such cases, the intuition for

the reason for which the interaction helps, in terms of the
minimum required sum rate to compute the desired function,
is that in the first round Terminal B provides to Terminal A
a partial description of the source Y that is observes, which
is then utilized by this terminal to get a sense of the function
to be computed at the other side. This may suggest that had
Terminal A known the side information Y, then the interaction
would be completely useless. Based on this observation, in
the next section we study the setting, shown in Figure 2, in
which terminal A also knows the side information Y; and we
show that, as expected in this case, the interaction is useless
in terms of the minimum sum rate that is required to compute
the function ZB = f (n)

B (X,Y) to within some distortion DB.
III. Case inWhich Terminal A Knows Side

Information Yn

Consider the model shown in Figure 2. Here, Terminal
A knows both memoryless sources X and Y, and does not
compute any function; and Terminal B knows the memoryless
source Y and wants to compute the function ZB = f (n)

B (X,Y) to
within some prescribed distortion DB.

A B

M1

M2

...

Mt

(Y1, . . . , Yn)(X1, . . . , Xn)

R2

Rt

R1
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Fig. 2. Interactive distributed source coding with t alternating
messages. Both terminals know the side information Yn.

For a given average distortion DB, the minimum sum-rate
for a t-message distributed code for the setup shown in
Figure 2 can be obtained by applying a slight modification
of the results of [3] to setups with encoder side information,
by considering that Terminal A observes the source pair
X̃ = (X,Y) and Terminal B observes the source Y and wishes to
compute the function f̃B(X̃,Y) = fB(X,Y), where the function
f̃B : X×Y×Y −→ ZB is defined such that ∀(x, y) ∈ X×Y,
f̃B(X̃,Y) = fB(X,Y). Specifically, assuming for example that
the first message is sent by Terminal A, the minimum sum
rate of a t-message interactive distributed code is given by

RA
sum,t( fB,DB) = min

Ut
[I(Ut; X̃|Y) + I(Ut; Y|X̃)]

= min
Ut

I(Ut; X|Y) (6)

where the second equality follows by substituting X̃ = (X,Y);
and the minimization is taken under all Ut = (U1, . . . ,Ut)

satisfying Ui ↔ (Y,Ui−1)↔ X forms a Markov chain for i even,
and such thatE[dB(X,Y, ĝB(Y,Ut)] 6 DB for some deterministic
function ĝB.
The minimum sum-rate for a given average distortion DB
as given by the expression (6) does not indicate explicitly,
however, whether or not the interaction is strictly useful for
the model shown in Figure 2. In what follows, we show that
it is not. Specifically, the interaction is completely useless for
the setup shown in Figure 2 in the sense that Rsum,∞( fB,DB) =
RA

sum,1( fB,DB). We note that for the cases of lossy and lossless
source reproduction this result can also be inferred from [1].
Furthermore, it will be shown that the smallest admissible
rate that allows Terminal B to compute the desired function
ZB to within the prescribed average distortion DB with just
one iteration, i.e., RA

sum,1( fB,DB), is given by the conditional rate
distortion function RX|Y( fB,DB) for computing the function fB.
The following theorem states the result.

Theorem 1: For the model shown in Figure 2 with the
memoryless source Y known to both Terminals A and B, the
interaction is useless in terms of minimum required sum-rate
for computing the function fB(X,Y) = ZB at Terminal B with
average distortion DB, i.e.,

Rsum,∞( fB,DB) = Rsum,1( fB,DB). (7)

Moreover, Rsum,∞( fB,DB) is given by

Rsum,∞( fB,DB) = min
PẐB |X,Y

, E[dB(X,Y,ẐB)] ≤DB

I(ẐB; X|Y), (8)

where the minimization is over all conditional PẐB |X,Y such
that E[dB(X,Y, ẐB)] ≤ DB.

IV. Bounds on the Benefit of Interaction
Let us now turn to the model shown in Figure 1, i.e.,

with the side information Y known only at Terminal B. We
denote by RWZ

X|Y( fB,DB) the smallest admissible one-message
rate that allows Terminal B to compute the desired function
ZB = f (n)

B (X,Y) to within some average distortion DB. That is,
RWZ

X|Y( fB,DB) is the Wyner-Ziv rate that is required to compute
the desired function with distortion DB for the same setup
but without interaction. In the next section, we show that the
improvement that can be brought up by the interaction for the
model of Figure 1, in terms of minimum required sum-rate,
cannot exceed the difference (RWZ

X|Y( fB,DB) − RX|Y( fB,DB)).

A. Bound on the Ultimate Minimum Sum-Rate
Consider the model shown in Figure 1. For a given average

distortion DB, Rsum,t( fB,DB) is a non-increasing function of
t; and the ultimate gain that can be allowed by the inter-
action, in terms of minimum required sum-rate, is given
by Rsum,1( fB,DB) − Rsum,∞( fB,DB). The following theorem
provides an upper bound on this gain.

Theorem 2: For the model shown in Figure 1, we have

0 ≤ Rsum,1( fB,DB)−Rsum,∞( fB,DB) ≤ RWZ
X|Y( fB,DB)−RX|Y( fB,DB).

(9)

Remark 1: The bound (9) is also valid for any finite t. That
is, for given t, the improvement, in terms of minimum sum-
rate for a given average distortion DB, of any t-message code



over the one-message code, or the case of no interaction, is
such that

0 ≤ Rsum,1( fB,DB)−Rsum,t( fB,DB) ≤ RWZ
X|Y( fB,DB)−RX|Y( fB,DB).

(10)
The bound of Theorem 2 can be applied to provide

interesting insights on the role of interaction and its ultimate
benefits, in terms of minimum sum rate, in many lossless
and lossy interactive distributed source coding settings, as
we shall see in the following two sections.

B. Application to Lossless Function Computation
In [4], Ma and Ishwar have shown that the interaction is
useless in terms of the minimum sum-rate if the goal is pure
source-reproduction. This result can also be obtained from
Theorem 2 by setting DB = 0 and fB(X,Y) = X. In this case,
the RHS of (9) is zero since RWZ

X|Y(X, 0) = RX|Y(X, 0) = H(X|Y)
by Slepian-Wolf coding.
The interaction is beneficial, however, for general lossless
function computation as shown through some striking ex-
amples in [4]. Evaluating the bound of Theorem 2 with
the choice DB = 0, we obtain a bound on the ultimate
benefit of the interaction in this case. Specifically, we have
RX|Y( fB, 0) = H(ZB|Y); and the term RWZ

X|Y( fB, 0) in the RHS of
(9) is given, in this case, by the conditional graph entropy
HG(X|Y) of X given Y, whereG is the characteristic graph of the
triple (X,Y, fB), i.e., the graph G is such that the set of nodes
of this graph is the support of X and there is an edge between
two distinct nodes x and x′ iff there exists a symbol y such that
p(x, y), p(x′, y) > 0 and fB(x, y) , fB(x′, y). That is, with Γ(G)
denoting the collection of maximally independent sets of the
graph G [8], we have

HG(X|Y) = min I(W; X|Y) (11)

where the minimization is over all conditional pmfs pW|X(w|x)
such that W ∈ Γ(G) and pW|X(w|x) = 0 if x < w.
Summarizing, in the case of lossless function computation,
we get

Rsum,1( fB, 0) − Rsum,t( fB, 0) ≤ HG(X|Y) −H(ZB|Y). (12)

For many examples, the RHS of (12) can be computed easily.
Example 1: Let X ∼ Uniform{1, . . . ,L} and Y ∼ Bern(p), p ∈

[0, 1], such that X and Y are independent. Also, let fB(X,Y) =
X·Y (real-valued product). This is an expanded version of [9,
Example 8] that was also considered in [4] to show that the
interaction is beneficial in this case. For this example, it is
easy to see that the characteristic graph G is complete, and
so HG(X|Y) = H(X|Y) = log2(L) bits per sample. Also, we
have H(X·Y|Y) = p log2(L) bits per sample. Thus, using (12)
we get that the improvement due to the interaction, in terms
of minimum sum-rate, in this case is bounded from above
by (1− p) log2(L) bits per sample. (The application of (12) also
yields that the two-message code of [4] is at most at h2(p) bit per
sample from the ultimate minimum sum rate Rsum,∞( fB, 0)).

�
C. Application to Lossy Source Reproduction

The case of lossy reproduction of the source X at Terminal
B can be obtained as a special case by setting fB(X,Y) = X. In
the case, the bound of Theorem 2 reduces to

0 ≤ Rsum,1(X,DB) − Rsum,∞(X,DB) ≤ RWZ
X|Y(X,DB) − RX|Y(X,DB),

(13)

where RWZ
X|Y(X,DB) is the rate-distortion function for coding the

memoryless source X with side information Y available at the
decoder (i.e., the Wyner-Ziv rate as established by Wyner and
Ziv in [10]) and RX|Y(X,DB) is the conditional rate distortion
function. Thus, Theorem 2 bounds the benefit in terms of
minimum sum rate that can be brought up by the interaction
in this case by the rate loss in the Wyner-Ziv problem (w.r.t.
to the conditional rate distortion problem).
For some cases, the RHS of (13) is zero and, so, the above
means that the interaction is completely useless in terms
of minimum sum rate in these cases (see below for some
important examples). In other cases, the RHS of (13) gives
a computable bound on the rate improvement that can be
brought up by the interaction.

Example 2 (Binary sources with erased side information):
Let X ∼ Bern(1/2), Y be an erased version of X, i.e.,
PY(y = x) = 1 − PY(y = ε) = p and the distortion measure is
a Hamming distance, i.e., dB(x, x̂) = x ⊕ x̂, where ⊕ denotes
the addition modulo-2. For this example, the Wyner-Ziv
rate-distortion function RWZ

X|Y(X,DB) and the conditional
rate-distortion function RX|Y(X,DB) coincide [11] and are
given by

RWZ
X|Y(X,DB) = RX|Y(X,DB) =

{
p(1 − h2( DB

p )) if DB 6
p
2

0 otherwise.
(14)

Thus, the interaction is not useful in terms of minimum sum-
rate for a given distortion DB in this case; and, the optimal
rate Rsum,∞(X,DB) = RWZ

X|Y(X,DB) as given by the RHS of (14).�
Example 3 (Gaussian sources with quadratic distortion measure):

Let (X,Y) be a memoryless jointly Gaussian pair of sources
with, say, E[X] = E[Y] = 0, E[X2] = E[Y2] = P and
correlation coefficient ρ = E[XY]/P. Also, let the squared
error distortion measure dB(x, x̂) = (x − x̂)2. For this example,
the Wyner-Ziv rate RWZ

X|Y(X,DB) is the same as the rate when
the side information Y is available at both the encoder and
the decoder. Thus, the interaction is useless and one round
Wyner-Ziv coding is optimal, i.e.,

Rsum,∞(X,DB) =

 1
2 log2

( (1−ρ2)P
DB

)
if 0 ≤ (1 − ρ2)P ≤ DB

0 otherwise.
(15)

The result on the non-utility of the interaction for this example
is also stated in [8, Example 20.4]; but it is proved here
differently, i.e., as a special case of a larger class of models for
which the interaction does not help in terms of the minimum
sum-rate. �

Example 4 (Doubly Symmetric Binary Sources): Let (X,Y) be
a DSBS(p), p ∈ [0, 1/2], and dB(·) the Hamming distortion
measure. For this example, for DB , 0 the interaction is
beneficial if p , 1/2. The Wyner-Ziv rate-distortion function
is given by

RWZ
X|Y(X,DB) =


g(DB) for 0 ≤ DB ≤ D′c
(p −DB)g′(D′c) for D′c ≤ DB ≤ p
0 for DB > p

(16)

where g(DB) = h2(p ∗ DB) − h2(DB), g′ denotes the derivative
of g, D′c is the solution of the equation g(D′c)/(p−D′c) = g′(D′c).
Also, if the side information is available at both terminals the



rate-distortion function is

RX|Y(X,DB) =

{
h2(p) − h2(DB) for 0 ≤ DB ≤ p
0 for DB > p. (17)

Thus, the bound (13) computed for this example is given by
the redundancy of the RHS of (16) over that of (17). �

The Minimax Capacity Bound
If the distortion measure dB(·) is a difference distortion

measure, i.e., there exists a measure d(·) such that dB(x, x̂) =
d(x − x̂) for all (x, x̂) ∈ X2, it is shown in [6, Theorem 1] that

RWZ
X|Y(X,DB) − RX|Y(X,DB) ≤ CX(DB) (18)

where CX(DB) is defined as

CX(DB) = inf
N∈X : E[d(N)] ≤DB

C(DB,N), (19)

and C(DB,N) denotes the capacity of the additive noise
channel W −→ W + N under the distortion measure dB(·),
with W and N independent, i.e.,

C(DB,N) = sup
W∈X : E[d(W)] ≤DB

I(W; W + N). (20)

Combining equations (13) and (18) we get the following
alternate bound on the gain in terms of minimum sum-rate
that can be brought up by the interaction in the case of lossy
source reproduction,

Rsum,1(X,DB) − Rsum,t(X,DB) 6 CX(DB). (21)

The main importance of the minimax capacity bound (21)
is in showing that, like for the case of no interaction [6],
the rate loss of the uninformed encoder is also bounded in
the case of interactive coding. Another appreciable property
of the bound (21) is that it does not depend on the actual
distributions of the sources, but only on their alphabets. Also,
it computes easily. For example, for the DSBS(1/3) sources of
Example 4 with Hamming distortion measure, we have

CX(DB) = h2(DB ∗DB) − h2(DB). (22)

Then, since CX(DB) ≤ 0.22 bit/sample for 0 ≤ DB ≤ 1/2,
this implies that, in the case of lossy source reproduction,
the ultimate gain that can be enabled by the interaction (in
terms of minimum sum rate) cannot exceed 0.22 bits/sample
for any binary sources with Hamming distance. Similarly,
using (21) we obtain that the benefit of the interaction in
terms of minimum sum rate cannot exceed 1/2 bit/sample for
continuous sources with squared error distortion. Although
this bound is not tight for Gaussian sources (see Example 3),
its importance is that it applies in general irrespective to the
joint distribution of the continuous pair (X,Y).

V. Lossy Function Computation
Consider again the model of Figure 1. We assume here

that the goal is lossy computation at Terminal B of a general
function that can depend on both sources, i.e., not necessarily
lossy reproduction of the source X. In this case, the minimax
capacity bounding approach of the last section, which is
applicable in the case of lossy source reproduction, does not
extend easily to the setup of lossy function computation. In
what follows, we establish a bound on the bound of Theorem 2
that holds under some conditions.

Proposition 1: For lossy function computation, the gain of
the interaction in terms of minimum sum-rate for a given
average distortion DB is bounded as

Rsum,1( fB,DB) − Rsum,∞( fB,DB)

≤ min
{
RWZ

X|Y

(
X,Ψ−1(DB)

)}
− RX|Y( fB,DB), (23)

where the minimization is over strictly increasing functions
Ψ(·) for which there exists some measure d(·) such that

E[dB(X,Y, ẐB)] ≤ Ψ
(
E[d(X,Y, X̂)]

)
. (24)

Remark 2: The condition (24) holds in many cases. For
example, for binary sources with the Hamming distortion
measure it is easily observed that

E[dH(X,Y, Ẑ)] ≤ E[dH(X,Y, X̂)]. (25)

Example 5 (Lossy computation of XOR function of DSBS):
Let (X,Y) be a DSBS(p), p ∈ [0, 1/2], and the distortion
measure dB(·) be such that dB(x, y, ẑ) = dH(x⊕y, ẑ), where dH(·)
is the Hamming distortion measure. Assume that Terminal
B wishes to compute ZB = X ⊕ Y to within some average
distortion DB. The conditional rate-distortion function to
convey ZB = X ⊕ Y to Terminal B can be shown easily to be
given by

RX|Y( fB,DB) = min{
PẐB |Y,ZB

, E[dH(ZB ,ẐB)] ≤DB

} I(ẐB; ZB|Y) (26)

Thus, using (25) of Remark 2, and observing that (ZB,Y) ∼
DSBS(1/2) here, the bound (23) for this example yields

Rsum,1( fB,DB) − Rsum,∞( fB,DB) ≤ RWZ
X|Y(X,DB) − RZB |Y(ZB,DB)

(27)
which can be computed as the redundancy of the RHS of (16)
over that of (17). �
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