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Abstract—We propose a rate-adaptive error-correction coding
framework for transmission over finite-length block-fading chan-
nels, with causal channel state information at the transmitter.
A dynamic programming optimization approach can be use to
obtain the optimal rate adaptation strategy. A suboptimal rate
adaptation strategy is developed for sequential random codes.
Numerical results show that significant performance gains are
achievable with the proposed adaptation scheme.

I. INTRODUCTION

The block-fading channel is a mathematical model for
delay-constrained transmission over slowly varying fading
channels. In this model, each codeword is transmitted over a
finite number of blocks, and each block experiences a constant
fading realization [1]. Even when each block consists of an
infinite number of channel uses, the channel is non-ergodic.
Consequently the transmission rate supported by the channel
is a random variable, depending on the channel realizations.
Performance measures of the channel include the outage
probability and the throughput. The outage probability is the
probability that the transmission rate is not supported by the
channel, while throughput is the average information rate that
can be successfully conveyed over the channel. With channel
state information at the transmitter (CSIT), power and/or rate
adaptive transmission techniques can be employed to optimize
the performance, see for example [2]–[5]. For systems with
full CSIT, water-filling or mercury/water filling power alloca-
tion is optimal [3], [6]. For systems with causal CSIT where
only CSI up to and including the current block is available,
the optimal power allocation strategies are solved in [4] using
the dynamic programming approach. Meanwhile, the optimal
rate adaptation is straightforward: block-wise transmission at
a rate equal to the instantaneous capacity.

For the more realistic finite block length case, rate adapta-
tion is not as trivial. In this scenario, there exists a tradeoff
between transmission rate/throughput, block length and error
probability [7], [8]. For systems with full CSIT, a suitable
backoff from capacity is needed to achieve the error probabil-
ity requirement [8]. When CSIT is causally available, a trivial
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scheme is block-wise adaptive transmission. However, block-
wise transmission uses codes with smaller block length than
the delay constraint, and thus larger backoff from capacity
is necessary [7]. Optimal rate adaptation requires a coding
scheme whose code rate can be adapted causally across the
fading blocks. One such attempt is introduced in [9] for
automatic-repeat-request systems with delayed CSIT; however,
the optimal rate adaptation strategy was not studied.

In this paper, we study rate-adaptive transmission for finite-
length block-fading channels with causal CSIT. We propose
a sequential coding scheme for causal rate adaptation, which
generalizes the code with expandable message space intro-
duced in [9]. We propose a dynamic programming approach
to optimize the system throughput, subject to an average error
probability constraint. A suboptimal optimization approach is
introduced for the sequential random coding scheme. Numer-
ical results show that the proposed adaptation rule provides
significant gains compared to non-adaptive transmission and
the trivial block-wise adaptive transmission scheme. Further-
more, the performance of the suboptimal scheme is close to the
upper bound benchmark achieved by systems with full CSIT.

Unless otherwise defined, the following notational rules
are used. Lowercase and uppercase correspondingly denote
deterministic and random variables. A bold symbol x denotes
a vector or a matrix, whose dimension can be deduced from
the context. xi denotes a vector with the first i elements of x,
while xj

i denotes the concatenation xi . . .xj .

II. SYSTEM MODEL

Consider transmission over a channel with B fading blocks,
where each block consists of n channel uses. The input-output
transition probabilities of block b ∈ {1, . . . , B} are

P[Yb = yb|Xb = xb, Sb = sb] =

n∏
i=1

Qsb(yb,i|xb,i), (1)

where Xb = [xb,1, . . . , xb,n] ∈ Xn and Yb = [yb,1, . . . , yb,n]
∈ Yn are the transmit and receive signals in block b respec-
tively. The channel state sb is assumed to be causally known
at the transmitter; for example, sb � [s1, . . . , sb] is available
at the transmitter at the start of block b. The channel state
sequence SB = [S1, . . . , SB] is i.i.d. on S according to the
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law P[Sb = sb] = fS(s). For a given channel realization sB ,
the channel experienced by each codeword is

P
[
YB

1 = yB
1 |XB

1 = xB
1 ,S = sB

]
=

B∏
b=1

P[Yb = yb|Xb = xb, Sb = sb]. (2)

The transmitter is required to reliably communicate the output
of a uniform Bernoulli source W = W1,W2, . . . to the
receiver. In the following, we propose a rate-adaptive scheme
that exploits causal CSIT to maximize throughput.

A. Encoding and Decoding

Causal rate adaptation can be realized by a transmission
scheme consisting of the following mappings:

• A rate-adaptation strategy � = [�1, �2, . . . , �B], where

�b : Sb → L ⊆ N, (3)

where L is the set of strategies in each block.
• A sequential encoder for each sb ∈ SB and b = 1, . . . , B,

fsb : {0, 1}Lb(s
b) → Xn (4)

where Lb(s
b) �

∑b
i=1 �i(s

i).
• A decoder for each channel realization sB ∈ SB ,

gsB : YBn × SB → {0, 1}LB(sB) (5)

The transmitter sends X1 � fS1(U1) with n channel uses
in block 1, where U1 � (W1,W2, . . . ,W�1(S1)) denotes the
first �1(S

1) bits of the sequence W. In block 2, the trans-
mitter sends X2 � fS2(U1,U2) with n channel uses, where
U2 � (W�1(S1)+1, . . . ,W�1(S1)+�2(S2)) denotes the next �2
bits from W. The process repeats: in block b = 2, 3, . . . , B,
the transmitter sends Xb � fSb(U1,U2, . . . ,Ub), where

Ub � (WLb−1+1,WLb−1+2, . . . ,WLb
).

The key idea here is that the transmitter adapts the number �b
of “fresh” bits it encodes in block b, depending on the current
and previous channel states S1, S2, . . . , Sb.

At the end of block B, the receiver estimates the first LB

bits of W via
ÛB

1 � gSB (YB
1 ,SB), (6)

where ÛB
1 denotes the receiver’s estimate of (U1, . . . ,UB).

B. Performance Metrics

The performance of the above scheme is characterised, in
part, by the average block error probability

Pe(�) � P
[
ÛB

1 �= UB
1

]
(7)

and the average throughput

T (�) � 1

nB
ESB

[
LB(S

B)
(
1− Pe(S

B , �(SB))
)]

, (8)

where

Pe(s
B, �(sB)) � P

[
ÛB

1 �= UB
1 |SB = sB

]
(9)

denotes the average probability of error conditioned on a given
state sequence sB ∈ SB . The throughput T (�) is the average
information rate (in bits per channel use) that is successfully
conveyed over the channel. We are interested in finding the
optimal adaptive strategy �� that maximizes the throughput
T (�), subject to an average error probability constraint:{

Maximize T (�)

Subject to Pe(�) ≤ ε.
(10)

To solve (10) we form the Lagrangian

M(λ, �) � ESB

[
LB(S

B)(1− Pe(S
B , �(sB)))

−λPe(S
B , �(SB))

]
(11)

and denote
��λ � arg max

�
M(λ, �). (12)

Following [10, Proposition 3.3.4], a solution to (10) is ��λ�

where λ� ≥ 0 is chosen such that

λ�(Pe(�
�
λ�)− ε) = 0. (13)

Therefore solving (10) reduces to searching for a λ� sat-
isfying (13). This requires efficiently solving (12) for any
λ ≥ 0. In the sequel, we propose the dynamic programming
approach to solve (12). Dependencies on λ are made implicit
for notational convenience.

C. Dynamic optimization approach

For a given λ, (12) can be solved sequentially using dynamic
programming. Specifically, since the rate-adaptation strategy
� causally depends on the channel states, maximizing (11) is
equivalent to (14) at the top of the next page.

Defining (�b, sb) as the state of the transmission at the end
of block b, the optimal �̂b+1 given each (�b, sb) and sb+1 can
be solved sequentially for b = B − 1, . . . , 0 as

�̂b+1(�
b, sb+1) = arg max

�b+1

{
M̂b+1(�

b+1, sb+1))
}
, (15)

where

M̂B(�
B, sB) = (1 − Pe(s

B, �))

B∑
b=1

�b − λPe(s
B, �) (16)

M̂b(�
b, sb) =

∑
sb+1

fS(sb+1)M̂b+1([�
b �̂b+1], s

b+1). (17)

Then the optimal strategy is

��b(s
b) = �̂b(�

�b−1
(sb−1), sb) (18)

for b = 1, . . . , B where ��
b
(sb) � [��1(s

1) . . . ��b(s
b)].

The dynamic programming approach reduces the multi-
variate optimization problem in (12) to a series of one-
dimensional searches. However, the size of the state space
SbLb, and thus the number of searches in block b, grows
as (|S||L|)b. The complexity can be prohibitive even for
relatively small B. In the next section, we consider optimising
the rate-adaptation strategy � for sequential random codes and
illustrate a technique to reduce the complexity of solving (12).
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max
�

M(λ, �) =
∑
s1

fS(s1)max
�1


∑

s2

fS(s2)max
�2


. . .

∑
sB

fS(sB)max
�B

((
B∑

b=1

�b

)
(1− Pe(s

B, �))− λPe(s
B , �)

)
. . .




 . (14)

III. RATE ADAPTATION FOR SEQUENTIAL RANDOM CODES

A. Sequential Random Codes

We concentrate on the achievable performance of the pro-
posed rate adaptation scheme via rate-adaptive random sequen-
tial tree codes. For achievable results, we focus on random
sequential codes [11] with the encoding function fb at block
b defined as

fb : {0, 1}b×�m → Xn (19)

fb(U
b
1) = Xb, (20)

where the components of Xb are i.i.d. drawn from a distri-
bution QX(x) and �m is the maximum number of new bits
that can be included in block b. Without loss of generality we
can choose �m = �nBmaxs∈S I(Qs)�, where I(Qs) is the
input-output mutual information (in bits per channel use) of a
channel with transition probabilities Qs and input distribution
QX [12].

To realize a rate-adaptation strategy � the transmitter forms
Ub = [Ub, 0, . . . , 0] ∈ {0, 1}�m at block b, where Ub is
defined in Section II-A, and sends Xb = fb(U

b
1). For a

channel realisation sB and received signal yB , the maximum
likelihood decoder outputs1

ûB = arg max
ub∈{[u,0,...,0]:u∈{0,1}�b(s

b)}
b=1,...,B

P
[
yB |f1(u1), . . . , fB(u

B
1 ), s

B
]
.

and recovers an estimate ûB of UB .
Note that the mechanism of constructing the code (random

coding) does not depend on the channel state, while the
message set and the transmitted codewords depend on the
channel realization through the rate-adaptation strategy. Thus,
we have partly separated the code design from the rate-
adaptation strategy. This approach is significantly simpler than
optimising the general scheme described in Section II-A.

Given a channel realization sB and a transmission strategy
�, the error performance of the sequential random codes can
be bounded as follows [11]

Pe(s
B, �) = P

[
Û

B

1 �= UB
1 |SB = sB

]
≤

B∑
b=1

P
[
Ûb �= Ub|Û

b−1

1 = Ub−1
1 ,SB = sB

]
�

B∑
b=1

Pb(s
B , �). (21)

For two messages UB
1 and Û

B

1 such that Ub−1
1 = Û

b−1

1 and
Ub �= Ûb, the corresponding codewords satisfies Xb−1

1 =

1When multiple messages achieve the maximum, the decoder randomly
chooses one of the messages.

X̂b−1
1 while XB

b and X̂B
b are mutually independent. Therefore

the error probability Pb(s
B, �(sB)) is the same as the error

probability of transmission over a (B − b+ 1)–block channel
with states [sb, . . . , sB] using random block codes with rate∑B

i=b �i
(B−b+1)n . Numerous bounds on the achievable performance
of random block codes exist in the literature (see [7], [13], [14]
and references therein). The results in [13], [14] are readily
extended to our case as follows.

Lemma 1 (Saddle-point approximation [14]): The error
probability Pb(s

B, �) can be approximated by

Pb(s
B, �) ≈ α(c1, c2) exp

(
−n

B∑
i=b

E0(si, ρ̂)− ρ̂�i

)
, (22)

where

E0(si, ρ) = − ln
∑
y∈Y

(∑
x∈X

QX(x)Qsi(y|x)
1

1+ρ

)1+ρ

(23)

ρ̂ = arg max
ρ∈[0,1]

{
n

B∑
i=b

E0(si, ρ)− ρ�i

}

c1 =

B∑
i=b

�i − n
∂E0(si, ρ)

∂ρ

∣∣∣∣
ρ=ρ̂

c2 = −n

B∑
i=b

∂2E0(si, ρ)

∂ρ2

∣∣∣∣
ρ=ρ̂

α(c1, c2) =

∫ ∞

0

e−ρ̂zφ(z; c1, c2)dz+∫ 0

−∞
e(1−ρ̂)zφ(z; c1, c2)dz

and φ(z;µ, σ2) is the pdf of a Gaussian random variable with
mean µ and variance σ2.

Lemma 1 gives a tight approximation for the error proba-
bility Pb(s

B, �) for a wide range of channel states, strategies �
and block-length n. Meanwhile, letting α(c1, c2) = 1 in (22)
returns the simpler Gallager’s upper bound on error probability
[13]. Gallager’s bound is not tight when the transmission
rate is close to capacity. We will exploit the simplicity of
Gallager’s bound to solve the optimziation problem in (10),
and use Lemma 1 to evaluate the achievable performance of
the obtained strategy.

B. Dynamic Programming with Reduced State Space

Directly exploiting the bounds (21) and (22) in solving (10)
requires the same complexity as the general case. We first
propose an approximation for the error probability Pe(s

B, �),
aiming at reducing the complexity of solving (11).

Following (21), (22) with α(c1, c2) = 1, we can write

Pe(s
B, �)
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≤
B∑

b=1

min
ρi∈[0,1]

exp

(
−n

B∑
i=b

E0(si, ρi) + ρi�i

)

≤ B max
b∈{1,...,B}

exp

(
− max

ρ∈[0,1]

{
n

B∑
i=b

E0(si, ρ)− ρ�i

})
(a)

≤ B exp

(
−max

j∈J
min

b∈{1,...,B}

{
n

B∑
i=b

E0(si, ρj)− ρj�i

})
� BP̃e(s

B, �) (24)

for some J � {1, . . . , |J |} and ρj ∈ [0, 1]. In (a) we have
simplified the maximization over ρ ∈ [0, 1] to maximizing over
j ∈ J for tractability. Numerical results show that J = {1, 2}
is sufficient to obtain good adaptation strategies. A suitable
choice of {ρ1, . . . , ρ|J |} will depend on parameters such as
the fading distribution fS(s), the block length n and the target
average error probability ε.

For b ∈ {1, . . . , B} and j ∈ J , define

ab,j = min
k∈{1,...,b}

{
b∑

i=k

nE0(si, ρj)− ρj�i

}
. (25)

We can then easily verify that

ab+1,j = min{ab,j, 0}+ nE0(sb+1, ρj)− ρj�b+1. (26)

Therefore, substituting P̃e(s
B, �) for Pe(s

B, �), the Lagragian
function in (11) is approximated by

M̃(λ, �) � ESB

[
LB(S

B)

(
1− exp

(
−max

j∈J
aB,j

))
−λ exp

(
−max

j∈J
aB,j

)]
Similar to the approach in Section II-C, define the state
of the transmission at the end of block b as ab =
(ab,0, ab,1, . . . , ab,|J |) ∈ R|J |+1 where ab,0 �

∑b
i=1 �i and

ab,j , j ∈ J are defined as in (25). Then we can sequentially
solve for the optimal �̃b+1 given each state ab as

�̃b+1(ab, sb+1) = arg max
�b+1

{
M̃b+1(ab+1(ab, sb+1, �b+1))

}
where

M̃B(aB) � ab,0

(
1− exp

(
−max

j∈J
aB,j

))
− λ exp

(
−max

j∈J
aB,j

)
(27)

M̃b(ab) �
∑
sb+1

fS(sb+1)M̃b+1(ab+1(ab, sb+1, �̃b+1)) (28)

and ab+1(ab, sb+1, �b+1) is given by

ab+1,0 = ab,0 + �b+1,

ab+1,j = min {ab,j , 0}+ E0(sb+1, ρj)− ρj�b+1, j ∈ J
By reasonably bracketing and quantizing ab, the state space

grows polynomially with B and linearly with |L|. The subop-
timal strategy is significantly simpler than the optimal one in
Section II-C, especially when either B or |L| grows large.

The suboptimal solution for (11) is therefore

a0 = (0, 0, 0) (29)

�̃�b(s
b) = �̃b−1(a

�
b−1(s

b−1), sb) (30)

a�b (s
b) = ab(a

�
b−1(s

b−1), sb, �̃
�
b(s

b)). (31)

IV. NUMERICAL RESULTS

For benchmarking purposes, we consider three trivial adap-
tation schemes:

• Full non-causal CSIT: the channel states of all B blocks
are available prior to transmission. The optimal adapta-
tion strategy is obtained by solving

Maximize
∑
sB

fS(s
B)

(
B∑

�=1

�b(s
B)

)
(1− Pe(s

B, �))

− λ�Pe(s
B, �) (32)

where λ� satisfies (13). It can be verified that the optimal
solution satisfies �b(s

B) = 0, b = 2, . . . , B. Thus for
each λ > 0, the optimal solution is �(��1(s

B)) where
�(�1) � [�1, 0, . . . , 0] and ��1(s

B) solves

max
�1

fS(s
B)�1(1− Pe(s

B, �(�1))− λPe(s
B, �(�1))

The throughput for non-causal CSIT serves as an upper
bound on the performance of the proposed scheme.

• Block-wise coding: A straightforward and trivial adapta-
tion rule is to transmit independent codewords for each
fading block. The system can be treated as a special
case of the proposed scheme for B = 1. The problem
is much simpler than the proposed scheme, however the
significantly shorter code leads to much worse throughput
error probability tradeoff [7].

• Non adaptive transmission: ignore the channel state in-
formation and choose the transmission rule �(��1) where

��1 = arg max
�

∑
sB

fS(s
B)�1(1− Pe(s

B, �(�1))

− λ�Pe(s
B, �(�1)) (33)

and λ� satisfies (13).
Recall that the suboptimal causal rate adaptation scheme is
solved using the Gallager’s bound (setting α(c1, c2) = 1 in
(22)). However we use Lemma 1 to derive the benchmarking
schemes as well as evaluating the performance of all strate-
gies.

To illustrate the performance of the proposed scheme,
we consider a binary-symmetric block-fading channel, where
block b ∈ {1, . . . , B} is a BSC with crossover probability sb.
Specifically, X = Y = {0, 1} and the transition probability in
(1) can be written as

Qsb(yb,i|xb,i) =

{
1− sb, yb,i = xb,i

sb, otherwise.
(34)

We consider a block-fading channel with B = 3 and the
following fading distribution

P[S = 0.1/3] = P[S = 0.2/3] = P[S = 0.3/3] = 1/3. (35)
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The ergodic capacity of the channel is 0.656 bits per channel
use. We consider sequential random codes, as described in
Section III-A and the causal adaptation strategies are obtained
from the algorithm in Section III-B with J = {1, 2}.
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10-6
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e
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Throughput (bits/cu)

non-adaptive
full-CSIT
blockwise coding
causal CSIT

Ergodic

Fig. 1. Throughput versus error probability achieved by various transmission
rules over a binary symmetric channel with fading distribution in (35). The
channel has B = 3 blocks with block length n = 50.

Figure 1 illustrates the performance of various transmission
schemes for block length n = 50. The causal adaptive
rule is obtained by choosing (ρ1, ρ2) = (1, 0.5). Despite
that only causal CSIT is available, the proposed suboptimal
scheme operates quite close to the adaptation rule with full
CSIT. Compared to non-adaptive transmission, the proposed
adaptation rule for causal CSIT provides a gain of 0.05
bits per channel use at error probability 10−4. In contrast,
the adaptation rule with block-wise coding performs worse
than non-adaptive transmission. For this particular setting,
especially the small block length, the gain from adaptation
is insignificant compared to the penalty due to short codes.

The performances of the transmission schemes for block-
length n = 103 are illustrated in Figure 2. The causal adaptive
rule is obtained by choosing (ρ1, ρ2) = (0.15, 0.05). In this
case, the throughputs achieved by all transmission scheme are
closer to the ergodic capacity compared to the case n = 50,
as expected. Note that the performance of all schemes, except
for the non-adaptive one, should approach the ergodic capacity
when n → ∞. The penalty of using block-wise coding
is not as severe as in the previous case. Thus the block-
wise adaptive transmission achieve significant gains compared
to non-adaptive transmission. The block-wise scheme is still
substantially inferior to the proposed scheme, which performs
close to the full CSIT benchmark.

V. CONCLUSIONS

In this paper we have proposed a rate adaptive coding
scheme for the block-fading channel with causal CSIT. We
aim at maximizing the throughput subject to an average error
probability constraint. The optimization problem can be solved

0.4 0.45 0.5 0.55 0.6 0.65 0.7
10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

E
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e
]

Throughput (bits/cu)

non-adaptive
full-CSIT
blockwise coding
causal CSIT

Ergodic

Fig. 2. Throughput versus error probability achieved by various transmission
rules over a binary symmetric channel with fading distribution in (35). The
channel has B = 3 blocks with block length n = 1000.

via dynamic programming. A suboptimal scheme has been
derived for a sequential random coding scheme. The pro-
posed scheme achieves significant throughput gains compared
to existing trivial adaptation schemes. This motivates future
development of practical causal rate adaptive codes, as well as
developing strategies for rate adaptation with practical codes.
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