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Abstract—The load distribution strategy in cooperative manipulation

tasks allocates suitable force and torque setpoints to an ensemble of
manipulators in order to implement a desired action on the manipu-

lated object. Due to the manipulator redundancy, the load distribution

computed by means of a generalized inverse of the grasp matrix is not

uniquely determined. Controversial results on the non-squeezing property
of specific load distributions exist in literature. In this article we propose

a new paradigm for the analysis of internal wrenches based on the

kinematic constraints imposed to the manipulator ensemble. We unify
previous results by showing that there exists no unique non-squeezing

load distribution and illustrate the consequences of our findings by

means of several examples. In particular, the presented results provide a

new perspective on the decomposition of interaction forces into internal
and external components as required for cooperative multi-manipulator

control schemes.

Index Terms—Cooperative Manipulators, Load distribution, Internal

stress, Grasping, Kinematics.

I. INTRODUCTION

In cooperative manipulation tasks several manipulators handle

a common object. Compared to the single manipulator case the

task capacity in terms of payload and dexterity is significantly

increased. Application domains range from manufacturing, construc-

tion, agriculture and forestry via service robotics to search and rescue

robotics. The benefits come at the cost of an increased complexity

for coordinating the manipulator ensemble. In order to transfer the

object from an initial to a final configuration, the manipulators need

to apply suitable forces and torques to the manipulated object. Due to

multiple manipulators participating in the cooperative task, in general

there exists an infinite number of individual end-effector forces and

torques which result in the same desired force/torque applied to the

object. A similar challenge arises in the context of grasping with

multi-fingered robotic hands. The intrinsic input redundancy needs

to be resolved by the load distribution strategy.

The load distribution problem in robotic manipulation tasks can

be classified as a control allocation problem for an over-actuated

mechanical systems, see e.g. [1] for a recent survey. The load

distribution in manipulation tasks, however, is a particular input

allocation problem, in which the redundant degrees of freedom for

choosing the input can be given a meaningful interpretation in terms

of motion-inducing components and internal wrenches applied to

the object. A typical control goal in robotic manipulation tasks is

the decoupled control of internal and external force/torque compo-

nents [2]–[4]. This topic has received quite some attention in the

robotics literature. One of the first works addressing force control in a

multi-manipulator setup is [5], resolving the load distribution problem

by means of a linearly constrained quadratic optimization routine. A

scalar weighting factor is introduced in order to balance between

assigned end-effector forces and torques, resulting in a weighted

pseudoinverse for the load distribution problem. The authors of [6]

claim that only a specific non-squeezing pseudoinverse avoids internal

loading of the object. This particular load distribution is subsequently

used for the analysis of interaction forces, i.e. the decomposition of

manipulator forces/torques into internal and external components [7].
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Recently, the authors of [8] challenged the result for the non-

squeezing pseudoinverse in [6] and proposed to use the Moore-

Penrose inverse instead. A common interpretation of internal loading

is that the difference between two end effector forces projected onto

their geometric connecting line does not vanish [7], [9]. However,

it is not clear how to extend this concept in a meaningful way to

describe internal torques. Beyond the scope of cooperative multi-

robot manipulation, internal forces play a central role in the context of

manipulation with multi-fingered robot hands [10]. A geometrically

inspired definition of internal forces is presented in [11], trying to

resolve inconsistencies occurring with the use of the pseudoinverse.

An alternative characterization of internal forces is presented in [12]

wherein the ensemble of manipulators is approximated as an ar-

ticulated mechanism. Internal forces are interpreted as the actuator

wrenches required to lock this mechanism. However, the influence of

the applied end-effector forces on the resulting torque is neglected. In

summary, the complete characterization of internal forces and torques

is still an open issue as well as suitable load distribution strategies

that avoid internal wrenches applied to the object. The solution

to the problem is essential for multi-robot manipulation. The need

is particularly obvious in case of heterogeneous manipulators with

different payload capacities, where the freedom to select a capacity

compliant load distribution is quintessential to solve the task.

In this article we present a novel approach to the load distribution

in cooperative manipulation tasks and we provide a physically

motivated characterization of internal wrenches. We characterize

internal loading as violation of the kinematic constraints imposed

to the manipulator ensemble and derive an analytical expression for

all non-squeezing load distributions. Based on our approach, we

can show that the proposed load distribution in [6] is actually not

free of internal wrenches and that the load distribution strategies

presented in [8] and [12] are special cases among the set of all non-

squeezing load distributions. Moreover, we show that heterogeneous

load distributions do not necessarily induce internal wrenches as

postulated in previous works. Our results on the grasp matrix inverse

apply readily to the computation of internal forces in multi-fingered

manipulation and grasp force optimization.

The remainder of this article is organized as follows. Preliminaries

on rigid body kinematics and statics are presented in Section II. In

Section III we present our main result on load distribution schemes

free of internal wrenches. The results are illustrated and discussed in

Section IV. Conclusions and directions for future work are presented

in Section V.

II. PRELIMINARIES

The manipulated object is assumed to be rigid and the end-effectors

are assumed to be rigidly connected to the object. The kinematic

quantities are depicted in Fig. 1.
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Fig. 1. Kinematic quantities relevant to the multi-robot manipulation task.

The pose of the i-th end-effector is denoted xi and is composed of

a position and orientation component, i.e. xi =
(

pTi , q
T
i

)T
wherein
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pi ∈ R
3 is the translation vector pointing to the i-th end-effector

and qi ∈ Spin(3) is a unit quaternion representing the orientation of

this end-effector. Throughout this paper all quantities are expressed

w.r.t. the (inertial) world frame {w} whenever the reference frame

is not explicitly indicated by a leading superscript. Without loss

of generality we assume in the sequel that the body-fixed object

frame {o} is located in the object’s center of mass. This assumption is

non-restrictive since the choice of this frame is a priori arbitrary and it

can thus conveniently be translated. Note that no assumption is made

about the actual object mass or inertia nor about its physical mass

distribution. S(·) denotes the skew-symmetric matrix performing the

cross-product operation, i.e. a × b = S(a) · b. I3 and 03 are the

3 × 3 identity and zero matrix respectively. The quaternion product

is expressed by ∗ and R(q) ∈ SO(3) is the rotation matrix associated

to the unit quaternion q. The matrix P+ denotes a generalized inverse

of the matrix P and P † the Moore-Penrose inverse.

A. Rigid body kinematics

1) Translational constraint: The rigidity condition constrains the

relative displacement of the object and the attached end effectors

ri ∈ R
3 (cf. Fig. 1), i.e. ori = const.. This means that the

relative position of the manipulator with respect to the object

in the body-fixed coordinate system {o} remains constant. Using

this fact one may express the position of the i-th end-effector as

pi = po +
w Ro(qo)

ori with the rotation matrix wRo depending on

the object orientation qo. Differentiation of pi in the inertial frame

{w} yields ṗi = ṗo + ωo × ri. Differentiating ṗi again leads to

p̈i = p̈o + ω̇o × ri + ωo × (ωo × ri). (1)

2) Rotational constraint: The relative orientation between object

and manipulators is constrained, too. The use of quaternions for the

parameterization of SO(3) leads to the following result.

Lemma 1. The kinematic constraint oδqi = const., enforcing a

constant relative orientation between two bodies {o} and {i}, is

equivalent to the bodies having identical angular velocities ωo = ωi.

Proof. See Appendix A.

Differentiation of ωo w.r.t. time leads to

ω̇o = ω̇i (2)

imposing a constraint on the admissible angular acceleration of the

object and the end-effector.

B. Rigid body statics

In the sequel we refer to the general case in which each manipulator

is able to apply forces and torques to the manipulated object.

The force and torque applied by the i-th end-effector are denoted

fi, ti ∈ R
3 and concatenated to the wrench denoted hi =

(

fT
i , tTi

)T
.

The stacked vector containing all end-effector wrenches is defined

as h = (hT
1 , . . . , h

T
N )T . The effective wrench acting on the origin of

the object frame {o} is denoted ho and is unambiguously determined

given the manipulator wrenches hi according to

ho = G







h1

...

hN






, (3)

wherein the grasp matrix G [13, p. 705] depends explicitly on the

kinematic parameters ri as

G =

[

I3 03 · · · I3 03
S(r1) I3 · · · S(rN) I3

]

. (4)

III. LOAD DISTRIBUTION

Given a desired wrench to be applied to the object hd
o, the set of

potential desired end effector wrenches hd
i realizing hd

o is not unique.

One approach for allocating the individual manipulator load is the use

of a generalized inverse of the grasp matrix G to resolve the input

redundancy inherent to (3). Thus one has







hd
1

.

..

hd
N






= G

+
h
d
o. (5)

In contrast to previous results on load allocation by means of a

generalized inverse G+ (and specifically the choice of a suitable

metric in order to avoid internal wrenches), we present a more general

concept of internal wrenches yielding novel degrees of freedom for

the choice of a load distribution. The authors of [6] suggest that

there exists a unique wrench distribution based on a particular metric

which does not induce internal wrenches. Recently this result was

challenged by the authors of [8] presenting the Moore-Penrose inverse

G† as an admissible load allocation strategy. In the sequel we show

that there is no unique solution to the load distribution problem in (5)

avoiding internal wrenches.

A. Characterization of internal wrenches

This section deals with the analysis of internal wrenches which

were previously defined in [6] as the components of the wrench

vector h lying in the null space of the grasp matrix G. We propose a

more general formulation of internal wrenches through the following

definition.

Definition 1. Internal wrenches are end-effector wrenches for which

the total virtual work is zero for any virtual displacement of the end-

effectors satisfying the kinematic constraints.

This definition has some important consequences. One immediate

observation is that internal wrenches do no work to the common

object. That is, internal wrenches according to Definition 1 are not

motion-inducing and are thus in line with the nomenclature in [6].

Note that in particular any wrench belonging to the null space

of the grasp matrix G yields a total virtual work of zero for an

arbitrary virtual displacement compatible with the constraints. The

most important difference of Definition 1 compared to previous

definitions is that it is based on the kinematic constraints between

the end-effectors and hence independent of the null space of G.

Moreover, Definition 1 is consistent with the concept of constraining

wrenches in the context of constrained multi-body systems [14]. It

is well-known from Lagrangian mechanics that the total virtual work

done by the constraining wrenches is zero. Internal wrenches can thus

be interpreted as wrenches ensuring compliance of the manipulator

motion to the imposed constraints. This idea is illustrated in Fig. 2.
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Fig. 2. Illustration of internal wrenches in a multi-robot manipulation task.
The actual motion of the manipulators ẍ is the superposition of their desired
motion ẍd and the interaction in terms of the constraining wrenches hc.

The desired end-effector accelerations ẍd
i are usually avail-

able when employing common control schemes as e.g. computed
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torque [13, p. 143]. The set of the ẍd
i do not necessarily have to

respect the kinematic constraints as depicted on the right-hand side

of Fig. 2. However, the constraining wrenches hc
i render the actual

end-effector accelerations ẍi compatible to the imposed constraints

as depicted on the left-hand side of Fig. 2. This observation links the

computation of internal wrenches closely to the kinematics of the

cooperative manipulator system.

In order to quantify the constraining wrenches, we reformulate the

kinematic constraints in (1) and (2) in matrix form as

Aẍ = b (6)

by letting ẍ = (ẍT
1 , . . . , ẍ

T
N)T , the matrix A ∈ R

6(N−1)×6N

A =















−I3 S(∆r21) I3 03
03 −I3 03 I3
...

...
. . .

−I3 S(∆rN1) I3 03
03 −I3 03 I3















, (7)

the vector b ∈ R
6(N−1) incorporating the centripetal terms

b = ([S(ω2)
2∆r21]

T , 01×3, . . . , [S(ωN )2∆rN1)]
T , 01×3)

T and

the relative grasp position ∆rji := rj − ri. The constraining

wrenches hc, characterizing internal wrenches in the sense of

Definition 1, result from a projection of the desired end-effector

accelerations ẍd onto the kinematic constraints [14] according to

h
c = M

1

2 (AM
− 1

2 )†(b− Aẍ
d) (8)

with the matrix M = diag(m1I3, J1, . . . ,mNI3, JN ) incorporating

the apparent inertia of the robotic end-effectors in task-space. In fact,

the kinematic error e = b−Aẍd indicates if the desired end-effector

accelerations ẍd violate the imposed kinematic constraint (6). More-

over, the constraining wrench hc vanishes whenever the acceleration

of the manipulators is compatible to the kinematic constraints.

Previously, the computation of internal wrenches was performed

via a decomposition of the manipulator wrenches [7] according to

h = hext + hint into an external (motion-inducing) component hext

and an internal component hint without incorporating the end-effector

kinematics. This approach depends implicitly on a specific load

distribution for computing the generalized inverse. This becomes

clear as the external/internal components are determined via

h
ext = G

+
Gh and h

int = (I6N×6N −G
+
G)h, (9)

which is based on the assumption that there exists a unique non-

squeezing wrench distribution: firstly the resulting object wrench

ho is computed as presented in (3) given the manipulator wrenches

h. Subsequently, the external wrenches are defined as the wrenches

resulting from a particular load distribution as e.g. G+ = G† in [8]

or G+ = G+
∆ in [6] with

G
+
∆ =

1

N















I3 03
S(r1)

T I3
..
.

..

.

I3 03
S(rN )T I3















. (10)

Remark: In continuum mechanics, internal stress is defined as

the contact force between neighboring particles inside a solid body.

In the scope of this article on cooperating manipulators we are

not interested in the actual stress distribution inside the commonly

manipulated object - internal stress occurs even when manipulating

a rigid object with a single end-effector and can thus not be avoided.

B. Load distributions free of internal wrenches

With Definition 1 and its consequences as discussed in the previous

subsection, we are ready to state our main result.

Theorem 1. The load distribution given by

G
+
M =















m∗
1[m

∗
o]

−1I3 m∗
1[J

∗
o ]

−1S(r1)
T

03 J∗
1 [J

∗
o ]

−1

...
...

m∗
N [m∗

o]
−1I3 m∗

N [J∗
o ]

−1S(rN)T

03 J∗
N [J∗

o ]
−1















(11)

for some positive-definite weighting coefficients m∗
i ∈ R and J∗

i ∈
R

3×3 with

m
∗
o =

∑

i

m
∗
i (12)

J
∗
o =

∑

i

J
∗
i +

∑

i

S(ri)m
∗
iS(ri)

T
, (13)

and

∑

i

rim
∗
i = 03×1 (14)

is free of internal wrenches applied to the object.

Proof. The proof is based on a particular parameterization of the

generalized inverse of the grasp matrix. This parameterization appears

naturally when considering the dynamics of a virtual end-effector

system subject to the kinematic constraints and allows to give these

parameters the meaning of virtual masses and inertias. With hd
o in

hand, one readily computes the resulting virtual acceleration ẍ∗
o which

the object would experience if it had the mass m∗
o and inertia J∗

o

under the assumption that only the desired wrench hd
o was acting on

the object. This is done by inverting

[

m∗
oI3 03
03 J∗

o

]

ẍ
∗
o = h

d
o. (15)

With this virtual object acceleration ẍ∗
o we can conclude on the

(virtual) acceleration of the attached end-effectors ẍ∗
i by employing

the kinematic constraints (1) and (2). By assigning now virtual

inertias m∗
i and J∗

i to the i-th end-effector, it is straightforward to

compute the required wrench hd
i inducing the virtual end-effector

acceleration ẍ∗
i according to

h
d
i =

[

m∗
i I3 03
03 J∗

i

]

ẍ
∗
i . (16)

So far, all occurring virtual inertias and thus the individual manipu-

lator wrenches hd
i are undetermined. However, any admissible load

distribution should satisfy (3), i.e. hd
o = Ghd being equivalent to

fd
o =

∑

i
fd
i and tdo =

∑

i
tdi +

∑

i
ri × fd

i . Substituting (15) and

(16) for the force components and employing (1) leads to

m
∗
op̈

∗
o =

∑

i

m
∗
i [p̈∗o + ω̇

∗
o × ri + ω

∗
o × (ω∗

o × ri)] . (17)

Comparing the coefficients of p̈∗o immediately yields m∗
o =

∑

i
m∗

i .

Since ω̇∗
o (and ω∗

o ) can take arbitrary values, the virtual masses need

to respect
∑

i rim
∗
i = 03×1 in order to cancel the terms involving

ω̇∗
o and ω∗

o in (17). Considering the torque components in (3) and

again substituting (15) and (16) combined with (1) and (2) one has

J
∗
o ω̇

∗
o =

∑

i

J
∗
i ω̇

∗
o+

∑

i

ri×m
∗
i [p̈

∗
o+ω̇

∗
o×ri+ω

∗
o×(ω∗

o×ri)]. (18)
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Comparing coefficients yields J∗
o =

∑

i J
∗
i +

∑

i S(ri)m
∗
iS(ri)

T

wherein the cross-product is expressed in terms of skew-symmetric

matrices. The term involving p̈∗o on the right-hand side of (18)

vanishes (since
∑

i
rim

∗
i = 03×1) such that only the additional term

∑

i
ri × m∗

i [ω
∗
o × (ω∗

o × ri)] remains. Recall that (15) determines

solely a virtual object acceleration due to hd
o at a specific time instant

but no information about the object’s virtual velocity is available.

In order to obtain an admissible load distribution satisfying (3), a

convenient choice is thus ω∗
o = 03×1 which eliminates the impact of

the virtual product of inertia-like term. Note that this does not mean

that the manipulated (physical) object needs to be at rest since ẍ∗
o is in

general different from the object’s actual acceleration (and velocity).

The choice for the object’s virtual velocity ω∗
o = 03×1 is arbitrary

and simply ensures that at one specific time instant and a given hd
o , an

admissible set of end-effector wrenches hd
i is computed - completely

independent from the actual object dynamics. By construction, the

total virtual work done by the end-effector wrenches is non-zero

for any virtual displacement satisfying the constraints. The load

distribution is thus free of internal wrenches according to Definition 1.

Note that the weighting coefficients m∗
i and J∗

i (and consequently

m∗
o and J∗

o ) do have the meaning of inertial parameters but they are

abstract parameters. They are exclusively used to parameterize the

generalized inverse G+
M for the purpose of load distribution but they

do not characterize the inertial properties of the manipulated object.

A particular choice of these weighting coefficients leads to

Corollary 1. An equal distribution of the manipulator weights

according to m∗
i = 1 and J∗

i = I3 yields

G
† =

1

N















I3 J̄−1S(r1)
T

03 J̄−1

...
...

I3 J̄−1S(rN)T

03 J̄−1















(19)

with J̄ = I3 +
1
N

∑

i
S(ri)S(ri)

T and (19) being equivalent to the

Moore-Penrose inverse of G.

Proof. The Moore-Penrose inverse of a matrix might be interpreted

as the solution to a quadratic programming problem with equality

constraint. Thus the load distribution problem is reformulated as

min
hd

‖hd‖2. (20)

s.t. h
d
o = Gh

d

An explicit, analytical solution to this optimization problem can be

obtained by computing the Schur complement

S̄ := GG
T = N

[

I3 03
03 I3 +

1
N

∑

i
S(ri)S(ri)

T

]

(21)

which is used for computing the desired mapping

h
d = G

T
S̄

−1
h
d
o. (22)

By definition the Moore-Penrose inverse is equivalent to the solution

of the minimization problem (20) such that

G
† = G

T
S̄

−1
. (23)

Straightforward computation of GT S̄−1 reveals equivalence of this

expression to (19).

IV. ILLUSTRATIVE EXAMPLES

The previously presented results admit some remarkable insights

which will be discussed by means of the subsequent examples.

A. Non-squeezing heterogeneous load distribution

Consider the one-dimensional multi-robot manipulation example

depicted in Fig. 3, wherein two manipulators cooperatively move an

object in the horizontal direction.

m∗
1

b

fd
o = 10N

m∗
2

3N 7N

Fig. 3. Two cooperating manipulators moving a rigid object in one dimension.

The force distribution indicated at the right-hand side of Fig. 3

results obviously in the desired object force fd
o . The relevant question

in fact is if the load distribution contains internal forces applied to the

object. In contrast to previous results [6]–[8] we argue that in this case

there is no internal wrench applied to the object: Both end-effector

forces contribute entirely to the desired motion of the object and thus

no internal wrench is present. Existing criteria [6], [8] for the analysis

of internal wrenches yield an internal force component of ±2N for

the force distribution in Fig. 3. This is due to the fact that an equal

distribution of manipulator forces is assumed implicitly by using G+
∆

or G† for the computation of internal and external wrenches in (9).

By letting m∗
1 = 3kg and m∗

2 = 7kg the force distribution indicated

in Fig. 3 is obtained. Note that this one-dimensional example is

equivalent to manipulating a point mass and condition (14) is trivially

met through choosing r1 = r2 = 03×1 for any values of m∗
1 and m∗

2.

By considering an infinitesimal displacement of the end-effectors

along the horizontal axis it becomes obvious that the total virtual

work done is non-zero and the load distribution is free of internal

wrenches. For the example in Fig. 3 this means that no internal

wrenches are applied to the object as long as both manipulators agree

and move with a common desired acceleration ẍd
o while applying

the indicated end-effector forces. This observation is in contrast to

the results in [6], [7] where the difference in the applied force of

two manipulators projected onto their connecting line was used to

conclude on internal loading.

B. Internal wrenches as constraint violation

Consider now the cooperative manipulation setup in Fig. 4.

b

fd
o

b

L
td1 td2

fd
1 fd

2

L

tdo
x

y

Fig. 4. Load distribution example for two cooperating manipulators.

Assume that the depicted manipulators are supposed to compensate

the weight of the object such that only the y-component of the desired

object force is non-zero, i.e. fd
o,y 6= 0. The load distribution based on

G+
∆ in (10) suggests to choose fd

1,y = fd
2,y = 1

2
fd
o,y as one might ex-

pect for an equally distributed load, but also td1,z = −td2,z = −L

2
fd
o,y,

i.e. a non-zero torque for the two manipulators about the z-axis

with opposite sign. We have now an illustrative explanation why the

wrench distribution given by G+
∆ is not free of internal wrenches: the

assigned manipulator torques tend to alter the orientation of each end-

effector in such a way that the relative orientation does not remain

constant and violates the imposed kinematic constraint.
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C. Non-uniqueness of load distributions free of internal wrenches

Consider again the multi-robot manipulation setup depicted in

Fig. 4. This time we would like to implement a torque about the axis

perpendicular to the paper plane, i.e. only tdo,z = τ in the desired

object wrench ho. The load distribution according to the Moore-

Penrose inverse G† in (19) gives for τ = 1Nm and L = 1m

f
d
1,y = −f

d
2,y = −

1

4
N , t

d
1,z = t

d
2,z =

1

4
Nm. (24)

The choice of m∗
i = 4 and J∗

i = I3 for the load distribution by

means of G+
M in (11) gives

f
d
1,y = −f

d
2,y = −

4

10
N , t

d
1,z = t

d
2,z =

1

10
Nm. (25)

The load distribution obtained by the modified, non-unitary weights

yields a wrench distribution which demands a smaller torque to be

applied by the robotic end-effectors but leads to an equivalent object

wrench. The ratio between the resulting inertial parameters m∗
o and

J∗
o in (12) and (13) can be used to tune the amount of the resulting

object torque tdo that is either produced by end-effector forces fd
i

acting over a lever ri, or by direct application of the end-effector

torques tdi . It is worth noticing that the wrench distribution (25)

does not induce internal wrenches at the object. As a limit case for

J∗
i → 03, the desired object torque tdo is exclusively produced by the

desired end-effector forces fd
i and tdi = 03×1.

D. Payload balancing for N > 3 manipulators

Condition (14) in Theorem 1 clearly restricts the choice of the

admissible values for m∗
i . In particular, this means for N = 3

manipulators (and span[r1, r2, r3] = R
3) that there exists only one

specific solution for the load distribution coefficients m∗
i . This fol-

lows immediately by considering (14) as a system of linear equations

in m∗
i , parameterized by ri. However, for N > 3 there exists an

infinite number of admissible load distributions which can be used

for balancing the payload between the manipulators. To this end,

consider a grasp for N = 5 with r1 = (1, 0, 0)T m, r2 = (0, 1, 0)T m,

r3 = (0, 0, 1)T m, r4 = (−1,−1,−1)T m and r5 = (−1, 0, 0)T m.

One particular set of load distribution coefficients satisfying (14) with

m∗
o = 1 is m∗

1 = 0.368, m∗
2 = m∗

3 = m∗
4 = 0.132 and m∗

5 = 0.236.

Another set of coefficients meeting (14) and m∗
o = 1 is m∗

1 = 0.256,

m∗
2 = m∗

3 = m∗
4 = 0.244 and m∗

5 = 0.012. For this second

load distribution the resulting payload for the fifth manipulator is

significantly lower since 0.012 ≪ 0.236.

V. CONCLUSIONS

In this article we present a novel characterization of internal

wrenches applied to an object in multi-robot manipulation tasks.

Based on our physically motivated approach, we are able to decouple

the problem of load distribution and internal wrench analysis for

cooperative manipulation tasks. On one hand, we address the load

distribution problem by providing a parameterized generalized inverse

of the grasp matrix which by construction is free of internal wrenches.

On the other hand, we show that it is in general not possible to

conclude on the presence of internal wrenches by simply analyzing

the manipulator wrenches itself. A consistent analysis of internal

wrenches needs to incorporate the end-effector kinematics, too. The

relevance of our results is highlighted by means of several examples.

The presented approach is demonstrated to be more general than

former wrench decomposition approaches yielding additional degrees

of freedom for the payload distribution in cooperative multi-robot

manipulation tasks and simultaneously providing a fundamentally

new perspective on internal forces in the context of dexterous

manipulation and grasping.

APPENDIX

PROOF OF LEMMA 1

The relative orientation between object and the i-th end-effector

expressed in the object frame is oδqi = q−1
o ∗qi. After differentiation

of oδqi w.r.t. time one has [15, p. 263f.]

04×1 = (
d

dt
q
−1
o ) ∗ qi + q

−1
o ∗ (

d

dt
qi) (26)

which can be rewritten after rearranging terms as

04×1 = Q(qo, qi) [ωi − ωo] (27)

with a matrix Q(qo, qi) ∈ R
4×3. The singular values of the matrix

Q are σ2
k(Q) = ‖qo‖

2 · ‖qi‖
2 for k ∈ {1, 2, 3} and thus the singular

values of Q are non-zero for arbitrary unit quaternions qo and qi.

This in turn means that Q has full rank for any choice of qo and qi.

Using this fact in (27) it follows that ωi − ωo = 03×1.
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