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Zusammenfassung

Variationelle Methoden sind zu einem etablierten Modellierungsmittel in der
Bildverarbeitung geworden. Beliebte Einsatzgebiete sind Bildentrauschung, Seg-
mentierung, Tiefenrekonstruktion, Berechnung des optischen Flusses und 3D-
Rekonstruktion. Die meisten Energien sind jedoch nicht konvex, was ihre Op-
timierung deutlich erschwert. Lokale Methoden liefern dann mit großer Wahr-
scheinlichkeit suboptimale Lösungen, die auch von der Initialisierung abhängen.

In dieser Arbeit präsentieren wir neue Konvexifizierungsmethoden für meh-
rere allgemeine Problemklassen in der Bildverarbeitung. Diese ermöglichen es,
Lösungen zu erhalten, die unabhängig von der Initialisierung sind und in einer
verifizierbaren Nähe des Optimums liegen. Dadurch nähert man sich dem Ziel,
für praktische Bildverarbeitungsprobleme zuverlässige und automatische Algo-
rithmen zu entwickeln. Wir erweitern und verallgemeinern bestehende Tech-
niken zur Konvexifizierung von Energien. Für jeden betrachteten Fall schlagen
wir spezielle Relaxierungen vor, die nah an den optimalen und dennoch effizient
berechenbar sind. Der Fokus der Beiträge dieser Arbeit liegt auf zwei allge-
meinen Energieklassen: Multilabel-Segmentierung und vektorielle Funktionale.

Der erste Teil der Arbeit beschäftigt sich mit Multilabelproblemen. Dies sind
Probleme, in denen die gesuchte Lösungsfunktion in jedem Bildpunkt einen von
nur endlich vielen vordefinierten Werten annehmen kann. Diese Energien stehen
im Zentrum von fundamentalen Problemen der Bildverarbeitung wie Segmentie-
rung und Berechnung des optischen Flusses. Zum anderen sind sie jedoch sehr
schwierig zu optimieren, da sie nach der Diskretisierung meist auf NP-schwere
Probleme hinausführen. Wir geben einen Überblick über die modernen An-
sätze zur Lösung von Multilabelproblemen und präsentieren anschließend neue
effiziente konvexe Relaxierungen für drei spezielle Anwendungen. In jedem Fall
gehen wir auf die verschiedenen Weisen ein, wie High-Level-Wissen über die
wahrscheinlichen Labelkonfigurationen effizient integriert werden kann.

Zuerst betrachten wir die Multilabelsegmentierung mit Längenregularisie-
rung. Hier bestimmt eine Labeltransferfunktion die Wahrscheinlichkeit, dass
zwei verschiedene Labels benachbart sind. Klassische Methoden gehen von der
Annahme aus, dass diese Funktion eine Metrik ist. Wir schlagen einen neuen
Ansatz vor, der diese Annahme nicht braucht und stattdessen allgemeine Trans-
ferfunktionen erlaubt. Dies ermöglicht es, allgemeinere Energien zu betrachten,
und verbessert die Segmentierungen im Vergleich zum Metrikfall. Als zweites
beschreiben wir, wie man Bedingungen an die relative geometrische Lage der
Labelregionen auf eine konvexe Weise formulieren kann. Dadurch wird die Mod-
ellierung von Labelanordnungen in der Bildebene möglich. Unser Ansatz ver-
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einheitlicht underschiedliche existierende Lösungen von drei speziellen Anord-
nungsproblemen und lässt zudem verschiedene Verallgemeinerungen wie die
Bervorzugung der Konvexform zu. Als drittes betrachten wir die Segmentierung
von Bildsequenzen. Die Aufgabe ist es, ein bestimmtes Objekt gleichzeitig in
einer Vielzahl von Bildern zu segmentieren. Zu diesem Zweck schlagen wir
Proportionalitätsregularisierer vor. Diese zielen darauf ab, die relative Größe
von je zwei Einzelteilen des Objekts über alle Bilder hinweg im Wesentlichen
konstant zu halten. In jedem Einzelfall betrachten wir verschiedene Weisen zu
einer Konvexifizierung zu gelangen. Die proportionalitätserhaltenden Regular-
isierer führen zur Robustheit bezüglich starker Form- und Größenänderungen
des gesuchten Objekts, was eine genauere Segmentierungen ermöglicht.

Im zweiten Teil der Arbeit betrachten wir Energieminimierungsprobleme, in
denen die gesuchte Lösungsfunktion vektorwertig ist und einen kontinuierlichen
Wertebereich hat. Solche Energien tauchen in der Praxis oft auf, z.B. im Zusam-
menhang mit Farbbildentrauschung, Tiefenrekonstruktion oder dem optischen
Fluss. Im skalaren Fall kann der “Functional-Lifting” Ansatz benutzt werden,
um eine große Klasse von Energien auf eine effiziente Weise zu konvexifizieren.
Jedoch lässt sich dieses leistungsfähige Verfahren nicht auf den vektoriellen Fall
verallgemeinern, so dass die Optimierung von vektoriellen Energien immer noch
eine Herausforderung darstellt. Wir betrachten drei Spezialfälle von vektoriellen
Funktionalen und schlagen jeweils individuell entwickelte konvexe Relaxierun-
gen vor, die auf dem skalaren “Functional-Lifting” Ansatz beruhen.

Im ersten Spezialfall betrachten wir separable Regularisierer. In diesen wird
die Kopplung zwischen den einzelnen Kanälen der vektorwertigen Lösungsfunk-
tion nur über den Datenterm hergestellt. Wir schlagen eine effiziente, auf
einer neuen Reduzierungstechnik beruhende Relaxierung vor. Im Vergleich zu
bestehenden Methoden werden der Speicherverbrauch und die Berechnungszeit
dadurch um Größenordnungen reduziert. Diese Technik erlaubt es uns, neue
und größere Probleme zu betrachten, die bisher mit den früheren Methoden
aufgrund des zu hohen Ressourcenbedarfs nicht lösbar waren. Ein wichtiges
Beispiel ist die Berechnung des optischen Flusses in den Fällen, die eine Be-
wegung über große Bildbereiche hinweg aufweisen. Im zweiten Spezialfall be-
trachten wir Regularisierer mit einer speziellen Kanalkopplung. Wir stellen eine
neue Relaxierung vor, die in der Klasse der effizient berechenbaren eine der op-
timalen ist. Dadurch wird es zum ersten Mal möglich, einen nichtkonvexen
Datenterm in Kombination mit einem koppelnden Regularisierer zu optimieren.
Ein wichtiges Anwendungsbeispiel dieser Methode ist die vektorielle Totalvaria-
tion. Als dritten Spezialfall schlagen wir die erste effizient umsetzbare konvexe
Relaxierung für das vektorielle Mumford-Shah-Funktional vor. Dadurch kann
man bei der Lösungsberechnung die Kanalkopplung unter im Wesentlichen den
gleichen Kosten wie im skalaren Fall miteinbeziehen. Dies liefert hochqualitative
Lösungen für kontrasterhaltende und kantenverstärkende Regularisierung.

Die Doktorarbeit demonstriert die allgemeinen Vorteile von Konvexifizie-
rungsmethoden wie Optimalitätsgarantien, Initialisierungsunabhängigkeit, und
Parallelisierung von resultierenden Algorithmen. Diese Methoden stellen so ein
effektives Werkzeug zur Lösung von einer Vielzahl von Optimierungsaufgaben
in der Bildverarbeitung dar.



Summary

Variational methods have become an established way to approach a multitude
of image analysis problems such as image denoising, segmentation, stereo recon-
struction, optical flow and 3D reconstruction. However, most practical energies
are not convex and thus hard to optimize, and local methods may lead to sub-
optimal solutions and will depend on appropriate initialization.

In this work, we present novel convexification techniques for several classes
of energies frequently encountered in imaging problems. This allows to obtain
solutions which do not depend on initialization and are within a computable
bound of the global optimum, thus coming closer to the goal of having reliable
and automatic computer vision algorithms. We extend and generalize existing
convexification techniques, and in each case strive to find convex relaxations
as tight as possible but which still allow efficient optimization. The contribu-
tions of this thesis are concentrated on two broad areas of energies: Multilabel
segmentation, and vectorial functionals.

The first part of the thesis deals with the multilabel problem. These are en-
ergies where the value of the solution at each pixel is constrained to a predefined
finite set of possible values. Such energies lie at the heart of fundamental prob-
lems like image segmentation and optical flow, but their optimization is difficult
since they typically lead to NP-hard problems after discretization. After giving
an overview of the multilabel problem and the state-of-the-art approaches, sub-
sequently we present efficient novel convex relaxations for three different types
of priors derived from higher-level knowledge about likely label configurations.

As the first prior, we revisit the length regularized multi-object segmenta-
tion, where a label transition function defines which pairs of labels are likely to
occur next to each other. While classical approaches assume this function to be
a metric, we propose an approach which allows to remove this restriction and
impose nonmetric distances between labels. These more general energies lead to
improved results in comparison to the metric case. As the second prior, we de-
scribe how constraints on the relative geometric location of label regions can be
cast in a convex way. This make it possible to model geometric layouts of labels,
and provides a unified solution to three different problems, while generalizing to
new cases such as the convex shape prior. Third, we consider image sequence
segmentation, where one and the same object is to be segmented throughout
a potentially large series of images. We introduce proportion priors to ensure
that the relative size of different objects or object parts remains mainly the
same across all images, and propose corresponding convexifications. Such pri-
ors are shown to increase the robustness with respect to strong deformations
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in shape and to size changes over the images, thus leading to more accurate
segmentations.

The second part of the thesis is about energies defined on vectorial functions
with a continuous range. Such energies naturally arise in problems such as color
denoising, depth reconstruction and optical flow. While the general functional
lifting convexification method can be used to obtain a convexification in the
scalar case, it does not generalize to the vectorial case. Thus, optimization
of vectorial energies remains a challenge. We focus on three special cases of
vectorial functionals and propose an especially tailored convex relaxation in
each case based on the functional lifting idea.

In the first case, we consider separable regularizers, so that there is no chan-
nel coupling except for the data term. We propose a reduction technique re-
sulting in a relaxation with run time and memory requirements lower by orders
of magnitude in comparison to previous methods. This enables to consider pre-
viously infeasible large-scale problems such as wide-range optical flow, while
being able to provide optimality bounds on the solution. In the second case,
we consider special coupling regularizers such as vectorial total variation and
propose a convex relaxation which is as tight as possible in the class of tractable
relaxations. For the first time this makes possible to optimize energies with a
nonconvex data term and a coupling regularizer. As the third special case, we
provide a first tractable convexification for the vectorial Mumford-Shah func-
tional. The proposed relaxation allows one to take channel coupling into ac-
count at essentially the same cost as in the scalar case. This yields efficiently
computable high-quality solutions for contrast-preserving and edge-enhancing
regularization.

The developed methods highlight the general advantages of convexification
methods such as optimality guarantees, independence of initialization, and the
major parallelization capabilities of the resulting algorithms. This shows that
these methods are a viable way to tackle important optimization problems in
computer vision.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Variational Methods

Starting in the 1980’s variational methods have revolutionized the way to ap-
proach computer vision problems. Each candidate solution u is assigned a real
number, which is called its energy E(u). The idea is that lower energies should
correspond to better quality solutions, and that the optimal solution is the
minimizer of this cost function:

min
u
E(u). (1.1)

This way, computer vision problems become optimization problems, and model-
ing the energy for each specific problem is a crucial part to obtain high-quality
solutions. It becomes possible to look for solutions with specific desired prop-
erties: Candidates which fit the input data well or are regular in some way are
assigned a lower energy, while those which are less fitting and irregular should
have a higher energy. The energy is typically modelled as a sum of two terms,
the data term and regularization term:

E(u) = Edata(u) + Ereg(u). (1.2)

The first term describes how well the cadidate u fits the input data. The second
term is the prior, or regularity term, which sorts out unlikely “wild” candidates
u in favor of more regular ones. The idea is that a minimizer u of the overall
energy E should keep both of these terms low.

Variational methods have a number of key advantages, in contrast to heuris-
tic procedural “step-by-step-manipulation” methods. Foremost, the model is
mathematically transparent. There is a clear mathematical relation between
inputs and outputs, and it is possible to derive and prove properties of the so-
lutions depending on the inputs. Another advantage is that variational models
usually have only few parameters.

Over the last decades, Bayesian inference [127] has become one of the estab-
lished ways to model energies in an intuitive and direct way. Given input data
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I, one looks for an optimal solution u by maximizing the conditional probability
of u given I, and rewrites this problem using the Bayes rule:

max
u
P(u|I) = max

u

P(I|u)P(u)

P(I)
. (1.3)

The denominator P(I) is the same for each u and can thus be omitted in the
optimization since we are only interested in the minimizer itself and not in the
energy values. Taking the negative logarithm on both sides, we arrive at the
corresponding energy (1.2) for u with

Edata(u) = − logP(I|u) and Ereg(u) = − logP(u). (1.4)

Thus, the data term plays the role of a generating model : It is (the negative log-
arithm of) the probability to obtain the input data I given the underlying model
u, for example in application of image denoising the probability of obtaining a
noisy image given the clean one. Furthermore, the regularizer term is directly
interpreted as a prior term, being (the negative logarithm of) the probability of
each candidate solution u, independently of the input data I. This enables one
to directly favor solutions with certain a-priori properties such as smoothness.

Applications of variations methods in computer vision and image analysis
are extremely broad. Initial break-throughs popularizing this approach include,
among others, variational formulations for optical flow estimation [59], image
segmentation [13, 63, 92, 34, 64, 26] and multiview stereo reconstruction [45].
By now, functional optimization has become an established paradigm to solve
a multitude of image analysis problems ranging from image denoising [100] and
segmentation [33, 76, 29], to stereo [140, 101], optical flow estimation [23] and
3D reconstruction [38].

1.1.2 Discrete and Continuous Viewpoints

In practice, one always deals with digital images, which are discrete consisting
of a regular grid of pixels. Thus it is natural to assume that images are given
on a discrete domain, and to model computer vision problems directly on the
underlying grid using the framework of Markov random fields (MRFs). Such
models are very popular due to many efficient combinatorial algorithms which
can be devised in this setting [17, 134, 70]. Nevertheless, digital images are
only discrete representations of actually spatially continuous real-world objects.
Because of this, ideally, computer vision and image processing algorithms should
be independent of the underlying image grid. However, this is typically not the
case for MRF based models. For example, in the case of image segmentation the
resulting object boundary tends to consist of pieces aligned along the coordinate
axes, a phenomenon known as “metrication error” or “grid bias” [68].

In this thesis we will focus on the spatially continuous viewpoint. This means
that images are viewed as functions I : Ω→ Rk defined on a spatially continuous
domain Ω ⊂ Rm (where k ≥ 1 is the number of channels and m ≥ 1 is the
dimension of the image domain). Energies are modeled by means of integrals,
which are independent of any discretization into a pixel grid. The discretization
only occurs as the last step in order to actually compute the solutions. Spatially
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continuous methods provide a powerful alternative to MRFs, as they typically
require less memory [68], and are able to provide more accurate solutions for
the underlying vision problems. Furthermore, spatially continuous models are
amenable to massive parallelization after discretization of the image domain, so
that they can be solved efficiently on graphics processing units (GPUs).

1.1.3 Local Minimization Methods

Unfortunately, most practical cost functions are very hard to optimize. The
reason is that they are not convex and that the problem is usually very high-
dimensional, see Figure 1.1. For instance, this is the case for all of the above
mentioned pioneering variational approaches. Although general global opti-
mization methods exist [50, 49, 13], they tend to be prohibitively slow for very
high-dimensional problems and require a careful tuning of parameters.

Classical optimization techniques are usually based on local optimization via
gradient descent. They also may utilize suitable approximations, e.g. the classi-
cal Horn-Schunck approach for optical flow [59] first linearizes the data term to
make the overall problem tractable. Such local methods inevitably get trapped
in local minima of the functional. This has crucial practical implications. First,
the obtained solutions will potentially be of inferior quality. In general, there
is no way to provide any guarantees concerning the optimality of the solution.
Second, the solution will highly depend on the used initialization. This makes
large data processing only possible under a constant interaction with a user who
would provide appropriate initializations. As a consequence, local methods can-
not be used in a fully automatic “black-box” manner to solve computer vision
problems. As for general functionals, their practical usefulness is limited.

Nonconvex energy Convex energy

Figure 1.1: Convexity is crucial for optimization. While nonconvex ener-
gies exhibit numerous local minima so that local methods inevitably get trapped
in suboptimal solutions, for convex energies any local minimum is automatically
a global one.

1.2 Convex Relaxation Methods

The situation changes dramatically if the functional to minimize is convex, see
Figure 1.1. The distinctive characteristic of convex models is that every local
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minimum is automatically a global one. Such functionals can be efficiently
minimized and even local methods now can be employed to solve the problem
in a globally optimal way. However, most practical cost functions are nonconvex.

Starting around 2005, researchers have revisited the variational approaches
and developed a variety of convex relaxation techniques. These aim at casting
the respective computer vision problems in terms of convex functionals. In
other words, one tries to replace the original nonconvex functional by a convex
formulation. Convexification has a number of key advantages:

• one can compute globally optimal solutions (or solutions with bounded
optimality),

• and these solutions are independent of the initialization.

One of the first convexification examples is the Chan et al. approach [33] for
foreground-background segmentation, which yields globally optimal solutions.
The advantages of convex models have led to a surge of new developments, with
applications covering a large variety of practical problems, see Section 1.1.1.

1.2.1 Convex Relaxation

The method of convex relaxation, or convexification, is to try to find good
solutions of nonconvex energies by finding suitable convex energies with the
same global minimizers. Let us illustrate the idea on 1D examples.

Continuous Optimization Domain. Assume a nonconvex energy such as
in Figure 1.2 (black solid line), which has many local minima. Clearly, gradient
descent would need a good initial guess to arrive at the global minimum. The
idea of convexification is to find an approximating convex energy with the same
global minimum. This approximation is usually constructed as a convex lower
bound. The convex envelope of the energy, i.e. the highest convex function below
or equal to the original one, is the tightest such bound and always ensures that
the global minima are the same, see the dashed blue line in Figure 1.2. To
solve the original problem one now focuses on the minimization of the convex
approximation, which is a tractable optimization task for which many efficient
state-of-the-art methods can be employed.

In practical large-scale image processing applications, the cost functions are
usually very high-dimensional and it is hard or currently even impossible to
compute the exact convex envelope. One then must resort to less tight but still
computable convex lower bounds, see the dashed green line in Figure 1.2. Still,
many problem classes allow good convex approximations or representations, so
that the original problem can be solved optimally or almost optimally.

In the case that the minimum of the original functional is not unique, the
convex envelope is minimized by all arguments which lie in the convex hull of
the original minimizers, see Figure 1.3. This means that the solution obtained
through convex relaxation in general can be a convex combination of true solu-
tions, e.g. a mixture of two solutions. However, this rarely happens in practice.
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Figure 1.2: Convex relaxation idea. While the original nonconvex function
(black) has many local minima, its convex envelope (blue) only has global ones.
Minimizing the latter automatically minimizes the former. A less tight convex
relaxation is shown as a green line.

Due to the data term, which gives the local value preference of the solution at
each pixel, the solution will be unique in most cases.

Figure 1.3: Effect of non-unique minimizers on convex relaxation. For
the tightest convex relaxation (blue), the set of the minimizers is the convex hull
of the set of the minimizers of the original functional (black).

Discrete Optimization Domain. A different scenario occurs when the en-
ergy is minimized over a discrete domain D0, see Figure 1.4. An example is when
the energy is defined only on the set of 0/1-valued functions {u

∣∣u : Ω→ {0, 1}},
which is a discrete set because of the discrete range {0, 1}. Note that we do not
mean a discrete domain of the images u as in Section 1.1.2, but rather a discrete
domain of the energy E, i.e. that the set of images {u} is discrete.

This situation poses a challenge because for efficient optimization not only
the energy itself but also the domain of optimization must be convex. A typical
way to cope with this is to enlarge the domain by replacing it by its convex
envelope D = coD0, and then to suitably extend the energy definition to the
new arguments in such a way that the extended energy is convex. This is the
idea of relaxation.

The definition of the extended energy, i.e. of its values on the extended
domain, is not unique. A common requirement is that the extension should
preserve the original values on D0. The best choice is, again, to take the con-
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Figure 1.4: Convex relaxation for discrete domains. Convex relaxations
are considered on the convex hull of the original discrete domain (dots on the u-
axis). Shown are the convex envelope (blue) and a less tight relaxation (green).

vex envelope. After having found a suitable extension, minimizing this convex
relaxation yields a relaxed minimizer. It is possible that it lies outside of the
original domain D0 since we optimize in the extended domain D ⊃ D0. This
can occur even if the relaxation is the tightest one. More precisely, in this case
the relaxed minimizer will always lie in the convex hull coS ⊂ D of the set
S ⊂ D0 of all true minimizers over D0, but not necessarily in D0. Therefore, as
a postprocessing step, one needs to project back to the original discrete domain.
This step is not unique, but in practice there are straightforward ways to find
a discrete nearby point.

We note that this second scenario with a discrete domain is actually a special
case of the first scenario, where the domain is continuous. In fact, one can
consider the indicator function of the discrete domain D0, which is defined over
whole D and takes the value 0 for arguments from D0 and∞ otherwise. Adding
this to the original energy and minimizing over the convex hull D is equivalent
to the original problem.

1.2.2 Optimality Guarantees

A-Posteriori Energy Bounds. As discussed above, when using a convex
lower bound less tight than the convex envelope or in the case of a discrete
optimization domain, convex relaxation methods are not always guaranteed to
optimally solve the original functional. However, these methods naturally come
with energy bounds which provide optimality guarantees. This means that, after
having computed a relaxed minimizer, one can assess how far one is from the
global optimum in terms of the energy values.

Suppose the original energy E is to be minimized over a convex domain,
and we do this by minimizing a convex relaxation E of E. Then the following
estimate holds:

E(u∗) ≤ E(u∗) ≤ E(u∗). (1.5)

Here u∗ is the computed relaxed minimizer of E, and u∗ a true minimizer (which
is unknown to us) of E. The first inequality follows from the optimality of u∗

for E and since E is a lower bound for E, so that E(u∗) ≤ E(u∗) ≤ E(u∗). The
second one follows from the optimality of u∗ for E.
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In the case that the original energy E is defined over a discrete domain D0,
suppose we minimize a convex relaxation E of E over the convex hull D of D0.
Since the relaxed minimizer u∗ ∈ D may lie outside of the original domain D0,
we need to project back to D0. Suppose we have computed such a projection
(u∗)D0 ∈ D0 which lies nearby u∗ in some sense. Then the estimate (1.5) can
be adapted to:

E(u∗) ≤ E(u∗) ≤ E
(
(u∗)D0

)
(1.6)

and is obtained analogously.
In the estimates (1.5) and (1.6) both the left and right hand side values are

explicitly computable, after we have computed a relaxed minimizer u∗.

A-Priori Energy Bounds. A-priori bounds give estimates independently of
the actually computed solution. Such bounds are hard to establish and currently
have been achieved only for very specific functionals, as will be detailed in
Chapter 3.

Certain classes of energies are always guaranteed to yield optimal solutions
through convex relaxation. The most prominent example is the Chan et al. two-
phase segmentation approach [33]. Another one is the minimization of general
data terms with the total variation regularization. See Chapters 3 and 7 for
more details.

1.2.3 Established Convex Relaxation Techniques

For special classes of cost functions one can establish concrete ways, or at least
general guidelines, of finding convex approximations or representations. Let us
give two important examples.

Multilabel Problems. Multilabel problems are a very general and important
class of energies, as many computer vision problems can be directly expressed
in this way. Given a finite set of labels, represented as L = {1, . . . , n} (with a
n ≥ 1), the task is to assign each point in the image domain Ω one of these labels,
in a way such that the overall labeling u : Ω→ L is optimal, i.e. minimizing an
energy

E(u) = Edata(u) + Ereg(u) =

∫
Ω
c(x, u(x)) dx + Ereg(u). (1.7)

The data term usually has a pointwise structure, given by a function c. De-
pending on the application at hand, certain label configurations may be more
likely, or more preferable than others. This information can be included as part
of the regularizer Ereg, which then acts as a prior term.

Because of the vast generality, there is no general method to arrive at a
convex representation. Each concrete energy E requires an especially tailored
approach in order to convexify it. Nonetheless, recent developments suggest that
at least a certain representation of the labeling is more suited than others to find
convex relaxations. Namely, the idea is to use indicator functions: For every
label i ∈ L one considers the characteristic function χu=i for this label, which
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has value 1 in the image points where this label is attained and 0 otherwise. See
Chapter 3 for more details.

Functional Lifting. One class of energies with a well-developed convexifica-
tion theory are energies of the form

E(u) = Edata(u) + Ereg(u) =

∫
Ω
c(x, u(x)) dx +

∫
Ω
f(x,∇u(x)) dx, (1.8)

which are defined on smooth scalar functions u : Ω → R and depend on the
values u and the gradient ∇u. The general approach to convexify such energies
is functional lifting [1, 101]. The idea is to express E in terms of the graph of u,
or, more precisely, in terms of the characteristic function 1u(x, t) = χt<u of the
subgraph of u. Assuming certain conditions on f , for instance that it is convex
in ∇u, the new energy then turns out to be a convex function of 1u. This can
be effectively used to arrive at optimal or near-optimal solutions. The approach
can be generalized to energies defined on a possibly discontinuous u. Functional
lifting is related to the Ishikawa construction [60] in the discrete setting.

The key advantage of this method is that it allows arbitrarily complicated
data terms c. In view of (1.4), this enables one to work with general generative
models P(I|u) of the data I given the solution u as long as the dependency is
pointwise, i.e. for each image point x ∈ Ω the image value I(x) only depends
on u(x). On the other hand, the problem dimension is increased since one now
minimizes over functions defined on Ω × R instead of Ω, which increases the
computational complexity. Furthermore, for the implementation the range of u
must be discretized into a finite number of levels, typically 32 or 64. We will
give more details in Chapter 7.

The main and essential limitation of the lifting approach is that it only works
for scalar functions u.

1.3 Contributions

The goal of this thesis is to extend and generalize existing convexification meth-
ods introduced in Section 1.2.3 to convexify a number of practical functionals.
The contributions are divided into two broad areas: Multilabel segmentation
using various priors, and extensions of functional lifting to vectorial functions.
These areas are covered respectively in Part I and Part II of the thesis.

Central ideas of this thesis were developed in various conferences and journal
papers, in particular [125, 121, 94] and [124, 55, 120, 119].

1.3.1 Part I: Multilabel Segmentation

The first part deals with the multilabeling problem and how to incorporate
specific higher-level knowledge of valid segmentations into the segmentation
process.

In Chapter 3 we will first give a brief introduction to multilabel approaches
and common relaxations in the case of length regularity. Subsequently, in Chap-
ters 4, 5 and 6 we will present three novel priors and propose respective convex
relaxations for their efficient optimization.
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Multilabel Segmentation with Nonmetric Priors. In Chapter 4 we will
revisit the well studied instance of the multilabel problem (1.7) when the reg-
ularizer Ereg acts as length penalization. That is, considering the regions
Ωi = {x

∣∣u(x) = i} where each label is assigned, one seeks to minimize the
data term plus the overall boundary length∑

i<j

d(i, j) Length(∂Ωi ∩ ∂Ωj), (1.9)

where boundary lengths are weighted by a label transition function d(i, j). In
order for classical relaxations to work, one limitation is that d must be a metric.

We propose a novel convex approach which allows to remove this restriction
and impose arbitrary nonmetric distances d between labels. The only remaining
constraints are symmetry d(i, j) = d(j, i), nonnegativity d(i, j) ≥ 0, and reflex-
ivity d(i, i) = 0. We show that the model can be applied to provide a convex
relaxation of the Mumford-Shah functional, where the nonmetric distance func-
tion is a truncated quadratic potential. The proposed prior is formulated in the
continuous setting, so that the grid artifacts of the corresponding grid based ap-
proaches for the nonmetric case are avoided. Furthermore, experiments on the
MSRC segmentation database yield comparable or superior results comparing
to metric or grid based approaches.

Multilabel Segmentation with Ordering Constraints. In Chapter 5 we
propose a novel framework for imposing label ordering constraints in multilabel
optimization. This gives a very general prior on the relative geometric location
of the distinct regions. In particular, label jumps can be penalized differently
depending on the jump direction. For example, it is possible to restrict that one
specific label is always to the left of another one.

The proposed method provides a unified solution to three different problems
which are otherwise solved by three separate approaches [48, 82, 131], as part
of one common convexification framework. The method gives a generalization
beyond these MRF-based approaches, making it possible to consider new label
layouts. For example, we show that we can impose the novel convex shape prior.
Since we work in the spatially continuous setting, it is possible to consider the
correct Euclidean boundary length, in contrast to grid-based approaches. The
method naturally extends to three and higher dimensions of the image domain.
We provide an exact characterization of the label distance penalization functions
that are expressible with our approach.

Despite the generality, the implementation is straightforward and can be
easily adjusted to various label layouts. Experiments show comparable and
superior results compared to the previous methods.

Multilabel Segmentation with Proportion Priors. In Chapter 6 we pro-
pose a convex multilabel framework for image sequence segmentation. In this
application, the task is to segment one and the same object which is present
in every image of the sequence. Because the appearance can change signifi-
cantly from image to image, including changes in color, size, shape and position
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within the image frame, this poses a challenge even for current state-of-the-art
segmentation approaches.

We propose to impose a novel proportion preserving prior on object parts.
It ensures that the relative size of each object part w.r.t. the size of the whole
object remains roughly the same across all images. The key idea is that, even
for strong deformations in shape and size, these relative sizes are still well pre-
served. We introduce two different kinds of such a prior based on the Bayesian
framework for image segmentation. Several ways for their convexification are
proposed and compared, yielding a convex relaxation of the overall image se-
quence segmentation problem. The resulting algorithm is easy to implement
and can provide proportion-consistent segmentations with run times of about
one second.

Quantitative and qualitative experiments demonstrate the effectiveness of
proportion priors to achieve accurate segmentations. For example, semanti-
cally relevant small-scale object parts are better preserved from disappearing,
and background areas with similar colors as the object are less likely to be la-
beled as foreground. The method naturally applies to multiple object instances,
e.g. when segmenting all players of one team in a sports game. Finally, the same
method can be equally applied to constrain the relative size of different objects
w.r.t. each other, such as several organs in medical imaging.

1.3.2 Part II: Vectorial Functionals

In the second part we present several approaches of how the functional lifting
idea can be used to provide convex relaxations for vectorial functionals. Func-
tional lifting is essentially limited to energies depending on scalar functions
u : Ω → R. Therefore, energies defined on vectorial functions u : Ω → Rk,
k ≥ 2, require entirely different convexification strategies.

In Chapter 7 we will first introduce and review the classical functional lifting
idea. The next Chapters 8, 9 and 10 are devoted to various special cases of
vectorial functionals. In each case, we will propose an especially tailored convex
relaxation. Using suitable decouplings and reformulations, we will also highlight
a number of ways to make the proposed convexifications efficiently solvable.

Vectorial Problems with Separable Regularization. In Chapter 8 we
will first start with the case that there is no channel coupling in the regularizer,
i.e. the channels are regularized independently of each other:

Ereg(u) =

k∑
i=1

Ri(ui). (1.10)

In order to arrive at a convex relaxation, all previous methods require that
the whole vectorial range of u is discretized into a finite set of points. For
example, if the range of u : Ω→ Rk is the unit box [0, 1]k and each channel range
[0, 1] is discretized into n ≥ 1 levels, say n = 32 or n = 64, the discretization of
the overall range will require nk points. Unfortunately, in the previous methods
both run time and memory scale linearly with the total number nk of labels.
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This makes them inefficient for k ≥ 2 and often not even applicable for k ≥ 3
due to memory constraints.

Assuming that the regularizer is separable, we propose a reduction technique
so that the overall time and memory complexity scales only as k ·n instead of nk.
For typical real-world problems, this means that the resulting convex relaxation
requires orders of magnitude less time as well as memory in comparison to
previous methods. This enables us to consider large-scale problems which were
previously infeasible.

The method is demonstrated on applications such as optical flow, stereo with
occlusion detection, color image segmentation into a large number of regions,
and joint denoising and local noise estimation. For the first time, our approach
enables one to efficiently compute solutions to the optical flow functional which
are within provable bounds (typically 5%) of the global optimum.

Vectorial Problems with Coupled Regularization. In Chapter 9 we con-
sider how specific channel couplings can be incorporated in the regularizer while
still being able to devise an efficient convex relaxation. Namely, we will consider
regularizers

Ereg(u) =

∫
Ω
f(x,∇u(x)) dx (1.11)

with an f convex in ∇u. This is first defined for smooth functions u and
then suitably extended to functions of bounded variation. For instance, this

includes the l2-coupled total variation TV (u) =
√∑k

i=1 |∇ui|2, which couples
the channels and is not of the form (1.10).

For nonconvex energies with regularizers as above, we propose a convex
relaxation which is both tractable and yet as tight as possible. Rather than
separately treating the data term and the regularizer, the key idea is to consider
the collection of graph functions of u, one for each channel, and to devise a
relaxation that takes into account the entire functional as a whole. We provide
a theoretical analysis of the relaxation, and give implementation details for
a number of regularizers enabled with our approach. In each case, we show
how the arising constraints can be decoupled to make the relaxation efficiently
implementable.

In contrast to previous relaxations, it now becomes possible to handle the
combination of nonconvex data terms with coupled regularizers such as l2-total
variation. Experiments demonstrate that such regularizers systematically yield
improved results in denoising, inpainting and optical flow applications.

The Vectorial Mumford-Shah Functional. In Chapter 10 we focus on the
vectorial Mumford-Shah functional, which is devised to obtain piecewise smooth
or piecewise constant approximations of input images. The vectorial functional
couples the channels in such a way that the discontinuities in the different color
channels preferably coincide.

We propose the first tractable convex formulation, which allows one to effi-
ciently compute high-quality solutions independently of the initialization. The
approach is a generalization of the scalar case [100] to a general number of
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channels. Furthermore, we propose an efficient reformulation of the arising con-
straints which makes the overall optimization problem as tractable as in the
scalar case.

Numerous experiments confirm the proposed convexification to be superior
for contrast-preserving and edge-enhancing regularization, comparing with the
naive channel-wise approach, the well-known Ambrosio-Tortorelli approxima-
tion, as well as the classical total variation.

One can think of this functional as being in the “middle” between the cases
of regularizers covered in the previous two Chapters 8 and 9. It is not repre-
sentable in the form (1.10) because of channel coupling, although (1.10) does
allow channel-wise Mumford-Shah regularization. And though (1.11) allows
channel coupling, the vectorial Mumford-Shah regularizer can be seen to be not
of this form, since it explicitly allows jumps in u.

1.3.3 Thesis Structure

In Chapter 2 we will introduce the basic notions and concepts which will be
used throughout the thesis, including convexity, convex duality, functions of
bounded variation and the primal-dual algorithm. This is followed by the main
two Parts I and II of the thesis as described in the previous two sections. Finally,
we will conclude in Chapter 11 with a summary of the achieved results, as well
as notes about possible directions for future research.

1.4 Publications

In the process of the doctoral study, a number of papers have been written and
published in various international journals and conferences:

Journal Publications

• Moellenhoff, T., Strekalovskiy, E., Moeller, M., Cremers, D.: The primal-
dual hybrid gradient method for semiconvex splittings. SIAM Journal on
Imaging Sciences 8(2), 827–857 (2015)

• Strekalovskiy, E., Chambolle, A., Cremers, D.: Convex relaxation of vec-
torial problems with coupled regularization. SIAM Journal on Imaging
Sciences 7(1), 294–336 (2014)

• Goldluecke, B., Strekalovskiy, E., Cremers, D.: Tight convex relaxations
for vector-valued labeling. SIAM Journal on Imaging Sciences 6(3), 1626–
1664 (2013)

• Cremers, D., Strekalovskiy, E.: Total cyclic variation and generalizations.
Journal of Mathematical Imaging and Vision 47(3), 258–277 (2012)

• Goldluecke, B., Strekalovskiy, E., Cremers, D.: The natural total variation
which arises from geometric measure theory. SIAM Journal on Imaging
Sciences 5(2), 537–563 (2012)
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Conference Publications

• Möllenhoff, T., Strekalovskiy, E., Möller, M., Cremers, D.: Low rank pri-
ors for color image regularization. In: International Conference on En-
ergy Minimization Methods for Computer Vision and Pattern Recognition
(EMMCVPR) (2015)

• Strekalovskiy, E., Cremers, D.: Real-time minimization of the piecewise
smooth Mumford-Shah functional. In: European Conference on Computer
Vision (ECCV) (2014)

• Nieuwenhuis, C., Strekalovskiy, E., Cremers, D.: Proportion priors for im-
age sequence segmentation. In: IEEE International Conference on Com-
puter Vision (ICCV) (2013)

• Lellmann, J., Strekalovskiy, E., Koetter, S., Cremers, D.: Total variation
regularization for functions with values in a manifold. In: IEEE Interna-
tional Conference on Computer Vision (ICCV) (2013)

• Souiai, M., Strekalovskiy, E., Nieuwenhuis, C., Cremers, D.: A co-occurren-
ce prior for continuous multi-label optimization. In: International Confer-
ence on Energy Minimization Methods for Computer Vision and Pattern
Recognition (EMMCVPR) (2013)

• Souiai, M., Nieuwenhuis, C., Strekalovskiy, E., Cremers, D.: Convex opti-
mization for scene understanding. In: ICCV Workshop on Graphical Mod-
els for Scene Understanding (2013)

• Strekalovskiy, E., Chambolle, A., Cremers, D.: A convex representation
for the vectorial Mumford-Shah functional. In: International Conference
on Computer Vision and Pattern Recognition (CVPR) (2012)

• Strekalovskiy, E., Nieuwenhuis, C., Cremers, D.: Nonmetric priors for con-
tinuous multilabel optimization. In: European Conference on Computer
Vision (ECCV) (2012)

• Strekalovskiy, E., Cremers, D.: Generalized ordering constraints for multi-
label optimization. In: IEEE International Conference on Computer Vision
(ICCV) (2011)

• Strekalovskiy, E., Goldluecke, B., Cremers, D.: Tight convex relaxations
for vector-valued labeling problems. In: IEEE International Conference on
Computer Vision (ICCV) (2011)

• Strekalovskiy, E., Cremers, D.: Total variation for cyclic structures: Con-
vex relaxation and efficient minimization. In: International Conference on
Computer Vision and Pattern Recognition (CVPR) (2011)
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Chapter 2

Fundamentals

In this chapter we want to introduce the basic instruments which will be used
throughout the thesis. This thesis is all about convexification approaches, thus
in Section 2.1 we will first give a brief overview of the foundations of convex
analysis. Next, in Section 2.2 we will introduce the main function spaces that
will serve as the basic domain to which the solutions of all of our considered
practical problems will belong, namely the space of functions of bounded vari-
ations. Finally, in order to practically compute solutions of a given convex
relaxation model, in Section 2.3 we will present the main primal-dual minimiza-
tion algorithm and give notes about common dualization strategies to render
efficient optimization possible.

2.1 Convex Analysis

2.1.1 Basic Definitions

For a detailed introduction to convex analysis we refer the reader to [108].
When dealing with convex functions, it is convenient to extend the set of

real numbers by adding an infinity element to it: R := R∪{+∞}. For instance,
this will be useful to model hard constraints, by assigning energy value +∞ to
functions which violate the constraints. In order to simplify the notation we
will use the same notation R instead of R throughout the thesis.

Let X be some fixed Hilbert space with scalar product 〈·, ·〉. For the purpose
of this introduction, one can think of X as being Rm for some m ≥ 1, but
in general X can also be infinitely dimensional. For example, X can be the
function space L2(Ω;R) with its usual scalar product 〈f, g〉 =

∫
Ω f(x)g(x) dx.

Throughout the thesis, general norms are denoted as usual by ‖·‖, while we use
the simpler notation |·| for the Euclidean norm of vectors and the Frobenius
norm of matrices.

Convexity and Lower-semicontinuity. A function f : X → R is called
convex if it satisfies the inequality

f
(
αx+ (1− α)y

)
≤ αf(x) + (1− α)f(y) (2.1)

15
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for all points x, y ∈ X and every 0 < α < 1. One calls f proper if f is not
the constant ∞, i.e. if f is finite for at least one point in X. Furthermore, f
is called lower-semicontinuous if for any sequence (xn)n≥1 ⊂ X converging to a
x ∈ X it holds

f(x) ≤ lim inf
n→∞

f(xn). (2.2)

Functions f satisfying f(sx) = |s| f(x) for any x ∈ X and s ∈ R are called
one-homogeneous. If this holds at least for all s > 0, then f is called positive
one-homogeneous.

Set Indicator Functions. A very useful kind of convex functions are the
indicator functions of sets. For a subset A ⊂ X its indicator function is defined
as

δA(x) =

{
0 if x ∈ A,
∞ else.

(2.3)

We can check right away that this is a convex function whenever A is convex.
Namely, if either x 6∈ A or y 6∈ A, then the right hand side of (2.1) is ∞, so
that the inequality is trivially fulfilled. Otherwise, i.e. if both x, y lie in A, then
so does their convex combination αx+ (1− α)y because A is convex, i.e. both
sides of (2.1) are zero. More generally, δA is convex if and only if A is convex.
Moreover, δA is lower-semicontinuous if and only if A is closed.

Thus, an example of a convex function which is not lower-semicontinuous
can be given by δA where A is convex but not closed, e.g. δ(0,1) when X = R.

Recession Function. For convex functions f : X → R, its recession function
f∞ : X → R is defined as

f∞(x) = lim sup
t→∞

f(tx)

t
. (2.4)

This is a convex and positive one-homogeneous function, and it always holds
f∞(0) = 0. It captures the behavior of f at infinity when going along different
directions x, ignoring the behavior at small values. Intuitively, f∞ is obtained
by first drawing the graph of f and then “zooming out”, so that only the behavior
at large values will matter. For example, if f is some norm, f(x) = ‖x‖, we
get f∞(x) = ‖x‖, and in general f∞ = f for any positive one-homogeneous f .
If f has superlinear growth at infinity, for example f(x) = ‖x‖2, then f∞(x) is
equal to ∞ everywhere except for x = 0, where f∞(0) = 0.

Subdifferential. Convex functions f : X → R are not necessarily differen-
tiable everywhere, so that one generalizes the notion of differentiability and
considers the subdifferential instead. For every x ∈ X it is the set (∂f)(x) ⊂ X
defined by

(∂f)(x) =
{
a ∈ X

∣∣ f(y) ≥ f(x) + 〈a, y − x〉 ∀y ∈ X
}
. (2.5)

In other words, (∂f)(x) is the set of all slopes a such that the corresponding
linear approximation at x with that slope is equal to or below f . If f is convex
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and differentiable at x, then (∂f)(x) = {(∇f)(x)} is a set containing just the
gradient as its single element. The converse is also true, in that if f is convex
and (∂f)(x) contains only one element, then f is differentiable at x. As an
example, for the Euclidean norm f(x) = |x| we get (∂f)(x) = {x/ |x|} for any
x 6= 0, while f is not differentiable at x = 0 and (∂f)(0) = {a

∣∣ |a| ≤ 1}.
The subdifferential is very useful when dealing with optimization problems.

Namely, for any convex function f , x ∈ X is a minimizer of f if and only if
0 ∈ (∂f)(x). This can be seen directly since 0 ∈ (∂f)(x) by definition means
f(y) ≥ f(x) for all y, which is just the definition of x being a minimizer of
f . This is a direct generalization of the necessary condition (∇f)(x) = 0 for
differentiable f .

2.1.2 Convex Duality

A fundamentally important concept in convex analysis is that of the dual func-
tion. Given a function f : X → R, its dual function f∗ : X → R is defined by

f∗(y) := sup
x∈X
〈x, y〉 − f(x). (2.6)

It is also known as the Legendre-Fenchel dual, the convex dual or the convex
conjugate of f . Being a pointwise supremum of linear functions, this is always a
convex function, even if f itself is not convex. This can be readily seen directly:

f∗(αy1 + (1− α)y2) = sup
x∈X

〈
x, αy1 + (1− α)y2

〉
− f(x)

= sup
x∈X

α
(
〈x, y1〉 − f(x)

)
+ (1− α)

(
〈x, y2〉 − f(x)

)
≤ α sup

x∈X

(
〈x, y1〉 − f(x)

)
+ (1− α) sup

x∈X

(
〈x, y2〉 − f(x)

)
= αf∗(y1) + (1− α)f∗(y2)

(2.7)
for any y1, y2 ∈ X and 0 < α < 1. Moreover, f∗ is always lower-semicontinuous.

We can iterate this process and consider the convex conjugate of f∗, giving
the bidual f∗∗ = (f∗)∗. For convex f , it turns out that doing so we get back to
the original function: f∗∗ = f . More precisely, f needs to be convex and lower-
semicontinuous. This important property is referred to as convex duality. Thus,
writing out the definition of the convex conjugate (f∗)∗, we have the following
proposition:

Proposition 2.1 (Convex Duality). For every convex and lower-semiconti-
nuous function f we have the representation

f(x) = sup
y∈X
〈x, y〉 − f∗(y). (2.8)

For nonconvex functions f it turns out that f∗∗ is the convex envelope of f ,
more precisely the lower-semicontinuous convex envelope. It is defined as the
greatest convex and lower-semicontinuous function which is pointwise below or
equal to f .
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Figure 2.1: Convex conjugate interpretation. The highest affine lower
bound to f with slope y has value −f∗(y) at zero.

Thus, computing the double conjugate f∗∗ gives us an explicit construction
to find convex relaxations of nonconvex functions f : Starting with f , compute
f∗ and then the right hand side of (2.8), which is nothing but the definition of
f∗∗(x). However, although this always works in theory, in practice the compu-
tation of f∗∗ can be done explicitly only for very few special cases.

Intuitive Interpretation. The convex conjugate arises naturally in the con-
text of optimal affine lower bounds, see Figure 2.1.

Consider a (convex or nonconvex) function f . We want to approximate f
from below by affine functions l : X → R. For a fixed slope y ∈ X they have
the form l(x) = 〈x, y〉 + a with an a ∈ R. The question is how large can we
choose a so that l is still a lower bound for f . For this we must have

〈x, y〉+ a ≤ f(x) ∀x, or equivalently − a ≥ 〈x, y〉 − f(x) ∀x. (2.9)

These constraints over all x are equivalent to a single one:

−a ≥ sup
x∈X

(
〈x, y〉 − f(x)

)
= f∗(y). (2.10)

Therefore, the maximal a is a = −f∗(y) and the best affine lower bound with
slope y is

l(x) = 〈x, y〉 − f∗(y). (2.11)

The convex (and lower-semicontinuous) envelope of f is the supremum over all
affine lower bounds. This is the same as taking the supremum over all slopes y
in (2.11), which directly gives f∗∗(x). Thus, f∗∗ can indeed be interpreted as
the convex and lower-semicontinuous envelope of f .
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2.2 Functions of Bounded Variation

The space of bounded variation functions plays an important role for many
practical computer vision and image processing applications, serving as the basis
space to which the solutions belong. On one hand, it is general enough including
smooth as well as discontinuous functions. On the other hand, it is small enough
in the sense that the functions possess many important and useful properties,
for instance, certain regularity of the distributional gradient. We refer to [5]
and [6] for a comprehensive introduction to functions of bounded variation.

The Space BV(Ω,Rk). Let Ω ⊂ Rm, m ≥ 1, be a bounded open set. The
usual m-dimensional Lebesgue measure is denoted by Lm (with dx := dLm),
and for a > 0 the a-dimensional Hausdorff-measure by Ha. Br(x) is the open
ball of radius r around x.

For vectorial functions u ∈ L1(Ω,Rk) with k ≥ 1 channels, the total variation
of u is defined by

TV (u) = sup

{∫
Ω
−

k∑
i=1

ui(x) divϕi(x) dx
∣∣∣

ϕ ∈ C1
c (Ω;Rm×k), |ϕ(x)| ≤ 1 ∀x ∈ Ω

}
.

(2.12)

Functions u with TV (u) <∞ are called functions of bounded variation, and the
space of all such u is denoted by BV(Ω,Rk).

We use the notation ϕ(x) = (ϕ1(x), . . . , ϕk(x)) ∈ Rm×k, i.e. ϕi(x) ∈ Rm is
the vector (ϕji(x))1≤j≤m for each i, and |·| is the Euclidean norm on vectors
or matrices. As usual, C1

c (Ω;Rm×k) is the space of continuously differentiable
vectorial functions with compact support.

If u is smooth with gradient ∇u, total variation can be expressed as

TV (u) =

∫
Ω
|∇u(x)| dx. (2.13)

This can serve as a starting point to motivate the general definition (2.12).
Namely, for each x ∈ Ω the absolute value of ∇u(x) ∈ Rm×k can be written as

|∇u(x)| = sup
ϕ(x)∈Rm×k, |ϕ(x)|≤1

〈
ϕ(x), ∇u(x)

〉
, (2.14)

which explains the appearance of the variables ϕ(x) ∈ Rm×k in (2.12). Plug-
ging this into (2.13), assuming smoothness of ϕ and integrating by parts, the
formulation (2.12) is obtained.

It is useful to consider bounded variation functions where the range is con-
strained to some set. For sets E ⊂ Rk, the space BV(Ω;E) is defined as the set
of all functions u ∈ BV(Ω;Rk) with u(x) ∈ E for a.e. x ∈ Ω.
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The Jump Set Su. One of the most important properties of bounded vari-
ation functions is the regular structure of their values. Essentially, they are
continuous everywhere except for possibly only jump discontinuities, occuring
along regular hypersurfaces. Furthermore, they are weakly differentiable almost
everywhere.

Although functions u ∈ L1(Ω,Rk) are defined only a.e., one can try to define
a “standard” representative for each x by averaging over small neighborhoods:
u(x) = limr→0 |Br(x)|−1

∫
Br(x) u(y) dy. For general u ∈ L1(Ω,Rk), this limit

exists for every x ∈ Ω except possibly for a set Su ⊂ Ω of measure zero.
If u ∈ BV(Ω,Rk), this set Su has a certain regularity. Namely, up to a set of

zero Hm−1-measure, it is a (m− 1)-dimensional set and consists of a countable
collection of pieces of smooth hypersurfaces. Furthermore, it can be seen as the
jump set of u, in that u has a jump discontinuity at Hm−1-a.e. x ∈ Su: One can
define two values u−(x) = (u−1 (x), . . . , u−k (x)) and u+(x) = (u+

1 (x), . . . , u+
k (x))

and a normal vector νu(x) ∈ Sm−1 := {z ∈ Rm | |z| = 1} indicating the direction
of the jump and pointing towards the u+(x) side. Specifically, for these x it holds

u(x+ εz)
ε→0−→ u+(x)χ〈z,νu(x)〉>0 + u−(x)χ〈z,νu(x)〉<0 (2.15)

w.r.t. the L1(B1(0),Rk)-norm, as functions of z. There could be some points on
Su where (2.15) does not hold (they form a set of zero Hm−1-measure, e.g. iso-
lated points for m = 2), these are for example “corners” of Su, or points where
three or more values of u meet at x.

Note that when two or more components ui jump at a point x ∈ Su, for
Hm−1-a.e. x all k components jump in one and the same direction, though this
common jump direction νu(x) of course might be different for different x.

The Distributional Gradient. Functions in BV(Ω,Rk) are not necessarily
smooth since they may have jump discontinuities, so that the gradient ∇u may
not exist in the ordinary sense. Therefore one is lead to consider the distribu-
tional gradient instead.

For functions u ∈ L1(Ω,Rk), the distributional gradient is a mapping Du :
C1
c (Ω;Rm×k) → R defined on smooth compactly supported vectorial functions

ϕ by

(Du)(ϕ) =

∫
Ω
〈−divϕ, u〉 dx. (2.16)

Here divϕ(x) ∈ Rk at each x ∈ Ω is formed by applying the divergence sepa-
rately to each component ϕi : Ω→ Rm, 1 ≤ i ≤ k, of ϕ : Ω→ Rm×k = (Rm)k.

For u ∈ BV(Ω,Rk) it can be represented as a Rm×k-valued Radon measure [5,
Proposition 3.6], which we again denote by Du. This means that for any ϕ ∈
C1
c (Ω;Rm×k) we can write

(Du)(ϕ) =

∫
Ω
〈ϕ, dDu〉. (2.17)

In the last integral, 〈·, ·〉 denotes the standard scalar product on Rm×k. We will
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also write this in any of the following forms:∫
Ω
〈ϕ, dDu〉 =

∫
Ω
ϕ · dDu =

∑
ij

∫
Ω
ϕij dDuij =

∫
Ω

〈
ϕ, Du
|Du|

〉
d|Du| (2.18)

where Du
|Du| |Du| with Du

|Du| ∈ L1
|Du|(Ω;Rm×k) is the polar decomposition of Du [5,

Corollary 1.19].
In the case that u is smooth, i.e. the gradient ∇u exists in the classical sense,

(2.16) can be rewritten as

(Du)(ϕ) =

∫
Ω
〈− divϕ, u〉 dx =

∫
Ω
〈ϕ,∇u〉 dx, (2.19)

so that the measure Du in (2.17) is just the usual Lebesgue measure weighted
by the gradient:

Du = ∇u(x)Lm. (2.20)

For a general u, additional terms appear on the right hand side of (2.20), ac-
cording to the general structure of Du. It can be decomposed into three parts [5,
Definition 3.91]:

Du = ∇u(x)Lm + νu(x)⊗ (u+(x)− u−(x))Hm−1 Su + Cu. (2.21)

The first one ∇u(x)Lm is the absolutely continuous part w.r.t. m-dimensional
Lebesgue measure Lm. It is called the “smooth part” of Du. The density
∇u ∈ L1(Ω,Rm×k) is called the “approximate gradient” of u [5, Definition 3.70].

The second one is the jump part, which is the (m−1)-dimensional Hausdorff
measure restricted to the jump set Su (i.e. (Hm−1 Su)(A) := Hm−1(A ∩ Su)
for all A) and weighted by jump height u+ − u− and jump direction νu. Here
νu(x) ⊗ (u+(x) − u−(x)) := νu(u+ − u−)T ∈ Rm×k is the Kronecker product
between the column vectors νu ∈ Rm and u+ − u− ∈ Rk. This collects the
jumps for all k channels into one m × k matrix of k columns νu multiplied by
the corresponding individual scalar jump heights for each channel:

νu(x)⊗ (u+(x)− u−(x)) =

(
(u+

1 − u−1 )νu · · · (u+
k − u−k )νu

)
. (2.22)

Intuitively, the jump part can be derived from the smooth part ∇uLm by imag-
ining a smooth transition becoming steeper and stepper until it becomes a jump
discontinuity: The gradient ∇u becomes infinitely large at jumps, but the jump
area is infinitely small; these two effects cancel out effectively yielding Hm−1-
integration along the jump discontinuity Su.

The last part in (2.21) is the “Cantor” part and corresponds to an uncount-
able accumulation of “zero-height jumps” on a set of measure zero. It is a mea-
sure absolutely continuous w.r.t. Lm (i.e. Cu(A) = 0 if Lm(A) = 0), and zero
for any (m − 1)-dimensional set. It is supported on a set E ⊂ Ω of Hausdorff-
dimension m− 1 ≤ dimH(E) < m.
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The Space SBV(Ω,Rk). One says that u is a special function of bounded
variation, u ∈ SBV(Ω,Rk), if the distributional gradient has no Cantor part Cu
in the decomposition (2.21). Intuitively, there will be no “strange pathological”
jumps of u, such as present in the Cantor-Vitali function. Instead, there will
be only regions of continuous variation and jump discontinuities in-between
these regions. This makes it a natural space for computer vision problems with
possibly discontinuous solutions.

Functions u ∈ SBV(Ω,Rk) are absolutely continuous up to a (m−1)-dimen-
sional jump set Su, where they assume values u−, u+ on the two sides of the
interface with normal vector νu. As a special case of (2.21), for u ∈ SBV(Ω,Rk)
the distributional gradient decomposes as

Du = ∇u(x)Lm + νu(x)⊗ (u+(x)− u−(x)) Hm−1 Su (2.23)

into a smooth part and a jump part.

The Perimeter. The definition of TV is not only applicable to smooth func-
tions f , but also to ones which may have discontinuities. For instance, one can
apply it to characteristic functions u = χE of sets E ⊂ Ω. The value

Per(E; Ω) := TV (χE) (2.24)

is called the perimeter of E. Sets E with Per(E;Ω) <∞ are called sets of finite
perimeter. For finite perimeter sets E by the definition of BV(Ω,R) we have
u = χE ∈ BV(Ω,R), for instance there is a (m − 1)-dimensional jump set Su
for u.

One calls
∂∗E := Su (2.25)

the essential boundary of E. It is a regular hypersurface up to a set of Hm−1-
measure zero. On one side of ∂∗E there are only points inside of E and on
the other side only points outside of E in the sense of (2.15). Because of this
property, the essential boundary may differ from the topological boundary ∂E.
For example, if E is a smooth (m − 1)-dimensional surface, then ∂E = E and
∂∗E = ∅. If E is open and has a sufficiently smooth (topological) boundary, say
Lipschitz, then ∂∗E = ∂E up to a Hm−1-negligible set. Note that the definition
of ∂∗E depends on Ω; for instance, for an open set E the boundary parts that
coincide with the boundary of Ω, or which lie outside of Ω, are not part of ∂∗E.

A remarkable property of total variation is that the perimeter is equal to
the (m− 1)-dimensional Hausdorff measure of the (essential) boundary:

Per(E; Ω) = Hm−1(∂∗E) = boundary length of E. (2.26)

This makes it very useful for geometric applications like segmentation or 3D
reconstruction, where one wants to penalize the length (in 2D, or area in 3D)
of the foreground-background boundary.

We will frequently also consider the weighted perimeter with a weighting
function g : Ω→ R:

Perg(E; Ω) =

∫
∂∗E

g(x) dHm−1(x). (2.27)
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This can be represented analogously to (2.24) by

Perg(E; Ω) = TVg(χE), (2.28)

where the weighted total variation is defined similarly as in (2.12) but con-
straining ϕ by |ϕ(x)| ≤ g(x) instead of |ϕ(x)| ≤ 1. The usual perimeter (2.24)
is recovered using the weight g(x) = 1 for all x.

2.3 The Primal-Dual Algorithm

2.3.1 Min-Max Problems

Continuous Image Domain. Convex optimization techniques to tackle com-
puter vision problems typically transform the minimization problem (1.1) to a
min-max-problem:

min
v∈V

max
p∈P

E(v, p), (2.29)

with some reflexive Banach spaces V and P . The energy E(v, p) is assumed to
be convex in v for fixed p, and concave in p for fixed v. This form naturally
arises by using various convexification techniques, which typically rewrite the
energy or parts of it as a supremum over some new additional variables. The
most prominent example of such a technique is the convex duality (2.8).

Problems of the form (2.29) are also called saddle-point problems. A pair
(v, p) ∈ V ×P is said to be a solution, or a saddle-point of (2.29) if v is a global
minimum of E(·, p) and p a global maximum of E(v, ·). Note that there might
be several distinct saddle-points, i.e. the solution is not necessarily unique. In
general, it is more preferable to replace “min” with “inf” as well as “max” with
“sup” in order to deal with cases where e.g. the max over p is not attained
for any p. We will use either forms interchangeably in this thesis, since for a
solution (v, p) the min and max are always attained in practice. The order of
min and max can be freely exchanged, without altering the set of solutions.

The variable v, over which the minimum is taken, is called the primal vari-
able, while p is called the dual variable. Evaluating the maximum in (2.29) for
a fixed v defines the primal energy Eprim : V → R,

Eprim(v) = max
p∈P

E(v, p). (2.30)

Analogously, the minimum for a fixed p defines the dual energy Edual : P → R,

Edual(p) = min
v∈V

E(v, p). (2.31)

In all of our considered practical problems in this thesis, the energy (2.29)
will have the following special form:

min
v∈V

max
p∈P

D(v) + 〈Kv, p〉 − F (p). (2.32)

Here, the functions D : V → R and F : P → R are convex and lower-semicon-
tinuous, K : V → P is a linear operator, and 〈·, ·〉 denotes the scalar product
on P , resp. V . Thus, the energy (2.32) is comprised of a convex part D that
only depends on the primal variable v, a concave part −F only depending on
the dual p, and a bilinear term which mixes the primal and dual variables.
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The Discretized Min-Max-Problem. As mentioned in the introduction
Section 1.1.2, throughout this thesis we will assume the continuous viewpoint,
modeling vision problems through functions defined on a spatially continuous
domain Ω. After having established a convex model (2.32) for the application
at hand, the final step is then, of course, to discretize the model to be able to
practically solve it. The image domain Ω is then discretized into a finite set of
pixels forming a regular rectangular grid.

Let us mention here the discretization of two frequently occurring differential
operators. For the gradient ∇ we will use forward differences with Neumann
boundary conditions. In image domain dimension m = 2, this means setting

(∇+f)(x, y) =
(
(∂+
x f)(x, y), (∂+

y f)(x, y)
)

(2.33)

with
(∂+
x f)(x, y) =

(
f(x+ 1, y)− f(x, y)

)
χ(x+1,y)∈Ω,

(∂+
y f)(x, y) =

(
f(x, y + 1)− f(x, y)

)
χ(x,y+1)∈Ω.

(2.34)

The indicator function χ(x+1,y)∈Ω is defined as 1 if (x+1, y) ∈ Ω, i.e. if (x+1, y) is
part of the discretization grid, and as 0 otherwise. This means that (∂+

x f)(x, y)
is nonzero only if (x+ 1, y) ∈ Ω.

For the divergence div of functions g : Ω→ R2 we will instead use backward
differences with Dirichlet boundary conditions:

(div− g)(x, y) = (∂−x g1)(x, y) + (∂−y g2)(x, y) (2.35)

with

(∂−x g1)(x, y) = g1(x, y)χ(x+1,y)∈Ω − g1(x− 1, y)χ(x−1,y)∈Ω,

(∂−y g2)(x, y) = g2(x, y)χ(x,y+1)∈Ω − g2(x, y − 1)χ(x,y−1)∈Ω.
(2.36)

In the implementation, the g1/2 values should only be evaluated if their corre-
sponding χ-factor is 1. The above div discretization is automatically obtained
from that of ∇ by requiring the partial integration theorem to be preserved in
the discrete setting:∑

(x,y)∈Ω

〈
(∇+f)(x, y), g(x, y)

〉
=

∑
(x,y)∈Ω

f(x, y) (div− g)(x, y), (2.37)

so that div = −∇T is then the negative adjoint operator of ∇.
Ultimately, we end up with a finite-dimensional problem, a discrete form of

(2.32):
min
x∈X

max
y∈Y

D(x) + 〈Kx, y〉 − F (y). (2.38)

The spaces X and Y are now some finite dimensional vector spaces. In practice,
they will be of the form X = RN and Y = RM for some N,M ≥ 1. With the
standard bases of X and Y , the linear operator K : X → Y can be viewed as a
matrix K ∈ RM×N with entries K = (Kij)ij .

To solve the overall convex-concave min-max optimization problem (2.38),
we will utilize the fast state-of-the-art primal-dual algorithm [98, 31]. A spe-
cial case of it was first proposed in [100], and the general version subsequently
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appeared in [31]. Essentially, the idea is to iteratively apply a gradient descent
step in the primal variable x and a gradient ascent step in the dual variable
y, with subsequent applications of so called proximal operators, which act as
generalized projections onto constraint sets.

Before we proceed with the general primal-dual algorithm in Section 2.3.3,
let us first introduce the proximal operator of functions, which is used quite
extensively in the primal-dual framework.

2.3.2 The Prox-Operator

When minimizing convex functions f : X → R, local methods such as gradient
descent can be applied to arrive at an optimal solution, but only if f is differ-
entiable. If this is not the case, proximal operators can be used as a substitute
for one gradient descent step with time step τ > 0. More importantly in the
context of this thesis, they always arise as a basic computational step in the
primal-dual algorithm of Section 2.3.3.

Given a function f : X → R, its corresponding proximal operator [31], with
parameter τ > 0, is a mapping prox τ, f : X → X defined by

prox τ, f (x) = argmin
y∈X

( ‖y − x‖2
2τ

+ f(y)

)
. (2.39)

The norm ‖·‖ used here is the one derived from the scalar product on X: ‖x‖ =√
〈x, x〉. The proximal operator is well-defined for f convex and lower-semicon-

tinuous (and proper), since then a minimum always exists and is unique.
In practice, through the use of the dualization (2.8) one is often faced with

the need to evaluate the proximal operator for the convex conjugate f∗. It turns
out that this task can be reduced to instead computing the proximal operator
of f . This formula is known as the Moreau-Identity [108]:

prox τ, f∗ (x) = x− τ prox 1
τ
, f

(x
τ

)
. (2.40)

Thus, the proximal operators of f∗ and f can be easily expressed in terms of
each other.

In the special case that f is the indicator function δA of some set A ⊂ X,
the prox operator is just the Euclidean projection onto A, independently of the
time step τ :

prox τ, δA (x) = argmin
y∈A

‖y − x‖2 =: πA(x). (2.41)

2.3.3 The General Primal-Dual Algorithm

This section describes the basic primal-dual algorithm [31, “Alg. 1”] for problems
of the form (2.38).

Algorithm 1 (Basic PD). Starting values: Choose arbitrary x0 ∈ X, y0 ∈ Y ,
and set x0 = x0. Choose some time steps τ, σ > 0 with τσ < 1

‖K‖2 , where ‖K‖
is the operator norm of K : X → Y . Finally, set θ = 1.
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Iteration: Iterate until convergence for k ≥ 0:

yk+1 = proxσ, F

(
yk + σKxk

)
, (2.42)

xk+1 = prox τ,D

(
xk − τKT yk+1

)
, (2.43)

xk+1 = xk+1 + θ(xk+1 − xk). (2.44)

The algorithm converges to a saddle-point of (2.38) with asymptotic en-
ergy rate O(1/Niter), where Niter is the number of iterations. This means that
E(xk, yk) ≤ E(x∗, y∗) + C/k for some saddle-point (x∗, y∗) and some constant
C > 0. This rate is actually optimal, as one can show that no first-order algo-
rithm can achieve a better rate if it is able to solve the general class of problems
(2.38), see [31]. The iterates (xk, yk) themselves are not guaranteed to converge,
but at least the averaged sequence 1

N

∑N
k=1(xk, yk) does converge to some (as

there might be several) saddle-point of (2.38). Furthermore, every point of ac-
cumulation of (xk, yk) is also a saddle-point. In practice, convergence is always
observed.

The structure of the algorithm is very simple, which is one of the reasons
making it a popular choice for practical problems. The dual update step (2.42)
consists of two parts: The first one is a usual gradient ascent w.r.t. the bilinear
(and, of course, differentiable) part 〈y, Kx〉 of the energy. Then, at this inter-
mediate result, the proximal operator corresponding to y is computed, using the
same time step parameter σ as has been used in the gradient ascent step.

Beside xk and yk the algorithm also introduces new primal variables xk.
Essentially, doing so makes it possible to prove convergence of the overall algo-
rithm. Taking θ = 0 the algorithm would become simpler, since then xk = xk

for all k and the “bar”-copies would be eliminated, but one then has the disad-
vantage that convergence cannot be guaranteed anymore.

We note that essentially the same algorithm can be given but where the
roles of x and y are reversed:

Algorithm 2 (Basic PD, dual-bar). Iterate until convergence for k ≥ 0:

xk+1 = prox τ,D

(
xk − τKT yk

)
, (2.45)

yk+1 = proxσ, F

(
yk + σKxk+1

)
, (2.46)

yk+1 = yk+1 + θ(yk+1 − yk). (2.47)

This is derived by applying the above primal-dual Algorithm 1 to the prob-
lem (2.38) “multiplied by −1”:

min
y∈Y

max
x∈X

F (y) + 〈−KT y, x〉 −D(x). (2.48)

In the altered Algorithm 2, the “bar”-copies y are now introduced for the duals
y rather than for the primals x, and analogous convergence properties hold. In
general, one should use the version of the algorithm which results in the least
amount of overall scalar variables, which will then decrease both memory and
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computation time. In other words, if there are less primal variables x than duals
y, one should use Algorithm 1, otherwise Algorithm 2.

As for the stopping criterion, one can consider the relative primal-dual gap
(Eprim(xk) − Edual(y

k))/Eprim(xk) and stop when this is smaller than some
predefined ε > 0. Unfortunately, this is not always possible in the case that the
primal or dual energy involves hard contraints which have been dualized in the
primal-dual formulation, see Section 2.3.6. The iterates xk and yk could then
violate these hard constraints in every iteration k, resulting in infinite energy
values and thus a useless primal dual gap. In such cases, one can either just
revert to choosing a fixed number of iterations, or stop when the primal iterates
do not change significantly anymore. For the latter option, we can consider the
average change “per pixel” 1

|Ω|
∑

j |xk+1
j − xkj | (note that there may be more than

one primal variable defined for each pixel) and stop when this is less than some
small ε.

Recently, [32] gave significantly simplified proofs of convergence for the above
primal-dual algorithm. The convergence rates are also proved with better con-
stants and the algorithm was generalized to somewhat more general min-max
problems.

Though the above algorithm is quite versatile, it has the disadvantage that
one always needs an estimate of the norm ‖K‖ to be able to suitably set the time
steps τ and σ. Next, we will describe a preconditioned variant of the algorithm
which resolves this drawback.

2.3.4 The Preconditioned Primal-Dual Algorithm

To set the time steps automatically, we will use the convenient preconditioning
scheme [98] for [31]. Instead of using the same time steps τ and σ, the idea is to
set them individually adapted for each of the scalar variables xj and yi, namely
as follows:

τj =
τ0∑
i |Kij |

, σi =
σ0∑
j |Kij |

(2.49)

with some constants τ0, σ0 > 0 satisfying τ0σ0 = 1. In this thesis we slightly
generalize the original scheme [98] introducing additional multipliers τ0 and σ0,
while [98] uses τ0 = σ0 = 1. The convergence proof of [98] can be easily extended
to this case. Depending on the problem at hand, choosing τ0 appropriately (and
then σ0 = 1

τ0
) may significantly speed up the convergence compared to τ0 = 1,

in some cases even by orders of magnitude.
We combine the time steps into diagonal matrices T = diag(τj)1≤j≤N and

Σ = diag(σi)1≤i≤M . The algorithm then goes as follows:

Algorithm 3 (Preconditioned PD). Iterate until convergence for k ≥ 0:

yk+1 = prox Σ, F

(
yk + ΣKxk

)
, (2.50)

xk+1 = prox T, D

(
xk − TKT yk+1

)
, (2.51)

xk+1 = xk+1 + θ(xk+1 − xk). (2.52)
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Here the proximal operators are also extended to using individual time steps
for each scalar variable, e.g.

prox T, D (x̃) = argmin
x∈X

∑
j

(xj − x̃j)2

2τj
+ D(x). (2.53)

Note that the constants τj in the prox step (2.53) must be exactly the same
as in the linear gradient descent step for xk. This is crucial in order to have
guaranteed convergence.

For the implementation there is a quick and intuitive way of how to incor-
porate the adapted time steps. For example when updating yk in (2.50), having
computed the scalar update (Kxk)i =

∑
jKijx

k
j for each individual yki , the

corresponding time step σj is equal to σ0 divided by the sum
∑

j |Kij | of the
absolute values of the used coefficients. This can be easily computed along with
the updates (Kxk)i.

Generally, the preconditioned Algorithm 3 is always preferable to the basic
one, Algorithm 1 in Section 2.3.3. Furthermore, just as in the previous section
one can also give the analogous version of the algorithm where the “bar”-copies
are introduces for the duals y rather than for the primals, and same comments
apply:

Algorithm 4 (Preconditioned PD, dual-bar). Iterate until convergence for all
k ≥ 0:

xk+1 = prox T, D

(
xk − TKT yk

)
, (2.54)

yk+1 = prox Σ, F

(
yk + ΣKxk+1

)
, (2.55)

yk+1 = yk+1 + θ(yk+1 − yk). (2.56)

2.3.5 The Accelerated Primal-Dual Algorithm

If either D or F in (2.38) are uniformly convex, then the convergence rate
O(1/Niter) can be improved to O(1/N2

iter) by an acceleration scheme.
One says that D : X → R is uniformly convex with a constant γ > 0 if for

any x, y ∈ X it holds

D(y) ≥ D(x) + 〈a, y − x〉+
γ

2
‖y − x‖2 (2.57)

for every a ∈ ∂D(x). Intuitively, this means that D(x) has a quadratic part
and grows at least as γ

2 ‖x− x0‖2 for some x0 ∈ X.
The accelerated algorithm [31, “Alg. 2”] for D uniformly convex is the stan-

dard one, Algorithm 1, but with time steps τ, σ and the θ-parameter adapting
with iterations:
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Algorithm 5 (Accelerated PD). Iterate until convergence for k ≥ 0:

yk+1 = proxσ, F

(
yk + σkKx

k
)
, (2.58)

xk+1 = prox τ,D

(
xk − τkKT yk+1

)
, (2.59)

θk =
1√

1 + 2γτk
, τk+1 = τkθk, σk+1 = σk/θk, (2.60)

xk+1 = xk+1 + θk(x
k+1 − xk). (2.61)

The same constraints for the initial time steps apply: τ0, σ0 > 0 with τ0σ0 <
1
‖K‖2 . One can show that τk goes to 0 asymptotically as 1

γ
1
k , i.e. τk γk → 1. The

dual time steps σk = σ0τ0
τk

then go to ∞ asymptotically as γτ0σ0 k.
If instead F is uniformly convex with a constant ω, one can easily write down

an analogous accelerated algorithm by applying the above scheme to (2.48).

2.3.6 Dualization and Decoupling of Energy Terms

Having already found a convex model for a concrete vision problem at hand,
and having discretized it arriving at the form (2.38), the primal-dual algorithm
update equations from Sections 2.3.3, 2.3.4, or 2.3.5 can then be derived in a
straightforward manner. Assuming the linear updatesKxk andKT yk+1 etc. are
easily calculable, the main question is then only how feasible and quick it is
to compute the proximal operators for the functions D and F . They must
be computed in each iteration, so that the overall primal-dual algorithm can
only be efficient if the prox operators are easy to compute, with an explicit or
straightforward solution. For example, thoughD only depends on the primals x,
it may couple many individual scalar variables xj in a nontrivial way involving
convoluted or otherwise complicated expressions. In the worst case, prox τ,D
may be as hard to evaluate as the overall problem itself, making the resulting
primal-dual algorithm infeasible in practice.

Therefore, having established an initial primal-dual form (2.38) for our op-
timization problem, the next step is always to simplify the functions D and F
until their prox operators become easy to compute. This is done by means of
decoupling and dualizing of complicated energy terms, which can either appear
directly in the energy or in the form of hard constraints. The idea is to sim-
plify at the cost of introducing additional variables in the problem. The final
optimization is then performed also over these new variables. In the end, the
algorithm will still remain easy to implement since only additional energy terms
and variables are added to the problem.

Writing Hard Constraints as Energy Terms. Although in (2.38) the vari-
ables x and y can vary in the whole of the space X resp. Y , hard constraints
are still easily possible. To incorporate a hard constraint x ∈ A, the idea is
that the constrained minimization minx∈AE(x) of an energy E is equivalent to
unconstrained minimization minx(E(x) + δA(x)) of the same energy plus the
indicator function δA, defined in (2.3). Thus, a primal-dual problem

min
x∈X s.t.x∈A

max
y∈Y s.t. y∈B

D(x) + 〈Kx, y〉 − F (y) (2.62)
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with hard constraints x ∈ A and y ∈ B is equivalent to

min
x∈X

max
y∈Y

(
D(x) + δA(x)

)
+ 〈Kx, y〉 −

(
F (y) + δB(y)

)
, (2.63)

which is just the form (2.38) with different D and F .
Because of this equivalence, in the following we will only consider the treat-

ment of how to dualize a general energy term f(x).

Dualizing Primal Terms. The general idea of dualization/decoupling is to
use the property (2.8) of the convex dual. Assume that D(x) = D0(x) + f(x)
contains a (convex) term f(x) which couples many variables in a nontrivial
way, thus making the prox for D hard to compute. One then first computes
the convex dual f∗(z) of f by formula (2.6), and then replaces the occurrence
of f(x) in the energy by its dual representation f(x) = supz∈X 〈x, z〉 − f∗(z).
Thus,

min
x∈X

max
y∈Y

(
D0(x) + f(x)

)
+ 〈Kx, y〉 − F (y) (2.64)

equivalently becomes

min
x∈X

max
y∈Y

(
D0(x) + (sup

z∈X
〈x, z〉 − f∗(z))

)
+ 〈Kx, y〉 − F (y), (2.65)

or

min
x∈X

max
(y,z)∈Y×X

D0(x) +
(
〈Kx, y〉+ 〈x, z〉

)
−
(
F (y) + f∗(z)

)
. (2.66)

This is again a problem of the general form (2.38). New dual variables z have
been introduced into optimization, and the overall set of dual variables is (y, z).

The effect of the reformulation is that the prox for x is now easier to compute
as we now only need to deal with prox τ,D0

instead of prox τ,D0+f . The bilinear
term is extended from 〈Kx, y〉 to 〈Kx, y〉 + 〈x, z〉 but is still easy to handle.
Finally, the prox for the new duals (y, z) always decomposes into separately
computing the prox for the “old” duals y and the prox for the new ones z. In
fact,

(y, z) = argmin
(y,z)∈Y×X

‖y − y0‖2
2σ

+
‖z − z0‖2

2σ
+ F (y) + f∗(z) (2.67)

is equivalent to y = proxσ, F (y0) and z = proxσ, f∗ (z0). The number of addi-
tionally needed variables z is the number of real arguments of f . For example,
if we have D(x) = D0(x) + f(x2, x5), i.e. f depends only on two variables,
the dualization of f also only requires two new real variables, even though the
primal vector x may consist of thousands of individual real variables.

In practice, variable coupling often originates from linear subexpressions,
i.e. the coupling terms f have the form f(x) = g(l(x)) with some linear vectorial
mapping l : X → RL, L ≥ 1, and a convex g : RL → R. In this case, it is more
convenient to dualize w.r.t. the linear term l(x) instead of x, i.e. the idea is to
apply the above dualization to g instead of f . Thus, one first computes the dual
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g∗ of g through (2.6), and then replaces the term g(l(x)) in the energy by its
dual representation

g(l(x)) = sup
z∈RL

〈l(x), z〉 − g∗(z). (2.68)

This way,
min
x∈X

max
y∈Y

(
D0(x) + g(l(x))

)
+ 〈Kx, y〉 − F (y) (2.69)

equivalently becomes

min
x∈X

max
(y,z)∈Y×RL

D0(x) +
(
〈Kx, y〉+ 〈l(x), z〉

)
−
(
F (y) + g∗(z)

)
. (2.70)

The difference to (2.66) is that (2.70) only requires to compute the prox of the
simpler g∗ instead of (g ◦ l)∗. For example, f(x) =

√
(x1 − x2)2 + (x1 − x3)2

can be written as f(x) = g(l(x)) with l(x) = (x1 − x2, x1 − x3) ∈ R2 and
g(w) =

√
w2

1 + w2
2, and g is much easier to handle w.r.t. the prox operator

computation than f . Note that it is actually not needed to compute g∗ explicitly,
one could use the Moreau-Identity (2.40) to reduce the prox of g∗ to that of g.

This dualization technique can of course be applied several times over, sepa-
rating more and more of the individual coupling terms f out of D, each of which
should have an easy to compute prox. For instance, a hard constraint defined
through many equations can be handled by dualizing each of them individually.

Dualizing Dual Terms. The same dualization/decoupling technique can of
course be equally used for the dual terms in F in (2.38). The only difference
is that, because of the minus sign in front of F , one ends up with new primal
rather than dual variables.

Dualization for Special Cases. In the following we will give the dualizations
(2.68) for some special cases of hard constraints or coupling energy terms, which
will frequently occur in the applications in this thesis. Each case reduces to
computing the corresponding convex conjugate g∗ and can be easily verified.
Below, x ∈ Rn is a general vectorial variable of n ≥ 1 elements (not necessarily
equal to the primal variable x in (2.38)).

• Hard constraints for scalar linear expressions. Let l : X → R be linear. In
each case, t ∈ R can be a constant or one of the variables of optimization.

δl(x)=t = sup
b∈R

b (l(x)− t), (2.71)

δl(x)≤t = sup
b∈R
b≥0

b (l(x)− t), (2.72)

δl(x)≥t = sup
b∈R
b≤0

b (l(x)− t). (2.73)

• Hard constraints for vectorial linear subexpressions. Let l : Rn → Rm
with some m ≥ 1 be linear, and λ > 0 a constant. In (2.74), the vector
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t ∈ Rm can be a constant or one of the optimization variables, while in
(2.76) t ≥ 0 is assumed to be scalar. The norm ‖·‖ on Rm can be any
norm, and ‖z‖∗ = sup‖a‖≤1 〈a, z〉 denotes its dual norm.

δl(x)=t = sup
a∈Rm

〈a, l(x)− t〉, (2.74)

δ‖l(x)‖≤λ = sup
a∈Rm

〈a, l(x)〉 − λ ‖a‖∗ , (2.75)

δλ‖l(x)‖≤t = sup
a∈Rm, b∈R
‖a‖∗≤λb

〈a, l(x)〉 − bt. (2.76)

• Norms and quadratic expressions. Let l : Rn → Rm be linear, λ > 0 a
constant, and t ≥ 0 a constant or a variable of optimization.

λ ‖l(x)‖ = sup
a∈Rm
‖a‖∗≤λ

〈a, l(x)〉, (2.77)

λ ‖l(x)‖2 = sup
a∈Rm

〈a, l(x)〉 − 1

4λ
‖a‖2∗ , (2.78)

δt≥0 + λ
‖l(x)‖2

t
= sup

a∈Rm, b∈R
1

4λ
‖a‖2∗≤b

〈a, l(x)〉 − bt. (2.79)

The dualizations (2.71) and (2.74) of linear constraints are also known as
the method of “Lagrange multipliers”. These Lagrange multipliers are here the
new variables b resp. a. An alternative way to impose linear constraints in the
form of equivalent energy terms is the “augmented Lagrangian” method, which
in addition to the linear term also includes a quadratic penalization 1

2θ |l(x)− t|2
in the energy. For certain special problems, [74] shows that this can lead to a
faster convergence by a factor of 2 (smaller constant in the convergence rate),
though the asymptotic convergence rate O(1/Niter) still remains the same.
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Chapter 3

The Multilabel Problem:
Common Approaches

This first part, consisting of Chapters 3, 4, 5 and 6, will be about minimizing
energies

min
l
E(l) (3.1)

for functions l with a fixed finite range:

l : Ω→ {1, . . . , n}, n ≥ 1, (3.2)

defined over an image domain Ω ⊂ Rm, m ≥ 1. Such energies are called mul-
tiregion segmentation, image partitioning, or simply multilabel problems. The
range itself could have any structure other than (3.2), e.g. be some multidi-
mensional rectangular grid of points. The essential part is that l assumes only
finitely many values.

In the current Chapter 3 we will first give an overview over the multilabel
problem and present some established state-of-the-art approaches for the length
regularity prior. Subsequently, in the next three chapters we will present novel
convex relaxations for multilabel problems which each take a different higher-
level knowledge prior into account. Chapter 4 extends the common length regu-
larity prior to nonmetric distance functions. Chapter 5 describes how constraints
on the global geometric ordering of labels can be cast in a convex way. Finally,
Chapter 6 provides a convex relaxation for the proportion priors to achieve a
more robust and scale-invariant segmentation.

3.1 Introduction

3.1.1 The Multilabel Problem

Let a set of possible labels be given: L := {1, . . . , n} with a n ≥ 1. The linear
label enumeration is used only for the convenience of notation. The labels
themselves may have any meaning. They could carry some structure such as
being some multidimensional vectors, or denote any abstract notions or concrete
objects such as “background” or “sky”. The only requirement is that there are
finitely many labels, so that we can enumerate them.

35
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Figure 3.1: Image partitioning problem. The goal is to find a subdivision
of the image domain Ω into n subregions Ω1, . . . ,Ωn in an optimal way according
to an energy. The subregions can have any shape or consist of separate regions
(e.g. the yellow region Ω1).

The task of the multilabeling problem is to assign each point x ∈ Ω in the
image domain a certain label i ∈ L in an optimal way. That is, we look for a
labeling function l : Ω → L, which assigns each point x its corresponding label
l(x) ∈ L, minimizing some predefined energy E(l).

Another viewpoint is as an image partitioning problem. The goal here
is to decompose the image domain Ω into meaningful separate subregions,
Ω1, . . . ,Ωn ⊂ Ω. These must form a partition of the image domain:

n⋃
i=1

Ωi = Ω, Ωi ∩ Ωj = ∅ ∀i 6= j. (3.3)

In other words, each point x ∈ Ω is contained in some region Ωi, and this is
then the only region containing x, see Figure 3.1. One seeks for a partition with
a minimal energy E(Ω1, . . . ,Ωn).

The two viewpoints are entirely equivalent. Given a labeling l : Ω→ L, we
can consider the corresponding regions Ωi = l−1({i}) = {x ∈ Ω

∣∣ l(x) = i} ⊂ Ω
where each label i is assigned. They then form a partitioning of the image
domain. Conversely, each partitioning (3.3) directly corresponds to a labeling,
setting l(x) to the index i of the subregion Ωi containing x. In the following we
will mainly focus on the multilabel view of the problem.

3.1.2 Energy: Data Term and Regularizer

The energy is usually formulated as a sum of a data term and a regularizer as
in (1.2):

E(l) = Edata(l) + Ereg(l). (3.4)

The data term measures the local cost of assigning a label i at a certain point
x, while the regularizer is responsible for regularity and global consistency of
the labeling.
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Data term. For each point x ∈ Ω, one considers a specific local cost ci(x) ∈ R
of assigning a label i at this point. In other words, at each x one has a local
preference as to which labels are more likely, namely those i for which the
value ci(x) is lower. The data term is generally modelled as being pointwise,
accumulating the local costs incurred by assigning pixels to their labels:

Edata(l) =

∫
Ω
cl(x)(x) dx =

n∑
i=1

∫
Ωi

ci(x) dx. (3.5)

We assume ci ∈ L2(Ω;R) for each i to make sure the integrals in (3.5) are finite.
In computer vision applications, the costs ci specify how well a given label i
fits some observed data. They can be arbitrarily sophisticated, derived from
statistical models or complicated local matching scores.

Regularizer. The values ci(x) are typically only an estimate of which label is
locally more preferable. In real-world scenarios with noisy data, minimizing only
the data term, setting l(x) = argmini∈L ci(x) independently for all x ∈ Ω may
result in a labeling with undesired local fluctuations or violating some global
consistency constraints.

Because of this, we also want the optimal assignment to exhibit a certain
regularity, by penalizing each candidate labeling with a regularizer

Ereg(l). (3.6)

It acts as a prior on label configurations, in other words it reflects our knowledge
about which label configurations are a-priori more likely. This is where higher-
level knowledge about possible or likely labelings, depending on each application
at hand, can be accounted for.

Often one enforces a kind of local spatial coherence, where one wants neigh-
boring points to likely have the same labels. This can be achieved by preferring
labelings with regular interface boundaries ∂Ωi ∩ ∂Ωj between the partition re-
gions. For example, this can be achieved by penalizing the total interface length.
Another way is to additionally minimize the curvature of the boundaries. More
global features can additionally be taken into account, such as imposing restric-
tions on the area, shape, or relative geometric location of each region. Even
“fully global” information can be considered, such as whether a label occurs at
all anywhere in the image or whether two certain labels occur simultaneously.

3.1.3 Examples

Multilabel problems are a very important class of energies in computer vision. A
multitude of fundamental problems can be expressed in this way. A prominent
example is image segmentation [33, 76, 29, 140], which directly corresponds
to the partitioning problem. In foreground-background image segmentation the
image is to be divided into two non-overlapping parts which are homogeneous in
some predefined way. The foreground is usually an object of interest one wishes
to extract from or detect in the image, such as a ‘car’ in a street scene. In
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3D reconstruction [38], which can be seen as a specific instance of foreground-
background segmentation, the foreground is the 3D object. An extension is
multiregion image segmentation, where the image is to be decomposed into
several non-overlapping regions, one of which serves as image background.

Another common source of multilabel problems is range discretization: Star-
ting with a problem where solutions are functions with a continuous range,
constraining the range to a predefined and meaningful finite set yields a multi-
label problem. This approach is motivated by the observation that it is often
possible to derive convex formulations of the range discretized problem. Exam-
ples where this can be successfully applied include stereo reconstruction [101]
where the range is a bounded interval, and optic flow estimation [53] where the
range is a bounded set of 2D-vectors. In image applications such as comput-
ing piecewise-smooth or piecewise-constant approximations using the Mumford-
Shah functional [100], the image range can be discretized into n grayscale values,
resp. n most dominant colors.

3.1.4 Length Regularity Prior

By far the most common approach to label regularity is interface length mini-
mization (resp. interface area in the case that the image domain Ω has dimension
m = 3). This choice is popular in practical applications since it can be easily
formulated in a convex way and allows for quick optimization schemes. We will
focus on this prior in the current chapter.

The length regularizer measures the total length of all interfaces between
each pair of two labels:

Ereg(l) =
∑

1≤i<j≤n
d(i, j) Length(∂Ωi ∩ ∂Ωj). (3.7)

More precisely, by length we mean the Hm−1-measure and by ∂Ωi the essential
boundary ∂∗Ωi, see (2.25). The boundary lengths in (3.7) are weighted by a
label transition function d(i, j) ∈ R for each pair (i, j). This way it is possible
to ensure that certain labels are more likely to occur next to each other than
others. Choosing d(i, j) small favors that the labeling can locally switch from i
and j, while a large d(i, j) has the opposite effect.

For the case that there is a natural linear ordering for the labels, a simple
prior is the linear label cost: d(i, j) = λ |i− j| for some constant λ > 0. This
corresponds to the total variation regularization of the labeling function l : Ω→
{1, . . . , n}, i.e. then Ereg(l) = λTV (l).

A popular prior is the Potts model [104]. Here all label transitions are
penalized equally:

d(i, j) =

{
λ if i 6= j,

0 else
(3.8)

with a parameter λ > 0. Since each interface ∂Ωi ∩ ∂Ωj lies between exactly
two subregions, we can rewrite (3.7) equivalently as

Ereg(l) =
λ

2

n∑
i=1

Length(∂Ωi). (3.9)
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3.2 Computational Approaches

Finding an optimal labeling l is a hard computational challenge as the overall
energy is generally not convex. For some cases, good results may be obtained
by local minimization, starting from a good initialization, possibly further im-
proved by coarse-to-fine strategies commonly employed in optical flow estima-
tion. Yet, such methods cannot guarantee any form of quality of the result
and performance typically depends on data, on initialization and on the choice
of the algorithmic minimization scheme (number of levels in the coarse-to-fine
hierarchy, number of iterations per level, etc.).

In recent years, researchers have made substantial progress regarding algo-
rithms which allow to compute optimal and near-optimal solutions for certain
problem classes.

3.2.1 Discrete Approaches

In the discrete setting with a discrete domain (a grid of pixels) and range of
the solution functions, energy functionals can be formulated in the framework
of Markov random fields (MRFs).

In the case that the label space is binary, n = 2, the energy can be discretized
using a graph representation, where the nodes denote discrete pixel locations
and the edge weights encode the energy functional. Fast combinatorial graph
cut based algorithms are frequently employed to compute the minimizers. If the
energy is submodular, a global solution can be found by computing a minimum
cut [56, 19, 71]. Continuous variants of this minimum cut problem have also
been studied [118].

Among the first computational paradigms for efficiently solving multilabel
problems with n ≥ 3 labels, was the graph cut approach of Ishikawa [60]. It
is applicable in the important case of a linearly ordered label set and a convex
regularizer. For the regularizer (3.7), this case occurs when the distance function
has the form d(i, j) = f(|i− j|) with some convex function f , e.g. the linear
distance d(i, j) = λ |i− j|. The global optimum then corresponds to a cut in a
multi-layered graph which can be computed in polynomial time [60]. A different
discrete encoding scheme for this problem was also presented in [112].

For general cost functions with n ≥ 3, only approximate solutions can be
found. For instance, for the regularizer (3.7) this is the case for the Potts
prior (3.8). Boykov et al. [19] introduced the concepts of α-expansion and α-β-
swap to approximate the hard multilabel problems through a sequence of binary
problems. Other approaches for the general case include linear programming
relaxations [134, 72] and quadratic pseudo-boolean optimization [70].

3.2.2 Continuous Approaches

Continuous approaches are based on a spatially continuous representation of
the image domain. This avoids typical drawbacks of the discrete graph-based
approaches such as anisotropy and metrication errors. The multilabel problem is
addressed by means of convex relaxation. The approaches strive to find a convex
lower bound as close as possible to the original functional, and this bound can
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then be minimized globally. How good the bound is depends on the tightness
of the relaxation, i.e. how close the energy is to the convex envelope relaxation.

For particular labeling problems, this strategy leads to globally optimal so-
lutions. An example is the two-label problem, n = 2, with length regularity,
which can be solved in a globally optimal way [33], as was also the case in the
discrete setting.

Another instance where optimal solutions can be found are special multilabel
problems with n ≥ 3 as described above for the discrete setting, namely the spe-
cial case of a linearly ordered set of labels and convex regularizers. In [102, 101]
it was shown that globally optimal solutions can be achieved in this case. The
convex relaxation is constructed based on the idea of functional lifting, first
assuming a continuous labeling space and in the end discretizing it to a finite
space. This is related to the corresponding discrete approach of Ishikawa [60],
but the resulting complexity may be different from case to case. For example,
for the quadratic distance function d(i, j) = λ(i− j)2, the Ishikawa graph con-
struction [60] requires a quadratic number of edges, while the convex relaxation
approach results in a linear number of constraints.

For the general multilabel case n ≥ 3, no relaxation is known that would
lead to provably optimal solutions. However, it seems unlikely that such a relax-
ation exists at all, since the corresponding discrete formulations typically pose
NP-hard problems [19]. Relaxations of different tightness and computational ef-
ficiency have been proposed for the general length regularity prior (3.7), respec-
tively for the Potts special case (3.9). The first approaches appeared around the
same time in 2008, and include [29, 140, 76], and more recently [79, 143, 141]. In
[140] a relaxation is given specifically for the Potts model (3.9), and [76] covers
the more general case (3.7) with so called Euclidean-representable label dis-
tances d. The relaxation [29, 30] gives the tightest possible local relaxation for
a certain general class of distance functions d including the Potts model (3.9),
but this relaxation has a higher computational complexity. It was generalized
to all metric distances d in [79]. In [95] the authors give a detailed survey with
publicly available code.

3.3 Convex Relaxation

3.3.1 Indicator Function Representation

Classically, a popular way to approach partitioning problems was through lev-
elset methods [96]. In the case of two labels, the idea is to represent the
foreground boundary as the zero level set {x

∣∣ϕ(x) = 0} of a scalar function
ϕ : Ω → R defined on the image domain Ω, and this was also extended to the
multilabel case. The main disadvantage is that the resulting energies are not
convex in ϕ, so that only local optimization methods could be applied. In the
pioneering work [33] Chan et al. observed that the energy can be made convex
by using the indicator function representation instead. In fact, they showed that
the two-label segmentation problem can be solved optimally this way. This has
popularized the use of this representation and has made it an established way
to approach multilabel problems.
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Figure 3.2: Indicator function representation. The indicator function
ui : Ω → {0, 1} for each label i is defined as 1 in image points where this label
is attained, and 0 otherwise.

Instead of minimizing (3.4) directly in terms of the labeling function l : Ω→
L, we will work with the individual label indicator functions, defined as the
characteristic functions

ui = χΩi : Ω→ R, i = 1, . . . , n, (3.10)

of regions where each individual label i is attained, see Figure 3.2:

ui(x) =

{
1 if l(x) = i,

0 else.
(3.11)

Being an implicit representation, this allows for any shape or topology of the
regions Ωi, for instance Ωi may consist of multiple disjoint regions. We remark
that the name “indicator function” is also used for set indicator functions δA
from convex analysis in (2.3), but there will not be any confusion with label
indicator functions as defined here.

Since each point x ∈ Ω belongs to one and only one region Ωi, the label
indicator functions must satisfy a label-uniqueness constraint. Namely, exactly
one of the label indicator function values u1(x), . . . , un(x) is 1 while all others
are 0. We can write this as u : Ω→ ∆0 with the binary simplex

∆0 =

{
z ∈ {0, 1}n

∣∣ n∑
i=1

zi = 1

}
⊂ Rn. (3.12)

The data term (3.5) can be directly formulated in terms of ui = χΩi as

Edata(u) =

n∑
i=1

∫
Ω
ci(x)ui(x) dx. (3.13)

The regularizer in terms of u is given by the expression (3.7) indirectly through
the relation (3.10). For the Potts special case (3.9) it is possible give a simpler
and more direct expression. Namely, we can use the property (2.24) to rewrite
the boundary lengths directly in terms of the corresponding indicator functions
ui = χΩi through the use of the total variation:

Ereg(u) =
λ

2

n∑
i=1

TV (ui). (3.14)
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In order for TV to be applicable, we need to assume that u : Ω → ∆0 is a
function of bounded variation, so that the following is a natural domain set for
the indicator functions:

D0 = BV(Ω; ∆0). (3.15)

The overall energy (3.4) becomes

min
u∈D0

n∑
i=1

∫
Ω
ci(x)ui(x) dx + Ereg(u) (3.16)

with Ereg(u) in (3.7), resp. (3.14) for the Potts special case.

3.3.2 Relaxed Indicator Functions and Convex Relaxation

Disregarding the constraints on u, the energy (3.16) is already convex, since
the data term is linear and the regularizer is based on the convex total varia-
tion. However, the domain for u is not convex and thus does not allow efficient
optimization. The reason is the discrete range {0, 1} of the indicator functions.

To overcome this, the idea is to relax the range {0, 1} to the interval [0, 1].
This essentially replaces the binary simplex ∆0 in (3.12) with its convex hull

∆ =

{
z ∈ [0, 1]n

∣∣ n∑
i=1

zi = 1

}
⊂ Rn. (3.17)

Thus, we will consider the relaxed indicator functions u from the domain

D = BV(Ω; ∆). (3.18)

Later in Section 3.4.5 we will discuss how a “binary” solution of the original
problem, i.e. with values in ∆0, can be recovered from a relaxed one.

With the transition from D0 to D, the domain of definition of the energy
has become larger by including also nonbinary u. The question is now how to
properly define the energy E for these new arguments. For the extension of
the data term, the same linear expression can be chosen. Fixing also a convex
relaxation Ereg : D → R for the regularizer, the overall relaxed problem becomes

min
u∈D

n∑
i=1

∫
Ω
ci(x)ui(x) dx + Ereg(u). (3.19)

The requirements for Ereg : D → R is that it must be convex on D, and coincide
with the original values on D0:

Ereg(u) = Ereg(u) ∀u ∈ D0. (3.20)

One could also only require inequality “≤” in (3.20), but it turns out that it is
well possible to find convex relaxations satisfying (3.20) exactly.

The tighter the relaxation Ereg, i.e. the higher its values, the more likely is it
that one recovers a true solution of the original problem (3.16). There are several
classical ways to define a convex relaxation and thus extend the regularizer to
nonbinary indicator functions, which we will present next. Interestingly, they
were all proposed at about the same time at the end of 2008.
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3.4 Relaxations for the Length Prior

3.4.1 Dual Representation of the Convex Relaxation

The original regularizer for binary indicator functions u ∈ D0 for the Potts
special case (3.14) can be written in a dual representation by applying the
definition (2.12) of TV separately to each term:

Ereg(u) = sup
p∈C0

n∑
i=1

∫
Ω
〈pi, dDui〉 ∀u ∈ D0 (3.21)

with the dual constraint set

C0 =
{
p ∈ C1

c (Ω;Rm×n)
∣∣ |pi(x)| ≤ λ

2 ∀i ∈ L, x ∈ Ω
}
. (3.22)

This motivates to also start with a dual representation for finding convex
relaxations Ereg of Ereg, defined on possibly nonbinary u ∈ D:

Ereg(u) = sup
p∈C

n∑
i=1

∫
Ω
〈pi, dDui〉 ∀u ∈ D (3.23)

with a convex constraint set similar to (3.22):

C =
{
p ∈ C1

c (Ω;Rm×n)
∣∣ p(x) ∈ Cloc ∀x ∈ Ω

}
. (3.24)

Then Ereg is automatically convex. The local set Cloc ⊂ Rm×n in (3.24) must
be chosen suitably and as large as possible so that (3.20) still holds. A larger
Cloc means more dual functions pi over which the supremum in (3.23) is taken,
resulting in a larger value Ereg(u) and thus a tighter relaxation. Different ex-
isting relaxations differ only in the choice of Cloc. While the first two are only
for the Potts model (3.7), the last one applies to the general case (3.9).

3.4.2 Relaxation of Zach et al.

The most straightforward relaxation for the special case (3.9) is to take the same
set (3.22) as in the original regularizer, i.e. the local set is

Cloc =
{
p ∈ Rm×n

∣∣ |pi| ≤ λ
2 ∀i ∈ L

}
. (3.25)

This is the relaxation proposed by Zach et al. [140]. It proposes to use the
original TV -based formulation for all values u, binary or nonbinary: The relaxed
regularizer is given by the same expression (3.14) even for nonbinary u:

Ereg(u) =
λ

2

n∑
i=1

TV (ui). (3.26)

It is straightforward to project onto the set (3.25). This makes this relaxation a
popular choice in multilabel optimization problems, as it provides a good length
regularization effect and is still efficiently computable.
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3.4.3 Relaxation of Lellmann et al.

Potts Metric. In the relaxation of Lellmann et al. [76, 79], again for the
special case (3.9), one chooses the local set as

Cloc =
{
p ∈ Rm×n

∣∣ |p| ≤ λ√
2

}
. (3.27)

Here |p| =
√∑n

i=1 |pi|2 is the Frobenius-Norm of the matrix p. This corresponds
to replacing the original regularizer by the vectorial TV :

Ereg(u) =
λ√
2

∫
Ω

√√√√ n∑
i=1

|∇ui|2 dx (3.28)

(resp. its suitable extension to nonsmooth functions).
It is also easy to project onto this set, so that the resulting multilabel convex

relaxation is easy to handle. The results are typically slightly inferior than with
the Zach et al. relaxation, as in experiments the relaxed solution u tends to be
nonbinary for more points x ∈ Ω than when using (3.25), see Figure 3.3.

Euclidean Metrics. The approach also applies to a more general class of
distance functions d, namely to Euclidean ones. These are distances d such that
for each label i there is a vector ai ∈ RM , with an M ≥ 1 fixed, such that the
distance d is given by the Euclidean distance of the ai’s:

d(i, j) = |ai − aj | . (3.29)

Consider the function l̂ : Ω→ RM defined by

l̂(x) =
n∑
i=1

aiui(x). (3.30)

If a label i is assigned at the point x ∈ Ω, then only the label indicator function
ui(x) = 1 is nonzero, and we have l̂(x) = ai. For a general possibly non-binary
u, l̂(x) is some convex combination of the ai’s. The authors of [76, 79] propose
to use the convex relaxation

Ereg(u) = TV
(
l̂
)

= TV

( n∑
i=1

aiui

)
(3.31)

for the length regularizer (3.7). By the dual representation (2.12) of total vari-
ation, the local set (3.27) in the generalized case is

Cloc =
{
p ∈ Rm×n

∣∣ pi =

M∑
j=1

(ai)j qj ∀i, for a q ∈ (Rm)M with |q| ≤ 1
}
.

(3.32)
In other words, Cloc is the image of the unit ball in Rm×M under the right-mul-
tiplication by a = (a1, . . . , an) ∈ RM×n.

For example, choosing M = n and ai = λ√
2
ei with the standard basis

e1, . . . , en of Rn, the distance function d defined by (3.29) is exactly the Potts
metric (3.8), and the relaxation (3.31) becomes (3.28).
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Input Relaxation Relaxation Relaxation
(3.25) (3.27) (3.33)

Figure 3.3: Comparison of the interface length relaxations. The
values inside the circle are to be inpainted. The relaxation (3.33) yields an
almost binary labeling, while the other two are less tight and the labeling is
nonbinary over a larger region [30].

3.4.4 Relaxation of Chambolle et al.

The relaxation of Chambolle et al. [29, 99, 30] is the tightest possible relaxation
of the form (3.23). In contrast to the previous two relaxations, it also covers the
general case (3.7) and not only (3.9) or only Euclidean d’s. The local constraint
set Cloc is defined as follows:

Cloc =
{
p ∈ Rm×n

∣∣ |pj − pi| ≤ d(i, j) ∀i < j
}
. (3.33)

For the special case (3.8) this set becomes

Cloc =
{
p ∈ Rm×n

∣∣ |pj − pi| ≤ λ ∀i < j
}
. (3.34)

One can see directly that (3.34) is larger than both (3.25) and (3.27). For the
first one (3.25) this follows from the estimate

|pj − pi| ≤ |pj |+ |pi| ≤
λ

2
+
λ

2
= λ. (3.35)

For the second (3.27), it is implied by the Cauchy-Schwarz-inequality

|pj − pi| ≤ |pj | · 1 + |pi| · 1 ≤
√
|pj |2 + |pi|2

√
12 + 12 ≤ |p|

√
2 ≤ λ√

2

√
2 = λ.

(3.36)
The optimization with this relaxation provides the best results of the three

considered relaxations, yielding relaxed solutions u which are binary almost
everywhere. This is demonstrated in the comparison Figure 3.3. Here the
labeling values are prescribed outside of the gray circle area, while they are
missing inside and are to be inpainted so that the interface length between the
three regions is minimal. While the three relaxations yield solutions which are
nonbinary near the center resulting in a mixture of the colors, the nonbinary
region is minimal for the relaxation (3.34). The downside is that it is hard to
project onto (3.33) or (3.34), as there is no simple formula. Since the projection
must be computed in every iteration of the primal-dual algorithm, this results
in a high computational demand for the relaxation.
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Let us briefly explain how the constraints (3.33) are derived. Every binary
u ∈ D0 is piecewise constant, so that its distributional gradient Du consists only
of the jump part: Du = νu ⊗ (u+ − u−)Hm−1 Su, respectively for each i:

Dui = νu(ui
+ − ui−)Hm−1 Su. (3.37)

Furthermore, the values of u are constrained to ∆0, so that for points x ∈ Su
on the jump set we have u−(x) = el−(x) and u+(x) = el+(x) for some indices
l−(x), l+(x) ∈ L, with the standard basis e1, . . . , en of Rn. Thus, the measure
density in (3.37) is nonzero for exactly two i’s:

νu(x)
(
ui

+(x)− ui−(x)
)

=


νu(x) if i = l+(x),

−νu(x) if i = l−(x),

0 else.
(3.38)

Plugging this into (3.23), this means

Ereg(u) = sup
p∈C

∫
Su

〈
pl+(x)(x)− pl−(x)(x), νu(x)

〉
dHm−1(x). (3.39)

In order to fulfill (3.20), this must be at least less than or equal to the original
regularizer value (3.7) on u:∫

Su

〈
pl+(x)(x)− pl−(x)(x), νu(x)

〉
dHm−1(x)

≤
∫
Su

d
(
l−(x), l+(x)

)
dHm−1(x) = Ereg(u)

(3.40)

for every p ∈ C. Demanding the inequality (3.40) pointwise at all x ∈ Su on the
jump set then leads to (3.33).

3.4.5 Optimality

The relaxed overall problem (3.19) is convex and thus amenable to efficient
optimization. Having found a relaxed minimizer u∗ ∈ D, the crucial question is
how it is related to minimizers of the original problem (3.16).

In the case that the computed solution u∗ is binary, i.e. u∗ ∈ D0, the orig-
inal problem is solved optimally. This is because on D0 the relaxed energy E
coincides with the original one due to (3.20). Indeed, then E(u∗) = E(u∗) ≤
E(u) = E(u) for all u ∈ D0, so that u∗ is optimal for E.

A-posteriori Energy Bounds. However, it might happen that u∗ ∈ D is
actually nonbinary at some points x ∈ Ω. Then one needs to apply a suitable
binarization scheme to find an approximate solution ubin ∈ D0, projecting the
values u∗(x) ∈ ∆ back to ∆0 at each x. A common approach is to take the label
with the largest indicator function value at each pixel:

ubin,i(x) = χi=i(x) with i(x) = argmax
i∈L

ui(x). (3.41)
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Independently of the binarization choice one can always assess the quality of
the solution candidate ubin, by comparing its energy E(ubin) with the optimal
energy E(u∗bin) of an unknown actual minimizer u∗bin ∈ D0 of E. This can be
achieved through the energy bound (1.6):

E(u∗) ≤ E(u∗bin) ≤ E(ubin), (3.42)

where both the left and right hand sides are explicitly computable having ob-
tained u∗ and then ubin from u∗.

A-priori Energy Bounds. A disadvantage of (3.42) is its dependency on the
solution u∗. Though these bounds are usually very tight in practice, no optimal-
ity guarantees can be given ahead of actually computing a solution. However,
for the multilabel problem with length regularization one can also prove a-priori
bounds, provided that one constructs the solution candidate ubin ∈ D0 through
a special probabilistic binarization scheme. This means that the binarization
process in order to arrive from ubin to u∗bin consists of infinitely many consec-
utive steps, each involving a random decision as to which step to take next.
Repetition of this random process may well lead to different binarizations u∗bin.

In [78] the following energy bound is shown:

E(ubin) ≤ CE(u∗bin) (3.43)

where C ≥ 1 depends only on the used regularizer relaxation Ereg and not on
the data term values ci. For example, for the relaxation in Section 3.4.3 one
can prove (3.43) with C = 2 [78]. The bound (3.43) is a probabilistic one, just
as the binarization process itself. This means that the bound (3.43) is satisfied
almost surely, i.e. for almost all outcomes u∗bin of the probabilistic binarization.

Similar a-priori bounds also exist for the MRF domain formulation of the
multilabel problem, i.e. when the multilabel energy is defined on a discretized
pixel grid and the regularizer measures the length in the “Manhattan” l1-metric.
Bounds with compatible constants as in [78] can then be proved for a number
of discrete optimization approaches, for instance for the graph cuts based α-
expansion [19] and for Linear Programming (LP) relaxation [66].

3.5 Implementation

In the following we will give some implementation details for the multilabel
problem with length regularity (3.19).

3.5.1 Discretization

The continuous image domain Ω is discretized into a finite rectangular pixel grid,
which we again denote by Ω. For the corresponding discretization of the gradient
D we use forward differences with Neumann boundary conditions, writing ∇+

for the resulting discretized operator. The divergence div is then discretized
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such that it is the negative adjoint for ∇+, i.e. using backward differences with
Dirichlet conditions div− as in (2.35). The discretized energy (3.19) becomes:

min
u∈Dd

max
p∈Cd

∑
x∈Ω

n∑
i=1

ci(x)ui(x) +
〈
pi(x), ∇+ui(x)

〉
. (3.44)

The set D of relaxed indicator functions (3.18) is discretized to

Dd =
{
u : Ω→ Rn

∣∣ui(x) ∈ [0, 1] ∀x ∈ Ω, i ∈ L,
n∑
i=1

ui(x) = 1 ∀x ∈ Ω
}
.

(3.45)
The constraint set C for the duals (3.24) becomes

Cd =
{
p : Ω→ Rm×n

∣∣ p(x) ∈ Cloc ∀x ∈ Ω
}
. (3.46)

The local set Cloc ⊂ Rm×n depends on the used relaxation for the length regu-
larizer, and is one of (3.25), (3.27), or (3.33).

3.5.2 The Primal-Dual Algorithm

We use the preconditioned primal-dual Algorithm 3 to solve the min-max prob-
lem (3.44). The functions D and F in the general energy form (2.38) are in our
case hard constraints together with the linear data term:

D(u) = δDd(u) +
∑
x∈Ω

n∑
i=1

ci(x)ui(x) and F (p) = δCd(p). (3.47)

The corresponding proximal operators are essentially projections onto the con-
straint sets:

prox τ,D (û) = πDd(û− τc) and proxσ, F (p̂) = πCd(p̂). (3.48)

For the primal prox this follows due to the linearity of the data term:

prox τ,D (û) = argmin
u∈Dd

∑
x∈Ω

n∑
i=1

(ui(x)− ûi(x))2

2τ
+
∑
x∈Ω

n∑
i=1

ci(x)ui(x)

= argmin
u∈Dd

∑
x∈Ω

n∑
i=1

(
ui(x)−

(
ûi(x)− τci(x)

))2

2τ
.

(3.49)

To compute the adaptive time steps (2.49), observe that in the bilinear product
of (3.44) the factor corresponding to the dual scalar pi(x)j (the j-th compo-
nent of the vector pi(x) ∈ Rm) is ∂+

xjui(x), consisting of at most 2 terms with
coefficients ±1 according to (2.34). Conversely, the factor corresponding to the
primal scalar u(x) is −(div− p)(x), having at most 2m terms with coefficients
±1. Thus, we can set

τu =
τ0

2m
and σp =

σ0

2
. (3.50)
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3.5.3 Projection for u

For the primal projection, one needs to project the values u(x) = (ui(x))1≤i≤n ∈
Rn onto the simplex ∆ in (3.17), independently for each x ∈ Ω. To this end,
one can use the simple and explicit algorithm [84], which takes at most n steps.
The direct projection is preferable for small numbers n of labels, say n ≤ 8 or
n ≤ 16. However, it is not parallelizable and requires many memory accesses, so
that the linear projection run time becomes suboptimal when employing GPUs
for a massively parallel computation of the solution u.

A different way to enforce the simplex constraint is through dualization,
which is a better choice for GPU parallelization when the number of labels is
high. In the primal constraint set (3.45), we can dualize the sum constraint
using the relation (2.71) (i.e. by Lagrange multipliers): Introducing a new dual
variable µ(x) ∈ R at each pixel x ∈ Ω and adding a new energy term according
to (2.71), we get the following equivalent formulation of (3.44):

min
u∈D0

d

max
p∈Cd, µ

∑
x∈Ω

n∑
i=1

(
ci(x)u(x) + 〈pi(x),∇+ui(x)〉

)
+
∑
x∈Ω

µ(x)

( n∑
i=1

ui(x)−1

)
.

(3.51)
The constraint set (3.44) for u simplifies to

D0
d =

{
u : Ω→ Rn

∣∣ui(x) ∈ [0, 1] ∀x ∈ Ω, i ∈ L
}

(3.52)

and is straightforward to project onto as all constraints are independent of
each other. For the new dual variable µ there are no hard constraints. The
corresponding function Fµ in (2.38) is linear Fµ(µ) = −∑x∈Ω µ(x), so that the
corresponding prox is trivial to compute.

The adaptive primal time step for u, which is now a bit different due to the
altered bilinear term, and the adaptive dual time step for µ are

τu =
τ0

2m+ 1
and σµ =

σ0

n
, (3.53)

while the dual time step for p is still as in (3.50).

3.5.4 Projection for p

The constraints in (3.46) are pointwise, thus the projection for p decomposes
into many independent ones: For each x ∈ Ω we need to project p(x) ∈ Rm×n
onto the local set Cloc. The concrete implementation depends on Cloc, i.e. the
employed relaxation of the length regularization term.

Relaxation (3.25) of Zach et al. The relaxation of Section 3.4.2 is the most
straightforward and quick to implement. The projection of a p ∈ Rm×n = (Rm)n

onto (3.25) is computed by clipping the absolute value for each i:

πCloc(p) = p̂, with p̂i =
pi

max
(
1, |pi| /(λ/2)

) ∀i. (3.54)
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Relaxation (3.27) of Lellmann et al. This relaxation is also easy to im-
plement, although the projection is slightly more costly since the constraint in
(3.27) couples all variables p1, . . . , pn:

πCloc(p) =
p

max
(
1, |p| /(λ/

√
2)
) . (3.55)

Relaxation (3.33) of Chambolle et al. Due to the quadratically many cou-
pling constraints, there is no simple explicit projection formula for the set (3.33).
Initially, [29] proposed to use Dijkstra’s iterative algorithm. However, it gives
only an approximation of the projection, and an acceptable accuracy is achieved
only after a rather high number of iterations (commonly 100 or higher). In [81]
the authors showed that such an approximate projection actually alters the
initial multilabel problem, and proposed to enforce the constraints exactly by
using additional variables in a Douglas-Rachford splitting approach.

Here we present a different approach to exactly enforce the constraints by
using the dualization techniques of Section 2.3.6. The idea is to write them
equivalently in the form of additional energy terms through the dualization
(2.75). Thus, we introduce new primal variables aij(x) ∈ Rm for each x ∈ Ω
and each pair i, j with 1 ≤ i < j ≤ n, and write the hard constraints equivalently
by adding the terms

inf
aij :Ω→Rm

∑
x∈Ω

∑
1≤i<j≤n

〈
− aij(x), pj(x)− pi(x)

〉
+ d(i, j) |aij(x)| (3.56)

to the energy (3.44), or respectively (3.51). Overall, the energy becomes

min
u∈D0

d, a
max
p, µ

∑
x∈Ω

n∑
i=1

ci(x)u(x) +
〈
pi(x), ∇+ui(x)

〉
+
∑
x∈Ω

µ(x)

( n∑
i=1

ui(x)− 1

)
(3.57)

+
∑
x∈Ω

∑
1≤i<j≤n

〈
− aij(x), pj(x)− pi(x)

〉
+ d(i, j) |aij(x)| .

The second term with the dual µ is only to be included if one uses the dualization
approach (3.51) for the simplex constraint on u, otherwise this term and µ are
omitted from the optimization and u is optimized over the original set (3.45).

There are now no constraints on the dual p, i.e. p(x) ∈ Rm×n is allowed
to vary freely for each x ∈ Ω, and the corresponding proximal operator can be
omitted. The prox for a decomposes into independent prox operators for each
aij(x), which are given by a soft-thresholding operation:

prox τa, d(i,j)|·| (a) = amax
(
0, 1− τ d(i, j)/ |a|

)
. (3.58)

The adaptive time steps for the primal a and the dual p, which for p are now
different from (3.50), are

τa =
τ0

2
and σp =

σ0

n+ 1
. (3.59)
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Since there are quadratically many primals aij , it is better to use the precondi-
tioned primal-dual Algorithm 4 with “bar”-copies for the duals.

Overall, we see that the tight relaxation (3.33) leads to a quadratic complex-
ity in terms of memory, and also of computation time. This is also the case for
the special case (3.34). Recently, [143, 141] proposed an alternative way to solve
the Potts model with this tight relaxation. Essentially, the idea is to use the
lightweight constraints of Section 3.4.2 everywhere, and switch to the pairwise
ones (3.34) only in those pixels in which the labeling potentially has a triple
junction. This is done by solving a sequence of multilabel problems, checking
after each subproblem which pixels need to be switched to the pairwise relax-
ation. The advantage of this method is that it typically requires less memory
and run time than the full dualization described above. However, there is no
guarantee as to how many pixels will need to be changed to the more costly
relaxation, and also how many overall steps are needed.
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Chapter 4

Multilabel Segmentation with
Nonmetric Priors

In this chapter we will consider the first of the three multilabel priors, namely
the extension of the length regularization to general nonmetric distance func-
tions. This chapter is based on joint work with Claudia Nieuwenhuis and Daniel
Cremers [125].

4.1 Introduction

4.1.1 Nonmetric Priors in Image Segmentation

In image segmentation the task is to divide the image into a set of non-overlap-
ping regions, which are homogeneous in a specific way. Respective algorithms
usually define color models for each object or region, e.g. by estimating proba-
bility distributions in the color space. Adding prior constraints such as minimal
boundary or curvature of the segmented objects, impressive results can be ob-
tained. Yet, for a large number of objects additional information is indispens-
able to resolve the ambiguity between objects of similar or mixed colors. For
example, cows, sheep and horses all contain the colors white, black and brown.
Depending on the color distributions, this often leads to mixed animals, having
e.g. ’cow’ labeled bodies and ‘sheep’ labeled heads. To avoid such problems,
label transitions can be punished depending on the probability of co-occurrence
of two different objects next to each other. This, however, in general leads to
nonmetric arbitrary label distance functions, which cannot be handled by com-
mon algorithms such as α-expansion [19] or primal dual schemes [29, 79], which
assume metrical distance functions.

Nonmetric priors are encountered in many practical problems, since the tri-
angle inequality is usually not preserved and infinite distances appear between
entirely unrelated objects. For example, while sheep and tigers are both fre-
quently encountered in grass, nevertheless they usually do not appear next to
each other. A challenge which has largely been neglected is to devise algorithms
which allow to impose such nonmetric distance priors in multilabel optimization
to be able to apply any learned co-occurrence relations.

53
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4.1.2 Related Work

For an overview of common discrete and continuous approaches for the special
case of metric distance functions we refer to the general discussion in Section 3.2.

As for the general nonmetric case, in [76] it was shown how metric approxi-
mations to nonmetric distance functions can be obtained. In practice, however,
these approximations can be arbitrarily far from the original distance function,
e.g. in the case of learned distance functions. Guaranteed integrality gaps be-
tween the relaxed and the integer solutions for different approximations of the
labeling problem have been proven by Chekuri et al. [36].

In the specific field of multilabel segmentation, nonmetric distance functions
have been introduced before. Geodesic distances have been formulated by Bai et
al. [8]. Co-occurrence probabilities, which penalize the simultaneous appearance
of label sets within an image and thus implicitly influence neighboring labels,
have been modeled by Ladicky et al. [75].

Discrete Nonmetric Labeling. Most closely related to our approach is the
approach by Chekuri et al. [36] for handling general nonmetric distance functions
in the MRF domain. It is able to handle arbitrary label distance functions

d : {1, . . . , n}2 → R (4.1)

where n ≥ 1 is the number of labels. In particular, neither symmetry nor the
triangle inequality are assumed on the label distances. The distance d(i, j) gives
the penalization if the multilabel assignment changes from label i to label j.

In the discrete case of MRF energies defined on a graph (V,E), it gives
an LP-relaxation for the general potentials of second order. The regularizer is
defined separately on each edge of the graph and gives a penalization if the
labeling u : V → L := {1, . . . , n} is different on the two endpoints of the edge:

R(u) =
∑

(a,b)∈E

d(u(a), u(b)) . (4.2)

For each label i, a label indicator function ui(a) ∈ {0, 1} is introduced, with
ui(a) = 1 if the label i is set in pixel a and ui(a) = 0 otherwise. The regularizer
part of the LP-relaxation in [36] is

R(u) = inf
uij≥0

∑
(a,b)∈E

∑
i,j∈L

d(i, j)uij(a, b) (4.3)

where the new variables uij(a, b) are constrained by∑
j

uij(a, b) = ui(a) ∀i ∈ L,
∑
i

uij(a, b) = uj(b) ∀j ∈ L.
(4.4)

However, because of the MRF domain the regularizer (4.3) is defined directly
on the underlying pixel grid. Therefore, the interface length between two label
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regions is measured in the l1- instead of the l2-norm leading to grid bias, i.e. grid
aligned interfaces between labels are favored.

In contrast, in the continuous setting, variational multilabel approaches have
so far been limited tometric distance measures, leading to crude approximations
of the actual label distances.

4.1.3 Contributions

In this chapter, we present a novel spatially continuous approach to the multil-
abel problem, which allows for arbitrary label distances. We formulate an effi-
cient primal-dual algorithm and compare results to previous approaches, which
are restricted to metric label distances, on the MSRC segmentation benchmark.

More specifically, our contributions are as follows:

• We propose a novel regularizer for multilabel optimization which can han-
dle arbitrary explicitly specified label distances.

• The regularizer is spatially continuous and therefore is rotationally invari-
ant, avoiding the grid bias.

• The model is easy to implement and the results are comparable and often
superior to the metric and grid based approaches.

4.2 Continuous Multilabel Optimization with Non-
metric Priors

We consider the multilabel problem (3.16) with n ≥ 1 labels and with the general
length regularizer in (3.7). It measures the total length of all label interfaces
weighted by the distances d(i, j) of the corresponding labels i and j at the two
interface sides. As discussed in Section 3.3.2, the original multilabel problem
over binary-only labelings from the set D0 in (3.15) is nonconvex and therefore
very hard to optimize. For efficient optimization we need to revert to convex
relaxation, replacing the binary constraints ui(x) ∈ {0, 1} with ui(x) ∈ [0, 1]
and arriving at the relaxed constraint set D in (3.18) for u.

Thus, our goal is to solve the relaxed multilabel problem (3.19), i.e.

min
u∈D

n∑
i=1

∫
Ω
ci(x)ui(x) dx + R(u), (4.5)

with a suitable convex regularizer R which acts as a convexification of the orig-
inal length regularizer Ereg in (3.7). Ideally, we want to find a R which can
handle arbitrary nonmetric distance functions d, i.e. so that it coincides with
Ereg on binary labelings u according to (3.20). In the following, we propose a
definition of such a relaxation and show in Theorem 4.1 that it indeed satisfies
this requirement.
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4.2.1 The Novel Regularizer

We propose the following regularizer:

R(u) = sup
(p,q)∈C

n∑
i=1

∫
Ω

〈
pi, dDui

〉
+

∫
Ω
qiui dx (4.6)

with the convex set

C =
{

(p, q) : Ω→ (Rm)n × Rn
∣∣ |pj(x)− pi(x)|+ qi(x) ≤ d(i, j) ∀x, i, j

}
.

(4.7)
The dual variables consist of n vector fields p1, . . . , pn and n scalar fields q1, . . . , qn,
corresponding to the n label indicator functions u1, . . . , un. The distance d may
be arbitrary. In particular we do not require it to be a metric. As usual,
the distance measure notion implies symmetry d(i, j) = d(j, i), nonnegativity
d(i, j) ≥ 0, and reflexivity d(i, i) = 0, for all i, j. These are the only conditions
we impose on d.

4.2.2 Motivation for the Definition

Introducing Lagrange multipliers vi(a, b), wj(a, b) ∈ R for the constraints (4.4),
the expression (4.3) can be written as

R(u) = inf
uij≥0

∑
(a,b)∈E

∑
i,j∈L

d(i, j)uij(a, b)

+ sup
v

∑
i∈L

vi(a, b)
(
ui(a)−

∑
j

uij(a, b)
)

+ sup
w

∑
j∈L

wj(a, b)
(
uj(a)−

∑
i

uij(a, b)
)
.

(4.8)

Evaluating the infimum over uij , we get

R(u) = sup
v,w

∑
(a,b)∈E

( ∑
i

vi(a, b)ui(a) +
∑
j

wj(a, b)uj(b)

)
(4.9)

with v, w such that

vi(a, b) + wj(a, b) ≤ d(i, j) ∀i, j. (4.10)

Writing p̂i(a, b) := wi(a, b) and q̂i(a, b) := vi(a, b) + wi(a, b), so that vi(a, b) =
q̂i(a, b)− p̂i(a, b) and wj(a, b) = p̂j(a, b), (4.9) becomes

R(u) = sup
p̂,q̂

∑
(a,b)∈E

∑
i

(
p̂i(a, b)

(
ui(b)− ui(a)

)
+ q̂i(a, b)ui(a)

)
(4.11)

with the constraints(
p̂j(a, b)− p̂i(a, b)

)
+ q̂i(a, b) ≤ d(i, j) ∀i, j. (4.12)
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This expression is already very similar to the proposed one (4.6). We can replace
the sum over the edges in (4.11) by the sum over each vertex a ∈ V , considering
its right and upper neighbors bh and bv, respectively:

R(u) = sup
p̂,q̂

∑
a∈V

∑
i

((
p̂i(a, bh)

p̂i(a, bv)

)(
ui(bh)− ui(a)

ui(bv)− ui(a)

)

+
(
q̂i(a, bh) + q̂i(a, bv)

)
ui(a)

)
.

(4.13)

Note that the vectorial expression in ui can be regarded as the discretization of
the gradient Dui at a ∈ V . The crucial step to arrive at (4.6) is now to define

pi(a) :=

(
p̂i(a, bh)

p̂i(a, bv)

)
and qi(a) := q̂i(a, bh) + q̂i(a, bv) (4.14)

and to replace the two constraints (4.12) for b = bh and b = bv by one:

|pj(a)− pi(a)|+ qi(a) ≤ d(i, j) ∀i, j. (4.15)

4.2.3 Properties of the Regularizer

We prove the following main theorem of this chapter. It shows that while the
constraints (4.15) are not equivalent to (4.12) they give rise to a rotationally
invariant regularizer having the desired penalization properties.

Theorem 4.1. Let u = eiχA + ejχĀ with a subset A ⊂ Ω and some fixed
i, j ∈ {1, . . . , n}. Then

R(u) = d(i, j) Per(A; Ω) (4.16)

where Per(A; Ω) = TV (χA) is the perimeter of A in Ω.

Proof. See appendix Section 4.6.

In other words, a labeling change from label i to label j will be penalized
by the label distance d(i, j) weighted by the length of the interface between the
regions where these labels are attained. Furthermore, the regularizer R(u) has
the favorable property of being convex, rendering global optimization possible.

Proposition 4.2. R(u) is convex.

Proof. The inequality for the convexity property can be easily checked directly
similar to (2.7).

4.2.4 Special Case: Regularizer for Metrics

For the special case qi(x) ≡ 0, the proposed regularizer reduces to the known
relaxation (3.33) for metric distances d, namely

Rmetric(u) = sup
p∈Cmetric

n∑
i=1

∫
Ω

〈
pi, dDui

〉
(4.17)
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with the convex set

Cmetric =
{
p : Ω→ (Rm)n

∣∣ |pj(x)− pi(x)| ≤ d(i, j) ∀x, i, j
}
. (4.18)

Note that Rmetric is still applicable also for nonmetric distances d. In that case,
due to the definition of the set Cmetric it will implicitly work with a “truncated”
version of d, namely the metric

d̂(i, j) := sup
p∈Rn: |pl−pk|≤d(k,l) ∀k,l

|pj − pi| . (4.19)

Lellmann et al. [79] proposed a regularizer in the continuous domain for
metric distances d only, and showed in Proposition 3.1 of [79] that d must
necessarily be a metric if the regularizer R satisfies certain simple conditions.
Since our proposed regularizer (4.6) can handle arbitrary nonmetric distances
by Theorem 4.1, it is interesting to see which of these conditions are not satisfied
in our case. It turns out to be only the second condition (P2) which states that
the regularizer must be zero for any constant u : Ω→ Rn. In fact, we have the
following result:

Proposition 4.3. Let u : Ω → Rn be constant, ui(x) = zi for all i and x ∈ Ω
with some z ∈ Rn. Then R(u) = 0 if zi ≥ 0 for all i, and R(u) =∞ otherwise.

Proof. See appendix Section 4.6.

Because in the optimization we have ui(x) ∈ {0, 1} (respectively ui(x) ∈
[0, 1] after relaxation) the proposed regularizer is zero for any constant u which
represents a valid labeling. Thus, dropping the condition (P2) of [79] for non-
meaningful labelings allows us to handle arbitrary distances, and not only the
metric ones.

Recently, [143, 141], which appeared at around the same time as our original
work [125] on which this chapter is based, introduced another kind of convex
relaxation based on a “discrete-continuous” viewpoint of the image domain. As
this relaxation is rather involved thus not allowing an immediate intuitive in-
terpretation, it would be interesting to investigate the relation to our relaxation
and possible advantages and drawbacks as future work.

4.3 Implementation

After image domain discretization, the overall optimization problem (4.5) with
(4.6) discretizes as

min
u∈Dd

max
p∈Cd

∑
x∈Ω

n∑
i=1

ci(x)ui(x) +
〈
pi(x), ∇+ui(x)

〉
+ qi(x)ui(x) (4.20)

with the primal constraint set Dd given by (3.45) as already in Chapter 3. For
the duals p, q, the discretized constraint set Cd is given by the same expression
(4.7):

Cd =
{

(p, q) : Ω→ (Rm)n × Rn
∣∣ |pj(x)− pi(x)|+ qi(x) ≤ d(i, j) ∀x, i, j

}
.

(4.21)
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We solve the overall optimization problem (4.20) using the general primal-dual
Algorithm 4. For the projection on the primal set Dd the same strategies apply
as described in Section 3.5.3, i.e. either using a direct projection formula or
using Lagrange multipliers for the sum constraint. In this chapter we use the
latter variant.

For the dual constraint set Cd, we utilize a similar dualization approach as
described for the metric case (3.56). The individual constraints for each pair
i, j are first rewritten as

|pj(x)− pi(x)| ≤ d(i, j)− qi(x) (4.22)

and then dualized using the relation (2.76) in the form of additional energy
terms:

inf
(a,b)∈A

∑
x∈Ω

∑
1≤i<j≤n

(〈
− aij(x), pj(x)− pi(x)

〉
− bij(x)qi(x) + d(i, j)bij(x)

)
.

(4.23)

This introduces new primal variables aij(x) ∈ Rm, bij(x) ∈ R for all x ∈ Ω and
all pairs i < j, constrained to the set

A =
{

(a, b) : Ω→ (Rm × R)n×n
∣∣ |aij(x)| ≤ bij(x) ∀x ∈ Ω, 1 ≤ i < j ≤ n

}
.

(4.24)
Overall, the final energy becomes

min
u∈D0

d, (a,b)∈A
max

(p,q), µ

∑
x∈Ω

n∑
i=1

ci(x)u(x) +
〈
pi(x), ∇+ui(x)

〉
+ qi(x)ui(x)

+
∑
x∈Ω

µ(x)

( n∑
i=1

ui(x)− 1

)
(4.25)

+
∑
x∈Ω

∑
1≤i<j≤n

(〈
− aij(x), pj(x)− pi(x)

〉
− bij(x)qi(x) + d(i, j)bij(x)

)
with the reduced primal constraint set D0

d in (3.52) and the set A in (4.24).
The duals p, q now do not have any constraints. The Lagrange multipliers
µ(x) ∈ R are also unconstrained. The proximal operator for the additional
primals a, b is essentially a projection onto A, which decomposes into simple
pointwise projections.

To implement the discrete model [36] as described in Section 4.1.2 we used
the same general primal-dual algorithm, based on the formulation (4.8) of the
regularizer.

4.4 Experimental Results

We used 5000 iterations for each experiment after which the solutions become
visually stable. We used a parallel CUDA implementation on NVIDIA GTX 480.
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Input Discrete [36] Continuous [100] Proposed, same
(l1 lengths) (l2 lengths) as with [100]

Figure 4.1: Piecewise smooth approximations. Although [36] can handle
the nonmetric label distance function induced by the Mumford-Shah functional,
it favors grid aligned edges producing block artifacts. In contrast, the proposed
approach is based in the continuous setting and produces results visually indis-
tinguishable from [100]. While the nonmetric is implicit in [100], we can specify
any nonmetric in a direct way. First and third rows: A piecewise smooth ap-
proximation. Second and fourth rows: A piecewise constant approximation.

Usual run times for 320× 240 images and 21 labels are around 70 seconds. We
observed that the computed relaxed solutions u are binary almost everywhere
except at region boundaries, with more or less sharp transitions. We binarize
the result at each pixel x by taking the label i with the maximal value ui(x),
as in (3.41).

4.4.1 Piecewise Smooth Mumford-Shah Functional

First we demonstrate the application of our approach on the celebrated Mum-
ford-Shah functional. In the continuous domain it is given by

E(u,K) =

∫
Ω

(u− f)2 dx + α

∫
Ω\K
|∇u|2 dx + νHm−1(K). (4.26)

Given a possibly noisy input image f : Ω → R, this yields piecewise smooth
approximations u : Ω→ R of f . The function u will be smooth, except possibly
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Noisy input Proposed, Approximation, Truncated linear
exact distances d by metric (4.17) metric (3.33)

Figure 4.2: Nonmetric versus metric approaches. From left to right:
A noisy input image. Piecewise smooth approximation using our approach by
specifying the nonmetric Mumford-Shah label distances. Ignoring the nonmetric
character of the distance function and treating it as a metric by (4.17) effectively
imposes a “truncated linear” metric, which leads to staircasing effects. This is
further confirmed by solving for this metric explicitly, plugging (4.29) into (3.33).

for a one-dimensional edge set K where jumps occur. The parameter ν controls
the length of the jump set K. Bigger values of ν lead to a smaller jump set,
i.e. the solution will be smooth on wider subregions of Ω. We will discuss this
functional in detail and in the general setting of a vectorial u in Chapter 10.

Discretizing the range [0, 1] of u into n levels, this leads to a multilabel
problem with the well-known truncated quadratic label distances:

dMS(i, j) = min
(
ν, α

(i−j
n

)2) ∀ 1 ≤ i, j ≤ n. (4.27)

This distance function is not a metric when ν > 2α
n2 . For example,

dMS(0, 2) = min(ν, 4α
n2 ) > 2 min(ν, α

n2 ) = dMS(0, 1) + dMS(1, 2). (4.28)

Therefore, our approach applies naturally here. Some results for different
parameters ν and α are shown in Figure 4.1. As expected, our approach pro-
duces visually the same results as Pock et al. [100] (which handles exclusively the
Mumford-Shah model) since both work in the continuous setting. While [100]
uses advanced tools such as functional lifting to arrive at the convex relaxation,
the proposed approach is more basic as it specifies the label distances explicitly.
The discrete grid based approach [36] can also handle the distances (4.27) but
measures the interface length in the l1-norm. As seen in Figure 4.1, our model
evidently visually improves over [36], eliminating its block artifacts.

The experiment in Figure 4.2 shows the importance of the ability of the
proposed approach to handle nonmetric distances exactly. Trying to solve the
Mumford-Shah problem using the metric approximation (4.17) effectively im-
poses the truncated linear prior instead of the truncated quadratic one, which
leads to staircasing effects. In fact, one can easily show that the truncated
metric in (4.19) is given by

d̂MS(i, j) = min
(
ν, α |i−j|

n2

)
. (4.29)
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Figure 4.3: Label distance matrix for the MSRC database in Sec-
tion 4.4.2. The distance function is estimated on the training set and is an
example of a nonmetric. The first row and column are the color coded labels
and the other entries depict the values d(i, j) with 0 as black and 10 as white.

4.4.2 MSRC Segmentation Benchmark

To evaluate the proposed segmentation algorithm we apply it to the task of
object segmentation and recognition on the MSRC benchmark. This benchmark
comprises around 600 images which contain 23 different labels such as ‘cow’,
‘book’, ‘building’ or ‘grass’. To conduct experiments on this benchmark, we
follow Ladicky et al. [75] and divide the image set randomly into 60% training
images and 40% test images.

The label distance matrix is learned on the training set. For each pair of
labels (i, j), i < j, we compute the relative frequency that i and j are neighbors
in the following way. Let Aij and Bij denote the number of pairs of pixels where
labels i and j are direct or diagonal neighbors, respectively:

Aij := #
{

(x, y) ∈ Ω× Ω
∣∣ l(x) = i, l(y) = j, |x− y| = 1

}
,

Bij := #
{

(x, y) ∈ Ω× Ω
∣∣ l(x) = i, l(y) = j, |x− y| =

√
2
}
.

(4.30)

Then the label distance is calculated as the negative logarithm of the relative
weighted frequency:

d(i, j) = − log
Aij +

Bij√
2∑

k

(
Aik + Bik√

2

) . (4.31)

For non-adjacent labels i, j with Aij = Bij = 0, we truncate d(i, j) = ∞ to
d(i, j) = M for someM > 0 (we useM = 10). Figure 4.3 indicates the distance
function obtained from the MSRC training set. The brightness of the entry
corresponds to the distance of the coinciding labels.

To evaluate the segmentation accuracy of the proposed method, we compare
the scores and the overall accuracies for the following approaches:

• the proposed nonmetric regularization (4.6),

• the “truncation to metric” regularization (4.17),
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Input Metric (4.17) Discrete [36] Ladicky et al. Proposed

Figure 4.4: Results on the MSRC segmentation benchmark. From
left to right: Input image, segmentation by (4.17) truncating the label distance
to the nearest metric, segmentation using the grid based approach (4.3), seg-
mentation using the proposed regularizer (4.6). The regularizer weighting is
optimized separately for each approach.

• the discrete l1-nonmetric regularization (4.3),

• the co-occurrence statistics based approach by Ladicky et al. [75].

“Truncation to metric” means that the learned distance function d is ap-
proximated by the closest metrical distance function in the continuous domain,
given by (4.19). The l1 nonmetric regularization penalizes distances in horizon-
tal and vertical direction separately leading to a direction dependent distance
function. In the discrete setting, this formulation corresponds to Chekuri et
al. [36]. Finally, we compare the obtained benchmark results to those reported
by Ladicky et al. [75]. In contrast to the proposed method which defines the
distances based on neighboring pixel labels (second order potentials), the au-
thors of [75] use information on the general co-occurrence of two labels in one
image to derive label distances (potentials of the highest order |Ω|).

Results for the different approaches are shown in Figure 4.4. A quantita-
tive comparison for each label as well as the overall accuracies can be seen in
Table 4.1. We set the regularizer weighting to ν = 0.2 for every image in the
database. The proposed approach leads to best overall accuracies comparing
with the metric and grid based approaches.
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metric 84.72 77.54 70 97 91 88 86 96 83 82 90 82 93 83 65 46 92 64 87 81 51 73 31
discrete l1 84.79 77.62 69 97 91 88 86 96 83 83 90 83 93 83 64 46 92 63 86 80 51 73 31
proposed 84.82 77.62 69 97 92 88 86 96 83 83 90 82 93 83 64 46 92 64 86 80 51 73 32
Ladicky et al. [75] 86.76 77.78 76 99 90 77 84 99 82 88 88 80 90 90 71 47 94 68 90 73 55 77 15

Table 4.1: Segmentation accuracies for the different approaches. The
scores for each label are defined as True Positives

True Positives + False Negatives . Also shown is
the average over the scores and the accuracy for each approach, i.e. the overall
number of pixels labeled correctly as in the ground truth, divided by the overall
number of pixels. The proposed continuous nonmetric approach provides the
best overall accuracy. Results of [75] are only for comparison, since they use
potentials of the highest order |Ω|, instead of order two as in our approach.

4.5 Conclusion

For the multilabel optimization problem we introduced a novel regularizer which
can handle arbitrary label distances. In contrast to previous discrete approaches,
it is based in the continuous setting and does not suffer from metrication arti-
facts. Being convex it allows to find globally optimal solutions of the relaxation.
The proposed model leads to consistently better results than the discrete setting
model. Experimental results show competitiveness to state-of-the-art discrete
approaches. On the MSRC segmentation database we obtain higher overall
accuracy, and the Mumford-Shah experiments evidently show visual improve-
ments over the discrete model, eliminating its block artifacts. Future applica-
tions, with a more distinct nonmetric structure of the distance functions based
on our approach may lead to substantial improvements.

4.6 Appendix: Proofs of Propositions and Theorems

Proof of Theorem 4.1. We have, using the divergence theorem,

R(u) =

∫
A

(−div pi + qi) dx +

∫
Ā

(−div pj + qj) dx

=

∫
∂A

(−pi) ν∂A dHm−1 +

∫
∂Ā

(−pj) ν∂Ā dHm−1 +

∫
A
qi dx+

∫
Ā
qj dx

=

∫
∂A

(pj − pi) ν∂A dHm−1 +

∫
A
qi dx+

∫
Ā
qj dx (4.32)

≤
∫
∂A

(pj − pi) ν∂A dHm−1 +

∫
A
qi dx.
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For the last inequality we used qj ≤ 0, which follows from (4.7) by setting i = j.
Using the constraints in (4.7), from this we obtain

R(u) ≤
∫
∂A

(d(i, j)− qi) dHm−1 +

∫
A
qi dx

= d(i, j) Per(A; Ω) +

∫
A
qi dx−

∫
∂A
qi dHm−1.

(4.33)

Observe that in the discretized setting it holds∫
∂A
qi dHm−1 =

∫
A1

qi dx (4.34)

where A1 := {x ∈ A | dist(x, ∂A) ≤ 1} are the points in A near its boundary.
Hence, we have ∫

A
qi dx−

∫
∂A
qi dHm−1 =

∫
A\A1

qi dx ≤ 0 (4.35)

and it follows R(u) ≤ d(i, j) Per(A; Ω). It is also possible to show the equality
here, i.e. that the supremum over p and q is reached. However, this requires a
rather technical argument.

Proposition 4.3. Since the constant function u has zero gradient, the represen-
tation (4.6) of R reduces to

R(u) = sup
(p,q)∈C

n∑
i=1

zi

∫
Ω
qi(x) dx (4.36)

with the set C in (4.7).
First, assume that zi ≥ 0 for every i. The constraints in C for i = j

specifically yield qi(x) ≤ 0 for all i and x. This way we get R(u) ≤ 0. By
choosing p, q ≡ 0 we also obtain R(u) ≥ 0, so that overall R(u) = 0.

Assume now that zi0 < 0 for some i0. Choosing p ≡ 0, qi(x) := 0 for i 6= i0
and qi0(x) := M with any M ≤ 0, we obviously have (p, q) ∈ C. Therefore,
R(u) ≥ supM≤0 ci0M |Ω| =∞.
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Chapter 5

Multilabel Segmentation with
Ordering Constraints

Here we introduce our second multilabel prior, namely the geomeric ordering
constraints on label jumps for the modeling of general layouts of label regions.
This chapter is based on joint work with Daniel Cremers [121].

5.1 Introduction

5.1.1 Multilabeling with Ordering Constraints

As discussed in Chapter 3, the first convexification approaches for the multilabel
problem focused on the standard length regularization. Its basic property is that
it is isotropic, i.e. the local penalization at each fixed point x ∈ Ω is the same
regardless of the direction of the jump, or equivalently of the orientation of the
jump interface.

A substantial generalization of penalty functions came about with the in-
troduction of ordering constraints into the multilabel optimization. Penalizing
label jumps differently depending on the jump direction allows to model spe-
cific label layouts. Liu et al. [82] showed how certain multilabel problems with
ordering constraints could be solved using graph cuts. The five regions lay-
out to segment indoor and outdoor images was introduced. Felzenszwalb and
Veksler [48] introduced the tiered layout — a generalization of the five regions
layout — and showed that it was solvable via dynamic programming. An en-
tirely separate ordering constraint was introduced by the star shape prior of
Veksler [131].

5.1.2 Contributions

We propose a novel general framework to incorporate ordering constraints. In
contrast to the discrete graph cut or dynamic programming approaches of Liu,
Veksler, Felzenszwalb and coworkers, the proposed approach comes from a to-
tally different viewpoint of continuous optimization. We provide an exact char-
acterization of the penalty functions expressible with our approach. In particu-
lar, the proposed method exhibits several favorable properties:

67
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Figure 5.1: Label ordering constraints. We propose a spatially continuous
framework for label ordering constraints which unifies existing approaches such
as the five regions layout (left) and the tiered layout (middle). It generalizes to
novel applications such as a convex shape prior (right).

• We show in Section 5.5 that the three mentioned layout approaches are
special cases of the proposed framework.

• We show that this framework allows applications beyond the above ap-
proaches, including tiered layout with four and more tiers, tiered layout
with independent floating occlusions and shape priors for arbitrary convex
shapes — see Figure 5.2.

• In contrast to existing approaches to label ordering constraints the pro-
posed framework naturally extends to three and higher dimensions of the
image domain.

• Despite its generality, the model is easily adjusted to various label layouts,
it is easily implemented and provides results which are comparable and
often superior to those of existing approaches.

5.2 General Framework

We consider solving the multilabel problem (3.19) in image domain Ω ⊂ Rm,
m ≥ 1, with n ≥ 1 labels. The task is to find n label indicator functions
u1, . . . , un : Ω→ [0, 1] minimizing the energy

min
u∈D

n∑
i=1

∫
Ω
ci(x)ui(x) dx + R(u). (5.1)

To render efficient optimization possible, we work with the already relaxed con-
straint set D in (3.18). Our goal is to find a regularizer R which essentially
penalizes the length of the interfaces between labels, and also explicity allows
to take the jump direction into account.
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Figure 5.2: Schematic summary of our main contributions.

5.2.1 The Novel Regularizer

We propose the following regularizer:

R(u) = sup
p∈C

n∑
i=1

∫
Ω
〈pi, dDui〉 (5.2)

with the convex set

C =
{
p ∈ C1

c (Ω;Rm×n)
∣∣ p(x) ∈ Cloc ∀x ∈ Ω

}
(5.3)

and

Cloc =
{
p ∈ Rm×n

∣∣ 〈pj − pi, ν〉 ≤ d(i, j, ν) ∀1 ≤ i < j ≤ n, ν ∈ Sm−1
}
.

(5.4)
The label distance function

d : {1, . . . , n}2 × Sm−1 → R ∪ {∞} (5.5)

gives the penalization if the multilabel assignment u changes from label i to label
j in direction ν. The distance d and with it the local set Cloc may also depend
on the position x ∈ Ω, thus enabling different regularizer weights at different
image locations. The standard scalar product on Rm is denoted by 〈·, ·〉, and as
usual we use the notation p(x) = (p1(x), . . . , pn(x)) ∈ (Rm)n = Rm×n. Finally,

Sm−1 =
{
z ∈ Rm | |z| = 1

}
(5.6)

denotes the (m− 1)-sphere.
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Intuitive Explanation. The derivation (3.40) of the tight convex relaxation
for the isotropic regularization in Section 3.4.4 already hints at the origin of
proposed constraints (5.4) for our more general case. Instead of repeating this
derivation, let us give here a more simple and intuitive motivation which provides
a direct insight into the definition of the regularizer (5.2) with the constraint
set (5.4). Suppose that at some point x0 ∈ Ω the labeling changes from label i
to label j in direction ν. Locally, the jump interface is the plane 〈x− x0, ν〉 = 0.
Locally on the i-side of the interface, i.e. for x near x0 with 〈x− x0, ν〉 ≤ 0,
only the label i is set, while on the other side of the interface only the label j is
set. Thus, locally

ui(x) =

{
1 if 〈x− x0, ν〉 ≤ 0,

0 else,

and uj(x) =

{
0 if 〈x− x0, ν〉 ≤ 0,

1 else.

(5.7)

All other label indicator functions are zero locally around x0. So passing through
x0 in direction ν, ui(x) decreases from 1 to 0, and uj increases from 0 to 1. Thus,

∇ui(x0) = −ν and ∇uj(x0) = ν (5.8)

up to the delta function factor δ(〈x− x0, ν〉). The integral (5.2) for a fixed p is
therefore locally equal to〈

pi(x0), ∇ui(x0)
〉

+
〈
pj(x0), ∇uj(x0)

〉
=
〈
pj(x0)− pi(x0), ν

〉
, (5.9)

times the local boundary measure |∂Blocal| of the jump interface since the delta
function factor concentrates the integral on the plane 〈x− x0, ν〉 = 0. We want
this local contribution to be

Rlocal(u) = d(i, j, ν) |∂Blocal|. (5.10)

Therefore, in order to have at least “≤” here we assume the constraints on p
in (5.4), and to obtain equality we take the supremum over all such p.

Main Requirement for d. This intuitive argument reveals that for the de-
sired correct penalization with d(i, j, ν), when labels jump from i to j in direction
ν, we need the equality

sup
p∈Cloc

〈pj − pi, ν〉 = d(i, j, ν). (5.11)

From the definition (5.4) of the constraint set Cloc, we can immediately conclude
that at least “≤” holds. The question is now, what conditions must be imposed
on d to assure (5.11).

From the representation (5.11) a number of necessary conditions on d fol-
lows. In the following we will first derive such conditions, building up on [5,
Prop. 5.19], and afterwards show that they are also sufficient.
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5.2.2 Assumptions on the Distance Function d

For a more convenient formulation of the constraints, in the following we extend
d(i, j, ·) positive homogeneously from Sm−1 to whole Rm, i.e. for every i, j ∈ L =
{1, . . . , n} we set

d(i, j, tν) := td(i, j, ν) ∀t ≥ 0, ν ∈ Sm−1. (5.12)

The representation (5.11) then extends to all ξ ∈ Rm in place of ν. The following
is an obvious consequence of (5.11):

Assumption 5.1 (Lower-semicontinuity). We assume that d(i, j, ·) is lower-
semicontinuous for every fixed i, j.

Proof of Necessity. This necessary condition follows directly from (5.11) since
the left hand side is lower-semicontinuous in ν, which is a basic property of
support functionals [6, Theorem 9.1.2]. Another way to see this is by observing
that the left hand side of (5.11) is the convex conjugate of δC and recalling that
the dual function is always lower-semicontinuous.

To formulate the next assumption, recall that for vectors ξ ∈ Rm and z ∈ Rn,
the Kronecker product ξ ⊗ z ∈ Rm×n is defined similarly to (2.22) as

ξ ⊗ z = ξzT =
(
z1ξ · · · zn ξ

)
. (5.13)

We will consider matrices of the form

ξ ⊗
(
ej − ei

)
(5.14)

where e1, . . . , en ∈ Rn is the standard basis of Rn. That is, ξ ⊗
(
ej − ei

)
has

only two non-zero columns, the i-th and the j-th, being respectively −ξ and +ξ.

Assumption 5.2 (Generalized Triangle Inequality). We assume that d is such
that

d(i, j, ξ) ≤
K∑
κ=1

d(iκ, jκ, ξκ) (5.15)

whenever

ξ ⊗
(
ej − ei

)
=

K∑
κ=1

ξκ ⊗
(
ejκ − eiκ

)
(5.16)

for vectors ξ, ξ1, . . . , ξK ∈ Rm and label pairs (i, j), (i1, j1), . . . , (iK , jK) ∈ L2

with a K ≥ 1.

Proof of Necessity. This is a necessary consequence if the equality in (5.11) is
to hold. To see this, note that we can write

〈pj − pi, ξ〉 =
〈
p, ξ ⊗

(
ej − ei

)〉
(5.17)
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with the standard scalar product 〈·, ·〉 on Rm×n. Therefore, if the equality (5.11)
holds, with (5.16) we get

d(i, j, ξ) = sup
p∈Cloc

〈
p, ξ ⊗

(
ej − ei

)〉
= sup

p∈Cloc

〈
p,

K∑
κ=1

ξκ ⊗
(
ejκ − eiκ

)〉
(5.18)

= sup
p∈Cloc

K∑
κ=1

〈
p, ξκ ⊗

(
ejκ − eiκ

)〉
≤

K∑
κ=1

sup
p∈C

〈
p, ξκ ⊗

(
ejκ − eiκ

)〉
=

K∑
κ=1

d(iκ, jκ, ξκ).

The assumption (5.2) is a kind of generalized triangle inequality simultane-
ously in the labels and the direction. For illustration, let us mention two impor-
tant special cases of (5.15), corresponding to special decompositions (5.16)1.

5.2.3 Corollary Assumption for Direction Dependency

Fixing labels i, j ∈ L, for any vectors ξ1, ξ2 ∈ Rm we have

(ξ1 + ξ2)⊗
(
ej − ei

)
= ξ1 ⊗

(
ej − ei

)
+ ξ2 ⊗

(
ej − ei

)
. (5.19)

By (5.15) this means that d must satisfy

d(i, j, ξ1 + ξ2) ≤ d(i, j, ξ1) + d(i, j, ξ2). (5.20)

This is the triangle inequality for direction dependency for fixed (i, j) ∈ L2

Since d(i, j, ·) is positive homogeneous, an equivalent statement of (5.20) is that
d(i, j, ·) is convex.

This, in turn, together with Assumption 5.1 implies an important and useful
representation for d(i, j, ·). Define the set

Cij := {z ∈ Rm
∣∣ 〈z, ν〉 ≤ d(i, j, ν) ∀ν ∈ Sm−1}. (5.21)

This is a convex and closed set, since the constraint for each fixed ν defines a
convex and closed halfspace.

Proposition 5.3. Under the Assumption 5.1, the inequality (5.20), or equiva-
lently the convexity of d(i, j, ·), is equivalent to

d(i, j, ν) = sup
z∈Cij

〈z, ν〉 ∀ν ∈ Sm−1. (5.22)

Proof. If (5.22) holds then d(i, j, ·) is obviously convex. The converse is a con-
sequence of convex duality (2.8). Namely, using the homogeneity of d(i, j, ·) we
can compute its convex dual as follows:

d∗(i, j, y) = sup
ξ∈Rm

〈ξ, y〉 − d(i, j, ξ) = sup
ν∈Sm−1, t≥0

〈tν, y〉 − d(i, j, tν)

= sup
ν∈Sm−1

sup
t≥0

t
(
〈ν, y〉 − d(i, j, ν)

)
= sup

ν∈Sm−1

δ〈ν,y〉≤d(i,j,ν)

= δ〈ν,y〉≤d(i,j,ν)≤0 ∀ν∈Sm−1 = δCij (y).

(5.23)

1The presentation in the conference paper [121] is incorrect in that it focuses on these
corollary assumptions, missing the more general ones (5.15).



5.2. GENERAL FRAMEWORK 73

Since d(i, j, ·) is assumed to be convex and lower-semicontinuous, (5.22) now
follows from (2.8).

The inequality constraints of the set Cloc in (5.4) can be written more con-
cisely using the sets (5.21) in the form pj − pi ∈ Cij , i.e.

Cloc =
{
p ∈ Rm×n

∣∣ pj − pi ∈ Cij ∀i, j }. (5.24)

The representation (5.22) can also be shown directly from (5.11): If (5.11) holds
then

d(i, j, ν) = sup
p∈Cloc

〈pj − pi, ν〉 ≤ sup
p: pj−pi∈Cij

〈pj − pi, ν〉 ≤ d(i, j, ν), (5.25)

yielding (5.22).

5.2.4 Corollary Assumption on Label Dependency

For the case that all jump directions are handled equally, i.e. d(i, j, ν) = d(i, j)
for all ν ∈ Sm−1, the condition for (5.11) is that d must satisfy the triangle
inequality

d(i, j) ≤ d(i, k) + d(k, j) ∀i, j, k
together with d(i, i) = 0 and d(i, j) = d(j, i) [76]. For the general case, the
assumption (5.2) includes as a special case that these conditions must hold for
every fixed ν. This can be seen as follows.

First, since ν ⊗
(
ei − ei

)
= 0 = 0⊗

(
ei − ei

)
and d(i, i, 0) = 0 by homogene-

ity of d(i, i, ·), from (5.15) we get

d(i, i, ν) = 0. (5.26)

Next, since for vectors ν ∈ Sm−1 and labels i, j ∈ L we have ν ⊗
(
ej − ei

)
=

(−ν)⊗
(
ei − ej

)
, the inequality (5.15) gives d(i, j, ν) ≤ d(j, i,−ν). Replacing ν

by −ν and (i, j) by (j, i) we also get the reverse inequality d(j, i,−ν) ≤ d(i, j, ν).
Combined we obtain

d(i, j, ν) = d(j, i,−ν). (5.27)

This necessary condition has an intuitive interpretation: When the labeling
changes from label i to label j in direction ν, this is the same as saying that the
labeling changes from j to i in the opposite direction−ν, so that the penalization
by d should be the same in both cases.

Finally, using

ν ⊗
(
ej − ei

)
= ν ⊗

(
ek − ei

)
+ ν ⊗

(
ej − ek

)
(5.28)

for any i, j, k ∈ L, (5.15) implies that d must satisfy

d(i, j, ν) ≤ d(i, k, ν) + d(k, j, ν). (5.29)

This is the triangle inequality for d(·, ·, ν) for fixed ν ∈ Rm.
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5.2.5 Properties of the Regularizer

The following theorem states that with Assumptions 5.1 and 5.2 we indeed have
found a necessary and sufficient condition for (5.11).

Theorem 5.4. Equality (5.11) holds if and only if d satisfies the Assumptions
5.1 and 5.2.

Proof. See appendix Section 5.7.

This theorem gives an exact characterization of the distance functions ex-
pressible with our approach. The restrictions imposed are quite natural for
distance functions. Note that the penalization is even allowed to be negative for
some directions, meaning an endorsement of certain jumps.

For each fixed u ∈ D0, i.e. a labeling in the original binary constraint set,
let Su be its jump set. At each x ∈ Su let the labeling change from label
l−(x) to label l+(x) in direction νu(x) ∈ Sm−1. That is, u−(x) = el−(x) and
u+(x) = el+(x), and νu(x) is a normal to Su pointing to the l+(x) side.

Based on Proposition 5.4 we can prove the following main theorem of this
chapter. It shows that, assuming the necessary conditions, the regularizer (5.2)
does indeed what it promises, namely measuring the total length over all jump
interfaces weighted by the local penalizations d(i, j, ν).

Theorem 5.5. Let d satisfy the Assumptions 5.1 and 5.2. Then

R(u) =

∫
Su

d
(
l−(x), l+(x), νu(x)

)
dHm−1(x). (5.30)

Proof. See appendix Section 5.7.

Furthermore, R(u) is of course convex so that global optimization is possible.

Proposition 5.6. R(u) is convex.

Proof. For 0 < α < 1 and u = αu1 + (1− α)u2 we have

R(u) = sup
p∈C

∫
Ω
〈p, α dDu1 + (1− α)dDu2〉

= sup
p∈C

(
α

∫
Ω
〈p, dDu1〉+ (1− α)

∫
Ω
〈p, dDu2〉

)
≤ α sup

p∈C

∫
Ω
〈p, dDu1〉+ (1− α) sup

p∈C

∫
Ω
〈p, dDu2〉

= αR(u1) + (1− α)R(u2).

(5.31)

For the continuous label space, Alberti et al. [1, Lemma 3.7] give a relax-
ation of a general regularizer, which allows penalizations depending on the jump
direction. Our regularizer (5.2) can be considered as its discretization to a finite
number of labels. However, it is not clear if the direction dependency of [1]
transfers correctly to the discrete setting. With Theorem 5.5, we establish an
exact result for arbitrary dimensions, showing that the specified penalties are
indeed attained at given jump directions. In [5, Sect. 5.4] Ambrosio et al. study
the lower-semicontinuity properties of functionals of the form (5.30) defined on
piecewise constant functions u. They show that the same conditions (5.15) on d
play a crucial role in order to be able to prove lower-semicontinuity [5, Th. 5.22].
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(a) (b) (c) (d) (e) (f) (g)

d visualized by the sets {d(ν)ν | ν ∈ Sm−1}d visualized by the unit ball {z ∈ Rm | d(z) ≤ 1}

Sets Cij are unit balls of the dual seminorm Sets Cij are intersections of halfspaces {z ∈ Rm | 〈z, ν〉 ≤ d(ν)}

Figure 5.3: Distance functions and the corresponding constraint sets.
Different penalization functions d (top) and the corresponding sets Cij in (5.21)
(bottom). (a) and (b) show d’s arising by picking a specific seminorm, here
the isotropic ‖·‖l2 and anisotropic ‖·‖l1 , the l1-norm as used in graph cuts. (c–
g) show d’s arising by an explicit construction, following the arrows until the
boundary gives the values d(ν). In (c) only one direction is allowed, in (d) only
two, in (e) only right and up, in (f) only from bottom to top and in (g) just as
in (f) but the left directions are penalized more.

5.3 Constraint Sets

In this section we will give some examples of the constraint sets (5.21) for image
domain dimension m = 2, arising by allowing labels to jump only in particular
directions. The sets for common directions are depicted in Figure 5.3. In general,
the set Cij is the intersection of halfspaces, see Figure 5.3 (c–g), and can be found
geometrically as in (f). In the case that d is a seminorm, i.e. satisfies d(ν) ≥ 0
in addition to (5.20), this set is easily found to be the unit ball

Cij = {w ∈ Rm | d∗(w) ≤ 1} (5.32)

of the dual seminorm

d∗(w) := sup
z∈Rm: d(z)≤1

〈z, w〉, (5.33)

see Figure 5.3 (a, b).
An example of a general distance function is

dλ,A(ν) =

{
λ if ∠ν ∈ A,
∞ else

(5.34)

for some fixed λ ≥ 0, which allows only jump directions with angles from a
set A and aside from that penalizes the interface length isotropically. That is,
using a distance function of this kind only imposes additional hard constraints in
the optimization, restricting possible jump directions. But once a partitioning
satisfies these hard constraints, the value of the regularizer is the overall interface
length as in the classical partitioning problem. Special cases are

dλ, [0, 2π], dλ, {α}, dλ, {α, α+π} and dλ, [α, β] (5.35)
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for some angles α and β with α ≤ β ≤ α + π, see Figure 5.3 (a), (c), (d),
resp. (e–f). These are already all possible cases due to the convexity restric-
tion (5.20). One can easily derive formulas for the projections onto the corre-
sponding sets (5.21).

In discrete graph cut and dynamic programming approaches one only spec-
ifies d(ν) for the axis directions ν = ±e1 and ν = ±e2. The resulting set Cij
is then a rectangle, see Figure 5.3 (b). Computing d back by (5.22), e.g. for
the square case we see that this produces the penalization d(ν) = ‖ν‖l1 , which
is not rotationally invariant as opposed to ‖ν‖l2 , see Figure 5.3 (a). Thus, the
discrete approaches form a subset of our framework, and we can actually see
that they necessarily give rise to a metrication error.

5.4 Implementation

5.4.1 Discretization

The discretization is done exactly as in the basic multilabel case in Section 3.5,
except that the local dual set Cloc in (3.46) is given by (5.24). The overall
optimization problem (3.44) is solved using the preconditioned primal-dual Al-
gorithm 3, and the proximal operators are here again projections onto the con-
straint sets. The projection for the primal variable u can be implemented as
described in Section 3.5, either through a direct simplex projection or through
auxiliary variables to dualize the sum constraints resulting in energy (3.51). For
the experiments in this chapter we used the dualization approach for u.

Here we will focus on the projection for the local dual set.

5.4.2 Projection For the Dual p

We need to project p ∈ Rm×n onto (5.24). The constraints couple all pi’s
similarly to the tight relaxation (3.33) for the direction independent case, so
that there is no simple projection formula. In the following we will present two
approaches of how the projection can be implemented.

Approach 1: Variables for the Differences. The first approach is the
one originally proposed in the conference paper [121] on which this chapter is
based. The idea is to introduce auxiliary dual variables qij(x) ∈ Rm for the p
differences:

qij(x) = pj(x)− pi(x) ∈ Rm ∀x ∈ Ω, (i, j) ∈ L2. (5.36)

These linear equalities can be enforced through the dualization (2.74), introduc-
ing new primal variables aij(x) ∈ Rm (Langrage multipliers) for all x and all
pairs i, j and adding the terms

inf
aij :Ω→Rm

∑
x∈Ω

∑
1≤i<j≤n

〈
− aij(x), pj(x)− pi(x)− qij(x)

〉
(5.37)

to the energy. The projection for p now translates into projections of each
qij(x) ∈ Rm independently onto Cij ⊂ Rm.
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In common cases such as depicted in Figure 5.3, there is a simple formula for
this. Specifically, this is the case for all experiments in this chapter. Otherwise,
one can always approximate the projection by using some discrete range of
directions ν and Lagrange multipliers for the constraints in Cij . More precisely,
discretizing ν into r ≥ 2 unit vectors ν1, . . . , νr ∈ Sm−1 uniformly covering Sm−1

in some way, we can replace the set (5.21) by the corresponding discretized
variant:

Crij =
{
z ∈ Rm

∣∣ 〈z, ν〉 ≤ d(i, j, ν) ∀ν ∈ {ν1, . . . , νr}
}
. (5.38)

The r linear elementary constraints for qij(x) ∈ Crij can now be dualized using
(2.72): We introduce new variables bkij(x) ∈ Rm for all pairs i, j, each 1 ≤ k ≤ r
and x ∈ Ω, and add to the energy the new terms

inf
b

bkij(x)≥0 ∀i,j,k,x

∑
x∈Ω

∑
1≤i<j≤n

∑
1≤k≤r

(
− bkij(x)

)(〈
qij(x), νk

〉
− d(i, j, νk)

)
. (5.39)

Approach 2: Direct Dualization. Another way to enforce the constraints
(5.24) on p is to separately dualize each of them, similarly as was done in (3.57)
in Section 3.5.4. With new additional primal variables aij(x) ∈ Rm for all x ∈ Ω
and i, j ∈ L, we add the terms

inf
aij :Ω→Rm

∑
x∈Ω

∑
1≤i<j≤n

〈
− aij(x), pj(x)− pi(x)

〉
+ δ∗Cij

(
aij(x)

)
(5.40)

to the energy. The overall energy is then

min
u∈D0

d, a
max
p, µ

∑
x∈Ω

n∑
i=1

ci(x)u(x) +
〈
pi(x), ∇+ui(x)

〉
+
∑
x∈Ω

µ(x)

( n∑
i=1

ui(x)− 1

)
(5.41)

+
∑
x∈Ω

∑
1≤i<j≤n

〈
− aij(x), pj(x)− pi(x)

〉
+ δ∗Cij

(
aij(x)

)
.

optimizing over the reduced primal set (3.52) for u, without any constraints on
each aij(x) ∈ Rm, and also without any constraints on the duals pi(x) ∈ Rm
and µ(x) ∈ R for all x ∈ Ω and i, j ∈ L.

The proximal operator for a decomposes into independent proximal oper-
ators for each aij(x). We can reduce them directly to projections onto Cij by
using Moreau’s identity (2.40):

prox τa, δ∗Cij
(aij(x)) = a− τa πCij (a/τa). (5.42)

Thus, what remains is again only to implement the individual projections onto
the sets Cij as in the first approach above. However, the currently presented
implementation method is more efficient w.r.t. both memory and run time, since
there is no need to use the auxilliary dual variables qij for the differences.
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5.4.3 Advantage of Our Method

A prominent advantage of our method is that different ordering constraints are
encoded only in the projections onto the constraint sets Cij . The optimization
algorithm itself remains the same. This stands in contrast to [82] and [48], where
the algorithms must be devised anew when the layout changes.

With a parallel CUDA implementation on NVIDIA GTX 480, usual run
times for 640×480 images and 5 labels are around 90 seconds, and for 320×240
images 7 seconds. This compares favorably to the reported 9 seconds in [48].

5.5 Experimental Results

5.5.1 Geometric Class Labeling

In geometric class labeling, one seeks a rough labeling into geometric classes
such as ‘left wall’ or ‘sky’. This can be useful in providing geometric context to
more elaborate tasks such as 3d reconstruction or robot navigation [58].

Five regions layout. Especially for indoor images, Liu et al. [82] used a
simple layout consisting of five geometric parts: ‘center’ C, ‘ceiling’ T , ‘floor’
B, ‘left wall’ L and ‘right wall’ R. Natural ordering constraints on these labels
result in a layout as in Figure 5.2. With the notation (5.34) we set

d(B,L) = d(R, T ) = dλ, [π
2
,π], (5.43)

d(B,C) = d(C, T ) = dλ, {π
2
}, (5.44)

d(B,R) = d(L, T ) = dλ, [0,π
2

], (5.45)

d(L,C) = d(C,R) = dλ, {0}. (5.46)

The distances for the remaining label pairs are then defined implicitly by the
triangle inequality (5.29), and are found to be

d(L,R) = d(L,C) + d(C,R) = 2dλ, {0} (5.47)

and d(B, T ) = d(B,C) + d(C, T ) = 2dλ, {π
2
}. (5.48)

We applied our regularizer on the dataset of 300 indoor images from [82] using
their data terms. We set λ = 20 in (5.34) and weight all distances d by

w(x) = e−|∇I(x)|2/2σ2
with σ2 = mean of |∇I|2 (5.49)

for each input image I.
Results for six different images are shown in Figure 5.4. We achieved an

overall accuracy of 85.3%, which is comparable to the 85% of [82].
The better result despite the fact that our method is a generalization of [82]

may be due to several reasons: Our spatially continuous framework does not
suffer from metrication errors. Moreover, convex optimization possibly finds
better minima than iterative schemes like alpha-expansion and order-preserving
moves.
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Figure 5.4: Five regions layout. Ordering constraints arise naturally for
indoor images and improve the segmentation. From left to right: Indoor images,
data term only labeling, result with Potts partitioning, result with five regions
layout (see Figure 5.2).

Figure 5.5: Failure case for the five regions layout. Since the data term
(center) is very misleading, the ordering constraints do not allow to recover
the desired solution. From left to right: input image, data term, result with
ordering constraints.
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Figure 5.6: Accuracy for the five regions layout. For the five regions
model we ordered the 300 images by “data term only” accuracy in 10 equal
groups. The proposed method provides a slight improvement over the existing
methods.

Tiered layout. Tiered layout [48] is a generalization of the five region lay-
out [82]. There are the ‘top’ T , ‘bottom’ B and in between a number of labels,
here L, C, R, in any sequence and multiplicity having only vertical borders
between each other, see Figure 5.2. While the five regions layout assumes the
center C to be a rectangle, tiered layout is well adapted for outdoor images
as well, where the boundary between T and L, C, R is less predictable, see
Figure 5.7. We set

d(B,L, ν) = d(R, T, ν) =

{
dλ, [π

2
,π] if ∠ν 6∈ [0, π2 ],

λ(2 |ν1|+ |ν2|) else,
(5.50)

d(B,C) = d(C, T ) = dλ, [0,π], (5.51)

d(B,R, ν) = d(L, T, ν) =

{
dλ, [0,π

2
](ν) if ∠ν 6∈ [π2 , π],

λ(2 |ν1|+ |ν2|) else,
(5.52)

d(L,C) = d(C,R) = dλ, {0,π}, (5.53)

Other distances follow implicitly by the triangle inequality (5.29):

d(L,R) = d(L,C) + d(C,R) = 2dλ, {0,π}, (5.54)

d(B, T ) = d(B,C) + d(C, T ) = 2dλ, [0,π]. (5.55)

In the optimization, only the projections for explicitly specified d’s must be
taken into account. The main difference to the five regions layout from the
previous section is that (5.44) becomes (5.51).
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Figure 5.7: Tiered layout results. Ordering constraints improve the
segmentation of outdoor images. From left to right: input images, Potts parti-
tioning, partitioning with ordering constraints.
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Figure 5.8: Four and more tiers. We can easily model the four and more
tiered layout, thus allowing more than one label L, C or R to come one after
another in one column. From left to right: input image, result with 3, 4 and 5
tiers, and data term.

The expression for d(B,R) in (5.52) results by starting with

d(B,R) = dλ, [0,π
2

] =: d1 (5.56)

as in (5.43) and then restricting the values down due to the triangle inequal-
ity (5.29):

d(B,R) ≤ d(B,C) + d(C,R) = 2dλ, {0,π} =: d2. (5.57)

Therefore, we define the actually used distance function d(B,R) as the largest
possible function of the form (5.22) with d(B,R) ≤ d1, d2. Due to these in-
equalities, by definition (5.21) the corresponding set CBR of d(B,R) must be
contained in the intersection of the sets Cd1 , as in Figure 5.3 (e), and Cd2 , as
in Figure 5.3 (d) but with a vertical stripe. The largest possible d(B,R) is
obtained if we set CBR to be equal to this intersection:

CBR = Cd1 ∩ Cd2 , (5.58)

see Figure 5.3 (g). The value in (5.52) is then computed from (5.22).
Six results on the dataset from [58], consisting of 300 outdoor images, are

shown in Figure 5.7. We used the confidence estimates provided in [58] for
the data term and same parameters as for the five regions layout. Our overall
accuracy 86.3% compares favorably to the 81.4% reported in [48].

Our method generalizes [48], in that we can handle all cases where the tri-
angle inequalities are satisfied. While [48] provides optimal solutions, it only
applies to a very specific layout. Our method is capable of far more general
layouts. This class is NP-complete containing the Potts model [19], so no glob-
ally optimal solutions can be expected. Nevertheless, our method provides
tight a-posteriori optimality bounds (3.42). The binary solution through the
maximum-value binarization (3.41) is usually within 5% of the global optimum
energy-wise.

Four and More Tiers. To demonstrate the flexibility of our framework, we
can easily model more than three tiers, see Figures 5.2 and 5.8.
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For t ≥ 3 tiers, we place B in the lowest tier, and T in the highest tier.
The middle tier between B and T is split into t − 2 individual tiers, the first
consisting of regions L1, C1, R1, the second of regions L2, C2, R2, etc.

The bottom label B is allowed to change to L1, C1, R1 just as before to
L,C,R in (5.50)–(5.52), and labels Lt−2, Ct−2, Rt−2 can change to T as L,C,R
before:

dt tiers(B,L1) = dt tiers(Rt−2, T ) = d3 tiers(B,L), (5.59)
dt tiers(B,C1) = dt tiers(Ct−2, T ) = d3 tiers(B,C), (5.60)
dt tiers(B,R1) = dt tiers(Lt−2, T ) = d3 tiers(B,R), (5.61)

Within one of the middle tiers 1 ≤ i ≤ t− 2, labels Li, Ci, Ri change as L,C,R
in (5.50):

dt tiers(Li, Ci) = dt tiers(Ci, Ri) = d3 tiers(L,C). (5.62)

Finally, for each 1 ≤ i ≤ t− 3 the labels Li, Ci, Ri can change “one level up” to
Li+1, Ci+1, Ri+1 in any direction heading from bottom to top:

dt tiers(X,Y ) = dλ, [0,π] ∀X ∈ {Li, Ci, Ri}, Y ∈ {Li+1, Ci+1, Ri+1}. (5.63)

Other distances follow implicitly by the triangle inequalities.
In contrast, the dynamic programming approach [48] does not allow an easy

extension to four tiers, yielding a significantly more complex algorithm.
The complexity is quadratic in the number of labels per tier, here 3 (L, C

and R), but is linear in the number t of tiers. Only the interactions between two
consecutive tiers must be explicitly modeled and implemented. The interactions
between all other tiers do not need to be implemented as they follow implicitly
through the underlying convexification model, which automatically “fills in” the
missing penalization definitions d.

Floating Objects. We can also allow arbitrary “floating” objects on top of
the layout, see Figures 5.2 and 5.9. The dataset [58] contains also the classes
‘porous’ and ‘solid’. However, they do not fit into the tiered layout, since their
relation to other objects is less predictable. These classes are therefore simply
ignored in [48]. In contrast, our framework allows to include these extra classes.

To include the ‘solid’ class S, we regard it as being “on top” of the tiered
layout. We then split up the L region into LS and L0, meaning the parts that do
or do not contain S, and similarly for other labels of the tiered layout. Jumps
within non-S labels, e.g. from L0 to C0 are then defined in the same way as
previously from L to C by (5.50):

dextra object(X0, Y0) = dtiered(X,Y ) ∀X,Y ∈ {B,L,C,R, T}. (5.64)

Jumps within S-labels, e.g. from LS to CS only inherit the direction restric-
tions of L and C, and the penalization is set to zero, since these are actually
two parts of the same label S. Here we use (5.50) with the parameter λ = 0
in (5.34):

dextra object(XS , YS) = dtiered, but with λ = 0(X,Y ) ∀X,Y ∈ {B,L,C,R, T}.
(5.65)
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Figure 5.9: Floating objects. Our framework extends the tiered labeling to
allow floating objects, arbitrarily located upon the layout. From left to right:
input image, tiered layout result, result with extra objects ‘solid’ and ‘porous’,
data term.

Finally, jumps from S-labels to non-S labels just mean a jump from S to some
other label, so we can introduce an arbitrary new penalization here, e.g. the
Potts model which penalizes all directions equally:

dextra object(XS , Y0) = dλ, [0,2π] ∀X,Y ∈ {B,L,C,R, T}. (5.66)

Inclusion of m extra classes S1, . . . , Sm can be done analogously, splitting
each tiered layout label into m+ 1 parts, e.g. L0, LS1 , . . . , LSm :

dm extra objects(X0, Y0) = dtiered(X,Y ) ∀X,Y, (5.67)
dm extra objects(XSi , YSi) = dtiered, but with λ = 0(X,Y ) ∀X,Y, i, (5.68)
dm extra objects(XSi , Y0) = dλ, [0,2π] ∀X,Y, i, (5.69)

dm extra objects(XSi , YSj ) = dλ, [0,2π] ∀X,Y, i < j. (5.70)

Fixing a layout on top of which one wishes to put m extra objects, the com-
plexity is quadratic in m due to (5.70).

5.5.2 Shape Priors

Using our approach we can model certain shape priors. The object of interest
is divided into a number of sublabels, and some background labels are intro-
duced surrounding this object. The idea is that changes from object labels
to surrounding labels are constrained to certain jump directions only. We can
model different shape priors expressible by the tiered labeling approach, such
as a rectangle, trapezoid, ‘house’ or ‘cross’ [48]. The latter two are depicted
in Figure 5.10. However, our approach is more general, as it allows interfaces
in arbitrary directions, not only vertical and horizontal. A simple example is
the rotated cross prior in Figure 5.10 which is not expressible using tiered lay-
out. The distance functions d can be easily derived from the layouts shown in
Figure 5.10.

Star Shape Prior. We note that the star shape prior [131] is expressible with
our approach. This is an example where the distance function d(x, i, j, ν) also
depends on the position x ∈ Ω. Object and background are represented by the
labels fg and bg, respectively. We fix an arbitrary point x0 ∈ Ω, which acts as
the star center, and set

d(x, fg, bg, ν) :=

{
λ if 〈x− x0, ν〉 ≥ 0,

∞ otherwise
(5.71)
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Figure 5.10: Segmentation with different shape priors. In contrast
to [48], the proposed approach also allows rotated crosses. From left to right:
initial image with user scribbles, segmentation using the prior, prior encoding
as a label layout. We use a simple probability estimation from user scribbles to
obtain the data term.

for all ν ∈ Sm−1 with some λ ≥ 0. This yields a d as in Figure 5.3 (f), with the
“up” direction x− x0. This way, the labeling is allowed to change from “object”
to “background” only in a direction “away” from the point x0. Therefore, the
object will be star shaped with center x0.

Novel Prior: Convex Shape. A more advanced novel application of our
framework is to model convex priors, i.e. to favor objects which are convex. To
accomplish this, we explicitly model the boundary of the object. We introduce
n ≥ 3 auxiliary surrounding regions 0, . . . , n− 1, see Figure 5.11. Let

νi := (cosαi, sinαi) with αi := i · 2π

n
. (5.72)

The main object label fg is then allowed to change to a background label 0 ≤
i ≤ n − 1 only in direction νi, and a background label i to the next such label
i+ 1 only in directions from ν⊥i to ν⊥i+1 (regarding the index i+ 1 modulo n):

d(fg, i) = dλ, {αi}, d(i, i+ 1) = d0, [αi+
π
2
,αi+1+π

2
], (5.73)

see Figure 5.3 (c, e). Note that only the foreground-background transition pe-
nalization d(fg, i) is considered with a positive length penalization parameter λ.
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Figure 5.11: Convex shape prior. Beyond existing approaches, the pro-
posed framework allows to model priors on convex shapes. From left to right:
input image with user scribbles, Potts partitioning, partitioning using the con-
vex shape prior, prior encoding. The prior is modeled by a n-gon, here an
octagon, with edges pointing in all directions.

The background-background penalizations d(i, i+ 1) are considered with λ = 0
in (5.34), so that they only act as hard constraints without altering the actual
energy. This way, the n auxiliary background regions are explicitly oriented
around the object, building its boundary. Thus, we obtain a n-gon shape which
is guaranteed to be convex.

The complexity for this convexity prior is linear with the number n of poly-
gon sides, since there are only linearly many constraints to consider. In practice,
the choice n = 64 is already sufficient to be able to obtain any convex object,
because the polygon segmentation is then not visually distinguishable from a
“round” boundary.

5.6 Conclusion

We introduced a novel framework for a general multilabel regularizer allow-
ing the penalization to depend on the jump direction. Although conceptually
entirely different the proposed approach unifies and generalizes existing MRF-
based formulations. Despite its generality, the regularizer is easily adapted to
various label layouts by merely changing the projections of dual variables. In
contrast, existing approaches require entirely different algorithms depending on
the choice of the layout. We proved a necessary and sufficient condition on
the label distance function to be expressible with our framework. Quantitative
experiments show that the proposed method compares favorably to existing
approaches.

5.7 Appendix: Proofs of Propositions and Theorems

Proof of Theorem 5.4. The necessity of the conditions in the assumptions was
already shown in Section 5.2.2. Let us now show that the conditions are also
sufficient.

First, observe that the representation (5.22) means that d(k, l, ·) is the
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Legendre-Fenchel conjugate of the indicator function of the set Ckl:

d(k, l, ·) = (δCkl)
∗. (5.74)

The latter function is convex and lower-semicontinuous since Ckl in (5.21) is
convex and closed. By convex duality (2.8) therefore δCkl = d(k, l, ·)∗, i.e.

δCkl(q) = sup
ξ∈Rm

〈ξ, q〉 − d(k, l, ξ) ∀q ∈ Rm. (5.75)

We use the representation (5.24) for the constraint set Cloc and write the
hard constraints as energy terms:

sup
p∈Cloc

〈pj − pi, ν〉 = sup
p∈Rm×n

pl−pk∈Ckl ∀k,l

〈pj − pi, ν〉

= sup
p∈Rm×n

〈pj − pi, ν〉 −
∑
k,l

δCkl(pl − pk).
(5.76)

Next, we dualize each individual constraint using the above relation (5.75):

sup
p∈Cloc

〈pj − pi, ν〉 = sup
p∈Rm×n

inf
ξ∈(Rm)n×n

〈pj − pi, ν〉

−
∑
k,l

〈ξkl, pl − pk〉+
∑
k,l

d(k, l, ξkl)

= inf
ξ∈(Rm)n×n

∑
k,l

d(k, l, ξkl)

+ sup
p∈Rm×n

〈pj − pi, ν〉 −
∑
k,l

〈ξkl, pl − pk〉.

(5.77)

The supremum over p results in hard constraints on ξ, namely

ν(χt=j − χt=i) =
∑
k,l

ξkl(χt=l − χt=k) ∀t ∈ L, (5.78)

which can be written concisely as

ν ⊗
(
ej − ei

)
=
∑
k,l

ξkl ⊗
(
el − ek

)
. (5.79)

Overall,
sup
p∈Cloc

〈pj − pi, ν〉 = inf
ξ∈(Rm)n×n

s.t. (5.79)

∑
k,l

d(k, l, ξkl). (5.80)

Since the constraint on ξ is exactly of the form (5.16), we can now employ the
Assumption (5.2) to conclude that the infimum in (5.80) is ≥ d(i, j, ν). This
value is actually achieved, namely by the ξ defined as ξij = ν and ξkl = 0 for all
(k, l) 6= (i, j), which trivially satisfies the constraint (5.79). Thus the infimum
is equal to d(i, j, ν) and we get

sup
p∈Cloc

〈pj − pi, ν〉 = d(i, j, ν), (5.81)

proving the theorem.
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Proof of Theorem 5.5. Since u ∈ D0 is piecewise constant, its distributional
gradient Du consists only of the jump part: Du = νu ⊗ (el+ − el−)Hm−1 Su,
respectively for label i:

Dui = νu(χl+=i − χl−=i)Hm−1 Su. (5.82)

Thus, the integration in (5.2) reduces to the integration on the jump set Su:

R(u) = sup
p∈C

∫
Su

n∑
i=1

〈
pi(x), νu(x)(χl+(x)=i − χl−(x)=i)

〉
dHm−1(x)

= sup
p∈C

∫
Su

〈
pl+(x)(x)− pl−(x)(x), νu(x)

〉
dHm−1(x)

=

∫
Su

sup
p∈Cloc

〈
pl+(x) − pl−(x), νu(x)

〉
dHm−1(x).

(5.83)

The theorem now follows from the property (5.11) of d.



Chapter 6

Multilabel Segmentation with
Proportion Priors

We will introduce here the final of the three multilabel priors, namely different
proportion priors to achieve a higher scale-invariance and robustness to shape
changes. This chapter is based on joint work with Claudia Nieuwenhuis and
Daniel Cremers [94].

6.1 Introduction

6.1.1 Image Sequence Segmentation

Automatic image sequence segmentation denotes the task of jointly segmenting
one or several objects from a series of images taken under different view points,
lighting conditions and background scenes. The difficulty lies in the fact that
none of the objects’ properties is guaranteed to be preserved over time. Both
the geometry and the photometry of the objects of interest may change from
one image to the next. Changing illumination affects the observed color model,
different viewpoints lead to different object scales and possibly self-occlusions,
whole parts of the object can even vanish from the image, and objects may
occlude each other in the case of multiple foreground objects. Moreover, ar-
ticulations and non-rigid deformations give rise to substantial shape changes.
Modeling such variable conditions and exploiting information which is shared
among the images is a challenging task.

In general, the co-segmentation problem deals with the situation that we
have no knowledge on the object of interest besides that it appears in all images.
To make the problem tractable many approaches introduce at least some kind
of prior knowledge based on training data or user scribbles [11, 91, 62, 132]. The
resulting optimization problems are often iterative and hard to optimize [91, 109,
90, 110] leading to run times of several seconds or even minutes. For complex
real-world image sequences the task of leveraging relevant shared information
for co-segmentation remains an open challenge. In this chapter, we propose
a Bayesian framework for multiregion co-segmentation which allows to impose
learned proportion priors, see Figure 6.1. We show that near-optimal solutions
can be efficiently computed by means of convex relaxation techniques.

89
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Input image sequence

Multilabel segmentation with length regularity

Multilabel segmentation with proportion priors

Figure 6.1: Proportion priors. The proposed framework allows to constrain
the relative size between different object parts (e.g. hair, skin, body, 101-sign).
Proportion priors enable stable segmentations over long image sequences, pre-
venting the seeping out of regions into the background (e.g. the green hair region)
or the removal of semantically important small parts (e.g. hands or feet).

6.1.2 Related Work

Existing co-segmentation approaches can be loosely grouped into two classes
regarding the additional assumptions they make:

Shape similarity. One class of methods assumes that the segmentations of
each image only differ by a rigid body transformation [139] or — somewhat
relaxed — that they are highly similar [107]. Unfortunately, this limits the
applicability to rigid objects observed from similar viewpoints. Upon strong
viewpoint changes, articulations or non-rigid deformations, the arising segmen-
tations are too different in their shape to be accounted for. Multiple foreground
objects cannot be handled, either.

Color similarity. On the other extreme are methods which make no assump-
tions on shape similarity, but which strongly rely on similarity of color or feature
distributions [109, 90, 57, 11, 132, 37]. These methods do not generalize well
to certain real-world challenges where firstly object and background may have
similar and possibly overlapping color distributions and where secondly these
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distributions may vary from image to image due to illumination changes, motion
blur or scale-dependent color sampling. Recent approaches relax these assump-
tions, requiring less color similarity [62] and instead derive high level knowledge
on object properties such as object subspaces [91] or region correspondences
[110]. However, the resulting optimization problems become more difficult to
solve.

To increase the stability of segmentation results, it was suggested [67] to im-
pose shape moment constraints into variational segmentation methods. Since
these constraints are absolute, they are not invariant to changes in scale, view-
point, occlusions or multiple object instances and are thus not applicable to the
general co-segmentation problem.

6.1.3 Contributions

In this chapter we revisit the problem of image sequence segmentation and
reconsider the following question: Can we identify aspects of an object’s shape
which are shared among the various images of this object and are preserved
despite rigid transformation, despite articulation and despite substantial non-
rigid deformation?

The central idea is to tackle the problem in a multilabel framework where
an object, say an athlete, is made up of multiple components (the various limbs
of the body). While the object may undergo substantial changes — rigid body
motion, articulation, non-rigid deformation — what is typically preserved is
the relative size of object parts (e.g. the head to the entire body), the object
part proportions. We formulate image sequence segmentation as a problem of
Bayesian inference and introduce proportion priors to restrict the relative size
of object parts. This approach comes with the following advantages:

• It can handle overlapping color distributions, moderately variable lighting
conditions, various object scales and multiple foreground objects. The
proposed ratio constraints preserve small or elongated object parts.

• It extends recent convex relaxation techniques [77, 29, 140] described in
Chapter 3 from multilabel segmentation to multilabel sequence segmen-
tation. We present an efficient optimization scheme which can be par-
allelized with run times of around one second to compute pixel-accurate
segmentations.

• The approach yields state-of-the-art results on the ICoseg benchmark for
subdivisible object sequences.

6.2 Multilabel Image Sequence Segmentation

We will consider the general multilabel problem with length regularity (3.16)
on n ≥ 1 labels as the base model and will additionally include a proportion
preserving prior into optimization. In order to come up with a suitable prior
formulation, let us consider the derivation of the multilabel energy in the frame-
work of Bayesian inference.
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One can compute a segmentation labeling l by maximizing the conditional
probability

argmax
l
P(l | I) = argmax

l
P(I | l) P(l) (6.1)

of l given the input image I, and applying the Bayes rule (1.3). The right hand
side of (6.1) combines the observation probability P(I | l) (typically favoring a
color-based region association) with prior knowledge P(l) regarding what kinds
of partitionings are more or less likely.

In the case of image sequence segmentation, commonly used color and boun-
dary length priors are often insufficient to obtain good results. Firstly, the object
boundaries are not necessarily short. Secondly, the color distributions of object
and background may have substantial overlap and may exhibit strong variations
across images. In order to stabilize the segmentation process against color and
lighting variations, pose changes and substantial non-rigid deformations, and in
order to leverage it to a parsing of objects into their semantic components, we
propose to introduce proportion priors into the optimization problem.

Framework for Proportion Preserving Priors. In the following, we will
introduce proportion priors as a means to impose information on the relative
size of respective object parts. Whereas the absolute size of parts will vary with
viewing angle and distance from the camera, their relative size is typically well
preserved — i.e. the size of the head is typically 10% of the size of the entire
body.

Let us assume that the object we want to segment can be divided into n−1
subregions (e.g. head, feet, body and hands) with the n-th region denoting the
background of the image. Then in the Bayesian framework (6.1), the prior
P(l) = P(Ω1, . . . ,Ωn) can be expressed in the following way:

P(l) = P(Ω1, . . . ,Ωn−1 |Ωn) P(Ωn)

=

(
n−1∏
i=1

P(Ωi|Ωn)

)
P(Ωn).

(6.2)

Here we assume conditional independence of the segments Ω1, . . . ,Ωn−1 given
the background Ωn. A ratio constraint relates the size Ωi of the i-th region to
the size

∑n−1
j=1 |Ωj | of the whole object:

ri =
|Ωi|∑n−1
j=1 |Ωj |

=
|Ωi|

|Ω| − |Ωn|
, 1 ≤ i < n. (6.3)

For segmentation we want to impose regions of short (weighted) boundary length
Perg(Ωi; Ω), whose ratios additionally follow a learned (or specified) ratio prob-
ability distribution Pprop

P(Ωi|Ωn) =
1

C
exp

(
− λ

2
Perg(Ωi; Ω)

)
· Pprop(ri), 1 ≤ i < n, (6.4)

where C is a normalization constant, λ a weighting parameter, and g : Ω →
R>0 is some fixed boundary length weighting function. Finally, the same short
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boundary length prior is assumed for the background Ωn:

P(Ωn) =
1

C ′
exp

(
− λ

2
Perg(Ωn; Ω)

)
(6.5)

where C ′ is some other normalization constant.
Instead of maximizing P(I|l)P(l) in (6.1) we minimize its negative logarithm

and obtain the energy

E(Ω1, . . . ,Ωn, r1, . . . , rn−1) =

n∑
i=1

{∫
Ωi

ci(x) dx+ λ
2 Per(Ωi; Ω)

}
−
n−1∑
i=1

logPprop(ri)

s.t. ri =
|Ωi|

|Ω| − |Ωn|
1 ≤ i < n,

(6.6)

with the data terms ci(x) := − logP(I(x)|l(x) = i).

6.3 Proportion Preserving Priors

In this section we propose two different proportion preserving priors: the uni-
form distribution prior and the Laplace distribution prior. Both assume that
the ratios of the object parts follow a specific distribution Pprop(ri) whose pa-
rameters are estimated from sample data, i.e. sample segmentations from which
ratio samples can be obtained.

To convert the energy in (6.6) to a convex optimization problem in Sec-
tion 6.4.1, the key challenge is to express the terms − logPprop(ri) in (6.6) as
a convex function of the variables ai := |Ωi|/|Ω|, which denote the fraction of
the size of region Ωi with respect to the image size. It holds that ai ∈ [0, 1] and∑n

i=1 ai = 1. The ratios ri in (6.3) can be easily expressed in terms of ai by

ri =
ai

1− an
. (6.7)

6.3.1 Uniform Distribution Prior

As a first case, we assume a uniform distribution of the ratios ri over a specific
interval [li, hi]. The left and right boundaries li and hi are computed from
training data by means of maximum likelihood estimation, which assigns li and
hi the minimum and maximum values of the sample ratios, respectively. We
obtain for the ratio probabilities (or, more precisely, for the probability densities)

Pprop(ri) =

{
1

hi−li if li ≤ ri ≤ hi,
0 otherwise.

(6.8)

Since − logPprop is either constant or infinity, this prior corresponds to 2(n−1)
hard constraints in the optimization problem:

li(1− an) ≤ ai ≤ hi(1− an) ∀1 ≤ i < n. (6.9)
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These relative ratio constraints are linear and thus convex in terms of the ai.
The advantage of this prior is the simple computation and the convexity of the
constraints. Yet, in the case of large variations of the ratios ri in the sample
data (i.e. sample outliers) we can obtain very large intervals [li, hi], which hardly
limit the resulting segmentations. Therefore, we propose Laplace distribution
priors.

6.3.2 Laplace Distribution Prior

The Laplace distribution prior penalizes deviations of the ratios ri from their
median r̄i . In this way, the influence of ratio sample outliers on the constraints
is limited. We assume the following Laplace distribution

Pprop(ri) =
1

2σi
exp

(
− |ri − r̄i|

σi

)
. (6.10)

Given a set of sample ratios si1, . . . , siM for segment i from M training seg-
mentations, the parameters r̄i are obtained by means of maximum likelihood
estimation as

r̄i = median(si1, . . . , siM )

and σi =
1

M

M∑
j=1

|sij − r̄i| .
(6.11)

In order to have
∑n−1

i=1 r̄i = 1 we apply the projection r̄i = ˆ̄ri− 1
n−1

(∑n−1
j=1

ˆ̄rj−1
)
.

Taking the negative logarithm of (6.10) and multiplying it by a parameter
µ > 0 for balancing the prior with respect to the other terms, we get the energy

Ep(ri) = −µ logPprop(ri) =
µ

σi
|ri − r̄i| =

µ

σi

∣∣∣ ai
1− an

− r̄i
∣∣∣. (6.12)

Unfortunately, after replacing ri by (6.7), this function is not convex in ai and
an. For example, for ri < r̄i we obtain Ep(ri) = µ

σi
(r̄i − ai

1−an ), which is not
convex in an for fixed ai having the second derivative ∂2

anEp = − µ
σi

2ai
(1−an)3 < 0.

To make global optimization possible, in the following we propose two methods
to convexify this prior.

Convex Relaxation. First, we consider the convex relaxation of Ep as a
function Ep(ai, an) of two variables, i.e. the tightest possible convex lower bound.
The definition domain of Ep is naturally given by ai, an ≥ 0 and ai + an ≤ 1,
where the latter inequality follows from

∑n
j=1 aj = 1. We obtain the following

convex relaxation:

Proposition 6.1. The convex relaxation of (6.12) on the domain ai, an ≥ 0
and ai + an ≤ 1 is given by

E1(ai, an) :=
µ

σi

∣∣ai − r̄i(1− an)
∣∣. (6.13)

Proof. See appendix Section 6.7.
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In contrast to the Laplace prior (6.12), this approximation is convex. How-
ever, E1 is minimal not only for ai = r̄i(1− an) but also for an = 1, ai = 0,
i.e. when the segmentation only consists of the background. Thus, this prior is
biased towards smaller foreground object areas. This can be understood as an
additional compactness prior which removes cluttered background regions, but
sometimes also parts of the objects.

Convex Upper Bound. As shown in the last paragraph, even the greatest
convex lower bound E1 is too small. This suggests to go in the other direction.
As a second convexification method we propose a convex upper bound on Ep.
Note that Ep does not have a lowest upper bound, in contrast to the convex
relaxation case. To arrive at one possible solution, the idea is to write Ep
in (6.12) by replacing the ratios ri by the ai in (6.7),

Ep =
µ

σi

∣∣ai − r̄i(1− an)
∣∣

√
1− an

· 1√
1− an

(6.14)

and apply Young’s inequality pq ≤ 1
4εp

2 + εq2, valid for all p, q ∈ R and ar-
bitrary ε > 0 (we choose ε = 10 in the experiments). It is equivalent to
( 1

2
√
ε
p−√εq)2 ≥ 0. This leads to Ep ≤ E2 with

E2 :=
µ2

4εσ2
i

(
ai − r̄i(1− an)

)2
1− an

+
ε

1− an
. (6.15)

This energy is convex: the first addend is a linear transformation of the convex
function (x, y) 7→ x2

y , x ∈ R, y > 0, and the second one is obviously convex in
an ∈ [0, 1).

The main advantage is that E2 always favors the relation ai ≈ r̄i(1 − an)
regardless of the size of the object. It also avoids large background regions as
E2 →∞ for an → 1, which can be alleviated by using a small ε.

We note that a Gaussian distribution instead of a Laplace distribution (6.10)
would still yield a nonconvex Ep in (6.12), while leading to more complex and
slower relaxations. In addition, we observed that the Laplace prior better rep-
resents the training data than the Gaussian prior.

6.4 Implementation

6.4.1 Conversion to a Convex Optimization Problem

As described in Section 3.3, the idea to convexify the multilabel problem is to
express it in terms of the label indicator functions u1, . . . , un in (3.10). The
energy (6.6) can now be rewritten in a convex way in terms of u as follows:

First, the (weighted) boundary length Perg(Ωi; Ω) is given by the weighted
total variation of ui through (2.28):

λ
2 Perg(Ωi) = λ

2

∫
Ω
g d|Dui| = sup

pi∈Ci

∫
Ω

〈
pi, dDui

〉
(6.16)
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with
Ci =

{
pi ∈ C1

c (Ω;Rm)
∣∣ |pi(x)| ≤ λ

2 g(x) ∀x ∈ Ω
}
. (6.17)

The weighting function g for the length penalization is set to

g(x) := e−γ|∇I(x)|, (6.18)

favoring the coincidence of object and image edges. We set γ = 5.
Next, the variables ai = |Ωi|/|Ω| used to replace ri in (6.7) can be written

in terms of the indicator functions ui as

ai =
1

|Ω|

∫
Ω
ui(x) dx. (6.19)

These are linear and thus convex constraints in a and u.
The final step is to relax the binary constraints ui(x) ∈ {0, 1} to the convex

ones ui(x) ∈ [0, 1] as was done in Section 3.3. The domain of u becomes the set
D in (3.18).

Convex Energy. We obtain the following energy

min
u∈D, a
s.t. (6.19)

sup
pi∈Ci

n∑
i=1

∫
Ω

(
ciui dx+ 〈pi, dDu〉

)
−
n−1∑
i=1

logPprop(ai, an) (6.20)

which is to be minimized w.r.t. u and a and maximized w.r.t. ξ. For the uniform
prior the constraints (6.9) replace the second term. For the Laplace convex
relaxation prior it is given by (6.13), and for the Laplace convex upper bound
prior by (6.15). The relaxed convex optimization problem can be minimized
globally yielding results which are independent of the initialization.

In order to obtain a binary solution candidate for the original optimization
problem, after solving the relaxed problem we use the maximum-value binariza-
tion (3.41).

Note that optimizing for the proportions by alternating minimization is not
reasonable: Starting with an initial segmentation, the proportions will be first
set in accordance with it, so that each subsequently detemined segmentation
will be driven towards this first (and possibly bad) one.

6.4.2 Prior Implementation

After discretizing the image domain into a rectangular pixel grid, the energy
(6.20) is discretized in a straightforward way analogous to (3.5) and optimized
with the primal-dual Algorithm 3.

The constraints (6.19) become

ai =
1

|Ω|
∑
x∈Ω

ui(x) ∀i, (6.21)

where |Ω| = (
∑

x∈Ω 1) is the number of pixels overall. They can be easily
enforced through the basic Lagrange multiplier dualization (2.71), appending
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the terms

sup
ηi∈R

n∑
i=1

ηi

(
ai −

1

|Ω|
∑
x∈Ω

ui(x)

)
(6.22)

to the energy. For the projection of the primal variable u onto the constraint set
Dd in (3.45), we use the explicit simplex-projection method because the number
of labels is typically rather very small. The projection of each dual pi ∈ Ci is
done by simple clipping of the absolute value.

Let us now give more details about the implementation of the different pro-
portion prior terms.

Uniform Prior. Similarly to (6.22), the hard constraints (6.9) for the uni-
form prior are also implemented through Lagrange multiplier dualizations, but
utilizing (2.72) and (2.73). We append the terms

sup
αi∈R, αi≤0

n∑
i=1

αi
(
ai − li(1− an)

)
(6.23)

and

sup
βi∈R, βi≥0

n∑
i=1

βi
(
ai − hi(1− an)

)
(6.24)

to the energy. The proximal operators for α and β are straightforward to com-
pute, being essentially the projections onto the nonpositive, respectively the
nonnegative numbers.

Laplace Convex Relaxation. For the convex relaxation (6.13) of the Lap-
lace prior, in order to simplify the resulting proximal operators it is convenient
to decouple the a1, . . . , an−1 from an by applying the dualization (2.77):

E1 =
µ

σi

∣∣ai − r̄i(1− an)
∣∣ = sup

αi∈R, |αi|≤µ/σ
αi
(
ai − r̄i(1− an)

)
. (6.25)

This introduces n new dual variables αi ∈ R, 1 ≤ i < n, into the optimization.
The prox for α is essentially a projection onto the hard constraints, which is a
simple absolute value clipping.

Laplace Upper Bound. For the Laplace convex upper bound prior (6.15), it
is also advisory to decouple the ais to simplify the computations. We apply the
dual representation (2.79) to (6.15) for all 1 ≤ i < n and obtain the following
formulation of the convex upper bound for the Laplace proportion preserving
prior:

sup
(αi,βi)∈Ai

n−1∑
i=1

(
αi
(
ai − r̄i(1− an)

)
− βi(1− an)

)
+
ε(n− 1)

1− an
. (6.26)

with the constraint set

Ai :=
{

(α, β) ∈ R× R
∣∣ βi ≥ εσ2

i
µ2 α

2
i

}
. (6.27)
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The overall energy for this prior is

min
u∈Dd, a

max
pi∈Ci, (αi,βi)∈Ai

∑
x∈Ω

n∑
i=1

ci(x)u(x) +
〈
pi(x), ∇+ui(x)

〉
+

n∑
i=1

ηi

(
ai −

1

|Ω|
∑
x∈Ω

ui(x)

)
(6.28)

+

n−1∑
i=1

(
αi
(
ai − r̄i(1− an)

)
− βi(1− an)

)
+
ε(n− 1)

1− an
.

After a linear adjustment from the linear terms −∑n−1
i=1 (αir̄i + βi) analogously

to (3.49), the prox for (α, β) reduces to a projection onto A. The projection of
αi, βi onto their individual constraints sets, as well as the proximal operator for
an are detailed in the appendix Section 6.7.

6.5 Experimental Results

We have developed an approach for image sequence segmentation which pre-
serves object proportions by imposing relative size priors on different object
components. In this way we allow for arbitrary scaling of the objects, spatially
varying color distributions and the recovery of easily missed object components.
To evaluate the proposed prior we selected several different image series from
the ICoseg-database [11] and the web, requiring that the foreground objects can
be subdivided into several parts, see Figure 6.3 and 6.4.

The image series in the ICoseg dataset consist of up to 40 images in each
class. To obtain a small set of proportion samples and separate color models for
each object part, we created a small training set for each class consisting of five
images partitioned into object part labels. The color models ci in (6.6) for each
part can then either be learned from these images or derived from user scribbles
on one or several of them, e.g. by means of the Parzen density estimator [97, 93].
We used the CIELab color space and a Gaussian kernel with standard deviation
8. The remaining images of the series are then segmented automatically. For
most image sequences the parameters λ = 15 and µ = 200 gave optimal results.

6.5.1 Benchmark Results

In Table 6.1 we compare the average accuracy (ratio of correctly labeled pixels
with respect to total number of pixels) of the proposed proportion priors on the
sequences of the ICoseg benchmark, which contain subdivisible objects. First,
we compare the proportion prior results to the results of the same algorithm
without proportion priors. The table shows drastic improvements of up to 40
or 50%.

We also compare against state-of-the-art image sequence and co-segmenta-
tion approaches. Almost all of these approaches are at least partially supervised
just as ours since they use training data from a small set of images or scribbles
to learn common object properties or classifiers, e.g. Mukherjee et al. [91] learn
dictionaries of appearance models, Vicente et al. [132] train a random forest
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Dataset w/o prop. uniform relaxed L. bounded L. [132] [62] [110] [91] [37] [11]

Gymnastics 55.13 98.35 97.86 98.51 91.7 90.9 87.1 92.18 - -

Ferrari 49.71 97.83 97.72 98.19 89.9 85.0 84.3 89.95 96.4 -

Balloon 83.53 96.46 96.74 96.73 90.1 85.2 89.0 95.17 - -

KitePanda 78.77 82.41 89.69 92.09 90.2 73.2 78.3 93.37 - -

Baseball 63.01 95.85 96.20 95.01 90.9 73.0 90.5 95.66 - -

Skating 93.72 96.42 96.55 96.60 77.5 82.1 76.8 96.64 - -

Liverpool 70.22 95.44 95.55 95.50 87.5 76.4 82.6 - 93.9 -

Ice-skating 56.05 99.33 99.41 99.41 - - - - - -

Mean 68.77 95.26 96.22 96.51 88.26 80.83 85.7 93.83 93.14 92.8

Table 6.1: Proportion prior accuracy. Comparison of the accuracy (in
%) of the proposed proportion prior formulations (uniform, relaxed Laplace,
bounded Laplace prior) to the same algorithm without proportion priors and
to state-of-the-art segmentation results on the ICoseg benchmark. The upper
bound formulation of the Laplace distribution performs best.

based on appearance model features, Batra et al. [11] learn Gaussian Mixture
Models for foreground and background from user scribbles, and Joulin et al. [62]
train a supervised classifier for object class separation. Others such as Rubio et
al. [110] and Collins et al. [37] do not make use of prior knowledge. However,
the former builds on an algorithm to measure ’objectness’ that again requires
learning on general images. Not all of these methods indicate accuracy per
sequence or not for all sequences we tested. Missing results are marked by ‘-’.
Collins et al. [37] evaluated only on two sequences of our test set, so we indicate
the average score reported in [37], and Batra et al. [11] only gave the average
accuracy on the whole benchmark. The results show that we outperform all
other methods on the given test set.

Finally, we compare the different types of proportion prior formulations we
proposed in Section 6.3. The results show that all three types outperform the
other approaches. However, two points need to be mentioned: 1) The uniform
prior (6.9) is too weak in case of outliers since all ratios within the maximum
and minimum sample range are equally likely. This can be observed in the kite
panda series in the benchmark, where the accuracy drops to 82% since most
images contain only parts of the kite with strongly varying proportions (for
most other scenes the object is usually fully visible). 2) The relaxed Laplace
prior (6.13) is biased towards large background regions and thus comes with a
shrinking bias which tries to minimize the area of the whole foreground object,
see (6.13) and the remark thereafter. Figure 6.2 illustrates both points. Hence,
we can conclude that the convex upper bound Laplace prior (6.15) yields the
best and most stable performance over all test sequences.

6.5.2 Qualitative Results

In this section we show qualitative results for the proportion prior algorithm on
the ICoseg dataset, for single objects in Figure 6.3 and for multiple foreground
objects in Figure 6.4. For each series, we show the result of the proposed
segmentation algorithm without proportion priors in the left column and with
proportion priors based on the convex upper bound Laplace relaxation (6.15)
in the right column. From the results we can draw four conclusions.
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(a) Uniform (51.7%) (b) Relaxed Laplace (79.8%)

(c) Bounded Laplace (98.8%) (d) Bounded Laplace (94.6%)

Figure 6.2: Proportion prior comparison. (a) The uniform prior (6.9)
is weakened in case of strongly varying sample proportions (the panda kite is
often only partially visible in the training images). (b) The Laplace convex
relaxation prior (6.13) is biased towards larger backgrounds and thus comes
with a shrinking bias, which sometimes yields suboptimal results. (c–d) The
Laplace convex upper bound prior (6.15) yields stable results.

Higher Accuracy. The imposed proportion prior yields segmentation results
of much higher accuracy than the original approach without size constraints. In
several of the series in Figure 6.3 it is a common problem for object regions to
seep out into the background and cover large parts of it, e.g. the background of
the gymnast series is sometimes completely assigned to the ‘hair’ label, or the
ice background is marked as ‘skates’ in the figure-skating series. Larger parts of
the car background are assigned as various car elements as well, and the sky in
the panda kite series is often misclassified as kite. Without proportion priors,
further problems appear with different regions of similar color, which are easily
mixed up due to low energy differences. An example are the shoulders of the
gymnast in the leftmost image of Figure 6.3, which are marked as ‘101-sign’.

Scale Invariance. Depending on the viewpoint of the camera, the objects
have different sizes. Take for example the balloon or the car in Figure 6.3,
which appear at different distances to the camera. Absolute size constraints
would not allow for a correct segmentation in these cases without changing the
size constraints for each image, which would be very tedious for the user. In
contrast, relative proportion constraints relating different parts of the object,
are naturally invariant with respect to object scale.
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Image Without proportion prior With proportion prior

Figure 6.3: Segmentation results for different image sequences con-
taining a single object. The left three columns of each sequence show the
segmentation results without proportion prior, the right three columns after
imposing proportion priors.

Preservation of Small or Elongated Object Parts. Another advantage
of the proposed approach is that it preserves semantically meaningful small-
scale objects. If these parts are either similar to the background in color or
small or elongated, the algorithm without size constraints will remove these
parts to minimize the segment boundary length. Examples can be seen in the
first and third image of the ice-skater series in Figure 6.3, where the shoes are
assigned to the background. By defining proportion constraints for each object
part separately, we can learn and impose ratio likelihoods, which prevent such
regions from disappearing.

Multiple Object Instances. Most segmentation algorithms are limited to
single foreground objects. Since the proportion priors within the multilabel
framework naturally apply to multiple object instances in the same image we
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Image Without proportion prior With proportion prior

Figure 6.4: Segmentation results for different image sequences con-
taining multiple objects. See Figure 6.3 for the explanation.

can also apply our approach to image series with many foreground objects such
as baseball or soccer scenarios, see Figure 6.4.

In addition, proportion priors are not limited to different parts of the same
object but can also relate different objects, e.g. the size of a mouse with respect
to a dog or the heart with respect to the lungs in medical imaging.

6.5.3 Runtime

An important advantage of the proposed method is its efficiency, especially for
large sequences of images. Previous and current state-of-the-art approaches
demand run times per image of 45 seconds [62], 10 seconds [37] or 25–100 sec-
onds [91]. Due to the inherent parallel structure of the algorithm, each pixel
can be updated independently. Hence, the proposed method can be easily par-
allelized. Using a single NVIDIA GTX 680 GPU we obtained an average run
time of 2.2 seconds per image. Using three GPUs in parallel we reduced the
average run time to one second.

6.6 Conclusion

We introduced the concepts of part decompositions and proportion priors into
a framework for multilabel co-segmentation. The problem is formulated as a
variational approach together with a convex relaxation which can be globally
optimized. Extensive evaluations on various image series show that proportion
priors provide accurate segmentations despite changing illumination, despite
viewpoint or background changes, and despite substantial articulations and non-
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rigid deformations. The relativity of the proportion constraints allows for sta-
ble, scale-invariant segmentations over long ranges of images containing single or
multiple foreground objects and helps to recover small-scale semantically impor-
tant object parts which are frequently suppressed in existing approaches. With
an average run time of about one second on graphics hardware the algorithm is
more than an order of magnitude faster than existing techniques.

6.7 Appendix: Proofs and Proximal Operators

6.7.1 Proof of Proposition 6.1

Proof. W.l.o.g. let µ
σi

= 1. First, E1 is a convex lower bound on Ep in (6.12)
since it is convex with E1 = Ep · (1− an) ≤ Ep. For any other such bound Ê1,
by Ê1 ≤ Ep it follows

Ê1(0, an) ≤ r̄i, (6.29)

Ê1

(
r̄i(1− an), an

)
≤ 0. (6.30)

From this, Ê1(0, 0) ≤ r̄i and Ê1(0, 1) ≤ 0, and therefore

Ê1(0, an) ≤ anÊ1(0, 1) + (1− an)Ê1(0, 0)

≤ r̄i(1− an).
(6.31)

For ai ≤ r̄i(1−an) we can define α := ai
r̄i(1−an) ∈ [0, 1]. By convexity of Ê1, and

from (6.31) and (6.30) we get

Ê1(ai, an) = Ê1((1− α) · 0 + α · r̄i(1− an), an)

≤ (1− α) Ê1(0, an) + α Ê1

(
r̄i(1− an), an

)
≤ (1− α) · r̄i(1− an) + α · 0
= r̄i(1− an)− ai = E1(ai, an).

Similarly, one can show Ê1 ≤ E1 also for ai ≥ r̄i(1 − an). Thus, E1 is the
greatest convex lower bound on Ep.

6.7.2 Proximal Operator for an

For the primal-dual algorithm, the proximal operator for an is the minimization
problem

argmin
an

{
(an − a0

n)2

2τ
+
ε(n− 1)

1− an

}
, (6.32)

where a0
n ∈ R and τ > 0 are constants. Setting the derivative w.r.t. an to zero,

one has to solve a cubic equation. We use the method of [83] for this. Define
c := τε(n− 1), v := 1−a0

n
3 , w := v3 and D := c

4 + w.
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The case D ≥ 0. In this case the solution is given by

an = 1− v − z − v2

z
(6.33)

with z := 3

√
c
2 + w +

√
cD > 0.

The case D < 0. Otherwise, the solution is

an = 1− v + 2v cos
(

1
3 arccos

(
1− 2D

w

))
. (6.34)

6.7.3 Proximal Operator for α, β

The proximal operator is here computed independently for each 1 ≤ i < n:

argmin
(αi,βi)∈Ai

(α− α0
i )

2

2τ
+

(β − β0
i )2

2τ
+
(
− αir̄i − βi

)
(6.35)

for some α0
i , β

0
i ∈ R and τ > 0 with the set Ai in (6.27). Define α̂i := α0

i + τ r̄i
and β̂i := β0

i + τ . Then the solution is given by the projection onto a parabola:

(αi, βi) = πβi≥ε̂iα2
i

(
α̂i, β̂i

)
(6.36)

with ε̂i :=
εσ2
i

µ2 . We use the explicit formula of Section 9.9.2 to compute this.
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Chapter 7

Functional Lifting: Convex
Relaxation for Scalar Problems

In this second part, consisting of Chapters 7, 8, 9 and 10, we will consider
minimizing nonconvex energies

min
u
E(u) (7.1)

for functions u of the form

u : Ω→ Rk, k ≥ 1, (7.2)

which are vector-valued and have a continuous range space. This is opposed to
the first part, which dealt with the multilabeling problem and where the range
was discrete and finite.

In the current Chapter 7 we will briefly describe the basic and important
functional lifting approach. It is devised for the scalar case k = 1 only and
yields a general method to convexify and efficiently optimize energies E. In the
subsequent three chapters we will use the idea of functional lifting to devise novel
convex relaxations for the vectorial case, k ≥ 2. Each chapter concentrates on
a different special case of vectorial functionals. Chapter 8 considers separable
regularizers, without any coupling between the channels except for the data
term. Chapter 9 considers special coupling regularizers such as the l2-coupled
total variation and its Huber-regularized variant. Finally, in Chapter 10 we will
consider the problem of convexifying the Mumford-Shah regularizer, which is a
special and very important instance of vectorial and coupling regularizers.

Let us first review and explain the general idea of the state-of-the-art convex
relaxation for the scalar case k = 1, the functional lifting approach.

7.1 Introduction

7.1.1 The Class of Functionals

Recall that scalar functions u ∈ SBV(Ω,R), or rather their distributional gradi-
ent Du, can be decomposed as into a smooth and a jump part as in (2.23). We

107
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Figure 7.1: Graph of a function u ∈ SBV(Ω,R). A special function of
bounded variation u has an approximate gradient ∇u everywhere except for a
nullset Su, where the values jump from u− to u+ in direction νu. The graph
function 1u is defined as 1 in the shaded area under the graph and 0 otherwise.

are dealing here with the scalar case k = 1, so that this decomposition becomes

Du = ∇uLm + νu(u+ − u−)Hm−1 Su. (7.3)

The set Su is the (m− 1)-dimensional jump set of u (a hypersurface), where it
assumes two distinct values u−, u+ ∈ R with u− < u+ on the two sides of the
jump interface, and ν ∈ Sm−1 is the direction of the jump from the u− to the
u+ side, see Figure 7.1. The function ∇u is not the classical, but rather the
“approximate gradient” which is defined a.e. through an appropriate averaging
limit, see Section 2.2.

The functional lifting framework is applicable to functionals of the following
form:

E(u) =

∫
Ω\Su

h(x, u(x),∇u(x)) dx

+

∫
Su

d(x, u−(x), u+(x)) dHm−1(x).

(7.4)

These energies explicitly use the fact that u can be decomposed into a smooth
and a jump part and assign different penalizations to each parts. The function
h usually has a special form, namely the sum of a data term c only depending
on t = u, and a pure regularizer part f only depending on p = ∇u:

h(x, t, p) = c(x, t) + f(x, p). (7.5)

For instance, this will be the case in all of our application in this thesis. The
above energy E then becomes

E(u) =

∫
Ω
c(x, u(x)) dx+

∫
Ω\Su

f(x,∇u(x)) dx

+

∫
Su

d(x, u−(x), u+(x)) dHm−1(x).

(7.6)

Note that the data term integral is taken over whole Ω instead of Ω \Su, which
we can do since u(x) is defined a.e.; we could have done so already in (7.4), but
when dealing with ∇u it is preferable to keep Ω \ Su for clarity.
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Figure 7.2: Graph construction for the Ishikawa approach [60]. The
graph contains as many copies of the image grid (indexed by V ) as there are
labels L in order to represent any convex penalization function. This is related
to range discretization in the functional lifting approach.

Functionals (7.6) form a very broad class. Minimizers are allowed to have
jump discontinuities and one can explicitly control the jump behavior through
the function d. Undesired discontinuities can be discouraged by making d large,
while still being able have to a general behavior in the smoothness region Ω\Su
between the jumps by choosing f appropriately. For example, choosing f to
be quadratic ensures smoothness between jumps, while making f large overall
will lead to almost piecewise constant solutions. The key advantage of function-
als (7.6) is that they allow almost arbitrarily complicated and possibly nonconvex
data terms c. This generality (resp. the multi-channel variant of (7.6)) encom-
passes many frequently arising problems of computer vision, including optical
flow, image denoising and 3D reconstruction.

However, there are also some limitations. For one, E depends pointwise on
u, i.e. at each image point x ∈ Ω the penalization functions c, f , d depend on the
values of u(x), ∇u(x), and u±(x) only at this point. This means that data terms
involving convolutions, such as in deconvolution and deblurring problems [43,
35, 136, 117] and superresolution [9, 25, 117, 130], as well as nonlocal variants of
regularization such as nonlocal total variation [73, 137], are not covered by (7.6).
Another one is that (7.6) is of first-order, i.e. only depends on the gradient and
not higher-order derivatives.

7.2 Functional Lifting

The energy E in (7.6) is highly nonconvex in general. This is due to the pos-
sibly nonconvex data term c, as well as the possibly nonconvex regularization
depending on the jump set Su (though there are special cases with convex reg-
ularization, see Section 7.2.2). Consequently, minimization of such functionals
is a challenge and local methods are likely to fail and will need an appropriate
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initialization.
Surprisingly, provided suitable regularity properties are fulfilled, for instance

convexity of f in ∇u, it turns out that functionals of the form (7.6) can always
be represented in a convex way via functional lifting. The key idea is to consider
the space of values as an additional dimension and to show that the optimal
solution is a minimal hypersurface, i.e. a co-dimension-one structure in this
higher-dimensional space. Namely, the energy is reformulated in terms of the
graph function of u and one considers Cartesian currents associated with the
graph [1, 46, 47, 51].

This provides a general approach to make efficient minimization possible
and allows to compute optimal [102, 101] or near-optimal [1, 100, 30] solutions.
The important contribution of the works [61, 102, 101] is to properly intro-
duce the interaction terms f and d in this program and to suggest a practical
implementation.

The main advantage of the lifting approach is that it allows to use non-
convex data terms and also, to some extent, nonconvex regularizers within a
convex optimization framework. On the other side, such a general convexifi-
cation method does not come “free of charge”: The problem dimensionality is
increased by one and for the implementation one needs to discretize the range
of u. In dimension m = 0 (an image consisting of a single pixel), it is like re-
placing the problem minu∈[0,1] c(u) with min1≤i≤n c(ui), ui = i

n . It is therefore
quite memory intensive and requires suitable hardware to be computationally
tractable.

Functional lifting is related to the Ishikawa approach [60] in the discrete
setting, which uses a graph construction consisting of as many copies of the
image pixel grid as there are labels, see Figure 7.2. Functional lifting is more
general, as it also allows for non-convex regularizers and a continuous range of
functions.

7.2.1 General Functionals

We will first present here the convexification for the general case. Afterwards,
in Section 7.2.2 we will consider an important specialization of the approach.

Graph Functions. Let us assume that the range of u is contained in some
bounded open interval Γ = (tmin, tmax) ⊂ R, i.e. u : Ω→ Γ. This will always be
the case in practice and so does not pose a real restriction.

The idea is to restate E in terms of the graph function 1u : Ω× Γ → R of
u, defined by

1u(x, t) =

{
1 if t < u(x),
0 else.

(7.7)

This is the characteristic function of the subgraph of u, being equal to 1 below
the graph, and to 0 above it, see Figure 7.1. Note that 1u is defined on the
higher-dimensional space Ω×Γ, i.e. the range space Γ of u becomes part of the
domain Ω × Γ of 1u. We could of course equally well regard it as a function
1u : Ω× Γ → {0, 1} with the smaller range {0, 1} instead of R. For fixed x,
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1u(x, t) is a nonincreasing function of t, starting with value 1 for small t and
jumping to 0 at t = u(x). It holds 1u ∈ BV(Ω× Γ,R) for u ∈ SBV(Ω,Γ).

The Lifting Lemma. The following lemma [1, Lemma 3.7] gives a convex
reformulation of E in terms of the graph function:

Lemma 7.1 (Functional Lifting). For functions v ∈ BV(Ω× Γ,R) define

E(v) = sup
ϕ∈C

∫
Ω×Γ
〈ϕ, dDv〉 (7.8)

where the set C is defined as

C =
{
ϕ = (ϕx, ϕt) ∈ C0

c (Ω× Γ;Rm × R)
∣∣

ϕt(x, t) ≥ −c(x, t) + f∗(x, t, ϕx(x, t)) ∀x ∈ Ω, t ∈ Γ,∣∣∣∫ t′

t
ϕx(x, s) ds

∣∣∣ ≤ d(x, t, t′) ∀x ∈ Ω, t, t′ ∈ Γ
}
.

(7.9)

Then, for all u ∈ SBV(Ω,Γ),

E(1u) = E(u). (7.10)

Here, f∗(x, t, q) = supp∈Rk 〈p, q〉 − f(x, t, p) is the dual of f(x, t, p) w.r.t. p. In
the set C0

c (Ω× Γ;Rm ×R) the subscript c indicates that ϕ must have compact
support, but only w.r.t. the spatial variable x. Note that the dual variable ϕ
has two components, one vectorial ϕx with values in Rm and one scalar ϕt, and
the integral (7.8) can be written as∫

Ω×Γ
〈ϕ, dDv〉 =

∫
Ω×Γ
〈ϕx, dDxv〉 + ϕt dDtv, (7.11)

where D = (Dx, Dt), with distributional gradients Dx and Dt w.r.t. x and t.
The functional E defined by (7.8) is convex. This can be used to efficiently

find minimizers of E as was done e.g. in [100].
The integral constraint in (7.9) is responsible for correctly representing the

jump part of E. Intuitively, it means that, when at x ∈ Ω the value of u
jumps from t to t′, this jump gets penalized by at most d(x, t, t′). There is one
constraint for each possible pair of values u−, u+ at the two sides of the jump
interface.

In order for the equality in (7.10) to hold, the functions f and d in (7.6)
must satisfy certain properties as well as compatibility conditions. Specifically,
we must have:

• f(x, ·) is convex and lower-semicontinuous for fixed x ∈ Ω.

• d(x, ·, ·) is a metric on Γ for fixed x ∈ Ω, and d is continuous.

• For all x ∈ Ω, t, t′ ∈ Γ and ν ∈ Sm−1:

d(x, t, t′) ≤ f∞
(
x, ν(t′ − t)

)
, (7.12)

where f∞(x, p) denotes the recession function of f(x, p) w.r.t. p, see (2.4).

Even without these restrictions, at least the inequality E(1u) ≤ E(u) will always
hold, i.e. in any case E is a convex lower bound for E in terms of 1u.
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Constraint Derivation. The dual vector fields ϕ in (7.8) do not seem to
have a direct intuitive interpretation and are simply chosen in a special way,
through the constraint ϕ ∈ C, such that the equality (7.10) is satisfied.

Let us briefly explain how the constraint set (7.9) is derived. For fixed u and
ϕ we can use the decomposition (7.3) to write the integral in (7.8) for v = 1u
as [1, Lemma 3.7]:∫

Ω×R
〈ϕ, dD1u〉 =

∫
Ω\Su

(〈
ϕx(x, u(x)), ∇u(x)

〉
− ϕt(x, u(x))

)
dx

+

∫
Su

〈∫ u+(x)

u−(x)
ϕx(x, s) ds, νu(x)

〉
dHm−1(x).

(7.13)

In order for E to be a convex lower bound for the energy E, the expression (7.13)
must be less than or equal to E. Comparing with the analogous representation
(7.6) of E, for this it is sufficient to have〈

ϕx(x, u(x)), ∇u(x)
〉
− ϕt(x, u(x)) ≤ c(x, u(x)) + f(x,∇u(x)) (7.14)〈∫ u+(x)

u−(x)
ϕx(x, s) ds, νu(x)

〉
≤ d(x, u−(x), u+(x)) (7.15)

on Ω \ Su resp. on Su. Setting t = u(x) ∈ Γ and p = ∇u(x) ∈ Rm, resp. t =
u−(x) and t′ = u+(x), this in turn is implied if〈

ϕx(x, t), p
〉
− ϕt(x, t) ≤ c(x, t) + f(x, p) ∀x ∈ Ω, t ∈ Γ, p ∈ Rm, (7.16)∣∣∣∫ t′

t
ϕx(x, s) ds

∣∣∣ ≤ d(x, t, t′) ∀x ∈ Ω, t, t′ ∈ Γ. (7.17)

These are already the constraints in (7.9). Namely, (7.16) is equivalent to

ϕt(x, t) ≥ 〈ϕx(x, t), p〉 − c(x, t)− f(x, t, p) ∀x ∈ Ω, t ∈ Γ, p ∈ Rm, (7.18)

and taking the supremum over all p this is the same as

ϕt(x, t) ≥ −c(x, t) + sup
p∈Rm

(〈
ϕx(x, t), p

〉
− f(x, t, p)

)
= −c(x, t) + f∗(x, ϕx(x, t)) ∀x ∈ Ω, t ∈ Γ,

(7.19)

which is the first constraint of (7.9).

7.2.2 Functionals with Convexity in the Gradient

For a special and important kind of energies (7.6) the constraint set (7.9) can be
significantly simplified, making the application of functional lifting much more
efficient in practice in both memory and run time. Basically, if the regularizer
part Ereg (the last two terms in (7.6)) of E is convex in the gradient ∇u then
the integral constraints of (7.9) can be omitted.

This is the class of regularizers which are already fully defined by their
values on “smooth” functions u ∈ W 1,1(Ω; Γ) (which do not have any jumps,
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i.e. the jump set Su has Hm−1-measure zero). Specifically, Ereg is first defined
for u ∈W 1,1(Ω; Γ) by

Ereg(u) =

∫
Ω
f(x,∇u(x)) dx (7.20)

with a f convex in ∇u, then for general u ∈ SBV(Ω,Γ) through lower-semicon-
tinuity considering approximations un → u by “smooth” un ∈W 1,1(Ω; Γ).

It turns out, see [5, Th. 5.54] and [15], that under suitable assumptions on
f , Ereg can be expressed for a general u ∈ SBV(Ω,Γ) by

Ereg(u) =

∫
Ω\Su

f(x,∇u(x)) dx+

∫
Su

f∞(x, νu(u+ − u−)) dHm−1(x).

(7.21)
Here, f∞(x, p) is the recession function of f w.r.t. the last variable defined
in (2.4). This is connected to the reason why the compatibility condition (7.12)
is needed in the case of general functionals E.

Important concrete examples of regularizers falling under this class are total
variation, its Huber-regularized variant, and quadratic regularization. Their
corresponding functions f in (7.20) are respectively f(∇u) = |∇u|, f(∇u) =
max(|∇u| − ε

2 , |∇u|
2 /2ε) for some ε > 0, and f(∇u) = |∇u|2.

Specialized Lifting Lemma. This case was studied extensively in [101]. The
authors show the equality (7.10), and that one can leave out the integral con-
straints in (7.9), so that the constraint set C simplifies to

C =
{
ϕ = (ϕx, ϕt) ∈ C0

c (Ω× Γ;Rm × R)
∣∣

ϕt(x, t) ≥ −c(x, t) + f∗(x, ϕx(x, t)) ∀x ∈ Ω, t ∈ Γ
}
.

(7.22)

This makes energies of the form (7.20) an important special case in terms of
the complexity of the convex relaxation. For numerical minimization of (7.8),
the range Γ of u must be discretized into finitely many values, say n. This then
translates into linearly many constraints in the corresponding discretization of
the set C (in terms of n, at each pixel x ∈ Ω). In contrast, the general set (7.9)
results in quadratically many constraints per pixel.

7.3 Convex Relaxation

Through (7.10), the minimization of the original possibly nonconvex energy

min
u∈SBV(Ω,Γ)

E(u) (7.23)

over the space SBV(Ω,Γ) is transformed into the minimization

min
v∈D0

E(v) (7.24)

of the convex energy E over the set of all graph functions

D0 =
{

1u
∣∣u ∈ SBV(Ω,R)

}
. (7.25)
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One can now try to optimize directly in terms of graph functions 1u to solve
the original problem (7.23). However, this poses a challenge because, while the
energy E in (7.24) is convex, the new optimization domain D0 is not convex.
This is because graph functions have a binary range, 1u : Ω× Γ→ {0, 1}.

7.3.1 Domain Relaxation

To overcome this difficulty the key idea to efficient minimization is to convexify
the domain D0 by relaxing the binary constraint. We consider relaxed graph
functions, replacing the range {0, 1} by [0, 1]:

D′ =
{
v ∈ BV(Ω× Γ; [0, 1])

∣∣ v(x, ·) nonincreasing for a.e. x ∈ Ω,

lim
t→tmin

v(x, t) = 1 for a.e. x ∈ Ω,

lim
t→tmax

v(x, t) = 0 for a.e. x ∈ Ω
}
.

Here tmin and tmax are the two endpoints of the range Γ = (tmin, tmax) of u.
In other words, v must still be nonincreasing, starting with value 1 for small

t and ending with value 0 for large t, but is allowed to have smooth transitions
from 1 to 0 instead of only a jump from 1 to 0. We now consider the minimization

min
v∈D′
E(v) (7.26)

of E over the relaxed domain D′.

Eliminating the Monotonicity Constraint. We note that the monotonic-
ity constraint in D′ is actually not necessary and could be omitted without
affecting the set of minimizers v. In fact, we can easily see that E(v) = ∞
whenever v is increasing somewhere. Namely, since ϕt(x, t) can be chosen arbi-
trarily large in (7.9), the supremum in (7.8) will be finite only if Dtv ≤ 0 (the
distributional gradient w.r.t. t), i.e. if v(x, ·) is nonincreasing. Thus, instead
of (7.26), equivalently we will consider the minimization

min
v∈D
E(v) (7.27)

over the set

D =
{
v ∈ BV(Ω× Γ; [0, 1])

∣∣ lim
t→tmin

v(x, t) = 1 for a.e. x ∈ Ω,

lim
t→tmax

v(x, t) = 0 for a.e. x ∈ Ω
}
.

(7.28)

7.3.2 Optimality

Having obtained a minimizer v∗ : Ω× Γ→ [0, 1] of (7.27), because of the range
relaxation it may happen that v∗(x, ·) is nonbinary at some points x ∈ Ω. Then
v∗ is not in the original set (7.25), i.e. not the graph function of any u. Thus, the
question is how to recover from v∗ an optimal solution of the original unrelaxed
problem (7.23), respectively (7.24).
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Optimal Solutions for Special Functionals. For the special case of func-
tionals with convexity in the gradient as described in Section 7.2.2, it turns
out [101] that the original problem (7.24) can be solved optimally via functional
lifting. A binary graph function vbin ∈ D0 minimizing (7.24) can be constructed
from v∗ by simple thresholding :

vbin(x, t) =

{
1 if v∗(x, t) > s,

0 else
(7.29)

with an arbitrary s ∈ [0, 1). Then vbin = 1u for some u, namely

u(x) = sup
{
t ∈ Γ

∣∣ vbin(x, t) ≥ 1
2

}
, (7.30)

and this u is a global minimizer of (7.23), regardless for the choice of s in (7.29)
(although it may be that u is in BV(Ω,Γ) and not in SBV(Ω,Γ), which is not
an issue).

Energy Bound in the General Case. In the general case, there is unfor-
tunately no thresholding theorem as for the above special case. If the obtained
relaxed minimizer v∗ is actually binary, then v∗ ∈ D0 and it is already an
optimal solution of (7.24).

Otherwise one can try to find at least an approximate solution vbin ∈ D0

by projecting, in some way, v∗ ∈ D ⊃ D0 back to the set D0 of binary graph
functions. An obvious choice is to construct vbin by the same thresholding
binarization (7.29) as above, e.g. with s = 1

2 .
In general one cannot expect that the obtained candidate solution vbin is

a global minimizer of (7.24), because discretized versions of functionals of the
form (7.6) are known to lead to NP-hard problems. Nonetheless, we can give
an estimate how far vbin is from a true global minimizer v∗bin by means of the
energy bound (1.6). In our case, this bound is

E(v∗) ≤ E(v∗bin) ≤ E(vbin). (7.31)

The lower and upper values are explicitly computable after having computed v∗

and then vbin from v∗.

7.4 Implementation

Let us give some notes about the numerical implementation of the lifted opti-
mization problem (7.27).

7.4.1 Discretization

Image Domain and Variable Discretization. We discretize the image do-
main Ω into a rectangular pixel grid, again denoted by Ω. The range space
Γ = (tmin, tmax) of u must also be discretized since the lifted energy (7.8) lives



116 CHAPTER 7. FUNCTIONAL LIFTING

on the space Ω × Γ. For simplicity we assume Γ = (0, 1) and discretize it into
n ≥ 2 uniformly spaced levels

0

n− 1
, . . . ,

n− 1

n− 1
, with spacing ∆t =

1

n− 1
. (7.32)

The discretized variables v and ϕ, as well as the data term c are represented by
their node values at the pixels x ∈ Ω and levels 0 ≤ i < n:

v(x, i
n−1) = vi(x) ∈ R, (7.33)

ϕx(x, i
n−1) = 1

∆tϕ
x
i (x) ∈ Rm, (7.34)

ϕt(x, i
n−1) = ϕti(x) ∈ R, (7.35)

c(x, i
n−1) = ci(x) ∈ R. (7.36)

In (7.34) we include the factor 1
∆t to simplify the subsequent energy discretiza-

tion.

Differential Operator Discretization. The spatial (distributive) gradient
Dx is discretized as in (2.33) using forward differences∇+

x with Neumann bound-
ary conditions, and the spatial divergence divx correspondingly as in (2.35) by
backward differences div−x with Dirichlet conditions.

The (distributive) derivative (Dtv)(x, t) of v in the range direction is dis-
cretized by forward differences ∂+

t with the Dirichlet boundary condition:

(Dtv)(x, i
n−1) = 1

∆t(∂
+
t vi)(x), (7.37)

(∂+
t vi)(x) =

{
vi+1(x)− vi(x) if i < n− 1,

−vi(x) if i = n− 1.
(7.38)

The case i = n − 1 implicitly enforces vi+1(x) = vn(x) = 0, i.e. one of the
constraints in (7.28). The corresponding negative adjoint ∂−t = −(∂+

t )T is
given by backward differences: (∂−t pi)(x) = pi(x)− pi−1(x)χi≥1.

Energy and Constraint Set Discretization. Integrals
∫

Ω dx over the im-
age domain are discretized by

∑
x∈Ω, and integrals

∫
Γ dt over the range by∑

0≤i<n ∆t, i.e. with the scaling factor ∆t in (7.32).
The discretized energy (7.8), written out as (7.11), becomes:

min
v∈Dd

max
ϕ∈Cd

∑
x∈Ω

∑
0≤i<n

〈ϕxi (x),∇+vi(x)〉+ ϕti(x)∂+
t vi(x). (7.39)

Note that the scaling factor ∆t cancels out completely, for the first term because
we used the scaling (7.34) for ϕx and for the second term because of the range
derivative discretization (7.37). The discretized primal constraint set (7.28) is

Dd =
{

(vi)0≤i<n
∣∣ vi : Ω→ [0, 1], v0(x) = 1 ∀x ∈ Ω

}
. (7.40)

We keep only one of the two boundary value constraints of (7.28) since the
other one vn(x) = 0 is already implicitly ensured through the ∂+

t discretization
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(7.38). The fixed values v0(x) = 1 could be kept implicit as well, i.e. there is
actually no need to store them explicitly in the implementation. However, this
would only save a negligible fraction of needed memory (one image layer out of
n total) and it is more convenient to work with an explicit v0(x).

The constraint set for the duals (7.9) becomes

Cd =
{

(ϕi)0≤i<n
∣∣ϕi = (ϕxi , ϕ

t
i) with ϕxi : Ω→ Rm, ϕti : Ω→ R,

ϕti(x) ≥ −ci(x) + f∗
(
x, 1

∆tϕ
x
i (x)

)
∀x ∈ Ω, 0 ≤ i < n,∣∣∣ ∑

i<k≤j
ϕxk(x)

∣∣∣ ≤ d̂(x, i, j) ∀x ∈ Ω, 0 ≤ i < j < n
}
.

(7.41)

The scaling factor ∆t appears in the first constraint due to (7.34), while it is not
present in the integral constraint due to the cancellation after the discretization∫

Γ dt → ∑
0≤i<n ∆t. The discrete distance function is defined analogously to

(7.33)–(7.36) as d̂(x, i, j) = d(x, i
n−1 ,

j
n−1) for all 0 ≤ i < j < n. For the special

kind of energies E considered in Section 7.2.2, only the first constraint in (7.41)
must be kept:

Clocald =
{

(ϕi)0≤i<n
∣∣ϕi = (ϕxi , ϕ

t
i) with ϕxi : Ω→ Rm, ϕti : Ω→ R,

ϕti(x) ≥ −ci(x) + f∗
(
x, 1

∆tϕ
x
i (x)

)
∀x ∈ Ω, 0 ≤ i < n

}
.

(7.42)

7.4.2 The Primal-Dual Algorithm

To solve the saddle-point problem (7.39) we can use the preconditioned primal-
dual Algorithm 3. The energy is of the general form (2.38), and the functions D
and F of (2.38) are present here only in the form of hard constraints: D(v) =
δDd(v) and F (ϕ) = δCd(ϕ). Therefore, the proximal operators in the update
equations of Algorithm 3 reduce to Euclidean projections πDd and πCd onto the
constraints sets, see (2.41).

The projection πDd for the main primal variable v is straightforward. It can
be computed independently and in parallel for each x and i by simple clipping
of the values vi(x) to [0, 1] for i > 0 and setting v0(x) = 1.

The projection for ϕ is more involved, and there are basically two different
strategies depending on which regularizer is used.

Implementation for the Special Case (7.42). In this case all constraints
are local and the projection πClocald

is very easy to handle and to compute ex-
plicitly. It reduces to independent projections for each fixed x and i, needing
to project onto

{
(p, q) ∈ Rm × R

∣∣ q ≥ −ci(x) + f∗(x, p)
}
. This can be done

in closed form for commonly used regularizers, such as TV , Huber-TV , and
quadratic regularization, see [101] for more details. For the quadratic regular-
izer one has to project onto a parabola, for which we suggest to use the explicit
formula in Section 9.9.2 instead of the iterative scheme suggested in [101].
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Implementation for the General Case (7.41). This case is more compli-
cated because of the quadratically many nonlocal sum-constraints in (7.41), so
that there is no simple projection formula. In [100, 30] it was suggested to use
iterative Dijkstra’s algorithm, but it is rather slow requiring many interations
and can compute only approximate projections.

Here we propose a dualization approach to exactly enforce the constraints,
analogously as was done in Section 3.5.4 for the pairwise constraints (3.33). We
use the dualization (2.75) to rewrite the hard constraints equivalently as new
energy terms. With new primal variables aij(x) ∈ Rm for all x ∈ Ω and all pairs
i, j with 0 ≤ i < j < n, we add the terms

inf
aij :Ω→Rm

∑
x∈Ω

∑
0≤i<j<n

〈
− aij(x),

∑
i<k≤j

ϕxk(x)

〉
+ d̂(x, i, j) |aij(x)| (7.43)

to the energy (7.39). To simplify the inner sums of ϕ’s, we also introduce
auxiliary dual variables pi(x) ∈ Rm for all x ∈ Ω and 0 ≤ i < n by requiring

∂−t pi(x) = ϕxi (x) (7.44)

for all x and i. Then the sums reduce to∑
i<k≤j

ϕxk(x) = pj(x)− pi(x). (7.45)

The equalities (7.44) can be enforced using the dualization (2.74), adding

inf
µi:Ω→Rm

∑
x∈Ω

∑
0≤i<n

〈
µi(x), ∂−t pi(x)− ϕxi

〉
(7.46)

to the energy with new primal variables µi(x) ∈ Rm (Lagrange multipliers) for
all x ∈ Ω, 0 ≤ i < n. Overall, the initial energy (7.39) now becomes

min
v∈Dd, µ, a

max
ϕ∈Clocald , p

∑
x∈Ω

∑
0≤i<n

〈ϕxi (x),∇+vi(x)〉+ ϕti(x)∂+
t vi(x)

+
∑
x∈Ω

∑
0≤i<n

〈
µi(x), ∂−t pi(x)− ϕxi

〉
(7.47)

+
∑
x∈Ω

∑
0≤i<j<n

〈
− aij(x), pj(x)− pi(x)

〉
+ d̂(x, i, j) |aij(x)| .

One now optimizes only over the simplified constraint set (7.42), and there are
no constraints on µ, a and p. The proximal operator for a decomposes into
individual prox operators for each aij(x), which are given by soft-thresholding:

prox
τ, d̂(x,i,j)|·| (a) = amax

(
0, 1− τ d̂(x, i, j)/ |a|

)
. (7.48)

We suggest to use the variant of the primal-dual Algorithm 4 where the “bar”-
copies are introduced for the duals rather then for the primals, since there are
quadratically many aij ’s.



Chapter 8

Vectorial Problems with
Separable Regularization

As the first special case of vectorial functionals we consider separable regularizers
and apply (a reformulation of) the functional lifting approach separately to each
channel, resulting in a significant speedup in comparison to previous methods.
A difficulty will be that the data term becomes nonconvex, for which we succeed
to find the tightest possible convex envelope relaxation. This chapter is based
on joint work with Bastian Goldlücke and Daniel Cremers [124, 55].

8.1 Introduction

8.1.1 Vectorial Energies and Multilabel Problems

We consider the minimization of energies of the form

min
u:Ω→Γ

E(u), E(u) =

∫
Ω
c
(
x, u(x)

)
dx + R(u) (8.1)

with a data term c and a regularizer R, where the unknown functions u : Ω→ Γ
have a vectorial, k-dimensional range:

Γ ⊂ Rk with a k ≥ 1. (8.2)

Such energies arise in a multitude of applications because of the naturally fre-
quent occurrence of vectorial data. Some of the more prominent examples are
color image denoising where k = 3, and optical flow estimation where k = 2, see
Figure 8.1. While the general functional lifting convexification method can be
employed to find a convexification in the scalar case k = 1, it is essentially lim-
ited to k = 1 and does not generalize to the vectorial case. Thus, optimization
of vectorial energies (8.1) still remains a challenge.

Our proposed convexification approach in this chapter will be based on func-
tional lifting, essentially applying it separately for each of the k channels of u.
Thus, we will need to discretize the range of u in the end in order to practically
compute a solution.

When the range Γ is discretized, vectorial energies (8.1) can be equivalently
regarded as being multilabel problems, with the additional information that the

119
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Figure 8.1: The proposed approach for large multilabel problems.
The proposed relaxation method can approximate the solution to multilabeling
problems with a huge number of possible labels by globally solving a convex
relaxation model. This example shows two images and the optic flow field
between them, where flow vectors were assigned from a possible set of 50 ×
50 vectors, with truncated linear distance as a regularizer. The problem has
so many different labels that a solution cannot be computed by alternative
relaxation methods on current hardware.

finite label space Γ has a special multidimensional structure. Conversely, ev-
ery such multilabel problem can be regarded as a special vectorial energy (8.1),
namely where only finitely many values for u are allowed. Current convexifi-
cation approaches for (8.1) all work with the finite multilabel viewpoint of the
problem, of which they only use the fact that the range is finite, disregarding
the vectorial label structure.

In this chapter we propose a convex relaxation which crucially utilizes the
vectorial nature of the labels to achieve a drastic reduction in memory and run
time requirements. Furthermore, our approach works with a continuous label
space, thus allowing to formulate more general regularizers such as piecewise-
smooth Mumford-Shah.

8.1.2 Contribution: Relaxation for Product Label Spaces

We consider multidimensional label spaces which can be written as a product
of a finite number k ≥ 1 of scalar spaces Γi ⊂ R,

Γ = Γ1 × · · · × Γk. (8.3)

The central idea is as follows. For illustration, assume that the individual
spaces Γi are discrete or have been discretized, and let

ni = |Γi| (8.4)

be the number of elements in Γi. Then the total number of labels is

n = |Γ| =
∏
i

|Γi| =
∏
i

ni. (8.5)

In previous relaxations for the multilabel problem, as seen in Part I, this means
that we need to optimize over n binary indicator functions, which can easily
amount to thousands of scalar functions in practical problems. In order to
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make problems of this form feasible to solve, we present a reduction method
which only requires

s =
∑
i

ni (8.6)

binary functions. As a consequence, memory grows linearly (rather than expo-
nentially) in the number of range dimensions k, while the computation time is
greatly reduced.

An important limitation, however, is that we only consider separable regu-
larizers of the form

R(u) =
k∑
i=1

Ri(ui), (8.7)

which means that R acts on the label components ui of u independently.
We will show that with the novel reduction technique it is possible to effi-

ciently solve convex relaxations to multilabel problems which are far too large
to approach with existing techniques. A prototypical example is optic flow,
where the total number of labels is typically around 32× 32 in practice. In that
case, for example, we only require s = 64 = 2 · 32 indicator functions instead
of n = 1024 = 322. However, the proposed method applies to a much larger
class of labeling problems. This reduction in variable size not only allows a sub-
stantially higher resolution of the label space, but it also gives rise to a drastic
speedup.

Complete source code to reproduce the experiments is publicly available on
Sourceforge under a GPL3 license as part of our CUDA library for continuous
convex optimization in image processing 1.

8.1.3 Related Work

Discrete Approaches. In [113, 114] the problem of image registration is
formulated as an MRF labeling problem, which is minimized via LP relaxation.
The authors present a decoupling strategy for the displacement components
which is related to ours, albeit only applicable in the discrete case. It allows a
simplification of the graph construction and consequently a larger numbers of
labels. Another discrete method which is related to ours is [105]. The authors
present a compact encoding scheme for the multilabel problem called a log-
transformation which makes the unary term non-submodular. This is in analogy
to our transformation, which makes the previously convex data term nonconvex.
The problem of large label spaces is also tackled in [52], where the authors
compute optical flow from an MRF labeling problem using a lower dimensional
parametric description for the displacements.

General approaches for multilabel problems were discussed in detail in Part I,
especially in Chapter 3. For instance, optimal solutions can be found for con-
vex regularizers and a linearly ordered label space. Otherwise, approximations
methods like α-expansion can be used. However, in many important scenarios

1https://sourceforge.net/p/cocolib
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the label space cannot be ordered, which is a typical situation in the vecto-
rial case. Moreover, a nonconvex regularizer is often more desirable to better
preserve discontinuities in the solution.

Continuous Approaches. The framework presented in this paper is based
on the functional lifting idea described in depth in Chapter 7, which however is
limited to the scalar case k = 1.

Viewing (8.1) as a multilabel problem, general continuous multilabel ap-
proaches described in Chapter 3 can be applied. However, none of them is
known to lead to provably optimal solutions and they all have in common that
they are very memory intensive if the number of labels becomes larger. This
makes it impossible to use them for scenarios with thousands of labels, like for
example optic flow.

This chapter is based our previous conference [53, 124] and journal publica-
tions [55].

8.2 Multidimensional Label Spaces

8.2.1 Discrete Label Spaces and Dimensionality Reduction

To keep the notion as clear as possible while working with a multidimensional
label space, throughout this chapter we keep the following conventions. The in-
dex i = 1, . . . , k enumerating the factors of the product space (8.3), respectively
the channels of the vectorial mapping u, is always written as a subscript. For
functions taking labels as one of the arguments, the label argument can also be
written as a superscript, so that one can consider functions for a fixed label.
E.g. we will write vsi (x) = vi(x, s), and vsi denotes the function vi(·, s).

In order to give a more visual explanation of the main idea behind our
approach, we first discuss the discrete case, i.e. that each factor Γi consists of
finitely many labels. In the following, we will assume that the cost functions
ct(x) = c(x, t) lie in the Hilbert space of square integrable functions: ct ∈
L2(Ω;R) for each t ∈ Γ.

General Multilabel Approaches. As described in Chapter 3, the exist-
ing general multilabel relaxations work by introducing label indicator functions
ut : Ω→ {0, 1} for each t ∈ Γ through the relation

ut(x) =

{
1 if u(x) = t,
0 else.

(8.8)

The collection of all n indicator functions ut, denoted again by u, is a mapping
u : Ω → ∆0 with the binary simplex ∆0 in (3.12), or u ∈ L2(Ω,∆0). The
problem (8.1) is then written in the equivalent form

min
u∈L2(Ω,∆0)

∑
t∈Γ

∫
Ω
ct(x)ut(x) dx + R(u). (8.9)

As can be immediately seen, this does not use any structure properties of the
range Γ and always requires n = |Γ| = ∏i ni indicator functions u

t.
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Figure 8.2: The central idea of the reduction technique. If a single
indicator function in the product space Γ takes the value 1, then this is equiv-
alent to setting an indicator function in each of the factors Γi. The memory
reduction stems from the fact that there are much more labels in Γ than in all
the factors Γi combined.

Novel Reduction Approach. The central idea of the chapter is the follow-
ing. The full discrete label space Γ has n =

∏
i ni elements, which means that

it requires n indicator functions to represent a labeling, one for each label. We
will show that it suffices to use s =

∑
i ni indicator functions, which is a con-

siderable reduction in problem dimensionality, thus also in computation time
and memory requirements. We achieve this by replacing the indicator functions
on the product Γ by indicator functions on the components Γi. Intuitively, a
label in Γ ⊂ Rk is uniquely determined by its k coordinates, so we only need to
consider indicator functions for each coordinate space Γi separately.

To this end, we consider indicator functions defined similarly to (8.8), but
separately for each channel ui, 1 ≤ i ≤ k. For fixed channel 1 ≤ i ≤ k and each
channel value s ∈ Γi, we associate an indicator function vsi : Ω→ {0, 1} by

vsi (x) =

{
1 if ui(x) = s,
0 else.

(8.10)

The collection vi(x) = (vsi (x))s∈Γi of the ni = |Γi| indicator functions is then a
mapping vi : Ω→ ∆i into the simplex

∆i =

{
x ∈ {0, 1}ni

∣∣ ni∑
j=1

xj = 1

}
⊂ Rni , (8.11)

or also vi ∈ L2(Ω,∆i). Collecting the mappings for all k channels, we get the
functions v = (vi)1≤i≤k = (vsi )1≤i≤k, s∈Γi : Ω→ ∆× with range

∆× = ∆1 × . . .×∆k ⊂ R
∑
i ni , (8.12)

or v ∈ L2(Ω,∆×). As each vi consists of ni = |Γi| indicator functions, the
overall reduced mapping v consists of exactly

∑
i ni such functions.
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The following proposition illuminates the relationship between the original
space of indicator functions L2(Ω,∆) and the reduced indicator function space
L2(Ω,∆×), which is easy to understand visually, see Figure 8.2.

Proposition 8.1. A bijection v 7→ u from L2(Ω,∆×) onto L2(Ω,∆) is defined
by setting

ut(x) := vt11 (x) · . . . · vtkk (x) , ∀t = (t1, . . . , tk) ∈ Γ, x ∈ Ω. (8.13)

The proof of this proposition as well as of the other following results is given
in the appendix Section 8.8.

Using this reduced function space and plugging (8.13) into (8.9), another
equivalent formulation to (8.1) can be given as

min
v∈L2(Ω,∆×)

∑
t∈Γ

∫
Ω
ct(x) vt11 (x) · . . . · vtkk (x) dx + R(v). (8.14)

We use the same symbol R to also denote the regularizer on the reduced space.
Its definition requires careful consideration, and will be discussed in detail later
in Section 8.4.1.

While we have reduced the dimensionality of the problem considerably from
(8.5) to (8.6), we have introduced another difficulty: the data term is not con-
vex anymore, since it contains a product of indicator functions. Thus, in the
relaxation, we need to take additional care to make the final problem convex
again.

8.2.2 Continuous Label Spaces and Relaxation Framework

We now turn to the more general case that each factor Γi is an interval in R,
which means that we deal with a continuous label space with an infinite number
of labels. In this situation, one is also interested in a number of continuous
regularizers, which cannot be modeled satisfyingly on a discrete label space.

As in the discrete case, the regularizers are usually not convex and require
a relaxation. Our relaxation will be based on the central functional lifting idea
from Chapter 7. Functional lifting uses the representation in terms of the graph
functions

1ui(x, s) = χs<ui(x) =

{
1 if s < ui(x),
0 else

(8.15)

and can be used to convexify regularizers on scalar functions such us each of the
individual channels ui. For the regularizer, we can restrict ourselves to the case
that it can be decomposed into the sum of regularizers on each component, so
that the lifting approach could be applied channel-by-channel. This motivates
our assumption (8.7).

However, in order to be able to also simultaneously formulate a convex relax-
ation for the data term with arbitrary costs c we need a different representation,
namely in terms of indicator functions vsi as in (8.10). Therefore, for the regu-
larizer relaxation we are going to “translate” the functional lifting framework to
our representation, which will be done later in Section 8.4.
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The indicator functions vi for each channel i denote whether a specific label s
is set at a point x ∈ Ω, i.e. ui(x) = s. While in the discrete case they could
be defined by (8.10), in the general case of a continuous label space Γi, the
relationship is

vi(x, s) = δ(ui(x)− s), (8.16)

where δ is the Dirac distribution. Note that vi(x, ·) are actually distributions
on the higher dimensional space Ω × Γi, which however will reduce to regular
functions after discretization. They serve as a generalization of the discrete label
indicator functions vi ∈ L2(Ω,∆i) in (8.10) to the continuous case, in particular
they satisfy the relations∫

Γi

vi(x, s) ds = 1,

∫
Γi

s vi(x, s) ds = ui(x), (8.17)

which mimic the discrete case with sums replaced by integrals. Intuitively, this
means that for each fixed x ∈ Ω, vi(x, ·) has a total mass of 1 and is concentrated
on the label ui(x) ∈ Γi.

The minimization problem (8.9) which we want to solve is not convex: nei-
ther is the energy a convex function nor is the domain of minimization a convex
set. Thus, the task of finding a global minimizer is in general computation-
ally infeasible. We therefore propose a convex relaxation. We will formulate
the data term in a convex way in terms of the new variables v in Section 8.3,
and will introduce the class of regularizers possible with our approach and their
corresponding convexifications in Section 8.4.

Some things have to be kept in mind, however. Since the new variables are
distributions in the continuous case, we cannot formulate a well-defined mini-
mization problem without first reducing them to L2-functions. This means that
before writing down the actual minimization problem we want to solve in the
new variables, we have to introduce a discretization of the label space. Despite
the necessary discretization, we follow other previous works which employ the
lifting idea [99, 100, 101, 102], and still insist that we correctly deal with a
continuous label space. This is justified since the definition of the continuous
regularizers in Section 8.4 does not make use of the discretization, in contrast
to e.g. (3.32), where the label space is discretized from the beginning. One
thing which remains to be discussed, however, is whether the discrete solutions
converge to the continuous one when the label space discretization is refined, in
the spirit of [27]. This is a possible avenue for future work.

8.3 Convex Relaxation of the Data Term

In this section, we deal with the nonconvexity of the data term in (8.14),

Edata(v) =
∑
t∈Γ

∫
Ω
ct(x) vt11 (x) · . . . · vtkk (x) dx . (8.18)

Specifically, we show two different ways how it can be replaced with a convex
function which coincides with the original data term for binary functions.
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(a) Product function m(x1, x2) = x1x2
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(b) Convex envelope co (m) and molli-
fied versions for different ε

Figure 8.3: Product function relaxation. Product function and its
smoothed convex envelope for the case of two channels k = 2.

We first describe the convexification idea from the original conference pa-
per [53] in the discrete case with a label space of dimension k = 2. While it leads
to a working relaxation, it has certain shortcomings, the main problem being
that an unwanted constant solution has to be avoided by additional smoothing
when moving on from binary to continuous functions. These shortcomings will
be remedied by a new relaxation technique which we explain thereafter. We
will show that this relaxation is actually the best possible one, i.e. the convex
envelope of the data term. Note that for the data term, we already work in the
setting of a discretized label space. While it is possible to give a well-defined
theoretical justification of the relaxation for the continuous case, the associated
trouble and loss of clarity is not worth the small theoretical gain.

8.3.1 Previous Relaxation

In [53], it was suggested to replace the multiplication functionm(vt11 , . . . , v
tk
k ) :=

vt11 · . . . · vtkk with its convex envelope co (m). Analyzing the epigraph of m, see
Figure 8.3(a), shows that

co (m) (vt11 , . . . , v
tk
k ) =

{
1 if vt11 = . . . = vtkk = 1,

0 if any vtii = 0.
(8.19)

This means that if in the functional,m is replaced by the convex function co (m),
we retain the same binary solutions, since the function values on binary inputs
are the same.

We lose nothing on first glance, but on second glance, we forfeited differ-
entiability of the data term, since co (m) is not a smooth function anymore.
Furthermore, the new function we obtain is not the correct convex envelope of
the full data term, but only for the constituting addends, i.e. for each t ∈ Γ sep-
arately in (8.18). The particular problem this leads to is that for the constant
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function v defined by
vsi (x) := 1/ni (8.20)

the energy of the data term and hence the total energy is zero.
In [53], this problem was circumvented by an additional mollification of the

convex envelope: One replaces co (m) by a mollified function co (m)ε, where
ε > 0 is a small constant. We illustrate this for the case k = 2, where one can
easily write down the functions explicitly. In this case, the convex envelope of
multiplication is

co (m) (x1, x2) =

{
0 if x1 + x2 ≤ 1,

x1 + x2 − 1 otherwise.
(8.21)

This is a piecewise linear function of the sum of the arguments, i.e symmetric in
x1 and x2, see Figure 8.3(b). We smoothen the kink by replacing co (m) with a
smoothed version co (m)ε, see [53]. This function does not satisfy the envelope
condition (8.19) exactly, but only fulfills the less tight

co (m)ε (x1, . . . , xk)

{
= 1 if x1 = · · · = xk = 1,

≤ ε if any xj = 0.
(8.22)

Notably, the data term energy of the constant trivial minimizer (8.20) be-
comes now ε

∑
t c
t(x) at each point x ∈ Ω, which means that the relaxation of

the data term leads to the correct pointwise solution with energy mint∈Γ c
t(x)

if ε > mint∈Γ c
t(x)/

∑
t∈Γ c

t(x). Since the condition must be satisfied for each
point x ∈ Ω, it is best to let ε = ε(x) depend on x ∈ Ω and set it pointwise
to the minimal possible value. However, the choice of the smoothed envelope is
suboptimal since it is just an approximation to the correct envelope and distorts
the original problem. Thus, we are now going to propose a novel relaxation of
the data term which avoids this problem altogether and is easier to deal with
in higher dimensional label spaces.

8.3.2 Novel Tightest Convex Envelope Relaxation

In this section, we describe our new relaxation of the data term. It is the
tightest possible relaxation and does not suffer from the described drawbacks
of the relaxation in [53]. The new relaxation of Edata(v) is one of the main
contributions of this chapter. It is defined as

Edata(v) := sup
z∈Z

∫
Ω

( ∑
t1∈Γ1

zt11 (x) vt11 (x) + . . .+
∑
tk∈Γk

ztkk (x) vtkk (x)

)
dx. (8.23)

The additional dual variables z = (zi)1≤i≤k range over the convex set

Z :=

{
z ∈ L2(Ω,R

∑
i ni) such that for all x ∈ Ω and t ∈ Γ,

zt11 (x) + . . .+ ztkk (x) ≤ ct(x)

}
.

(8.24)

We first establish that the relaxation coincides with the original energy for
binary functions.
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Proposition 8.2. Let v ∈ L2(Ω,∆×) be a binary function representing the
label t(x) ∈ Γ at each point x ∈ Ω, i.e. vsi (x) = χs=t(x)i for all x ∈ Ω, 1 ≤ i ≤ k,
s ∈ Γi. Then

Edata(v) =

∫
Ω
ct(x)(x) dx = Edata(v). (8.25)

In addition, one can prove the following proposition, which shows that the
relaxation of the data term has the correct pointwise minimizers, in contrast to
the one proposed in [53]. This means that no smoothing is necessary and an
exact minimization algorithm can be employed to obtain solutions.

Proposition 8.3. Let v̂ ∈ L2(Ω,∆×) be a binary minimizer of Edata. Then v̂
is also a minimizer of the relaxation,

v̂ ∈ argmin
v∈L2(Ω,co(∆×))

Edata(v). (8.26)

In particular, Edata(v̂) = Edata(v̂) =
∫

Ω c
∗(x) dx with c∗(x) := inft∈Γ(ct(x)) for

x ∈ Ω.

In fact, it turns out that the proposed data term relaxation is the best
possible one, being the convex envelope of the data term as stated in the propo-
sition below. More specifically, this is up to the natural sum equality constraint∑

s∈Γi
vsi = 1, which is the first equation in (8.17) and is also used later in the

definition (8.48) of the v domain in the overall optimization problem. To make
this statement precise, we first need a general definition of the data term Edata
for all indicator functions v ∈ L2(Ω,R

∑
i ni), and not only for binary ones. If

v is binary representing the label t(x) ∈ Γ at each x ∈ Ω, i.e. vsi (x) = χs=ti(x),
Edata is already defined by (8.18) through

Edata(v) =

∫
Ω
ct(x)(x) dx =

∫
Ω

∑
t∈Γ

ct(x) vt11 (x) · · · vtkk (x) dx. (8.27)

For all other v we set Edata(v) :=∞.

Theorem 8.4. The convex envelope of Edata(v) is given by Edata(v) + δS(v)
with S :=

{
v
∣∣ ∑

s∈Γi
vsi (x) = 1 ∀ 1 ≤ i ≤ k, x ∈ Ω

}
.

8.4 Convex Relaxation of the Regularizer

8.4.1 Regularizer Class and its Convex Relaxation

Regularizer Class. Making use of the decomposition (7.3) of each scalar
channel ui into a smooth part and a jump part, we can introduce the framework
for the regularization. We consider regularizers of the separable form (8.7), and
choose each individual regularizer Ri to be of the form (7.6) (without the data
term part), in order for the functional lifting relaxation to be applicable. Thus,
we consider Ri of the form

Ri(ui) =

∫
Ω\Sui

hi(x,∇ui(x)) dx+

∫
Sui

di
(
x, u−i (x), u+

i (x)
)
dHm−1(x). (8.28)
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The functions hi : Ω × Γi × Rm → R and di : Ω × Γi × Γi → R have to satisfy
the conditions stated after Lemma 7.1, i.e.

• hi(x, ·) is convex and lower-semicontinuous for fixed x ∈ Ω

• di(x, ·, ·) is a metric on Γi for fixed x ∈ Ω, and di is continuous.

• For all x ∈ Ω, t, t′ ∈ Γ and ν ∈ Sm−1:

di(x, t, t
′) ≤ (hi)∞

(
x, ν(t′ − t)

)
, (8.29)

where (hi)∞(x, p) denotes the recession function of hi(x, p) w.r.t. p, as
defined in (2.4).

The interesting task, of course, is to identify suitable choices of hi and di, and
to interpret what the choice means in practice. We will turn to this task later
in this section beginning from Section 8.4.2. Before this, we will first introduce
a convex relaxation of the general regularizer (8.28).

Convex Relaxation. The general lifting Lemma 7.1 gives a convex repre-
sentation of the regularizer (8.28) in terms of the graph function (8.15) of the
channel ui. Since we work with the indicator functions vi as defined in (8.16)
instead, our goal is to arrive at an equivalent representation in terms these
functions. We give this new reformulation in the following theorem.

Theorem 8.5. Let Ri be of the form (8.28), and the indicator functions vi
defined as in (8.16). Then

Ri(ui) = sup
(p,q)∈Ci

∫
Ω×Γi

(−divx p− q) vi d(x, s), (8.30)

with the convex set

Ci =
{

(p, q) ∈ C1
c (Ω× Γi; Rm × R)

∣∣ ∀x ∈ Ω, s, s′ ∈ Γi,

q(x, s) ≥ h∗i
(
x, s, ∂sp(x, s)

)
,∣∣p(x, s)− p(x, s′)∣∣ ≤ di(x, s, s′) }.

(8.31)

Note that similarly to the discrete version of the indicator functions, the dis-
crete version of the set Ci in (8.31) will consist of tuples (ps, qs)s∈Γi of functions.
Taking a closer look at equation (8.30), we can see that the right hand side is a
convex functional in the new variables vi.

Thus, we have achieved our goal and can turn towards exploring suitable
choices of the regularizer, and how they fit within the proposed framework. In
particular, we will see how our model can be specialized to the case of discrete
label spaces where the label distance has an Euclidean representation. This
special case (3.31) was discussed in [76, 53], and we will see that our frame-
work leads to a tighter relaxation for this case. We will also discuss additional
continuous regularizers which become possible based on the lifting framework.
These were introduced in the previous works [29, 100, 101] when the unknowns
were the characteristic functions of the subgraphs of ui. We show how we can
accommodate them to depend on the indicator variables instead. Notably, in
each dimension of the label space its own type of regularization can be chosen,
in particular discrete and continuous regularizers can be mixed freely.
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(a) Ordered embedding (b) Potts embedding (c) Optic flow embedding

Figure 8.4: Different embeddings for a label space. In an ordered em-
bedding, all labels are mapped onto a line, while for the Potts model, every label
is mapped onto a different unit vector. For optical flow, each label is already a
vector in R2, so a sensible embedding is given by the identity.

8.4.2 Discrete Label Space: Euclidean Representation

We first consider the special case of a discrete label space Γi. Thus, we need
to define a regularizer Ri : L2(Ω, co (∆i)) → R for functions with values in the
convex hull of the simplex ∆i. We first present the construction used in [76, 53],
and then show in Section 8.4.3 how we can embed it into our more general
framework resulting in a tighter relaxation.

We assume that the metric di has an Euclidean representation in the sense
of (3.29) in Section 3.4.3, i.e. that there are Mi-dimensional vectors asi ∈ RMi

with a Mi ≥ 1 such that the distance function di in (8.28) is given by

di(s, s
′) =

∣∣asi − as′i ∣∣ ∀s, s′ ∈ ∆i. (8.32)

We can define a regularizer with desirable properties by (3.31), i.e.

RAi (vi) := λTV

( ni∑
i=1

asivi

)
(8.33)

with a scaling factor λ > 0. The following theorem has been proven in [76] and
shows why the above definition makes sense.

Theorem 8.6. The regularizer RAi defined in (8.33) has the following properties:

1. RAi is convex and positive homogeneous on L2(Ω, co (∆i)).

2. RAi (vi) = 0 for any constant labeling vi.

3. If S ⊂ Ω has finite perimeter Per(S; Ω), then for all labels s, s′ ∈ Γi,

RAi (s 1S + s′ 1Sc) = λ di(s, s
′) Per(S; Ω) , (8.34)

i.e. a change in labels is penalized proportionally to the distance between
the labels and the perimeter of the interface.
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For the sake of simplicity, we only give the main examples for distances with
Euclidean representations. More general classes of distances on the labels can
also be used, see [76].

• The case of ordered labels, where the embedding follows the natural or-
dering of s, s′ ∈ R, Figure 8.4(a), for example by setting simply asi = s.
If k = 1, then this case can be solved in a globally optimal way using the
lifting method [101].

• The Potts or uniform distance, where di(s, s′) = 1 if and only if s = s′, and
zero otherwise. This distance function can be achieved by setting asi =

1√
2
es, where (es)s∈Γi is an orthonormal basis in Rni , see Figure 8.4(b). All

changes between labels are penalized equally.

• Another typical case is that the asi denote feature vectors or actual geomet-
ric points, for which |·| is a natural distance. For example, in the case of
optic flow, each label corresponds to a flow vector in R2, see Figure 8.4(c).
The representations as1, as

′
2 are just real numbers, denoting the possible

components of the flow vectors in x- and y-direction, respectively. The
Euclidean distance is a sensible distance on the components to regularize
the flow field, corresponding to the regularizer of the TV -L1 functional
in [142]. Optic flow (and other geometric kinds of labels) would however
more naturally be modeled with a continuous label space using one of the
continuous regularizers in the later subsections.

8.4.3 Discrete Label Space: New Relaxation

We will now show how to formulate the regularizer RAi defined above in the new
more general framework. While the previous formulation (8.33) already yields
a relaxation to nonbinary functions v, we will see that our framework results in
a provably tighter one.

Taking a look at Theorem 8.6, we see that the regularizer must penalize
the length of the jump set weighted by the label distance. Thus, our general
regularizer in (8.28) must reduce to

Ri(ui) = λ

∫
Sui

di
(
u−i , u

+
i

)
dHm−1, (8.35)

where di is the same metric as used above in the representation (8.32), and
λ > 0 is a weighting constant. We can see that in order to reduce the general
form to the one above, we must enforce a piecewise constant labeling, since
the approximate gradient ∇ui must be constantly zero outside the jump set.
Applying Theorem 8.5 we can find a convex representation of Ri in terms of the
variables v, which we formulate in the following proposition in its discretized
form.

Proposition 8.7. A convex representation of (8.35) in terms of the variables v
is given by

Ri(ui) = sup
p∈Ci

∑
s∈Γi

∫
Ω

(−divx p
s) vsi dx, (8.36)
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with

Ci =
{
p : Ω× Γi → Rm

∣∣ ps ∈ C1
c (Ω;Rm) ∀s ∈ Γi,∣∣ps − ps′∣∣ ≤ λ di(s, s′) ∀s, s′ ∈ Γi

}
.

(8.37)

We note that this is the version for continuous label spaces of the analogous
finite multilabel relaxation (3.23) with the constraint set (3.33).

We can now establish the relationship between our framework and the reg-
ularizer RAi in (8.33) which was used in [76, 53], and show that ours is tighter
and thus leads to solutions closer to the global optimum.

Proposition 8.8. Let the regularizer Ri be defined by the relaxation on the right
hand side in equation (8.36). Then for all vi ∈ L2(Ω, co (∆i)),

Ri(vi) ≥ RAi (vi). (8.38)

Equality holds if vi is binary.

We will show in the remainder of the section that in addition to handling the
discrete case better, our method also can handle continuous regularizers which
penalize a smooth variation of the labels. This is not possible with the piecewise
constant approach of [76, 53] which uses vectorial total variation. For instance,
our formulation is capable of representing more sophisticated regularizers such
as Huber-TV and the piecewise smooth Mumford-Shah functional, as we will
show in the following section. For the regularizers presented in the remainder
of this section, relaxations have previously been proposed for the case of a one-
dimensional label space in [29, 100, 101, 122]. However, the framework presented
here is more general and allows to combine them freely in the different label
dimensions.

8.4.4 Linear (TV ) and Truncated Linear

For many applications, it is useful to penalize the difference between two label
values s and s′ only up to a certain threshold, reasoning that once they are that
different, it does not matter anymore how different they are exactly. This means
that if |s− s′| becomes greater than a certain value T , jumps from s to s′ are
still penalized, but only by the constant T . Using linear penalization for small
values this leads to the robust truncated linear regularizer [29]

Ri(ui) = λ

∫
Ω\Sui

|∇ui| dx +

∫
Sui

min
(
T, λ

∣∣u+
i − u−i

∣∣) dHm−1 (8.39)

with a λ > 0. The constraint set (8.31) for this case is

Ci =

{
(p, q) ∈ C1

c (Ω× Γi; Rm × R) such that for all s, s′ ∈ Γi,∣∣∂sps∣∣ ≤ λ, ∣∣ps − ps′∣∣ ≤ T, q ≡ 0

}
.

(8.40)

The second constraint needs to be imposed only if |s− s′| ≥ T , since otherwise
it is already implied by the first constraint. In particular, the standard linear
(TV ) penalizer can be implemented by letting T →∞ and only using the first
constraint.
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8.4.5 Cyclic Penalizer, TV -S1

Some applications have a cyclic or circular set of labels, for example regulariza-
tion in the hue component in HSV or HSL color space. In this case, the distance
between the last and first label is the same as between any other subsequent
pair of labels. This form of regularization was discussed in the functional lift-
ing setting in the recent work [122], and can be expressed in our framework by
setting

Ri(ui) = λ

∫
Ω\Sui

|∇ui| dx + λ

∫
Sui

min
(
u+
i − u−i , 1− (u+

i − u−i )
)
dHm−1

(8.41)
for functions ui with range Γi := [0, 1]. The corresponding constraint set is
given by

Ci =

{
(p, q) ∈ C1

c (Ω× Γi; Rm × R) such that for all s ∈ Γi,∣∣∂sps∣∣ ≤ λ, p(x, 0) = p(x, 1), q ≡ 0

}
.

(8.42)

Note that the constraints are the same as for the usual TV regularizer in Sec-
tion 8.4.4 (with T =∞), except for the additional periodicity constraint on p.

8.4.6 Huber-TV

The TV regularization is known to produce staircasing effects in the reconstruc-
tion, i.e. the solution will be piecewise constant. While this is natural in the
case of a discrete label space, for continuous label spaces it impedes smooth
variations of the solution. A remedy for this is replacing the norm |∇ui| of the
gradient by hα(∇ui) with the Huber function

hα(z) :=

{
1

2α |z|
2 if |z| < α,

|z| − α
2 else

(8.43)

for some α > 0, which smooths out the kink at the origin. The Huber-TV
regularizer is then defined by

Ri(ui) =

∫
Ω
hα(∇ui) dx +

∫
Sui

∣∣u+
i − u−i

∣∣ dHm−1. (8.44)

The limiting case α = 0 leads to the usual TV regularization. Theorem (8.5)
gives a convex representation for Ri, see also [101]. The constraint set in (8.31)
is found to be

Ci =

{
(p, q) ∈ C1

c (Ω× Γi; Rm × R) such that for all s ∈ Γi,

qs ≥ α

2

∣∣∂sps∣∣2, ∣∣∂sps∣∣ ≤ 1

}
.

(8.45)
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8.4.7 Piecewise Smooth Mumford-Shah Model

The celebrated Mumford-Shah regularizer

Ri(ui) =

∫
Ω\Sui

1

2α
|∇ui|2 dx + νHm−1(Sui) (8.46)

with parameters α, ν > 0 allows to estimate a denoised image ui which is piece-
wise smooth. Parameter ν can be used to easily control the total length of the
jump set Sui . Bigger values of ν lead to a smaller jump set, i.e. the solution will
be smooth on wider subregions of Ω. We will consider this functional in detail
for the general vectorial case in Chapter 10.

The constraint set in the convex representation of Theorem 8.5 becomes

Ci =

{
(p, q) ∈ C1

c (Ω× Γi; Rm × R) such that for all s, s′ ∈ Γi,

qs ≥ α

2

∣∣∂sps∣∣2, ∣∣ps − ps′∣∣ ≤ ν }. (8.47)

The limiting case α = 0 gives the piecewise constant Mumford-Shah regularizer
(also called Potts regularizer), which can also be obtained from Proposition 8.7
by setting di(s, s′) = ν for all s 6= s′. Compared to (8.33), this alternative yields
a tighter, but more memory intensive relaxation for the Potts regularizer.

8.5 Implementation

8.5.1 Final Relaxation to a Convex Problem

Domain Relaxation. In order to transform the multilabel problem into the
final form which we are going to solve, we formulate it in terms of the indicator
functions vsi on the discretized label space using the relaxation (8.23) of the
data term and the relaxation (8.30) for the regularizer. Discretization of the
label space is necessary now to arrive at a well-posed problem. Although it
is possible to formulate the optimization problem without discretization, this
requires to work in general measure spaces, which would significantly complicate
the notation and clarity at only marginal gain in generality.

Let us briefly summarize and review the objects we are dealing with in the
final problem. The minimizer we are looking for is a vector v = (vi)1≤i≤k of
functions vi ∈ L2(Ω, co (∆i)). Thus we optimize for v in the convex set

D :=

{
v ∈ L2(Ω,R

∑
i ni) such that for all x ∈ Ω, v(x) ∈ co (∆×) ,

with ∆× = ∆1 × . . .×∆k

}
.

(8.48)

In the convex hull

co (∆×) = co (∆1)× . . .× co (∆k) ⊂ R
∑
i ni , (8.49)
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each co (∆i) is given by the same expression as in (8.11) but with the set {0, 1}
replaced by [0, 1]:

co (∆i) =

{
x ∈ [0, 1]ni

∣∣ ni∑
j=1

xj = 1

}
⊂ Rni . (8.50)

Let us now turn to the regularizer, which is defined via the relaxation in Theo-
rem 8.5. The key ingredients are the convex sets Ci which depend on the kind of
regularization we want to use. Possible options were detailed in the last section.

Final Problem. Let
C := C1 × . . .× Ck (8.51)

denote the convex set of all regularizer dual variables, where the individual
constraint sets Ci in (8.31) are defined according to the used regularizers as
described in Section 8.4. Then Theorem 8.5 in fact shows that the regularizer
can be written in terms of v in the simple form

R(v) = sup
(p,q)∈C

∫
Ω

k∑
i=1

∑
s∈Γi

(
− divx p

s
i − qsi

)
vsi dx. (8.52)

The fully relaxed problem we are going to solve can now be written as

argmin
v∈D

E(v), E(v) := Edata(v) +R(v), (8.53)

using the relaxation Edata of the data term defined in (8.23). It is straightfor-
ward to prove the existence of solutions:

Proposition 8.9. Problem (8.53) always has a minimizer v∗ ∈ D.

Optimality and Energy Bounds. After obtaining a solution v∗ of the final
relaxation (8.53), the question remains of whether it corresponds to a function u∗

which solves the original problem (8.1). Note that because of the relaxation, v∗

might not be binary, i.e. the values vi(x) might not lie in ∆i.
If v∗ is already binary, we have found the global optimum of the original

problem.
Otherwise we have to project the result back to the smaller set of binary

valued functions. Using the relation (8.13), the function u∗ ∈ L2(Ω,Γ) closest
to v∗ is given by setting

ubin(x) = argmax
t∈Γ

(v∗)t11 (x) · . . . · (v∗)tkk (x). (8.54)

In other words, at each image point x ∈ Ω we choose the label t where the com-
bined indicator functions have the highest value. This is the same as choosing
the label by maximizing each component vk separately:

ubin(x) = t, with ti = argmax
s∈Γi

(v∗)si (x) for all 1 ≤ i ≤ k. (8.55)



136 CHAPTER 8. SEPARABLE REGULARIZATION

We cannot guarantee that the solution candidate ubin is indeed a global
optimum of the original problem (8.1), since there is nothing equivalent to the
thresholding theorem [33] known for this kind of relaxation. However, we still
can give an energy bound (1.6) on how close we are to the global optimum:

E(v∗) ≤ E(u∗bin) ≤ E(ubin), (8.56)

where u∗bin is the unknown optimal solution of (8.1).

8.5.2 Numerical Method

Discretized Energy. We discretize the image domain Ω into a finite pixel
grid, again denoted by Ω. Using the representation (8.52) for R, and the defini-
tion (8.23) for the relaxation Edata, we can transform the final formulation (8.53)
of the multilabel problem into the saddle point problem

min
v∈D

max
(p,q)∈C
z∈Z

∑
x∈Ω

k∑
i=1

∑
s∈Γi

(
− divx p

s
i (x)− qsi (x) + zsi (x)

)
vsi (x) , (8.57)

with the straightforwardly discretized versions of the constraint sets D in (8.48),
C in (8.51), and Z in (8.24).

The spatial gradient ∇x is discretized using forward differences with Neu-
mann boundary conditions. The discrete divergence divx is then the corre-
sponding negative adjoint operator, which is given by backward differences
with Dirichlet boundary conditions. The discretization of the constraint sets
D in (8.48), Z in (8.24) are straightforward as all constraints are defined per
pixel.

The individual regularizer constraint sets Ci in (8.31) are initially defined
for the case of a continuous range space Γi. For optimization, we discretize the
range Γi = [smin

i , smax
i ] into ni equidistant labels

sji = smin
i + j∆si, 0 ≤ j ≤ ni − 1, where ∆si =

smax
i − smin

i

ni − 1
. (8.58)

The derivative (∂sp)(x, s) w.r.t. the labels in (8.31) is discretized using back-
ward differences with Dirichlet boundary conditions:

(∂sp)(x, s
j
i ) =

1

∆si

(
p(x, sji )− p(x, s

j−1
i )

)
, with p(x, s−1

i ) = 0. (8.59)

If for a channel i one uses the cyclic regularizer from Section 8.4.5, the end
points of Γi actually represent the same value. Therefore in this case Γi is
discretized slightly differently, namely using ∆si =

smax
i −smin

i
ni

. The derivative
(∂sp)(x, s) is then discretized as above, but with periodic boundary conditions,
i.e. setting p(x, s−1

i ) = p(x, sni−1
i ).

We minimize the energy (8.57) using the primal-dual Algorithm 3. The
proximal operators in our case are just the usual orthogonal projections onto
the respective constraint sets D, C and Z.
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Decouplings of Hard Constraints. Since these sets are defined by numer-
ous nonlocal constraints, a direct projection is quite costly. Therefore, we sug-
gest to implement as many constraints as possible using Lagrange multipliers
by adding specific additional terms to the energy. This comes at the cost of
having more terms in the final overall energy and that the optimization is done
also over additional variables, the Lagrange multipliers. However, in the end
less of the explicit constraints remain, so that the projections become easier to
calculate. Also, the algorithm complexity remains the same since the update
equations are still straightforward.

First, the simplex constraint v ∈ D, i.e. vi ∈ co (∆i) with ∆i in (8.11) for
1 ≤ i ≤ k, is enforced by adding the Lagrange multiplier terms

sup
σ

∑
x∈Ω

k∑
i=1

σi(x)

(∑
s∈Γi

vsi (x)− 1

)
(8.60)

to the energy (8.57), optimizing over σ : Ω→ Rk in addition to the other vari-
ables. This leaves just the simple condition v ≥ 0 for the indicator variables v.
We note that it is also possible to implement the simplex constraint explicitly by
the iterative algorithm [84]. However, in the end this increases the computation
time per iteration many times over since the projection then requires O(

∑
i ni)

steps in the worst case. Also, the explicit projection only slightly reduces the
number of iterations needed to compute a minimizer of (8.57) to a certain preci-
sion. Therefore, overall the Lagrange multiplier approach turns out to be faster
and is also easier to implement.

Next, we enforce the constraints (p, q) ∈ C on the dual variables of the
regularizer by introducing new variables

dsi = ∂sp
s
i or ds,s

′

i = psi − ps
′
i , (8.61)

depending on the kind of constraints in Ci. To enforce these equalities, we add
the corresponding Lagrange multiplier terms through the use of (2.74):

inf
η

∑
x∈Ω

〈
ηsi (x), ∂sp

s
i (x)− dsi (x)

〉
or inf

η

∑
x∈Ω

〈
ηs,s

′

i (x), psi (x)− ps′i (x)− ds,s′i (x)
〉

(8.62)
for each 1 ≤ i ≤ k and s ∈ Γi, respectively s, s′ ∈ Γi to the energy. Instead
of computing the projection of (p, q) in each step, we can then perform the
projection of the new variables (di, qi) on a corresponding constraint set. The
advantage is that the overall projection decouples into independent projections
of dsi or ds,s

′

i and qsi onto simple convex sets, which are easy to implement.
Alternatively, constraints of the form

∣∣psi − ps′i ∣∣ ≤ M as used in (8.37), (8.40)
and (8.47) can be enforced using convex duality, by adding the terms

inf
η

∑
x∈Ω

〈
ηs,s

′

i (x), psi (x)− ps′i (x)
〉

+M
∣∣ηs,s′i (x)

∣∣ (8.63)

to the energy instead of (8.62). We used this way in our implementation, as
it turns out to be much faster in practice. The optimization (8.57) is now
performed over the primals v, d, η and the duals p, q, z, σ.
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Finally, the projection of a z̃ onto Z consists of solving

argmin
z∈Z

∑
x∈Ω

k∑
i=1

∑
s∈Γi

(
zsi (x)− z̃si (x)

)2
. (8.64)

Since the constraints in Z are pointwise in x ∈ Ω, (8.64) can be solved separately
and independently for each x ∈ Ω. The number of constraints in Z, as defined
in (8.24), equals the total number of labels in the product space Γ = Γ1×· · ·×Γk.
Unfortunately, implementing these constraints by adding Lagrange multiplier
terms

inf
µ≥0
−
∑
x∈Ω

∑
t∈Γ

µt(x)
(
zt11 (x) + . . .+ ztkk (x)− ct(x)

)
(8.65)

to the global problem (8.57), i.e. for each x ∈ Ω, is not possible for larger prob-
lems since it requires too many additional variables µ to be memory efficient.

Thus, for larger problems, the projection needs to be computed explicitly
after each outer iteration as a subproblem by solving (8.64), which increases the
run time, see Table 8.3. To make sure that z lies in Z we add the corresponding
Lagrange multiplier terms to the local energy (8.64). This results in another
saddle point problem to be optimized over now unconstrained z and µ ≥ 0.
For this we can use the accelerated primal-dual Algorithm 5, since the z-only
terms are uniformly convex. Since there is only a small change in the variables
z per outer iteration, only a small number of inner iterations is required. In our
experiments, we used 10 inner iterations.

8.5.3 Memory Requirements

When the domain Ω is discretized into |Ω| pixels, the primal and dual variables
are represented as matrices. There are essentialy two types of data. The first
type is relatively cheap to store, since memory requirements scale with the sum∑

i ni of the independent dimensions. The second type is expensive, since it
scales with

∏
i ni. The variables and constants appearing in the energy are

classified in Table 8.1, where m = dim Ω is the dimension of the image domain
Ω and k is the number of channels.

The relaxation of the regularizer incurs additional costs per label space di-
mension, depending on the type of regularizer. This is summarized in Table 8.2.
Obviously, truncated linear and piecewise smooth regularization can require a
lot of additional memory if the dimensions of the factors are large. They seem
therefore practically feasible only when the label space consists of many small
factors. However, the projections onto the regularizer constraints can also be
solved locally in each iteration for each dimension separately. This removes the
need to store these variables globally at the cost of additional computation time.

The most expensive variable is µ, appearing in the global problem (8.65) or
local problem (8.64), respectively. If we have enough memory to store it, it is
more efficient to solve the global problem. However, it is also possible here to
trade off computation time for a reduction in memory requirements by solving
the local problem (8.64) in each iteration. For this, note that (8.64) can be
separated into independent subproblems for each x ∈ Ω and can be solved in
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Variable or constant Floating point numbers
σ |Ω| · k
v, z |Ω| ·∑i ni
p m|Ω| ·∑i ni
µ, c |Ω| ·∏i ni

Table 8.1: Number of floating point numbers for the energy. Shown
are the numbers for the basic variables and constants always appearing in the
primal-dual model. Different regularizers will need additional variables as shown
in Table 8.2.

Regularizer Additional variables Additional floating point numbers
Potts by (8.33) – –
TV or cyclic TV ηsi , dsi 2m|Ω| · ni
Huber-TV ηsi , dsi , qsi (2m+ 1)|Ω| · ni
Truncated linear ηs,s

′

i m|Ω| · ni(ni − 1)/2

Potts by (8.47), α = 0 ηs,s
′

i m|Ω| · ni(ni − 1)/2

Piecewise smooth ηs,s
′

i , ηsi , dsi , qsi m|Ω| · ni(ni − 1)/2
+(2m+ 1)|Ω| · ni

Table 8.2: Additional number of floating point numbers depending on
the regularizer. These are numbers per channel since each regularizer works
on one specific channel only.

chunks of points x in parallel. The size of the chunks can be chosen to fit into
the available memory, ideally we choose it as large as possible for maximum
parallelization.

Finally, note that the data term c is an expensive constant to store. If there
is not enough GPU memory for it, it is possible to e.g. hold it in main memory
and transfer separate layers of it to the GPU during computation of the primal
prox operator. This increases computation time by a factor of 5–10, so it is
usually much more efficient to compute the data term on the fly on the GPU if
it is of a simple form.

In summary, with the above reduction techniques it is possible to get rid of
all memory expensive variables and constants at the cost of more computation
time. To give an idea about the final requirements, they are compared for
the case of a 2D label space and TV penalization in Table 8.3. Note that the
memory requirements for the original method without using the reduction are
(m+ 2)|Ω| · (n1 · · ·nk) to store all primal and dual variables even for the most
simple regularizer, while all regularizer costs scale with n = n1 · · ·nk according
to the table on the previous page. Statistics for a 3D label space with different
regularizers can be found in Table 8.4. Clearly, large scale problems can only
be solved using the proposed reduction technique.
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# of Pixels # Labels Memory [MB] Run time [s]
P = Px × Py N1 ×N2 Previous Proposed (g/p) Previous Proposed (g/p)

320× 240 8× 8 112 112 / 102 31 26 / 140
320× 240 16× 16 450 337 / 168 125 80 / 488
320× 240 32× 32 1800 1124 / 330 503 215 / 1953
320× 240 50× 50 4394 2548 / 504 2110 950 / 5188
320× 240 64× 64 7200 4050 / 657 - 1100 / 8090

640× 480 8× 8 448 521 / 413 127 102 / 560
640× 480 16× 16 1800 1351 / 676 539 295 / 1945
640× 480 32× 32 7200 4502 / 1327 - 1290 / 7795
640× 480 50× 50 17578 10197 / 2017 - - / 32887
640× 480 64× 64 28800 16202 / 2627 - - / 48583

Table 8.3: Memory requirements. The table shows the total amount of
memory required for the implementations of the previous and proposed meth-
ods depending on the size of the problem (using TV regularization). For the
proposed method, the projection (8.64) of the data term dual variables can
be implemented either globally (g), or slower but more memory efficient as a
sub-problem of the proximation operator (p), here using N1/5 chunks. Also
shown is the total run time for 5000 iterations, which usually suffices for con-
vergence. Numbers in red indicate a memory requirement larger than what fits
on the largest currently available CUDA capable devices (6 GB). Note that the
proposed framework can still handle all problem sizes above.

8.6 Experimental Results

We demonstrate the correctness and usability of our method on several exam-
ples. Different regularizers are used. In the cases where the regularizer can
be simulated with the previous relaxation [53], we compared the resulting opti-
mality bounds. On average, our bounds were approximately three times better
(3–5% with the proposed framework compared to 10–15% with the previous
relaxation). All experiments were performed with a parallel CUDA implemen-
tation running on a NVIDIA GTX 680 GPU for Section 8.6.1, respectively on
a TESLA C2070 for all other experiments. The number of iterations in each
experiment is chosen appropriately so that visually the solution remains stable
and does not change anymore (usually 1000–5000 depending on problem size).

8.6.1 Segmentation

Multidimensional label spaces occur naturally in the problem of image segmen-
tation, where a multi-channel input image f is segmented according to a local
cost equal to the squared distance to the labels,

c(x, t) =
k∑
i=1

(fi(x)− ti)2. (8.66)

Typical multi-channel images are of course color images with various color spaces
which are usually three-dimensional, see Figure 8.5 for some segmentation ex-
amples.
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Input RGB, 6× 6× 6 HSL, 8× 5× 5 L∗a∗b∗, 8× 5× 5

Figure 8.5: Segmentation using different three-dimensional spaces of
equidistant color labels. The perceptually uniform color space CIELAB
gives the visually most compelling results with the most natural looking color
reproduction. Linear penalizer in all channels, except for the H channel, which
requires cyclic regularization. Less than two minutes run time and less than 3%
from global optimum for all results.

We choose this archetypical problem for an extensive comparison of our
method to different labeling approaches. We first compare our proposed scheme
for vectorial multilabel problems (VML) to the similar continuous method for
a scalar label space (SML) [76]. For comparisons with discrete approaches, we
used the MRF software accompanying the comparative study in [128]2. We
compare to the α-expansion (α-EXP) and α-β-swap (SWAP) algorithms based
on the maxflow library [19, 18, 71] using the newest updated implementation
for [41]3. We also compare to two message-passing methods, max-product belief
propagation (BP) [129] and sequential tree-reweighted message passing (TRW-
S) [134, 69].

Table 8.4 shows detailed statistics of memory requirements, run time and er-
ror bounds. Throughout all experiments, we used a fixed number of iterations to
keep results comparable, tuned to be sufficient for convergence on intermediate-
sized label spaces. For VML and SML, we used 1000 iterations, 50 iterations
for TRW-S and BP, and 5 iterations for α-EXP and SWAP.

Memory requirements and largest problem size. Our method can deal
with much larger problems than any of the other algorithms. On a high-end
workstation with 64 GB of main memory, the generic implementation of TRW-S
already stops working at 123 labels for the Potts model. However, the imple-
mentation is extremely general and requirements could probably be reduced by
more specialized code. About the largest problem which can be solved with
α-EXP has 153 labels, after which the reference implementation segfaults —
this hints at a hidden limitation of the implementation, memory-wise it should
be able to cope with about 173. In contrast, the GPU has only 4 GB of mem-
ory, and our method can still handle problems up to 313 (almost 30000 labels),

2MRF 2.1, http://vision.middlebury.edu/MRF/code/
3gco-v3 library, http://vision.csd.uwo.ca/code/
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Potts regularizer (using (8.33) for the continuous methods)
4× 4× 4 6× 6× 6

Algorithm mem [MB]1 time [s]2 bound [%]3 mem [MB]1 time [s]2 bound [%]3

VML 367 15.25 0.46 998 42.83 0.72
SML 607 16.81 1.43 > 4 GB – –
α-EXP 677 25.13 0.204 1369 88.90 0.544

SWAP 677 29.84 0.285 1369 137.57 0.815

BP 1368 36.63 6.945 4256 119.43 11.565

TRW-S 1368 40.06 0.16 4256 129.52 0.80

8× 8× 8 10× 10× 10
mem [MB]1 time [s]2 bound [%]3 mem [MB]1 time [s]2 bound [%]3

VML 2173 94.59 1.03 21856 209.346 0.80
α-EXP 2746 173.64 0.904 5020 343.67 1.014

SWAP 2746 461.48 1.345 5020 1472.45 1.625

BP 8667 254.08 16.295 16610 496.12 17.735

TRW-S 8667 287.30 1.95 16610 539.51 2.70

Linear (TV ) regularizer
4× 4× 4 6× 6× 6

Algorithm mem [MB]1 time [s]2 bound [%]3 mem [MB]1 time [s]2 bound [%]3

VML 401 18.67 1.50 1055 48.09 1.67
α-EXP 677 18.04 0.064 1369 82.70 –4

SWAP 677 23.67 0.165 1369 139.90 –5

BP 510008 740.498 5.875 > 64 GB – –
TRW-S 510008 746.008 0.04 > 64 GB – –

8× 8× 8 10× 10× 10
mem [MB]1 time [s]2 bound [%]3 mem [MB]1 time [s]2 bound [%]3

VML 2253 101.75 2.27 22876 217.666 3.10
α-EXP 2746 201.05 –4 5020 408.93 –4

SWAP 2746 504.47 –5 5020 1576.32 –5

Truncated linear regularizer
4× 4× 4 6× 6× 6

Algorithm mem [MB]1 time [s]2 bound [%]3 mem [MB]1 time [s]2 bound [%]3

VML 435 20.77 0.95 1168 55.01 1.83
α-EXP 677 18.13 0.094 1369 82.78 –4

SWAP 677 23.68 0.185 1369 139.30 –5

BP 510008 750.368 4.495 > 64 GB – –
TRW-S 510008 741.808 0.04 > 64 GB – –

8× 8× 8 10× 10× 10
mem [MB]1 time [s]2 bound [%]3 mem [MB]1 time [s]2 bound [%]3

VML 15236 132.336 3.24 8056,7 13046,7 3.50
α-EXP 2746 200.11 –4 5020 408.73 –4

SWAP 2746 507 –5 5020 1578.29 –5

1: GPU memory for VML and SML, otherwise CPU memory (measured with valgrind memory
profiler).

2: Intel Core i7-3820 CPU @ 3.8 GHz with 64 GB of RAM, NVIDIA GTX 680 GPU with 4 GB
of RAM.

3: Optimality bound in percent of the lower bound to solution provided by the algorithm.
4: No lower bound provided by algorithm, a theoretical (far from tight) a-priori bound is known

to be ≥100% [19, 41]. Bound was computed with lower bound returned by TRW-S, if any is
given.

5: No lower bound provided by algorithm, no theoretical bound known as far as we know. See
also 4.

6: Data term computed on the fly (saves GPU storage, minimal run time increase).
7: Data term relaxation reprojection computed in each iteration, reduces GPU memory usage by

2 GB, but increases computation time by a factor of 5.
8: Requires general regularizer implementation, which is inefficient according to the author of

the code. Unfortunately, no specialized implementation is available for 3D regularizers.

Table 8.4: Performance comparison. Performance comparison of several
continuous and discrete multilabel algorithms on the segmentation problem us-
ing a 3D label space and different regularizers. Results are averaged over 10
different images with average resolution of 0.7 Megapixels. See Section 8.6.1 for
a discussion.
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VML EXP SWAP BP TRW-S

VML TRW-S

Figure 8.6: Comparison of the algorithms. Closeups of 4 × 4 × 4 RGB
label segmentations (top) using different algorithms reveal a typical problem of
discrete approaches: they exhibit a preference for horizontal and vertical region
boundaries since they penalize an l1-distance instead of the correct Euclidean
length [68, 143]. The error can be reduced by increasing the neighborhood
connectivity, but only at extremely high costs of memory and computation
time. Overall, these metrication errors lead to blocky and visually less pleasing
segmentation results (bottom).

albeit with high run time requirements. Table 8.5 shows limit cases at an im-
age resolution of 640× 950 — note that GPU memory shown is the theoretical
minimum amount required, but we leverage all the remaining GPU memory to
minimize the number of chunks for the local projections.

Performance. For smaller problems when we can use the global implemen-
tation of the constraints, our method outperforms the others in terms of run
time, while attaining comparable optimality bounds. When the problems be-
come larger, we need to switch to local projections per iteration, which increases
run time five-fold and makes the other methods faster across a certain range of
problem sizes. However, note that the run time of our algorithm scales better,
so that at problem size 233 the algorithm is about to break even with the es-
timated computation times of α-EXP again, the latter approximately doubling
its computation time every time the dimension of each factor is increased by 2,
see Table 8.4.

From a theoretical point of view, the move-making schemes α-EXP and
SWAP solve the problem by iterating binary decisions instead of dealing with
the whole problem at once, which explains their efficiency. However, as a result
they cannot give reasonable optimality bounds, see remarks in Table 8.4. As
an additional drawback, all discrete methods suffer from metrication errors [68,
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VML α-EXP
label space GPU mem [MB] run time [min] CPU mem [MB] run time [min]

15× 15× 15 550 79 18120 31
23× 23× 23 836 485 > 64 GB (est. 480)
31× 31× 31 1123 1179 > 64 GB (est. 7680)

Table 8.5: Memory and run time for segmentation of a color 640×950
image. Our method can deal with much larger problems than other algorithms.

143], as detailed in Figure 8.6.

8.6.2 Adaptive Denoising

As a novel application of a multidimensional label space, we present adaptive
denoising, where we jointly estimate a noise level and a denoised image by
solving a single minimization problem. Note that here we require the continuous
label space to represent the image intensity range.

The Mumford-Shah energy can be interpreted as a denoising model which
yields the maximum a-posteriori estimate for the original image under the as-
sumption that the input image f was distorted with Gaussian noise of standard
deviation σ. An interesting generalization of this model is when the standard
deviation of the noise is not constant but rather varies over the image. Viewing
it as an additional unknown, the label space becomes two-dimensional, with one
dimension representing the unknown intensity u of the original image, and the
second dimension representing the unknown standard deviation σ of the noise.
The data term of the energy can then be written as [24]∫

Ω

(u− f)2

2σ2
+

1

2
log(2πσ2) dx. (8.67)

In our framework, the label space is two-dimensional comprising the inten-
sities f and standard deviations σ. The cost function is given as the integrand
of (8.67):

c
(
x, (u, σ)

)
=

(u− f(x))2

2σ2
+

1

2
log(2πσ2). (8.68)

Results of the optimization can be observed in Figures 8.7 and 8.8. For
the regularizer, we used piecewise constant Mumford-Shah for both σ and u
in Figure 8.7, and piecewise smooth Mumford-Shah in Figure 8.8. In the real
world example Figure 8.8, the solution can be interpreted as a uniformly smooth
approximation, where all regions attain a similar smoothness level regardless of
the amount of texture in the input.

8.6.3 Depth and Occlusion Map

In this test, we simultaneously compute a depth map and an occlusion map for
a stereo pair of two color input images IL, IR : Ω → R3. The occlusion map
shall be a binary map denoting whether a pixel in the left image has a matching
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Input, Denoised image Reconstructed
spatially varying noise standard deviation

Figure 8.7: Adaptive denoising on a synthetic example. The algorithm
allows to jointly recover the unknown standard deviation σ of the noise as well
as the intensity of a denoised image by solving a single optimization problem.
Ground truth: Within rectangle Gaussian noise with standard deviation σ =
0.25, outside σ = 0.02; image intensity within ellipsoid u = 0.7, outside u = 0.3.
Image resolution is 256 × 256 using 32 × 32 labels. Computation time is 4.4
minutes.

Input, textured object Simultaneous piecewise smooth approximation
of intensity (left) and standard deviation (right)

Figure 8.8: Adaptive denoising for texture separation. A piecewise
smooth image approximation of both intensity and noise standard deviation
using (8.67) and the Mumford-Shah regularizer for both u and σ. This model
allows to separate textured objects in a natural way by jointly estimating the
mean and standard deviation of image intensities. The amount of smoothing is
stronger in regions of larger standard deviation. Image resolution is 320 × 214
using 32× 32 labels, leading to a run time of 10.3 minutes.

pixel in the right image. Thus, the space of labels is two-dimensional with Γ1

consisting of the disparity values and a binary Γ2 = {0, 1} for the occlusion
map. We use the TV smoothness penalty on the disparity values. The Potts
regularizer is imposed for the occlusion map. The distance on the label space
thus becomes

d(t, t′) = w1

∣∣t1 − t′1∣∣+ w2

∣∣t2 − t′2∣∣ , (8.69)

with suitable weights w1, w2 > 0. We penalize an occluded pixel with a constant
cost cocc > 0, which corresponds to a threshold for the similarity measure above
which we believe that a pixel is not matched correctly anymore. The cost
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Figure 8.9: Displacement with occlusion maps. The proposed method
can be employed to simultaneously optimize for a displacement and an occlusion
map. This problem is also too large to be solved by alternative relaxation
methods on current GPUs. From left to right: Left and right input image IL
and IR, and computed disparity and occlusion map; red areas denote occluded
pixels.

associated with a label t at (x, y) ∈ Ω is then defined as

c
(
(x, y), t

)
=

{
cocc if t2 = 1,

|IL(x, y)− IR(x− t1, y)| otherwise.
(8.70)

The result for the “Moebius” test pair from the Middlebury benchmark is shown
in Figure 8.9. The input image resolution was scaled to 640 × 512, requiring
128 disparity labels, which resulted in a total memory consumption which was
slightly too big for previous methods, but still in reach of the proposed algo-
rithm. Total computation time required was 1170 seconds.

8.6.4 Optic Flow

In this experiment, we compute optic flow between two color input images I0, I1 :
Ω → R3 taken at two different time instants. The space of labels is again two-
dimensional, with Γ1 = Γ2 denoting the possible components of flow vectors in
x and y-direction, respectively. We regularize both directions with either TV
or a truncated linear penalty on the component distance, i.e.

d(t, t′) = wmin
(
T,
∣∣t1 − t′1∣∣ )+ wmin

(
T,
∣∣t2 − t′2∣∣ ), (8.71)

with a suitable manually chosen weight w > 0 and threshold T > 0. Note
that we can provide a tight relaxation of the exact penalizer, which was only
coarsely approximated in the previous approaches [53, 76]. The cost function
just compares pointwise pixel colors in the images, i.e.

c
(
(x, y), t

)
=
∣∣I0(x, y)− I1(x+ t1, y + t2)

∣∣. (8.72)

Results can be observed in Figures 8.1, 8.10, 8.11 and 8.12. See Figure 8.11
for the color code of the flow vectors. In all examples, the number of labels is
so high that this problem is currently impossible to solve with previous convex
relaxation techniques by a large margin, see Table 8.3.

Compared to the relaxation proposed in the original conference publica-
tion [53], total computation time was reduced dramatically, see Figure 8.10.
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Dataset VML VML-ECCV [53] TV -L1 [142]
size ∆ aep aan bound [%] aep aan bound [%] aep aan
Venus

420× 380 10 0.39 4.25 0.21 0.81 5.44 5.88 0.44 7.74
Dimetrodon

584× 388 5 0.22 4.58 6.12 0.62 6.38 7.87 0.22 3.94
Hydrangea

584× 388 12 0.42 4.06 2.64 0.81 5.60 9.26 0.22 2.64
RubberWhale
584× 388 5 0.18 5.73 2.36 0.29 6.12 8.60 0.20 6.29

Grove2
640× 480 5 0.34 4.54 5.01 0.55 6.16 13.25 0.22 3.12

Grove3
640× 480 15 1.06 12.02 9.22 2.01 14.49 10.50 0.76 7.41

Urban2
640× 480 22 0.81 9.31 1.07 0.97 8.15 6.32 0.47 3.51

Urban3
640× 480 18 1.38 8.95 1.05 1.65 10.82 4.99 0.90 8.02

Table 8.6: Accuracy comparison on Middlebury data sets. Maximum
displacement (∆) and average endpoint error (aep) are measured in pixels, aver-
age angular error (aan) in degrees. Not surprisingly, accuracy for the vectorial
multilabel (VML) method is strongly correlated with the amount of labels per
pixel, and thus decreases with larger maximum displacement. On data sets with
small maximum displacement, the accuracy using 35× 35 labels is comparable
to TV -L1 optical flow, while other data sets would require either coarse-to-fine
schemes or a greater number of labels for the method to remain competitive.
The proposed new relaxation outperforms the previous one [53] in all respects.

The large computation time for the TV relaxation of [53] is caused by an overly
restrictive constraint on the time steps due to the structure of the embedding
matrix Ai in (8.33). Using n1 = n2 := N labels in each direction of the two-
dimensional optic flow label space, the time steps can be seen to be proportional
to N−3/2. In contrast, the proposed TV relaxation in Section 8.4.4 allows larger
time steps proportional to N−1/2 and thus leads to a substantially lower number
of iterations. We suggest to use the preconditioning Algorithm 3 where the time
steps are chosen adaptively.

Due to the global optimization of a convex energy, we can successfully cap-
ture large displacements without having to implement a coarse-to-fine scheme,
see Figure 8.11. Table 8.6 shows detailed numeric results of our method on
the data sets of the Middlebury benchmark with public ground truth available.
We compare our current method with a linear regularizer using 35 × 35 labels
to our old relaxation [53] and TV -L1 optic flow [142], which utilizes a very
similar energy which is optimized with a coarse-to-fine scheme and quadratic
relaxation of the linearized functional. Results show that we get reasonable
optimality bounds for the energy and are in most cases within 5% of the global
optimum, while accuracy of the actual optical flow results depends on how fine
the discretization is compared to the maximum displacement. The new method
is obviously superior to the old relaxation in all respects — the previous one
is only provided for reference, and we strongly recommend to use the new one
proposed in this chapter. For a method which is competitive on the Middle-
bury benchmark, we would need to further increase the amount of labels by
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First image I0 Second image I1

Previous relaxation Proposed relaxation
(25 minutes run time) (2 minutes run time)

Figure 8.10: Comparison of total variation relaxations. The figure
shows optical flow fields with 32 × 32 labels computed on an image with res-
olution 320 × 240 using TV regularization. With the new relaxation of the
regularizers, we achieve optimality bounds which are on average three times
lower than with previous relaxations from [53, 76], using the proposed data
term relaxation (8.23) for both cases. The result in the lower left is computed
with the TV relaxation from [76]. Since the scaling of the regularity term is not
directly comparable, we chose optimal parameters for both algorithms manually.
The large time difference results from a narrow constraint on the time step, see
Section 8.6.4.

e.g. implementing a coarse-to-fine scheme, and fine-tune our data terms. This is
however out of the scope of this thesis, since our focus is to provide an efficient
optimization framework.

8.7 Conclusion

We have introduced a continuous convex relaxation for multilabel problems
where the label space has a product structure and the regularizer is separable.
Such labeling problems are plentiful in computer vision. The proposed reduction
method improves on previous methods in that it requires orders of magnitude
less memory and computation time, while retaining the advantages: a very
flexible choice of regularizer on the label space, a globally optimal solution of the
relaxed problem and an efficient parallel GPU implementation with guaranteed
convergence.
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First image I0 Second image I1 Flow field and color code

Figure 8.11: Optical flow with large displacements. When employed for
optic flow, the proposed method can successfully capture large displacements
without the need for coarse-to-fine approaches, since a global optimization is
performed over all labels. In contrast to existing methods, our solution is within
a known bound of the global optimum.

First image I0 Second image I1 Flow field

Figure 8.12: Optical flow on larger images. Example with a larger image
resolution of 640× 480 pixels, which requires 32× 32 labels. Regularizer is the
total variation in each component. Computation time is 21.6 minutes.

The proposed framework combines the advantages of the efficient multidi-
mensional data term relaxation [124] with the tight relaxation of the regularizers
in [29]. It allows a very general class of continuous regularizers on multidimen-
sional label spaces and can thus solve a significant range of problems efficiently.
For example, we can explicitly encourage the solution to be smooth in cer-
tain regions, and can represent Huber-TV and truncated linear regularization
by an exact and tight relaxation. The regularizers can be arbitrarily mixed,
in the sense that each dimension of the label space can have its own type of
regularity. Because of the reduced memory requirements, we can successfully
handle specific problems with very large number of labels, which could not be
done with previous labeling methods. A systematic experimental comparison
with respective discrete algorithms (α-EXP, SWAP, BP, TRW-S) shows a good
performance and often improved results.

8.8 Appendix: Proofs of Propositions and Theorems

8.8.1 Proof of Proposition 8.1

Proof. In order to proof the proposition, we show that the mapping induces a
pointwise bijection from ∆× onto ∆. We first show it is onto: for u(x) in ∆,
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there exists exactly one t ∈ Γ with ut(x) = 1. Set vsi (x) = 1 if s = ti, and
vsi (x) = 0 otherwise. Then equation (8.13) is satisfied as desired, see Figure 8.2.
To see that the map is one-to-one, we just count the elements in ∆×. Since ∆i

contains ni elements, the number of elements in ∆× is
∏
i ni = n, the same as

in ∆.

8.8.2 Proof of Proposition 8.2

Proof. Since at each point x ∈ Ω, t(x) is the label indicated by v(x), by the
defining property (8.16) we have vsi (x) = 1 for s = ti(x) and vsi (x) = 0 for all
s ∈ Γi with s 6= ti(x). Thus, for all z ∈ Z,

k∑
i=1

∑
s∈Γi

zsi (x)vsi (x) =
k∑
i=1

z
ti(x)
i ≤ ct(x)(x). (8.73)

This shows that at least Edata(v) ≤
∫

Ω c
t(x)(x) dx = Edata(v). To prove equality,

first observe that we can safely interchange the supremum over z ∈ Z with the
integration over Ω since the constraints in Z on z are pointwise in x. This means
that we only need to show the pointwise equality, i.e. that for each fixed x ∈ Ω
the integrand in (8.23) yields ct(x) when taking the supremum over z ∈ Z. We
use Lagrange multipliers µ to write the constraints in (8.24) as additional energy
terms:

Edata(v) = sup
z∈Z

k∑
i=1

∑
s∈Γi

zsi v
s
i

= sup
z

inf
µγ̂≥0

k∑
i=1

∑
s∈Γi

zsi v
s
i −

∑
γ̂∈Γ

µγ̂
(
zγ̂1

1 + . . .+ zγ̂kk − cγ̂
)

= inf
µγ̂≥0

∑
γ̂∈Γ

µγ̂cγ̂ + sup
z

k∑
i=1

∑
s∈Γi

zsi

(
vsi −

∑
γ̂∈Γ: γ̂i=s

µγ̂
)
,

(8.74)

interchanging the ordering of supz and infµ. Evaluating the supremum over z
leads to constraints on the variables µγ̂ and we obtain

Edata(v) = inf
µγ̂≥0

∑
γ̂∈Γ

µγ̂cγ̂ (8.75)

with µγ̂ such that additionally∑
γ̂∈Γ: γ̂i=s

µγ̂ = vsi for all 1 ≤ i ≤ k and s ∈ Γi. (8.76)

First, for any fixed 1 ≤ i ≤ k and any s ∈ Γi with s 6= ti, by assumption we
have vsi = 0. Since µγ̂ ≥ 0, (8.76) then gives µγ̂ = 0 for all γ̂ ∈ Γ with γ̂i 6= ti.
Combining this for all 1 ≤ i ≤ k we get µγ̂ = 0 for all γ̂ 6= t. Next, plug s = ti
for some i into (8.76). Since any other addend µγ̂ is zero, the sum is just µt,
while the right hand side is vtii = 1.

Therefore, the constraints (8.76) ensure that µγ̂ = 0 for all γ̂ 6= t and µt = 1,
so that (8.75) gives Edata(v) = ct.
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8.8.3 Proof of Proposition 8.3

Proof. Let v ∈ L2(Ω, co (∆×)) be arbitrary, and set zsi (x) := c∗(x)/k. Then

k∑
i=1

∑
s∈Γi

zsi (x)vsi (x) =
k∑
i=1

c∗(x)

k

∑
s∈Γi

vsi (x) =
k∑
i=1

c∗(x)

k
= c∗(x), (8.77)

and
∑

i z
ti
i (x) = c∗(x) ≤ ct(x) for all t ∈ Γ and x ∈ Ω, so z ∈ Z. This

shows that Edata(v) ≥
∫

Ω c
∗(x) dx, which is the minimum of Edata for binary

functions.

8.8.4 Proof of Theorem 8.4

Proof. By convex duality [108], the convex envelope of Edata is given by the
Legendre-Fenchel bi-conjugate E∗∗data. The first convex conjugate E∗data of Edata
is given as

E∗data(z) = sup
v

∫
Ω

k∑
i=1

∑
s∈Γi

zsi (x)vsi (x) dx − Edata(v). (8.78)

Since Edata is finite only for binary v, i.e. if vsi (x) = χs=ti(x) for some t : Ω→ Γ,
this reduces to

F (z) := E∗data(z) = sup
t:Ω→Γ

∫
Ω

( k∑
i=1

z
ti(x)
i (x)− ct(x)(x)

)
dx. (8.79)

The bi-conjugate is then

E∗∗data(v) = sup
z

∫
Ω

k∑
i=1

∑
s∈Γi

zsi (x)vsi (x) dx − F (z). (8.80)

For functions z ∈ L2(Ω,R
∑
i ni) and a ∈ L2(Ω,Rk) define za ∈ L2(Ω,R

∑
i ni) by

(za)
s
i (x) := zsi (x) + ai(x). Then obviously

F (za) = F (z) +

∫
Ω

k∑
i=1

ai(x) dx. (8.81)

Inserting za for z in (8.80) we obtain

E∗∗data(v) = sup
z, a

∫
Ω

k∑
i=1

∑
s∈Γi

zsi (x)vsi (x) dx − F (q)

+

∫
Ω

k∑
i=1

ai(x)

(∑
s∈Γi

vsi (x)− 1

)
dx.

(8.82)

Holding a z fixed and taking the supremum over a we see that in order for
E∗∗data(v) to be finite, we necessarily must have∑

s∈Γi

vsi (x) = 1 for all 1 ≤ i ≤ k, for a.e. x ∈ Ω. (8.83)
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We assume these equalities from now on, i.e. that v ∈ S with S as defined in
the theorem.

By the same way as we arrived at (8.82) we see that given (8.83) the expres-
sion in (8.80), over which the supremum is taken, does not change if we replace
z by za for some a. Also, (8.81) shows that for each z and any fixed α ∈ R we
can find an a with F (za) = α. This combined, we obtain

E∗∗data(v) = sup
z:F (z)=α

∫
Ω

k∑
i=1

∑
s∈Γi

zsi (x)vsi (x) dx − α. (8.84)

Bringing α on the left hand side and taking the supremum over all α ≤ 0 we
get

E∗∗data(v) = sup
z:F (z)≤0

∫
Ω

k∑
i=1

∑
s∈Γi

zsi (x)vsi (x) dx. (8.85)

This is almost the expression (8.23) for Edata(v). We only need to replace
the integral constraints on z in F (z) ≤ 0, with F in (8.79), with pointwise
constraints. For this, note that in (8.79) the supremum over t may be safely
put inside the integral over Ω since the label space Γ is finite (after the assumed
discretization). Therefore, F (z) ≤ 0 is equivalent to∫

Ω
sup
t∈Γ

( k∑
i=1

ztii (x)− ct(x)

)
dx ≤ 0. (8.86)

Denoting the integrand by a(x), this becomes equivalent to

∃ a : Ω→ R :

∫
Ω
a(x) dx ≤ 0,

k∑
i=1

ztii (x)− ct(x) ≤ a(x) ∀t ∈ Γ, x ∈ Ω.

(8.87)
Given a z satisfying these constraints for some a, define ẑ by ẑsi (x) := zsi (x) −
a(x)/k. Then ẑ satisfies (8.87) with a ≡ 0, i.e. ẑ ∈ Z with the constraint set Z
in (8.24). Furthermore,∫

Ω

k∑
i=1

∑
s∈Γi

ẑsi (x)vsi (x) dx =

∫
Ω

k∑
i=1

∑
s∈Γi

(
zsi (x)− a(x)

k

)
vsi (x) dx

=

∫
Ω

k∑
i=1

∑
s∈Γi

zsi (x)vsi (x) dx −
∫

Ω
a(x) dx

≥
∫

Ω

k∑
i=1

∑
s∈Γi

zsi (x)vsi (x) dx

(8.88)

using first (8.83) and then
∫

Ω a(x) dx ≤ 0. Thus, among all z with F (z) ≤ 0 or,
equivalenty, with (8.87) the expression in the supremum (8.85) will be largest if
we choose a ≡ 0 in (8.87). Hence,

E∗∗data(v) = sup
z∈Z

∫
Ω

k∑
i=1

∑
s∈Γi

zsi (x)vsi (x) dx = Edata(v) (8.89)

for v ∈ S.
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8.8.5 Proof of Theorem 8.5

Proof. Integrating by parts, the integral in (7.11) for fixed ϕ can be written as

Jϕ :=

∫
Ω×Γi

(ϕ1) · dDx1ui + ϕ2 dDs1ui

=

∫
Ω×Γi

(
− divx ϕ

1 − ∂sϕ2
)
1ui d(x, s)

=

∫
Ω\Sui

∫ ui(x)

−∞

(
− divx ϕ

1 − ∂sϕ2
)
d(x, s)

=

∫
Ω\Sui

(
− P (x, ui(x))− q(x, ui(x))

)
d(x, s)

(8.90)

where

P (x, s) :=

∫ s

−∞
(divx ϕ

1)(x, s′) ds′ = divx

∫ s

−∞
ϕ1(x, s′) ds′ = (divx p)(x, s)

(8.91)
with

p(x, s) :=

∫ s

−∞
ϕ1(x, s′) ds′, (8.92)

and
q(x, s) :=

∫ s

−∞
∂sϕ

2(x, s′) ds′ = ϕ2(x, s). (8.93)

Since ϕ ∈ C1
c (Ω × Γi; Rm × R), also (p, q) ∈ C1

c (Ω × Γi; Rm × R). Therefore,
from (8.90),

Jϕ =

∫
Ω\Sui

(
− (divx p)(x, ui(x))− q(x, ui(x))

)
d(x, s)

=

∫
Ω×Γi

(−divx p− q) vi d(x, s).

(8.94)

The last equality is simply the definition of how the distribution vi(x, s) =
δ(ui − s), defined for ui ∈ SBV(Ω,R), acts on functions. Now, the claim of the
proposition follows directly from (7.8) and (8.94).

8.8.6 Proof of Proposition 8.7

Proof. We can enforce a piecewise constant labeling ui, if we enforce the approx-
imate gradient∇ui to be constant zero. In (8.28), this can be achieved by setting
hi(x, ui(x),∇ui(x)) = c |∇ui| with a constant c > 0, and then letting c→∞ to
enforce ∇ui ≡ 0 on Ω\Sui . Inserting the convex conjugate h∗i (x, s, q) = δ{|q|≤c},
we find that the conditions in (8.31) now reduce to

qs ≥ 0,
∣∣∂sps∣∣ ≤ c, ∣∣ps − ps′∣∣ ≤ di(s, s′). (8.95)

The supremum over qs ≥ 0 is easily eliminated from (8.30) since vsi ≥ 0,
i.e. −qsvsi ≤ 0 with 0 being the maximum possible value. The second con-
straint in (8.95) follows from the third if we choose c ≥ maxs>s′

di(s,s
′)

|s−s′| . Thus
we arrive at (8.36) with the set Ci as claimed in the proposition.
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8.8.7 Proof of Proposition 8.8

Proof. The claim follows from our general formulation (8.36) with a special
choice of the dual variables p together with additional relaxations of the equa-
tions in Ci. As the special form for ps we choose

ps =

Mi∑
j=1

(asi )j zj , (8.96)

with z : Ω × {1, . . . ,Mi} → Rm such that |z| ≤ 1 and the vectors asi ∈ RMi

which define the Euclidean representation of di, see equation (8.32). The con-
straint on p in (8.37) is satisfied, since by the Cauchy-Schwarz inequality and
the definition of the representation,

∣∣ps − ps′∣∣ =

∣∣∣∣∣∣
Mi∑
j=1

(
(asi )j − (as

′
i )j
)
zj

∣∣∣∣∣∣ ≤
√√√√Mi∑

j=1

(
(asi )j − (as

′
i )j
)2 ·

√√√√Mi∑
j=1

|zj |2

=
∣∣asi − as′i ∣∣ |z| ≤ ∣∣asi − as′i ∣∣ = di(s, s

′).
(8.97)

Thus, p is feasible for the supremum in (8.36) and we obtain the desired result

Ri(vi) ≥ sup
|z|≤1

∑
s∈Γi

∫
Ω
−divx

(
Mi∑
j=1

(asi )j zj

)
vsi dx

= sup
|z|≤1

∫
Ω

Mi∑
j=1

(−divx zj)

(∑
s∈Γi

(asi )j v
s
i

)
dx

= TV

(∑
s∈Γi

asiv
s
i

)
= RAi (vi).

(8.98)

8.8.8 Proof of Proposition 8.9

Proof. Both R and Edata are support functionals of convex sets in the Hilbert
space L := L2(Ω,R

∑
i ni): equation (8.52) shows that the regularizer R is the

support functional ofK(C), while we can see from definition (8.23) that the data
term Edata is the support functional of Z. It follows that both R and Edata are
lower-semicontinuous and convex on L. The set D is closed, thus its indicator
function δD is also convex and closed, furthermore δD is coercive since D is
bounded. From the above, it follows that the functional

v 7→ R(v) + Edata(v) + δD(v) (8.99)

is closed and coercive. Since being closed is equivalent to being lower-semicon-
tinuous in the Hilbert space topology of L, these properties imply the existence
of a minimizer in L, see theorems 3.2.5 and 3.3.3 in [6], which must necessarily
lie in D. Since neither functional is strictly convex, the solution is in general
not unique.



Chapter 9

Vectorial Problems with
Coupled Regularization

Here we consider special coupling regularizers for vectorial functions such as
quadratic penalization and total variation. It turns out that for such regularizers
an efficiently optimizable convex relaxation can still be established. This chapter
is based on joint work with Antonin Chambolle and Daniel Cremers [120].

9.1 Introduction

9.1.1 Special Vectorial Problems

In the previous Chapter 8, we considered convexifications of special vectorial
functionals by proposing to represent the vectorial solutions u by k separate
graph functions, one for each channel ui, or respectively by k independent col-
lections of indicator functions. This allowed to reduce the number of variables
from Nk to kN , if N is the number of samples in each channel range, and we
also introduced an appropriate convexification of the data term in this repre-
sentation.

However, the regularizer part was handled by a channel-wise application of
the lifting method. This limited the approach to separable interaction terms,
which regularize each coordinate ui independently. Our contribution in this
chapter is to try to consider more general interaction terms in this setting.

In this chapter, we propose a novel convex relaxation for the estimation
of vector-valued functions with nonconvex data terms and convex regularizers.
This can be interpreted as a generalization to the vectorial case of the lifting
relaxation for the special class of scalar energies in Section 7.2.2. What makes
this class special is that the lifting relaxation yields an especially simple form
in this case and furthermore allows to obtain globally optimal binary solutions.
This motivates to consider the vectorial analogon of this special class.

Let Ω ⊂ Rm be a bounded open set, with, in practice, m = 2, 3. We want
to find an appropriate convex representation for functionals of the form

E(u) =

∫
Ω
h(x, u,∇u) dx (9.1)

155
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where u ∈ W 1,1(Ω;Rk), k ≥ 2. We will also consider the case of BV-fields u,
with a suitable definition on the jump set.

Our proposed convexification approach enables to handle the combination of
a nonconvex data term with coupled convex regularizers such as isotropic l2-total
variation TVl2 . This generalizes the approach of the previous chapter, which is
limited to separable and thus non-coupling regularizers. It also generalizes [54]
which allows for convex coupling regularizers but assumes convex data terms.
The key idea of the convexification is to consider a collection of hypersurfaces
with a relaxation which takes into account the entire functional at once, rather
than separately treating the data term and the regularizers of each component
as in the previous chapter.

9.1.2 Contributions

We focus particularly on convex representations which

• are computationally tractable,

• are as tight as possible, that is, as close as possible to the convex envelope
of the energy E(u) (in an appropriate representation).

To stay computationally realistic, we therefore choose the representation by
separate graph functions (and thus discretizations) for each channel as in the
previous Chapter 8. There are restrictions on the type of energies in order for
the relaxation to still be exact, i.e. that it coincides with the initial energy for
binary graph functions. In particular, we will focus on problems of the form

min
u
E(u) :=

∫
Ω
c(x, u(x)) dx +

∫
Ω
f
(
x,∇u(x)

)
dx (9.2)

for u ∈ W 1,1(Ω;Rk), where f(x, p) : Ω × Rm×k → R+ is continuous in x and
convex in p (with possibly linear growth, in which case u ∈ BV(Ω,Rk)). For
the definition of the Sobolev space W 1,1(Ω;Rk) and the space BV(Ω,Rk) of
bounded variation functions we refer to [5], see also Section 2.2.

Specifically, we make the following contributions:

• We propose a general convexification strategy for vectorial problems of
the form (9.2). The main novelty of our approach is the applicability to
possibly non-separable convex regularizers such as the isotropic TVl2 . For
separable regularizers it reduces to the relaxation of Chapter 8. Since the
functional is treated as a whole, this provides a natural derivation of the
data term relaxation given in Chapter 8. We prove the non-trivial fact
that the proposed relaxation is exact.

• Our framework also allows nonconvex data terms c(x, ·) in (9.2), which
arise in many useful applications such as stereo reconstruction and optical
flow. Furthermore, nonconvex data terms can be used together with non-
separable regularizers which further improves the results e.g. in denoising
applications. This is not possible with previous approach in [54] and that
in Chapter 8.
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• For the important special cases of isotropic total variation TVl2 and its
Huber-regularized variant we give a reformulation of the constraint set
which allows one to minimize energies with these regularizers as efficient
as in the scalar case.

• We provide extensive implementation details, including memory analysis
and notes on the GPU usage. Several experiments demonstrate the advan-
tage of coupled regularizers over the separable ones in applications such as
optical flow, denoising and inpainting. The case of nonconvex data terms
with coupling regularizers, which is only possible with our approach, leads
to superior results than with previous approaches.

• We give an explicit formula for the projection onto a parabola, which is
needed to implement Huber-TVl2 . This is more robust than using New-
ton’s iterative method as in [101] since the number of iterations depends
on the data and increases with increasing regularizer weight λ. We found
the explicit projection to be also faster by a factor of 2 and more.

9.2 Convex Relaxation

9.2.1 Convexification Framework

Following the functional lifting framework in Chapter 7 and the approach of the
previous Chapter 8, given u ∈ L1

loc(Ω,Rk) we consider the collection of graph
functions

1u := (1u1 , . . . , 1uk) ∈ L1
loc(Ω× R, {0, 1}k) (9.3)

where for each i = 1, . . . , k, the individual graph functions are defined as

1ui(x, t) =

{
1 if t < ui(x),

0 else.
(9.4)

Then, we define a convex relaxation of (9.2), on the set L1
loc(Ω×R, [0, 1]k). As

in Section 7.2.2 and Chapter 8 it takes the form, if v ∈ BV(Ω× R; [0, 1]k),

E(v) = sup

{
k∑
i=1

∫
Ω×R

ϕi · dDvi
∣∣∣ ϕ ∈ C1(Ω× R;Rm×k) ∩ C

}
(9.5)

for some convex set C. We need this relaxation

• to be exact on characteristics of subgraphs, that is, we want

E(1u) = E(u) (9.6)

for any u,

• to be as “tight” as possible, that is, as close as possible to the convex
envelope of the function v 7→ E(u) if v = 1u for some u, +∞ else.



158 CHAPTER 9. COUPLED REGULARIZATION

If, to simplify, u ∈W 1,1(Ω;Rk), then the terms in (9.5) can be written as [1]

k∑
i=1

∫
Ω×R

ϕi · dD1ui =
k∑
i=1

∫
Ω
ϕxi (x, ui(x)) · ∇ui(x) − ϕti(x, ui(x)) dx. (9.7)

As a consequence, a sufficient condition in order to have

E(1u) ≤ E(u) (9.8)

is that for any x ∈ Ω, t = (t1, . . . tk) ∈ Rk and p ∈ Rm×k, the fields ϕ in C
satisfy

k∑
i=1

ϕxi (x, ti) · pi − ϕti(x, ti) ≤ h(x, t, p).

Rearranging and taking the supremum over p, this is equivalent to

k∑
i=1

ϕti(x, ti) ≥ h∗
(
x, t, (ϕxi (x, ti))

k
i=1

)
, (9.9)

where h∗ is the Legendre-Fenchel conjugate of h with respect to the variable p.
For h(x, t, p) = f(x, p) + c(x, t) as in (9.2), it boils down to

k∑
i=1

ϕti(x, ti) ≥ f∗
(
x, (ϕxi (x, ti))

k
i=1

)
− c(x, t) (9.10)

for all x ∈ Ω and t ∈ Rk.

9.2.2 Concrete Example: The Vectorial ROF Model

Before we continue, let us make this more explicit for a concrete example, namely
the vectorial case of the classical Rudin-Osher-Fatemi total variation denoising
problem (ROF model) [111]. For u ∈ C1(Ω; [0, 1]k), it is given by

EROF (u) =

∫
Ω

(u− u0)2 + λ |∇u| dx. (9.11)

We want to rewrite this energy as the supremum of the expression on the left
hand side of (9.7) with the dual variable ϕ constrained to some appropriately
chosen convex set C. This set should be as large as possible in order for the
convex relaxation to be as tight as possible. Yet, how should one chose this
set? A necessary condition is that (9.7) should be less than or equal to the
ROF-energy (9.11) for all ϕ ∈ C and all u. This amounts to the inequality:

∫
Ω

k∑
i=1

ϕxi (x, ui(x)) · ∇ui − λ |∇u| −
k∑
i=1

ϕti(x,∇ui) dx

≤
∫

Ω
(u− u0(x))2 dx ∀ϕ ∈ C, ∀u.

(9.12)
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A sufficient condition is the local version of this constraint:

k∑
i=1

ϕxi (x, ti) · pi − λ |p| −
k∑
i=1

ϕti(x, pi) ≤ (t− u0(x))2, ∀ϕ ∈ C, ∀t, x, p. (9.13)

Taking the supremum over p, we observe that the first two terms on the left-hand
side are equal to:

sup
p

k∑
i=1

ϕxi (x, ti) · pi − λ |p| =

0 if
√∑k

i=1 |ϕxi (x, ti)|2 ≤ λ,

∞ else.
(9.14)

Therefore, the localized version of the constraint (9.12) is equivalent to the two
constraints ∑k

i=1 ϕ
t
i(x, ti) ≥ −(t− u0(x))2 ∀ϕ ∈ C, ∀t, x,√∑k

i=1 |ϕxi (x, ti)|2 ≤ λ ∀ϕ ∈ C, ∀t, x.
(9.15)

9.2.3 The Scalar Case

In the scalar case and for “reasonable” Lagrangians h in (9.1) (in particular,
continuous and convex in p with at least linear growth), one can check (see [101])
that condition (9.10) allows to recover tightly the initial energy, in the sense that
if C is the set of smooth vector fields ϕ satisfying (9.9), i.e.

ϕt(x, t) ≥ h∗
(
x, t, ϕx(x, t)

)
∀x, t, (9.16)

then minimizing the energy E defined by (9.5) always solves the original problem.
In the simplified case (9.2), one can show that the energy E has the form

E(v) =

∫
Ω×R

f̂(dDv) − c(x, t) dDtv

with f̂(px, pt) : Rm × R → (−∞,+∞] the convex, one-homogeneous integrand
defined by:

f̂(px, pt) =


|pt| f(px/

∣∣pt∣∣) if pt < 0,

f∞(px) if pt = 0,

+∞ if pt > 0.

In this notation, f∞(p) is the convex and positive one-homogeneous recession
function of f , see (2.4)

9.3 General Vectorial Case

9.3.1 Exactness of the Relaxation

In the vectorial case, though, things are not so simple and as we already ob-
served, one cannot hope to recover in general an equivalent convex formula-
tion, which remains tractable computationally. Let us now fix arbitrary (finite)
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bounds a and b > a for the values of the functions ui (in practice we could
choose different intervals [ai, bi] for each variable ti, but the analysis would be
strictly identical), and let Γ = [a, b]: in what follows we will work in Ω × Γk.
We let:

C =
{
ϕ = (ϕ1, . . . , ϕk)

∣∣ ϕi = (ϕxi , ϕ
t
i) ∈ C0

c (Ω× Γ;Rm × R) ,

(ϕi)
k
i=1 satisfies (9.10) for all x ∈ Ω, t ∈ Γk

}
.
(9.17)

We will show the following main result of this chapter:

Proposition 9.1. For v ∈ BV(Ω × Γ; [0, 1]k) let E(v) be defined by (9.5) with
the set C in (9.17). Then if u ∈W 1,1(Ω; Γk), one has E(1u) = E(u).

This result will be a consequence of the stronger Lemmas 9.2 and 9.3 in the
subsections below, which show the result separately for the data and interaction
terms.

We now introduce the convex sets (note that the first one corresponds to
the data term relaxation constraint set of Section 8.3.2)

L =

{
γ = (γ1, . . . , γk)

∣∣∣ γi ∈ C0
c (Ω× Γ;R) ,

k∑
i=1

γi(x, ti) ≥ −c(x, t) ∀(x, t) ∈ Ω× Γk

} (9.18)

and

C0 =

{
ϕ = (ϕ1, . . . , ϕk)

∣∣∣ ϕi = (ϕxi , ϕ
t
i) ∈ C0

c (Ω× Γ;Rm × R) ,

k∑
i=1

ϕti(x, ti) ≥ f∗
(
x, (ϕxi (x, ti))

k
i=1

)
∀(x, t) ∈ Ω× Γk

}
.

(9.19)

Observe in particular that C0 + L ⊆ C. Thus, to prove Proposition 9.1 it is
enough to prove it with C replaced by C0 + L in (9.5).

9.3.2 Exactness for the Data Term Part

The following result is an extension of classical results (in particular, relative to
the Monge-Kantorovich duality in optimal transportation problems [133]).

Lemma 9.2. Let u ∈ L1(Ω,Γk) and assume c is bounded, l.s.c. in (x, u)1. Then

∫
Ω
c(x, u(x)) dx = sup

γ∈L

∫
Ω×Γ

k∑
i=1

γi · dDti1ui . (9.20)

1One could consider integrands c which are merely measurable in x and continuous in u,
by relaxing the continuity assumption of the fields γi.
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Here we use the notation Dti1ui , which is consistent with (9.5) and makes
sense since 1ui is nonincreasing in the ti-variable. However observe that Dti1ui
is simply equal to −δui(x). In particular, the integral on the right-hand side can
be equivalently rewritten in the simpler form

−
∫

Ω

k∑
i=1

γi(x, ui(x)) dx .

Proof. Without loss of generality, we may assume that 0 ≤ c ≤ K on Ω×Γk, for
some constant K ∈ R. We first assume that c is uniformly continuous on Ω×Γ.
Let u ∈ L1(Ω,Γk). Let ε > 0, r > 0: by standard covering arguments [44], one
can find a disjoint covering (Bα)α∈N of almost all Ω, that is, disjoint closed balls
Bα = B(xα, rα) with |Ω \⋃αB(xα, rα)| = 0, with the following properties:

1. rα ≤ r for all α ∈ N,

2.
∫
Bα

|u(x)− u(xα)| dx ≤ rε|Bα| for all α ∈ N.

3.
∫
Bα

|c(x, u(x))− c(xα, u(xα))| dx ≤ ε|Bα| for all α ∈ N.

We assume r > 0 is chosen in such a way that |c(x, t) − c(y, s)| ≤ ε if
|y−x| ≤ r and maxi |ti−si| ≤ r. Let us chooseN ∈ N such that

∑
α>N |Bα| < ε.

Then, we let for i = 1, . . . , k γi(x, t) = K if x ∈ Bα, α > N , while if x ∈ Bα
with α ≤ N ,

γi(x, ti) = −c(xα, u(xα))

k
ϕ

(
x− xα
rα

)
η

(
ti − ui(xα)

%

)
+ K

(
1− ϕ

(
x− xα
rα

)
η

(
ti − ui(xα)

r

))
+

ε

k

(9.21)

where the cut-off functions ϕ ∈ C∞c (B(0, 1); [0, 1]), η ∈ C∞c ([−1, 1]; [0, 1]) will
be precised later on.

If x ∈ Bα, α ≤ N , and t ∈ Γk with |ti − ui(x)| ≥ r for at least one i, then∑
i γi(x, ti) ≥ 0 ≥ −c(x, t). This is also clear if x ∈ Bα with α > N . Now, if

x ∈ Bα, α ≤ N , and |ti − ui(x)| < r for all i = 1, . . . , k, then∑
i

γi(x, ti) ≥ −c(xα, u(xα)) + ε ≥ −c(x, t)

so that γ ∈ L. On the other hand, we have

−
∫

Ω

k∑
i=1

γi(x, ui(x)) dx

≥ −(kK + ε)

(∑
α>N

|Bα|
)
−
∑
α≤N

k∑
i=1

∫
Bα

γi(x, ui(x)) dx .

(9.22)
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Now, for α ≤ N ,

−
∫
Bα

γi(x, ui(x)) dx ≥ 1

k
|Bα|(c(xα, u(xα))− ε)

− K

(
1 +

1

k

)∫
Bα

(
1− ϕ

(
x− xα
rα

)
η

(
ui(x)− ui(xα)

r

))
dx

(9.23)

which we now estimate. Assume that ϕ was chosen such that∫
B1

(1− ϕ(x)) dx ≤ ε

and η(0) = 1, η has a Lipschitz constant L ≥ 1. Then,∫
Bα

(
1− ϕ

(
x− xα
rα

)
η

(
ui(x)− ui(xα)

r

))
dx

=

∫
Bα

(
1− ϕ

(
x− xα
rα

))
dx

+

∫
Bα

ϕ

(
x− xα
rα

)(
1− η

(
ui(x)− ui(xα)

r

))
dx

≤ ε|Bα|+
L

r

∫
Bα

|ui(x)− ui(xα)| dx ≤ (1 + L)ε|Bα|.

Together with (9.23), we deduce that for α ≤ N ,

−
k∑
i=1

∫
Bα

γi(x, ui(x)) dx ≥ |Bα|(c(xα, u(xα))− ε)− εK(k + 1)(1 + L)|Bα|

≥
∫
Bα

c(x, u(x)) dx− ε(2 +K(k + 1)(1 + L))|Bα|

so that, using (9.22)

−
∫

Ω

k∑
i=1

γi(x, ui(x)) dx ≥
∫

Ω
c(x, u(x)) dx

− ((k + 1)K + ε)

(∑
α>N

|Bα|
)
− ε(2 +K(k + 1)(1 + L))

∑
α≤N
|Bα|


≥
∫

Ω
c(x, u(x)) dx −

(
((k + 1)K + ε) + (2 +K(k + 1)(1 + L))|Ω|

)
ε ,

which shows that (9.20) holds when c is uniformly continuous.
Now, if c is only l.s.c. (and bounded), there exist cn bounded, uniformly

continuous such that supn cn = c. If Ln is the corresponding set for cn, we have
Ln ⊂ L so that∫

Ω
c(x, u(x)) dx ≥ sup

γ∈L

∫
Ω×Γ

k∑
i=1

γi · dDti1ui ≥
∫

Ω
cn(x, u(x)) dx

and the result follows by sending n→∞.
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9.3.3 Exactness for the Regularizer Part

Next, we need the following result. To simplify, let f be minimal and vanishing
for p = 0, i.e. f(x, 0) = 0 = minp f(x, p) for all x. We assume that f is
continuous in both variables (x, p), and that there exists a constant C > 0 such
that

f(x, p) ≥ C(|p| − 1) (9.24)

for all x and p. This guaranties in particular that if
∫

Ω f(x, dDu) < +∞, then
u ∈ BV(Ω,Rk).

Lemma 9.3. Let u ∈ BV(Ω; Γk). With the set C0 in (9.19) we have∫
Ω
f(x, dDu) = sup

ϕ∈C0

k∑
i=1

∫
Ω×Γ

ϕi · dD1ui . (9.25)

Proof. To simplify, we give an idea of the construction in case where u ∈
W 1,1(Ω; Γk). A precise proof in the general case is discussed in the appendix
Section 9.8. In this case, (9.7) holds, and in particular one deduces that “≥”
trivially holds in (9.25). Now, let for all x and (ti)

k
i=1

(ϕxi (x, ti))
k
i=1 = ∇pf(x,∇u(x))

and
ϕti(x, ti) =

1

k
f∗(x,∇pf(x,∇u(x))) .

This field is only measurable, and observe it does not depend on t. It can
be smoothed by standard mollification: we consider % ∈ C∞c (B(0, 1);R+) with∫
B(0,1) % dx = 1 and let %ε(x) = ε−d%(x/ε), and then let ϕε = %ε ∗ (ϕχΩε) where

Ωε = {x ∈ Ω | dist(x, ∂Ω) > ε} and the convolution is only in the x variable.
Here we use the fact that f∗(x, 0) = 0 so that, in particular, 0 ∈ C0. This
smooth (and compactly supported in x) function might not be in C0, but one
can show that it is “close” to C0 in some sense. Moreover, using (9.7), we have
that

lim
ε→0

k∑
i=1

∫
Ω×R

ϕεi ·D1ui dx

=

k∑
i=1

∫
Ω
ϕxi (x) · ∇ui(x) − ϕti(x) dx =

∫
Ω
f(x,∇u(x)) dx ,

(9.26)

as expected.

9.3.4 Existence of Minimizers

For the relaxation (9.5) we seek for a solution v ∈ BV(Ω × Γ; [0, 1]k), with
Γ = [0, 1].

Theorem 9.4. The problem

min
{
E(v)

∣∣ v ∈ BV(Ω× Γ; [0, 1]k), vi(x, 0) ≡ 1, vi(x, 1) ≡ 0
}
, (9.27)

where E is defined by (9.5) with C given by (9.17), has a solution.
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Here the trace conditions on vi are meant in the following sense: the func-
tions are extended on Ω × R, with vi(x, t) ≡ 0 if t ≥ 1 and 1 if t ≤ 0, and the
derivative Dv is then restricted to Ω × Γ. As a consequence, if the inner trace
of v is different from 0 at t = 1 or 1 at t = 0, Dv carries a measure on the
corresponding boundary.

Proof. This is straightforward, since by definition (9.5), E is lower-semiconti-
nuous on BV (with respect to weak convergence), while (9.24) (and the fact we
have assumed that v is bounded) yields compactness of minimizing sequences
for the problem (9.27).

9.4 Special Cases

In this section we give some examples of regularizers R(u) =
∫

Ω f(x,∇u(x)) dx
in (9.2) which can be handled in our framework. For each case we will give the
corresponding constraints (9.10) for the set (9.17). We assume that the range
set of each channel ui is Γ := [0, 1] for clarity of presentation. The whole theory
can of course be formulated with general intervals as range sets.

9.4.1 Separable Regularizers

We first consider separable regularizers

R(u) =
k∑
i=1

Ri(ui), Ri(ui) =

∫
Ω
fi(x,∇ui(x)) dx, (9.28)

i.e. f(x, p) =
∑k

i=1 fi(x, pi) for all (x, p) ∈ Ω × Rm×k, which acts on each
ui independently. We have previously considered the convex relaxation of the
functional (9.2) with the restriction to this kind of regularizers in Chapter 8.
The relaxation was obtained by convexifying each term separately, the data
term

∫
Ω c(x, u(x)) dx and the regularizers R1(u1), . . . , Rk(uk). In contrast, our

proposed relaxation of (9.2) in the current chapter considers the functional as a
whole and uses a single combined constraint set (9.17). However, for separable
regularizers it turns out to be equivalent to relaxing each term separately as in
Chapter 8, as we will show next.

Define the sets Ci0 similarly as C0 in (9.19) but for the one-dimensional case
(k = 1):

Ci0 =

{
ϕ = (ϕx, ϕt) ∈ C0

c (Ω× Γ;Rm × R)
∣∣

ϕt(x, t) ≥ f∗i (x, ϕx(x, t)) ∀(x, t) ∈ Ω× Γ

}
.

(9.29)

Proposition 9.5. Let the regularizer be separable as in (9.28). Then the relax-
ation

E(v) = sup
ϕ∈C

k∑
i=1

∫
Ω×Γ

ϕi ·dDvi dx = sup
ϕ∈C

k∑
i=1

∫
Ω×Γ

(
ϕxi ·dDxvi+ϕ

t
i dDtvi

)
(9.30)



9.4. SPECIAL CASES 165

with the general set C in (9.17) is equal to the relaxation of each term separately:

E(v) =

k∑
i=1

(
sup
ϕi∈Ci0

∫
Ω×Γ

ϕi dDvi

)
+

(
sup
γ∈L

∫
Ω×Γ

k∑
i=1

γi dDtvi

)
. (9.31)

Proof. Let (ϕx, ϕt) ∈ C be fixed. The Legendre-Fenchel conjugate of f(x, p) =∑
i fi(x, pi) is given by

f∗(x, q) = sup
p∈Rm×k

k∑
i=1

qipi −
k∑
i=1

fi(x, pi) =

k∑
i=1

f∗i (x, qi)

for all q ∈ Rm×k. The constraints (9.10) thus become

k∑
i=1

ϕti(x, ti) ≥ −c(x, t) +
k∑
i=1

f∗i
(
x, ϕxi (x, ti)

)
. (9.32)

Define γi, ϕti ∈ C0(Ω× Γ;R) by

ϕti(x, ti) := f∗i (x, ϕxi (x, ti)),

γi := ϕti − ϕti

for all (x, ti) ∈ Ω × Γ. Obviously we have (ϕxi , ϕ
t
i) ∈ Ci0 for all i, and by (9.32)

also γ ∈ L. On the other hand, if (ϕxi , ϕ
t
i) ∈ Ci0 and γ ∈ L then for ϕti := ϕti +γi

we have (ϕx, ϕt) ∈ C. Therefore, (9.31) follows directly from (9.30).

As a consequence, in order to arrive at novel relaxations, one has to consider
coupled regularizers. For this general case, no tractable relaxations have yet
been given. In fact, existing relaxations all rely on discretizing the whole k-
dimensional label space Γk and are thus by no means tractable.

In the following we will give a brief overview of some interesting special
cases for separable regularizers (9.28) which where studied in [101]. We will
discuss these regularizers in more detail later in Sections 9.4.3 – 9.4.7, where we
introduce the corresponding coupled versions.

Total Variation with l1-Coupling. Setting fi(x, pi) := λ |pi| with a λ > 0
we obtain the total variation

TVl1(u) = λ
k∑
i=1

∫
Ω
|∇ui| dx. (9.33)

Although this regularizer is a simple way to extend the total variation to vector
valued signals, there is no coupling of the channels. This generally leads to
inferior reconstructions, as is demonstrated in Figure 9.5. The corresponding
constraints in (9.29) are

ϕti(x, t) ≥ 0, |ϕxi (x, t)| ≤ λ ∀x ∈ Ω, t ∈ Γ, 1 ≤ i ≤ k. (9.34)
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Huber-TV with l1-Coupling. We now set fi(x, pi) := λhε(|pi|) with the
Huber function hε(pi), which basically equals |pi| but smoothes out the kink at
the origin, see the definition in (8.43). This yields the Huber-TVl1 penalization:

λ

k∑
i=1

∫
Ω
hε
(
|∇ui|

)
dx. (9.35)

This alleviates the staircasing effect caused by TV (i.e. the solutions tend to
become piecewise constant in regions where u is almost constant but smooth),
however there is no coupling of the channels at all. We will discuss the l2-coupled
version later in Section 9.4.4. The constraints in (9.29) are

ϕti(x, t) ≥
ε

2λ
|ϕxi (x, t)|2 , |ϕxi (x, t)| ≤ λ ∀x ∈ Ω, t ∈ Γ, 1 ≤ i ≤ k. (9.36)

Lipschitz-Constraint with l1-Coupling. Finally, when setting fi(x, pi) :=
δ|pi|≤λ , which is zero for |pi| ≤ λ and ∞ otherwise, with a λ > 0 we obtain the
Lipschitz constraint on the gradients of the channels:

k∑
i=1

∫
Ω
δ|∇ui|≤λ dx = δ(

|∇ui(x)|≤λ for a.e. x∈Ω, 1≤i≤k
).

The growth rate of each channel is constrained by λ individually without any
coupling. The constraints in (9.29) are

ϕti(x, t) ≥ λ |ϕxi (x, t)| ∀x ∈ Ω, t ∈ Γ, 1 ≤ i ≤ k. (9.37)

9.4.2 Separable Data Terms

The proposed convex relaxation handles the functional (9.2) as a whole, i.e. both
the data and the regularization term are relaxed simultaneously using a unified
constraint set. Consider separable data terms c,

D(u) =
k∑
i=1

Di(ui), Di(ui) =

∫
Ω
ci(x, ui(x)) dx, (9.38)

i.e. c(x, t) =
∑k

i=1 ci(x, ti) for all (x, t) ∈ Ω × Rk. In this case we can show
that the overall relaxation is equivalent to relaxing the data and regularizer
term separately (as also was the case for separable regularizers in the previous
section). Furthermore, the data term part decouples into separate relaxations
of each channel:

Proposition 9.6. Let the data term be separable as in (9.38). Then

E(v) =

(
sup
ϕ∈C0

k∑
i=1

∫
Ω×Γ

ϕi · dDvi
)

+

k∑
i=1

(
sup
γi∈Li

∫
Ω×Γ

γi dDtvi

)
. (9.39)

The sets Li are defined similarly to L in (9.18) but for the one-dimensional case:

Li =
{
γ ∈ C0

c (Ω× Γ;R)
∣∣ γ(x, t) ≥ −ci(x, t) ∀(x, t) ∈ Ω× Γ

}
.
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Proof. The proof basically uses the same construction as the corresponding
proof of (9.31) for the case of separable regularizers. The constraints (9.10)
read

k∑
i=1

ϕti(x, ti) ≥ −
k∑
i=1

ci(x, ti) + f∗
(
x, (ϕxi (x, ti))

k
i=1

)
. (9.40)

For (ϕx, ϕt) ∈ C with the set C in (9.17) define γi, ϕti ∈ C0
c (Ω× Γ;R) by

γi(x, ti) := −ci(x, ti),
ϕti := ϕti − γi

for all (x, t) ∈ Ω×Γk and 1 ≤ i ≤ k. Then (ϕx, ϕt) ∈ C0 by (9.40) and evidently
also γi ∈ Li for all i. On the other hand, if (ϕx, ϕt) ∈ C0 and γi ∈ Li for all i,
then for ϕti := ϕti+γi we have (ϕx, ϕt) ∈ C. Thus, (9.39) follows from (9.30).

Remark. Another case where the overall relaxation is equivalent to relaxing
the data term and the regularizer separately, is when the Legendre-Fenchel dual
of f has the form

f∗(x, p) =
k∑
i=1

gi(x, pi) + δC(x)(p) (9.41)

with some convex functions gi and sets C(x) ⊂ Rm×k This can be proven
analogously as for (9.31) in Section 9.4.1. Specifically, in the case discussed in
Section 9.4.1 we have gi = f∗i and C(x) = Rm×k. An example of a regularizer
which satisfies (9.41) with a non-trivial set C(x) is given by TVl2 , which we will
discuss next.

9.4.3 Total Variation with l2-Coupling

As a first non-separable regularizer for vectorial signals u : Ω→ Rk we consider
the total variation with the l2-coupling of the channels. For smooth functions
u it is given by

TVl2(u) = λ

∫
Ω
|∇u| dx = λ

∫
Ω

√√√√ k∑
i=1

|∇ui|2 dx (9.42)

with a λ > 0. Basically, it penalizes the Euclidean norm of the gradient. For
general u ∈ L1(Ω,Rk) it can be defined by its dual representation (2.12). This
coupled total variation generally leads to higher quality reconstructions in in-
verse problems than its separable counterpart in (9.33), as will be shown in the
experiments. Our approach yields the first convex relaxation of this regularizer
for vectorial multilabel problems. Furthermore, we will show how to efficiently
reformulate the relaxation to obtain roughly the same run time and memory
efficiency as in the decoupled case (9.33).
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The corresponding function f : Ω × Rm×k → R in (9.2) is f(x, p) := λ |p|
with the Legendre-Fenchel convex dual

f∗(x, q) = sup
p∈Rm×k

p q − |p| =

{
0 if |q| ≤ λ,
∞ else.

Thus, the constraints (9.10) are given by

k∑
i=1

ϕti(x, ti) ≥ −c(x, t), (9.43)√√√√ k∑
i=1

|ϕxi (x, ti)|2 ≤ λ (9.44)

for all (x, t) ∈ Ω× Γk.

Constraint Decoupling for the Smoothness Part (9.44). For a practical
implementation, the range set Γ of each channel ui must be discretized into a
number ni ≥ 1 of levels. For each fixed x ∈ Ω, the second constraint (9.44) then
poses n1 · · ·nk individual constraints because of t ∈ Γk. Implementing them
requires a large amount of memory for k ≥ 3 and to some extent for k ≥ 2.
Surprisingly, the special form of the l2-coupled TVl2 allows one to decouple
(9.44) into only n1 + . . .+ nk constraints.

The inequalities (9.44) for all t ∈ Γk are equivalent to

sup
t∈Γk

√√√√ k∑
i=1

|ϕxi (x, ti)|2 =

√√√√ k∑
i=1

(
sup
ti∈Γ
|ϕxi (x, ti)|

)2

≤ 1.

Introducing a new dual variable a : Ω → Rk, ai(x) := supti∈Γ |ϕxi (x, ti)| for all
i, this shows that the constraints (9.44) can be equivalently written as

|a(x)| ≤ λ ∀x ∈ Ω, (9.45)
|ϕxi (x, ti)| ≤ ai(x) ∀(x, ti) ∈ Ω× Γ, 1 ≤ i ≤ k. (9.46)

For each x ∈ Ω these are now only linearly many constraints.

Remark. There is an interesting interpretation of this decoupling: Consider-
ing the constraints (9.46) without (9.45) for each i, the supremum over ϕxi gives
the total variation of ui where the contribution at each point x ∈ Ω is weighted
by ai(x):

TVai(ui) =

∫
Ω
ai(x) |∇ui| dx. (9.47)

Taking the supremum also over (9.45) means that TV (u) is represented as a
weighted sum of TVai(ui):

TVl2(u) = sup
a:Ω→Rk, a≥0∑k
i=1 ai(x)2≤λ

k∑
i=1

∫
Ω
ai(x) |∇ui| dx. (9.48)
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Constraint Decoupling for Data Part (9.43). Similarly to (9.44), after
discretization the first constraint (9.43) in its original form gives n1 · · ·nk in-
dividual constraints for each x ∈ Ω. However, if the data term is serapable
as discussed in Section 9.4.2, we can also decouple (9.43) into linearly many
constraints:

Proposition 9.7. Assume that c(x, t) =
∑k

i=1 ci(x, ti) for all (x, t) ∈ Ω × Rk
with some functions ci : Ω× Γ→ R. Then (9.43) can be replaced by

ϕti(x, ti) ≥ −ci(x, ti) ∀(x, ti) ∈ Ω× Γ, 1 ≤ i ≤ k. (9.49)

without altering the supremum in the convex relaxation (9.5).

Proof. First, since the constraints on ϕt and on ϕx are independent, the relax-
ation (9.5) reads

E(v) =

(
sup
ϕx

∫
Ω×Γ

k∑
i=1

ϕxi · dDxvi

)
+

(
sup
ϕt

∫
Ω×Γ

k∑
i=1

ϕti dDtvi

)

with ϕx satisfying (9.44) and ϕt satisfying (9.43). For the second term on the
right-hand side, regarding the data-term-only constraints (9.43) as the general
constraints (9.10) with f ≡ 0 and ϕx ≡ 0, we can use (9.39) (as the data term
is separable) to get

sup
ϕt

∫
Ω×Γ

k∑
i=1

ϕti dDtvi

=
k∑
i=1

sup
γi∈Li

∫
Ω×Γ

γi dDtvi + sup
ϕ̂t

∫
Ω×Γ

k∑
i=1

ϕ̂ti dDtvi

(9.50)

with ϕ̂t such that
∑k

i=1 ϕ̂
t
i(x, ti) ≥ 0. The first term on the right-hand side

of (9.50) yields the desired constraints (9.49), after renaming γi back to ϕti. It
remains to show that the supremum in the second term on the right-hand side
of (9.50) is actually zero. But this follows directly from Lemma 9.2.

9.4.4 Huber-TV with l2-Coupling

Total variation regularization is known to produce solutions exhibiting so called
“staircasing” effects. In the regions where the solution u is almost constant or
varies very slowly, it may become piecewise constant instead of having a smooth
variation. A common solution is to apply the Huber-TV regularization:

R(u) = λ

∫
Ω
hε(|∇u|) dx (9.51)

for some small ε > 0, where the Huber function hε : R → R is defined as in
(8.43).

It smooths out the kink at the origin of z 7→ |z|. The quadratic penalization
for near zero ∇u ensures smooth variations in the regions where u is nearly
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constant, thus avoiding the staircasing effect in these regions. The limiting
case ε = 0 yields the usual TV . The advantage in comparison to applying the
channel-wise Huber-regularization (9.35), is that here the quadratic penalization
kicks in only if every gradient component is small. The coupled Huber-TVl2 is
thus nearer to the actual TVl2 which it is approximating.

The function f in (9.2) is f(x, p) := λhε(|p|), with the dual

f∗(x, q) = sup
p∈Rm×k

k∑
i=1

qi pi − λhε(|p|) =

{
ε

2λ |q|
2 if |q| ≤ λ,

∞ else,
(9.52)

and the constraints in (9.17) become

k∑
i=1

ϕti(x, ti) ≥ −c(x, t) +
ε

2λ

k∑
i=1

|ϕxt (x, ti)|2 , (9.53)√√√√ k∑
i=1

|ϕxi (x, ti)|2 ≤ λ (9.54)

for all (x, t) ∈ Ω× Γk.

Constraint Decoupling for the Smoothness Part (9.54). Note that the
second constraint (9.54) is exactly the same as (9.44) in the case of TV in Sec-
tion 9.4.3. The same reduction technique can therefore be applied to decouple
this constraint into (9.45) and (9.46).

Constraint Decoupling for the Data and Smoothness Part (9.53). As
for the first constraint (9.53), for general data terms c we can always separate
it into a data-term-only part, and one responsible for regularization. Namely,
define γi, ϕti ∈ C0(Ω× Γ;R) by

ϕti(x, ti) := ε
2λ |ϕxi (x, ti)|2 ,

γi := ϕti − ϕti

for all (x, ti) ∈ Ω× Γ and 1 ≤ i ≤ k. Then (9.53) is equivalent to

ϕti = γi + ϕi, (9.55)
k∑
i=1

γi(x, ti) ≥ −c(x, t), (9.56)

ϕti(x, ti) ≥ ε
2λ |ϕxi (x, ti)|2 (9.57)

for all (x, t) ∈ Ω × Γk. Thus, Huber-TVl2 penalization requires only linearly
many new constraints (9.57) in addition to those of TVl2 . This regularizer is
therefore also very efficient, w.r.t. memory and run time.

If the data term is separable, c(x, t) =
∑

i gi(x, ti), then we can further
decouple the data term constraint (9.56) into linearly many constraints (9.49),
as has been done for the identical constraints (9.43) in Section 9.4.3. For brevity
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and to reduce the overall number of variables, we can use (9.55) to combine these
data term constraints with (9.57) into just

ϕti(x, ti) ≥ −gi(x, ti) + ε
2λ |ϕxi (x, ti)|2 (9.58)

for all (x, ti) ∈ Ω× Γ and 1 ≤ i ≤ k.

9.4.5 Total Variation for General Norms

We can also define more general versions of the total variation by choosing other
norms ‖·‖ instead of the Euclidean norm in (9.42) in Section 9.4.3 in which to
penalize image gradients ∇u :

TV‖·‖(u) = λ

∫
Ω
‖∇u‖ dx. (9.59)

The interaction term here is f(x, p) = λ ‖p‖. The convex dual is given by the
indicator function of the corresponding dual norm ‖·‖∗:

f∗(x, q) = sup
p∈Rm×k

p q − λ ‖p‖ = sup
p∈Rm×k, t≥0
‖p‖=1

t(p q − λ)

= sup
p∈Rm×k
‖p‖=1

δp q≤λ = δ(sup
p∈Rm×k, ‖p‖=1

p q≤λ)

= δ‖q‖∗≤λ

(9.60)

with
‖q‖∗ := sup

p∈Rm×k,
‖p‖≤1

p q = sup
p∈Rm×k,
‖p‖=1

p q. (9.61)

Constraints (9.10) thus become

k∑
i=1

ϕti(x, ti) ≥ −c(x, t), (9.62)∥∥(ϕxi (x, ti)
)

1≤i≤k
∥∥
∗ ≤ λ (9.63)

for all (x, t) ∈ Ω × Γk. While the first constraint (9.62) is the same as (9.43),
the second one (9.63) is a generalization of (9.44). Note that (9.63) reduces
to (9.44) for ‖·‖ = |·| since the dual norm is again |·|.

Constraint Decoupling. Since the number of constraints in (9.63) is quite
large, a practical question is, which norms allow to decouple the constrains.
Immediate candidates for the generalization of the Euclidean case technique of
Section 9.4.4 are the κ-norms:

‖x‖κ := κ

√√√√ k∑
i=1

|xi|κ for 1 ≤ κ <∞, ‖x‖∞ := max
1≤i≤k

|xi| , (9.64)
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defined for x ∈ Rm×k. The dual norm (9.61) is ‖·‖∗ = ‖·‖ζ where 1 ≤ ζ ≤ ∞
is defined by 1

κ + 1
ζ = 1, i.e. ζ = κ

κ−1 . Just as in Section 9.4.4, we can show
that (9.63) is equivalent to

‖a(x)‖ κ
κ−1
≤ 1 ∀x ∈ Ω, (9.65)

|ϕxi (x, ti)| ≤ ai(x) ∀(x, ti) ∈ Ω× Γ, 1 ≤ i ≤ k, (9.66)

introducing additional dual variables a : Ω→ Rk.

Natural Total Variation TVJ for Color Images. An interesting special
case of (9.73) is the vectorial total variation TVJ of Goldluecke et al. [54]. They
showed that it yields improved results in inverse problems such as denoising,
inpainting and superresolution in comparison to other possible total variations
such as (9.33) and (9.42), (with norms ‖·‖1, respectively ‖·‖2 = |·|). While the
initial approach [54] can only be used for convex data terms c, our vectorial
multilabel convexification framework extends its applicability to arbitrary data
terms.

The corresponding norm in (9.59) is defined for TVJ as the largest singular
value of ∇u:

‖p‖ = ‖(σi)1≤i≤m‖∞ = max
1≤i≤m

σm (9.67)

where σ1, . . . , σm ≥ 0 with m ≤ min(m, k) are the singular values of p ∈ Rm×k.
The dual norm is the nuclear norm of p, which is the sum of the singular values:

‖p‖∗ = ‖(σi)1≤i≤m‖1 =
m∑
i=1

σm. (9.68)

There is no immediate way to decouple the arising constrains (9.63). Thus this
regularizer is more costly in terms of memory and run time for nonconvex data
terms than TVl2 and TVl1 .

9.4.6 Huber-TV for General Norms

Just as for TVl2 in Section 9.4.4, one can consider Huber-TV regularization with
general norms. The staircasing effects are then eliminated while the desired
properties of the respective TV are still preserved. The case (9.51) generalizes
to

R(u) = λ

∫
Ω
hε(‖∇u‖) dx (9.69)

with a general norm ‖·‖ and the Huber-function hε in (8.43). The convexification
is a straightforward generalization of Section 9.4.4: The function f in (9.2) is
f(x, p) := λhε(‖p‖), and (9.52) becomes

f∗(x, q) =

{
ε

2λ ‖q‖
2
∗ if ‖q‖∗ ≤ λ,

∞ else
(9.70)
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with the dual norm (9.61). The constraints in (9.17) are now

k∑
i=1

ϕti(x, ti) ≥ −c(x, t) +
ε

2λ

∥∥(ϕxi (x, ti)
)

1≤i≤k
∥∥2

∗, (9.71)∥∥(ϕxi (x, ti)
)

1≤i≤k
∥∥
∗ ≤ λ (9.72)

for all (x, t) ∈ Ω×Γk. As an example, one can consider the Huber regularization
of the natural TV for color images in Section 9.4.5.

9.4.7 Lipschitz-Constraint with l2-Coupling

In some applications the rate of growth of u is bounded a-priori by a constant.
To enforce this, we can consider the following regularizer:

R(u) =

∫
Ω
δ|∇u|≤λ dx. (9.73)

The interaction term here is f(x, p) = δ|p|≤λ with the dual

f∗(x, q) = sup
p∈Rm×k

p q − δ|p|≤λ = sup
|p|≤λ

p q = λ |q| . (9.74)

The constraints (9.10) become

k∑
i=1

ϕti(x, ti) ≥ −c(x, t) + C

√√√√ k∑
i=1

|ϕxi (x, ti)|2 (9.75)

for all (x, t) ∈ Ω×Γk. The constraints (9.75) cannot be easily decoupled, making
the l2-coupled Lipschitz constraint a costly regularizer.

9.5 Implementation

9.5.1 Discretization

Variable Discretization. We discretize the image domain into a rectangular
pixel grid, which we again denote by Ω. For each 1 ≤ i ≤ k we also discretize
the range set Γ of ui : Ω→ Γ into a number ni ≥ 1 of levels

0

ni − 1
, . . . ,

ni − 1

ni − 1
with spacing ∆ti =

1

ni − 1
. (9.76)

The range discretization is necessary since the relaxed energy (9.5) is defined
on the space Ω× Γ. We also consider the geometric average of the spacings

∆t =

√√√√ k∏
i=1

∆ti . (9.77)

We write Γi := {0, . . . , ni − 1}, and set

Λ := Γ1 × . . .× Γk (9.78)
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for the set of all labels. The discretized variables v, ϕ and c are represented by
their node values

vi(x,
j

ni−1) = vji (x) ∈ R,

ϕxi (x, j
ni−1) = 1

∆tϕ
x,j
i (x) ∈ Rm,

ϕti(x,
j

ni−1) = ϕt,ji (x) ∈ R,

c
(
x, ( j1

n1−1 , . . . ,
jk

nk−1)
)

= c(j1,...,jk)(x) ∈ R

(9.79)

for all pixels x ∈ Ω, 0 ≤ j < ni, 1 ≤ i ≤ k and (j1, . . . , jk) ∈ Λ. Similarly
as in the scalar case in Section 7.4.1, the reason to include the factors 1

∆t for
ϕx is to balance out the coefficients in front of the variables after the range
discretizations. One and the same factor is chosen for all channels i to still
enable efficient computation of projections for the prox operators.

Differential Operator Discretization. We use forward differences (2.33)
with Neumann boundary conditions for the spatial gradient ∇+

x . Divergence
div := −∇T is then set to the negative adjoint operator, which is computed by
(2.35).

The t-derivative (Dtvi)(x, t) along the i-th range space Γi is discretized by
forward differences ∂+

t with zero boundary condition:

(Dtv)(x, i
n−1) = 1

∆ti
(∂+
t vi)(x), (9.80)

(∂+
t v

j
i )(x) =

{
vj+1
i (x)− vji (x) if j < ni − 1,

−vji (x) if j = ni − 1.
(9.81)

This way, in (9.82) we implicitly use vnii (x) = 0. The negative adjoint t-
derivative ∂−t,i = −(∂+

t,i)
T is then given by backward differences: ∂−t,ipt = pt−pt−1

if t > 0 and pt if p = 0.

Energy and Constraint Set Discretization. Discretizing the spatial and
range integrals similarly as in Section 7.4.1, the discretized energy becomes

min
v∈D
E(v), (9.82)

E(v) = max
ϕ∈C

∑
x∈Ω

k∑
i=1

∑
0≤j<ni

(
∆ti
∆t

〈
ϕx,ji (x), ∇+

x v
j
i (x)

〉
+ ϕt,ji (x)∂+

t,iv
j
i (x)

)
.

We are looking for minimizers v which lie in the convex set

D =
{
v = (vi)1≤i≤k

∣∣ vi : Ω→ [0, 1]ni , v0
i (x) = 1 ∀x ∈ Ω, 1 ≤ i ≤ k

}
.

(9.83)
Of the two boundary conditions vi(x, 0) = 1 and vi(x, 1) = 0, only the first one
is imposed explicitly in (9.83). The second one is encoded implicitly through
the discretization of ∂+

t,i as described above.
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The monotonicity constraint on vi, i.e. that v
j
i (x) is nonincreasing in j, is not

included in D since it is already implicitly implied by the constraint set (9.17):
The dual variable ϕt may be arbitrarily large, and therefore the supremum
in (9.82) is finite only if ∂+

t,iv
j
i ≤ 0, i.e. if vi is nonincreasing. This is analogous

to the scalar case in Section 7.3.1.
The discretized set C in (9.17) is

C =
{
ϕ = (ϕi)1≤i≤k

∣∣ ϕi = (ϕxi , ϕ
t
i) : Ω× Γi → Rm × R,

k∑
i=1

ϕt,jii (x) ≥ −cj(x) + f∗
(
x, 1

∆t(ϕ
x,ji
i (x))ki=1

)
∀x ∈ Ω, j ∈ Λ

}
.

(9.84)
The set C depends on the employed regularizer function f , as well as on the
corresponding strategies to decouple the constraints. Implementation of these
constraints is detailed later in Section 9.5.2.

Optimality of Solutions. Because of the convex relaxation of the range of
graph functions from {0, 1} to [0, 1], the computed solution v∗ of (9.82) may
be nonbinary. Therefore, at the end we need to project the result back to the
space of binary functions. One possible solution is to threshold at 1

2 , i.e.

(
vbin

)t
i
(x) =

{
1 if t ≤ ti,
0 if t > ti

}
with ti := max

{
t ∈ {0, . . . , ni − 1}

∣∣ vti(x) ≥ 1
2

}
(9.85)

for every channel 1 ≤ i ≤ k. From this we then construct a solution ubin
by (9.4).

Though this solution is not necessarily optimal for the initial problem (9.2),
we have the energy bound (1.6) to estimate how far vbin is from the unknown
true solution u∗bin of E:

E(v∗) ≤ E(u∗bin) ≤ E(ubin) = E(vbin). (9.86)

In our experiments the upper bound

E(ubin)− E(u∗bin)

E(ubin)
≤ E(vbin)− E(v∗)

E(vbin)
(9.87)

was around 3% for the separable regularizers such as TVl1 , and around 6% for
the coupled ones such as TVl2 . This shows that our approach is able to provide
optimal or near-optimal solutions.

For candidate solutions u of the initial problem (9.2) it is not required that
the values lie in a fixed discretized set, as is the case for ubin above. Therefore,
when computing the actual end result for (9.2) we use interpolated thresholding:

ures, i(x) :=
j0 + s− 1

2

ni − 1
with s :=

vj0i (x)− 1
2

vj0i (x)− vj0+1
i (x)

(9.88)

and j0 given by (9.85). We observed that this generally yields a higher quality
solution, with E(ures) < E(ubin).
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9.5.2 Numerical Algorithm

To solve the saddle-point problem (9.82) we use Algorithm 4. We use the version
of the algorithm where the “bar”-copies are introduced for the primals rather
than for the duals since there will be many more dual variables than primal
ones.

The step factors τ0, σ0 in (2.49) are chosen as τ0 = 10 with σ0 = 1
τ0

in all
our experiments, except for inpainting where τ0 = 1000. Compared to τ0 = 1
we observed a speed by around a factor of 2–5, and sometimes even more.

The projection of the main primal variable v is straightforward and can be
done by simple clipping of the values vji (x) to [0, 1]. For ϕ the projection is more
involved since C contains many nonlocal constraints. Our strategy is therefore
to implement these constraints using the method of Lagrange multipliers or of
convex dualization, depending on the regularizer.

Note that according to (9.84) we need to include the factor 1
∆t for ϕx in

every constraint discussed in Section 9.4.

Total Variation with l2-Coupling. The continuous version has the con-
straints (9.45) and (9.46) for the smoothness part, as well as (9.43) respec-
tively (9.49) for the data term part. We dualize the constraints (9.46) using the
relation (2.76), adding new energy terms

inf
α,β

∑
x∈Ω

k∑
i=1

∑
0≤j<ni

〈
− αji (x), 1

∆tϕ
x,j
i (x)

〉
+ βji (x) ai(x) (9.89)

to the energy, with the constraints
∣∣αji (x)

∣∣ ≤ βji (x) for all x, i and j. The
optimization is then performed also over these additional dual variables α and
β, with αji (x) ∈ Rm and βji (x) ∈ R for all x, i and j. This way, for a only
the constraints (9.45) remain. The corresponding projection is easily done by
clipping the absolute value of a. The projection of α, β can also be easily
computed, see appendix Section 9.9.1. One can write (9.89) equivalently without
the factor ∆t in the energy by replacing the constraint

∣∣αji (x)
∣∣ ≤ βji (x) by

∆t
∣∣αji (x)

∣∣ ≤ βji (x).
For data term part, we have the constraints (9.49) if c is separable, and (9.43)

for the general case. The projection onto (9.49) is straightforward. For general
data terms, there are two strategies to handle (9.43), depending on available
memory.

As a first approach, we dualize every constraint of (9.43). Using (2.73), we
include the new energy terms

inf
µ

∑
x∈Ω

∑
j∈Λ

−µj(x)

(
k∑
i=1

ϕt,jii (x) + cj(x)

)
(9.90)

with the constraints µj(x) ≤ 0 for all x ∈ Ω and j ∈ Λ. The prox-operator for
µ is local for every x ∈ Ω and j ∈ Λ:

argmin
µ≤0

(µ− µ0)2

2τ
− µ cj(x) (9.91)
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for some τ > 0 and µ0 ∈ R. The solution can be easily computed giving
µ = min

(
0, µ0+τcj(x)

)
. Dualization (9.90) introduces additional dual variables

µ into the global energy. Since these are |Ω|∏k
i=1 ni individual variables, this

approach is quite costly memory-wise. In comparison, the number of all other
variables scales only as |Ω|∑k

i=1 ni.
The second approach is to solve the projection

argmin
ϕt s.t. (9.43)

∑
x∈Ω

k∑
i=1

∑
0≤j<ni

(
ϕt,ji (x)− (ϕt,ji (x))0

)2
(9.92)

directly as a subproblem. This does not require any additional variables, but
the projection must then be performed after each iteration of the primal-dual
algorithm. Thus, this trades off a reduction of memory requirements for an
increased run time (many times over). The projection (9.92) can be solved by
introducing variables µ and terms (9.90) to the local energy (9.92), with sup
instead of inf and with µ instead of −µ. This can be done sequentially pixel for
pixel, requiring only

∏k
i=1 ni additional variables. To accelerate this process,

one can process chunks of Nc ≥ 1 pixels in parallel, where Nc ≤ |Ω| is chosen
as large as possible to fit into the available memory.

We employ the accelerated Algorithm 5 for the projection subproblem (9.92),
which is possible because of the quadratic terms in ϕt. Since ϕt does not change
much between two outer interations, a small number of inner iterations can be
chosen, e.g. Niter = 10.

Huber-TV with l2-Coupling. Here we have the constraints (9.54), as well
as (9.58) for separable data terms c, respectively (9.55)–(9.57) for general c.
Implementation of (9.54) is done exactly as for the TV case above. For separable
data terms, one has to project onto the remaining constraint (9.58). This is a
projection onto a parabola. Its computation leads to a cubic equation which can
be solved in closed form. This is detailed in the appendix Section 9.9.2. Note
that after the discretization, 1

∆tϕ
x in place of ϕx in (9.58) must be considered.

For general data terms, by (9.55) ϕt is replaced by two independent dual
variables γi and ϕi. The constraints (9.56) are implemented in exactly the same
way as for the case of TV above. Finally, the projection onto (9.57) is again the
projection onto a parabola and can be done quickly and in closed form. Again,
note that the factor 1

∆t must be included in front of ϕx.

Total Variation for General Norms. For special cases of κ-norms ‖·‖ in
(9.64), we have the simplified constraints (9.65) and (9.66) together with (9.62).
The implementation for this case is the same as previously for TV with the
Euclidean norm, again using the dualization (9.89). The only difference is
that (9.45) is now replaced by (9.65), i.e. a is constrained in the κ

κ−1 -norm
instead of the 2-norm. The most interesting cases for κ are 1, 2 and ∞. The
projection onto the corresponding dual ball (9.65) can be done in a straight-
forward way for each of these cases. Moreover, because of (9.66) the ais are
always nonnegative, so (9.65) can be replaced by the more simple inequality∑k

i=1 ai ≤ 1 for κ =∞.
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For general norms we have the constraints (9.63). In general they cannot
be decoupled to linearly many constraints. To implement them we can dualize
every constraint using (2.75). We add the following new energy terms:

inf
η

∑
x∈Ω

∑
j∈Λ

{
k∑
i=1

〈
− ηji (x), 1

∆tϕ
x,ji
i (x)

〉
+ λ

∥∥ηj(x)
∥∥}. (9.93)

This introduces additional primal variables ηj(x) ∈ Rm×k for every x ∈ Ω
and j ∈ Λ into the overall optimization. The factor 1

∆t in front of ϕx can be
eliminated by instead equivalently writing ∆t in front of λ. The prox-operator
is local for each x ∈ Ω and j ∈ Λ:

argmin
η∈Rm×k

(η − η0)2

2τ
+ λ ‖η‖ . (9.94)

Using Moreau’s identity (2.40), the solution is given by

η = η0 − π‖·‖∗≤τλ
(
η0
)

(9.95)

where π‖·‖∗≤τλ is the projection onto the dual ball
{
x ∈ Rm×k | ‖x‖∗ ≤ τλ

}
. In

the case of TVJ , the dual norm ‖·‖∗ is the nuclear norm (9.68). We refer to [54]
for a detailed description of how to perform the corresponding projection.

The dualization (9.93) requires a considerable number of additional vari-
ables, namely km |Ω|∏k

i=1 ni for η, where m = dim Ω and k is the number of
channels. The same discussion about memory reduction applies here as previ-
ously with (9.90) for the case of non-separable data terms. If there is enough
available memory, we can dualize every constraint of (9.63). Otherwise we can
handle them locally by a subproblem, computing a projection after every outer
iteration of the primal-dual algorithm. Again, chunks of pixels can be processed
in parallel to accelerate the process.

General Regularizers. In the general case we have the constraints (9.10).
These are n1 · · ·nk constraints, after the discretization of the range spaces, for
each pixel x ∈ Ω. Beside the TV and Huber-TV cases, in general they cannot
be decoupled into linearly many constraints. To implement the general case, we
can dualize every constraint using the convex dualization based on the general
relation (2.8) (for x ∈ Rm×k, y ∈ R):

δy≥f∗(x) = sup
η∈Rm×k,µ∈R

(µy + ηx) − δ∗y≥f∗(x)(η, µ). (9.96)

We add the terms −δ∑
i ϕ

t
i+g≥f∗(

1
∆t
ϕx) to the energy, i.e.

inf
η,µ

∑
x∈Ω

∑
j∈Λ

{
− µj(x)

(
k∑
i=1

ϕt,jii (x) + cj(x)

)
−

k∑
i=1

〈
ηji (x), ϕx,jii (x)

〉

+ δ∗
y≥f∗( 1

∆t
x)

(
ηj(x), µj(x)

)}
.

(9.97)
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This introduces additional primal variables ηj(x) ∈ Rm×k and µj(x) ∈ R for
every x ∈ Ω and j ∈ Λ. Note that both (9.90) and (9.93) are special cases of
the above general dualization (9.97).

The prox-operator is local for each x ∈ Ω and j ∈ Λ:

argmin
η∈Rm×k, µ∈R

(η − η0)2

2τ
+

(µ− µ0)2

2τ

− µ cj(x) + δ∗
y≥f∗( 1

∆t
x)

(
η, µ
)
.

(9.98)

Define µ̂0 := µ0 + τcj(x). Using Moreau’s identity (2.40) again, the solution is
then

(η, µ) = (η0, µ̂0)− τ πy≥f∗( 1
∆t
x)

( η0

τ
,
µ̂0

τ

)
(9.99)

where πy≥f∗( 1
∆t
x)(x

0, y0) is the projection onto the set
{

(x, y) ∈ Rm×k×R | y ≥
f∗( 1

∆tx)
}
.

Note that the advantage of the implementation framework (9.97) is that it
is the same independent of the interaction terms f , i.e. of the regularizer. The
only place where f enters the computation are the projections (9.99). Once the
framework is implemented, it can be easily adapted for different regularizers by
merely replacing the projection.

As previously with total variation for general norms, the dualization (9.97)
also requires many additional variables. The same memory reduction strategy
can be applied, at the expense of a higher run time.

Huber-TV for the Spectral Norm. The regularizer (9.69) is implemented
using the general scheme presented above. By formula (9.70), in (9.99) we need
to project onto{

(x, y) ∈ Rm×k × R | y ≥ ε
2λ∆t2

‖x‖2∗ , ‖x‖∗ ≤ λ∆t
}

(9.100)

with the nuclear norm ‖·‖∗ in (9.68). Writing out the norm of x in terms of the
singular values, this projection can be done in closed form. The common case of
2D color images, i.e. m = 2 and k = 3 is detailed in the appendix Section 9.9.3.

Lipschitz Regularizer with l2-Coupling. The Lipschitz regularizer (9.73)
is also implemented by the general scheme. By (9.74), one has to project onto{

(x, y) | y ≥ 1
∆tλ |x|

}
. (9.101)

This projection can be done in closed form as detailed in the appendix Sec-
tion 9.9.1.

9.5.3 Memory Requirements

Here we give summary of the overall memory required to implement the pro-
posed convexification approach with coupling regularizers such as TV and Hu-
ber-TV . Depending on the regularizer and on the separability of the data term
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Variable or constant Floating point numbers
vji |Ω| ∑i ni
ϕj
i (m+ 1) |Ω| ∑i ni

cji (if c separable) |Ω| ∑i ni
cj (if c non-sep.) |Ω| ∏i ni

Table 9.1: Number of floating point numbers for energy (9.82). The
required memory is proportional to these amounts with 4 bytes per float.

Regularizer Additional variables Floating point numbers
TVl1/Huber-TVl1 µj (if c non-sep.) |Ω|∏i ni

αji km |Ω|∑i ni
TVl2/Huber-TVl2/ βji |Ω|∑i ni
TVlκ/Huber-TVlκ γji (if c non-sep., for Huber) |Ω|∑i ni

µj (if c non-sep.) |Ω|∏i ni
TVJ/TV‖·‖ ηji km |Ω|∏i ni

µj (if c non-sep.) |Ω|∏i ni
Huber-TVJ/ ηji km |Ω|∏i ni
Lipschitzl2/general µj |Ω|∏i ni

Table 9.2: Additional float numbers depending on the employed reg-
ularizer. Overall memory for isotropic TVl2 and Huber-TVl2 scales linearly
with the range discretization for separable data terms. It is also in the same
range as for the case of non-isotropic TVl1 and Huber-TVl1 .

there are basically two kinds of variables and constants. The first kind, such
as the basic variables v and ϕ, requires a linearly scaling amount of memory
in terms of image size and the discretization levels, O(|Ω|∑k

i=1 ni), and is thus
relatively cheap to store. For the second kind, e.g. for variables η and µ, the
memory scales exponentially as O(|Ω|∏k

i=1 ni).
The variables and constants appearing in the energy (9.82) require the

amounts of floating point numbers, and thus memory, as shown in Table 9.1.
Additional memory is needed to decouple and dualize the nonlocal constraints
in the set C in (9.17) depending on the type of employed regularizer, as shown
in Table 9.2. First, observe that in the case of separable data terms, the overall
memory for TV and Huber-TV with l2-coupling scales linearly. Also, it is al-
ways in the same range as in the uncoupled l1-case, no matter if the data term
is separable or not. Thus, for TV and Huber-TV regularized optimization prob-
lems with nonconvex data terms, the proposed framework offers the advantage
of channel coupling at nearly the same costs as without any coupling.

For general data terms, as well as for general regularizers, additional memory
of size proportional to |Ω|∏i ni is needed, if we use the global dualization in
each case. This strategy should be used whenever possible as this gives the
best run times. If there is not enough memory, as described in Section 9.5.2
we can revert to local projection subproblems instead. The memory is then
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O(NC
∏
i ni) and NC is chosen appropriately as big as possible for the overall

problem to fit on the GPU. This approach however comes at a high penalty in
terms of run time (larger by factor 5–10).

Another costly constant is the data term cj (if it is non-separable). During
local projections it is advisable to store the whole array on the GPU. If this is
not possible, c can be stored on the CPU side, and one can copy the required
parts for the currently processed chunk of pixels to the GPU. Since CPU-to-
GPU memory copies are rather slow, this increases the run time by a factor of
5–10. Thus, if the data term has a simple structure, one should compute it on
the fly as needed.

Finally, the whole approach can also be parallelized on multiple GPUs. For
this one subdivides the image domain Ω in equal parts (e.g. horizontal stripes),
and lets each GPU perform the described computations for one such part. After
each iteration, the overlap regions need to be copied between the GPUs, which
comes at virtually no cost since the overlap regions are rather small. Beside
decreasing the run time, another compelling advantage of a multi-GPU setting
is the much higher overall amount of memory available, allowing to solve larger
problems. This is especially interesting e.g. for optical flow computation, as will
be detailed in Section 9.6.1.

9.6 Experimental Results

In the following we demonstrate the usage of the proposed convex relaxations on
several vectorial imaging problems. All algorithms were parallelized using the
CUDA framework on three NVIDIA GTX 680 GPUs. The number of iterations
for the primal-dual algorithm was chosen appropriately so that the solution
remained visually stable and did not change anymore, which is usually the case
after 1000–5000 iterations.

9.6.1 Optical Flow

The task of optical flow estimation, or image matching, is to find point cor-
respondences between two images. Given two color images I1 : Ω1 → R3,
I2 : Ω2 → R3 which show one and the same scene, but taken from different
viewpoints or at different times, one seeks a function u : Ω1 → R2 such that
I1(x) = I2(x + u(x)). In practice, this relation will not be satisfiable exactly,
and therefore one seeks u as a minimizer of the energy functional

E(u) =

∫
Ω1

c(x, u(x)) dx+ TV (u) (9.102)

where the data term is given e.g. by color differences

c(x, t) = |I1(x)− I2(x+ t)| . (9.103)

One can also sum up the image differences in a small window around x, e.g. with
1 pixel radius. A regularization term, such as TV (u) here, is needed to ensure a
spatial coherence of the flow, as the local estimates by minimizing c(x, ·) point-
wise in each point x may differ considerably. The separable TVl1 regularizer is
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Image 1 Image 2

TVl1 flow, λ = 0.5 TVl2 flow, λ = 0.5

Figure 9.1: Optic flow. “Basketball” image pair from the Middlebury dataset.
If there is no need for much smoothing, as here, the results with TVl1 and TVl2
are visually similar. The difference is more pronounced for larger weights, see
Figure 9.3. Images 640× 480 using 50× 50 labels.

often employed in optical flow computations. With our framework, it becomes
possible to also use the coupled TVl2 , which is rotationally invariant and thus
a more favorable choice. Note that some literature refers by the term “optical
flow” to a linearized version of the model (9.102), which is then already convex.
However, the linearization is only a technical means to cope with the nonconvex-
ity and does not describe the image matching problem correctly, e.g. for large
scale flow.

Comparison of Coupled TVl2 with Uncoupled TVl1. Figure 9.1 shows
an optical flow computation on a real world image taken from the Middlebury
optical flow dataset [10]2. There is no need for much smoothing in this case,
therefore the results for TVl1 and TVl2 are visually almost the same. The 640×
480 image with a 50× 50 label space requires 68.16 seconds for TVl1 and 71.04
seconds for TVl2 . The most time is spent for the convexification scheme (9.90)
of the non-separable data term (9.103), while the updates due to TVl1/TVl2 are
negligible. GPU memory required for TVl1 and TVl2 is 6918 MB, respectively
7275 MB.

2http://vision.middlebury.edu/flow

http://vision.middlebury.edu/flow


9.6. EXPERIMENTAL RESULTS 183

Image 1 Ground truth flow

TVl1 flow, λ = 0.42 TVl2 flow, λ = 0.46
AE = 3.63, EP = 0.285 AE = 3.51, EP = 0.276

Figure 9.2: Comparing to ground truth for optic flow. Shown are
the results for the “Hydrangea” image pair from the Middlebury dataset. The
flow using TVl2 has smaller error measures (average angular error AE, average
endpoint error EP) than with TVl1 . Image size 584× 388 using 22× 22 labels.
The run time for TVl1 and TVl2 is 13.95 resp. 15.19 seconds, requiring 1182
resp. 1299 MB of memory.

A comparison with the ground truth optical flow is shown in Figure 9.2. In
terms of common error measures, the TVl2 regularization yields a more accurate
flow than TVl1 for the same data term. In this example, for the 584×388 images
we used a 22× 22 label space.

The difference between TVl1 and TVl2 becomes more apparent for larger
weights λ. Since TVl1 is not rotationally invariant, one and the same optical
flow may be penalized differently if the underlying images — and along with
them also the flow — are rotated by a certain angle. This is stated in the
following proposition:

Proposition 9.8 (TVl1 is not rotationally invariant). Set Ω = {x ∈ R2
∣∣ |x| <

1}. For fixed angles θ ∈ R define the vector field vθ : Ω→ R2 by

vθ(x) =

{
eθ if |x| ≤ r,
0 else.

(9.104)

for all x ∈ Ω with eθ := (cos θ, sin θ). Then

TVl1(vθ) = 2πr
(
|cos θ|+ |sin θ|

)
. (9.105)
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Image 1 Image 2 Encoding

TVl1 , λ = 6.5 λ = 7 λ = 7.5 λ = 8 λ = 10

TVl2 , λ = 6 λ = 7 λ = 9 λ = 10 λ = 15

Figure 9.3: Rotational invariance. The synthetic image pair consists of two
identical circles, traveling along the x-axis and diagonally. Although the two
motions are equal up to direction, TVl1 prefers grid aligned motions. The diag-
onal one disappears first when the regularizer weight λ increases. In contrast,
the rotationally invariant TVl2 handles the two motions equally. The right and
top artifacts arise because of occlusions, which are not modeled by the simple
data term (9.103). 160× 120 images using 80× 80 labels.

Proof. This follows directly from the representation

TVl1(vθ) = TV
(
(vθ)1

)
+ TV

(
(vθ)2

)
= TV

(
χBr(0)

)
|(eθ)1|+ TV

(
χBr(0)

)
|(eθ)2|

= 2πr
(
|cos θ|+ |sin θ|

)
,

(9.106)
together with the property of TV that TV (χA) = Hm−1(∂∗A) for rectifiable
sets A ⊂ Ω.

In contrast, the l2-coupled TVl2 regularizer is rotationally invariant. For
the above vector field we would get TVl2(vθ) = 2πr, which is the same for all
θ. This difference is demonstrated in Figure 9.3. The two circles are moving in
essentially the same way, but in different directions. The background motion
outside the circles will be nearly zero, as the texture ensures that the zero vector
field will have the smallest data term. Since TVl1 penalizes diagonal motions
more (by factor

√
2 due to (9.105)) than the ones parallel to the axes, choosing

the weight λ in a certain range may result in unequal treatment of the two
basically identical motions. This is not the case for TVl2 . For every value of λ
the two motions are recognized at the same time. The run time for the 160×120
image with a 80×80 label space is 22.05 seconds for TVl1 and 22.45 seconds for
TVl2 , memory requirements are 1047 MB, respectively 1080 MB.
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Image 1 Image 2

Local [126], 32 s Local [138], 243 s Convex (proposed), 110 s

Figure 9.4: Comparison with local approaches. Shown is the optical flow
between frames 10 and 12 “Backyard” sequence from the Middlebury dataset.
Due to linearization and coarse to fine schemes, local approaches usually fail
to correctly recognize large motion of small scale objects, such as the orange
ball (moving downwards, green color in the flow encoding). In contrast, convex
approaches, such as the proposed one, can use the original nonconvex data term
and are able to recognize such motion. Image size 544×408 using 75×75 labels.
Run time for local methods is on the CPU (no GPU versions are available), for
convexification on the GPU.

Comparison with Locally Convergent Approaches. In case of a non-
separable data term, such as in the optical flow example, the proposed approach
is computationally expensive in terms of memory and run time. In view of this, a
natural question is whether this complexity is really necessary and whether one
can use locally convergent methods instead. An advantage of these methods is
that they work in the original image domain and thus require much less memory
than the convexification approach.

Their main disadvantage is of course their local optimality, which means
that only certain flows can be reliably detected. Recent local approaches for
optical flow estimation, such as [126] and [138], employ some kind of convex
approximation to cope with the nonconvexity of the original problem. For in-
stance, the data term is usually linearized around the current solution. Since
this is only valid for small motions, a heuristic coarse-to-fine scheme needs to
be employed in order to also recognize large scale motions: Starting with down-
scaled images the optical flow is transferred to and iteratively refined on the
next higher resolution.

As a result, these methods generally cannot detect large scale motion of
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Image TVl1 TVl2

368× 270 2.04 2.85
481× 321 3.51 5.16
326× 244 2.01 2.79

Table 9.3: Run times [s] for Figure 9.5. Label space 32× 32× 32.

small scale objects. This is demonstrated in Figure 9.4: The ball on the left
side of the images is not recognized for any choice of the parameters. In con-
trast, our convex approach handles the original, non-linearized data term and
avoids this limitation. We used the publicly available source code for [126]3,
resp. binaries for [138]4 for the experiments. The CPU run times for [126, 138]
(no GPU versions are available) are comparable with the GPU run times for
the convexification.

On the other hand, for small scale motion, state-of-the-art local methods
tend to outperform the convexification method in terms of flow quality, see the
comparison in Table 8.6 for the case of TVl1 . However, this comes at the cost of
increased complexity: They usually employ highly engineered data terms, and
features such as handling of occlusions and illumination changes, combined in
a multi-stage optimization framework. In contrast, we use a very simple data
term since the focus of this chapter lies on the regularizer part. With more
elaborate data terms the convexification method is likely to achieve competitive
results, which is left for future work.

9.6.2 Color Denoising

A natural application of our framework is to apply the coupled regularizers to
denoise color images f : Ω→ R3. We seek an image u : Ω→ R3 minimizing

E(u) =

∫
Ω
c(x, u(x)) dx + TV (u) (9.107)

where TV is either TVl2 or TVl1 . Note that our framework allows possibly non-
convex data terms c. Specifically, we choose the truncated quadratic differences,
or the truncated linear ones:

c2(x, t) =

3∑
i=1

min
{
T, |ti − fi(x)|2

}
, c1(x, t) =

3∑
i=1

min
{
T, |ti − fi(x)|

}
(9.108)

with a fixed threshold 0 < T ≤ 1. Since c is separable in each case, the model
allows a fast implementation with only linearly many constraints, as described
in Section 9.4.3. Note that the data term is convex for T = 1, and nonconvex
for T < 1. More precisely, e.g. for c2 it becomes nonconvex once T has an effect
on c2, i.e. for T < maxx∈Ω,1≤i≤k max(fi(x), 1− fi(x))2.

3http://ps.is.tuebingen.mpg.de/person/black
4http://www.cse.cuhk.edu.hk/~leojia/projects/flow

http://ps.is.tuebingen.mpg.de/person/black
http://www.cse.cuhk.edu.hk/~leojia/projects/flow
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Noisy image

14.76 14.83 14.65

Separable TVl1 ,
convex data term,

T = 1

24.47 23.49 25.88

Separable TVl1 ,
nonconvex data term,

T = 0.3

24.49 23.53 25.90

Coupled TVl2 ,
convex data term,

T = 1

25.01 24.10 26.35

Coupled TVl2 ,
nonconvex data term,

T = 0.3

25.03 24.12 26.39

Original image

Figure 9.5: Denoising. Input images were degraded by additive channel-wise
Gaussian noise with standard deviation σ = 0.2. For each image and regularizer,
the optimal weight λ was chosen manually to maximize the PSNR value. The
coupled TVl2 regularizer leads to systematically higher PSNR values and thus
denoising quality. Using a nonconvex data term, c2 in (9.108), reconstructions
of a higher quality can be achieved. Label space 32× 32× 32.
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Input TVl1 , 28.78 TVl2 , 29.72 TVJ , 29.85

Noisy, 15.68 Huber-TVl1 , 29.17 Huber-TVl2 , 29.97 Huber-TVJ , 30.27

Figure 9.6: Regularizer comparison. Input image has been degraded by
impulse noise (20% of pixels set to random values). For each regularizer, the
denoising model with a nonconvex data term (c1 in (9.108), T = 0.2) was solved
with manually chosen optimal parameters λ and ε. The coupled regularizers
TVl2 and TVJ outperform the separable TVl1 in denoising quality in terms of
the PSNR values. The Huber versions consistently improve the result. Label
space 16× 16× 16.

TVl1 Huber-TVl1 TVl2 Huber-TVl2 TVJ Huber-TVJ
Run time 1.04 1.07 1.42 1.58 126 329
Memory 131 131 181 181 8314 9710

Table 9.4: Run times [s] and required GPU memory [MB] for Fig-
ure 9.6. Image resolution 341× 256, label space 16× 16× 16.

To compare the denoising capabilities of TVl2 and TVl1 , we perform an
experiment where we add a certain amount of noise to several given clean images,
and then try to recover these images by means of TV denoising. We compute
the maximal achievable Peak-Signal-to-Noise-Ratios (PSNR), defined by

PSNR(u, f) = 10 log10

3∑
x∈Ω |u(x)− f(x)|2

(9.109)

where we take the Euclidean distance of the RGB-values u(x), f(x) ∈ R3. Higher
PSNR values indicate a better quality of the reconstruction u.

As seen in Figure 9.5 in case of Gaussian noise and a truncated quadratic
data term c2 in (9.108), TVl2 systematically leads to a better denoising quality,
which is indicated by the higher PSNR values. We have chosen the weights λ
to maximize these values in each case. The best denoising results are achieved
using the coupling TVl2 regularizer in combination with the nonconvex trun-
cated data term with T = 0.3. Note that minimizing energies with nonconvex
data terms and coupled regularizers only becomes possible with our proposed
convex relaxation framework. The approach in the previous Chapter 8 allows
nonconvex data terms but the regularizer must be separable, and [54] allows
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Image Image with text

TVl1-inpainting TVl2-inpainting
PSNR 24.04 PSNR 24.09

Figure 9.7: Inpainting. A text has been placed on top of the input image
(top row). The corresponding regions are marked as to be inpainted. The
inpainted image values are computed by minimizing their TVl1 or TVl2 energy
(bottom row). The coupled TVl2 achieves a slightly higher PSNR value than
TVl1 , comparing with the known solution. Label space 32× 32× 32.

coupling regularizers but the data term must be convex. The run times are
independent of the data term and are listed in Table 9.3.

Figure 9.6 further compares the denoising capabilities of the different regu-
larizers for a fixed data term. In the input image 20% of all pixel were set to
random RGB values. For this case we use the robust truncated linear data term
c1 in (9.108) with T = 0.2. The coupling regularizers TVl2 and TVJ only become
possible with our approach and lead to better denoising results than with the
separable one TVl1 . While TVJ yields the best results, it is also the most costly
regularizer memory-wise. Switching to the Huber-regularized versions of the to-
tal variations has a positive effect on the denoising quality in each case. This is
because it allows a smoother variation of the solution, which is then able to more
closely resemble the natural image. The best result is achieved with Huber-TVJ
which however requires the general costly implementation scheme (9.97). The
run times for this experiment, as well as the GPU memory requirements are
given in Table 9.4.
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9.6.3 Color Inpainting

Another useful application is inpainting. When a color image f : Ω → R3 has
some missing parts in an area A ⊂ Ω, the task is to inpaint the missing colors
in A using the available information from Ω \A. This can be formulated as an
energy minimization problem

E(u) =

∫
Ω
c(x, u(x)) dx + R(u). (9.110)

The data term ensures that u = f in Ω \ A and lets u vary freely in A. The
resulting inpainted values in A will then be interpolated from the surrounding
values in a way such that the regularizer value R(u) is minimal. We set

c(x, t) =
k∑
i=1

{
min

{
T, (ti − fi(x))2

}
if x ∈ Ω \A,

0 if x ∈ A.
(9.111)

We use R = TVl1 and R = TVl2 with a very small weight λ = 0.001, so that the
given values in Ω \A remain unchanged.

Figure 9.7 shows the removal of a text on top of the image (T = 0.3).
Comparing the obtained inpainted values with the known true ones, we can
compute the corresponding PSNR values. The coupled TVl2 achieves a slightly
higher value than the separable TVl1 . For the 512×384 image using 32×32×32
labels, the run time for TVl1 is 16.75 seconds, while that for TVl2 is 24.33
seconds.

9.7 Conclusion

We introduced convex relaxations for nonconvex variational models on vector-
valued functions which are computationally tractable and in a certain sense
as tight as possible. In contrast to existing relaxations of vectorial multilabel
problems, we can handle the combination of nonconvex data terms with cou-
pled regularizers such as TVl2 and Huber-TVl2 . The key idea is to consider
a collection of hyperplanes with a relaxation that takes into account the en-
tire functional rather than separately treating data term and regularizers. We
provided a theoretical analysis, detailed the implementations for different func-
tionals, and presented run time and memory requirements. In particular, for
the isotropic TVl2 and Huber-TVl2 regularizers we proposed efficient equivalent
constraint reformulations. This allows one to account for channel coupling with
negligible overhead in memory and run time compared to the uncoupled versions
of these regularizers. In numerous experiments on denoising, optical flow and in-
painting, we showed that coupled l2-regularizers give systematic improvements
regarding rotational invariance and quantitative performance.

9.8 Appendix: Proof of the Main Lemma

We give here a proof of Lemma 9.3 in case u is a function with bounded variation.
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Proof of Lemma 9.3. When u ∈ BV(Ω; Γk), its derivative Du has an absolutely
continuous part with respect to the Lebesgue measure (traditionally denoted by
∇u(x) dx) and a singular part Dsu (consisting in a “Cantor” part and a “Jump”
part, see [5]). Then, the integral in (9.25) is classically defined [42] as∫

Ω
f(x, dDu) =

∫
Ω
f(x,∇u(x)) dx +

∫
Ω
f∞(x, νu(x)) d|Dsu|(x)

where νu(x) = Dsu
|Dsu| is the (unit) Radon-Besicovitch derivative of the mea-

sure Dsu with respect to its total variation, and f∞(x, p) is the convex, one-
homogeneous recession function of f w.r.t. the last variable, see (2.4). See [42,
15] for details. Observe that since we have assumed f(x, 0) = minp f(x, p) = 0,
we have f(x, sp)/s ≤ f(x, tp)/t if s ≤ t, so that

f∞(x, p) = sup
t>0

1

t
f(x, tp)

(and f∞ is l.s.c. as a supremum of lower-semicontinuous functions).
We will admit the following fact: the function u 7→

∫
Ω f(x, dDu) is lower-

semicontinuous in L1(Ω,Rk), that is, if un → u in L1(Ω,Rk),∫
Ω
f(x, dDu) ≤ lim inf

n→∞

∫
Ω
f(x, dDun),

see for instance [40, 16, 15]. Here the (semi)-continuity of f is important,
whereas in the W 1,1 case, f could be merely measurable in the first variable.

A first remark is that we may assume that there exists L > 0 with

f(x, p) ≤ L|p| . (9.112)

Indeed, it is always possible to replace f(x, p) with the inf-convolution fL(x, p):=
minq f(x, q) +L|p− q| which satisfies (9.112) (since f(x, 0) = 0), and such that
the union for L > 0 of the corresponding sets C0 is the set C0 of f . The conclusion
easily follows.

Next, we also assume that f is uniformly continuous in x (for p bounded),
but it is a bit more complicated to explain why. The idea is to define, for λ > 0,

fλ(x, p) = min
y∈Ω

λ|y − x||p|+ f(y, p)

which satisfies
|fλ(x, p)− fλ(y, p)| ≤ λ|x− y||p|

and supλ>0 fλ(x, p) = f(x, p). However this new f is not convex in p, and
one must show that its convex envelope f∗∗λ (x, p) (with respect to the second
variable) also enjoys these properties. Given any x, y ∈ Ω, p ∈ Rm×k and
ε > 0, since dimRm×k = mk there exists (θi, pi)

mk
i=1 ⊂ (R × Rm×k)mk with∑

i θipi = p,
∑

i θi = 1, θi ≥ 0 and such that f∗∗λ (y, p) ≥ ∑i θifλ(y, pi) − ε.
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Hence, using (9.24) and (9.112) (which are trivially still satisfied by fλ)

f∗∗λ (x, p)− f∗∗λ (y, p) + ε ≤ λ|x− y|
∑
i

θi|pi|

≤ λ|x− y|
∑
i

θi

(
1 +

fλ(y, pi)

C

)
≤ λ|x− y|

(
1 +

f∗∗λ (y, p) + ε

C

)
≤ λ|x− y|

(
1 +

L

C
|p|+ ε

C

)
so that, letting ε→ 0, we see that f∗∗λ satisfies

|f∗∗λ (x, p)− f∗∗λ (y, p)| ≤ C ′|x− y|(1 + |p|) (9.113)

for some constant C ′.
Then, we must check that the convex, l.s.c. functions supλ f

∗∗
λ (x, p) and

f(x, p) are the same. If not (thanks to the separation theorem), there exists
a ∈ Rm×k, b′ < b ∈ R and a point (x, p) such that f∗∗λ (x, p) ≤ a : p + b′ for all
λ, while

a : q + b ≤ f(x, q) (9.114)

for all q ∈ Rm×k, where ‘:’ denotes the scalar product of matrices. This means
that one can find (θλi , p

λ
i )mki=0 ⊂ (R× Rm×k)mk with limλ→∞

∑
i θ
λ
i p

λ
i = p and∑

i

θλi fλ(x, pλi ) ≤ a : p+ b” (9.115)

where b” = (b+b′)/2. Up to a subsequence, one has θλi → θ̄i, and either pλi → p̄i
(if i ∈ I ⊂ {0, . . . ,mk}), or tλi = |pλi | → ∞ and ξλi = pλi /t

λ
i → ξ̄i, a unit vector

(when i 6∈ I). In the latter case, one introduces yλi such that

fλ(x, pλi ) = λ|x− yλi ||pλi |+ f(yλi , p
λ
i )

and one observes that given any t > 0, if λ is large enough so that tλi > t,

fλ(x, pλi ) ≥ f

(
yλi , t

tλi
t
ξλi

)
≥ tλi

t
f(yλi , tξ

λ
i ) .

Hence, denoting %λi = θλi t
λ
i for i 6∈ I, by (9.115) one has∑

i∈I
θλi fλ(x, pλi ) +

∑
i 6∈I

%λi
1

t
f(yλi , tξ

λ
i ) ≤ a : p+ b”

and since %λi must therefore be bounded from above, we may also assume that
it converges to some %̄i, for each i 6∈ I (in particular, we must have θ̄i = 0 in
these cases). Since f is lower-semicontinuous, in the limit we obtain∑

i∈I
θ̄if(x, p̄i) +

∑
i 6∈I

%̄i
1

t
f(x, tξ̄i) ≤ a : p+ b”.
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for any t > 0, and it follows from (9.114)

a :

∑
i∈I

θ̄ip̄i +
∑
i 6∈I

%̄iξ̄i

+ b

∑
i∈I

θ̄i +
∑
i 6∈I

%̄i
t

 ≤ a : p+ b”.

Sending t→∞ and observing that
∑

i∈I θ̄ip̄i +
∑

i 6∈I %̄iξ̄i = p, we obtain

a : p+ b
∑
i∈I

θ̄i = a : p+ b ≤ a : p+ b”

where we have used θi = 0 if i 6∈ I. This is a contradiction, since b” < b.
It follows that supλ f

∗∗
λ (x, p) = f(x, p), and we easily deduce that also

supλ(f∗∗λ )∞ (x, p) = f∞(x, p). Therefore, for any u with bounded variation,
supλ

∫
Ω f
∗∗
λ (x, dDu) =

∫
Ω f(x, dDu). Moreover the set C0(λ) of f∗∗λ is clearly a

subset of C0, so that if Lemma 9.3 holds for f∗∗λ , it will also hold for f .
We observe eventually that it is not restrictive to assume that f is smooth

in the p variable (a mollification of (f(x, p)− ε)+ will provide a smooth, convex
function below f , enjoying the same properties as f , and arbitrarily close).

To sum up, we are reduced to the case where f is convex, L-Lipschitz (satis-
fying (9.112)) and smooth in p, and moreover with the spatial regularity (9.113).

Given u ∈ BV(Ω; Γk), we fix δ > 0 and choose a subset Ω′ ⊂⊂ Ω such that∫
Ω f(x, dDu) <

∫
Ω′ f(x, dDu)+δ. We let % be a symmetric mollifier (convolution

kernel) and uε = %ε∗u, which is well defined in Ω′ if ε > 0 is small enough. More-
over, by lower-semicontinuity,

∫
Ω′ f(x, dDu) ≤ lim infε→0

∫
Ω′ f(x,∇uε(x)) dx

so that if ε is small enough,∫
Ω′
f(x,∇uε(x)) dx >

∫
Ω
f(x, dDu)− δ. (9.116)

Since this new function uε is smooth, we can let for all x (we drop the dependence
in (ti)

k
i=1, i.e. ϕ is defined as the same value for every t)

(ϕxi (x))ki=1 = ∇pf(x,∇uε(x))

(which is continuous, since by using the convexity one can check that ∇pf is
continuous) and for each i,

ϕti(x) =
1

k
f∗
(
x,∇pf(x,∇uε(x))

)
.

Legendre-Fenchel’s identity [108]

f(x,∇uε(x))+f∗
(
x,∇pf(x,∇uε(x))

)
= (∇uε(x)) : (∇pf(x,∇uε(x))) (9.117)

(denoting by ‘:’ the scalar product of matrices) shows that also ϕti is continuous.
By definition, using (9.117) again and (9.116),

k∑
i=1

∫
Ω′
ϕi · dD1uεi =

k∑
i=1

∫
Ω′
ϕxi (x) · ∇uεi (x)− ϕti(x) dx

=

∫
Ω′
f(x,∇uε(x)) dx >

∫
Ω
f(x, dDu)− δ .
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It is enough to observe, now, that (extending ϕ by the value 0 in Ω \ Ω′)∫
Ω′
ϕxi (x) · ∇uεi (x) dx =

∫
Ω′
ϕxi (x) ·

(∫
Ω
%ε(x− y)dDui(y)

)
dx

=

∫
Ω

(∫
Ω′
ϕxi (x)%ε(x− y) dx

)
· dDui(y)

=

∫
Ω

(%ε ∗ ϕxi )(y) · dDui(y)

for each i, while, in the same way,
∫

Ω′ ϕ
t
i(x) dx =

∫
Ω %ε ∗ϕti(y) dy for each i. We

deduce that
k∑
i=1

∫
Ω

(%ε ∗ ϕi) · dD1ui ≥
∫

Ω
f(x, dDu)− δ

and Lemma 9.3 follows if we show that %ε ∗ ϕ is in (or close to) C0. For any
y ∈ Ω, p ∈ Rm×k, one has (including in Ω \ Ω′ where it is 0) using (9.117) and
then (9.113)

k∑
i=1

ϕti(y) ≥
k∑
i=1

ϕxi (y) · pi − f(y, p)

≥
k∑
i=1

ϕxi (y) · pi − f(x, p)− C ′|x− y|(1 + |p|)

so that, thanks also to (9.24),
k∑
i=1

(%ε ∗ ϕti)(x) ≥
k∑
i=1

(%ε ∗ ϕxi )(x) · pi − f(x, p)− C ′ε(1 + |p|)

≥
k∑
i=1

(%ε ∗ ϕxi )(x) · pi −
(

1 + ε
C ′

C

)
f(x, p)− 2εC ′ .

Hence, the field ϕ̃, defined by ϕ̃xi = (%ε ∗ ϕxi )/(1 + εC ′/C) and ϕ̃ti = (%ε ∗
ϕti + 2εC ′/k)/(1 + εC ′/C) for each i, is an element of C0, which is such that

sup
ψ∈C0

k∑
i=1

∫
Ω
ψi · dD1ui ≥

k∑
i=1

∫
Ω
ϕ̃i · dD1ui

≥
(∫

Ω
f(x, dDu)− δ − 2εC ′|Ω′|

)(
1 + ε

C ′

C

)−1

.

We can then send ε, and then δ to zero to get the thesis.

9.9 Appendix: Projections

9.9.1 Projection onto Cones y ≥ α |x|
Let α ≥ 0. For x0 ∈ Rm and y0 ∈ R consider the projection

argmin
x∈Rm, y∈R,
y≥α|x|

(x− x0)2

2
+

(y − y0)2

2
. (9.118)
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If already y0 ≥ α |x0|, the solution is (x, y) = (x0, y0). Otherwise set

v := max

(
0,
|x0|+ αy0

1 + α2

)
. (9.119)

The solution is then given by

x =

{
v x0
|x0| if x0 6= 0,

0 else

}
, y = α |x| . (9.120)

Proof. First, for y0 ≥ α |x0| the projection is obviously (x, y) = (x0, y0). Oth-
erwise, we set x = tω, t ≥ 0, ω ∈ Rm with |ω| = 1. For fixed t the expression
(x − x0)2 = (tω − x0)2 is minimized for ω = x0

|x0| if x0 6= 0 and with arbitrary
ω else. Since (tω − x0)2 = (t − |x0|)2, the solution (t, y) is given by the pro-
jection (t, y) = πy≥αt

(
|x0| , y0

)
. This projection can be easily computed by

projecting onto the line y = αt, respectively on the point (0, 0), depending on
whether (|x0| , y0) is above or below the corresponding orthogonal line through
the origin.

9.9.2 Projection onto Parabolas y ≥ α |x|2

Let α > 0. For x0 ∈ Rm and y0 ∈ R consider the projection onto a parabola:

argmin
x∈Rm, y∈R,
y≥α|x|2

(x− x0)2

2
+

(y − y0)2

2
. (9.121)

If already y0 ≥ α |x0|2, the solution is (x, y) = (x0, y0). Otherwise, with a :=
2α |x0|, b := 2

3(1− 2αy0) and d := a2 + b3 set

v :=

 c− b
c with c =

3
√
a+
√
d if d ≥ 0,

2
√
−b cos

(
1
3 arccos a√

−b 3

)
if d < 0.

(9.122)

If c = 0 in the first case, set v := 0. The solution is then given by

x =

{
v

2α
x0
|x0| if x0 6= 0,

0 else

}
, y = α |x|2 . (9.123)

Remark. In the case d < 0 it always holds a√
−b3
∈ [0, 1]. To ensure this also

numerically, one should compute d by d =
(
a−
√
−b 3)(

a+
√
−b 3) for b < 0.

Proof. First, for y0 ≥ α |x0|2 the projection is obviously (x, y) = (x0, y0). Oth-
erwise, we dualize the parabola constraint using δz≥0 = supλ≥0−λz (for z ∈ R):

min
x∈Rm, y∈R

max
λ≥0

(x− x0)2

2
+

(y − y0)2

2
− λ

(
y − α |x|2

)
. (9.124)

Since this expression is convex in x, y and concave in λ, we can interchange
the ordering of min and max. The inner minimization problem in x and y is
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then easily solved, giving the following necessary representation, with a certain
λ ≥ 0:

x =
x0

1 + 2αλ
, y = y0 + λ. (9.125)

For instance, x has the same direction as x0, so only the norm of x is unknown.
The solution must also necessarily satisfy y = α |x|2. Plugging this into the
second equation of (9.125), as well as the expression for λ obtained from the
first equation by taking the norms, we obtain the cubic equation

2α2 |x|3 + (1− 2αy0) |x| − |x0| = 0. (9.126)

Set a := 2α |x0|, b := 2
3(1− 2αy0) and t := 2α |x|. Then (9.126) becomes

t3 + 3bt− 2a = 0. (9.127)

Since the derivative 3t2 + 3b of the left hand side is monotonically increasing
for t ≥ 0, the t we are looking for is the unique nonnegative solution of (9.127)
for x0 6= 0 (so that a > 0). This cubic equation can be solved using the method
of elementary hyperbolic/trigonometric function identities [83], yielding the
claimed solution. The second case in (9.122) corresponds to “x2” in equation
(23) of [83].

For x0 = 0, because of the assumed inequality y0 < α |x0|2 = 0 we have the
first case in (9.122), which leads to the correct solution (x, y) = (0, 0).

9.9.3 Projection for Huber-TVJ

Let α > 0 and λ > 0. For x0 ∈ Rm×k and y0 ∈ R consider the projection:

argmin
x∈Rm×k, y∈R,

y≥α‖x‖2∗, ‖x‖∗≤λ

(x− x0)2

2
+

(y − y0)2

2
(9.128)

with the nuclear norm ‖·‖∗ in (9.68). Here we will only consider the case of 2D
color images, i.e. m = 2 and k = 3. Let x0 = U0Σ0V

−1
0 be the singular value

decomposition of x0, with some U0 ∈ SO(2) and V0 ∈ SO(3), and the matrix
Σ0 ∈ R2×3, Σ0 = diag(σ0

1, σ
0
2), containing the singular values σ0

1 ≥ σ0
2 ≥ 0.

Using the definition (9.68), the projection (9.128) can be reformulated in terms
of the singular values σ1, σ2 of x:

argmin
x∈Rm×k, y∈R,

y≥α(σ1+σ2)2, σ1+σ2≤λ

2∑
i=1

(σi − σ0
i )

2

2
+

(y − y0)2

2
. (9.129)

Having a (σ1, σ2, y) which solves (9.129), the solution (x, y) of (9.128) can be
obtained by x = U0 diag(σ1, σ2)V −1

0 . Finally, the solution (σ1, σ2, y) of (9.129)
is (σ0

1, σ
0
2, y

0) if this point already satisfies the constraints, and otherwise with
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δ := σ0
1 − σ0

2 given by

(
λ, 0, max(αλ2, y0)

)
if δ ≥ λ and y0 ≥ αλ2 − σ0

1−λ
2αλ ,(

λ+δ
2 , λ−δ2 , max(αλ2, y0)

)
if δ ≤ λ and y0 ≥ αλ2 − σ0

1+σ0
2−λ

4αλ ,(
x̂√
2

+ δ
2 ,

x̂√
2
− δ

2 , ŷ
)

with (x̂, ŷ) := πy≥2αx2

(
σ0

1+σ0
2√

2
, y0

)
if δ ≤ λ and y0 ≥ αδ2 − σ0

2
2αδ ,

(x̂, 0, ŷ)

with (x̂, ŷ) := πy≥αx2(σ0
1, y0) otherwise.

(9.130)

Proof. First, let us establish the equivalence of (9.128) and (9.129). For candi-
date solutions (x, y) of (9.128) let x = UΣV −1 with U ∈ SO(2), V ∈ SO(3),
Σ ∈ R2×3, Σ = diag(σ1, σ2) be the singular value decomposition of x. By
Mirsky’s inequality [85] we have (x − x0)2 ≥ ∑2

i=1(σi − σ0
i )

2 with equality if
U = U0, V = V0. Thus, an optimal x for (9.128) will have the form U0ΣV −1

0

where the singular values σ1, σ2 satisfy the constraints of (9.129).
The derivation of (9.130) is rather lengthy, but straightforward. The third

case corresponds to the projection onto the paraboloid segment y = α(σ1 +σ2)2,
σ1, σ2 ≥ 0, σ1 + σ2 ≤ λ, and is active when there is an outer surface normal
passing through the point (σ0

1, σ
0
2, y

0). The fourth case is the projection onto
the parabola line y = α(σ1 +σ2)2 = ασ2

1, 0 ≤ σ1 ≤ λ, σ2 = 0, active when there
is an orthogonal line on it passing through the given point. The second case
projects onto the plane segment y ≥ α(σ1 +σ2)2 = αλ2, σ1, σ2 ≥ 0, σ1 +σ2 = λ,
and the first one onto the line y ≥ α(σ1 + σ2)2 = αλ2, σ1 = λ, σ2 = 0.
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Chapter 10

The Vectorial Mumford-Shah
Functional

While the last two Chapters 8 and 9 addressed general classes of vectorial func-
tionals, here we will consider the concrete and very special vectorial functional
of Mumford-Shah, which has a long history of proposed approaches and theo-
retical analysis due to the wide range of its potential applications. This chapter
is based on joint work with Antonin Chambolle and Daniel Cremers [119].

10.1 Introduction

10.1.1 The Mumford-Shah Problem

Regularization is of central importance in image analysis and beyond as it
provides a prior for a number of otherwise ill-posed inverse problems. The
Mumford-Shah functional [92] is a prototypical form of all regularizers which
aim at combining a smoothing of homogeneous regions with the enhancement of
edges: Given Ω ⊂ Rm, m ≥ 1, a bounded open set, the vectorial Mumford-Shah
problem with k ≥ 1 channels is given by

min
u,K

{∫
Ω
|u− f |2 dx + α

∫
Ω\K
|∇u|2 dx + λHm−1(K)

}
(10.1)

where f : Ω → Rk is the vectorial input image, α, λ > 0 are weights, and
u = (u1, . . . , uk) : Ω → Rk is the unknown which is assumed to be smooth
except on a possible jump set K. This set is the same for all components ui and
introduces a coupling of the channels. Minimization of the energy (10.1) leads
to piecewise smooth approximations u of f . Intuitively, the first term ensures
that u is similar to f . The last term ensures that there are not “too many”
jumps by penalizing the overall length of the jump set. Finally, the second term
makes sure that u is smooth between the jumps by penalizing the gradient. The
norm of the gradient |∇u| which appears in (10.1) is the Frobenius (Euclidean)
norm |∇u|2 =

∑
i |∇ui|2, and the norm in the term |u− f | is also Euclidean.

The Mumford-Shah problem has been intensively studied in the applied
math community [89]. In practice its applicability is substantially limited be-
cause of its nonconvexity. As a consequence, researchers typically revert to the
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Input TV denoised Vectorial MS

Figure 10.1: Vectorial Mumford-Shah in comparison to total vari-
ation. We propose a convex relaxation and an efficient implementation for
the vectorial Mumford-Shah functional. It allows to compute piecewise smooth
approximations of color images independently of initialization. Compared to
the Total variation (center), the Mumford-Shah model (right) preserves image
contrast.

(also nonconvex) phase-field approximation of Ambrosio and Tortorelli [2, 3].
Extensions of this approximation to color images have been proposed in [22].
Alternatively it is often replaced with the convex total variation TV . However,
the tendency of TV to lower the contrast at edges and oversmooth flat regions
(the “staircasing” phenomenon) makes it a poor substitute to more elaborate
functionals — see Figure 10.1. In [65] a different approach for color channels
coupling is proposed by means of Riemannian Geometry.

10.1.2 Related Work

In the recent past, several authors have overcome the issue of nonconvexity
by suggesting convex relaxations for respective functionals [1, 51, 28]. Specific
examples include the convex relaxation for the two-region piecewise-constant
Mumford-Shah model [33], for multilabel problems with convex regularizer [102,
101], for the multi-region piecewise constant Mumford-Shah [77, 29, 140], and —
possibly most closely related to the approach in this chapter — a convex relax-
ation for the scalar piecewise smooth Mumford-Shah model [100]. These devel-
opments, based on multilabel and functional lifting relaxations, are described in
Chapters 3 and 7, respectively. Some of these approaches were clearly inspired
from the Markov random field (MRF) community where researchers have in-
troduced graph cut algorithms for minimizing discrete version of such energies
[56, 61, 19, 60]. In the MRF community, the Mumford-Shah regularizer corre-
sponds to a truncated quadratic penalizer.

While the above works are predominantly focused on functionals over scalar-
valued functions (grayscale images), the present chapter is focused on the case
of multi-component signals, i.e. color or multi-spectral images. The major chal-
lenge in formulating convex relaxations for vectorial models is that the straight-
forward channel-by-channel application of respective scalar approaches [100]
invariably produces suboptimal results because the individual color channels
cannot be treated independently: Indeed, the jump set K in (10.1) combines
all color channels, as it denotes all points in the image plane where the signal
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Input Channel-wise MS Vectorial MS

Figure 10.2: Vectorial versus channel-wise Mumford-Shah. The vec-
torial MS model penalizes jumps only once if two or more components jump
at the same place. As a consequence, the correct representation (right) favors
component edges to coincide leading to coherent segmentations. This is not the
case for the channel-wise MS model (center) even for large weights λ.

is discontinuous, no matter in which color channel.
A convex relaxation for the vectorial case has been given in [88] using the

method of calibrations. However, it utilizes the full three-dimensional label
space for color images and is therefore by no means tractable, neither in memory,
nor in computation time. Moreover, it appears infeasible to actually devise a
numerical algorithm for solving the relaxation of [88] because it depends only
on a part of the solution.

10.1.3 Contributions

In this chapter, we propose a convex representation for the vectorial Mumford-
Shah functional (10.1) which captures the coupling among the different color
channels correctly. Among other conceivable generalizations of the scalar case
[100], the proposed relaxation is special, as it combines several important ad-
vantages:

• It is the first tractable convex relaxation for the vectorial Mumford-Shah
functional. We propose an efficient implementation of the method for
which both memory and run time scale linearly with the number of chan-
nels. In particular, channel coupling is achieved with the same run time
as for the channel-wise version.

• The proposed method indeed favors solutions where discontinuities in the
individual color channels coincide. As a consequence, in contrast to the
channel-wise approach it does not introduce artificial color edges in the
solution.

• In comparison to the channel-by-channel solution, the commonly employed
Ambrosio-Tortorelli approximation [2, 3] and TV , the method leads to
improved and more natural results for discontinuity-preserving denoising
of color images and various other applications.
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10.2 The Convex Representation

Recall that for vectorial functions u ∈ SBV(Ω,Rk) the distributional gradient
can be decomposed as (2.23) into a continuous part and a jump part. This
means there exists a well-defined (m− 1)-dimensional jump set Su on which u
jumps in a direction νu ∈ Sm−1 from u− ∈ Rk to u+ ∈ Rk.

For such functions in SBV(Ω,Rk), the “weak” Mumford-Shah functional is
well-defined and given by

MSα,λ(u) =

∫
Ω
|u− f |2 dx + α

∫
Ω\Su

|∇u|2 dx + λHm−1(Su). (10.2)

It has been shown [4] that the minimization of MSα,λ(u) in SBV(Ω,Rk) is a
well-posed problem.

10.2.1 Relaxation for the Scalar Case

Let us recall here the convexification approach for the scalar case k = 1. Given
a scalar function u : Ω → R, the idea is to consider its corresponding graph
function 1u : Ω× R→ {0, 1}. It is defined as

1u(x, t) =

{
1 if u(x) > t,

0 else.
(10.3)

The general functional lifting approach in Chapter 7 suggests to introduce the
functional

E(v) := sup
ϕ∈K

∫
Ω×R

ϕ(x, t) · dDv(x, t), (10.4)

defined for v ∈ BVloc(Ω× R), where the constraint set is given by

C :=

{
ϕ
∣∣ (ϕx, ϕt) ∈ C∞c (Ω× R;Rm × R)

ϕt(x, t) ≥ 1
4α |ϕx(x, t)|2 − (t− f(x))2,∣∣∣∫ t′

t
ϕx(x, s) ds

∣∣∣ ≤ λ ∀x ∈ Ω, t < t′
}
.

(10.5)

It is shown in [1] that then for any u ∈ SBV(Ω,R),

E(1u) = MSα,λ(u). (10.6)

The key advantage of this representation is that E(v) is convex in v. This
can be used to numerically minimize MSα,λ [100] with interesting practical
applications.

10.2.2 Contribution: Relaxation for the Vectorial Case

In the vectorial case k ≥ 1, we consider k graph functions

1u(x, t) = (1u1 , . . . , 1uk) (10.7)
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corresponding to the k channels ui. We propose the following convex relaxation
(in v = 1u) of the Mumford-Shah functional (10.2):

E(v) := sup
ϕ∈K

k∑
i=1

∫
Ω×R

ϕi(x, t) · dDvi(x, t), (10.8)

with the convex set

C :=

{
ϕ
∣∣ (ϕxi , ϕ

t
i) ∈ C∞c (Ω× R;Rm × R),

ϕti(x, ti) ≥ 1
4α |ϕxi (x, ti)|2 − (ti − fi(x))2,

k∑
j=1

∣∣∣∣∫ t′j

tj

ϕxj (x, s) ds
∣∣∣∣ ≤ λ ∀x ∈ Ω, 1 ≤ i ≤ k, tj < t′j

}
. (10.9)

The dual variables ϕx, ϕt now also have k components, while the first con-
straint in (10.9) is the same as in (10.5). The central part of the generalization
is the second constraint of (10.9). Intuitively, the upper bound λ on the dual
variables corresponds to the local penalization if each uj jumps from tj to t′j .
Let us explain how the set C in (10.9) is derived. First, if ui ∈ SBV(Ω,R), one
can check (following the representation in [1, Lemma 2.8]) that∫

Ω×R
ϕi · dD1ui =

∫
Ω
ϕxi (x, ui(x)) · ∇ui(x)− ϕti(x, ui(x)) dx

+

∫
Sui

(∫ u+
i (x)

u−i (x)
ϕxi (x, s) ds

)
· νui(x) dHm−1(x).

(10.10)

If ϕi satisfies the first constraint in (10.9), standard convex duality shows that

ϕxi (x, ui(x)) · ∇ui(x)− ϕti(x, ui(x))

≤ (ui(x)− fi(x))2 + α |∇ui(x)|2
(10.11)

a.e. in Ω, with equality at x if and only if ϕti = |ϕxi |2 /(4α) − (t − fi)
2 and

t = ui(x). The right hand side of (10.11) summed up over all i are the first
two integrands in (10.2). On the other hand, if ϕ satisfies the second constraint
in (10.9), then one has a similar inequality for the jump part. Indeed, recalling
that Su =

⋃k
i=1 Sui , and νui = νu a.e. in Su ∩ Sui , one can check that

k∑
i=1

∫
Sui

(∫ u+
i (x)

u+
i (x)

ϕxi (x, s) ds

)
· νu(x) dHm−1(x)

≤
∫
Su

k∑
i=1

∣∣∣∣∫ u+
i (x)

u−i (x)
ϕxi (x, s) ds

∣∣∣∣ dHm−1(x) (10.12)

≤ λHm−1(Su) .

This derivation shows that at least

E(1u) ≤ MSα,λ(u). (10.13)
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Beyond this inequality we will in fact show in Theorem 10.2 below that the
proposed relaxation (10.8) indeed coincides with the original Mumford-Shah
model (10.2). The proof will utilize a crucial efficient reformulation of the con-
straint set (10.9) which we introduce next.

10.2.3 Efficient Constraint Set Reformulation

In practice, the range of each channel ui must be discretized into ni ≥ 1 levels.
In its original formulation (10.9), the constraint set K requires O(n2

1 · · ·n2
k)

constraints, which is not feasible in practice. However, it turns out that these
can be equivalently reformulated using only O(n2

1 + . . .+n2
k) constraints. Thus,

the proposed relaxation (10.8) has the key advantage that its minimization is
just as tractable as the simple channel-by-channel model. In Section 10.3 we
will also propose an approximation which has even linear instead of quadratic
complexity.

The idea of the constraint set decoupling is to introduce auxiliary variables
µi : Ω→ R for each 1 ≤ i ≤ k.

Proposition 10.1. The constraint set C in (10.9) is equivalent to the following
constraint set:

C′ :=
{

(ϕ, µ)
∣∣ (ϕxi , ϕ

t
i) ∈ C∞c (Ω× R;Rm × R),

ϕti(x, ti) ≥ 1
4α |ϕxi (x, ti)|2 − (ti − fi(x))2,∣∣∣∣∫ t′i

ti

ϕxi (x, s) ds
∣∣∣∣ ≤ µi(x), (10.14)

k∑
j=1

µj(x) ≤ λ ∀i, x ∈ Ω, ti < t′i

}
,

in the sense that, for all ϕ, it holds

ϕ ∈ C ⇐⇒ ∃µ : (ϕ, µ) ∈ C′ . (10.15)

Proof. Let (ϕ, µ) ∈ C′. Then obviously also ϕ ∈ C. On the other hand, if ϕ ∈ C,
define the functions µi : Ω→ R by

µi(x) := sup
ti<t′i

∣∣∣∣∫ t′i

ti

ϕxi (x, s) ds
∣∣∣∣. (10.16)

Then we have
∑k

j=1 µj(x) ≤ λ by the second inequality of (10.9), and together
clearly (ϕ, µ) ∈ C′.

The following theorem shows that the relaxation coincides with the actual
functional for binary graph functions:

Theorem 10.2. Let u ∈ SBV(Ω,Rk). Then

E(1u) = MSα,λ(u) . (10.17)
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Proof. The inequality (10.13) has already been shown above, so it remains to
show

E(1u) ≥ MSα,λ(u). (10.18)

Consider functions µ from the set

M :=
{
µ ∈ C(Ω;Rk)

∣∣ k∑
i=1

µi(x) ≤ λ ∀x ∈ Ω, min
x∈Ω

µi(x) > 0 ∀i
}
. (10.19)

For each i, consider the non-uniform variant of the scalar Mumford-Shah func-
tional:

MSα,µii (ui) :=

∫
Ω
|ui − fi|2 dx+ α

∫
Ω\Sui

|∇ui|2 dx+

∫
Sui

µi(x) dHm−1(x).

(10.20)
Then, it can be quite easily shown that the vectorial MS functional (10.2) is
given by

MSα,λ(u) = sup
µ∈M

k∑
i=1

MSα,µii (ui). (10.21)

Moreover, for fixed µi, an adaption of the proofs in [1, 100] will show that a
representation similar to (10.6) holds, specifically

MSα,µii (ui) = sup
ϕi∈C

µi
i

∫
Ω×R

ϕi(x, t) · dD1ui(x, t) (10.22)

for ui ∈ SBV(Ω,R), where Cµii is defined as in the scalar case (10.5) but with λ
replaced by µi(x):

Cµii :=

{
ϕ | (ϕx, ϕt) ∈ C∞c (Ω× R;Rm × R)

ϕt(x, t) ≥ 1
4α |ϕx(x, t)|2 − (t− f(x))2,∣∣∣∫ t′

t
ϕx(x, s) ds

∣∣∣ ≤ µi(x) ∀x ∈ Ω, t < t′
}
.

(10.23)

Plugging (10.22) into (10.21):

MSα,λ(u) = sup
µ∈M

sup
ϕ

ϕi∈C
µi
i ∀i

k∑
i=1

∫
Ω×R

ϕi(x, t) · dD1ui(x, t) (10.24)

≤ sup
(ϕ,µ)∈C′

k∑
i=1

∫
Ω×R

ϕi(x, t) · dD1ui(x, t) (10.25)

= sup
ϕ∈C

k∑
i=1

∫
Ω×R

ϕi(x, t) · dD1ui(x, t). (10.26)

Above, the inequality holds because (ϕ, µ) is more general in (10.14) (less as-
sumptions on µ), and the last equality is due to the constraint set equiva-
lence (10.1). The right hand side of (10.26) is just the definition (10.8) of E(1u),
so that (10.18) follows.
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In particular, this theorem assures that in case of a binary minimizer v =
1u of E(v) the solution u must indeed be a global optimum of the vectorial
Mumford-Shah model (10.2).

10.2.4 Generalizations and Variants

One can generalize the Mumford-Shah model (10.2), replacing the data term
|u− f |2 and the regularization term α |∇u|2 with separable terms of the form∑k

i=1 ci(x, ui(x)) and
∑k

i=1 gi(∇ui) with convex fi, respectively:∫
Ω

k∑
i=1

ci(x, ui(x)) dx +

∫
Ω\Su

k∑
i=1

gi(∇ui) dx + λHm−1(Su). (10.27)

In our relaxation this amounts to replacing the first constraint in (10.14) with

ϕti(x, t) ≥ g∗i (ϕ
x
i (x, t))− ci(x, t) ∀i, x, t. (10.28)

Here, g∗i (q) := supp p · q − gi(p) is the Legendre-Fenchel conjugate of gi. Then,
provided ci is continuous, and gi is convex and superlinear, i.e. limt→∞ gi(tp)/t =
∞ for p 6= 0, Theorem 10.2 will hold.

For example, the data term ci(x, ui) = |ui − fi| is suited to remove salt-and-
pepper noise, while |u− f |2 is applicable for Gaussian noise. More generally,
one is free to choose possibly nonconvex data terms. With fi(∇ui) = αi |∇ui|2
one can choose different gradient weightings αi > 0.

Furthermore, one can use the weighted variant∫
K
w(x) dHm−1(x) (10.29)

of the edge set length Hm−1(K) in (10.1) with a weight w : Ω→ R>0. For this,
λ must be replaced by λw(x) in (10.14).

10.3 Implementation

10.3.1 Domain Relaxation

In order to minimize E(1u) and thus MSα,λ(u), we use the convexity of E and
instead directly minimize over the collection of graph functions v = 1u. The
overall problem becomes

inf
v∈D

sup
(ϕ,µ)∈C′

k∑
i=1

∫
Ω×R

ϕi(x, t) · dDvi(x, t). (10.30)

The constraint set for the solutions

D :=
{
v ∈ BVloc(Ω× R; [0, 1])k |
vi(x, t) = 1 ∀t ≤ ai, vi(x, t) = 0 ∀t > bi,

vi(x, ·) non-increasing
}

(10.31)
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is the convex hull of the valid graph functions, i.e. we relax the binary constraint
vi(x, t) ∈ {0, 1} allowing values in-between. The scalars ai < bi define the range
of the channels

ui : Ω→ Γi := (ai, bi). (10.32)

Theorem 10.2 assures that if we have a binary solution v = 1u of (10.30),
then u must indeed be a global optimum of the vectorial MS model (10.2).
Otherwise, in general we need to project back onto the set of binary graph
functions, and then recover u from the relation v = 1u. We use the method
(9.88) to obtain the final solution u of the original problem (10.1).

10.3.2 Discretization

The convex relaxation of this chapter is based on the same representation as in
the previous chapter Chapter 9, namely using an individual graph function for
each of the channels. The discretization is therefore very similar to Section 9.5.1.

We discretize the image domain Ω into a rectangular pixel grid. For each
channel 1 ≤ i ≤ k, the range (10.32) is discretized into ni ≥ 1 levels

ai, ai + ∆ti, . . . , ai + (ni − 1)∆ti = bi with spacing ∆ti =
bi − ai
ni − 1

. (10.33)

The variables v, ϕ, µ are discretized as follows:

vi(x,
j

ni−1) = vji (x) ∈ R,

ϕxi (x, j
ni−1) = 1

∆ti
ϕx,ji (x) ∈ Rm,

ϕti(x,
j

ni−1) = ϕt,ji (x) ∈ R,

µi(x) = µi(x) (same notation)

(10.34)

for all pixels x ∈ Ω, channels 1 ≤ i ≤ k, and channel values 0 ≤ j < ni. The
differential operators are discretized exactly as in Section 9.5.1.

The energy becomes

min
v∈Dd

max
(ϕ,µ)∈C′d

∑
x∈Ω

k∑
i=1

∑
0≤j<ni

〈
ϕx,ji (x), ∇+

x v
j
i (x)

〉
+ ϕt,ji ∂+

t v
j
i (x) (10.35)

with the discrete primal set without the monotonicity constraint

Dd =
{
v = (vi)1≤i≤k

∣∣ vi : Ω→ [0, 1]ni , v0
i (x) = 1 ∀x ∈ Ω, 1 ≤ i ≤ k

}
,

(10.36)
and the dual set

C′d =
{

(ϕxi , ϕ
t
i)1≤i≤k, µ

∣∣∣ (ϕxi , ϕti) : Ω→ Rm × R ∀i, µ : Ω→ R

ϕt,ji (x) ≥ 1
4α∆t2i

∣∣ϕx,ji (x)
∣∣2 − cji (x), ∀x ∈ Ω, 1 ≤ i ≤ k, 0 ≤ j < ni∣∣∣∣ ∑

j1<j≤j2

ϕx,ji (x)

∣∣∣∣ ≤ µi(x) ∀x ∈ Ω, 0 ≤ j1 < j2 < ni (10.37)

k∑
j=1

µj(x) ≤ λ ∀x ∈ Ω
}
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with the data term values cji (x) := (tj − fi(x))2 ∈ R for all x, i, j. These can be
precomputed for efficient look-up.

We solve the saddle-point problem (10.35) by the preconditioned primal-
dual Algorithm 3. The projection onto the constraint set for v in (10.36) is
straightforward. In the following we will describe a decoupling strategy to also
implement the constraints of the dual set (10.37).

10.3.3 Projection for the Duals

Essentially, the only difficult part for (10.37) are the nonlocal sum-constraints
which couple ϕx and µ. Observe that introducing auxiliary variables pji (x) ∈ Rm
by the requirement

∂−t p
j
i (x) = ϕx,ji (x) ∀x, i, j, (10.38)

the sum constraints in (10.14) simplify to∣∣pj2i (x)− pj1i (x)
∣∣ ≤ µi(x) ∀x, i, j1, j2. (10.39)

While (10.38) can be enforced by Lagrange multipliers using (2.74), for (10.39)
we can use the dual relation (2.76). The dualization procedure is analogous to
Section 7.4.2, so that we will skip the details. The final decoupled energy is

min
v∈Dd, (a,b)∈A, ξ

max
(ϕ,µ)∈Ĉd, p

(10.40)

∑
x∈Ω

k∑
i=1

∑
0≤j<ni

〈
ϕx,ji (x), ∇+

x v
j
i (x)

〉
+ ϕt,ji ∂+

t v
j
i (x)

+
∑
x∈Ω

k∑
i=1

∑
0≤j<ni

〈
ξji (x), ∂−t p

j
i (x)− ϕx,ji

〉
(10.41)

+
∑
x∈Ω

k∑
i=1

∑
0≤j1<j2<n

〈
− aj1j2i (x), pj2i (x)− pj1i (x)

〉
+ bj1j2i (x)µ(x).

The dual set for ϕ and µ is now reduced to only

Ĉd =
{

(ϕxi , ϕ
t
i)1≤i≤k, µ

∣∣∣ (ϕxi , ϕti) : Ω→ Rm × R ∀i, µ : Ω→ R,

ϕt,ji (x) ≥ 1
4α∆t2i

∣∣ϕx,ji (x)
∣∣2 − %ji (x), ∀x ∈ Ω, 1 ≤ i ≤ k, 0 ≤ j < ni,

k∑
j=1

µj(x) ≤ λ ∀x ∈ Ω
}
,

i.e. without the nonlocal sum-constraints. The constraints on ϕ and µ are
independent from each other. While the projection for µ is very simple as there
is only a linear constraint, the projection for ϕ is in essence a projection onto a
parabola for which we can use the explicit formula of Section 9.9.2.

The new auxiliary dual variables pji (x) ∈ Rm have no constraints, just as
the corresponding new primal variables ξji (x) ∈ Rm.

Finally, the new primal variables aj1,j2i (x) ∈ Rm and bj1j2i (x) ∈ R arise
from (2.76) and the corresponding set A is defined by independent constraints∣∣aj1j2i (x)

∣∣ ≤ bj1j2i (x), which are also easy to project onto, see Section 9.9.1.
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Input Channel-wise MS Vectorial MS

Figure 10.3: Piecewise smooth approximation without color artifacts.
A comparison on the Leonardo da Vinci’s “Dama con l’ermellino” shows that
the channel-wise solution introduces independent discontinuities in the color
channels, thereby producing colors not present in the original image (blue on
the cheek and green in the hair for example). In contrast, the proposed convex
relaxation of the vectorial Mumford-Shah model provides more natural color
transitions.

10.3.4 Linear Complexity Approximation

The quadratically many sum-constraints in (10.37) are responsible for correctly
representing the length of the jump interface of the vectorial function u. As
shown above they can be equivalently written as the difference constraints
(10.39) when introducing new auxiliary variables p. This can be seen as a
generalization to the vectorial case of the tight convex relaxation (3.34) for the
multilabel Potts model, which also measures the interface length. More pre-
cisely, through (10.39) with a fixed µi our relaxation measures the jump set
length for the i-th channel ui, and the last constraint in (10.37) on µ ensures
the correct handling of the situation when several channels jump at the same
image location.

As discussed in Section 3.4.4, the constraints (3.34) yield a very tight relax-
ation but are computationally expensive, so that a viable alternative in practice
is to use the simpler but more efficient relaxation (3.25).

This idea of simplifying the constraints for a more efficient optimization can
be transferred to our vectorial case as well. Instead of (10.39), in analogy to
(3.25) we can use constraints

∣∣pji (x)
∣∣ ≤ 1

2 µi(x) ∀x ∈ Ω, 1 ≤ i ≤ k, 0 ≤ j < ni. (10.42)

They can be implemented using the same dualization method (2.76) as was used
above for (10.39). Using this linear approximation yields a less tight relaxation
of the Mumford-Shah functional. However, the time and memory complexities
are reduced substantially from quadratic to just linear. We observed similar
results using both relaxations. Because of this we suggest to preferably use
the linear approximation (10.42) in practice for quick results, and the more
elaborate original version of the constraints when high accuracy is needed.
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Input Channel-wise MS Vectorial MS

Kchannel-wise Kvectorial

Figure 10.4: Coupling of edge sets. In contrast to the channel-by-channel
Mumford-Shah (center), the vectorial Mumford-Shah model (right) favors dis-
continuities in the channels to coincide. This is confirmed by the respective
discontinuity sets K for each color component (lower row), where black lines
represent edges in all three channels.

10.4 Experimental Results

In the following, we will provide experimental comparisons of the proposed vec-
torial Mumford-Shah relaxation with several alternative algorithms on a variety
of inverse problems. The channels ui are obtained from the computed graph
functions vi in (10.3) by taking the 0.5-isolevel. When comparing channel-wise
and vectorial MS, we set λchannel-wise = λvectorial/3, where k = 3 is the number
of color channels, so that both functionals are two different convex relaxations
of the same energy (10.2), since channel-wise MS counts common boundaries
up to three times.

On NVIDIA GTX 480, a typical run time for 128×128 color images with 32
levels for each color channel is about 20 seconds. For comparison, the channel-
wise version runs in 19, the proposed relaxation with the simplified constraint
set (10.42) in 3.5, Ambrosio-Tortorelli approximation in 1, and TV in 0.02
seconds. Thus, the proposed method accounts for the channel coupling while
remaining as efficient as the simple channel-by-channel version.
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Input image With 30% noise Total Ambrosio- Vectorial MS
variation Tortorelli

Figure 10.5: Denoising test case. Total variation leads to a loss of contrast
and staircasing (piecewise constant regions) in the lower right corner. The
Ambrosio-Tortorelli method optimizes only locally, missing the blue region. In
contrast, the proposed convex relaxation of the vectorial Mumford-Shah model
provides the best reconstruction.

10.4.1 Piecewise Smooth Approximations

Figure 10.2 shows a synthetic 128 × 128 image with three different blobs for
each color channel. In the piecewise smooth approximation, the vectorial MS
model clearly favors solutions where the edge sets coincide. This is not the case
for the channel-wise variant, which processes one color at a time and is thus
“color blind” w.r.t. color as a whole. This is further confirmed in Figure 10.4 on
a real world image by directly visualizing the edge sets of the different colors
(coloring them accordingly). We used a 8 × 8 × 8 color discretization for both
experiments.

In Figure 10.3 we compute piecewise smooth approximations for the 256×256
image “Dama con l’ermellino” by Leonardo da Vinci using vectorial MS and
channel-wise MS. The parameters are α = 100 and λ = 0.1, with a 32× 32× 32
discretization. The large parameter αmakes the approximation nearly piecewise
constant, showing significant color artifacts of the channel-wise MS model, as
opposed to the vectorial one.

10.4.2 Denoising

To compare various regularizers, we devised a synthetic denoising test case in
Figure 10.5, degrading the 128 × 128 test image by adding severe 30% noise.
The result using simple total variation regularization produces loss of contrast
and staircasing effects are visible in the grey lower right part. The result of
the Ambrosio-Tortorelli method [3] is also shown. It is a nonconvex approxi-
mation of the Mumford-Shah energy and thus merely allows to compute a local
minimum, missing the blue region. Finally, the proposed vectorial MS relax-
ation provides more natural results than the other approaches (32 × 32 × 32).
Figure 10.1 further demonstrates the loss of contrast of TV on a real world
image.

10.4.3 The Cracktip Problem

Among the fascinating aspects of the Mumford-Shah functional is that it allows
to model open boundaries. In the scalar case, for inpainting a circular domain
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Inpainting Ambrosio- Ambrosio- Channel-wise Vectorial
domain Tortorelli Tortorelli MS MS

Figure 10.6: Inpainting test case: The cracktip problem. From
left to right: Grey inpainting domain and colors prescribed on the boundary.
Ambrosio-Tortorelli method can get stuck in bad local minima. Ambrosio-
Tortorelli method for a good initial guess. Channel-wise MS introduces faulty
red colors in the center. Vectorial MS produces a good approximation to the
cracktip solution.

with a Mumford-Shah regularizer and specific values prescribed on the bound-
ary, a well-known analytical solution is the so called cracktip function [14], given
in polar and Cartesian coordinates by

fp(r, ϕ) =
√
r sin

ϕ

2
, resp. fc(x, y) = y√

2
(
x+
√
x2+y2

) . (10.43)

In the vectorial case, transforming f linearly for each color channel, one can
easily see that “color cracktips” are also MS minimizers. Thus it is interesting
to see, how well these solutions are recovered with different algorithms.

After discretization of the image domain into w × h pixels, we set a =
1/fc(−w−1

2 , h−1
2 ) > 0. We choose colors c1, c2 ∈ R3 and consider the function

f̂(x, y) = c1+c2
2 + c2−c1

2 a fc
(
x− w−1

2 , y − h−1
2

)
. (10.44)

Then f̂ is a “color cracktip”, interpolating smoothly between f̂(0, 0) = c1 in the
upper left and f̂(0, h − 1) = c2 in the lower left corner going clockwise around
the origin, see Figure 10.6. The parameters α and λ in (10.1) must be chosen
so that α

∫
Ω\K

∣∣∇f̂ ∣∣2 dx = λHm−1(K) where Ω the a disc of some radius R
around (w−1

2 , h−1
2 ), and K is the portion of Ω along the semiline going to the

left of this point. This leads to

λ = α · πa
2

8
|c2 − c1|2 . (10.45)

Figure 10.6 shows the corresponding 128× 128 inpainting experiment using
a 64 × 64 × 64 color discretization, with c1 = (254,248,174)

255 (light yellow) and
c2 = (142,216,247)

255 (light blue). We set λ = 1 and compute α using the formula
above. The dataterm is set to c = 0 inside the circle and to M(u− f)2 outside
with a big M > 0 (using the data term generalization of Section 10.2.4). As
expected, the nonconvex Ambrosio-Tortorelli approximation greatly relies on
the initial solution to produce acceptable results: With a bad initialization it
generates strong artifacts (second image). Yet, even with a good initial guess,
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Input Segmentation, Segmentation, Segmentation,
λ = 0.05 λ = 0.1 λ = 0.2

Figure 10.7: Joint segmentation and color selection. In contrast to
previous relaxations where the set of allowed color models must be specified
beforehand, the proposed approach automatically selects the appropriate color
models during the segmentation process based on the scale parameter λ. Color
discretization is 16× 16× 16.

the same artifact emerges at a smaller scale (third image). The channel-wise MS
model treats the color channels independently, and thus introduces faulty red
colors in the center. In contrast, the proposed convex relaxation of the vectorial
MS model provides a good approximation of the color cracktip.

10.4.4 Unsupervised Image Partitioning

In the limiting case α → ∞ in (10.2), the smoothness constraint is enforced
more and more leading to the well-known piecewise constant approximation,
also known as the minimal partition problem. The first constraint in (10.14)
reduces to just ϕti(x, t) ≥ −(t − fi(x))2. Only one parameter λ remains in the
model (10.2), which controls the overall length of the interfaces between the
regions where u is constant.

The standard approach to compute such a multi-region partitioning is by
alternatingly determining a small number of color models (with fixed regions)
and optimizing for the regions (with fixed color models). Of course, for such
iterative approaches results are invariably suboptimal and will depend on the
choice of the initial color models.

In contrast, the proposed convex relaxation allows to jointly optimize over
the regions of constancy and the corresponding colors in these regions in a
single convex optimization problem. In particular, the algorithm determines
the appropriate number of color models depending on the input image and the
scale parameter λ. Figure 10.7 shows the partitionings computed for various
values of λ.

10.4.5 Joint Disparity and Segmentation

Our final experiment is a more advanced application of the vectorial Mumford-
Shah model (10.2) to stereo image analysis. Given a stereo image pair, the task is
to jointly compute a disparity map and a color segmentation, the central idea be-
ing that discontinuities in disparity and color tend to coincide. While this prob-
lem has been addressed in the nonconvex Ambrosio-Tortorelli framework [103],
we can apply the proposed convex relaxation of the vectorial Mumford-Shah
functional to compute solutions independently of initialization.
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Left input image Segmentation Disparity map

Figure 10.8: Joint segmentation and stereo depth reconstruction.
Applying the proposed relaxation of the vectorial Mumford-Shah model to the
joint estimation of color segmentation and disparity, we can impose that discon-
tinuities of the color values preferably coincide with depth discontinuities. The
label space is four dimensional with three color channels and one depth channel.

The proposed problem simply corresponds to the case of k = 4 channels
corresponding to the three color and one depth channel: u = (ucolor, udepth).
For the data term and gradient penalization we use the generalized variants of
Section 10.2.4. We use the data term from [103]:

ccolori (x, t) = (1− γ) (t− Iileft(x))2,

cdepth(x, t) = γ

D∑
j=1

(t− dj(x))2

1 + (t− dj(x))2

(10.46)

with γ = 0.05 and D = 4 depth hypotheses dj : Ω → R calculated as in [103,
Section 5.1]. Furthermore, we use custom coefficients for the gradient regular-
izations: gcolori (∇ui) = 2 |∇ui|2 and gdepth(∇u) = 100 |∇u|2 in (10.27).

Figure 10.8 shows the jointly computed segmentation and disparity for the
289 × 253 “sawtooth” test image of the Middlebury stereo dataset. We set
λ = 0.01, using a 16×16×16×20 discretization. The clear correlation between
the color and disparity edges, especially at the right (non-occluding) boundaries
of the sawtooths confirms the advantage of the proposed model.

10.5 Conclusion

We proposed a convex relaxation for the vectorial Mumford-Shah problem. In
contrast to a naive sequential processing of each color channel, this approach
allows to correctly handle the coupling of all color channels with a single disconti-
nuity set. As a consequence, it assures that color discontinuities tend to coincide
and thus avoids color artifacts. Furthermore, the relaxation is computationally
tractable. We proposed an efficient algorithmic implementation which allows to
capture the color coupling at essentially no additional run time. Experimen-
tal comparisons with the channel-wise application of the scalar Mumford-Shah
model, total variation and the nonconvex Ambrosio-Tortorelli approach confirm
the superiority of the proposed Mumford-Shah relaxation for contrast-preserving
and edge-enhancing regularization in vectorial inverse problems.
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Conclusion

Summary

In this thesis we presented a number of techniques for the convexification of im-
age analysis problems. We considered two important classes of energies, multil-
abel and vectorial problems, and developed novel convex relaxations for several
examples in each case. Though each energy required its own approach, one of
the key ingredients for finding efficient relaxations was the choice of a suitable
representation of the solutions.

For multilabel problems, the idea was to start with the indicator function
representation of the label regions. We considered three different types of higher-
level knowledge for the labeling configurations and showed how each can be
incorporated in a convex way in terms of the indicator functions:

• The length regularization prior was extended to nonmetric distances, thus
allowing for a more accurate multi-object segmentation.

• The convexification of geometric ordering constraints makes it possible to
obtain special layouts for the label regions.

• The proposed proportion priors make image sequence segmentation more
robust to shape and scale changes.

For vectorial functionals, we proposed to express the energy in terms of the
graph functions, introducing one graph function for each of the channels. We
developed especially tailored convexifications for three special cases of vectorial
functionals:

• For the case of separable regularization, on the one hand this representa-
tion allowed us to reduce the overall complexity by orders of magnitude in
comparison to previous methods. On the other hand, the data term be-
comes nonconvex in this representation. To cope with this, we introduced
a novel convex relaxation and showed it to be the best possible one.

• For coupling regularizers we identified novel cases which still allow to keep
the complexity as low as in the separable case.

• Finally, for the vectorial Mumford-Shah energy we developed a convex
relaxation which is as efficient as when processing the channels separately.
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For the initially obtained convex formulations, in each case we indicated ways
to arrive at efficient parallel implementations on GPUs. For this we showed
how the models can be gradually reformulated by utilizing suitable decoupling
strategies, so that the final models become more amenable to parallelization.

Advantages of Convexification Methods

Convex relaxation methods strive to replace the original nonconvex energy by
a convex one, and to recover solutions of the original problem by solving the
relaxed one. In this thesis we showed that this presents a powerful tool to assess
a wide range of functionals. The experimental results demonstrate that it can
be successfully applied to obtain high-quality solutions.

Although the techniques presented in the two main parts of the thesis are
different from case to case, they share a number of advantages which are typical
to convexification methods. Let us emphasize the following:

• Optimality Guarantees. Generally, it is possible to obtain optimality
bounds which allow to determine how far one is from the global optimum.
Having computed a solution, natural energy bounds give an estimate of
the unknown optimal energy. This can be used to see how much higher
the energy of the obtained solution is in comparison to the optimal energy
value. The bound is observed to be very small in practice, with values as
low as 5%, which means that near-optimal solutions are achieved. Special
classes of energies can even be solved globally optimally through convex
relaxation. Notable examples are the cases of two-label segmentation, and
the total variation regularization of scalar functions with nonconvex data
terms.

• Initialization Independence. Since the final optimization problem is
convex, there is no dependency on an initialization. For instance, one can
conveniently set all variables to zero in the beginning, as was done in our
experiments. Thus, no expertise on choosing a suitable initial approxima-
tion is required from the user. The required input is reduced to only the
model parameters (and possibly scribbles or similar input for the learning
of the data term), so that even fully automatic algorithms become possible
once the parameters are fixed or learned.

• Parallelization. Variational methods and their convex relaxations have
the major advantage of parallelization by GPUs. The obtained models can
be typically solved by general and flexible primal-dual algorithms which
are well suited for massive parallelization. They can be conveniently imple-
mented on GPUs using the CUDA framework of NVIDIA. Run times of a
few seconds can be achieved for moderate problem sizes and several GPUs
can be used simultaneously for more parallelization. Note that variational
approaches are based on the viewpoint of continuous image domains, as
assumed throughout this thesis. In contrast, discrete approaches such as
α-expansion are inherently serial and hardly parallelizable.
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Limitations of Convexification Methods

Despite their advantages, convex relaxation methods nonetheless can be more
or less suitable for each concrete application depending on the requirements
imposed on the solution or the available resources. Regarding the relaxations
from in the main two parts of the thesis, there are also a number of limitations:

• Optimality Bounds are per Instance. The available energy bounds
mentioned above are only a-posteriori. This means that one first has to
compute the solution in order to get a bound on its optimality. Though
the bound is typically very tight in practice, there is no guarantee that this
always will be the case, and it may be different for each problem instance.
Special energies do allow true a-priori bounds, i.e. bounds computable in
advance, which are then a property of the convex relaxation itself and not
of the solution. However, these bounds are usually quite large and thus of
little practical interest. Thus, the use of general convexification methods
is limited for critical applications which require firm guarantees on the
quality of the solution, as e.g. in certain medical imaging applications.

• Memory Requirements. Certain convexification methods pose high
demands on memory requirements for the implementation, as the final
models exhibit a large number of variables. This is especially the case
for the approaches based on functional lifting as in the second part of
the thesis, since the range of the functions must be discretized. Multi-
label problems may also require a large number of variables depending
on the relaxation. However, this becomes less and less an issue with the
recent developments in high-performance computing. One can now resort
to more computational resources, making it possible to consider models
which were previously intractable. Most notably, this comes from the
significant advances in the direction of GPUs in the recent years. The
increase of on-board memory allows larger problems and massive paral-
lelization permits to keep the run time low.

Outlook and Future Research

In this thesis we have proposed and studied convex relaxations for special cases
of multilabel and vectorial energies. There is of course still room for interesting
further developments, so that we would like to indicate some possible directions
of future research:

• Relaxations for Further Functionals. It would be advantageous to de-
velop convex relaxations for further interesting and important functionals
frequently occurring in practice, thus enabling to find good approxima-
tions of the solutions independently of the initialization. For instance:

– Deblurring and deconvolution applications with a nonconvex data
term or regularizer. This requires convolutional operators in the
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data term. However, functional lifting and the approaches for vec-
torial functionals in Part II assume a pointwise data term. Current
approaches typically rely on decoupling strategies [144] leading to
alternating minimization with possibly suboptimal results.

– Higher-order derivatives. For segmentation, additional curvature pe-
nalization is an interesting alternative to length-only penalization,
which allows to preserve thin and long structures. Current relax-
ations are restricted to certain special cases [21] or are more general
but with a high computational demand [20]. Another interesting
example of a higher-order functional is regularization of nonconvex
data terms with total generalized variation (TGV), where one also
resorts to alternating minimization [106].

• Real-Time Applications. One question is whether convex optimization
methods can be applied in scenarios with real-time requirements. For ex-
ample, one may be required to compute wide-range optical flow as quickly
as 30 frames per second. Currently, convexification methods are not ideal
for such applications. Although they can provide high-quality solutions,
current relaxations still need a couple of seconds per frame. An alterna-
tive to convex relaxation is a direct optimization of the nonconvex model
at hand. Recently, for the primal-dual algorithm a number of extensions
to nonconvex energies were introduced [123, 86]. They do not require
range discretization so that the memory and run time requirements are
significantly lower. For the Mumford-Shah functional case [123], one can
achieve result even in real-time and of similar quality as with the convex
relaxation of Chapter 10.

• Functions with Values in a Manifold. Considering the minimization
of an energy E(u), we can look at the optimization approaches from the
point of view of what they assume about the domain and range of the
solution functions u. In the initial approach of Ishikawa [60] for convex
regularization of scalar functions, both the domain and the range are as-
sumed to be discrete: u : Ωdiscrete → Γdiscrete.

This motivated the use of the functional lifting approach for imaging ap-
plications in [102, 101], which allows for continuous image domains Ω and
a continuous but scalar range (which is discretized only in the end for the
actual implementation): u : Ω→ R.
In the second part of this thesis we considered the regularization of func-
tions with a vectorial domain: u : Ω→ Rk with k ≥ 1.

A natural extension would be to consider energies defined more generallly
on functions mapping into a manifold M: u : Ω → M. For example,
M could be the space of angles or directions in the plane, the space of
normals in R3, or the space of rotations in R3. Several advances in this
direction for special cases of manifoldsM and energies E include [39, 80]
and [12, 135].
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[33] Chan, T., Esedoḡlu, S., Nikolova, M.: Algorithms for finding global min-
imizers of image segmentation and denoising models. SIAM Journal on
Applied Mathematics 66(5), 1632–1648 (2006) 2, 4, 7, 37, 40, 136, 200

[34] Chan, T., Vese, L.: Active contours without edges. IEEE Transactions on
Image Processing 10(2), 266–277 (2001) 2

[35] Chan, T., Yip, A., Park, F.: Simultaneous total variation image inpainting
and blind deconvolution. International Journal of Imaging Systems and
Technology 15(1), 92–102 (2005) 109

[36] Chekuri, C., Khanna, S., Naor, J., Zosin, L.: A linear programming for-
mulation and approximation algorithms for the metric labeling problem.
SIAM Journal on Discrete Mathematics 18, 608–625 (2005) 54, 59, 60,
61, 63

http://gpu4vision.icg.tugraz.at/index.php?content=Cat_0
http://gpu4vision.icg.tugraz.at/index.php?content=Cat_0


222 BIBLIOGRAPHY

[37] Collins, M., Xu, J., Grady, L., Singh, V.: Random walks based multi-
image segmentation: Quasiconvexity results and GPU-based solutions. In:
International Conference on Computer Vision and Pattern Recognition
(CVPR) (2012) 90, 99, 102

[38] Cremers, D., Kolev, K.: Multiview stereo and silhouette consistency via
convex functionals over convex domains. IEEE Transactions on Pattern
Analysis and Machine Intelligence 33(6), 1161–1174 (2011) 2, 38

[39] Cremers, D., Strekalovskiy, E.: Total cyclic variation and generalizations.
Journal of Mathematical Imaging and Vision 47(3), 258–277 (2012) 218

[40] Dal Maso, G.: Integral representation on BV (Ω) of Γ-limits of variational
integrals. Manuscripta Mathematica 30(4), 387–416 (1979) 191

[41] Delong, A., Osokin, A., Isack, H., Boykov, Y.: Fast approximate energy
minimization with label costs. International Journal of Computer Vision
96(1), 1–27 (2012) 141, 142

[42] Demengel, F., Temam, R.: Convex functions of a measure and applica-
tions. Indiana University Mathematics Journal 33(5), 673–709 (1984) 191

[43] Dobson, D., Santosa, F.: Recovery of blocky images from noisy and
blurred data. SIAM Journal on Applied Mathematics 56(4), 1181–1198
(1996) 109

[44] Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of func-
tions. Studies in Advanced Mathematics, CRC Press, Boca Raton, FL
(1992) 161

[45] Faugeras, O., Keriven, R.: Variational principles, surface evolution,
PDE’s, level set methods, and the stereo problem. IEEE Transactions
on Image Processing 7(3), 336–344 (1998) 2

[46] Federer, H.: Geometric measure theory. Springer-Verlag (1969) 110

[47] Federer, H.: Real flat chains, cochains and variational problems. Indiana
University Mathematics Journal 24, 351–407 (1974) 110

[48] Felzenszwalb, P.F., Veksler, O.: Tiered scene labeling with dynamic pro-
gramming. In: International Conference on Computer Vision and Pattern
Recognition (CVPR) (2010) 9, 67, 78, 80, 82, 83, 84, 85

[49] Geiger, D., Girosi, F.: Parallel and deterministic algorithms from MRFs:
Surface reconstruction. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 13(5), 401–412 (1991) 3

[50] Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence 6(6), 721–741 (1984) 3



BIBLIOGRAPHY 223

[51] Giaquinta, M., Modica, G., Souček, J.: Cartesian Currents in the Calculus
of Variations I: Cartesian Currents, vol. 37. Springer-Verlag, Berlin (1998)
110, 200

[52] Glocker, B., Paragios, N., Komodakis, N., Tziritas, G., Navab, N.: Optical
flow estimation with uncertainties through dynamic MRFs. In: Interna-
tional Conference on Computer Vision and Pattern Recognition (CVPR)
(2008) 121

[53] Goldluecke, B., Cremers, D.: Convex relaxation for multilabel problems
with product label spaces. In: European Conference on Computer Vision
(ECCV) (2010) 38, 122, 126, 127, 128, 129, 130, 132, 140, 146, 147, 148

[54] Goldluecke, B., Strekalovskiy, E., Cremers, D.: The natural total variation
which arises from geometric measure theory. SIAM Journal on Imaging
Sciences 5(2), 537–563 (2012) 156, 172, 178, 188

[55] Goldluecke, B., Strekalovskiy, E., Cremers, D.: Tight convex relaxations
for vector-valued labeling. SIAM Journal on Imaging Sciences 6(3), 1626–
1664 (2013) 8, 119, 122

[56] Greig, D.M., Porteous, B.T., Seheult, A.H.: Exact maximum a posteriori
estimation for binary images. Journal of the Royal Statistical Society B
51(2), 271–279 (1989) 39, 200

[57] Hochbaum, D., Singh, V.: An efficient algorithm for co-segmentation. In:
IEEE International Conference on Computer Vision (ICCV) (2009) 90

[58] Hoiem, D., Efros, A.A., Hebert, M.: Recovering surface layout from an
image. International Journal of Computer Vision 75, 151–172 (2007) 78,
82, 83

[59] Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17,
185–203 (1981) 2, 3

[60] Ishikawa, H.: Exact optimization for Markov random fields with convex
priors. IEEE Transactions on Pattern Analysis and Machine Intelligence
25(10), 1333–1336 (2003) 8, 39, 40, 109, 110, 200, 218

[61] Ishikawa, H., Geiger, D.: Segmentation by grouping junctions. In: Interna-
tional Conference on Computer Vision and Pattern Recognition (CVPR)
(1998) 110, 200

[62] Joulin, A., Bach, F., Ponce, J.: Discriminative clustering for image co-
segmentation. In: International Conference on Computer Vision and Pat-
tern Recognition (CVPR) (2010) 89, 91, 99, 102

[63] Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models.
International Journal of Computer Vision 1(4), 321–331 (1988) 2

[64] Kichenassamy, S., Kumar, A., Olver, P.J., Tannenbaum, A., Yezzi, A.J.:
Gradient flows and geometric active contour models. In: IEEE Interna-
tional Conference on Computer Vision (ICCV) (1995) 2



224 BIBLIOGRAPHY

[65] Kimmel, R., Malladi, R., Sochen, N.A.: Image processing via the Beltrami
operator. In: Asian Conference on Computer Vision (ACCV) (1998) 200

[66] Kleinberg, J., Tardos, E.: Approximation algorithms for classification
problems with pairwise relationships: Metric labeling and Markov ran-
dom fields. In: IEEE Annual Symposium on Foundations of Computer
Science (1999) 47

[67] Klodt, M., Cremers, D.: A convex framework for image segmentation with
moment constraints. In: IEEE International Conference on Computer Vi-
sion (ICCV) (2011) 91

[68] Klodt, M., Schoenemann, T., Kolev, K., Schikora, M., Cremers, D.: An
experimental comparison of discrete and continuous shape optimization
methods. In: European Conference on Computer Vision (ECCV) (2008)
2, 3, 143, 144

[69] Kolmogorov, V.: Convergent tree-reweighted message passing for energy
minimization. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 28(10) (2006) 141

[70] Kolmogorov, V., Rother, C.: Minimizing non-submodular functions with
graph cuts. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 29(7), 1274–1279 (2007) 2, 39

[71] Kolmogorov, V., Zabih, R.: What energy functions can be minimized
via graph cuts? IEEE Transactions on Pattern Analysis and Machine
Intelligence 26(2), 147–159 (2004) 39, 141

[72] Komodakis, N., Tziritas, G.: Approximate labeling via graph-cuts based
on linear programming. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 29(8), 1436–1453 (2007) 39

[73] Kulkarni, S., Mitter, S., Richardson, T., Tsitsiklis, J.: Local versus non-
local computation of length of digitized curves. IEEE Transactions on
Pattern Analysis and Machine Intelligence 16(7), 711–718 (1994) 109

[74] Kuschk, G., Cremers, D.: Fast and accurate large-scale stereo reconstruc-
tion using variational methods. In: ICCV Workshop on Big Data in 3D
Computer Vision (2013) 32

[75] Ladicky, L., Russell, C., Kohli, P., Torr, P.H.: Graph cut based inferen-
ce with co-occurrence statistics. In: European Conference on Computer
Vision (ECCV) (2008) 54, 62, 63, 64

[76] Lellmann, J., Becker, F., Schnörr, C.: Convex optimization for multi-class
image labeling with a novel family of total variation based regularizers.
In: IEEE International Conference on Computer Vision (ICCV) (2009) 2,
37, 40, 44, 54, 73, 129, 130, 131, 132, 141, 146, 148



BIBLIOGRAPHY 225

[77] Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex multi-
class image labeling by simplex-constrained total variation. Tech. rep.,
IPA, HCI, Heidelberg University (October 2008) 91, 200

[78] Lellmann, J., Lenzen, F., Schnörr, C.: Optimality bounds for a variational
relaxation of the image partitioning problem. Journal of Mathematical
Imaging and Vision 47(3), 239–257 (2013) 47

[79] Lellmann, J., Schnörr, C.: Continuous multiclass labeling approaches and
algorithms. SIAM Journal on Imaging Sciences 4(4), 1049–1096 (2011) 40,
44, 53, 58

[80] Lellmann, J., Strekalovskiy, E., Koetter, S., Cremers, D.: Total variation
regularization for functions with values in a manifold. In: IEEE Interna-
tional Conference on Computer Vision (ICCV) (2013) 218

[81] Lellmann, J., Breitenreicher, D., Schnörr, C.: Fast and exact primal-
dual iterations for variational problems in computer vision. In: European
Conference on Computer Vision (ECCV) (2010) 50

[82] Liu, X., Veksler, O., Samarabandu, J.: Order-preserving moves for graph-
cut-based optimization. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 32, 1182–1196 (2010) 9, 67, 78, 80

[83] McKelvey, J.P.: Simple transcendental expressions for the roots of cubic
equations. American Journal of Physics 52(3), 269–270 (1984) 103, 196

[84] Michelot, C.: A finite algorithm for finding the projection of a point
onto the canonical simplex of Rn. Journal of Optimization Theory and
Applications 50, 195–200 (1986) 49, 137

[85] Mirsky, L.: Symmetric gauge functions and unitarily invariant norms.
Quarterly Journal of Mathematics, Oxford Journals 2(11), 50–59 (1960)
197

[86] Moellenhoff, T., Strekalovskiy, E., Moeller, M., Cremers, D.: The primal-
dual hybrid gradient method for semiconvex splittings. SIAM Journal on
Imaging Sciences 8(2), 827–857 (2015) 218

[87] Möllenhoff, T., Strekalovskiy, E., Möller, M., Cremers, D.: Low rank
priors for color image regularization. In: International Conference on En-
ergy Minimization Methods for Computer Vision and Pattern Recognition
(EMMCVPR) (2015)

[88] Mora, M.G.: The calibration method for free-discontinuity problems on
vector-valued maps. Journal of Convex Analysis 9(1), 1–29 (2002) 201

[89] Morel, J.M., Solimini, S.: Variational Methods in Image Segmentation.
Birkhäuser, Boston (1995) 199

[90] Mukherjee, L., Singh, V., Dyer, C.: Half-integrality based algorithms for
cosegmentation of images. In: International Conference on Computer Vi-
sion and Pattern Recognition (CVPR) (2009) 89, 90



226 BIBLIOGRAPHY

[91] Mukherjee, L., Singh, V., Xu, J., Collins, M.: Analyzing the subspace
structure of related images: Concurrent segmentation of image sets. In:
European Conference on Computer Vision (ECCV) (2012) 89, 91, 98, 99,
102

[92] Mumford, D., Shah, J.: Optimal approximations by piecewise smooth
functions and associated variational problems. Communications on Pure
and Applied Mathematics 42, 577–685 (1989) 2, 199

[93] Nieuwenhuis, C., Cremers, D.: Spatially varying color distributions for
interactive multi-label segmentation. IEEE Transactions on Pattern Ana-
lysis and Machine Intelligence 35(5), 1234–1247 (2013) 98

[94] Nieuwenhuis, C., Strekalovskiy, E., Cremers, D.: Proportion priors for im-
age sequence segmentation. In: IEEE International Conference on Com-
puter Vision (ICCV) (2013) 8, 89

[95] Nieuwenhuis, C., Toeppe, E., Cremers, D.: A survey and comparison of
discrete and continuous multilabel segmentation approaches. International
Journal of Computer Vision 104(3), 223–240 (2013) 40

[96] Osher, S.J., Sethian, J.A.: Fronts propagation with curvature dependent
speed: Algorithms based on Hamilton–Jacobi formulations. Journal of
Computational Physics 79, 12–49 (1988) 40

[97] Parzen, E.: On the estimation of a probability density function and the
mode. Annals of Mathematical Statistics 33, 1065–1076 (1962) 98

[98] Pock, T., Chambolle, A.: Diagonal preconditioning for first order primal-
dual algorithms in convex optimization. In: IEEE International Conferen-
ce on Computer Vision (ICCV) (2011) 24, 27

[99] Pock, T., Chambolle, A., Bischof, H., Cremers, D.: A convex relaxation
approach for computing minimal partitions. In: International Conference
on Computer Vision and Pattern Recognition (CVPR) (2009) 45, 125

[100] Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for
minimizing the piecewise smooth Mumford-Shah functional. In: IEEE
International Conference on Computer Vision (ICCV) (2009) 2, 11, 24,
38, 60, 61, 110, 111, 118, 125, 129, 132, 200, 201, 202, 205

[101] Pock, T., Cremers, D., Bischof, H., Chambolle, A.: Global solutions of
variational models with convex regularization. SIAM Journal on Imaging
Sciences 3(4), 1122–1145 (2010) 2, 8, 38, 40, 110, 113, 115, 117, 125, 129,
131, 132, 133, 157, 159, 165, 200, 218

[102] Pock, T., Schoenemann, T., Graber, G., Bischof, H., Cremers, D.: A con-
vex formulation of continuous multi-label problems. In: European Con-
ference on Computer Vision (ECCV) (2008) 40, 110, 125, 200, 218



BIBLIOGRAPHY 227

[103] Pock, T., Zach, C., Bischof, H.: Mumford-Shah meets stereo: Integration
of weak depth hypotheses. In: International Conference on Computer Vi-
sion and Pattern Recognition (CVPR) (2007) 213, 214

[104] Potts, R.B.: Some generalized order-disorder transformations. Proceed-
ings of the Cambridge Philosophical Society 48, 106–109 (1952) 38

[105] Ramalingam, S., Kohli, P., Alahari, K., Torr, P.: Exact inference in multi-
label CRFs with higher order cliques. In: International Conference on
Computer Vision and Pattern Recognition (CVPR) (2008) 121

[106] Ranftl, R., Pock, T., Bischof, H.: Minimizing TGV-based Variational
Models with Non-Convex Data terms. In: International Conference on
Scale Space and Variational Methods in Computer Vision (SSVM) (2013)
218

[107] Riklin Raviv, T., Sochen, N., Kiryati, N.: Shape-based mutual segmenta-
tion. International Journal of Computer Vision 79, 231–245 (2008) 90

[108] Rockafellar, R.T.: Convex analysis. Princeton Landmarks in Mathemat-
ics, Princeton University Press, Princeton, NJ (1997), reprint of the 1970
original, Princeton Paperbacks 15, 25, 151, 193

[109] Rother, C., Minka, T., Blake, A., Kolmogorov, V.: Cosegmentation of
image pairs by histogram matching-incorporating a global constraint into
MRFs. In: International Conference on Computer Vision and Pattern
Recognition (CVPR) (2006) 89, 90

[110] Rubio, J.C., Serrat, J., Lopez, A.M., Paragios, N.: Unsupervised co-
segmentation through region matching. In: International Conference on
Computer Vision and Pattern Recognition (CVPR) (2012) 89, 91, 99

[111] Rudin, L.I., Osher, S.J., Fatemi, E.: Nonlinear total variation based noise
removal algorithms. Journal of Physics D 60(1–4), 259–268 (1992) 158

[112] Schlesinger, D., Flach, B.: Transforming an arbitrary min-sum problem
into a binary one. Tech. rep., Dresden University of Technology (2006) 39

[113] Shekhovtsov, A., Garcia-Arteaga, J., Werner, T.: A discrete search
method for multi-modal non-rigid image registration. In: CVPR Work-
shop on Non-Rigid Shape Analysis and Deformable Image Alignment
(2008) 121

[114] Shekhovtsov, A., Kovtun, I., Hlavac, V.: Efficient MRF deformation
model for non-rigid image matching. Computer Vision and Image Un-
derstanding 112, 91–99 (2008) 121

[115] Souiai, M., Nieuwenhuis, C., Strekalovskiy, E., Cremers, D.: Convex op-
timization for scene understanding. In: ICCV Workshop on Graphical
Models for Scene Understanding (2013)



228 BIBLIOGRAPHY

[116] Souiai, M., Strekalovskiy, E., Nieuwenhuis, C., Cremers, D.: A co-oc-
currence prior for continuous multi-label optimization. In: International
Conference on Energy Minimization Methods for Computer Vision and
Pattern Recognition (EMMCVPR) (2013)

[117] Sroubek, F., Cristobal, G., Flusser, J.: A unified approach to superresolu-
tion and multichannel blind deconvolution. IEEE Transactions on Image
Processing 16(9), 2322–2332 (2007) 109

[118] Strang, G.: Maximal flow through a domain. Mathematical Programming
26(2), 123–143 (1983) 39

[119] Strekalovskiy, E., Chambolle, A., Cremers, D.: A convex representation
for the vectorial Mumford-Shah functional. In: International Conference
on Computer Vision and Pattern Recognition (CVPR) (2012) 8, 199

[120] Strekalovskiy, E., Chambolle, A., Cremers, D.: Convex relaxation of vec-
torial problems with coupled regularization. SIAM Journal on Imaging
Sciences 7(1), 294–336 (2014) 8, 155

[121] Strekalovskiy, E., Cremers, D.: Generalized ordering constraints for mul-
tilabel optimization. In: IEEE International Conference on Computer Vi-
sion (ICCV) (2011) 8, 67, 72, 76

[122] Strekalovskiy, E., Cremers, D.: Total variation for cyclic structures: Con-
vex relaxation and efficient minimization. In: International Conference on
Computer Vision and Pattern Recognition (CVPR) (2011) 132, 133

[123] Strekalovskiy, E., Cremers, D.: Real-time minimization of the piecewise
smooth Mumford-Shah functional. In: European Conference on Computer
Vision (ECCV) (2014) 218

[124] Strekalovskiy, E., Goldluecke, B., Cremers, D.: Tight convex relaxations
for vector-valued labeling problems. In: IEEE International Conference
on Computer Vision (ICCV) (2011) 8, 119, 122, 149

[125] Strekalovskiy, E., Nieuwenhuis, C., Cremers, D.: Nonmetric priors for con-
tinuous multilabel optimization. In: European Conference on Computer
Vision (ECCV) (2012) 8, 53, 58

[126] Sun, D., Roth, S., Black, M.J.: Secrets of optical flow estimation and their
principles. In: International Conference on Computer Vision and Pattern
Recognition (CVPR) (2010) 185, 186

[127] Szeliski, R.: Bayesian modeling of uncertainty in low-level vision. Inter-
national Journal of Computer Vision 5(3), 271–301 (1990) 1

[128] Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agar-
wala, A., Tappen, M., Rother, C.: A comparative study of energy mini-
mization methods for Markov random fields. In: European Conference on
Computer Vision (ECCV) (2006) 141



BIBLIOGRAPHY 229

[129] Tappen, M., Freeman, W.: Comparison of graph cuts with belief propaga-
tion for stereo, using identical MRF parameters. In: IEEE International
Conference on Computer Vision (ICCV) (2003) 141

[130] Unger, M., Pock, T., Werlberger, M., Bischof, H.: A convex approach
for variational super-resolution. In: Annual Symposium of the German
Association for Pattern Recognition (DAGM) (2010) 109

[131] Veksler, O.: Star shape prior for graph-cut image segmentation. In: Eu-
ropean Conference on Computer Vision (ECCV) (2008) 9, 67, 84

[132] Vicente, S., Rother, C., Kolmogorov, V.: Object cosegmentation. In:
International Conference on Computer Vision and Pattern Recognition
(CVPR) (2011) 89, 90, 98, 99

[133] Villani, C.: Topics in optimal transportation, Graduate Studies in Math-
ematics, vol. 58. American Mathematical Society, Providence, RI (2003)
160

[134] Wainwright, M., Jaakkola, T., Willsky, A.: Map estimation via agreement
on trees: message-passing and linear programming. IEEE Transactions on
Information Theory 51(11), 3697–3717 (2005) 2, 39, 141

[135] Weinmann, A., Demaret, L., Storath, M.: Total variation regularization
for manifold-valued data. SIAM Journal on Imaging Sciences 7(4), 2226–
2257 (2014) 218

[136] Welk, M., Theis, D., Brox, T., Weickert, J.: PDE-based deconvolution
with forward-backward diffusivities and diffusion tensors. In: Interna-
tional Conference on Scale Space and PDE Methods in Computer Vision,
Lecture Notes in Computer Science, vol. 3459, pp. 585–597. Springer-
Verlag (2005) 109

[137] Werlberger, M., Unger, M., Pock, T., Bischof, H.: Efficient minimization
of the non-local potts model. In: International Conference on Scale Space
and Variational Methods in Computer Vision (SSVM) (2011) 109

[138] Xu, L., Jia, J., Matsushita, Y.: Motion detail preserving optical flow esti-
mation. IEEE Transactions on Pattern Analysis and Machine Intelligence
34(9), 1744–1757 (2012) 185, 186

[139] Yezzi, A., Zöllei, L., Kapur, T.: A variational framework to integrate seg-
mentation and registration through active contours. Medical Image Ana-
lysis 7, 171–185 (2003) 90

[140] Zach, C., Gallup, D., Frahm, J., Niethammer, M.: Fast global labeling
for real-time stereo using multiple plane sweeps. In: Workshop on Vision,
Modeling and Visualization (2009) 2, 37, 40, 43, 91, 200

[141] Zach, C., Hane, C., Pollefeys, M.: What is optimized in convex relaxations
for multilabel problems: Connecting discrete and continuously inspired



230 BIBLIOGRAPHY

map inference. IEEE Transactions on Pattern Analysis and Machine In-
telligence 36(1), 157–170 (2014) 40, 51, 58

[142] Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime
TV −L1 optical flow. In: Annual Symposium of the German Association
for Pattern Recognition (DAGM) (2007) 131, 147

[143] Zach, C., Hane, C., Pollefeys, M.: What is optimized in tight convex
relaxations for multi-label problems? In: International Conference on
Computer Vision and Pattern Recognition (CVPR) (2012) 40, 51, 58,
143, 144

[144] Zheng, S., Xu, L., Jia, J.: Forward motion deblurring. In: IEEE Interna-
tional Conference on Computer Vision (ICCV) (2013) 218


