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Abstract— Usually the identification of piecewise affine sys-
tems consists of two steps. First, subsystem parameters are
identified before the state space partition is reconstructed. For
the later step, it is common to label the states of a recorded
trajectory and separate differently labeled states with the help
of linear support vector machines. In this paper, we present
an alternative approach to estimate switching hyperplanesin
continuous time piecewise affine systems. The presented ap-
proach builds upon three components. First, a hybrid observer
reconstructs the switching signal up to a bounded delay. Second,
we remove the delay in the reconstructed switching signal
by solving an optimization problem. We obtain more precise
switching states that lie on a specific switching hyperplane.
Third, the switching hyperplanes are fitted to the switching
states with Total Least Squares. The paper illustrates the
presented approach on a numerical example.

I. I NTRODUCTION

Many engineered and biological systems exhibit hybrid
and nonlinear phenomena. The hybrid phenomena are fre-
quently due to different modes of operation that the system
undergoes. Other causes for hybrid behavior are physical lim-
its, dead-zones or switching at thresholds. A popular way to
deal with hybrid and nonlinear systems are piecewise affine
(PWA) models, because they are known to be equivalent
to certain classes of hybrid systems [1]. Furthermore, PWA
models have an universal approximation property and can
thus be used to approximate nonlinear systems. Therefore,
research on the identification of PWA systems has gained
a considerable amount of interest over the past decade. An
extensive summary of this research effort is given in [2].

A PWA model is obtained by partitioning the state-
input space into regions and assigning each region local,
linear dynamics. Both subsystem dynamics and regions must
be identified based on measurements that do not contain
information about which subsystem generated the data. Most
of the proposed approaches carry out the identification in
two steps. First, the parameters of the linear subsystems
are estimated either simultaneously or iteratively. Once the
subsystem dynamics are known, the partitioning of the state-
input space is established with standard, linear support vector
machines (SVMs) [3].

The reconstruction of polyhedral regions with SVMs is
successful in the case of piecewise autoregressive exogenous
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(PWARX) systems with fixed regions. In that case, it is
easy to correctly label regression vectors by finding the
subsystem that predicts best the next measurement. Also,
fixed regions allow us to collect a long time series of data-
label pairs, which can be fed into the SVM in batch mode.
For continuous-time PWA systems in state space form with
time varying switching boundaries, however, the use of the
standard SVM approach is not straightforward. First, the
models only provide state derivatives which can generally not
be measured. Therefore, observers must be used to determine
the best fitting model. The observers introduce a certain delay
and thus cause erroneous labels after each switch. Second,
moving switching boundaries can cause inconsistent labels
when the SVM categorization is carried out in batch mode.

In this paper, we propose an algorithm to recursively esti-
mate and track time varying regions of continuous-time PWA
systems in state space form. With the proposed algorithm it
is possible to identify the switching mechanism of a class
of hybrid systems. This information can be used to improve
the tracking performance of observers for hybrid systems by
predicting switches rather than reacting to switches. Also,
tracking switching boundaries can be an enabling factor for
adaptive control of PWA systems, which is so far restricted
to fixed and known switching boundaries (e.g. [4]).

The proposed algorithm consists of three major steps.
First, an online switching signal estimator [5] estimates the
switching time and state up to a certain level of precision.
At the same time, the applied observer records parts of the
trajectory and determines the active models before and after
the actual switch. The recorded trajectory thus contains only
a single, not very precisely estimated switch. In the second
step, an optimization problem is set up to find the actual
switching state with greater precision. Repeating the first
two steps for each switch leads to point clouds of switching
states. Each switching state is thereby associated with two
neighboring regions. Finally, the switching hyperplanes are
fitted to these point clouds by Total Least Squares.

The remainder of this paper is structured as follows.
Section II gives an introduction to PWA systems in state
space form and formulates the problem. In section III, we
present the new approach to hyperplane estimation consisting
of three steps. We validate the proposed algorithm in section
IV. Section V concludes the paper.

II. I NTRODUCTION TOPWA SYSTEMS

We consider PWA systems in state space form with state
x ∈ R

n, control input u ∈ R
p and outputy ∈ R

q. In
PWA systems, the state-input space[xT uT ]T ∈ R

n+p is



partitioned intos ∈ N
+ polyhedral regionsΩi. In order to

obtain a well defined system, the partition is assumed to be
complete, i.e.∪s

i=1Ωi = R
n+p and Ωi ∩ Ωj = ∅, ∀i 6= j.

A local, linear model with state matrixAi ∈ R
n×n, input

matrix Bi ∈ R
n×p, affine input vectorfi ∈ R

n and output
matrix Ci ∈ R

q×n is assigned to each regionΩi. The
piecewise constant, right continuous switching signalσ(t) ∈
N := {1, . . . , s} indicates the currently active subsystem.
The state-input vector and the regionsΩi determine the active
subsystem by

σ(t) = i if

[

x(t)
u(t)

]

∈ Ωi, i ∈ N .

With measurement noiseν ∈ R
q, the considered PWA

systems in state space form are given by the switched system

ẋ(t) = Aσ(t)x(t) +Bσ(t)u(t) + fσ(t)

y(t) = Cσ(t)x(t) + ν(t).
(1)

The borders of the polyhedral regionsΩi are usually given
in terms of hyperplanes in the state-input space. The points
on a single hyperplane fulfill the condition

n
∑

k=1

αkxk +

p
∑

k=1

βkuk + γ = h





x

u

1



 = 0, (2)

where h =
[

α1, . . . , αn, β1, . . . , βp, γ
]

∈ R
1×(n+p+1).

If we replace the equality in (2) with inequalities≤ 0 or
< 0, equation (2) defines a half-space ofR

n+p including
or not including the hyperplane, respectively. In order to
characterize the polyhedral regionΩi, we define a matrix
Hi ∈ R

µi×(n+p+1) that combinesµi ∈ N
+ such hyperplanes

in its rows:Hi =
[

hT
1,i . . . hT

µi,i

]T
.We also define a list

�[i] of µi operators≤ and< to decide which hyperplanes of
Hi belong toΩi. For the polyhedral regions we thus have:

Ωi =
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x

u

]

∈ R
n+p
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∣
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. (3)

A common problem in the identification of PWA systems
is to estimate or reconstruct the polyhedral regionsΩi once
the subsystem dynamics are known [2]. With algorithms
similar to the ones presented in [6] and [7], the subsystem dy-
namics of a switched system can be recursively determined;
independently of the switching signal. The general problem
discussed in this paper thus reads as follows.

Problem 1: Given the subsystem dynamicsAi, Bi, fi and
Ci, find the regions characterized byHi, i ∈ N .

The most frequently used approach to Problem 1 is to gen-
erate labels for each measured state-input vector. The labeled
state-input vectors are subsequently separated with standard
SVMs, which yield the switching hyperplanes. In the discrete
time case, labels are easily generated by predicting the next
measurement for each subsystem and finding the subsystem
that predicts best the next measurement. To apply the same
intuitive approach in continuous time, we would design an
observer for each subsystem to estimate the measured output:

˙̂xi = (Ai − LiCi)x̂i + Liy +Biu+ fi (4)

whereLi ∈ R
n×q are the observer gains to ensure that the

estimatêxi remains bounded; especially ifx is not generated
by the i-th subsystem. The labels would then be generated
by

σ̂(x(t), u(t)) = argmin
i

|y(t)− Cix̂i(t)|2. (5)

Due to the limited convergence rate of the observers, the
obtained labels do not coincide well with the true switching
signal. We thus propose a novel approach to identify the
polyhedral regions more precisely. Furthermore, our algo-
rithm works recursively and can thus also track time-varying
polyhedral regions. The following problem formulation de-
scribes this more challenging task.

Problem 2: Given the subsystem dynamicsAi, Bi, fi and
Ci, find and track the time varying regions characterized by
Hi(t).

III. H YPERPLANE ESTIMATION

The solution to Problem 2 consists of three steps. In the
first step, a hybrid observer estimates the switching signal
online. Due to the inherently reactive nature of observers to
estimation errors, the estimated switching signal obtained in
the first step is delayed compared with the true switching
signal. However, the applied observer allows to record parts
of the output trajectories before and after the switch, which
can subsequently help to improve the estimated switching
time. In the second step, we define and solve an optimization
problem based on the recorded trajectory, which gives us
a more precise estimate of the switching time and state.
After collecting several switching states, the third step fits
a hyperplane to these states. The following three subsections
describe the three steps in greater detail.

A. Hybrid switching state observers

The first step towards estimating the polyhedral regions of
PWA systems is the reconstruction of the unknown switching
signalσ(t) as well as the statex(t) based on measurements
of the noisy outputy(t). This alone constitutes a challenging
task and has attracted a considerable amount of research
on observability of hybrid and switched systems (e.g. [8]–
[10]) and put forth various switching signal estimators and
observers for hybrid and switched systems.

In [10], the switching signal is assumed to be known
and the challenge is to estimate the states of a switched
system with state jumps even if some of the subsystems
are not observable. In [11] and [12], the inputs and outputs
of the switched system are numerically differentiated to
generate residuals. Only the residual which belongs to the
active subsystem is zero. Another approach to estimate the
switching times of an autonomous, switched system online
is presented in [13] and [14] and based on algebraic tools
and distribution theory, which is needed to handle derivatives
of non smooth dynamics. The observer for hybrid systems
presented in [15] consists, as most hybrid observers, of two
parts. The first part estimates the current mode of the system
and the second part estimates the continuous states of the
system.



We found the observer for switched linear systems pre-
sented in [5] to be the most suitable for our endeavor, because
it allows for a straightforward recording of input and output
data before and after a switch. The estimation algorithm in
[5] is based on the idea of a minimum distance criterion
[16]. With the proposed algorithm, we estimate switches
of the PWA system in two stages. Note that the overall
hyperplane estimation consists of three steps, whereas the
online switching signal estimator has two stages. The first
stage of the algorithm applies at the beginning or whenever
a switch occurs. This stage is calledestimation and has
a minimum duration ofδ, in which the current mode of
the PWA system is correctly determined and the state is
estimated up to a certain noise level. Once the current mode
is correctly estimated, the algorithm switches to its second
stage: Thedetection stage aims to detect a switch within a
maximum delay∆. After detecting a switch, the algorithm
carries on with the estimation stage and so forth.

We now recap the two stages estimation and detection of
the online switching signal estimator in sufficient detail for
implementation. For the rigorous proofs of the algorithm,
we refer the reader to [5]. Three assumptions arise for the
algorithm to operate in the anticipated way. For a better
readability, we only discuss here the practical implications
of the three assumptions and list the detailed assumptions
in the appendix. The distinguishability of any two subsys-
tems is guaranteed by Assumption 1. Assumption 2 gives
constraints for the variablesδ, ∆, X△ andS△ and highlights
their relationship to the inputu and measurement noiseν.
Furthermore, they depend on a quantity that expresses the
maximum distance between two subsystem parameteriza-
tions. For a more detailed treatment of distance measures
between dynamical systems we refer to [17]. A minimum
dwell time of lengthδ +∆ is demanded by Assumption 3.

Estimation of the active mode: The first stage of the
algorithm is active when the algorithm starts and whenever a
switch has been detected. Assume that we have just detected
thej-th switch at timetj , then we set the estimated switching
time t̂j = t. At the initialization of the algorithm we have
t̂0 = 0. While the PWA system (1) evolves over the time-
interval [t̂j , t̂j + δ], we integrate in real-time the following
differential equations with initial conditionšxi(t̂j) = 0 and
zi(t̂j) = 0 for all subsystemsi ∈ N :

˙̌xi = Aix̌i +Biu+ fi (6)

żi = −AT
i zi + CT

i (y − Cix̌i). (7)

At the same time, we recordu(τ) andy(τ), τ ∈ [t̂j , t̂j + δ].
Note here that we use theˇ symbol (̌x) to characterize an
open loop observer in contrast to theˆ symbol (̂x) for the
standard Luenberg observer in (4).

With the stateszi(t̂j + δ), obtained in (7), we calculate
better initial conditionsX∗

i for x̌i at time instancêtj :

X∗
i = U−1

i (δ)eA
T
i δzi(t̂j + δ), (8)

where Ui(t) :=
∫ t

0 φ
T
i (τ)φi(τ)dτ is the observability

Gramian for modei andφi(t) := Cie
Ait. With the improved

initial conditionsx̌i(t̂j) = X∗
i andsi(t̂j) = 0 and the stored

values ofu and y, we integrate the following differential
equations once more over the interval[t̂j , t̂j + δ] (for conve-
nience, this is assumed to happen instantaneously att̂j):

˙̌xi = Aix̌i +Biu+ fi (9)

ṡi = |y − Cix̌i|2. (10)

The integral of (10) basically sums up the difference
between the measured outputsy and the estimated outputs
of the open loop observer (9). We evaluate at timet̂j + δ the
costsJi(X∗

i ) = si(t̂j + δ). The currently active mode is the
one with minimum cost:

σ̂j := σ̂(t̂j + δ) = argmin
i∈N

Ji(X
∗
i ). (11)

We also reset the state of another Luenberg observer to the
corresponding best estimatêx(t̂j) = X∗

σ̂j
. If Assumptions 1

and 2 hold, one can show that the estimated modeσ̂j is
correct and that the state estimatex̂(t̂j) is equal to the true
statex(t̂j) up to certain noise levels [5, Theorem 1]:

x̂(t̂j) = x(t̂j) + U−1
σ̂j

(δ)

∫ t̂j+δ

t̂j

φT
σ̂j
(τ − t̂j)ν(τ)dτ. (12)

Detection of mode switches:During this stage, we
estimate the state of the system with two observers, both
parametrized for thêσj-th subsystem. One of the observers
is an open loop observer (x̌), while the other one is a standard
Luenberg observer (̂x). With the recorded data ofu and y,
we catch up from̂tj to the current timêtj + δ by integrating

˙̌x = Aσ̂j
x̌+Bσ̂j

u+ fσ̂j
(13)

˙̂x = (Aσ̂j
− Lσ̂j

Cσ̂j
)x̂+Bσ̂j

u+ fσ̂j
+ Lσ̂j

y (14)

ṡ = |y − Cσ̂j
x̌|2 (15)

with initial conditionsx̌(t̂j) = x̂(t̂j) = X∗
σ̂j

(as in (8)) and
s(t̂j) = 0. After catching up tot = t̂j+δ, we integrate (13) -
(15) over time frames of length∆ in real-time. For that, we
reset the state of the open loop observerx̌(t) = x̂(t) and the
starting time of the∆-frame tup = t. After each∆-frame
(t − tup > ∆), we again reset the open-loop observer state
x̌(t) = x̂(t) and the starting timetup = t. We detect a switch
when one of the following two conditions is fulfilled:

|x̌(t)− x̂(t)| > X△, s(t)− s(t−∆) > S△, (16)

where the thresholdsX∆ andS∆ are given by Assumption 2
in the appendix. If Assumptions 1 to 3 hold, the detection
algorithm is guaranteed to find an estimatet̂j+1 of the
next switch attj+1 within the interval[tj+1, tj+1 + ∆] [5,
Theorem 2]. After detecting a switch, the algorithm returns
to the estimation stage.

The estimated switching timêtj+1 has a maximum delay
of ∆. To eliminate this delay, we propose to recordu and
y over each time frame∆ as well as the value of̂x at the
beginning of each interval. As the memory of control systems
is usually limited and the PWA system might not switch
its mode for a long time, it suffices to store only the last
two recorded intervals. Together with the recorded values
during the estimation stage, we collect three connected parts
of the system trajectory: the first element of length∆ before



the switch, the second element also of length∆ containing
the estimated switching timêtj+1 and the third element of
lengthδ after the estimated switching time. Figure 1 sketches
the recorded output trajectory and highlights the elementsof
length ∆ and δ. We use these recordings in the next step
of the proposed hyperplane estimation algorithm to estimate
the switching state more precisely.

B. Optimized switching states

We now formulate an optimization problem to find a more
precise estimate of the true switching time and state. There
exist various approaches for optimal control of switching
systems (see [18]–[20] and references therein). They usually
aim to determine the optimal sequence and time instances in
which a given set of system dynamics needs to be activated
in order to minimize a certain cost function. Our optimization
problem is easier as we know the switching sequence and
only need to optimize for a single switching time.

We have records of the inputsu and outputsy of the PWA
system over a time interval[t0, te] (see Fig. 1). Furthermore,
we know that the system switches its mode during this period
from σ̂j to σ̂j+1. Finally, we have the estimated statex̂(t0).
The output trajectory for a specific switching timeτ is y̌(t) =
Cσ̂j

x̌(t) if t ≤ τ or y̌(t) = Cσ̂j+1
x̌(t) if t > τ where

˙̌x(t) =

{

Aσ̂j
x̌(t) +Bσ̂j

u(t) + fσ̂j
,if t ≤ τ

Aσ̂j+1
x̌(t) +Bσ̂j+1

u(t) + fσ̂j+1
,if t > τ

andx̌(t0) = x̂(t0). The squared error between the estimated
output trajectory̌y and the recorded output trajectoryy serves
as a cost function. This cost function solely depends on
the parameterτ and must be minimized to find the optimal
switching timet̄j+1:

t̄j+1 = arg min
τ

s.t. t0≤τ≤te

∫ te

t0

|y(t)− y̌(t)|2dt. (17)

No real-time constraints arise for this constrained opti-
mization problem as the estimation and detection algorithm
in III-A does not rely on the solution. Standard optimization
techniques such as golden section search and parabolic
interpolation are suitable for the optimization problem.

The optimal switching timētj+1 is used to calculate a
more precise estimate of the switching statex̂(t̄j+1) and
input u(t̄j+1), which are used in the subsequent step to
estimate the switching hyperplanes.

C. Hyperplane fitting with Total Least Squares

By performing the previous two steps over multiple
switches, we generate sets of labeled switching states. The

∆ ∆ δ

y

y̌

σ
σ̂

t̂t0 t̂tet̂tj+1 t̂j+1

Fig. 1. Sketch of the recorded time frame containing the actual switching
time tj+1 as well as the time instancêtj+1 when the switch was detected.

label uniquely specifies the switching hyperplane that the
state belongs to. Assume that we detected a switch from
regionk to regionl in the first step of the algorithm. Hence,
we know that there must exist a switching hyperplane that
separatesΩk from Ωl and the estimated switching state lies
on this hyperplane. After we collected multiple switching
states for switches from regionk to l and vice versa, all that
is left do is to fit a hyperplane to this set of points.

With the hyperplane equation (2) andm collected switch-
ing states, fitting a hyperplane to the data points can be in-
terpreted as finding the solution to an overdetermined system
of equationsAX ≈ B. HereA ∈ R

m×(n+p) andB ∈ R
m

consist of given data andX ∈ R
n+p contains the unknown

hyperplane parameters. We typically have more data points
than unknowns (m > n + p + 1) and must assume thatA
and B contain uncertainties. Therefore, an exact solution
to the overdetermined system does not exist. With Total
Least Squares however it is possible to find an approximate
solution by correcting the system of equations with slack
variablesEA andEB. This leads to the optimization problem

min
X,EA,EB

s.t. (A+EA)X=B+EB

∥

∥[EA EB]
∥

∥

F
(18)

where ‖ · ‖F is the Frobenius norm. An overview of the
history of Total Least Squares as well as some recent
advances in the field are given in [21].

For our case, we setγ = 1 and letX contain the remaining
parameters of the hyperplane that are to be found, i.e.X =
[α1, . . . , αn, β1, . . . , βp]

T . Each row ofA corresponds to one
of the obtained switching states (e.g.[x̂T (t̄j), u

T (t̄j)]) and
B is a column vector with all elements equal to−1.

In order to find the solution to the Total Least Squares
problem (18), we compute the singular value decomposition
[A B] = UΣV T and obtain the block matrixV with
V11 ∈ R

(n+p)×(n+p), V12 ∈ R
(n+p)×1, V21 ∈ R

1×(n+p)

andV22 ∈ R. A solution to (18) exists ifV22 is nonzero and
the optimal parameter vector̂X is given byX̂ = −V12V

−1
22

[21, Algorithm 1]. In turn, the hyperplane iŝh = [X̂T , 1].
Since any two switches are assumed to be separated by

a dwell time, we also assume that the time between two
switches suffices to recompute the singular value decomposi-
tion. If the dwell time is too short or if the computational cost
is too large, one could resort to a recursive implementation
of Total Least Squares (see [22] and references therein).

IV. N UMERICAL VALIDATION

We now validate our algorithm with an exemplary PWA
system. While the algorithm was also successfully applied to
more complex systems, note that greater system complexity
might make it impossible to fulfill the required assumptions.
We consider here the PWA system discussed in [23] and [24]
with the following three subsystem dynamics:

A1 =

[

0 1
−2 −1

]

A2 =

[

0 1
−2.5 −1

]

A3 =

[

0 1
−1.5 −1

]

f1 =
[

0 0.2
]T

f2 =
[

0 0.4
]T

f3 =
[

0 −0.3
]T



and B = [0 1.5]
T and C = [1 0]. The hyperplaneh12

separates subsystem 1 and 2, whileh13 separates subsystem
1 and 3. For the first250 s, the hyperplanes are constant
with h12,I =

[

−1 0 0 2
]

and h13,I =
[

1 0 0 2
]

.
The PWA system is excited by a sinusoidal input signal with
varying amplitude:u(t) = (9+3 cos(0.015t)) sin(0.1t). The
outputy(t) is affected by additive white noise with zero mean
and νmax = 0.1. For the online estimation of the switching
signal σ̂ according to section III-A, the observer gainsLi

are chosen such that the poles of the Luenberg observers
Ai − LiCi lie at −3 and−3.5. This gives sufficiently fast
convergence without amplifying the measurement noise. The
remaining design parameters areδ = 0.8, ∆ = 0.8, S∆ =
0.003 andX∆ = 0.04.

Figure 2 shows the signals estimated with the proposed
algorithm during the first250 s. The dash-dotted trajectory
represents the true state of the PWA system. The solid,
colored trajectory shows the estimated state obtained with
the hybrid state observer. The hybrid state observer also
delivers an estimate of the switching signalσ̂(t), which is
included in the figure through color coding. The red (middle),
green (right) and blue (left) parts of the trajectory belongto
the subsystems1, 2 and 3, respectively. Note that the state
estimation is precise as long as the estimated switching signal
is correct. Whenever the PWA system switches atx1 = ±2,
the hybrid observer requires an additional time interval of
maximum lengthδ + ∆ to detect the switch and estimate
the current mode. During this transient phase, the estimated
trajectory deviates from the true trajectory. Such deviations
cannot be avoided in hybrid observers with switching signal
reconstruction.

A linear SVM is trained with the colored/labeled trajectory
elements. The hyperplanes obtained with this traditional
approach are visualized by dashed lines in Fig. 2. Note
that the SVM hyperplanes deviate from the true switching
hyperplanes by a few degrees. This is due to the delayed
detection of switches. As proposed in section III-B, we find
a more precise estimate of the switching time by solving the
simple optimization problem (17). We use the Matlab func-
tion fminbnd which on average solved the problem within
443.6 ms on a quad core (i5-2500K,3.30Ghz). Figure 3 shows
how the optimization step improves the estimated switching
time from t̂j (obtained online) tōtj . Circles and triangles
highlight the optimized switching states in Fig. 2.
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Fig. 2. State space trajectory of the real system (dash-dotted) and the
online-switching signal observer (colored) for250 s. Circles and triangles
mark the estimated switches1 ↔ 2 and1 ↔ 3 obtained by optimization.
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tj t̄j t̂j

y̌(t) for τ = t̄j
y̌(t) for τ = t̂j
y(t)

Fig. 3. Improving the estimated switching time from̂tj to t̄j by minimizing
the squared error between measured outputy(t) and estimated outpuťy(t).

In the final step, presented in section III-C, the estimated
hyperplaneŝh12 andĥ13 are fitted to the optimized switching
states by Total Least Squares. We obtain

ĥ12,I =
[

−1.0024 0.0107 0.0000 2.0000
]

,

ĥ13,I =
[

1.0023 0.0149 0.0000 2.0000
]

,

which is very close toh12,I and h13,I. Compared with the
SVM-approach (dotted lines), the proposed approach (solid
lines) delivers a much better approximation of the true
hyperplanes.

After t = 250 s, we change the hyperplanes toh12,II =
[

−0.2 0.2 0 0.1
]

and h13,II =
[

1 0 0 3
]

in order
to analyze the tracking properties of the presented algorithm.
The parameter changes resemble a rotation ofh12 and a
translation ofh13 and could be caused by aging or wear
in a practical system. The tracking ability was gained by
calculating the Total Least Squares solution only for the last
m = 6 switching states per hyperplane.

Figure 4 shows how the algorithm tracks the changing
hyperplanes. The estimated state space trajectory fromt =
250 s to t = 500 s is given by a colored, solid trajectory.
The intensity of the trajectory increases with time. The same
applies for the estimated switching states and hyperplanes.
The switching states fort < 250 s are given by gray
circles and triangles, while the estimated hyperplanes at
t = 250 s are shown as dashed, gray lines. The intensity of
the estimated switching states then shifts from gray to black
as time goes on. The figure also shows the time varying
estimateŝh12(t) and ĥ13(t) from t = 250 s to t = 500 s.
Arrows indicate the movement of the estimates. Intermediate
estimates are shown by lines of varying width and intensity.
The thinner and lighter a line, the older is the corresponding
estimate of the switching hyperplane. The final estimates are
again very close to the true parametersh12,II andh13,II :

ĥ12,II (t = 500) =
[

−0.2020 0.2008 0.0000 0.1000
]

,

ĥ13,II (t = 500) =
[

0.9974 0.0045 0.0000 3.0000
]

.

1 23

x1
−12 −8 −4 0 4 8

x2

−1.5

−0.5

0.5

1.5

ĥ12(t)

ĥ13(t)

Fig. 4. Tracking time-varying hyperplanes with the proposed algorithm.



V. CONCLUSION

We present an alternative approach to estimate switching
hyperplanes of continuous-time PWA systems in state space
form. We show that the existing SVM approach delivers
shifted estimates in the continuous-time case. The proposed
algorithm overcomes this limitation in three steps. First,a
hybrid state observer obtains rough estimates of the switch-
ing signal and the full state of the PWA system. After every
detected switch, the accuracy of the estimated switching time
is improved by solving a simple optimization problem. A
switching hyperplane is then fitted to multiple switching
states by Total Least Squares. In comparison to the SVM
approach, our algorithm delivers much more accurate esti-
mates. Furthermore, our algorithm easily tracks parametric
changes of time-varying switching hyperplanes, which is not
possible in the SVM case. Guidlines for finding feasible
design parameters are subject to future work.

APPENDIX

We repeat and discuss here the assumptions for the hybrid
observer in section II-A, which were originally presented
in [5]. A general premise for mode detection in switched
systems is related to joint observability.

Assumption 1:The joint observability Gramian

Wi,j(t) :=

∫ t

0

[

φT
i (τ)

φT
j (τ)

]

[

φi(τ) φj(τ)
]

dτ,

of two subsystemsi and j with φi(t) := Cie
Ait is nonsin-

gular for anyt 6= 0 and i 6= j. ♦

Let ωmin(t) = mini6=j λmin(Wi,j(t)) be the minimum
eigenvalue of the observability Gramian for all subsystem
combinations and a time periodt. Furthermore, we introduce
the approximationšµ, µ̂ ≥ 1 andλ̌, λ̂ ≥ 0 such that‖eAit‖ ≤
µ̌eλ̌t and‖e(Ai−LiCi)t‖ ≤ µ̂e−λ̂t, ∀t ≥ 0, ∀i ∈ N . Finally,
let Lmax = maxi∈N ‖Li‖ andCmax = maxi∈N ‖Ci‖. Then
the intervalsδ and∆ can be related to the input and noise
of the PWA system by the following assumption.

Assumption 2:The signals u and ν are uniformly
bounded, i.e.|u(t)| ≤ umax, |ν(t)| ≤ νmax, ∀t ≥ 0.
Moreover, there exist positive constantsδ and∆, such that

ωmin(δ)|x(t)|2 >
(

umax

√

Nu(δ) + 2νmax

√
δ
)2

,

ωmin(∆)|x(t)|2 >
1

2

(

umax

√

Nu(∆) + 2νmax

√
∆+

2νmaxCmax(µ̌e
λ̌∆ + 1)2Ê(δ)

√
∆
)2
,

wherehi(t) := φi(t)Bi andUi(t) :=
∫ t

0
φT
i (τ)φi(τ)dτ and

Nu(δ) := max
i,j∈N ,i6=j

∫ δ

0

(
∫ τ

0

‖hi(s)− hj(s)‖ds
)2

dτ,

Mmax(δ) := max
i∈N

Mi(δ) := max
i∈N

∫ δ

0

‖U−1
i (δ)φT

i (τ)‖dτ,

Ê(δ) := max

{

Mmax(δ),
Lmax

λ̂

}

.

The thresholdNu(δ) resembles a maximum distance be-
tween any two subsystem parameterizations. Finally define
the following thresholdsX△ := νmax(µ̌e

λ̌∆ + 1)Ê(δ) and
S△ := ν2max(1 + Cmax(µ̌e

λ̌∆ + 2)Ê(δ))2∆ . ♦

Assumption 3:The switching signalσ has a dwell time
of ∆ + δ and there is no switch in the initial time interval
[0, δ]. ♦
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