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Abstract— Usually the identification of piecewise affine sys- (PWARX) systems with fixed regions. In that case, it is
tems consists of two steps. First, subsystem parameters are easy to correctly label regression vectors by finding the
identified before the state space partition is reconstructg. For subsystem that predicts best the next measurement. Also
the later step, it is common to label the states of a recorded fixed regions allow us to collect a long time series of aata- ,
trajectory and separate differently labeled states with the help g X ; Y .
of linear support vector machines. In this paper, we present label pairs, which can be fed into the SVM in batch mode.
an alternative approach to estimate switching hyperplanesn  For continuous-time PWA systems in state space form with
continuous time piecewise affine systems. The presented ap-time varying switching boundaries, however, the use of the
proach builds upon three components. First, a hybrid obserer  gi5n4ard SVM approach is not straightforward. First, the
reconstructs the switching signal up to a bounded delay. Sead, models only provide state derivatives which can generalty n
we remove the delay in the reconstructed switching signal yp 9 .
by solving an optimization problem. We obtain more precise € measured. Therefore, observers must be used to determine
switching states that lie on a specific switching hyperplane the best fitting model. The observers introduce a certasydel
Third, the switching hyperplanes are fitted to the switching and thus cause erroneous labels after each switch. Second,
Strzts:nt‘évétha Torgi'lcr';eoafta lsqﬂ‘rj:éﬁiéﬁei‘;nf’e}ger llustrates the  oying switching boundaries can cause inconsistent labels
P PP pie. when the SVM categorization is carried out in batch mode.

. INTRODUCTION In this paper, we propose an algorithm to recursively esti-

Many engineered and biological systems exhibit hybriéhate and track time varying regions of continuous-time PWA
and nonlinear phenomena. The hybrid phenomena are fi/stems in state space form. With the proposed algorithm it
quently due to different modes of operation that the syste#i Possible to identify the switching mechanism of a class
undergoes. Other causes for hybrid behavior are physinal li of hybrid systems. This information can be used to improve
its, dead-zones or switching at thresholds. A popular way &€ tracking performance of observers for hybrid systems by
deal with hybrid and nonlinear systems are piecewise affiffedicting switches rather than reacting to switches. Also
(PWA) models, because they are known to be equivaIeHﬁCking switching boundaries can be an enabling factor for
to certain classes of hybrid systems [1]. Furthermore, pwadaptive control of PWA systems, which is so far restricted
models have an universal approximation property and cdf fixed and known switching boundaries (e.qg. [4]).
thus be used to approximate nonlinear systems. Therefore,The proposed algorithm consists of three major steps.
research on the identification of PWA systems has gainddrst, an online switching signal estimator [5] estimates t
a considerable amount of interest over the past decade. AWitching time and state up to a certain level of precision.
extensive summary of this research effort is given in [2]. At the same time, the applied observer records parts of the

A PWA model is obtained by partitioning the state-trajectory and determines the active models before and afte
input space into regions and assigning each region locdine actual switch. The recorded trajectory thus contairg on
linear dynamics. Both subsystem dynamics and regions mi@single, not very precisely estimated switch. In the second
be identified based on measurements that do not cont&it€P, an optimization problem is set up to find the actual
information about which subsystem generated the data. Mo®¥itching state with greater precision. Repeating the first
of the proposed approaches carry out the identification {0 steps for each switch leads to point clouds of switching
two steps. First, the parameters of the linear subsysterfi@tes. Each switching state is thereby associated with two
are estimated either simultaneously or iteratively. Oree t N€ighboring regions. Finally, the switching hyperplanes a
subsystem dynamics are known, the partitioning of the statéitted to these point clouds by Total Least Squares.
input space is established with standard, linear suppatove ~ The remainder of this paper is structured as follows.
machines (SVMs) [3]. Section Il gives an introduction to PWA systems in state

The reconstruction of polyhedral regions with SVMs isspace form and formulates the problem. In section Ill, we

successful in the case of piecewise autoregressive exagenresent the new approach to hyperplane estimation cargisti
of three steps. We validate the proposed algorithm in sectio
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partitioned intos € N polyhedral region$);. In order to whereL; € R"*? are the observer gains to ensure that the
obtain a well defined system, the partition is assumed to lestimatei; remains bounded; especiallyaifis not generated
complete, i.eUi_,Q; = R*™ andQ; N Q; = 0,Vi # j. by thei-th subsystem. The labels would then be generated
A local, linear model with state matrid; € R™*", input by
matrix B; € R"*P, affine input vectorf; € R™ and output

matrix C; € R7*" is assigned to each regioft;. The Due to the limited convergence rate of the observers, the
iecewise constant, right continuous switching signa ! s i N~
P g g signa) < obtained labels do not coincide well with the true switching

N := {1,...,s} indicates the currently active subsystem.”.

The state-input vector and the regidhsdetermine the active signal. We thu_s propose a n(_)vel approach to identify the
subsystem by polyhedral regions more precisely. Furthermore, our algo-

2(t) rithm works recursively and can thus also track time-vagyin
ot)=1 if {u(t)} €, ieN. polyhedral regions. The following problem formulation de-
. _ _ scribes this more challenging task.
systems in state space form are given by the switched system find and track the time varying regions characterized by
i(t) = Agtyz(t) + Boryu(t) + fors) 1) Hi(t).
y(t) = Cowz(t) +v(2). I1l. HYPERPLANE ESTIMATION
The borders of the polyhedral regiofts are usually given

int fh | 1 the state-input Th .___The solution to Problem 2 consists of three steps. In the
In terms of hyperplanes In the state-input space. the po”ﬁ?st step, a hybrid observer estimates the switching signal
on a single hyperplane fulfill the condition

online. Due to the inherently reactive nature of observers t

blalt),u(t) = argmin ly(t) - Ca (P, ()

n P x estimation errors, the estimated switching signal obtiine
Zakxk + Zﬂkuk +vy=h|u| =0, (2) the first step is delayed compared with the true switching
k=1 k=1 1 signal. However, the applied observer allows to recordspart

of the output trajectories before and after the switch, Wwhic

can subsequently help to improve the estimated switching
time. In the second step, we define and solve an optimization
groblem based on the recorded trajectory, which gives us
a more precise estimate of the switching time and state.

where h = [a1,....an, Bi,...,Bp, 7] € RIXHpHD),
If we replace the equality in (2) with inequalities 0 or
< 0, equation (2) defines a half-space Rf*? including
or not including the hyperplane, respectively. In order t
characterize the polyhedral regigh, we define a matrix After collecting several switching states, the third stdp fi

. i X (n+p+1) i . +
HieR that combineg.; € N* such hyperplanes a hyperplane to these states. The following three subsectio

. cqy _ [pT T ; i
in its rows:#; = [hi; .. hy,;]" We also define alist yogeripe the three steps in greater detail.
=5 Of u; operators< and< to decide which hyperplanes of

H; belong tof2;. For the polyhedral regions we thus have: A, Hybrid switching state observers

" x The first step towards estimating the polyhedral regions of
= [u} ER"PIH; |u| =30, (3) PWA systems is the reconstruction of the unknown switching
1 signalo(t) as well as the state(t) based on measurements

A common problem in the identification of PWA systemsOf the noisy outpuy(t). This alon_e constitutes a challenging
is to estimate or reconstruct the polyhedral regithonce fask and hafs_ attracted_a con5|de_zrable amount of research
the subsystem dynamics are known [2]. With algorithm§n observability of hybrid and switched systems (e.g. [8]-
similar to the ones presented in [6] and [7], the subsystem d;;LO]) and put forth. various swnchmg signal estimators and
namics of a switched system can be recursively determinggf?Servers for hybrid and switched systems.
independently of the switching signal. The general problem In [10], the switching signal is assumed to be known

discussed in this paper thus reads as follows. and the challenge is to estimate the states of a switched
Problem 1: Given the subsystem dynamigs B;, f; and  System with state jumps even if some of the subsystems
C;, find the regions characterized By;, i € . are not observable. In [11] and [12], the inputs and outputs

The most frequently used approach to Problem 1 is to geﬁf the switched system are numerically differentiated to
erate labels for each measured state-input vector. Thiethbegenerate residuals. Only the residual which belongs to the
state-input vectors are subsequently separated with standactive subsystem is zero. Another approach to estimate the
SVMs, which yield the switching hyperplanes. In the diseretsSwitching times of an autonomous, switched system online
time case, labels are easily generated by predicting the nék Presented in [13] and [14] and based on algebraic tools
measurement for each subsystem and finding the subsystaf#l distribution theory, which is needed to handle denresti
that predicts best the next measurement. To apply the sa®fenon smooth dynamics. The observer for hybrid systems
intuitive approach in continuous time, we would design aRresented in [15] consists, as most hybrid observers, of two

observer for each subsystem to estimate the measured outfpi@'ts- The first part estimates the current mode of the system
and the second part estimates the continuous states of the

Zi = (A; — LiCy)i; + Liy + Biu + f; (4) system.



We found the observer for switched linear systems prerlues ofu andy, we integrate the following differential
sented in [5] to be the most suitable for our endeavor, becausquations once more over the interiigl ¢, + 6] (for conve-
it allows for a straightforward recording of input and outpu nience, this is assumed to happen instantaneously):at
datg before and after. a switch. Thg estimqtion algori.thrr.l in b = Ayii + Biu+ fi 9)
[5] is based on the idea of a minimum distance criterion 9
[16]. With the proposed algorithm, we estimate switches = ly = Cizil”. (10)

of the PWA SYSteI’T-] in two_stages. Note that the overall The integra] of (10) basica"y sums up the difference
hyperplane estimation consists of three steps, whereas fh&éween the measured outpytsand the estimated outputs
online switching signal estimator has two stages. The firgff the open loop observer (9). We evaluate at time § the

stage of the algorithm applies at the beginning or whenevepsts.J; (X ) = s,(f; + §). The currently active mode is the
a switch occurs. This stage is calledtimation and has gne with minimum cost:

a minimum duration of, in which the current mode of 6, = 6(t; + 6) = argmin J;(X}). (11)
the PWA system is correctly determined and the state is '
estimated up to a certain noise level. Once the current modewe also reset the state of another Luenberg observer to the
is correctly estimated, the algorithm switches to its selconcorresponding best estimaté? ;) = . If Assumptions 1
stage: Theadetection stage aims to detect a switch within aand 2 hold, one can show that the est|mated moges
maximum delayA. After detecting a switch, the algorithm correct and that the state estimatg,) is equal to the true
carries on with the estimation stage and so forth. statex(¢;) up to certain noise levels [5, Theorem 1]:

We now recap the two stages estimation and detection of R tj+6
the online switching signal estimator in sufficient detait f  Z(¢;) = z(t;) + U(le(fS)/A o5, (1 — tj)v(r)dr. (12)
implementation. For the rigorous proofs of the algorithm, L
we refer the reader to [5]. Three assumptions arise for the Detection of mode switches:During this stage, we
algorithm to operate in the anticipated way. For a bettezstimate the state of the system with two observers, both
readability, we only discuss here the practical impligasio parametrized for thé;-th subsystem. One of the observers
of the three assumptions and list the detailed assumptioissan open loop observefx while the other one is a standard
in the appendix. The distinguishability of any two subsystuenberg observerzj. With the recorded data af andy,
tems is guaranteed by Assumption 1. Assumption 2 givese catch up froni, to the current timé; + § by integrating
constraints for the variables A, X, andS, and highlights . 5
their relationship to the input and measuremen? no?se 7= A58+ Bout fs (13)
Furthermore, they depend on a quantity that expresses the @ = (As, — Ls,Cs,)2 + Bs,u+ f5, + Lo,y (14)
maximum distance between two subsystem parameteriza- s = |y—C&j50|2 (15)
tions. For a more detailed treatment of distance measures R ]
between dynamical systems we refer to [17]. A minimunyVith initial conditionsi(i;) = &(i; ) = X3, (asin (8)) and
dwell time of lengths + A is demanded by Assumption 3. s(f;) = 0. After catching up ta = £, +4, we integrate (13) -

Estimation of the active mode: The first stage of the (15) over time frames of length in real-time. For that, we
algorithm is active when the algorithm starts and wheneverrgset the state of the open loop obser¥@) = i(t) and the
switch has been detected. Assume that we have just detecg@rting time of theA-frame ¢y, = t. After eachA-frame
the j-th switch at timet ;, then we set the estimated switching(t — tup > A), we again reset the open-loop observer state
time #; = ¢. At the initialization of the algorithm we have #(t) = (¢) and the starting timé,p = ¢. We detect a switch
to = 0. While the PWA system (1) evolves over the time-when one of the following two conditions is fuffilled:

interval [t;,¢; + 6], we integrate in real-time the following RN ol

differential equations with initial conditions; (#;) = 0 and [2(t) =2 > Xs, - s(t) = s(t=L)>Se, (16)

zi(t;) = 0 for all subsystems € \: where the threshold&x andSa are given by Assumption 2
i: = Agii + Biu+ fi (6) in the appendix. If Assumptions 1 to 3 hold, the detection

. . algorithm is guaranteed to find an estimdte; of the
= ALz 4 Oy = G, (7) negxt switch a?tjﬂ within the interval [tj+1,tjf+ A] [5,

At the same time, we record(r) andy(7), T € [t;,£; +6]. Theorem 2]. After detecting a switch, the algorithm returns

Note here that we use thesymbol @) to characterize an to the estimation stage.

open loop observer in contrast to theymbol ) for the The estimated switching timg_; has a maximum delay

standard Luenberg observer in (4). of A. To eliminate this delay, we propose to recarcand
With the states:;(f; + §), obtained in (7), we calculate y over each time framé\ as well as the value of at the
better initial conditionsX* for :Ei at time instance;: beginning of each interval. As the memory of control systems
X* — U_—l((;)e T, (i +4), ®) is usually limited and the PWA system might not switch
! K ! its mode for a long time, it suffices to store only the last
where U;(t) fo ¢T (7)¢;(T)dr is the observability two recorded intervals. Together with the recorded values

Gramian for mode and@( ) C;eit. With the improved during the estimation stage, we collect three connecteis par
initial conditionsi; (;) = X ands;(;) = 0 and the stored of the system trajectory: the first element of lengttbefore



the switch, the second element also of lengtltontaining label uniquely specifies the switching hyperplane that the
the estimated switching tim&; and the third element of state belongs to. Assume that we detected a switch from
lengthé after the estimated switching time. Figure 1 sketcheregionk to region/ in the first step of the algorithm. Hence,
the recorded output trajectory and highlights the elemehts we know that there must exist a switching hyperplane that
length A and . We use these recordings in the next stegeparate$?; from 2; and the estimated switching state lies
of the proposed hyperplane estimation algorithm to esémabn this hyperplane. After we collected multiple switching
the switching state more precisely. states for switches from regignto [ and vice versa, all that
. o is left do is to fit a hyperplane to this set of points.

B. Optimized switching states With the hyperplane equation (2) and collected switch-

We now formulate an optimization problem to find a moréng states, fitting a hyperplane to the data points can be in-
precise estimate of the true switching time and state. Thetérpreted as finding the solution to an overdetermined Byste
exist various approaches for optimal control of switchingf equationsAX ~ B. Here A € R™*("+P) and B € R™
systems (see [18]-{20] and references therein). They lysuakonsist of given data and € R™*? contains the unknown
aim to determine the optimal sequence and time instanceshperplane parameters. We typically have more data points
which a given set of system dynamics needs to be activat@éan unknowns#. > n + p + 1) and must assume that
in order to minimize a certain cost function. Our optimigati and B contain uncertainties. Therefore, an exact solution
problem is easier as we know the switching sequence agsl the overdetermined system does not exist. With Total
only need to optimize for a single switching time. Least Squares however it is possible to find an approximate

We have records of the inputsand outputg; of the PWA  solution by correcting the system of equations with slack

system over a time intervédy, t.] (see Fig. 1). Furthermore, variables€ 4 and&g. This leads to the optimization problem
we know that the system switches its mode during this period

from &; to 6;1. Finally, we have the estimated staté). X, €4 €8]l (18)
The output trajectory for a specific switching timés (t) = St (A+EL)X=B+Ep
Cs,(t) if t <7 ory(t)=Cs, ,a(t) if t >7 where where || - || is the Frobenius norm. An overview of the
. {A&.j(t)—i—B&.u( )+ fs, fr<r history of.TotaI .Least Sq.uarefs as well as some recent
(t) = I J ’ . advances in the field are given in [21].
A5y 3t + Boyyut) + fop, i E>7 For our case, we set= 1 and letX contain the remaining

andi(ty) = Z(to). The squared error between the estimategarameters of the hyperplane that are to be foundX.e-
output trajectoryj and the recorded output trajectaygerves @1, -, an, B1, ..., 8|7 . Each row of4 corresponds to one
as a cost function. This cost function solely depends off the obtained switching states (elg" (;),«" (#;)]) and
the parameter and must be minimized to find the optimal B is @ column vector with all elements equal%d.
switching timet;1: . Ir:)lorde(rég) find the solutir?n to thle Tot;al L§ast Squares
- . ¢ N2 problem (18), we compute the singular value decomposition
tj+1=arg min /to ly(®) —g@)Fdt. (A7) [A B] = UXVT and obtain the block matri¥/ with
S.t.to<7<te Vi, € R(n+p)x(ntp) Vis € R(n+p)x1 Vo, € R1x(n+p)
No real-time constraints arise for this constrained optiand Vs, € R. A solution to (18) exists ifia9 is nonzero and
mization problem as the estimation and detection algoriththhe optimal parameter vectdr is given be = —VHV22
in 111-A does not rely on the solution. Standard optimizatio [21, Algorithm 1]. In turn, the hyperplane is = [X 7 1].
techniques such as golden section search and paraboliGince any two switches are assumed to be separated by
interpolation are suitable for the optimization problem. a dwell time, we also assume that the time between two
The optimal switching time;,; is used to calculate a switches suffices to recompute the singular value decomposi
more precise estimate of the switching stétg;.;) and tion. If the dwell time is too short or if the computationakto
input w(t;41), which are used in the subsequent step t& too large, one could resort to a recursive implementation
estimate the switching hyperplanes. of Total Least Squares (see [22] and references therein).

C. Hyperplane fitting with Total Least Squares IV. NUMERICAL VALIDATION

By performing the previous two steps over multiple

switches, we generate sets of labeled switching states. The/Ve now validate our algorithm with an exemplary PWA
system. While the algorithm was also successfully apptied t

- A A S5 >
—> < more complex systems, note that greater system complexity
\ /’Zg/f might make it impossible to fulfill the required assumptions
e+ p ?J_ - We consider here the PWA system discussed in [23] and [24]
R P with the following three subsystem dynamics:
g
to ti+1 tj+1 e Ay = [_02 _11} Az = [—(2),5 —11] As = {—(1).5 —11]

Fig. 1. Sketch of the recorded time frame containing thea@witching
time ;41 as well as the time instanag.; when the switch was detected. fi= [0 0.2}T fo = [0 0.4}T fy = [0 _0.3}1*



and B = [0 1.5]" andC = [1 0]. The hyperplané:, 23
separates subsystem 1 and 2, wihilg separates subsystem

1 and 3. For the firs250s, the hyperplanes are constant Y19
with h,127| = [—1 0 0 2] and h137| = [1 0 0 2}

The PWA system is excited by a sinusoidal input signal with 1.5 TR o T o oL
varying amplitude(t) = (94 3 cos(0.015¢)) sin(0.1¢). The ' t[s] ' '
outputy(t) is affected by additive white noise with zero mearFig. 3. Improving the estimated switching time frdinto £; by minimizing

and vmax = 0.1. For the online estimation of the switching the squared error between measured ougftit and estimated output(t).
signal 6 according to section IlI-A, the observer gaiis ] ] ] )

are chosen such that the poles of the Luenberg observerdn the final step, presented in section IlI-C, the estimated
A; — L;C; lie at —3 and —3.5. This gives sufficiently fast hyperplanes;, andh3 are fitted to the optlmlzed switching
convergence without amplifying the measurement noise. THéates by Total Least Squares. We obtain

remaining design parameters are= 0.8, A = 0.8, Sa = ;Lm,l _ [_1_0024 0.0107 0.0000 2.0000] ’

0.003 and s = 0.04, hisi = [ 1.0023 0.0149 0.0000 2.0000
Figure 2 shows the signals estimated with the proposed 131 = [ ' ' ' ' } ’

algorithm during the firs250s. The dash-dotted trajectory \ynich is very close tohys, and hys,. Compared with the

represents the ftrue state of the PWA system. The solidy/\-approach (dotted lines), the proposed approach (solid
colored trajectory shows the estimated state obtained WIH’heS) delivers a much better approximation of the true
the hybrid state observer. The hybrid state observer al?R/perplanes.

delivers an estimate of the switching sigrélt), which is After ¢ = 2505, we change the hyperplanes ks —
included in the figure through color coding. The red (midﬂle)[_0_2 02 0 0'.1] and hysy = [1 00 3} in order

green (right) and blue (left) parts of the trajectory beléag , 4na1yze the tracking properties of the presented algarit
the subsystems, 2 and 3, respectively. Note that the state o parameter changes resemble a rotatiorhef and a

gstimation is precise as long as the estimafted SWitChim@big ¢y anslation ofh3 and could be caused by aging or wear
is correct. Whenever the PWA system switches @& £2, i 5 practical system. The tracking ability was gained by

the hybrid observer requires an additional time interval oficyating the Total Least Squares solution only for thet la
maximum lengthé + A to detect the switch and estimate,,, _ ¢ switching states per hyperplane.

the current mode. During this transient phase, the estinate Figure 4 shows how the algorithm tracks the changing

trajectory deviates from the true trajectory. Such dewrsi yperplanes. The estimated state space trajectory frem
cannot be avoided in hybrid observers with switching sign 50s to ¢ — 5005 is given by a colored, solid trajectory

reconstruction. The intensity of the trajectory increases with time. The sam
A linear SVM is trained with the colored/labeled trajectoryapp”es for the estimated switching states and hyperplanes
elements. The hyperplanes obtained with this traditiongthe switching states for < 250s are given by gray
approach are visualized by dashed lines in Fig. 2. Nogicles and triangles, while the estimated hyperplanes at
that the SVM hyperplanes deviate from the true switching — 9505 are shown as dashed, gray lines. The intensity of
hyperplanes by a few degrees. This is due to the delay@ge estimated switching states then shifts from gray tokblac
detection of switches. As proposed in section IlI-B, we findis time goes on. The figure also shows the time varying
a more precise estimate of the switching time by solving th@stimatesﬁlg(t) and hy3(t) from ¢ = 250s to ¢ = 500s.
simple optimization problem (17). We use the Matlab funcarrows indicate the movement of the estimates. Intermediat
tion f m nbnd which on average solved the problem withingstimates are shown by lines of varying width and intensity.
443.6 ms on a quad core (i5-2500K,3.30Ghz). Figure 3 showse thinner and lighter a line, the older is the correspogdin
how the optimization step improves the estimated switchingstimate of the switching hyperplane. The final estimates ar

time from fj (obtained online) ta;. Circles and triangles again very close to the true parametgis andhqs:
highlight the optimized switching states in Fig. 2.

g(t) for 7 =15 |
V= -g(t) for T = ¢ |l

. P —y(t
NN y(‘)

K

hag (t = 500) = [~0.2020 0.2008 0.0000 0.1000] ,
1 haga(t=500) = [ 0.9974 0.0045 0.0000 3.0000] .

1.5} @ ‘
0.5
T2 |

%)ﬁm,l/

—0.5F

—1.5r ‘

—12 s 4

Fig. 2. State space trajectory of the real system (dasledjotind the 12 3 — 1 0’ 1 s
online-switching signal observer (colored) 50s. Circles and triangles L1
mark the estimated switchds<« 2 and1 <> 3 obtained by optimization. Fig. 4. Tracking time-varying hyperplanes with the progbségorithm.



V. CONCLUSION

Assumption 3:The switching signab has a dwell time

We present an alternative approach to estimate switchilﬂj A + ¢ and there is no switch in the initial time interval

hyperplanes of continuous-time PWA systems in state spa
form. We show that the existing SVM approach delivers
shifted estimates in the continuous-time case. The prabose
algorithm overcomes this limitation in three steps. Fiest, (1]
hybrid state observer obtains rough estimates of the switch
ing signal and the full state of the PWA system. After everyl[?]
detected switch, the accuracy of the estimated switching ti

is improved by solving a simple optimization problem. A [3]
switching hyperplane is then fitted to multiple switching
states by Total Least Squares. In comparison to the SVM,
approach, our algorithm delivers much more accurate esti-
mates. Furthermore, our algorithm easily tracks parametri
changes of time-varying switching hyperplanes, which is no
possible in the SVM case. Guidlines for finding feasible

design parameters are subject to future work. 6]

APPENDIX

We repeat and discuss here the assumptions for the hybr|[é]
observer in section II-A, which were originally presented [8l
in [5]. A general premise for mode detection in switched
systems is related to joint observability.

Assumption 1:The joint observability Gramian

Wis0:= | t [jTE H [6:7)  65(r)] dr,

of two subsystems and j with ¢;(t) := C;e?i? is nonsin-
gular for anyt # 0 andi # j. O
Let wmin(t) = min;+; Amin (Wi ;(t)) be the minimum
eigenvalue of the observability Gramian for all subsysterf?]
combinations and a time periédFurthermore, we introduce

El

[20]

[11]

the approximationg, /z > 1 and, A > 0 such that|e [13]
fieM and [|e(Ai—LiCOt| < fie=M, Wt > 0,Vi € N. F|naIIy,
let Liax = max;en ||Li|| and Crax = maxien ||Cil|. Then (14

the intervalsé and A can be related to the input and noise

of the PWA system by the following assumption. (15]
Assumption 2:The signals v and v are uniformly

bounded, i.e.|u(t)] < Umaxs [V({#)] < Vmax,Vt > 0.

Moreover, there exist positive constadtand A, such that 6]
2
wain @2 > (tmax v Nu@) + e V5) [17]
min(A)|z(8)2 > %(umax\/Nu(A) W VA (18]
2Vmaxcmax(ﬂ6)‘A + 1)2E(5)\/Z)2, [19]
whereh;(t) := ¢;(t)B; andU;(t fo ¥ (1)¢i(7)dr and
5 2 [20]
N, () := iﬂjrenj\a}?i(#/o (/0 [[hi(s) — hj(s)|ds> dr,
s 1]
e R -1 T
Moa(0) = mis MG3) = mas [ U007 (. o
- Lmax
E(5) = max {Mmax(5), X } . [23]

The thresholdV, (6) resembles a maximum distance be-
tween any two subsystem parameterizations. Finally defifg"
the following thresholds, := umx(ueAA +1)E(8) and
SA = dex(l + Cmax(v Aa + 2) (5)) A <>

¢
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