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In this work, we present and demonstrate that with an appropriate semantic representation and even
with a very naive perception system, it is sufficient to infer human activities from observations. First,
we present a method to extract the semantic rules of human everyday activities. Namely, we extract
low-level information from the sensor data and then we infer the high-level by reasoning about the
intended human behaviors. The advantage of this abstract representation is that it allows us to obtain
more generic models from human behaviors, even when the information is obtained from different
scenarios. Another important aspect of our system is its scalability and adaptability toward new
activities, which can be learned on-demand. Our system has been fully implemented on a humanoid
robot, the iCub, to experimentally validate the performance and the robustness of our system during
on-line execution within the control loop of the robot. The results show that the robot is able to make
a decision in 0.12 seconds about the inferred human behaviors with a recognition accuracy of 85%.

Keywords: automatic segmentation; semantic reasoning; human activity recognition; meaningful
robot learning.

1. Introduction

One of the main purposes of humanoid robots is to improve the quality of life of elderly and/or
disabled people by helping them in their everyday activities. Therefore, such robotic systems
should be flexible and adaptable to new situations. This means that they need to be equipped
with cognitive capabilities such as perception, learning, reasoning, planning, etc [1]. These capa-
bilities could enable robots to segment, recognize and understand what the demonstrator is doing
by observation [2]. Thus, to the extend that the robot can understand the observed behavior.
Transferring skills to humanoid robots from observing human activities is well considered

to be one of the most effective ways to increase the capabilities of such systems [3, 4]. With
the recent advancements of sensory technologies (such as Kinect), perceiving reliably human
activities have become tenable [5]. If robots are expected to learn or interact with humans in a
meaningful manner, the next foreseeable challenge for the robotic research in this area is toward
the semantic understanding of human activities - enabling them to extract and determine higher
level understanding. The ability to automatically recognize human behaviors and react to them
by generating the next probable motion or action according to human expectations will enrich
humanoid robots substantially.

∗Corresponding author. Email: karinne.ramirez@tum.de
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Figure 1. Conceptual diagram of the modules implemented in our system for the understanding of human activities. First,
we perceive the environment information from different sources. Then, we extract the important features to infer the observed
activity, this implies that the cognitive loop contains the capabilities of reasoning, semantics, knowledge, etc. Finally, the
robot will execute a motion primitive to achieve a similar goal as the one inferred.

In this work, we propose a framework that combines several observable inputs together with
suitable reasoning tools to properly interpret, learn and understand human behaviors from
demonstrations (see Fig. 1). This framework was first introduced in [6] and its robustness was
tested with manually labeled data. Then, in [7] we improved our framework with the inclusion
of three videos, showing the same demonstration from different views and using an unsupervised
state-of-the-art learning algorithm based on Independent Subspace Analysis (ISA) [8] to extract
spatio-temporal features from off-line videos. Recently, in [9] we introduced an on-line segmen-
tation and activity recognition of one observed hand from continuous video stream implemented
in a humanoid robot using our semantic representation framework. The next subsection specifies
the new improvements of our system presented in this paper.

1.1 Contributions of this paper

Our framework can be utilized for the difficult and challenging problem of tasks and skills transfer
for humanoid robots. We propose a method, that enables robots to obtain and determine higher-
level understanding of a demonstrator’s behavior via semantic reasoning. This paper presents
the enhancement of our framework by including new features. For example, we introduce new
situations with additional and different action types, such as: pouring the pancake mix, flipping
the dough and setting the table. Furthermore, we present the extension of our framework to allow
on-line recognition of parallel activities executed by both hands with a very naive perception
system. Additionally, we experimentally validate our semantic-based framework in the control
loop of a robotic platform.
Hence, demonstrating the robustness of our semantic-based framework under different condi-
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Figure 2. This figure shows the transference of knowledge between different scenarios. Two cases are depicted: a) shows the
learning stage for the automatic segmentation and recognition of human activities; and b) shows that even when a different
scenario is observed the semantics of the observed activity remains the same as a).

tions and constraints. In summary the main contributions of this work are (see Fig. 2):

• Proposed and realized a multilevel framework to automatically segment and recognize
human behaviors from observations. This is achieved by extracting abstract representations
of the observed task using semantic reasoning tools.

• The presented system is robust, adaptable, scalable and intuitive to new situations due to
the re-usability of the learned rules.

• We propose a flexible imitation system that preserves its accuracy and robustness in the
on-line control loop of a robot.

This paper is organized as follows: Section 2 presents the related work. Then, Section 3 explains
the method to segment the visual information. Afterward, Section 4 presents the implementation
of the semantic rules. Then, Section 5 explains the algorithms to integrate the modules into the
iCub robot. Finally, Section 6 presents the conclusions and final remarks of this work.

2. Related work

Automatically segmenting, recognizing and understanding human activities from observations,
has interested the researchers of different disciplines such as: Computer Vision [8, 10], Artificial
Intelligence [11–13], Cognitive Science [14–16], Robotics [17–19], to name a few. Each of them
focuses on solving a subset of the complex problem of interpreting human activities. For example,
the Computer Vision community is focused on solving the problem of action recognition by
identifying the important features from the images [8] or using spatio-temporal correlation [10].
Typically the action analysis is focused on recognizing the movement or/and change of posture
of humans, for example using the KTH benchmark data set [20]. Another work used to recognize
the human activities from observed human tracking data was presented by Beetz et al. [12] where
a Hierarchical action model based on the linear-chain Conditional Random Fields (CRF) was
used or when a similarity and optimization methods were used [21].
On the other hand, the Robotics community mainly investigates the problem of transferring

the human behaviors into robots mainly using techniques based on the trajectory level, in order
to learn and transfer human motions into robots [3], which is a very challenging task due to the
embodiment problem [22]. Most of the techniques used in this community require the information
of the joint and/or the Cartesian position of the human and/or the robot, as well as several trials
of the same task to learn the correct model [23], for example by learning relevant features from
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the task [24, 25], using a library of Dynamic Motion Primitives (DMPs) [26–28], learning a
Hidden Markov Model (HMM) mimesis model [18, 29], among others.
However, recent studies focused on determining the levels of abstraction to extract meaningful

information from the observed task. For example, hierarchical approaches are capable to rec-
ognize high-level activities with more complex temporal structures [11]. Such approaches are
suitable for a semantic-level analysis between humans and/or objects. Extracting symbolic de-
scriptions from observations have been proposed as a bottom-up approach to obtain the motion
sequences [30]. However, this latter method is limited since it does not consider the continu-
ity of the human sequences. One pioneer work of high-level representations was introduced by
[31], where the authors suggested to map the continuous real world events into symbolic con-
cepts using an active attention control system. Later, Ogawara et al. [32] presented a framework
that integrates multiple observations based on attention points. They proposed a two-step sys-
tem which observes and extracts the attention points to examining the sequence of the human
motions. Then, it was proposed to use a (partially) symbolic representation of manipulation
strategies to generate robot plans based on pre- and post- conditions [33], or using a logic sub-
language to learn specific-to-general event definitions with manual correspondence information
[34].
Another interesting definition of semantic representations is given by [35]. The authors sug-

gested that the semantics of human activities requires higher level representations and reasoning
methods. They discussed the following approaches: Graphical Models (Belief Networks [36], Petri
Nets [37], etc), Syntactic Approaches (Grammars [38], Stochastic Grammars [39], etc), Knowl-
edge and Logic Approaches (Logic-based approaches [40], Ontologies [41], etc.). Therefore, the
semantic definition of the activities depends on the used approach. For example, Graphical
Models such as the one presented by [42], where a graphical model is used to learn functional
object-categories. The obtained graphs encode and represent interaction between objects using
spatio-temporal patterns. The taxonomy of the learned graph represents the semantics of the
studied object categories mapped to a set of spatial primitives relationships, e.g. two objects
are Disconnected, connected trough the Surroundings (S) or Touching (T). However, in order to
obtain the activity graph all the episodes need to be observed. Regarding Syntactic Approaches,
for instance Context-Free Grammars (CFGs) and Stochastic Context-Free Grammars (SCFGs)
have been used by previous researchers to recognize high-level activities [11]. These grammars
are typically used as a formal syntax for the representation of human activities. This means that
these grammars directly describe the semantics of the activities.
Recently the work introduced by [43], where a system that can understand actions based on

their consequences is proposed, e.g. split or merge using a robust active tracking and segmen-
tation method, which can be improved by including a library of plans composed of primitive
action descriptions presented by [44]. Both systems used the concept of Object-Action Com-
plexes (OACs) [15], which investigates the transformation of objects by actions. i.e. how object
A (cup-full) changes to object B (cup-empty) through the execution of Action C (drinking)1.
This approach has been recently used to segment and recognize an action from a library of OACs
using the preconditions and effects of each sub-action which enables a robot to reproduce the
demonstrated activity [45]. However, this system requires a robust perception system to correctly
identify the attribute of the objects, therefore it is executed off-line.
Analogous to OACs and based on the Affordance Principle, Aksoy et al. [14] presented the

approach called Semantic Event Chain (SEC), which determines the interactions between hand
and objects, expressed in a rule-character form. These interactions are based on the changes in
the visual space represented in a dynamic graph where the nodes are the center of the image
segments and the edges define whether or not two segments touch each other. Then, the spatial
relationships between the graphs are stored in a transition matrix which represents the Semantic
Event Chain. One drawback of this technique is that it highly depends on the time and sequence

1This action is defined by the current attribute of object A.
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Figure 3. Color-Based pipeline to detect and track objects from an image. The outcome of this procedure is the position
(xo) of the object.

of the events, and on the perception system to define the object interactions. In other words, if
the computer vision system fails, then this approach will be greatly affected, as indicated by the
authors. Another approach based on the affordances of objects has been introduced [46], where
the authors categorize the manipulated objects and human actions in context of each other,
where only one hand action is considered. They have a semantic level to represent action-object
dependencies (drink-cup, drink-glass, etc.) modeled using CRF method. However, this approach
requires that the training data-set has been fully and correctly manually labeled, which indicates
that new unlearned behaviors can not be identified.

3. Extraction of low-level visual features

In this work we present a new approach to successfully recognize human activities from videos
using semantic representations. This means that we propose to split the complexity of the recog-
nition problem in two parts: 1)the system recognizes the low-level motions (m) such as move,
not move or tool use together with two object properties, e.g. ObjectActOn(oa) and ObjectIn-
Hand(oh); and 2) the system reasons about more specific activities (reach, take, cut, etc.), i.e.
using the identified motions and the objects of interest from step 1.

3.1 Pipe-line of the object recognition to obtain the low-level motions.

In order to recognize the hand motions and object properties, we implement a well-known and
simple Color-Based algorithm since this method could be applied for on-line object recognition
for the final integration into the robot. We use the OpenCV (Open Source Computer Vision)
library [47] to obtain the color visual features (fv) in order to get the hand position (xh) to
compute its velocity (ẋh).
The steps to detect and track the desired object(s) are as follows: First, we convert the color

space of the original image from BGR to HSV, since it is more suitable for color based image
segmentation. Then, we obtain a binary image using the function cvInRange(), which uses the
upper and lower boundary array for thresholding the image. The boundaries are obtained off-line
and they represent the maximum and minimum limits of the HUE, SATURATION and VALUE
of the object to be detected, i.e. the HSV max

min
color space, which is obtained heuristically in this

work. As a result, the obtained image contains the recognized area(s) of interest represented as
white isolated objects. After that, we smooth the binary image using the function cvSmooth()
with the method CV MEDIAN. Then, we use the function cvCanny() to find the edges of the
smoothed image, followed by the function cvFindContours() to obtain the area enclosed by the
recognized contour, where the position of the identified object xo is retrieved. The above process
is depicted in Fig. 3.
Then, we smooth the obtained position of the object xo with a low-pass filter:

xs(i) =
1

2N + 1
(x(i+N) + x(i+N − 1) + ...+ x(i−N)) (1)
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Table 1. Definition of low-level hand motions and object properties

Name Meaning Formula Example

H
a
n
d

M
o
t
io
n
s Move The hand is moving ẋ > ε Moving from po-

sition A to posi-
tion B

Not
move

The hand is station-
ary

ẋ → 0 Holding a bread

Tool Use Complex motion,
the hand has a tool
and it is acted on a
second object

oh(t) = knife and oa(t) = bread Cutting the
bread where the
objects are knife
and bread

O
b
j.

P
r
o
p
.

Object
acted on
(oa)

The hand is moving
towards an object

d(xh, xo) =
√

∑

n

i=1(xh − xoi)
2 → 0 Reaching for the

bread, where
oa(t) = bread

Object
in hand
(oh)

The object is in the
hand, i.e. oh is cur-
rently manipulated

d(xh, xo) ≈ 0 Hold/take the
bread, where
oh(t) = bread

where xs(i) is the smoothed value for the ith data point, N is the number of neighboring data
points on either side of xs(i), and 2N + 1 is the size of the moving window, which must be an
odd number. Previous literature [29] proposed to segment human motions into short sequences
of motions mostly using the information of the velocity of the analyzed limbs. The segmentation
of the motions is done by setting the velocity thresholds heuristically, mostly to determine if the
limbs were moving or not. In a similar manner, we have proposed a procedure to segment the
human motions based on the velocity of the hand(s). The segmentation of the hand motion into
move or not move is done using an heuristically determined velocity threshold (ε) as shown in
Fig. 7(a), however we are working on defining these thresholds automatically using the Image-
Based Learning Approach (IBLA) [48].
Then, using a similar procedure we obtain the current position of the objects (xoi , i =

number of objects) on the environment. Afterward, we compute the distance between the hand
and object(s) position, i,e. d(xh, xo). The definition and some examples of the motions and ob-
ject properties are shown in Table 1. Therefore, the output of this module represents the current
state of the system (s), which is defined as the triplet s = {m, oa, oh}.
The recognized object (o) can only satisfy one of the two object properties, i.e. oa(t) = pancake

or oh(t) = pancake but not both at the same time t. Nevertheless, it is possible to have more
than one object in the scene, for instance o1 = pancake and o2 = spatula where the object
properties could be oa(t) = o1 and oh(t) = o2, then the hand motion is segmented as tool use.

3.2 Description of the used data sets

In order to test the robustness of the generated semantic rules in different scenarios, we use three
real-world scenarios: pancake making, sandwich making and setting the table.

3.2.1 Pancake making

First we recorded one human making pancakes nine times. The human motions are captured
by three cameras located in different positions. However, for the evaluation of our framework
we only use the information from camera 2 (see Fig. 4). This represents another advantage of
this work compared with our previous work were the three views were required as input to the
system [7].
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Sandwich makingPancake making

Reaching CuttingPouring Flipping

Setting the table

Open a Cupboard Reaching

Figure 4. These figures show some snapshots of the different data sets used to test the obtained semantic rules. The
first column shows the main tasks analyzed from the pancake making scenario. The second column shows examples of the
sandwich making scenario, this is the data set use for training the semantics. The last column shows the setting the table
data set.

3.2.2 Sandwich making

Then, we recorded a more complex activity, i.e. making a sandwich. This task is performed by
eight (randomly selected) subjects, and each subject prepared approximately sixteen sandwiches,
half of the sandwiches were prepared under normal time conditions and the rest under time
pressure (in a hurry), see Fig. 4. The pancake making and sandwich making data sets are publicly
available: http://web.ics.ei.tum.de/∼karinne/DataSet/dataSet.html

3.2.3 Setting the table

Finally, we use videos from the TUM Kitchen Data Set [49], which contains observations of
four subjects setting a table at least four times (see Fig. 4). The subjects were randomly selected
and they performed the actions in a natural way. The human motions and object properties from
this scenario were manually annotated in order to test this data set.

3.3 Results on the automatic segmentation

We test the Color-Based algorithm to extract human motions and object properties from two
data sets: pancake making and sandwich making. The experiments were performed on a subset
of all the videos. For the pancake making scenario, we segment the video until the pouring the
pancake mix task and flipping the dough were finished. While, for the sandwich scenario, we
segment the video until the cutting the bread task has ended. After the segmentation of the
video, we execute the algorithm for two conditions: normal and fast speed.
Quantitatively the results indicate that the human motions for both hands (move, not move,

tool use) are correctly classified for pouring the pancake mix with 91% accuracy, for flipping the
dough 86.92% accuracy and for cutting the bread around 86.24% with respect to the ground-
truth1. Examples of the obtained confusion matrix2 of the human motions are shown in Table
2. Regarding the recognition of the object properties for both hands (ObjectActedOn and Ob-
jectInHand), the accuracy for pouring the pancake mix is around 96.22%, for flipping the dough
90.65% accuracy and for cutting the bread is 89.24%.
Figure 5, depicts the obtained signals from the Color-Based tracking system. It is possible to

observe that the obtained trajectories of both hands are very different from each other, however
our system is able to segment the hand motions into three categories: move (blue line), not move
(green line) and tool use (red line).
We can notice that even though we are using a very simple algorithm to identify and track

objects from videos, the obtained accuracy is high. Furthermore, this Color-Based method is
possible to apply for on-line object recognition, as implemented in this work. Which means that
the above results were obtained for the on-line segmentation of videos. Nevertheless, one of the

1The ground-truth data is obtained by manually segmenting the videos into hand motions, object properties and human
activities.
2This confusion matrix is obtained frame-wise.
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Table 2. Confusion matrix of human motions expressed in % for pouring the pancake mix and cutting the bread
Classified as

Right Hand Left Hand
a)pouring the pancake mix b)cutting the bread a) pouring the pancake mix b)cutting the bread

A
c
t
u
a
l
C
l
a
s
s Not

Move
Move Tool

Use
Not
Move

Move Tool
Use

Not
Move

Move Tool
Use

Not
Move

Move Tool
Use

Not
Move

80.5 19.46 0 80.46 10.59 8.94 96.42 3.57 0 95.73 4.26 0

Move 0 100 0 37.76 52.44 9.79 0 100 0 19 81 0
Tool
Use

1.02 0 98.97 18.29 1.01 80.68 6.06 19.69 74.24 0 0 0

Figure 5. Results from the obtained trajectories from the Color-Based technique and the automatic segmentation in three
classes: move (blue line), not move (green line) and tool use (red line).

limitations of the Color-Based method is that the object(s) and the background should have a
significant color difference in order to successfully segment them and each object needs to have
different colors. Noticeable, the segmented hand motions would not be enough for recognizing
human activities such as reaching, taking, cutting, etc. Therefore, we need to implement the
semantic reasoning engine which is described in the next section.

4. Semantic representations to infer high-level human activities

The goal of this section is to find the right mechanisms to interpret the human activities using
semantic representations. The semantics of human behavior in this work refer to find a mean-
ingful relationship between human motions and object properties in order to understand the
activity performed by the human. In other words, the semantics of human behavior is used to
interpret the visual inputs in order to understand the human activities. Our approach consists
of two steps:

(1) Generate a tree that can determine the human basic activities in a general form, i.e. reach,
take, put, release, idle and granular (see Section 4.1).
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(2) Extend the obtained tree to recognize more complex activities. We call this kind of activities
granular activities, for instance cut, pour, spread, flip, etc. The major difference between
this kind of behaviors is the context as it is explained in subsection 4.2.

4.1 Learning basic human activities

For the first step, we learn a decision tree based on the C4.5 algorithm [50] from a set of
training samples D. Each sample describes a specific state of the system s ∈ S. The set of
instances S is represented by its attributes A and its target training concept value c(s) for s.
The training example D is an ordered pair of the form 〈s, c(s)〉 called state-value pairs. Similar
to our previous work [9], the training samples D are described by the following attributes:
〈{ HandMotion, ObjectActedOn, ObjectInHand}, BasicActivity〉. For example,

〈{ Not Move , None , None } , IdleMotion〉

〈{ Move , Something , None }, Reach 〉

〈{Not Move, None, Something}, Take 〉

The central core of the C4.5 algorithm is to select the most useful attribute to classify as many
samples as possible using the information gain measure:

Gain(S,A) = Entropy(S)−
∑

v∈V alues(A)

|Sv|

S
Entropy(Sv) (2)

where V alues(A) is the set of all possible values of the attribute A, and Sv = s ∈ S|A(s) = v as
a collection of samples for S, and the entropy is defined as:

Entropy(S) =

c
∑

i=1

−pilog2pi (3)

where pi is the probability of S to belong to class i. One of the advantages of using decision
trees is its possibility to be represented as sets of if-then rules to improve human readability.

4.2 Learning granular human activities

In order to infer granular activities such as: cut, pour, etc., more attributes have to be considered.
For instance, to differentiate between the activities cut and spread, which they both use the tool
knife, these two activities acted on two different objects (oa), either the bread or the mayonnaise,
respectively. Therefore, a second stage is needed in order to extend our obtained tree T and be
able to infer those granular activities, i.e., the following rule obtained from step 1:

if Hand(Tool use) → Activity(Granular) (4)

For this second step, we use as input the activities clustered as Granular from the previous step
and we learn a new tree, which represents the extension of our previous tree. The methodology
that we follow is similar to the one explained in subsection 4.1. It means that the set of instances
S is described by similar attributes A, but with different values. For example, the HandMotion
attribute has now only two possible values: move or not move. The attribute ObjectActedOn
presents the new possible values: pancake, dough, bread, cheese, electric stove, etc. Whereas the
ObjectInHand attribute has 4 possible values: bottle, spatula, knife and plastic wrap. Note, that

9



February 12, 2015 Advanced Robotics AdvancedRobotics14-Final

the values of the last attribute are the parental classes of the objects. Some examples of the new
state-value pairs (〈s, c(s)〉) are:

〈{ Move , Pancake , Spatula } ,Slide out〉

〈{ Move , Bread , Knife } , Cut 〉

〈{Not Move, Cheese, Bottle}, Sprinkle 〉

4.3 Knowledge and reasoning engine

Knowledge and reasoning play a crucial role in dealing with partially observable information.
This is possible since they are capable to infer or predict different behaviors, in a way as we
(humans) do and expect. This is partly obtained due to the fact that the knowledge base system
can combine general knowledge with the current perception of the world to infer hidden aspects
of the current state [51].
The Knowledge and Reasoning engine presented in this work uses the Web Ontology Language

(OWL), which is an action representation based on logic description as Prolog queries. We use
KnowRob [12] as the base line ontology and we incorporate new relationships between objects and
actions, additionally we define new activity classes. In order to define meaningful relationships
between actions and objects, we use the obtained semantic rules described in Sections 4.1 and
4.2.
From the obtained rules (see Fig. 6), we implement new Class Computables1 such as

comp humAct, to semantically relate the instances from the class Motion (comp humAct :′

Motion′) with the object properties (ObjectActedOn or ObjectInHand). The implemented Com-
putables are incorporated within our new Prolog predicates using the obtained rules to define
new individuals and new relationships between individuals (objects properties), as follows:

humanAct(?Occ, take) : −

rdfs instance of(?InstM, comp humAct :′Motion′),

InstM =′ StandingStill′,

rdf triple(comp humAct :′objectInHand′, Occ, ?V ).

(V =′ Something′;V \=′ none′). (5)

where ?Occ is the occurrence number we want to infer and the argument take is the name of the
inferred class. From the above Prolog predicate we can see how the instances (?InstM) of the
classMotion (comp humAct :′Motion′) and the objects (?V ) with the property of ObjectInHand
(comp humAct :′ objectInHand′) are semantically described and represented. Similar prolog
predicates are defined for the remaining rules. The prolog predicate shown in Eq. (5) is used
instead of the if-then rule from Algorithm 1. The reader can find more examples regarding the
knowledge implementation in [6].

4.4 Results on the automatic recognition and understanding

First, we build a decision tree for the basic human activities: reach, take, put, release, idle and
granular using the Weka software [52] and the sandwich making scenario is chosen as the training
data set. This scenario was selected since it represents the highest complexity of the analyzed

1Reasoning with Computables is another important characteristic of KnowRob [12], since it provides the possibility of
compute new relations during the reasoning process (on demand) instead of defining them manually. In this case, the
Computable Class, creates instances of their target class on demand.
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Figure 6. This figure shows on the top part (magenta box) the tree obtained from the sandwich making scenario (Tsandwich).
On the bottom (purple box) is shown the extension of the tree to infer granular activities.

tasks due to the several sub-activities that it contains. We use the ground-truth data from subject
1 during a normal speed condition of the sandwich making data set. To assess the obtained tree,
we use the 10-fold cross validation option. The obtained tree Tsandwich is shown on the top part
of Fig. 6 (magenta box). From this tree the recognition accuracy is 92.17%. The obtained tree
using our proposed method has 6 leaves (number of rules), i.e. each leave represents one basic
human activity: reach, take, put, release, idle or granular. The size of the tree is only 10 nodes,
which means that the complexity of the obtained tree is very low.
For the second step, we use as input the activities clustered as granular from the previous step

and we apply a similar procedure as before in order to extend our previous tree Tsandwich. The
final tree can be observed in Fig. 6, where the bottom part (purple box) presents the extension
of the tree, given the current information of the environment for the task of cutting the bread.
Notice, that with this methodology the taxonomy of the tree is obtained which allows to add
new rules (branches) when a new activity is detected. An example of the implementation of this
module is shown in Algorithm 1.
At first glance, steps 1 − 7 from Algorithm 1 look like simple if − then rules, however this

algorithm is simplified to explain to the reader about the intuitiveness of our proposed method,
which is not just a black box as typical reasoners such as Markov Models or Neuronal Networks.
The advantage of our system is the possibility to interpret inference errors. For example, if
the recognition fails, we can back trace the tree and detect what parameter was incorrectly
segmented. This is possible due to the obtained decision tree (see Fig. 6), where these rules can
be integrated in any programming language. Nevertheless, if a first-order logic program, e.g.
Prolog along with a Knowledge Base is used, as proposed in Section 4.3, then the system is more
robust than other semantic approaches [13, 45]. In this case the if − then representation of the
activity take is expressed in the Prolog predicate shown in Eq. (5).
The next step uses as input the data obtained from the automatic segmentation of human

motions and object properties, in order to test the on-line recognition (see Section 3.3). First, we
applied the learned rules to a known scenario using the same task as the trained one, i.e. sandwich
making. In order to test the semantic rules we use a different subject than the one used for the
training and two conditions were tested: normal and fast speed. The average results of both
hands show that the accuracy of recognition is about 81.74% (normal condition= 79.18% and
fast speed condition=83.43%). The errors in the activity recognition are due to the misclassified
objects from the perception module, specially for the sandwich scenario, when the object knife
is occluded between the hand and the bread (see Fig. 7). One example of the obtained confusion
matrix from this scenario is depicted in Fig. 9(a), where the output of the left hand recognition
is shown.
Then, we tested the semantic rules into a new scenario (pouring the pancake mix ), in which

the activity pour has not yet been learned. Nevertheless, the system is able to identify that a
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Algorithm 1 Definition of getActivity() algorithm.

Require: m: human motions, e.g. move, not move or tool use
oa : ObjectActedOn property
oh : ObjectInHand property
memory : memory file that contains new learned activities

1: if (m ==′not move′) and (oh ==′none′) then
2: activity = Idle

{Notice, that when the system has the knowledge-based enabled, then this if-then rule is
replaced by its corresponding Prolog predicate similar to Eq. (5).}

3: else if (m ==′?m′) and (oh ==′?o′
h
) and (oa ==′?o′a) then

4: activity =?a {Replace the content of ?m, ?oh, ?oa using the corresponding information of
the obtained semantic rules shown in Figure 6 (magenta box), where ?a could be take,
release, reach or put}

5: else if (m ==′ tool use′) and (oh ==′knife′) and (oa ==′ bread′) then
6: activity = Cut {Notice that for the definition of the granular activities shown in Figure

6, we require the context information}
7: else

8: newAct = find newActivity(memory, oh, oa) {A new activity has been detected, e.g.
pour. Then, first we look into the memory file to find out if the rule has been already
learned}

9: if newAct ==′ ′ then

10: newAct = askUser() {If the new activity is not in the memory file, then this function
displays a message (during execution time) with the identified values of oh and oa, then
the user is asked to add the name of the new activity (not the rule)}

11: newRule = createNewRule(newAct, oh, oa) {The system automatically generates the
new rule}

12: memory = saveNewActivity(memory, newRule) {The new rule is asserted into the
memory file similar to step 5 of this algorithm}

13: else

14: activity = newAct

15: end if

16: end if

17: highlight branch(activity) {Highlight the branch of the tree that corresponds to the inferred
activity.}

18: return activity

new activity has been detected and asks the user to name the unknown activity. After the new
activity has been learned the system can correctly infer it. The results indicate that the accuracy
of recognition is around 88.27% (see Fig. 8). For this new scenario, the obtained confusion matrix
of the recognition of the right hand activities is depicted in Fig. 9(b).
After that, we tested our system with a different task, i.e. flipping the dough, similarly to the

above example, this demonstration was not trained to recognize the new granular activity of
flipping. The obtained results, shown in the bottom part of Fig. 8, demonstrate that our system
is able to learn via active learning the new demonstrated activity with an accuracy of 76%.
This lower accuracy is due to the errors of the perception system during the identification of the
object properties.
Finally, we tested our system with a different scenario setting the table. In this case, we use the

manually labeled data added with random noise as input. The obtained results suggest that the
accuracy of recognition for this scenario is 91.53%. This indicates that our system is capable to
recognize human activities without further training for different scenarios using the information
acquired only from one demonstration.
The important contribution of these results is the extraction of the semantic rules that allows
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(a) Signals from the Color-Base technique

(b) Output of our system to infer on-line

Figure 7. These figures show the on-line generated signals and the immediate inference of the human activity performed
by the right hand of the sandwich scenario when the subjects is in a fast condition. a) shows the signals obtained by the
color-based technique where the vertical lines indicate the automatic segmentation and recognition of the human activities
for the right hand. Whereas, b) shows one snapshot of our system to infer the human activities on-line.

to infer human activities with an overall accuracy of around 85%. The obtained semantic rules
were tested for several constraints, such as: demonstration of different activities in different
scenarios, where the observed activities were known and unknown. The above is possible even
when a very simple hand and object recognition method is used to segment the motions and
object properties automatically. Another, very important feature of our system is the possibility
of recognizing human activities of both hands at the same time as depicted in Fig. 8. It is
possible to observe that the same tree is used to recognize activities for both hands without
further modifications.
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Left hand

Activity inferred: Idle
Right hand

Activity inferred: Pour

Right hand

Activity inferred: Flip

Figure 8. The top part of the figure shows the recognition of both hands at the same time. We observe that the same
semantic representation remains for both hands. The bottom part shows the results of a new learned activity flip executed
by the right hand.
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Figure 9. The left figure shows the confusion matrix of the left hand recognition for the scenario cutting the bread. The
right figure shows the confusion matrix of the new scenario pouring the pancake mix for the right hand recognition.

5. Experimental integration on the iCub

The experimental integration and validation of the acquired cognitive behavior into a humanoid
robot is very important, essential and a challenging task, which is also addressed in this paper.
This represents another key factor of our framework since we integrate the perception and
semantic reasoning capabilities to a humanoid robot, in this case the iCub. Our work is not
limited to a theoretical domain, but rather, to provide a functional system capable to interact in
real scenarios. This integration represents a very challenging task and its solution is not trivial,
since it requires the implementation of interfaces between high-level control (decision making
modules) with the low-level control (motion control) to generate a functional system.
For the hardware implementation we used the iCub platform, which consists on 53 degrees of
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Figure 10. Illustration of all the applications, modules, libraries and the communication between them. We can observe
that the main application called iCubActionRecognition infers and executes the activity by the iCub.

freedom (DOF) [53]. In this work, we used a total of 25 DOF, i.e. we used 16 DOF of the right
arm, 3 DOF of the torso and 6 DOF of the head (see Fig. 10). Regarding the software, we used
Yarp [54] and iCub [55] libraries.
Figure 10 depicts a general overview of the implemented Yarp modules, input/output re-

sources, applications and iCub libraries used during the development of our system. From this
figure we can observe that our application, i.e. iCubActionRecognition (green rectangle), commu-
nicates with the iCub through three Yarp modules (blue rectangles), e.g. CartesianController,
iKinCartesianSolver and iKinGazeCtrl. Furthermore, our application has communication with
the camera interfaces of the iCub (orange rectangle).

5.1 Description of iCubActionRecognition, our application

Our application has two main functions: inferActivity() and executePrimitive() as depicted in
Fig. 11. The flow of the data in the control loop of the robot is as follows:

(1) The process inferActivity() automatically segments and recognizes human activities in
real-time. In other words, first we display and pre-process the video stream that shows the
desired human activity. The output of this module is the segmented low-level motions and
object properties. The obtained state of the system (s) is used in the semantic system.
which retrieves the inferred activity (g) using Algorithm 1 (see Fig. 12).

(2) The process executePrimitive() takes as input the inferred activity which triggers the Skill
Planner system. This calls the motion Primitives Library that the robot needs to execute to
achieve a similar goal as the one observed. There is a skill plan for each inferred activity.
When the skill plan is finished, then the robot waits until the next activity has been
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Figure 11. This figure shows the data flow between the processes through Yarp, iCub and other external libraries. We can
observe that two principal applications are developed inferActivity() and executePrimitive().

inferred. From the execution plan, we obtain n−primitives (p(n)) that the robot needs
to execute. For example, if the inferred activity is reach. Then, the function doReach is
executed (see Fig. 12). When, the execution of reaching motion is finished by the robot,
then the function inferActivity() is executed again to retrieve the next observed human
activity. This process is repeated until the information of the video is finished. In the
case, that a new activity is detected and learned, for instance the activity of pouring, then
the function executePrimitive() calls the activity none, which means that the robot does
nothing, unless that activity has been already programmed to the robot.

Notice that all the modules receive inputs and produce desired outputs on-line. Thus, with the
above processes we have achieved that the robot first observes the human, then it understand
the activities performed by the human and finally it execute the corresponding motion.
The robot maps the inferred human activity to a set of preprogrammed motor commands,

such as the tilt of the bottle during the pouring activity. These motor commands have been pre-
viously preprogrammed due to the fact that it would simplify the determination of the dynamic
parameters of the robot, as it can not be obtained easily via observation from the 2D image
from our demonstrations, i.e. the dynamics of the person does not match the dynamic of the
robot. In this work, we are abstracting the meaning of the observed human motions and we are
transferring the obtained models in the robot. This means that at this stage the robot is capable
to observe and infer the human activities. After that, the robot uses its own control parameters
to execute the action, which represents a complex control problem and some interesting solutions
to learn those control parameters have been proposed, e.g. [23] or [? ].
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Figure 12. Main applications implemented on the iCub to infer and execute the human activities from observations.
The inferActivity() application is subdivided in: 1) processAviMovie() which applies the OpenCV Color-Based algorithm.
2) getHumanMotions(), segments the human motions into: move, not move or tool use. 3) getObjectProp(), obtains the
object properties: ObjectActedOn and ObjectInHand, as presented in Section 3. 4) getActivity() infers the human high-level
activities. The executePrimitive() application shows the input/outputs of the programmed robot primitives.

5.2 Experimental validation on the iCub

Several experiments were performed to validate and evaluate our work on a humanoid robot in
realistic scenarios1. To illustrate the different contributions of this work, we show the results of
the proposed framework for the pancake making scenario as shown in Fig. 13.
In order to evaluate the system response time for observing and inferring, we first analyze the

average life time of each of the observed activities in Frames1 for the three analyzed tasks, i.e,
sandwich making under normal condition, sandwich making under fast condition and pancake
making (see Table 3). The duration of the videos is different for each task as well as the frequency
of the videos. For example, the sandwich making under normal condition has a duration of
20 s and a frequency of 60 fps. Whereas, the sandwich making under fast condition and same
frequency has a duration of 7 s. Finally, the pancake making has a duration of 10 s with lower
frequency 24 fps.
Table 3 shows that the shortest activity, i.e. idle takes about 7 frames, which indicates the

minimum life-time of an activity. A similar analysis in Seconds is shown in Table 4. As expected,
these activities differ in time for each task. Noticeable, we observe that the shortest time is
0.12 s. Therefore, the robot can make an informative decision after this time to guarantee that
the inferred activity has been correctly inferred and executed. Even when the robot is able to
infer a new activity each frame, the robot only executes the inferred activity if this has been the

1A video where more details for all these experimental results are illustrated can be found in the following link:
http://web.ics.ei.tum.de/∼karinne/Videos/AR14ramirezK.avi
1Notice, that the frame information comes from the manual annotated videos made by a human expert, i.e. from the ground
truth data.
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a) Observed b) Inferred c) Executed

Inferred activity: Reach

Inferred activity: Put something somewhere

New learned and inferred activity: Pour

Figure 13. First the robot observes the motions of the human from a video, then it infers or learns the human activity and
finally the iCub executes a similar activity.

Table 3. Average activity life time in Frames

Activity Sandwich Normal Sandwich Fast Pancake Inference time of our system
Reach 39 16 10 7
Take 177 68 52 7
Put 61 38 21 7

Release 26 13 15 7
Idle 82 7 35 7
Cut 787 280 N/A 7
Pour N/A N/A 97 7

same activity for the last 7 frames (i.e. 0.12 s). The reason of this waiting time is to compensate
the errors coming from the perception system.
In other words, our proposed semantic-based framework can minimize failures due to occasional

frame information loss and/or any incorrectly perceived signals. This can be achieved due to the
inference time of 0.12 s (see Table 4) to assure the robot that the observed activity has been
correctly inferred. After the inferred activity is extracted, the robot will start the execution of
the inferred activity. However, if the robot fails during the execution of the activity, it will simply
execute the next inferred activity – in the current system, recovery of such a consequence is not
yet supported. Thus, this paper does not address the problem of error recovery1. Nevertheless,

1The main problem of error recovery in complex manipulation tasks is that the range of failures and undesired outcome of
the robot’s executions is very large. For example, during the pancake making scenario the possible failures are: the robot
pours too much pancake mix, or too little, the robot flips the pancake too soon, or too late, etc.
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Table 4. Average activity life time in Seconds

Activity Sandwich Normal Sandwich Fast Pancake Inference time of our system
Reach 0.65 0.27 0.42 0.12
Take 2.95 1.13 2.17 0.12
Put 1.02 0.64 0.88 0.12

Release 0.44 0.22 0.63 0.12
Idle 1.37 0.12 1.46 0.12
Cut 13.12 4.66 N/A 0.12
Pour N/A N/A 4.04 0.12

since this a very important problem, we are working on adapting our framework to trigger on
identified errors during execution utilising the robot sensors and the acquired semantic rules.
When comparing the time performance of our system (0.12 s) with the most recent state-of-the

art techniques such as OACs [45], we can observe that our approach infers the observed activity
faster than previous approaches. For instance, from the recent video of the OACs concept [45],
we determine the inference time of their system. First, we observed that this time is variant
since it strongly depends on the life time of the activity, this means that the system needs to
observe the effects/consequences of the executed activity. Therefore, the inference time of the
OACs approach goes from 0.53 s up to 1 s for this video. Whereas our system can make an
inference in 0.12 s for every observed activity. For example the pouring activity has an average
life-time of 4.04 s, which means that the OACs method will infer this activity at the end of this
activity (after 4.04 s), whereas our system can infer this activity in 0.12 s.

6. Conclusions

Understanding human intentions has received significant attention in the last decades since this
represents a very important role in Cognitive Systems. In this paper we present a methodology
to extract the meaning of human activities by combining the information of the hand motion
and two object properties by defining two levels of abstraction. The transition between these
levels of abstraction is managed by our semantic module. Our system contains principally three
modules: 1) low-level activity observation; 2) interpretation of high-level human activities; and
3) the execution of the inferred activity by the robot.
The extraction of abstract representations of the observed task, represents a big advantage

compare with classical approaches [13] when the task is learned for a specific scenario or a
robot. Then, the obtained model only contains the information for that specific task, where the
generalization is not possible. Different approaches strongly depend on pre- and post-conditions
of the perceived demonstration to recognize human activities e.g. [15, 33, 45]. However, even
when these systems are accurate, they need to observe the whole activity (from beginning to
end) to correctly recognize it and typically a very sophisticated perception system is needed.
Our proposed framework has a classification accuracy for on-line segmentation and recognition

of human activities of 85% even when a very simple perception system is used for real, challeng-
ing and complex tasks. Then, we demonstrated that the inferred representations do not depend
on the performed task. Furthermore, the proposed system is able to recognize new activities
and learn the correct rule(s) on-line, which means that we do not need to include all possible
activities to the system, since this is not feasible in real applications. This indicates that our
system is adaptable and scalable. Noticeable, our approach enable robots to recognize the ob-
served activities in 0.12 s. Further advantages of our system are its scalability, adaptability and
intuitiveness which allow a more natural communication with artificial system such as robots.
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