
Design and Evaluation of a Low-Latency AVB
Ethernet Endpoint based on ARM SoC

Christian Herber, Ammar Saeed, Andreas Herkersdorf

Technische Universität München - Institute for Integrated Systems
Munich, Germany

{christian.herber, ammar.saeed, herkersdorf}@tum.de

Abstract—Communication requirements in automotive elec-
tronics are steadily increasing. To satisfy this demand and enable
future automotive embedded architectures, new interconnect
technologies are needed. Audio Video Bridging (AVB) Ethernet
is a promising candidate to accomplish this as it features time-
sensitive and synchronous communication in combination with
high bit rates. However, there is a lack of commercial products as
well as research regarding AVB-capable system-on-chips (SoCs).

In this paper, we investigate how and at what cost a legacy
Ethernet MAC can be enhanced into an AVB Ethernet controller.
Using FPGA prototyping and a real system based on an ARM
Cortex-A9 SoC running Linux, we conducted a series of experi-
ments to evaluate important performance metrics and to validate
our design decisions. We achieved frame release latencies of less
than 6 µs and time-synchronization with an endpoint-induced
inaccuracy of up to 8 µs.

Index Terms—Audio Video Bridging, Ethernet, Automotive
Electronics.

I. Introduction
Innovation in automotive technology is highly reliant on

advancements in electronic functions like infotainment and
driver assistance. As more and more functions get introduced,
the communication requirements steadily increase as well [1].
This trend will be ongoing and be further intensified with
transition into highly autonomous driving and integration of
cars into cyber-physical systems. Providing time-sensitive and
high bandwidth communication is therefore a major challenge
for enabling future innovations.

The growing communication requirements cannot be sat-
isfied by currently employed interconnect technologies [2].
FlexRay and CAN (FD) don not support bandwidth greater
than 10 to 20 Mbit/s and MOST has limited real-time support.
Ethernet has always been interesting due to its wide adoption
and high throughput, but has not been used in automotive
electronics due to wiring cost and the need for specialized,
real-time capable endpoints and switches.

Audio Video Bridging (AVB) is specified by a set of IEEE
standards allowing time-sensitive and synchronous Ethernet
communication. It was originally developed for multimedia
applications, but its properties also fit the requirements of car
manufacturers. Additionally, due to IEEE standardization, it
has the potential of wide-spread adoption in low-cost net-
working devices. Because of its acceptance in the automotive
domain, AVB’s successor that is under development was
renamed to Time-Sensitive Networking (TSN).

AVB combines stream reservation (IEEE 801.1Qat), traffic
shaping and flow control (IEEE 801.1Qav) to guarantee time-
sensitive communication. AVB packets are transmitted in
streams, which are grouped into traffic classes and have a
reserved bandwidth. Usually, three traffic classes are proposed
(Class A, Class B, and legacy traffic in descending priority).
In addition to strict prioritization among classes, all switches
and talker endpoints (stream sources) employ a credit based
shaping (CBS) for each class based on its reserved bandwidth.
Talker endpoints also use the same traffic shaping for each
stream. While the standard allows dynamic reservation of
streaming resources, automotive implementations are expected
to rely on static implementations.

AVB uses the precision time protocol (IEEE 802.1AS) to
enable clock synchronization between distributed nodes. A
globally synchronized clock improves the accuracy of dis-
tributed control applications [3]. In automotive scenarios, it
allows e.g. synchronous sensor sampling and compensation
for transmission delays within the network to produce equal
presentation times within distributed nodes [4].

While AVB found broad acceptance, it has not yet been
implemented in commercial SoCs. In consequence, there is
also a lack of experimental data regarding AVB endpoints.
In this paper, we present a HW/SW implementation of the
mentioned AVB protocols targeted for automotive use. Our
implementation includes an FPGA prototype of an AVB-
capable Ethernet controller and a Linux kernel space driver.
The main contribution lies within the experimental evaluation,
in which we determine hardware costs, latencies and synchro-
nization errors. The results obtained clearly demonstrate the
applicability of our system in low-latency and synchronous
networking operations.

II. Background & RelatedWork

AVB is a relatively young technology with active research,
but limited number of commercial products. Most products
are either switches or audio-specific endpoints. AVB Ethernet
switches are available from e.g. NETGEAR, Pathway, or
Extreme Networks. As endpoints, AVB-capable loudspeak-
ers, signal processors, and amplifiers are available. Intel’s
I210 Ethernet controller also supports AVB, but architectural
details are not publicly available. So far, it was used in
two mainboards by ASRock and Supermicro, respectively.



No AVB-capable network interface card exists. Xilinx’ Tri-
Mode Media Access Controller (TEMAC) has AVB features,
yet only supports one AVB traffic class and one stream.
This architecture is inapplicable, if e.g. one audio and video
stream should be sent. To be applicable for highly integrated
automotive ECUs where also multiple control streams may be
necessary in addition to audio/video data, a flexible solution
supporting multiple streams and traffic classes is needed.
Very recently (in 02/2015), an integrated ARM SoC with
AVB functionalities was announced by Freescale (i.MX6SX).
However, architectural details or performance data are also not
available.

We implemented our own AVB Ethernet controller inte-
grated with an ARM SoC for three major reasons: First, it
allows us to take and evaluate HW/SW partitioning and ar-
chitectural decisions. Second, we can use this implementation
to evaluate HW resource requirements of an AVB controller.
Third, it allows us to embed timing measurements directly into
the hardware, thus enabling a precise assessment of important
performance metrics. We use this advantage to conduct a series
of experiments in Section IV.

Due to a lack of suitable hardware, other research activities
have been mainly focused on simulation and formal timing
analysis. In the field of real-time analysis, steady progress is
made, but no universally accepted approach exists. Analyses
have been proposed using compositional analysis [5], [6], real-
time calculus [7], and network calculus [8], [9]. Bordoloi et
al. [10] provide a formal refinement of previous analyses.

The mentioned analyses focus on networking delays and
consider an idealized behavior of endpoints and switches. In
this work, we used a real system and considered endpoint-
related performance metrics rather than networking delays.

Another field of research focuses on the quality of time-
synchronization achievable in AVB. Different sources of clock
synchronization errors including endpoint implementation,
networking interference, and temperature variations have been
researched.

Mahmood et al. [11] evaluated software and hardware im-
plementations of timestamping with respect to clock synchro-
nization performance. The authors measured interrupt handling
and timestamping delays for software implementations. Based
on this data for two Intel platforms, they simulated the syn-
chronization performance. Depending on the synchronization
interval and platform, they obtained root mean square (RMS)
synchronization errors between 409 ns and 1.78 µs. We also
follow a software-based approach, but use experimental eval-
uation instead of simulation to assess synchronization errors.

Kern et al. [12] conducted experiments to determine time
synchronization accuracy in AVB for varying temperature
conditions. They found the synchronization errors to be sub-
microsecond even for extreme temperature shocks.

Lim et al. [13] simulated an AVB Ethernet-based in-car
network to assess synchronization errors. In a daisy-chain
topology with seven hops (six switches), errors up to 985 ns
were observed. The simulation assumes an ideal implemen-
tation of the synchronization protocol in the endpoints. Our

experiments specifically focus on errors originating from non-
idealities within the endpoint.

III. Design & Implementation
In this section, we present a composable architecture solu-

tion, which extends an Ethernet MAC into an AVB controller.
We propose a HW/SW partitioning targeted to comply with au-
tomotive application requirements while minimizing resource
usage.

We implemented the design in VHDL using a SoC with
integrated FPGA fabric for prototyping. This method allows
time and bit accurate evaluation of all system aspects like
memory and interconnect interference, cache behavior, etc.
that are hard to fully cover using traditional system level
simulation approaches. On this basis, Section IV will evaluate
design decisions on system level.

Our design is closely integrated with the processing and
memory subsystem of the SoC. We will first introduce the
system architecture, because it directly influences the design
decisions presented later on. Afterwards, hardware and soft-
ware components are presented.

A. System

Our implementation is based on Xilinx Zynq 7000 SoC,
which consists of a processing system (PS) and programmable
logic (PL). This allows us to implement an AVB Ethernet
controller tightly integrated into the SoC. We use a ZedBoard
as development kit and a Linux (kernel version 3.14) based
operating system.

Fig. 1. System overview with detailed presentation of the AVB Ethernet
controller implementation

Fig. 1 shows a simplified representation of the system. Zynq
has a variety of peripheral modules not depicted here, which
are not relevant to the design at stake. Core of the PS is a
dual ARM Cortex-A9 running at 533 MHz. Controllers for
Flash and DDR RAM integrated in the PS connect off-chip



resources including an SD card storing the boot image and
the main memory.

The PL incorporates an FPGA fabric equivalent to a Xilinx
Artix-7 FPGA with 85K logic cells. The PS can communicate
with the PL using a AXI bus. Additionally the PL can perform
direct memory access (DMA) operations through up to four
64 bit AXI buses. They are connected to two distinct physical
ports at the DDR controller. We use at most two of these buses
to perform DMA operations.

The ZedBoard has an FPGA Mezzanine Card (FMC) con-
nector, which we use to add an external PHY to the system. We
use an ISM Networking FMC module that features a 10/100
Ethernet PHY.

B. AVB Ethernet Controller

Subsets of the AVB Ethernet standard like flow control
and traffic shaping are highly time-critical and therefore best-
suited for hardware implementations. Especially traffic shap-
ing, which has to be carried out accurately and in parallel for
multiple streams would not be suitable in software. On the
other hand, it is possible to implement time-synchronization
in software, but with reduced precision compared to hardware
realizations.

The lower half of Fig. 1 shows a schematic of the AVB
Ethernet controller. It can be configured and controlled through
memory mapped I/O writes towards the AXI slave interface.
To minimize the software overhead, all data transactions are
performed through DMA. The Xilinx Tri-Mode Media Access
Controller (TEMAC) was used. It interfaces the PHY using a
Media Independent Interface (MII). For presentation reasons,
several configuration and interrupt lines are not shown within
the figure.

As shown in [11], synchronization precision within mi-
crosecond range can be achieved with a software-based time-
synchronization. Because sources of error like asymmetric
networking delays have to be added when determining the
overall performance, precision much lower than microseconds
within our endpoint gives limited benefits. Thus, we choose to
implement major parts of the time-synchronization in software.
We only provide a real-time clock (RTC) in hardware, which
will be used by the software. When used as a master clock,
it generates an interrupt in a configurable interval between
125 ms and 1 s (as required by the specification), which
initiates synchronization within the driver. In slaves, the RTC
is adjusted after each synchronization.

Outgoing traffic has to be policed according to the Credit
Based Shaper (CBS) defined in the AVB protocol. CBS
maintains a credit score for each traffic class (and talker
stream in endpoints), which is reduced during transmission and
recovers proportional to its reserved bandwidth. Transmission
are only allowed for positive credit values. Therefore, CBS
has to update its decision whether a stream or class is eligible
for transmission after every transmitted octet, which corre-
sponds to 80 ns for 100 Mbit/s. Because software scheduling
granularities are usually multiple orders of magnitude larger

(e.g. Linux’ minimum scheduling granularity is 75 ms), CBS
requires a hardware implementation.

Our implementation of the stream and class buffers along
with the CBS modules is illustrated in Fig. 1. The number
of stream supported by the AVB Ethernet controller can be
configured at design-time. During run-time, these streams can
be assigned to one of two traffic classes A & B. According
to the standard, each stream is subjected to the CBS. Traffic
from each stream is then forwarded to a class buffer, which is
then also policed with CBS.

To minimize memory resources within the hardware, mes-
sages are buffered in the form of DMA descriptors as long
as possible. Descriptors contain the information necessary to
fetch the actual packet from the RAM (packet length and
memory address). For each class, there is one egress buffer
capable of holding a maximum sized data frame. During
packet transmission, a DMA operation is initiated just in time
to avoid underruns.

Legacy traffic is handled separately and is not subject to any
traffic shaping. AVB traffic has priority over legacy traffic, if
a transmission is allowed according to the shaping. However,
a valid configuration has to ensure at least 25 % of available
bandwidth is not allocated to AVB streams.

Within the receive side, no traffic shaping is required.
Incoming data is transferred to the RAM via DMA and the
processing system is notified through an interrupt. To avoid
interference, the Tx and Rx DMA engines are connected to
separate buses, which are themselves connected to different
ports on the DDR controller. During the evaluation, we will
compare this approach to one using only a single bus.

C. Linux Driver

The AVB Ethernet controller is operated by a character
device driver implemented in Linux’ kernel space. Its tasks
include descriptor and data buffer management, interrupt han-
dling and time-synchronization.

A data transmission via AVB starts, when a user application
calls the kernel module, passing stream ID, data pointer, and
packet length. The data is copied into kernel space and a DMA
descriptor is written to the hardware. A separate ring buffer for
descriptors is maintained for each stream. After the hardware
has copied the data, the processing system is interrupted and
deallocates the memory.

The driver is notified when the AVB Ethernet controller has
copied a received frame into the memory using an interrupt.
Sorting towards streams is not implemented in hardware and
has to be done within the driver. Data pointers are sorted
towards stream based buffers and therefore, no data copy
operations are needed.

We implemented a master and a slave version of 802.1AS
time-synchronization, which both use the RTC implemented
within the AVB Ethernet controller. The synchronization pro-
cess is depicted in Fig. 2.

The master endpoint is triggered periodically by an interrupt
generated from the RTC. It then sends a Sync message
containing a current timestamp T1. Upon reception, the slave



Fig. 2. Time synchronization between two endpoints using 802.1AS

takes one timestamp T1′ and another one T2 when sending the
Delay Req message. A final timestamp T2′ is taken by the
master and the series of timestamps is sent to the slave using
the Delay Resp message. The slave then adjusts the current
RTC value offset according to

offset =
(T1′ − T1) − (T2 − T2′)

2
.

This scheme leads to perfect synchronization, if commu-
nication delays are equal in master-slave and slave-master
direction. Any asymmetry will lead to a synchronization
error. While a software implementation adds variance due to
interrupt latencies, cache behavior etc., we argue that these are
small compared to ones originating from variable networking
latencies. In a simple example, we assume that transmission
of the Sync message is delayed by a single maximum sized
Ethernet frame (1530 octets plus 12 octets interpacket gap),
while the Delay Req is transmitted without interference. This
single interference causes a synchronization error of 61 µs.
Of course, in a worst-case multiple such interferences can
occur at multiple hops. We will quantify the synchronization
errors contributed from our software implementation in the
experiments below.

IV. Experiments & Results

We conducted a series of experiments targeted at central
performance and cost metrics of the overall system. In order
to get isolated measurements of endpoint specific qualities,
we try to minimize effects contributed from the AVB network
itself. Therefore, we use two endpoints directly interconnected
without any switches or other endpoints interfering. Following,
we present latencies and synchronization errors induced by
the system. Additionally, we discuss overheads in hardware
utilization.

A. Endpoint-Induced Latencies

Low end-to-end latencies are the central feature of AVB
Ethernet. Real-time analyses neglect latencies within endpoints
and only focus on networking delays. However, as we are
dealing with an implementation in a real system, we are
working with finite processing and data transfer capabilities.
Before AVB packets can be sent on the network, they have

to be copied and transferred across the system. With the fol-
lowing experiments, we try to assess the latency contribution
attributed to the implementation of the endpoint itself. We
conduct different experiments to determine latencies within
hard- and software.

Experiment 1: To measure hardware latencies, we extended
the AVB Ethernet controller with an additional timer (reso-
lution: 10 ns). This timer is started when the driver notifies
the hardware of an upcoming transmission. Specifically, it is
started in the same clock cycle in which the final register
write to signal the transmission occurs at the AXI slave
interface. The descriptor proceeds through the stream shaping
and triggers a DMA transfer. After completion of the DMA
transfer, the packet has to be forwarded to the MAC. The
timer stops, when the last data word is written to the MAC.
The timer is read 500 µs after the packet is issued, because
then, even maximum size packets are already transferred. The
experimental setup is depicted in Fig. 3.

Fig. 3. Measurement setup to determine latencies within the AVB Ethernet
controller (Experiment 1)

We conducted the experiment for various packet sizes, sep-
arate and shared memory interfaces, and with optional receive
side traffic. We repeat the experiment 1000 times for each
setup. We assume DMA packet fetch and the copy operation
towards the MAC to be most time consuming, because these
move the actual packet data and not just descriptors. The dura-
tion of these operations scales with packet size. Additionally,
the DMA packet fetch is prone to interference, as it uses
shared resources (on-chip interconnect, memory). We quantify
the effect of this interference by injecting 8000 packets/s
with 1500 B (96 Mbit/s) using a second endpoint B. Using
maximum sized packets maximizes the duration of blocking
from Rx DMA operations. We evaluate the interference for
shared and separate memory interfaces among Tx and Rx.

Experiment 2: The second experiment is targeted at de-
termining software delays. Here, we can use a counter within
the processing system that is sourced with 200 MHz, thus
providing 5 ns resolution. It is based on the same setup as in
experiment 1, with two endpoints A and B interconnected.

The measurement flow is illustrated in Fig. 4. After ini-
tializing the data to be transmitted, timestamp t1 is taken. In
actual applications, we assume the data (e.g. video frames) to
be already within the memory and therefore do not include it
in the sending latency. After initialization of the packet header,



Fig. 4. Measurement flow to determine software latencies (Experiment 2)

104 404 704 1,004 1,304

1

2

3

4

Packet Size (B)

L
at

en
cy

(µ
s)

SW lat. wo/ Rx traffic
SW lat. w/ Rx traffic
HW lat. wo/ Rx traffic
HW lat. w/ Rx traffic

Fig. 5. SW and HW transmit latencies observed in experiment 1 and 2

the kernel module is invoked. Following a context switch to
kernel space, the data is copied into the transmit buffer and the
AVB Ethernet controller is notified about the enqueued packet.
Once this is completed, the AVB Ethernet controller starts
taking over and we take another timestamp t2. The recorded
latency equals the difference t2 − t1.

Again, we vary the packet size and use the second endpoint
B to generate receive side traffic. To maximize the impact
of the receive traffic, we use minimum size packets. This
maximizes the number of interrupts and therefore the number
of context switches. For each experiment, we make 5000
measurements of the latency.

Fig. 5 presents latencies measured within HW (Experiment
1) and SW (Experiment 2) components of the system. We
observe that HW and SW latencies are similar for short
packets, but HW latencies are more strongly dependent on the
packet size. The processing system is connected to the DDR
controller using a 64 bit AXI3 bus at 533 MHz (c.f. Fig. 1).
The FPGA is connected at 100 MHz and has an additional
bottleneck, as the port of the MAC is only 32 bit wide. Thus,
the processing system achieves a memory throughput 10.6
times that of the FPGA. In the experiments, we measured an
average increase in latency of 0.23 ns/B for SW and 2.42 ns/B
for HW. Their ratio of 10.52 closely resembles the difference
in memory throughput.

Considering additional Rx traffic is important, as it shows

the systems behavior when exposed to interference. The
presence of Rx traffic means additional memory and on-chip
interconnect accesses, as well as Rx processing in SW and in-
terrupts. SW latencies are more sensitive to interference. While
HW latencies remain nearly constant, average SW latencies
increase by up to 30% when exposed to receive side traffic. For
HW latencies, we evaluated the increase in maximum latencies
for different architectures connecting Tx and Rx interfaces
to the memory through shared (6.57% increase) or separate
(2.05% increase) buses. The use of separate buses increases
performance isolation between Tx and Rx operations. Such
isolation is important in embedded systems, because it allows
better prediction of the system behavior.

Latencies were observed in the microsecond range, which
is multiple orders smaller than typical end-to-end latency
requirements (usually no less than 2.5 ms). However, software-
based latencies are subject to large variations. This issue
cannot be solved without employing a real-time operating
system or a real-time patched Linux kernel.

B. Synchronization Errors

The synchronization algorithm is implemented in software.
Several run-time properties of the system like cache behavior
or interrupt latencies are hard to predict, and thus cause errors
in the synchronization process.

Experiment 3: In this experiment, we quantify the error
caused by the implementation of the synchronization protocol
within the endpoint. We want to determine this error isolated
from other sources like network interference or temperature
variations. While we can eliminate network interference by
running the synchronization without background traffic, tem-
perature cannot be completely kept constant.

Fig. 6. Measurement setup to determine synchronization errors (Experi-
ment 3)

Fig. 6 describes the measurement setup. Endpoint A is
serving as a master while endpoint B must synchronize its time
tB to tA. For precise comparison between the timers, we use a
parallel connection to connect endpoint A’s timer to endpoint
B. In hardware, we accurately compute the synchronization
error tA−tB. We sample the synchronization error in endpoint B
before and after the protocol adjusts the counter. In an ideal
system, this error should be zero after every synchronization.
We therefore consider the error sampled just after synchro-
nization a measure for the inaccuracies introduced by our
system. Additionally, by considering the difference between



125 250 375 500 625 750 875 1,000
0

1

2

3

Synchronization Interval (ms)

R
M

S
E

rr
or

(µ
s)

System error
Clock drift

Fig. 7. Synchronization error from system non-idealities as well as clock
drift in experiment 3

the error before the current synchronization and after the last
synchronization, we assess the error contributed from clock
drift.

We conducted the experiments for synchronization intervals
of {125, 250, ..., 1000}ms. For each interval, we measured the
synchronization error 1000 times. In Fig. 7, we present the
root mean square (RMS) synchronization errors contributed
from clock drift and from our system.

The results show a trend of linear increasing clock drift for
increasing synchronization intervals, reaching from 0.61 µs for
125 ms up to 2.44 µs for 1 s. Deviations from this trend are
due to variations in oscillator frequency, which can occur due
to temperature variations between the measurements.

The system error represents inaccuracies caused by non-
idealities within the system, which include variable interrupt
latencies, memory access times, cache behavior etc. The RMS
error ranges between 1.98 µs and 3.37 µs. There is a slight
tendency of larger errors for larger synchronization intervals,
which we attribute to additional cache pollution.

We obtained increased errors compared to the simulation
results from [11], which indicate timestamping errors between
409 ns and 1.78 µs depending on the synchronization interval
and CPU type. We attribute this to the fact that we were
able to cover a wider range of possible error sources in our
experiments, especially cache behavior.

The maximum system error recorded was 8 µs. Together
with errors due to background traffic, which were not part of
this evaluation, and clock drift, errors smaller 10 µs can be
expected in typical scenarios. In worst-case scenarios, the syn-
chronization error induced from the asymmetric networking
latencies can be two orders of magnitude larger. Generally,
we assume a precision of 10 µs sufficient for automotive
application like synchronous sensor sampling. Sensors are
usually connected through field buses like Local Interconnect
Network, which operate at up to 20 kHz (equivalent to a
bit time of 50 µs). Therefore, no benefit would be gained
from increased synchronization precision, achievable e.g. with

hardware assistance.

C. Hardware Overhead

We implemented the AVB Ethernet controller as an ex-
tension to Xilinx’ standard Ethernet design. The resource
utilization of the simple design including MAC, DMA engine
and AXI interface will be used as baseline. Using Vivado
2013.4, we measured the resource consumption for logic as
look up tables (LUTs) and flip flops (FFs). The results for a
design supporting four streams are shown in Fig. 8.

TEMAC AXI Interconnect
AXI DMA CDMA
AXI Slave Descriptor FIFOs+CBS
Data FIFOs+CBS RTC

Leg. Eth.
(LUTs)

AVB Eth.
(LUTs)

Leg. Eth.
(FFs)

AVB Eth.
(FFs)

0

0.5

1

1.5

·104

R
es

ou
rc

e
U

til
iz

at
io

n

Fig. 8. Hardware resources used by the AVB Ethernet controller compared
to a legacy controller

The overall resource overhead of the AVB Ethernet con-
troller compared to the legacy design is increased by 53%
in LUTs and 28% in FFs. Most resources are consumed by
Descriptor FIFOs and the associated traffic shaping. Together
with the data FIFOs, this represents the traffic shaping exten-
sions. The real-time clock (RTC) for time-synchronization uses
less than 1% of resources within the AVB Ethernet controller.
The AXI slave is used as a register interface to communicate
with the Linux driver.

In our design, we used different DMA engines in Tx and Rx
path. The TEMAC uses AXI stream interfaces, and therefore
the AXI DMA module can be used directly for Rx operations.
For Tx operations, the DMA engine is not directly connected
to the TEMAC, but has to perform DMA transactions to
multiple class buffers. Because AXI stream does not support
addressing, we could not use the existing AXI DMA but
used a Central DMA (CDMA) instead. The increased resource
utilization by DMA engines constitutes 4.8% of the total
overhead.

The increase in resources of around 40% is significant,
but also adds important functionalities like the credit based
traffic shaping, which cannot be implemented in software.
Commercial Ethernet controllers are usually more complex



than the baseline implementation used here and incorporate
protocol specific accelerators like TCP offload engines. Such
extensions could also be used in combination with AVB
enablements. The baseline is therefore pessimistic.

V. Conclusion
In this paper, we presented an integrated solution of an

ARM SoC with an AVB Ethernet controller. We proposed a
HW/SW partitioning and a composable hardware architecture,
that extends a conventional MAC to enable AVB capability at
the cost of 53% additional logic and 28% additional flip flops.

Currently, little commercial hardware is available and ex-
perimental data is lacking as well. Our work is the first to
provide experimental data on the temporal behavior of AVB
endpoints. Based on a prototypical implementation using an
integrated system composed of a dual ARM Cortex-A9 and an
FPGA, we conducted a series of experiments, evaluating key
performance aspects of the system like packet release latencies
and synchronization errors.

Hardware latencies within our design occur in the range
from 1 µs to 4 µs depending on the packet size with deviations
of less than 25 ns even when exposed to interfering receive
packets. While latency within the software components are
smaller with less than 1.5 µs, they are subject to standard
deviations of up to 1 µs. Based on our measurements, packet
release latencies smaller 6 µs can be expected. This is a
similar order of magnitude as the transmission time of a
minimum sized Ethernet frame at 100 Mbit/s (5.12 µs), yet
it is orders of magnitude smaller than automotive end-to-end
latency requirements (≥2.5 ms).

In another experiment, we were able to show that the
synchronization error caused by the non-idealities of the real
system is smaller than 8 µs. The achieved accuracy is sufficient
for automotive applications like synchronous sensor sampling.
However, if future applications require increased precision,
the synchronization protocol could be offloaded into the AVB
Ethernet controller.

The proposed architecture and the measured performance
are closely connected. While we found the performance suf-
ficient for applications expected in the automotive domain, in
other or future use-cases increased performance and therefore
additional hardware support might be necessary. Nevertheless,
the architecture and results presented can serve as baseline for
such improvements. Additionally, our data can be used as input
in the planning and design process of distributed applications
and embedded architectures.

AVB Ethernet is on the edge of adoption in automotive on-
board networks. Additionally, AVB’s successor called Time-
Sensitive Networking (TSN) is already in development. Build-
ing upon the AVB standard, it adds additional features aimed
enabling very low latency transmissions. Due to the modularity
of the extensions, our AVB controller can be used as a basis
to implement extensions proposed in TSN.

Acknowledgments
This work was funded within the project ARAMiS by the

German Federal Ministry for Education and Research with

the funding IDs 01|S11035. The responsibility for the content
remains with the authors.

References
[1] S. Tuohy, M. Glavin, C. Hughes, E. Jones, M. Trivedi, and L. Kilmartin,

“Intra-vehicle networks: A review,” Intelligent Transportation Systems,
IEEE Transactions on, vol. PP, no. 99, pp. 1–12, 2014.

[2] L. L. Bello, “Novel trends in automotive networks: A perspective on
ethernet and the ieee audio video bridging,” in Emerging Technologies
Factory Automation (ETFA), 2014 IEEE 19th Conference on, Sept 2014,
pp. 1–9.

[3] G. Cena, I. C. Bertolotti, S. Scanzio, A. Valenzano, and C. Zunino, “Syn-
chronize your watches: Part i: General-purpose solutions for distributed
real-time control,” Industrial Electronics Magazine, IEEE, vol. 7, no. 1,
pp. 18–29, 2013.

[4] R. Kreifeldt, A. Chang, A. J. Huotari, Y. Kim, K. Lewis, and K. B.
Stanton, “Avb for automotive use,” AVnu Alliance White paper, vol. 20,
2009.

[5] J. Diemer, J. Rox, and R. Ernst, “Modeling of ethernet avb networks
for worst-case timing analysis,” MATHMOD, Austria, 2012.

[6] P. Axer, D. Thiele, R. Ernst, and J. Diemer, “Exploiting shaper context to
improve performance bounds of ethernet avb networks,” in Proceedings
of the The 51st Annual Design Automation Conference on Design
Automation Conference. ACM, 2014, pp. 1–6.

[7] F. Reimann, S. Graf, F. Streit, M. Glas, and J. Teich, “Timing analysis
of ethernet avb-based automotive e/e architectures,” in Emerging Tech-
nologies & Factory Automation (ETFA), 2013 IEEE 18th Conference on.
IEEE, 2013, pp. 1–8.

[8] R. Queck, “Analysis of ethernet avb for automotive networks using
network calculus,” in Vehicular Electronics and Safety (ICVES), 2012
IEEE International Conference on. IEEE, 2012, pp. 61–67.

[9] D. Azua, J. A. Ruiz et al., “Complete modelling of avb in network cal-
culus framework,” in Proceedings of the 22nd International Conference
on Real-Time Networks and Systems. ACM, 2014, p. 55.

[10] U. D. Bordoloi, A. Aminifar, P. Eles, and Z. Peng, “Schedulability
analysis of ethernet avb switches,” in Embedded and Real-Time Comput-
ing Systems and Applications (RTCSA), 2014 IEEE 20th International
Conference on. IEEE, 2014, pp. 1–10.

[11] A. Mahmood, R. Exel, and T. Sauter, “Impact of hard-and software
timestamping on clock synchronization performance over ieee 802.11,”
in Factory Communication Systems (WFCS), 2014 10th IEEE Workshop
on. IEEE, 2014, pp. 1–8.

[12] A. Kern, H. Zinner, T. Streichert, J. Nöbauer, and J. Teich, “Accuracy of
ethernet avb time synchronization under varying temperature conditions
for automotive networks,” in Proceedings of the 48th Design Automation
Conference. ACM, 2011, pp. 597–602.

[13] H.-T. Lim, D. Herrscher, L. Volker, and M. J. Waltl, “Ieee 802.1 as
time synchronization in a switched ethernet based in-car network,” in
Vehicular Networking Conference (VNC), 2011 IEEE. IEEE, 2011, pp.
147–154.


