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Abstract

Multi-core architectures will provide the computational power needed to the high

performance hard real-time systems. Typically, multi-core architectures employ

shared resources to reduce cost by decreasing chip area and package size, and to

exchange data (for example, shared memory). The interference on the shared re-

sources makes the execution time of applications running on these architectures

unpredictable and dependent on activity of co-existing cores and the employed ar-

bitration scheme. Hence, the Worst Case Execution Time (Wcet) of applications

is impossible or hard to estimate. For industrial deployment, the Wcet of safety

critical hard real-time applications on an underlying platform must be known and

must stay below an enforced limit.

Traditionally, the above mentioned problem is solved by static time partitioning

or over-allocating the shared resource to the critical core. Both result in ineffi-

cient resource utilization which leads to loss of performance. This thesis provides

techniques to achieve time-predictable execution of applications on multi-core ar-

chitectures preserving their performance. Although modern multi-core architectures

have number of shared resources, this thesis focuses on shared memory without loss

of generality. Our approach minimally modifies the existing multi-core architectures

and existing measurement based Wcet analysis tools, preserving performance, cost

and time-to-market benefits.

A shared Sdram arbitrated under a budget based arbiter exhibits complex tim-

ing behavior for the worst case interference analysis. Conventional techniques re-

move this complexity by applying an abstraction. This thesis provides a detailed

worst case interference analysis of the aforementioned combination resulting in much

tighter WCET bounds. The tighter WCET bounds reduce over-allocation, thus, in-

crease performance of the system indirectly.

Apart from performance and cost benefits, the timing aspect of our techniques is

conceptually certifiable according to the CAST32 guidelines.



Zusammenfassung

Mehrkernarchitekturen könnten die notwendige Rechenleistung für leistungsstarke

harte Echtzeitsysteme zur Verfügung stellen. Typischerweise verwenden die Mehr-

kernarchitekturen gemeinsame Ressourcen zur Kostenreduzierung da die Chipfläche

und die Packetgröße reduziert werden können, sowie zum Datenaustausch (z.B. ge-

meinsamer Speicher). Die Interferenz auf den gemeinsamen Ressourcen macht die

Ausführungszeit der Anwendungen unvorhersagbar und anhängig von der Aktivi-

tät der koexistierenden Kerne und dem Arbitrierungsschema. Aus diesem Grund

ist die Einschätzung der Worst Case Execution Time (WCET) der Anwendungen

unmöglich oder sehr schwierig. Die WCET der sicherheitskritischen harten Echtzeit-

anwendungen auf der zugrundeliegenden Plattform für die industriellen Entwicklung

muss bekannt sein und unterhalb einer bestimmten Grenze liegen.

Traditionell wird das oben beschriebene Problem gelöst, indem statische Zeitauf-

teilung vorgenommen wird oder die gemeinsame Ressource dem kritischen Kern

zugewiesen wird. Beide Methoden führen zu einer ineffizienten Ressourcenverwer-

tung und folglich zu Performanzverlust. Diese Dissertation präsentiert Methoden zu

zeitlich vorhersagbaren Anwendungen auf Mehrkernarchitekturen mit Aufrechter-

haltung ihrer Performanz. Obwohl moderne Mehrkernarchitekturen zahlreiche Ty-

pen von gemeinsamen Ressourcen enthalten, konzentriert sich diese Dissertation

ohne Beschränkung der Allgemeinheit auf den gemeinsamen Speicher. Unsere Lö-

sung modifiziert die vorhandenen Mehrkernarchitekturen und die WCET Analyse

Tools minimal und bietet Vorteile bezüglich der Performanz, der Kosten und der

Produktionseinführungszeit.

Ein gemeinsamer SDRAM arbitriert durch einen Budget-basierter Vermittler zeigt

ein sehr komplexes Timing-Verhalten bei der Analyse der Worstcase-Interferenz.

Herkömmliche Methoden reduzieren diese Komplexität mit Hilfe einer Abstraktion.

Diese Arbeit präsentiert eine detaillierte Analyse der Worstcase-Interferenz der oben



beschriebenen Kombination mit strengeren WCET-Grenzen. Die strengeren WCET-

Grenzen führen indirekt zu einer Performanzsteigerung.

Abseits der Performanz- und Kostenvorteile sind die Timing-Aspekte unserer Me-

thoden konzeptionell mit den CAST32 Richtlinien zertifizierbar.
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Chapter 1

Introduction

1.1 Background and Motivation

In the last century, humanity has moved from all mechanical systems to smarter, processor

backed mechatronic systems due to their versatility, efficiency, controlability, usability etc. ad-

vantages. This shift is also visible in safety critical Hard Real-Time (Hrt) systems such as

cars and airplanes. On one hand, the safety critical Hrt systems benefit from processor backed

embedded systems, on the other hand the complexity of the system is ported from mechanical

parts to electronics and software. Thus, the cost of a product has been increasingly driven by

the contained electronics. An example is depicted in Fig. 1.1 for modern cars. Although the

motivation and contribution of this thesis is valid for any Hrt systems, automobiles have been

used as an illustration here. Airplanes also have similar requirements, however, certification

requirements (discussed in Sec. A.1 – excerpt of CAST-32 paper [3]) in airplanes are very strict.

Figure 1.1: Increasing cost of Electronics in Cars. (Source: Market and Technology Study

Automotive Power Electronics 2015)
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1. INTRODUCTION

Figure 1.2: Ever increasing number of ECUs in modern cars

For each technique presented in this thesis, a short section is dedicated to explain how does it

comply with the certification objectives and activities.

For almost two decades, car manufacturers have added a dedicated Electronic Control Unit

(ECU) on an appropriate interconnect (aka bus) to add a functionality to the car. This has

resulted in ever increasing number of ECUs in modern cars as depicted in Fig. 1.2. Moreover,

the ECUs are connected to an appropriate bus (interconnect) depending on their functional-

ity. There are number of buses operating on different communication protocols, for example,

CAN [4], LIN [5], MOST [6] and FlexRay [7]. The complexity involving many ECUs, software

executing on them and different communication standards limit scalability of modern cars.

The impact of the above mentioned complexity can be understood by the following example.

The engine start-stop automatic functionality improves fuel efficiency by stopping the engine

when the car is standstill. However, ≈ 30 ECUs are involved in making the decision to stop the

engine1. This makes development of new functionalities and verifying them extremely difficult,

error prone and expensive. Moreover, the additional weight of ECUs and cables (≈ 4Km long,

60 Kg weight [8]) reduces fuel economy gained by smarter engine management.

1G.Spiegelberg, Siemens AG
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Figure 1.3: Centralized architecture. (Source: Market and Technology Study Automotive Power

Electronics 2015)

To tackle the above mentioned problem, a centralized architecture is suggested in litera-

ture [8] and depicted in Fig. 1.3. Here, fewer number of, ≈ 20, high performance ECUs are

suggested to implement all functionalities of a car. These ECUs can be connected with each

other using a single bus standard, for example, time triggered Ethernet. Such time triggered

Ethernet communication is already deployed in industrial Ethernet standards, for example,

EtherCat [9], PowerLink [10], TTEthernet [11] etc. The reduction in number ECUs and the

single communication standard drastically increase scalability and simplify development and

verification process.

The above discussion asserts the need of powerful ECUs in the automotive industry. In the

past, achieving high computation power was rather simpler. With each new generation of the

processor core the operating frequency was increasing which resulted in higher computation

power and faster execution of the existing code without any modifications. However, together

with the increase in operating frequency, the power consumption also increases. They are

interrelated by the equation (1.1) [12].

P ∝ C × V 2 × f (1.1)

In the above equation, P is the consumed power, C is the switched capacitance, V is the

respective voltage swing and f is the operating frequency. The consumed power is dissipated

as heat resulting in increased temperature and local hot spots. In the last decade, researchers

observed that increasing the operating frequency was not feasible anymore due to the unman-

ageable heat dissipation. The generated heat could damage the chip itself. This phenomenon

is popularly known as power wall.
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1. INTRODUCTION

Employing multi-cores to increase the computation power of the ECUs is a feasible ap-

proach. General purpose systems are using multi-cores since many years now [13]. Although

Hrt systems may greatly benefit from multi-cores, they are not used in safety critical systems

due to the following research problem. The interference on shared resources in multi-core archi-

tectures prolongs execution time of applications executing on them unpredictably. The Worst

Case Execution Time (Wcet) of applications must be known and stay below an enforced limit

(dead line) in order to achieve certification for commercial use. The shared resource interfer-

ence in multi-core architectures make the Wcet computation impossible or hard to determine

weakening the suitability of multi-core architectures in Hrt systems.

The above mentioned problem is well-known in academic and industrial community. The

academical approach to solve the problem proposes to re-design multi-cores to achieve time

predictable execution. Typically, radical new designs are proposed, for example, PRET [14],

MERASA [15], CoMPSoC [16], ACROSS [17], RECOMP [18] and T-CREST [19] architectures.

These radical new designs may be too expensive for Hrt systems due to the comparatively small

market size and huge costs involved in building these architectures. Additionally, the legacy

application code must be modified to benefit from these architectures. The modifications results

in significant development and re-certification costs.

Industry approaches the problem either by suspends all cores except the core on which an

Hrt task is scheduled or by considering overly pessimistic Wcet of the Hrt application1.

While the industrial approach is cost effective, both industrial and academical approaches have

tremendous performance penalty due to the inefficient resource utilization.

This thesis approaches the problem in a different way. We suggest none-to-minimal changes

in the existing multi-core architectures to achieve time predictable execution of applications.

Our approach does not enforce any modification in legacy code or existing single core timing

analysis tools. Thus, our approach produces a cost effective, certification friendly and short

time-to-market solution. Moreover, since we propose none-to-minimal modification in existing

multi-core architectures, the high performance benefit of multi-core is preserved leading to truly

Predictable and High Performance Multi-core Architectures.

1Wcet of applications is often used for schedulability analysis
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1.2 Goals of this thesis

1.2 Goals of this thesis

The previous section has highlighted the need of a methodology to develop predictable and

high performance multi-core architectures for Hrt and mixed critical systems1. This section

summarizes main goals of the thesis. As stated in the title, the goal of the thesis is to provide

predictable and high performance multi-core architectures. Since predictability in single-core

architectures is well understood problem and methods [20] exist for Wcet analysis, this thesis

exclusively focuses on multi-core architectures.

Our strategy of building a predictable architecture follows the definitions of predictability

presented by Thiele et al [21] and Kirner et al [22]. By these definitions, we set our goals for a

predictable architecture with the following virtues.

1. The upper bound on the produced Wcet of applications executing on the architecture

should be close to the actual Wcet.

2. The required overall analysis efforts should be as minimum as possible.

3. The performance penalty of predictable architecture should be as minimum as possible.

This has also been suggested by Schoeberl et al [23].

We extend the above defined virtues in [21, 22, 23] by the following additional virtues.

4. The design costs of such architectures should be as low as possible.

5. Wcet analysis of applications executing on these architectures should be simple and

inexpensive.

6. The timing aspect of the combined system (hardware and software) should be certifiable2

for the safety critical applications.

Our goal is to develop a multi-core architecture with all these virtues leading to a predictable,

high performance and cost effectively certifiable solution.

1Systems executing applications with mixed levels of criticality.
2In this thesis, we consider certification as a formal proof of functional safety. Since the thesis focuses on

the timing aspect, we provide, analysis, arguments and proofs which are acceptable by certification authorities

for deterministic execution time.
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1.3 Main contributions of the thesis

The contributions of this thesis are in building predictable multi-core architectures and analysis

techniques surrounding the virtues presented in the previous section. The detailed contributions

are as follows.

1. Invention of a novel arbitration scheme for shared resources in multi-core architectures

which produces low Wcet and increases resource utilization resulting in a faster execution

in the average case. Additionally, the arbiter enables incremental certification (analysis

in isolation) leading to a reduction in development and certification efforts.

2. Algorithms to estimate the worst case interference on a shared Sdram under complex

budget based arbiters. Sdram promises inexpensive large data storage at high data rate

which is essential in multi-core architectures. The presented algorithms are more precise

than the existing techniques resulting in tighter bound on Wcet (higher predictability).

3. Presentation of a technique to measure the Wcet of applications executing on multi-core

architectures. The technique does not enforce any modifications in production chips and

single-core timing analysis tools. Thus, the technique leads to a low cost certifiable solu-

tion preserving the performance of multi-core architectures. Additionally, the technique

allows chip vendors to hide details of their arbiter. This helps them keep their competitive

edge.

4. Identification of a few caveats in building predictable multi-core architectures. Here, the

concerns originate from low level micro-architectural details and apply only to multi-core

architectures. Ignorance of these concerns may result in a wrong Wcet estimation.

5. Proof of concept of the techniques on a real hardware using benchmark applications as

well as use case demonstrations in real-world-like situations.

1.4 Structure of the thesis

The thesis is composed of eight chapters. The next chapter describes the related work in the

area and distinguishes our work from the existing work.

The Chapter 3 presents a novel arbitration scheme, called Priority Division (Pd), for multi-

core architectures. The arbitration scheme has equal worst case performance as the Tdma

arbitration, however, it has much better resource utilization resulting in faster execution in the

6



1.4 Structure of the thesis

average case. The chapter also proposes a single Hrt capable variant of the Pd arbiter which

outperforms the highest priority master of fixed priority scheduling in the produced Wcet.

The Chapter 4 presents timing analysis algorithms for complex arbiters under a complex

shared memory (Sdram). The presented algorithms improve precision of the produced bounds

over existing techniques. Additionally, the chapter also compares unconventional and conven-

tional arbiters in terms of predictability, performance and occupied chip area. The Pd arbiter

is found to be the clear winner in our tests.

The Chapter 5 presents a novel technique to measure Wcet of applications executing on

multi-core architectures using a single-core measurement based tools. The technique does not

enforce any modifications to the existing production chips or tools making it an inexpensive,

performance preserving and certifiable solution.

The Chapter 6 raises few points which must be taken care of while building a predictable

multi-core architecture. These concerns are related only to multi-core architectures. Typically,

they arise from very low level micro-architecture details which are generally abstracted by Wcet

analyzers. However, ignoring these concerns in multi-core architectures may lead to optimistic

Wcet estimation.

The chapter 7 presents three demonstrators built during this thesis work. The demonstrators

highlight the usability of the techniques presented in above mentioned chapters in real-world-like

situations.

Finally, the chapter 8 concludes our work with notes on future work.
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Chapter 2

Related work

Achieving deadlines in Hrt systems is as important as producing a correct result after appli-

cation execution. Hence, knowing the Wcet of applications on corresponding platform is of

utmost important. Several methods exist for single-core architectures [20]. The shared resource

interference is the biggest challenge for Wcet analysis in multi-core architectures [24]. Sev-

eral micro-architecture modifications as well as analysis techniques are presented in literature.

This chapter discusses the related work in existing micro-architecture components and analysis

techniques.

2.1 Shared resource arbiters

Wcet analysis is yet immature on multi-core architectures and we believe that the industrial

adoption will be incremental. In other words, from single-core, to dual-core, to quad-core and

to many cores. Although our techniques are valid for Network on Chip (NoC) architectures,

we present our analysis and tests on shared-bus-like architecture for the sake of simplicity.

Sec. 3.1.2 describes how our techniques and analysis are applicable to a NoC.

Multi-core systems share system resources, e.g. main memory, to decrease package size

and thereby, decrease cost of the product. An arbiter is employed to resolve conflicts among

simultaneously arriving shared memory1 access requests. Thus, the arbiter plays an important

role in determining the maximum and the minimum latencies to access the shared memory

as well as the shared memory utilization. Typically, low worst case latencies and memory

utilization are mutually exclusive, although simultaneously desired, properties. Number of

1Throughout the thesis, we take shared memory as an example of shared resource since it is the most common

shared resource and interference on it has significant impact on the produced Wcet.
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arbitration schemes have been proposed to bring these desired properties together up to some

extent. In this section, those schemes are discussed.

2.1.1 Close to traditional arbiters

Static priority (Sp– aka Fixed priority), Time Division Multiple Access (Tdma) and Round

Robin (Rr) are simple and widely used conventional (traditional) arbiters. Their worst case

latency and memory utilization analysis are presented in Sec. 3.1.5, Sec. 3.1.6 and Sec. 3.1.7,

respectively. From the analysis it is clear that under Sp, only the highest priority master is

guaranteed to have low worst case latencies while the lower priority masters have infinite worst

case latency. However, memory utilization is ideal under Sp. Similar to Sp, Rr provides high

memory utilization, however, at the cost of worst case latencies to all masters in the system.

Tdma is the most predictable and provides low worst case latency to all masters, however, at

the cost of low memory utilization. As stated in the previous section, low worst case latency and

high memory utilization are simultaneously desired properties. Hence, new arbitration schemes

are derived by mixing the traditional arbiters to achieve benefits of both the worlds.

Richardson et al [25] propose dTDMA arbitration scheme. Under dTDMA, slots of only

active masters are inserted in the arbiter schedule. Hence, wastage of unused slots is prevented

and memory utilization increases. However, when a master sends an access request, it is unaware

of current slot schedule (due to dynamism). Hence, in the worst case, it has to assume that its

request will be served in the last slot. This results in equally high worst case latencies as Rr.

Interference Aware Bus Arbitration (IABA) scheme is proposed by Paolieri et al [26]. We

consider that the IABA arbitration scheme is a mix of Sp and Rr since Hrt masters have higher

priority in accessing the shared memory. However, conflicting access requests from multiple Hrt

are resolved by Rr. Here again, the worst case latency for multi-Hrt systems is equal to Rr.

The Slot reservation arbitration scheme is proposed by Poletti et al [27]. Under slot reserva-

tion, the critical master is assigned a reserved slot while other slots are dynamically arbitrated

under the Rr scheme. Hence, we consider that the slot reservation arbitration scheme is a mix

of Tdma and Rr. Here, if the reserved slot is not used then poor memory utilization is resulted,

like Tdma. Additionally, only one critical master is supported and high worst case latency is

expected in slots arbitrated under Rr.

We proposed Priority Division (Pd) [28, 1] as another “close to traditional” arbiter. We no-

ticed that the Tdma is the most predictable and Sp is the most resource efficient. Additionally,

low worst latency can be achieved for a selected master under the Sp. Hence, we chose Sp as

10
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a secondary arbitration to reuse the unused slots under the Tdma. If all masters utilize their

slots, the Pd and the Tdma behave exactly the same.

Thus, all arbiters derived from traditional arbiters behave exactly as their parent arbiter

in corner cases. Recently, with specific goal in mind, complex arbiters are presented. They

include randomized arbiters (for probabilistic Wcet analysis) and budget based arbiters (for

decoupling of latency and allocated rate).

2.1.2 Randomized arbiters

Lahiri et al [29] and Jalle et al [30] propose randomized arbiters. Under randomized arbiters,

each master has certain probability of being granted an access when they send a request. Hence,

for every access a probabilistic latency distribution can be achieved. For probabilistic Wcet

analysis, this distribution is required instead of the absolute worst case latency. RT Lottery [31]

(Real-time Lottery) mixes Tdma and lottery arbiters.

2.1.3 Budget based arbiters

Under traditional arbiters (except Sp) as well as their derivatives (except Pd in h1 mode –

Sec. 3.2.2), the low worst case latency can only be achieved by allocating high bandwidth. To

remove this coupling, budget based arbiters are proposed. As the name suggests, instead of di-

viding memory bandwidth in number of slots, the masters are assigned a fixed budget of number

of accesses in a unit time. The budgeting distributes the available shared memory bandwidth

according to masters’ memory requirements. Credit Controlled Static Priority (Ccsp– Akesson

et al [32]), Priority based Budget Scheduler (Pbs– Stein et al [33]) and Multi-Bandwidth Bus

Arbiter (MBBA – Bourgade et al [34]) are examples of budget based arbiters. Under these

arbiters, the conflicts on shared memory are resolved by priorities. Here, a critical master is

assigned high priority to achieve low latency access. Thus, the coupling between latency and

allocated bandwidth is removed. Shreedhar et al propose to use budgets under Rr arbiter in

deficit round robin [35].

The maximum and minimum latency analysis under the budget based arbiters is complex.

Here, latency to the current access depends not only on activity of co-existing masters, but also

on the history of accesses.

The original Pbs design in [33] had only two priority levels: high and low. In our previous

work [36], we improved the design of the Pbs arbiter by adding multiple priority levels and

provided worst case interference analysis for each level. Additionally, we provide analysis for

11
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corner cases at replenishment period boundary. Tomlow et al [37] gives higher flexibility to the

highest priority master and applies Pbs scheduling to operating system. Here, processor is a

shared resource.

2.1.4 Latency analysis under budget based arbiters

The budget based arbiters are complex arbiters for the worst case latency analysis since the

worst case latency depends on the history of accesses done by the test master as well as the co-

existing masters. To abstract details, Akesson et al [32] employ LR (Latency Rate) models [38]

and Stein et al [33] employ dataflow models. These models model memory accesses in fluid

manner. They assume that memory traffic can be divided into infinitesimally small units.

However, shared memory accesses are served in a burst fashion. Hence, these models produce

highly pessimistic results. The improvement is presented in Staschulat el al [39], Siyoum et

al [40] and our previous works [36, 41]. These works take into account the bursty behavior of

accesses. Lele et al [42] present a new dataflow modeling for Tdma arbiter which performs

better than the LR model.

The above mentioned works, except [36, 41], have the following modeling limitations. i)

They treat accesses from a core (master) independent of each other. In reality, cache misses

are blocking1 in nature. Here, in the worst case, service latency to one cache miss delays the

occurrence of the next cache miss by the same amount. This delay must be incorporated in

their models to correctly estimate worst case latencies. ii) The type of access is ignored. In

reality, a read access to a shared memory takes longer to finish than a write access (Fig. 4.2).

If the type of an access is ignored, in the worst case, it must be assumed that each access is of

read type. This significantly increases the Wcet.

2.1.5 Arbiter comparisons

Although a shared resource arbiter has a huge impact on the execution time predictability

and resource utilization of a particular system, the impact of arbitration policy on Wcet

and resource utilization is a relatively less explored area. Pitter et al [43] and Kopetz et al [44]

concluded that the Tdma arbiter is the most predictable arbiter among the traditional arbiters.

After we introduced the Pd arbiter in [28], Kelter et al [45] compared Pd against Rr and Tdma

and concluded that the Pd arbiter is an attractive candidate for mixed critical systems. Jalle

et al [46] compared Tdma and Rr arbitration scheme and concluded that the Rr arbitration

1An out-or-order processor can execute instructions until a dependent instruction blocks the execution.
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scheme is more predictable than the Tdma if the exact arrival time of a shared resource access

is unknown.

In Chapter 4, we compare traditional arbiters, budget based arbiters and Pd. This is the

first work to compare different class of arbiters to study their impact on Wcet of applications.

2.2 Shared resource interference compensated WCET anal-

ysis

Several interference aware (compensated) techniques are presented which can be roughly seg-

regated in static analysis, measurement based hybrid analysis, co-existing application aware

analysis and measurement based analysis in the presence of stress patterns. This section dis-

cusses related work in all these categories.

2.2.1 Static WCET analysis

The static Wcet analysis is a widely used technique and number of commercial and academic

tools are available for single core architectures, for example aIT1, Otawa [47], Chronos [48]. In

static Wcet analysis technique, abstract models of application and underlying micro-architecture

components (e.g. cache, pipeline etc) are created. Later, Integer Linear Programming (ILP)

is applied with an objective to identify the maximum execution time. The technique is called

abstract interpretation and Implicit Path Enumeration Technique (IPET).

The main advantage of the static analysis is, it gives formal guarantees of the worst case

execution time and it is able to analyze timing anomalies and domino effects [49, 50]. However,

the abstraction and the objective of maximizing execution time (ILP) produce significantly

high Wcet. The abstract modeling of micro-architectural components requires significant

effort. This is particularly important since details of underlying hardware is vaguely disclosed

by manufacturers to protect their competitive edge. This enforces the abstraction further, and

results in increased Wcet.

Our approach, as explained in Chapter 5, is based on measurement based technique where

the targeted platform itself is used for measurements. Hence, we do not compare our approach

to the static timing analysis. An interested reader is referred to Chattopadhyay et al. [51], Kelter

et al. [52], Ding et al. [53] for the latest development in static Wcet analysis for multi-core

architectures.

1http://www.absint.com/ait/
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2.2.2 Measurement based hybrid WCET analysis

The hybrid measurement based Wcet analysis technique is also an industry standard technique

and employed in commercial tools (for example RapiTime1). The approach was first presented

by Kirner et al [54]. Here, execution traces are recorded while an instrumented2 test-application

is executing on the target platform. On the host machine (RapiTime), these traces are analyzed

and the worst case path is constructed considering the Maximum Observed Execution Time

(Moet) of individual basic blocks.

Due to the on target testing, Wcet of applications executing on a reasonably complex

platform can be analyzed. Additionally, due to the absence of abstract modeling and the

ILP, tight Wcet bound is produced. In its existing form, as explained in Sec. 5.1.1, the

technique cannot be applied to multi-core architectures. In this thesis, we extend the technique

to applications executing on multi-core architectures.

2.2.3 Holistic WCET analysis

In this analysis technique, complete knowledge of co-existing applications is considered to be

known. Using this knowledge, maximum delay due to interference on the shared memory is

predicted. One such approach using Abstract interpretation, Timed Automata (TA) and model

checking is presented by Lv et al [55]. At first, abstract interpretation is used to determine

occurrence time of each cache miss. This information is then used to build TA models of

concurrently executing applications. The TA models of arbiter and applications are analyzed

using a model checker to determine maximum interference and corresponding Wcet. Pellizzoni

et al [56] propose to use real-time calculus to determine the maximum interference between

I/O traffic and the test-application. The arrival curve (memory access intensity) for I/Os is

controlled and the arrival curve of application is achieved from a cache activity trace.

The holistic approach relies on absolute knowledge of simultaneously executing applications

to tighten interference bound (and there by Wcet). This approach is restrictive. A minor

bug fix in a co-existing application enforce re-analysis of the whole system. In our approach,

we analyze applications in isolation considering the worst interference from the co-existing

applications. Thus, our approach yields, irrespective of co-existing applications, an absolute

Wcet.

1http://www.rapitasystems.com/products/rapitime
2Light weight instrumentation points are added at the beginning and end of each Basic Block – a linear code

segment with single entry and single exit points. The instrumentation points time stamp the execution of basic

blocks.
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2.2.4 Measurements in the presence of stress patterns

As the name suggests, this approach measures execution time of a test-application in the pres-

ence of artificially generated interference. The artificial interference is typically generated by

executing synthetic applications on co-existing masters. The synthetic application maintains a

big data structure (much bigger than the cache) and accesses the data structure in strides bigger

than the cache-line size. This makes sure that every access to the structure results in a cache

miss. Thus, uninterrupted accesses (cache misses) towards memory is created by co-existing

masters.

This technique does not need any change in hardware and hybrid Wcet analysis technique

(Sec. 2.2.2) for single core architectures can be used in its existing form. However, as presented

in Sec. 6.1.4 and Sec. 6.1.5, this approach produces unsafe Wcet bound.

2.2.5 Internal monitoring aided analysis

In order to estimate interference aware Wcet, internal monitoring approach is presented. Here,

internal events, such as cache misses, are monitored during task execution. The worst case

memory latency is then added to the observed execution time. The technique is presented

by Nowotsch et al [57], Bin et al [58] and in our previous work [2]. The technique presented

in [57] and [58] are coarse grain and produces higher Wcet bound. Additionally, as mentioned

by Alhammmad [59], the technique presented in [57] needs synchronized task execution on

different cores as well as knowledge of resource utilization and execution time of each co-existing

application. The technique presented in [58] uses stressing benchmarks together with internal

monitoring.

Compared to these techniques, our technique presented in [2] and Sec. 5 produces absolute

Wcet and analyzes applications independent from co-existing applications. Additionally, our

technique allows the chip manufacturers to hide internal specifications and still provide for

the worst case interference compensation. This is highly attractive to both, chip vendors and

OEMs.

2.3 Customized predictable architectures

Predictable execution time in the presence of caches and pipelines is difficult to achieve. The

shared resource interference in mult-core architectures makes the problem even harder. There

are two approaches to solve the problem [60]: i) Composability ii) Predictability.
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According to Akesson et al [60], time composability means that an application path always

takes the same amount of time, irrespective of co-existing applications. On the other hand,

predictability means that execution time of an application path depends on the activity of

co-existing applications, however, an upper bound on the execution time can be provided.

PRET [14] and CoMPSoC [16] are examples of composable (repeatable time) machines.

PRET approach uses Scratch Pad Memory (SPM), Tdma arbiter and thread interleaved pipelines

to achieve repeatable execution time [61]. Reineke et al [62] presented how the PRET approach

can also be used in the presence of a shared Sdram. A version of PRET processor executing

ARM instruction set is also presented by Liu [63]. In summary, the PRET approach removes all

the interference from the system. Instead of avoiding interference from the system altogether,

the CoMPSoC [64] approach artificially delays the access to the shared memory by the theoret-

ical worst case delay using delay blocks [65]. Goossens et al [66] present a technique to achieve

composable memory response without using the delay blocks.

MERASA [15], parMERASA [67], ACROSS [17], RECOMP [18] and T-CREST [19] are pre-

dictable architectures. Unlike composable architectures, they do not focus on the repeatability

of execution time. Instead, they allow upper bounded interference on shared resources. The

upper bounded interference is achieved in MERASA architecture using either Rr [68] or IABA

arbitration [26] scheme. For Wcet analysis, the arbiters can be configured in wcet analysis

mode. In this mode, the arbiter artificially delays the access to the shared memory by the

worst case. The parMERASA approach presents time predictable on-chip ring architectures to

achieve composable Wcet on a many core architecture [69].

The RECOMP project uses IDAMC NoC [70] to support mixed critical applications. At

the router, two traffic classes are distinguished, according to their criticality (GT - Guaranteed

Throughput and BE - Best Effort (latency sensitive)). The GT traffic is arbitrated under Rr

while the BE traffic is arbitrated by winner-takes-all arbitration (arbiter lock mechanism –

Sec. 6.2.1). To manage smooth flow of packets in the NoC, back suction technique is used [71].

The ACROSS project employs time triggered NoC for time predictable access to the shared

memory. Similar to ACROSS, the T-CREST project aims to build a time predictable NoC

architecture [72, 73]. Hence, time-triggered static scheduling for routing NoC packets is em-

ployed [74, 75]. The static time-triggered schedule is expected to deliver poor resource utiliza-

tion.

Apart from the above mentioned academic architectures, XMOS [76] and Propeller chip [77]

are commercial predictable multi-core processors. The XMOS chip achieves predictable exe-
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cution by removing all performance enhancing micro architectural components, for example,

caches and pipeline. This significantly reduce the performance of XMOS chip. As stated in

their overview [78], with 16 logical cores the peak performance is only 1000 MIPS. All cores

share a main memory, however, the arbitration scheme is undisclosed. The propeller chip con-

tains 8 cores and yields 160 MIPS. Although the processor cores are not detailed, we assume

they do not contain caches and pipelines. An on-chip hub arbitrates shared resources in Tdma

fashion.

To build a specialized chip only to achieve repeatable or predictable execution is very expen-

sive, especially due to the small market size of automobile and avionics industry. Additionally,

they severely degrade performance. In contrast, our techniques require tiny modification to

existing multi-cores. Additionally, pin mapping is not at all affected, hence, the existing PCBs

can be used without any modifications. Compared to customized architectures, our approach

is significantly cost efficient and yields higher performance.

2.4 Probabilistic WCET analysis – pWCET

Typically, hardware components used in safety critical systems must give probabilistic guarantee

of correct functionality, for example 1 failure per 109 hours of operation – failing probability

10−9 per hour. This means that the hardware may fail, however, the probability of the failure

is very low.

The same argument is used by probabilistic Wcet analysis approach. Here, instead of

giving an absolute Wcet value, probabilistic distribution of execution time is provided. From

this distribution a cut-off is selected – execution time may exceed the cut-off by probability of

10−9 per XYZ number of executions. The approach was first presented by Edgar et al [79] and

Bernat et al [80] and recently investigated by PROARTIS [81] and PROXIMA [82] (for multi-

core architectures) projects. To achieve history independent random behavior, randomized

cache [83] and randomized shared bus arbiter [30] are used. Since the focus of our work is

in achieving the absolute Wcet1, we do not compare our technique with the probabilistic

approach.

1The absolute Wcet is the only certifiable technique right now.
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Arbiter Sp Tdma Rr dTDMA Slot Budget Random PD

reservation based

Hardware complexity ++ ++ ++ ++ + -- -- ++

Analysis complexity ++ ++ ++ ++ ++ -- -- ++

Absolute Wcet Yes Yes Yes Yes Yes Yes No Yes

WCET Quality ++1) ++ -- -- ++1) ++1) +3) ++

Resource utilization ++ -- ++ ++ + + N/A +

Certifiable ++1,2) ++ +2) +2) ++1) -- -- ++

Table 2.1: Comparison of arbiters. 1) Only for the highest priority or reserved master. 2) The

technique presented in Sec. 5 is required. 3) Probabilistic Wcet

2.5 Summary

This section summarizes the chapter and compares our approach with others on high level.

Tables 2.1 and 2.2 list factors contributing to the virtues of predictable and high performance

multi-core architectures presented in Sec. 1.2. It is clear that a single solution cannot be the

best solution in all factors, however, our techniques perform better than the existing techniques

in over all comparison.

Table 2.1 summarizes comparison between our Pd arbiter and other arbiters. The Pd has a

small resource utilization penalty compared to work conserving arbiters (Sp, Rr and dTDMA).

The working principal and latency/resource utilization of the Pd arbiter is presented in Sec. 3.2.

Compared to existing latency analysis under budget based arbiters, our analysis presented

in chapter 4 improves the analysis in the following ways. i) We precisely model each arbiter for

the worst case behavior without using any abstraction. This increases the one time modeling

efforts, however, significantly improves the precision. ii) We remove the unrealistic assumption

of treating cache misses independently. Instead, we take into account the effect of service latency

to one cache miss on the subsequent cache misses. iii) We model each shared resource access

by its type for the worst case latency analysis to further improve the precision. iv) Instead of

coarsely modeling the traffic towards shared resource, our detailed model captures burstyness

and presents analysis on corner cases, for example, at replenishment period boundary. Thus,

our approach significantly improves precision of the produced Wcet compared to existing

approaches.

Table 2.2 compares our technique presented in chapter 5 with the existing approaches. Our

technique needs a minor change in the test chips of the commercial products. The modification
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is far less than the prohibitively expensive modifications required in custom architectures. Since

our technique enables Wcet analysis in isolation, it assumes the worst interference from the co-

existing applications for each cache miss. Currently, this is the only inexpensive and certifiable

approach, however, it produces larger Wcet compared to the holistic approach and custom

architectures. Although, our technique is certifiable, being measurement based analysis, it

cannot analyze timing anomalies. It is clear from the table that benefits of our technique

outweigh its limitations by far.

In summary, our techniques deliver predictable multi-core architecture at minimal hardware

change, at minimal certification costs and at minimal reduction in performance compared to

the existing approaches. Our techniques are in compliance with the relevant CAST-32 [3] paper

guidelines for certification1.

1Although the guidelines are currently valid only for a dual-core processor, this is the best information

available at the moment. Additionally, we do not expect a huge change when the guidelines are released for

multi-core architectures.
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Chapter 3

Priority division arbiter

This chapter presents the Priority Division (Pd) arbiter for sharing on-chip resources. The

arbiter aims to provide latency guarantees equal to the Tdma arbiter and shared resource

utilization more than the Tdma arbiter. The chapter also compares the performance of our

arbiter with commonly used starvation free arbiters – Time Division Multiple Access (Tdma)

and Round Robin (Rr). The chapter also compares the performance of Pd with the Static

Priority (Sp) arbiter1.

3.1 Background

This section provides the necessary background information to facilitate the discussion presented

in the chapter.

3.1.1 Shared resources in multi-cores

Shared on-chip resources are often employed in Cots based multi-core architectures to reduce

number of components and smaller chip/package size. The smaller size drives the cost down.

A basic multi-core architecture is depicted in Fig. 3.1(b) [1]. The figure depicts a shared main

memory which is one of the most commonly used shared resource.

The figure shows N number of CPU cores connected via a shared bus to the main memory.

The cores employ instruction and data caches. The cores usually access data and instructions

from caches. If the required instruction or data is not present in caches (cache miss), an access

to the shared main memory is requested. As depicted in Fig. 3.1(a), data within a cache is

1The chapter includes contents from our previous work [1]
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       (a) Cache-line Mapping            (b)  Basic Multi-core Architecture      

Figure 3.1: Cache-line Mapping and Basic Multi-core Architecture.

stored in cache-lines. The incoming data from main memory replaces one of the cache-lines

(eviction). The evicted cache-line is written back to the main memory (write back policy).

Accesses to the main memory are issued in burst fashion to speed-up the operation. Thus, the

application being executed on the core, the core’s cache configuration and eviction policy, all,

influence the main memory access pattern of any core.

3.1.2 Employment of arbiters in a NoC

The Fig. 3.1(b) depicts a shared-bus-like architecture for the sake of simplicity. In reality, our

test-architecture is essentially a NoC with a Crossbar [84] topology as presented in Fig. 3.2(a).

This architecture is also called slave side arbitration [85] since each slave is equipped with its

own arbiter. Here, masters (M1, M2, ...) can communicate with individual slaves (S1, S2,...)

in parallel which significantly improves interconnect throughput. However, if multiple masters

want to communicate with a unique slave, the respective arbiter resolves conflicts.

A multi-core architecture, generally, contains only one shared main memory and interference

on it has the maximum impact on the Wcet. Hence, in order to absolutely focus on this inter-

ference, we consider that the shared memory is the only slave in the system. This assumption

leads to an identical (shared-bus-like) architecture as presented in the Fig. 3.1(b).

A router node of a NoC is presented in Fig. 3.2(b). Here, the router is responsible for

avoiding conflicts if multiple incoming flows want to use the same outgoing interface. The

outgoing interface is now the shared resource, hence, analyses and techniques developed in this

thesis are applicable.
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Figure 3.2: Employment of arbiters in NoC

3.1.3 The shared resource access latency and utilization

The single bus-slave interface of Fig. 3.1(b) can serve only one master in a particular clock

cycle. Typically, an arbiter guards the shared memory and grants only one master to access the

memory. If another master wants to access the memory at the same time, it has to wait. Thus,

latency to access the shared memory is influenced by: i) Operating speed of the memory itself

– the slower the memory the longer it takes to access it, ii) The policy by which the shared

memory is arbitrated, and iii) The access patterns of co-existing cores when a request to the

shared memory is raised.

The speed of the memory and the employed arbitration policy is known, however, the access

patterns of co-existing cores is cumbersome to predict. Hence, the best case and worst case

scenarios are analyzed to achieve the best case latency (BL) and the worst case latency (WL).

In the best case, the access-under-investigation is not interfered while in the worst case, it is

interfered maximally.

Note that the execution on a core experiencing a cache miss is suspended until the required

data is fetched from the main memory. Thus, the BL and WL parameters must be considered

while determining the Best Case Execution Time (Bcet) and the Worst Case Execution Time

(Wcet), respectively. During the Bcet estimation, all favorable scenarios are assumed: no

interference at all. If an arbiter wastes clock cycles in all favorable scenario then inefficient

shared resource utilization is resulted. Thus, BL is higher in case of non-work-conserving

arbiters compared to work-conserving1 arbiters. A low Bcet indicates high shared resource

utilization, Ψ.

1A work conserving arbiter grants the shared resource to the requesting master immediately if the shared

resource is idle.
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From the above discussion, we define the shared resource utilization, under all favorable

conditions, as in Equation (3.1). Here, m is the master (or core) on which the test-application

is executing. Under the assumption of all favorable conditions, only the test master is backlogged

(βm = 1), all co-existing masters are idle (βm′ 6=m = 0).

(βm = 1) ∧ (βm′ 6=m = 0) | Ψ =
ηbusy × 100

ηbusy + ηidle
% (3.1)

In the above equation, the right side of “|” is only valid, if the condition on the left side

of “|” is true. Here, ηbusy denotes the number of clock cycles utilized to serve the access

request from m while ηidle denotes the number of unused clock cycles after the access request

is issued. Considering a constant shared resource access pattern (cache miss pattern) of the

test-application and a constant memory bandwidth, BL, WL and Ψ are only influenced by the

arbitration policy. This chapter focuses on the effect of the arbitration policy on BL, WL and

Ψ.

Asymmetric multiprocessing: In order to focus exclusively on the shared resource inter-

ference, we assume asymmetric multi-processing1. For symmetric multi-processing, our analysis

must be augmented by task dependency analysis which is left for future work.

3.1.4 Computation trace

Before we study the arbitration policies in detail, this subsection explains the computation trace

as described in our previous works [86, 1].

As explained in Sec. 3.1.1 a shared main memory is, unless informed explicitly, accessed only

if a cache miss occurs. In asymmetric multi-processing, interference on the shared resource is

the only way co-existing applications impacts the execution time of each other.

A computation trace is a convenient way to estimate either Wcet, Acet– Average Case

Execution Time or Bcet of a particular application path taking into account the worst case,

the average case or the best case interference (no interference at all), respectively. In com-

putation trace, cache misses on the application path are denoted by timeless events (e0, e1, ...

in Fig. 3.3 [86, 1]). These timeless events are separated by the time during which the core

executing from registers, caches etc. These times are denoted by computation times, c0, c1, ...,

in the figure. It is now fairly convenient to append each event by either BL, AL (Average case

latency) or WL to achieve Bcet, Acet or Wcet, respectively. Again note that the Bcet,

1In asymmetric multi-processing, cores execute independent applications. Although, the physical memory

device is shared, the data on the device is unshared.
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Figure 3.3: Wcet estimation using the computation trace

Acet and Wcet estimated using computation trace are particular to that application path

and considering the shared memory interference, only.

Estimating Bcet, Acet or Wcet is now a simple three step process. i) The test-application

path is executed on the target platform (Chapter 5) or simulation platform and cache miss trace

together with the experienced latencies are recorded – recorded trace. ii) All cache miss place

holders (e0, e1, ...) are shifted to the left by removing experienced latencies (L0, L1, ...). iii) Each

cache miss event (e0, e1, ...) is appended by either BL, AL or WL, depending on the estimation

goal, shifting all subsequent events to the right. The estimated Bcet, Acet or Wcet have

now correct impact of interference, respectively.

Especially for Wcet estimation, we must show that insertion of WL for each cache miss

is a conservative assumption also in the case of out-of-order execution. For example, an event

occurs at time t in a computation trace. Instead of blocking immediately, the execution moves

forwards for φ number of clock cycles until a dependent instruction stalls the execution. Had the

cache miss experienced the worst case latency, the effective execution blocking time is WL − φ.

Instead, using computation trace, we assume that the blocking time is WL > (WL − φ). If
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φ ≥ WL, the processor has sufficient instructions in pipe-line so execution will not be blocked

at all. Thus, inserting WL for each cache miss event and assuming suspension of execution for

WL is a conservative assumption.

It is clear that the Wcet estimated in this fashion is the Wcet of that particular path

only. Extensive testing and measurement based Wcet analysis tool, as presented in Chapter

5, must be used to find the critical path and the Wcet of application.

3.1.5 Analysis of the Static Priority Arbiter

Under the Static Priority (Sp) or fixed priority arbitration, each master is assigned a fixed

priority. As soon as requests to access the shared memory arrive, they are scheduled according

to the priorities of originating masters. In this thesis, without loss of generality, we assume that

the Sp is configured in a non-preemptive fashion. Here, higher priority master cannot preempt

the ongoing lower priority burst. However, after BurstLength number of transfers of a lower

priority master are finished, a new arbitration decision based on priorities is made. Thus, the

highest priority master has to wait, in the worst case, for BurstLength number of lower priority

transfers to be finished. We denote this number clock cycles as SlotSize – SS.

Upper bound and lower bound on latency Since the highest priority master may issue

uninterrupted burst accesses and monopolize the shared memory, the worst case latency bound

for co-existing lower priority masters is infinite. As explained above, in the worst case, the

highest priority master must wait for one ongoing lower priority burst transfer. After waiting,

its own access will be scheduled and finish within SS clock cycles. Thus, in the worst case an

access request from the highest priority master completes in 2 × SS clock cycles. In the best

case, the shared resource is granted to the highest priority master immediately and the access

completes after SS clock cycles.

W sp
L = 2× SS (3.2)

BspL = SS (3.3)

Estimating Wcet using computation trace needs only appending WL = W sp
L for every cache

miss in a computation trace. The Sp arbitration is an ideal candidate for single Hrt system.

A carefully implemented Hrt application will not starve co-existing lower priority applications.
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Figure 3.4: The Tdma Arbiter.

In the event of a fault in Hrt, starvation to co-existing any-time applications may not be too

much important since catastrophic consequence is expected.

Shared memory utilization: The Sp arbiter schedules an incoming request based on

their priorities without wasting a single clock cycle. Thus, Ψsp = 100%.

3.1.6 Analysis of Time Division Multiple Access (TDMA) arbiter

The operation of the Tdma arbitration is graphically presented in Fig. 3.4(a) [1]. Each core

gets a fixed timing window to access the shared memory, called a slot. The schedule of slots

(BusCycle) repeats itself, like a virtual ring, after reaching the last master. Each slot is suffi-

ciently big to allow a single cache-line refill. Each slot begins with a switch point. If an access

request is pending from the owner of the slot then the requesting owner (master or core) will be

scheduled in the slot. Otherwise, the slot will be wasted. The simple time based switching of

owners removes interference from the system and co-existing applications cannot impact exe-

cution time of each other anymore. Thus, irrespective of co-existing applications, the execution

time deviates by only ±BusCycle.

Upper bound and lower bound on latency Under Tdma arbitration, latency to any

access depends on the arrival of the request compared to the beginning of the slot of the

originating master. As depicted in Fig. 3.4(a), let us assume N masters in the system. Then,

the experienced latency Li for the ith access is calculated by equations (3.4) and (3.5).

ti = N × SS − {c(i−1) mod (N × SS)} (3.4)

Ltdmai =

{
ti, ti ≥ SS
ti + (N × SS), ti < SS

(3.5)
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3. PRIORITY DIVISION ARBITER

At first, the remaining time in the BusCycle is computed using the equation (3.4). The

equation uses the time gap between two cache misses, ci. If ti < SS, too less time is left in

the slot and the access will occupy initial part of the next slot, hence, it will not be scheduled.

Now, it has to wait for the new BusCycle. We assume that the test-master has the last slot in

the BusCycle. So, the access has to wait for the entire new BusCycle until it is scheduled, as

derived in equation (3.5).

Although the Ltdmai value is bounded by SS ≤ Ltdmai ≤ (N + 1) × SS, the bounds are

not required. According to equations (3.4) and (3.5), the value of Ltdmai does not depend

on activity of co-existing applications and depends only on the constant parameters. Hence,

execution time of paths can be measured directly and the highest one is considered as the Wcet

of the application.

Shared memory utilization: The predictable execution and the comfort of being able to

directly measure the Wcet without interference analysis takes it toll on the memory utilization.

Here, unused slots are wasted. Assume that an access request arrives one clock cycle after the

slot dedicated to the originating master has started, as depicted in Fig. 3.4(b). Since the

access cannot complete in the dedicated slot, the current slot will be wasted. Additionally, for

estimating utilization, we assume that co-existing masters are idle (equation (3.1)). Hence, other

slots will not be utilized as well, resulting in huge loss of memory bandwidth and unnecessarily

high latencies.

Under the assumption of idle co-existing masters, if an application does majority of accesses

just after its slot has started then the worst case memory utilization occurs which is given by

the following equation.

∀i, ci = (N − 1)× SS + n× SS + 1, n ∈ N0 | Ψtdma
w =

100× SS
(N + 1)× SS

=
100

N + 1
% (3.6)

Similarly, best case memory utilization occurs if an application does all accesses right before

its slot starts.

∀i, ci = (N − 1)× SS + n× SS, n ∈ N0 | Ψtdma
b = 100% (3.7)

A Round Robin (Rr) arbiter can be used to increase the memory utilization. The following

subsection describes the Rr arbiter.
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Figure 3.5: Graphical View of the Round Robin Arbiter.

3.1.7 Analysis of round robin arbiter

The operation of the Round Robin (Rr) arbiter is depicted in the Fig. 3.5 [1]. Similar to Tdma,

masters are allocated number of timing windows (slots) to access the shared memory. Unlike

Tdma, the starting time of slots are not fixed. Instead, the arbiter is always looking for a

requesting master in a circular manner. As soon as a requesting master is found, its slot is

started. The SlotSize - SS is fixed. Thus, after SS number of clock cycles, the arbiter resumes

looking for a requesting master from the next slot in the circular schedule. Thus, if a single

master is requesting, the memory stays occupied which increases the memory utilization.

Upper bound and lower bound on latency Due to the dynamic slot start time, the

worst case latency is high under Rr. Assume that our test-master (m1) issues a request when

the arbiter pointer is at W in Fig. 3.5. Additionally, assume that all co-existing masters also

send requests at the same time. Hence, all slots will be occupied and the request from m1 needs

(WL = 4 × SS) to complete. This is the worst case. Similarly, the best case latency occurs

if m1 sends a request when the arbiter pointer is at B. In this case, the access request will be

served immediately, hence, BL = SS. Since state of arbiter pointer and activity of co-existing

master are unknown, latency to each access must be considered as WL for the Wcet analysis.

W rr
L = N × SS (3.8)

BrrL = 1× SS (3.9)

Shared memory utilization: As explained above, under the Rr arbitration, memory is

occupied if at least one access request is backlogged. Hence, Ψrr = 100%.
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Figure 3.6: Graphical View of the Priority Division Arbiter.

3.2 Priority Division (PD) arbiter and analysis

This section describes the priority division (Pd) arbiter. The arbiter was first published in our

previous works [28, 1]. The arbiter takes advantage of high memory utilization of the Sp arbiter

and predictability of the Tdma arbiter.

3.2.1 Basic operation

The operating principle of the Pd arbiter is graphically presented in the Fig. 3.6 [1]. Similar to

Tdma, Pd employs static time slots to grant masters an access to the shared memory. Unlike

Tdma, slots are not owned by an exclusive master. Instead, masters are assigned a priority in

every slot. At beginning of slots (arbitration points in the figure), the highest priority requesting

master is granted to access the shared memory for SlotSize number of clock cycles. Thus, if

the highest priority master does not want to access the shared memory then, instead of wasting

a slot, a lower priority master is given an opportunity to access the shared memory. This

increases memory utilization at a minor increase in complexity.

The priorities of masters are changed from slot to slot according to the required distribution

of the memory bandwidth. For example, to prevent starvation, each master must have highest

priority in at least one slot. Masters are depicted the descending order of priority.

Compared to the traditional arbiters, the Pd arbiter offers more configurability. Here,

number of slots and priorities within the slots can be tuned in order to achieve the design

objectives. For example, a memory intensive master can be assigned highest priority in one

slot and the second highest priority in all slots. So, it is the first to benefit from the unused

bandwidth of co-existing masters.
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Upper and lower bound on latency: Under the Pd arbitration, the worst case occurs for

a test-application if it does not benefit from unused slots of co-existing masters. Note that the

test-application, irrespective of activity of co-existing masters, can access the shared memory

in the slot where it has the highest priority. This is the same behavior as the native Tdma.

Thus, the worst case latency under Pd is equal to the experienced latency under Tdma.

W pd
Li = Ltdmai (3.10)

Measuring Wcet under Pd is simple. The co-existing applications must execute synthetic

stress pattern to logically convert the Pd into the Tdma. Now, Observed Execution Time

(Oet) is the Wcet, like under the Tdma.

The best case occurs when co-existing masters are idle. So, the test-master is able to use

the slots when needed. However, unlike Rr, the test-master must wait for an arbitration point.

BpdLi = (c(i−1) mod SS) + SS (3.11)

Shared memory utilization: As explained above, the unused slot of the highest priority

master is re-arbitrated and can be used by a lower priority master. This increases memory

utilization compared to Tdma. However, unlike Rr where slot of a requesting master is imme-

diately started, under Pd, a new master is scheduled only at arbitration points. In the worst

case under Pd, the test-master sends request just after an arbitration point. Thus, the current

slot is wasted and the request is served in the next slot. This results in 50% memory utilization

in the worst case.

∀i, ci = n× SS + 1, n ∈ N0 | Ψpd
w =

100× SS
2× SS

= 50% (3.12)

From equation (3.6) and (3.12), Ψpd
w >> Ψtdma

w .

Similar to Tdma, if an access request from the test-master arrives exactly at an arbitration

point, the best case memory utilization occurs.

∀i, ci = n× SS, n ∈ N0 | Ψpd
b = 100% (3.13)
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3.2.2 h1 Configuration

In the native mode, Pd is a starvation free arbitration policy and can support multiple Hrt.

However, in a single Hrt system, Pd can be configured in h1 mode to minimize latencies to the

critical master. Under the h1 configuration, the critical master has the highest priority in all

slots. Thus, an access request from a critical master is guaranteed to be scheduled at arbitration

points, irrespective of activity of co-existing masters. This results in worst case latency = best

case latency = observed latency.

Lh1
i = (c(i−1) mod SS) + SS (3.14)

Due to the static slot allotment, the memory utilization under the h1 mode is less than the

Sp. However, latencies to critical master is less the Sp, as derived in equations (3.2) and (3.14).

3.3 Comparison of the arbiters

This section compares the Pd arbiter with the traditional arbiters, Sp, Tdma and Rr. The

first test compares Pd against starvation free arbiters – Tdma and Rr and the second test is

dedicated to single Hrt capable arbiters – Sp and Pd in h1 mode. The tests study the impact

of arbitration policy on: i) Wcet of applications, ii) memory utilization and iii) chip area.

3.3.1 Test setup

Our test architecture is similar to the one illustrated in the Fig. 3.1(b). We built a quad-core

processor on Altera Cyclone III Fpga using Altera NIOS II cores. Each core contains instruction

and data caches of size 512 Bytes, each. The cores share an on-chip Sram under the above

mentioned arbitration schemes. In this chapter, we selected single path1 applications from the

Mälardalen Wcet benchmark suit [87]. To prevent direct and indirect memory monopolizing

and to prevent invalidation of our latency parameters (BL and WL), we took care of caveats

presented in Chapter 6.

The test-applications are executed on the core1 (m1) while the co-existing cores (m2, m3

and m4) execute dummy shared memory stressing applications. The measurements of memory

utilization, Ψ, was directly conducted in the target platform by observing internal request and

grant signals.

1Multi-path applications need path analysis in addition to interference analysis. This is presented in Chapter

5.
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Benchmark Tdma Rr Pd

Ψ in % Oet Ψ in % Wcet Ψ in % Wcet

compress 30.37 26591 100 30506 71.27 26591

cover 31.56 15805 100 18024 71.97 15805

crc 30.03 106013 100 109163 67.49 106045

duff 34.49 4920 100 5281 76.28 4920

edn 33.62 494584 100 553972 72.04 494584

expint 32.65 16472 100 16708 74.42 16472

fac 30.19 1176 100 1240 70.07 1176

fdct 45.65 21918 100 31837 70.28 21918

fibcall 35.16 1150 100 1228 74.42 1150

fir 32.26 2005692 100 2225970 66.65 2005660

jane 30.35 1016 100 1108 76.19 1016

jfdcint 36.02 31486 100 37035 71.86 31390

matmul 31.01 1633112 100 1764383 67.03 1633048

minver 32.53 161624 100 191270 70.92 161624

ludcmp 34.29 371320 100 456766 69.56 371352

prime 32.58 180831 100 200651 78.17 180990

quart 33.97 223896 100 270686 71.46 223800

recursion 33.33 6813 100 6898 72.72 6813

ud 33.17 40247 100 48212 72.03 40247

Table 3.1: Execution time in clock cycles and memory utilization in %: Tdma vs Rr vs Pd.

Source: [1]

3.3.2 Starvation free arbiters

Under Tdma arbiter, as explained in Sec. 3.1.6, the execution time remains constant (±BusCycle)

irrespective of activity of co-existing masters. Hence, Oet = Wcet = Bcet. Under the Rr

arbiter, the technique presented in Sec. 3.1.4 was used for Wcet analysis. As explained in

Sec. 3.2, the Wcet under the Pd arbiter was measured in the presence of the shared memory

stressing traffic generated by the co-existing masters.

In the Table 3.1, Ψ values are presented in %. The Wcet values are presented in number of

clock cycles. From the table, it is clear that the Rr produces the highest Wcet. Unsurprisingly,

this is due to the fact that in the worst case, the test-master could be the last to be served for

each of its shared memory access. The Tdma and Pd produce equal Wcet. However, due to

the re-arbitration of unused slots under Pd, the memory utilization is more than twice that

under Tdma.
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Figure 3.7: Improvement over Tdma and Round robin arbiters.

The advantages and drawbacks of using Pd over Tdma and Rr are clearly visible in the

Fig. 3.7 [1]. Due to higher memory utilization under Pd, applications execute faster in the

average case. This is shown by the first bar in the figure which depicts reduction in Bcet

compared to Tdma. Similarly, due to the static arbitration points, Wcet is reduced compared

to the Rr. This is presented by the second bar. The third bar depicts the drawback of Pd

compared to Rr. Since Rr produces the highest memory utilization, the applications execute

fastest in the average case under Rr. The third bar shows increase in Bcet under Pd compared

to Rr. However, the drawback of Pd– the third bar, is the smallest for all applications.

3.3.3 Single HRT capable arbiters

This test compares single-Hrt capable arbiters: Pd in h1 mode and Sp. The test is valid for

only the highest priority master (Hrt executing master). For all lower priority masters, the

worst case latency and hence the Wcet is infinite.

Wcet values in clock cycles under Sp and Pd in h1 mode are presented in the Table

3.2. Under Sp, the highest priority master must consider interference from at least one lower

priority access. Instead, under h1, the highest priority master is scheduled at arbitration points

irrespective of activity of co-existing masters. Hence, under h1, Oet = Bcet = Wcet. From

equations (3.2) and (3.14), W sp
L > Lh1

i . This fact is reflected in the results presented in the
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3.3 Comparison of the arbiters

Benchmark Static Priority PDh1

Wcet Wcet

compress 20970 17327

cover 12537 10981

crc 103231 100021

duff 4608 4408

edn 439203 402368

expint 16210 16048

fac 1072 1024

fdct 20649 17710

fibcall 1098 1054

fir 1748622 1624372

jane 872 800

jfdcint 28008 25190

matmul 1444996 1352416

minver 126731 108704

ludcmp 296187 255024

prime 157944 143790

quart 180263 155416

recursion 6730 6685

ud 31993 27271

Table 3.2: Execution time in Clock Cycles: Sp vs Pd in h1 mode. Source: [1]

table where Wcet produced under h1 is less than the Wcet produced under Sp for the most

critical master.

The advantage of employing h1 instead of Sp is presented by the first bar in the Fig. 3.8 [1]

(reduction in Wcet). However, in the average case, the Sp results in faster execution of

applications due to its high memory utilization. This fact is reflected by the second bar in the

figure where Bcet increases under h1 compared to Sp. However, the drawback of h1 – the

second bar, is the smallest for most of our test applications.

Fig. 3.7 and Fig. 3.8 proves that the Pd and its derivative h1 configuration provides the

best trade-off between predictability and performance (in terms of average case execution).

3.3.4 Area overheads

We synthesized the arbiters for Cyclone III Fpga @ 125 MHz clock frequency. The consumed

chip area, in terms of Logic Elements (LE), is listed in the Table 3.3. The arbiters have similar
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Figure 3.8: Improvement over Sp arbiter.

Arbiter Sp Tdma Rr Pd

Number of Logic Elements 281 277 288 285

Table 3.3: On-chip area overheads of the arbiters. Source: [1]

footprint on chip area due to their functional similarities. The Rr is slightly bigger due to the

complexity associated with dynamic slot management. The Tdma is smallest due to statically

defined slots. The Pd is slightly larger than Tdma due to priority management on top of static

slots. The Sp is also slightly larger than the Tdma due to the dynamic scheduling. However,

all arbiters consume negligible chip area compared to the entire multi-core system.

3.4 Comments on certification

According to the MCP Determinism 7 of the CAST-32 paper (see Sec. A.1), interference chan-

nels between software executing on different cores must be known and mitigated. We have

shown theoretically and through experiments that the Pd behaves, in the worst case, exactly

as a strictly time-partitioned arbiter (Tdma) where one core cannot interfere with the other

core while accessing the shared resource. One core can only help co-existing cores run faster by

giving away its slot under the Pd arbiter. Thus, it complies with the MCP Determinism 7.
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The MCP Determinism 9 demands avoidance of shared memory monopolizing. In the basic

mode of the Pd arbiter, each master has one slot with the highest priority which is guaranteed

to the master if it requests. Hence, the arbiter is starvation free. For asymmetric multi-

processing (only physical shared memory device, no logically shared region), it is sufficient to

use a starvation free arbiter in order to comply with MCP Determinism 9.

For symmetric multi-processing, co-running tasks on different cores must be synchronized,

for example by means of a mutex or message passing1. Avoiding a deadlock while synchroniza-

tion is well researched problem from multi-threaded applications and tools are available, for

example [90], to detect such conditions during application analysis. An automated technique to

avoid dynamic deadlocks in legacy code is presented in [91]. Research on the deadlock avoidance

while synchronization is out of the scope of this thesis.

According to MCP Determinism 12, the memory usage of applications must be known

and must stay below or equal to the available memory bandwidth. Here, computation trace

(Sec. 3.1.4) can be used to determine memory requirements of applications. Computation of

available bandwidth under shared Sram (as in this chapter) is straightforward. Computa-

tion of worst case memory bandwidth under complex memory, such as Sdram, is presented in

Chapter 4.

The theoretical proofs and experiments to analyze the worst case interference presented in

this chapter go inline with the suggested activities: MCP Interference Channels (4.(a), 4.(b)

and 5.(a) see Sec. A.1) to demonstrate compliance with the safety standards.

3.5 Summary and future work

This chapter has introduced a novel arbitration scheme called priority division. The arbitration

scheme is superior in the shared resource utilization compared to the Tdma and produces equal

(much less than the Round robin) Wcet bound as the Tdma. This makes it an arbiter of choice

where multiple Hrt applications exist and performance (in terms of memory utilization) is also

critical. The arbiter can also be configured to support a mixed criticality system with a single

Hrt application. We call this configuration as h1 configuration which stands for only one Hrt

application. Under the h1 configuration, the Pd produces even lower Wcet bound than that

produced under the static priority arbitration. This makes the Pd an ideal arbiter for mixed

critical system with single Hrt application.

1For multi-core processors, a hardware mutex core [88] or hardware mailbox core [89] must be used.

37



3. PRIORITY DIVISION ARBITER

The certification comments provided in the chapter show how the timing aspect of the Pd

arbiter is, in principle, certifiable for avionics.

The design space exploration based on the secondary priorities is an interesting research

direction for future work. Here, using programmable secondary priorities and hardware-in-

the-loop test platform can be developed. After each test, according to optimization criteria,

secondary priorities can be re-programmed for the subsequent test. The process goes on until

the optimization goals are reached. This is very helpful to a system integrator who has complete

information about all the applications mapped to different cores.
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Chapter 4

Sharing an SDRAM with budget

based arbiters

The previous chapter has presented the worst case access latency analysis under Static Priority

(Sp), Time Division Multiple Access (Tdma), Round Robin (Rr) and Priority Division (Pd)

arbiters. A shared Sram was used a shared memory. Sram is widely used in safety critical

systems. However, usage of an Sdram is widespread in general purpose systems due to its low

cost and small size. Safety critical hard real-time systems can greatly benefit by using Sdram

as a main memory since it provides a large data storage and high data rate at low cost. The

large data storage aids in implementing enhanced safety functionalities.

Performing the worst case latency analysis on a shared Sdram is complicated. Additionally,

budget based real-time arbiters have been presented for shared resources in research e.g. Credit

Controlled Static Priority (Ccsp) and Priority-based Budget Scheduler (Pbs) which further

complicate the analysis. Unlike Tdma, Rr and Pd, these arbiters do not employ a circular

wheel based scheduling policy. Instead, each master is assigned a number of accesses (budget)

in a particular time frame, popularly called replenishment period. Access conflicts within a

replenishment period is resolved by priorities.

An Sdram shared under these arbiters is challenging for the worst case latency analysis. This

chapter focuses on this issue and provides algorithms to predict the worst case access latency

and thereby the Wcet of applications executing on such multi-core architectures. The chapter

includes contents from our previous works [36, 41] and improves analysis by considering corner

cases at the replenishment period boundary. Additionally, shared Sdram latency analysis under

Sp, Tdma, Rr and Pd and comparison of Wcet produced by all arbiters is presented.
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Figure 4.1: SDRAM cache-line mapping modes

4.1 SDRAM operation

An Sdram stores data in a 2D array of rows and columns, called banks, as depicted in Fig. 4.1.

Cache-lines can be mapped to the banks in the following ways.

4.1.1 Standard cache-line mapping/Open page policy

In standard cache-line mapping, each cache-line is entirely mapped to a single row of single

bank (Fig. 4.1(a)). Data from a bank can only be read through a row buffer, hence, before

reading from or writing to any row, the targeted row is copied to the row buffer of the bank.

This operation is called Row Activation (ACT) [36]. Data can be accessed rapidly from the row

buffer. The row buffer typically increases the throughput of the memory since data is accessed

with reasonable spatial locality. Hence, most of the time access to the row buffer produces a

row buffer hit. This is the same principle on which caches are designed. However, if data from

another row of the same bank is requested, the current content of the buffer must be copied

back to the respected row. This operation is called Precharge (PCH). Subsequently, the new row

is activated.
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Figure 4.2: Response times: (a) read request (b) write request.

In mutli-core systems with shared Sdram, one core may precharge the row buffer which is

activated by the test-application (bank interference). Considering the possibility of the asyn-

chronous eviction of contents of row buffer, for the worst case latency analysis, row buffer miss

is assumed for each cache miss. This significantly increases the Wcet of the test application.

Additionally, an Sdram stores data in the form of capacitive charge which must be refreshed

periodically (@ tREFI) to compensate for the charge leakage. The refresh operation is guarded

by hardware independent of application execution and accessing an Sdram during the refresh

operation is not allowed. Again, for the worst case latency analysis, refresh interference must

be assumed for every cache miss which further increases Wcet.

4.1.2 Bank interleaved cache-line mapping

Bank interleaved mapping is used to avoid bank interference. Here, instead of mapping a cache-

line on a single row of a bank, it is split and mapped to all banks, as depicted in Fig. 4.1(b).

Cache-line can be accessed in a pipeline fashion, while one row of a bank is activated, data from

another bank can be provided in parallel. Since the bank interleaved mapping (close page policy)

is proven to reduces the impact of co-existing applications on the worst case latency [92], in this

chapter, we use bank interleaved mapping to access a shared Sdram. However, in Sec. 6.2.2,

we raise questions on this popular assumption and leave further analysis for future work.

An Sdram uses bidirectional pins to receive/transmit data. If consecutive accesses are of

different types, read/write, the direction of the pin drivers must be switched which comes at

cost of switching penalty (delay). The switching penalty is irrespective of open-page or closed

page policy. Here again, for the worst case analysis, we assume that the access from the test

application is interfered by a sequence of alternating accesses, as depicted in in Fig. 4.2.

Note the subtle difference between a read access and a write access. A write access, once

scheduled, finishes in maximum tW clock cycles. A read access, once scheduled, needs maximum
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tR clock cycles to issue a read command to the memory. The memory responds with the

requested data after tRL clock cycles, at most. Hence, the worst case read latency is tR+ tRL.

The parameters tRL, tR, and tW depend on the type of Sdram, its configuration and its

operating frequency.

4.2 Priority based budget scheduler – PBS

In circular wheel based scheduling schemes (Tdma, Pd and Rr), guaranteed low latency can

only be achieved by allocating higher bandwidth. For example, by adding more slots for a

particular master in the wheel. Unlike the circular wheel based arbitration, the Pbs decouples

the worst case latency from the allocated bandwidth. The Pbs is graphically explained in

Fig. 4.3, Fig. 4.4 and detailed in the following sections.

4.2.1 Basic operation

The Pbs arbiter, instead of defining timing windows (slots) to access the shared memory, defines

fixed budget of number of accesses for each master in a unit time (Replenishment period).

The budgeting distributes the memory bandwidth to the masters according to their memory

requirements and also prevents monopolizing of the memory. Due to the absence of fixed

slots, the memory can be utilized more efficiently. After each access, the originating master’s

budget is reduced by one. After a master consumes all its budget, it becomes ineligible in the

current replenishment period and has to wait for a grant until the next replenishment period

starts. All masters receive their fixed budget back at the beginning of a replenishment period.

A single replenishment period must be able to serve budget of all masters, also in the worst

case. Equation (4.1) derives the worst case command time (tC) in clock cycles. The equation

considers the alternating accesses. Equation (4.2) derives the length of a replenishment period

considering the worst case scenario. Here, N is the total number of masters in the system.

tC =

⌈
tR+ tW

2

⌉
(4.1)

Rp = tC ×
(N−1)∑
i=0

Budget[i] (4.2)

Conflicts of simultaneously arriving accesses are resolved by masters’ priorities. Typically,

a critical master is assigned a high priority for achieving low access latency.
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Figure 4.3: Pbs operation. Priority [m1, m2, m3] = [p1, p2, p3], Budget[m1, m2, m3] = [2, 3, 5].

Σ Budget = 10.

Fig. 4.3 depicts three masters (m1, m2 and m3) with their budgets (2, 3 and 5). The m1

has the highest priority while m3 has the lowest. The time instances t1..t10 are for explanation

only. Such fixed slots do not exist in Pbs. Consider at t1, a request from m3 (R3) arrives.

Since other masters are inactive at that time, the m3 is scheduled immediately. During t2, the

bandwidth is wasted since there is no active master. At the beginning of t3, both m1 and m3

request simultaneously. Since m1 has higher priority than m3, m1 is scheduled first and m3 is

scheduled during t4. During t4, a requests from m2 (R2) arrives. At the beginning of t5, a

request from m2 is already backlogged and m1 is inactive. Hence, m2 is scheduled in t5. Right

after m2 is scheduled, requests from m1 and m3 arrive. Although the m1 has higher priority than

the m2, m1 has to wait until m2 is finished since the Pbs does not preempt a scheduled memory

transfer. Thus, m1 is scheduled in t6.

After t6, m1 has consumed its allocated budget in the current replenishment period. Hence,

it is considered ineligible during the remaining replenishment period and can only be scheduled

in the next replenishment period. The Pbs does not employ any frame based scheduling. The

replenishment period, as the name suggests, are the fixed points in time when budgets are

resettled. As long as a master is eligible, it is scheduled according to static priorities. This

can be seen at the end of the replenishment period shown in Fig. 4.3. Here, just at the end

of the current replenishment period, m3 requests an access. Since m3 is still eligible and m2

is inactive, m3 is scheduled immediately. However, it completes in the next replenishment

period. This interferes with the already backlogged request from m1 at the beginning of the

next replenishment period.
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Reordering the interference pattern for simplicity in analysis

m3

t1 t2 t3 t4 t5 t6 t7 t8 t9
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Figure 4.4: Worst case latency analysis

4.2.2 Worst case latency analysis

The worst case latency analysis under the Pbs arbiter is based on the following intuitions.

1. Interfering accesses and the access from the test-master form an alternating read/write

access pattern which maximizes Sdram latency (Sec. 4.1.2).

2. Each master in the system, except the test-master, preserves its budget and uses it only

to interfere with the accesses from the test-master.

3. One lower priority master is scheduled just one clock cycle before an access request from

the test-master arrives. Thus, this low priority master interferes with every access from

the test-master.

4. One refresh latency is considered at every tREFI clock cycles during analysis.

Fig. 4.4 depicts an assumption that we made for simplifying the analysis. Here, consider

that m3, the lowest priority master, is under investigation. As shown in the upper part of the

figure, according to the intuition 2, high priority masters use their entire budget only to interfere

with the test-master (m3). This interference may occur to a single access from m3 or may be

divided among multiple accesses. The upper part of the figure shows that the interference from

high priority masters occurs to the first two accesses of m3. After the second access of m3 is

scheduled, all high priority masters are ineligible in the current replenishment period. Hence,

subsequent accesses of m3 in that replenishment period is scheduled without any interference.
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4.2 Priority based budget scheduler – PBS

During analysis, it is unknown which access from the test-master will suffer how much

interference. Hence, we assume that the first access of test-master (here, m3) in a replenishment

period suffers interference from all high priority masters exploiting their entire budget. The

subsequent accesses from the test-master are scheduled immediately as long as the master has

the budget. This assumption is explained graphically in the lower part of the figure. Here,

cx and cy are the computation time (Sec. 3.1.4) between two accesses. The above mentioned

assumption leads to the following simplification in counting number of interfering accesses.

The first access of master m in any replenishment period may be interfered by X1
m number

of accesses in the worst case. The subsequent accesses in the same replenishment period is

interfered by Xm number of accesses.

X1
m =



1, m = 1

1 +

m−1∑
i=1

Budget[i], m ∈ (1, N)

N−1∑
i=1

Budget[i], m = N

(4.3)

Note that in equation (4.3), we assume that all the high priority masters consume their

entire budget to interfere with the test-master (m). This is only possible if for the remaining

time these masters are idle, according to the 2nd intuition.

Xm =

{
1, m ∈ [1, N)

0, m = N
(4.4)

In equation (4.3), if the test-master is the highest priority master (m = 1), its first access

in any replenishment period can be interfered by only one lower priority access. This is in

accordance with the 3rd intuition. If the master is neither the highest priority nor the lowest

priority (m ∈ (1, N)), its first access can be interfered by all high priority masters exploiting

their entire budgets and one lower priory master. If the master is the lowest priority master

(m = N) then its first access can be interfered by all high priority masters exploiting their

entire budgets.

Similarly, in (4.4), if the test-master is the lowest priority master, its subsequent accesses

in a replenishment period are scheduled immediately since all the other masters are ineligible

in that particular replenishment period. However, if the test-master is not the lowest priority

master (m ∈ [1, N)), its subsequent accesses may be interfered by one on-going low priority

access.
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Figure 4.5: Worst case latency analysis while crossing the replenishment period boundary. Rp

is the remaining time in the replenishment period when an access from the test-master arrives. d

is the time occupied by an interfering access in the next replenishment period.

In Fig. 4.5, interference scenarios are presented where an access from the test-master can

only be scheduled in the next replenishment period although the master still has budget left

in the current replenishment period. In the upper part of the figure, m2 (medium priority) is

under investigation while in the lower part, m3 (lowest priority) is under investigation. Here, an

interfering access is scheduled in the current replenishment period, but, cannot be completed

in the current replenishment period. While the interfering access finishes, in the background,

a new replenishment period starts and all the masters get back their initial budget. The

interfering access needs d number of clock cycles in the next replenishment period. Factor d

can be calculated using equation (4.5).

d = tC − (Rp mod tC) (4.5)

Consider m2-under-investigation. The figure shows that just before the request R2 arrives,

the arbiter has scheduled a lower priority master m3. Since m2 is eligible, no further lower

priority accesses can be scheduled. However, the higher priority master (m1) regains its budget

and may interfere once again exploiting its entire budget. Thus, in the next replenishment
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4.2 Priority based budget scheduler – PBS

Algorithm 1 Frontend method for Wcet calculation

1: FrontEnd()

2: sim = 0

3: while i ≤ TotalAccesses do

4: sim += PbsLatency(sim, ei)

5: sim += ci

6: end while

7: temp = (sim/tREFI) + 1

8: Nref = (temp > TotalAccesses)?(TotalAccesses) : (temp)

9: sim += Nref × tRFC
10: wcet = sim

period, interference from only m1 (higher priority master) is considered. This is denoted by

considering X1
2 − 1 (remember that X1

m,m 6= N includes interference from one lower priority

master – equation (4.3) ). For the lowest priority master m3, the factor d must be added in the

X1
m to consider the first access interference in the next replenishment period.

Considering the above discussion, we define a factor Xd
m which is given by the equation

(4.6).

Xd
m =

{
d+X1

m − 1, m ∈ [1, N)

d+X1
m, m = N

(4.6)

Assuming the computation trace is available as, T = {(t0, e0), (t1, e1), ..} where e0, e1... are

read or write events (accesses) and t1, t2, ... are occurrence times of these events, equations (4.1)

to equations (4.6) and algorithms 1 and 2 gives the Wcet of that particular execution path

under the Pbs arbiter. Here, ci is the computation time.

In algorithm 11, the FrontEnd method is responsible for reading the computation trace.

The FrontEnd method remains the same while the method PbsLatency is replaced by a method

appropriate for the arbiter. The FrontEnd method adds the worst case latency of each ac-

cess (event) ei, calculated by PbsLatency method, into the computation time ci. Similar to

Sec. 3.1.4, this implies appending each event in a computation trace with its worst case latency.

The penalty of refresh is considered at the end by considering the maximum number of possible

refreshes at every tREFI clock cycles. Being conservative, it is assumed that one refresh may

interfere with the first access of the trace, hence, temp = (wcet/tREFI) + 1. Also note that

the number of interfering refreshes (Nref ) cannot be more than the number of total accesses in

a computation trace. This complies with the 4th intuition of Sec. 4.2.2.

1The code statements of the algorithms presented in this thesis are in C-language.
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4. SHARING AN SDRAM WITH BUDGET BASED ARBITERS

Algorithm 2 Algorithm to Calculate the worst case latency for a single access under the Pbs

1: PbsLatency(sim, ei)

2: lat = New = 0

3: while sim > NextRp do

4: NextRp += Rp

5: New = 1

6: end while

7: Rp = NextRp − sim
8: if m = ineligible then

9: lat += Rp

10: NextRp += Rp

11: New = 1

12: Rp = Rp

13: end if

14: if New = 1 then

15: Interference = X1
m × tC

16: else

17: Interference = Xm × tC
18: end if

19: if Interference > Rp then

20: lat += Rp +Xd
m × tC

21: NextRp += Rp

22: else

23: lat += Interference

24: end if

25: lat += (ei = R)?(tR+ tRL) : (tW )

26: Budgetm −−
27: lat ←↩

The algorithm 2 analyzes the worst case latency of each access considering its available

budget, time of occurrence and the intuitions presented in Sec. 4.2.2. In PbsLatency method,

between lines 3 and 6, the arrival time of the incoming access is categorized in the current

replenishment period or in one of next replenishment periods. If the arrival time is in one of

next replenishment periods then the access is considered as a first access in that replenishment

period and the time in analysis is incremented (NextRp += Rp). The beginning of a new

replenishment period is flagged by New = 1 in line 5. The remaining time in the current

replenishment period (either new or current), Rp, is calculated in line 7.
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4.3 Credit controlled static priority arbiter – CCSP

Between lines 8 and 13, the eligibility (budget left or not) of the test-master in the re-

plenishment period is investigated1. If the master is ineligible, it cannot be scheduled in the

remaining replenishment period (Rp). Hence, the Rp must be added to the latency. Moreover,

the access is considered as a first access in the next replenishment period. Now, the entire new

replenishment period is available for scheduling the access (Rp = Rp).

Between lines 14 and 18, interference is calculated based on whether it is the first access in

the replenishment period or the subsequent access. Between lines 19 and 24, if the interference

crosses the boundary into the next replenishment, the remaining replenishment period (Rp) and

Xd
m are added to the latency. If the access can be scheduled in the current replenishment period

then only interference is added to the latency.

Finally, in line 25, the access from the test-master (m) is scheduled. Depending on its type,

read or write, (tR+ tRL) or tW is added to the latency and its budget is reduced by one. The

final latency value is returned to the FrontEnd method.

Note that tC is the number of clock cycles required to execute a read access or a write access

on the shared Sdram considering alternating read/write accesses, on average (equation (4.1)).

The parameters Xm, X1
m and Xd

m define the number of interfering accesses in the worst case.

These parameters are multiplied by tC to stay in accordance with the 1st intuition that the

interfering access and the access-under-investigation form a sequence of alternating read/write

accesses.

4.3 Credit controlled static priority arbiter – CCSP

The Ccsp arbiter, like the Pbs arbiter, employs static priorities to decouple latency and allo-

cated rate. However, unlike the Pbs arbiter, the replenishment period is not defined in terms

of fixed periodic frames. Instead, it is defined in a more fine-grain manner. Each master in the

system is replenished independently at different time according to its allocated rate. Before we

explain the basic operation of the Ccsp, let us describe the concept of the latency rate servers.

4.3.1 Latency rate servers

The latency-rate (LR) [38] servers can be applied as an abstract analysis method for shared

Sdram. The LR server simplifies modeling of shared resource by representing it using only

1Certainly, if a new replenishment period is started, the master is eligible since it received its initial budget

at the start of the replenishment period.
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Figure 4.6: A LR server and its associated concepts.

two parameters, minimum allocated rate (bandwidth) – ρ and maximum service latency (inter-

ference) – Θ. These parameters hold their value irrespective of activity of co-existing masters.

Fig. 4.6 explains the parameters graphically.

According to the LR model, the test-master must wait for, at most, Θ clock cycles to receive

continuous service ρ. However, if the master does not send requests at rate ρ, then the worst

case latency of Θ must be considered again. This fact is captured by busy periods (Fig. 4.6 [41]).

In the figure the request arrival rate is more than ρ (above the busy line in the figure), then

the provided service rate is guaranteed to be maintained at ρ. However, a break in the request

rate results in reconsideration of Θ and a break in service curve.

Wiggers et al [93] have derived bounds on scheduling times and finishing times using LR

model. They derived that the worst-case scheduling time, ts, of the kth request from a master,

m, is the maximum of arrival time of the request plus Θ and finishing time of the (k − 1)th

request (tf(ω
k−1)). This is presented by the first term in Equation (4.7). The size of the kth

request is denoted by s(ωk). After the request is scheduled, it is served at allocated rate ρ and

finishes after completion latency, l(ωk) = s(ωk)/ρ. The sum of scheduling time and completion

latency gives the upper bound on finishing time of the kth request, tf(ω
k). The upper bound is

derived in Equation (4.7) and graphically depicted in Fig. 4.6.

tf(ω
k) = max(ta(ωk) + Θ, tf(ω

k−1)) + s(ωk)/ρ (4.7)

The equation (4.7) and Fig. 4.6 are for explaining the concept where the arrival of accesses

are assumed independent from each other. However, in this thesis, we are analyzing cache

misses1. Hence, ta(ωk) + Θ > tf(ω
k−1). Thus, the equation (4.7) can be re-written as,

1Latency to a cache miss delays occurrence of the subsequent cache misses Sec. 3.1.4.
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tf(ω
k) = ta(ωk) + Θ + s(ωk)/ρ (4.8)

Both Θ and l(ωk) are represented in terms of service cycle. Here, a service cycle is equal to

the time it takes to schedule one access request. Hence, considering the worst case alternating

traffic, the service cycle is tC (equation (4.1)).

4.3.2 CCSP – Basic operation

The Ccsp arbiter has two components, a rate regulator and a static priority arbiter [32]. The

regulator controls the flow of incoming access requests and enforces the allocated rate, ρ, on the

flow. The accesses which pass through the regulator are arbitrated according to their priorities.

The masters are allocated burstiness (σm – initial credits) and allocated rate (ρm). Clearly,∑
∀m ρm ≤ 1 must hold to make sure that the shared memory has sufficient bandwidth to serve

total allocated rate of the masters in the system.

The allocated burstiness, σm and rate ρm are used by the regulator to compute the number

of credits, λm(t), at a given time – t, Equation (4.9) ([32]).

The operation can be explained as follows: A master is assigned initial credits of σm. The

credit is incremented by ρm after every tC clock cycles (one service cycle), if the master is not

scheduled. If the master is scheduled, γ(t) = m, its credit is decremented by one. If a master is

not scheduled and does not have any backlogged request (βm = 0), its credits keep on increasing

by ρm. This may lead to accumulation of too many credits and may result in starvation of the

lower priority masters. Hence, the credits are saturated at its initial value, σm. Only, if the

master has a backlogged request then only the credits are allowed to increase beyond σm. The

credit accounting is presented in Equation (4.9).

λm(0) = σm

λm(t+ 1) =


λm(t) + ρm − 1 (γ(t) = m)

λm(t) + ρm (γ(t) 6= m) ∧ (βm > 0)

min(λm(t) + ρm, σm) (γ(t) 6= m) ∧ (βm = 0)

(4.9)

Equation (4.10) [32] gives service latency in terms of service cycles for master m. Here, set

of masters with higher priority than m is denoted by M+
m.

Θm =

∑
∀mj∈M+

m
σmj

1−
∑
∀mj∈M+

m
ρmj

(4.10)
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The numerator of the equation (4.10) assumes that the all the higher priority masters con-

sume all their credits to interfere only (similar to our intuition in Sec. 4.2.2 for the Pbs arbiter).

The denominator calculates the number of service cycles required to consume these credits. No-

tice that during consumption of these credits, according to equation (4.10), interfering masters

are continuously replenished. Hence, it may be possible that some of the high priority masters

regain credits and interfere again. It is worth mentioning the similarities between the Pbs and

the Ccsp arbiters. In Fig. 4.5, notice that the m1 interferes with the lower priority masters (m2

and m3) twice since it regains its initial budget at the beginning of a replenishment period. This

scenario is captured by the denominator of equation (4.10). Note that as
∑
∀mj∈M+

m
ρmj
→ 1,

Θm → ∞. This means that higher priority masters are replenished as soon as they consume

their credits and potentially interfere again with their newly acquired credits. Thus, the lower

priority master will never be scheduled.

4.3.3 Detailed worst case latency analysis

In this subsection, instead of using the abstract LR models, we analyze the worst case latency

under the Ccsp arbitration in detail. The abstract LR analysis considers request and service as

infinitesimally divisible. However, when a memory is a shared resource, neither the request nor

the service is infinitesimally divisible. This leads to over estimation of the worst case latency

in the following ways.

• In the equation (4.8), completion time is modeled as s(ωk)/ρ. This means the request is

served at the rate ρ and it completes after tC × s(ωk)/ρ clock cycles. However, on the

shared memory, once a burst access is scheduled (at ta(ωk)+Θ time), it is served with the

full bandwidth of the memory. Hence, in reality, it completes after tC×s(ωk) clock cycles.

This has a large impact on the accuracy of the completion time. Consider the following

values for the parameters. These values are also used in Sec. 4.5 while comparing all the

arbiters.

s(ωk) = 1 – one burst access to fill the cache line, tC = 13, ρ = 0.25. The LR approach

yields 52 clock cycles as completion latency, l(ωk), while in reality, the completion latency

is only 13 clock cycles.

• The scheduling latency Θm is computed according to equation (4.10) in the LR approach.

The numerator of the equation considers partial credits of masters and sums them up.

Additionally, the denominator considers that these credits are consumed at the total
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allocated rate of higher priority masters. However, in reality, a higher priority master

must have at least one full credit to be able to interfere. Moreover, as a higher priority

master is scheduled, it is served with the full bandwidth of the shared memory. To consider

the impact, consider the following parameters.

σ0 = 0.5, ρ0 = 0.25, σ1 = 0.5, ρ1 = 0.25, σ2 = 0.5, ρ2 = 0.25 and σ3 = 1, ρ3 = 0.25.

tC = 13. For test-master, m = 3 – the lowest priority master, according to equation

(4.10), Θ3 = 13×1.5/(1−0.75) = 78. However, in reality, Θ3 = 0 since none of the higher

priority masters have one full credit to pay for an access.

Based on the above observations and the following intuitions [41], we build our detailed

worst case latency analysis. Although these intuitions are very similar to that of Pbs, the

analysis is reasonably complex due to the fine-grain replenishment of the Ccsp arbiter.

1. Interfering accesses and the access from the test-master (m) form an alternating read/write

access pattern which results in the worst case Sdram latency (Sec. 4.1.2).

2. All masters use their credits only to interfere with m. When m is idle (βm = 0) or ineligible

(λm < 1), co-existing masters also stay idle and accumulate maximum possible credits.

As soon as m becomes eligible and sends an access request, all higher priority masters send

requests simultaneously to maximally interfere with the request from m.

3. Access from a lower priority master is scheduled one clock cycle before m becomes eligi-

ble and backlogged. Hence, this lower priority master interferes with all higher priority

masters and m.

4. Penalty of a refresh is considered at every tREFI clock cycles. Clearly, the total number

of refresh peanlty is less than the total number of accesses in the computation trace.

Pm = tC/ρm ∀m ∈ [1, N ] (4.11)

Equation (4.11) derives the replenishment period in clock cycles for each master in the

system. After Pm clock cycles, master m receives one full credit. In the equation, to consider the

worst case read/write pattern, according to the 1st intuition, tC is considered as a time required

to do one access to the shared memory. Remember that from equation (4.1), tC = (tR+tW )/2.

The variable ηm indicates the value of clock cycle when m will receive (in future) a next full

credit. Thus, at time sim = 0, λm = σm and ηm = Pm. However, as described in the equation
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Algorithm 3 Algorithm for credit accounting under the Ccsp

1: UpdateCredit(sim, s, low, high)

2: for x ∈ [low, high] do

3: if λx ≥ σx ∧ s then

4: ηx = sim+ Px

5: else

6: if sim ≥ ηx then

7: λx += 1 + (sim− ηx)/Px # λx ∈ N0

8: rem = (sim− ηx)%Px

9: ηx = sim+ Px − rem
10: end if

11: if λx ≥ σx ∧ s then

12: λx = σx

13: end if

14: end if

15: end for

(4.9), if m does not consume its credits, the credits are saturated at σm and ηm is only updated

if (λm < σm) ∨ (βm > 0).

Algorithms 3 and 4 compute the Wcet of the given computation trace. The FrontEnd

method remains the same as in algorithm 1. However, instead of PbsLatency, here it calls

CcspLatency method for the worst case latency computation of a single access. The refresh

interference (4th intuition) is considered in the FrontEnd method.

The algorithm 3 manages replenishment of credits. The UpdateCredit method is called if

credits of a range of masters from [low, high] must be calculated at time sim. The saturate flag,

s, informs the method if the credits must be saturated at σ values. The saturation is applied

when, as presented in equation (4.9), a master is not scheduled and does not have any back-

logged request((γ(t) 6= x)∧ (βx = 0)). If the current time, sim, exceeds the time when a master

is supposed to receive a full credit (ηx) then its credits (λx) are replenished accordingly and

the new ηx values are computed. Note that λx ∈ N0, hence, unlike LR analysis, accumulation

of partial credits are avoided.

The algorithm 4 computes the worst case latency any access to the shared memory may

suffer. At first, in line 3, credits of all masters ([1,N]) are updated according to the current time

(sim′ = sim). Here, the UpdateCredit method is called with saturate flag s. According to our

2nd intuition, other masters in the system remain idle when m is idle and accumulate as many

credits as possible.
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Algorithm 4 Algorithm to Calculate the worst case latency for a single access under the Ccsp

1: CcspLatency(sim, ei)

2: sim′ = sim

3: UpdateCredit(sim′, s, 1, N)

4: while λm = 0 do

5: sim′ = ηm

6: UpdateCredit(sim′, s, 1, N)

7: end while

8: if m ∈ [1, (N − 1)] ∧
∑
λmi

> 0, (∀mi ∈M−m) then

9: sim′ += tC

10: ConsumeLowPriorityCredit()

11: UpdateCredit(sim′, s, 1,m)

12: end if

13: while
∑
λmj

> 0, (∀mj ∈M+
m) do

14: for x ∈ mj do

15: sim′ += λx × tC
16: λx = 0

17: UpdateCredit(sim′, s, x+ 1,m)

18: end for

19: end while

20: sim′ += (ei = R)?(tR+ tRL) : (tW )

21: λm −−
22: lat = sim′ − sim
23: lat ←↩

If the test-master, m, does not have any credit (λm = 0) at the current simulation time, the

simulation time is forwarded (sim′ = ηm) until m receives a credit. Again, during this forwarded

time, other masters in the system remain idle according to the 2nd intuition. Hence, in line 6, the

UpdateCredit method is called with the saturate flag s. The ConsumeLowPriorityCredit()

method, as its name suggests, consumes a credit from one of the lower priority masters and sets

their η values accordingly.

Now, at line 8, m is ready to do an access. At this time, according to the 3rd intuition,

interference from one lower priority master is considered. If the m is not the lowest priority

master and a least one lowest priority master has a credit then the lower priority master is

scheduled ahead of m in the worst case. This low priority transfer blocks other high priority

masters including m ([1,m]). Hence, according to equation (4.9), they are allowed to accumulate

more that σ credits. This is informed to the UpdateCredit method by s flag.

55



4. SHARING AN SDRAM WITH BUDGET BASED ARBITERS

Algorithm 5 Algorithm to Calculate the worst case latency for a single access under the Rr

and the Sp

1: RrLatency(sim, ei)

2: # ifdef RR

3: lat = (N − 1)× tC
4: # ENDIF

5: # ifdef SP

6: lat = 1× tC
7: # ENDIF

8: # ifdef PDh1

9: lat = ci%tC

10: # ENDIF

11: lat += (ei = R)?(tR+ tRL) : (tW )

12: lat ←↩

According to the 2nd intuition, interference from all higher priority masters is considered

between lines 13 and 19. Here, each high priority access is blocking the lower priority masters.

Hence, after each high priority access, the credits of lower priority masters are updated with s

flag.

After consuming all high priority credits, in line 20, m is scheduled and its credits are reduced

by one. The worst case latency for this access, lat = sim′ − sim, is returned to the FrontEnd

method.

4.4 Worst case latency analysis of the Round robin, the

TDMA, the PD and the Static Priority (SP) arbiters

The basic operation and the worst case latency analysis under Rr, Tdma and Pd arbiters are

already presented in the chapter 3. In this section, we present how their latency analysis can

be interfaced with the FrontEnd() method presented in the Algorithm 1.

The worst case latency calculation for the Rr arbiter is presented in Algorithm 5. The

RrLatency method simply assumes that all other cores in the system requests an access at the

same time and the test-master, m, has the last slot in the circular scheduling wheel.

Under the Sp scheduling, all masters are assigned static priorities and conflicts are resolved
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Algorithm 6 Algorithm to Calculate the worst case latency for a single access under the Tdma

and Pd

1: TdmaLatency(sim, ei)

2: WheelLength = N × tC
3: t = WheelLength− (ci%WheelLength)

4: if t ≥ tC then

5: lat = t− tC
6: else

7: lat = t+ (N − 1)× tC
8: end if

9: lat += (ei = R)?(tR+ tRL) : (tW )

10: lat ←↩

only considering the static priority. Clearly, under the Sp, only the highest priority master

(m1) is Wcet analyzable. In the worst case, the highest priority master is interfered by only

one ongoing lower priority access. Hence, as depicted in the Algorithm 5, for static priority,

interference from only one lower priority master is considered in the worst case latency.

The Algorithm 6 computes the worst case latency of a single access under Tdma and Pd

arbiters. Note that, unlike the chapter 3, this chapter uses an Sdram as a shared memory.

Hence, simple measurement does not guarantee the worst case read latency, tRL. This worst

case latency occurs only if the traffic towards the shared Sdram is of read/write switching type.

The algorithm assumes that each master has exactly one static slot in the Tdma schedule, hence,

the WheelLength = N × tC. The remaining time in the wheel is calculated based on the access

gape (computation time – ci) between the previous access and the current access.

If the time left in the wheel, t, is greater or equal to tC then the access is scheduled in the

current wheel cycle. Otherwise, the access is scheduled in the next wheel cycle. Note that if

an application has ci values such that when it accesses the shared resource, the remaining time

in the wheel is approximately equal to tC (t ≈ tC), then according to line 5 of the algorithm,

lat = 0. Thus, the access is scheduled immediately. Such applications are favored by the static

rotating scheduler. More information about it can be found in Chapter 6.

4.5 Tests

The Fig. 4.7(a) depicts our method of extracting the worst case parameters and the Fig. 4.7(b)

depicts our test architecture with four Altera NIOS II Fast cores. Each core has 512 Bytes

of instruction and data caches. The cache-line size is 32 Bytes. A DDR2 memory is used as
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Figure 4.7: Extraction of the worst case parameters from our test architecture

a shared main memory. All the masters have one allocated slot under Tdma, Rr and Pd in

a wheel cycle. Similarly, they have budget of one transfer under the Pbs in a replenishment

period and under the Ccsp all masters have, equal, allocated rate of 0.25.

As depicted in Fig. 4.7(a), at first a traffic generator is connected to the shared Sdram (we

consider the combination of the bank interleaving module, the Altera Sdram controller and

the Sdram itself as a shared Sdram). The traffic generator produces back-to-back alternating

read/write accesses. The entire set-up is executed on a Cyclone III Fpga development board

and the worst case parameters, the worst case write time tW , the worst case read time tR and

the worst case read latency tRL are extracted by a monitoring device (e.g. Signal tap II logic

analyzer). These parameters are used in the algorithms presented in this chapter. Under the

above mentioned configuration, tR = 12, tRL = 33 and tW = 14 clock cycles.

The table 4.1 depicts the area overhead of the arbiters discussed in this thesis. Note that all

conventional arbiters (Sp, Tdma and Rr) and the Pd arbiter are almost equal in size. The Rr

arbiter is negligibly bigger than the conventional arbiters and the Pd arbiter since, as explained

in Sec. 3.3.4, it has to manage circular schedule dynamically. Compared to these arbiters, the

budget based arbiters (Pbs and Ccsp) are significantly large due to their replenishment period

management. The Ccsp arbiter is further penalized due to the individual accounting and
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replenishment mechanism for each master.

Arbiter Sp Tdma Rr Pd Pbs Ccsp

Number of LEs 334 332 350 336 545 716

Table 4.1: Area overheads of arbiters

4.5.1 Comparison of the WCET produced under different arbiters

To compare the Wcet produced under the arbiters presented in this chapter, computation

traces (Sec. 3.1.4) of each single path1 applications from the Mälardalen Wcet benchmark suit

is collected. As explained in Chapter 6, the wrap around burst access to the shared Sdram

must be prevented for integrity of the worst case parameters. In Altera NIOS II processor,

data-cache master can be instructed to issue a burst only on the BurstBoundary. However,

instruction cache always issues a wrap around burst. Hence, the following user flags were used

to build the program in order to align all branch targets to the 32 Byte cache-line boundary.

−falign− functions = 32

− falign− jumps = 32

− falign− loops = 32

− falign− labels = 32

After insertion of the above mentioned flags, the cache miss behavior does not remain

consistent with the one shown in Table 3.1.

The Table 4.2 presents comparison of the Wcet produced under different arbitration to

the Wcet produced under static priorities (Sp). Clearly, under the static priority, only the

highest priority master, m1, is analyzable. All other masters have infinite Wcet. The highest

priority masters under the Pbs and Ccsp behave similar to Sp since the allocated budget/rate

are according to the memory requirements of these applications. Unlike Sp, Pbs and Ccsp are

starvation free arbiters. Hence, the Wcet of lower priority masters can also be estimated as

presented in this chapter. The Wcet significantly increases as the priority is lowered.

The conventional arbiters (Tdma and Rr) and the Pd are starvation free and do not employ

priorities. Hence, the Wcet estimated for all masters is the same. The Tdma and Pd produce

significantly tighter bounds2 compared to the Rr. Moreover, the Wcet produced by Tdma/Pd

1Analysis of multi-path applications is presented in Chapter 5
2Pd and Tdma produce equal Wcet.
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Bench- Sp PDh1 Pd Rr Pbs Ccsp

mark m1 m1 All All m1 m2 m3 m4 m1 m2 m3 m4

compress 1 0.87 1.17 1.44 1.04 1.28 1.63 1.64 1.02 1.26 1.63 1.63

cover 1 0.90 1.13 1.35 1.01 1.22 1.48 1.62 1.02 1.22 1.47 1.47

crc 1 0.95 1.08 1.12 1.03 1.09 1.16 1.18 1.02 1.07 1.16 1.16

duff 1 0.93 1.14 1.26 1.03 1.17 1.35 1.36 1.01 1.16 1.35 1.35

edn 1 0.91 1.13 1.29 1.02 1.20 1.40 1.43 1.02 1.18 1.40 1.40

expint 1 0.93 1.15 1.35 1 1.23 1.46 1.58 1 1.21 1.46 1.46

fac 1 0.97 1.08 1.16 1 1.11 1.21 1.25 1 1.10 1.24 1.24

fdct 1 0.88 1.27 1.41 1.03 1.28 1.57 1.57 1.01 1.26 1.57 1.57

fibcall 1 0.96 1.08 1.15 1.01 1.13 1.22 1.22 1 1.07 1.22 1.22

fir 1 0.94 1.11 1.21 1.02 1.16 1.31 1.33 1.02 1.13 1.28 1.28

jane 1 0.94 1.04 1.20 1.01 1.12 1.27 1.34 1 1.12 1.27 1.27

jfdcint 1 0.92 1.28 1.26 1 1.18 1.33 1.36 1 1.17 1.33 1.33

matmul 1 0.91 1.16 1.29 1.05 1.20 1.39 1.45 1.02 1.17 1.38 1.38

minver 1 0.88 1.21 1.35 1.01 1.22 1.50 1.52 1 1.20 1.50 1.50

ludcmp 1 0.88 1.22 1.37 1.01 1.22 1.53 1.54 1 1.21 1.53 1.53

prime 1 0.97 1.08 1.14 1 1.09 1.19 1.25 1 1.09 1.18 1.18

quart 1 0.88 1.22 1.35 1 1.21 1.50 1.52 1 1.20 1.51 1.51

recursion 1 0.98 1.04 1.06 1.01 1.05 1.09 1.10 1 1.04 1.10 1.10

ud 1 0.88 1.22 1.37 1.02 1.24 1.51 1.54 1.01 1.22 1.52 1.52

Table 4.2: Wcet produced under different arbiters compared to the Sp

are slightly less than the one produced by the second highest priority masters under Ccsp and

Pbs.

4.5.2 Effects of reduction in allocated bandwidth

In this test, we studied the effect of reduction in allocated bandwidth on the Wcet of two

application, jfdcint and quart, under various arbiters. Except for the Tdma/Pd and Rr,

only the highest priority masters are analyzed. The Wcet of these application on the highest

priority master under the Pbs and the Ccsp is equal to the Wcet produced under Sp on the

quad-core configuration in the above mentioned test. Moreover, the Wcet produced under

the Tdma/Pd of these application is significantly higher than that produced under Sp. This

suggests that the allocated slots/budget/rate are sufficient for the memory requirements of

these applications under Tdma/Pd, Pbs and Ccsp, respectively. Here, the Tdma/Pd produces

worse Wcet since the shared resource accesses are issued when the next scheduling opportunity
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Figure 4.8: Effect of reduction in the allocated bandwidth on the Wcet of jfdcint application

is far away in the wheel.

Now, let us consider that the allocated bandwidth is less than the required. We emulated

this behavior by increasing the number of masters in the system. Since we equally divide the

worst case available bandwidth of Sdram, increasing the number of masters results in increased

number of slots in Tdma, longer replenishment period in Pbs and reduced allocated rate in the

Ccsp. As depicted in Fig. 4.8 and Fig. 4.9, the Wcet produced under Tdma/Pd, Pbs and

Ccsp all converge as the allocated bandwidth is reduced. Here, for the most of the time, the

master is waiting for its slot under Tdma/Pd or it is waiting to be replenished under Pbs and

Ccsp. Hence, the Wcet produced under these arbiters is similar. This supports our analysis

that the highest priority master under Pbs and Ccsp benefits only if the allocated bandwidth

satisfies the master’s memory needs.

The Rr produces, as expected, a linearly increasing Wcet with reduction in the allocated

bandwidth. Here, more number of masters results in more interference. Interestingly, under

the Tdma/Pd, reduction in the allocated bandwidth from 1/4 to 1/5 results in reduction in

the Wcet. This counter intuitive behavior is explained in the Chapter 6. Due to the statically

assigned priorities and independence from the allocated bandwidth, the PDh1 and Sp produce

constant Wcet.
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Figure 4.9: Effect of reduction in allocated bandwidth on the Wcet of quart application

4.5.3 Comparison of the WCET produced by the LR and the detailed

analysis

In this subsection, we compare the Wcet produced by the LR analysis (equations (4.8) to

(4.10)) and the detailed analysis (Algorithms 3 and 4) under the Ccsp arbiter for the applica-

tions from the Mälardalen Wcet benchmark suit. These are the same applications used in the

Sec. 3.3.1 and Sec. 4.5.1.

The Table 4.3 depicts that the Wcet produced by the LR analysis is up to 2.71 times larger

(compress m4) than the Wcet produced by the detailed analysis. As shown in our previous

work [41], the overestimation for memory intensive applications can be as large as 7 times. The

reasons for this over estimation are explained in Sec. 4.3.3. Notice that the over estimation

increases as the priority is lowered. This is due to the Equation (4.10). Here, the lower priority

master considers interference also from the partial credits of higher priority masters.

4.6 Comments on certification

According to MCP Determinism 12, the memory usage of applications must be known and

must stay below or equal to the available memory bandwidth. As stated in Sec. 3.4, compu-
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Benchmark WCETlr/WCETdet

m1 m2 m3 m4

compress 1.76 1.65 1.64 2.71

cover 1.79 1.68 1.71 2.67

crc 1.30 1.31 1.35 1.78

duff 1.47 1.43 1.49 2.25

edn 1.67 1.61 1.62 2.45

expint 1.67 1.56 1.61 2.56

fac 1.22 1.21 1.26 1.80

fdct 1.66 1.55 1.60 2.66

fibcall 1.26 1.26 1.27 1.77

fir 1.46 1.44 1.49 2.14

jane 1.33 1.30 1.35 2.00

jfdcint 1.42 1.36 1.46 2.23

matmul 1.69 1.62 1.66 2.49

minver 1.56 1.49 1.51 2.44

ludcmp 1.58 1.51 1.51 2.47

prime 1.41 1.37 1.42 1.89

quart 1.55 1.48 1.49 2.41

recursion 1.15 1.16 1.17 1.41

ud 1.64 1.55 1.57 2.54

Table 4.3: Overestimation of the LR analysis compared to the detailed analysis

tation trace can be used to determine the memory requirements of applications. According

to MCP Determinism 14, the maximum capacity of the resource (here, shared Sdram) must

be known. For the available Sdram bandwidth in the worst case, the read/write switch and

worst case refresh penalty must be considered. This has been taken care of in Sec. 4.1.2 and in

equation (4.1). Note, that the worst case parameters are directly extracted from the targeted

board (Fig. 4.7).

Similarly, detailed worst case interference analysis provided through various equations and

algorithms in this chapter are compliant to MCP Determinism 7 and suggested activities: MCP

Interference Channels (4.(a), 4.(b) and 5.(a)).

4.7 Summary

This chapter and the previous chapter have presented basic operation of various arbiters and

their worst case latency analysis. The worst case latencies were incorporated in the Wcet
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calculation of application-paths. From the analysis and results, the arbiters can be characterized

on the following parameters.

Arbiter Cots Wcet Bound Shared Resource Hardware Analysis

Utilization Complexity Complexity

Sp ++ + ++ ++ ++

Tdma ++ ++ -- ++ ++

Rr ++ -- ++ ++ ++

Pd + ++ + ++ ++

PDh1 + ++ + ++ ++

Pbs -- + + -- --

Ccsp -- + + -- --

Table 4.4: Characteristic comparison of Arbiters

The Sp arbiter is simple and provides high resource utilization due to its work conservative-

ness. It supports only one Hrt application (executing on the highest priority master). Here, the

Hrt may starve other Srt applications by monopolizing the shared resource, hence, for lower

priority masters the Wcet is infinite. However, Hrt applications are designed very carefully,

hence, probability of such behavior is very low except in faulty situations. If an Hrt becomes

faulty, it may not matter much if co-existing Srt applications achieve their dead-line or not

since heavy damage or catastrophe may occur due to the faulty Hrt.

The Tdma arbiter is predictable and simple. However, due to strict static slot allotment, it

results in poor shared resource utilization.

The Rr arbiter is simple, starvation free and work conserving. However, due to the em-

ployment of dynamic slot assignments, it produces large Wcet bounds. If the system contains

multiple SRT applications only, then the RR is the preferable arbiter.

The Pd arbiter is not a Cots component, however, it is simple to design and analyze. It

produces as low Wcet bounds as that produced by the Tdma and provides better shared

resource utilization than Tdma. If the system consists multiple HRT applications, then the Pd

is the preferable arbiter. Pd h1 supports only one Hrt application and produces the lowest

Wcet bound for the Hrt among all arbiters presented in this thesis. Thus, if the system

consists only one HRT application, then the PDh1 is the preferable arbiter.

Both Pbs and Ccsp produce tight Wcet bound for the highest priority master provided

that the allocated bandwidth to them satisfies the memory requirements of the highest priority
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application. As priority is lowered, the Wcet grows significantly. Moreover, both the arbiters

are significantly complex to design and analyze.
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Chapter 5

Measuring WCET of applications

executing on Cots multi-core

architectures

The previous chapters have analyzed advantages and drawbacks of conventional arbiters, Static

Priority (Sp), Time Division Multiple Access (Tdma) and Round robin (Rr), and uncon-

ventional arbiters, Priority Division (Pd), Priority-based Budget Scheduler (Pbs) and Credit

Controlled Static Priority (Ccsp) arbiters. The previous chapters have concluded that the Pd

arbiter produces the lowest Wcet bound at slight penalty in the worst case resource utilization.

In spite of these advantages and its simple architecture, it may be prohibitively expensive

for semiconductor industry to replace existing conventional arbiters and mass produce new

chips with the Pd arbiter. Additionally, every hardware change enforces re-certification of the

architecture in the safety-critical hard real-time domain. Hence, this chapter1 presents a tech-

nique to measure the Wcet of applications executing on Cots multi-core architecture. The

technique enforces modifications in neither the mass produced Cots devices nor the commer-

cialized measurement based timing analysis tools. Only a minor modification in test chips of

Cots components is required. Thus, the tool qualification costs are also avoided.

5.1 Background

This section explains the measurement based Wcet analysis for applications executing on

single-core architectures. The section also explains the unsuitability of this technique for ap-

1The chapter includes figures and results from our previous work [2]
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int main () { 

InitPerfCounter();

iPoint(f1);

f1(); 

IF X

  iPoint(f2);

  f2();

ELSE

  iPoint(f3);

  f3();

END IF;

iPoint(f4);

f4();

IF Y

  iPoint(f5);

  f5();

ELSE

  iPoint(f6);

  f6();

END IF;

iPoint(f7);

f7();

StopPerfCounter();

return(0);

}
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 sprintf(pTraceBuf, “%u, %u”, X, GetTime());

}

Figure 5.1: Measurement based Wcet analysis – RapiTime approach

plications executing on multi-core architectures with a dynamically scheduled shared memory

arbiter.

5.1.1 Hybrid Measurement Based WCET analysis

The hybrid measurement based Wcet analysis technique is employed by RapiTime tool from

Rapita systems Ltd1. The technique augments execution time measurements with static code

analysis.

At first, the application source code is statically analyzed to identify function boundaries,

conditional structures and control flow in order to create control flow graph. For example, the

pseudo code of Fig. 5.1(a) is analyzed to build the control flow graph of Fig. 5.1(b) [2]. In the

analysis step, Basic Block – Bb2 are identified and given a unique id. Later, instrumentation

points (iPoint()) are inserted at the beginning and end (in the figure, shown only at the

beginning) of each Bb. An iPoint() simply saves its time of execution in a trace. Thus,

1http://www.rapitasystems.com/
2A linear code segment with a single entry and a single exit points.
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by deducting start-time from end-time, execution time of any Bb can be determined. The

instrumented code is executed multiple times on the targeted hardware in order to achieve

higher coverage.

RapiTime analyzes the recorded trace (aka iPoint() trace) offline. During multiple execu-

tions, a single Bb may experience different execution times. Hence, an execution time profile

for every Bb is created. From the profile, the highest of the recorded execution times is termed

as Moet– Maximum Observed Execution Time. The control flow graph is then populated by

the Moet of each basic block. In Fig. 5.1(b), bigger circles indicate higher Moet.

To determine the worst case path, all paths from Start to End are analyzed and Moet of

all Bb falling on each path is summed up. The path with the highest sum is considered the

worst case path and the sum is considered the Wcet of the analyzed application.

Following are the advantages of the technique: i) Cost of building hardware model of the

target platform is avoided since the platform itself is used for measurements. ii) Test coverage

information is also available together with timing information. iii) Optimization hotspots for

reduction in Wcet are immediately identified, i.e. Bb on the worst case path.

Despite the above mentioned advantages, the techniques is unsuitable to multi-core archi-

tectures with dynamically arbitrated shared memory.

5.1.2 Unsuitability of the technique to multi-core architectures with

dynamically arbitrated shared memory

Consider that the shared memory is arbitrated by Round Robin – Rr1 (Sec. 3.1.7) policy.

Under Rr, the experienced latency of a cache miss depends on the interference on the shared

memory. Thus, co-existing applications can heavily influence the Moet of basic blocks. Here,

execution time of any Bb cannot be guaranteed to be its Moet (since it also depends on activity

of co-existing applications). This leads to invalidation of the constructed worst case path and

Wcet.

5.2 Worst Case Interference Compensated WCET Mea-

surements

This section explains our technique of extending the measurement based Wcet analysis (Sec. 5.1.1)

to multi-core architectures. Our technique adds a tiny observation module to correctly com-

1The argument is true for any dynamic arbitration policy.
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Figure 5.2: Cache Observation and cache miss trace generator

pensate for the worst case interference according to the observed cache misses. The module is

active only during analysis and turned off during a deployed application execution. Hence, test

chips (Sec. 5.2.5) are the perfect target for our technique.

The first subsection explains the basic technique and the latter presents an optimized version.

5.2.1 Cache observation and cache miss trace generation

The Fig. 5.2 [2] depicts a cache observer module on a multi-core architecture with N number

of cores. The module contains a counter, a cache observation unit and a bus master interface.

The instrumented code is executed on this architecture (CPU1 in this case) and iPoint()

trace is captured in the memory as explained in Sec. 5.1.1. During the instrumented execution,

the module observes caches and records occurrence time and experienced latency of each shared

memory access (due to a cache miss). The experienced latency, Li ∈ [BL,WL]1. Now two traces

are available, an iPoint() trace and a cache miss trace. The two traces are merged to form a

combined trace. The Fig. 5.3(a) depicts a combined trace of single Bb.

The host machines processes the combined trace offline before invoking a RapiTime in-

stance. In the first step, experienced latencies are removed from the combined trace to obtain a

1Note that in this setup, the Li could be more that WL since additional interference from the cache observer

must be considered. However, during application deployment, the cache observer is turned off. Hence, WL value

should only consider co-existing cores.
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Figure 5.3: Pre-processing of trace

computation trace (Fig. 5.3(b), Sec. 3.1.4). Later, as explained in Sec. 3.1.4, theoretical worst

case latency, WL is inserted for each cache miss shifting subsequent cache misses to the right.

This results in the worst case interference compensated inflation of Moet of basic blocks. The

resulting trace is depicted in the Fig. 5.3(c).

The Fig. 5.4 [2] depicts the offline trace manipulation on the host machine. The Fig. 5.4(a)

is the captured combined trace. The Fig. 5.4(b) is the control flow graph with worst case com-

pensated basic block Moet. RapiTime takes the worst case compensated trace of Fig. 5.4(b) as

input and construct the worst case path and corresponding Wcet. Thus, the estimated Wcet

is worst case interference compensated. Note that for the hypothetical application of Fig. 5.1,

the single-core worst case path is f1-f3-f4-f5-f7. For the same application, the multi-core worst

case path is f1-f2-f4-f5-f7. This is due to higher number of cache misses, as observed, on that

path.

Advantages: Following are the advantages of our technique:

1. Performance of a Cots chip remains intact since our unit is only an observation unit.
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Figure 5.4: Worst case interference aware WCET estimation

2. Wcet analysis under advanced arbiters (Pbs, Ccsp and Dpq) is enabled through the

algorithms presented in Sec. 4.2, Sec. 4.3 and [94].

3. Minor modification in an existing architecture is required.

4. The above mentioned modification is limited to “test chips” only. Hence, production chips

remain unchanged.

5. The existing tools for timing analysis on single-core architectures, e.g. RapiTime, do not

need porting to multi-core.

Disadvantages: There are three drawbacks of the above mentioned technique:

1. Memory intensive applications have too many cache misses which may overflow a trace

memory or restrict analysis to small parts.

2. The operating frequency of interconnect between a shared memory and processors is

inversely proportional to the number of connections on the interface. Here, an additional

connection of the cache observer may reduce the frequency due to the increased capacitive

loading.

72



5.2 Worst Case Interference Compensated WCET Measurements

Cache miss? Count++NOCount = 0

Count + WL

YES

New cache 

miss?

NO

YES

start

Terminate?
NO

end

YES

All cache 

misses served?

NO

YES

Undisclosed value 

to protect 

detailed 

specification

Figure 5.5: Optimized cache observer

3. Precise specification of the underlying arbiter and the shared memory must be known in

order to do the worst case latency analysis. Cots vendors are reluctant to disclose these

specifications in order to preserve their competitive advantage.

These drawbacks are mitigated in our optimized solution which is presented in the next

subsection.

5.2.2 The Optimized cache observation module

Our optimized technique consists of only a modified counter and a cache monitoring logic. As

depicted in Fig. 5.5 [2], our module continuously observes the caches (I$ and D$). If a cache

miss occurs, theoretical worst case latency, WL, is immediately added to the count register.

The counting is suspended until the cache miss is served. Meanwhile, if another cache miss

occurs (due to out of order execution), count is again incremented by WL. The count resumes

standard performance counter operation, increment by one on every clock cycle, as long as there

are no remaining cache misses to be served.

Our technique can be explained by an example. Assume that a cache miss occurs at count

value t. The experienced latency of the cache miss is Li. Hence, after the cache miss is served

the count value, in absolute time, is t+Li. Instead of considering value t+Li, we consider the
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artificially forwarded value t+WL. The difference between the forwarded time and the absolute

time is WL − Li. Here, instead of forwarding the time on the host machine (as in the basic

technique of Sec. 5.2.1), the time is already forwarded as soon as a cache miss occurs. Thus,

the GetTime() method of Fig. 5.1 returns already worst case interference compensated time.

So, the generated iPoint trace is also worst case interference compensated. Thus, the Wcet

estimated by RapiTime is also worst case interference compensated.

The optimized cache observer can be configured via an API to supply additional information,

for example, number of enabled1 co-existing masters.

Advantages: Apart from the advantages of the basic technique, the optimized technique

has the following additional advantages.

1. In Fig. 5.5, the green blocks belong to the native performance counter operation. Only

the red blocks are added to it in order to estimate the worst case latencies due to the

worst case interference. This results in ultra small area overhead.

2. Due to the absence of an additional bus master, additional capacitive loading on the

shared bus is avoided.

3. The semiconductor vendor can hide the specification by adding the WL to the count

internally without disclosing its value. For budget based arbiters, hardware version of

algorithms presented in Sec. 4.2 and Sec. 4.3 can be implemented at minor area overhead.

The hardware implementation then supplies the appropriate WL value (depending on the

employed arbitration scheme, shared memory specification, number of enabled co-existing

masters and access history) in real-time for the current cache miss.

5.2.3 Simulation as an alternative?

The technique described in Sec. 5.2.1 and Sec. 5.2.2 can also be implemented in simulation

model of a processor architecture instead of test chips. However, there are following drawbacks

of applying the technique to simulation models instead of test chips.

1. The technique needs Cycle Accurate Byte Accurate (CABA) model of the processor archi-

tecture. Generally, these models are unavailable to application developers. Additionally,

as explained earlier, the detailed specification of the underlying arbiter and the shared

memory are undisclosed by the chip manufacturers to protect their competitive advantage.

1To avoid interference to highly critical tasks, designers may pause co-existing masters until the critical task

is finished.
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2. Depending on the application-under-test, CABA models of peripherals such as sensors

and actuators may be required to estimate the Worst Case Response Time (Wcrt) of the

system.

3. It must be proven that the CABA models accurately model the physical processor core and

peripherals. In the worst case, the CABA model may have to follow the tool qualification

process which is tremendously expensive.

4. Typically, executing applications on a CABA simulation model is very slow which results

in a long measurement time for each measurement iteration.

5.2.4 Overestimation of our technique

Our technique inherits the drawback of intrusiveness from the hybrid Wcet measurement based

technique. The instrumentation points impact the measured Wcet of test-application. Since

the number of clock cycles consumed by an iPoint (Nip) is constant1, it may be intuitive to

deduct 2×Nip from measured Bb times (remember that an iPoint is inserted at the beginning

and end of a Bb). This will compensate for the number of clock cycles consumed by iPoints,

however, it does not compensate for the changed cache state due to instrumentation code.

The instrumentation code occupies space in instruction cache which leads to reduced available

space in the cache for the test application. This results in more number of cache misses during

instrumented code execution than during non-instrumented execution. This directly contributes

in increasing the measured Wcet of test applications. Additionally, there is an indirect impact.

The branch to iPoint is always taken. This may impact the operation of history based branch

predictors which may behave differently during non-instrumented execution.

Although assumingWL for every cache miss sounds pessimistic, it is the only safe assumption

if the analysis presented in our previous work [95] is unavailable.

It is interesting to investigate the impact of instrumentation on the measured Wcet. Note

that the overhead on Wcet originates from the trace based technique (hybrid Wcet measure-

ment) and not from our technique. To determine the overhead on Wcet, we conducted tests

using instrumented code and non-instrumented code both. At first, using the instrumented

code execution and RapiTime analysis, we determined the worst case path and corresponding

Wcet. We then execute the same path and measure start to end time using the GetTime()

1If cached and separately implemented in a function.
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Figure 5.6: Test Architecture.

method and denote it as WCETni (Wcet of non-instrumented application code). In both the

cases, our optimized cache observer compensates for the worst case interference.

We are aware that during non-instrumented code execution, some other path could be

the worst case path then during the instrumented code execution. To mitigate this problem,

intensive measurements of execution times from start to end must be performed to achieve as

much test coverage as possible.

5.2.5 Test chips

This subsection briefly explains the design flow with test chips. Test chips are manufactured in

low volumes by semiconductor vendors with additional debug facilities which are unavailable

on production chips. The product/application developers buy these chips and test their appli-

cations using advanced on-chip debugging infrastructure. After successful test runs, production

version of the test chips are ordered in large volume and deployed in commercial products.

The test chips are also known as emulation devices. An example of the emulation devices

from Infineon TriCore is presented here1

5.3 Test Cases

In this section we explain our test architecture and discuss the results. The goal is to test our

technique with real benchmark applications executing on a multi-core architecture.

1http://www.isystem.com/downloads/winIDEA/help/index.html?OCDTriCore.html
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Architecture Logic Elements

Without the Cache observer 13555

With the Cache observer 14272

Table 5.1: Synthesis results. Source: [2].

5.3.1 Test Architecture

Our test architecture (Fig. 5.6 [2]) consists of a quad-core processor composed of Nios II F cores.

The cores have I$ and D$ each of 512 Bytes and 32 Bytes cache-line size. The shared main

memory and trace buffer are mapped to on-chip memory. The current set-up considers only L1

caches. An extension to our technique under shared L2 caches is explained in the Sec. 5.4. The

test architecture is built on Altera cyclone III development board and operates at 125 MHz

frequency.

In our set-up, test applications are executed on core1 and memory stressing applications are

executed on co-existing cores. We selected multi-path applications from the Mälardalen Wcet

benchmark suit [87] (results of single path applications can be found in Sec. 3.3).

Numbers in table 5.1 highlight area overhead of our technique. The impact of our technique

on the consumed on-chip resources is ≈5%. Note that a Cots multi-core architecture is a

complex device composed of processor cores, memories, hardware accelerators, DMAs, I/O

controllers etc. Compared to that device the area overhead of our technique will be much less

than 5%. Additionally, the area overhead is limited to test chips only.

5.3.2 Results

In Table 5.2 and Table 5.3 our test results are presented. There two main parts in the tables.

The first part presents results from instrumented execution and the second part presents results

from non-instrumented execution. Wcet during non-instrumented execution is obtained as

explained in Sec. 5.2.4. In both the parts, the Wcet is worst case interference compensated.

In the above tables, the maximum of observed execution times, under varying stress pat-

tern, is denoted by Moet of applications. Wcet of an instrumented application without

any shared memory interference (single-core equivalent) is denoted by WCETs while Wcet

of an instrumented application on our quad-core test architecture is denoted by WCET .

The factor WCET/WCETs denotes the increase in Wcet if an instrumented application

is ported from single-core to multi-core. Similarly, WCETni/WCETnis denotes increase in
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Table 5.2: Test Results: Execution Times in Clock Cycles, 512 Bytes I$ and D$. Source: [2].

Wcet if a non-instrumented application is ported from single-core to the quad-core. The

factor WCET/WCETni represent overhead of instrumentation.
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Table 5.3: Test Results: Execution Times in Clock Cycles, 4 KBytes I$ and D$. Source: [2].

It is clear from WCETni/WCETnis that the Wcet is increased when an application is

ported from a single-core to multi-core architectures. Nowotsch et al [96] and Radojkovic et
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Figure 5.7: MPU protected and partitioned shared L2 cache

al [97] also observed the same effect. This increase is due to the interference on shared memory

and proportional to number of accesses to the shared memory. Increasing cache sizes may

decrease number of cache misses (capacity misses) and result in small WCETni/WCETnis

factor. This fact is visible in Table 5.2 and Table 5.3. The average WCETni/WCETnis factors

in the tables are 1.89 and 1.35, respectively. Remember that the Table 5.3 presents results from

tests with larger cache size (4 KB).

Similar to WCETni/WCETnis, overhead of the instrumentation also decreases when bigger

caches are employed. As stated earlier, instrumentation code changes cache state and occupies

space in caches which results in reduced available space for application code. However, if bigger

caches are employed, this impact is diluted. This is seen in the tables where average value of

WCET/WCETni drops from 3.24 (table 5.2) to 2.39 (table 5.3).

5.4 Scaling to multi-level cache hierarchy

Cots processors have multi-level cache hierarchy. Typically, the first level (L1) caches are

private and higher levels are shared. A cache miss occurring in one level is, if data available,
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served by the next higher level. If the requested data is not available, the next higher level

is searched until the off-chip memory (usually an Sdram) is reached. In multi-level cache

hierarchy, since higher levels are shared among cores, it may be possible that one core evicts

useful data of other cores from the shared cache. Hence, for the worst case analysis, for every

L1 cache miss, higher level cache misses must be assumed. This increases Wcet of applications

tremendously.

In the Fig. 5.7, a multi-level cache hierarchy is presented. The shared L2 cache is protected

by Memory Protection Unit (MPU). After reset, one of the trusted cores programs all MPUs.

Since each core can only access a particular address space, the shared L2 cache is logically par-

titioned. Now one core can access data only in its allocated partition and the shared partition.

Thus, one core cannot evict data from the partition allocated to another core.

The shared partition is used for symmetric multi-processing. Since every core can access

the shared partition, the data within the partition is unpredictable. Hence, every access to the

shared partition should be considered a miss.

In the Fig. 5.7, our cache observer monitors L1 cache, L2 cache partition dedicated to the

core1 and also the shared partition. If a cache miss originates from the partition dedicated

to core1, the count is incremented by the worst case latency to access the off-chip memory.

Irrespective of shared partition hit or miss, the count is incremented by the worst case latency

to access the off-chip memory if core1 accesses the shared partition since data in shared partition

is unpredictable. Cores must synchronize before accessing the shared partition.

The shared cache partitioning through MPUs is not limited to test chips only. It must stay

in commercial products as well. This is an expensive modification. Another approach to achieve

the logical partition is by means of Memory Management Unit (MMU) of each core. It must be

made sure that each core configures its MMU correctly after reset in order to achieve a correct

partition.

5.4.1 Operation and interference channels of the shared L2 cache

Although we employ a strict partition based sharing, there are two interference channels as

depicted in Fig. 5.7. A pure L1 miss (L2 hit) must consider interference from L1 misses origi-

nating from co-existing cores. Similarly, an L2 miss must consider interference from queued L2

misses (accesses to off-chip memory) originating from other partitions.

If the L2 cache processes only one request at a time, in the worst case, each pure L1 miss

(L2 hit) must assume that the cache is busy in processing L2 misses from co-existing cores.
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This tremendously increases the worst case latency to access a shared L2 cache (irrespective of

L2 hit or miss). To mitigate this problem, our proposed L2 cache operates in the following way:

1. A separate mechanism to serve L2 hits and L2 misses. Hence, the hit mechanism stays

operational while a miss is being served, and vice versa.

2. The shared bus arbiter (Fig. 5.7) and the L2 cache are coupled with each other. As

soon as an L2 miss occurs, the miss manager informs the shared bus arbiter to block

the respected core from sending further requests. In fact, its subsequent slot are evicted

from the arbitration schedule effectively blocking the core until its L2 miss is served.

This simple modification can be performed easily on either Pd or Rr arbiters and it is

beneficial to L2 hit producing cores since they can utilize unused slots of the blocked core.

3. An L2 cache miss is detected and queued for off-chip access within the arbitration slot in

which it occurred. This eliminates the need of an arbiter for the shared queue. The size

of the queue is bounded (= NumberOfCores) since a core is blocked until its L2 miss is

served.

4. The co-existing cores stay operational as long as their accesses result in L2 hits since they

are served by the hit manager (separately).

5. Both, hit and miss managers respect LRU policy.

The above mentioned operation principal has the following advantages.

1. The worst case interference analysis is straight forward since an L2 hit can only be inter-

fered by other L2 hits and an L2 miss can only be interfered by other L2 misses. This

also significantly reduces worst case penalties and thereby, Wcet.

2. Bounded shared queue size. Bigger queue and unblocking operation is beneficial for

average case, however, they degrade the worst case timing behavior.

3. Simple architecture and clear identification of interference channels.

5.5 Comments on certification

It is clear that the techniques presented in this chapter considers worst case interference for

estimating the Wcet of applications. This follows the suggested activities: MCP Interference

Channels (4.(a), 4.(b) and 5.(a)) related to MCP Determinism 7.
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Here, employment of a shared L2 cache is more interesting. According to MCP Determinism 10,

the usage and strategy to manage the shared cache must be stated. According to MCP Determinism 11,

the worst case effects of using shared cache must be described and analyzed. Our L2 cache design

and the presented worst case interference analysis satisfies these requirements. Our technique of

Wcet estimation considering the worst case interference is related to the suggested activities:

Shared Memory and cache (5.(c), 5.(d) and 5.(e)).

5.6 Summary

This chapter has presented a novel technique of measurement based Wcet analysis for appli-

cations executing on multi-core architectures. The technique uses unchanged single-core timing

analysis tools for measuring Wcet on multi-cores. As a demonstration, multi-path applica-

tions from the Mälardalen benchmark suit has been selected and their Wcet is measured using

Cots single-core timing analysis tool – RapiTime. The applications are executed on a quad-

core NIOS processor built on Cyclone III Fpga. The approach, being only an observation

technique, does not reduce performance of a multi-core processor and the implementation is

limited to test chips only. Thus, the commercial chips remain unchanged. The technique is

unique since it does not demand modifications in either Cots chips or Cots timing analysis

tools. Additionally, it enables analysis in isolation (assuming the worst possible interference

from co-existing cores) making it a convenient and an economical method.

The scalability of the technique is presented for multi-level shared caches. The technique is

also compatible with any starvation free arbiter and finite response time shared memory.

The certification comments provided in the chapter show how the measurement technique

and shared L2 cache management are, in principle, certifiable for avionics.
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Chapter 6

Caveats in building predictable

multi-core architectures

The previous chapters are focused on either providing low Wcet at high resource utilization

(Pd arbiter), analyzing the worst case latencies under complex budget based arbiters or mea-

suring the Wcet of applications executing on Cots multi-core architectures. This chapter1

presents some caveats in the Wcet analysis especially for applications executing on multi-core

architectures. Disrespecting these caveats can lead to optimistic Wcet.

For example, it is proposed to measure the execution time of an application in the presence

of artificially generated uninterrupted interference and consider the measured execution time

as the Wcet. In this chapter, we refute this approach and show that, counter intuitively, for

some applications, the measured execution time in the presence of uninterrupted interference

is even less than the Average Case Execution Time (Acet).

Typically, the Wcet analysis/measurement is done at high level in industry. For example,

Wcet measurements is done directly on the target platform (Chapter. 5) accepting the given

platform as it is. Similarly, Wcet analysis is done on abstract models of platform and code.

At this high level, many low level architectural details are abstracted, e.g. maximum latency

to access off-chip memory. In this chapter, we will show that processor architectures built on

popular interconnect specifications, e.g. AMBA [99], Avalon [85] and PLB [100], are simply

unfit for Wcet analysis in their native modes. On these architectures, the worst case latency

for memory access is infinite.

1The chapter includes contents from our previous works [98, 86]
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6.1 Timing anomalies due to the interference on the shared

memory

Timing anomaly is a counter intuitive timing behavior. The term was first introduced by

Lundqvist & Stenström [101]. They observed that in a dynamically scheduled processor, a

cache hit at certain execution point could lead to longer execution time than a cache miss at

the same point. Thus, the timing anomaly for processor architectures is defined as, A processor

architecture is said to be timing anomalous when a locally favorable event (e.g. cache hit) could

result in a globally unfavorable event (e.g. longer execution time) and vice versa. Reineke et

al [102] present a formal definition of timing anomaly.

Chapters 3, 4 and 5 have highlighted through analysis and number of experiments that

the co-existing applications on multi-core architectures prolongs execution of test-application.

Instead of using the techniques presented in these chapters, an intuitive approach could be to

make the co-existing applications stress the shared memory and observe its impact on execution

time of the test application. Another intuition could be that the more number of co-existing

applications stress the shared memory, the more interference is experienced by the test appli-

cation. In this section, we show through theoretical analysis and practical evidences that none

of these intuitions is universally true.

6.1.1 Latency analysis under shared memory stressing co-existing ap-

plications

This section analyzes effects on experienced latency of a test applications in the presence of

shared memory stressing co-existing applications. Here, we considered Round Robin (Rr) as

the shared memory arbiter, however, the observed phenomenon is valid for other arbiters as

well (Sec. 6.1.6.3).

6.1.2 Alpha Interference

Definition: The α interference is defined as the uninterrupted interference produced by α

number of co-existing masters [86].

Under α interference, co-existing masters either continuously send access requests to the

shared memory or does not send any request at all. Thus, either they utilize their slots always,
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Figure 6.1: Rotation of the Arbiter Pointer under Rr (not to the scale).

or they do not utilize them at all1. The test application executes on the master m1. This section

analyzes experienced latency of application(s) executing on m1 under the above mentioned

interference scenario.

Although the α interference sounds a rare phenomenon, it is common to observe uninter-

rupted accesses from co-existing masters in the following scenarios: i) Cores fill-in there cache

lines after a reset or after a new task is scheduled. For filling-up caches, dense traffic towards

memory is generated. ii) In the presence of memory intensive I/Os, for example, cameras,

radar etc. Our goal is to show that counter intuitively, test-application may benefit from the α

interference and experience less than the average case latencies. Hence, simple measurements

of execution time in the presence of uninterrupted interference from co-existing masters and

considering the measured execution time as the worst case is unsafe.

We build our theory on a generic multi-core architecture and provide real-life evidences on

the test architecture of the Fig. 5.6. Similar to previous chapters, here we assume that the test-

application is executing on m1 and co-existing masters are executing shared memory stressing

applications.

1The assumption of an idle co-existing master helps us prove theoretically that the less number of aggressive

co-existing masters may result in longer latencies to the test application than more number of aggressive co-

existing masters.
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6.1.3 Analysis

Two α scenarios are presented in Fig. 6.1 [86] under Rr arbiter. In the first scenario, α = 3.

Here, all co-existing masters, m2, m3 and m4 uninterruptedly access the shared memory. In the

second scenario, α = 2. Here, two co-existing masters – m2 and m4 access the shared memory

uninterruptedly, m3 remains idle. Hence, considering the work conserving operation of the Rr

(Sec. 3.1.7), there are only two slots in Fig. 6.1(b). Recall that the theoretical values of BL,

WL and AL are derived considering all masters in the system, irrespective of number of active

masters.

Note that the arbiter pointer rotation of the Rr arbiter now becomes deterministic in

Fig. 6.1 – slots of m2 and m4 will always be utilized and the slot of m3 will not be utilized

(α = 2). Similarly, under α = 3, slots of all co-existing masters will always be used making

the rotation of the arbiter pointer deterministic. Thus, latency to an access request from test-

application can be determined by the access gap (computation times – ci) as derived in the

following equations.

This deterministic latency of ith access under the α interference is denoted by DLiα and

derived by the following equation.

DLiα = (α+ 1)× SS − {c(i−1) mod (α× SS)} (6.1)

Remember that c(i−1) is the time gap between previous access and the current access (com-

putation time between two cache misses – Sec. 3.1.4). Consider the second part of the above

equation as Θ
(i−1)
α .

Θ(i−1)
α = {c(i−1) mod (α× SS)} (6.2)

DLiα = (α+ 1)× SS −Θ(i−1)
α (6.3)

The average of all DLiα values through the application execution path is denoted by DLα.

Similarly, average of Θi
α values is denoted by Θα.

From equation (6.3),

DLα = (α+ 1)× SS −Θα (6.4)

For the Rr arbiter, from equations (3.8) and (3.9), BL = 1× SS and WL = N × SS, N is

total number of masters in the system. From this information, the average-case latency of the

ith access, AiL, is given by the following equation,
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AiL =
N + 1

2
× SS (6.5)

AL is the average value of all AiL values through the application execution. Since values on

the right side in the equation (6.5) are constant, AL can be given by the following equation.

AL =
N + 1

2
× SS (6.6)

Equations (6.1) to (6.6) are used to infer the following counter intuitive timing behavior.

6.1.4 Anomaly – 1

From equation (6.2), Θ
(i−1)
α ∈ [0, (α × SS − 1)]. Assuming c(i−1) = n(α × SS) − 1, n ∈ N+,

Θ
(i−1)
α = α× SS − 1.

Putting the above mentioned Θ value in equation (6.3),

DLiα = SS + 1 << AiL (6.7)

Equation (6.7) proves that, counter intuitively, experienced latency could be much less than

the average latency if c(i−1) = n(α × SS) − 1, n ∈ N+. The Fig. 6.1 explains this scenario,

graphically. The Θ
(i−1)
α value, indicates the arrival of access respective to the circular schedule of

arbitration. This divides the circular schedule in favorable and unfavorable regions. If an access

request arrives close to (far from) its scheduling opportunity, it fall in favorable (unfavorable)

region. Hence, the experienced latency is less (more) than the average case latency. If an

application does majority of its accesses in the favorable region, then DLα < AL.

The Fig. 6.2 presents a hypothetical computation trace of a test-application that exhibits

this phenomenon. In scenario A, the co-existing applications are aggressively accessing the

shared memory while in scenario B, the co-existing applications are sparsely accessing the

shared memory. Counter intuitively, the total execution time of the test application is longer in

scenario B than in scenario A. This phenomenon is not only hypothetical, a real-life evidence

is provided in Sec. 6.1.6.1.

Remember from Sec. 3.1.7 that prediction of arbiter pointer rotation under Rr is extremely

difficult. Here, however, due to the uninterrupted accesses from the co-existing masters, the

prediction becomes simple and the division of the favorable region and unfavorable region is

possible. The boundary point between the regions can be given by the following equation.
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Figure 6.2: Counter intuitively, in scenario A, the execution time of the hypothetical test-

application is shorter than in scenario B, although, the co-existing masters are aggressive in sce-

nario A.

ṡ = WL −AL (6.8)

6.1.5 Anomaly – 2

Using equations (6.1) to (6.6), we can prove that certain applications experience more interfer-

ence in the presence of less number of aggressive co-existing masters than in the presence of

more number of aggressive co-existing masters. Mathematically, DLiα̌ > DLiα̂ , α̌ < α̂.

Assume, c(i−1) = (α̌× SS). From equation (6.1), under α̌ interference,

DLiα̌ = (α̌+ 1)× SS = α̌× SS + SS (6.9)

For the above mentioned C(i−1), the experienced latency under α̂ can be given by the

following equation. Since since α̌ < α̂, c(i−1) mod (α̂× SS) = α̌× SS. Hence,

DLiα̂ = (α̂+ 1)× SS − (α̌× SS) (6.10)

DLiα = (α̂− α̌)× SS + SS (6.11)

From equations (6.9) and (6.11), DLiα̌ > DLiα̂,∀α̂ : α̌ < α̂ ≤ 2α̌.
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Figure 6.3: Execution time is longer under α = 3 than under α = 2 interference

The Fig. 6.3 explains this scenario using a hypothetical computation trace. Note that

execution time under α = 2 interference is longer than under α = 3. Similar to the first anomaly,

this anomaly is not only hypothetical and a real-life evidence is provided in Sec. 6.1.6.2.

6.1.6 Test cases

This section explores the real-life evidences of the timing anomalies derived hypothetically in

the previous section. We chose single path1 applications from the Mälardalen Wcet bench-

mark suit [87] and conducted intensive experiments on multi-core architectures implemented

on an Altera FPGA. We started with test architecture from chapter 3 and changed hardware

parameters, such as number of cores and cache configurations, to find evidences of the above

mentioned timing anomalies. Note that, unlike changing number of cores, modifying cache

configuration modifies computation trace (change in ci values). Hence, computation traces for

each application was regenerated after modifying cache configuration.

As in previous chapters, test applications are executed on core1 and co-existing masters

execute shared memory stressing application (similar to [103, 97, 96]). We step-by-step increased

total number of cores from four to eight.

6.1.6.1 Test 1

The goal of this experiment is to explore an evidence of existence of the timing anomaly – 1

(Sec. 6.1.4) in real-life applications. In our intensive testing process, we found evidences of the

1Analysis of multi-path applications is presented in chapter 5.
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Benchmark OET ACET WCET DL3

compress 26879 22381 30506 23.89

cover 15589 14052 18024 24.34

crc 104229 101168 109163 26.9

duff 4904 4789 5281 23.29

edn 472896 466624 553972 22.56

expint 16408 16289 16708 25.5

fac 1208 1128 1240 25.0

fdct 21919 23606 31837 19.54

fibcall 1167 1133 1228 27.87

fir 1924805 1845887 2225970 24.35

jane 1016 941 1108 26.35

jfdcint 32039 30788 37035 21.45

matmul 1571600 1507138 1764383 24.65

minver 157968 142106 191270 24.53

ludcmp 371279 337656 456766 24.95

prime 175238 169281 200651 24.07

quart 224120 204210 270686 24.45

recursion 6846 6782 6898 24.4

ud 41007 36905 48212 23.87

Table 6.1: Execution times in clock cycles under α = 3 (N = 4) Interference

anomaly when using N = 4, α = N − 1 = 3 and cache sizes of 512 Bytes each. The Wcet and

Acet were calculated by putting parameters, WL = 4×SS,BL = SS and AL = (BL +WL)/2,

the technique presented in Sec. 3.1.4.

Results of this test are presented in Table 6.1. For most of the applications in the table, the

Oet (observed execution time) is more than the Acet. This is an intuitive behavior. However,

for the fdct application, Oet < Acet. This is a counter intuitive behavior.

Note the low DL3 parameter of the fdct application in the table. The low value of the

parameter indicates that the application did a majority of its accesses in the favorable region

of Fig. 6.1 under α = 3 interference and for the 512 Byte cache configuration.

6.1.6.2 Test2

Similar to the previous test, the goal of this experiment is to explore an evidence of existence of

the timing anomaly – 2 (Sec. 6.1.5) in real-life applications. During our intensive test process, we

step by step increases the total number of cores to eight (α = 7). After adding each core, DLα
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Benchmark α = 4 α = 5 α = 6 α = 7

DL4 Oet DL5 Oet DL6 Oet DL7 Oet

compress 27.63 30807 34.3 35647 40.44 40999 45.06 44615

cover 28.97 17365 32.32 18749 40.04 21573 48.41 24661

crc 33.78 107677 40.11 110933 46.92 113965 53.78 117333

duff 31.09 5216 37.14 5520 44.36 5840 51.19 6088

edn 31.82 541152 36.77 580008 40.8 607072 49.17 669552

expint 33.23 16696 39.1 16928 47.1 17144 54.56 17384

fac 29.57 1208 35.28 1288 45.57 1384 45.57 1432

fdct 27.54 27398 35.54 32878 43.54 38358 51.54 43838

fibcall 33.87 1214 44.87 1263 51.87 1359 51.87 1407

fir 34.07 2222340 41.33 2463316 41.02 2392804 48.64 2625492

jane 31.5 1096 37.21 1184 45.21 1304 50.92 1392

jfdcint 27.86 34990 35.22 39710 42.05 43902 49.53 48550

matmul 28.39 1654800 33.31 1785104 40.71 1923072 44.66 2094224

minver 31.75 190296 38.39 218552 45.9 250248 53.19 281304

ludcmp 32.3 446648 39.94 523008 47.68 600952 54.87 675096

prime 26.38 181286 32.89 200823 38.69 213191 48.05 238126

quart 33.08 266536 40.2 305960 48.26 351256 55.97 393608

recursion 32.4 6893 37.2 6917 43.6 7037 48.4 7077

ud 30.47 47007 37.46 54487 44.82 62207 51.43 69423

Table 6.2: Execution times in Clock Cycles under varying α interference. α ∈ [4, 7], N ∈ [5, 8]

was analyzed and Oet was measured. Fortunately, we did not have to regenerate computation

trace set since the computation trace is independent of number of co-existing masters. The

Oet increased for the most of the applications when an aggressive co-existing core is added

to the system, except, the fir application. This application executed faster when α (number

of aggressive co-existing masters) was increased from five to six. This is a counter intuitive

behavior.

This test asserts that measuring execution time of a test-application in the presence of

aggressive co-existing masters and considering the measured execution time as the Wcet is

unsafe since, less number of aggressive co-existing masters could incur more interference.

Under Tdma arbitration, the rotation of the arbiter pointer is deterministic by specification

(Sec. 3.1.6 – fixed slot schedule). Hence, such anomalies can be observed there. See the results

presented Fig. 4.8 and Fig. 4.9. In these figures, an additional master in the system reduces the

Wcet of these particular applications.
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This section has presented two counter intuitive timing behavior of applications executing

on multi-core architectures. It has proved theoretically that measuring Oet of applications in

the presence of aggressively interfering masters and considering the Oet as Wcet is unsafe.

The section has also presented evidences of the phenomenon by executing applications from a

popular benchmark suit on an Fpga platform.

6.1.6.3 Discussion

This section has presented timing anomalies originating from the interference on the shared

memory and built formal and practical arguments around the Rr arbiter. However, the phe-

nomenon can also be observed in advanced budget based arbiters, for example - Ccsp (Sec. 4.3)

and Pbs (Sec. 4.2). Under the budget based arbiters, due to the finite budget allocated in a unit

time – Replenishment period, an aggressive co-existing masters quickly consume their budgets

and become ineligible. Hence, they do not have a potential (budget) left to interfere with the

test application which is beneficial to the test-application.

An aggressive co-existing master also goes against our 2nd intuition for the worst case latency

analysis (Sec. 4.2.2 and Sec. 4.3.3). There we had assumed, co-existing masters preserve (not

quickly consume) their budgets to interfere with the test-application.

This section has presented timing anomalies originating from the shared memory interfer-

ence. The anomalies depend on the shared resource access pattern of test applications. The

shared memory access pattern depends on the application code itself and the cache configura-

tion. A trivial bug fix in source code can either introduce or remove the anomalies. Hence,

measuring Oet of applications in the presence of uninterrupted (aggressive) interference and

considering the measured Oet as Wcet is highly unreliable.

6.2 Unpredictable behavior due to the COTS intercon-

nect specifications

Cots components, if usable, promise a low cost multi-core solution for safety critical Hrt

applications. Hence, there is a growing interest from industry as well as academia in using

Cots multi-core products for safety critical applications. However, low level specifications

of underlying hardware is often undisclosed to protect competitive edge and only vague high

level details are released, for example, memory response time – 70 ns. It is then a common

practice to take this factor in abstract model for Wcet analysis or to start measuring execution
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Figure 6.4: Explicit bus monopolizing.

time of applications on the given processor. However, some Cots components are simply not

suitable to Wcet analysis. This fact originates from deep inside their hardware specification

which is invisible to the analyzers. The goal of this section is to highlight the unsuitability

of Cots interconnect specifications and demand Wcet analyzable interconnect specification

subset before an industrial integration of unsuitable Cots components is attempted.

6.2.1 Explicit and Implicit bus monopolizing

Popular Cots interconnect specifications, for example AMBA [99], Avalon [85] and PLB [100],

specify mechanisms which lets one bus master monopolize the bus forever irrespective of the

employed arbitration scheme. The bus can be monopolized explicitly or implicitly.

6.2.1.1 Explicit bus monopolizing

To facilitate transfer of large data chunk and avoid arbitration latencies, a dedicated signal

– ArbiterLock is provided by the above mentioned interconnect specifications. The signal,

as its name suggests, locks the arbitration to the asserting master until the asserting master

releases it (Fig. 6.4 [98]). Clearly, this signal must be avoided in multi-Hrt systems to avoid bus

monopolizing by any master. In a single-Hrt system, only the critical master can be allowed

to use the ArbiterLock signal. However, as we investigate, the arbiter can be locked without

using the ArbiterLock signal.

6.2.1.2 Implicit bus monopolizing

Implicit bus monopolizing is depicted in Fig. 6.5 [98] and it could occur during a burst write

transfer. As explained in Sec. 3.1.1, a burst access is issued to the main memory when a cache

miss occurs. In case of a write back, the evicted cache line is written back to the main memory

in a burst fashion. In a burst write transfer a write signal is raised together with the first word
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to be written. At the same time number of words in the burst (BurstLength – cache-line size) is

issued. An arbiter now guarantees shared memory to the requesting master until BurstLength

words are transferred. Generally, when a processor core issues a burst write request, it has all

the data available. However, burst transfers can also be used by peripherals. They may issue

a burst request before buffering all data to be transferred. In this case, they can issue BUSY

response, for example, in AMBA-AHB (in Avalon and PLB, WRITE can be released to achieve

the same effect). The arbiter remains locked until BurstLength number of words are transferred

in this case. Thus, a malfunctioning peripheral can indefinitely monopolize the shared memory.

Clearly, implicit bus monopolizing must be avoided in real-time capable interconnect spec-

ification. A mechanism, called EarlyBurstTermination, is provided only in AMBA to avoid

implicit bus monopolizing. The monopoly problem is solved by it, however, this mechanism may

lead to invalidation of worst case latency parameter as explained in the following subsection.

6.2.2 Impact of Bank interleaved mapping

Bank interleaved mapping is employed extensively in research projects aiming to reduce the

effect of bank interference. In the chapter 4 of this thesis also, bank interleaved mapping is
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employed. We will see in this subsection that the bank interleaved mapping of cache-lines is

not suitable if EarlyBurstTermination is employed.

The Fig. 6.6 depicts tRP (Activate to Precharge delay) timing requirement which must be

satisfied according to Sdram specification. The circles in the figure represents activate-access-

precharge of a bank. The tRP requirement enforces delay between the consecutive accesses to

the same Sdram bank.

The figure shows that a read access is being interfered by a write access (the worst case for a

shared Sdram). Let us assume that a write access issues a BUSY response for two clock cycles.

This results in the write access taking more than its allocated time. Hence, arbiter intervenes

and issues EarlyBurstTermination signal. Following that, the read access is scheduled in

the next slot. However, due to the tRP requirement, the read access cannot complete in its

predefined number of clock cycles. This results in a partial completion of the read access and

prolongation of execution time although it was adhering to the interconnect specification.

6.2.3 Impact of wrap around burst

Wrap around burst is typically employed in instruction cache to increase the average case per-

formance. It is typically issued when a branch target is not aligned to the cache-line boundary.

In this case, to get the blocking instruction at first, a burst is issued starting from the word

in cache-line which includes the blocking instruction. However, if bank interleaved mapping

is used to access the shared Sdram, scenario presented in Fig. 6.7 may occur. Here, a wrap

around burst issued by an interfering access may lead to partial completion of the succeeding

sequential access.
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Benchmark Without cache-line alignment With cache-line alignment % deviation

compress 693 1162 67.6

cover 339 386 13.8

crc 632 623 -1.4

duff 41 86 109.7

edn 7437 8067 8.4

expint 32 921 2778.1

fac 12 10 -16.6

fdct 685 1115 62.7

fibcall 8 10 25.0

fir 31765 18213 -42.6

jane 14 12 -14.2

jfdcint 574 422 -26.4

matmul 21679 26408 21.8

minver 4000 3660 -8.5

ludcmp 9852 10396 5.5

prime 2613 896 -65.7

quart 5543 5475 -1.2

recursion 10 21 110.0

ud 1021 1049 2.7

Table 6.3: Impact of branch target alignment on the number of cache misses

As explained above, the wrap around burst and bank interleaved mapping for a shared

Sdram cannot be combined. There are two ways to resolve this issue.

• Add a reorder buffer between masters and the shared Sdram which will buffer the incom-

ing unaligned burst request and issue a sequential burst request. Similarly, the reorder

buffer must capture the data reverted by the shared Sdram and re-arrange it in the

original requested order.

• A second approach is employed in Sec. 4.5.1. Here, compiler flags are used to align all

branch targets to cache-line size (32 B) boundaries. Hence, only sequential burst requests

are issued.

It is clear that the first approach will increase the memory access latencies due to two

intermediate buffers. Obviously, the sequential burst accesses can bypass these buffers resulting

in unchanged latency. However, unaligned burst accesses will result in higher latencies than

if the buffers were not used. This results in poor average case as well as poor worst case
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performance. Hence, it must be researched if the reduced worst case latencies due to bank

interleaving compensates for the increased latencies due to the buffers.

The second approach manipulates computation trace of application. To align branch targets,

padding code is inserted. This results in increased executable binary size and modified cache

miss pattern. For example, table 6.3 presents deviation in the number of cache misses after

building applications using branch target alignment flags. Here, application code ( Mälardalen

Wcet benchmark suit), processor (NIOS II F) and cache configuration is the same (32 B cache-

line size, 512 B I$ and D$). The only difference is the usage of alignment flags to avoid wrap

around burst. This difference results in a significant difference in number of cache misses. For

example, for the expint application the number of cache miss is increased by 2778% and for

the prime application the number of cache miss is decreased by 6̃6%. Clearly, the deviation

in number of cache miss impacts Wcet and it must be investigated if the bank interleaved

mapping of caches results in reduction in the Wcet or not.

6.3 Summary

This chapter has presented some precautions a designer and an analyzer of a safety critical

multi-core should undertake. Although the safety critical aspects of a multi-core architecture

are deeply studied by recent research projects, some untouched caveats are presented in this

chapter.

The first part of the chapter presents two counter intuitive timing behavior due to the

interference on a shared memory in multi-core architectures. It proves theoretically that the

aggressive shared memory traffic generated by co-existing masters could be helpful to the test

application to execute faster. Additionally, it also proves that some applications experience

more interference in the presence of less number of aggressive co-existing masters. The practical

evidences of the presence of these counter intuitive timing behavior (timing anomalies) are also

presented using test applications from a popular benchmark suit executing on a real hardware

multi-core processor built on an Fpga.

The second part of the chapter targets the popular interconnect specifications and demands

a real-time capable subset of the specification. It shows that certain facilities provided in

the current specifications increase average case performance, however, render the architecture

unsuitable for safety critical hard real-time systems. It also recommends in depth investigation

before adopting bank interleaved mapping, a popular technique to reduce bank interference, for
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a shared Sdram. The side effects of adopting a bank interleaved mapping may result in poor

average case as well as poor worst case performance.

Disregarding the precautions presented in this chapter is also non-compliant to the guidelines

presented in CAST-32 paper.
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Chapter 7

Demonstrators

The previous chapters have presented various hardware and analysis techniques for predictable

and higher performance arbitration schemes in multi-core processors. These chapters provided

proof of the concept by executing test applications from a popular benchmark suit on a multi-

core architecture built on an Fpga. The chapter 6 cautioned the safety critical multi-core

designers and analyzers against subtle easy-to-overlook details which render the architecture

unsuitable or the analysis invalidated for safety critical applications.

This chapter presents demonstrators which use techniques presented in previous chapters.

The demonstrators are close to real-life applications and exhibit the potential industrial exploita-

tion of the techniques. The first demonstrator presents a time and space separated multi-core

system. This setup is attractive to mixed critical systems where one application is execution

time sensitive while other applications are shared memory bandwidth sensitive. The second

demonstrator exhibit the technique presented in the 5th chapter. The last demonstrator uses

predictable and high performance multi-core architecture to build centralized multi-core Elec-

tronic Control Unit (ECU) for eCars.

7.1 Time and Space Separated Multi-core System - TASERS

The Fig. 7.1 (MPU provided by [104]) depicts a multi-core architecture built on an Altera Fpga

board. In total six bus masters are connected to a shared Sdram (DDR2 in this case). The

shared Sdram is arbitrated under the Pbs arbitration scheme. Four out of six masters are NIOS

II cores. Two cores are dedicated to generate graphics on an LCD. One core is responsible for

controlling the levitating magnet. And one core emulates a malfunctioning core. The remaining

two bus masters are graphics and IO DMA engines. The video of the demo can be seen on the
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Figure 7.1: TASER Architecture

following link1. The demo clearly shows resilience of the mixed critical systems from faults and

robust time and space partitioning.

The space partitioning of the demo is contributed by Hattendorf et al [105] while the time

partitioning and functional code of the levitation and the graphics application was developed

under this thesis.

7.1.1 Operation

The demo platform executes three applications: a deadline sensitive hard real-time application,

a memory bandwidth sensitive graphics application and a faulty application. The description

of the applications are as follows.

7.1.1.1 Deadline sensitive hard real-time application

The Fig. 7.2 [105] depicts the deadline sensitive magnetic levitation application. In this appli-

cation, a controlling coil generates only sufficient magnetic force to let the permanent magnet

floating. The controller is a simple memory-less proportional controller with a sampling period

of 100 µs. The controller is intentionally kept simple to make it highly vulnerable to a deadline

miss. The IO-DMA engine reads the actual position of the magnet and writes it into the shared

1https://www.youtube.com/watch?feature=player_embedded&v=tIkgxyE-Z2s
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Figure 7.2: Magnetic levitation: A deadline sensitive hard real-time application

Sdram. The position of the magnet is detected by a combination of hall-effect sensor and an

analog to digital converter.

The DMA updates the shared Sdram every 100 µs with the actual position of the magnet.

The levitation controlling core receives an interrupt from a timer every 100 µs. The interrupt

service routine then accesses the shared Sdram, reads the updated magnet position and tunes

the current flowing through the coil to control the electromagnetic force. Thus, in a 100 µs

period, the DMA engine accesses the shared Sdram once. In the same time period, the NIOS

core which controls the levitation accesses a dummy location at first. Then the location where

the actual sensor value is stored is accessed. This is required to inform the cache (self made

single line cache1) to explicitly read an updated sensor value. Thus, the controller (cache) needs

to access the shared Sdram twice in 100 µs time period.

If either the DMA engine or the levitation controlling core does not get an access to the

shared Sdram in this time frame, the magnet becomes unstable.

7.1.1.2 Bandwidth sensitive graphics application

The graphics application displays two rectangular grids on the LCD. Two individual NIOS

cores control each of the grids. The grids are initialized after reset with red color. The NIOS

cores synchronize with each other only once after they have initialized their respective grid.

The left grid controller rotates two green tokens, 180 degrees apart, on the left grid. Similarly,

1A customized cache having only a single line was created to access the shared Sdram in a burst fashion

and avoid undesirable cache effects at same time. Cache analysis is not the focus of this thesis.
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Figure 7.3: Bandwidth sensitive graphics application
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Figure 7.4: Rotation of the tokens

the right grid controller rotates two green and two blue tokens, interleaved 90 degrees apart, on

the right grid. The tokens on the left grid rotates clockwise while the tokens on the right grid

rotates anticlockwise. The requirement is, green tokens from both the grids must align with

each other when they are traversing through the middle of the LCD. The scenario is depicted

in Fig. 7.3 [105].

Each pixel on the LCD is represented by an unsigned int. The rotation of the tokens

is achieved by shifting them by one pixel, either column wise (when tokens are traversing

horizontally) or row wise (when tokens are traversing vertically), continuously. The movement

of the tokens is depicted in Fig. 7.4. Each token is made of 50 x 50 pixels. The generated

video image is stored in the shared Sdram. The graphics DMA engine continuously reads

the prepared video image from the shared Sdram and throws it on the LCD. The graphics

accelerator should be provided very high bandwidth to achieve higher frame rate on the LCD.

Thus, the complete graphics application involves two NIOS cores and a graphic accelerator as

a shared Sdram masters.
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Figure 7.5: Faulty application disrupts the image

Figure 7.6: Enabling the MPU protects the core part of the grid from the faulty application

As explained earlier, the left grid controller moves only two token while the right grid

controller moves four tokens in a unit time period. Hence, the allocated budget to the right

grid controller is twice as much as the left grid controller under the Pbs arbitration scheme.

Since the cores are not explicitly synchronized, if one core gets slightly more or less than the

allocated bandwidth then the green tokens will be out of synch in the middle of the LCD.

7.1.1.3 Faulty application

The faulty application emulates stuck-at fault on the accessRequest signal. Thus, it continu-

ously demands a shared Sdram access and overwrites half of the video image with white pixels

(see Fig. 7.5 [105]). Here, the Pbs arbiter must control the amount of bandwidth assigned

to the faulty application and keep co-existing applications (levitation, graphics) unaffected.

Otherwise, the magnet falls down and the tokens go out of synch. The faulty application can

be enabled by a push of a button.
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7.1.1.4 The shared Memory Protection Unity - MPU

We used the MPU from Hattendorf et al [105]. It is similar to one presented in Fig. 5.7

and protects memory regions of the shared Sdram. When the MPU is enabled, the faulty

application can only overwrite a part of the LCD. The grids and tokens are protected as depicted

in Fig. 7.6 [105]. Thus, the MPU provides space partitioning.

7.1.2 Assignment of Priorities and Budgets

Allocation of the priorities and budgets are very crucial for such mixed critical applications.

We began with two parameters. i) The levitation control application has a period of 100 µs

and it is a Hrt. ii) The graphics accelerator needs the highest shared Sdram bandwidth to

produce high frame rate on the LCD.

We fixed the replenishment period at 100 µs. At 125 MHz operating frequency, the replen-

ishment period is 12500 clock cycles long. One refresh is issued at every tREFI = 7.8 µs and it

takes tRFC = 41 clock cycles to serve the refresh operation. Hence, in a single replenishment

period, there are ≈ 13 refreshes. They occupy 13 x 41 = 533 clock cycles. Considering the worst

case of read/write switching accesses to the shared Sdram, one access can be served every 13

clock cycles. Thus, the total available budget in 100 µs period is (12500 - 533)/13 = ≈ 920.

The DMA-IO engine accesses the shared Sdram once while the levitation controller core

accesses the shared Sdram twice in 100 µs. Additionally, they belong to the most latency

sensitive application. Hence, the DMA-IO receives highest priority (shown at the interface

points in Fig. 7.1) and a budget of 1 while the levitation controller receives the second highest

priority and budget of 2 in 100 µs replenishment period. The left grid controller is allocated

budget of 100 and the right grid controller is allocated budget of 200 in 100 µs replenishment

period with priorities 4th and 5th, respectively. The faulty application is allocated, equal to

the right grid controller, budget of 200, however, priority 3rd. The higher priority of the faulty

application than the graphics application makes graphics application vulnerable to the faults.

Finally, the remaining budget of 417 is allocated to the graphics accelerator and 6th priority.

Thus, the graphics application can read 417 x 8 (burst of 8 integers per access) = 3336 pixels

in 100 µs. This results in 3360e4 pixel reads in a second. However, the interface between the

Fpga board and the LCD is 8 bits wide. Hence, 24 bit pixel needs 3 clock cycles to be pushed

on the LCD. This results in 3360e4/3 = 1120e4 pixels thrown at the LCD per second. At the

resolution of 800 x 480, this results in ≈ 29 fps. The high frame rate creates crisp images on

the LCD as can be seen in the video.
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Figure 7.7: Demo setup

7.1.3 Comments on certification

The demo analyzes each applications according to their latency and memory requirements. The

worst case Sdram bandwidth (shared memory bandwidth) is also analyzed and allocated to the

masters to fulfill their duties. This approach is conceptually certifiable based on the guidelines

of the CAST32 [3] paper. For more details, please refer Sec. 4.6.

7.2 Measurement based WCET analysis for multi-core

systems

This section demonstrates the technique presented in Chapter 5. It employs the optimized cache

observer (Sec. 5.2.2) and uses computation and memory intensive Mandelbrot set generation.

The C code for the Mandelbrot set generation was taken from Rosettacode [106] and ported to

the Altera environment. Typically, the code was adopted to generate continuous video frames

on the LCD. Video of the demonstrator can be viewed on the following link1.

7.2.1 Demo setup

The setup of the demonstrator is pictured in Fig. 7.7. The Fig. 7.8 represents graphical view

of the demonstrator. A quad-core processor is built using NIOS II F cores. Each core has

4KB of instruction and data caches. All cores produce a Mandelbrot set and display it on the

connected LCDs as shown in Fig. 7.7. The interfering cores share an LCD while a dedicated

LCD is connected to the test core. Additionally, the optimized cache observer is connected to

1https://www.youtube.com/watch?feature=player_embedded&v=31BmaIhK1Ww
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Figure 7.8: Graphical representation of the demo setup

the test core. An on-chip memory serves as a shared main memory to all cores. The interfering

cores can be enabled/disabled by push button switches.

7.2.2 Operation

The optimized cache observer, connected to the test core, adds worst case latency for each

cache miss considering the worst possible interference. Moreover, it also measures the observed

execution time of Mandelbrot set generation on the test-core. The Fig. 7.9 depicts different

observed execution times while the Wcet stays constant. The observed execution time is de-

pendent on the interference and varies between 14 and 17 seconds while the Wcet is calculated

based on the worst possible interference, hence, it has a constant value of 19 seconds. The C

code for the Mandelbrot set generation is a single path code, hence, measuring start to end

time considering the worst interference is sufficient. Obviously, a soft-reset is issued and the

LCD is cleared before a new set is created.

7.2.3 Comments on certification

The timing aspect of the demo is certifiable according to the CAST32 [3] guidelines. For more

details, readers are referred to Sec. 5.5.
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Figure 7.9: Measurement based WCET analysis fo multi-core architectures

7.3 A predictable and high performance multi-core pro-

cessor as a centralized eCar controller

The challenge of the ICT architecture and performance scaling in modern automobiles has been

described in Sec. 1.1. This section presents a model car as a demonstrator which shows how our

techniques provide solution to the challenge. As suggested by researchers [107], we employed

Ethernet as the communication backbone of the car.

In total, two complete model cars were developed in this thesis work. The hardware archi-

tecture was designed under the thesis. The model cars were handed over to student participants

of the LEGO lab course1 at Technische Universität München. Under supervision, students de-

veloped the software applications executing on the ECUs. The following subsections describe

the architecture of peripheral ECUs and the central predictable and high performance quad-core

ECU.

7.3.1 Demo setup

Like a real car, our model car consists many components built/developed separately and inte-

grated in one unit. However, unlike real cars, an addition of an ECU consists of the following

simple steps: i) Connect the ECU to the Ethernet backbone with a dedicated IP address and

ii) Add a software thread in the central ECU to manage its functionality. These simple integra-

1http://www6.in.tum.de/Main/TeachingWs2014HSCDLegoCar
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tion steps ease scaling, debugging and verification processes. The following subsections detail

different ECU components and the communication architecture.

7.3.1.1 Communication architecture

The Fig. 7.10 depicts Ethernet communication architecture built in the model cars. We chose

star topology in our cars due to its simplicity and availability of Cots Ethernet switch. Our

communication architecture is not time predictable due to the usage of the Cots components,

e.g. UART-2-Ethernet converter, Ethernet switch etc. We chose Cots components due to the

cost restrictions and our main focus is to provide a proof of concept. In real cars, components

operating on time-triggered Ethernet protocol must be employed. EtherCat [9], PowerLink [10]

etc. are the examples of such predictable Ethernet communication protocols.
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7.3.1.2 The wheel ECU

The Fig. 7.11 depicts the wheel ECU as implemented on model cars. The functional/graphical

description of the ECU is depicted in Fig. 7.12. Each wheel of the cars has a dedicated ECU. The

ECU generates the PWM signals to set the speed and direction of the motor/wheel rotation. The

PWM signal is generated by a dedicated hardware IP block for higher accuracy and efficient

operation. Similarly, dedicated hardware IPs are used for reading the actual speed through

Hall effect encoders and for measuring distance from an obstacle through ultrasound distance

measurement device (Fig. 7.12).

The wheel ECUs are implemented on Altera DE0-nano boards due to their low cost and

high usability. The boards are connected to the Ethernet via UART-2-Ethernet converters. The

on-board NIOS core receives the desired rotation speed from the central ECU via Ethernet. It

implements a PID controller to maintain the desired speed. The NIOS core also packs the

sensor related data, for example actual speed, distance from an obstacle etc, in a frame and

sends it to the central ECU via Ethernet.

The central ECU can set individual speed/direction for each wheel through Ethernet com-

mands. The forward and backward motions of the cars are achieved by driving all wheels in the

same direction. Rotation of the car on place can be achieved by rotating wheels on both sides
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Figure 7.13: Car train – Platooning

in opposite directions. Similarly, turning is achieved by driving wheels on the sides at different

speeds.

7.3.1.3 The Car2X ECU

A car train (Fig. 7.131), also called platooning, can reduce fuel consumption, increase road usage

and reduce fatalities in accident situations [108]. Here, cars driving to the same destination

form a virtual train. Within the train, cars drive very close to each other to reduce air drag and

thereby reduce fuel consumption. However, an emergency breaking by a lead car may cause

a pile-up. Hence, continuous automated communication among cars must be present. Here,

an emergency message is sent to following cars in case of a sudden breaking. The following

cars then breaks automatically without any intervention from their drivers to react quickly. To

enable this functionality a Car2X ECU is added as a peripheral ECU in our model cars.

In our model cars, the Car2X ECU is built using a WLAN-2-Ethernet converter. The car

provides a wireless access point and other car(s) can connect to the central ECU via the access

point.

7.3.1.4 The camera ECU

The Fig. 7.14 presents a graphical view of the camera ECU. As shown in the figure, the camera

ECU is composed of a webcam and a BeagleBone Black. The main goal of the ECU is to detect

a marker attached to the back of the leading car and keep following the marker. Here, again

a PID controller is used to keep the marker in the middle of the webcam image. The angular

correction in terms of wheels’ speed is sent to the central ECU. The central ECU then sends

the updated speed to the respective wheel ECUs.

1Source: www.driverlesstransportation.com/wp-content/uploads/2014/03/dt-platooning-1000x2881.jpg.
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We chose a very simple marker due to the limited processing power of BeagleBone Black.

OpenCV [109] library is used under Ubuntu Linux executing on BeagleBone Black for image

processing algorithms. Communication between OpenCV nodes is implemented using Robot

Operating System (ROS) [110].

7.3.1.5 The central ECU

The central ECU consists of, as depicted in Fig. 7.15, a quad-core NIOS II processor. The cores

are connected to a shared Sram using the Pd arbiter. The shared Sram is partitioned in such

a way that each core has its own exclusive partition in the memory. Additionally, there is a

shared partition between the control core and the communication core. Accesses to the shared

memory partition is resolved via a hardware mutex core (not shown in the figure).

The interfering cores, randomly generate traffic towards their shared partition. Here, we

would like to focus on the robustness of our time predictable technique. Hence, hardware en-

abled spatial partition is avoided. The hardware enabled spatial partitioning is already covered

in the demonstrator presented in Sec. 7.1.1.

The control and communication cores implement the functionality of the central ECU. As

their names suggest, the communication core is connected to the Ethernet for communicating

with the outer world and the control core is responsible for controlling the speed and direction

of the wheels. The car state data structure is maintained in the shared partition.

The car state data structure has an incoming and outgoing sections. The communication

core receives incoming Ethernet packets and puts them in the incoming section of the data

structure. The control core processes information available in the incoming section and updates

the necessary information in the outgoing section. This information is later packed in Ethernet

packets and sent to the corresponding ECUs by the communication core. The Nichestack
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Figure 7.15: Graphical representation of the central ECU

TCP/IP stack was used for Ethernet communication. Threads are implemented using Micro C

real-time operating system.

Typical information available in the incoming section is the following. i) From wheel ECUs:

actual speed of wheels and distance from an obstacle. ii) From the camera ECU: desired speed

of each wheel. iii) From the Car2X ECU: emergency break. In the real world, Car2X ECU

may also send additional information such as actual speed of the leading car, destination, rout

information etc.

7.3.2 Operation

The communication core executes the TCP/IP stack on the µC OS II. It is configured in server

mode. After power cycle, the peripheral wheel ECUs keep on sending a welcome messages until

they receive an acknowledgment by the central ECU. The wheel ECUs are configured in client

mode. The binding process ensures functional Ethernet communication infrastructure between

the wheel ECUs and the central ECU.

The camera ECU and the Car2X ECUs are by default (hard coded) bound with the central

ECU. The camera ECU detects the marker position of the preceding car and sends wheel

velocities such that the marker stays in the middle of the camera frame. This ensures alignment
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with the preceding car. The car does not have a steering motor, hence, turn is achieved by only

difference in wheel velocities. The central ECU receives the wheel velocities and relays them to

the wheel ECUs via Ethernet communication. The Car2X ECU listens to an emergency break

message sent by the preceding car on Wifi (IEEE 802.11) and forwards it to the central ECU.

Upon receiving the emergency break message, the central ECU forwards a stop message to all

wheel ECUs.

Although the messages are received and transmitted by the communication core, the in-

formation within is processed by the control core. It is control core which sets correct wheel

velocities for wheels based on the messages sent by the Car2X and camera ECUs. Both control

core and communication core share memory which is aggressively accessed by the interfering

cores (Fig. 7.15). However, the Pd arbiter (Sec. 3.2) ensures the minimum bandwidth allocated

(25 %) to both the cores with efficient shared memory utilization for increased performance.

7.4 Summary

This chapter has presented three demonstrators for the techniques presented in the previous

chapters of the thesis. The demonstrators highlight how our techniques can be exploited in

real-world applications. The first demonstrator highlight the application of the analysis tech-

niques presented in chapter 4. The system in the demonstrator is the typical case of mixed

critical system where applications with different latency and bandwidth requirements co-exist.

The second demonstrator is an application of the technique presented in 5th chapter. Here,

the Wcet of computationally intensive application executing on a multi-core architecture is

measured. The technique is certifiable and does not need any change in Cots multi-core chips

or timing analysis tools. The third demonstrator is the application of the predicable and high

performance multi-core architecture as a centralized ECU of model cars.
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Chapter 8

Conclusion and future work

This thesis presents a few novel techniques to achieve predictable execution time of applica-

tions executing on multi-core processors with minimal or no compromise on performance. This

stands out from the state-of-art where predictability is achieved after significantly sacrificing

performance. The thesis approaches the problem in multiple ways using as many Cots com-

ponents as possible to reduce the adoption costs and time-to-market. Due to the small market

share of Hrt systems, such approach is highly cost effective.

The thesis focuses on shared memory interference since it is the key differentiating factor

on performance and predictability while migrating from single-core to multi-core. Multi-cores

employ shared memory to reduce over all cost of the product and to share data. Thus, the

shared memory bandwidth is a critical resource impacting predictability and performance of a

multi-core system.

The shared memory arbiter design and the worst case latency analysis, both, affect perfor-

mance and predictability of a multi-core system. This thesis contributes by providing novel

techniques in both the dimensions. A new arbitration scheme, Priority Division (Pd) is pre-

sented. The Pd is proven theoretically and through experiments to have equal worst case

latency as Tdma in a multi-Hrt multi-core systems. Although the Tdma is considered as the

best candidate when time predictable execution is required, it inefficiently utilizes the shared

memory resulting in degraded performance. The Pd arbiter, having equal worst case latencies,

increases the memory utilization by applying a secondary – priority based arbitration. For a

single-Hrt system (mixed critical), static priority (Sp– aka fixed priority) based scheduling can

be considered as the best candidate. Here, the highest priority is assigned to the critical master
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for faster execution of applications executing on it. The thesis proposes PDh1 mode which

results in even faster execution than the Sp for the highest priority master in the worst case.

Thus, the Pd arbiter is equal to Tdma in the worst case, however, results in much faster

execution than Tdma in the average case. This makes it highly attractive to performance

demanding safety hard real-time systems.

To satisfy different latency and bandwidth requirements, budget based arbiters are proposed

in literature. These arbiters are complex to analyze for the worst case latency since the current

latency depends on activity of co-existing masters as well as the past activity of the test-master.

To reduce analysis complexity, abstract models, e.g. LR, are proposed. This thesis presents

detailed worst case latency analysis in the presence of shared Sdram. The detailed analysis

produces much precise worst case latency analysis which heavily reduces the estimated Wcet.

Thus, precision in analysis results in better predictability (low Wcet) under high performance

arbiters.

In order to further ease the Wcet analysis and bridge the gap between chip manufacturers

and Wcet analyzers, the thesis presents measurement based Wcet analysis technique using

internal monitoring. The technique empowers existing single-core Wcet measurement tools

to measure Wcet on multi-core architectures without any modifications. Additionally, the

technique does not interfere with normal operation of the chip, hence, the performance, energy

consumption etc. benefits are preserved. Another major advantage of this technique is, it

brings chip manufacturers and Wcet analyzers together. Chip vendors are reluctant to reveal

details of their architecture due to their competitive advantage. Without detailed specification

of underlying architecture, the Wcet analyzers cannot perform reliable (and usable) analysis.

Using the technique presented in this thesis, Wcet measurements on multi-core architectures

is enabled without revealing the underlying arbiter specifications.

Building predictable multi-core architecture involves deep knowledge of multi-core architec-

ture, system integration as well as analysis techniques. Typically, people with different expertise

work in their individual domains. Hence, techniques employed in one domain may invalidate

assumptions/techniques employed in other domain(s). This thesis brings knowledge of different

domains together and explains how general assumptions made in one domain may interfere with

assumptions made in another domain. In the process, the thesis highlights caveats in building

and analyzing predictable multi-core systems.

All the techniques in this thesis are supported by related experiments conducted on multi-

core architecture built on an Fpga and test applications chosen from a popular benchmark suit.
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Although the experiments provide proof of concept of the techniques, to exhibit the usability

of the techniques in the real world, three demonstrators are presented. Each demonstrator

highlights industry deployability and ease of use of the techniques.

Apart from the cost effective integration, our techniques are conceptually certifiable for

avionics applications according to the guidelines presented in CAST32 [3] paper. Currently,

these guidelines are only published for dual-core processors, however, we expect minor change

in the guideline for multi-core processors. Each technique presented in the thesis is accompanied

by compliance arguments of the CAST32 paper.

Future work: A framework for Design Space Exploration (DSE) incorporating our tech-

niques could be an interesting future work. The DSE can be applied to the priority arrangement

of the Pd arbiter. Here, Hardware-In-Loop (HIL) can be developed and priorities within the

slots can be re-programmed until the optimization goals are reached. Here, optimization goal

could be reduction in Wcet on the critical master and faster average case execution on other

masters.

The internal monitoring technique for Wcet measurements provides Oet and Wcet si-

multaneously in real-time. This can be used for Oet health check. Here, during the application

test runs, if the Oet is often close to Wcet, the test application is heavily interfered by the

co-existing applications. A minor structural code modification in either test application or the

co-existing applications can significantly change the interference scenario. The modification can

be applied to achieve reduction in Oet (faster average case execution) of the test application.

An optimized L2 cache partitioning is an ongoing research work. The internal monitoring

technique presented in this thesis can be used to build HIL for testing partitioning schemes on

a real hardware.
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Appendix A

Appendix

A.1 Certification of avionics software executing on a multi-

core platform

This section contains multi-core timing related text of CAST-32 paper [3].

Multi-cores are not commonly used in airplanes due to serious challenges to the deterministic

software behavior. Hence, industrial experience and certification guidelines are not available.

Due to the growing interest of using Multi-core Processors (MCP) in avionics, Federal Aviation

Agency (FAA) has published (position paper CAST-32 [3]) objectives and suggested activities

for the demonstration of compliance to safety standards. Although the publication is not the

official certification policy, it is currently the best available guidance on how to certify multi-

cores for avionics.

The CAST-32 position paper lists various rationale (concerns) and objectives in categories

of determinism, software and error handling. From the available rationale and objectives, we

concentrate on topics related to shared resource interference since it is the main focus of this

thesis. Here, for readability reasons, we list objectives related to this thesis mentioned in the

CAST-32 [3] paper.

MCP Determinism 7: The applicant has conducted a functional interference analysis to

identify all the interference channels between the software hosted on the cores of the MCP and

has designed, implemented and verified a means of mitigation for each of those interference

channels.

MCP Determinism 8: The applicant has stated in their software plans whether or not

they intend to use shared memory (between the processing cores) and if they do, has described
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in those plans the means they intend to use to control access to shared memory locations and

to prevent the disruptions to deterministic software execution caused by problems such as race

conditions, data starvation, deadlocks or live-locks.

MCP Determinism 9: If the applicant uses shared memory between the processing cores,

the applicant has tested the means that they have designed to control the access to shared

memory and has ensured that the implemented means provides uninterrupted access to the

shared memory locations from either core of the MCP and prevents either core being locked

out from accessing the shared memory.

MCP Determinism 10: The applicant has stated in their software plans whether or not

they intend to use shared cache between the processing cores, and if they do, has also described

in their plans their strategy for managing and verifying cache usage.

MCP Determinism 11: If the applicant uses shared cache between the processing cores,

the applicant has conducted analyses and tests to determine the worst-case effects that the use

of shared cache and memory can have on the execution of the specific software applications

hosted on the two cores of the MCP, has described those effects to the certification authority,

and has implemented and verified a means to mitigate the effects of using shared cache.

MCP Determinism 12: The applicant has described in their software/AEH plans or other

deliverable documents how they intend to allocate, manage and measure the use of resources

and the use of the interconnect by the applications hosted on the MCP and by other MCP

peripherals so as to avoid contention for MCP resources and to prevent the capacity of the

interconnect and the resources of the MCP from being exceeded.

MCP Determinism 13: The applicant has allocated the usage of the MCP resources to

the software applications hosted on the MCP and has verified that the total of the resource

demands when all applications are executing in the worst-case situation does not exceed the

total of the resources available.

MCP Determinism 14: The applicant has determined the maximum capacity of any

interconnect mechanism of their MCP to sustain transactions in a deterministic manner and

has verified that the demands made on that mechanism by the software hosted on the MCP

or by any peripherals of the MCP do not exceed its maximum capacity during any phase of

operation of the system.

The CAST-32 paper also lists suggested activities to demonstrate the compliance to the

certification authority. The following are the activities suggested by the CAST-32 paper related
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A.1 Certification of avionics software executing on a multi-core platform

to above mentioned objectives. However, an applicant may also propose other activities for the

review for acceptability.

4. MCP Interference Channels. The applicant should -

(a) conduct an interference analysis in order to identify all the channels by which the

software programs executing on the two cores could interfere with each other via

the internal mechanisms of the MCP or through any of the software hosted in it,

including the kinds of features of MCPs described in this paper that are not present

in single core processors.

(b) for each of the interference channels identified, design a means to deactivate the

interference channel or to mitigate the effects of the interference between the software

hosted on the separate cores. This interference analysis should be available for review

during audits.

5. Shared Memory and Cache The applicant should -

(a) develop and implement means to control access to the shared memory areas by

the software hosted on the cores of an MCP. The resulting implementation should

prevent situations in which an access to the shared memory by the software hosted

on one core does not cause disruption to the execution of the software hosted by

another core due to such problems as race conditions, data starvation, deadlocks, or

live-locks.

(b) analyze the means that are used to communicate between the cores via shared

memory. This supporting analysis should be documented. The resulting imple-

mentation should be documented in the applicable software and AEH requirements

and design data.

(c) describe in their software plans their strategy for managing cache memory and state

whether or not they intend to use shared cache.

(d) if shared cache is going to be used, state in the software plans how they intend to

mitigate any interference this may cause between the applications executing on the

two cores of the MCP.

(e) if shared cache is used, conduct analyses and tests to determine for the software

hosted on each core the worst extent of the effects due to the use of shared cache in
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terms of aspects such as data corruption, scheduling and the WCET due to accesses

to cache from the other core. The applicant should allow for these effects in the

allocation of processing time to the processes hosted on the two cores.

(f) document these analyses and tests and their results for the certification authority

review and provide preliminary results as part of the justification that a proposed

MCP installation is feasible and can be fully verified.

Throughout the thesis, we provide comments on how our techniques relate to the above

mentioned objectives and activities.
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