
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Promotionsarbeit in Informatik

Adviser for Energy Consumption
Management:

Green Energy Conservation

Hayk Shoukourian

TECHNISCHE UNIVERSITÄT
MÜNCHEN

Fakultät für Informatik
Lehrstuhl für Rechnertechnik und Rechnerorganisation

Adviser for Energy Consumption
Management:

Green Energy Conservation

Hayk Shoukourian

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Thomas Huckle

Prüfer der Dissertation:
1. Univ.-Prof. Dr. Arndt Bode

2. Univ.-Prof. Dr. Dieter Kranzlmüller
Ludwig-Maximilians-Universität München

Die Dissertation wurde am 11.06.2015 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 23.07.2015 angenommen.

Acknowledgments

This dissertation has been kept on course and been led to a successful completion with
the tremendous support and encouragement of numerous people, who I wish to thank.

First and foremost I would like to express my sincere gratitude to my supervisor
Professor Arndt Bode, for his systematic and thorough guidance, throughout which he
engaged me in new ideas, stimulated my professional growth, and, at the same time, gave
me an intellectual freedom in the research, simultaneously requesting a high quality of
work in all my aspirations. Once again, I would like to thank him for his valuable support,
comments, and remarks, as well as for giving me the great opportunity to be a part of the
research and development done at Leibniz Supercomputing Centre (LRZ).

I would also like to offer my profound appreciations to my second supervisor, Professor
Dieter Kranzlmüller, for his kind agreement and time for reviewing this dissertation.

Furthermore, I would like to express my thankfulness to all my friends and colleagues
at LRZ for their cheering, support and all the great moments spent together throughout
these years. In particular, to Torsten, who was my M.Sc. thesis adviser, and latter a col-
league and friend - a person, who never stopped advising me and is always ready to share
his multi-year professional experience. Many thanks Torsten, for all the interesting dis-
cussions, joint brainstorming, and comments. To Jeanette, who despite her occupation,
was always there to proofread my several research papers (including this work) as well
as willing to assist the advancement of my scientific article writing skills. To Axel, for all
his helpful suggestions and valuable remarks. To Daniele, Matteo, Michael, Jimmy, Siew
Hoon (Cerlane), Volker, Alex, Anupam, and many others for making my time here at LRZ
a lot more fun.

Last but not the least, I would like to express my eternal gratitude to my family - to my
lovely wife for her unconditional support, loving care, and for being always there, cheering
me on in all my pursuits. To my dearest parents for their continuous encouragement and
unwavering spiritual support over so many years, without which none of this would have
been possible.

Hayk Shoukourian
Munich, Germany
August 2015

v

Abstract

The power consumption of High Performance Computing (HPC) systems, which are the
key technology for many modern computation-intensive applications, is rapidly increas-
ing in parallel with their performance improvements. These increased power expenditures
together with the rising electricity costs, lead to the necessity for prioritization of energy
efficiency requirements when designing and expanding modern HPC data centers. It is
equally important to ensure the sustainable, reliable, and environmental-friendly func-
tioning of the data centers during the normal operational modes as well as in emergency
situations. Power and energy capping are two of emerging techniques aimed towards con-
trolling and efficient budgeting of power and energy consumption within the data center.

This dissertation examines the prerequisites and proposes a framework, referred to as
Energy Consumption Management Adviser (ECMA), to enhance the energy-efficient ap-
plication scheduling and backfilling decisions as well as to support for power and energy
capping. This framework encompasses a unified energy measurement and evaluation
toolset, which is an integrated solution aimed at monitoring, collection, and correlation
of power consumption relevant data from all the components of the target supercomput-
ing site, stretching from the environmental aspects and data center building infrastructure
over the deployed HPC systems and reuse technologies, to the system software stack and
executed large-scale applications. The main aim of the developed toolset is not to replicate
any of the existing data center monitoring tools, and rather to act as a hub among several
monitoring tools for provision of an integrated view on energy and power flows of the
complete HPC data center without which the energy efficiency improvements would be
non-trivial and incomplete.

The developed ECMA framework features models that allow for a beforehand estima-
tion of execution time, average power and aggregated energy consumption profiles for
given HPC applications. These models are automatically calibrated for the increase of the
prediction accuracy during the lifetime of the target HPC system, using the collected and
evaluated data obtained from the presented monitoring solution. Based on these models,
a Configuration Adviser (CA) plug-in for resource management and scheduling systems
is presented. This plug-in uses an efficient algorithm to determine an energy-wise opti-
mal resource configuration for a given application. This algorithm: (a) ensures that the
application will be executed with the energy optimal resource configuration fulfilling the
specified application execution time and average power consumption constraints; and (b)
considers the existing power diversity among the compute nodes of a given homogeneous
HPC system. The presented CA plug-in is in complement to the energy/power saving
techniques present in current resource management and scheduling systems and can be
used in conjunction with any other energy/power reduction efforts.

The currently foreseen application range of the ECMA framework includes, but is not
limited to, the usage: (i) by data center operators to completely assess the current energy-
efficiency status and the success of the applied optimization solutions as of the residing
individual HPC systems as well as of the integral data center; (ii) by HPC users/clients for
estimating the potential execution time, power, and energy costs of their applications as
well as for the dynamic control over their energy budgets; (iii) for the support of energy
and power capping techniques; and (iv) for further enhancements of existing energy-aware
resource management and scheduling solutions.

vii

Zusammenfassung

Der Stromverbrauch von Hochleistungs-Rechensystemen, die eine Schlüsseltechnolo-
gie für viele moderne rechenintensive Anwendungen darstellen, steigt parallel zu ihrer
Leistungsverbesserungen. Der erhöhte Verbrauch geht mit steigenden Energiekosten ein-
her. Somit ist die Steigerung der Energieeffizienz ein wichtiges Planungskriterium für den
Entwurf und Ausbau moderner Hochleistungsrechenzentren. Ebenso wichtig ist es, die
nachhaltige, zuverlässige, und umweltfreundliche Arbeitsweise der Datenzentren sowohl
im normalen Betriebsmodus als auch in Notfallsituationen zu gewährleisten. “Power Cap-
ping” und “Energy Capping” sind zwei aufkommende Techniken für effiziente Steuerung
und Planung von Leistungs- und Energieverbrauch im Rechenzentrum.

Diese Dissertation untersucht die notwendigen Voraussetzungen um die energieeffizien-
te Anwendungsplanung zu verbessern sowie “Power Capping” und “Energy Capping”
zu unterstützen, und schlägt ein Modell dazu vor, das als “Energy Consumption Man-
agement Adviser” (ECMA) bezeichnet wird. Dieses Modell beinhaltet eine Lösung für
die einheitliche Energiemessung und Auswertung aller Komponenten des Rechenzen-
trums, angefangen von Umweltaspekten und Gebäudeinfrastruktur über Informationen
des eingesetzten Hochleistungs-Rechensystems und die Wiederverwendung-Technologi-
en, bis hin zur Betriebssoftware und den ausgeführten Anwendungen. Das Hauptziel des
entwickelten Werkzeugs ist nicht ein bestehendes Rechenzentrumsüberwachungs-Werk-
zeug nachzuahmen, sondern eine Verbindung zwischen mehreren Überwachungswerkzeu-
gen herzustellen, um eine integrierte Sicht auf Leistungs- und Energieflüsse des gesamten
Hochleistungsrechenzentrums zu haben. Ohne diese Sicht ist die Verbesserung der En-
ergieeffizienz nicht trivial und möglicherweise unvollständig.

Das entwickelte ECMA Modell umfasst Teil-Modelle, die die Vorhersage von Ausfüh-
rungszeit, Durchschnittsleistung und Energieverbrauch für eine gegebene parallele An-
wendungen ermöglichen. Diese Modelle werden automatisch während der Lebensdauer
des Hochleistungs-Rechensystems kalibriert um die Vorhersagegenauigkeit zu steigern.
Basierend auf diesen Modellen, wird ein “Configuration Adviser (CA)” Plug-In für das
Ressourcenmanagement und Planungssysteme (Scheduler) vorgestellt. Dieses Plug-In ver-
wendet einen effizienten Algorithmus, um eine energetisch optimale Konfiguration der
Anwendung zu ermitteln. Dieser Algorithmus: (a) stellt sicher, dass die Anwendung
mit der energetisch optimalen Ressourcenkonfiguration ausgeführt wird, welche mögliche
Ausführungszeit- und durchschnittliche Stromverbrauch-Beschränkungen erfüllt; und (b)
berücksichtigt die bestehenden Stromverbrauchsunterschiede der Rechenknoten eines be-
stimmten homogenen Hochleistungs-Rechensystems. Das vorgestellte CA Plug-In ergänzt
die derzeitigen Leistung- und Energiespartechniken in Ressourcenmanagement Systemen
und kann in Verbindung mit anderen Leistungs- und Energiespartechniken verwendet
werden.

Die Mögliche Anwendungsgebiete des ECMA sind vielfältig. Derzeit ist eine Verwen-
dung in folgenden Bereichen geplant: (i) für die Betreiber von Rechenzentren, um die En-
ergieeffizienz des vollständigen Rechenzentrums, sowie den Erfolg der anwendungsbezo-
genen Optimierungslösungen zu bewerten; (ii) für Nutzer/Kunden zur Abschätzung der
potenziellen Ausführungszeit, Leistungs- und Energiekosten ihrer Anwendungen sowie
für die dynamische Kontrolle über ihre Energiebudgets; (iii) für die Unterstützung von

ix

“Power Capping” und “Energy Capping” Techniken; und (iv) für mögliche weitreichende
Verbesserungen bestehender Ressourcenmanagements- und Planungs-Systeme.

x

Contents

Acknowledgements v

Abstract vii

Contents xi

List of Figures xv

List of Tables xix

I. Energy Efficient Management in High Performance Computing 1

1. Power and Energy Capping in HPC Data Centers 3
1.1. Motivation and Problem Statement . 3
1.2. Framework for Energy Efficiency Management: Requirements, Pillars,

and Key Performance Indicators . 8
1.3. Background and State of the Art . 11

1.3.1. Frameworks Aimed Towards Power Capping 11
1.3.2. Prediction Tools That Could Have Been Used For Power and

Energy Capping . 13
1.4. Contributions of This Work . 14
1.5. Outline of This Work . 16

II. Evaluating The Energy Efficiency of a HPC Data Center 19

2. Monitoring the Energy and Power Consumptions in HPC Data Centers 21
2.1. Preface . 21
2.2. Need for an Integrated View . 21
2.3. Related Works . 23
2.4. Power Data Aggregation Monitor (PowerDAM) 24

2.4.1. Framework . 26
2.4.2. Workflow . 28

2.5. PowerDAM usage at Leibniz Supercomputing Centre (LRZ) 30
2.6. PowerDAM and EtS . 33

2.6.1. EtS on CoolMUC, SuperMIG, and SuperMUC 35
2.7. Some PowerDAM Reporting Features . 36
2.8. PowerDAM Current Development Directions 40

xi

Contents

2.9. PowerDAM Usage By Other Data Centers . 43
2.9.1. Usage at PSNC . 43
2.9.2. Usage at CINECA . 43

2.10. PRACE 1IP WP 9 & 2IP WP 11 . 44
2.11. The SIMOPEK Project . 44
2.12. Summary . 45

III. Covering the Prerequisites for Implementing Energy and Power
Capping 47

3. Predicting the Energy and Power Consumption of Strong and Weak Scaling
HPC Applications 49
3.1. Preface . 49
3.2. Investigating the Scaling Behaviors of HPC Applications 49

3.2.1. Strong Scaling . 51
3.2.2. Weak Scaling . 51

3.3. Adaptive Energy and Power Consumption Prediction (AEPCP) Model . . . 53
3.4. AEPCP Validation . 56
3.5. AEPCP and the Inhomogeneous Power Consumption of Homogeneous

System Compute Resources . 63
3.6. Measurement Accuracy on SuperMUC . 68
3.7. AEPCP Features and Summary . 68

4. Advancing the Adaptive Model to Support for Prediction of Energy
Consumption Relevant Indicators For Different Compute Resource Configura-
tions 71
4.1. Preface . 71
4.2. Modeling Application KPIs: State of the Art and Perspectives 72

4.2.1. Analysis of the Energy Model . 76
4.3. IBM LoadLeveler Alone . 77
4.4. Lightweight Adaptive Consumption Predictor (LACP) Model 80
4.5. LACP Validation . 83

4.5.1. Some LACP Prediction Statistics . 89
4.6. Power Model in Case of Disabled DVFS Feature 89
4.7. LACP Features and Summary . 90

5. The First Steps Towards Tackling the Execution Time, Energy and Power
Consumption Tradeoffs 93
5.1. Preface . 93
5.2. Tackling the Energy Capping . 93
5.3. Tackling the Power Capping . 94
5.4. Tackling Execution Time-Energy Consumption Tradeoff 96
5.5. Tackling Execution Time-Energy Consumption-Power Consumption

Tradeoff . 96
5.6. Summary . 99

xii

Contents

IV. Towards a Unified Implementation of Software Defined Power
Capping 101

6. Software Defined Power Capping For Modern HPC Data Centers 103
6.1. Preface . 103
6.2. Revisiting the Problem Statement . 103
6.3. Power Distribution Variation with Operating Frequencies 105
6.4. Examining the Potential of Energy Savings With Node Power Variation . . . 109
6.5. Determining the Energy-Optimal Application Resource Configuration . . . 111

6.5.1. The Algorithm . 111
6.5.2. Detailed Description . 112
6.5.3. Example Execution . 115
6.5.4. Optimality of the Solution . 116
6.5.5. Reducing the Processing Time Complexity 117

6.6. Configuration Adviser - A Framework of Energy Efficient
Constraint Scheduling . 118

6.7. Summary . 120

7. Conclusion 121
7.1. Summary . 121
7.2. Future Work . 123

Appendices 129

A. Acronyms 129

B. Author’s Publications List 133

Bibliography 135

xiii

Contents

xiv

List of Figures

1.1. Power capping example use case scenario . 5
1.2. Energy capping example use case scenario 7
1.3. The 4 pillar framework . 8
1.4. Overview of the power and energy capping problems 10
1.5. Infrastructure Specification of the Energy Consumption Management

Adviser . 16

2.1. Power consumption profiles of LRZ for a period of 8 days 22
2.2. Core hour usage of different HPC applications at LRZ 24
2.3. PowerDAM overview . 25
2.4. Hierarchical tree structure . 27
2.5. PowerDAM workflow . 29
2.6. The CoolMUC Linux cluster . 30
2.7. The SuperMUC supercomputer . 31
2.8. The SuperMIG migration system . 32
2.9. Relation between SuperMUC PDU outlets and the compute nodes 33
2.10. Detailed EtS report of HYDRO on CoolMUC 35
2.11. PowerDAM detailed EtS report for a user on a given HPC system 37
2.12. Power, Load, and CPU Temperature graphs for an Executed Application . . 38
2.13. Correlation between power and load for a given application 39
2.14. PowerDAM classification map example of load sensor data for

compute nodes of CoolMUC Linux cluster 40
2.15. PowerDAM temperature heat map for CoolMUC Linux cluster 41
2.16. PowerDAM power heat map for CoolMUC Linux cluster 41
2.17. PowerDAM and the publish/subscribe communication protocol 42

3.1. Theoretical TtS curves for strong and weak scaling scenarios 50
3.2. Theoretical APC curves for ideal and no scalability cases for strong

and weak scaling scenario . 52
3.3. Theoretical EtS curves for ideal and no scalability cases for strong

scaling scenario . 52
3.4. Theoretical EtS curves for ideal and no scalability cases for weak

scaling scenario . 52
3.5. Overview of the AEPCP process . 54
3.6. Overview of the AEPCP model . 54
3.7. A2EP 2 workflow . 55
3.8. A2EP 2 estimation scenarios . 55
3.9. HYDRO EtS prediction for 320 compute nodes 57
3.10. EtS prediction curve of HYDRO under strong scaling 57

xv

List of Figures

3.11. Measured TtS of HYDRO under strong scaling 58
3.12. Measured TtS of HYDRO under strong scaling

(smaller input problem size) . 59
3.13. EtS prediction curve of HYDRO under strong scaling

(smaller input problem size) . 59
3.14. Revisited EtS prediction curve of HYDRO under strong scaling

(smaller input problem size) . 59
3.15. Measured TtS of HYDRO under weak scaling 60
3.16. EtS prediction curve of HYDRO under weak scaling 60
3.17. Measured TtS of EPOCH under strong scaling 61
3.18. EtS prediction curve of EPOCH under strong scaling 61
3.19. Measured TtS of EPOCH under weak scaling 62
3.20. EtS prediction curve of EPOCH under weak scaling 62
3.21. APC prediction curve for EPOCH under strong scaling 62
3.22. Average power draw of compute nodes for the SuperMUC island 5

when executing MPRIME at 2.3 GHz maximum CPU frequency 64
3.23. Average power draw of compute nodes for the CoolMUC Linux

cluster when executing MPRIME at 2.0 GHz maximum CPU frequency . . . 65
3.24. TDP vs AEPCP APC prediction results for EPOCH 66
3.25. Max and Min APC values for EPOCH under weak scaling 67
3.26. Max and Min APC values for HYDRO under strong scaling 67
3.27. Max and Min APC values for HYDRO under weak scaling 67

4.1. EtS profile of HYDRO with different numbers of utilized compute
nodes and CPU frequencies . 71

4.2. EtS profile of EPOCH with different numbers of utilized compute
nodes and CPU frequencies . 72

4.3. The EtS behavior from the operating CPU frequency in case of a
fixed n number of compute nodes . 76

4.4. Sample output of LoadLeveler CPU prediction results for HYDRO when
executed on 210 compute nodes . 77

4.5. TtS scaling scenarios . 80
4.6. Overview of the LACP process . 81
4.7. Overview of the LACP model . 82
4.8. LACP EtS prediction results for HYDRO . 84
4.9. LACP APC prediction results for HYDRO . 85
4.10. LACP TtS prediction results for HYDRO . 86
4.11. Adapted LACP EtS prediction results for HYDRO 87
4.12. Adapted LACP APC prediction results for HYDRO 88
4.13. Adapted LACP TtS prediction results for HYDRO 88
4.14. Samsung Exynos 5 Dual Arndale Board featuring a dual-core 1.7 GHz

mobile CPU built on ARM Cortex-A15 architecture plus an integrated ARM
Mali-T604 GPU for increased performance density and energy efficiency . . 90

5.1. LACP EtS prediction results for EPOCH when executed with 220
compute nodes . 94

xvi

List of Figures

5.2. LACP APC prediction results for EPOCH when executed with 220
compute nodes . 95

5.3. LACP TtS prediction results for EPOCH when executed with 220
compute nodes . 97

5.4. LACP prediction results for EPOCH with 287 compute nodes 98

6.1. Overview of the problem statement . 104
6.2. Average power draw of compute nodes for the SuperMUC Island 5

when executed FIRESTARTER at 1.4 GHz maximum CPU frequency 106
6.3. Average power draw of compute nodes for the SuperMUC Island 5

when executed FIRESTARTER at 2.3 GHz maximum CPU frequency 107
6.4. Average power draw of compute nodes for the SuperMUC Island 5

when executed FIRESTARTER at 2.7 GHz maximum CPU frequency 107
6.5. Average power draw of some SuperMUC Island 5 compute nodes

when executed FIRESTARTER with different maximum
CPU frequencies . 108

6.6. Reference flow of the Energy Consumption Management Adviser
framework . 118

6.7. Configuration Adviser Workflow . 119

7.1. Dissertation coverage area . 121
7.2. Comparison of node average power consumption and CPU temperature

of air-cooled nodes and direct liquid cooled nodes at different inlet
temperatures on CoolMUC . 124

xvii

List of Figures

xviii

List of Tables

2.1. HYDRO execution results on SuperMIG and SuperMUC systems 36

3.1. EtS prediction results for some compute node counts when executing
HYDRO under strong scaling . 58

3.2. EtS prediction results for some compute node counts when executing
HYDRO under weak scaling . 60

3.3. EtS prediction results for some compute node counts when executing
EPOCH under strong scaling . 61

3.4. EtS prediction results for some compute node counts when executing
EPOCH under weak scaling . 61

3.5. EPOCH strong scaling rerun on the same set of compute nodes 68

4.1. Prediction results for HYDRO using data obtained from IBM
LoadLeveler for 210 compute nodes . 78

4.2. Revisiting the IBM LoadLeveler based node scaling prediction for TtS . . . 79
4.3. Revisiting the IBM LoadLeveler based node scaling prediction for APC . . . 79
4.4. Revisiting the IBM LoadLeveler based node scaling prediction for EtS . . . 79
4.5. PowerDAM tracked HYDRO history data . 83

5.1. PowerDAM tracked EPOCH history data . 93

6.1. Negligible difference in TtS among compute nodes when all executed
at maximum operating CPU frequency of 2.3 GHz 109

6.2. Difference of EtS and APC values for HYDRO when executed on
different sets of compute nodes for 2.3 GHz 109

6.3. Difference of EtS and APC values for EPOCH when executed on
different sets of compute nodes . 110

6.4. Difference of EtS and APC values for HPCG when executed on
different sets of compute nodes . 110

xix

“He who seeks for methods without having a definite
problem in mind seeks in the most part in vain”

DAVID HILBERT

Part I.

Energy Efficient Management in High
Performance Computing

1

1. Power and Energy Capping in HPC Data
Centers

1.1. Motivation and Problem Statement

High Performance Computing (HPC) systems are getting more and more computationally
powerful making power consumption a vital issue for many modern data centers. Some
of the current HPC systems consume more than 17 MW of electrical power1 [1] making
the energy consumption a dominating factor for the Total Cost of Ownership (TCO) of
the target HPC system [2], defined as the entire costs spent on using and acquiring assets
[3]. Apart from the high power bills, the power consumption of this magnitude could al-
ready cause the entire data center power delivery and cooling infrastructures to breach the
safety limits as well as affect the environmental sustainability, by producing high carbon
footprint. All these issues make a well-defined and efficient energy management process
a necessity for providing a sustainable functioning of the deployed Information Technol-
ogy (IT) systems, keeping operational costs in budget, and reducing possible environmen-
tal impacts.

Power capping is one of the emerging management techniques used for limiting the
amount of power a system can consume when executing various applications, thus aim-
ing to keep the system usage within a given power band and prevent possible power
overloads [4]. In general, power capping covers a wide range of use cases - it can be used
for:

• ensuring the sustainable operation of the current, future, or extended high-end
systems within the current data center infrastructure capacity limits
The average power consumption of the SuperMUC supercomputer (described in
Section 2.5) in the normal operation modes is less than 2.3 MW [5], whereas un-
der High Performance Linpack (HPL) benchmark [6] the power consumption of the
SuperMUC reaches 3.4 MW [1]. For example, with the 20 MW power consumption
goal for the future Exascale systems2 [7] this would translate to around 30 MW peak
power consumption for Exascale systems under HPL benchmark, which could be
already an infrastructure capacity limit requiring additional resources (e.g. back-
ups through diesel generators, etc.) for some data centers. Power capping could
be a possible solution for a high-end performance provision within the data center
current infrastructure capacity limits for the normal operational modes of the target
system.

1Which is already a sufficient amount of power for sustaining a small city.
2Systems representing the next thirtyfold increase in computing capabilities beyond currently existing Multi-

Petascale systems.

3

1. Power and Energy Capping in HPC Data Centers

• operating the system with renewable energy sources
In order to support for a renewable energy source based (e.g. hydroelectrical energy,
solar energy, wind energy, etc.) operation of the target system, the dynamic of the
available power must be taken into account, since in the considered case the available
portion of the power will change with the time. Power capping could help to ensure
that the currently available power capacity is never violated.

• controlling the peak power consumption
The operation at the peak power consumption of the target large-scale system affects
the:

– capital expenses
Due to the out-of-band requirements in the power distribution and cooling infrastruc-
tures for providing the required power and cooling down the heat generated from that
power.

– operational expenses
Since in addition to the per 1 kWh energy cost, the majority of the utility contracts for
data centers include a penalty fee for violating the pre-defined power band boundaries3

[8].

Power capping mechanism could further ensure that no violations of the power band
boundaries are recorded.

• re-charge of UPS’s within the capacity limits
Modern data centers are enhanced with Uninterruptible Power Supplies (UPS’s) for
providing a “backup” power in case of power failures. After the power supply is
restored, the UPS’s consume power for re-charging. This would imply a require-
ment for either: (i) an additional power capacity (apart from the one dedicated for
operating the system) allocation for re-charging the UPS’s, which would most prob-
ably be unused after the batteries will be recharged due to the rareness fact of the
power failures or (ii) a temporary system power capacity straining for freeing up a
power margin required for re-charging. Power capping can be applied for imple-
menting the latter, more energy-efficient, approach, by ensuring the availability of
the required (for re-charging) power margin.

• cost efficient scheduling
Assume the Resource Management and Scheduling System (RMSS) of the target
high-end system supports for a priority based scheduling of various applications
with different power consumption profiles and the data center infrastructure is de-
signed for providing the power capacity for near peak usage for high priority ap-
plications. Assume further that these near peak operating applications are served
only for a fraction of a day, leaving the dedicated power capacity underutilized for
the rest of the time. During these time fractions, the low priority applications can be
executed for increasing the mentioned utilization rate. Power capping can be used
for ensuring the usage of only those power resources that are unused by currently
executed high-priority applications without intervention to their performance.

3This fee can propagate to the entire operational year bill, even if the power band was violated for a single
time.

4

1.1. Motivation and Problem Statement

• controlling the power budget of HPC users
Most of the HPC users/clients (e.g. groups from industrial, research and educa-
tional institutions, etc.) can be charged according to consumed Central Processing
Unit (CPU) hours. With the increased knowledge on power consumption of the
large-scale applications and the need for keeping the capital and operational ex-
penses within the existing power budget, data center operators might consider intro-
ducing power consumption budgets to the users and/or caps on the average power
consumption of their various applications. Power capping could help to ensure that
these user-level average power consumption constraints are never violated and that
the users operate within their power budgets and are never additionally charged or
penalized.

• ensuring the operational continuity of the target system in case of power outage
The limitation in cooling capacities and/or in power deliveries (which could arise,
for example, due to the data center infrastructure planned maintenance, unexpected
failures of cooling towers, etc.), would force data center operators to introduce a
system power cap that must be followed in order to prevent power overloads and
allow for further system utilization.

Figure 1.1 illustrates this last use case scenario. The blue solid curve shows the average
power consumption behavior of a given HPC system cooled with the use of five cooling
towers depicted on the top of the image. Assume that at time T two of the data center’s
cooling towers are taken into maintenance, introducing a temporary average power con-
sumption constraint for the complete system.

Sy
st

em
 A

ve
ra

ge
 P

o
w

er
 C

o
n

su
m

p
ti

o
n

Time

Cooling Towers

System Average Power Consumption View

Introduced average power
consumption constraint

during the maintenance of
cooling towers

1 2 3 4 5

Time T

Job Queue J

?Can the job J be
scheduled and the power
consumption constraint

preserved

#!/bin/bash
#@ job_type=parallel

#@ node = 270
…
echo –n "Starting job J"
mpiexec –n 270 ./myJobJ
echo –n "Job J finished"

Figure 1.1.: Power capping example use case scenario

Assume further that there is a queued job (application) J with a utilization requirement

5

1. Power and Energy Capping in HPC Data Centers

of 270 compute nodes (servers), which needs to be scheduled for execution. The question
that needs to be answered here would be: is the execution of job J with the request of 270
compute nodes possible within the introduced average power consumption constraint? None of
the currently available RMSS’s can answer this question - while the lack of this knowledge
could lead to a possible scheduling of job J , which in its turn could overload the available
cooling capacity.

The majority of current techniques that implement power capping (e.g. [9, 10, 11]) in-
volve Dynamic Voltage and Frequency Scaling (DVFS) [12, 13], which is a power manage-
ment technique for a dynamic adjustment of the supply voltage and operating frequency
of the underlying processor for satisfying certain power consumption constraints. DVFS
is also used when an increase of compute performance is required - in this case the supply
voltage as well as the operating frequency of the processor are increased. A number of
modern processors such as Intel’s Sandy Bridge4 are performing the power-performance
control through the DVFS. One of the major blocks of the Sandy Bridge’s power manage-
ment architecture is the Package Control Unit (PCU) [14]. The PCU is an integrated patch-
able microcontroller used for power/thermal management of the processor. Its firmware
permanently collects power and thermal data and performs various power/performance
optimizations by communicating with the external voltage regulator and the embedded
controller responsible for system-wide power management. The PCU of the Intel’s Sandy
Bridge processor, in contrast to the PCU of the former generation of Nehalem processors,
features a more complex model allowing to predict the package’s active power consump-
tion by collecting various architectural events from each core, processor graphics, and I/O.
The PCU of Intel’s Sandy Bridge performs energy budgeting by tracking periods where the
CPU is idle or consuming less than the determined Thermal Design Power (TDP) value
(which indicates the average maximum power consumption value a processor can con-
sume without overheating [12]) and accumulates the unused amount of energy. It then
uses this accumulated amount of energy to consume more power than the set steady TDP
limit for short periods (∼ 30−60 seconds [14]) in order to achieve some performance gains,
and then rolls back to a stable power state. Whenever the Operating System (OS) detects
a performance requirement, it issues a corresponding performance state (P-state) [15] re-
quest. Higher P-states imply slower processor speeds and lower power consumption [16],
i.e. a processor in the P3 state runs more slowly and consumes less power than a processor
running in the P2 state5. The power management algorithms of Sandy Bridge processors
dynamically track and assess (via power-management agents [14]) the current allowance
of various system physical constraints, such as silicon capabilities, thermomechanical ca-
pabilities, current power-delivery/battery capabilities, etc. If these checks show that there
still exists available power and thermal margin, the PCU of the processor increases the
voltage and frequency to a point, that is lower and or equal the OS requested state and
still meets the all system related physical constraints [14]. This feature is especially useful
for applications showing highly dynamic power usage profile by providing short perfor-
mance boosts when needed.

On the other hand, the DVFS technique, when applied for power conservation, will in
most cases, increase the runtime of the application [13] (because of possible decrease in

4The processors used in the SuperMUC supercomputer deployed at LRZ and described in Section 2.5.
5The number of the supported P-states is processor-specific and varies with different types.

6

1.1. Motivation and Problem Statement

supply voltage and operating frequency), thus increasing the integral of power consump-
tion over time (i.e. energy). Energy capping is another management technique that limits
the amount of energy a system can consume when executing applications for a given time
period. In other words, energy capping limits the integral amount of power consumption
over time and, in contrast to power capping, it does not limit the amount of power the
system can consume at a given point in time. Figure 1.2 illustrates an example use case
scenario for energy capping.

?Can the job J be scheduled
without running over the
available energy budget

Per Month Allocated Energy Budget

Pe
r

M
o

n
th

A
cc

u
m

u
la

te
d

En
er

gy
C

o
n

su
m

p
ti

o
n

Days

Ongoing Energy
Consumption

AEC

Day D

Currently Available Energy
Budget

#!/bin/bash
#@ job_type=parallel

#@ node = 360
…
echo –n "Starting job J"
mpiexec –n 360 ./myJobJ
echo –n "Job J finished"

Figure 1.2.: Energy capping example use case scenario

The dashed red line shows the introduced per month allocated energy budget that can be
consumed on a monthly basis (this can be for the whole system or on a per user/customer
basis) whereas the blue solid curve shows the ongoing energy consumption. Assume on
a day D the system/user has already an Accumulated Energy Consumption (AEC) of a
given amount (Figure 1.2). Assume further, that there is a pending job J , with 360 compute
node count request. In order to understand whether the job J can still be scheduled for
execution within the available energy budget, the RMSS of the target system has to have
the information on the potential energy consumption of the job J with 360 compute nodes.
Also this knowledge cannot be beforehand provided by any of currently existing RMSS’s.

Though power and energy capping (as of described for above use case scenarios) solve
different problems, they both require the same knowledge of, potentially unknown, power
and energy consumption related data for the large-scale applications to be executed. With-
out the access to this knowledge, the implementation of these techniques will be incom-
plete.

This dissertation will present:

- a monitoring toolset that will be used for collecting, measuring, estimating, and cor-
relating data regarding the energy/power flows in the data center. This toolset will
also be used for verification of the optimization methods aimed at energy/power
consumption reduction as well as for calculating certain HPC data center efficiency
relevant Key Performance Indicators (KPIs);

7

1. Power and Energy Capping in HPC Data Centers

- a metric for calculating the aggregated energy consumption of large-scale applica-
tions;

- models (and their corresponding implementations) allowing for prediction of the
execution time, power and energy consumptions of large-scale applications for dif-
ferent to-be-utilized resource configurations;

- the logistics for implementing power and energy capping; and

- a framework for automatic selection of energy-wise optimal resource configuration
for large-scale applications under specified execution time and average power con-
sumption constraints

thus covering the mentioned prerequisite for implementing efficient energy and power
capping. Section 1.5 provides the detailed outline of this dissertation.

1.2. Framework for Energy Efficiency Management:
Requirements, Pillars, and Key Performance Indicators

A general basis for building frameworks aimed towards energy efficiency management of
HPC systems was suggested in [17]. Figure 1.3 illustrates the main four aspects, referred to
as pillars [17], that play a major role in overall data center energy efficiency improvements.

Pillar I
Building Infrastructure

Pillar II
System Hardware

Pillar III
System Software

Pillar IV
Applications

• Reduce power losses in
the supply chain

• Improve cooling
technologies

• Reuse waste heat from
IT systems

GOAL: Improve Key
Performance Indicators

GOAL: Reduce Hardware
Power Consumption

• Use newest
semiconductor
technologies

• Use of energy saving
processor and memory
technologies

• Provide sensors for
thorough power
measurements

• Provide policy driven
workload management

• Adjust the energy saving
features to the
application needs

• Monitor the energy
consumption of all the
components in the
compute system

GOAL: Optimize Resource
Usage, Tune System

GOAL: Optimize
Application Performance

• Use the most efficient
algorithms

• Use the best libraries -
tuned and optimized for
the system

• Use most efficient
programming paradigms

Figure 1.3.: The 4 pillar framework

8

1.2. Framework for Energy Efficiency Management: Requirements, Pillars,
and Key Performance Indicators

The identified four pillars are:

I Building Infrastructure
Representing the complete non-IT infrastructure (including reuse technologies) re-
quired for operating a data center. This pillar is intended to support improvements
in power, cooling, and heat reuse infrastructures. These improvements can then be
verified using various KPIs (defined by the standardization bodies as American So-
ciety of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) [18] and
The Green Grid Association [19]) such as Power Usage Effectiveness (PUE), Water
Usage Effectiveness (WUE), Carbon Usage Effectiveness (CUE), Energy Reuse Effec-
tiveness (ERE), etc. The currently existing building infrastructure control and man-
agement tools [20, 21] used in data centers do not account for the dynamic operational
behavior of the deployed HPC systems. Therefore the building infrastructures are
typically optimized only for the operation at maximum power draws [17] of deployed
supercomputing systems, and do not consider the variability of their power/heat dis-
sipation on the installed cooling infrastructures, which in general might lead to ineffi-
ciencies.

II System Hardware
Representing the complete IT infrastructure (including networks and storage systems)
that is installed in a data center. The goal of this pillar is to assist the reduction of the
power consumption drawn by system hardware. While, the data center operator has
a little or no influence on the system, since it is constrained by the vendor product
availability, more and more hardware vendors see the energy efficiency of their prod-
ucts as an important feature. For example, the DVFS (as described in Section 1.1) is
used by the PCU of the Intel’s Sandy Bridge processors to automatically perform the
power/performance control [14] for the running application.

III System Software
Representing the complete system level software stack required for operating the sys-
tem hardware. The goal of this pillar is to support efficient management of the system
resources and to minimize the amortized costs. This can be done through the RMSS of
the target high-end system in conjunction with the data center specified policies (e.g.
system power consumption constraint, available energy budget, etc.), the existing en-
ergy saving features of the target hardware platform (e.g. DVFS, Dynamic Power
Management (DPM) [22], etc.), and application specifics (e.g. compute bound, mem-
ory bound, etc.). It is equally important to provide a lightweight support to the tar-
get RMSS’s for beforehand estimation of the application energy/power consumption
related data in order to assist energy-efficient resource management and scheduling
decisions. Currently, none of the existing RMSS’s possesses that feature.

IV Applications
Representing the various applications of users. The main goal of this pillar is to sup-
port the optimization processes of the application performance (also with regard to
the target hardware platform specifics). As it is shown in [23], the improvement of the
application performance will in most cases lead to savings in the energy consump-
tion. This can be achieved through the usage of target platform specific efficient algo-

9

1. Power and Energy Capping in HPC Data Centers

rithms and libraries, programming paradigms, etc. However, as will be seen in Sub-
section 4.2.1, the “artificially” achieved performance gains only through the adjust-
ments of some target hardware platform parameters, will not always lead to energy
savings.

This framework clearly shows that the data from all the four pillars needs to be collected
and correlated in order to evaluate the current data center energy-efficiency, to quantify
the overall energy/power costs, to further explore the cross-pillar interdependencies, and
to assess the outcome of various (cross-pillar) energy-reduction aimed optimization solu-
tions. This information will also allow to measure the amount of energy/power consumed
by specific large-scale applications. The latter knowledge in its turn will allow for energy-
driven charging policies as an alternative to currently existing CPU-hour based charging
policies. Within this context, it is equally important to provide tools that will allow various
HPC users to estimate beforehand the possible costs when running different applications.

Figure 1.4 illustrates a use case, showing that the mentioned integral view of data cen-
ter energy/power flows is equally important for energy and power capping problem do-
mains. Assume a user, who has a currently available energy budget of E kWh, wants to
obtain the results from an application X in T minutes using n compute nodes of the target
HPC system. Assume further, that there is a cap (limit) on the average power draw that a
system can consume.

USER
Resource Management

&
Scheduling System

User

Data Center Operator• Application 𝑿 requiring n
compute nodes

• Currently available energy
budget: 𝑬 kWh

• Allowed maximum
execution time: 𝑻 minutes

• System power cap

• Current energy budget

• How much power can system
still consume?

• What is the power/energy
consumption of the application
X - how to measure/predict it?

• Can the application X be
executed within the specified
constraints?

Figure 1.4.: Overview of the power and energy capping problems

In order to understand whether it is possible to schedule the application within the spec-
ified constraints the information on currently available power budget and at least on two
of the following metrics is required (these two metrics can then be used to derive the third)
by the RMSS of the target system:

• Time-to-Solution (TtS)
Indicating the execution time of a given application

• Energy-to-Solution (EtS)
Indicating the aggregated energy consumption of a given application

10

1.3. Background and State of the Art

• Average Power Consumption (APC)
Indicating the mean power draw of a given application

These three metrics are formally defined as follows. The EtS energy consumed by the
application over some [tstart; tend] time interval (meaning that TtS = tend−tstart), is defined
as [24]:

EtS =

∫ tend

tstart

P (t)dt (1.1)

where P (t) is the application instantaneous power consumption. The APC average power
over this integral is given by the following equation:

APC =
EtS
TtS

=
1

TtS

∫ tend

tstart

P (t)dt (1.2)

Section 2.6 presents the detailed description on EtS calculation for a given HPC appli-
cation. Currently, none of the existing RMSS can beforehand provide the information on
these three TtS, APC, and EtS metrics for an application with a given compute node count
request.

This dissertation will present an ECMA framework that covers all these requirements
and answers to all the questions presented in Figure 1.4. Moreover, ECMA framework, for
a given application, will advise on an energy-wise optimal Resource Configuration (RC)
(defined as a triple (a,b,c) where a indicates the number of compute resources, b indicates the
maximum CPU frequency of the compute resources, and c indicates the set of a compute resources)
that will adhere to the predefined TtS and APC constraints.

1.3. Background and State of the Art

Several institutions and societies are persistently addressing the issues regarding the ef-
ficient energy management of HPC data centers. This section will in detail describe the
related studies aimed towards energy and/or power capping support - will present the
state of the art frameworks and tools.

1.3.1. Frameworks Aimed Towards Power Capping

Modern Intel CPUs provide a hardware based power capping feature [25, 14] which as
stated by Rountree et al. [26] trades power variation for performance variation. At the
same time, different HPC applications have different performance, implying that the purely
hardware based power caps will make the efficient utilization of large scale HPC systems
difficult since in most of the scenarios the hardware limit will “waste” the available sys-
tem power. For example, if only 1/2 of a system is utilized, the power cap for some of the
compute resources could be higher allowing for a better performance of certain applica-
tions. Hence, the power cap must be enforced at the system level and not identically for
each compute resource, and has to allow for a dynamic control. Software defined power
capping might be a better approach here since it would allow for dynamic adjustments
of system power consumption based on the current resource usage and real application
consumption. In addition, some of the applications might not use the available power,

11

1. Power and Energy Capping in HPC Data Centers

giving an opportunity of power cap increase for others. A similar investigation aimed
towards power capping support is found in [27]. It proposes an adaptive configuration se-
lection process for power-constrained heterogeneous systems. This approach is validated
only for a single heterogeneous processor and there is no validation of the suggested pro-
cess against multi-node compute systems. Thus this process does not consider the node
power variation across the system. Moreover, the proposed approach is aimed at max-
imizing application performance without considering the tradeoff in aggregated energy
consumption, and thus the discussed, in this dissertation, energy-wise optimal resource
configuration estimation problem.

Another possible solution for implementing power capping could be the usage of energy
aware scheduling. As it is shown in [28] it is possible to find a global maximum operating
CPU frequency of all the cores of the compute nodes of a given application that will lead
to a minimum EtS consumption value. This approach usually results in a tradeoff between
resource power consumption and application execution time and it does not focus on re-
source power consumption. Additionally, as will be shown in Section 4.3, the suggested
(in [28]) prediction method is not able to predict the APC, EtS, and TtS of a given appli-
cation for unknown resource configurations, and due to that, it cannot be used for power
and/or energy capping.

An investigation of Sarood et al. [29] considers a software-based resource management
system for a dynamic change of the resource configuration for a running job. The study
claims that this leads to an improved application throughput within a given power budget.
While useful, this approach relies on the dynamic resource configuration modification fea-
ture of the underlying applications which is not supported by the majority of current HPC
applications mainly due to the existing limitations in the used communication libraries
[30]. The suggested in [29] approach also does not consider the power diversity among the
compute nodes (see Section 3.5 and Section 6.3) of a given homogeneous high-end system.
This inconsideration leads to possible inefficiencies, since due to the diversity in compute
resource requirements of different applications, and the differences in application energy
and power consumption profiles, it might be possible to schedule more applications at a
given point in time within given application-specific energy, power consumption, and/or
execution time constraints via compute node pre-selection methods. Another study by
Sarood et al. found in [31] is aimed towards finding an optimal tuple of compute node
count, operating CPU, and memory power levels that will minimize the application exe-
cution time under a strict power budget. The study proposes an application profile based
model, that uses interpolation methods for estimating the application execution time for
different compute node counts, CPU levels, and memory levels. As stated by the authors,
the presented execution time and average power consumption prediction models require
a relatively high number of available application-relevant profile data and, at the same
time, the models need to be trained on a selected set of configurations that span the entire
range of the available resource configurations. In other words, the suggested in [31] mod-
els would fail to predict the application execution time or average power consumption
for higher than the profiled compute node counts. Additionally, the study in [31] does not
consider the power variation among the homogeneous system compute nodes, which also,
as will be shown in Section 6.3, varies at different maximum operating CPU frequencies
and is an important consideration point.

Another set of studies aimed towards power capping is found in [9, 10, 11], which em-

12

1.3. Background and State of the Art

ploy methods for dynamic, automatic and transparent adaptation of voltage and frequency
of the underlying application-utilized compute resources for power reductions. Two im-
portant topics are not considered there: (i) the maximum allowed operating frequency of
the application compute nodes and (ii) the specific compute node set, which together, will
satisfy the predefined execution time and average power consumption constraints while
yielding in minimal energy consumption value. The proposed, in Chapter 6, CA plug-in
complements the methods of [9, 10, 11] by efficiently providing advice on the mentioned
topics.

1.3.2. Prediction Tools That Could Have Been Used For Power and Energy
Capping

A method for application performance prediction is described by Ipek et al. in [32]. The
authors introduce an adaptive model for predicting the TtS of parallel applications with
respect to the input problem size of the application for a fixed compute node count. Al-
though, it could be argued that it is possible to derive the energy consumption of an ap-
plication using the corresponding knowledge of the TtS value and the vendor provided
maximum TDP value [12] of a system compute node, this method will not be applicable
for the use cases of power and energy capping, as of identified in this dissertation, since it
does not provide the knowledge on TtS behavior with respect to different compute node
counts.

The problem of cross platform energy consumption estimation of individual applica-
tions is investigated by Tsafack Chetsa et al. in [33]. The study suggests a model for pre-
dicting the energy consumption of a given application during the application’s execution
phase. This model is not applicable for implementing power and/or energy capping tech-
niques since it does not provide the knowledge on application power/energy consump-
tion data in advance, which is a basic RMSS requirement for correct application scheduling
within the specified power and/or energy consumption constraints.

Another set of approaches focused on predicting the energy consumption of applica-
tions is suggested by Hager et al. in [34] and by Brochard et al. in [35]. The presented
methods use analytical models for estimating the power consumption of a given applica-
tion with respect to a given CPU frequency. Both models require knowledge of either the
application (e.g. scaling properties) and/or the platform characteristics for different CPU
frequencies. They both are not yet extended/validated for multi-node compute systems
and are analytic predictive models, often requiring additional manual tunings [32] for tar-
get high-end system specifics and peculiarities, which in their turn restrict the usage of
these methods.

Another method aimed at controlling power consumption, and referred to as “Pack &
Cap”, is presented in [36]. This method adaptively manages the number of cores and CPU
frequency depending on the given application characteristics, in order to meet the user-
defined power constraints. The described “Pack & Cap” technique is validated on a single,
quad core server node, and, as authors mention, it is not yet extended/validated for large
scale computing systems, implying its inapplicability for the HPC domain. In addition, the
method requires a large volume of application performance data to conduct power/energy
capping, which could not be available in the real-world scenarios. Moreover, “Pack & Cap”
does not predict the power/energy consumption of applications with respect to different

13

1. Power and Energy Capping in HPC Data Centers

compute node counts. Lastly, it is important to mention that the suggested method is
specifically targeted for virtual machines, implying possible difficulties when adapting it
for HPC systems.

The next set of works focused on application power/energy consumption estimation,
given the in-depth characteristics of the underlying application, is described by
Olschanowsky et al. in [37] and by Song et al. in [38]. Olschanowsky et al. present an
energy consumption prediction model requiring application tracing (information on float-
ing point operation count, memory operation count, etc.) and information on the energy
profile of the target high-end system (e.g. average energy cost per fundamental opera-
tion, etc.), obtained through the use of several special benchmarks. The suggested in [37]
model could be used for a cross platform application energy consumption prediction, if
the required energy profile data (e.g. achievable memory bandwidths for each level of the
memory hierarchy) of the target system is available. At the same time this method involves
application code instrumentation and attempts to split the application into “basic blocks”
[37]. This would require a lot of effort, especially when dealing with several hundred dif-
ferent large-scale applications, which is typically the case for modern HPC data centers.
The quasi-analytical model suggested by Song et al., combines the application analytic
description (achieved through extensive application analysis) with the compute platform
parameters (such as per-core power consumption of a computation unit and power con-
sumption during inter-processor communication) obtained via experimental benchmarks
[38]. The validation of the model was shown using a single benchmark and the suggested
in [38] method requires a thorough analysis of the given application, which could be im-
practical in real-world scenarios, when myriad of applications with different characteris-
tics are queued for execution.

To summarize, none of the above discussed methods predicts the application execu-
tion time, power, and energy consumption values with respect to the number of compute
nodes, and thus none of them can be applied for implementing power and energy capping
techniques for the use cases discussed in this dissertation.

As to the available power and energy consumption monitoring solutions, then Sec-
tion 2.3 provides in detail discussion on the existing Data Center Infrastructure Manage-
ment (DCIM) tools.

1.4. Contributions of This Work

The main contribution of this dissertation is justification and development of Energy Con-
sumption Management Adviser (ECMA) framework comprising of the following compo-
nents:

- a unified energy and power monitoring toolset
The toolset is aimed towards collection and correlation of energy and power con-
sumption relevant data from all the aspects of a given data center, stretching from
the building infrastructure over the deployed HPC systems and heat reuse technolo-
gies to the system software stack and actual (in-execution or to-be-in-execution state)
large-scale applications. The toolset will allow for dynamic and static assessment of
various (customized) KPIs and metrics that will help in identification of the present
inefficiencies, verifications of the applied optimizations, as well as allow for further

14

1.4. Contributions of This Work

tailored data analysis. The toolset can further assist to the agnostic decision making
(done by the data center operational energy and power control point) based on the
provided wholistic view on the current energy/power flows of the complete super-
computing site.

- a model and an implementation allowing for beforehand prediction of application
TtS, APC, and EtS metrics with respect to a given resource configuration
The model is application independent but provides an application specific results.
It does not require any knowledge on application internals and target HPC system.
The only required knowledge is per application available monitored history data on
TtS, APC, and EtS profiles. Due to that, the model covers all the above mentioned
prerequisites for implementing energy and power capping techniques. The model, as
well as the monitoring toolset, can be further used for increasing the user awareness
regarding the potential power/energy consumptions of applications when run with
different resource configurations.

- a mechanism for detecting the dissimilar power consumption behavior of homo-
geneous HPC system compute nodes and its possible use cases in real-world sce-
narios
It is shown that the power consumption profile of the compute nodes of homoge-
neous HPC systems varies under the same workload. Moreover, it is shown that
this distribution of the average power consumption of the compute nodes changes
with the operating maximum CPU frequency of the compute node cores. It is further
demonstrated that simple pre-selection methods of compute nodes (based on the ob-
served power variation among system compute nodes) can lead to significant energy
and power savings - in the considered case of 512 compute nodes, at least 4.7%.

- a RMSS plug-in for energy-wise optimal resource configuration selection
An efficient algorithm for selecting operating frequency and also the set of available
compute nodes which would minimize the aggregated energy consumption (i.e. EtS)
of a given application preserving the predefined application execution time and av-
erage system power consumption constraints is presented - the algorithm takes ad-
vantage of the existing average power consumption variability among the compute
nodes of the target homogeneous system. Based on this algorithm, a plug-in is pro-
posed which acts as an energy-optimal resource configuration adviser for a given
RMSS. The presented plug-in is in complement to the existing RMSS energy/power
saving techniques and can be used in conjunction with any other energy/power re-
duction efforts.

Figure 1.5 illustrates the specification of the suggested ECMA framework. The En-
ergy/Power Monitoring Solution should ensure the collection of energy/power consump-
tion relevant data. Based on the collected data, the monitoring toolkit dynamically eval-
uates all of the interest metrics and KPIs, including the TtS, APC, and EtS profiles of ex-
ecuted applications. The latter data is then used by the predictor for determining the
application TtS, APC, and EtS behavior for a given RC. Once a new measured data on ap-
plication TtS, APC, and EtS profiles is available, the predictor is calibrated for the increase
of the prediction accuracy.

15

1. Power and Energy Capping in HPC Data Centers

Building Automation
Systems

Residing HPC Systems

Reuse Technologies

Resource Management
and Scheduling Systems

Applications

Data Center

…

Environmental Data

DB

Per Application TtS, APC, and EtS
Monitored Profiles

Configuration Adviser Plug-in

Energy Optimal
Resource

Configuration
Selection

Energy/Power Monitoring Solution

Energy Consumption Management Adviser

Application Energy Consumption
Relevant KPIs Predictor

Functions Describing the
TtS,APC, and EtS behavior

for a Given Application Measured &
Predicted

TtS,APC, and EtS
Information for

Different
Resource

Configurations

Source Data
(.xml,.csv,etc.)

for Further
Customized

Analysis

Dynamic and
Static Assesment

of Various KPIs

Predicted TtS,APC,
and EtS for a Given

Resource
Configuration

Data Center
Operational

Energy/Power
Control Point

Figure 1.5.: Infrastructure Specification of the Energy Consumption Management Adviser

The functions describing the application TtS, APC, and EtS (determined by the predic-
tor) are then used by the CA RMSS plug-in for estimating the energy-wise optimal RC
which will adhere to the specified application maximum TtS and APC constraints. This
estimated RC is then used by the target RMSS for dispatching the application execution.

1.5. Outline of This Work

The reminder of this dissertation is organized in three parts. Having discussed the re-
quirements for energy efficiency management and the current state of the art in Part I,
Part II outlines the need for an integrated (wholistic) evaluation of the HPC data cen-
ters, without which it would be non-trivial to verify and improve the existing and future
power/energy-reduction aimed solutions. This required integrated view includes all the
aspects of the HPC data center, from environmental information over the site infrastruc-
ture and the residing IT systems to resource management systems and large-scale HPC
applications.

Chapter 2 introduces the Power Data Aggregation Monitor (PowerDAM) tool, used for
collecting, measuring, estimating, and correlating energy/power consumption rele-
vant data from the mentioned aspects of the HPC data center.

Part III discusses the prerequisites that have to be met in order to implement the energy
and/or power capping. It is organized in the following three chapters:

Chapter 3 examines the scaling behaviors of the parallel applications, discusses the cor-
responding studies. The chapter then introduces an adaptive model, referred to as

16

Adaptive Energy and Power Consumption Predictor (AEPCP) model, for predicting
the energy, power, and execution time of HPC applications for a given number of
compute resources. This chapter also outlines the model as a necessary milestone
towards the energy and/or power capping implementation.

Chapter 4 extends the AEPCP process to enable the development of analytical models for
estimating application execution time, power, and energy consumptions as functions
of the number of compute nodes and maximum operating CPU frequency. Based
on these analytical models, an adaptive model, referred to as Lightweight Adaptive
Consumption Predictor (LACP), is presented that implements the extended predic-
tion process.

Chapter 5 describes the LACP model usage for quantifying energy-power-time tradeoffs
for real world HPC applications, which is currently not possible with the usage of
any resource management and scheduling systems.

Part IV presents a unified framework for software defined power capping. This part is
logically structured as follows:

Chapter 6 introduces an efficient algorithm and a corresponding scheduler plug-in allow-
ing for software based power capping within the user specified application execution
time restrictions. This chapter compiles all the achieved milestones into a frame-
work, refereed to as ECMA and describes its reference flow. The chapter outlines the
application range of the developed ECMA framework in the real-world situations
for enhancing the existing energy efficient resource management, scheduling, and
backfilling solutions in modern HPC data centers.

Chapter 7 draws the summary of the main accomplished contributions, delineates the
future development directions, and concludes the dissertation.

1. Power and Energy Capping in HPC Data Centers

18

“If someone separated the art of counting and measur-
ing and weighing from all the other arts, what was left
of each (of the others) would be, so to speak, insignifi-
cant.”

PLATO

Part II.

Evaluating The Energy Efficiency of a
HPC Data Center

19

2. Monitoring the Energy and Power
Consumptions in HPC Data Centers9

2.1. Preface

Having set the approaches aimed towards power and energy consumption reduction as
important milestones towards economically well-balanced, sustainable, and environmen-
tally friendly operation of a data center, this chapter will look into the requirements for
monitoring the power and energy consumption flows within the HPC data center and for
evaluating various power/energy consumption optimization aimed techniques.

There are several available monitoring and evaluation tools that can be used for various
individual components of a data center such as building automation systems’, IT systems’,
applications’ performance monitoring tools, etc. One of the main characteristics that unites
these highly diverse tools, with each having its own fortes, is their scope-based applicabil-
ity and their isolation from each other, which in its turn disallows the integral assessment
of the actual data center energy-efficiency and forbids the complete verification of applied
optimization solutions. This chapter will present a first step towards a unified energy ef-
ficiency evaluation toolset, referred to as Power Data Aggregation Monitor (PowerDAM),
which enables these lacking functionalities by acting as a hub among various data center
specific monitoring tools and thus covering a wide range of power and energy consump-
tion analysis capabilities ranging from the complete data center view over the deployed IT
systems and waste heat reuse technologies to the system software stack and large-scale
user applications. The subsequent section will show that without this integrated view, any
improvements aimed towards energy consumption reductions would be incomplete.

2.2. Need for an Integrated View

Current building infrastructure management systems, present in modern data centers,
control and monitor only infrastructure related components [20, 21]. These infrastructure
control and management systems are completely isolated from the behavior of the tar-
get supercomputing systems residing in the data center and do not provide a control-side
coupling between building infrastructure and HPC system management. Therefore the
building infrastructure is typically optimized for the operation at maximum power draws
of deployed IT systems.

Figure 2.1 shows the complete facility power consumption profile of the Leibniz Su-
percomputing Centre (LRZ) data center (Complete Facility Power Profile), the latest HPC

9This chapter is partly based on the following previous work of the author: Hayk Shoukourian et al. Monitoring
Power Data: A first step towards a unified energy efficiency evaluation toolset for HPC data centers. Journal of
Environmental Modelling & Software, Elsevier, Vol 56, pages 13− 26, 2013.

21

2. Monitoring the Energy and Power Consumptions in HPC Data Centers

0,00

500,00

1.000,00

1.500,00

2.000,00

2.500,00

3.000,00

3.500,00

4.000,00

1.12.12 0:00 2.12.12 0:00 3.12.12 0:00 4.12.12 0:00 5.12.12 0:00 6.12.12 0:00 7.12.12 0:00

P
o

w
e

r
[k

W
]

Date

Complete Facility Power Profile

SuperMUC Power Profile

Linux Cluster Power Profile

Figure 2.1.: Power consumption profiles of LRZ for a period of 8 days

system (SuperMUC1 Power Profile), and the Linux cluster (Linux Cluster Power Profile)
for a period of 8 days. Despite the almost constant power consumption behavior of the
Linux cluster2, which is similar to the older generation of HPC systems deployed at LRZ,
SuperMUC shows a variation of up to 800 kW and dominates the overall power profile of
LRZ.

A maximum power consumption of 3.4 MW [1] was observed on SuperMUC during the
HPL [6] benchmark. This further means that it is possible to have around 2.6 MW vari-
ation (Figure 2.1) in the power draw of SuperMUC during the normal operation modes.
One consequence of the shown highly dynamic power profile is a strong fluctuation of the
data center infrastructure efficiency. Only by collecting and correlating the infrastructure
data with HPC system data is it possible to detect and resolve the inefficiencies present
in the installation. This process will provide an integrated view across multiple sources
and structures of the supercomputing site and will allow a better understanding of the
complete data center power profile. This understanding in its turn will lead to better opti-
mization techniques which are necessary for improving the overall energy efficiency and
thus reducing the data center TCO. According to a study on principles of energy efficiency
in HPC [39], despite the presence of necessary individual components, there is a lack of a
unified energy measuring and evaluation toolset which is capable of monitoring and ana-
lyzing the energy consumption of a supercomputing site in an integrated (wholistic) way,
combining the residing HPC systems with data from the cooling, building infrastructure,
and the large-scale applications. PowerDAM, presented in Section 2.4, is an example of
such a unified energy measuring and evaluating toolset.

1Briefly described in Section 2.5.
2LRZ Linux Cluster consists of several segments with different types of compute nodes, interconnect and

sizes of shared memory [5].

22

2.3. Related Works

2.3. Related Works

A set of related works on energy measuring tools is found in [40] and [41]. The first study
presents a framework for energy efficient management of large scale distributed systems.
The presented approach does not consider the infrastructure relevant data. In the second
study, a measurement evaluation tool is presented as a combination of software compo-
nents and additional external hardware components (e.g. digital meters). This implies that
the software can only be used with the custom hardware. For that reason, this approach
cannot be applied to highly integrated large-scale systems since it would require a com-
plete instrumentation of an entire supercomputer which are already starting to have more
than 10000 compute nodes. That is the main reason that more and more vendors aim to
provide the measuring infrastructure inside the actual system.

Another set of related studies found in [42, 43] are specifically aimed at estimating the
application energy and power consumption (without accounting for data center infrastruc-
ture) using performance counter based models (in case no watt meters are present in sys-
tem installation). While the developed PowerDAM toolset can also be used for monitoring
hardware performance counters, the main disadvantages of this approach are: (i) the mea-
surements do not reflect the complete power consumption of a compute node (but only
CPU and possibly memory); (ii) the measurements have to be done in-band, i.e. during
the application execution, thus possibly causing some performance degradations; and (iii)
power/energy estimation models have to be constructed for each hardware generation.
Another approach aimed at software-based application energy/power estimation meth-
ods is found in [44]. It proposes estimation models for clusters for which it is possible to
identify a relatively constant set of applications. The models were constructed for individ-
ual applications using performance counters. While the suggested approach could be used
as an alternative to Power Distribution Units (PDUs) (in case the later ones are not avail-
able due to their high purchasing costs), it is worth noting that in the real-world scenarios
the applicability of these models would be non-trivial, since it would require (i) an addi-
tional application identification phase, and (ii) additional analysis of each, out of reference,
application and corresponding model tunings, which could be impractical, when several
applications with different characteristics are queued for execution. Figure 2.2 shows that
this is the very case for the LRZ HPC application stack.

Another set of related tools in the area of operational management are Rackwise [45] and
openDCIM [46]. These tools are examples of DCIM tools which were developed to mon-
itor and analyze the physical assets and resources within a data center. However, they
do not consider the system software side and do not provide complete information on
energy consumption of all necessary components that are present in the compute system.
For example, without the information on power and/or energy consumption of running
applications the complete exploitation of the energy saving features of the target platform
would be relatively complicated. This information will allow for the further understand-
ing and tuning of the application internally (through the change of algorithms, memory
access patterns, etc.) as well as externally via hardware adjustments (e.g. static/dynamic
voltage and frequency scaling, etc.).

It can be further argued that PowerDAM could have been implemented on top of these
DCIM tools as an extension (plug-in) in order to supplement the lacking functionalities. In
this case, the usage of PowerDAM would have been limited to the data centers that use a

23

2. Monitoring the Energy and Power Consumptions in HPC Data Centers

Astrophysics/Cosmology
27%

Computational Fluid Dynamics
21%

Biophysics/Biology/Bioinformatics
12%

Physics - High Energy Physics
10%

Chemistry
8%

Physics
8%

Engineering
4%

Support/Benchmarking
3%

Geophysics
3% Astrophysics/Cosmology

Computational Fluid Dynamics

Biophysics/Biology/Bioinformatics

Physics - High Energy Physics

Chemistry

Physics

Engineering

Support/Benchmarking

Geophysics

Physics - Solid State

Engineering - Electrical Engineering

Computer Science

Meteorology/Climatology/Oceanography

Grid Computing

Crystallography

Medicine

Engineering - Sturctural Mechanics

Mathematics

Figure 2.2.: Core hour usage of different HPC applications at LRZ

certain DCIM contradicting its purpose. The main aim of PowerDAM is not to mimic any
of the existing data center monitoring tools, but to act as a hub among several monitor-
ing tools (e.g. infrastructure, IT systems hardware/software, applications, etc.)3, allowing
for data collection and correlation from all HPC data center energy consumption-relevant
components, and thus providing an integrated evaluation of energy costs for a supercom-
puting site. Without this data the improvement of the data center energy efficiency would
not be trivial and would also be incomplete.

When summarizing, it can be stated that within the problem domain of power/energy
efficiency the above mentioned approaches are scope based, as they pose a specific ques-
tion and develop their solutions for answering that specific question. Whereas, PowerDAM
is a generic tool, which gathers point-of-interest data from different sources in order to an-
swer any questions that may arise within the problem domain with little to any further
development.

2.4. Power Data Aggregation Monitor (PowerDAM)

Power Data Aggregation Monitor (PowerDAM) [47, 48, 49] is a unified energy measuring
and evaluating toolset for HPC data centers. It is aimed towards collecting and correlating
energy/power consumption-relevant data from different aspects of the HPC data center
(as identified in Figure 1.3) thus covering a wide range of power consumption analysis
capabilities from:

3Each of these aspects can have different monitoring and controlling systems - LRZ is an example of such
installation, where each of the data center aspects (i.e. building infrastructure, HPC systems, etc.) has
different monitoring and management tools.

24

2.4. Power Data Aggregation Monitor (PowerDAM)

• the complete data center view over
Ability to asses the current status of data center KPIs [19], such as PUE, ERE, WUE, DWPE
[50], etc.

• the individual HPC systems to
Ability to report on current system utilization rate, power consumption as well as analyse
the system comprising IT components such as compute nodes, networks, etc.

• the large-scale user applications.
Ability to report on application Energy-to-Solution (EtS), Average Power Consumption
(APC), etc.

Figure 2.3 shows the overview of PowerDAM. It uses an agent-based data communi-
cation model for actual sensor data retrieval from the monitored entities/systems. These
agents reside on the monitored entity side and are configured to have a permission for
accessing and pushing the requested sensor data over the network. PowerDAM in its
turn maintains plug-ins for communicating with these system side agents. This approach
makes PowerDAM loosely coupled with the monitored entities and thus allows for rela-
tively easy extension of the monitored entity set.

PowerDAM

• Reuse
Technology

• Infrastructure

Agents Data
Collection

• Collect data from all
aspects of the data
center

Data
Processing

&
Analysis

• Calculate EtS of
applications

…

Reports • KPIs (EtS, PUE,
ERE, WUE, etc.)

…

• HPC
Systems

Agents

Plug-Ins

Plug-Ins

Agents

P
lu

g
-I

n
s

Figure 2.3.: PowerDAM overview

The main design goals of PowerDAM were:

• independence of monitored entities;
Different data centers are comprised from different HPC systems manufactured by various

25

2. Monitoring the Energy and Power Consumptions in HPC Data Centers

hardware vendors (e.g. IBM, HP, Cray, etc.), use different reuse technologies from distinct
producers (e.g. SorTech AG, ECO-MAX, etc.), and use different vendor-specific building
automation systems (e.g. Siemens, Johnson Controls, Mitsubishi Electric, etc.). Thus the
way sensor data (e.g. temperature, power, etc.) is accessed can vary from entity to entity.
PowerDAM is not tied to a specific entity and, therefore vendor.

• easy extensibility of monitored entity set;
Because of variety of components present in the data center, which could be potentially a point
of monitoring interest, an easy integration of new entities is required.

• ability to access the energy/power consumption of the applications; and
A simple and easy to understand metric is necessary in order to increase the user awareness
of application energy/power consumption. EtS and APC are examples of two such simple
metrics.

• ability to correlate the collected data and to access the status of various metrics and
KPIs
The collected data should be easily correlated in order to better understand the interactions
between different components of the data center for identifying the improvement areas, as
well as for assessing and verifying the applied optimization solutions.

2.4.1. Framework

PowerDAM is developed in Python [51] and provides a plug-in framework for defining
the monitored entities. PowerDAM provides two plug-in interfaces for each monitored en-
tities: one for sensor data collection and one for collecting application relevant data from
Resource Management and Scheduling System (RMSS) of the target entity. The implemen-
tations of these interfaces define how the agent based data collections are managed. A
monitored entity is free to define only one of these interfaces. The purpose of this option-
ality is to allow PowerDAM to monitor entities that do not represent a HPC system (e.g.
building automation system of the data center, power management system, etc.) and thus
do not account for RMSS data, or the HPC systems that are only of interest from RMSS
data perspective and do not account for sensor data.

For agent based communication PowerDAM has well-defined Application Program-
ming Interfaces (APIs). For instance, the API syntax for the sensor data collection is pre-
sented in 2.1:

RootResourceIdentifier(.ResourceIdentifier)∗_SensorType=V alue;Timestamp
(2.1)

where

• RootResourceIdentifier represents the monitored entity

• ResourceIdentifier represents the monitored component of the entity (e.g. in case of
a HPC system as a monitored entity, both a rack and a compute node can be con-
sidered as a Resource). The ∗ indicates that the expression enclosed in parentheses
(i.e. .ResourceIdentifier) can be repeated (appended to the former one) zero or more
times

26

2.4. Power Data Aggregation Monitor (PowerDAM)

• SensorType represents the type of the Resource sensor (e.g. power, load, temperature,
etc.). For example, load (or utilization rate) of a given compute node illustrates the
averaged workload of physical processors residing in the compute node

• Value represents the actual sensor measurement

• Timestamp is the time and date at which the sensor measurement was obtained

• ., _, =, and ; are the delimiters between the above listed identifiers and are part
of the syntax. Therefore, they can’t be used in any of the identifiers
(e.g. example1_example2 is a not valid identifier)

Due to this API syntax, PowerDAM is capable of monitoring any entity which can be
represented in a hierarchical tree structure. Figure 2.4 illustrates an example of such a hier-
archical structure, where each vertex represents an entity/resource and the edge indicates
the relation between parent and child entities/resources.

Root Resource

Resource

…

…

…

…

Sensors (power, load,
temperature, etc.)

… … … … …

Figure 2.4.: Hierarchical tree structure

As can be seen, each resource is allowed to have a set of different sensors attached to
it. The mentioned 2.1 PowerDAM API syntax allows to easily and correctly describe the
set of sensors (and their respective values at a given time stamp) of a corresponding en-
tity/resource and to preserve their hierarchical relationship. For example, the statement:

SystemA.RackB.NodeC_power = 223;2015− 03− 17 14 : 31 : 27

would indicate that the power sensor of compute node NodeC, residing in the rackB rack
of SystemA system has a value of 223 W at the time stamp value of 2015−03−17 14 : 31 : 27.

The main aim of the sensor API syntax presented in 2.1, is to support the data collec-
tion of low-level hardware sensor readings not supporting object orientation, serializa-
tion, etc. The currently developed version of PowerDAM (briefly described in Section 2.8)
will in parallel support for sensor object serialization, which thus will allow for further

27

2. Monitoring the Energy and Power Consumptions in HPC Data Centers

definition-abstractions of the collected sensors (e.g. addition of physical location identifier,
measurement read-out frequency, etc.). There is no restriction on the agent implementation
language.

PowerDAM monitors physical sensors meantime allowing for custom virtual sensor defi-
nitions, which can represent different functional compositions of several physical/virtual
sensors of different monitored entities. This option is especially useful in the case of a
sensor requirement representing the functional composition of several physical sensors
deployed on different entities/systems. The specification of such custom sensors cannot
be done on the monitored entity-specific agent sides, since each entity-agent has only the
knowledge on the sensors with which that specific entity is endowed. The definitions of
various virtual sensors are carried out within PowerDAM using a dedicated and separate
plug-in framework.

Since physical sensors are subject to intermittent failures or noise it is possible that some
of the obtained measurement data will be invalid. PowerDAM uses linear interpolation
in order to minimize the error introduced by the invalid measurements. For this reason, it
maintains measurement boundaries for each monitored sensor type (specified by data cen-
ter operators/PowerDAM administrators) which define the range of valid measurement
values. It marks the approximated measurements in the database4, and later, if any exists,
notifies users on the replacement of source data.

2.4.2. Workflow

Assume PowerDAM is monitoring n systems (entities). These n systems are further dif-
ferentiated into two categories - the ones that do provide sensor data (i.e. do have a cor-
responding PowerDAM sensor plug-in - assume k of n), and the ones that do provide
scheduler data (i.e. do have a corresponding PowerDAM scheduler plug-in - assume q of
n).

Figure 2.5 illustrates the PowerDAM workflow, which is as follows:

1. The EtS is calculated and the PowerDAM database is correspondingly updated, in
parallel, for all executed applications of all currently monitored q HPC systems. Sec-
tion 2.6 discusses the calculation details.

2. The current sensor data from all the k monitored systems is, in parallel, obtained
and the database is correspondingly updated. Once the measurements are obtained,
they are checked against the specified measurement validity boundaries (Subsec-
tion 2.4.1), and approximated, if needed.

3. The current scheduler data from all the q monitored systems is, in parallel, obtained
and the database is correspondingly updated.

4. Once the physical sensor data from all the k monitored systems are obtained, the
actual data for virtual sensors is calculated and the database is correspondingly up-
dated.

5. After a configurable amount of a waiting time, this routine is repeated5.
4Also saves the tracked invalid measurement values.
5All the 1− 3 steps are executed in parallel.

28

2.4. Power Data Aggregation Monitor (PowerDAM)

P
o

w
e

rD
A

M
C

o
n

tr
o

l D
ae

m
o

n
D

B
Et

S

System 1

Agent for Sensor
Data Retrival

Agent for Scheduler
Data Retrival

System 2

Agent for Sensor
Data Retrival

Agent for Scheduler
Data Retrival

System 𝒏

Agent for Sensor
Data Retrival

Agent for Scheduler
Data Retrival

…
P

h
ys

ic
al

Se
n

so
r

Sc
h

e
d

u
le

r
V

ir
tu

al
 S

e
n

so
r

1
.0

. C
al

cu
la

te
Et

S

1
.2

. E
tS

ca
lc

u
la

ti
o

n
co

m
p

le
te

…

2
.2

. S
ys

te
m

 1
 S

e
n

so
r

D
at

a

2
.2

. S
ys

te
m

 2
 S

e
n

so
r

D
at

a

2
.2

. S
ys

te
m

 𝑘
Se

n
so

r
D

at
a

…

3
.2

. S
ys

te
m

 1
 S

ch
e

d
u

le
r

D
at

a

…
3

.2
. S

ys
te

m
 2

 S
ch

e
d

u
le

r
D

at
a

3
.2

. S
ys

te
m

 𝑞
Sc

h
e

d
u

le
r

D
at

a

2
.0

. G
et

cu
rr

en
t

se
n

so
r

m
ea

su
re

m
en

ts

2
.3

. G
o

t
cu

rr
en

t
se

n
so

r
m

ea
su

re
m

en
ts

3
.0

. G
et

cu
rr

en
t

sc
h

ed
u

le
r

d
at

a

3
.3

. G
et

cu
rr

en
t

sc
h

ed
u

le
r

d
at

a

4
.0

. U
p

d
at

e
m

ea
su

re
m

en
ts

fo
r

al
l v

ir
tu

al
se

n
so

rs
u

si
n

g
th

e
o

b
ta

in
ed

ac
tu

al
m

ea
su

re
m

en
ts

fr
o

m
th

e
p

h
ys

ic
al

se
n

so
rs

4
.2

. U
p

d
at

e
co

m
p

le
te

4
.1

. C
al

cu
la

te
an

d
U

p
d

at
e

V
ir

tu
al

 S
en

so
r

1
 d

at
a

…
4

.1
. C

al
cu

la
te

an
d

U
p

d
at

e
V

ir
tu

al
 S

en
so

r
m

 d
at

a

Fi
gu

re
2.

5.
:P

ow
er

D
A

M
w

or
kfl

ow

29

2. Monitoring the Energy and Power Consumptions in HPC Data Centers

2.5. PowerDAM usage at Leibniz Supercomputing Centre (LRZ)

PowerDAM is currently monitoring three different HPC systems (all three with different
hardware architectures) which are deployed at LRZ.

Extra compute rack: cooled
by rear door heat exchanger

Adsorption chiller

Cooling racks

Compute racks

Figure 2.6.: The CoolMUC Linux cluster

The first system is CoolMUC, also referred to as Massively Parallel Processing (MPP)
Linux cluster system, shown in Figure 2.6, which is a direct warm water cooled AMD
processor based Linux cluster built by MEGWARE [52]. It is equipped with 178 compute
nodes (8 nodes of which are dedicated to interactive sessions) with 2 sockets per node and
8 cores per socket. Each of the compute nodes has two AMD Opteron 6128 HE (Magny-
Cours) 8 core processors which have three levels of cache: 128 KB L1 (64 KB data and 64
KB instruction cache) and 512 KB L2 cache per core and 12 MB L3 cache shared among
all cores. The default operating frequency of the CPUs is 2.0 GHz. The total aggregated
operating memory of the cluster is 2.8 TBytes with up to 16 GBytes per node. The main in-
terconnect network is InfiniBand QDR using a fat tree topology. CoolMUC is connected to
a SorTech [53] adsorption chiller allowing the exploration of further possibilities of waste
heat reuse of the system (Figure 2.6). It allows power monitoring for nodes, internal net-
work equipment, and internal cooling hardware. CoolMUC has closed racks and is, there-
fore, room neutral - no need for Computer Room Air Conditioning (CRAC) units. All heat
is removed solely via the water cooling loop of LRZ [5]. CoolMUC uses Simple Linux

30

2.5. PowerDAM usage at Leibniz Supercomputing Centre (LRZ)

Compute Node

Figure 2.7.: The SuperMUC supercomputer

Utility For Resource Management (SLURM) [54] as a RMSS.

The second system is SuperMUC, shown in Figure 2.7, which is the 14th fastest super-
computer in the world according to the TOP500 [1] November 2014 rankings. It is a Gauss
Center for Supercomputing (GCS) [55] infrastructure system and one of the Partnership
for Advanced Computing in Europe (PRACE) [56] Tier0 systems and is built by IBM [57].
SuperMUC consists of 18 thin node islands and 1 fat node island, which is referred to as
SuperMIG, and also used as a migration system. All compute nodes within an individ-
ual island are connected via a fully non-blocking Infiniband network - FDR10 for the thin
nodes and QDR for the fat nodes. The high speed interconnect between the islands en-
ables a bi-directional bi-section bandwidth ratio of 4 : 1 (intra-island / inter-island). The
18 thin islands in total contain 147, 456 processor cores in 9216 compute nodes. Each node
is equipped with 2 × 8 processors. Each processor is of Sandy Bridge-EP Xeon E5 − 2680
8C type, having a maximum allowed operating frequency of 2.7 GHz (maximum turbo
frequency is 3.5 GHz), and a TDP [12] of 130 Watt. SuperMUC uses IBM LoadLeveler [58]
as a RMSS. The peak performance of the system is 3.2 PetaFLOPS (= 3.2 · 1015 Floating
Point Operations Per Second (FLOPS)). It’s active components (e.g. processors, memory,
etc.) are directly cooled with an inlet water temperature of up to 40◦ Celsius [5]. Currently,
only the SuperMUC RMSS data is collected by PowerDAM.

The third system is SuperMIG, shown in Figure 2.8, which is the migration system for
the SuperMUC supercomputer. It contains 8200 cores in 205 compute nodes. Each node is
equipped with 4× 10-core processors. Each processor is of Westmere-EX Xeon E7− 4870

31

2. Monitoring the Energy and Power Consumptions in HPC Data Centers

Compute racks
Front of the

compute rack

Figure 2.8.: The SuperMIG migration system

10C type, having a maximum allowed operating frequency of 2.4 GHz (maximum turbo
frequency is 2.8 GHz), and a TDP of 130 Watt. The peak performance is 78 TeraFLOPS
(= 78 · 1012 FLOPS) [5].

Sensor data, like measurements from rack-based PDUs, are obtained using the sys-
tem monitoring tools. RMSS specific data is obtained via SLURM (for CoolMUC) and
LoadLeveler (for SuperMIG and SuperMUC) specific commands.

CoolMUC has a dedicated per-node PDU outlet, which allows for calculating the EtS of
a given application (as described in Section 2.6) independently from other running appli-
cations.

On SuperMUC, each of the 18 islands is comprised of seven compute racks, where each
rack has 2 PDUs. A single PDU has 6 outlets and each outlet can power from 4 to 8 com-
pute nodes, which makes it impossible to accurately calculate the power consumption of
individual applications. Figure 2.9 illustrates this issue. Consider the following scenario -
an application A is utilizing 6 compute nodes (a1 to a6) which are connected to the outlet
2 of a PDU. Meantime, an application B is utilizing 4 nodes, two of which (a7 and a8) are
powered through the same outlet 2, whereas the rest two (b1 and b2) are powered through
the outlet 3. Since the only available measurements are the ones that can be read from the
PDU outlets, this makes it impossible to correctly identify the power consumption share
of applicationA and applicationB by only using the power values obtained from outlets 2
and 3. For this reason, PowerDAM further relies on the paddle card data for obtaining per
node power measurements. The LoadLeveler, the RMSS of SuperMUC (and SuperMIG),
uses this data to calculate the EtS of an application. PowerDAM uses directly this calcu-
lated data for the SuperMUC and SuperMIG cases, since the same power measurement
setup is present for the SuperMIG migration system. Section 3.6 discusses in detail the
accuracy of these EtS measurements.

32

2.6. PowerDAM and EtS

compute node 𝑎1

compute node 𝑎2

compute node 𝑎6

…

…

compute node 𝑎7

compute node 𝑎8

Used by application

𝑨

compute node 𝒃𝟏

compute node 𝒃𝟐

Used by application

𝑩

compute node 𝒃𝟑

compute node 𝒃𝟒

compute node 𝒃𝟖

…

…

Outlet 2

Outlet 3

Outlet 1

Outlet 4

Outlet 5

Outlet 6

Figure 2.9.: Relation between SuperMUC PDU outlets and the compute nodes

As for the CoolMUC case, the monitored PDUs from which the sensor data is obtained in
the current system setup deliver averaged (over 60 seconds) power measurements in one
minute intervals. Thus there is a high probability that the time stamps which correspond to
the PowerDAM monitoring steps do not match with exact starting and ending time stamps
of the executed applications. This results in a maximum error of 2 minutes (1 minute for
start time detachment and 1 minute for end time detachment) in the measurements, which
further means that in order to have a measurement error of less than 5% in the current
setup, the application has to run a period of at least 40 minutes. Since most of the HPC
applications today run for several hours, this error becomes negligible.

2.6. PowerDAM and EtS

Energy-to-Solution (EtS) [59] is an important metric for PowerDAM. This value indicates
the aggregated energy consumption of compute nodes used by the application/job and
partial sub-system components (system networking, system cooling, and infrastructure)
which were utilized during the run of that application. The infrastructure can be either
system specific or encompass a value for multiple systems.

The EtS for a given finished job J on system S is calculated iteratively as:

EtS(J, S) =
endIteration∑

i=startIteration

∆ti · Pi(J, S) (2.2)

where

33

2. Monitoring the Energy and Power Consumptions in HPC Data Centers

• i is the iteration index

• startIteration = min{i | JstartT ime ≤ timestampi ≤ JendT ime}

• endIteration = max{i | JstartT ime ≤ timestampi ≤ JendT ime}

• JstartT ime and JendT ime are respectively start and end times of job J

• ∆ti = timestampi − timestampi−1

• timestampi is the time and date of ith iteration

• Pi is defined below (2.3)

Since system cooling and networking power can only be measured for the entire sys-
tem, a way has to be found to attribute a fraction of total power of such sub-systems to
individual nodes (Equation 2.3). The required cooling for a component can be seen as di-
rectly related to its consumed power. Therefore, a job’s share of system cooling power is
directly related to the proportion of its consumed power and the overall power consumed
by all nodes at a given timestamp. For calculating a job’s share of the overall networking
power consumption we assume that the moment the node is active it’s networking port
is active as well. For the power consumption of the current InfiniBand network fabric the
communication pattern seems to have no significant impact. This behavior was observed
on SuperMUC, where the power consumption of the InfiniBand switches was relatively
constant under different communication patterns. Thus, a job’s networking share is a frac-
tion of the overall system networking consumption defined by the ratio of utilized nodes
and the overall number of active nodes in the system.

Pi(J, S) = P J
i +

P J
i · P

Scooling

i

PS
i

+
P

Snetworking

i ·NJ
i

NS
i

(2.3)

where

• P J
i is the power sum of all compute nodes which were utilized by job J at the ith

iteration of monitoring

• PS
i is the power sum of all active system nodes at the ith iteration of monitoring

• P
Scooling

i is the cooling power value of entire system S at the ith iteration of monitor-
ing

• P
Snetworking

i is the networking power value of entire system S at the ith iteration of
monitoring

• NS
i is the number of system active nodes at the ith iteration of monitoring

• NJ
i is the number of nodes utilized by job J at the ith iteration of monitoring

34

2.6. PowerDAM and EtS

2.6.1. EtS on CoolMUC, SuperMIG, and SuperMUC

This subsection shows the usage of PowerDAM for determining the most-energy efficient
HPC system (out of the three described in Section 2.5) for running a scientific application
HYDRO [60], which is an application-benchmark extracted from the real-world astrophys-
ical code RAMSES [61]. HYDRO is a computational fluid dynamics 2D code, which uses
the finite volume method, with a second order Godunov scheme [62] and a Riemann solver
[63] at each interface on a 2D mesh, for solving the compressible Euler equations of hydro-
dynamics. The input problem size was set to use 320 tasks. 20 compute nodes were used
on CoolMUC and SuperMUC (since on each system a compute node has 16 cores) and 8
nodes were utilized on SuperMIG (since each compute node on SuperMIG has 40 cores).

timestamp, sensor, value, unit
2015-03-23 03:26:33, mpp1_networking_power, 5256.0 W
2015-03-23 03:26:33, mpp1_cooling_power, 8055.7 W
2015-03-23 03:26:33, mpp1.lxa159_power, 138.0 W
2015-03-23 03:26:33, mpp1.lxa159_load, 58.167708125 %
2015-03-23 03:26:33, mpp1.lxa167_power, 213.0 W
2015-03-23 03:26:33, mpp1.lxa167_load, 62.239754375 %
2015-03-23 03:26:33, mpp1.lxa9_power, 236.0 W
2015-03-23 03:26:33, mpp1.lxa9_load, 62.883333125 %

…

2015-03-23 04:48:28, mpp1.lxa78_power, 233.0 W
2015-03-23 04:48:28, mpp1.lxa78_load, 100.0 %
2015-03-23 04:48:28, mpp1.lxa110_power, 231.0 W
2015-03-23 04:48:28, mpp1.lxa110_load, 96.82738125 %
2015-03-23 04:48:28, job.mpp1_cooling_power, 168.597716462 W
2015-03-23 04:48:28, job.mpp1_networking_power, 574.863387978 W
===
WARNING: Following sensor measurements were invalid and have been approximated

(sensor name; timestamp; approximated value; original value)
mpp1.lxa147_load ; 2015-03-23 03:28:09 ; 100.0 % ; 103.006355625 %
mpp1.lxa166_load ; 2015-03-23 03:28:09 ; 100.0 % ; 106.166666875 %
mpp1.lxa32_load ; 2015-03-23 03:28:09 ; 100.0 % ; 101.05 %

…
===
EtS is: 6.28719 kWh
Computation: 73 %
Networking: 10 %
Cooling: 15 %

(a)

(b)

(c)

Figure 2.10.: Detailed EtS report of HYDRO on CoolMUC

35

2. Monitoring the Energy and Power Consumptions in HPC Data Centers

The consumed energy of an application executed on a given system is calculated6 by
PowerDAM using the collected sensor values. The EtS of an application can be queried
through the usage of the following command:

./PowerDAM_UI - -option=ets - -system=SystemName [- -user=userID] - -job=jobID [- -trace]

The latter trace option, when specified, prints in addition to the EtS value the detailed
sensor trace of all the compute nodes which were utilized by the given job and all sen-
sor measurements that were approximated. Figure 2.10 illustrates the trace enabled EtS
reporting option for HYDRO when executed on CoolMUC using 10 compute nodes.

The first part (a) of the report presents the sensor measurements for all utilized compo-
nents. The first two entries show system level measurements as system networking power
(presented as mpp1_networking_power) and system cooling power (presented as
mpp1_cooling_power) in the order of timestamp, sensor name, value, and unit. The subsequent
entries show the power and utilization rates of all compute nodes utilized by the appli-
cation. Finally, it shows the application’s share of system networking and system cooling
power presented as job.mpp1_networking_power and job.mpp1_cooling_power. This output
format is then repeated for the complete runtime of the application.

The second part (b) of the report lists all replacements of invalid measurement data. In
this case, an invalid utilization rate measurement of 103% for lxa147 compute node was
recorded. This invalid source data was normalized to 100%.

The final part (c) of the report informs on EtS and also on the consumption percentages
of the computation, networking, and cooling. HYDRO ran 83.63 minutes on CoolMUC
consuming around 6.29 kWh energy, 73% of which was spent on computation, 10% was
spent on networking, and 15% on cooling.

Table 2.1 shows the execution results for HYDRO when run on SuperMIG and SuperMUC
using the same input problem size. As can be seen, despite the 3 minute overhead, the
execution of HYDRO on SuperMIG consumes on average less power and is more energy-
efficient than the corresponding execution on SuperMUC.

System
Number of Utilized

Compute Nodes
Measured EtS
Value (kWh)

Measured APC
Value (W)

Measured TtS
Value (min)

SuperMIG 8 1.88 2443.74 46.3
SuperMUC 20 2.32 3199.04 43.56

Table 2.1.: HYDRO execution results on SuperMIG and SuperMUC systems

2.7. Some PowerDAM Reporting Features

PowerDAM provides a separate plug-in interface for defining customized data analysis
reports. This section will present some of the currently existing ones.

Figure 2.11 illustrates the detailed EtS report showing the consumption percentages of
computation and sub-system components of all submitted and executed applications for

6And collected in cases of SuperMUC and SuperMIG as described in Section 2.5.

36

2.7. Some PowerDAM Reporting Features

18 3 3 9 1 8 4 3 1 1 8 6 58 1 86 5 9 35 83 6 3 5 8 3 8 3 5 8 39 35 8 4 0 35 8 4 1 3 5 84 2 35 8 4 3 3 58 4 4 35 8 4 5 3 5 8 51 3 5 85 2 3 5 8 5 3 35 8 5 4 3 5 8 5 5 35 85 6 3 58 57 3 58 5 8 35 8 5 9 3 5 86 0 3 8 5 2 3

C om pu ta tion (%) 7 8 .81 1 78 .6 4 7 7 8 .1 9 7 7 7 .8 58 7 6 .9 9 4 76 .8 3 3 7 6 .7 9 6 7 6 .7 0 3 7 6 .6 15 76 .8 4 6 7 6 .5 2 4 76 .3 7 1 7 3 .2 62 7 6 .3 80 7 6 .2 3 7 7 6 .40 9 7 5 .8 9 4 7 5 .9 7 3 7 6 .0 7 3 7 6 .42 9 76 .3 3 9 6 6 .9 48 76 .3 2 0 7 6 .0 7 5

C oo ling (%) 1 1 .44 7 1 1 .2 8 9 1 2 .4 5 1 1 2 .4 5 2 1 3 .5 74 1 3 .60 0 13 .6 0 1 1 3 .6 0 0 1 3 .6 0 1 1 3 .60 0 1 3 .6 5 2 1 4 .1 3 3 1 4 .0 7 9 1 4 .0 9 1 1 4 .0 9 2 1 4 .0 9 1 1 4 .8 4 5 14 .8 4 3 1 4 .4 4 3 1 4 .0 48 1 4 .0 45 14 .0 3 3 1 4 .0 2 9 1 4 .4 5 7

N etw ork in g (%) 9 .7 4 2 1 0 .0 64 9 .35 1 9 .69 0 9 .4 3 2 9 .5 6 7 9 .6 03 9 .6 9 7 9 .78 3 9 .5 5 4 9 .82 4 9 .49 7 1 2 .6 5 9 9 .5 2 8 9 .67 1 9 .49 9 9 .26 1 9 .1 84 9 .48 4 9 .5 2 2 9 .6 1 6 1 9 .0 1 9 9 .6 5 1 9 .4 68

0

10

2 0

3 0

4 0

5 0

E
n

e
r
g

y
 t

o
 S

o
lu

ti
o

n
 (

E
tS

:
k

W
h

)

18 .99 5

25 .80 8

2 7 .7 52

2 6 .7 81

3 7 .6 97

37 .20 6 3 7 .1 08
3 6 .6 66

36 .46 2

37 .257

36 .46 6
36 .80 9

28 .73 7

3 6 .75 2

36 .148

36 .78 3

35 .91 0 3 6 .0 03

5 .725

4 .513 4 .491

2 .2 97

4 .5 52

2 .4 08

C onsu m ed En e rgy fo r u se r: d i29 zu y on system : m pp1

N etw ork ing

C oo ling

In frastructu re

18339 18431 18658 18659 35836 35838 35839 35840 35841 35842 35843 35844 35845 35851 35852 35853 35854 35855 35856 35857 35858 35859 35860 38523

C om puta tion (%) 78 .811 78 .647 78 .197 77 .858 76 .994 76 .833 76 .796 76 .703 76 .615 76 .846 76 .524 76 .371 73 .262 76 .380 76 .237 76 .409 75 .894 75 .973 76 .073 76 .429 76 .339 66 .948 76 .320 76 .075

C oo ling (%) 11 .447 11 .289 12 .451 12 .452 13 .574 13 .600 13 .601 13 .600 13 .601 13 .600 13 .652 14 .133 14 .079 14 .091 14 .092 14 .091 14 .845 14 .843 14 .443 14 .048 14 .045 14 .033 14 .029 14 .457

N etw ork ing (%) 9 .742 10 .064 9 .351 9 .690 9 .432 9 .567 9 .603 9 .697 9 .783 9 .554 9 .824 9 .497 12 .659 9 .528 9 .671 9 .499 9 .261 9 .184 9 .484 9 .522 9 .616 19 .019 9 .651 9 .468

0

10

20

30

40

50

E
n

e
r
g

y
 t

o
 S

o
lu

ti
o

n
 (

E
tS

:
k

W
h

)

18 .995

25 .808

27 .752

26 .781

37 .697

37 .206 37 .108
36 .666

36 .462

37 .257

36 .466
36 .809

28 .737

36 .752

36 .148

36 .783

35 .910 36 .003

5 .725

4 .513 4 .491

2 .297

4 .552

2 .408

C onsum ed Energy fo r use r: d i29zuy on system : m pp1

N etw ork ing

C oo ling

In frastructu re

Computation

Cooling

Networking

Figure 2.11.: PowerDAM detailed EtS report for a user on a given HPC system

a given user on a given (in this case the MPP CoolMUC) system. The y-axis represents
the EtS values of the user submitted applications in kWh. The x-axis represents a table
where the first row presents the RMSS assigned application ids, and the second, third, and
fourth rows present the computation, cooling, and networking consumption percentages
respectively.

Figure 2.12 illustrates the power, load (utilization), and temperature graphs for an ap-
plication having a RMSS assigned 42664 id. The graph in the upper left corner shows the
accumulated power of all used compute nodes. The one in the upper right corner shows
the normalized load rates of the compute nodes. The lower left and the lower right graphs
show the averaged temperature behavior of each CPU of the compute nodes7.

7On CoolMUC MPP Linux cluster, each compute node has 2× 8-core AMD CPUs.

37

2. Monitoring the Energy and Power Consumptions in HPC Data Centers

Power Values Load Values

CPU1 Temperature Values CPU2 Temperature Values

Figure 2.12.: Power, Load, and CPU Temperature graphs for an Executed Application

The cyan colored measurement points in the load graph (upper right corner of Fig-
ure 2.12) illustrate the PowerDAM approximated measurements for all compute nodes
which were utilized by the application 42664.

Figure 2.13 illustrates the correlation between power and load of the compute nodes
which were utilized by a given application. The top line illustrates the application power
draw, and the bottom line the load rate. This correlation can be used, for example, to
classify the compute nodes into several zones (groups) according to the performance per
watt indicator of the compute nodes. This classification could then be used by the RMSS
of the target high-end system for an energy efficient selection of compute resources. A
possible example of an efficient selection policy can be the scheduling of computation-
intensive applications to zones having higher performance/watt ratio and reservation of
zones with lower performance/watt ratio for data-intensive applications. Another would
be to schedule the applications on the most efficient zones first and on the least efficient
last.

The classification maps of the dynamic change of compute node sensor data through
a color mapping is another analysis option provided by PowerDAM. The two presented
classification maps beneath can represent any sensor type which is supported by the target
compute nodes (e.g. power, load, CPU temperatures, etc.). These maps update automat-

38

2.7. Some PowerDAM Reporting Features

1
3

:0
0

:0
0

1
4

:0
0

:0
0

1
5

:0
0

:0
0

1
6

:0
0

:0
0

1
7

:0
0

:0
0

1
8

:0
0

:0
0

1
9

:0
0

:0
0

2
0

:0
0

:0
0

2
1

:0
0

:0
0

2
2

:0
0

:0
00

200

400

600

800

1000
P
o
w

e
r#

(w
a
tt

)
Job#41645#(user:#di56sih#system:#mpp1)#zUtilizedNodes:#4

Power Load

0

20

40

60

80

100

Lo
a
d
#(

L
)

Figure 2.13.: Correlation between power and load for a given application

ically after a specified amount of time. Figure 2.14 presents the example classification of
load sensor data for the CoolMUC compute nodes.

For this example, three classification categories were defined with different ranges. The
color green in Figure 2.14 (rectangles labeled with star)8 corresponds to the desired load
rate of compute nodes and was mapped to illustrate the 95%− 100% load range. The color
white corresponds to the normal load rate of compute nodes and was mapped to illustrate
the 0% and the 90% − 94% load range. The color red (rectangles without star markers)
corresponds to less favorable load rate of compute nodes and was mapped to illustrate the
1%− 89% load range.

Figure 2.15 and Figure 2.16 present another classification map example that is currently
provided by PowerDAM. The columns in these figures illustrate the compute racks of
the CoolMUC system, and each cell represents a compute node. Figure 2.15 illustrates the
average CPU temperature heat map of all the compute nodes of the CoolMUC prototype.
Each cell in Figure 2.15 contains the compute node name (e.g. lxa83), the power value
(e.g. 232 W), and the utilization/load rate (e.g. 99.8%). Similarly, Figure 2.16 illustrates the
power heat map of the CoolMUC compute nodes. Other reporting options of PowerDAM
include the Coefficient of Performance (COP) analysis of the adsorption chiller, system
power consumption for a given time frame (e.g. day, month, and year), system PUE, sys-
tem ERE, etc.

8The star markers are being used only for illustrative purposes and are not part of PowerDAM compute
node classification map.

39

2. Monitoring the Energy and Power Consumptions in HPC Data Centers

Figure 2.14.: PowerDAM classification map example of load sensor data for compute
nodes of CoolMUC Linux cluster

2.8. PowerDAM Current Development Directions

The PowerDAM workflow described in Subsection 2.4.2 has two potential bottlenecks:
the processing time of the received data and the waiting time, aroused due to the data
pulling requests. In order to eliminate the waiting time and improve the overall scalability,
PowerDAM is currently being developed to support for:

• push network communication service
Where the data will get automatically ’pushed’ into PowerDAM by the monitored entity.

(also known as publish/subscribe communication model [64]) in addition to the de-
scribed in Subsection 2.4.2:

• pull network communication service
Where the data collection request is initiated by PowerDAM.

In this way, PowerDAM is allowing for asynchronous data insertions for different sen-
sors having potentially different read-out frequencies.

Figure 2.17 shows the architecture of the in development version of PowerDAM pub-
lish/subscribe communication model. In this messaging pattern, the data sender parties,
referred to as publishers do not send the messages/data directly to the receiving parties,
referred to as subscribers. Similarly, the subscribers receive only those messages that they
had subscribed to without knowledge of the exact publishers. This makes data providers
loosely coupled with data receivers, allowing each to operate independently from the
other.

The mentioned decoupling is achieved through an intermediary physical component,
referred to as a broker, that handles the communication between sending and receiving par-
ties. Publishers post messages to the broker which then performs the filtering, i.e. the pro-
cess of selection and processing of the posted messages to the registered subscriptions. The
open source Mosquitto [65] Message Queue Telemetry Transport (MQTT) TCP/IP-based

40

2.8. PowerDAM Current Development Directions

Ra
ck

1
Ra

ck
2

Ra
ck

3
lxa

60
 (2

35
 W

, 1
00

.00
 %

)
lxa

12
0 (

19
9 W

, 5
0.1

9 %
)

lxa
59

 (1
88

 W
, 4

9.3
8 %

)
lxa

11
9 (

19
7 W

, 5
0.2

1 %
)

lxa
58

 (1
91

 W
, 4

9.0
9 %

)
lxa

11
8 (

19
9 W

, 4
9.4

2 %
)

lxa
17

8 (
13

3 W
, 0

.01
 %

)
lxa

57
 (2

17
 W

, 9
9.8

1 %
)

lxa
11

7 (
19

2 W
, 5

0.2
1 %

)
lxa

17
7 (

13
5 W

, 0
.01

 %
)

lxa
56

 (1
93

 W
, 5

0.2
1 %

)
lxa

11
6 (

26
0 W

, 9
8.6

8 %
)

lxa
17

6 (
13

7 W
, 0

.01
 %

)
lxa

55
 (1

92
 W

, 5
0.2

1 %
)

lxa
11

5 (
23

3 W
, 9

9.9
6 %

)
lxa

17
5 (

13
8 W

, 0
.03

 %
)

lxa
54

 (2
32

 W
, 1

00
.00

 %
)

lxa
11

4 (
26

2 W
, 9

9.6
4 %

)
lxa

17
4 (

19
3 W

, 5
0.2

3 %
)

lxa
53

 (1
94

 W
, 5

0.2
1 %

)
lxa

11
3 (

19
4 W

, 4
9.4

0 %
)

lxa
17

3 (
22

3 W
, 1

00
.00

 %
)

lxa
52

 (2
27

 W
, 9

9.9
7 %

)
lxa

11
2 (

24
0 W

, 9
9.2

8 %
)

lxa
17

2 (
22

1 W
, 1

00
.00

 %
)

lxa
51

 (2
26

 W
, 1

00
.00

 %
)

lxa
11

1 (
22

4 W
, 9

7.4
4 %

)
lxa

17
1 (

18
9 W

, 5
0.1

9 %
)

lxa
50

 (2
40

 W
, 1

00
.00

 %
)

lxa
11

0 (
19

9 W
, 5

0.2
1 %

)
lxa

17
0 (

18
7 W

, 5
0.1

8 %
)

lxa
49

 (2
12

 W
, 8

8.3
5 %

)
lxa

10
9 (

23
7 W

, 9
9.9

5 %
)

lxa
16

9 (
13

5 W
, 0

.01
 %

)
lxa

48
 (2

22
 W

, 6
6.8

2 %
)

lxa
10

8 (
25

5 W
, 1

00
.00

 %
)

lxa
16

8 (
19

3 W
, 4

6.3
6 %

)
lxa

47
 (2

30
 W

, 9
5.1

8 %
)

lxa
10

7 (
24

3 W
, 1

00
.00

 %
)

lxa
16

7 (
22

4 W
, 9

9.7
0 %

)
lxa

46
 (2

47
 W

, 1
00

.00
 %

)
lxa

10
6 (

19
7 W

, 5
0.1

7 %
)

lxa
16

6 (
19

1 W
, 5

0.2
0 %

)
lxa

45
 (1

88
 W

, 4
9.4

0 %
)

lxa
10

5 (
14

1 W
, 0

.01
 %

)
lxa

16
5 (

24
1 W

, 9
8.5

7 %
)

lxa
44

 (1
96

 W
, 5

0.2
3 %

)
lxa

10
4 (

19
5 W

, 3
8.9

0 %
)

lxa
16

4 (
24

7 W
, 1

00
.00

 %
)

lxa
43

 (0
 W

, 0
.00

 %
)

lxa
10

3 (
13

3 W
, 0

.03
 %

)
lxa

16
3 (

23
6 W

, 9
8.7

2 %
)

lxa
42

 (0
 W

, 0
.00

 %
)

lxa
10

2 (
24

9 W
, 9

9.5
0 %

)
lxa

16
2 (

24
5 W

, 1
00

.00
 %

)
lxa

41
 (0

 W
, 0

.00
 %

)
lxa

10
1 (

13
5 W

, 0
.01

 %
)

lxa
16

1 (
82

 W
, 0

.01
 %

)
lxa

40
 (1

93
 W

, 5
0.3

1 %
)

lxa
10

0 (
26

1 W
, 9

9.5
3 %

)
lxa

16
0 (

14
6 W

, 6
.28

 %
)

lxa
39

 (2
33

 W
, 9

9.6
7 %

)
lxa

99
 (1

87
 W

, 5
0.0

0 %
)

lxa
15

9 (
24

3 W
, 9

9.9
9 %

)
lxa

38
 (2

55
 W

, 1
00

.00
 %

)
lxa

98
 (2

37
 W

, 9
9.9

8 %
)

lxa
15

8 (
23

1 W
, 9

9.8
4 %

)
lxa

37
 (2

32
 W

, 1
00

.00
 %

)
lxa

97
 (1

90
 W

, 5
0.1

9 %
)

lxa
15

7 (
24

2 W
, 1

00
.00

 %
)

lxa
36

 (2
37

 W
, 1

00
.00

 %
)

lxa
96

 (2
49

 W
, 9

9.7
6 %

)
lxa

15
6 (

24
3 W

, 1
00

.00
 %

)
lxa

35
 (2

48
 W

, 9
8.5

5 %
)

lxa
95

 (1
88

 W
, 5

0.1
9 %

)
lxa

15
5 (

13
8 W

, 0
.01

 %
)

lxa
34

 (2
65

 W
, 1

00
.00

 %
)

lxa
94

 (2
37

 W
, 9

9.9
1 %

)
lxa

15
4 (

23
8 W

, 9
9.7

6 %
)

lxa
33

 (2
42

 W
, 9

8.3
3 %

)
lxa

93
 (2

47
 W

, 1
00

.00
 %

)
lxa

15
3 (

23
4 W

, 9
7.4

2 %
)

lxa
32

 (2
01

 W
, 4

9.3
5 %

)
lxa

92
 (2

02
 W

, 4
7.8

3 %
)

lxa
15

2 (
23

9 W
, 9

6.5
2 %

)
lxa

31
 (2

37
 W

, 9
9.9

5 %
)

lxa
91

 (1
99

 W
, 5

0.2
2 %

)
lxa

15
1 (

21
6 W

, 1
00

.00
 %

)
lxa

30
 (0

 W
, 0

.00
 %

)
lxa

90
 (1

94
 W

, 5
0.1

5 %
)

lxa
15

0 (
19

6 W
, 5

0.2
5 %

)
lxa

29
 (2

25
 W

, 9
9.9

5 %
)

lxa
89

 (8
1 W

, 0
.01

 %
)

lxa
14

9 (
24

7 W
, 1

00
.00

 %
)

lxa
28

 (2
42

 W
, 1

00
.00

 %
)

lxa
88

 (2
29

 W
, 1

00
.00

 %
)

lxa
14

8 (
25

2 W
, 1

00
.00

 %
)

lxa
27

 (2
24

 W
, 9

9.1
3 %

)
lxa

87
 (1

89
 W

, 5
0.2

4 %
)

lxa
14

7 (
22

5 W
, 2

3.0
4 %

)
lxa

26
 (2

53
 W

, 1
00

.00
 %

)
lxa

86
 (2

02
 W

, 5
0.2

0 %
)

lxa
14

6 (
20

0 W
, 5

2.9
3 %

)
lxa

25
 (2

32
 W

, 1
00

.00
 %

)
lxa

85
 (1

99
 W

, 5
0.1

8 %
)

lxa
14

5 (
19

3 W
, 5

0.1
1 %

)
lxa

24
 (2

03
 W

, 5
0.2

6 %
)

lxa
84

 (2
35

 W
, 1

00
.00

 %
)

lxa
14

4 (
24

3 W
, 9

8.4
0 %

)
lxa

23
 (2

37
 W

, 9
0.9

2 %
)

lxa
83

 (2
32

 W
, 9

9.9
8 %

)
lxa

14
3 (

19
1 W

, 5
0.2

1 %
)

lxa
22

 (2
42

 W
, 9

9.8
6 %

)
lxa

82
 (2

51
 W

, 1
00

.00
 %

)
lxa

14
2 (

20
0 W

, 5
0.2

2 %
)

lxa
21

 (2
26

 W
, 2

3.2
9 %

)
lxa

81
 (2

32
 W

, 9
9.8

0 %
)

lxa
14

1 (
23

6 W
, 1

00
.00

 %
)

lxa
20

 (2
41

 W
, 9

9.9
8 %

)
lxa

80
 (2

59
 W

, 9
9.8

6 %
)

lxa
14

0 (
25

1 W
, 1

00
.00

 %
)

lxa
19

 (2
42

 W
, 9

9.9
5 %

)
lxa

79
 (2

46
 W

, 9
9.3

9 %
)

lxa
13

9 (
14

1 W
, 3

7.0
3 %

)
lxa

18
 (1

99
 W

, 5
3.7

7 %
)

lxa
78

 (2
37

 W
, 6

5.8
3 %

)
lxa

13
8 (

23
3 W

, 9
8.6

9 %
)

lxa
17

 (2
25

 W
, 1

00
.00

 %
)

lxa
77

 (1
90

 W
, 5

0.2
2 %

)
lxa

13
7 (

23
7 W

, 9
7.5

7 %
)

lxa
16

 (1
91

 W
, 5

0.2
3 %

)
lxa

76
 (2

41
 W

, 1
00

.00
 %

)
lxa

13
6 (

19
4 W

, 5
0.1

9 %
)

lxa
15

 (2
10

 W
, 1

00
.00

 %
)

lxa
75

 (2
31

 W
, 1

00
.00

 %
)

lxa
13

5 (
19

4 W
, 5

0.2
1 %

)
lxa

14
 (1

87
 W

, 5
0.2

8 %
)

lxa
74

 (1
89

 W
, 5

0.1
5 %

)
lxa

13
4 (

20
1 W

, 4
9.3

8 %
)

lxa
13

 (2
13

 W
, 9

6.8
8 %

)
lxa

73
 (2

28
 W

, 9
2.7

2 %
)

lxa
13

3 (
25

0 W
, 9

9.6
2 %

)
lxa

12
 (1

45
 W

, 6
.31

 %
)

lxa
72

 (2
36

 W
, 1

00
.00

 %
)

lxa
13

2 (
20

1 W
, 4

9.4
1 %

)
lxa

11
 (2

08
 W

, 9
6.7

8 %
)

lxa
71

 (1
89

 W
, 5

0.2
0 %

)
lxa

13
1 (

24
1 W

, 9
9.0

0 %
)

lxa
10

 (2
07

 W
, 5

0.2
2 %

)
lxa

70
 (1

49
 W

, 4
2.9

7 %
)

lxa
13

0 (
24

2 W
, 1

00
.00

 %
)

lxa
9 (

19
9 W

, 5
0.1

9 %
)

lxa
69

 (2
34

 W
, 1

00
.00

 %
)

lxa
12

9 (
25

0 W
, 1

00
.00

 %
)

lxa
8 (

5 W
, 0

.00
 %

)
lxa

68
 (1

91
 W

, 5
2.8

6 %
)

lxa
12

8 (
26

0 W
, 9

9.4
7 %

)
lxa

7 (
6 W

, 0
.00

 %
)

lxa
67

 (1
88

 W
, 5

0.1
8 %

)
lxa

12
7 (

24
0 W

, 9
8.0

9 %
)

lxa
6 (

4 W
, 0

.00
 %

)
lxa

66
 (1

92
 W

, 4
6.3

4 %
)

lxa
12

6 (
24

5 W
, 1

00
.00

 %
)

lxa
5 (

5 W
, 0

.00
 %

)
lxa

65
 (1

88
 W

, 5
0.2

2 %
)

lxa
12

5 (
22

4 W
, 1

00
.00

 %
)

lxa
4 (

5 W
, 0

.00
 %

)
lxa

64
 (2

36
 W

, 9
9.8

9 %
)

lxa
12

4 (
24

6 W
, 1

00
.00

 %
)

lxa
3 (

5 W
, 0

.00
 %

)
lxa

63
 (2

35
 W

, 1
00

.00
 %

)
lxa

12
3 (

23
8 W

, 9
8.8

0 %
)

lxa
2 (

13
9 W

, 0
.01

 %
)

lxa
62

 (2
24

 W
, 1

00
.00

 %
)

lxa
12

2 (
23

8 W
, 9

9.8
3 %

)
lxa

1 (
13

2 W
, 0

.01
 %

)
lxa

61
 (2

38
 W

, 9
9.9

4 %
)

lxa
12

1 (
25

9 W
, 1

00
.00

 %
)

061218243036424854

Fi
gu

re
2.

15
.:

Po
w

er
D

A
M

te
m

pe
ra

tu
re

he
at

m
ap

fo
r

C
oo

lM
U

C
Li

nu
x

cl
us

te
r

Ra
ck

1
Ra

ck
2

Ra
ck

3
lxa

60
 (1

00
.00

 %
, 4

7.5
 C)

lxa
12

0 (
50

.19
 %

, 4
4.5

 C)
lxa

59
 (4

9.3
8 %

, 4
4.0

 C)
lxa

11
9 (

50
.21

 %
, 4

2.5
 C)

lxa
58

 (4
9.0

9 %
, 4

7.0
 C)

lxa
11

8 (
49

.42
 %

, 4
4.5

 C)
lxa

17
8 (

0.0
1 %

, 4
3.0

 C)
lxa

57
 (9

9.8
1 %

, 4
5.0

 C)
lxa

11
7 (

50
.21

 %
, 4

3.0
 C)

lxa
17

7 (
0.0

1 %
, 4

2.0
 C)

lxa
56

 (5
0.2

1 %
, 4

5.5
 C)

lxa
11

6 (
98

.68
 %

, 4
8.5

 C)
lxa

17
6 (

0.0
1 %

, 4
3.0

 C)
lxa

55
 (5

0.2
1 %

, 4
3.0

 C)
lxa

11
5 (

99
.96

 %
, 4

5.5
 C)

lxa
17

5 (
0.0

3 %
, 4

3.5
 C)

lxa
54

 (1
00

.00
 %

, 4
8.0

 C)
lxa

11
4 (

99
.64

 %
, 4

7.0
 C)

lxa
17

4 (
50

.23
 %

, 5
2.0

 C)
lxa

53
 (5

0.2
1 %

, 4
4.0

 C)
lxa

11
3 (

49
.40

 %
, 4

1.5
 C)

lxa
17

3 (
10

0.0
0 %

, 4
9.5

 C)
lxa

52
 (9

9.9
7 %

, 4
8.5

 C)
lxa

11
2 (

99
.28

 %
, 4

8.5
 C)

lxa
17

2 (
10

0.0
0 %

, 4
9.5

 C)
lxa

51
 (1

00
.00

 %
, 4

3.0
 C)

lxa
11

1 (
97

.44
 %

, 4
4.0

 C)
lxa

17
1 (

50
.19

 %
, 4

7.0
 C)

lxa
50

 (1
00

.00
 %

, 5
3.0

 C)
lxa

11
0 (

50
.21

 %
, 4

7.0
 C)

lxa
17

0 (
50

.18
 %

, 4
8.0

 C)
lxa

49
 (8

8.3
5 %

, 4
6.0

 C)
lxa

10
9 (

99
.95

 %
, 4

5.5
 C)

lxa
16

9 (
0.0

1 %
, 4

2.0
 C)

lxa
48

 (6
6.8

2 %
, 4

6.0
 C)

lxa
10

8 (
10

0.0
0 %

, 4
9.5

 C)
lxa

16
8 (

46
.36

 %
, 4

9.5
 C)

lxa
47

 (9
5.1

8 %
, 4

3.5
 C)

lxa
10

7 (
10

0.0
0 %

, 4
4.0

 C)
lxa

16
7 (

99
.70

 %
, 4

5.5
 C)

lxa
46

 (1
00

.00
 %

, 4
7.5

 C)
lxa

10
6 (

50
.17

 %
, 4

4.5
 C)

lxa
16

6 (
50

.20
 %

, 4
9.0

 C)
lxa

45
 (4

9.4
0 %

, 4
2.5

 C)
lxa

10
5 (

0.0
1 %

, 4
1.0

 C)
lxa

16
5 (

98
.57

 %
, 4

9.0
 C)

lxa
44

 (5
0.2

3 %
, 4

1.0
 C)

lxa
10

4 (
38

.90
 %

, 4
4.5

 C)
lxa

16
4 (

10
0.0

0 %
, 5

5.5
 C)

lxa
43

 (0
.00

 %
, 0

.0
C)

lxa
10

3 (
0.0

3 %
, 4

0.0
 C)

lxa
16

3 (
98

.72
 %

, 5
1.5

 C)
lxa

42
 (0

.00
 %

, 0
.0

C)
lxa

10
2 (

99
.50

 %
, 4

6.0
 C)

lxa
16

2 (
10

0.0
0 %

, 5
0.5

 C)
lxa

41
 (0

.00
 %

, 0
.0

C)
lxa

10
1 (

0.0
1 %

, 4
2.0

 C)
lxa

16
1 (

0.0
1 %

, 3
8.5

 C)
lxa

40
 (5

0.3
1 %

, 4
7.5

 C)
lxa

10
0 (

99
.53

 %
, 4

7.0
 C)

lxa
16

0 (
6.2

8 %
, 4

5.0
 C)

lxa
39

 (9
9.6

7 %
, 4

4.0
 C)

lxa
99

 (5
0.0

0 %
, 4

2.5
 C)

lxa
15

9 (
99

.99
 %

, 5
0.5

 C)
lxa

38
 (1

00
.00

 %
, 4

7.0
 C)

lxa
98

 (9
9.9

8 %
, 4

6.5
 C)

lxa
15

8 (
99

.84
 %

, 5
5.0

 C)
lxa

37
 (1

00
.00

 %
, 4

5.0
 C)

lxa
97

 (5
0.1

9 %
, 4

4.5
 C)

lxa
15

7 (
10

0.0
0 %

, 5
4.5

 C)
lxa

36
 (1

00
.00

 %
, 4

9.5
 C)

lxa
96

 (9
9.7

6 %
, 4

7.0
 C)

lxa
15

6 (
10

0.0
0 %

, 5
0.5

 C)
lxa

35
 (9

8.5
5 %

, 4
5.0

 C)
lxa

95
 (5

0.1
9 %

, 4
4.0

 C)
lxa

15
5 (

0.0
1 %

, 4
1.5

 C)
lxa

34
 (1

00
.00

 %
, 4

7.0
 C)

lxa
94

 (9
9.9

1 %
, 4

8.0
 C)

lxa
15

4 (
99

.76
 %

, 5
2.5

 C)
lxa

33
 (9

8.3
3 %

, 4
5.5

 C)
lxa

93
 (1

00
.00

 %
, 4

4.0
 C)

lxa
15

3 (
97

.42
 %

, 5
0.5

 C)
lxa

32
 (4

9.3
5 %

, 4
6.0

 C)
lxa

92
 (4

7.8
3 %

, 4
5.0

 C)
lxa

15
2 (

96
.52

 %
, 5

0.0
 C)

lxa
31

 (9
9.9

5 %
, 4

5.5
 C)

lxa
91

 (5
0.2

2 %
, 4

3.0
 C)

lxa
15

1 (
10

0.0
0 %

, 4
6.5

 C)
lxa

30
 (0

.00
 %

, 0
.0

C)
lxa

90
 (5

0.1
5 %

, 4
4.0

 C)
lxa

15
0 (

50
.25

 %
, 4

6.5
 C)

lxa
29

 (9
9.9

5 %
, 4

6.0
 C)

lxa
89

 (0
.01

 %
, 3

8.0
 C)

lxa
14

9 (
10

0.0
0 %

, 4
7.5

 C)
lxa

28
 (1

00
.00

 %
, 4

7.0
 C)

lxa
88

 (1
00

.00
 %

, 4
5.5

 C)
lxa

14
8 (

10
0.0

0 %
, 5

1.5
 C)

lxa
27

 (9
9.1

3 %
, 4

4.5
 C)

lxa
87

 (5
0.2

4 %
, 4

2.5
 C)

lxa
14

7 (
23

.04
 %

, 4
8.5

 C)
lxa

26
 (1

00
.00

 %
, 4

8.0
 C)

lxa
86

 (5
0.2

0 %
, 4

5.0
 C)

lxa
14

6 (
52

.93
 %

, 4
9.5

 C)
lxa

25
 (1

00
.00

 %
, 4

3.5
 C)

lxa
85

 (5
0.1

8 %
, 4

3.5
 C)

lxa
14

5 (
50

.11
 %

, 4
5.0

 C)
lxa

24
 (5

0.2
6 %

, 4
5.0

 C)
lxa

84
 (1

00
.00

 %
, 4

7.0
 C)

lxa
14

4 (
98

.40
 %

, 5
0.0

 C)
lxa

23
 (9

0.9
2 %

, 4
5.0

 C)
lxa

83
 (9

9.9
8 %

, 4
5.0

 C)
lxa

14
3 (

50
.21

 %
, 4

4.0
 C)

lxa
22

 (9
9.8

6 %
, 4

8.5
 C)

lxa
82

 (1
00

.00
 %

, 4
8.0

 C)
lxa

14
2 (

50
.22

 %
, 5

2.5
 C)

lxa
21

 (2
3.2

9 %
, 4

5.5
 C)

lxa
81

 (9
9.8

0 %
, 4

4.0
 C)

lxa
14

1 (
10

0.0
0 %

, 4
9.0

 C)
lxa

20
 (9

9.9
8 %

, 4
7.5

 C)
lxa

80
 (9

9.8
6 %

, 4
7.0

 C)
lxa

14
0 (

10
0.0

0 %
, 4

8.5
 C)

lxa
19

 (9
9.9

5 %
, 4

5.5
 C)

lxa
79

 (9
9.3

9 %
, 4

3.0
 C)

lxa
13

9 (
37

.03
 %

, 4
7.0

 C)
lxa

18
 (5

3.7
7 %

, 4
6.0

 C)
lxa

78
 (6

5.8
3 %

, 4
5.0

 C)
lxa

13
8 (

98
.69

 %
, 5

1.5
 C)

lxa
17

 (1
00

.00
 %

, 4
5.0

 C)
lxa

77
 (5

0.2
2 %

, 4
3.5

 C)
lxa

13
7 (

97
.57

 %
, 4

9.5
 C)

lxa
16

 (5
0.2

3 %
, 4

5.0
 C)

lxa
76

 (1
00

.00
 %

, 4
8.0

 C)
lxa

13
6 (

50
.19

 %
, 4

6.5
 C)

lxa
15

 (1
00

.00
 %

, 4
4.5

 C)
lxa

75
 (1

00
.00

 %
, 4

3.0
 C)

lxa
13

5 (
50

.21
 %

, 4
5.5

 C)
lxa

14
 (5

0.2
8 %

, 4
4.0

 C)
lxa

74
 (5

0.1
5 %

, 4
5.0

 C)
lxa

13
4 (

49
.38

 %
, 5

1.0
 C)

lxa
13

 (9
6.8

8 %
, 4

3.5
 C)

lxa
73

 (9
2.7

2 %
, 4

4.5
 C)

lxa
13

3 (
99

.62
 %

, 5
3.0

 C)
lxa

12
 (6

.31
 %

, 4
4.0

 C)
lxa

72
 (1

00
.00

 %
, 4

6.0
 C)

lxa
13

2 (
49

.41
 %

, 5
0.0

 C)
lxa

11
 (9

6.7
8 %

, 4
5.5

 C)
lxa

71
 (5

0.2
0 %

, 4
3.0

 C)
lxa

13
1 (

99
.00

 %
, 5

1.5
 C)

lxa
10

 (5
0.2

2 %
, 4

5.0
 C)

lxa
70

 (4
2.9

7 %
, 4

5.5
 C)

lxa
13

0 (
10

0.0
0 %

, 5
4.5

 C)
lxa

9 (
50

.19
 %

, 4
2.5

 C)
lxa

69
 (1

00
.00

 %
, 4

5.5
 C)

lxa
12

9 (
10

0.0
0 %

, 5
2.0

 C)
lxa

8 (
0.0

0 %
, 4

1.0
 C)

lxa
68

 (5
2.8

6 %
, 4

3.5
 C)

lxa
12

8 (
99

.47
 %

, 5
2.5

 C)
lxa

7 (
0.0

0 %
, 4

0.0
 C)

lxa
67

 (5
0.1

8 %
, 4

2.5
 C)

lxa
12

7 (
98

.09
 %

, 5
1.5

 C)
lxa

6 (
0.0

0 %
, 4

0.5
 C)

lxa
66

 (4
6.3

4 %
, 4

4.0
 C)

lxa
12

6 (
10

0.0
0 %

, 5
4.0

 C)
lxa

5 (
0.0

0 %
, 3

9.5
 C)

lxa
65

 (5
0.2

2 %
, 4

2.5
 C)

lxa
12

5 (
10

0.0
0 %

, 4
9.5

 C)
lxa

4 (
0.0

0 %
, 4

1.0
 C)

lxa
64

 (9
9.8

9 %
, 4

6.5
 C)

lxa
12

4 (
10

0.0
0 %

, 5
1.5

 C)
lxa

3 (
0.0

0 %
, 4

0.0
 C)

lxa
63

 (1
00

.00
 %

, 4
5.0

 C)
lxa

12
3 (

98
.80

 %
, 4

9.5
 C)

lxa
2 (

0.0
1 %

, 4
1.5

 C)
lxa

62
 (1

00
.00

 %
, 4

6.5
 C)

lxa
12

2 (
99

.83
 %

, 5
3.5

 C)
lxa

1 (
0.0

1 %
, 3

9.5
 C)

lxa
61

 (9
9.9

4 %
, 4

4.0
 C)

lxa
12

1 (
10

0.0
0 %

, 5
1.0

 C)

030609012
0

15
0

18
0

21
0

24
0

Fi
gu

re
2.

16
.:

Po
w

er
D

A
M

po
w

er
he

at
m

ap
fo

r
C

oo
lM

U
C

Li
nu

x
cl

us
te

r

41

2. Monitoring the Energy and Power Consumptions in HPC Data Centers

• Infrastructure

BROKER

IClientPublisher IClientSubscriber

Publishing
Topic

Control
Topic

General
Topic

Publishing
Topic

Control
Topic

General
Topic

IClient

Agents

• HPC
Systems

• Reuse
Technology

Plug-Ins

PowerDAM

Data
Collection

Data
Processing

&
Analysis

Reports

Figure 2.17.: PowerDAM and the publish/subscribe communication protocol

protocol is used as a data broker. Mosquitto is a publish/subscribe, simple and lightweight
communication model designed for resource-constrained devices and low bandwidth,
high latency, which also allows for its effective usage in embedded systems. These makes it
a good fit for simple notification scenarios as the updates of power, temperature, humidity,
etc. sensor values.

The topic-based filtering is used for distributing the data to the subscribers, i.e. the
exchange of the information is accomplished through a set of predefined topics, repre-
senting many-to-many (and one-to-many in case of MQTT) distinct logical channels. The
subscribers will receive only the messages which were published to the topics to which
they had subscribed. The all subscribers of the same topic will receive the same data. The
main advantages of the topic-based filtering approach are: (i) the enforced platform inter-
operability achieved through the usage of strings as keys to divide the event space (thus
more lightweight than its content-based counterpart), which also makes the routing simple
through multi-cast group to peers that match the subscription topics, and (ii) the usage of
hierarchies to orchestrate topics (typically denoted with URL-like notation) and wildcards
which allow for organizing the topics according to their containment relationships [66].

Three topics are maintained for this case:

• Publishing Topic - used for publishing/sending the actual, in-band, monitored data
(the data flows from agents to PowerDAM);

• Control Topic - used for communicating with publishers in cases of out-of-band re-
quests, such as data resubmission request, failure notifications, etc. (the data flows
from PowerDAM to agents); and

• General Topic - used for answering out-of-band requests originated from PowerDAM

42

2.9. PowerDAM Usage By Other Data Centers

via the control topic (the data flows from agents to PowerDAM).

As can be seen, in the presented case, both the agents and PowerDAM act as a publisher
and meantime as a subscriber but on different topics. The main drawback of the described
publish/subscribe communication model is the side-effect of one of its main advantages:
the loose coupling between publishers and subscribers, which adds an additional com-
plexity for further development, maintenance, and testing.

2.9. PowerDAM Usage By Other Data Centers

The early version of PowerDAM was released to PRACE Work Package (WP) 11 partners
for a primary evaluation of the software package. Based on the obtained feedbacks the
software was further improved.

Two examples of PowerDAM installation and usage for different supercomputing sys-
tems are described in the subsections beneath. Overall, they demonstrate the PowerDAM
applicability range in the energy efficiency analysis of various HPC prototype systems as
well as in assessment of the energy consumption for various large-scale applications using
diverse programming paradigms.

2.9.1. Usage at PSNC

PowerDAM was installed as a part of the software monitoring stack on the hybrid
CPU/GPU prototype system at Poznan Supercomputing and Networking Center (PSNC)
[67]. The main aim of the installation was the provision of the application energy con-
sumption profiles to the system users.

CPU/GPU is a single rack cluster built by Iceotope [68]. The cluster has 40 compute
nodes equipped with dual Xeon Sandy Bridge 2620 with a nominal frequency of 2.0 GHz
and 2.3 GHz at turbo mode. Each compute node has 32 GB Random-Access Memory
(RAM), dual 1 Gbit Ethernet links, and InfiniBand QDR. One compute node is connected to
a dedicated 10 TB Solid-State Drive (SSD) matrix exposed to the nodes using Lustre storage
architecture. Six compute nodes are connected to slave modules that host 2 AMD S9000
Graphics Processing Units (GPUs) each. The prototype uses SLURM as a RMSS, and thus
it was possible to reuse the already developed (for CoolMUC) SLURM-for-PowerDAM
plug-in and the corresponding agent for obtaining the application relevant information.

At PSNC, PowerDAM was deployed to monitor the per compute node available infor-
mation - CPU utilization rate, CPU temperatures, and the power consumption (direct cur-
rent). Additionally, data regarding the networking and cooling loops (both in rack-pumps
and external) were collected to allow for an accurate EtS calculation of the executed appli-
cations.

2.9.2. Usage at CINECA

PowerDAM was also installed on EURORA prototype system which is deployed at
CINECA [69]. EURORA is a single rack cluster equipped with 64 compute nodes, each
with two Intel Xeon Sandy Bridge eight-core processors. The internal network is com-
posed of 1 Altera Stratix V series Field Programmable Gate Array (FPGA) per node, and

43

2. Monitoring the Energy and Power Consumptions in HPC Data Centers

IB QDR and 3D Torus interconnects. It has a per node 16 GByte DDR3 1.6 GHz RAM
and 160 GByte SSD disc space. EURORA is a warm water cooled system and was the most
energy efficient HPC system, with an overall of 3, 208.83 MegaFLOPS/W performance, ac-
cording to June 2013 Green500 rankings [70]. The system uses PBS Professional (PBSPro),
developed by Altair [71], as a RMSS which additionally required a PBS-for-PowerDAM
plug-in development. Currently, PowerDAM is a part of the EURORA system software
stack and is used for collecting thermal, power, and energy consumption related data for
various projects.

2.10. PRACE 1IP WP 9 & 2IP WP 11

The development of PowerDAM started within the scope of the WP 9 “Future Technologies”
and the WP 11 “Prototyping” of the PRACE First and Second Implementation Phase (1IP
and 2IP) Projects [56].

The WP 9 “Future Technologies” project was aimed towards the exploration of state-of-
the-art hardware and software technologies, the evaluation of emerging programming
paradigms and the assessment of energy efficient solutions for current leadership and
Tier-0 class and future multi-Peta/Exascale HPC systems.

The WP 11 “Prototyping” project was aimed at prototyping novel scalable and sustain-
able computing platforms with the potential for energy efficient computing. This WP
investigated number of evolutionary technologies including the latest cooling and hard-
ware, interconnect and accelerator co-processing technologies as well as OS and systems
management solutions that would most likely be representative for next generation HPC
systems.

As can be seen, both projects required a tool allowing for assessment of the current
states of KPIs, which range from the level of scientific applications (e.g. EtS, APC, etc.) to
the target HPC systems and reuse technologies (e.g. PUE, ERE, WUE, etc.) for identify-
ing the improvement areas and verifying the success of applied optimizations techniques.
PowerDAM was developed specifically for addressing these issues.

2.11. The SIMOPEK Project

PowerDAM is currently being developed within the scope of the Simulation and Opti-
mization of Data Center Energy Flows (Simulation und Optimierung des Energiekreislaufs
von Rechenzentrums-Klimatisierungsnetzen unter Berücksichtigung von Supercomputer-
Betriebsszenarien) (SIMOPEK) project [72]. The SIMOPEK project is aimed towards mod-
eling, simulation, and optimization of the energy flows within HPC data centers. The
MYNTS software [73], developed at Frauhofer SCAI, is being extended for simulating and
optimizing the energy flow networks of the data center in a wholistic way, by taking into
account the dynamic utilization state of the target HPC as well as its technological and
heat reuse components (e.g. hot water cooling, adsorption cooling, etc.).

The purpose of PowerDAM within the SIMOPEK project is the provision of the op-
erational data from all the aspects of the data center ranging from the site infrastructure
relevant information (e.g. cold and warm water cooling loops, electrical circuit, etc.) over
the target HPC system(s) (e.g. system power consumption, utilization rate, etc.) to the

44

2.12. Summary

user applications (e.g. power/energy consumption of individual large-scale application,
etc.). Some of this collected data will then be supplied to the MYNTS software for the
corresponding simulations which will assist in finding energy optimal operational solu-
tions. These solutions, in their turn, will then be verified, again, through the usage of
PowerDAM.

2.12. Summary

This chapter discussed the first steps required for a unified energy measurement and eval-
uation toolset for a HPC data center. It presented the developed data collection and anal-
ysis tool, PowerDAM, which can be used for the evaluation of energy consumption and
energy efficiency of the individual HPC system as well as the complete data center. The
following bullet points summarize the main use cases of PowerDAM.

• The data provided by PowerDAM can help certain RMSS in performing energy effi-
cient decisions
Having the knowledge of the energy/power consumption of individual applications, it will be
possible, for example, to schedule only high priority workload (desirable with low energy con-
sumption rate) during the peak hours and defer the ’energy-hungry’ low priority workload to
off-peak hours when the cost of electrical power is cheaper.

• PowerDAM can assist in classifying the application according to runtime, temper-
ature, power, or energy consumptions as well as correlate these metrics for further
analysis
The mentioned classification/correlation will further motivate the need of application perfor-
mance tuning and allow for onward exploration of power/energy consumption conservation
static/dynamic techniques (e.g. voltage, current, and frequency scaling).

• PowerDAM can assist in determining the best (performance, power and/or energy
wise) HPC system from the set of monitored data center supercomputers for a given
large-scale parallel application
As was seen in Section 2.6 the TtS, APC, and EtS profiles of the same application can be
different on different HPC systems. The knowledge on the application consumption profiles
for different, monitored HPC systems will allow for an efficient selection of a compute system
for a particular application.

• The usage of PowerDAM will allow for better interdependency analysis of different
data center components and energy efficiency metrics
For example, the collected data can assist in better understanding of power, energy, and
temperature behaviors of a given set of compute resources under same or different work-
loads/utilization rates.

• PowerDAM can be used for monitoring and assessing the current status of various,
energy efficiency relevant, metrics and KPIs
This is a necessary feature for detecting the present inefficiencies and verifying the affect of
the applied improvements.

45

• Violations of the predefined power, energy, or thermal constraints, which can range
from an individual HPC system to the entire data center, can be tracked with the
usage of PowerDAM
This is a necessary feature for controlling and verifying the applied power, energy, and/or
thermal capping solutions.

In short, PowerDAM provides the functionalities that are needed to verify and improve
the existing and future data center power consumption and energy efficiency models. It
allows for an integrated view across multiple sources and structures and affords a better
understanding of complete data center power profile.

“The pure and simple truth is rarely pure and never
simple”

OSCAR WILDE

Part III.

Covering the Prerequisites for
Implementing Energy and Power

Capping

47

3. Predicting the Energy and Power
Consumption of Strong and Weak Scaling
HPC Applications9

3.1. Preface

Having built a software toolset allowing for the measurement and analysis of the power
and energy consumption of various large-scale parallel applications in Chapter 2, this
chapter will focus on the problems of modeling and beforehand estimation of the power
and energy consumption of given applications for different numbers of to-be-utilized com-
pute nodes (servers). More specifically, this chapter will present a model, referred to
as Adaptive Energy and Power Consumption Predictor (AEPCP), that is capable of pre-
dicting the EtS and the APC metrics for any HPC application, demonstrating strong or
weak scaling (described below), with respect to the given number of compute nodes. The
model is application independent but provides application specific results. It requires
unique identifiers for each application and takes the available per-application historical
power/energy data (obtained from the energy/power monitoring solution) as an input.
The AEPCP model automatically adapts with each additional execution of the application
(throughout the lifetime of the target HPC system) improving the associated prediction
accuracy. The model does not require any application code instrumentation and does not
introduce any application performance degradation. The chapter will conclude by show-
ing the applicability of the AEPCP model in the real-wold power and energy capping
scenarios.

3.2. Investigating the Scaling Behaviors of HPC Applications

The scalability of a parallel HPC application indicates the relation between application
execution time and the number of application utilized compute resources, e.g. nodes.
There are two different types of scalability studies - strong [74] and weak [75]. The main
difference between them is the change of the application input problem size, i.e. the amount
of required computation.

Scaling is referred to as strong when an application input problem size stays fixed in-
dependently from the number of compute nodes which are utilized to solve that problem.
This implies that an application demonstrating a strong scaling will have a smaller execu-
tion time, i.e. will solve the computation faster, as the number of compute nodes increase

9This chapter is partly based on the following previous work of the author: Hayk Shoukourian et al. Predicting
the Energy and Power Consumption of Strong and Weak Scaling HPC Applications. Supercomputing Frontiers And
Innovations, Vol 1, No 2, pages 20− 41, 2014.

49

3. Predicting the Energy and Power Consumption of Strong and Weak Scaling
HPC Applications

[76].
Scaling is referred to as weak when the input problem size of the application stays fixed

for each utilized compute node. This indicates that the execution time of an application
under weak scaling will show a constant behavior since the input problem size increases
accordingly with the number of utilized compute nodes.

Figure 3.1 shows the execution-time, i.e. TtS, behavior for strong and weak scaling sce-
narios [76].

Weak Scaling

Strong Scaling

Number of Nodes

Ti
m

e-
to

-S
o

lu
ti

o
n

Figure 3.1.: Theoretical TtS curves for strong and weak scaling scenarios

The following denotations and definitions are further used in this chapter:

• ts(n) - processing time of the application serial part using n nodes;

• tp(n) - processing time of the application parallel part using n nodes;

• TtS(1) = ts(1) + tp(1) - processing time of the application sequential and parallel
parts using 1 node;

• TtS(n) = ts(1) + tp(n) - processing time of the application sequential and parallel
parts using n nodes;

• p =
tp(1)

ts(1)+tp(1)
- the non-scaled fraction of the application parallel part [77], i.e. the

parallel portion of computation on a sequential system (0 ≤ p ≤ 1). Thus the non-
scaled fraction of the application sequential part will be (1− p);

• p∗ =
tp(n)

ts(1)+tp(n)
- the scaled fraction of the application parallel part [77], i.e. the

parallel portion of computation on a parallel system (0 ≤ p∗ ≤ 1). Thus the scaled
fraction of the application sequential part will be (1− p∗);

• k - the fraction of power that is consumed by the compute node in idle state (0 ≤ k ≤
1). It is assumed that one compute resource consumes a power of 1 in active state.

50

3.2. Investigating the Scaling Behaviors of HPC Applications

3.2.1. Strong Scaling

Strong scaling was first described analytically by Gene Amdahl in 1967 [74]. According to
Amdahl’s law, the possible speedup that a parallel application can achieve using n com-
pute nodes is:

Speedup(n) =
TtS(1)

TtS(n)
=

1

(1− p) + p
n

(3.1)

The total TtS(n) processing time of sequential and parallel parts using n compute nodes,
according to Amdahl’s law (Equation 3.1), can be derived as:

TtS(n) = TtS(1) · [(1− p) +
p

n
] (3.2)

A study by Woo and Lee [78], considering Amdahl’s law, proposes an analytical model
for calculating the APC(n) of a given application when executed on n compute resources.
Using the following two observations done in [78]: (i) the amount of power consumed
using n compute resources during the sequential computation phase is: 1 + (n − 1) · k,
since only one compute resource is active, while the rest (n− 1) are idling; and (ii) since it
takes (1 − p) and p

n to execute the sequential and parallel fractions respectively [74], Woo
and Lee [78] derive the APC of a given application for given n count of compute nodes as
follows:

APC(n) =
(1− p) · [1 + (n− 1) · k] + p

n · n
(1− p) + p

n

=
1 + (n− 1) · k · (1− p)

(1− p) + p
n

(3.3)

This further means that when an application demonstrates ideal scalability (i.e. when
the application parallelizable fraction p equals to 1, and thus the serial fraction (1− p) be-
comes 0), then APC(n) = n (dashed yellow line in Figure 3.2). While when an application
demonstrates no scalability (i.e. when the application parallelizable fraction p equals to 0,
and thus the serial fraction (1− p) becomes 1), APC(n) = 1 + (n− 1) · k (solid yellow line
in Figure 3.2).

Knowing that the aggregated energy consumption EtS(n) is the product of application
execution time TtS(n) and average power consumption APC(n), the following is obtained
from Equation 3.2 and Equation 3.3:

EtS(n) = TtS(n) ·APC(n) = TtS(1) · [1 + (n− 1) · k · (1− p)] = O
�
n
�

(3.4)

where O
�
g(n)

�
= {f(n)| ∃ c > 0 constant and n0 such that 0 ≤ f(n) ≤ cg(n) ∀n ≥ n0}

[79].
Note, that when an application demonstrates ideal scalability the EtS behavior will be

constant (dashed red line in Figure 3.3), while in case of no scalability the EtS behavior will
be linear (solid red line in Figure 3.3).

3.2.2. Weak Scaling

Weak scaling was described analytically by John L. Gustafson in 1988 [75]. According to
Gustafson’s law (also known as Gustafson-Barsis’ law [80]), the possible speedup that a
parallel application can achieve using n compute nodes is:

51

3. Predicting the Energy and Power Consumption of Strong and Weak Scaling
HPC Applications

Ideal Scalability

Number of Nodes

A
ve

ra
ge

 P
o

w
er

 C
o

n
su

m
p

ti
o

n

No Scalability

Figure 3.2.: Theoretical APC curves for ideal and
no scalability cases for strong and
weak scaling scenario

Ideal Scalability

No Scalability

Number of Nodes

En
er

gy
-t

o
-S

o
lu

ti
o

n

Figure 3.3.: Theoretical EtS curves for ideal
and no scalability cases for
strong scaling scenario

Ideal Scalability

Number of Nodes

En
er

gy
-t

o
-S

o
lu

ti
o

n

No Scalability

Figure 3.4.: Theoretical EtS curves for ideal
and no scalability cases for
weak scaling scenario

Speedup(n) =
TtS(1)

TtS(n)
= 1 + (n− 1) · p∗ (3.5)

Following the same observations proposed by Woo and Lee [78] and noting that it takes
ts(1) to execute the sequential portion of the computation and it takes tp(n) to execute the
parallel portion of the computation, the average power consumption APC(n) with respect
to the n number of utilized compute nodes for the case of weak scaling can be written as:

APC(n) =
ts(1) · [1 + (n− 1) · k] + tp(n) · n

ts(1) + tp(n)
= (1− p∗) · [1 + (n− 1) · k] + p∗ · n =

1 + p∗ · (n− 1) + (1− p∗) · (n− 1) · k = O
�
n
� (3.6)

52

3.3. Adaptive Energy and Power Consumption Prediction (AEPCP) Model

This further means that when an application demonstrates ideal scalability (i.e. p∗ = 1)
then the average power consumption APC(n) = 1 + (n− 1) = n = O

�
n
�

showing a linear
behavior (dashed yellow line in Figure 3.2). Note, that since the TtS execution time in the
case of ideal scalability remains constant as the input problem size increases in parallel
with the number of compute nodes, it can be further stated that the EtS behavior of the
application with respect to the given n number of compute nodes is of a linear order, since:
EtS(n) = APC(n) · TtS(n) = n · O

�
1
�

= O
�
n
�
. The dashed red line in Figure 3.4 depicts

this EtS behavior.
When an application demonstrates no scalability (i.e. p∗ = 0) then the average power

consumption APC(n) = 1 + (n − 1) · k (see Equation 3.6). Since the execution time of
an application in the case of no scalability increases linearly with the input problem size
and the number of compute nodes, it can be further stated that the EtS behavior of the
application for this case will have a quadratic behavior, since: EtS(n) = APC(n) · TtS(n) =
[1 + (n− 1) · k] ·O

�
n
�

= O
�
n2
�
. The solid red line in Figure 3.4 depicts this EtS behavior.

As can be implied from the above discussion, the average power consumption of an
application, for both strong and weak scaling applications, is the highest when it demon-
strates ideal scalability. Thus, an artificial hardware power cap, as described in [26], might
keep an application from providing the highest performance and could increase the overall
TtS, and subsequently EtS as well.

While it was possible to analytically describe the TtS(n), APC(n), and EtS(n) boundary
curves for applications demonstrating strong and weak scaling, as can be observed, the
knowledge of an application’s non-scaled p (in case of strong scaling) or scaled p∗ (in case
of weak scaling) fractions (which are application specific information) is necessary in or-
der to estimate the execution time, power, and energy consumption profiles for a given n
number of compute nodes. The obtainment of this application specific information could
be impractical in real-world scenarios where myriad of different HPC applications are run
in a HPC data center.

3.3. Adaptive Energy and Power Consumption Prediction
(AEPCP) Model

Figure 3.5 presents the overview of the AEPCP prediction process [81], i.e. the structured
set of activities required to develop the software (e.g. specification, design, etc.). The
AEPCP process has two inputs:

• application identifier used for uniquely identifying an application, and

• number of system compute resources (e.g. CPU, compute nodes, accelerators, etc.),
which are planned to be utilized by a given application.

The application identifier is used to query the application-specific history information
from the system monitoring tool (step 1). This application-specific history profile data (step
2), together with the number of compute resources, is passed to the predictor (step 3) for
corresponding EtS and/or APC predictions. Using this data, the predictor then reports the
predicted EtS/APC value for the application with respect to the given number of compute
resources (step 4).

53

3. Predicting the Energy and Power Consumption of Strong and Weak Scaling
HPC Applications

Number of ResourcesApplication Identifier

𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑜𝑟

Available history data

Monitoring
Tool

Predicted EtS/APC of the Application
for a Given Number of Resources

(1)

(2)

(3)

(3)

(4)

Figure 3.5.: Overview of the AEPCP pro-
cess

Number of NodesApplication Energy Tag

𝐴2𝐸𝑃2

PowerDAM

Available application
EtS/APC history data

Predicted EtS/APC of the Application
for a Given Number of Nodes

(1)

(3)

(4)

(2)

(3)

Figure 3.6.: Overview of the AEPCP
model

Figure 3.6 presents the AEPCP model based on the prediction process described above.
The AEPCP model takes two inputs, namely:

• application energy tag used as an application unique identifier, which is supported
by the IBM LoadLeveler [58] RMSS and is specified by the user on a unique-per-
application basis; and

• number of compute nodes used as the number of compute resources, since the com-
pute node is the smallest compute unit available to an application on the SuperMUC
supercomputer which was used to validate the model (see Section 2.5).

The model uses the Adaptive Application Energy and Power Predictor (A2EP2) to es-
timate the EtS/APC consumption of a given HPC application for any given number of
compute nodes. The A2EP2 requires the historical EtS/APC data of the given parallel ap-
plication. The application energy tag is used by the system monitoring tool to retrieve the
required history EtS/APC relevant profile data of the application (step 1, Figure 3.6). In
our case, PowerDAM (see Section 2.4) is used as a monitoring tool for extracting this data.
The workflow of the A2EP2, illustrated in Figure 3.7, is as follows. First the A2EP2 checks
if the application has already been executed for a given number of compute nodes, i.e. if
the EtS/APC consumption data for that given number of compute nodes is available in
the PowerDAM database. If this is the case, then A2EP2 reports the averaged1 value of
all the available application history EtS/APC consumption data for that given number of
compute nodes (step Y 1, Figure 3.7).

If the PowerDAM database does not contain any application relevant EtS/APC entries
for a given number of compute nodes, then A2EP2 queries the existing application specific
history data (step N1, Figure 3.7). Once the application EtS/APC consumption history

1This can be modified to the maximum or the minimum depending on the use case.

54

3.3. Adaptive Energy and Power Consumption Prediction (AEPCP) Model

Compute node number
in history?

Average all the available
EtS/APC history data for
that node number and

report the averaged one

Take the available EtS/APC
application history data

Determine predictor-function

Predict for the given number
of compute nodes –

report the predicted one

(Y1)
(N1)

(N2)

(N3)

Figure 3.7.: A2EP 2 workflow

spline/polynomial

linear function

(I) (II)

(III)

(IV)

(V)

Figure 3.8.: A2EP 2 estimation
scenarios

data is obtained, A2EP2 tries to determine a predictor-function (stepN2, Figure 3.7) which
will have an allowed, user2 specified, Percentage Root Mean Square Error (%RMSE). The
%RMSE is calculated from the Root Mean Square Error (RMSE) [82] as follows:

%RMSE =

Ì
1

n

n∑
i=1

(xmeasured
i − xpredictedi)2 · 100 · n∑n

i=1 x
measured
i

(3.7)

where

• n is the number of available real measurements

• xmeasured
i is the ith measured real value

• xpredictedi is the ith predicted value

Several estimation techniques (e.g. ordinary least squares, spline interpolation [83], etc.)
accompanied with EtS/APC consumption specific constraints (e.g. strict positivity) are
used by A2EP2 for determining the predictor-function. As implied from Section 3.2, the
APC behavior for the both strong and weak scaling applications is of the O

�
n
�

linear or-
der and the EtS behavior is of O

�
n
�

order for strong scaling applications and of O
�
n2
�

order for weak scaling applications. For this reason, A2EP2 further analyzes the avail-
able history data and tries to find data points, from the obtained application specific his-
tory EtS/APC data, which would have a linear dependency. Depending on this analysis,
A2EP2 divides the available history data set into linear and non-linear segments. A2EP2

distinguishes five different segmentations, as illustrated in Figure 3.8: linear (case I) is
used for tracking the boundary curves described in Section 3.2; non-linear (case II) is used
to track the transitional scaling phases between ideal scalability and no-scalability; linear
combined with non-linear (case III) is used to track the mixture of boundary and transitional
scaling behaviors; non-linear combined with linear (case IV) is used to track the mixture of
transitional and boundary scaling behaviors; and linear combined with non-linear combined

2Or data center operator.

55

3. Predicting the Energy and Power Consumption of Strong and Weak Scaling
HPC Applications

with linear (case V) is used to track the mixture of boundary-transitional-boundary scaling
behaviors. For each linear segment, A2EP2 uses ordinary least squares to find a linear
predictor-function which will have an allowed %RMSE with the available data set in that
linear segment. For each non-linear segment, A2EP2 uses spline/polynomial interpola-
tions (including also 1st order splines/polynomials) in order to find a predictor-function
which will have an allowed %RMSE rate with the history data points which are in that
non-linear segment. Although, it could be argued that there is no need for estimating
higher than 2nd order splines/polynomials because of known theoretical boundaries, our
experiments show that in the case of very limited application specific history consump-
tion data, the higher order splines/polynomials are helpful and could result in a better
prediction accuracy for a specific range of compute nodes.

Once the predictor-function is determined by A2EP2, it is then used to predict the
EtS/APC values of the application for a given number of compute nodes (step 4, Fig-
ure 3.6). As can be implied, while A2EP2 implementation approach is generic and can
be used for any HPC application, A2EP2 produces individual results for each unique ap-
plication. A2EP2 adapts with each additionally available EtS/APC data-point of a given
application for improving the accuracy of the determined (for that application) predictor-
function.

The following two sections present the AEPCP EtS and APC prediction results for two
real-world scientific applications: HYDRO and EPOCH. These two applications were cho-
sen specifically for the AEPCP model validation, since in contrast to many kernel and
synthetic benchmarks, which are used to measure and test certain characteristics (e.g. pro-
cessor power, communication rate, etc.) of the target platform, HYDRO and EPOCH as an
actual scientific applications provide a better measure of a real-world performance. The
history data points used throughout the sections were chosen on a random basis: (i) since
the data center has no control on the resource configurations requested by the users; and
(ii) to explicitly show that the AEPCP model is independent from any specific history data.

3.4. AEPCP Validation

Assume that a user has executed HYDRO three times, with the same input problem size,
on compute node counts: 130 with EtS of 7.6 kWh; 135 with EtS of 7.9 kWh; and 220 with
EtS of 7.6 kWh. Assume further, that the application queue of the system RMSS contains a
job of the same user with the same energy tag that was used for the previous three execu-
tions of HYDRO, but this time with a request of 320 compute nodes. In order to understand
whether the corresponding execution of HYDRO will fit into the user’s energy budget, the
knowledge on potential EtS consumption of HYDRO with 320 compute nodes is required.
It is worth noting, that currently, none of the existing RMSSs a priory (i.e. without ex-
plicitly executing HYDRO on 320 compute nodes) provides that knowledge. Whereas,
Figure 3.9 shows the potential of the AEPCP model for provision of this knowledge. The
x-axis in Figure 3.9 represents the compute node count and y-axis represents the corre-
sponding EtS values in kWh. The red circle points correspond to the available (i.e. known)
three EtS values of HYDRO when executed using the three different counts of compute
nodes. The solid red line shows the predictor-function curve, which was determined by
A2EP2 - a spline with a smoothing degree of 1 having an %RMSE of 1% (with the available

56

3.4. AEPCP Validation

EtS values of node counts 130, 135, and 220). This predictor-function estimates a 7.4 kWh
energy consumption for HYDRO when using 320 compute nodes. The green ’x’ point in
Figure 3.9 corresponds to the measured EtS value (7.5 kWh) of HYDRO when executed on
320 compute nodes. As can be seen, the prediction error rate3 for 320 compute nodes is
1.3%.

0 100 200 300 400 500
Number of Nodes

0

2

4

6

8

10

12

14

En
er

gy
-to

-S
ol

ut
io

n
(k

W
h)

Learned EtS Values
Spline with smoothing degree of 1
Real Measurements

Note: available data points are for node numbers: 130, 135,
and 220

Figure 3.9.: HYDRO EtS prediction for
320 compute nodes

0 100 200 300 400 500
Number of Nodes

0

2

4

6

8

10

12

14

En
er

gy
-to

-S
ol

ut
io

n
(k

W
h)

Learned EtS Values
Spline with smoothing degree of 1
Real Measurements

Note: available data points are for node numbers: 130, 135,
220, and 320

Figure 3.10.: EtS prediction curve of
HYDRO under strong
scaling

Figure 3.10 illustrates the adaptability of the developed AEPCP model. It shows the
AEPCP prediction results for the case when, in addition to the three EtS data points (for
node counts: 130, 135, and 220), the EtS value for already executed HYDRO with 320
compute nodes is available to A2EP2. As in the previous case, a spline with a smoothing
degree of 1, but with a different angle, having an %RMSE of 1% with the available four EtS
points was determined by A2EP2 as a predictor-function (red solid line, Figure 3.10). The
green ’-x-x-’ curve illustrates the real measured, and not available to A2EP2, EtS points
for different compute node counts. As can be seen from Figure 3.10, the A2EP2 estimated
predictor-function shows relatively small error rate up to 512 compute nodes. Table 3.1
summarizes the AEPCP prediction results for some compute node counts.

Figure 3.11 shows the measured TtS behavior of HYDRO under strong scaling. As can be
seen, the obtained TtS curve adheres to the theoretical discussions presented in Section 3.2
(Equation 3.2). This further explains the close to ideal scaling EtS behavior of measured
’-x-’ points in Figure 3.10.

Figure 3.12 shows the HYDRO TtS behavior under strong scaling with a smaller input
problem size. In this case, the application scaling saturation point is already reached with
256 compute nodes.

As usual, the red circle points in Figure 3.13 correspond to the available to A2EP2 EtS
values (for node counts: 1,2, 4, 8, 16, 60, and 165). A spline with a smoothing degree of 2
was determined by the A2EP2 having a %RMSE of 1% with the available EtS data points.
Although, the A2EP2 determined quadratic EtS behavior contradicts to the estimated the-

3Calculated as: (| predicted value−measured value | /measured value) ∗ 100.

57

3. Predicting the Energy and Power Consumption of Strong and Weak Scaling
HPC Applications

Number of Nodes Measured EtS Value (kWh) Predicted EtS Value (kWh) Prediction Error3 (%)
115 7.5 7.7 2.7
200 7.7 7.6 1.3
285 7.5 7.3 2.7
300 7.4 7.5 1.4
340 7.5 7.5 0
400 7.5 7.4 1.3
460 7.7 7.3 5.1
500 7.7 7.3 5.2

Table 3.1.: EtS prediction results for some compute node counts when executing
HYDRO under strong scaling

100 150 200 250 300 350 400 450 500
Number of Nodes

0

5

10

15

20

25

30

Ti
m

e-
to

-S
ol

ut
io

n
(m

in
)

Figure 3.11.: Measured TtS of HYDRO under strong scaling

oretical linear boundary (Equation 3.4), it provides an approximation with relative small
error rate when compared with the measured ’-x-x-’ data. On the other hand the A2EP2 es-
timated quadratic predictor shows relative high error rate when the application scaling is
impacted by sequential-to-parallel synchronization and inter-node communication. While
it can be argued that there is no reason for executing an application (and thus conducting
a prediction) on a higher number of nodes than the node count on which the saturation
point for a given application was observed (since no performance increase for that appli-
cation will be recorded), A2EP2 might capture these synchronization and communication
impacts when sufficient data is available.

A study found in [84] discusses in detail these impacts, and shows that even for appli-
cations having a parallelizable fraction p close to 1, the application speedup can decrease
with higher counts of compute resources, i.e. there could be a k number of compute nodes,
for which TtS(k) ≤ TtS(k + 1). This behavior can also be seen for the considered HYDRO
execution case, where a 34% runtime increase can be observed with 500 compute nodes
when compared to 450 compute nodes (17 minutes vs 12 minutes , Figure 3.12). Figure 3.14
illustrates the mentioned A2EP2 option, when EtS values for executing HYDRO with 450
and 500 node counts were additionally available. As can be seen, the scalability limitation
is tracked at the EtS value corresponding to 450 compute node count execution, and the

58

3.4. AEPCP Validation

0 100 200 300 400 500
Number of Nodes

0

100

200

300

400

500

600

700

800

Ti
m

e-
to

-S
ol

ut
io

n
(m

in
)

Figure 3.12.: Measured TtS of HYDRO under
strong scaling (smaller input
problem size)

0 100 200 300 400 500
Number of Nodes

0

2

4

6

8

10

En
er

gy
-to

-S
ol

ut
io

n
(k

W
h)

Learned EtS Values
Spline with smoothing degree of 2
Real Measurements

Note: available data points are for nodes: 1, 2, 4, 8, 16, 60, and 165

Figure 3.13.: EtS prediction curve of HYDRO
under strong scaling (smaller
input problem size)

0 100 200 300 400 500
Number of Nodes

0

2

4

6

8

10

En
er

gy
-to

-S
ol

ut
io

n
(k

W
h)

Learned EtS Values
Combined Prediction Curve
Real Measurements

Note: additionally available data points are for nodes: 450 and 500

Figure 3.14.: Revisited EtS prediction curve
of HYDRO under strong scaling
(smaller input problem size)

previously estimated quadratic function is now combined with the linear function.
Figure 3.15 illustrates the expected TtS behavior of HYDRO under weak scaling (Fig-

ure 3.1). Two EtS values, for compute node counts 6 (with EtS of 0.54 kWh) and 32 (with
EtS of 2.84 kWh), were available to AEPCP for conducting the prediction. Figure 3.16 illus-
trates the prediction results. As can be seen, the estimated linear predictor shows relative
small error rate for up to 512 compute nodes. Table 3.2 summarizes these prediction results
for some compute node counts.

Figure 3.17 shows the execution behavior of EPOCH under strong scaling. EPOCH is a
plasma physics simulation code developed at the University of Warwick as part of the Ex-
tendable PIC Open Collaboration Project [85]. It is based upon the particle push and field

59

3. Predicting the Energy and Power Consumption of Strong and Weak Scaling
HPC Applications

0 100 200 300 400 500
Number of Nodes

0

10

20

30

40

50

60

Ti
m

e-
to

-S
ol

ut
io

n
(m

in
)

Figure 3.15.: Measured TtS of HYDRO
under weak scaling

0 100 200 300 400 500
Number of Nodes

0

10

20

30

40

50

60

En
er

gy
-to

-S
ol

ut
io

n
(k

W
h)

Learned EtS Values
Spline with smoothing degree of 1
Real Measurements

Note: available data points are for nodes: 6, and 32

Figure 3.16.: EtS prediction curve of
HYDRO under weak
scaling

Number of Nodes Measured EtS Value (kWh) Predicted EtS Value (kWh) Prediction Error3 (%)
10 0.9 0.9 0
25 2.2 2.2 0
40 3.6 3.6 0
80 7.2 7.1 1.4
100 9.1 8.9 2.2
200 18.6 17.7 4.8
370 34.3 32.8 4.4
450 41.4 39.9 3.6
512 46.8 45.4 3

Table 3.2.: EtS prediction results for some compute node counts when executing
HYDRO under weak scaling

update algorithms [86]. EPOCH uses the Message Passing Interface (MPI)-parallelized
explicit 2nd order relativistic particle-in-cell method, including a dynamic MPI load bal-
ancing option.

Four EtS values, for node counts 64 with EtS of 8.6 kWh, 75 with EtS of 8.8 kWh, 90 with
EtS of 8.7 kWh, and 128 with EtS of 8.7 kWh, were made available to A2EP2 for executing
the prediction.

A linear predictor-function (solid red line, Figure 3.18), having an %RMSE of 0.8% with
the available four EtS data points, was determined by A2EP2. As usual, the green ’-x-
x-’ curve corresponds to the real measured, and not available to A2EP2 EtS data points.
Table 3.3 recaps the prediction results for some compute node counts.

Figure 3.19 illustrates the execution behavior of EPOCH under weak scaling. Three EtS
data points, for node counts 16 with EtS of 1.1 kWh, 40 with EtS of 2.9 kWh, and 64 with
EtS of 4.5 kWh, were made available to A2EP2 for conducting the prediction.

Figure 3.20 shows the A2EP2 prediction results. Also for this case, a linear predictor-
function (having a %RMSE of 2.2% with the available three EtS data points) is estimated
by A2EP2. Table 3.4 summarizes the A2EP2 prediction results for this case.

60

3.4. AEPCP Validation

0 100 200 300 400 500
Number of Nodes

0

50

100

150

200

250

Ti
m

e-
to

-S
ol

ut
io

n
(m

in
)

Figure 3.17.: Measured TtS of EPOCH
under strong scaling

0 100 200 300 400 500
Number of Nodes

0

5

10

15

20

En
er

gy
-to

-S
ol

ut
io

n
(k

W
h)

Learned EtS Values
Linear Function
Real Measurements

Note: available data points are for nodes: 64, 75, 90 and 128

Figure 3.18.: EtS prediction curve of
EPOCH under strong
scaling

Number of Nodes Measured EtS Value (kWh) Predicted EtS Value (kWh) Prediction Error (%)
16 9.3 8.6 7.5
20 9.4 8.6 8.5
55 9 8.7 3.33

128 8.7 8.7 0
180 8.7 8.7 0
256 8.5 8.8 3.5
340 8.4 8.8 4.76
370 8.4 8.8 4.76
420 8.5 8.9 4.7
475 8.3 8.9 7.2
500 8.5 8.9 4.7
512 8.4 8.9 5.95

Table 3.3.: EtS prediction results for some compute node counts when executing
EPOCH under strong scaling

Number of Nodes Measured EtS Value (kWh) Predicted EtS Value (kWh) Prediction Error (%)
2 0.1 0.1 0
7 0.5 0.5 0
12 0.8 0.8 0
20 1.3 1.4 7.7
32 2.3 2.2 4.34
50 3.3 3.5 6
80 5.6 5.6 0
96 6.3 6.8 7.9

110 7.7 7.8 1.3
185 12.3 13.1 6.5
220 14.6 15.5 6.16
350 23.4 24.7 5.5
460 30.2 32.5 7.6
512 33.8 36.2 7.1

Table 3.4.: EtS prediction results for some compute node counts when executing
EPOCH under weak scaling

61

3. Predicting the Energy and Power Consumption of Strong and Weak Scaling
HPC Applications

0 100 200 300 400 500
Number of Nodes

0

10

20

30

40

50

60

Ti
m

e-
to

-S
ol

ut
io

n
(m

in
)

Figure 3.19.: Measured TtS of EPOCH
under weak scaling

0 100 200 300 400 500
Number of Nodes

0

10

20

30

40

50

En
er

gy
-to

-S
ol

ut
io

n
(k

W
h)

Learned EtS Values
Linear Function
Real Measurements

Note: available data points are for nodes: 16, 40, and 64

Figure 3.20.: EtS prediction curve of
EPOCH under weak
scaling

Figure 3.21 shows the AEPCP APC prediction results for EPOCH using the available
APC values of four node counts: 64, 75, 90, and 128. The x-axis represents the compute
node counts and y-axis represents the corresponding APC values in W. The yellow circle
points correspond to the mentioned four available in PowerDAM database APC values.
The yellow solid line in Figure 3.21 illustrates the curve of a predictor-function, estimated
by the AEPCP model. The green ’-x-x-’ curve shows the measured APC values for different
numbers of compute nodes. As can be seen, for this case the AEPCP estimated predictor-
function shows a relatively small error rate for up to 512 compute node count.

0 100 200 300 400 500
Number of Nodes

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

Av
er

ag
e

Po
w

er
 (W

)

max allowed node number is: 311
 with APC of: 49,869.45 W

Learned APC Values
Real Measurements
Predicted Average Power
Power Limit

Note: available data points are for nodes: 64, 75, 90 and 128

Figure 3.21.: APC prediction curve for EPOCH under strong scaling

62

3.5. AEPCP and the Inhomogeneous Power Consumption of Homogeneous
System Compute Resources

In order to illustrate the usage of AEPCP model within the power capping problem
domain, assume that the data center operator has set a power limit of 50 kW (red dashed
line, Figure 3.21) that must not be violated at any given point in time. The question to
answer here would be: “what is the maximum allowed compute node count for running EPOCH
on SuperMUC in the case of a 50 kW power cap?” Currently, none of the available RMSSs
can answer this question. As can be seen from Figure 3.21, by using the AEPCP model
it is possible to find an answer - the maximum allowed compute node count for running
EPOCH on SuperMUC in the case of a 50 kWh power cap is 311 with a predicted APC of
49, 869.45 W.

3.5. AEPCP and the Inhomogeneous Power Consumption of
Homogeneous System Compute Resources

The conducted observations on the SuperMUC supercomputer (described in Section 2.5)
show that the average power draw of the individual compute nodes differ when executing
the same workload.

Figure 3.22 (a) shows the distribution of the average power draw of the individual com-
pute nodes from SuperMUC thin island 5 when running the single-node MPRIME bench-
mark4. MPRIME is an application-benchmark that searches for Mersenne prime numbers,
i.e. prime numbers of form 2p − 1, using Fast Fourier Transform [87] algorithm. It intro-
duces an intense workload to processor and memory, and because of that reason is usually
used for system stability testing [88]. All the cores of the compute nodes had a maximum
CPU frequency of 2.3 GHz during these single-node benchmarks. The x-axis shows the
observed average power consumption and the y-axis shows the compute node count.

As can be seen, despite the hardware homogeneity across SuperMUC’s island, there is
a maximum of 41 W (which translates to 19.6%) difference (nodes i05r05a19 with 188 W
and i05r03c28 with 229 W) in average power draw of compute nodes within 512 compute
nodes of SuperMUC island 5. Figure 3.22 (b) shows the APC values of some compute
nodes when running the MPRIME benchmark.

The observed variation in the APC of the compute nodes can be explained by the man-
ufacturing tolerances and variations [89] during the fabrication of the integrated circuits.
Since this variation is a hardware property, it will not change with different applications.
It is worth noting that the observed difference could be even higher in Exascale systems,
since the complexity of various hardware components will most likely increase [90].

This difference in the power draw of compute nodes under the same MPRIME workload
was also observed on the CoolMUC system Linux cluster (described in Section 2.5), where
the variation is around 8.4% within 178 compute nodes (nodes lxa11 with 240 W and lxa46
with 261 W), as shown in Figure 3.23.

If the discussed ’power-efficiency’ pattern of system compute nodes is known (Fig-
ure 3.22, Figure 3.23), then the AEPCP model can predict an application’s possible max-
imum and minimum APC values for a given compute node count in case of the RMSS
application-assigned most and least efficient (in terms of average power draw) compute
nodes. Figure 3.24 illustrates this option by extending the Figure 3.21.

4These benchmarks were carried out during the summer time, when the inlet temperature of the compute

63

3. Predicting the Energy and Power Consumption of Strong and Weak Scaling
HPC Applications

0

5

10

15

20

25

30

35

40

45

50

188 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 227 229

Average Node Power (watt)

Count of Node

(a)

bode Average Node Power (watt)
 i05r01a03 208

 i05r01a04 202

 i05r01a05 207

 i05r01a06 221

 i05r01a07 203

 i05r01a08 206

 i05r01a09 203

 i05r01a10 215

i05r01a11-ib 209

 b i05r01a12 212

i05r01a13-ib 205

 i05r01a14-ib 211

 i05r01a15-ib 214

 i05r01a16-ib 216

 i05r01a17-ib 211

i05r01a18-ib 213

i05r01a19 215

 i05r01a20-ib 209

i05r01a21-ib 208

i05r01a22-ib 211

i05r01a23-ib 203

i05r01a24-ib 213

i05r01a25-ib 211

i05r01a26-ib 205

i05r01a27-ib 206

i05r01a28-ib 206

i05r01a29-ib 200

i05r01a30-ib 210

i05r01a31-ib 201

i05r01a32-ib 212

i05r01a33-ib 218

i05r01a34-ib 205

i05r01a35-ib 208

i05r01a36-ib 223

i05r01a37-ib 204

i05r01a38-ib 222

i05r01c03-ib 203

i05r01c04-ib 204

i05r01c05-ib 207

i05r01c06-ib 205

i05r01c07-ib 199

i05r01c08-ib 210

i05r01c09-ib 201

i05r01c10-ib 209

i05r01c11-ib 211

i05r01c12-ib 209

i05r01c13-ib 205

i05r01c14-ib 208

i05r01c15-ib 203

 i05r03c1 8-ib

212

i05r03c19-ib 215

i05r03c20-ib 212

 i05r03c21-ib 210

 i05r03c22-ib 216

i05r03c23-ib 211

 i05r03c24 210

 i05r03c25 212

 i05r03c26 221

 i05r03c27 211

 i05r03c28 229

 i05r03c29 216

i05r03c30-ib 211

i05r03c31 215

i05r03c32-ib 211

i05r03c33-ib 210

i05r03c34-ib 214

i05r03c35-ib 210

i05r03c36-ib 217

i05r03c37-ib 207

i05r03c38-ib 210

i05r03c39-ib 206

i05r03c40-ib 220

i05r04a03-ib 208

i05r04a04-ib 205

i05r04a05-ib 209

i05r04a06-ib 209

i05r04a07-ib 208

i05r04a08-ib 209

i05r04a09-ib 200

i05r04a10-ib 206

i05r04a11-ib 207

i05r04a12-ib 200

i05r04a13-ib 210

i05r04a14-ib 215

i05r04a15-ib 201

i05r04a16-ib 213

i05r04a17-ib 210

i05r04a18-ib 204

i05r04a19-ib 207

i05r04a20-ib 213

i05r04a21-ib 203

i05r04a22-ib 208

i05r04a23-ib 211

i05r04a24-ib 209

i05r04a25-ib 208

i05r04a26-ib 202

i05r04a27-ib 209

i05r04a28-ib 203

i05r04a29-ib 205

i05r05a06-ib 211

i05r05a07-ib 204

i05r05a08-ib 203

i05r05a09-ib 207

i05r05a10-ib 205

i 05r05a11-ib 201

i05r05a12-ib 206

i05r05a13-ib 206

i05r05a14-ib 206

i05r05a15-ib 209

 i05r05a16 218

 i05r05a17 215

 i05r05a18 203

 i05r05a19 188

 i05r05a20 211

 i05r05a21 207

i05r05a22-ib 208

i05r05a23-ib 208

i05r05a24-ib 213

i05r05a25-ib 210

 i05r05a26-ib 207

i05r05a27-ib 205

i05r05a28-ib 211

i05r05a29-ib 212

 i05r05a30-ib 209

i05r05a31-ib 210

i05r05a32-ib 218

i05r05a33-ib 207

i05r05a34-ib 206

i05r05a35-ib 205

i05r05a36-ib 207

i05r05a37-ib 198

i05r05a38-ib 219

i05r05c03-ib 215

i05r05c04-ib 218

i05r05c05-ib 216

i05r05c06-ib 215

i05r05c07-ib 200

i05r05c08-ib 206

i05r05c09-ib 208

i05r05c10-ib 202

i05r05c11-ib 216

i05r05c12-ib 210

i05r05c13-ib 207

i05r05c14-ib 208

i05r05c15-ib 214

i05r05c16-ib 212

i05r05c17-ib 209

i05r05c18-ib 206

i05r05c19-ib 210

...

...

...

...

i05r05a10-ib 205

i05r05a11-ib 201
i05r05a12 206

i05r05a13-ib 206

i05r05a14-ib 206

i05r05a15-ib

209

i05r05a16-ib 218

i05r05a17-ib 215

i05r05a18-ib 203

i05r05a19-ib 188

i05r05a20-ib 211

i05r05a21-ib 207

i05r05a22-ib 208

i05r05a23-ib 208

i05r05a24-ib 213

i05r05a25-ib 210

i05r05a26-ib 207

i05r05a27-ib 205

i05r05a28-ib 211

 i05r05a29-ib 212

i05r05a30-ib 209

i05r05a31-ib 210

 i05r05a32-ib 218

i05r05a33-ib 207

i05r05a34-ib 206

 i05r05a35 205

 i05r05a36 207

 i05r05a37 198

 i05r05a38 219

 i05r05c03 215

 i05r05c04 218

 i05r05c05 216

 i05r05c06 215

 i05r05c07 200

 i05r05c08 206

i05r05c09-ib 208

i05r05c10-ib 202

i05r05c11-ib 216

i05r05c12-ib 210

i05r05c13-ib 207

i05r05c14-ib 208

i05r05c15-ib 214

i05r05c16-ib 212

i05r05c17-ib 209

i05r05c18-ib 206

i05r05c19-ib 210

(b)

Figure 3.22.: Average power draw of compute nodes for the SuperMUC island 5 when
executing MPRIME at 2.3 GHz maximum CPU frequency

nodes was set to 40 °C.

64

3.5. AEPCP and the Inhomogeneous Power Consumption of Homogeneous
System Compute Resources

0

2

4

6

8

10

12

14

16

18

20

240 243 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261

Average Node Power (watt)

Count of Node

(a)

Node Average Node Power (watt)
lxa9 250

lxa10 254

lxa11 240

lxa12 248

lxa13 247

lxa14 248

lxa15 243

lxa16 250

lxa45 247

lxa46 261

lxa47 247

lxa48 246

lxa49 247

lxa50 251

lxa51 249

lxa52 245

lxa53 253

lxa54 249

lxa55 255

lxa56 257

lxa150 257

lxa151 243

lxa152 253

lxa153 251

lxa154 252

lxa155 256

lxa156 258

lxa157 257

lxa158 258

lxa159 255

lxa160 257

lxa161 255

lxa162 260

lxa163 249

...

...

...

lxa9 250

lxa10 254

lxa11 240

lxa12 248

lxa13 247

lxa14 248

lxa15 243

lxa16 250

lxa45 247

lxa46 261

lxa47 247

lxa48 246

lxa49 247

lxa50 251

lxa51 249

lxa52 245

lxa53 253

lxa54 249

lxa55 255

lxa56 257

lxa150 257

lxa151 243

lxa152 253

lxa153 251

lxa154 252

lxa155 256

lxa156 258

lxa157 257

lxa158 258

lxa159 255

lxa160 257

lxa161 255

lxa162 260

lxa163 249

...

...

...

...

...

...

(b)

Figure 3.23.: Average power draw of compute nodes for the CoolMUC Linux cluster when
executing MPRIME at 2.0 GHz maximum CPU frequency

The red dashed line in Figure 3.24 illustrates the predicted worst-case APC behavior,
i.e. when all the compute nodes demonstrate the least efficient power behavior. This is
accomplished through the Equation 3.8, where AEPCP normalizes the available history
APC values to the usage of the worst (i.e. least efficient) compute node.

The blue dotted line in Figure 3.24 illustrates the predicted best-case APC behavior, i.e.

65

3. Predicting the Energy and Power Consumption of Strong and Weak Scaling
HPC Applications

Data center
specified power

cap

System-vendor provided
approximation for 311
nodes is: 118,108.47 W

AEPCP predicted maximum
APC for node number 311
is: 55,993.13 W

Note: available data points are for nodes: 64, 75, 90 and 128

Figure 3.24.: TDP vs AEPCP APC prediction results for EPOCH

when all the compute nodes demonstrate the most efficient power behavior. This is ac-
complished through the Equation 3.9, where AEPCP normalizes the available history APC
values to the usage of the best (i.e. most efficient) compute node.

‖ APC(J)i ‖max= APC(J)i +
∑

u utilized node of J

(Pmax − Pu) (3.8)

‖ APC(J)i ‖min= APC(J)i −
∑

u utilized node of J

(Pu − Pmin) (3.9)

where

• APC(J)i - is the average power draw of job J using i compute nodes

• Pu - is the average power draw of compute node u obtained from the system compute
node power classification

• Pmin - is the average power draw of the most efficient (in terms of average power
consumption) system compute node

• Pmax - is the average power draw of the least efficient (in terms of average power
consumption) system compute node

As can be seen, the real APC measurements (the green ’-x-x-’ line, Figure 3.24) and the
AEPCP predicted APC values (yellow solid line, Figure 3.24) stay in between the predicted

66

3.5. AEPCP and the Inhomogeneous Power Consumption of Homogeneous
System Compute Resources

worst and best case APC behaviors. It could have further argued that the system-vendor
provided TDP value [12] could have been used for estimating the worst-case APC behavior
of an application for a given number of compute nodes - by multiplying the vendor pro-
videdPone node TDP value by the n number of application requested compute nodes. The
cyan ’-.-’ line in Figure 3.24 illustrates these Pone node · n approximation. While correct,
this approach is impractical. For example, in the case of a data center operator specified
100 kW power cap (black dashed line, Figure 3.24), the usage of system-vendor provided
approximation will disallow the execution of EPOCH with 311 compute nodes, since it will
estimate a power consumption of 118, 108.47 W. Whereas, the usage of AEPCP will show
that even for the worst case scenario (i.e. when all the RMSS assigned compute nodes have
the least power-efficiency), the execution of EPOCH with 311 compute nodes is allowed
within the specified 100 kW power cap. As can be seen, the TDP based approach leads to
roughly two times higher value as compared to the one estimated by the AEPCP model
(118, 108.47 W vs 55, 993.13 W).

0 100 200 300 400 500
Number of Nodes

0

20000

40000

60000

80000

100000

Av
er

ag
e

Po
w

er
 (W

)

Learned APC Values
Predicted Minimum Average Power
Predicted Maximum Average Power
Real Measurements
Predicted Average Power

Note: available data points are for nodes: 16, 40 and 64

Figure 3.25.: Max and Min APC values for
EPOCH under weak scaling

0 100 200 300 400 500
Number of Nodes

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

Av
er

ag
e

Po
w

er
 (W

)

Learned APC Values
Predicted Minimum Average Power
Predicted Maximum Average Power
Real Measurements
Predicted Average Power

Note: available data points are for nodes: 130, 135, 220, and
320

Figure 3.26.: Max and Min APC values for
HYDRO under strong scaling

0 100 200 300 400 500
Number of Nodes

0

20000

40000

60000

80000

100000

Av
er

ag
e

Po
w

er
 (W

)

Learned APC Values
Predicted Minimum Average Power
Predicted Maximum Average Power
Real Measurements
Predicted Average Power

Note: available data points are for nodes: 6, and 32

Figure 3.27.: Max and Min APC values for
HYDRO under weak scaling

67

3. Predicting the Energy and Power Consumption of Strong and Weak Scaling
HPC Applications

Figure 3.25, Figure 3.26, and Figure 3.27 show the AEPCP APC prediction results for
EPOCH weak scaling, HYDRO strong scaling and HYDRO weak scaling correspondingly.
As can be seen, all the three AEPCP estimated predictor-function curves show very small
deviation rates from the measured green ’-x-’ APC values.

3.6. Measurement Accuracy on SuperMUC

The EtS/APC/TtS measurement data for the benchmarks on SuperMUC are obtained from
the SuperMUC’s RMSS LoadLeveler, which in its turn relies on the paddle cards. To ensure
the measurement accuracy, four re-executions of the EPOCH benchmark on the same set
of compute nodes were conducted. Table 3.5 summarizes the results. The first column of
the table shows the utilized node count, the second column shows the measured EtS in
kWh, the third column shows the TtS in minutes, and finally the forth column shows the
observed maximum error between the measurements conducted for the same number of
nodes.

Number of Nodes Measured EtS Value (kWh) TtS (min) Maximum Error (%)

20

9.4 171

< 1.2
9.3 170
9.4 171
9.4 171

90

8.7 36

< 1.2
8.6 36
8.7 36
8.7 36

180

8.7 18

< 1.2
8.6 18
8.6 18
8.7 18

256

8.5 12

< 1.2
8.5 13
8.5 13
8.6 13

Table 3.5.: EPOCH strong scaling rerun on the same set of compute nodes

As can be seen, the measurement error per node count does not exceed 1.2%. The study
found in [28] has also shown the high accuracy of the paddle card measurements, by using
higher-level instrumentation points integrated in SuperMUC’s PDUs. Thus, it can be fur-
ther assumed that the quality of a single measurement (independently from the number
of utilized compute nodes) is relatively high, thus dismissing the need of any benchmark
re-execution.

3.7. AEPCP Features and Summary

An adaptive model, referred to as Adaptive Energy and Power Consumption Predictor
(AEPCP), which allows for predicting the EtS and APC values of a given application with

68

3.7. AEPCP Features and Summary

respect to the given number of utilized compute nodes was presented. This chapter also
showed that there exists a variation in the average power consumption of the two newer
homogeneous (in terms of the installed compute nodes) HPC systems’ compute nodes.

The presented AEPCP model could be a very interesting solution for HPC data centers,
since it requires no application specific information. The chapter showed the validity of
the model using two real-world scientific applications. It also described the applicability
of the AEPCP model for the discussed in Chapter 1 two most important use cases.

The following bullet points summarize the main features of the developed AEPCP model:

• the AEPCP modeling approach is application neutral, i.e. does not require any
knowledge on application type (e.g. communication, computation, or memory in-
tensive), on scaling properties, or on any other application internal property;

• the prediction accomplished through the AEPCP model does not require any appli-
cation code instrumentation;

• AEPCP does not introduce any application performance degradation;

• AEPCP allows for ahead of time EtS/APC prediction of a given application for a
given number of compute nodes and does not require any partial/phase application
executions;

• AEPCP automatically captures the complexity of the underlying hardware platform
by taking the input data directly from the system [32], i.e. does not require any
manual tuning of application properties or architectural peculiarities of the target
platform;

• AEPCP can predict the maximum and minimum energy and power consumptions
of the application depending on the RMSS assigned “worst” and “best” (in terms of
APC) compute nodes;

• AEPCP provides a generic solution that can be used for each application, but pro-
duces an application specific result;

• AEPCP adapts with each additionally available application specific EtS/APC data
point, thus improving the prediction accuracy for that application; and

• the prediction accomplished through AEPCP can be done automatically (if required,
transparent from user) for any queued or running set of HPC applications.

69

3. Predicting the Energy and Power Consumption of Strong and Weak Scaling
HPC Applications

70

4. Advancing the Adaptive Model to Support
for Prediction of Energy Consumption
Relevant Indicators For Different Compute
Resource Configurations9

4.1. Preface

Chapter 3 presented an Adaptive Energy and Power Consumption Predictor (AEPCP)
model, that allowed for the prediction of the APC and EtS of a given parallel application
for a given number of compute nodes. The AEPCP model is based on analytical models
[74, 78, 75] that do not take into account the possibility of the operating maximum CPU
frequency modification.

Figure 4.1.: EtS profile of HYDRO with different numbers of utilized compute nodes and
CPU frequencies

In reality, these two metrics could be different for the same application when executed

9This chapter is partly based on the following previous work of the author: Hayk Shoukourian et al. Predict-
ing Energy Consumption Relevant Indicators of Strong Scaling HPC Applications for Different Compute Resource
Configurations. Proceedings of the 23rd High Performance Computing Symposium, Society for Modeling and Sim-
ulation International (SCS), 2015.

71

4. Advancing the Adaptive Model to Support for Prediction of Energy
Consumption Relevant Indicators For Different Compute Resource Configurations

with different Resource Configuration (RC), where RC is defined as a pair (a; b) - a repre-
senting the number of compute resources and b indicating the maximum CPU frequency
of the compute resources. Figure 4.1 and Figure 4.2 show this behavior for the EtS met-
ric case for two different real-world HPC applications - correspondingly for HYDRO and
EPOCH. As can be seen the EtS behaviors of HYDRO as well as EPOCH notably vary with
different RC.

Figure 4.2.: EtS profile of EPOCH with different numbers of utilized compute nodes and
CPU frequencies

This chapter will extend the previously developed AEPCP process to enable the devel-
opment of analytical models for estimating the TtS, APC, and EtS metrics for large-scale
applications, demonstrating strong scaling, as functions of RC. Based on these analytical
models, an adaptive model, referred to as Lightweight Adaptive Consumption Predic-
tor (LACP) will be presented that implements the extended prediction process. The LACP
model allows for improved estimation of potential energy-performance costs and trade-
offs of various applications and also, as will be seen in Chapter 6, assists in identifying the
optimal RC for given applications with regard to specific data center boundary conditions.

4.2. Modeling Application KPIs: State of the Art and Perspectives

Ge et al. [91] suggest analytical models to estimate performance and energy consumption
for a given parallel application on multi-core based power aware systems. The authors in
[91] further split the serial (1 − p) fraction of the application (Section 3.2) into processor
frequency dependent fraction: (1 − p)αs, i.e. fraction that benefits from faster processor
speed; and processor frequency independent fraction: (1−p)(1−αs), i.e. fraction that does

72

4.2. Modeling Application KPIs: State of the Art and Perspectives

not benefit from the processor speed 1. Similarly, the application parallel fraction p is split
into processor frequency dependent fraction: pαp; and processor frequency independent
fraction: p(1− αp). Based on these notations, Ge et al. approximate the TtS execution time
of an application for given n total number of cores, c per compute node allocated number
of cores, and f processor frequency as follows:

TtS(n, c, f) = (1− p)(1− αs + αs
f0
f

) +
p

n
(1− αp + αp

f0
f

) +On,c,f (4.1)

where f0 is the base CPU frequency and On,c,f is the parallelization overhead. Since for
most supercomputers the compute node is the smallest compute resource a job can use,
it is assumed that the number of cores c per compute node is constant and, therefore, the
term c is omitted from further discussions and n is further considered as the number of
compute nodes.

Although Ge et al. [91] derive the analytical models for an application execution time,
power and energy consumptions, as well as investigate the application energy-performance
efficiency, the derivation process of the parameters presented in their analytical models is
not automated [91] and in general should be derived through linear regression using the
data obtained from experimental benchmarks. It is worth noting that, for example, in
order to derive the parallelizable and not parallelizable, or frequency dependent and inde-
pendent fractions of a given parallel application, a usage of extra tools would be required
to detect these application fractions. This process, besides causing execution time penal-
ties/overheads for individual applications, might be impractical in real-world scenarios
where typically myriad of applications with different characteristics are used.

In order to mitigate this problem, a further refinement of the application TtS, APC, and
EtS metrics is presented. These refined functions will approximate the the mentioned three
TtS, APC, and EtS metrics behaviors explicitly from the n number of compute nodes and f
maximum operating CPU frequency (at which all the cores of all n compute nodes operate)
and will treat the parallelizable and not parallelizable (as well as frequency dependent and
independent) fractions of the application as constant fitting parameters.

Equation 4.1 can be approximated as [92]: TtS(n, f) ∈ O
�
1
�

+ O
�
1
f

�
+ O

�
1
n

�
+ O

�
1
nf

�
+

O
�
On,f

�
. The term On,f , representing the parallel slowdown, can be further broken down

and approximated using the following observations. First, the overhead On,f arises due to
the parallelizable fraction of the application. Second, during the execution of the par-
alellizable and frequency independent fraction of the application the resulting parallel
overhead of n compute nodes is of the order of O

�
n
�
. Whereas during the execution of

the parallelizable and frequency dependent fraction the parallel overhead is of the or-
der of O

�
n
f

�
, since the overhead time gets reduced as the processor frequency increases.

Thus complete parallel slowdown On,f is of O
�
n + n

f

�
order, which further means that

TtS(n, f) ∈ O
�
1
f + 1

n + 1
nf + n + n

f

�
. Therefore, the TtS(n, f) for given n compute nodes

and f CPU frequency can be approximated as follows:

TtS(n, f) =
t1
f

+
t2
n

+
t3
nf

+ t4n+ t5
n

f
+ t6 (4.2)

where all ti (1 ≤ i ≤ 6) are constant fitting parameters.
1Some of the terminology defined in [91] has been borrowed for consistency reasons.

73

4. Advancing the Adaptive Model to Support for Prediction of Energy
Consumption Relevant Indicators For Different Compute Resource Configurations

The proposed by Ge et al. [91] analytical model for estimating the node power con-
sumption requires additional estimations of dynamic to idle power scaling factors (which
are application and target hardware platform dependent). In addition, the model does not
explicitly show the dependency from the operating f CPU frequency of the compute node.
In order to cover these gaps, the following observations have been done. First, since CPU
and memory are the major power consuming resources in a typical compute node [93],
and also the ones, which could potentially vary with processor frequency, they are further
treated individually as also done in [91]. The break down of one compute node average
power consumption APC(1, f) for a given frequency f can be done in the following way:

APC(1, f) = PCPU,dynamic + PCPU,idle + Pmemory,dynamic + Pmemory,idle + Pother (4.3)

where PCPU,dynamic indicates the power sum of all cores of the compute node when
all cores execute some workload; PCPU,idle quantifies the power sum of all cores of the
compute node when there is no application running on any of the cores; Pmemory,dynamic

represents the power consumption of compute node dynamic memory; Pmemory,idle rep-
resents the power consumption of compute node memory when it is idling; and Pother

shows the aggregated power consumption of the other components of the compute node
such as hard drives, Peripheral Component Interconnect (PCI) slots, etc. It is further as-
sumed, that the CPU frequency modification is accomplished through the CPU multiplier
and not through the processor base clock, thus this modification has no any impact on the
operating memory frequency, and thus also on power consumption of memory, as well as
on the power consumption of other compute node components.

The power consumption of an operating CPU at a given frequency f can be summarized
through the following equation (as shown in [24]):

Pcpu,dynamic = Pswitching + Pshort−circuit + Pstatic

= αCLV
2
ddf + Pshort−circuit + Pstatic

(4.4)

where α is the switching activity factor, i.e. the probability of the circuit node transi-
tion from 0 to 1; CL is the load capacitance; Vdd is the supply voltage; and Pshort−circuit
is the power leakage aroused due to the short-circuit current flowing from supply to
ground when both P-type Metal-Oxide-Semiconductor (pMOS) and N-type Metal-Oxide-
Semiconductor (nMOS) stacks are conducted. A survey conducted by H. Veendrick [94]
provides an in-depth analysis of Pshort−circuit power dissipation. The Pstatic is the static
power dissipation of the processor aroused due to the subthreshold leakage, the gate leak-
age, the junction leakage, and the contention current [24].

Due to the fact that, in the most of the current processor generations, the supply volt-
age Vdd linearly depends on the operating frequency f [95], the following is deducted:
Pswitching ∈ O

�
f3
�
. Since the dynamic power is usually dominated by Pswitching power of

charging and discharging load capacitances as gates switch [24, 96], the Pshort−circuit and
Pstatic can be considered as constant in this case, i.e. Pshort−circuit ∈ O

�
1
�
, Pstatic ∈ O

�
1
�

and thus Pcpu,dynamic ∈ O
�
f3 + 1

�
, leading to:

Pcpu,dynamic = a1f
3 + a2 (4.5)

74

4.2. Modeling Application KPIs: State of the Art and Perspectives

where a1, and a2 are constant fitting parameters. On the other hand, when a proces-
sor is idle, the power dissipation is determined by the leakage, i.e. Pstatic [24]. Due to
the DVFS done by the PCU of energy-saving features enabled processors [14], the power
supply voltage of the processor is always reduced during the idling periods (thus also the
frequency) to an optimal point, and hence, it can be assumed that Pstatic ∈ O

�
1
�
. There-

for by using Equation 4.3 the average power consumption of one node can be derived as
APC(1, f) ∈ O

�
f3 + 1

�
for a given CPU frequency f , and the average power consumption

of n nodes, i.e. APC(n, f), for a given global frequency f will be of order O
�
nf3 + n

�
,

which further means that:

APC(n, f) = k1nf
3 + k2n+ k3 (4.6)

where k1, k2, and k3 are constant fitting parameters. Below the summary of the TtS,
APC, and EtS approximations for each fraction (as defined above) of a given application:

• fraction 1 - serial and frequency dependent. For this fraction TtS1(n, f) ∈ O
�
1
f

�
2.

Since only 1 node is active during the application serial fraction execution and the
rest n − 1 nodes are idling and thus consuming O

�
1
�

power, APC1(n, f) ∈ O
�
f3 +

(n− 1)
�

= O
�
f3 + n

�
, and thus EtS1(n, f) = TtS1(n, f)APC1(n, f) ∈ O

�
f2 + n

f

�
;

• fraction 2 - serial and frequency independent. For this fraction TtS2(n, f) ∈ O
�
1
�

2. In
this case, APC2(n, f) = APC1(n, f) ∈ O

�
f3 + n

�
, thus EtS2(n, f) ∈ O

�
f3 + n

�
;

• fraction 3 - parallel and frequency dependent. For this fraction TtS3(n, f) ∈ O
�

1
nf

�
2.

In this case, all n compute nodes are active and consuming O
�
nf3 + n

�
power in

total. Thus the energy consumption for a given number n of compute nodes and
CPU frequency f , is given by: EtS3(n, f) = O

�
f2 + 1

f

�
;

• fraction 4 - parallel and frequency independent. For this fraction TtS4(n, f) ∈ O
�
1
n

�
2,

and APC4(n, f) = APC3(n, f) = O
�
nf3 +n

�
. Thus for a given n number of compute

nodes and f global CPU frequency the EtS4(n, f) energy consumption for this case
will be of order O

�
f3 + 1

�
;

• fraction 5 - parallel overhead. For this fraction TtS5(n, f) ∈ O
�
n
f + n

�
3. Since all n

compute nodes could be active during this period, the total power APC5(n, f) and
energy EtS5(n, f) consumptions for the parallel overhead fraction for given n com-
pute nodes when all are running at a given frequency f is: APC5(n, f) = APC4(n, f) =

APC3(n, f) ∈ O
�
nf3 + n

�
; EtS5(n, f) = O

�
n2f2 + n2

f + n2f3 + n2
�
.

Thus the total EtS energy consumption of an application (representing the sum of all
the five above listed fractions) for given n compute nodes when all the cores of which are
running at a given frequency f can be approximated through the following equation:

2Implied from Equation 4.1.
3As discussed for Equation 4.2.

75

4. Advancing the Adaptive Model to Support for Prediction of Energy
Consumption Relevant Indicators For Different Compute Resource Configurations

EtS(n, f) =
5∑
i

EtSi(n, f) =b1f
2 + b2

n

f
+ b3f

3 + b4n+
b5
f

+ b6+

b7n
2f2 + b8

n2

f
+ b9n

2f3 + b10n
2

(4.7)

where all bi (1 ≤ i ≤ 10) are constant fitting parameters.

4.2.1. Analysis of the Energy Model

In case an application demonstrates ideal scaling (i.e. when the application parallelizable
fraction p equals to 1 and thus the serial fraction (1−p) becomes 0) then the EtS1 = EtS2 = 0.
When assuming also that the parallel slowdown (fraction 5) is negligible during the ideal
scaling (i.e. EtS5 = 0), Equation 4.7 can be rewritten in the following way:

EtS(n, f) = EtS3(n, f) + EtS4(n, f) = c1f
3 + c2f

2 +
c3
f

+ c4 (4.8)

where all ci (1 ≤ i ≤ 4) are constants. This further means that, in the case of ideal
scaling, the usage of more compute nodes would potentially increase the performance (i.e.
the TtS runtime, since in the case of ideal scaling: TtS(n, f) ∈ O

�
1
nf + 1

n

�
) without any

additional energy costs, as also mentioned in [91] and in Subsection 3.2.1. Meantime, the
increase in CPU frequency would potentially bring a cubic rise in the energy costs.

Although application TtS improvement reduces the application EtS consumption, the
further adjustment of TtS via CPU frequency scaling can still improve the performance by
trading-off the energy consumption. Figure 4.3 illustrates this scenario for the case of a

CPU Frequencies

En
er

g
y-

to
-S

o
lu

ti
o

n

𝒇𝒌−𝟏 𝒇𝒌+𝟏𝒇𝒌

Figure 4.3.: The EtS behavior from the operating CPU frequency in case of a fixed n number
of compute nodes

76

4.3. IBM LoadLeveler Alone

fixed n number of application to-be-utilized compute nodes, when the TtS can be approx-
imated as4 k1

f and APC as k2 · f3, leading to the EtS = TtS ·APC = k3 · f2 approximation,
where all the ki (1 ≤ i ≤ 3) are constant fitting parameters.

Consider three different CPU frequencies: fk−1 < fk < fk+1 as illustrated in Figure 4.3.
Since fk < fk+1 then TtS(n, fk) > TtS(n, fk+1), while as can be seen from the Figure 4.3,
EtS(n, fk) < EtS(n, fk+1), which further means that the decrease of the execution time
does not lead to a corresponding decrease in energy consumption. On the other hand, since
fk−1 < fk then APC(n, fk−1) < APC(n, fk), while, as can be seen from the Figure 4.3,
EtS(n, fk−1) > EtS(n, fk), meaning that the decrease of the average power consumption does
not necessarily lead to corresponding decrease in energy consumption either.

4.3. IBM LoadLeveler Alone

IBM LoadLeveler [58] is the RMSS used in the SuperMUC supercomputer. LoadLeveler
has a prediction model [35] for estimating the application runtime, power and energy con-
sumptions when executed using different CPU frequencies for a fixed number of compute
nodes. A recent study found in [28] shows the high accuracy rate of the predictions ac-
complished through the LoadLeveler model.

Figure 4.4 presents a sample LoadLeveler prediction output for the HYDRO application-
benchmark, when it was executed using 210 compute nodes. As can be seen, for a given
210 compute node count execution of HYDRO, LoadLeveler estimates the per node energy
consumption (second column, i.e. “EstDCEngCons(kWh)”), the total application runtime
(fourth column, i.e. “EstTime(Sec)”), and the per node average power consumption (the
last, sixth column, i.e. “Power (W)”) for all platform supported operating CPU frequencies.

Figure 4.4.: Sample output of LoadLeveler CPU prediction results for HYDRO when
executed on 210 compute nodes

It can be further argued that the information regarding the application’s TtS, APC, and

4It is assumed that the application has a non-zero processor frequency dependent fraction, since the opposite
would indicate that there is no any computation routine within the application.

77

4. Advancing the Adaptive Model to Support for Prediction of Energy
Consumption Relevant Indicators For Different Compute Resource Configurations

EtS with respect to a given compute node count and operating CPU frequency can be easily
derived from the above data by multiplying these LoadLeveler results with corresponding
numbers of compute nodes. Table 4.1 shows that this “simple-multiplication” approach
leads to a low prediction accuracy.

The first column of Table 4.1 shows the compute node count used for comparison; the
second column shows the CPU frequencies; the third column shows the measured energy
consumption for a given resource configuration; the fourth column shows the predicted en-
ergy consumption using the above mentioned multiplication method for the correspond-
ing resource configuration; and finally, the fifth column shows the prediction error rate of
the used method calculated as: |measured−predicted|

measured ∗ 100.

Number of Compute
Nodes

CPU Frequency
(GHz)

Measured EtS
Value (kWh)

LoadLeveler Predicted
EtS Value (kWh)

Prediction Error
Rate (%)

150

1.6 18.16 12.38 31.8
1.8 17.75 12.16 31.49
2.3 17.76 12.29 30.79
2.7 18.66 12.93 30.7

210

1.6 17.65 17.33 1.8
1.8 17.21 17.03 1.05
2.3 17.21 17.21 0
2.7 17.97 18.11 0.78

320

1.6 18.48 26.41 43
1.8 18.31 25.95 41.7
2.3 17 26.22 54.23
2.7 17.57 27.6 57

Table 4.1.: Prediction results for HYDRO using data obtained from IBM LoadLeveler
for 210 compute nodes

The “− − −” highlighted circle in Table 4.1 illustrates the LoadLeveler predicted data for
210 compute nodes. The rows above and below the “− − −” highlighted circle in Table 4.1
show the predicted EtS (using the above mentioned “simple-multiplication” approach) for
HYDRO when executed using 150 and 320 compute nodes5 at different operating CPU
frequencies. As can be seen, the suggested multiplication approach has a prediction error
rate of more than 30% for less/greater than 210 count of compute nodes.

It can be further argued that for a fixed frequency f , the knowledge on application ex-
ecution time with n compute nodes can be derived from the knowledge of application
execution time with k compute nodes using the p = 1 special case of Amdahl’s law, shown
in Equation 3.2 (i.e. assuming that the considered application is completely parallelizable).
Equation 4.9 shows this derivation, where the TtSmeasured(k, f) is the known application
execution time with k compute nodes at frequency f .

TtSpredicted(n, f) =
TtSmeasured(k, f) · k

n
(4.9)

Note, that according to Amdahl’s law, in case of p = 1, the numerator of the fraction
on the right hand side of the Equation 4.9 represents the application execution time with 1
compute node, i.e. TtS(1).

5These node counts were chosen on a random basis.

78

4.3. IBM LoadLeveler Alone

Since LoadLeveler predicts the per node APC of an application when it is executed using
k nodes (denoted as APCmeasured(k, f)for one node), the knowledge on application APC with
n compute nodes can be derived by just multiplying this APCmeasured(k, f)for one node by n
count of compute nodes. Equation 4.10 shows this approximation.

APCpredicted(n, f) = APCmeasured(k, f)for one node · n (4.10)

EtS, being the product of TtS and APC, can be then calculated using the Equation 4.11.

EtSpredicted(n, f) = TtSpredicted(n, f) ·APCpredicted(n, f) (4.11)

Table 4.2, Table 4.3, and Table 4.4 correspondingly show the TtS, APC, and EtS predic-
tion results, for compute node counts6 105 and 510, correspondingly estimated through
Equation 4.9, Equation 4.10, and Equation 4.11 using the LoadLeveler predicted data for
210 compute node count.

Number of Compute
Nodes

CPU Frequency
(GHz)

Measured TtS
Value (sec)

LoadLeveler Based TtS
Predicted Value (sec)

Prediction Error
Rate (%)

105 2.3 3913 3736 4.52
210 2.3 1868 1868 0
510 2.3 859 769.17 10.45

Table 4.2.: Revisiting the IBM LoadLeveler based node scaling prediction for TtS

Number of Compute
Nodes

CPU Frequency
(GHz)

Measured APC
Value (W)

LoadLeveler Based APC
Predicted Value (W)

Prediction Error
Rate (%)

105 2.3 17751.93 16580.55 6.6
210 2.3 33218.34 33161.1 0.17
510 2.3 74071 80534.1 8.72

Table 4.3.: Revisiting the IBM LoadLeveler based node scaling prediction for APC

Number of Compute
Nodes

CPU Frequency
(GHz)

Measured EtS
Value (kWh)

LoadLeveler Based EtS
Predicted Value (kWh)

Prediction Error
Rate (%)

105 2.3 19.27 17.2 10.7
210 2.3 17.2071 17.20719 0
510 2.3 17.6741 17.2067 2.64

Table 4.4.: Revisiting the IBM LoadLeveler based node scaling prediction for EtS

Although, a drastic prediction quality improvement can be observed (as compared to
the earlier suggested “simple-multiplication” method), Figure 4.5 shows that this second
approach will also not be applicable in real world scenarios.

Indeed, assume that an application was executed using 100 compute nodes and the
LoadLeveler TtS, APC, and EtS prediction data is available for any (100, f) RC. Following

6These node numbers were chosen on a random basis.

79

4. Advancing the Adaptive Model to Support for Prediction of Energy
Consumption Relevant Indicators For Different Compute Resource Configurations

the Equation 4.9, the execution time of this application for 200 compute nodes at a given f
CPU frequency can be approximated as:

TtS(200, f) =
TtS(100, f)

2
(4.12)

While this approximation will provide a relatively low error rate estimations in case
the application continues to scale (i.e. record TtS reductions as the number of utilized
compute nodes increases - TtS(100, f) > TtS(200, f), blue solid line, Figure 4.5), it will
end up with relative high prediction error rate (for this case with a factor of 2) in case the
application demonstrates relative low scalability with compute node counts higher than
100, i.e. in the case TtS(100, f) ≈ TtS(200, f) (dashed line, Figure 4.5). In other words, the
TtS approximation method shown in Equation 4.9 is not applicable in real-world scenarios,
since in most of the cases, it won’t be able to correctly derive the application scalability
behavior only from a one TtS data point.

Number of Nodes

Ti
m
e-
to
-S
o
lu
ti
o
n

100 200

case (b): no scaling

case (a): continuing to scale

decision point

Figure 4.5.: TtS scaling scenarios

4.4. Lightweight Adaptive Consumption Predictor (LACP) Model

Figure 4.6 shows the prediction process of the LACP. Similarly to the AEPCP process, the
LACP process takes as input:

• application identifier used for uniquely identifying the application;

• number of compute resources planned for application utilization; and in addition
to AEPCP process inputs the

80

4.4. Lightweight Adaptive Consumption Predictor (LACP) Model

• maximum CPU frequency at which all the cores of the compute resources will oper-
ate.

Number of resourcesApplication identifier CPU frequency of the
resources

Predicted TtS/APC/EtS of the
application for a given number of

resources and given CPU frequency

𝑷𝒓𝒆𝒅𝒊𝒄𝒕𝒐𝒓

Monitoring
tool

Available history data

(1)

(2)

(3)

(3)

(3)

(4)

Figure 4.6.: Overview of the LACP process

As shown in Figure 4.6, the application identifier is used for uniquely querying the ap-
plication execution relevant history information from the system monitoring tool (step 1).
Once the history data is obtained (step 2), it, along with the number of compute nodes
and the given CPU frequency, is passed to the predictor (step 3) for corresponding appli-
cation TtS/APC/EtS prediction. Based on this input data, the predictor then estimates the
required TtS/APC/EtS consumption values (step 4).

Figure 4.7 presents the LACP model [92] based on the prediction process described
above. The LACP model takes three inputs, namely:

• application energy tag prefix used as an application unique identifier. As mentioned
in Chapter 3, the application energy tag is a unique identifier for the application,
supported by the LoadLeveler (the RMSS used in SuperMUC), and is specified by
the user on a unique-per-application basis.

A new energy tag could be specified by the user each time an application is sub-
mitted for execution with a different compute node configuration. This specifica-
tion is optional and in case it is set, LoadLeveler will generate a corresponding pre-
diction data for that specific node number configuration, thus making the available
application-relevant-history data larger which in its turn would potentially lead to
an increase in the accuracies of the corresponding predictions. This new tag should
have a unique prefix to identify all the existing executions of that application. For
example, myAutoCrashSimulationETag_178nodes and
myAutoCrashSimulationETag_317nodes could be two energy tags for an applica-
tion having a unique myAutoCrashSimulationETag prefix identifying them both;

81

4. Advancing the Adaptive Model to Support for Prediction of Energy
Consumption Relevant Indicators For Different Compute Resource Configurations

• number of compute nodes used as the number of compute resources; and

• maximum CPU frequency enforced for all used compute nodes.

Number of nodes
Application energy

tag prefix
Maximum CPU frequency

of the nodes

Predicted TtS/APC/EtS of the
application for a given number of
nodes and given CPU frequency

PowerDAM
&

IBM LoadLeveler

(1)

(2)

(4)

(7)

𝑨𝟐𝑬𝑷𝟐

Available history and
predicted data per CPU

frequency for different node
numbers

(3)

(6)

Double the range from the
highest available node number

Populated
observational data 𝑭𝑵𝑷

(5)

(9)

(8)

(8)

Figure 4.7.: Overview of the LACP model

As shown in Figure 4.7, the application energy tag prefix is used to uniquely retrieve
the historical TtS, APC, and EtS relevant data of the application executions for different
configurations from PowerDAM (step 1). Next, the available LoadLeveler prediction data
is compiled with this historical data (step 2). As was mentioned above, this step is optional,
and is used only for further population of the available history data, since the latter would
potentially improve the prediction accuracy.

Once this application-relevant (compiled) history data is obtained, the maximum and
minimum number of compute nodes are determined within this data, correspondingly
doubled and halved (step 3), and together with the history data, passed to the A2EP2 (step
4 and step 5). Using this data, A2EP2 extends this data set in the following way. First,
A2EP2 was extended to allow for the TtS metric prediction, using the fact that, in the case
of a fixed CPU frequency, the execution time TtS(n) for n number of compute nodes, for the
strong scaling case, can be approximated as TtS(n) = a1

n +a2, where a1 and a2 are constant
fitting parameters7. This is achieved by using an interpolation technique to estimate the a1
and a2 constants in TtS(n) with respect to different compute node counts. Second, for each
target platform supported CPU frequency f , A2EP2 predicts the TtS, APC, and EtS for all
unknown number of compute nodes8 which are in the range of [min observed node number

2 ; 2×
max observed node number]. The double/half distance for prediction is used, since the
A2EP2 has been proven to provide acceptable results within that range (Chapter 3).

This extended data (step 6) is then passed to the Frequency and Node Number Predic-
tor (FNP) (step 7). Then the FNP, using the derived analytical behaviors of TtS (Equa-

7Implies from Amdahl’s Law (Equation 3.2).
8In other words, number of compute nodes which are not in the available to A2EP2 input data set.

82

4.5. LACP Validation

tion 4.2), APC (Equation 4.6), and EtS (Equation 4.7) metrics, estimates the values of the
constant fitting parameters using polynomial multivariate interpolation [97]. The R pro-
gramming language [98] was used for conducting the mentioned multivariate interpola-
tions. Once these coefficients are determined, the FNP calculates the TtS/APC/EtS values
of the application for a given n number of compute nodes and given f CPU frequency
(steps 8 and 9).

4.5. LACP Validation

This section will show the validity and the adaptability of the developed LACP model,
through the experimental results taken on real-world scientific HPC application, using
randomly selected historical data points.

Assume, that a user has executed HYDRO three times, with the same input problem
size using: 105; 170; and 240 compute nodes when all were operating at 2.3 GHz CPU
frequency. Table 4.5 summarizes these three HYDRO execution results.

Number of
Compute Nodes

Maximum CPU
Frequency (GHz)

Measured EtS
Value (kWh)

Measured APC
Value (W)

Measured TtS
Value (min)

105 2.3 19.28 17736.55 65.22
170 2.3 17.78 27375 38.98
240 2.3 17.36 37659 27.66

Table 4.5.: PowerDAM tracked HYDRO history data

This historical data was further populated using the data obtained from the LoadLeveler
(Figure 4.7). Figure 4.8a, Figure 4.8b, and Figure 4.8c show the LACP EtS prediction results
for 150, 210, and 450 compute node counts for different CPU frequencies, when using the
available, PowerDAM tracked, HYDRO history data shown in Table 4.5. The first bars of
these figures (when counted from left to right), colored in gray, show the measured EtS,
and the second bars (colored in red) show the LACP predicted EtS. As can be seen, the
prediction error is relatively low for 150 and 210 compute node counts - less than 2.7% for
150 compute node count, and less than 4% for 210 compute node count. On contrary, the
LACP EtS prediction error rate is relative high for 450 compute node count (Figure 4.8c).

Figure 4.9a, Figure 4.9b, and Figure 4.9c show the LACP HYDRO APC prediction results
for the same 150, 210, and 450 compute node counts. The first bars (colored in green) of
these figures show the measured APC, and the second bars (colored in yellow) show the
LACP predicted APC values. As can be seen, in contrary to EtS prediction results, the
LACP APC prediction results have high accuracy for all the three cases, with (450, 2.7)
configuration having the highest prediction error of about 7.2%.

Figure 4.10a, Figure 4.10b, and Figure 4.10c show the LACP HYDRO TtS prediction
results for the mentioned 150, 210, and 450 compute node counts, again, when using the
available HYDRO history data shown in Table 4.5. The first bars of the mentioned Figures,
colored in gray and labeled as Transitively Predicted (EtS/APC), illustrate the prediction
results obtained using the data presented in Figure 4.8 and Figure 4.9 (since TtS = EtS

APC);
the second bars (cored in blue) show the measured TtS values; and finally the third bars
(colored in white) labeled as Directly Predicted show the TtS prediction case when LACP

83

4. Advancing the Adaptive Model to Support for Prediction of Energy
Consumption Relevant Indicators For Different Compute Resource Configurations

1.2 1.4 1.6 1.8 2.0 2.2 2.3 2.4 2.7
CPU Frequency (GHz)

0

5

10

15

20

En
er

gy
-to

-S
ol

ut
io

n
(k

W
h)

20.16

18.91

18.16
17.75 17.60 17.69 17.76

17.97

18.66

19.68

18.76

18.18
17.86 17.78 17.91 18.05

18.24

19.15

Energy-to-Solution for node number 150 under different CPU frequencies

Measured
Predicted

(a) For 150 compute nodes

1.2 1.4 1.6 1.8 2.0 2.2 2.3 2.4 2.7
CPU Frequency (GHz)

0

5

10

15

20

En
er

gy
-to

-S
ol

ut
io

n
(k

W
h)

19.65

18.40

17.65

17.21 17.10 17.11 17.21 17.36

17.97

18.90

18.21

17.67
17.30

17.11 17.15 17.25
17.43

18.39

Energy-to-Solution for node number 210 under different CPU frequencies

Measured
Predicted

(b) For 210 compute nodes

1.2 1.4 1.6 1.8 2.0 2.2 2.3 2.4 2.7
CPU Frequency (GHz)

0

5

10

15

20

25

En
er

gy
-to

-S
ol

ut
io

n
(k

W
h)

19.83

18.56

17.81
17.40 17.19 17.33 17.35 17.53

18.09

16.46

19.97

21.67

22.39
22.69

23.00
23.28

23.68

26.03

Energy-to-Solution for node number 450 under different CPU frequencies

Measured
Predicted

(c) For 450 compute nodes

Figure 4.8.: LACP EtS prediction results for HYDRO
Note: available data points are for compute node counts: 105, 170, and 240

84

4.5. LACP Validation

1.2 1.4 1.6 1.8 2.0 2.2 2.3 2.4 2.7
CPU Frequency (GHz)

0

5000

10000

15000

20000

25000

30000

AP
C

(W
)

14547

15884

17376

19056

20946

23027

24201

25376

29441

15366

16199

17308

18731

20508

22678

23924

25282

30085

Average Power Consumption for node number 150 under different CPU frequencies

Measured
Predicted

(a) For 150 compute nodes

1.2 1.4 1.6 1.8 2.0 2.2 2.3 2.4 2.7
CPU Frequency (GHz)

0

10000

20000

30000

40000

AP
C

(W
)

19901

21738

23807

26103

28698

31556

33161

34812

40430

20750

21916

23468

25460

27948

30987

32730

34632

41356

Average Power Consumption for node number 210 under different CPU frequencies

Measured
Predicted

(b) For 210 compute nodes

1.2 1.4 1.6 1.8 2.0 2.2 2.3 2.4 2.7
CPU Frequency (GHz)

0

20000

40000

60000

80000

AP
C

(W
)

41659

45248

49284

53778

58832

63803

67103

70351

80581

42287

44785

48110

52379

57711

64223

67958

72033

86441

Average Power Consumption for node number 450 under different CPU frequencies

Measured
Predicted

(c) For 450 compute nodes

Figure 4.9.: LACP APC prediction results for HYDRO
Note: available data points are for compute node counts: 105, 170, and 240

85

4. Advancing the Adaptive Model to Support for Prediction of Energy
Consumption Relevant Indicators For Different Compute Resource Configurations

1.2 1.4 1.6 1.8 2.0 2.2 2.3 2.4 2.7
CPU Frequency (GHz)

0

20

40

60

80

Ti
m

e-
to

-S
ol

ut
io

n
(m

in
)

 76.8

69.5

 63

57.2

52.01

47.37

45.27

43.3

38.2

83.15

71.4

62.7

55.9

 50

 46

 44

42.5

 38

83.11

71.7

63.17

56.5

51.21

46.86

44.96

43.23

38.8

Time-to-Solution for node number 150 under different CPU frequencies

Transitively Predicted (EtS/APC)
Measured
Directly Predicted

(a) For 150 compute nodes

1.2 1.4 1.6 1.8 2.0 2.2 2.3 2.4 2.7
CPU Frequency (GHz)

0

10

20

30

40

50

60

Ti
m

e-
to

-S
ol

ut
io

n
(m

in
)

 54.6

49.8

45.18

40.76

36.74

33.2

31.6
30.19

26.6

59.2

50.7

 44.4

 39.5

 35.7

 32.5

31.1

29.9

 26.6

59.2

50.9

 44.78

39.95

 36.09

32.93

31.56

30.3

 27

Time-to-Solution for node number 210 under different CPU frequencies

Transitively Predicted (EtS/APC)
Measured
Directly Predicted

(b) For 210 compute nodes

1.2 1.4 1.6 1.8 2.0 2.2 2.3 2.4 2.7
CPU Frequency (GHz)

0

5

10

15

20

25

30

Ti
m

e-
to

-S
ol

ut
io

n
(m

in
)

23.35

26.75
27.02

25.64

23.59

21.49

20.55

19.72

18.07

28.57

24.62

21.68

19.42

17.53

16.30

15.52
14.95

13.47

27.44

23.33

20.25

17.85

15.94

14.37

13.69

13.06

11.46

Time-to-Solution for node number 450 under different CPU frequencies

Transitively Predicted (EtS/APC)
Measured
Directly Predicted

(c) For 450 compute nodes

Figure 4.10.: LACP TtS prediction results for HYDRO
Note: available data points are for compute node counts: 105, 170, and 240

86

4.5. LACP Validation

uses the available TtS history data from Table 4.5 for the prediction. As can be seen, in the
case of 150 and 210 compute node counts, both, transitively and directly TtS predictions
show high accuracy rate. Whereas in the case of 450 compute node count, the transitively
predicted TtS is overall worse then the directly predicted one, but in summary both show
low accuracy rate having more then 10% error in the TtS predictions.

In order to show the adaptability feature of the LACP model, a measurement data for
a randomly selected compute node count of 370 (with measured TtS value of 18.38 min-
utes, APC value of 55817 W, and EtS value of 17.1 kWh) at 2.3 GHz CPU frequency was
appended to the available HYDRO history data presented in Table 4.5. Figure 4.11a and
Figure 4.11b show the LACP HYDRO EtS prediction results after the extension of the input
data with the TtS, APC, and EtS values of 370 compute node HYDRO execution at 2.3 GHz
maximum CPU frequency. As can be seen, the prediction accuracy for 210 compute node
count stays high, as compared to Figure 4.8b, whereas for the 450 compute node count
case, it has evidently improved (as compared to Figure 4.8c) with an overall prediction
error rate of less than 6.5%.

1.2 1.4 1.6 1.8 2.0 2.2 2.3 2.4 2.7
CPU Frequency (GHz)

0

5

10

15

20

En
er

gy
-to

-S
ol

ut
io

n
(k

W
h)

19.65

18.40

17.65

17.21 17.10 17.11 17.21 17.36

17.97

19.11

18.14

17.55
17.24 17.17 17.31 17.45

17.63

18.46

Energy-to-Solution for node number 210 under different CPU frequencies

Measured
Predicted

(a) For 210 compute nodes

1.2 1.4 1.6 1.8 2.0 2.2 2.3 2.4 2.7
CPU Frequency (GHz)

0

5

10

15

20

En
er

gy
-to

-S
ol

ut
io

n
(k

W
h)

19.83

18.56

17.81
17.40

17.19 17.33 17.35
17.53

18.09

19.52

18.39

17.76
17.49 17.51

17.77
17.98

18.23

19.25

Energy-to-Solution for node number 450 under different CPU frequencies

Measured
Predicted

(b) For 450 compute nodes

Figure 4.11.: Adapted LACP EtS prediction results for HYDRO
Note: available data points are for compute node counts: 105, 170, 240, and 370

Figure 4.12a and Figure 4.12b show the LACP HYDRO APC (and Figure 4.13a and Fig-
ure 4.13b show the LACP HYDRO TtS) prediction results for 210 and 450 compute node
counts, when additionally to Table 4.5 history data, the APC (and TtS) information regard-
ing the HYDRO execution with (370, 2.3) configuration was made available. As was for
the case of the EtS prediction results, the prediction accuracy for 210 compute node counts
(for both APC and TtS prediction results) remained high, while the improved overall APC
and TtS prediction accuracy for 450 compute node count case.

87

4. Advancing the Adaptive Model to Support for Prediction of Energy
Consumption Relevant Indicators For Different Compute Resource Configurations

1.2 1.4 1.6 1.8 2.0 2.2 2.3 2.4 2.7
CPU Frequency (GHz)

0

5000

10000

15000

20000

25000

30000

35000

40000

AP
C

(W
)

19901

21738

23807

26103

28698

31556

33161

34812

40430

20817

21947

23451

25382

27793

30738

32427

34270

40786

Average Power Consumption for node number 210 under different CPU frequencies

Measured
Predicted

(a) For 210 compute nodes

1.2 1.4 1.6 1.8 2.0 2.2 2.3 2.4 2.7
CPU Frequency (GHz)

0

20000

40000

60000

80000

AP
C

(W
)

41659

45248

49284

53778

58832

63803

67103

70351

80581

41834

44255

47477

51614

56781

63092

66712

70661

84624

Average Power Consumption for node number 450 under different CPU frequencies

Measured
Predicted

(b) For 450 compute nodes

Figure 4.12.: Adapted LACP APC prediction results for HYDRO
Note: available data points are for compute node counts: 105, 170, 240, and 370

1.2 1.4 1.6 1.8 2.0 2.2 2.3 2.4 2.7
CPU Frequency (GHz)

0

10

20

30

40

50

60

Ti
m

e-
to

-S
ol

ut
io

n
(m

in
)

55.09

49.60

 44.91

40.76

37.07

33.78

32.28

30.87

27.16

59.25

50.78

 44.48

 39.55

 35.75

 32.53

 31.13

 29.92

 26.67

 59.63

 51.38

 45.19

40.38

 36.53

 33.38

 32.01

 30.75

 27.54

Time-to-Solution for node number 210 under different CPU frequencies

Transitively Predicted (EtS/APC)
Measured
Directly Predicted

(a) For 210 compute nodes

1.2 1.4 1.6 1.8 2.0 2.2 2.3 2.4 2.7
CPU Frequency (GHz)

0

5

10

15

20

25

30

Ti
m

e-
to

-S
ol

ut
io

n
(m

in
)

28.00

24.93

22.44

20.33

18.51

16.90

16.17

15.48

13.65

28.57

24.62

21.68

19.42

17.53

16.30

15.52
14.95

13.47

28.13

24.06

21.01

18.64

16.74

15.18

14.51

13.89

12.30

Time-to-Solution for node number 450 under different CPU frequencies

Transitively Predicted (EtS/APC)
Measured
Directly Predicted

(b) For 450 compute nodes

Figure 4.13.: Adapted LACP TtS prediction results for HYDRO
Note: available data points are for compute node counts: 105, 170, 240, and 370

88

4.6. Power Model in Case of Disabled DVFS Feature

4.5.1. Some LACP Prediction Statistics

HYDRO: In total, 3 EtS, 1 APC, 5 Transitive TtS, and 9 Direct TtS HYDRO predic-
tions out of the 68 measurements showed more than a 10% error, when LACP had
available TtS, APC, and EtS information of HYDRO for compute node counts 105,
170, 240, and 370 (all executed at maximum CPU frequency of 2.3 GHz and then
populated using the data from LoadLeveler).
EPOCH: In total, 1 EtS, 3 APC, 8 Transitive TtS, and 5 Direct TtS EPOCH predic-
tions out of the 106 measurements showed more than a 10% error, when LACP had
available TtS, APC, and EtS information of EPOCH for 74, 112, and 210 compute
node counts (all executed at maximum CPU frequency of 2.3 GHz and then pop-
ulated using the data from LoadLeveler). Some LACP EPOCH prediction results
are further discussed in Chapter 5.

Note that due to the shown adaptability feature of the LACP model, the predic-
tion accuracy for a given application is improved with each additional execution
(for a new configuration) of that application.

4.6. Power Model in Case of Disabled DVFS Feature

Section 4.2 considered the static power of the idling processor as a constant, since
it was assumed that due to the default energy-saving features of the processor, the
PCU will reduce the supply voltage during the idling periods. While this usually
holds true for the majority of processors used in HPC, this section will also con-
sider the case when the processor does not support the DVFS feature by default;
which is, for example, true for ARM Cortex-A15 dual-core processors [99] used in
the prototype system being built within the scope of the Mont-Blanc project [100]
(Figure 4.14).

A study conducted by Gonzalez et al. [101] describes the static power dissipation
of a processor as the product of the supply voltage and the leakage current sum of
the all gates:

Pcpu,static =
∑
i

WiIse
Vth
V0 Vdd (4.13)

where Wi is the transistor width of the gate i; Is is the zero-threshold leakage
current; Vth is the threshold voltage; and V0 is the subthreshold slope. Blaauw et
al. [96] show that the Vth threshold voltage depends linearly on Vdd source voltage
and Vbs voltage applied between body and source of the transistor:

Vth = b1 − b2Vdd − b3Vbs (4.14)

where all bi (1 ≤ i ≤ 3) are constant fitting parameters. Based on this, Blaauw
et al. [96] provide a further approximation of static power dissipation through the
following equation:

Pcpu,static = Vddk1e
k2Vddek3Vbs + |Vbs|(Ibn + Ijn) (4.15)

89

4. Advancing the Adaptive Model to Support for Prediction of Energy
Consumption Relevant Indicators For Different Compute Resource Configurations

Figure 4.14.: Samsung Exynos 5 Dual Arndale Board featuring a dual-core 1.7 GHz mobile
CPU built on ARM Cortex-A15 architecture plus an integrated ARM
Mali-T604 GPU for increased performance density and energy efficiency

where Ibn is the source to body junction leakage; Ijn is the drain to body junction
leakage current, and all ki (1 ≤ i ≤ 3) are the constant fitting parameters.

Since the Vth depends linearly on Vdd [102], Vbs depends linearly on Vdd, which on
its turn depends linearly on the f operating processor frequency [95], the Pcpu,static

static power can be further approximated via the following equation (when also
considering the fact that Ibn+Ijn can be approximated as constant as stated in [96]):

Pcpu,static = r1fe
r2f + r3f (4.16)

A further constraint can be introduced on the interpolation procedure, in order
to assure that the static power does not dominate the switching power approxi-
mated, in Section 4.2, as O

�
f 3
�
, i.e.

a1f
3 > a2fe

a3f + a4f (4.17)

where all ai (1 ≤ i ≤ 4) are constant fitting parameters.

4.7. LACP Features and Summary

This chapter analysed the three application execution relevant metrics, namely:
(i) TtS, (ii) APC, and (iii) EtS. The following bullet points summarize the main
contributions that have been made to the state of the art:

• the derivation of three analytical models for estimating an application’s TtS,

90

4.7. LACP Features and Summary

APC, and EtS as functions of the number of compute nodes and the maxi-
mum CPU frequency at which all the cores of all compute nodes operate;

• the development of the Lightweight Adaptive Consumption Predictor (LACP)
model implementing the extended AEPCP process and allowing for applica-
tion TtS, APC, and EtS ahead of time estimation with respect to a given (com-
pute resource number, maximum CPU frequency) configuration for a given
parallel application; and

• the discussion on static power derivation for systems not supporting the
DVFS feature by default.

Being an extension of the previously developed AEPCP model, the LACP model
supports all the features outlined in Section 3.7. The developed LACP model was
validated with different application benchmarks and thus serves as an ideal build-
ing block for a real-world implementation of energy-aware RMSS.

The information on the possible execution time for a given configuration can
yield tighter bounds for the wall-clock time that users specify in the application
submission scripts. This in turn could improve the efficiency of the backfilling
process of the RMSS, thus minimizing the waiting time (i.e. the time until the
application starts its actual execution) for the users.

The LACP model can assist users/customers in controlling their power/energy
budgets and can help data centers in implementing energy-driven charging poli-
cies as an alternative to currently existing CPU-hour based charging policies.

91

4. Advancing the Adaptive Model to Support for Prediction of Energy
Consumption Relevant Indicators For Different Compute Resource Configurations

92

5. The First Steps Towards Tackling the
Execution Time, Energy and Power
Consumption Tradeoffs9

5.1. Preface

As mentioned before, none of the currently available RMSS completely supports
energy/power capping, since none of them has an a priori knowledge on power or
energy consumption of the applications to be scheduled with respect to different
compute resource configurations. By having validated the LACP model in Chap-
ter 4, this chapter will further explore the possible application range of the model,
will particularly examine the model usage for system, user, and/or data center en-
ergy and power budgeting in real world situations, which will in its turn allow for
a complete implementation of energy and power capping.

5.2. Tackling the Energy Capping

Assume that a user is left with 9 kWh monthly energy budget after executing
EPOCH using 74, 112, and 210 compute nodes1 - all at maximum operating CPU
frequency of 2.3 GHz. Table 5.1 recaps the PowerDAM tracked data for these three
EPOCH runs.

Number of
Compute Nodes

Maximum CPU
Frequency (GHz)

Measured EtS
Value (kWh)

Measured APC
Value (W)

Measured TtS
Value (min)

74 2.3 9.2 12115 45.58
112 2.3 9.21 18281.16 30.23
210 2.3 9.05 34014.268 15.96

Table 5.1.: PowerDAM tracked EPOCH history data

Now, user wants to run EPOCH with 220 compute nodes - in order to do so
the client needs to answer the following question: is it possible to run EPOCH with
220 compute nodes within my 9 kWh energy budget? Currently none of the available

1As usual, these node counts were chosen on a random basis.

9This chapter is partly based on the following previous work of the author: Hayk Shoukourian et al. Predict-
ing Energy Consumption Relevant Indicators of Strong Scaling HPC Applications for Different Compute Resource
Configurations. Proceedings of the 23rd High Performance Computing Symposium, Society for Modeling and Sim-
ulation International (SCS), 2015.

93

5. The First Steps Towards Tackling the Execution Time, Energy and Power
Consumption Tradeoffs

RMSS’s can answer this question. Figure 5.1 shows that the usage of LACP can
lead to an answer.

1.2 1.4 1.6 1.8 2.0 2.2 2.3 2.4 2.7
CPU Frequency (GHz)

0

2

4

6

8

10

En
er

gy
-to

-S
ol

ut
io

n
(k

W
h)

9.98

9.67

9.09
8.92 8.89

8.99
9.09

9.31

9.719.77

9.32

9.04
8.89 8.86 8.94 9.02

9.12

9.60

Energy-to-Solution for node number 220 under different CPU frequencies

Measured
Predicted

Figure 5.1.: LACP EtS prediction results for EPOCH when executed with 220 compute
nodes

Figure 5.1 illustrates the LACP EtS prediction results for EPOCH 220 compute
node count execution, when using the available, PowerDAM tracked, EPOCH his-
tory data shown in Table 5.1. As can be seen, the execution of EPOCH with 220
compute nodes within the 9 kWh energy budget is possible, if the user restricts the
maximum operating CPU frequency of the compute node cores to the [1.8; 2.2] GHz
range, since any execution that uses (220, f) configuration, where f ∈ [1.8; 2.2],
according to the LACP model (and also to the measured data - first gray bar, Fig-
ure 5.1), will not violate the currently available 9 kWh user energy budget.

5.3. Tackling the Power Capping

Assume a data center has a 32 kW power consumption limit, that must not be
violated at any given point in time. When continuing with the EPOCH example

94

5.3. Tackling the Power Capping

presented in Section 5.2, the question that must be answered in this context would
be: is it possible to run EPOCH with 220 compute nodes without violating the predefined
32 kW power cap? Currently none of the available RMSS’s can answer this question
either. As can be seen from Figure 5.2, by using the LACP model it is possible to
find an answer.

1.2 1.4 1.6 1.8 2.0 2.2 2.3 2.4 2.7
CPU Frequency (GHz)

0

10000

20000

30000

40000

AP
C

(W
)

21497

23466

25699

28157

30947

34037

35661

37565

43526

22065

23337

25031

27205

29921

33238

35140

37216

44555

Average Power Consumption for node number 220 under different CPU frequencies

Measured
Predicted

Figure 5.2.: LACP APC prediction results for EPOCH when executed with 220 compute
nodes

Figure 5.2 illustrates the LACP APC prediction results for EPOCH 220 compute
node count execution, when using the available, PowerDAM tracked, EPOCH his-
tory data presented in Table 5.1. As can be seen, the execution of EPOCH with 220
compute nodes is possible as long as the maximum CPU frequency is restricted to
[1.2; 2.0] GHz operating range, since any execution that uses (220, f) configuration,
where f ∈ [1.2; 2.0], according to the LACP model (and also to the measured data -
first green bar, Figure 5.2), will not violate the predefined 32 kW power consump-
tion constraint. When also considering the user 9 kWh energy budget restriction
(Section 5.2), the allowed maximum CPU frequency range for the compute node
cores becomes: [1.8; 2.2] ∩ [1.2; 2.0] = [1.8; 2.0] GHz.

95

5. The First Steps Towards Tackling the Execution Time, Energy and Power
Consumption Tradeoffs

The AEPCP model presented in Chapter 3 could also answer the posed questions
in Section 5.2 and in Section 5.3, but only for the fixed CPU frequency - in this
case for 2.3 GHz, since all the user executions of EPOCH where conducted at a
maximum frequency of 2.3 GHz (Table 5.1). Note that, for example in the case of
the discussed 32 kW power cap, the usage of AEPCP would have disallowed the
execution of EPOCH with 220 compute nodes, since the predicted APC(220, 2.3) =
33 kW and thus violates the predefined 32 kW power constraint. This once again
shows the importance of application EtS/APC/TtS prediction also with respect to
operating CPU frequency, which LACP model supports.

5.4. Tackling Execution Time-Energy Consumption Tradeoff

As observed in Section 5.2 and in Section 5.3, several resource configurations can
satisfy given energy or power caps. While in the most cases the users would prefer
to execute their applications at the maximum possible CPU frequency2, as seen in
Section 5.2, with the notion of energy budgeting this might not be always the case.
In order to do the final decision and to understand the possible tradeoffs between
different resource configuration executions the knowledge on application execu-
tion time with respect to various potentially unknown (i.e. not executed before)
configuration is required.

When revisiting the EPOCH EtS prediction results presented in Section 5.2, the
execution with either of (220; 1.8) or (220; 2.0) configurations would not violate the
user available 9 kWh energy budget. So which configuration should be chosen? In
order to answer this question, the LACP TtS prediction results for EPOCH with
220 compute nodes are further considered (Figure 5.3).

As can be seen, the EPOCH execution with 220 compute nodes at CPU frequency
of 1.8 GHz will result in TtS of 19.29 minutes (directly predicted TtS white bar, Fig-
ure 5.3), whereas at 2.0 GHz - in 17.46. Combining this information with the data
illustrated in Figure 5.1, the user can decide to trade almost 2 minute execution
time for 0.03 kWh (= 1800 Wmin) energy cost.

5.5. Tackling Execution Time-Energy Consumption-Power
Consumption Tradeoff

This section briefly discusses the usage of LACP model in determination of possi-
ble tradeoffs between the user available energy budget, application execution time,
and system power cap.

Assume, that there is a 45 kW power consumption constraint on the target HPC
system (for example, due to some data center infrastructure maintenances). As-
sume further, that there is a user who has three times executed EPOCH with dif-
ferent resource configurations (summarized in Table 5.1), is left with 9 kW, and still

2Since this would lead to application execution time reduction.

96

5.5. Tackling Execution Time-Energy Consumption-Power Consumption
Tradeoff

1.2 1.4 1.6 1.8 2.0 2.2 2.3 2.4 2.7
CPU Frequency (GHz)

0

5

10

15

20

25

30

Ti
m

e-
to

-S
ol

ut
io

n
(m

in
)

 26.56

23.97

21.68

19.62

17.77

16.13

15.39

14.70

12.93

27.87

24.72

 21.22

 19.00

 17.23

 15.85

 15.30
14.87

13.38

28.48

 24.54

 21.59

 19.29

 17.46

 15.95

 15.30

 14.70

 13.17

Time-to-Solution for node number 220 under different CPU frequencies

Transitively Predicted (EtS/APC)
Measured
Directly Predicted

Figure 5.3.: LACP TtS prediction results for EPOCH when executed with 220 compute
nodes

wants to execute EPOCH with 287 compute nodes and have the minimum possi-
ble execution time. The question that needs to be answered here would be: what
is the TtS-wise optimal operating CPU frequency for EPOCH using 287 compute nodes,
execution at which will not violate the 9 kWh user energy budget and 45 kW system power
cap? Again, none of the currently available RMSS’s can support the user (or data
center operator) in making this decision.

Figure 5.4a, Figure 5.4b, and Figure 5.4c present the LACP EtS, APC, and TtS
prediction results for EPOCH when executed with 287 compute nodes. As can be
seen, because of the 45 kW system power cap, the allowed CPU frequency of all
cores of all 287 compute nodes must be restricted to [1.2; 2.2] GHz operating fre-
quency range. On the other hand, due to the user 9 kWh energy budget, this range
is further shrunk to [1.6; 2.2] GHz range (Figure 5.4a). Since the (287, 2.2) configu-
ration will yield the minimum possible execution time of 12.21 minutes within the
allowed [1.6; 2.2] GHz CPU frequency range (Figure 5.4c), it can be concluded that
the 2.2 GHz is the answer to the above posed question.

97

5. The First Steps Towards Tackling the Execution Time, Energy and Power
Consumption Tradeoffs

1.2 1.4 1.6 1.8 2.0 2.2 2.3 2.4 2.7
CPU Frequency (GHz)

0

2

4

6

8

10

En
er

gy
-to

-S
ol

ut
io

n
(k

W
h)

10.05

9.40 9.32 9.24

8.97 8.95
9.15

9.53

9.93

9.69

9.25

8.97
8.82 8.78 8.86 8.93

9.04

9.52

Energy-to-Solution for node number 287 under different CPU frequencies

Measured
Predicted

(a) EtS prediction results

1.2 1.4 1.6 1.8 2.0 2.2 2.3 2.4 2.7
CPU Frequency (GHz)

0

10000

20000

30000

40000

50000

60000

AP
C

(W
)

27345

29450

33329

35125

39698

43912

46153 46348

55743

28726

30387

32596

35432

38975

43302

45784

48492

58066

Average Power Consumption for node number 287 under different CPU frequencies

Measured
Predicted

(b) APC prediction results

1.2 1.4 1.6 1.8 2.0 2.2 2.3 2.4 2.7
CPU Frequency (GHz)

0

5

10

15

20

Ti
m

e-
to

-S
ol

ut
io

n
(m

in
)

 20.24

18.26

16.51

14.93

13.52

12.27

11.71

11.18

9.83

22.05

19.15

16.78

15.78

13.55

12.23
11.90

12.33

10.68

 21.82

 18.80

 16.53

 14.77

 13.36

 12.21

 11.71

 11.25

 10.07

Time-to-Solution for node number 287 under different CPU frequencies

Transitively Predicted (EtS/APC)
Measured
Directly Predicted

(c) TtS prediction results

Figure 5.4.: LACP prediction results for EPOCH with 287 compute nodes
Note: available data points are for compute node counts: 74, 112, and 210

98

5.6. Summary

This chapter outlined the use cases of the developed LACP model in real-world
scenarios. More specifically, the chapter showed how can the LACP model be ap-
plied in energy and power capping problem domains and how the model can assist
in evaluation of possible tradeoffs between application execution time, power, and
energy consumptions.

Having shown the model applicability, the next Chapter will further scratch the
surface of the LACP model, by designing a framework for controlling the average
power consumption of individual HPC systems deployed in the data center. It
will present a RMSS plug-in, that per-application basis, efficiently selects energy
consumption wise optimal resource configuration for user specified application
execution time constraint and for data center operator defined power cap. The
proposed plug-in can then be used for automatic control of data center operator
and user specified power consumption and execution time constraints.

5. The First Steps Towards Tackling the Execution Time, Energy and Power
Consumption Tradeoffs

100

“I have learned to seek my happiness by limiting my
desires, rather than in attempting to satisfy them.”

JOHN STUART MILL

Part IV.

Towards a Unified Implementation of
Software Defined Power Capping

101

6. Software Defined Power Capping For
Modern HPC Data Centers9

6.1. Preface

Having developed models allowing for application beforehand execution time, av-
erage power, and energy consumption estimations as well as shown their practical
applicability in real-world domains, this chapter will further explore their poten-
tial for the enhancement of the existing energy-aware resource management and
scheduling solutions. More specifically, the chapter will discuss: (i) the problem of
finding the optimal resource configuration for a given application that will mini-
mize the amount of consumed energy, under pre-defined constraints on applica-
tion execution time (typically specified by users) and instantaneous average power
consumption (typically specified by the data center operators); and (ii) the impact
of the power variation, across the compute resources of homogeneous HPC sys-
tems, on the mentioned constraint scheduling problem. The chapter will present
an algorithm that will efficiently solve the mentioned problem. Based on this algo-
rithm, the chapter will present a plug-in, referred to as Configuration Adviser (CA)
[103], which operates on top of a given RMSS to advise on energy-wise optimal re-
source configuration for a given application, execution using which, will adhere to
the specified runtime and power consumption constraints.

The main goal of the CA plug-in is to enhance the current resource management
and scheduling solutions for the support of power capping while meeting the re-
quirements of users/clients. The presented CA plug-in is in complement to the
existing in RMSS energy/power saving techniques and can be used in conjunction
with any other energy/power savings efforts.

6.2. Revisiting the Problem Statement

Software defined power capping requires the ability of beforehand estimation of
the APC of applications to be scheduled for given RCs. Moreover, if there exists
a user-specified application maximum execution time constraint, the beforehand
estimation of TtS of the applications-to-be-scheduled is also required. Lightweight
Adaptive Consumption Predictor (LACP), described in Chapter 4, is a model al-
lowing for these beforehand estimations of application execution characteristics.

9This chapter is partly based on the following previous work of the author: Hayk Shoukourian et al. Power
Variation Aware Configuration Adviser for Scalable HPC Schedulers. Proceedings of the 13 International Conference
on High Performance Computing & Simulation, HPCS, 2015.

103

6. Software Defined Power Capping For Modern HPC Data Centers

Figure 6.1 highlights the constraints and the solution space for the software de-
fined power capping. The graphs (a), (b), and (c) illustrate the application TtS,
APC, and EtS behaviors with respect to the operating CPU frequency, since in
case of a fixed n number of application to-be-utilized compute nodes, the fol-
lowing approximations hold true: TtS = k1

f
and APC = k2 · f 3, leading to the

EtS = TtS · APC = k3 · f 2 approximation, where all the ki (1 ≤ i ≤ 3) are constant
fitting parameters (Subsection 4.2.1). These further mean, that higher CPU fre-
quencies lead to reduced execution times Figure 6.1 (a) and higher average power
consumptions Figure 6.1 (b).

Ti
m

e-
to

-S
o

lu
ti

o
n

A
ve

ra
g

e
P

o
w

er
 C

o
n

su
m

p
ti

o
n

En
er

g
y-

to
-S

o
lu

ti
o

n
power capexecution time limit

Allowed frequency
range for power cap

CPU FrequencyCPU Frequency

(b)(a) (c)

Allowed frequency range
for execution time

CPU Frequency

Allowed frequency range

for power cap and
execution time

En
er

g
y-

to
-S

o
lu

ti
o

n

A

B

C

D

F

E

G

P2

CPU Frequency

(d)

T2P1T1

𝒇𝒌 𝒇𝒌+𝟐𝒇𝒌+𝟏𝒇𝒌−𝟏𝒇𝒌−𝟐 𝒇𝒌+𝟑 𝒇𝒌+𝟒𝒇𝒌−𝟑𝒇𝒌−𝟒

Figure 6.1.: Overview of the problem statement

Assume there are predefined constraints on the application execution time and
average power consumption. The blue solid and the gray dashed horizontal lines
in graphs Figure 6.1 (a) and Figure 6.1 (b) correspondingly illustrate these con-
straints. The problem of energy-wise optimal operating CPU frequency estima-
tion for the application to-be-utilized compute resources, within these specified
TtS and APC constraints, is further examined. This examination does not consider
the possibility of compute node count variation, since in the real-world situations
the specification of the number of application-to-be-utilized compute nodes is a
requirement and is expected to be set by the user in application submission script
[5].

The hashed sections beneath the horizontal lines of Figure 6.1 (a) and Figure 6.1
(b) illustrate the allowed CPU frequency range, execution at which will meet the
specified TtS and APC constraints. The green hashed section in Figure 6.1 (c) il-
lustrates the intersection of the allowed CPU frequency ranges from Figure 6.1 (a)
and Figure 6.1 (b). Now, a frequency value must be chosen from this hashed green

104

6.3. Power Distribution Variation with Operating Frequencies

segment of Figure 6.1 (c), such that it would result in the minimal EtS consumption
value.

Figure 6.1 (d) illustrates two example intersection scenarios of TtS and APC al-
lowed CPU frequency ranges. The first one is the frequency ranged within the
[T1;P1] hashed segment. For this case, the two example fk−4 and fk−2 frequen-
cies will meet the pre-defined execution constraints but the frequency point fk−2
will be the correct answer to the above stated problem, since the execution at the
frequency fk−2 will lead to the minimal E energy costs. In the case where the
intersection of TtS and APC allowed frequency ranges results in [T2;P2] hashed
segment, Figure 6.1 (d), the energy-wise optimal operating frequency will be fk+2.
Note that in the both cases, the solution points are the ones that are within the
intersection and closest to the global energy-optimal frequency point fk having
EtS of A - which, in both cases, is not within the intersection of the specified TtS
and APC frequency ranges and thus cannot be considered as a solution. The non-
schedulability of the application could arise in the case where the intersection of
allowed frequency ranges of execution time and average power consumption re-
sults in an empty set.

The possible solution space for the considered problem can be formally defined
as:

(a) CPUlowest frequency ≤ f ≤ CPUhighest frequency

(b) APC(n, f) ≤ Pc

(c) TtS(n, f) ≤ Td

(6.1)

where the goal is to find a (n, f) RC satisfying the above mentioned conditions
and having the minimal possible EtS(n, f) consumption value within these power
consumption and execution time constraints.

The conditions defined in (6.1) are as follows: (a) the boundaries for the proces-
sor operating frequency f are set. It is further assumed that all the processors of the
compute nodes support only a finite set of maximum frequencies. Note that this
assumption is realistic since most of the current DVFS mechanisms only support
a finite set of states [104]. The condition (b) indicates the system power consump-
tion constraint (power cap) where Pc is the currently available to the application
power amount, defined as a difference of power cap and current system average
power consumption; and the condition (c) shows the execution time constraint (Td)
specified by the user in the application submission script.

6.3. Power Distribution Variation with Operating Frequencies

Section 3.5 showed on two different homogeneous HPC systems that node power
consumption, under the same workload, is inhomogeneous for a fixed maximum
operating CPU frequency, set across all the cores of the compute nodes. This sec-
tion further investigates this variation, in particular the distribution behavior at
different maximum operating CPU frequencies.

105

6. Software Defined Power Capping For Modern HPC Data Centers

Figure 6.2 shows the distribution of the average power draw (i.e. APC) of the in-
dividual compute nodes from SuperMUC island 5 when running the single-node
benchmark FIRESTARTER on each of them1. All the cores of the compute nodes
had a maximum CPU frequency of 1.4 GHz. FIRESTARTER is a tool containing
specifically optimized routines for x86_64 processors. It generates near peak power
consumption for a compute node and has a steady workload character without
fluctuations, in contrast to MPRIME, that consists of different computational rou-
tines and could potentially create a non-constant load [105].

0

10

20

30

40

50

60

70

136 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 165 166

Average Node Power

Count of Node

Figure 6.2.: Average power draw of compute nodes for the SuperMUC Island 5 when
executed FIRESTARTER at 1.4 GHz maximum CPU frequency

The x-axis in Figure 6.2 shows the observed average power consumption and
the y-axis shows the compute node count. Although, the measurements obtained
from SuperMUC’s paddle cards, as presented in Section 3.6, show a high accuracy,
Figure 6.2 illustrates the averaged data obtained from 5 different measurements2.
As can be seen, the power draw for the same application varies around 19.8%
among the compute nodes3.

Figure 6.3 and Figure 6.4 show the average power distribution of the same thin
island 5 compute nodes but when all the cores of the compute nodes are operating
at maximum CPU frequencies of 2.3 GHz and 2.7 GHz correspondingly.

As can be seen, the distribution shown in Figure 6.2 changes with respect to the
operating maximum CPU frequency of compute node cores. This further means
that the “power-efficiency” pattern of a given compute node can change with CPU
frequency. Figure 6.5 illustrates this observation for some of the compute nodes

1These benchmarks were carried out during the winter time, when the inlet temperature of the compute
nodes was set to 33.1 °C.

2The same is true for the subsequently presented Figure 6.3 and Figure 6.4.
3Calculated as [| value1 − value2 | /((value1 + value2)/2)] ∗ 100.

106

6.3. Power Distribution Variation with Operating Frequencies

0

5

10

15

20

25

30

35

40

45

2
2
2

2
3
0

2
3
2

2
3
3

2
3
4

2
3
5

2
3
6

2
3
7

2
3
8

2
3
9

2
4
0

2
4
1

2
4
2

2
4
3

2
4
4

2
4
5

2
4
6

2
4
7

2
4
8

2
4
9

2
5
0

2
5
1

2
5
2

2
5
3

2
5
4

2
5
5

2
5
6

2
5
7

2
5
8

2
5
9

2
6
0

2
6
1

2
6
2

2
6
4

Average Node Power

Count of Node

Figure 6.3.: Average power draw of compute nodes for the SuperMUC Island 5 when
executed FIRESTARTER at 2.3 GHz maximum CPU frequency

0

5

10

15

20

25

30

35

40

2
7
2

2
7
9

2
8
0

2
8
1

2
8
2

2
8
3

2
8
4

2
8
5

2
8
6

2
8
7

2
8
8

2
8
9

2
9
0

2
9
1

2
9
2

2
9
3

2
9
4

2
9
5

2
9
6

2
9
7

2
9
8

2
9
9

3
0
0

3
0
1

3
0
2

3
0
3

3
0
4

3
0
5

3
0
6

3
0
7

3
0
8

3
0
9

3
1
0

3
1
1

3
1
2

3
1
3

3
1
4

3
1
5

3
1
6

3
1
8

3
2
0

3
2
3

Average Node Power

Count of Node

Figure 6.4.: Average power draw of compute nodes for the SuperMUC Island 5 when
executed FIRESTARTER at 2.7 GHz maximum CPU frequency

from the same thin island of SuperMUC, again, using the FIRESTARTER work-
load, at different, processor supported, maximum operating CPU frequencies.

The illustrated in Figure 6.5 non-uniform rise of the APC values of the compute
nodes leads to the following observation: if one node n1 is considered more power
efficient then another compute node n2 at a given CPU frequency x, then at another CPU

107

6. Software Defined Power Capping For Modern HPC Data Centers

1
4

5

1
7

9

2
0

1

2
3

2

2
5

7

2
7

9

1
5

2

1
9

2

2
1

3

2
5

2

2
8

1

3
1

1

1
5

1

1
8

8

2
0

9

2
4

5

2
7

3

3
0

3

1
4

5

1
8

4

2
0

5

2
3

7

2
6

3

2
9

6

1
6

0

1
9

6

2
1

5

2
5

1

2
7

1

2
9

4

1
6

0

1
9

9

2
2

1

2
5

9

2
8

6

3
1

8

1.4 GHZ 1.8 GHZ 2.0 GHZ 2.3 GHZ 2.5 GHZ 2.7 GHZ

Node N₁
(i05r02a05)

Node N₂
(i05r02c12)

Node N₃
(i05r03c04)

Node N₄
(i05r04c03)

Node N₅
(i05r07a25)

Node N₆
(i05r07c21)

Figure 6.5.: Average power draw of some SuperMUC Island 5 compute nodes when
executed FIRESTARTER with different maximum CPU frequencies

frequency y this could be not true. For example, the compute node N2 (red hatched
bar) at maximum frequency 1.4 GHz, consumes 152 W which is 5.13% less than
the 160 W power draw of the N5 compute node (white bar). But this variation
changes for 2.7 GHz. The APC of N2 reaches 311 W which is 5.62% higher than
the 294 W APC of N5. On the other hand, the compute node pair N1 (black bar)
and N4 (brown “chess-like” hatched bar) show identical power draw at 1.4 GHz,
whereas the difference in APC reaches 5.9% at 2.7 GHz (279 W vs 296 W). This
behavior can be explained by the fact that on the lower CPU frequencies the power
consumption is dominated by the memory, hard drives, PCI slots, and by the other
components present on the compute node; whereas on the higher frequencies the
power consumption of the compute node is mainly dominated by the CPU power
consumption. Note that these variations (value wise) might become even bigger
for air cooled systems, since the latter ones are less efficient than water cooled
systems [106], implying higher CPU temperatures, which in their turn bring to
higher power consumption rates.

The observed power variation means that the consumed energy and average
power of an application for a given (n, f) configuration will be different when ex-
ecuted on different sets of n system compute nodes. Thus EtS and APC metrics
also depend on a certain set S of n compute nodes, i.e. EtS(n, f, S), APC(n, f, S).
Table 6.1 shows that this is not the case for TtS metric, more specifically it presents

108

6.4. Examining the Potential of Energy Savings With Node Power Variation

the measured APC and TtS values of the High Performance Linpack benchmark
[6] when executed on four different compute nodes4. The HPL benchmark is used
to create the TOP500 [1] list of the fastest supercomputers in the world. It solves a
dense system of linear equations and shows the measure of achieved performance
on a given system. The system of linear equations is represented as a matrix di-
vided into small pieces, referred to as tiles, which are distributed across the pro-
cessors of the compute nodes of the system.

Compute Node
Compute Node
Selection Policy

Measured APC
Value (W)

Measured TtS
Value (min)

Node Performance
(GigaFLOPS)

i05r05a19-ib
node with the lowest APC

199.35 30.0 250.693
value under FIRESTARTER

i05r03c28-ib
node with the highest APC

239.76 29.6667 253.009
value under FIRESTARTER

i05r01a13-ib random 216.73 29.85 250.9
i05r01a11-ib random 221 29.88 250.779

Table 6.1.: Negligible difference in TtS among compute nodes when all executed
at maximum operating CPU frequency of 2.3 GHz

As can be seen, APC varies between the compute nodes but the differences in TtS
and GigaFLOPS5 values are negligible. On 512 compute node scale, a maximum
of 3% variation in TtS of single-node HPL runs was observed.

6.4. Examining the Potential of Energy Savings With Node Power
Variation

This section looks into some simple energy-saving techniques that rely on compute
node pre-selection.

Table 6.2 shows the execution results of HYDRO when executed on differently
selected sets of 256 compute nodes. Two selection policies are used in this table:
WorstExistingNodes(n, f) defined the list of system n compute nodes which have
the highest APC value at given f frequency; and BestExistingNodes(n, f) defined
the list of system n compute nodes which have the lowest APC value at given f
frequency, in this case for 2.3 GHz.

Compute Node
Selection Policy

Measured EtS
Value (kWh)

Measured APC
Value (W)

Measured TtS
Value (min)

WorstExistingNodes(256,2.3) 18.28 41078.65 27.7
BestExistingNodes(256,2.3) 17.43 39168.54 27.69

Table 6.2.: Difference of EtS and APC values for HYDRO when executed on
different sets of compute nodes for 2.3 GHz

4Chosen from the same island 5 of SuperMUC.
51 GigaFLOPS = 109 FLOPS.

109

6. Software Defined Power Capping For Modern HPC Data Centers

As can be seen, the best nodes have a power (thus also energy) advantage of
4.76%, while there is no significant difference in the execution times. Table 6.3
shows the measurement results for EPOCH, when the same two selection policies
are considered.

Compute Node
Selection Policy

Measured EtS
Value (kWh)

Measured APC
Value (W)

Measured TtS
Value (min)

WorstExistingNodes(256,2.3) 9.2 42086 13.116
BestExistingNodes(256,2.3) 8.83 40341.12 13.133

Table 6.3.: Difference of EtS and APC values for EPOCH when executed on
different sets of compute nodes

As can be observed, also in the case of EPOCH, there could be a gain of 4.1% in
energy savings. Although, it might be argued that this gain is negligible, especially
for the case when aiming for the maximum application throughput and complete
utilization of all the available compute resources in the system at any point in time
(for example, when combining the HYDRO 850 Wh energy savings with 370 Wh
EPOCH energy savings, resulting in 480 Wh total savings) it is notable that:

• due to the variation fact of compute node power efficiency for a given CPU
frequency and diversity in compute resource requirements of different appli-
cations, as well as the difference in application energy and power consump-
tion profiles, the possibility of scheduling more applications within given en-
ergy, power, and/or execution time constraints at a given point in time could
increase with compute node pre-selection methods;

• the benefit in energy savings in the case of compute node pre-selection be-
comes even more vivid when considering the case of application execution
on a smaller number of compute nodes. Table 6.4 shows this behavior for
High Performance Conjugate Gradient (HPCG) benchmark.

Compute Node
Selection Policy

Measured EtS
Value (kWh)

Measured APC
Value (W)

Measured TtS
Value (min)

WorstExistingNodes(10,2.3) 0.658 2134 18.5
BestExistingNodes(10,2.3) 0.575 1865 18.5

Table 6.4.: Difference of EtS and APC values for HPCG when executed on
different sets of compute nodes

The HPCG is a synthetic benchmark [107] which generates and solves a 3D sparse
linear system using a local symmetric Gauss-Seidel preconditioned conjugate gra-
dient method. It is specifically composed of computations and data access patterns
which are commonly used in real-world scientific applications for providing a better
measure of application performance.

110

6.5. Determining the Energy-Optimal Application Resource Configuration

• the knowledge of power variability could be especially useful when defining
the interactive and batch partitions of the system - since typically interac-
tive partitions consist from the smaller amount of compute nodes, the ones
showing relative high power consumption could potentially be moved to the
interactive partition, which then could be switched off (or set to idle mode)
more frequently, for example during the weekends or night time, when user
activity is relatively low6;

• the observed variation could be applicable in a cloud computing domain
as well, since the environment virtualization makes the task migration and
ON/OFF switching of the compute nodes more flexible - which further means
that the compute nodes showing the worst “power-efficiency” could be used
the least.

The study found in [108] provides a further detailed discussion on three tech-
niques that do take into account the shown node power variation (for a fixed fre-
quency) for achieving some energy savings.

6.5. Determining the Energy-Optimal Application Resource
Configuration

This section describes the suggested software defined power capping algorithm,
proves its optimal termination, and derives the time complexity.

6.5.1. The Algorithm

The developed algorithm takes as an input:

• (i) the application identifier;

• (ii) the user specified n number of compute nodes;

• (iii) application execution time deadline Td; and

• (iv) the currently allowed system average power consumption Pc.

If the specified constraints can be met, then the algorithm returns a pair consist-
ing of:

• the set S of n compute nodes and

• the maximum operating CPU frequency f (at which all the cores of n compute
nodes should operate)

6Under the assumption of negligible timezone variations among the system users.

111

6. Software Defined Power Capping For Modern HPC Data Centers

that minimizes the EtS for the application scheduling.
The algorithm requires a model that can estimate the EtS, APC, and TtS values of

a given application for a given n number of compute nodes, f CPU frequency, and
if specified, the concrete set S of n compute nodes. If the node set S is not specified,
then an average value (compute node set independent) should be reported. LACP
(described in Chapter 4) is an example of such a model. It is further assumed, that
the EtS, APC, and TtS values of a given application for a given resource configura-
tion can be estimated in O

�
1
�

constant time.
In short, the algorithm first estimates the energy-optimal maximum operating

frequency point and then, by stepwise frequency increases/decreases (and by cor-
respondingly adjusting the corresponding compute node set), adapts this found
energy-optimal frequency point until the specified TtS and APC constraints are
met.

6.5.2. Detailed Description

Let {f1, f2, ..., fq} set to be a sorted in ascending order list of processor supported
operating frequencies, i.e. f1 < f2 < ... < fq. Further, for each fi frequency value
(1 ≤ i ≤ q), there exists a Si set which contains all the system compute nodes and
is sorted from “the best to the worst” in terms of average power consumption for
that particular frequency fi, as estimated in Section 6.3. The following auxiliary
functions are further used:

• getBestExistingNodes(fi, n) - for a given frequency fi returns the first n com-
pute nodes from the Si set. It is assumed that this function has O

�
1
�

constant
processing time;

• getWorstExistingNodes(fi, n) - for a given frequency fi returns the last n

compute nodes from the Si set. It is assumed that this function has O
�
1
�

constant processing time;

• getBestAvailableNodes(fi, n) - for a given frequency fi returns the first n cur-
rently available compute nodes from the Si set. If the system has m compute
nodes, then this operation will have the worst case processing time of O

�
m
�
.

• isIncreasePossible(fi) - for a given frequency fi checks if a possible stepwise
increase is possible, i.e. returns True if fi < fq, and False otherwise. It is
assumed that this function has O

�
1
�

constant processing time;

• isDecreasePossible(fi) - for a given frequency fi checks if a possible stepwise
decrease is possible, i.e. returns True if fi > f1, and False otherwise. It is
assumed that this function has O

�
1
�

constant processing time;

• increaseFrequency(fi) - for a given frequency fi returns the stepwise next
frequency, i.e. fi+1, where 1 ≤ i < q. It is assumed that this function has O

�
1
�

constant processing time; and

112

6.5. Determining the Energy-Optimal Application Resource Configuration

• decreaseFrequency(fi) - for a given frequency fi returns the stepwise preced-
ing frequency, i.e. fi−1, where 1 < i ≤ q. It is assumed that this function has
O
�
1
�

constant processing time.

The detailed workflow of the algorithm is as follows. First, the energy-optimal
operating CPU frequency point is determined by iterating through all possible q
frequency values in the worst case. Once the fminEtS energy-optimal frequency
point is found, the set S gets assigned with the best available compute nodes for
that frequency value, i.e. S ← getBestAvailableNodes(fminEtS, n) (line 2). Thus
in total, the worst case processing time complexity of line 2 is: O

�
q + m

�
. The

algorithm then checks if the execution time constraint is specified (line 4). If the
application execution time Td constraint is specified, then the algorithm checks if
the found fminEtS frequency (in line 2) satisfies that Td constraint. If the constraint
is not satisfied, the algorithm starts adapting the found fminEtS frequency to the Td

constraint by stepwise increasing it7 (the while loop of lines 4-13). If these step-
wise increases do not lead to the satisfiability of the execution time constraint, the
algorithm terminates with the application being not schedulable (line 11).

Once a fminEtS frequency satisfying the execution time constraint is found (line
13) and the compute node set S, if necessary, correspondingly modified (lines
14 − 17), the algorithm checks whether the currently estimated fminEtS frequency
satisfies the current power cap value with the currently available n best compute
nodes from set S (line 19). If this is not the case, then the algorithm:

• (c1) checks if the scheduling will be possible with the usage of the best exist-
ing nodes for the current frequency value of fminEtS . If this is the case, then it
saves (1) the frequency fminEtS , (2) the getBestExistingNodes(fminEtS, n) set,
and (3) sets the schedulingWithWaitingPossible boolean flag; and

• (c2) stepwise decreases the fminEtS until the specified power constraint is sat-
isfied (lines 19− 42).

During each frequency decrease, the compute node set S and the integer
frequencyDecreaseCounter get correspondingly updated (lines 28 and 29). The
later value is then used to increase the existing user budget (e.g. CPU hours, en-
ergy budget, etc.) in order to compensate for execution time penalties arisen due
to the specified data center power cap.

If during the stepwise decreases no frequency point satisfying the current power
cap value is found, the algorithm, depending on the
schedulingWithWaitingPossible boolean flag value, terminates with either:

• (a1) a (Stmp, ftmp) pair of n currently not available compute nodes8 and fre-
quency, execution using which will satisfy the specified constraints (line 35)
but will require waiting; or

7Since the increase in the CPU frequency will decrease the execution time (Subsection 4.2.1).
8Meaning that application must wait until the required compute resources will be available.

113

6. Software Defined Power Capping For Modern HPC Data Centers

ALGORITHM 1. Algorithm for estimating energy-optimal operating CPU frequency
for a given job within the specified TtS and APC constraints

Data: A job j with a given number n of compute nodes, TtS deadline Td, and current APC constraint
Pc

Result: Set of n compute nodes S and a CPU frequency f such that:
1. APC(n, f, S) ≤ Pc;

2. TtS(n, f) ≤ Td; and

3. EtS(n, f, S) is minimized, i.e. ∀f ′ frequency and ∀S′ available compute node set, satisfying (1) and
(2), the following holds true: EtS(n, f, S) ≤ EtS(n, f ′, S′)

1 S ← ∅;
2 find fminEtS frequency and currently available node set S such that
EtS(n, fminEtS , S) ≤ EtS(n, f ′, S′) ∀f ′ frequency and ∀S′ currently available node set;

3 frequencyDecreaseCounter ← 0; modifiedfminEtS ← False;
4 while Td 6= NULL and TtS(n, fminEtS) > Td do
5 if isIncreasePossible(fminEtS) = True then
6 fminEtS ← increaseFrequency(fminEtS);
7 modifiedfminEtS ← True;
8 end
9 else

10 /* not schedulable within the given TtS constraint */
11 return (NULL, NULL);
12 end
13 end
14 if modifiedfminEtS = True then
15 S ← getBestAvailableNodes(fminEtS , n);
16 modifiedfminEtS ← False;
17 end
18 schedulingWithWaitingPossible← False;
19 while Pc 6= NULL and APC(n, fminEtS , S) > Pc do
20 if schedulingWithWaitingPossible = False and

APC(n, fminEtS , getBestExistingNodes(fminEtS , n)) ≤ Pc then
21 schedulingWithWaitingPossible← True;
22 ftmp ← fminEtS ;
23 Stmp ← getBestExistingNodes(fminEtS , n);
24 frequencyDecreaseCountertmp ← frequencyDecreaseCounter

25 end
26 if isDecreasePossible(fminEtS) = True and (Td 6= NULL and

TtS(n, decreaseFrequency(fminEtS)) ≤ Td) then
27 fminEtS ← decreaseFrequency(fminEtS);
28 S ← getBestAvailableNodes(fminEtS , n);
29 frequencyDecreaseCounter ← frequencyDecreaseCounter + 1;
30 end
31 else
32 if schedulingWithWaitingPossible = True then
33 /* scheduling possible - requires waiting */
34 IncreaseUserBudget(frequencyDecreaseCountertmp);
35 return (Stmp, ftmp);
36 end
37 else
38 /* not schedulable within the given TtS and APC constraints */
39 return (NULL, NULL);
40 end
41 end
42 end
43 IncreaseUserBudget(frequencyDecreaseCounter);
44 return (S, fminEtS);

114

6.5. Determining the Energy-Optimal Application Resource Configuration

• (a2) application being not schedulable result (line 39).

But if a frequency fminEtS satisfying power cap is found, then the algorithm in-
creases the user budget according to the frequencyDecreaseCounter counter9 (line
43) and returns the required (S, fminEtS) pair.

The optimal termination of the algorithm is implied from the fact that the al-
gorithm stepwise diverges the energy-optimal point until the specified execution
time and average power consumption constraints are satisfied. When summariz-
ing, it is easy to see, that the worst case processing time T (q,m) of the presented
algorithm (where q is the number of distinct frequencies that the processor could
scale to and m is the total number of system compute nodes) is of the following or-
der: O

�
1
�
line 1

+O
�
q+m

�
line 2

+O
�
1
�
line 3

+O
�
q
�
lines 4−13+O

�
m
�
lines 14−17+O

�
1
�
line 18

+

O
�
qm

�
lines 19−42 +O

�
1
�
line 43

+O
�
1
�
line 44

= O
�
qm

�
.

6.5.3. Example Execution

Assume that the intersection of the allowed CPU frequency ranges for the specified
execution time and current power cap constraints results in [T1;P1] segment as
illustrated in Figure 6.1 (d). This further means that the algorithm has to find an
operating CPU frequency f that is in this segment (i.e. T1 ≤ f ≤ P1) and results
in the minimal possible energy consumption value. The red solid graph illustrates
the example application EtS behavior. As was mentioned, the EtS, as well as APC
and TtS values of a given application for a given RC can be estimated beforehand
by the LACP model.

The following describes the execution of the algorithm for this case. First it es-
timates the global energy-optimal CPU frequency point, i.e. fminEtS ← fk (line 2).
Then the algorithm checks if the execution time constraint can be satisfied with the
current value of fminEtS . Since the fminEtS > T1, then the execution time constraint
is satisfied (lines 4 − 13). Contrary to this, the average power consumption con-
straint is not met, since fminEtS = fk > P1. For that reason, the algorithm starts to
stepwise decrease the frequency fminEtS to fk−1, until it reaches a frequency point
fk−2 which is less than or equal to P1 (lines 19 − 43). Once the fminEtS ← fk−2
and the set S is correspondingly adjusted to the best available compute nodes for
that fk−2 frequency, the algorithm correspondingly increases the user budget and
returns the required (S, fk−2) pair which will result in EtS of E kWh, as seen in
Figure 6.1 (d).

If the intersection of the allowed CPU frequency ranges for the specified con-
straints results in [T2;P2] segment, then the algorithm starts again from the global
energy-optimal frequency point fk, but since fk < T2, it stepwise increases this fk
value until the fk+2 ≥ T2 is reached. Once the fminEtS ← fk+2 and the compute
node set S is correspondingly adjusted, the algorithm returns the required (S, fk+2)
pair (since fk+2 < P2) resulting in EtS of B kWh as seen in Figure 6.1 (d).

9The IncreaseUserBudget(counter) is a customizable, by data center operator, function.

115

6. Software Defined Power Capping For Modern HPC Data Centers

6.5.4. Optimality of the Solution

Although, the optimality is implied through the direct consequence of the TtS and
APC being monotone and the resulting EtS function being convex, this section
presents the detailed formal proof of the energy-wise optimality of the presented
algorithm.

Assume the opposite - for a given application A with n number of compute
nodes request, the determined by the algorithm pair (Sk, fk) is not the energy-
optimal one, i.e. ∃(S ′, f ′) such that EtS(n, f ′, S ′) < EtS(n, fk, Sk) and
APC(n, f ′, S ′) ≤ Pc and TtS(n, f ′) ≤ Td for given Pc power consumption and Td

execution time constraints. The following will show that this assumption is wrong.
The algorithm starts with determining the energy-wise optimal f ′′ CPU frequency

for the given application A with n number of compute nodes request. This means
that ∀f ∈ {f1, ..., fq} target CPU supported frequencies, the
EtS(n, f ′′, S ′′) ≤ EtS(n, f, S), where S is any set of size n currently available com-
pute nodes, and S ′′ is the set of n compute nodes determined by the function
getBestAvailableNodes(f ′′, n). Depending on the specified Td and Pc constraints,
the following four cases are possible:

I

TtS(n, f ′′) > Td

APC(n, f ′′, S ′′) ≤ Pc

II

TtS(n, f ′′) ≤ Td

APC(n, f ′′, S ′′) ≤ Pc

III

TtS(n, f ′′) ≤ Td

APC(n, f ′′, S ′′) > Pc

IV

TtS(n, f ′′) > Td

APC(n, f ′′, S ′′) > Pc

• I case. TtS(n, f ′′) > Td implies f ′ > f ′′, since the opposite would mean that
TtS(n, f ′) ≥ TtS(n, f ′′) > Td

10 which would contradict the assumption of
TtS(n, f ′) ≤ Td. According to the algorithm, EtS(n, f ′′, S ′′) ≤ EtS(n, f ′, S ′)
and the estimated f ′′ will be stepwise increased until the TtS(n, f ′′) ≤ Td

(while checking that the Pc constraint does not start to violate). Note that
at each stepwise increase phase the EtS(n, f ′′, S ′′) ≤ EtS(n, f ′, S ′)11. Since
according to the above assumption ∃f ′ such that TtS(n, f ′) ≤ Td and
APC(n, f ′, S ′) ≤ Pc, then this process will terminate with fk ≤ f ′ such that
TtS(n, fk) ≤ Td. Thus the assumption of EtS(n, f ′, S ′) < EtS(n, fk, Sk) was
incorrect.

10For a fixed n, TtS(n, f) is a monotonically non-increasing function, since TtS(n, f) = k
f

, where k is a
constant fitting parameter (Subsection 4.2.1).

11Since for a fixed n, S, and ∀f > f ′′ EtS(n, f, S) = TtS(n, f) · APC(n, f, S) is a monotonically non-
decreasing function.

116

6.5. Determining the Energy-Optimal Application Resource Configuration

• II case. Since TtS(n, f ′′) ≤ Td and APC(n, f ′′, S ′′) ≤ Pc then the algorithm
terminates with the (S ′′, f ′′) configuration. Since ∀f ∈ {f1, ..., fq} target CPU
supported frequencies EtS(n, f ′′, S ′′) ≤ EtS(n, f, S) (where S is any set of
size n currently available compute nodes) then EtS(n, f ′′, S ′′) ≤ EtS(n, f ′, S ′)
which also contradicts the above assumption.

• III case. APC(n, f ′′, S ′′) > Pc implies that f ′ < f ′′, since the opposite would
imply that APC(n, f ′, S ′) ≥ APC(n, f ′′, S ′′) > Pc

12 which would contra-
dict the above APC(n, f ′, S ′) ≤ Pc assumption. According to the algorithm,
EtS(n, f ′′, S ′′) ≤ EtS(n, f ′, S ′) and the estimated f ′′ will be stepwise de-
creased (and the compute node set S ′′ correspondingly updated) until
APC(n, f ′′, S ′′) ≤ Pc (while checking that the Td constraint does not start
to violate). Note that at each stepwise decrease phase the EtS(n, f ′′, S ′′) ≤
EtS(n, f ′, S ′)13. Since according to the above assumption ∃(S ′, f ′) pair such
that APC(n, f ′, S ′) ≤ Pc, then this process will terminate with fk ≥ f ′ such
that APC(n, fk, Sk) ≤ Pc. Thus the assumption of
EtS(n, f ′, S ′) < EtS(n, fk, Sk) was incorrect.

• IV case. In this case the algorithm will terminate with a “not schedulable”
result, since:

– TtS(n, f ′′) > Td implies f ′ > f ′′; and

– APC(n, f ′′, S ′′) > Pc implies that f ′ < f ′′

contradicting the above existence assumption.

All the four possible cases showed that the contradicting assumption was wrong,
which proves the optimality of the algorithm.

6.5.5. Reducing the Processing Time Complexity

The T (q,m) = O
�
qm

�
total processing time complexity, which arises due to the

selection of the best available compute nodes for a given frequency f (line 28)
during each stepwise frequency decrease, can be further reduced to the O

�
q +m

�
via the following modifications:

• Considering The Worst Compute Nodes. Line 28 can be modified to consider
the worst existing compute nodes instead of the best available ones, i.e.
S ← getWorstExistingNodes(fminEtS, n). Since, if a given frequency f with
the worst existing n compute node set SworstExisting satisfies the average power
consumption constraint, then it will satisfy that constraint with the best avail-
able. Thus the line 44 must be further modified to return the

12For a fixed n and S, APC(n, f, S) is a monotonically increasing function, since APC(n, f, S) = k ·f3, where
k is a constant fitting parameter (Subsection 4.2.1).

13Since for a fixed n, S, and ∀f < f ′′ EtS(n, f, S) is a monotonically non-decreasing function (Subsec-
tion 4.2.1).

117

6. Software Defined Power Capping For Modern HPC Data Centers

(getBestAvailableNodes(fminEtS, n), fminEtS) pair. The drawback of this mod-
ification is that the algorithm will not always find the optimal resource con-
figuration that will make the full use of the still available power.

• Considering The Average Power Behavior. The while loop of lines 19−42 can
be modified to consider the application APC independent of the n compute
node set. This modification will lead to “closer-to-optimal” solution, but will
require an additional power constraint satisfiability check for the estimated
CPU frequency with the currently available best compute node set, since the
latter could result in a higher value than the one estimated on the average
basis.

6.6. Configuration Adviser - A Framework of Energy Efficient
Constraint Scheduling

Figure 6.6 illustrates a simple scheduling workflow and the role of the suggested
Configuration Adviser (CA) framework that serves as a plug-in for a given Re-
source Management and Scheduling System (RMSS).

PowerDAM

Building
Infrastructure

System
Hardware

System
Software

Applications

LACP

Job Submission

(1)

(2)

(3)

(4)(5)

(6)

(7)

(8)

Resource
Management

Scheduling System

and

Configuration

Adviser

Figure 6.6.: Reference flow of the Energy Consumption Management Adviser framework

In a simple scheduling workflow scenario, based on the RMSS-specific configu-
rations (e.g. application priority, ratio of available and requested number of com-
pute resources, user priority, etc.), the scheduler selects an application and passes
the application relevant specification, i.e.

118

6.6. Configuration Adviser - A Framework of Energy Efficient
Constraint Scheduling

• application identifier,

• number of to-be-utilized compute resources,

• specified maximum execution time, along with

• currently available power budget of the target HPC system (obtained through
PowerDAM)

to the CA (step 2, Figure 6.6). The CA on its turn passes these data to the LACP
model for obtaining the application EtS, APC, and TtS behavior describing func-
tions (step 3), i.e. functions that will report the values of the mentioned three met-
rics for any given n number of compute nodes, f CPU frequency, and if specified,
set S of n compute nodes. For this reason, LACP queries the application-relevant
history data from PowerDAM (step 4). Once the history data is obtained (step
5), LACP determines the EtS, APC, and TtS application-specific functions and re-
turns them to CA (step 6). Having the application energy, power, and execution
time describing functions, the CA uses the described above algorithm to find an
energy-optimal RC that will meet the specified APC and TtS constraints. Figure 6.7
recaptures the detailed workflow of the CA.

USER

User

• Application 𝑿 requiring n
compute nodes

• Currently available energy
budget: 𝑬 kWh

• Allowed maximum
execution time: 𝑻 minutes

Data Center Operator

• System power cap

Resource Management
&

Scheduling System

Power Variation Aware
Configuration Adviser

LACPPowerDAM

2. Get the TtS/APC/EtS
available history data for
the application X

3. Return available history
and predicted data per
CPU frequency for
different node counts

4. Return the application X specific TtS/APC/EtS functions

5. Use the algorithm to find
optimal resource configuration

6. Return the energy-
wise optimal resource
configuration

1. Get the TtS/APC/EtS behavior of the application X

Figure 6.7.: Configuration Adviser Workflow

Once an energy-optimal RC is found, the CA transfers this data to the RMSS
of the target HPC system (step 7, Figure 6.6). The obtained RC is then used by
the RMSS for scheduling the application (step 8). CA sends a “application not
schedulable” message to the RMSS in case there does not exist any RC satisfying
the pre-defined power and execution time constraints.

119

6. Software Defined Power Capping For Modern HPC Data Centers

6.7. Summary

This chapter presented a lightweight, software-side framework, referred to as Con-
figuration Adviser (CA), that allows for controlling the average power consump-
tion of a large-scale HPC system by implementing a RMSS plug-in, that selects
per-application energy consumption wise optimal resource configuration for user
specified application execution time constraint. The following bullet points sum-
marize the main contributions that were maid throughout this chapter.

• It was shown that the distribution of the APC of the compute nodes of a given
homogeneous (in terms of the installed compute nodes) HPC system changes
with the maximum operating CPU frequency. The shown node power vari-
ation is also an important consideration point when determining the node
sample size required for estimating the power of the complete HPC system.

• It was shown that simple compute node pre-selection techniques can already
lead to a significant amount of energy/power savings.

• An efficient algorithm (that took into consideration the inhomogeneous be-
havior of the compute nodes of a homogeneous system) was presented for
determining a possible operating frequency which would minimize the ag-
gregated energy consumption (i.e. Energy-to-Solution) of a given application
preserving the predefined application execution time limit and system aver-
age power consumption constraint.

• Due to the variations in the power efficiency of the compute nodes and di-
versity in compute resource requirements and power/energy profiles of the
applications the possibility of scheduling (in an energy-wise optimal way)
more applications within given power and/or execution time constraints at a
given point in time could increase when the suggested algorithm is applied.

The suggested CA plug-in can also be used as a testing and admission-for-
execution control framework by a RMSS of the target HPC system, for estimating
the potential violations achieved by different resource configurations for a given
application.

The proposed CA framework is an important feature for future Exascale HPC
data centers where the operating costs would force to support only the expected
average system power and not the peak consumption.

120

7. Conclusion

7.1. Summary

Efficient control of energy and power consumption flows within the modern HPC
data centers has become a major challenge. This dissertation provides a mature
solution for making the power and energy capped HPC data center a reality. It
presented the prerequisites and a framework, referred to as Energy Consumption
Management Adviser (ECMA), for assessing and tuning the energy efficiency of a
data center depending on the specified operational policies and user requirements.

Pillar I
Building Infrastructure

Pillar II
System Hardware

Pillar III
System Software

Pillar IV
Applications

GOAL: Improve Key
Performance Indicators

GOAL: Reduce Hardware
Power Consumption

GOAL: Optimize Resource
Usage, Tune System

GOAL: Optimize
Application Performance

Power Data Aggregation Monitor (PowerDAM)

Resource Management & Scheduling SystemPower Variation

Power Variation Aware Configuration Adviser

Lightweight Adaptive Consumption Predictor (LACP)

Figure 7.1.: Dissertation coverage area

For achieving this goal it was necessary to cover all the related aspects and fac-
tors as identified through the 4 pillar framework (Figure 1.3, Figure 7.1). Figure 7.1
illustrates the main input of this dissertation in strengthening the 4 pillars.

The subsequent paragraphs describe the main milestones that were accomplished
throughout the ECMA framework development.

A unified energy measuring and evaluation toolset, referred to as Power Data
Aggregation Monitor (PowerDAM), was developed. The developed toolset is
aimed towards collecting and correlating energy consumption-relevant data from
all the identified 4 pillars (Figure 7.1) of the data center: from building infrastruc-

121

7. Conclusion

ture (e.g. cold and warm water cooling loops, heat reuse technologies, etc.) over
deployed IT systems (e.g. compute node power, load, temperature, etc.) and their
software stack (e.g. Resource Management and Scheduling System (RMSS), etc.)
to running applications (e.g. utilized compute nodes, power/energy consumption,
execution time, etc.).

Further, a model, referred to as Adaptive Energy and Power Consumption Pre-
dictor (AEPCP), was developed to allow for predicting the application power and
energy consumptions for a given number of compute nodes. The developed
AEPCP model takes as an input the history execution time/power/energy pro-
files of the application under the assumption of a fixed or adjusted application
input problem sizes (i.e. AEPCP model is validated for applications demonstrat-
ing strong or weak scaling). Seeing that the application execution time, power and
energy consumptions are also subject to the operating CPU frequency of the com-
pute resources, the AEPCP model was further extended to a model (referred to as
Lightweight Adaptive Consumption Predictor (LACP)) in order to allow for esti-
mating application execution time, power, and energy consumptions for a given
number of compute nodes and the maximum operating CPU frequency of the com-
pute node cores. The developed model also takes into account the found inhomo-
geneous compute node power behavior of a given homogeneous HPC system for
providing higher accuracy rate in predictions.

Later, a framework, referred to as Configuration Adviser (CA), that operates
on top of a given RMSS as a plug-in for increasing the energy-efficient resource
management, scheduling, and backfilling decisions was elaborated. This CA plug-
in effectively determines the energy-optimal resource configuration for a given
to-be-scheduled application under specified execution time and average power
consumption constraints.

In overall, the following bullet points summarize the main contributions that
have been made to the state of the art:

• explanation of how the application TtS, APC, and EtS boundary curves can
be defined from the known theoretical works and how this information can
be applied in practice;

• derivation of three analytical models for estimating an application’s TtS, APC,
and EtS as functions of the number of compute nodes and the CPU frequency
at which all the cores of all compute nodes operate;

• demonstration of the concept applicability for application execution time (i.e.
TtS), power (i.e. APC), and energy (i.e. EtS) consumption prediction for un-
known resource configuration from previously observed data;

• demonstration of inhomogeneous compute node power consumption on two
different homogeneous HPC systems;

• showed that the distribution of the observed power variation of the compute
nodes changes with the operating CPU frequency;

122

7.2. Future Work

• a way of possibly using the inhomogeneous power consumption behavior
of compute nodes for power and energy predictions and its integration to
AEPCP/LACP models;

• showed that the selection method of compute nodes can lead to significant
energy and power savings - in the considered case, at least 4.7%.

The following recaps the main features of the suggested ECMA framework:

X dynamic power, energy, and thermal monitoring;

X assessment of the execution time, energy and power consumptions of large-
scale applications;

X assessment of the data center energy efficiency and the affect verification of
the applied improvements;

X prediction of execution time, power and energy consumptions of large-scale
applications for a given RC;

X increase of user awareness of application power and energy consumptions;

X energy-driven budgeting/charging policies and support for energy capping;

X system power threshold violation alerts;

X system power capping;

X enhanced backfilling for RMSS of the target system; and

X energy efficient application scheduling in case of predefined application av-
erage power consumption and/or execution time constraints.

7.2. Future Work

The presented results throughout this dissertation opened new research questions
and motivated further implementation work. The following bullet points highlight
the currently foreseen future research and development directions.

• Introduction of EtS/APC measurement quality
Due to noisy power sensor readings (which can be present in large-scale sys-
tems being not equipped with high quality power measurement reporting
devices) some of the calculated EtS/APC could be not completely accurate
and at the same time could be not completely false. The specification of the
measurement “quality” as a weight in the set of available EtS/APC estima-
tions of the applications in the PowerDAM database, will allow for a better
accuracy in predictions conducted by the LACP model.

123

7. Conclusion

• Extension of the derived analytical models of APC and EtS, behind the
LACP model, with regard to the inlet temperature

Figure 7.2 shows the differences between CPU package temperatures and av-
erage node power consumption of air cooled compute node (cooled at 23 °C)
and water cooled compute node at different inlet temperatures [23].

0

10

20

30

40

50

60

220

230

240

250

260

270

280

290

300

37 °C

51 °C

48 °C

56 °C

Air: 23 °C Water: 30 °C Water: 40 °C Water: 50 °C

290 W

248 W

254 W

260 W

C
P

U
 T

e
m

p
e

ra
tu

re
(°

C
)

N
o

d
e

P
o

w
e

r
C

o
n

su
m

p
ti

o
n

(W
)

Figure 7.2.: Comparison of node average power consumption and CPU temperature of air-
cooled nodes and direct liquid cooled nodes at different inlet temperatures on
CoolMUC

As can be seen, the average power draw for liquid cooled compute nodes
stays below the APC of air cooled node, clearly showing the advantage of
direct liquid cooling approach versus air cooling. The CPU package temper-
ature also stays below the CPU temperature of air cooled nodes unless the in-
let water temperature is higher than 45 °C. These further mean that the APC
and EtS of a given application will vary with different inlet temperatures.
Thus, the support for predicting the application EtS and APC additionally
with respect to the water inlet temperature (which is known to vary rarely)
will further improve the overall accuracy of the LACP estimations.

• ECMA framework tuning to future hybrid HPC systems
The power variation in hybrid compute nodes (CPU with accelerators), that
are foreseen in the next generation systems, needs to be further analysed.

• Integration of the developed plug-in with particular RMSS
Quantification of the applicability range for the developed plug-in.

124

• Integration of the ECMA framework with the power monitoring and man-
agement infrastructure of future processors

As was described in Chapter 1, the PCU of modern processors already mon-
itors the power consumption of various functional blocks and based on the
monitored data performs dynamic power allocations to the various individ-
ual system-components. Power management infrastructure of the processors
should be enriched to reflect the interaction/interface with the ECMA frame-
work. The presence of such an interface would allow for further dynamic
assistance to the existing in-node power/energy consumption management
decisions.

• Development of a web-based graphical user interface for PowerDAM
This interface will allow for an easy access and better view of correlated data
to data center operators, policy makers, as well as ordinary users.

The suggested Energy Consumption Management Adviser (ECMA) framework will
be integrated to the software stack at LRZ (pillar III, Figure 7.1) in order to sup-
port for energy efficient supercomputing covering and optimizing the full set of in
influencing parameters: from building infrastructure over the system hardware to
user applications.

125

7. Conclusion

126

Appendices

127

A. Acronyms

A2EP2 Adaptive Application Energy and Power Predictor

AEC Accumulated Energy Consumption

AEPCP Adaptive Energy and Power Consumption Predictor

APC Average Power Consumption

API Application Programming Interface

ASHRAE American Society of Heating, Refrigerating and
Air-Conditioning Engineers

CA Configuration Adviser

COP Coefficient of Performance

CPU Central Processing Unit

CRAC Computer Room Air Conditioning

CUE Carbon Usage Effectiveness

DCIM Data Center Infrastructure Management

DPM Dynamic Power Management

DVFS Dynamic Voltage and Frequency Scaling

DWPE Data center Workload Power Efficiency

ECMA Energy Consumption Management Adviser

ERE Energy Reuse Effectiveness

EtS Energy-to-Solution

FLOPS Floating Point Operations Per Second

FNP Frequency and Node Number Predictor

FPGA Field Programmable Gate Array

GCS Gauss Center for Supercomputing

GPU Graphics Processing Unit

129

A. Acronyms

HPC High Performance Computing

HPCG High Performance Conjugate Gradient

HPL High Performance Linpack

IP Internet Protocol

IT Information Technology

KPI Key Performance Indicator

LACP Lightweight Adaptive Consumption Predictor

LRZ Leibniz Supercomputing Centre

MPI Message Passing Interface

MPP Massively Parallel Processing

MQTT Message Queue Telemetry Transport

nMOS N-type Metal-Oxide-Semiconductor

OS Operating System

PCI Peripheral Component Interconnect

PCU Package Control Unit

PDU Power Distribution Unit

pMOS P-type Metal-Oxide-Semiconductor

PSNC Poznan Supercomputing and Networking Center

PowerDAM Power Data Aggregation Monitor

PRACE Partnership for Advanced Computing in Europe

%RMSE Percentage Root Mean Square Error

PUE Power Usage Effectiveness

RAM Random-Access Memory

RC Resource Configuration

RMSE Root Mean Square Error

RMSS Resource Management and Scheduling System

130

SIMOPEK Simulation and Optimization of Data Center Energy Flows
(Simulation und Optimierung des Energiekreislaufs von
Rechenzentrums-Klimatisierungsnetzen unter
Berücksichtigung von Supercomputer-Betriebsszenarien)

SLURM Simple Linux Utility For Resource Management

SSD Solid-State Drive

TCO Total Cost of Ownership

TCP Transmission Control Protocol

TDP Thermal Design Power

TtS Time-to-Solution

UPS Uninterruptible Power Supply

URL Uniform Resource Locator

WP Work Package

WUE Water Usage Effectiveness

131

A. Acronyms

132

B. Author’s Publications List

Journal Publications
1. Hayk Shoukourian, Torsten Wilde, Axel Auweter, and Arndt Bode. Monitoring

Power Data: A first step towards a unified energy efficiency evaluation toolset
for HPC data centers. Journal of Environmental Modelling & Software, Elsevier,
Vol 56, pages 13 − 26, 2013 (impact factor: 4.538). ISSN: 1364 − 8152. DOI:
http://dx.doi.org/10.1016/j.envsoft.2013.11.011.

2. Hayk Shoukourian, Torsten Wilde, Axel Auweter, and Arndt Bode. Predicting the
Energy and Power Consumption of Strong and Weak Scaling HPC Applications.
Supercomputing Frontiers and Innovations. Vol 1, No 2, pages 20 − 41, 2014. ISSN:
2313− 8734. DOI: http://dx.doi.org/10.14529/jsfi1402.

Conference Proceedings
3. Hayk Shoukourian, Torsten Wilde, Axel Auweter, Arndt Bode, and Petra Piochacz.

Towards a unified energy efficiency evaluation toolset: an approach and its imple-
mentation at Leibniz Supercomputing Centre (LRZ). ICT4S 2013: Proceedings of
the First International Conference on Information and Communication Technologies
for Sustainability, Zurich, Switzerland, pages 276−282, 2013. ISBN: 978−3−906031−
24− 8. DOI: http://dx.doi.org/10.3929/ethz-a-007337628.

4. Torsten Wilde, Axel Auweter, Hayk Shoukourian. The 4 Pillar Framework for en-
ergy efficient HPC data centers. Computer Science - R&D, Springer, Vol 29, pages
241− 251, 2013. DOI: http://dx.doi.org/10.1007/s00450-013-0244-6.

5. Torsten Wilde, Axel Auweter, Michael Patterson, Hayk Shoukourian, Herbert
Huber, Arndt Bode, Detlef Labrenz, and Carlo Cavazzoni. DWPE, a new data cen-
ter energy-efficiency metric bridging the gap between infrastructure and work-
load. International Conference on High Performance Computing & Simulation,
HPCS, pages 893 − 901, 2014. DOI: http://dx.doi.org/10.1109/HPCSim.
2014.6903784.

6. Hayk Shoukourian, Torsten Wilde, Axel Auweter, Arndt Bode, and Daniele Tafani.
Predicting Energy Consumption Relevant Indicators of Strong Scaling HPC Ap-
plications for Different Compute Resource Configurations. Proceedings of the 23rd

High Performance Computing Symposium, Society for Modeling and Simulation
International (SCS), ACM, 2015.

7. Torsten Wilde, Axel Auweter, Hayk Shoukourian, and Arndt Bode. Taking advan-
tage of node power variation in homogenous HPC systems to save energy. In
Supercomputing. Springer International Publishing, 2015.

133

http://dx.doi.org/10.1016/j.envsoft.2013.11.011
http://dx.doi.org/10.14529/jsfi1402
http://dx.doi.org/10.3929/ethz-a-007337628
http://dx.doi.org/10.1007/s00450-013-0244-6
http://dx.doi.org/10.1109/HPCSim.2014.6903784
http://dx.doi.org/10.1109/HPCSim.2014.6903784

B. Author’s Publications List

8. Hayk Shoukourian, Torsten Wilde, Axel Auweter, and Arndt Bode. Power Variation
Aware Configuration Adviser for Scalable HPC Schedulers. Proceedings of the 13
International Conference on High Performance Computing & Simulation (HPCS),
IEEE, 2015.

Articles in Media

9. Hayk Shoukourian, Torsten Wilde, Axel Auweter, and Arndt Bode.
A Path To Energy Efficient HPC Datacenters. Featured article in
HPCWire, 2013. URL: http://www.hpcwire.com/2013/10/29/
path-energy-efficient-hpc-datacenters/.

134

http://www.hpcwire.com/2013/10/29/path-energy-efficient-hpc-datacenters/
http://www.hpcwire.com/2013/10/29/path-energy-efficient-hpc-datacenters/

Bibliography

[1] Top500. http://top500.org/, 2015.

[2] Jonathan G Koomey, Christian Belady, Michael Patterson, Anthony Santos, and
Klaus-Dieter Lange. Implications of recent trends in performance, costs, and en-
ergy use for servers. The Green Computing Book: Tackling Energy Efficiency at Large
Scale, page 297, 2014.

[3] Marc Wouters, James C. Anderson, and Finn Wynstra. The adoption of total cost of
ownership for sourcing decisions–a structural equations analysis. Accounting, Orga-
nizations and Society, 30(2):167–191, February 2005.

[4] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power Provisioning for a
Warehouse-sized Computer. In Proceedings of the 34th Annual International Symposium
on Computer Architecture, ISCA ’07, pages 13–23, New York, NY, USA, 2007. ACM.

[5] Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences and
Humanities. http://www.lrz.de/, 2015.

[6] Jack J. Dongarra, Piotr Luszczek, and Antoine Petitet. The LINPACK Benchmark:
Past, Present, and Future. Concurrency and Computation: Practice and Experience,
15:803-820, 2003.

[7] Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dally,
Monty Denneau, Paul Franzon, William Harrod, Jon Hiller, Sherman Karp, Stephen
Keckler, Dean Klein, Robert Lucas, Mark Richards, Al Scarpelli, Steven Scott, Allan
Snavely, Thomas Sterling, R. Stanley Williams, Katherine Yelick, Keren Bergman,
Shekhar Borkar, Dan Campbell, William Carlson, William Dally, Monty Denneau,
Paul Franzon, William Harrod, Jon Hiller, Stephen Keckler, Dean Klein, Peter Kogge,
R. Stanley Williams, and Katherine Yelick. ExaScale Computing study: Technology
Challenges in Achieving Exascale Systems, Peter Kogge, Editor & Study Lead, 2008.

[8] Bates N., Ghatikar G., Abdulla G., Koenig G., Bhalachandra S., Sheikhalishahi M.,
Patki T., Rountree B., and Poole S. The Electrical Grid and Supercomputing Centers:
An Investigative Analysis of Emerging Opportunities and Challenges, 2014.

[9] Chung-Hsing Hsu and Wu-Chun Feng. A Power-Aware Run-Time System for High-
Performance Computing. In Proceedings of the 2005 ACM/IEEE Conference on Super-
computing, SC ’05, Washington, DC, USA, 2005. IEEE Computer Society.

[10] Vasanth Venkatachalam and Michael Franz. Power reduction techniques for micro-
processor systems. ACM Computing Surveys (CSUR), 37(3):195–237, 2005.

135

http://top500.org/
http://www.lrz.de/

Bibliography

[11] Anshul Gandhi, Mor Harchol-Balter, Rajarshi Das, and Charles Lefurgy. Optimal
power allocation in server farms. SIGMETRICS Perform. Eval. Rev., 37(1):157–168,
June 2009.

[12] John L Hennessy and David A Patterson. Computer architecture: a quantitative ap-
proach. Elsevier, 2012.

[13] Padmanabhan Pillai and Kang G Shin. Real-time dynamic voltage scaling for low-
power embedded operating systems. In ACM SIGOPS Operating Systems Review,
volume 35, pages 89–102. ACM, 2001.

[14] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and E. Weissmann. Power-
Management Architecture of the Intel Microarchitecture Code-Named Sandy
Bridge. Micro, IEEE, 32(2):20–27, March 2012.

[15] Advanced Configuration and Power Interface Specification. http://www.acpi.
info/, November 13, 2013.

[16] IBM Knowledge Center. CPU performance states (P-states) and CPU operating
states (C-states). https://www-01.ibm.com/support/knowledgecenter/
linuxonibm/liaai.cpufreq/CPUPerformanceStates.htm.

[17] Torsten Wilde, Axel Auweter, and Hayk Shoukourian. The 4 Pillar Framework for
energy efficient HPC data centers. Computer Science - Research and Development, 29(3-
4):241–251, 2013.

[18] American Society of Heating, Refrigerating and Air-Conditioning Engineers.
https://www.ashrae.org/home, 2015.

[19] The Green Grid. http://www.thegreengrid.org/, 2015.

[20] Johnson Controls. http://www.johnsoncontrols.com/, 2015.

[21] Siemens. SIMATIC winCC SCADA system. http://w3.siemens.com/
mcms/human-machine-interface/en/visualization-software/
simatic-wincc-open-architecture/Pages/Default.aspx, 2015.

[22] Mauro Marinoni, Mario Bambagini, Francesco Prosperi, Francesco Esposito, Gian-
luca Franchino, Luca Santinelli, and Giorgio Buttazzo. Platform-aware bandwidth-
oriented energy management algorithm for real-time embedded systems. In Pro-
ceedings of the 16th Conference on Emerging Technologies & Factory Automation (ETFA),
pages 1–8. IEEE, 2011.

[23] Lennart Johnsson, Gilbert Netzer, Eric Boyer, Stephan Graf, Wilhelm Homberg, Gi-
annis Koutsou, Josip Jakic, Radek Januszewski, Nikola Puzovic, Thomas Roeblitz,
Ole Widar Saastad, Björn Schembera, Georg Schwarz, Hayk Shoukourian, Volker
Strumpen, Stephane Thiell, Guillaume Colin de Verdière, and Torsten Wilde. PRACE
1IP-WP9 D9.3.3 Report on prototypes evaluation. http://www.prace-ri.eu/
IMG/pdf/d9.3.3.pdf, 2013.

136

http://www.acpi.info/
http://www.acpi.info/
https://www-01.ibm.com/support/knowledgecenter/linuxonibm/liaai.cpufreq/CPUPerformanceStates.htm
https://www-01.ibm.com/support/knowledgecenter/linuxonibm/liaai.cpufreq/CPUPerformanceStates.htm
https://www.ashrae.org/home
http://www.thegreengrid.org/
http://www.johnsoncontrols.com/
http://w3.siemens.com/mcms/human-machine-interface/en/visualization-software/simatic-wincc-open-architecture/Pages/Default.aspx
http://w3.siemens.com/mcms/human-machine-interface/en/visualization-software/simatic-wincc-open-architecture/Pages/Default.aspx
http://w3.siemens.com/mcms/human-machine-interface/en/visualization-software/simatic-wincc-open-architecture/Pages/Default.aspx
http://www.prace-ri.eu/IMG/pdf/d9.3.3.pdf
http://www.prace-ri.eu/IMG/pdf/d9.3.3.pdf

Bibliography

[24] Neil H.E. Weste and David Money Harris. CMOS VLSI design: a circuits and systems
perspective. Pearson Education India, 2005.

[25] Intel. Node Manager - A Dynamic Approach To Managing Power In The
Data Center. https://communities.intel.com/docs/DOC-4766?wapkw=
intelligent+power+node+manager+whitepaper, 2010.

[26] Barry Rountree, Dong H Ahn, Bronis R de Supinski, David K Lowenthal, and Mar-
tin Schulz. Beyond DVFS: A First Look at Performance Under a Hardware-Enforced
Power Bound. In Proceedings of the Parallel and Distributed Processing Symposium Work-
shops & PhD Forum (IPDPSW), pages 947–953. IEEE, 2012.

[27] Peter E Bailey, David K Lowenthal, Vignesh Ravi, Barry Rountree, Martin Schulz,
and Bronis R. de Supinski. Adaptive Configuration Selection for Power-Constrained
Heterogeneous Systems. In Proceedings of the 43rd International Conference on Parallel
Processing (ICPP), pages 371–380. IEEE, 2014.

[28] Axel Auweter, Arndt Bode, Matthias Brehm, Luigi Brochard, Nicolay Hammer, Her-
bert Huber, Raj Panda, Francois Thomas, and Torsten Wilde. A Case Study of Energy
Aware Scheduling on SuperMUC. In Supercomputing, pages 394–409. Springer, 2014.

[29] Osman Sarood, Akhil Langer, Abhishek Gupta, and Laxmikant Kalé. Maximizing
throughput of overprovisioned HPC data centers under a strict power budget. In
Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, pages 807–818. IEEE Press, 2014.

[30] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-
performance, portable implementation of the MPI message passing interface stan-
dard. Parallel computing, 22(6):789–828, 1996.

[31] Osman Sarood, Akhil Langer, Laxmikant Kalé, Barry Rountree, and Bronis
De Supinski. Optimizing Power Allocation to CPU and Memory Subsystems in
Overprovisioned HPC Systems. In Cluster Computing (CLUSTER), pages 1–8. IEEE,
2013.

[32] Engin Ipek, Bronis R De Supinski, Martin Schulz, and Sally A McKee. An approach
to performance prediction for parallel applications. In Euro-Par Parallel Processing,
pages 196–205. Springer, 2005.

[33] G.L. Tsafack Chetsa, L. Lefèvre, J.M. Pierson, P. Stolf, and G. Da Costa. Exploiting
performance counters to predict and improve energy performance of HPC systems.
Future Generation Computer Systems, 2013.

[34] Georg Hager, Jan Treibig, Johannes Habich, and Gerhard Wellein. Exploring perfor-
mance and power properties of modern multi-core chips via simple machine models.
Concurrency and Computation: Practice and Experience, 2014.

[35] Luigi Brochard, Raj Panda, and Sid Vemuganti. Optimizing performance and energy
of HPC application on POWER7. Computer Science - Research and Development, 25(3-
4):135–140, 2010.

137

https://communities.intel.com/docs/DOC-4766?wapkw=intelligent+power+node+manager+whitepaper
https://communities.intel.com/docs/DOC-4766?wapkw=intelligent+power+node+manager+whitepaper

Bibliography

[36] Can Hankendi and Ayse K Coskun. Adaptive power and resource management
techniques for multi-threaded workloads. In Proceedings of the 27th International Sym-
posium on Parallel and Distributed Processing Workshops & PhD Forum, pages 2302–
2305. IEEE Computer Society, 2013.

[37] Catherine Mills Olschanowsky, Tajana Rosing, Allan Snavely, Laura Carrington,
Mustafa M Tikir, and Michael Laurenzano. Fine-grained energy consumption char-
acterization and modeling. In Proceedings of the High Performance Computing Mod-
ernization Program Users Group Conference (HPCMP-UGC), 2010 DoD, pages 487–497.
IEEE, 2010.

[38] Shuaiwen Leon Song, Kevin Barker, and Darren Kerbyson. Unified performance
and power modeling of scientific workloads. In Proceedings of the 1st International
Workshop on Energy Efficient Supercomputing, E2SC ’13, pages 4:1–4:8, New York, NY,
USA, 2013. ACM.

[39] Axel Auweter, Arndt Bode, Matthias Brehm, Herbert Huber, and Dieter
Kranzlmüller. Principles of Energy Efficiency in High Performance Computing. In
Proceedings of the first international conference on information and communication on tech-
nology for the fight against global warming, ICT-GLOW’11, pages 18–25, Berlin, Heidel-
berg, 2011. Springer-Verlag.

[40] G. Da Costa, J.-P. Gelas, Y. Georgiou, L. Lefevre, A.-C. Orgerie, J.-M. Pierson,
O. Richard, and K. Sharma. The GREEN-NET Framework: Energy Efficiency in
Large Scale Distributed Systems. In Proceedings of the International Symposium on Par-
allel Distributed Processing (IPDPS), pages 1–8. IEEE, May 2009.

[41] Rong Ge, Xizhou Feng, Shuaiwen Song, Hung-Ching Chang, Dong Li, and K.W.
Cameron. PowerPack: Energy Profiling and Analysis of High-Performance Systems
and Applications. Transactions on Parallel and Distributed Systems, 21(5):658–671, May
2010.

[42] Adam Wade Lewis, Soumik Ghosh, and Nian-Feng Tzeng. Run-time Energy Con-
sumption Estimation Based on Workload in Server Systems. HotPower, 8:17–21, 2008.

[43] Karan Singh, Major Bhadauria, and Sally A McKee. Real time power estimation and
thread scheduling via performance counters. ACM SIGARCH Computer Architecture
News, 37(2):46–55, 2009.

[44] M. Witkowski, A. Oleksiak, T. Piontek, and J. Wȩglarz. Practical power consump-
tion estimation for real life HPC applications. Future Generation Computer Systems,
29(1):208 – 217, 2013.

[45] Rackwise Data Center Software. http://www.rackwise.com/, 2011.

[46] openDCIM - Web Based Data Center Infrastructure Management Application.
http://www.opendcim.org, 2012.

138

http://www.rackwise.com/
http://www.opendcim.org

Bibliography

[47] Hayk Shoukourian, Torsten Wilde, Axel Auweter, Arndt Bode, and Petra Piochacz.
Towards a unified energy efficiency evaluation toolset: an approach and its imple-
mentation at Leibniz Supercomputing Centre (LRZ). In ICT4S 2013: Proceedings of
the First International Conference on Information and Communication Technologies for Sus-
tainability, pages 276–282, 2013.

[48] Hayk Shoukourian, Torsten Wilde, Axel Auweter, and Arndt Bode. Monitoring
Power Data: A first step towards a unified energy efficiency evaluation toolset for
HPC data centers. Environmental Modelling & Software, 56, 2013. Thematic issue on
modelling and evaluating the sustainability of smart solutions.

[49] Hayk Shoukourian, Torsten Wilde, Axel Auweter, and Arndt Bode. A Path To
Energy Efficient HPC Datacenters. http://www.hpcwire.com/2013/10/29/
path-energy-efficient-hpc-datacenters/, 2013.

[50] Torsten Wilde, Axel Auweter, Michael K Patterson, Hayk Shoukourian, Herbert Hu-
ber, Arndt Bode, Detlef Labrenz, and Carlo Cavazzoni. DWPE, a new data center
energy-efficiency metric bridging the gap between infrastructure and workload. In
Proceedings of the International Conference on High Performance Computing & Simulation
(HPCS), pages 893–901. IEEE, 2014.

[51] Python. https://www.python.org/, 2015.

[52] MEGWARE Computer Vertrieb und Service GmbH. http://www.megware.
com/en/default.aspx, 2015.

[53] SORTECH AG. http://www.sortech.de/en/, 2015.

[54] Simple Linux Utility for Resource Management. http://slurm.schedmd.com/,
2015.

[55] Gauss Centre for Supercomputing. http://www.gauss-centre.eu, 2015.

[56] Partnership for Advanced Computing in Europe. http://www.prace-ri.eu/,
2015.

[57] International Business Machines Corporation (IBM). http://www.ibm.com, 2015.

[58] IBM: Tivoli workload scheduler LoadLeveler. http://www.ibm.com/systems/
software/loadleveler/, 2015.

[59] Arndt Bode. Energy to Solution: A New Mission for Parallel Computing. In Euro-
Par, pages 1–2. Springer, 2013.

[60] Pierre-François Lavallée, Guillaume Colin de Verdière, Philippe Wautelet, Dimitri
Lecas, and Jean-Michel Dupays. Porting and optimizing HYDRO to new platforms
and programming paradigms - lessons learnt. http://www.prace-ri.eu/IMG/
pdf/porting_and_optimizing_hydro_to_new_platforms.pdf, December
2012.

139

http://www.hpcwire.com/2013/10/29/path-energy-efficient-hpc-datacenters/
http://www.hpcwire.com/2013/10/29/path-energy-efficient-hpc-datacenters/
https://www.python.org/
http://www.megware.com/en/default.aspx
http://www.megware.com/en/default.aspx
http://www.sortech.de/en/
http://slurm.schedmd.com/
http://www.gauss-centre.eu
http://www.prace-ri.eu/
http://www.ibm.com
http://www.ibm.com/systems/software/loadleveler/
http://www.ibm.com/systems/software/loadleveler/
http://www.prace-ri.eu/IMG/pdf/porting_and_optimizing_hydro_to_new_platforms.pdf
http://www.prace-ri.eu/IMG/pdf/porting_and_optimizing_hydro_to_new_platforms.pdf

Bibliography

[61] Romain Teyssier. The RAMSES Code. http://irfu.cea.fr/Phocea/Vie_
des_labos/Ast/ast_sstechnique.php?id_ast=904, 2013.

[62] Sergei Konstantinovich Godunov. A difference method for numerical calculation of
discontinuous solutions of the equations of hydrodynamics. Matematicheskii Sbornik,
89(3):271–306, 1959.

[63] Philip L Roe. Approximate Riemann solvers, parameter vectors, and difference
schemes. Journal of computational physics, 43(2):357–372, 1981.

[64] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:
elements of reusable object-oriented software. Pearson Education, 1994.

[65] Mosquitto. An Open Source MQTT v3.1/v3.1.1 Broker. http://mosquitto.
org/, 2015.

[66] Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec.
The Many Faces of Publish/Subscribe. ACM Computing Surveys (CSUR), 35(2):114–
131, June 2003.

[67] Poznan Supercomputing and Networking Center. http://www.man.poznan.
pl/online/en/, 2015.

[68] Iceotope. http://www.iceotope.com/, 2015.

[69] CINECA. http://www.cineca.it/en, 2015.

[70] Green500. http://www.green500.org/, 2015.

[71] Altair. http://www.altair.com/, 2015.

[72] The SIMOPEK Project. http://simopek.de/, 2015.

[73] Multiphysical Network Simulator MYNTS. http://www.scai.fraunhofer.
de/en/business-research-areas/high-performance-analytics-en/
products/mynts.html, 2015.

[74] Gene M Amdahl. Validity of the single processor approach to achieving large scale
computing capabilities. In Proceedings of the Spring Joint Computer Conference, pages
483–485. ACM, 1967.

[75] John L Gustafson. Reevaluating Amdahl’s law. Communications of the ACM,
31(5):532–533, 1988.

[76] Hayk Shoukourian, Torsten Wilde, Axel Auweter, and Arndt Bode. Predicting the
Energy and Power Consumption of Strong and Weak Scaling HPC Applications.
Supercomputing Frontiers And Innovations, Vol 1, No 2, pages 20–41, 2014.

[77] Yuan Shi. Reevaluating Amdahl’s law and Gustafson’s law. Computer Sciences De-
partment, Temple University (MS: 38-24), 1996.

140

http://irfu.cea.fr/Phocea/Vie_des_labos/Ast/ast_sstechnique.php?id_ast=904
http://irfu.cea.fr/Phocea/Vie_des_labos/Ast/ast_sstechnique.php?id_ast=904
http://mosquitto.org/
http://mosquitto.org/
http://www.man.poznan.pl/online/en/
http://www.man.poznan.pl/online/en/
http://www.iceotope.com/
http://www.cineca.it/en
http://www.green500.org/
http://www.altair.com/
http://simopek.de/
http://www.scai.fraunhofer.de/en/business-research-areas/high-performance-analytics-en/products/mynts.html
http://www.scai.fraunhofer.de/en/business-research-areas/high-performance-analytics-en/products/mynts.html
http://www.scai.fraunhofer.de/en/business-research-areas/high-performance-analytics-en/products/mynts.html

Bibliography

[78] Dong Hyuk Woo and Hsien-Hsin S Lee. Extending Amdahl’s Law for Energy-
Efficient Computing in the Many-Core Era. Computer, 41(12):24–31, 2008.

[79] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Intro-
duction to Algorithms, volume 2. MIT press Cambridge, 2001.

[80] Michael McCool, James Reinders, and Arch Robison. Structured parallel programming:
patterns for efficient computation. Elsevier, 2012.

[81] Watts S. Humphrey. A Discipline for Software Engineering. Addison-Wesley Longman
Publishing Co., Inc., 1995.

[82] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT Press, Cam-
bridge, MA, 2012.

[83] Richard Hamming. Numerical methods for scientists and engineers. Courier Corpora-
tion, 2012.

[84] Leonid Yavits, Amir Morad, and Ran Ginosar. The effect of communication and
synchronization on Amdahl’s law in multicore systems. Parallel Computing, 40(1):1–
16, 2014.

[85] T. Arber and et al. EPOCH: Extendable PIC Open Collaboration. http://
ccpforge.cse.rl.ac.uk/gf/project/epoch/, 2015.

[86] Hartmut Ruhl. Classical Particle Simulations with the PSC code. https:
//www.physik.uni-muenchen.de/lehre/vorlesungen/wise_09_10/
tvi_mas_compphys/vorlesung/Lecturescript.pdf, 2005.

[87] E. Oran Brigham. The Fast Fourier Transform and Its Applications. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1988.

[88] Great Internet Mersenne Prime Search. http://www.mersenne.org/
freesoft/, 2015.

[89] W. Shockley. Problems related to p-n junctions in silicon. Uspekhi Fizicheskikh Nauk,
77(1):161–196, 1962.

[90] Franck Cappello, Al Geist, Bill Gropp, Laxmikant Kale, Bill Kramer, and Mark Snir.
Toward exascale resilience. International Journal of High Performance Computing Appli-
cations, 2009.

[91] Rong Ge, Xizhou Feng, and Kirk W Cameron. Modeling and evaluating energy-
-performance efficiency of parallel processing on multicore based power aware sys-
tems. In Proceedings of the International Symposium on Parallel & Distributed Processing,
(IPDPS), pages 1–8. IEEE, 2009.

[92] Hayk Shoukourian, Torsten Wilde, Axel Auweter, Arndt Bode, and Daniele Tafani.
Predicting Energy Consumption Relevant Indicators of Strong Scaling HPC Applications
for Different Compute Resource Configurations. Proceedings of the 23rd High Perfor-
mance Computing Symposium, Society for Modeling and Simulation International
(SCS), 2015.

141

http://ccpforge.cse.rl.ac.uk/gf/project/epoch/
http://ccpforge.cse.rl.ac.uk/gf/project/epoch/
https://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_09_10/tvi_mas_compphys/vorlesung/Lecturescript.pdf
https://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_09_10/tvi_mas_compphys/vorlesung/Lecturescript.pdf
https://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_09_10/tvi_mas_compphys/vorlesung/Lecturescript.pdf
http://www.mersenne.org/freesoft/
http://www.mersenne.org/freesoft/

Bibliography

[93] HP Staff. HP power capping and dynamic power capping for ProLiant servers. Tech-
nical report, HP, Tech. Rep. TC090303TB, 2009.

[94] Harry J.M. Veendrick. Short-circuit dissipation of static CMOS circuitry and its im-
pact on the design of buffer circuits. Journal of Solid-State Circuits, 19(4):468–473,
1984.

[95] Thomas Rauber and Gudula Rünger. Parallel programming: For multicore and cluster
systems. Springer Science & Business, 2013.

[96] David Blaauw, Steve Martin, Trevor Mudge, and Krisztián Flautner. Leakage current
reduction in VLSI systems. Journal of Circuits, Systems, and Computers, 11(06):621–635,
2002.

[97] M Gasca. Multivariate polynomial interpolation. In Computation of curves and sur-
faces, pages 215–236. Springer, 1990.

[98] The R Project for Statistical Computing. http://www.r-project.org/, 2015.

[99] The ARM Cortex-A15 processor. http://www.arm.com/products/
processors/cortex-a/cortex-a15.php, 2014.

[100] The Mont-Blanc Project. http://www.montblanc-project.eu, 2015.

[101] Ricardo Gonzalez, Benjamin M. Gordon, and Mark A. Horowitz. Supply and
Threshold Voltage Scaling for Low Power CMOS. Journal of Solid-State Circuits,
32(8):1210–1216, 1997.

[102] Chong-Min Kyung and Sungjoo Yoo. Energy-Aware System Design: Algorithms and
Architectures. Springer Science & Business Media, 2011.

[103] Hayk Shoukourian, Torsten Wilde, Axel Auweter, and Arndt Bode. Power Variation
Aware Configuration Adviser for Scalable HPC Schedulers. Proceedings of the 13 Inter-
national Conference on High Performance Computing & Simulation, HPCS, 2015.

[104] Yong Fu, Nicholas Kottenstette, Chenyang Lu, and Xenofon D Koutsoukos. Feed-
back thermal control of real-time systems on multicore processors. In Proceedings
of the tenth ACM international conference on Embedded software, pages 113–122. ACM,
2012.

[105] D. Hackenberg, R. Oldenburg, D. Molka, and R. Schone. Introducing FIRESTARTER:
A processor stress test utility. In Proceedings of the International Green Computing Con-
ference (IGCC), pages 1–9, June 2013.

[106] Rod Mahdavi. Liquid Cooling v. Air Cooling Evaluation in the Maui High Perfor-
mance Computing Center. U.S. Department of Energy, 2014.

[107] Jack Dongarra and Michael A Heroux. Toward a New Metric for Ranking High
Performance Computing Systems. Sandia Report, SAND2013-4744, 312, 2013.

142

http://www.r-project.org/
http://www.arm.com/products/processors/cortex-a/cortex-a15.php
http://www.arm.com/products/processors/cortex-a/cortex-a15.php
http://www.montblanc-project.eu

Bibliography

[108] Torsten Wilde, Axel Auweter, Hayk Shoukourian, and Arndt Bode. Taking advan-
tage of node power variation in homogenous HPC systems to save energy. In
Supercomputing. Springer, 2015.

143

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	Energy Efficient Management in High Performance Computing
	Power and Energy Capping in HPC Data Centers
	Motivation and Problem Statement
	Framework for Energy Efficiency Management: Requirements, Pillars, and Key Performance Indicators
	Background and State of the Art
	Frameworks Aimed Towards Power Capping
	Prediction Tools That Could Have Been Used For Power and Energy Capping

	Contributions of This Work
	Outline of This Work

	Evaluating The Energy Efficiency of a HPC Data Center
	Monitoring the Energy and Power Consumptions in HPC Data Centers
	Preface
	Need for an Integrated View
	Related Works
	Power Data Aggregation Monitor (PowerDAM)
	Framework
	Workflow

	PowerDAM usage at Leibniz Supercomputing Centre (LRZ)
	PowerDAM and EtS
	EtS on CoolMUC, SuperMIG, and SuperMUC

	Some PowerDAM Reporting Features
	PowerDAM Current Development Directions
	PowerDAM Usage By Other Data Centers
	Usage at PSNC
	Usage at CINECA

	PRACE 1IP WP 9 & 2IP WP 11
	The SIMOPEK Project
	Summary

	Covering the Prerequisites for Implementing Energy and Power Capping
	Predicting the Energy and Power Consumption of Strong and Weak Scaling HPC Applications
	Preface
	Investigating the Scaling Behaviors of HPC Applications
	Strong Scaling
	Weak Scaling

	Adaptive Energy and Power Consumption Prediction (AEPCP) Model
	AEPCP Validation
	AEPCP and the Inhomogeneous Power Consumption of Homogeneous System Compute Resources
	Measurement Accuracy on SuperMUC
	AEPCP Features and Summary

	Advancing the Adaptive Model to Support for Prediction of Energy Consumption Relevant Indicators For Different Compute Resource Configurations
	Preface
	Modeling Application KPIs: State of the Art and Perspectives
	Analysis of the Energy Model

	IBM LoadLeveler Alone
	Lightweight Adaptive Consumption Predictor (LACP) Model
	LACP Validation
	Some LACP Prediction Statistics

	Power Model in Case of Disabled DVFS Feature
	LACP Features and Summary

	The First Steps Towards Tackling the Execution Time, Energy and Power Consumption Tradeoffs
	Preface
	Tackling the Energy Capping
	Tackling the Power Capping
	Tackling Execution Time-Energy Consumption Tradeoff
	Tackling Execution Time-Energy Consumption-Power Consumption Tradeoff
	Summary

	Towards a Unified Implementation of Software Defined Power Capping
	Software Defined Power Capping For Modern HPC Data Centers
	Preface
	Revisiting the Problem Statement
	Power Distribution Variation with Operating Frequencies
	Examining the Potential of Energy Savings With Node Power Variation
	Determining the Energy-Optimal Application Resource Configuration
	The Algorithm
	Detailed Description
	Example Execution
	Optimality of the Solution
	Reducing the Processing Time Complexity

	Configuration Adviser - A Framework of Energy Efficient Constraint Scheduling
	Summary

	Conclusion
	Summary
	Future Work

	Appendices
	Acronyms
	Author's Publications List
	Bibliography

