
Lehrstuhl für Steuerungs- und Regelungstechnik

Technische Universität München

Algorithms and Hardware for Reasoning in
Factor Graphs

Indar Sugiarto

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik

der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. W. Hemmert

Prüfer der Dissertation:

1. Univ.-Prof. Dr.sc.nat. J. Conradt

2. Prof. St. Furber, University of Manchester/UK

3. Univ.-Prof. Dr.-Ing. K. Diepold

Die Dissertation wurde am 12.06.2015 bei der Technischen Universität München einge-

reicht und durch die Fakultät für Elektrotechnik und Informationstechnik am 15.11.2015

angenommen.

Foreword

This dissertation summarizes my PhD research at Technische Universität München (TUM)

with support from many people. I would like to express my sincere gratitude to them

although I would not be able to mention all of them in this short page. First of all, I would

like to express my gratitude to my supervisor, Prof. Jörg Conradt, and to my research

sponsor, the DAAD. Jörg has guided me through the research and has showed me how

to become an independent researcher with enthusiasm. Not only he has given me the

inspiration for the topic of this dissertation, he also has given me the freedom to extend

the initial research that I am interested in as well as exploring many things even beside the

domain of my research area. I am also deeply appreciate his support beyond the research

matter, which eases my family life in Munich - the most expensive city in Germany. I also

thank DAAD, from whom I get the scholarship that cover mostly our living cost and also

by them I was introduced to the Germany legal system.

I would also like to thank my external colleagues and collaborators during my research.

I am very grateful for the initial discussion with Dr. Matthew Cook and his team from the

Institute of Neuroinformatics (INI) at ETH-Zurich, with whom I have learned the basic

principle of factor graphs. One of my research ideas comes as the result of our discussion

during my visit to ETH-Zurich in 2012. I also address my thanks to the Advanced Processor

Technology (APT) research group at the University of Manchester, in which I learned for

the first time the use of their SpiNNaker system. I met them once again during CapoCaccia

Neuromorphic workshop in 2012, and I was immersed in a deep discussion and worked

together with Evangelos, Luis Plana, Sergio, Francesco, and Simon, just to name a few.

My thank goes also to Paul Meier from the Center for Sensorimotor Research at Ludwig-

Maximilians-Universität (LMU) Munich, with whom I met several times in various BCCN

events and also had fruitful discussions on many conceptual topics related with my research.

My research life in TUM would not be cheerful without my “room-mates”. I would like

to thank NST-ers for “horsing around”, especially to Cristian, Mohsen, Nicolai, Lukas,

Marcello, Christoph, and Viviane. I have spent so many hours every week with them to

figure out, sometimes in a never-ending discussion, what is actually “our purpose” in the

NST world. I am glad that I’ve found co-workers that share our struggle with the same

spirit. I also extend my sincere thanks to Susanne for taking care a lot of administrative

tasks for me during my research and my work at NST and LSR.

Finally, I would like to thank my friends, Indonesian community, who live in Munich and

offers my family the warmness and kindness in an Indonesian atmosphere. Especially to

PRII/MRII München, with whom we have spent many cheerful Sundays in reformational

enlightenment. And last, but not least, I thank to God for my family: Astri and Ben.

Only for them, my life and my future are dedicated.

Munich, May 2015 Indar Sugiarto

iii

Abstract

The goal of this thesis is to investigate inference schemes in the domain of graphical models

and to develop new minimalistic inference schemes which can be implemented in dedicated

hardware. This low-level hardware implementation will be very useful for example in the

case of autonomous robotics, where hardware resources are limited and power consump-

tion is one of the main constraining factors. We focus on the factor graph which is one

of the probabilistic graphical models known as having structural representation similar

to an undirected graph but can also be used to represent a directed graph. A factor

graph is a bipartite probabilistic graphical model which is composed of two types of nodes:

variable nodes and factor nodes. A factor node can represent a conditional probabil-

ity distribution or simply a functional relationship between variables nodes connected to

it. One important task that can be performed in a factor graph is an inference using a

message-passing mechanism in a belief propagation scenario. The factor graph performs

this inference mechanism by exchanging messages between nodes via the sum-product al-

gorithm. Using the sum product algorithm, a probabilistic query such as marginalization

can be performed efficiently. In a discrete factor graph, such a message is represented as

a vector of probabilistic values. This is a common implementation of a factor graph and

its belief propagation on a digital system. However, this sum-product algorithm might

run slowly in a sequential system (i.e. standard PCs). In this thesis, we strive to find a

good solution not only to speed-up the computation, but also to find the most efficient

message representation. We propose to implement the message representation in a form of

population code. This idea comes from computational neuroscience which suggests that a

population of neurons can represent a probability distribution resulting from an ensemble

of all neuronal activation levels in the population. We argue that factor graphs with popu-

lation code message encoding can be used to mimic the brain’s operation: they can be used

to describe massively parallel distributed systems, where overall performance comes from

concurrently communicating local computations of many individual units. With this view,

we implement such an inference engine in dedicated hardware to mimic the brain’s nature

on distributed computation. This thesis presents the evolution of our factor graph from

a PC-based framework to an embedded factor graph which runs on dedicated hardware.

We have developed factor graph models for some important application domains such as

machine learning and robotics. The implementation results of our PC-based factor graph

framework for those applications show that the framework is mature enough to be taken to

hardware instantiations. We started exploring the hardware implementation using a SpiN-

Naker (Spiking Neural Network Architecture) system. This neuromorphic system shows a

potential benefit for implementing factor graphs due to its well defined routing mechanism.

From this first embedded factor graph version, we gained insight for developing the second

embedded factor graph on an “empty” device. The second hardware implementation is

based on SoC (System on Chip), which can be fully optimized to achieve the goal of this

thesis. This SoC device contains an FPGA (Field Programmable Gate Array) in which

we have developed the core modules for an embedded factor graph from a scratch. This

second embedded factor graph gives us flexibility and opens the possibility to extend it

into a more powerful system. With these achievements, we have provided the foundation

to extend factor graphs into a fully reconfigurable computing machine that will ultimately

be capable of performing brain-style information processing.

v

Zusammenfassung

In dieser Dissertation werden Inferenz-Methoden aus dem Bereich der Graphischen Mod-

elle untersucht, sowie minimalistische Inferenz-Schemen entwickelt, die sich mit dedizierter

Hardware implementieren lassen. Die Hardware-nahe Umsetzung wird sich beispielsweise

für autonome Roboter als nützlich erweisen, denen begrenzte Hardware-Ressourcen zur

Verfügung stehen und bei denen der Energieverbrauch einen limitierenden Faktor darstellt.

Die Arbeit konzentriert sich auf Faktorgraphen (FG), eine besonders vielseitige Klasse

probabilistischer graphischer Modelle. FGen sind bipartit, und bestehen aus zwei Arten

von Knoten: Variablen- und Faktorknoten. Ein Faktorknoten kann hierbei eine bedingte

Wahrscheinlichkeitsverteilung oder einfach ein funktionaler Zusammenhang zwischen den

mit ihm verbundenen Variablenknoten sein. Eine wichtige Anwendung eines FG ist In-

ferenz mittels eines Message-Passing-Algorithmus in einem Belief-Propagation-Szenario.

In diesem sog. Sum-Product-Algorithmus geschieht die Inferenz, indem Nachrichten zwis-

chen den Knoten ausgetauscht werden. Mit dem Sum-Product-Algorithmus lassen sich

wahrscheinlichkeitstheoretische Aufgaben wie Marginalisierung effizient ausführen. Die

Nachrichten bestehen im Fall eines diskreten FG aus einem Vektor probabilistischer Werte.

Dies ist eine übliche Implementierung eines FG mit Belief-Propagation auf digitalen Sys-

temen. Allerdings ist dieser inhärent parallelisierbare Algorithmus auf sequentiellen Rech-

nern langsam und ineffizient. Es ist Gegenstand dieser Arbeit, diese Situation grundle-

gend zu verbessern - nicht nur um Hardware-Implementierungen zu beschleunigen, son-

dern auch um die effizienteste Form von Nachrichten-Messages zu finden. Wir stellen eine

effiziente Implementierung vor, die auf neuronalen Population Codes beruht. Diese Idee

aus der Neurowissenschaft impliziert, dass eine Population von Neuronen, bzw. deren

Aktivität, eine Wahrscheinlichkeitsverteilung repräsentieren kann. Wir zeigen, dass ein

Population-Code-basierter FG im Wesentlichen die Arbeitsweise des Großhirns imitiert:

Ein massiv-paralleles verteiltes System, dessen Leistung wie seine Rechenergebnisse sich

aus gleichzeitig nebeneinander kommunizierenden lokalen Rechenoperationen vieler in-

dividueller Einheiten ergeben. In diesem Sinne implementieren wir also eine Inferenz-

Maschine in dedizierten Schaltungen, die dann die Funktionsweise des Hirns imitieren.

Diese Dissertation stellt die fortlaufende Weiterentwicklung unseres Faktorgraphen von

einer PC-basierten Anwendung hin zu eingebetteten FG dar, die auf dedizierter Hardware

laufen. Wir haben Faktorgraphen für einige wichtige Anwendungsbereiche wie Robotik

oder Maschinenlernen entwickelt. Die Resultate unseres PC-basierten FG-Frameworks für

diese Anwendungen belegen dessen Leistungsfähigkeit und motivieren dessen Umsetzung

auf Hardware-Niveau. Wir beginnen mit einer Implementierung auf SpiNNaker (Spiking

Neural Network Architecture). Die speziellen Routing-Mechanismen dieses neuromorphen

Systems bedeuten potentielle Vorteile für FG-Implementierungen. Die zweite Hardware-

Implementierung basiert auf einem System-on-Chip (SoC), das sich für die Ziele dieser

Arbeit vollständig optimieren lässt. Das SoC beinhaltet ein Field Programmable Gate Ar-

ray (FPGA), in dem wir Kernmodule unseres eingebetteten FG umsetzen konnten. Diese

Implementierung eines eingebetteten FG gibt uns viel Flexibilität und eröffnet zahlreiche

Möglichkeiten für weitreichende Weiterentwicklungen. Mit diesen Errungenschaften haben

wir das Fundament von Faktorgraphen in eine vollständig rekonfigurierbaren Rechenmas-

chine gestellt, das Informationen in einer ähnlichen Art und Weise wie das menschliche

Hirn verarbeiten kann.

vii

Contents

1 Introduction 1
1.1 From Artificial Intelligence to Probabilistic Graphical Models 1

1.1.1 Cognition for Technical Systems . 1

1.1.2 The Emergence of Graphical Models 2

1.2 Motivation and Contribution . 8

1.3 Organization . 10

2 Modeling in Factor Graphs 13
2.1 Probabilistic Graphical Models . 13

2.2 Inference and Learning in Factor Graphs 15

2.2.1 Building a Factor Graph Model . 15

2.2.2 Inference Through Belief Propagation 19

2.2.3 Parameter Learning . 23

2.3 Population Coding Representation . 31

2.3.1 Encoding and Decoding Principle 32

2.3.2 Performance Evaluation . 39

2.4 Software Framework Development . 42

3 Reasoning in Factor Graphs 47
3.1 Application in Machine Learning . 47

3.1.1 Factor Graph for Regression . 47

3.1.2 Factor Graph for Classification . 48

3.1.3 Factor Graph for Sensor Fusion . 52

3.2 Factor Graph for Dynamic Processes . 54

3.3 Application in Robotics . 59

3.3.1 Kinematic Model of a Mobile Robot 61

3.3.2 Kinematic Model of a Manipulator 72

3.3.3 Model-based Learning for Mobile Manipulator 76

3.4 Discussion . 83

4 Factor Graph in SpiNNaker 87
4.1 Introduction to SpiNNaker . 87

4.2 Mapping Factor Graph on SpiNNaker System 90

4.2.1 Neurons Population Mapping . 91

4.2.2 FG-Nodes Mapping . 93

4.2.3 Mapping and Routing Factor Graph in SpiNNaker 96

4.3 Performance Evaluation and Optimization Strategy 98

4.4 Discussion . 102

ix

Contents

5 Factor Graphs in System-On-Chip 105
5.1 Introduction to Xilinx Zynq-7000 . 105

5.1.1 Internal Architecture . 107

5.1.2 Software Development . 107

5.1.3 Technical Considerations . 110

5.2 Method-1: FPGA as Accelerator . 114

5.3 Method-2: Factor Graph Framework on FPGA 121

5.3.1 Factor and Variable Node Controller 122

5.3.2 Message Encoder and Decoder . 124

5.3.3 Putting Them All Together . 126

5.3.4 Evaluation . 126

5.4 Discussion . 129

6 Evaluation and Outlook 131
6.1 General Evaluation . 131

6.1.1 On the Applicability of our PC-based Factor Graph Framework . . 131

6.1.2 The Mapping Strategy on the SpiNNaker System 132

6.1.3 The Factor Graph on a Chip . 134

6.2 Another Possible Platform for Embedded Factor Graphs 135

6.3 Beyond Limited Hardware Implementations 136

7 Summary 141

A Appendix-A 145
A.1 Beyond the Standard Factor Graph . 145

B Appendix-B 149
B.1 Discrete Factor Graph with Population Coding 149

C Appendix-C 159
C.1 Embedded Factor Graph on SoC . 159

x

List of Figures

1.1 Representation of the theme of this thesis as an interrelation between neu-

roscience, artificial intelligence (machine learning) and robotics. 11

2.1 An example showing the different perspective of Bayesian and Markov net-

work. 14

2.2 Constructing a factor graph as a structured factorization of the conditional

probability. 16

2.3 Transforming a Bayesian network first into a Markov network and then

into a factor graph. The final transformation produces two different factor

graphs: the first one is with cycles and the second one is without any cycle. 18

2.4 Illustration of belief propagation using message-passing on a factor graph. . 20

2.5 Example of a cyclic factor graph. 23

2.6 Reducing the complexity of the network by splitting the factor f in (a) into

two factors f1 and f2 shown in (b). 27

2.7 The principle of population coding in a homogenous neurons population. . 33

2.8 The Gaussian tuning curves for representing neuronal activation levels in a

homogeneous population comprising 11 neurons. 34

2.9 A non-linear mapping between domain A and B. The values in A are uni-

formly distributed while the values in B are centred around the middle value. 35

2.10 The Gaussian tuning curves for representing a non-uniform data distribution

are spaced unequally in order to represent neuronal activation levels in a

homogeneous population comprising 11 neurons. 36

2.11 The principle of fitting mechanism for optimally-spaced tuning curves that

is based on SOM training. 37

2.12 The biased value resulting from an improper computation that is based on

the mode of the population code (adapted from [1]). 38

2.13 An example network for linearity test of the proposed discretization strategy

using the population coding principle. 39

2.14 Linearity and non-linearity tests for the proposed population coding as a

function of Gaussian’s σ2. 40

2.15 The content of “internal” state distributions of the factor fAB in Fig. 2.14. 41

2.16 The bias effect is produced when an improperly probability distribution is

assigned to the factor node. 42

2.17 Miscellaneous self-consistency tests involving linear and non-linear data for

evaluating the optimality of the population codes. 43

2.18 The simplified UML (unified modeling language) diagram of our factor graph

framework. 44

xi

List of Figures

2.19 One of our software suite which is a part of our factor graph framework

developed for PCs. It is equipped with the data acquisition program to

capture data that will be processed by our factor graph framework. 45

2.20 The performance comparison of our factor graphs in a PC that were imple-

mented using Matlab’s Parallel Toolbox, OpenMP, and GPU-CUDA. . . . 46

3.1 Illustration of a regression technique in a probabilistic perspective. It shows

the conditional distribution for y given x in which it is assumed to be a

Gaussian. 48

3.2 (a) The factor graph network for regression tasks. (b) The regression result

using the network shown in (a). 49

3.3 (a) Regression result from data with noise. (b) The RMSE plot during

parameter estimation. 50

3.4 An example of a classification task that requires a non-linear classifier. . . 51

3.5 (a) A factor graph for implementing a Näıve Bayes classifier in a two-class

classification problem. (b) The result of classification performed by the

model in (a) for the dataset depicted in Fig. 3.4. 51

3.6 (a) The acyclic factor graph for sensor fusion. In this network, all variable

nodes are connected to their respective input nodes. 53

3.7 The profile of sensory data used for training the network shown in Fig. 3.6a. 53

3.8 The inference result for estimating the robot orientation given the sensory

data from two different sensors. 55

3.9 A dynamic Bayesian network representation for a dynamic system expressed

in equations (3.4) . 56

3.10 (a) The undirected graph as the result of moralization process on the DBN

in Fig. 3.9. 57

3.11 An example of a factor graph that is used for explaining the Bayes filter

action in a sum-product messages propagation. 58

3.12 (a) The hidden Markov model created as a special case of the DBN in

Fig. 3.9. (b) The factor graph version of (a). 59

3.13 The mobile manipulator developed in this thesis. It is composed of two

subsystems: a 4-DOFs robotic arm and a mobile platform. 60

3.14 The NST-Omnibot: a three-wheel omnidirectional mobile robot developed

at the research group “Neuroscientific System Theory” (NST) in Technische

Universität München. 61

3.15 The network for modeling kinematics of a single wheel motor control of the

robot shown in Fig. 3.14. 62

3.16 (a) The forward inference result for the network shown in Fig. 3.15. (b) The

joint probability mass function for factor node fVM 63

3.17 The result of the inverse kinematics model. Here it shows the mapping

V →M . 64

3.18 (a) A Bayesian network model for the kinematics of the mobile robot. (b)

The factor graph version of the model in (a). 65

3.19 Decoupling the network by assuming independencies given the observed vari-

ables: (a) for forward kinematics, (b) for inverse kinematics. 65

xii

List of Figures

3.20 Plot of generated motor commands given the desired robot velocities in the

inverse kinematics case: (a) plotted in time sequence, (b) presented as a

correlation plot. 67

3.21 The performance of the kinematics inference against the noisy data. 68

3.22 The robot velocity data was generated using a motor babbling scenario. The

camera tracking system records the robot trajectory which will be translated

into the robot velocity data. 68

3.23 Preparing the data before feeding them into the network. 69

3.24 The camera tracking system provides information about the robot’s pose in

the world coordinate system. In order to work with our model, the data

need to be transformed into the robot-self coordinate system. 70

3.25 Plot of generated motor commands given the desired robot velocities in the

inverse kinematic case: (a) plotted in time sequence, (b) presented in a

correlation plot. 70

3.26 The performance evaluation of the kinematic model for the mobile robot as

a function of the number of states for each variable in the model. 71

3.27 (a) The robotic arm on top of the mobile robot along with its joint’s labels.

(b) A Bayesian network model for the kinematics of the robotic arm. . . . 72

3.28 (a) With the robot having 3 DOFs, it produces two different configura-

tions either “elbow-down” (left) or “elbow-up” (right) for exactly the same

actuator’s pose. 73

3.29 The fully constrained inverse kinematics result. 74

3.30 (a) A Markov chain network for modeling inverse kinematics. Here variable

Z represents the pose of the robot actuator (i.e. the gripper). 75

3.31 (a) The inference result of kinematic models in a simulation environment. . 77

3.32 The graphical model of our mobile manipulator shown in Fig. 3.13. 78

3.33 The conceptual principle of programming by demonstration. 79

3.34 Learning robot trajectory from several demonstrations for each joint of the

robotic arm (θ1, θ2, and θ3 correspond to the joints of the robotic arm shown

in Fig. 3.27a). 80

3.35 Guiding the robotic arm to follow a trajectory. 81

3.36 Robotic arm executes the trajectory it learned before. 82

4.1 The internal architecture of a SpiNNaker chip (adapted from [2]). 89

4.2 Mapping neurons population into SpiNNaker cores in one chip (note: the

white and the black cores are reserved for SpiNNaker kernel). 92

4.3 The SpiNN-3 board and its chips layout. Chip-0,0 is chosen for manag-

ing population codes since it has a direct Ethernet connection to external

systems. (Figure (b) is adapted from [3]) 92

4.4 Message transmission protocol using MC packet. 93

4.5 Mapping regions into SpiNNaker chips. The color illustrates node-to-core

mapping. 95

4.6 An example of message routing in the Region-1 for the factor graph shown

in Fig. 4.5. 97

xiii

List of Figures

4.7 Plotted result of the consistency test for evaluating the multi-core perfor-

mance in a SpiNNaker chip that runs a message-passing algorithm. 99

4.8 Maximizing SpiNNaker cores usage. 100

4.9 Further optimization strategy and a larger SpiNNaker system. 103

5.1 The modul TE0720 (GigaZee) from Trenz Electronic GmbH carries a Xilinx

Z-7020 and several additional components required for building a complete

embedded system . 106

5.2 The internal architecture of Zynq-7000 SoC family (adapted from [4]). . . . 108

5.3 The overall design flow for creating embedded system applications based on

SoC. 109

5.4 The unrolling mechanism to implement parallelism in hardware. 112

5.5 The combination of unrolling and pipelining. 113

5.6 Using the FPGA part of SoC as an accelerator for a factor graph. 114

5.7 Block design of the factor graphs engine in an SoC with FPGA as an accel-

erator. 116

5.8 Networks for test cases. 117

5.9 Inside the chip: the factor graph accelerator program will be translated and

mapped into FPGA resources (BRAM, DSP, FF and LUT) and scattered

all over the chip to match the routing policy of the synthesizer. 119

5.10 Performance comparison of inference execution between accelerated- and

not-accelerated mode by FPGA. 120

5.11 FNode symbol representation. 123

5.12 Internal block diagram of module FNode shown in Fig. 5.11b. 123

5.13 VNode symbol representation. 124

5.14 Internal block diagram of module VNode shown in Fig. 5.13b. 125

5.15 Node-IO symbol representation. 125

5.16 An example of how to construct a factor graph network using core modules

of our factor graph framework. 127

6.1 The Parallela board and its Epiphany chip. 139

6.2 Brain graph related experiments and robotic applications that motivate us

envisioning future applications of our embedded factor graph. 140

A.1 An example of converting an ordinary factor graph to an FFG. 146

A.2 Detailed version of Fig. A.1b . 147

A.3 An addition symbol represents an addition operation which is very common

being used in Gaussian FFGs. 147

B.1 Example three variables factor graph. 149

xiv

List of Tables

4.1 Routing key definition for massage transmission 94

4.2 Summary of evaluation on multi-core parallelism in a SpiNNaker chip . . . 99

4.3 Execution time for a single run of inference 101

5.1 The important features of Xilinx Z-7020 107

5.2 Latency comparison between unrolling with pipeline vs unrolling without

pipeline. 117

5.3 FPGA resources consumption (in %) in the pipelined and non-pipelined

design of the network shown in Fig. 5.8(b). 117

5.4 Comparison of FPGA resource consumption in the network with three and

four nodes (in %). Both networks are fully optimized in term of speed (i.e.

using both unrolling and pipeline mechanisms). 117

5.5 Summary of latency characteristic and FPGA’s resources consumption of

the main modules in our embedded factor graph. 127

5.6 Summary of latency characteristic and FPGA’s resources consumption for

implementing the network shown in Fig. 5.16 using only five states for each

variable’s cardinality. 128

xv

List of Algorithms

1 Estimate factor parameter θ . 26

2 Estimate factor parameter θ using EM . 29

xvii

Notations

Abbreviations

AI Artificial Intelligence

ARM Advanced Reduced Instruction Set Computing (RISC) Machines

AXI Advanced eXtensible Interface

BN Bayesian Network or Belief Network

BP Belief Propagation

BRAM Block Random Access Memory

CPT Conditional Probability Table

CPU Central Processing Unit

DAG Directed Acyclic Graph

DBN Dynamic Bayesian Network

DMA Direct Memory Access

DOF Degree of Freedom

EM Expectation Maximization

FF Flip-flop

FFG Forney-style Factor Graph

FG Factor Graph

FPGA Field Programmable Gate Array

GMM Gaussian Mixture Model

GMR Gaussian Mixture Regression

GPU Graphics Processing Unit

HDL Hardware Description Language

HLS High Level Synthesis

HMM Hidden Markov Model

IP Intellectual Property

KL Kullback-Leibler

LBP Loopy Belief Propagation

LMS Least Mean Squares

LUT Look-up Table

MAP Maximum A Posteriori

MC SpiNNaker Multicast Packet

MCMC Markov Chain Monte Carlo

MDL Minimum Descriptive Length

MDP Markov Decision Process

MLE Maximum Likelihood Estimation

MRF Markov Random Field

MSE Mean of Squared Error

xix

Notations

NoC Network on Chip

NST Neuroscientific System Theory

PACMAN SpiNNaker Partition and Configuration Manager

PbD Programming by Demonstration

PC Personal Computer

PDF Probability Density Function

PGM Probabilistic Graphical Model

PL Programmable Logic

PMF Probability Mass Function

PS Processing System

RMSE Root-Mean-Square Error

RV Random Variable

SDP SpiNNaker Datagram Protocol

SLAM Synchronous Localization and Mapping

SoC System-on-Chip

SOM Self-Organizing Map

SpiNNaker Spiking Neural Network Architecture

VHDL Very High Speed Integrated Circuit Hardware Description Language

VLSI Very Large Scale Integration

Conventions

Scalars, Vectors, and Matrices
Scalars are denoted by upper and lower case letters in italic type. Vectors are denoted

by underlined lower case letters in italic type, as the vector x is composed of elements xi.

Matrices are denoted by underlined upper case letters in italic type, as the matrix M is

composed of elements Mij (ith row, jth column).

x or X Scalar

x Vector

X Matrix

XT Transposed of X

X−1 Inverse of X

X+ Pseudoinverse of X

f(·) Scalar function

f(·) Vector function

x̂ Estimated or predicted value of x

x̃ Estimation error: x̃ = x− x̂
x Average value of x

‖ · ‖p p-norm

∇f(x) = ∂f(x)
∂x

Gradient vector

xx

Notations

Graph Theory

G = (X, F) factor graph G with a set of variable X corresponds to a set of factor F

deg(i) degree of node i in the graph

ne(x) neighbour of x

Probability Theory

p(A1, A2, · · · , An) Joint probability of A1, A2, · · · , An
p(A | B) Conditional probability of A given B

N (x;µ, σ) Normal distribution on X with mean µ and variance σ2

Symbols

General

x(t) State of a dynamic system in a continuous domain

xk State of a dynamic system in a discrete domain

y(t) System output in a continuous domain

yk System output in a discrete domain

σ Standard deviation

σ2 Gaussian Variance

µ Gaussian Mean or average

N Normal distribution
1
Z

Factor normalizer

µx→f (x) Message from a variable- to a factor node

µf→x(x) Message from a factor- to a variable node

θ Network parameter

λ Lagrange multiplier

x not x, or exclude x

xxi

1 Introduction

1.1 From Artificial Intelligence to Probabilistic Graphical

Models

1.1.1 Cognition for Technical Systems

For more than 50 years since its initial booming, Artificial Intelligence (AI) has attracted

a lot of interdisciplinary researchers to uncover one of the most fundamental challenges

in science and technology: how does intelligence form? Within this domain, many AI

researchers explore the cognitive capabilities such as perception, reasoning, planning, and

learning with a long term goal of turning technical systems into systems that “know what

they are doing.” Technical systems with cognitive capabilities will be much easier to

interact and cooperate with humans, and are expected to be more robust, flexible, and

efficient when working in a dynamic environment such as human living space. Not so

surprising, this in turn leads to the development of abstract concept of embodied mind.

Historically, the progress in AI fluctuates. In earlier decades, much of the efforts were

dedicated to programming high-level reasoning tasks such as chess-playing, which surpris-

ingly led to an unjustified optimism that all AI problems would be solved. AI sparked the

demand of creating a machine exhibiting human-like behaviour or intelligence by media

and entertainment business. In the 50s, many programs simulated intelligence using logic

and high-level abstract symbols (hence it is called symbolic logic). However, this approach

has many problems and researchers discovered in the 1970s and 80s that abstract symbolic

reasoning was very inefficient and would never achieve human-levels of competence even on

a simple task. In fact, many researchers began to doubt that high level symbolic reasoning

could ever perform well enough to solve simple problems. Hence, the ultimate goal of

having a machine with human-like intelligence, which is termed strong AI, unfortunately

seemed to be out of reach by the symbolic approach.

In the domain of robotics, researchers argued that the “intelligence” carried on symbolic

reasoning will definitely fail because this approach neglected the importance of sensorimo-

tor skills for the development of the intelligence in general. The robotics researchers began

to direct their attention to another approach such as statistical AI which achieved high

levels of success in industry without using any symbolic reasoning, but instead using prob-

abilistic techniques to make “guesses” and improve them incrementally. This process is

similar to the way human beings are able to make fast, intuitive choices without stopping

to reason symbolically.

In line with this “embodiment” approach, researchers also look into neural network

approaches which are based on the actual structures within a human brain that are re-

sponsible for intelligence and learning. Many AI-origin robotic experts brought up the

embodiment theory and have argued that a machine may need a human-like body to

1

1 Introduction

enable it to think and react as a normal human being. In 1950, Alan Turing wrote [5]

It can also be maintained that it is best to provide the machine with the best

sense organs that money can buy, and then teach it to understand and speak

English. That process could follow the normal teaching of a child. (Alan Turing,

1950)

One source of inspiration for the embodiment theory has been research in cognitive

neuroscience. The idea of the embodied mind starts to grow and becomes one of the intense

debates within the field. Neuroscientists discuss how both our neural and developmental

embodiment shape our mental and linguistic skills. The degree of thought abstraction

has been found to be associated with physical distance which then affects associated ideas

and perception of risk [6]. They also explain the idea of embodied cognition in terms of

dynamical systems theory which leads robotic experts to explore the domain of imitation

learning [7][8].

The progress in computational and cognitive neuroscience also leads to the development

of “artificial brain” (also called artificial mind). Research investigating artificial brains

strives to understand how the human brain works by simulate the biological processes

within to any degree of accuracy. This in turns leads to an attempt of emulating the whole

brain using collaborative informatics infrastructure, including the interconnected standard

PCs, mainframe computers and also neuromorphic hardware [9]. This effort is supported

by thought experiment in the philosophy of artificial intelligence, demonstrating that it is

possible, at least in theory, to create a machine that has all the capabilities of a human

being.

In the lowest level of hardware, neuromorphic engineering, also known as neuromorphic

computing, uses very-large-scale integration (VLSI) systems containing electronic analog

circuits to mimic neuro-biological architectures present in the nervous system. It might also

use nanotechnology [10][11]. Nowadays, the term neuromorphic has been used to describe

analog, digital, and mixed-mode analog/digital VLSI alongside software systems that im-

plement models of neural systems, including for perception, motor control, or multisensory

integration [12]. The key insight of neuromorphic systems which inspire this thesis is how

the morphology of individual neurons, circuits and overall architectures creates desirable

computations. With these neuromorphic systems, researchers explore and try to mimic the

neural computations that affect how information, which are usually noisy, are represented

robustly, and how learning and development are incorporated. Chapter 4 of this thesis

explains how our proposed method is implemented using the neuromorphic device called

SpiNNaker.

1.1.2 The Emergence of Graphical Models

Many tools are used in AI, and a currently popular approach includes the statistical and

probabilistic method. This method is favourable among others because many problems

in AI require the capabilities of reasoning under uncertainty as well as incorporating the

prior knowledge to update the overall knowledge representation. The probabilistic graph-

ical models (PGMs) arise as a convenient tool not only for analysis purpose but also for

2

1.1 From Artificial Intelligence to Probabilistic Graphical Models

performing complex intelligent tasks. The new paradigm of probabilistic reasoning in intel-

ligent system proposed by Judea Pearl (1988) become a hallmark of probabilistic method

domination in AI on uncertain reasoning and expert systems [13]. Due to its close historical

relationship with fundamental probabilistic methods, PGM have gained almost universal

acceptance in a wide range of communities [14].

The PGM can be viewed as unification of graph theory and probability theory into

a new formalism for multivariate statistical modeling [15]. This formalism provides a

convenient way of integrating perception and action as well as learning and planning which

are primarily required by almost all AI manifestation. Particularly, it provides the following

useful properties [16] :

1. Easily visualize model structure which can inspire a new better model upon it

2. The independency between elements/variables can be easily recognized in the model

structure

3. The inference and learning task can be expressed in terms of graphical operations

In modern control systems, engineers use State Space Modelling in time domain for

developing a control system. One of the most advanced state variable feedback systems

that can deal with uncertainty is the Robust Control System. However, this method

relies on the exact mathematical model of the system. For a complex system, where

the exact mathematical model is difficult to obtain, engineers use an intelligent approach

which usually provides a heuristic and a low cost solution that leads to the development

of Intelligent Control Systems [17]. Although many methods have been proposed and can

be considered as intelligent approaches, many AI practitioners initially consider neural

network and fuzzy system as the prominent constituents of the Intelligent Control System.

However, with the emergence of Machine-Learning and Soft-Computing, many researchers

have been starting to deploy PGMs for solving the optimization problem such as in motion

control and planning area [18].

It turns out that the Dynamic Bayesian Network, one form of PGMs, is a general case

of the well-known Kalman Filter, which is a powerful algorithm mainly utilized by control

engineers for developing a state estimator for their state variable feedback control system.

The other field of control, where probabilistic methods play important roles for planning

and decision making, is the optimal control. In this field, the Markov decision process

(MDP) in conjunction with DBN, can be used to extract the knowledge representation of

the environment surrounding the robot agent [19] [20]. To our knowledge, this PGM is best

suited for higher level control algorithm, although it offers a convenient method for multi-

level integration, from low-level control to high-level rule-based planning in the domain of

relational statistics [21]. Some researchers have also tried to implement and to compare

the performance of such a probabilistic inference for controlling dynamic systems, and they

found out that their probabilistic-inference-based controller matches the performance of

the standard conventional controller [22] [23].

Many of the classical multivariate probabilistic systems studied in fields such as statis-

tics, system engineering, information theory, pattern recognition, and statistical mechanics,

are special cases of the general graphical model formalism. These include many popular

3

1 Introduction

methods such as mixture models, factor analysis, hidden Markov models, Kalman filters

and Ising models [24]. This framework has proved its successful outcomes in engineering

applications, ranging from a native motor control to an adaptive reinforcement learning

[25]. Even a new area in robotics, which is called probabilistic robotics and concerned

with the perception and control in the face of uncertainty, is now growing and gaining

more popularity [19].

In the field of signal processing and control theory, statistical and stochastic models have

long been formulated in terms of graphs. Algorithms for computing basic statistical quan-

tities, such as likelihoods and marginal probabilities, have often been expressed in terms of

recursions operating on these graphs [15]. These models are composed of nodes and edges

that are used to represent the organization and functionality of real systems, algorithms,

etc. Viewed algorithmically, the nodes of the graph represent transformational processes,

while the edges represent information paths between the processing nodes. The graph

underlying the graphical method may be directed (such as a Bayesian or Belief network),

or the graph may be undirected (which is generally known as the Markov random field).

Directed graphs are useful for expressing causal relationships between random variables,

whereas undirected graphs are better suited to express soft constraints between random

variables [16].

There is an increasing trend in this decade to merge/combine both directed and undi-

rected graphs into one unified formality. This unification offers more prospective treat-

ments for applications, where the intrinsic problem in the applications cannot be solved

solely by either directed or undirected graphs. For example in the field of robotics, where

the robot needs to interact with the environment while executing some actions, it is very

common to use a computer vision technique as a means of gaining information about the

state of the world, and to use some form of Kalman filters to infer its own internal states for

triggering the robot motion. In this scenario, the undirected graph is the right model for

dealing with the vision processing, while the directed graph is the right one for modelling

the robot motion through some paths or trajectories. This setting is an excellent exam-

ple for combining the optimization algorithm with its graphical representation, leading

to the advancement of probabilistic robotics [19][26]. This emerging field shows that the

“perception-action” cycle of a robot life can be cast as a graph of relations between the in-

volved state variables (i.e. the inferred data) and the observations (i.e. the evidence) [27].

In particular, this unified view has contributed to the success of the well-known algorithm

called simultaneous localization and mapping (SLAM) [28][29][30].

In the framework of PGMs, the probabilistic inference methods are used to decom-

pose the overall computation including the whole estimation process. Special case of this

graphical model is known as the factor graph, which represents function’s factorizations

of several random variables [31]. Factor graphs support a general trend in the field of

computational intelligence from sequential processing to iterative processing. An example

of this trend is the factorial hidden Markov model, where the state space of a traditional

hidden Markov model is split into the product of several state spaces [32]. In the field of

robotics application, the Gaussian Markov random fields (GMRFs) have also been utilized

in the form of factor graphs for solving non linear SLAM problems [30]. This particular

type of graphical model will be described in detail in chapter two.

4

1.1 From Artificial Intelligence to Probabilistic Graphical Models

Basically, the inference method is used for solving a probabilistic problem, either in

the form of marginal probability or maximum a posteriori (MAP) probability [14][33]. In

many situations, marginalization and MAP computations are performed concurrently in

order to get the most benefit of certain inference algorithm. One example of the basic

algorithm for inference is known as the elimination algorithm. The algorithm complexity

will grow exponentially as the structure of the graph becomes more complex and redun-

dant (i.e. many common intermediate terms will exist). However, this algorithm has been

successfully implemented and become the core of the framework called the GTSAM tool-

box (GTSAM stands for “Georgia Tech Smoothing and Mapping”). It provides excellent

solutions to the SLAM (Simultaneous Localization and Mapping) and SFM (Structure

from Motion) problems, but can also be used to model and solve logical problems like CSP

(Constraint Satisfaction Problem). GTSAM is based on the paradigm of viewing matrix

factorization as the way for transforming a factor graph into a Bayesian network, which

is a graphical model that uses the square root information matrix. The Bayesian network

resulting from the elimination/factorization is chordal, and it is well known that a chordal

Bayesian network can be converted into a tree-structured graphical model in which these

operations can be performed conveniently. More about this GTSAM framework and its

application can be found in [34][35][36][37][38][39].

The more efficient algorithm, known as belief propagation via message-passing method,

treats the probabilities as messages propagating through the network. This algorithm is

similar to the one usually used in neural networks, but with a different paradigm where,

in the neural networks setting, each node generally has a single activation value that it

passes to all of its neighbours. This message-passing algorithm can be used efficiently

in factor graphs to compute certain characteristics of the function, such as the marginal

distribution. The most popular form of the message-passing algorithm is known as the

sum-product algorithm. A wide variety of algorithms developed in AI, signal processing,

and digital communications can be derived as specific instances of the sum-product al-

gorithm, including the forward/backward algorithm, the Viterbi algorithm, the iterative

“turbo” decoding algorithm, Pearl’s belief propagation algorithm for Bayesian networks,

the Kalman filter, and a certain fast Fourier transform (FFT) algorithm [31]. It is inter-

esting to note that despite the empirical success of the sum-product algorithm in many

applications, the original algorithm is not guaranteed to converge. However, a unified

framework for the sum-product algorithm and its “sister” the max-product algorithm has

emerged which proves the convergence of message-passing algorithms and has showed the

importance of enforcing consistency in both the sum-product and the max-product algo-

rithms [40].

Some algorithms that belong to the message-passing category sometimes fall into a

class referred as exact inference [41], [42]. Exact inference is usually used for simple

cases, where the structure of the network is loopless or contains just a small number of

loops. Another class, known as approximate inference, tries to maximize probability com-

putation by approximating marginal distribution using stochastic simulation or sampling

algorithms. Examples of this approximate inference approach are importance sampling

algorithm and Markov Chain Monte Carlo (MCMC) algorithm. Another well-known ap-

proximate message-passing technique is the ’loopy’ version of belief propagation, and in-

5

1 Introduction

cludes more recent development such as generalized belief propagation [43] and expectation

propagation [44]. It is also possible to use a variational method to enhance the learning

capabilities of a Bayesian network, since it approximates computations in the model with

latent variables using a lower bound on the marginal likelihood [45]. Unfortunately, this

approximate inference method requires a bulky memory space and demands a lot of compu-

tational resources. Since we are going to explore and exploit a PGM for a specific low-cost

robotics application, we strive to utilize the most effective inference method on restricted

hardware. Hence, we focus on the exploration and system development that works best

with exact inference in a discrete form of PGMs. More detailed descriptions as well as

comparisons for exact and approximate algorithms are given in [46].

Working with discrete form is also inevitable choice when we use a digital machine,

especially in low-level-embedded-system hardware. Every numerical computation will be

subject to quantization because a number, especially the real-valued one, will be stored

in a memory hardware with a limited number of bits. Consider the simple case here for

representing a Gaussian distribution:

N (x;µ, σ) =
1√

2πσ2
exp(
−(x− µ)2

2σ2
)

In Matlab, to represent such distribution we have to specify the range and the resolution

of x:

mu = 1.5; %Set the mean value

x = -3:0.1:3; %Set input values to be within [-3,3] with step interval 0.1

y = (1/sqrt(2*pi*var))*exp(-power(x-mu,2)/(2*var)) %Compute the distribution

plot(x,y) %Plot the distribution

It is clear from the above simple script that the resolution (i.e. the step interval) of

sampling in x will determine how “smooth” the distribution will be represented. As a

consequence, the distribution with high “smoothness” will take longer to be processed

if the computation is performed sequentially. However, with this sequential process, the

memory consumption can be reduced. This trade-off between fidelity and granularity, usu-

ally expressed as a cost function, rises naturally almost in every digital machine involving

discrete-event systems and there is no single optimal solution that can be applied for every

situation [47][48]. In the end, it is the application designers that decide how to make a bal-

ance for those aspects to maintain the optimum cost while delivering the best performance

of their system.

Regarding the discretization of a continuous value in a probabilistic computation, statis-

ticians usually use one of two approaches: supervised (dynamic) and unsupervised (static)

method [49][50]. The unsupervised method does not make use of class membership infor-

mation while the supervised method uses the information content (entropy) of the con-

tinuous variable for the partitioning, and does not require a comparison with the other

variables [51]. Examples of the unsupervised method, which are common in practice, are

the equal-interval approach and the equal-frequency approach (both approaches use the

binning mechanism). However, the method to implement those approaches varies. In gen-

6

1.1 From Artificial Intelligence to Probabilistic Graphical Models

eral, the discretization process has two goals. The first is to find a set of boundary points

to partition the overall range of possible values into a small number of intervals that have

a good class coherence, which is usually measured by an evaluation metric. The second

is to minimize the number of intervals without a significant loss of class-attribute mutual

dependence. The discretization process itself can be direct or incremental. Direct methods

divide the range of k intervals simultaneously, while incremental methods begin with a

simple discretization and pass through an improvement process until some criteria of op-

timality have been reached. Another dimension of a discretization method is the coverage

of the process; it can be local or global discretization [52]. It can also be optimized for

certain applications [53].

In this thesis, we explore a different approach for discretization. Our method is inspired

by the idea of message encoding from a population of neurons in the central nervous

system. Conceptually, this type of code can be used to encode continuous variables usually

originating from a measurement in a physical system. In neuroscience, it is known that

any individual neuron is too noisy to faithfully encode the variable using rate coding, but

an entire population working in synchrony will ensure greater fidelity and precision. The

precision of the population can scale exponentially with the number of neurons [54]. This

principle in turn will be a good technique to approximate a continuous value with high

resolution as a replacement for the sampling mechanism shown in the above Matlab script.

Many researchers have already proposed methods to improve the performance of a

graphical model computation by harnessing parallelism in modern computers [55][56][57].

Also not so surprisingly, the trend of exploiting GPUs (Graphics Processing Units) for

general purpose computing attracts many researchers to start deploying their graphical

models on computer graphic cards. Indeed, with hundreds of processor cores on a single

chip, modern GPUs can be programmed to apply the same numerical operations simulta-

neously to each element of large data arrays under a single program multiple data (SPMD)

paradigm. As the same operations run simultaneously, a GPU computation can achieve ex-

tremely high arithmetic intensity, provided that the data are transferred smoothly to and

from the host processor (CPU). Computational statistics and statistical inference tools

have already begun exploring the benefit of such computing power [58][59]. Silberstein et

al. first demonstrated the potential of a GPU computation that impacts the performance

of Bayesian networks for statistical fitting tasks using a belief propagation approach [60].

Factor graphs have already been implemented in a GPU as well [61][62]. However, to

our knowledge, no exploration has yet been made on factor graphs using any dedicated

hardware.

One important aspect that is covered in this thesis is how to efficiently implement a

PGM on a hardware with limited resources. Such hardware, which is the main target of

embedded system applications, is widely used for low-level and frequently low-cost but

efficient controlling machine in robotics application. It is also common to utilize the PGM

in a complex computing machine and to our knowledge, it is still rare and uncommon to

see the PGM action in an embedded system. In this thesis, we show how such a PGM in

the form of factor graphs can be implemented in dedicated hardware and we demonstrate

some applications from our methods.

7

1 Introduction

1.2 Motivation and Contribution

Factor graph using belief propagation is not a new topic and some people have already

explored this fascinating topic for many applications in specific fields, such as in commu-

nication and signal processing [63], operation research [64][65], and many more. In this

thesis, we are specifically interested in how to empower a technical system using cognitive

capabilities encapsulated in a factor graph framework that enable the system to percept,

react, learn and plan in an intelligent way. Hence, we want our factor graph to work as

close to the lowest level of the hardware system as possible, where the sensors as well as

the actuators are integrated and embedded into a physical system.

While the current computer technology can outperform human capabilities in exact

computation, the superiority of the human brain at computing uncertainty is still far be-

yond the power of computers with strict logical systems. Without a doubt, biologically

realized cognitive intelligence is the most complex property of the human brain and can

be perceived only by itself. The lack of the reasoning skill of a machine for uncertain

behavior in the real world (i.e. noisy, incomplete, or inconsistent input data), leads to the

development of an intelligent system that tries to synthesize intelligent behaviour similar

to biological organisms. It should be noted that this ability to reason under uncertainty,

which is also the main theme of this thesis, is only a small part of human-level intelli-

gence. Other parts of human-level intelligence, such as natural language, self-awareness

and consciousness, are beyond the scope of this thesis. Hence, it is likely that our machine

is capable of reasoning under uncertainty even though it might not understand what it

is doing [66]; something which is common and acceptable for AI researchers who realize

that “strong AI” is a progressive work. However, one particular aspect of this intelligent

system, which motivates this thesis, is its cognition ability: it tries to understand its envi-

ronment, perceive it and adjust its own state based on its predefined goal. An examination

of cognitive and biological models for human control of systems suggests that they exhibit

a declarative, procedural, and reflexive hierarchy of functions. In this thesis, we propose

biologically-inspired hardware solutions and strategies that can be extended for a broader

class of probabilistic inference based on some principles of information processing in the

human brain. Thus, the ultimate goal of this thesis is not to develop a human-level intel-

ligent machine, but to build supportive hardware for more complex systems which can be

used to mimic such high level intelligence.

SpiNNaker (Spiking Neural Network Architecture) system, one of the most recent neuro-

morphic devices available for novel research exploring the domain of embodied intelligence,

is the first platform that will be used in this thesis to explore many aspects of low level data

transmission in a distributed fashion. Our PC-based factor graph framework described in

section 2.4 is our starting point for understanding the core computations required to im-

plement effective factor graphs along with the belief propagation algorithm and messages

encoding using population coding principle. To our knowledge, this is the first time the

SpiNNaker system is being explored in the domain of probabilistic graphical models. Hence

we emphasize the novelty of this research on this aspect.

Next, we propose to use a System on Chip (SoC) device as the continuation from our

first effort on implementing factor graphs in embedded hardware. SoC is chosen because it

offers integration of both software-based control and real time hardware-based processing.

8

1.2 Motivation and Contribution

We use the Zynq-7020 from Xilinx as our SoC platform, which is composed internally of

two tightly coupled sub-systems: PS (processing system, i.e. microprocessor core) and PL

(programmable logic, i.e. FPGA fabric). The PS sub-system consists of equivalently two

ARM Cortex-9 processors and the PL sub-system is equivalent with FPGA Artix-7 from

Xilinx. We can also take the advantage of the most important feature of FPGA in that it

can be re-configured as many times as possible without changing the hardware structure

of the system (low-risk high-impact approach). Comparing to the conventional/standard

computer hardware based on von Neumann processor at the core, where the algorithm

is executed sequentially (even with multithreading feature of multi-cores processor), SoCs

offer much more flexibilities due to the fact that their FPGA resources can be structured

and organized to mimic the true parallelism in a complex computations. For example,

for calculating a factor graph iteratively in a standard computer program, it will consume

quite amount of computer resources (i.e. task scheduler) which are very difficult to be

maintained without sacrificing load sharing between processes in the CPU and it also

introduces delays between threads which affects overall algorithm performance [67][68][69].

This sequential approach is worsened by the fact that it often performs the product

operation on a set of values, for example in the use of the sum-product algorithm for

implementing the message-passing algorithm. Multiplication, by default, is always an

intense resource consuming process. By utilizing the FPGA of the SoC, we can distribute

the computation into concurrent calculations effectively in every slice of the FPGA chip.

This might be very useful, for examples when calculating Factorial Hidden Markov Models,

where the state space of a traditional Hidden Markov Model is split into the product of

several state spaces.

The novelty of this research is the exploration of the implementation of probabilis-

tic inference using message-passing-based methods for factor graphs natively in low-level

hardware. Such fundamental probabilistic inference hardware, which takes into account

the uncertainty and randomness into its computation platform, will produce more pow-

erful, flexible and efficient building blocks for more complex computational intelligence

machine. Similar work has also been accomplished by Mansinghka, who created stochastic

digital circuit using FPGA to build massively parallel, fault-tolerant machines for sam-

pling, which allow one to efficiently run MCMC [70]. The main difference of this thesis

with Mansinghka’s work is that we implement the discretization for continuous variables

using population coding principle developed by the computational neuroscience commu-

nity. Furthermore, Manshinghka concentrates on the sampling algorithm and gives a little

detail on the higher level of intelligence abstraction. In our method, we keep working in the

discrete domain because working with propagation of continuous variable distribution may

result in multidimensional integration which leads to intractable operation, especially for

embedded systems with limited resources [71]. Furthermore, we address the challenge of

implementing such probabilistic reasoning hardware to support the cognitive development

of a real technical system (e.g. robotics application).

We are also aware that there is an attempt to implement belief propagation algorithm

inspired by neural information processing which harnesses the biophysical properties of

neuronal networks. Work by Andreas Steimer (in [72]) focuses on different levels of ab-

straction, ranging from abstract, spike-based principles that deal with the problem at

9

1 Introduction

the level of neural coding, to more concrete approaches for implementing BP in neural

substrates. Although his work is based on the similar belief propagation mechanism in

our framework, it is different with our approach developed in this thesis, because Steimer

implemented his belief propagation algorithm with message encoding using Liquid-State

Machine (LSMs) and implemented it on Forney-style factor graphs. Our approach, on the

other hand, uses belief propagation on ordinary but arbitrary factor graph with tuning-

curve-based population coding. Furthermore, Steimer developed an abstract idea of hard-

ware implementation called Interspike-Intervals-based processor; while we implement our

factor graph in real hardware using two different platforms: SpiNNaker system and SoC

(System-on-Chip).

Regarding the population coding principle for encoding messages in factor graph, this

thesis offers a better understanding and implementation of such principle compared to the

work of Dennis Göhlsdorf (in [73]). The comparison between Göhlsdorf’s population coding

and our proposed population coding is described in section 2.3. Furthermore, Göhlsdorf’s

work focuses on developing a factor graph framework which only runs on standard PCs.

On the other hand, we develop our own PC-based factor graph framework and then extend

it so that we can implement it in embedded hardware efficiently.

Finally, we introduce also the comparison with different hardware platforms, which

might be useful for consideration in the future development of robotics system with prob-

abilistic graphical models as the main framework for its cognitive intelligence engine.

Throughout this thesis, we use the term “embedded factor graph” to refer to the im-

plemented factor graph framework on a dedicated hardware.

In summary, our contributions are depicted in Fig. 1.1. The relation between techni-

cal systems and computational neuroscience give influential insight for the core element

of our proposed method. We believe, the cognitive capabilities inspired by the neural

processing mechanism in the brain will empower our future technical system (robotic sys-

tems in particular), while reciprocally giving valuable feedback for neuroscientists in their

understanding of the physical impact of their theories about the neural system.

1.3 Organization

This thesis is organized as follows.

Ch.1 Introduces the motivational background with a brief overview on the state-of-the-art

of the related research area, presents a brief overview of our proposed methods, and

points to several related works.

Ch.2 Presents the modeling principle using a factor graph. It starts with the basic concept

of probabilistic graphical models with focus on factor graphs historical background,

and continues with the model building mechanism and the parameter learning. In

this chapter, we describe our proposed method of using population codes for encoding

messages in a factor graph. The chapter is closed with the description of our PC-

based factor graph framework.

Ch.3 Demonstrates many applications of our factor graph framework. Two application

domains are explored: machine learning and robotics. In this chapter, the extension

10

1.3 Organization

Fig. 1.1: Representation of the theme of this thesis as an interrelation between neuroscience,
artificial intelligence (machine learning) and robotics. We learn from neuroscience,
how the cognitive intelligence is emerged; we learn from artificial intelligence (machine
learning), how we can model it; we then apply our model in robotics applications;
finally we inform our colleagues in neuroscience about our experiments using technical
systems (robots) which hopefully provide valuable feedback and insight for them into
how the cognitive intelligence should be studied further.

of a static factor graph into a dynamic one in our factor graph framework is also

presented.

Ch.4 Presents our implementation of factor graphs in a SpiNNaker system. This chapter

demonstrates our proposed method for mapping factor graph’s core elements into

SpiNNaker’s resources. It also presents the performance evaluation and our proposed

optimization strategy.

Ch.5 Presents our implementation of factor graphs in Xilinx Zynq-7000 SoC. This chapter

describes our two implementation methods: FPGA as an accelerator, and FPGA as

a full factor graph engine. The chapter is closed with a thorough evaluation on our

methods and also with our proposed improvement strategy.

11

1 Introduction

Ch.6 Describes the overall evaluation and our vision on further applications of our factor

graph framework.

Ch.7 Summarizes this thesis work.

12

2 Modeling in Factor Graphs

Factor graph is a graphical model which unifies the directed and undirected modes and

provides a convenient way for performing inference in order to compute the marginal

probabilities of variables involved in the graph. In this chapter, we describe the basic

mechanism of belief propagation using message-passing algorithm and how our framework

deals with several issues arising during the inference as well as learning the parameters

of the network. Our contribution in this chapter lies on the improved parametrization

of the network using the population coding principle (section 2.3). We also explore the

combination of sum-product and max-sum algorithm to produce an alternative method for

learning the parameters for a network with hidden variables (section 2.2.3). We present

our framework in section 2.4 as a means for us to understand the core principle of belief

propagation in factor graph along with all its challenges, where we gain insights for later

implementation in dedicated hardware.

2.1 Probabilistic Graphical Models

Probabilistic graphical modeling (PGM) is a powerful method in artificial intelligence and

machine learning which emerges from the combination of graph theory and probability

theory. It combines graph theory and probability theory in such a way that it can rep-

resent a complete probabilistic distribution over a multi-dimensional space in a factorized

representation using a graph. This factorization is the successful key of this method since

it provides the modularity mechanism where a complex system can be built by combining

its simpler parts while ensuring the consistencies during the process. Its graphical rep-

resentation makes it an appealing visualization which also provides an intuitive way to

interface models to data. These fascinating properties of PGM attracts many researchers

and engineers to study and apply PGM to broader applications. After a decade of ex-

ploration in many studies, it turn out that many of the classical artificial intelligence and

machine learning algorithms in the flavour of multivariate probabalistic/stochastic sys-

tems are special cases of PGM [1]. Many well-known frameworks such as mixture models,

factor analyses, hidden Markov models (HMM), Kalman filters and Ising models can be

represented generally using PGM formalism [74][75]. Another advantage of PGM is that,

a specialized technique that has been developed in one field can be transferred between

research communities and exploited to gain more applicabilities. This in turn provides a

natural framework for the design of new systems [16][14][24][76].

In general, probabilistic graphical models can be grouped into two main classes. The

first are so-called directed acyclic graphical models (DAG), which are also popularly known

as Bayesian Network; and the second are called undirected graphical models, also com-

monly referred to as Markov Random Fields (or simply Markov network). Historically,

undirected graphical models are more popular by the physics and vision communities

13

2 Modeling in Factor Graphs

[77][78][79][80][43][81][82], and directed models are more popular with the artificial intelli-

gence and computational method society [83][84][85][13][86]. People who work with DAG

are mainly interested in the causality relation between variables; hence, the parameters of

the network are more interpretable and computationally easier to be estimated [87][88].

On the other hand, people are interested in the undirected graphical model due to its sym-

metrical characteristic such that it is more “natural” to represent spatial or relational data,

which are commonly found in computer vision applications. Both families encompass the

properties of factorization and independences, but they differ in the set of independences

they can encode and the factorization of the distribution that they induce. This difference

is reflected on the “direction-ness” in the model: the direction in the Bayesian Network

reflects the conditional relation between variables tied by the directed-link between them,

while the non-direction in the Markov Network simply reflects the potential of maximal

cliques within the graph, where the ordering of variables is not important (hence it requires

no direction on the link). The same difference, which is exemplified in Fig. 2.1, will have a

big impact and lead into different treatment when building a model and determining the

parameters of that model. For example, in a Markov network, two sets of variable nodes

A and B are conditionally independent given a third set, C, if all paths (in any direction)

between A and B are separated by a node in C. By contrast, in Bayesian networks, this

dependency will not hold for all directions.

A

BC

D

(a) Bayesian network

A

BC

D

(b) Markov network

Fig. 2.1: An example showing the different perspective of Bayesian and Markov network. Al-
though both models have the similar structure, the treatment of probability distribu-
tion between variables might be different. In (a), the probability distribution factor-
izes into p(A,B ,C ,D) = p(D | B ,C) · p(C | A) · p(B | A) · p(A). While in (b),
the probability distribution factorizes into p(A,B ,C ,D) = 1

Z
φ1(A,B) · φ2(B ,C) ·

φ3(C ,D) · φ4(A,D). Hence, both models encode different independencies of their
variables.

In addition to these two main graphical models, there exist several other models which

are particularly useful when bringing those two models into a specific application, such as

clique tree (or junction tree), chain graph, conditional random field, restricted Boltzmann

machine, etc. Some of these additional models try to exploit both directed and undirected

model characteristics in order to find the relationship between those two models. One an-

other model which tries to unify both class PGM while preserving the original advantage of

each class is so-called factor graph. This factor graph model, which is also the main theme

14

2.2 Inference and Learning in Factor Graphs

of this thesis, provides a unification approach such that we can make further analyses while

the network preserves more information about the form of the distribution than either the

Bayesian network or the Markov network can do alone [89]. In its original form, the factor

graph is an undirected graphical model but in its inference, it can also behave the same

way as a directed model depending on the underlying Bayesian network. For a factor

graph which has underlying functionality originating from one of those Bayesian networks,

it is straightforward to use the standard exact inference such as the belief propagation.

However, working with a factor graph which has a cyclic topology (such as those that re-

sulting from Markov Network transformation) will be very challenging and requires special

treatment/tuning in order to avoid oscillation in the network [90][91][92] [93][94][95][96].

In the next section, a more in-depth explanation of how a factor graph works will be given.

2.2 Inference and Learning in Factor Graphs

2.2.1 Building a Factor Graph Model

Although the origin of factor graphs lie in coding theory, it has similar instantiations used

in machine learning community [31]. It is natural to treat a factor graph (with extension)

to express a Bayesian network or Markov network [89].

A factor graph has two important properties: network parameters and network struc-

ture. Although learning a network structure is very interesting, it is very challenging and

out of the scope of this thesis. The work from Abbeel et.al. shows that learning network

structure from data which is not generated by its own distribution class will degrade the

accuracy and efficiency [97]. Instead of learning the network structure, in this thesis we

assume that the structure of the network will be given (or can be inferred directly) as a

part of the task’s description in the application.

In general, a factor in a factor graph is a function over some inter-related variables.

A factor is nonnegative if all its entries are nonnegative. The variables which become

the argument of the function are called the “scope” of the factor. Since a factor is basi-

cally a function, it can also be used to represent any logical predicate. This means, in a

binary-valued factor, which has a value 1 for certain variable assignments and 0 otherwise,

the factor can represent any logical relationship among its scope variable. Extending the

concept of a factor in the probabilistic perspective, a factor can also capture the statis-

tical relationship between random variables. In a Bayesian network, factors in the graph

represent joint probability and/or conditional probability of interconnecting variables. In

a Markov network perspective, however, factors in the graph represent potentials of the

corresponding cliques. For example, given a model with five variables (A, B, C, D and E)

and the following relation:

p(A,B,C,D,E) = p(E|C,D) · p(C|A,B) · p(A) · p(B) · p(C) (2.1)

A Bayesian network expresses this conditional probability by linking all child variables

to their parent using a parent-to-child arrow. For the given relation, the resulting graph

is shown in Fig. 2.2a. By definition, a factor graph is a bipartite graph that expresses the

structure of factorization, which is commonly expressed in a 2-tuple G = (X, F). In a

15

2 Modeling in Factor Graphs

factor graph, expression (2.1) is factorized as:

p(A,B,C,D) = f1(A) · f2(B) · f3(D) · f4(ABC) · f5(CDE) (2.2)

and the resulting factor graph is shown in Fig. 2.2b.

BA

C D

E

(a) Bayesian network
representation

BA

C D

E

f1 f2

f3f4

f5

(b) Factor graph repre-
sentation

Fig. 2.2: Constructing a factor graph as a structured factorization of the conditional probability.

The structural representation of the factor graph shown in Fig. 2.2a is called the stan-

dard/ordinary factor graph. There is, however, another representation called Forney-style

factor graph (FFG) which is quite popular in the field of communication and signal pro-

cessing. This different notation for factor graph is briefly introduced in Appendix-A. In

this thesis, we use the standard factor graph representation for the following reasons:

1. The standard factor graph has a structural representation which is similar to two

other important graphical models: Bayesian network (BN) and Markov Random

Field (MRF). Hence, people who are already familiar with either BN or MRF will

not encounter difficulties in understanding the main idea presented in this thesis.

2. In a FFG each variable may only be connected to two factor nodes at most. This

strong restriction reduces the simplicity of the graphical model representation; hence,

the resulting FFG structure will grow enormous.

3. In a FFG, there exist several additional specific types of factor nodes such as ele-

mentary nodes as well as composite blocks, which require additional treatment in

the inference process beyond message-passing itself. Hence, it potentially increases

the latency in the hardware implementation of a factor graph in generic applications

beyond the field of communication and signal processing.

Fig. 2.2 also shows that the factor graph preserves the structural information from

its underlying Bayesian network. Since the Bayesian network is an acyclic network, the

resulting factor graph also has an acyclic structure, which is favourable especially when

dealing with exact inference.

However, when transforming a Markov network into a factor graph, it might yield a

cyclic structure. The cyclic structure usually happens when we first transform a Bayesian

16

2.2 Inference and Learning in Factor Graphs

network into a Markov network through a moralization procedure before finally transform-

ing it into a factor graph. For example, we can transform the Bayesian network shown in

Fig. 2.2a into a Markov network and later into a factor graph as follows.

First the original directed graph is transformed into an undirected graph through a

moralization procedure. In this step, all parent nodes of a child node will be connected

together, which usually produces a cycle. Next, the decision must be made to either create

a factor node for each edge connecting two variables, or to create a factor node only for

maximal cliques. If we choose to create a factor node for each edge, the factor graph may

end up cyclic. But if we choose to create a factor node only on the maximal clique, cycles

may be eliminated resulting in a cycle-free factor graph. Both the resulting factor graphs

have their own advantages and disadvantages. For example, in a cycle-free factor graph,

we do not need to worry about the loop problem and we can run the inference algorithm

in a convenience way which is favourable for an exact inference. However, the size of the

factor might be big and the computation on that factor will create a bottleneck for the

overall computation (i.e. it will become a subject to a phenomena similar to the curse of

dimensionality problem). On the other hand, if we choose the factor graph with cycles

then we will have a problem with loopy messages which are very difficult to manage. Yet,

the size of the factor node is relatively small, and the computation on that factor node

will be very fast1. Another interesting feature of this single factor node for each edge is

that it will satisfy the pairwise Markov property directly, which resembles the classical but

powerful pairwise graphical model in machine learning called the restricted Boltzmann

machine [98][99][100]. We will cover this loopy phenomenon in more detail in the next

section. The result of a model transformation is shown in Fig. 2.3.

A factor graph has a variable node for each random variable of the system being mod-

elled, and a factor node for each local function which takes variable nodes as its argument.

Edges only exist between a subset of variable nodes; factor nodes are never connected to

other factor nodes, and variable nodes are never connected to other variable nodes. A

factor node Fj is connected to variable nodes Xi if and only if Xi are arguments of Fj.

Given a factor graph G = (X,F), the joint probability of all variables is a product of all

factorization by factor nodes in the graph:

p(X) =
1

Z

∏
j

fj(Xi) (2.3)

Working with factor graphs to solve a probabilistic inference problem means that vari-

able and factor nodes in the graph also have probabilistic representations: this is how

the network will be parameterized. In general, we can represent a value by: a categori-

cal (ordinal) or a numeric representation. The categorical representation is useful when

dealing with categorical variables such as blood type, weather condition, etc. The nu-

merical representation is useful when dealing with applications that include real numbers

such as someone’s weight, student grade, or temperature measurement. For applications

1In literatures, the number of scope variables of a factor determines the “order” of that factor. A factor
with only two scope variables, such as the one which is created by assigning a factor for each edge in
the graph, is commonly referred to as a binary factor. Likewise, a factor with a single scope variable
is commonly referred to as a unary factor, which plays an important role as an input/output point
of the system being modelled by the factor graph.

17

2 Modeling in Factor Graphs

BA

C D

E

BA

C D

E

BA

C D

E

BA

C D

E

moralization

one factor per edge

one factor per maximal clique

Fig. 2.3: Transforming a Bayesian network first into a Markov network and then into a factor
graph. The final transformation produces two different factor graphs: the first one
is with cycles and the second one is without any cycle.

in technical system, generally the network will involve numerical representation. Usually,

the numerical variables take continuous values, and it will be very challenging to propa-

gate them in a network because of multimodality and multidimensional integration [71].

Although working with continuous variables seems to be more natural, but at the end,

it still needs to employ some sampling steps for approximating the integral [101]. Hence,

we need to find a better discretization strategy for those continuous values and treat the

network as a network with completely discrete parameters.

Also when working with discrete parameters, one must consider the numeric encoding

of data since it can have a significant effect on the performance. In this thesis, the term

discrete parameter reflects the fact that the variable nodes in the factor graph are discrete

ones. By definition, a discrete random variable (RV) X is a measurable function X : Ω→ S

from the finite/countable sample space Ω to another measurable finite space S called the

state space. Each state has a deterministic value which represents a probability of a

certain event that occurs randomly. Subsequently, parameter learning simply means how

to update the states representation of a factor in a factor graph. In general, learning the

parameter of a factor is basically a task of approximating the probability mass function.

For a factor graph without any cycle, one can use an algorithm that exploits dependence

trees to approximate the parameters [102]; however, such an algorithm cannot be used

for general graphs. Instead, we will use a more generic approach called the expectation

maximization for learning the parameter of a network.

Once we have done with defining the factor graph structure and network parameters, we

can continue with performing the inference. If the structure of the factor graph does not

18

2.2 Inference and Learning in Factor Graphs

contain any loop then we can use an exact inference algorithm conveniently. One popular

method of exact inference is the belief propagation mechanism. In references, the Bayesian

network that uses this mechanism is known as Belief Network [83][103]. There is a similar

mechanism in factor graphs popularly known as the sum-product algorithm [31], which

relies on message-passing among nodes in the graph. A belief is the marginal distribution

of a node, and a message is a representation of such distribution which is interchanged

between corresponding nodes. Section 2.2.2 explains in detail how the belief propagation

works and how we implement this algorithm in our system.

Given a factor graph, the next task before we can do any inference on it is to determine

all nodes parameters. However, learning the parameters is crucial since it involves the

decision of how to discretize RV’s values (such as data from a robot sensor which only takes

discrete range between [-500, 500]). Working in direct probabilistic computation means

that one needs to provide an array with the number of elements as many as 1000 elements

to cover all possible values in that range. This number of elements (or states), which is

termed “cardinality” in PGMs, will increase exponentially as the number of RVs involved

in the structure is also increased. Our discretization strategy to reduce the number of

states needed to represent a real-valued number is based on the positional coding principle

in population coding theory (see section 2.3). In the population coding theory, a collection

of neighboring neurons in the brain, which might has similar characteristics, will react

in synchrony after the stimulus [104]. The combined activation levels of those neurons

resemble the probability density function of a certain multinomial distribution.

2.2.2 Inference Through Belief Propagation

This subsection describes the basic principle of belief propagation. First we describe the

belief propagation mechanism on a network without any loop and then extend/modify the

same algorithm for more generic networks which might contains a loop.

Belief Propagation on Factor Graph without Loop

In general, belief propagation is a class of inference algorithm commonly used in proba-

bilistic graphical models, such as Bayesian networks and Markov random fields. It works

on the factorized joint probability distribution by passing messages along the edges of the

graph according to a set of message-passing rules which exploits the graphical structure

of the network. The algorithm was first proposed by Judea Pearl in 1982 [105][83], who

formulated this algorithm on trees and was later extended for general graphs. During

the inference, each message will be updated consecutively from the previous value of the

neighbouring messages. The “neighbouring messages” means all messages that come from

all connected neighbour except the one to which the output message will be computed.

Updating the message requires different scheduling. In the case where the network is a

tree, the belief propagation algorithm will reach convergence after computing each mes-

sages only once; hence an optimal scheduling is always guaranteed. This is also valid for a

chain graph which involves forward and backward phases.

Two types of messages are transmitted within the factor graph: the message sent by a

variable node to a factor node (denoted as µx→f (x) and the message sent by a factor node

19

2 Modeling in Factor Graphs

to a variable node (denoted as µf→x(x)). These messages are computed according to the

following equation.

µx→f (x) =
∏

h∈n(x)\{f}

µh→x(x) (2.4)

µf→x(x) =
∑
∼{x}

f(X)
∏

y∈n(f)\{x}

µy→f (y))

 (2.5)

where X = n(f) is the set of arguments of the function f and ∼ {x} is the “not-sum” or

summary indicating the variables being summed over.

The belief propagation running on an acyclic factor graph usually has two phases: from

leaves to root and then from root to leaves. We can think of these two steps as a similar

process to the forward-backward procedure of the Baum-Welch algorithm used in hidden

Markov model (HMM) [106][107]. A leaf node is a node which is connected only to a single

neighbour node. For a single-inference mechanism, an arbitrary node is selected as the

root in the beginning. However, for multiple-inference mechanism, the root selection is

unnecessary. The message-passing is started on every leaf by computing and propagating

messages to its neighbours. The message propagation continues until all nodes receive the

messages in both directions. Fig. 2.4 illustrates this basic principle of belief propagation.

BA

C D

E

f1 f2

f3f4

f5

1a 1b

1c
2b2a

2c

3a

3b
1d

BA

C D

E

f1 f2

f3f4

f5

6a 6b

4a

4b

5a 5b

5c
5d

6c

Fig. 2.4: Illustration of belief propagation using message-passing on a factor graph. Each
circled number represents the iteration step. The red-coloured arrows and their cor-
responding numbers indicate the “forward” phases where the messages propagate
in the “network-entering” direction, while the blue-coloured arrows and their corre-
sponding numbers indicate the “backward” phases where the messages propagate in
the “network-exiting” direction.

This belief propagation can be interpreted intuitively as follows. The belief is all the

information currently available about a variable or a factor, and this information is the

product of the initial information (prior belief) and the information passed on from the

20

2.2 Inference and Learning in Factor Graphs

messages. This is analogues to the standard Baye’s rule where the messages operate as

likelihoods that will be multiplied with a prior to get the posterior. Belief propagation

algorithm ensures that a node will update its belief after receiving messages from all

neighbouring nodes:

b(Xi) =
∏
ne(Xi)

µf(X)→(Xi)(Xi) (2.6)

bF (XF) = fF (XF)
∏
ne(F)

µXi→f(X)(Xi) (2.7)

The consistency of the belief propagation is established when the propagated messages to

the variable agree in terms of the marginal of the factor over the corresponding variable:

bF (Xi) = bi(Xi)

In the termination step, the posterior probability of a variable p(xi) can be computed

as the product of all messages directed toward xi. This means, since the message passed

on any given edge is equal to the product of all but one of these messages, p(xi) can be

computed as the product of the two messages that were passed (in opposite direction) over

any single edge incident on xi.

Belief Propagation on Factor Graph with Loop

The same belief propagation mechanism can also be applied to graphs with cycles and

commonly referred to as loopy belief propagation (LBP). To our knowledge, however,

there is no proof that LBP can be used generally (in any case). It is shown that LBP can

produce a good result for some cases, but sometimes it does not even converge. Theoretical

understanding of how actually LBP can converge in a network with a single loop is given

by [93] and [108]. Analysis on how the behaviours of the LBP algorithm are affected

by the discrete geometry of the factor graph, and the relation between the LBP, the

Bethe free energy and the graph zeta function, are given by [109]. Further analysis on a

network with arbitrary topologies and a Gaussian joint distribution shows that the belief

propagation will converge to the correct marginals [110]. Based on empirical study in [90],

if the algorithm converges then the results are usually close to the true marginal. If the

algorithm oscillates, the correct marginal values seem to lay in the interval defined by the

oscillation. This could not be shown in all cases. Furthermore, it is not the structure of the

network but the parameter values of the network itself that determines if the convergence

will be achieved. The choice of the initial messages, however, does not have any impact

on the convergence of the algorithm.

Regarding the scheduling for updating messages, when the factor graph has cycles, an

optimal scheduling does not exist, and the proper scheduling strategy must be found based

on the characteristic of the application itself[90]. Basically, the scheduling for cyclic factor

graphs can be done synchronously or asynchronously. In the synchronous mode (also called

flooding schedule), all messages are updated in parallel, while in the asynchronous mode

(also called serial schedule), an update is only applied to one message at a time. There is

21

2 Modeling in Factor Graphs

no consensus on how to apply those scheduling on a cyclic graph; however, for a graph with

a grid structure (e.g. in computer vision application such as stereo on pixel lattice), people

often sweep in an “up-down-left-right fashion” [111][112]. Unfortunately, choosing a good

schedule requires some experimentation in most applications. Elidan et.al analyse in [94] of

how to best schedule the messages. Experiences lead to the conjecture that asynchronous

message-passing works better for loopy networks although many previous convergence

analyses have mostly been done in synchronous/parallel message updating. They assume

that every message will at least be updated once within a finite interval of time, which is

also a similar condition for convergence with the parallel update version. They show that

asynchronous message-passing converges at least as fast as parallel updating. To improve

the convergence rate, they propose a message scheduling scheme called “Residual Belief

Propagation”. A residual in this scheme is defined as the difference between a message

and its update. The main idea of this approach is to update only the message with the

largest residual, i.e. the message whose update will have the biggest effect on the network.

Experiments show that Residual Belief Propagation converges faster and more often than

other approaches.

In a cyclic factor graph, the initialization and message scheduling of the algorithm are

defined differently than for the case with an acyclic factor graph. A cyclic factor graph

illustrated in Fig. 2.5 shows that neither variable node z nor factor node fA are able

to compute an outgoing message as there are not enough incoming messages. Therefore,

instead of starting the propagation chain by sending messages from the leaves, the message

on each link in every direction is initialized with an initial value. Then each node can start

computing outgoing messages using its own local information and the initialized messages.

The freshly computed outgoing message on a link will then replace the old one.

It can be seen in Fig. 2.5 that the messages may be passed around the loop endlessly.

By analysing the maximal difference between a new message update and the previous

message at some iteration i, one can define a threshold for this difference below which

the algorithm can be considered converged. The message values often converge after some

iterations. However, it might occur in some cases that the message values oscillate and

never converge. In the case of convergence, the result does not correspond to the exact

marginal. Nevertheless, some experiments have shown that the approximation is often

very good [90].

There are two kinds of error that occur when applying a standard belief propagation

to a factor graph with loops. The first is the cycling error which arises due to the fact

that messages are being passed around in the loop. It happens when a node computes an

outgoing message based on the incoming messages, assuming they contain new information.

However, some of the incoming messages will contain the same information they have

accumulated during the previous iteration within the loop. The second type of error

is called convergence error, which arises especially in the case where the factor graph

originates from a Bayesian network. It happens when a child node, which is a part of the

loop, receives messages from its parents. When computing the standard outgoing message,

it assumes that those messages are stochastically independent. Since the child node and its

parents are part of the loop, they are in fact connected by another path, and are therefore

not independent [92].

22

2.2 Inference and Learning in Factor Graphs

zv

y

w

fA fD

fB

fC

"1"

"1"

? ?

Fig. 2.5: Example of a cyclic factor graph. Factor node fA and variable node z cannot compute
outgoing messages because there are not enough incoming messages from the other
neighbouring nodes. Starting from the node v (by sending a value “1” that means it
is observed), the message goes to node fA and waits for other messages (either from
node y or node z) to appear. However, node y cannot send a message while it does not
receive any message from node fB. The same also happens with node z. Let’s assume
that node fD sends an uninformative message (denoted by a uniform distribution
“1”) to node z, that message will also get stuck at node z because node z has not
received any message from the other neighbors other than from node fB. Therefore,
it is intuitive to solve this problem by assuming initial messages at every links to
avoid the deadlock. This assumption, later on, will require a specific mechanism of
scheduling. Otherwise, the network will easily get trapped in an oscillatory state.

Our factor graph framework uses the same belief propagation and can be extended

easily to perform the loopy belief propagation. However, we do not put to much attention

for solving the convergence problems of running loopy belief propagation on an acyclic

factor graph. In section 3.1.3 on page 52 we give a simple example to demonstrate that

our framework is capable of handling a factor graph with a single loop. It can be inferred

from [93][94] that a single loop factor graph usually does not have many problems with

the cycling error; hence, it is easier to converge. This explains why our loopy factor

graph in section 3.1.3 can produce convergence result. We also facilitate this loopy belief

propagation in our embedded factor graph version using a SoC by providing a dedicated

module for managing the scheduling of the message-passing algorithm (see chapter 5).

2.2.3 Parameter Learning

Working with the probabilistic graphical models is usually preceded by the selection of

what kind of parameters that will be used for the model. In statistical terminology, there

are basically two different types of model: parametric and non-parametric model. In

parametric model setting, it is assumed that the model has a fixed number of parameters.

In non-parametric model, the number of parameters is not fixed and might grow with

the amount of training data. The parametric model has an advantage such that it is

simpler to analyse and sometimes also faster but it also has the main drawback as it

23

2 Modeling in Factor Graphs

usually uses a strong assumption about the nature of the data distribution which can

lead to wrong decision. The non-parametric model is usually more flexible but often

requires more computation resources. It does not mean that non-parametric model should

be avoided when trying to implement it in low-level hardware because it is still possible

to use the infinite Gaussian mixture model which is particularly well-suited for resource-

limited hardware [113][114]. It turns out that our proposed method, at some extent, mimic

this characteristic as well. However, in this thesis we prefer to call our work as parametric

models. As described in chapter 1, we always have to bring any numerical value into digital

data than can be processed by digital hardware in discrete processing. Hence we have to

discretize the fix-size parameter of our model into discrete values. In this setting actually

we mix between the parametric and non-parametric in the sense that we use a number of

parameters which describes our model but we limit the size of those parameters and also

we assume that those parameters actually come from a family of probabilistic distribution

(e.g. Gaussian, Beta, etc.). Later we will describe how to implement such discretization

of parameters using population coding principle.

Regarding the parameter learning scenario, there are two conditions that need different

approaches. First, if the datasets from which the parameters can be learnt are complete

(i.e. there are neither missing values nor hidden variables), then the standard maximum a

priori (MAP) query can be used. In this thesis, instead of using the full MAP computation,

we use maximum likelihood estimation (MLE) for estimating the parameters. Second, if

the datasets have missing values or hidden variables, then we need to apply an iterative

conditional modes (ICM) based approach. There are exists several algorithms for this

second case such as Gradient Ascent and Expectation Maximization (EM), but we prefer

to use the EM approach since it is more generic and appropriate in graphical modelling

framework.

Maximum Likelihood Estimation

In common setting, one uses learning algorithm for estimating network parameters from

observed data and uses inference algorithm to make prediction about data and then perform

reasoning based on the result of prediction. There is a close relation between inference and

learning in probabilistic graphical model. It turns out that in MLE setting we can use the

standard belief propagation also for performing the learning task. Later in this section as

well, we will show that in the Expectation Maximization (EM) algorithm, the result of

inference step for calculating the expectation value has crucial effect in the next step for

maximizing the expected log-likelihood [76] [14].

If we work with fully observed data and the structure of the network is given, then it is

sufficient to use Maximum Likelihood Estimation (MLE). In fact, MLE is one of preferred

methods for parameter estimation in statistics, particularly in nonlinear modeling with

non-normal data [115]. It is also closely related with the concept of information bottleneck

in the information-theoretic formulation for clustering problems which tries to construct a

new variable T given the joint probability p(x, y) that defines partitions over the values of

X that are informative about Y [116].

24

2.2 Inference and Learning in Factor Graphs

We start exploring MLE by considering Bayes’ rule formula:

p(θ|D) =
p(D|θ) · p(θ)

p(D)
(2.8)

The denominator p(D) does not do anything with parameter θ and it just reflects the

normalization of distribution. For observed data D and parameter θ, p(D|θ) is the likeli-

hood of the data D generated by the model with parameter θ, p(θ) is the prior knowledge

about the underlying parameter θ, and p(θ|D) is the posterior. Thus, the learning process

is to maximize the posterior, which is called maximum a posteriori (MAP):

θMAP = arg maxθ p(θ|D) (2.9)

In one iteration only learning process, it is safe to assume that we know nothing about

the prior and we make the prior to be uniform. In this setting, we will get the maximum

likelihood:

θML = arg maxθ p(θ|D) (2.10)

It is also important to assume that there is no dependency between observations:

p(d1, ..., dN |θ) =
N∏
n=1

p(dN |θ) = L(θ : D) (2.11)

Equation (2.11) is called likelihood function and we want to maximize it. Using empirical

distribution (with Kronecker-delta function) for discrete variable with k number of states,

(2.11) becomes:

L(θ : D) =
k∏
i=1

θNk
k (2.12)

In our population coding representation, Nk is the number of neuron-kth fires while the

other neurons keep silent.

It is more convenient if we maximize the log of (2.12) and call it log-likelihood function

l(θ : D). When we maximize l(θ : D), we also need to apply the sum-to-one constraint to

θ. For discrete variable with k number of states, the constraint is:

p(Θ) =
k∑
i=1

θi = 1 (2.13)

Adding this constraint to (2.11) will result in Lagrangian objective function:

l(θ : D) =
∑
k

Nk log θk + λ(1−
∑
k

θk) (2.14)

with Lagrange multiplier λ. Maximizing (2.14) by taking its derivatives with respect to θk

25

2 Modeling in Factor Graphs

to zero yields:

∂l

∂θk
=
Nk

θk
− λ = 0 (2.15)

So that Nk = λ θk
Solving λ by using (2.13) yields:

λ =
∑
k

Nk (2.16)

And thus:

θk =
Nk∑
kNk

(2.17)

Expression (2.17) basically is the probability of each value of θ corresponds to its fre-

quency in the training data (i.e. the firing rate of neuron kth in the population). Expression

(2.17) can be adapted in a generic setting where parameter representations such as our

proposed population coding needs to be learned from data before it can be utilized in fac-

tor graphs. In the belief propagation setting, we simply summarize every neuron response

using sum-product formula. It means that for all samples in the dataset, we summing up

the probability of each state as neuron’s firing rate. This is a generalization procedure

of empirical distribution with Kronecker-delta function; where for each sample, only one

state has probability 1.0 and 0.0 for the rests. To train our network using (2.17) in order

to get the factor value θ, we use the following algorithm.

Algorithm 1 Estimate factor parameter θ

Θ← uniformly distribute
for all sample in X do
for i = 0 to k do

compute product(θk)
Θ←

∑
Θk

end for
end for
return Θ

Expectation Maximization

In the situation where the datasets are incomplete (i.e. there are missing values) or contain

hidden variables, one must use an iterative approach such as EM algorithm. Sometimes, the

hidden variables emerge when we try to reduce the complexity of a network. For example,

if we have a four variables network, then the joint probability p(A,B,C,D) expressed by

a factor graph will require the presence of a factor node with four scopes f(A,B,C,D). If

each variable is has 10 states, then the factor node f will have an internal function with

104 = 10000 states. The factor f can be split into two factors f1 and f2 while keeping

the consistent overall joint probability such that p(A,B,C,D) = f1 · f2. Each factor f1

and f2 will now have only 103 + 103 = 2000 states, much lower than the previously factor

26

2.2 Inference and Learning in Factor Graphs

f with 10000 states. Since the factor node cannot be connected to another factor node,

we have to add a new variable. Let’s call this new variable H, then the joint probability

distribution of the network can be expressed as: p(A,B,C,D) = f1(A,B,H) ·f2(H,C,D).

This new variable H is hidden and will not appear in the dataset. The EM algorithm then

can be used to learn these new factor f1 and f2. This situation is depicted in Fig. 2.6.

CA

D

H

B

f f2f1
CA

DB

(a) (b)

Fig. 2.6: Reducing the complexity of the network by splitting the factor f in (a) into two
factors f1 and f2 shown in (b). Splitting the factor f will introduce a new hidden
variable H which connects the factor node f1 to f2. This in turn will reduce the
memory consumption for storing the internal function of the factors but with a cost
of slowing down the inference speed due to the increasing number of messages that
need to be passed from f1 to f2 through the hidden variable H.

The MLE algorithm described in the previous sub-section tries to maximize the log-

likelihood of observed data in which all variables are observed is basically a convex op-

timization problem. Maximizing the log-likelihood with datasets containing hidden vari-

ables, however, is a non-convex problem. Forcing the the log-likelihood maximization on

this case might produces many local maxima. Also, the standard gradient-based methods

usually found in optimization literature can converge to a local maximum and very difficult

to find the learning rate for which it will not become too slow nor oscillate[117][118].

In PGM, and expectation-maximization (EM) algorithm is an iterative method for find-

ing maximum likelihood or maximum a posteriori (MAP) estimates of parameters, where

the model depends on unobserved latent variables. It was first introduced by Arthur Demp-

ster in 1997 and many papers covering the convergence analysis of EM were published since

then. The EM iteration alternates between performing an expectation (E) step, which cre-

ates a function for the expectation of the log-likelihood evaluated using the current estimate

for the parameters, and maximization (M) step, which computes parameters maximizing

the expected log-likelihood found on the E step. These parameter-estimates are then used

to determine the distribution of the latent variables in the next E step. Comparing EM

algorithm with gradient-based algorithm such as Gradient Ascent, the EM algorithm does

not require learning rate. However, a careful treatment must be taken because a single

update during the training can cause large jumps in parameter space. Despite of these

possibly large update steps, the algorithm is guaranteed to converge to a stationary point

which most likely will be a local maximum [119].

The initial implementation of EM algorithm in this thesis is motivated by the work of

Göhlsdorf [73]. In his thesis, Göhlsdorf uses the following formula to learn the parameters

27

2 Modeling in Factor Graphs

of factors in a factor graph:

f t+1
á (Xá = x) = f tá(Xá = x) · 〈p(Xá = x | Y i, θ)〉i

p(Xá = x)
(2.18)

Here fá denotes an internal function of a factor node in a factor graph and Xá = x

indicates a specific variable configuration (i.e. state) for this function. Hence, fá(Xá =

x) corresponds to a single parameter of that function. The EM update rule above was

derived under the assumption that the partition function Z =
∑

X

∏
a fa(Xa) would only

be subject to small changes during an update. Hence, this formula is useful to change only

a few model parameters in each update. Comparing equation (2.18) to (2.17), both have

similar underlying mechanism which express the approximation to the first moment of

the probability distribution. This is because both equations are derived using expectation

formula.

The update rule in (2.18) is used as follows. First, the intrinsic marginal probability

p(Xá = x) and the marginal probability given the observed data p(Xá = x | Y i, θ) must

be provided in advance. In an acyclic factor graph, p(Xá = x) can be determined by

fixing the messages from all observed variables to non-informative messages (i.e. uniform

messages) and running the belief propagation algorithm until convergence. The marginal

probability p(Xá = x | Y i, θ) can be obtained similarly, but with the observed nodes fixed

to the observation Y i. Using the above update rule, the model parameters can change

dramatically within a single update. Therefore, in Dennis’ work, it is necessary to present

a large batch of data points in order to determine a good approximation of p(Xá = x | Y i, θ)

before performing an update. Normally, the complete batch of data should be presented

before each update. As soon as the marginal probabilities are determined, the factor

entries can be updated. Also, in order to ensure numerical stability, the factor entries

should be normalized after each update. Scaling the factor entries will not have any effect

on the overall probability distribution represented by the factor graph because the partition

function will scale as well.

The EM algorithm using the update rule in (2.18) has two limitations:

1. It uses standard averaging technique for all points in the dataset at once in order to

avoid the large jump in state space during the training. We argue that this is not the

optimal solution because some important information regarding the unequal state

distribution might be lost due to overall averaging. A better approach would be to

iterate per data point until it converges and then add-up to the previous result. At

the final phase, the factor just needs to be normalized again.

2. It updates a single state of the factor node’s function in each iteration which reflects

the use of Kronecker delta function for the discrete factor graph. Hence, we need to

extend it so that it can be used for discrete factor graph with population code.

This thesis provides an improvement for the EM algorithm using the update rule

in (2.18) by introducing the population code as the argument for the update rule. It

is inefficient to calculate f t+1
á (Xá) by enumerating all configurations in the arguments of

fá. Furthermore, we are also interested to exploit the inference in the belief propagation

mechanism for learning the parameters, similar to the previous treatment for the MLE

28

2.2 Inference and Learning in Factor Graphs

approach. Hence, we need to find the configuration with maximum probability value and

then spread the distribution according to the population code’s variance. Since the EM is

an iterative approach and we use population coding instead of Kronecker delta function,

we use Kullback-Leibler (KL) formula to measure the divergence level of the new learned

parameters. This KL divergence has the following basic form:

DKL(p ‖ q) =
∑
x

p(x) ln
p(x)

q(x)

DKL(p ‖ q) =
∑
x

p(x) ln p(x)−
∑
x

p(x) ln q(x) (2.19)

By using Jensen’s inequality theorem, we know that DKL(p ‖ q) ≥ 0 with equality

iff p = q. We apply the KL measure on the difference between the new probability

distribution (p(x)) and the old probability distribution (q(x)) about some threshold value

as the stopping criteria. The iteration will stop when this KL measure is fulfilled or when

the MAX ITERATION value is reached. The algorithm for learning the parameters

using this EM approach is shown below.

Algorithm 2 Estimate factor parameter θ using EM

Θ← uniformly distribute
for all sample in X do
φ, φold, φnew ← uniformly distribute
for i = 0 to MAX ITERATION do
for j = 0 to k do

compute product(φknew)
φ←

∑
φknew

end for
compute diff = KL(phiold, phi)
if diff ≤ THRESHOLD then
φold ←

∑
φ

break
end if

end for
Θ← φold

end for
normalize Θ
return Θ

Our parameter learning approach is still based on frequentist paradigm on probability.

There is another way of learning which uses complete Bayesian treatment. One important

aspect of Bayesian learning concept in this way is that it can be used for learning with very

little amount of data or when the data is sparse. However, this Bayesian learning concept

also has a drawback in determining the prior probability. Without any information about

prior probability, the Bayesian learning concept will lose its generality. Justin Dauwels

et.al. show that it is possible to utilize the message-passing algorithm for EM in Bayesian

29

2 Modeling in Factor Graphs

setting [120]. They implement the EM with Bayesian setting in FFG which is out of the

scope of this thesis.

We are also aware that there is an effort to use EM algorithm for estimating Bayesian

network parameters based on factor graphs in a distributed computing framework [121].

They use libDAI [122] for implementing discrete factor graphs and speed up the computa-

tion by using parallelism framework called MapReduce2 [123]. Unfortunately we couldn’t

test their method on a discrete factor graph using population code since libDAI does not

support our discretization technique. Rather than reimplementing libDAI for supporting

population code technique, we prefer to continue working on embedded factor graph.

Another option that can be used to enhance the EM algorithm is by using the max-

product algorithm alongside the sum-product algorithm in the message-passing framework.

This is not a new idea and in fact the similar idea was used by Zhao Song for a specific

application [124]. The basic idea of using max-product for EM can be traced back from

many literatures on probabilistic graphical models which explain that the max-product

algorithm is a proper query to find the state’s configuration for maximizing the posterior

probability. In this approach, the sum-product algorithm will be used for inference in

E-step of EM process and the max-product algorithm will be used for maximization in

the M-step of the EM process. The max-product algorithm (or max-sum if we work in

logarithmic domain) can be viewed as an application of dynamic programming in the

context of graphical models [16]. We also gain a benefit such that our EM approach using

sum-product and max-product algorithm might be used as an alternative approach for the

Viterbi algorithm used in common HMM. This method can be described as follows.

Basically, what we want to find the set of values (not only a single configuration) that

jointly have the highest probability xmax = arg max
x

p(x) for it will produce the joint

probability distribution with highest value as p(xmax) = max
x

p(x) = max
x1
· · ·max

xM
p(x).

Since products of many small probabilities can lead to underflow problems, it is convenient

to work with the logarithm version in which ln
(

max
x

p(x)
)

= max
x

ln p(x). This is the max-

sum version of the max-product in logarithmic domain. Using the similar approach to the

sum-product algorithm, the max-sum can be written in terms of message-passing simply

by replacing ’sum’ with ’max’ and replacing products with sums of logarithms:

µf→x(X) = max
x

(
ln f(X) +

∑
∼x

µx→f (X)

)
µx→f (X) =

∑
∼x

µf→x(X)

(2.20)

The maximum probability and the corresponding states which generate that maximum

2libDAI is a free and open source C++ library for discrete approximate inference in graphical models
developed by Joris Mooij. MapReduce was introduced by Google as a simplified software framework
for parallelizing computation across large clusters of standard computers

30

2.3 Population Coding Representation

probability value are given below:

pmax = max
x

 ∑
s∈ne(x)

µfs→x(X)


xmax = arg max

x

 ∑
s∈ne(x)

µfs→x(X)

 (2.21)

We have implemented such approach in our PC-based factor graph framework using

Kronecker delta discretization technique but we do not implement them in our current

embedded hardware for the following reasons:

1. Although the max-product can run in the same message-passing scenario as the sum-

product algorithm, it cannot be used directly to get the final result of the parameters

without going into the “back-tracking” procedure which requires more additional

memory resources. This is because without back-tracking (where all previous values

are stored), due to maximization rather than summation, there are several multiple

configurations of x all of which give rise to the maximum value for p(x). As the

consequence, it is possible that the maximized configuration is biased. Eventually,

if we use the back-tracking mechanism, it will consume a considerable amount of

memory resources.

2. It is unclear yet how to efficiently handle the population coding in the scheme of

max-product algorithm. In our current implementation, we just spread out the state

which produces the maximum probability to emulate a population. But it might be

inefficient because we neglect the importance of previously found state. We believe

that this task is a challenging one and need deeper exploration. We will consider this

in our future work.

Since our current hardware memory is limited, we keep this EM approach using sum-

product and max-product algorithms to run only on a PC. The resulting parameters then

can be sent to the hardware for normal operation of message-passing algorithm.

2.3 Population Coding Representation

In this section, our method for descretizing continuous variables, which is based on the

population coding theory, is presented. To our knowledge, this approach is not entirely new

and we can find similarities on some principles to other discretization techniques described

in statistical literature. In fact, the population coding principle has also been used for

instance by Göhlsdorf [73]. However, in this thesis, we propose an improved version by

introducing an adaptive partitioning scheme based on the data distribution.

As we have mentioned briefly in section 1.1.2 on page 2, our method is inspired by

the idea of stimuli encoding from a population of neurons in the central nervous system.

From literature in the field of neuroscience, it is known that any individual neuron is too

31

2 Modeling in Factor Graphs

noisy to correctly encode a probabilistic distribution using the spike rate. However, an

entire population works in synchrony will ensure greater fidelity and precision of such an

encoding. Two motivations for using a population code in our approach for discretizing

continuous values are:

1. By using a small number of neurons with certain activation function, the entire space

can be represented compactly so that the loss of information due to quantization can

be minimized.

2. The probability distribution produced by the population of neurons can be used to

represent the uncertainty of sensory information. It is known that the reliability of

a sensor reading depends on many aspects ranging from the internal characteristics

of the sensor itself to the noise present in the environment. Hence it is beneficial to

read the sensor data with some level of confidence encapsulated in the probability

distribution.

2.3.1 Encoding and Decoding Principle

Encoding Continuous Values using Population Code

A framework of information encoding known as the population code has been proposed in

computational neuroscience to reflect the fact that in many regions in the brain, a group

of neurons are activated in a way such that they produce neural responses with certain

probabilistic distribution when given stimuli [125][126][127]. In general, the combined

response of those neurons is favourable for reducing the uncertainty due to the variability

of each neuron. Interestingly, experimental studies in neuroscience also show that this

coding paradigm is commonly used in the sensorimotor cortex [128][129]. It is also argued

that these paradigms support the inference mechanism for cognitive tasks [130]. In fact,

the brain shows a mixture model which integrates many aspects of neural computation

including sensory processing, motor command generation, and cognitive planning as well

as decisions making [131]. This is a superiority that no current technology can match:

the brain shows robust computations in the presence of noise. Hence, this phenomenal

performance leads scientists to believe that the brain behaves as a complex stochastic

optimal controller [7][132].

This astonishing robustness often gives clues on explaining how stimulus-driven atten-

tion is an emergent property of a neural population, which is very robust and able to track

a static or moving target in the presence of strong noise or with many distractions, even

more salient than the target itself [131]. In perceptual systems, a stimulus parameter can

be extracted by determining the center-of-gravity of the response profile of a sensory neu-

rons population. Likewise at the motor end of a neural system, center-of-gravity decoding

generates a movement direction from the neural activation profile [133]. Based on these

findings, we develop experimental and simulation studies using such a profound theory to

demonstrate its consistency and applicability in a broad application area.

We adopt the population coding principle, especially the positional method, to create

a compact state representation of a random variable (RV). One method for implementing

this principle works as follows. In a discrete network, every discrete RV has a certain

32

2.3 Population Coding Representation

number of states that represents its probability distribution; for example, a binary RV has

two states to represents its two possible values. We transform a value in the RV into a

vector of some discrete representation based on the predefined cardinality. Consider the

network in Fig. 2.2; if we assume that all variables are binaries, then it requires 32 states

to represent the joint probability p(A,B,C,D,E). In the numerical representation setting,

first we split the interval I = [min val, max val] into k subintervals (called states). Then

we assign a probability value for each state and make sure that
∑

k pk = 1. Since we

only work with discrete factor graphs, a factor is stored as a conditional probability table

(CPT). This standard method easily burdens the computation once the interval I has a

long range and thus requires a bigger value of k to properly represents the number. By

using the population coding principle, we can think of a state in a discrete variable like

a neuron in a small population located somewhere in the brain. A population of several

neighbouring neurons with similar characteristics will react in synchrony to the stimulus.

For example, in a fully connected homogeneous neuron population, an external stimulus

Sext(t) will trigger the population to generate a response R(t) (see Fig. 2.7).

Fig. 2.7: The principle of population coding in a homogenous neurons population. (a) A
homogenous neurons population receives an input and generates certain output ac-
cording to the underlying neuronal model (adapted from [104]). (b) Illustration of
an aligned homogenous neurons population that shows the overall response as a
Gaussian distribution. In the population, each neuron reacts differently in a form of
frequent spike train according to how close the input to each neuron.

Neuroscientists use population codes to decode brain activities that correspond to spe-

cific types of perception-action relations. It is common to use bell-shaped (i.e. Gaussian

function) tuning curves to encode such relations. The combined activation levels from each

neuron then shapes the overall distribution of the corresponding population. In this sense,

the usual application of machine learning in neuroscience is to extract information from

these population codes. One of preferred methods is the maximum likelihood estimation

(MLE) which shows an excellent read-out method, and is regarded as an ideal observer

[134]. The main use of the concept of population coding in this thesis, however, is not

for estimating the underlying probability distribution of the population, but to compute

the activation level of each neuron given the overall prior or posterior distribution of the

population alongside the received input stimulus within the receptive field of the neuron

33

2 Modeling in Factor Graphs

population. Fig. 2.8 shows an example of the tuning curves and illustrates how a real value

input is encoded in a population code.

Fig. 2.8: The Gaussian tuning curves for representing neuronal activation levels in a homo-
geneous population comprising of 11 neurons. When an input stimulus arrives at
the receptive field (shown as a blue-dashed line), each neuron fires. The measured
activation levels from all neurons (along the blue-dashed line) are then combined to
produce the overall probability distribution which is depicted as a discrete probability
mass function.

The tuning curves shown in Fig. 2.8 are useful for encoding values where the distribution

of the values is uniform. Hence, the tuning curves are equally spaced throughout the

accessible space in the domain. In statistical terminology, this is called equal interval

binning. The resulting probability mass function (PMF) is then the descretized form of

the input value. However, if the distribution of the values is not uniform, then the above

tuning curves will fail to produce the correct representation of the discretized value. This

usually occurs, for instance, when the population code is used for mapping a non-linear

34

2.3 Population Coding Representation

function. Fig. 2.9 shows an example of a non-linear mapping from the domain A to the

domain B where the value distribution in the domain B is not uniform.

Fig. 2.9: A non-linear mapping between domain A and B. The values in A are uniformly
distributed while the values in B are centred around the middle value. In this scenario,
uniform tuning curves can only be used to encode the value of A.

For encoding a non-uniform data distribution such as the variable B shown in Fig. 2.9,

the tuning curve will be arranged such that more neurons are concentrated in the region

where the distribution is denser. To put the words differently, each neuron will be special-

ized on a certain region such that the number of sampled data in all regions are balanced (in

statistics, this is called the equal frequency binning). Fig. 2.10 shows the arrangement of

the tuning curves to achieve the equal frequency binning for the variable B in Fig. 2.9. The

resulting PMF for the given input stimulus will be different from the previously computed

PMF with equally spaced tuning curves shown in Fig. 2.8.

The remaining question for using a population code to generate a PMF that represents

a continuous value is how do we determine the center of each Gaussian curve? This is

a straightforward procedure for the uniformly spaced curves since we know exactly the

width of each region, and the center of the curve lies at the center of each region. We just

need to make sure that the distance between successive curves are equal throughout the

working space. For non-uniformly spaced curves, however, it is not straightforward and

we need some techniques to best allocate the curves’ centers. An excellent technique used

in statistics to determine such an allocation is based on the criterion called the minimum

descriptive length (MDL) [51][135][136][137]. One such an algorithm, which is quite popular

and is used also in this thesis, is the K2 algorithm. To achieve such an equal frequency

binning with proper number of partitions, the entire working space is partitioned into N-

regions (usually starts from a small number and is increased during the iteration), and

a counter assigned for each region will count how many data have been placed into that

region. The MDL-based algorithm then tries to find the best cutting-points for each region

35

2 Modeling in Factor Graphs

Fig. 2.10: The Gaussian tuning curves for representing a non-uniform data distribution are
spaced unequally in order to represent neuronal activation levels in a homogeneous
population comprising 11 neurons. The input stimulus (depicted as a blue-dashed
vertical line) similar to the one shown in Fig. 2.8 is received at the receptive field.
Each neuron then fires and the measured activation levels from all neurons (along
the blue dashed line) are combined to produce the overall distribution which is
depicted as a discrete probability mass function.

by making sure that the number of data points in successive regions are equal or almost

equal. As a consequence of this step, some adjacent partitions might be combined to better

represent the value range of the corresponding variable. This is an iterative process and

there are several approaches to maximize the entropy with minimal information loss by

dynamically repartitioning the continuous space.

The more biological plausible method to achieve similar result is based on the unsuper-

vised training method using the Kohonen’s self-organizing map (SOM) network. The idea

is straightforward: with a proper training, the SOM will preserve the topological properties

36

2.3 Population Coding Representation

of the input space. In this sense, the SOM is trained to produce a map – the discretized

representation of the input space of the training samples [138][139]. In our discretization

method, we create a one-dimension SOM network composed of N neurons, and perform

the network training based on the Gaussian neighbourhood function. The weight of each

neuron will then represent the balanced location of the Gaussian tuning curve. These

weights are adjusted according to the data fed into the SOM network. This process is

depicted in Fig. 2.11.

Fig. 2.11: The principle of fitting mechanism for optimally-spaced tuning curves that is based
on SOM training. Each neuron’s weight in the SOM network will be updated during
the training to preserve the topological structure contained in the presented data
to the SOM network.

So far we treat the population of neurons as a homogeneous population. Another type of

population is the non-homogeneous one, where each neuron in the population has its own

characteristics that differ from one neuron to the others. For example, neurons with a bell-

shape activation level might have different variance value. However, in this thesis, we do not

use this heterogeneous population because we follow the idea that a population of neurons

should represent a node consistent with the graphical model theory which states that such

a node should be internally coherent [140][141]. Also, we found no firm evidence that

exploiting the heterogeneity of a population of neurons will improve the overall encoding

performance in the context of probabilistic graphical modelling. However, it is interesting

for our future work to include also the heterogeneous population coding since some works

suggest that the heterogeneous neurons population might facilitate temporally controlled

behaviours [142][143][144].

Decoding the Population Code into a Value

Given a probability message encoded in a population code that circulates around in a factor

graph network, the question is how can we decode such a message to get the real value

back from the population code representation. One might be tempted to use the mode

of the distribution curve since this point intuitively represents the most likely state that

contributes the largest portion to the overall density. This idea is a common perspective

in decision theory but only valid for multi-modal probability density function such as the

mixture Gaussian. For example, in [13] chapter 15, the author gives a valid example of how

the flying bird intuitively decides which direction to take for an evasive action in avoiding

the collision with an object using its visually generated perceptional belief encoded in a

multi-modal distribution. However, this approach does not always work especially in the

37

2 Modeling in Factor Graphs

case where the density function originates from data with a non-uniform distribution, for

instance in the non-linear transformation problem shown in Fig. 2.9. This is illustrated

further in Fig. 2.12. If the mode is used to decode the message for variable B, then it will

produce a “bias” (shifted value) which is not correct.

Fig. 2.12: The biased value resulting from an improper computation that is based on the mode
of the population code (adapted from [1]).

A better solution for computing a real value back from a distribution is by using the

maximum likelihood inference (MLI) in which the stimulus estimator x̂ is obtained by

maximizing the log likelihood p(r | x), where r is the tuning curves function and x is

the stimulus. For practical consideration, it is convenient to assume that the correlation

between the tuning curves can be neglected. Thus, solving this MLI will be the problem

of approaching the stimulus estimator using the center-of-mass method [126]:

x̂ =

∫∞
−∞ x · p(x) dx∫∞
−∞ p(x) dx

If the message containing the above information is normalized, which is a standard practice,

then the denominator part can be removed. In the discrete form, the stimulus estimator

is the expected value of the probability mass function:

x̂ =
n∑
i

xipi(x) (2.22)

where xi is the center of the tuning curves and pi is the activation level of the correspond-

ing neuron. In other words, all neurons responses are integrated by using the weighted

population average.

The limitation of this approach is that, when the distribution is multi-modal, then the

38

2.3 Population Coding Representation

real value computed using formula (2.22) will not be exact simply because that formula

performs an averaging. However, we can still approximate it using the decomposition

procedure such as in a Gaussian mixture model (GMM) where we want to estimate the

mean for each component of the GMM. This is done usually for analytical reason but, for

practical application, we prefer to use formula (2.22) assuming that the message circulating

in the belief network is uni-modal.

2.3.2 Performance Evaluation

It is imperative for us to test the performance of our encoding/decoding approach before

using it further in more complex applications. To test the performance, a two-variables

factor graph shown in Fig. 2.13 is used. A dataset containing two RVs A and B with

certain relationship that will be fed into the network is generated. Variables A and B from

the dataset are discretized using the population coding approach, and enter the network

through factors fA and fB respectively as belief messages. The prior belief of the factor

node fAB is updated with these messages using (2.7). The posterior of fAB is basically the

accumulation of the counting action in (2.17).

Fig. 2.13: An example network for linearity test of the proposed discretization strategy using
the population coding principle.

The network shown in Fig. 2.13 is used for testing against the linearity and non-linearity

of the mapping response of the population codes. For the linearity test, we generated two

linear data, labelled A and B, in the range [minA, maxA] where we set B simply equal

to A times a constant value C. For the non-linearity test, we firstly generated A in the

range [minA, maxA] and then computed B using a logistic function from A. The result is

shown in Fig. 2.14. For this test, the Gaussian function is used for encoding the value of

the network parameter.

Fig. 2.14 is produced by varying the parameter σ2 of the Gaussian function used for

encoding the message and also by varying the number of states for that message. As shown

in the figure, the variance value has the same important effect on the smoothness of the

curves as well as the number of states used in the population code. This effect can be clearly

seen when inspecting the “internal” state distribution of the factor as shown in Fig. 2.15.

Giving too low value on the parameter σ2 will yield a “stair-case” effect (shown by blue

curves in Fig. 2.14), which is a natural response by which a Gaussian function will approach

a Kronecker-delta function. This in turn will cause the joint probability distribution (i.e

the internal function of the factor node) to become “thinner” (see Fig. 2.15a). However,

setting too high value on σ2 (see Fig. 2.15d) will flatten the Gaussian function almost

close to a uniform distribution. This action will yield the scaling effect when using the

weighted population average to recover the real value back from the distribution. In

our experiments, we usually set this parameter σ2 within the range [1, 10]. In general,

our proposed discretization approach using the population coding paradigm with proper

39

2 Modeling in Factor Graphs

Fig. 2.14: Linearity and non-linearity tests for the proposed population coding as a function of
Gaussian’s σ2. Graphs to the left show the result of the linearity test, and graphs
to the right show the result of the non-linearity test. Both the variance and the
number of states will determine the “smoothness” of the result. In general, using
high number of states will diminish the quantization effect. However, using a proper
variance value can also improve the performance even when using a small number
of states, as shown in the upper graphs.

parameter tuning produces very good result. For example, the linearity test in Fig. 2.13

using 50 states and σ2 = 10 produces mean squared error (MSE) = 0.4, while the non-

linearity test produces MSE = 0.5.

Regarding the generality of population coding in a belief propagation setting, Göhlsdorf

describes in his work that population codes are incompatible with factor graphs [73]. This

is true when factor nodes in the factor graph contain the joint probability distribution

instead of the conditional probability distribution. In fact, this is valid not only for factor

graphs with population codes, but also for all factor graphs which originate from Bayesian

networks. It can be easily understood by considering the basic formula of the Baye’s rule:

p(A | B) = η · p(B | A) · p(A) (2.23)

where η is the normalizing constant which is equal to η = 1∑
B p(A|B)·p(B)

.

To understand the problem, consider the following setting. The belief propagation

algorithm is mainly used for computing the marginal probability of a certain variable.

This is done by first computing the messages from factor nodes to the respective variable

node using equation (2.5). As an example, let’s assume that we want to compute p(B)

40

2.3 Population Coding Representation

Fig. 2.15: The content of “internal” state distributions of the factor fAB in Fig. 2.14.

using the network in Fig. 2.13 and the factor node fAB contains the joint probability

p(A,B). The input A (f(A)) represents the prior distribution of variable A (p(A)) and

will arrive at node fAB as the message µA→fAB
(A). Using equation (2.5), the output

message µfAB→B(B), which represents the marginal probability p(B), will be computed as:

p(B) =
∑
A

p(A,B) · µA→fAB
(A) =

∑
A

p(A,B) · p(A) (2.24)

which is clearly not the correct formula according to the equation (2.23). Instead, we need

to compute:

p(B) =
∑
A

p(B | A) · µA→fAB
(A) =

∑
A

p(B | A) · p(A) (2.25)

The equation (2.24) is the biased version of the equation (2.25). This bias effect is illus-

trated in Fig. 2.16. To overcome this problem, the joint probability distribution needs to

be conditioned to get the conditional probability distribution.

41

2 Modeling in Factor Graphs

Fig. 2.16: The bias effect is produced when an improperly probability distribution is assigned
to the factor node. (a) The joint probability distribution is assigned as the internal
function of the factor node fAB in Fig. 2.13. (b) The joint probability distribution
is corrected into the conditional probability distribution for the factor node fAB.
The result is exactly linear as expected.

The second improvement that we have made for optimally using the population codes

is a SOM implementation for adaptively adjusting the mean of each tuning curve in the

neurons population. This is done by observing the data distribution of the corresponding

dataset, and corresponds to the non-uniformly spaced tuning curve shown in Fig. 2.10.

An example of using this non-uniformly spaced population versus the uniformly spaced

population is shown in Fig. 2.17. This figure is produced using the same network in

Fig. 2.13 where we fed the network with both linear and non-linear data.

In summary, there are two important aspects for the population codes to be used opti-

mally in factor graphs. First, the factor nodes must have valid probability distributions in

order to avoid biasing effects due to the prior probability. Second, the tuning curves must

capture the “content” of information (i.e. the data distribution), otherwise, it will overfit

the data.

2.4 Software Framework Development

Since the PGM is not a new concept, many libraries have been built and published to

accommodate the needs for deploying specific algorithms/applications based on the prob-

abilistic reasoning paradigm, either as an open source or a proprietary library. Those

libraries usually belong to one of these categorizations: directed or undirected graphical

models, and exact or approximate inferences. One reference to these libraries can be found

in Murphy’s website about software packages for graphical models3 [145]. More than 50

software packages have been listed so far and this number keeps growing from time to time.

3http://www.cs.ubc.ca/ murphyk/Software/bnsoft.html

42

2.4 Software Framework Development

(a)

(b) (c)

Fig. 2.17: Miscellaneous self-consistency tests involving linear and non-linear data for evalu-
ating the optimality of the population codes. (a) The original dataset that need
to be recovered back by inference processes on variable B in Fig. 2.13. (b) The
result of using uniformly-spaced tuning curves. The linear data does not have any
problem with recovery, but the non-linear data will be increasingly deteriorated (as
illustrated by the sinusoidal curve). (c) When the tuning curves are spaced properly
by learning the data distribution, the inference process yields much better results.

This thesis does not use any of those existing libraries. Instead, we develop our own

framework for the following reasons:

1. All of those existing libraries are designed to run on a PC. Even some of those libraries

run only on a simulation platform such as Matlab. None of them is designed to be

directly implementable in a dedicated hardware such as SpiNNaker or SoC.

2. Some of those libraries support the hybrid models (i.e. mixing the continuous and

discrete variables), but none of them supports the implementation of population

coding for the discretization phase. Our factor graph framework uses a population

coding approach to discretize continuous variables and also to build a hybrid model.

3. By developing our own framework, we gain deep and thorough knowledge about how

the fundamental/core of the factor graph algorithm is actually computed and thus

43

2 Modeling in Factor Graphs

we know exactly where the code should be optimized or be left as it is.

For simulation and investigation purposes of this research, we have developed the data

structure and classes for inference in C++ programming language. Fig. 2.18 shows the

foundation class CFactorGraph of the factor graph framework which contains two impor-

tant classes: CFactor and CNode. The class CFactor can be used to instantiate factor

nodes and is derived from the class Ccpt (a class for managing Conditional Probability

Table, or CPT). The class CNode can be used to instantiate variable nodes and is derived

from the class Cpmf (a class for manipulating Probability Mass Function, or PMF). An

example of how to use of our factor graph library can be found in Appendix-B.

Fig. 2.18: The simplified UML (unified modeling language) diagram of our factor graph frame-
work.

The diagram shown in Fig. 2.18 does not include the user interfaces (GUIs) which are

also developed during this research for helping us in many circumstances. More specifically,

we create a software suite for simulation and data collection. The simulation platform is

extensively used to investigate the behavior of the system in a “clean” environment (i.e.

manageable noise level) and help us understanding the nature of our algorithm. Fig. 2.19

shows one of our software modules used for collecting data in an experiment with mobile

robot control using a factor graph network (see section 3.3.1 on page 61).

We have tested our framework not only in a conventional workflow but also using several

other parallelism techniques. In particular, we are interested in implementing our frame-

work in a multi-core PC as well as a GPU. The current trend in such parallelism platforms

enables us to quickly implement our algorithm and gain benefit of parallelism such that we

can get the faster result for analysis. However, parallelizing our factor graph framework

in a PC-based machine is not our goal. Here we only show a proof of concept of how our

44

2.4 Software Framework Development

Fig. 2.19: One of our software suite which is a part of our factor graph framework developed
for PCs. It is equipped with the data acquisition program to capture data that will
be processed by our factor graph framework.

framework can easily be extended in such a parallelism platform. For example, in the GPU

version of our factor graph, we do not utilize the full multi-grid threading to implement

our factor graph node-by-node. Instead, we just use the GPU as an accelerator for some

of the most intensive computations in the belief propagation algorithm. The result of our

experiment with parallelism strategy on a PC-based machine is shown in Fig. 2.20.

One important aspect that we observe on using these platforms is about the data prepa-

ration. It turns out that the speed-up gain is also heavily influenced by the way we prepare

the data apart from the algorithm itself. This is because the underlying parallelism core

has its own mechanisms for handling potential software bugs introduced by the concur-

rency process, and we have to follow its rules. Problems such as race condition and mutual

exclusion need to be handled properly in order to make sure that the results are consistent

with the standard/normal way of running the algorithm on a PC. Also, communication

and synchronization between the different threads are the most difficult tasks to handle

in the first place to get the best performance of the program running in parallel. These

issues contribute to the phenomenon related to the maximum possible speed-up of a single

parallelized program known as the Amdahl’s law.

45

2 Modeling in Factor Graphs

Fig. 2.20: The performance comparison of our factor graphs in a PC that were implemented
using Matlab’s Parallel Toolbox, OpenMP, and GPU-CUDA. The average speed-up
gains for the parallelized factor graphs for example applications described in chapter
3 are: 3.3 for Matlab’s Parallel Toolbox, 4.7 for OpenMP and 3.4 for GPU-CUDA.

46

3 Reasoning in Factor Graphs

Many applications can use factor graphs to perform reasoning on a given task. In those

reasoning tasks, the factor graph is used mainly as an inference engine. In this chapter

we give examples to show how our factor graph framework can be used in applications,

ranging from standard tasks usually found in machine learning literature to the challeng-

ing and complex ones in the robotic domain. This chapter has two purposes. First, it

serves as a means of proof-of-concept where we apply our factor graph framework in stan-

dard but important applications (mainly in the domain of machine learning). Second, it

demonstrates our contribution in developing extensible robotic subsystems with embedded

cognition capabilities that useful for building more complex robotic applications.

3.1 Application in Machine Learning

Why are we interested to apply factor graphs in the machine learning domain? It is because

in machine learning, probabilistic graphical models are used for computing uncertainty and

for generating actions based on perception, which provide a unified framework for graph

theory and probabilistic reasoning in a complex real-world setting. This in turn will lead

to the development of a larger framework that is capable to generate intelligent behaviours

in a fashion similar to the neural computation in the brain: a massively parallel distributed

computing system, in which the overall performance comes from independent computation

of local units that communicate with their neighboring units. Also, machine learning is

a vast domain which becomes one of the most progressive fields in recent decade that we

believe will open opportunities for our methods to give beneficial contributions to science

and engineering.

Although so many branches of application have been developed within this domain, there

are two basic categories where those applications can be grouped together: classification

and regression [146]. In this section we give examples of how to use our factor graph

framework in this field. The purpose of these examples is not just as a proof-of-concept

but also to show that our framework has promising prospects for collaborations with other

domains to build more complex applications.

3.1.1 Factor Graph for Regression

Basically, regression is a process for estimating the relationships between a dependent vari-

able and one or more independent variables. It is widely used for prediction or forecasting,

and, in restricted circumstances, it can also be used to infer causal relationships between

independent and dependent variables. Hence, in this scenario, the dependency between

two variables, let’s say A and B, yields a mapping function f : A → B which is depicted

in Fig. 3.2a. In probabilistic setting, it can be viewed as a process of estimating the target

47

3 Reasoning in Factor Graphs

variable z given some new values of the input variable x with some degree of uncertainty

based on a probability distribution. For example, a dataset which contains N data points

might have a Gaussian distribution for its target values z = (z1, · · · , zN)T and the given

input values x = (x1, · · · , xN)T :

p(z | x, θ) = N (z | y(x, θ)) (3.1)

This is illustrated in Fig. 3.1.

x

z

xk

y(xk ,)

p(z|xk ,)

y(x,)

Fig. 3.1: Illustration of a regression technique in a probabilistic perspective. It shows the
conditional distribution for y given x in which it is assumed to be a Gaussian.

At some extent, regression can also be used as a performance test of the proposed

discretization strategy for our factor graph (see section 2.3.2). For example, we generated

50 samples from a function f(B) = 500 · sin(A · 0.5 · π) + 250 · cos(A · 2 · π) where variable

A has a range [-400,400]. The regression result, shown in Fig. 3.2b, is the updated belief

at node B after a message starts propagating from fA and arrives at B.

It is interesting to note that the applied inference mechanism on the factor graph shown

in Fig. 3.2b yields non-overfitting curve since its marginal likelihood basically integrates

over all model parameters. To evaluate further the performance of such a regression model,

we also add noises on the sampled data and then we perform the inference process once

again. The result is shown in Fig. 3.3a, together with its root-mean-square error (RMSE)

calculated during the MLE process of the model parameters (Fig. 3.3b). It is also inter-

esting to note that the RMSE gets steady when the model has received enough samples

for estimating its parameters (in this case 30% of all points in dataset). This explains the

well behaviour of a regression inference in Bayesian settings as shown in Fig. 3.3a.

3.1.2 Factor Graph for Classification

Another application which is quite popular in machine learning is a classification task.

For classification in a setting of probabilistic framework, one can use methods such as

the popular Näıve Bayes classification algorithm. In fact, many have considered Näıve

Bayes classifier as a baseline classifier to try before developing more complex classifiers

48

3.1 Application in Machine Learning

(a)

(b)

Fig. 3.2: (a) The factor graph network for regression tasks. (b) The regression result using
the network shown in (a). The small blue circles are the original data-points in the
dataset, and the red plot is the regression curve learned by the network.

[147]. Here we show how to use a simple Näıve Bayes classification mechanism in a form

of a factor graph, which is simply accomplished by transforming the respective Bayesian

network into a factor graph. The task is to classify example data points shown in Fig. 3.4

into two classes (the data points are virtually separated by the green line)1.

In a Näıve Bayes classifier setting, it is assumed that each particular feature Fi is

independent from the other features Fj 6=i, given the class variable C:

p(C | F1, · · · , Fn) =
1

Z
p(C) · p(F1, · · · , Pn | C)

p(C | F1, · · · , Fn) =
1

Z
p(C) · p(F1 | C) · p(F2 | C,F1) · · · p(Fn | C,F1, · · · , Fn−1) (3.2)

By assuming conditional independence among features, it means that:

p(F1 | C,F2, · · · , Fn) = p(F1 | C) · p(F1 | C,F2, · · · , Fn) = p(F1 | C)

1For this example, the data was taken from the homework page of Computational Intelligence class
at Technische Universität München, where we gave tutorials in winter semester 2014 on how to use
supervised learning techniques using artificial neural networks. The source of the data can be found
at http://ci.nst.ei.tum.de/ci_ws2014/homework/hw2/hw2.html

49

http://ci.nst.ei.tum.de/ci_ws2014/homework/hw2/hw2.html

3 Reasoning in Factor Graphs

(a)

(b)

Fig. 3.3: (a) Regression result from data with noise. (b) The RMSE plot during parameter
estimation.

So that the expression (3.2) can be written as:

p(C | F1, · · · , Fn) =
1

Z

n∏
1

p(Fn | C) (3.3)

which results in a network shown in Fig. 3.5a. It can be seen that the structure in Fig. 3.5a

is an extension of the structure in Fig. 3.2a. It is important to note that the normalization

factor Z in (3.3) needs to be computed when estimating the factor parameters during

the MLE process. Although Z mainly gives strong influences when involving more scope

variables in a factor node, we have already seen its biasing effect even when the network

is relatively small (see Fig. 2.14).

The classification is done by using the same inference procedure in the belief propagation

50

3.1 Application in Machine Learning

Fig. 3.4: An example of a classification task that requires a non-linear classifier. The green
curve is the underlying function which determines the decision boundary for the two-
class data. The red and blue dots are data-points of the respective classes.

mechanism. The result shown in Fig. 3.5b was produced using 20 states for each node in

Fig. 3.5a. The left end of the curve seems to be shifted upwards and the right end of

the curve seems to be shifted downwards. This shifting was resulted from the shallow

probability distribution of factors F1 and F2 in Fig. 3.5a, which is the side effect of the low

probability at the left most and right most part of the Gaussian distribution used in the

population coding representation.

(a)

(b)

Fig. 3.5: (a) A factor graph for implementing a Näıve Bayes classifier in a two-class classifica-
tion problem. (b) The result of classification performed by the model in (a) for the
dataset depicted in Fig. 3.4. The coloured regions represent the “red” and “blue”
class respectively. In this example, the model perfectly splits the two classes using a
non-linear decision boundary.

We argue that our näıve approach for classification in a supervised scenario can be

extended into an unsupervised version in a clustering task since this extension is also a

51

3 Reasoning in Factor Graphs

standard practice in machine learning. Furthermore, a significant progress in clustering

applications has been achieved by algorithms that use a framework for pairwise cluster-

ing. This framework is based on the equivalence between the calculation of the typical

cut and the inference in an undirected graphical model [148]. Surprisingly, this approach

demonstrates that the loopy belief propagation (LBP) and the generalized belief propa-

gation (GBP) can give excellent results on challenging clustering problems with complex

datasets.

3.1.3 Factor Graph for Sensor Fusion

In the previous two sections, we give example applications of acyclic factor graphs. In

this section, we introduce a toy example of a cyclic factor graph in a context of informa-

tion fusion. One typical example of this information fusion is the task of sensory data

fusion. The goal of sensor fusion, especially in robotics, is to combine measurements from

a set of different sensors to improve the quality of the perception about the state of the

world. Different sensors have diverse physical characteristics; even data from the same

type of sensors could be quite varied due to their internal characteristics depending on

their configuration. The idea is quite simple: by combining complementary or redundant

information from multiple sensors, more robust estimation can be achieved than using a

single sensor. This actually reflects how our brain works on perception; it fuses several

modalities from sensory organs to obtain a single interpretation of the human internal

states and/or the environment states. Our goal is that, by bringing the sensor fusion task

into a factor graph representation, we can merge it with our other robotic subsystems that

are also implemented in factor graphs (described in section 3.3).

There are some efforts to incorporate the sensor fusion task into a factor graph frame-

work [149][150][151]. However, their methods rely on the variable elimination mechanism

for factor graphs. In this section, we introduce the use of the loopy belief propagation

(LBP) mechanism for sensor fusion.

Let’s assume that our robot is equipped with two sensors: a gyroscope and a compass.

We want to use those sensors to give information about the orientation of the robot.

Conceptually, the compass should give the absolute orientation of the robot while the

gyroscope data need to be integrated to get the orientation value. For simplicity, let’s

assume that the robot performs internal integration for the gyroscope data in order to get

the robot’s pose reading. Now let’s assume that the robot is placed in a room with an

overhead camera tracking system that give the “ground-truth” data, which is also useful

for calibrating the robot’s sensors. In this simple scenario, let’s call the gyroscope data

as sensor-A, the compass data as sensor-B and the direct measurement from the camera

tracker as sensor-C. The factor graph network corresponding for fusing these three sensors

is shown in Fig. 3.6.

For a test case, we created a simulation data comprising the three sensor values. First

we generated the variable-C data randomly and used it as the basis for generating the

other sensory data; hence, it is the “ground-truth” data. The data for sensor-A, which will

be contained in variable-A, was generated by adding a noise to the data of variable-C. This

illustrates a noisy measurement of the gyroscope sensors. Next we generated the data for

sensor-B, which will be contained in variable-B, by averaging the data from sensor-A and

52

3.1 Application in Machine Learning

A B

C

fA fB

fC

fAB

fAC fBC

(a)

A B

C

fA fB

fAB

fAC fBC

(b)

Fig. 3.6: (a) The acyclic factor graph for sensor fusion. In this network, all variable nodes are
connected to their respective input nodes. The arrows indicate the messages flow
during the training. Bidirectional arrows indicate that the corresponding messages
flow in both direction at the same time although programatically they are imple-
mented as two separated messages. (b) During the inference, the input for sensor-C
is “unattached” and the product of messages flowing towards node C produces the
“belief” about the value of variable C.

sensor-C. This illustrates a stochastic relation between sensor-A and sensor-C. The profile

of these sensory data is shown in Fig. 3.7.

Fig. 3.7: The profile of sensory data used for training the network shown in Fig. 3.6a.

Similar to the case with acyclic factor graphs, during the training phase the factor graph

learns the joint probability distribution as the internal function of its factor nodes. For the

network shown in Fig. 3.6a, the LBP is used as a means of inference. Since the network

53

3 Reasoning in Factor Graphs

does not contain any hidden nodes, then the MLE described in section 2.2.3 on page 24 can

be used for learning network’s parameters. To train a factor node in the network, we break

down the network (i.e. cut the loop) so that the factor will directly represent the joint

probability distribution between the corresponding variable nodes. There is an alternative

method to train the network without cutting the loop. However, such a method cannot be

used directly with our belief propagation algorithm. In this thesis, we focus on the belief

propagation using the standard message-passing algorithm. Hence, since the network has

a loop, we have to modify algorithm 1 in a way such that the message-passing is kept

running until it reaches a convergence condition, which can be detected by applying the

KL-divergence (see equation (2.19)) to the old- and new messages of an edge with the

same direction. Once the network reaches the convergence, the internal factor of a factor

node can be updated and the process will continue until all training data points are fed

to the network. In this LBP implementation, we update the factor node one by one while

keeping the other factor nodes for being altered. Otherwise, the resulting factor values are

not guaranteed to converge in the next update step. There is another approach to learn

multiple factor nodes using EM algorithm described in [152] but this method is beyond

the scope of this thesis.

Once the parameter learning has been completed, the network is ready to be used for

inferences. In our sensor fusion setting, the inference procedure estimates the correct belief

about the sensory reading by fusing the data from the available and connected sensors.

To put it differently, this is basically a reversal process to estimate the “ground-truth”.

The plot shown in Fig. 3.7 depicts a noisy sensor profile (i.e. both sensors are noisy but

contains an underlying generative function). By running the LBP and marginalize the

messages running towards node C, we can get the robot’s belief about its orientation.

To test our approach, we generated a dataset containing two sensor values (sensor-A and

sensor-B) in a sinusoidal shape. The result is shown in Fig. 3.8. It shows that the estimated

robot’s orientation has some degree of confidence level (depicted as the variance along the

estimated result).

In this toy example, we demonstrate that our factor graph framework can run the LBP

and yield the convergence result on a factor graph with a single loop. This result supports

the claim that a factor graph with a single loop has a good chance to converge [93]. With

this satisfying result, we believe that it can be extended into a more complex task such as

estimating robot heading during movement that includes more sensory data.

3.2 Factor Graph for Dynamic Processes

So far we have discussed and shown examples of factor graphs in a “static” inference

process. Similar to the other graphical models such as Bayesian networks, factor graphs

can also be used to model a dynamic process of a system [153]. However, factor graphs do

not have their own mechanism for handling such a dynamic process but they can represent

the dynamic process using the underlying mechanism that originating from Markov chains

(including the dynamic Bayesian network or DBN). It turns out that many algorithms

can be re-interpreted using a DBN as its formalism (see section 2.1 on page 13). It is a

common practice to transform a DBN into a factor graph representation and then perform

54

3.2 Factor Graph for Dynamic Processes

(a)

(b)

Fig. 3.8: The inference result for estimating the robot orientation given the sensory data from
two different sensors. The blue curve is the estimated robot’s orientation. (a) Sensor-
A has a small offset from Sensor-B. (b) More noises are added to randomly generated
values for sensor-A and sensor-B. As a consequence, the estimated result has bigger
variance.

the inference on the resulting factor graph. This mechanism (using a factor graph to

represent a DBN) is also used in this thesis.

To think about the dynamic process of a system, we can start from the standard repre-

sentation of a dynamic system itself. In a discrete form, it can be expressed in difference

equations as:

xk+1 = Axk + Buk

yk = Cxk + Duk
(3.4)

55

3 Reasoning in Factor Graphs

The value of x is then calculated by summing points from initial/starting point k = 0

up to some value 0 < k ≤ K, and also considering the value at x0. Here, the system

is “unrolled” several time steps and the value K will determine “how-far” the system

will run, which is commonly referred to as the horizon. Using the unrolling mechanism,

equation (3.4) can be represented as a Bayesian network resulting in a dynamic version

shown in Fig. 3.9.

x0 x1

u0

y1

x2

u1

y2

xK

uK-1

yK

...

...

...

Fig. 3.9: A dynamic Bayesian network representation for a dynamic system expressed in equa-
tions (3.4)

.

As with a standard Bayesian network, transforming a DBN into a factor graph requires

moralization steps which transform the directed graph into an undirected graph. After

the moralization steps, the resulting undirected graph can be transformed into a factor

graph. As described in section 2.2.1 on page 15, the factor nodes can be added per link

basis or per maximal-clique basis. In general, it is preferable to transform a DBN into

a dynamic factor graph in per maximal-clique basis so that loops can be avoided. The

resulting dynamic factor graph for the DBN shown in Fig. 3.9 is shown in Fig. 3.10.

From this “default” dynamic Bayesian network, one can create many other networks

with different characteristics such as hidden Markov models (HMM), auto associative (AR)

models, Kalman filter models, state space models (SSM), etc. In probabilistic robotics, the

DBN (and its factor graph version) can be used to characterize the evolution of controls,

states, and measurements of the robot. This will lead to the popular Bayesian filter

algorithm commonly used in a robotic SLAM (synchronous localization and mapping).

We can relate the Bayesian filter algorithm with the sum-product algorithm as follows.

In probabilistic robotics, there are two main probability functions. The first is the state

transition probability, expressed as p(xk | xk−1, uk), which specifies how the robot’s internal

and environmental states evolve over time as a function of robot control uk. The second

is the measurement probability, expressed as p(yk | xk), which specifies the probabilistic

law according to which measurement y should be observed when the robot is in the state

xk. This measurement probability is useful not only for modelling the sensor measurement

but also for the noise which might presents during the measurement. The state transition

56

3.2 Factor Graph for Dynamic Processes

x0 x1

u0

y1

x2

u1

y2

xK

uK-1

yK

...

...

...

xK-1

(a) Moralization phase

x0 x1

u0

y1

x2

u1

y2

xK

uK-1

yK

...

...

...

xK-1

(b) Dynamic factor graph

Fig. 3.10: (a) The undirected graph as the result of moralization process on the DBN in
Fig. 3.9. (b) Assuming the factor nodes are added per maximal-clique basis, the
resulting dynamic factor graph does not have cycles which makes it easier to imple-
ment the sum-product algorithm on it. However, each factor node should represent
a conditional probability distribution since the dynamic factor graph originates from
a DBN.

probability and the measurement probability together describe the dynamical stochastic

system of the robot (and its environment).

In the Bayesian filter setting, the state of the robot cannot be measured directly (hence,

the DBN is called a HMM). However, the robot must maintain its own “beliefs” about itself

and its environment. Those beliefs are represented as conditional probability distributions,

and the belief distributions are posterior probabilities over state variables conditioned on

the available data. The belief over a state variable x at step k conditioned on all past

measurements y1:k and all past controls u1:k is expressed as:

bel(xk) = p(xk | y1:k, u1:k) (3.5)

57

3 Reasoning in Factor Graphs

In the DBN setting, we assume that the states are complete; i.e. the knowledge of

past states, measurements, or control inputs does not carry additional information that

are relevant with the determination of the current state. It means that we can remove the

current measurement yt from equation (3.5) which yields:

meas(yk) = p(yk | xk, y1:k−1, u1:k) = p(yk | xk) (3.6)

Hence, equation (3.5) can be re-written as:

bel(xk) = p(xk | y1:k, u1:k) = ηp(yk | xk)p(xk | y1:k−1, u1:k) (3.7)

Equation (3.7) has a recursive form where the term p(xk | y1:k−1, u1:k) is actually the

prior belief similar to equation (3.5) before incorporating the new measurement yk. The

recursive form of the belief distribution is now become:

bel(xk) = η ·meas(yk) · bel(xk) (3.8)

where η is the normalizer constant which follows the probabilistic law enforcing that the

maximum value is 1.

To implement the Bayes filter in a factor graph, we should look into the mechanism

on how the posterior belief is computed from messages which are propagated towards the

corresponding variable node. Fig. 3.11 shows a simple example where a DBN is unrolled

three times. To compute the posterior belief on x2, all nodes prior to x2 will propagate

messages which will arrive exactly before x2 as the message belx2. The measurement sensor

y2 will also generate a message and it arrives as measy2. The posterior of x2, according to

the sum-product algorithm, is computed as the product of belx2 and measy2 which result

resembles equation (3.8).

x0 x1

u0

y1

x2

u1

y2

measy2

belx2

Fig. 3.11: An example of a factor graph that is used for explaining the Bayes filter action in a
sum-product messages propagation.

The above Bayes filter mechanism is one of common queries that can be performed in a

58

3.3 Application in Robotics

dynamic factor graph. In this mechanism, the messages are propagated forward until they

reach xk. The other action that can be performed in the same graph is the smoothing. In

this case, the massages are propagated backward (i.e. towards x0). The combination of

filtering and smoothing is similar to the forward-backward algorithm commonly used in

HMMs. In HMMs, the state variables are discrete and usually do not have control nodes.

In this case, the DBN shown in Fig. 3.9 is modified into a new structure shown in Fig. 3.12.

In section 3.3.2, we give an example of how to represent a HMM along with its filtering and

smoothing processes using our factor graph framework for modelling a robot manipulator.

x0 x1

y1

x2

y2

xK

yK

...

...

(a)

x0 x1

y1

x2

y2

xK

yK

...

...

(b)

Fig. 3.12: (a) The hidden Markov model created as a special case of the DBN in Fig. 3.9. (b)
The factor graph version of (a).

3.3 Application in Robotics

Many recent researches in robotics shift the focus from traditionally-specific industrial tasks

to investigations of new types of robots with alternative ways of controlling them. As a

result, robotics becomes one of the most prominent interdisciplinary researches around the

globe. In the spirit of cognitive intelligence, we strive to find and apply a new and generic

method that can enhance our mechanically-traditional robots so that they can help us to

understand how intelligence is formed. Even though this sounds like a long term goal, we

can start from a simple robotic system. In this section, we describe how we can use factor

graphs as means for implementing such a method, and demonstrate that our proposed

method is a generic one that can be extended into more complex robotic setup for future

work in order to achieve such a long term goal.

59

3 Reasoning in Factor Graphs

We focus on two types of robotic systems: a mobile robot platform and a robotic arm

(manipulator) platform. Regarding robot control for motion, we limit ourselves on the

kinematic aspect so that we can focus on the evaluation of our factor graph framework in

order to harness it later for more challenging and sophisticated tasks. We regard the dy-

namic aspect of robot control as our future work which is based on our envisioning method

described in section 3.2. This is valid because once all relevant positions, velocities, and

accelerations have been calculated using the kinematic models, methods from the field of

dynamics can be applied on them to study the effect of forces upon robot movements. Not

all aspects of kinematics are included in this thesis, but only the aspects of handling redun-

dancy (different possibilities of performing the same movement) and singularity avoidance

will be covered.

We follow the idea that a probabilistic graphical model can be an excellent tool for

processing information on different levels of abstraction: from low-level sensory input to

reasoning about high-level goal and action based on some cognitive architecture [18]. In this

paradigm, lies the central problem of modern robotics which requires coherence principle

of perception, decision-making, planning and control. In this section, we show that we

can harness factor graph’s flexibility with regard to the ordering of variables that plays an

important role when dealing with the integration of many different models. As an example

of how these different abstraction levels will take forms in factor graphs, a hybrid robotic

system is used. A mobile manipulator is an example of such a hybrid robotic system

whose mechanical structure exhibits the requirements of a hierarchical system example

in the first place. Using this complex model, we can apply task constraints that allow

robot movements to be controlled in a goal directed manner. Fig. 3.13 shows our mobile

manipulator that can be used to demonstrate the flexibility of factor graphs for processing

information hierarchically in a certain task constrained scenario.

Fig. 3.13: The mobile manipulator developed in this thesis. It is composed of two subsystems:
a 4-DOFs robotic arm and a mobile platform. The integrated controller board in
the middle is where we implement our factor graph based controller in an SoC
(System-on-Chip).

One typical application scenario for this robot is the pick-and-place task. It is true that,

even in this simple scenario, the robot will face many technical challenges, such as how

60

3.3 Application in Robotics

to recognize the object, how to recognize the goal point landscape, etc. To simplify the

scenario so that the reader can grasp our proposed method without much distraction, we

assume that the robot has already known the object and how to grasp it. Hence, in this

thesis, we focus on how to model the robot motion given the object already at hand.

3.3.1 Kinematic Model of a Mobile Robot

The first part of the hybrid robotic system shown in Fig. 3.13 is the mobile platform. It is

a three wheel omnidirectional mobile robot (see Fig. 3.14). To perform the robot motion,

we have to control the velocity of each wheel. For such a mobile robot, it is important to

know its own kinematics before it can perform any high level tasks such as mapping the

environment given a set of observations and to localize itself. There are two cases that we

explore in our experimental setup: single motor control and three motors control.

Fig. 3.14: The NST-Omnibot: a three-wheel omnidirectional mobile robot developed at the
research group “Neuroscientific System Theory” (NST) in Technische Universität
München. It has three independent DC-motors with a potentiometer attached on
each motor which serves as an odometric sensor.

Single Input Single Output Motor Control

In this scenario, the motor control signal will be generated if a desired velocity of the motor

is given. This is the scenario where we model the mapping function between wheel’s sensory

input and its motor output of a mobile robot shown in Fig. 3.14. In this scenario, due to

the physical constraint of the robot, each motor will be independent from the others. For

a single wheel robot control, the model is developed as shown in Fig. 3.15. In the model,

node M represents the motor signal that generates motor rotation, and node V represents

the sensory reading of motor velocity. For forward kinematics, the task of inference is

to update the belief of node V given an input at node M as evidence. Since node V is

only connected to the factor node fVM , the output can be obtained from the message

µfV M→V (V). For inverse kinematics, the task of inference is to update the belief of node M

given an input at node V as evidence; i.e. by computing the message µfV M→M(M). Hence,

61

3 Reasoning in Factor Graphs

in this inverse kinematics, the network is supposed to generate proper motor commands

given desired velocities of the wheel.

VM
fM fMV

fMV V
μ (V)

fV

fMV M
μ (M)

Fig. 3.15: The network for modeling kinematics of a single wheel motor control of the robot
shown in Fig. 3.14.

The model shown in Fig. 3.15 basically computes the inference in a form of Bayesian

network for modeling a DC-motor system. The implicit causality in that network obviously

comes from the fact that if we provide the DC motor with a PWM-motor signal (indicated

by variable M) then the motor will rotate at a certain speed which can be observed through

the velocity sensor (indicated by variable V). For the forward kinematic task, its inference

can be computed by a marginalization after computing the conditional probability:

p(V |M = m) =
p(V,M = m)∑

v p(V = v,M = m)

This formula can be computed in a factor graph by sending a message from node V to

node M. To treat variable V as the observed variable, we simply put one factor node fV
which takes V as its argument.

To compute the factor values of fVM , the network is instantiated by sending N-samples

random motor signals to the robot, which also results in N-samples sensory data from

the robot. From these data samples, the factor value of fVM is computed as the joint

probability mass function of the variables V and M contained in the data. Fig. 3.16a

shows the result of the inference for the network shown in Fig. 3.15, using only 40 states to

represent a value in the range [-2500, 2500]. The results are very good and smooth even in

the presence of noise in the training dataset. Fig. 3.16b shows the joint probability mass

function corresponding to the factor values of the factor node fVM of the model shown in

Fig. 3.15.

In the context of system control, we are also interested in the performance of the system

for the inverse kinematics case. In the inverse kinematics case, the system is supposed to

calculate a proper motor command given a desired motor velocity (i.e. by calculating

p(M | V)). Using the model shown in Fig. 3.15 and also using the same dataset for

retraining the network (i.e. re-building the factor values of factor node fVM to reflect the

correct direction from V to M), we performed the inference again and the result is shown

in Fig. 3.17.

As it can be seen in Fig. 3.17, the mapping V → M shows a linear trend with two

small irregularities. The first anomaly lies in the center of the curve which reflects the

intrinsic behaviour of a Bayesian network in dealing with over-fitting [16]. It shows that

the network will smoothen the output against an abrupt change in the input. It also means

that the network is able to minimize discontinuity in a function by taking the average of

the values around the discontinuity point. The second anomaly lies at the both ends of

62

3.3 Application in Robotics

(a)

(b)

Fig. 3.16: (a) The forward inference result for the network shown in Fig. 3.15. (b) The joint
probability mass function for factor node fVM .

the plot. This is due to the low probability coverage on those regions as a result of using

a Gaussian distribution, which is a non-uniform distribution.

Multiple Inputs Single Output (MISO) Motor Control

In this scenario, we developed a model that covers the whole body motion of the robot.

The purpose of implementing a factor graph in this setting is to convey the full-body

kinematic control of the mobile robot. The overall robot motion with respect to the world

coordinate system is achieved by controlling the velocity of each wheel in a correct manner.

This motion control in the world coordinate system is necessary because we want to give

information about the current position of the mobile platform that influences the decision

whether the hybrid system shown in Fig. 3.13 has to activate the robotic arm or not. In

conventional control system theory, this is achieved by transforming wheels velocity into

the robot velocity in the world coordinate system by using the following formula:

vw = G · vr (3.9)

63

3 Reasoning in Factor Graphs

Fig. 3.17: The result of the inverse kinematics model. Here it shows the mapping V →M .

where vr =


√

3
3

−
√

3
3

0
1
3

1
3

−2
3

1
3L

1
3L

1
3L

 q̇ (3.10)

andG =

cosα − sinα 0

sinα cosα 0

0 0 1

 (3.11)

In formula (3.9) to (3.11), vw is the robot velocity in the world coordinate system, vr is

the robot velocity in the robot-self coordinate system, q̇ is the vector of wheels velocities,

and G is the coordinate transformation matrix which takes robot pose α as its argument.

Computing kinematics using the above formulas has at least two drawbacks. First, it

relies heavily on deterministic sensor values which in reality will be easily disturbed by

noises; hence, it is only good for simulations. Second, during the real implementation, the

robot motion will be affected by some physical uncertainty such as frictions between the

wheel and the floor which introduce a drift due to wheel slip. In other words, the exact

relation between the three wheels’ velocity and the Cartesian robot motion is unknown.

Our graphical model, on the other hand, offers a comprehensive way not only to over-

come such limitations but also makes it more adaptive to the environmental changes. If

we look into the formula (3.10), we can easily understand that each wheel contributes

independently to the global robot motion. We capture this insight into our robot model.

Our graphical model approach can be trained to map the Cartesian robot motion into

the three wheels velocity of the robot. The robot shown in Fig. 3.14 can receive driving

commands such as move forward/backward, move sideways, and rotate. Hence, we build

a model that captures this kinematics relation as shown in Fig. 3.18.

Nodes M1 · · ·M3 shown in Fig. 3.18 represent wheel velocities, and nodes Ẋ, Ẏ, Ṙ rep-

resent robot velocity in X and Y direction in the Cartesian coordinate system as well as

64

3.3 Application in Robotics

(a) (b)

Fig. 3.18: (a) A Bayesian network model for the kinematics of the mobile robot. (b) The
factor graph version of the model in (a).

its rotational velocity. Basically, the model represents a Multiple Inputs Multiple Outputs

(MIMO) system. We can decouple the network into three separate MISO systems if we

consider the flow of messages only in one direction, i.e. by assuming independence be-

tween scope variables of the factor. This mechanism will produce similar models for both

forward and inverse kinematics since the structure basically represents a fully constrained

model. Each factor of factor nodes in the models is computed as the joint probability

mass function of its argument variables. The only difference between the forward- and the

reverse kinematics model is the scope of the factor nodes. We denote this difference as fM
and fXM as shown in Fig. 3.19. Thus, it needs to be retrained in order to get the correct

parameters for each network before running the inference on them.

(a) (b)

Fig. 3.19: Decoupling the network by assuming independencies given the observed variables:
(a) for forward kinematics, (b) for inverse kinematics.

After designing the model structure, the next step is to determine the parameters of

the model by learning them from data. To generate data for our model, we follow the

65

3 Reasoning in Factor Graphs

idea of motor babbling [154][155][156][157][158]. Motor babbling is a process of repeat-

edly performing a random motor command for a short duration in which the robot can

autonomously develop a model that relates its internal states with its environment. In

neuroscience, researchers show that during the early life of infants, the brain tries to learn

the relationship between the real body motion and the intended motion developed in the

motor cortex by generating brain signal targeting muscular system [159]. Although the

motion is seemed to be random, it conveys the information about the effect of motor signal

propagated into muscles and affected by the interaction with the environment. The result

of this learning will influence later development of complex motion in human. We follow

this idea by repeatedly generating a random motor command for each wheel of the robot

and inspect its effect (i.e. robot motion).

It is interesting to study robot behaviours based on our factor graph model in a simula-

tion environment because we will have full control on noises that artificially generated and

introduced to the model. Hence, this simulation model might reveal important information

such as how robust the model operates in the presence of noise. We are also interested to

see the effect of the Gaussian distribution in our population codes for discretizing continu-

ous values. The challenge of using Gaussian distributions for tuning curves in a population

code is how to properly define the variance values of such distributions. The selection of

the variance values is application dependent and it might produce different results for the

same given task. For this purpose, we generated simulation data based on robot kinematics

model expressed in equation (3.10). When we generated the dataset, we also introduced

some levels of white noise in order to evaluate the robustness of our model in the presence

of noise. Fig. 3.20a shows the generated random robot commands for the robot movement

in X-direction (depicted as red-coloured plot) as well as the estimated motor commands

by the factor graph model shown in Fig. 3.19b. It shows that the predicted commands are

quite close to the originally-generated commands. By plotting the data in a correlation

graph, we can see that there is a slight variance along the ideally-diagonal line as shown in

Fig. 3.20b. However, the linearity of the curve is maintained within the valid input range.

In general, similar results are obtained for the robot movement in Y-direction as well as

for the rotational movement.

Fig. 3.21 shows the performance result of the inference against the presence of noise

in terms of RMSE between the reference dataset and the inference result. It can be seen

from the graph that the inference performance (both for forward- and inverse kinematics)

degrades with the increasing of noise levels. The decreasing rate in the performance of

the inverse kinematics model is a bit higher than that of the forward kinematics model.

With the presence of noise up to 15%, the performance is still good and acceptable. With

additional noises more than 15%, the performance becomes deteriorated. This information

tells us that, in a real implementation later on, the model is capable of handling a Gaussian

noise with zero mean and variance 1.38 2. Beyond that, our model might not be able to

produce correct control signals for the robot.

The results demonstrated in Fig. 3.20b and Fig. 3.21 use the data from our simulator

program. To evaluate our model further, we tested it in a real scenario. We performed

2This value is computed by subtracting the maximum Gaussian function of the data and the noise that
should differ by 15%

66

3.3 Application in Robotics

(a)

(b)

Fig. 3.20: Plot of generated motor commands given the desired robot velocities in the inverse
kinematics case: (a) plotted in time sequence, (b) presented as a correlation plot.

an experiment by using a real robot. In this experiment, we used a camera tracking

67

3 Reasoning in Factor Graphs

Fig. 3.21: The performance of the kinematics inference against the noisy data.

system to localize robot position in a planar space and to calculate its moving speed. The

camera tracking system provides information about the position of the robot in the world

coordinate system. We need to transform this absolute position value of the robot into the

robot velocity value. Fig. 3.22 shows how the robot generates the data and records the

trajectory.

Fig. 3.22: The robot velocity data was generated using a motor babbling scenario. The camera
tracking system records the robot trajectory which will be translated into the robot
velocity data.

Before performing the transformation, the data were filtered to reduce the noise in the

camera recording data. Filtering was done on the data that conveys information about

the pose (position and orientation) of the robot. From our previous experiment using

simulation data, we know that it is better for our model to have streams of input data

with noise’s variance (by assuming it is a Gaussian noise) less than 1.38%. After filtering,

the Cartesian velocities as well as the rotational velocity of the robot were calculated. In

our experiment, second order low-pass Butterworth filter works better that the Elliptic

or FIR filter, although it runs slower and introduces a longer delay. However, since the

68

3.3 Application in Robotics

command is changed every two seconds during the experiment, it gives us enough sampling

points where Butterworth filter’s delay can be neglected. Fig. 3.23 shows the filtering action

of the data from the camera tracking system.

Fig. 3.23: Preparing the data before feeding them into the network. The raw data from the
camera tracking system is very noisy. In order to reduce the noise effect so that its
variance fall below 1.38, the data went through the filtering process.

The coordinate transformation matrix expressed in (3.11) is used to get the robot ve-

locity in the robot-self coordinate system. Within the robot-self coordinate system, the

velocity of the robot can be mapped properly into wheels velocities. During one iteration3,

we consider only 50% of the data in the middle of the period since both ends of the data-

stream within that period contain a transitional fluctuation between successive iterations

that should be neglected. Fig. 3.24 shows this process.

After collecting data and preprocessing them, we fed the data into the network shown in

Fig. 3.18 in order to perform the inverse kinematics inference (i.e. to compute the robot’s

command given the desired robot velocity (Ẋ, Ẏ, Ṙ)). The result is depicted in Fig. 3.20.

3One iteration in this context means a period where the robot receives a valid command from the data
acquisition program and produces a steady motion accordingly. In the experiment shown in Fig. 3.22,
one iteration lasted for two seconds

69

3 Reasoning in Factor Graphs

Fig. 3.24: The camera tracking system provides information about the robot’s pose in the
world coordinate system. In order to work with our model, the data need to be
transformed into the robot-self coordinate system.

It shows a similar result, as expected, with the simulation version shown in Fig. 3.20.

However, the variance is bigger due to various uncertainties in the experiment.

(a) (b)

Fig. 3.25: Plot of generated motor commands given the desired robot velocities in the inverse
kinematic case: (a) plotted in time sequence, (b) presented in a correlation plot.

We are also interested to investigate the influence of the number of states (i.e. the

variable’s cardinality) to the performance of the system. Thus, we re-run the inference

with several cardinalities, and the result is shown in Fig. 3.26. It can be seen from the

70

3.3 Application in Robotics

graph that the number of states (i.e. the number of neurons in the context of population

coding) used by variables in the network influences the accuracy of the system. The graph

also gives a hint on what variance value should be used in this application. Independent

of this variance selection, it is interesting to note that the system does not require a big

number of states to get a good result. It is sufficient to use 15 bins as the number of states

in variables of the network shown in Fig. 3.18b.

Fig. 3.26: The performance evaluation of the kinematic model for the mobile robot as a
function of the number of states for each variable in the model. The number of
states in a variable reflects the number of neurons in population coding to represent
the variable’s value. The Gaussian function is used to represent the variable’s
probability distribution. The graph shows that our model requires at least 15 states
to produce good result.

With this example application, we present one important remark: the proposed method

can be used to learn any mapping function without deriving its exact mathematical for-

mulas. This heuristic approach gives us benefits especially when working with a high order

dynamic system or in a dynamic environment. It is also preferable due to the fact that

heuristics is used extensively in the manipulation and creation of cognitive maps, one of

most fundamental properties of human intelligence. Cognitive maps are internal repre-

sentations of our physical environment, particularly associated with spatial relationships.

These internal representations of our environment are important and work as guidance to

move in and to interact with external environment. Our kinematic model can be used

in a more complex scenario that extends the basic functionality of the mobile platform,

such as in the SLAM scenario. Nonetheless, this complex scenario is beyond the scope

of this thesis since it requires more sensing components. We leave this extension as an

opportunity for our future work.

71

3 Reasoning in Factor Graphs

3.3.2 Kinematic Model of a Manipulator

The second part of the hybrid robotic system shown in Fig. 3.13 is the robotic arm. It is

a four degree of freedoms (DOFs) manipulator. In this thesis we use only its three DOFs

since the last link does not determine the final position of the actuator (i.e. the robot

gripper).

When developing a model of a robotic arm, the starting question is how the robotic arm

will be configured or used. The standard task of a robotic arm is to manipulate the pose

and the orientation of an object through its actuator. This is also valid for our example

scenario with the mobile platform: we want the robot to move and orientate the actuator

after the mobile platform reaches the correct position. Since each servo in the robotic arm

has its own PID controller, we only need to develop the kinematic model of the robotic

arm. Here we develop the forward kinematic model of the robotic arm using the similar

model shown in Fig. 3.18 and modify the variables accordingly. The resulting model is

depicted in Fig. 3.27. This forward kinematic model basically performs a mapping function

from the joint space to the task space, and it considers only the ML problem instead of the

MAP problem (i.e. there is no direct link between joint variables (θs) which implies that

the model does not involve the interlink-dynamic between robot’s joints, see Fig. 3.30a for

comparison) [160].

(a)

(b) (c)

Fig. 3.27: (a) The robotic arm on top of the mobile robot along with its joint’s labels. (b) A
Bayesian network model for the kinematics of the robotic arm. Here θ1, θ2, θ3 are
the joints of the robot; X,Y is the Cartesian position of the actuator relative to the
robotic arm base, and α is the actuator pose. (c) The factor graph version of the
model shown in (b).

As in any standard forward kinematic model, we usually do not have problems with

redundancy and singularity. However, the situation is completely different when we deal

with the inverse kinematics. It is well-known that solving an inverse kinematic problem

is very difficult. Sometimes the solution does not even exist. For our robot shown in

Fig. 3.27a, there will be two solutions for the inverse kinematics given the input value X,

Y and α: “elbow-up” and “elbow-down” configurations. One practical solution for our

robot is to constrain the value of θ2 to be always in the “elbow-down” position. This is

72

3.3 Application in Robotics

the most efficient solution for the robot because it is intended to be used in a pick-and-

place scenario where the arm will always be in a curved-down position. This is also true

because the second orientation of the gripper will be determined solely by the pose of the

mobile base (see Fig. 3.28). With this constraint, we can use the same network shown

in Fig. 3.27c to perform the inverse kinematics. Fig. 3.29 shows the result of the fully-

constrained inverse kinematics of the robotic arm (it shows only the value of θ1, where

the value of the other θ are similar). It is perfectly linear with a small variance along the

straight regression line due to the varying number of states used in the discretization of

the variables.

(a)

(b)

Fig. 3.28: (a) With the robot having 3 DOFs, it produces two different configurations either
“elbow-down” (left) or “elbow-up” (right) for exactly the same actuator’s pose. (b)
The mobile robot platform helps the attached robotic arm to be easily configured
in the “elbow-down” configuration. In this circumstance, the most efficient pose in
a pick-and-place scenario can be obtained .

Sometimes the general solution other than the fully-constrained configuration is pre-

ferred. One common way to solve the inverse kinematic problem in robotics usually in-

volves the computation of inverse Jacobian and its derivative, analytically or iteratively

[161][162]. For a redundant robotic arm, however, the Jacobian matrix is no longer a

square matrix; hence, it cannot be directly inverted and will require the computation of

pseudo Jacobian. Unfortunately, the pseudo inverse solution is computationally expensive

in most cases, and is subject to numerical instabilities around the singular configuration.

In addition, multiple solutions will always exist for a redundant robot. Although those

multiple solutions for a manipulator’s inverse kinematic problem can be computed quite

fast in an analytically-closed form using current computer technology, usually the number

of DOFs is limited up to the sixth order [163] 4. The iterative approach, on the other

4IKfast is an example of such an algorithm which is implemented in ROS (Robot Operating System)
within the packet OpenRAVE, see http://wiki.ros.org/openrave

73

http://wiki.ros.org/openrave

3 Reasoning in Factor Graphs

Fig. 3.29: The fully constrained inverse kinematics result.

hand, can be used to find a limited solution in any degree of freedom [164] 5. Beyond

this standard method, some other heuristic-based methods such as neural networks, fuzzy

systems, and genetic algorithms also exist [165][166][167][168][169][170][171][172].

As an extension to our model shown in Fig. 3.27, we propose the second approach for

solving the inverse kinematic problem using a dynamic factor graph. At some extent, this

second approach can be considered as a heuristic approach similar to the iterative method,

and it works as follows.

The basic idea of the iterative method is to approach the final state from a starting

state by continuously examining the optimality expressed by the reduced cost function

during each step. This action-sequence idea is not new and has already been used in

robot kinematic modeling that tries to exploit the geometrical property of the kinematic

chain. The implementation of this kinematic chain itself comes in several flavours. One

example of these schemes is called CCD (Cyclic Coordinate Descent) [173], which is an

iterative algorithm quite popular in many computer graphic and games industries. The

CCD method iteratively minimizes errors by evaluating one joint variable at a time, starting

from the end effector inward towards the manipulator base until a convergence point is

obtained. The solution offered by the CCD method depends on the initial posture, and

can only provides a feasible posture if manipulator constraints for restricting motions are

5KDL is a package in ROS which provides an iterative-based approach for solving the manipulator inverse
kinematic problem, see http://wiki.ros.org/kdl

74

http://wiki.ros.org/kdl

3.3 Application in Robotics

incorporated. The similar approach implemented in a Bayesian network setting is proposed

by Sturm et.al. [174]. In their approach, Sturm models the connectivity of rigid parts that

constitute the object, including the articulation model of the individual link. Another

biomimetic approach for solving an inverse kinematic problem that is inspired by a human

upper limb is proposed by Artemiadis et.al [175]. However, their method is not a complete

probabilistic graphical modeling treatment since they use the Bayesian network only for

describing the dependencies among the human joint angles, and then use an objective

function in a standard Jacobian inverse kinematics to finally solve the problem.

In this thesis, we also follow the idea of mimetic approach which is based on our inter-

pretation of how a human arm is usually moved during the task of reaching and placing an

object. When a human moves his hand to grasp an object, first he makes some initial pos-

ture estimations of his hand, and later adjusts his forearm and upper arm until the object

is reached. With this insight, we develop a graphical model for the robot kinematics using

a Markov chain model shown in Fig. 3.30. In this model, we simplify the representation of

the variable Θ into the corresponding θ values since it is basically a Markov chain network

unrolled three times.

(a) (b)

Fig. 3.30: (a) A Markov chain network for modeling inverse kinematics. Here variable Z rep-
resents the pose of the robot actuator (i.e. the gripper). The pose variable Z can
be decomposed into the actuator Cartesian position X,Y and the actuator orienta-
tion α. (b) The factor graph version where each factor represents the conditional
distribution associated with an edge in the model (a). The factors fθ1 , fθ2 , and fθ3
are the estimated actuator’s joints.

The network shown in Fig. 3.30 works as follows. It iterates between forward and

backward phases until some convergence values are obtained. The forward phase is started

by sending the desired actuator’s pose (Z value) and the current actuator’s joints (fθ1
value) to the variable θ1. It then produces a message which contains the prior belief about

θ1 given the desired pose to the variable θ2. The variable θ2 then produces a message to

θ3 incorporating all prior beliefs about θ1 and θ2 given the desired actuator’s pose. The

backward phase begins by generating a message from variable θ3 which will be propagated

and modulated towards θ2 and θ1. The posterior beliefs about θ1, θ2, and θ3 are obtained

by multiplying the incoming messages to the corresponding variable. These will become

the new estimated joint values which will re-enter the network through fθ1 , fθ2 , and fθ3 .

The network iterates until all joint values converge into steady values.

75

3 Reasoning in Factor Graphs

To test the performance of the network, we created a simple task in which the robot

follows a rectangular trajectory. We have tested the network by using both simulation data

and the real robotic arm. The rectangular trajectory occupies a planar space within the

range [10, 30] cm on both directions (X and Y), sampled every 0.5 cm with the actuator

orientation kept constant at 0◦. In the simulation environment, those sampled points were

fed into the inverse kinematic network, and the computed fθ1 , fθ2 , as well as fθ3 are fed

into the forward kinematic network shown in Fig. 3.27c. Using the real robot, the same

process was repeated for calculating the inverse kinematics, but the resulted fθ1 , fθ2 , and

fθ3 were sent directly to the robot. Fig. 3.31 shows the results of this experiment.

In summary, we present a generic model which can be used for both forward and inverse

kinematic computation. The physical constraint of our robot makes it possible to produce

a satisfactory result because it can be modelled in a fully-constrained configuration; hence,

reducing redundancy and providing a single valid solution. Conceptually, the other solution

can also be computed but it will not give any benefit to our robot. We also present the

second model which is based on a mimetic approach. We have applied the second model

on the robot to follow a simple trajectory. The result shows that it is quite reliable in a

simulation environment. In the next section, we explain the combination of both the factor

graph models of the manipulator and the mobile platform into a hybrid robot system.

3.3.3 Model-based Learning for Mobile Manipulator

Programming the robot to carry certain task in a factory or in a daily life service is

tedious work. Conventional method will usually involve precise mathematical formulation

of the task followed by some fine-tuning parameters of the preprogrammed robot system.

Even in a simple robot system, this routine will be cumbersome in a frequently changing

tasks setting. This motivates many researchers in AI and robotic systems to find a more

compliant/relaxing way to handle this situation. The idea is simple: teach the robot

to generate motions based on human experience. It is a straightforward observation that

humans can easily change from task to task without too much effort, revealing the fact that

humans have a long history of adapting the model-based learning features. These model-

based features are also believed by scientists, leading to the conclusion that intelligent

mammals rely on their own internal models in order to generate their actions. While

conventional robotics relies on manually generated models that are based on human insights

into physics, it is also predicted that future autonomous, cognitive robots need to be able

to automatically generate models that are based on information perceived by the robot [8].

New findings in cognitive neuroscience suggest that the human brain maintains the in-

tegral model of the human internal states along with its external states of the environment

in a distinctive manner. It is believed that the brain produces the optimal policy (to

generate proper actions from the current states) based on its internal model and use the

model-based learning paradigm to maintain that model in a robust manner. One example

model is based on the cerebellum structure which distinguishes the forward from the in-

verse model [176]. There are many evidences which support the idea that there exist two

distinct systems for producing those optimal policies: model-based and model-free system.

Unfortunately, there is little evidence showing how the brain actually determines which

of these systems control behaviour at one moment in time [177][178]. In a model-based

76

3.3 Application in Robotics

(a)

(b)

Fig. 3.31: (a) The inference result of kinematic models in a simulation environment. The
outputs of the inverse kinematics network shown in Fig. 3.30b are sent to the forward
kinematics network shown in Fig. 3.27c. The blue line is the trajectory for the robot
to follow and the red dots which are connected by the green line are the resulting
trajectory. (b) The experiment was conducted using the real robot. Although it
produces a visible trajectory, it is not a perfect rectangular one. However, this
impreciseness is merely due to technical problems and noises in the robot hardware
for data communication.

approach, the agent can predict the consequences of actions before they are taken. It is

similar with generating virtual experience and then performing the search through a prob-

lem space to find the most efficient solution. This model-based approach, which requires

a predefined model before the model can learn the optimal policy deliberately, integrates

both learning on the basis of past experiences and planning future actions [179]. On the

other hand, the model-free approach does not require a specific predefined model, and

the agent attempts to learn the model in a reflexive training scenario; hence, it is more

77

3 Reasoning in Factor Graphs

complex and challenging since the internal model of the agent as well as the environment

model are unknown.

In this thesis, we are interested to explore the model-based approach because it offers

several major advantages, including the opportunity to create highly tailored models for

specific scenarios, as well as rapid prototyping and comparison of many alternative models.

As an example test case, we developed a robotic application in a placing-an-object scenario.

In this scenario, the robot moves an object from one point to another point in space where

the distance may be far, so that the robot’s arm is unable to put the object directly at the

destination point. For this scenario, we developed a mobile manipulator - a hybrid robotic

system, where a robotic arm is installed on top of a mobile robot, as shown in Fig. 3.13.

This hybrid system is challenging because the robot should maintain its stability while

moving (e.g. by aligning the arm so that the overall center-of-mass will be close to the

center of the whole body of the robot). In our experiment, the robot operation does

not start by picking up an object because it requires complicated scenarios (e.g. object

shape/pose recognition), see for example [180]. Instead, the object is placed into the

gripper of the robotic arm. We defined a session as a single placing-an-object task. In the

beginning of the session, the original coordinate of the object’s center and the goal position

is given. If required, the robot should move to the point where the arm is able to reach

the object. When the robot is in the right position, the robot lifts the object and move the

arm, so that its overall center-of-mass is in a stable position. The robot then approaches

the destination position. When it is close enough, the arm is moved (i.e. stretched), so

that the object can be placed at the goal position. To reduce the complexity, so that we

can focus on our factor graph evaluation, we do not deal with the synchronous localization

and mapping scenario. Our proposed model is shown in Fig. 3.32.

Fig. 3.32: The graphical model of our mobile manipulator shown in Fig. 3.13.

Level-1: Motion Primitives of Robotics Platform

Shown in Fig. 3.32, we define two levels of the model that create a hierarchical solution:

the lower part (Level-1) corresponds to the low level robot motions and the upper part

78

3.3 Application in Robotics

(Level-2) corresponds to the strategical motion specific to a given task. In this sub-section,

we explain the idea of motion-primitives generation by the model in Level-1.

Level-1 is responsible for the low level learning of individual motions, where individual

actions could be taught separately instead of all at once. These individual motions are

basically motion primitives which are kinematically feasible to form the basis movement

performed by the robot platform. The motion primitives of the mobile robot have been

learned using the method described in section 3.3.1. Hence, in this sub-section, we explain

only the remaining model for the motion primitives of the robotic arm.

Different methods for learning the motion primitives have been developed by many

other researchers using algorithms such as Gaussian Mixture Models and Regression

(GMM/GMR), Hidden Markov Model (HMM), Support Vector Machine (SVM), Lo-

cally Weighted Projection Regression (LWPR), Dynamic Movement Primitives (DMP),

etc. [181][182][183][184][185]. In this thesis, we turn our attention to the paradigm of

programming-by-demonstration (PbD) or commonly known as the imitation learning. In

this paradigm, the robot is expected to develop and improve its skill after some demonstra-

tions provided by the human teacher. The robot then creates the skill model using some

learning algorithm that exploits the statistical regularities across multiple observations

[186][187]. Fig. 3.33 shows the basic principle of learning new skill using the demonstra-

tion paradigm.

Fig. 3.33: The conceptual principle of programming by demonstration.

The most intriguing challenge in this paradigm is how the model generalizes the skill

so that it can also be applied in different contexts [188][181]. Skill learning itself can be

developed either at a symbolic level or a trajectory level. Here we are interested in the

trajectory-based approach for two reasons. First, many of our factor graph models originate

from Bayesian networks which do not permit any cyclical hierarchy. Second, we are still

in the early stage of research in which we do not want to be distracted with complicated

high-level skill problems. Hence, we stay focused on the trajectory level and evaluate the

performance of our approach as much as possible in order to ensure the continuation of our

work. Although there is no consensus on which method performs the best when dealing

with the generalization problems at the trajectory level, most practical PbDs are usually

performed using either statistical modeling (such as GMM and HMM) or dynamic-system-

based modeling (such as DMP). In this thesis, we use a regression technique similar to the

Gaussian Mixture Regression (GMR) [189] but we create the model entirely in a factor

graph and use its inference mechanism to learn the trajectory.

In section 3.3.2 we describe a model that calculates the kinematics of the robotic arm.

To use the PbD paradigm for generating the skill, we need to provide several demonstra-

tions from which the trajectory of the movement can be learned. Each demonstration

trajectory is fed into the regression network and the parameter of the network will be up-

dated accordingly. Fig. 3.34 shows the trajectory result from the regression network over

several demonstrations for each joint of the robotic arm.

79

3 Reasoning in Factor Graphs

(a) θ1 demonstrations. (b) Estimated θ1 trajectory.

(c) θ2 demonstrations. (d) Estimated θ2 trajectory.

(e) θ3 demonstrations. (f) Estimated θ3 trajectory.

Fig. 3.34: Learning robot trajectory from several demonstrations for each joint of the robotic
arm (θ1, θ2, and θ3 correspond to the joints of the robotic arm shown in Fig. 3.27a).

80

3.3 Application in Robotics

Fig. 3.34 shows only a snapshot of the teaching of the robot where we hold the robotic

arm and then extend and retract the arm to create a trajectory. In general, any sequential

actions can be performed and learned by using this PbD paradigm. As an example for a

complex trajectory, we “guided” the robotic arm to pick up an object from one position

and then place it on another position. This scenario is depicted in Fig. 3.35. After several

demonstrations, we perform the regression using the same mechanism shown in Fig. 3.34.

The estimated trajectory is then sent to the robot’s kinematic controller. The snapshots

of this run after learning the trajectory is depicted in Fig. 3.36.

Fig. 3.35: Guiding the robotic arm to follow a trajectory.

Once the robot learn the skill (i.e. the trajectory), it can use the standard scaling

procedure to get different effects such as the different start and goal positions. However,

this scaling mechanism is a static procedure and will not take into account the transitional

dynamic between two successive learned skills[190]. A better way to accommodate the

dynamic behaviour of skills is by using the dynamic imitation paradigm [185][191]; however,

we do not cover this advance technique in this thesis and we leave it as an opportunity for

our future work.

81

3 Reasoning in Factor Graphs

Fig. 3.36: Robotic arm executes the trajectory it learned before.

Level-2: Task Constrained Model

The upper level of the model shown in Fig. 3.32 is a model of a task constrained control of

our mobile manipulator. We present here only the conceptual model due to the complexities

inherited by the model: it contains a hybrid factor graph (a factor graph that has both

discrete and continuous variable nodes) with multi-loop regions. Although we can discretize

the continuous variables, they will produce a mixture distribution6 which needs different

treatments in a factor graph with many loops. We regard this challenge as an opportunity

for our future work.

In this model, we define several discrete variables (shown in boxes) as well as real-valued

variables (shown in circles). In our notation, a task T = {extend, ¬extend} refers to a

“basic task” that the robotic arm should do; that is, either extending or retracting its arm.

The position of the end-effector will be determined by the variable G, which indicates the

target/goal position, and the current position of the mobile robot M. During the movement,

6In a Bayesian network, when a continuous-valued child node has discrete parent nodes, the structure
will stipulate a unique probability distribution such as the mixture Gaussian distribution. However,
since a Bayesian network does not have any loop, this mixture distribution will not have any problem
when circulated in a belief propagation setting. However, a mixture distribution will behave differently
in a network with many loops; in this case, people prefer to use approximate inference approaches,
which are not covered in this thesis, in order to perform probabilistic queries.

82

3.4 Discussion

the arm’s orientation will be determined by the task constraint C1 = {flat, ¬flat}. The flat

pose means that the arm should keep its joints configuration to be 0 in total, so that the

end-effector will always be in a horizontal position. The non-flat pose means that the arm

can use all possible joints configurations to reach the target, allowing it to have the longest

reaching posture. The reachability indicator R = {reachable, ¬reachable} determines

whether the mobile robot should move (further toward or away to/from the object), or

stay at the current position. It also determines whether the mobile robot should perform

the rotation in order to align itself in-line with the object (positioned straight directly

toward the object), or stay still. Hence, the value of this variable will be depending on the

position of the object along with its goal position, the current pose of the mobile robot,

and the current pose of the robotic arm. In addition, we need to inform the variable R

about the physical constraint (e.g. the diameter) of the mobile robot via the variable C2.

At this point, we can see that there exist several limitations in the model, such as

the missing active controllers for the grasp stability of the robotic arm as well as for the

synchronous motion stability of the mobile robot. For readers who are interested in solving

these stability problems, we refer to the book written by Schröder [17] which gives thorough

explanation on how to develop a robust controller. Nevertheless, our model is proposed to

give an intuitive example of how to use a factor graph for such a complex scenario.

3.4 Discussion

In this chapter, we present many examples of applications where we can use factor graphs

for reasoning. In section 3.1, we show that our factor graph framework is well suited for

solving core problems in the machine learning domain. Using a Bayesian network as the

underlying mechanism, we show that a factor graph network can perform a probabilistic

regression resulting in estimation consistent with the Bayesian treatment for curve fitting.

We then extend the task into the classification domain and again show that our factor

graph framework is convenient to be used for solving classification problems with high

accuracy. Although we present only a two-class classification task as an example, we argue

that we can easily create a larger Bayesian classifier network since it just a matter of adding

more variables without introducing any loop. Regarding the presence of a loop in a factor

graph, we show that our belief propagation implementation for factor graph is consistent

with the general consensus stating that the convergence is very likely to be achieved in

a finite time if the network has only a single loop. We demonstrate this capability of

our factor graph framework in a sensor fusion scenario with artificial data. We realize

that there is still a room for improvement in future work, for example by introducing the

residual belief update instead of standard asynchronous update in our loopy factor graph,

which theoretically produces a better approximation.

We also introduce the usage of a dynamic factor graph by emulating a DBN in a factor

graph. To our knowledge, the factor graph itself does not have capability for dealing with

dynamic behaviour of the system. Hence, we just “borrow” the idea of unrolling a static

network several time steps (called a horizon) and use the powerful inference mechanism of

the factor graph to do some queries on the network (filtering, smoothing, etc.). Later on,

we demonstrate the usage of such a dynamic factor graph in a real robotic application.

83

3 Reasoning in Factor Graphs

Finally, we use our factor graph framework for applications in a robotic domain. We

mainly develop the model for solving the kinematics problem and argue that the robot

dynamics is beyond the scope of this thesis. There are two different robot platforms that

become the subject of our factor graph: the NST omnidirectional robot and the WidowX

robotic arm. We began the exploration on the mobile robot kinematics control and found

that we can create an N-to-N mapping network using factor graph for transforming the

expected robot velocity to/from each wheel velocity. We have tested the network in a

scenario where a top-head camera tracking system is used for acquiring the robot position

in real-world coordinate system. The inverse kinematics model then predicts the expected

wheels velocity given the robot velocity. Although the result is linear as expected, we still

see some variation due to many uncertainties in the experiment. However, we argue that

this variation is a common problem in many real applications because if we look at the

simulation version, the inference result of the network is almost perfect.

The next robot platform that we used in our experiment was a robotic arm. Unfortu-

nately, the generic mapping network that we used for modeling the omnidirectional mobile

robot could not be used directly for the robotic arm. Similar with the model for the mobile

robot, we did not have any problem with the forward kinematics case. As an alternative

for the inverse kinematics model, we developed a new model using a dynamic factor graph

based on a mimetic approach by which we interpret how human arm is usually moved

during reaching and placing tasks. Although this is not a new idea, our method is the first

to implement such an idea using a dynamic factor graph. We have tested our approach and

we concluded that the accuracy of the result can be improved by increasing the resolution

of the network parameters without unrolling the network further beyond the number of

robot’s joints.

We proceeded the experiment by introducing a scenario where we combine both the

robotic arm and the mobile robot into a hybrid mobile manipulator. In this scenario, we

explored the model-based learning domain to create a hierarchical robot model and control.

We used our previous model for controlling the mobile robot, but for the robotic arm we

used the programming by demonstration (PbD) paradigm as the learning strategy. Our

method is based on the regression approach to learn a new skill for the robotic arm. The

PbD implementation itself was successful. However, we had a challenging situation that

requires much more examination and further exploration, which we could not accomplish

it at that time, when we combined all networks into one unified factor graph model. This

is because in our proposed unified model, there exist many loops that could not produce

convergence results when a mixture distribution message circulated around in the network.

Hence, we take the liberty of solving this problem in future work. Nevertheless, we are

satisfied with the performance result of our implementation of this model-based learning

paradigm.

In summary, our PC-based factor graph framework is successfully developed and ap-

plied in many application domains. In this thesis, we explore the inference scheme in

the direction of belief propagation via message-passing. There exist other exact inference

scheme such as variable elimination algorithm, which seems to work quite well in some

applications. However, we argue that the belief propagation method is more suitable to be

implemented natively in dedicated distributed-computing-capable hardware rather than

84

3.4 Discussion

the variable elimination approach. This is because the message-passing (i.e. the sum-

product) algorithm can perform the variable elimination seamlessly during its iteration.

Hence, we do not need external processes just for reordering the variables like the variable

elimination algorithm normally does during its inference. With this argument and also

supported by the successful application results of our PC-based factor graph, we continue

our research work in the next phase: embedded factor graph on dedicated hardware.

85

3 Reasoning in Factor Graphs

86

4 Factor Graph in SpiNNaker

As we have described in chapter 1, there are good reasons why we should go into the

hardware level for achieving a flexible and efficient factor graph framework which supports

our long term goal in developing machines with higher level cognitive capabilities. We

cannot always rely on standard PCs for applying factor graphs, especially when working

with real-world applications such as in robotics, which demand intriguing requirements

such as low-power and real-time performance. Hence, we look into the hardware level in

order to accomplish such requirements.

Our PC-based factor graph framework described in section 2.4 is our starting point for

understanding the core computations required to implement effective factor graphs along

with their belief propagation algorithm and messages encoding using the population coding

principle. Our journey on hardware implementation of factor graphs starts by selecting the

SpiNNaker platform as our initial hardware implementation. There are two main reasons

for choosing the SpiNNaker platform:

1. It is a massively-parallel hardware structure supported by a unique software plat-

form that is already well defined and quite mature. Hence, we do not need to worry

too much about many technical difficulties before implementing an embedded factor

graph. Designing an embedded factor graph from scratch requires thorough explo-

rations on two different platforms: dedicated hardware and an embedded operating

system. With the help from the existing operating system platform of SpiNNaker, we

can focus on many low-level aspects such as the computing core’s internal structure,

interlink/internetwork between computing cores, memory bottlenecks, input/output

interfaces, etc. Hence, lighten our efforts to understand the basic building blocks of

efficient embedded factor graphs.

2. We will gain some insights and a comparative benchmark for the SoC version of

our embedded factor graph. Since SpiNNaker is originally intended to be used for

developing applications based on spiking neural network approach, we might get

some unintended drawbacks when using it for implementing factor graphs.

With these motivations, we re-implement our original PC-based factor graph framework

and optimize it for SpiNNaker. The optimization is performed after we analyze its per-

formance in some application scenarios. This chapter describes this process starting by

describing our implementation method and followed by our optimization strategy. We call

this first embedded factor graph implementation in this thesis as SpiNNaker-FG.

4.1 Introduction to SpiNNaker

The SpiNNaker (Spiking Neural Network Architecture) system is a distributed computing

system designed to simulate spiking neural networks [192][193][194]. It was designed by

87

4 Factor Graph in SpiNNaker

the Advanced Processor Technologies Research Group (APT) at the University of Manch-

ester in United Kingdom within the EPSRC (Engineering and Physical Sciences Research

Council, UK) funded project in collaboration with the University of Southampton, ARM

Ltd., and Silistix Ltd. It is initially targeted towards three main application areas1:

• Neuroscience: The largest SpiNNaker machine will be capable of simulating millions

of neurons in a spiking neural network model with complex structure and internal

dynamics.

• Robotics: It offers a low-power embedded system with standard interfacing mecha-

nisms used in a typical robotics scenario. Hence, SpiNNaker might be a good platform

for researchers in robotics, especially for mobile robots.

• Computer Science: SpiNNaker offers opportunities to explore new principles of mas-

sively parallel computation which cannot easily be performed by traditional super-

computers that rely on deterministic, repeatable communications and reliable com-

putation.

The SpiNNaker system is composed of many SpiNNaker chips in hexagonal topology,

which allows simulation of thousands of artificial neurons per chip in real time. The chip is

designed as a Globally Asynchronous Locally Synchronous (GALS) system. Each chip is a

multi-core system, consisting of 18 ARM968-based cores and also several internetworking

elements and supporting modules. Every chip is also equipped with 1Gbit DDR SDRAM

for applications that exploit and share these local resources for computation. Fig. 4.1

shows the internal structure of a SpiNNaker chip [2].

Our original factor graph framework can be broken down into three main components:

• Factor and variable nodes, where the computations of factor product and marginal-

ization take place. Since we use discrete factor graphs, this component consumes the

most memory resources.

• Messages encoder and decoder, where we implement population coding for discretiz-

ing continuous variables that take real value inputs.

• Scheduler, where we implement the scheduling mechanism for updating messages

during inference processes in a belief propagation scheme.

The main task in the design of our embedded factor graph is how to efficiently map these

three components into available on-chip resources as well as the available SpiNNaker board

for running an application.

Looking further into the SpiNNaker chip’s internal structure, we focus on how to uti-

lize the cores inside the chip to implement distributed computations of a factor graph

network. The chip contains interconnected microcontrollers (ARM968) with a specific

routing mechanism inspired by neurobiology. It uses a packet-switched network to em-

ulate the very high connectivity of biological neurons. The packets are source-routed;

1According to the project description advertised in http://apt.cs.manchester.ac.uk/projects/

SpiNNaker/

88

http://apt.cs.manchester.ac.uk/projects/SpiNNaker/
http://apt.cs.manchester.ac.uk/projects/SpiNNaker/

4.1 Introduction to SpiNNaker

Fig. 4.1: The internal architecture of a SpiNNaker chip (adapted from [2]). The coloured
blocks/regions represent our interest in exploring the SpiNNaker chip infrastructure
which can help us harnessing it for our embedded factor graph implementation. The
green blocks are the ARM-CPU cores where algorithmic computations take place.
The pink block is the router block responsible for routing and distributing SpiNNaker
packets. The yellow blocks are hardware level interface components which perform
the real messages transmission via SpiNNaker links. By looking into the detail of
those three blocks, we gain some insights of how should we implement our factor
graph as a distributed system.

i.e., they only carry information about the spike issuer, and the network infrastructure

is responsible for delivering them to their destinations. The heart of the communication

infrastructure is the bespoke multicast router that is able to replicate packets and, where

necessary, to implement the multicast function associated with sending the same packet

to several different destinations. This routing mechanism involves several modules inside

the chip in which a special look-up table is maintained by a Packet Router. The key

feature of this chip lies on this aspect: by properly configuring the Packet Router, the de-

veloper can create an efficient massively distributed computing system [195]. In addition,

a SpiNNaker chip has six bidirectional, inter-chip links that allows creation of networks

89

4 Factor Graph in SpiNNaker

with various topologies. Inter-chip communication uses self-timed channels, which are sig-

nificantly more power efficient than synchronous links of similar bandwidth, although they

are costly in wires.

Relating the hardware infrastructure with the corresponding SpiNNaker software plat-

form, we found that SpiNNaker has an intrinsic constraint which can be exploited in order

to implement a message-passing algorithm efficiently. For our purpose, we use only some

of the SpiNNaker communication protocols which are available for an application pro-

gram through the SpiNNaker API (application programming interface). For developing

our SpiNNaker-FG, two of them are used extensively: the neural event multicast protocol

(MC) and the SpiNNaker datagram protocol (SDP). The MC packets are used for trans-

ferring “messages” between nodes in a factor graph network and SDP packets are used for

communication between the SpiNNaker system and the host PC.

4.2 Mapping Factor Graph on SpiNNaker System

Deploying a program in dedicated hardware, especially the one with intrinsic parallelism,

requires different treatments and explicit considerations [196]. The same challenge is also

valid for our SpiNNaker-FG. Here we develop our framework with the following criteria.

• Scalability The framework should be able to work with a variable number of chips,

allowing us to resize the networks conveniently.

• Flexibility The framework should be flexible enough to be reconfigured for many

general purpose applications without too much modification in the framework.

• Cross-boundary The framework should be able to connect the separated elements

of a factor graph seamlessly.

SpiNNaker chip has many different resources that can be utilized in order to implement

a distributed computation platform for a factor graph. There are four elements that need

to be specified and allocated in advance:

• the SpiNNaker cores which handle the nodes (variable or factor nodes)

• the routing mechanism which transfers messages from one node to other nodes

• the memory layout for vectors such as messages and local functions

• the conversion mechanism between real-valued data to/from discrete probabilistic

representations

In [197], the authors describe their parallelism approach based on checker-boarding par-

tition (CBP) method for implementing a multi-layer perceptron in a standard feed-forward

neural network (FFNN) structure. They map the FFNN’s weight matrix onto SpiNNaker

chips and use the multicast packet transmission to distribute the computation. However,

this mechanism cannot be used directly for implementing a factor graph in SpiNNaker for

two reasons:

90

4.2 Mapping Factor Graph on SpiNNaker System

1. In an FFNN, the number of connections between layers is fixed; hence, the propa-

gation of computations can be predicted. That is why the weight matrix in [197]

can be partitioned easily. While in a belief propagation method for factor graphs,

the number of connections between nodes varies. Furthermore, the propagation of

computations in a factor graph can be asynchronous, which is contrast to an FFNN

where the computation in a layer is always synchronous.

2. Ordinary factor graphs have two types of nodes which generate values (or “messages”)

differently, while FFNNs have only a single type of node (i.e. the neuron) and all

of those nodes in an FFNN perform the same computation principle. Hence, even

though the factor of a factor node may be stored in a matrix similar to the CBP

method, each factor node must handle its own matrix and operates asynchronously.

Based on these observations, we implement different strategies for mapping a factor

graph onto a SpiNNaker system. Our PC-based factor graph framework gives us insight

that a factor graph has two important aspects which require a distributed computation.

The first is population coding for representing the state distribution of input/output values,

and the second is the sum-product computation of the message-passing algorithm. At the

moment, we implement all network mapping and packets management manually by hand;

i.e., by defining the routing key entries in the SpiNNaker routing table manually based

on a given factor graph network. In the future, we want to enhance our SpiNNaker-FG

framework so that it can offers much better functionality similar to “PACMAN” [198],

which is the main SpiNNaker program for managing spiking neural networks, in the sense

that it can provide mapping and configuration functionalities automatically for any factor

graph based application.

4.2.1 Neurons Population Mapping

Although the SpiNNaker system is originally designed to emulate spiking neurons, we

do not use this emulation mechanism since we are not interested in neuron-by-neuron

spike generation. Instead, our SpiNNaker-FG will only use SpiNNaker abundant resources

to implement population coding principles over a fully connected homogeneous neurons

population. Fig. 4.2 shows how the population coding with a Gaussian response is mapped

into SpiNNaker cores.

As our test platform, we used the SpiNN-3 board which contains four SpiNNaker chips

(see Fig. 4.3a). We use the population coding principle to discretize input/output values

as described in chapter 2. For this discretization, chip-0,0 (see Fig. 4.3b, box colored in

green) was used. The rest of the chips were used for distributing nodes as well as for the

sum-product computing engine (see Fig. 4.3b, boxes colored in pink).

The mapping shown in Fig. 4.2 uses 15 cores and those cores are controlled by core-1

which also operates as an I/O port for sending and receiving data to/from external devices

(e.g. a robot or the host PC) using SDP. Core-0 and core-17 are used by the SpiNNaker

kernel for monitoring purposes; both cores cannot be used by any application program

except the SpiNNaker kernel. In our implementation, there are two separate source codes

for those working cores. We create a “master” code for code-1 and several copies of

91

4 Factor Graph in SpiNNaker

Fig. 4.2: Mapping neurons population into SpiNNaker cores in one chip (note: the white and
the black cores are reserved for SpiNNaker kernel).

(a) SpiNN-3 board (b) SpiNN-3 chips layout

Fig. 4.3: The SpiNN-3 board and its chips layout. Chip-0,0 is chosen for managing population
codes since it has a direct Ethernet connection to external systems. (Figure (b) is
adapted from [3])

“worker” code for core-2 until core-16. After compiling the master and worker codes, we

send the binaries to the system-RAM and instruct those cores to run the binary code on

the system-RAM of the SpiNNaker chip-0,0. Each core in the “worker” group executes the

same code to perform the discretization as well as to compute the probabilistic expectation

based on the predefined discretization parameters which are hard-coded in the worker’s

source code.

The network’s belief message will be split into several “chunks” corresponding to the

number of available cores for discretization. Since the available cores for the computation

are only 15, the number of states used to represent a population code will be the multiple

of 15. In chapter 2 and 3, we explain that in most applications, 50 states for each variable

are more than enough to produce high resolution (i.e. smooth) results. Hence, we limit

the number of “chunk” of data per core to be 4 so that the maximum number of states

can be as many as 60.

For our factor graph, we use the SpiNNaker’s MC packet with 72 bit length since we

92

4.2 Mapping Factor Graph on SpiNNaker System

need to use the “payload” part of the packet to carry the probability value of each state.

The routing-key part of the MC packet carries information such as the variable index and

the chunk index of the propagated message. The diagram shown in Fig. 4.4 illustrates how

we create the transmitting protocol for each chunk of the split message.

control routing key payload

paritypayloadtime stamp
emergency

routing
00

bit: 7 6 5 4 3 2 1 0

00

nibble: 7 6 5 4 3 2 1 0

0 0 0
variable

ID
operation ID

Fig. 4.4: Message transmission protocol using MC packet. The “operation-ID” part in the
routing-key block determines what kind of operation is expected to be executed in
the destination core. For example, if the sender is core-1, then the operation that
can be performed by “worker” cores are setting-up parameters, Gaussian partitioning,
expectation calculation, and transmitting the data chunk to the predefined destination
factor node (see section 4.2.2). On the other hand, if the senders are the “worker”
cores, then the operation that can be performed by the core-1 are acknowledging
the worker’s presence and accumulating the expectation values. The “variable-ID”
part in the routing-key block determines to which variable does the message belong
to. The maximum number of variables that belongs to a factor node is 15 and each
variable is assigned with a unique ID.

When data comes from an external device, core-1 will distribute the data to the worker

cores (which are not part of the monitoring cores of the SpiNNaker kernel) as an MC

packet. Those working cores will start immediately the partitioning process to discretize

the data and store the result internally. Later on (or when requested), they will transfer

the discretized values to the other chips through the links 0, 1 and 2 of chip-0,0 (see

Fig. 4.3b). Those values will be used by the other chips for a factor graph inference.

On the other hand, when core-1 receives a notification from the other chips (in a form

of variable ID), it will inform the worker cores to start computing the expectation value

using the mechanism described in chapter 2. The overall process that happens in chip-0,0

is summarized in table 4.1, which shows how we manage the routing table for the router

in chip-0,0.

4.2.2 FG-Nodes Mapping

In our SpiNNaker-FG, every core in the chip can be assigned as either factor node or

variable node. We also define a Region as a subset of a factor graph that can be mapped

93

4 Factor Graph in SpiNNaker

Tab. 4.1: Routing key definition for massage transmission

ENTRY KEY MASK ROUTE Notes
Distributing real value to worker cores

0x00000000 0x00000000 0xFFFFFFFF 0x007FFF00 CPU-1 send a value for
varID-0 to be discretized

0x00000001 0x00000001 0xFFFFFFFF 0x007FFF00 CPU-1 send a value for
varID-1 to be discretized

0x0000000E 0x0000000A 0xFFFFFFFF 0x007FFF00 CPU-1 send a value for
varID-15 to be discretized

Computing the expected values
0x00000010 0x00000010 0xFFFFFFFF 0x007FFF00 CPU-1 send a request for an

expected value on varID-0
0x0000001E 0x0000001E 0xFFFFFFFF 0x007FFF00 CPU-1 send a request for

expected value on varID-14
0x00000020 0x0000001E 0xFFFFFFFF 0x00000080 workers send the chunk to

CPU-1 for varID-0 and use
payload as chunk value

0x00000021 0x00000021 0xFFFFFFFF 0x00000080 workers send the chunk to
CPU-1 for varID-1

0x0000002E 0x0000002E 0xFFFFFFFF 0x00000080 workers send the chunk to
CPU-1 for varID-14

Requesting for pmf, eg. to be sent to host or other chip
0x00000030 0x00000030 0xFFFFFFFF 0x007FFF00 CPU-1 send PMF request

for VarID-0 to workers
0x0000003E 0x0000003E 0xFFFFFFFF 0x007FFF00 CPU-1 send PMF request

for VarID-14 to workers
0x00000100 0x00000100 0xFFFFFFFF 0x00000080 workers reply the PMF for

varID-0 at seq-0
0x00000110 0x00000110 0xFFFFFFFF 0x00000080 workers reply the PMF for

varID-0 at seq-1
0x000001E0 0x000001E0 0xFFFFFFFF 0x00000080 workers reply the PMF for

varID-0 at seq-14th
0x00000101 0x00000101 0xFFFFFFFF 0x00000080 workers reply the PMF for

varID-1 at seq-0
0x000001EE 0x000001EE 0xFFFFFFFF 0x00000080 workers reply the PMF for

varID-1 at seq-14th
Sending parameters to workers

0x00000040 0x00000040 0xFFFFFFFF 0x007FFF00 CPU-1 send #States
0x00000041 0x00000041 0xFFFFFFFF 0x007FFF00 CPU-1 send gVar
0x00000042 0x00000042 0xFFFFFFFF 0x007FFF00 CPU-1 send vRange
0x00000043 0x00000043 0xFFFFFFFF 0x007FFF00 CPU-1 send extRatio
0x00000044 0x00000044 0xFFFFFFFF 0x007FFF00 ALL STATES BASE ADDR
0x0000004E 0x0000004E 0xFFFFFFFF 0x007FFF00 init command to workers
0x0000004F 0x0000004F 0xFFFFFFFF 0x007FFF00 workers send ping to CPU-1

94

4.2 Mapping Factor Graph on SpiNNaker System

efficiently into one SpiNNaker chip. This Region might contain one or more factor nodes

together with its associated variable nodes as many as possible. An example for this Region

splitting is shown in Fig. 4.5. The constraint of this design is that all associated variable

nodes should reside in the same chip with its associated factor node as much as possible.

The reasons is that we want to minimize the traffic overhead of “messages” in the Region

and also for the purpose of load balancing between cores.

Fig. 4.5: Mapping regions into SpiNNaker chips. The color illustrates node-to-core mapping.

When implementing a variable node or a factor node in a group of SpiNNaker cores, one

core of this group will be assigned as the “master”, which is responsible for supervising the

other cores in the group. This is important especially for a factor node because the valid

communication with the SpiNNaker monitor processor must be made during the course of

the program in order to get the correct access to the SDRAM. Each node will store its

processing result in the SDRAM and all factor nodes will store their local function also in

the SDRAM. Accessing the SDRAM for storing and retrieving data is done through the

DMA callback mechanism provided by the SpiNNaker API.

In Region-1 shown in Fig. 4.5, the factor nodes FA and FB each occupy only one core

since these factor nodes are essentially inputs for node A and node B in case node A and

node B are observed. These factor nodes also do not have a vector value but only ’1’ as

its local function. However, the factor node FABD occupies 10 cores since it is the only

factor node in the region which has intense computation processes of (2.4) and (2.5) due

to its link to the three nodes. Also, factor nodes FA and FB could be assigned with the

communication task with chip-0,0 (see Fig. 4.3b), i.e. to receive the input as well as to

send the message to chip-0,0. The only computation that might be performed by node A

and node B is the marginalization; hence, we assign each node with only 2 cores. If the

application does not require marginalization in node A and node B, they can be assigned

with only one core for each node. The local function of FABD will be stored in the internal

SDRAM.

In Region-2, node C and node D also occupy two cores each since they might still need

to compute its marginal (however, if they don’t, then it can be reduced to only one core

95

4 Factor Graph in SpiNNaker

for each node and assign the remaining cores to the more “busy” nodes). The node D,

factor node FCD and factor node FDE, each occupy four cores since they compute message

products intensively. Same as in Region-1, the local function of FCD and FDE will be

stored in the internal SDRAM of the chip. In the case of node D, it can be accessed in

the following way. If Region-1 is placed on chip-0,1 and Region-2 is placed on chip-1,0

(see Fig. 4.3b), then the routing table for the output of factor node FABD towards node D

can be assigned with link-1 of the chip-0,1 and, correspondingly, the routing table for the

input of node D from factor node FABD must be assigned with link-4 of the chip-1,0.

4.2.3 Mapping and Routing Factor Graph in SpiNNaker

Factor graphs with exact inference using belief propagation operate two types of messages:

variable-to-factor message and factor-to-variable message. In our SpiNNaker-FG, those

messages will be encoded and sent using the multicast (MC) mechanism as the payload

of the corresponding MC packet. Specific to factor nodes: the f(X) in expression (2.5)

is the local function of the corresponding factor node. It usually takes a form of a vector

in discrete factor graphs. We have to provide this vector function before the factor graph

executes its inference and this vector function is normally learned off-line. Once we have

these internal factors for each factor nodes in the factor graph, we send these factors

via SDP from the host to the SpiNNaker system. For this purpose, we have to specify

exactly where the corresponding factor nodes are located within the SpiNNaker system

with respect to the chip layout shown in Fig. 4.3b.

Regarding this routing mechanism, each node maintains its routing table, and registers

it only once (due to the SpiNNaker’s constraints). The node also has its own input-output

matrix that reflects its neighborhood and determines which node has sent the message or

has a pending message. This is important since the node computes the outgoing message

only when all neighboring nodes have sent their message. In this thesis, we create a

routing table similar to the one shown in table 4.1 manually. The content of the routing

table depends on how many cores as well as in which cores are the nodes of the factor

graph assigned to (see section 4.2.2).

Fig. 4.6 shows an example of how the belief propagation’s messages are transmitted

within the SpiNNaker system. The messages are propagated within the Region-1 shown

in Fig. 4.5.

Assuming that the factor graph framework has already been downloaded onto the SpiN-

Naker system, the message-passing shown in Fig. 4.6 runs as follows:

a The PC sends input values to the SpiNNaker system via SDP which go to the core-1

in chip-0,0. The master program in core-1 will decode the SDP packet and extract

input values from it.

b During the invocation of the factor graph framework for the first time, the master

program (in core-1) sends program’s parameters to all worker cores. Afterwards,

each worker knows in which partitioning region it is supposed to work. Core-1 will

send the input values to all worker cores as MC packets. When the worker cores has

finished their job, they will send a notification back to core-1 which can be used later

96

4.2 Mapping Factor Graph on SpiNNaker System

Fig. 4.6: An example of message routing in the Region-1 for the factor graph shown in Fig. 4.5.
The coloured-and-numbered squares match the corresponding cores shown in Fig. 4.5

.

on by the core-1 to notify back the host PC that the input values have been fed to

the factor graph network.

c The first input value is encoded using population coding and the resulting vector

that contains the probabilistic message is sent to core-1 in chip-0,1 which serves as

the factor node fA.

d The second input value is encoded and the resulting vector is sent to core-2 in chip-0,1

which serves as the factor node fB.

e The factor node fA will pass the message to the variable node A in core-3 of chip-0,1.

Since the variable node A is connected only to the factor node fABD, it will not

perform any factor product computation. Hence, we can assign only one core for the

factor node fA.

f Similar to the situation in (e). Here, the factor node fB only passes the message to

variable node B.

g The variable node A passes the message to the factor node fABD. The message,

which is carried on several MC packets, will be sent only to core-5 which serves as

the “master” controller for the factor node fABD.

97

4 Factor Graph in SpiNNaker

h Similar to the situation in (g). Here, the factor node fB delivers the message to

the factor node fABD and lets the core-5 (the “master” controller) to distribute the

message and to manage the sum-product algorithm which runs on the worker cores

(core-6 through core-16).

i This is where the paralellized sum-product algorithm takes place. The master core

of the factor node fABD receives several MC packets from core-3 and core-4 as the

representation of the variable node A and B respectively. It then distributes the

packets to the worker cores and starts the sum-product algorithm sequence. The sum-

product algorithm has two sequences: factor product operation and marginalization.

In the first step, each worker core runs the factor product algorithm in parallel and

use a DMA mechanism to retrieve the “internal function” of the factor node fABD
from internal SDRAM. Once they have finished performing the factor product, they

will inform core-5 (as the master) so that core-5 can synchronize all worker cores

before running the second step (i.e. the marginalization step). When all worker

cores have reported their finishing job on the factor product algorithm, core-5 will

send a command to all worker cores to perform once again an ensemble of running

the summary algorithm (i.e. marginalization phase). Once they have finished the

marginalization, the core-5 will collect the chunks from each worker core.

j The core-5 sends the collected chunks from its worker sequentially to the variable

node D, which resides in chip-1,0 (see Fig. 4.3b and Fig. 4.5), as a new message

encoded in an MC packet.

The message-passing process then continues in Region-2 until the final messages have

been delivered to the destination nodes. At the moment, this process cannot be general-

ized and solely depends on the factor graph structure that needs to be implemented in a

SpiNNaker system. In this thesis, this mapping and routing mechanism is still hard-coded

and we take the liberty of continuing it in our future work.

4.3 Performance Evaluation and Optimization Strategy

To evaluate the performance of our factor graph framework on SpiNNaker, we run two

different test scenarios. In the first scenario, we created a factor graph representing a

consistency test described previously in section 2.3.2 on page 39. The purpose of this

test scenario is to evaluate how effective is the usage of multi-core processors within a

SpiNNaker chip to carry the parallelism strategy for our factor graph framework. The

second test scenario, which uses the same example network described in section 3.3.1,

demonstrates the applicability of our factor graph framework in a SpiNNaker system for

real robotics scenarios.

Multi-core Parallelism Evaluation

In the test scenario for evaluating the multi-core parallelism strategy, first we implemented

a network consisting three factor nodes and two variable nodes shown in Fig. 2.13 com-

pletely in one core of a SpiNNaker chip and performed the inference therein. Next, we

98

4.3 Performance Evaluation and Optimization Strategy

implemented the same network but distributed the factor node fAB into 12 cores, while

factor nodes fA and fB as well as variable nodes A and B occupy one core each. We run

the inference on those two scenarios and recorded the elapsed time for a single run. The

result of this first test scenario is shown in table 4.2 which is also depicted as plots in

Fig. 4.7a.

Tab. 4.2: Summary of evaluation on multi-core parallelism in a SpiNNaker chip

Running Time (in ms)
#States Single-core 12-cores

15 45 3.8
30 105 9.2
45 151 14.0
60 294 30.6

(a) Performance Graph (b) Efficiency Graph

Fig. 4.7: Plotted result of the consistency test for evaluating the multi-core performance in a
SpiNNaker chip that runs a message-passing algorithm.

Obviously the 12-cores scenario runs faster than the other scenario, but we are interested

to see the effect of high cardinality on the MC packet’s delay. We define the efficiency as

the ratio between the speed up (from using many cores compared to the single core usage)

and the number of cores used in the network:

efficiency =
speedup

#cores
=

t1
t12

12
=

t1
t12 ∗ 12

(4.1)

where t1 is the running time on a single core (shown in the second column of table 4.2)

and t12 is the running time on 12 cores (shown in the third column of table 4.2).

Using the data in table 4.2, we plot the efficiency values calculated using equation (4.1)

as shown in Fig. 4.7b. This plot shows that even though we have gained the speed up

for using more cores for a factor node, the increasing speed did not scale linearly as we

increased the cardinality of variables in the network. This is due to the excessive packets

transmission and coordination between cores when each core is assigned with a task to

99

4 Factor Graph in SpiNNaker

handle a specific part of a vectorized data (see Fig. 4.2). We argue that this efficiency will

degrade even further if the cores used for a factor node reside in different chips. With this

situation, there will be a trade-off between the coverage area and the number of nodes that

can be included in a region (as illustrated in Fig. 4.5).

One option to optimize this design is by considering the single-scope factor node (along

with its variable node) as a special case, since this interconnected factor-variable node

basically does not perform any computation, but just passes the value to other “inner”

factor nodes in the network. We call this special configuration as an IO-node. We can

then merge the similar IO-nodes in the same region to be handled by only single core.

Using the same scenario described above, we can combine factor nodes fA and fB as well

as variable nodes A and B in a single core and then enlarge the factor node fAB so that

it uses 15 cores. Again, we performed the inference on this new setting and measured its

efficiency. The result is shown in Fig. 4.8.

Fig. 4.8: Maximizing SpiNNaker cores usage. By exploiting the fact that factor nodes fA and
fB as well as node A and B in Fig. 2.13 do not carry any sum-product computation,
we can assign only a single core to handle those nodes and let the other “free” cores
to be used by the factor node fAB. With this modification, factor node fAB now has
15 cores which increase the computation speed and at the same time also reduces
the number of MC packets circulating in the chip. As the result, the efficiency of the
chip usage is also increased.

From the efficiency plots shown in Fig. 4.8, we can conclude the following trade-off. If

we want to gain the highest efficiency while using high cardinality to achieve the highest

accuracy (e.g. 60 states for each variable) then we should merge all IO-nodes in the same

region into one core. This extra work will require modification on both the routing table

and the source code of the factor graph framework for a SpiNNaker system. In contrast,

if we use a moderate cardinality (e.g. 30 states for each variable), or even lower, then we

can use the original design without any extra modification on the routing table and the

source code. In future work, we should include this circumstance as one option that can

be automatically detected and solved by the automatic mapper program.

100

4.3 Performance Evaluation and Optimization Strategy

Robotics Application Evaluation

In the second test scenario, we use the scenario described in chapter 3 (see section 3.3.1 on

page 61). In this scenario, the task is to compute the correct robot commands given the

desired translational and rotational velocities. The model has been trained using data from

a camera tracking system which provides the absolute pose of the robot (see Fig. 3.22).

This scenario shall be viewed as a proof of concept which demonstrates a small sub-set of

the features from our factor graph framework on SpiNNaker system.

The robot (see Fig. 3.14) has three wheels and the complete factor graph model of

the robot will involve at least 12 nodes. The model is broken down into three similar

networks and the kinematics model for each wheel is shown in Fig. 3.19. This also gives

us benefits such that it makes easier to fit the model into three regions. The models are

then implemented in chip-0,1 for wheel-1, in chip-1,0 for wheel-2, and chip-1,1 for wheel-3

(see Fig. 4.3b).

For training, the model is fed with the transformed data from the camera tracking system

which provides the robot velocities in the robot coordinate system. After the training has

been completed, the vector value of factor node fXY R is sent to the SpiNNaker system via

SDP mechanism. To evaluate the performance of our embedded factor graph, we sent the

desired velocities of the robot (represented as factor nodes fX , fY and fR in Fig. 3.19) and

observed the computed motor commands by the model (represented as variable node M2,

which reflects the motor command for the second wheel of the robot). We measured the

time needed to complete one such an inference to see how effective the proposed parallelism

strategy is. The result is shown in table 4.3. It shows two different measurements by which

we can use later on to help us predicting the total latency of the system in a real robotic

application2.

Tab. 4.3: Execution time for a single run of inference

Running Time (in ms)
#States On-board On-PC

15 12.6 114.9
30 17.4 120.1
45 23.2 127.2
60 30.5 143.1

Although it is obvious that the number of node’s states linearly influences the execution

time, it is interesting to note that for the highest number of the states in the scenario,

the system just needs 30.5ms to complete one full inference computation. Using 60 states,

actually the system computes 26.14 MFLOPS (million floating point operations per sec-

ond) for one complete cycle (from discretization until final message decoding); a very fast

2The second column of the table 4.3 represents the measured execution time within the SpiNNaker system
exactly after it receives the input data from the host-PC and before it sends the inference result to
the host-PC. The third column of the table represents the total measured time starting from the
sending of input data to the SpiNNaker until it receives back the output result from the SpiNNaker.
From these two different measurements, we can observe another useful information such as how fast
actually the SpiNNaker distributes and processes the SDP packets since the data from/to the host-PC
is encapsulated in SDP packets.

101

4 Factor Graph in SpiNNaker

computation, especially when regarding the core speed which is only about 200MHz and

without any dedicated floating point unit (i.e. it relies on software emulation for floating

point operations). As a comparison, our previous work, which uses a standard PC with

processor Intel i5 3.30GHz and memory 16GB DDR3 running at 1.3GHz, takes 5ms to

complete one full inference computation.

Regarding the optimization option for this particular evaluation scenario, we might turn

into the same strategy as before. Basically, the network shown in Fig. 3.19(a) has four

IO-nodes. We could then allocate a single core for these nodes, allowing the factor node

fM to use up the rest of the cores in the chip. Increasing the number of cores that will

be used by the busiest node as well as compacting all the IO-nodes in a single core will

increase the efficiency of the chip’s usage. However, this is not a final solution and we opt

to find a more generic optimization strategy which is not only deal with the single chip

constraint, but also capable of handling a larger network stretching out to the other chips

on a big SpiNNaker board. We describe one possible approach in the next sub-section.

4.4 Discussion

SpiNNaker is the first embedded platform for our factor graph. In addition to the initial

reasons why we start implementing embedded factor graphs, our SpiNNaker-FG offers two

important advantages:

1. The SpiNNaker version consumes much lower energy than the PC implementation.

Thorough analysis in [199] reveals that it can go less than 1 watt per SpiNNaker chip

even in big dynamical networks.

2. If we increase the problem size such that the network shown in Fig. 3.19 is replicated

three times using the remaining chips in the SpiNNaker board, for this particular

example, the execution time in table 4.3 remains the same; while in a PC, it needs

three times longer.

These advantages show that our SpiNNaker-FG framework has very promising features

for future real robotics application.

In section 4.2.2, we explore one possible configuration of a SpiNNaker chip as a Region.

We fit the Region with arbitrary nodes and split the CPU cores accordingly. Another

possible configuration which can increase the computational efficiency is introducing a

generic Region, which only contains a smaller number of nodes (e.g. three variable nodes

and one factor node). This is similar with the idea of binary DAG used in [196]. For

example, the network shown in Fig. 3.19 can be decomposed into the network shown in

Fig. 4.9a. Although it will introduce hidden nodes which need to be learned beforehand

and also requires additional chips, the sum-product algorithm will run faster due to a

smaller number of items to be processed by the algorithm. This is preferable for future

implementations using bigger SpiNNaker systems (see Fig. 4.9b).

Since the embedded factor graph in SpiNNaker is constrained in terms of hardware-

link resources and relies heavily on the routing mechanism of router component within

the SpiNNaker chip, it is necessary to ensure that the construction of routing table for

102

4.4 Discussion

(a) (b)

Fig. 4.9: Further optimization strategy and a larger SpiNNaker system. (a) Decomposing the
network shown in Fig. 3.19 into three Regions for better computational efficiency.
(b) Increasing the number of region in (a) requires more chips which can be solved
by using the new SpiNNaker board with 48 chips.

MC packets does not spend up all available entries. Therefore, it might be efficient to

use FFGs (Forney-style factor graph) instead of ordinary factor graphs to be implemented

in a SpiNNaker system. This is because in FFGs, the interconnection between variable

and factor nodes are simplified. Using an FFG, a variable node is only connected to two

factor nodes at most. As the consequence, the variable nodes in FFGs do not perform any

calculation but just pass the message from one factor node to the other factor node. Hence,

a variable node in FFGs will not consume any processing core of SpiNNaker chip and we

can fully utilize the cores for sum-product algorithm processing. However, as described

in section A.1, the FFG implementation requires an additional type of factor node where

the operations of this new node is quite different to the standard sum-product algorithm.

Not only does an FFG have additional node types, it also imposes a new challenge of

implementing the population code in it. It is straightforward to use population code for

ordinary factor nodes but we do not have any proof yet that the same mechanism can be

used directly on those special nodes. Hence, implementing an FFG in a SpiNNaker system

will open a new challenge and a new perspective on exploiting routing mechanism as well.

We leave these challenges for future work in optimizing factor graph in a SpiNNaker system.

103

4 Factor Graph in SpiNNaker

104

5 Factor Graphs in System-On-Chip

This chapter describes our second contribution with the embedded factor graph. This

second experiment is focused on the development of embedded factor graph in a system-on-

chip (SoC) hardware. An SoC is an integrated circuit (IC) that integrates all components

of a microprocessor or other electronic system into a single chip. It may contain digital,

analog, mixed-signal, and often radio-frequency functions packaged together on a single

chip substrate. It is usually equipped with a programmable logic unit such as FPGA

(Field Programmable Gate Array). And just like normal FPGAs, the SoC is basically an

“empty” device but with some additional predefined specific configuration with respect to

its embedded microprocessor. A typical application is in the area of embedded systems.

Working with SoC entails two perspectives. On one side, SoC offers extensive system

level integration and flexibility; on the other side, this device imposes a new challenge of

integrating both concurrent and sequential programming paradigm. Due to this different

paradigm, we cannot just re-implement our PC-based factor graph framework into the

SoC. It is especially because we need to implement the distributed computing mechanism

in a very low hardware level down to the signal and bus topology that must be designed

and implemented within the chip itself. Hence, this chapter describes our design strategy

on implementing efficient embedded factor graph in an SoC.

In this thesis, we implement two different methods for embedded factor graph. The

first method regards the FPGA only as a supporting device for computation enhancement

of the processor inside the SoC. In this method, the FPGA is utilized as an accelerator

for parallelizing the sum-product computation. This is similar to the idea of using GPU

for general purpose programming to speed-up some computations. In the second method,

we implement the whole factor graph framework in the FPGA. This method is inspired

by our first embedded factor implementation in a SpiNNaker system (see chapter 4). In

this method, we strive to optimize the embedded factor graph by exploiting all available

resources in the FPGA.

5.1 Introduction to Xilinx Zynq-7000

FPGAs have been long considered as the most practical devices in contrast to standard

ASICs technology for achieving faster execution time by exploiting the intrinsic parallelism

that they provide while preserving the low power consumption constraint of the system

design paradigm. However, working with FPGAs as a standalone system has been found

too impractical in many embedded system applications. Integration of FPGAs with one or

many ordinary microcontollers in separated modules has become a standard solution in em-

bedded designs. Now, many FPGA vendors turn to the new paradigm of integrating both

FPGA and microcontroller into a single chip popularly known as System-on-Chip (SoC).

One of the most recent SoC family produced by Xilinx Inc. is the Zynq-7000 which com-

105

5 Factor Graphs in System-On-Chip

bines the software programmability of a processor with the hardware programmability of

an FPGA. With this combination, the flexible programmable logic of the Zynq-7000 devices

enables optimization and differentiation by allowing the designer to add peripherals and

accelerators for the dedicated processing system in the SoC. According to the company’s

publication, the main selling values of this new SoC family are its system performance,

flexibility, and scalability while providing benefits in terms of power reduction [200]. By

using this SoC, a truly embedded system which integrates both high-level-software-based

control and real-time-hardware-based processing can be achieved. Furthermore, this SoC

has an ARM-based processing system so that we can spare a lot of logic gates for more

factor graph computations within the FPGA section of the SoC.

In this thesis, we use a tailored module TE0720 produced by Trenz-Electronics (see

Fig. 5.1). TE0720 is an industrial-grade SoC module which adds a gigabit Ethernet physical

layer transceiver, 8 Gbit DDR3 SDRAM with 32-bit width, 32 Mbyte flash memory for

configuration and operation, and powerful switch-mode power supplies for all on-board

voltages. It provides a large number of configurable I/Os useful for interfacing with many

embedded peripherals. The module’s form factor 5x4 cm2 makes it the good choice for

embedded factor graph ready for real robotics applications. To provide a convenient way for

the Xilinx SoC Z-7000 to control all of those components on the board, module TE0720

is equipped with a so-called System Management Controller (SC). This SC is a CPLD

(Complex Programmable Logic Device) type X02-1200 produced by Lattice Semiconductor

and is responsible for power sequencing, reset generation and Zynq initial configuration

(mode pin strapping). Regarding booting mechanism, this module supports two types of

boot modes: QSPI (flash memory) boot mode and SD card boot mode. In the factory

default setting, the module will boot from its QSPI.

(a) Physical appearance (b) Block diagram

Fig. 5.1: The modul TE0720 (GigaZee) from Trenz Electronic GmbH carries a Xilinx Z-7020
and several additional components required for building a complete embedded sys-
tem such as a gigabit Ethernet transceiver (physical layer), 8 Gbit (1 Gbyte) DDR3
SDRAM and 32 Mbyte SPI Flash. (Source: www.trenz-electronic.de)

106

5.1 Introduction to Xilinx Zynq-7000

The module TE0720 is basically a “daughter” card. In order to use it in real applications,

the module must be plugged into a carrier board. There are several carrier boards available

for this module. In this thesis, we use the carrier board TE0703 which is also manufactured

by Trenz Electronic. This carrier module TE0703 provides connectivity to external devices

through standard interfaces such as USB2.0 and ethernet RJ45. It also has many terminal

pins which are directly connected to the FPGA of Z-7000. The USB connection of TE0703

has many purposes; one of them is for configuring the FPGA of Z-7000 through the JTAG

mechanism.

5.1.1 Internal Architecture

The SoC from Zynq-7000 family is composed of two tightly coupled sub-systems: PS (pro-

cessing system, i.e. the microprocessor core) and PL (programmable logic, i.e. the FPGA

component). The PS sub-system consists of equivalently two ARM Cortex-9 processors,

and the PL sub-system is equivalent with an FPGA Artix-7 from Xilinx. The internal

structure of this SoC is shown in Fig. 5.2. Table 5.1 summarizes the most relevant features

of Xilinx Z-7020 for this thesis.

Tab. 5.1: The important features of Xilinx Z-7020

Processor Core Dual ARM® Cortex™-A9 MPCore™
L1 Cache / L2 Cache 512 KB / 256 KB
Memory Interfaces DDR3, DDR3L, DDR2, LPDDR2, 2x Quad-SPI, NAND, NOR
Peripherals 2x USB 2.0 (OTG), 2x Tri-mode Gigabit Ethernet, 2x SD/SDIO
Logic Cells 85K Logic Cells
BlockRAM (Mb) 560 KB
DSP Slices 220

The Zynq-7000 processing system can operate independently from the programmable

logic and it boots on reset like any other processor-based device. In addition, the processor

acts as the “system master” and controls the configuration of the programmable logic,

enabling full or partial reconfiguration of the programmable logic during operation. In this

thesis, we use Z-7020 from the Zynq-7000 family as our embedded system device.

5.1.2 Software Development

The TE0720 module is supported by the free Xilinx Vivado WebPACK tool which requires

registration with a valid Xilinx-ID for receiving the activation key. Xilinx Vivado is a

new software framework developed by Xilinx and is especially targeted for embedded pro-

cessor hardware designs using the new SoC Zynq-based technology. Within this software

framework, a software package called Vivado-HLS, which provides a high level synthesis

for FPGA-based designs, is included. Using Vivado-HLS, the FPGA can be programmed

using C, C++ or SystemC.

Developing an SOC-based embedded system will always involve at least two different

programming platforms: the software platform for the central processing unit and the

software platform for the programmable logic (FPGA) unit. In the past, engineers did

107

5 Factor Graphs in System-On-Chip

Fig. 5.2: The internal architecture of Zynq-7000 SoC family (adapted from [4]). The yellow
area represents the programmable logic part (i.e. the FPGA) of Zynq-7000, where
we implement most of our factor graph core modules for the method-2 described in
this chapter. The pink area represents the processing system part (i.e. the micropro-
cessor) inside the Zynq-7000, where we implement the protocol of communication
with external devices (e.g. the host PC and/or the robot) as well as the main factor
graph framework using method-1.

not have many options for developing the program on the programmable logic side and

usually rely on the programming flow of the Hardware Description Language (HDL) such

as VHDL or Verilog. However, since 1999, several hardware vendors such as ARM Ltd.,

CoWare, Synopsys, and CynApps teamed up to develop a new framework which utilizes

already existing C-programming. This new framework has capabilities of emulating and

synthesizing concurrent process commonly used in an event-driven hardware simulation

system.

This new framework, which is called SystemC, is a set of C++ classes which extends

the communication mechanism in a simulated real-time environment, using signals of all

the data types offered by C++. SystemC extends the conventional register-transfer-level

(RTL) abstraction into the new transaction-level modeling (TLM). In this respect, Sys-

temC is not only able to mimic the low level hardware description languages (VHDL or

Verilog), but also capable for synthesizing the model in the system level. Later on, Xilinx

108

5.1 Introduction to Xilinx Zynq-7000

adopted the SystemC into its own development environment and combined it with another

already existing HDL framework into the new platform called Vivado-HLS.

In this thesis, all of the main cores of our embedded factor graph were developed us-

ing Vivado-HLS. Only the glue-logic components and small-size but frequently used non-

behaviour-based logic blocks are written purely in VHDL in order to reduce total latency

and achieve high area optimization. Further optimization approaches will be described

in the following sub-sections. Beside this Vivado-HLS, Vivado Suite also has SDK (Soft-

ware Development Kit) framework which is very useful to create an embedded application.

We use Vivado SDK for developing our factor graph-based controller which runs under

embedded Linux called Petalinux. The diagram in Fig. 5.31 shows the work-flow of our

SoC-based embedded factor graph design in this thesis.

Uboot

Generation

Run via

JTAG/SDcard

C/C++

Source

RTL

Synthesize

IP

Generation

Device

Driver

FPGA

Bitstream

Block

Design

Synthesize

Mapping &

Routing

FSBL

Generation

Petalinux

BSP

HW

Con g

Kernel

Con g

Rootfs

Con g

LinuxImage

Generation

LinuxImage

Generation

V
iv
a
d
o
-H

L
S

V
iv
a
d
o
-P
S

V
iv
a
d
o
-S
D
K

Petalinux-SDK

TE7020

Fig. 5.3: The overall design flow for creating embedded system applications based on SoC.
This includes several development tools with different customizations.

From our previous implementation of factor graphs using a SpiNNaker system, the ker-

nel will emulate the floating-point operation since SpiNNaker chip does not have capability

1In this diagram, the abbreviations mean: BSP=Base System Package, FSBL=First Stage Boot Loader,
RTL=Register Transfer Level, IP=Intellectual Property

109

5 Factor Graphs in System-On-Chip

for performing floating-point operation natively. This in turn slows down the overall com-

putation in our SpiNNaker implementation. One common solution of this problem is using

fixed-point arithmetic, but it will introduce another difficulty in probabilistic computation:

it will reduce resolution. It is very difficult to compromise between large real-value number

(higher than 100.0) and very low probability value (less than 0.000001) using fixed-point

arithmetic. Hence, an extra effort must be provided when we implement our factor graph’s

algorithm in SpiNNaker. That is why we kept using floating-point (even only emulation)

when we implement our factor graph framework in SpiNNaker.

The same reason is also valid for our factor graph implementation in the FPGA. How-

ever, even with abundance logic resources in Zynq-7000, we still need to be cautious when

implementing floating-point operation. This is because floating-point numbers, inherently,

have these two main artefacts: accumulation of rounding error and improper handling of

subnormals [201]. Also, even though every FPGA synthesizer tries to perform optimization

by default, it is important not to assume that those synthesizers always make optimiza-

tion that seem obvious and trivial to a programmer. Our experience when dealing with

floating-point arithmetic for implementing our proposed method, teaches us that the op-

eration involving floating-point literals might not be optimized during synthesis. Thus, we

have to inspect carefully the synthesis report produced by the FPGA synthesizer and look

for the mismatches and artefacts. Another option for our future work that can be used

to increase the efficiency, in particular the area optimization and in addition to the de-

fault optimization strategy offered by Xilinx platform, is by incorporating the optimization

approach offered by Physical Synthesis Toolkit (PST) introduced by Tomasz Czajkowski

[202]. His approach, which is based on functionally linear decomposition technique and

dynamic power reduction, can help the designer to gain area optimization up to 25%. Still,

a proper adaptation effort is needed since the PST technique runs on a different platform

other than Xilinx development environment.

One important benefit of using floating-point arithmetic in our factor graph is that

floating-point arithmetic can represent real numbers in a much wider dynamic range, which

allows the data to be used through long sequences of calculations such as in a belief

propagation computation. We argue that floating-point is the best choice for our factor

graph implementation in the FPGA, even though it consumes many FPGA logic resources,

because we can see the trend of FPGA becoming denser and relatively cheaper. Hence,

for the future of our work, this issue will not become a problem.

5.1.3 Technical Considerations

In the next sections, we describe our methods to optimally implement factor graphs in

a Zynq-7000 platform. Before we explain in great detail, there are some important con-

siderations regarding the hardware constraints that we need to take care of prior to the

implementation work.

Optimization Trade-off

The optimization trade-off is the most daunting issue for all embedded system engineers

since there is no rule or theory of how the optimization with respect to the area and speed

110

5.1 Introduction to Xilinx Zynq-7000

will be best achieved. Not only it depends on the synthesizer quality (which will turn into

the “price” issue), but it is also very application-dependent. Furthermore, in an FPGA-

based system, not all FPGA chips share the same internal supporting components (such

as distributed RAM, DSP blocks, etc.); hence, the re-implementation from one chip to

another chip (from different family) will always produce different result.

Regarding the trade-off between area and speed optimization, in this thesis we put

preference on the speed over the area optimization. The argument is that the speed

optimization is a more generic issue than the area optimization for at least two reasons:

1. In general, the basic motivation of using dedicated hardware is to speed up the

computation process. We often assume that the chip vendor will create/produce

chips with necessary elemental units

2. Many of the optimization options provided by the synthesizer vendor are more related

to the speed issue, where the system designer can play with.

With this principal consideration in mind, we develop our optimal implementation strategy.

The area optimization is left to the synthesizer2 platform with an assumption that the chip

price and/or availability are not an issue.

Regarding the area optimization with respect to the storage/memory allocation on inter-

nal resources of the FPGA, the main trade-off usually lies on the choice between using the

basic logic gates (in the form of Look-up Tables (LUTs)) or using block RAMs (BRAMs).

Although it is possible to use external memory, we prefer to avoid this method since exter-

nal memory access is an expensive task in terms of FPGA resources. Controlling external

memory needs explicit routing strategies in order to match the interfacing protocols and

timing constrains required by the memory hardware [4][203][204][205][206][207]. Hence,

we strive to optimize our design by only instantiating memory elements either on LUTs

or BRAMs. Table 5.1 shows that Z-7020 has limited BRAMs and it should only be used

when the latency is not the main issue since the location of BRAM units within the chip

is sparse. In contrast, the LUTs will provide the fastest response (i.e. lower latency) since

LUT-based memory can be allocated right beside (very close to) the computing cores.

However, LUTs are the elemental logic units necessary for implementing the core elements

of a factor graph. It turns out that many parts in our algorithm require accesses to memory

units in a form of an array. Array is a basic construct to express a memory access in Xilinx

Vivado-HLS. The optimization strategy for arrays includes reshaping and partitioning. By

optimizing an array (either reshaping or partitioning), the data transmission bottleneck

can be avoided. Fortunately, Xilinx Vivado-HLS provides a convenient way to handle this

array optimization which helps us to inspect and analyse the resource usage/consumption

for later optimization.

Regarding the speed optimization, our approach is mainly based on the idea of exploit-

ing the “unbounded” parallelism paradigm in the sense that we can parallelize any task,

in any degree, in resourceful dedicated hardware such as FPGAs. Although this sounds

to be a strong assumption, it proves to be very useful in many situations [208][209][210].

2The term “synthesizer” is a common jargon in FPGA-based designs which, at some extent, has an
equivalence to the term compiler in generic computer programming

111

5 Factor Graphs in System-On-Chip

Basically, there are two types of parallelism: data parallelism and function parallelism.

In an FPGA-based design using high level synthesis (HLS) provided by Xilinx, the fo-

cus is more to the function parallelism which usually takes a form of statically-scheduled

instruction-level parallelism in loops and/or dynamic task-level parallelism between loops.

In this scenario, Xilinx offers two important optimization scenarios in its Vivado-HLS de-

velopment framework: unrolled and pipelined. The unrolling mechanism is one of the

key concepts in implementing parallelisms. The unrolling mechanism for performing a

task parallelism is shown in Fig. 5.4. The figure illustrates the main difference between a

pipeline process and the standard sequential flow of instruction. The unrolling mechanism

definitely will increase the resource consumption; hence, the occupation area in which the

FPGA resources will be used by unrolling mechanisms will be larger. Further improved

performance can theoretically be achieved by using pipeline mechanisms on the same loop.

Fig. 5.5 shows the combination of unrolled and pipelined mechanisms.

Fig. 5.4: The unrolling mechanism to implement parallelism in hardware. (a) An example of
a simple function which has a loop. Within the loop, Vivado-HLS will transform and
split the code into generic tasks which involve three different basic operations: read
data from the memory, perform arithmetic/logic computation, and write the result
to the memory. (b) In a sequential process such as the standard program execution
in a single core CPU, the three operations will be executed consecutively one after
the others. (c) By unrolling, the three operations will be “copied” into N different
instances and they are executed together. Sometimes, this unrolling is also referred
to as näıve parallelism. The number of N instances that can be synthesized depends
on the the FPGA resources.

In our method described in the following section, we utilize both optimization scenarios.

Using these scenarios, there will be a trade-off during each loop’s iteration on which we have

to make a balance between the hardware state and the hardware resources. Undoubtedly,

these two scenarios require more resources in exchange to the increased speed. We use

two metrics to measure the efficiency of our optimization approach: clock latency (which

indicates the success of our speed-based optimization) and resource consumption (which

measures how well our area-based optimization has been carried on by the synthesizer).

112

5.1 Introduction to Xilinx Zynq-7000

(a) (b)

Fig. 5.5: The combination of unrolling and pipelining. (a) The unrolling only mechanism where
N identical instances of the process shown in Fig. 5.4 are executed at the same time,
requiring only three basic cycles to complete N processes (here N = 2). (b) The
unrolling is combined with a pipeline mechanism. Although the latency is increased
a bit, the overall result is twice as much as the result produced by (a) with the same
number of N instances. Even much higher speed can be achieved by several pipeline
stages (in this figure, the number of pipeline stage is two).

Based on these two measures, we define a cost function to measure the overall optimization

result.

Supporting Data Type

In our PC-based factor graph framework, we use double-precision floating-point values so

that we can get the best or smoothest result for the inference using belief propagation.

Unfortunately, this double-precision is very expensive in terms of hardware resource usage

in an FPGA. Hence, in this thesis, we use single-precision floating-point values. Although

basically we can use any number of bits, the Xilinx synthesizer restricts the use of such

an approach and only optimizes a design that uses 32-bit representation. As a result, we

cannot perform any further optimization in this case.

In the past, computation using floating-point numbers in FPGAs is very difficult. It was

also worsen by the fact that the FPGA vendors did not provide the library for free; hence,

many designers relied on the open source version of such a library, which in turn resulting

in inefficient implementations (because efficiency and optimality are very closely related to

the synthesizer exploitation on hardware resources, in which only the vendor knows how to

do it properly). Fortunately, in these days, the FPGA vendors are more generous and they

provide the library usually for free, even in C/C++ syntax (not only in VHDL version).

This thesis uses this opportunity to implement the factor graph computation conveniently.

As an alternative to floating-point, we can also use the fixed-point representation. However,

we found that the fixed-point arithmetic, despite the fact that it is much faster and lower

hardware consumption, produces coarse results which might be less useful in real robotics

applications.

113

5 Factor Graphs in System-On-Chip

Based on this evaluation, we prefer to use floating-point for the base of our numerical

computation. Another reason which motivates this decision is that the fixed-point arith-

metic is only supported by C++ in Vivado-HLS. If we use fixed-point arithmetic in C++

while most of our embedded factor graph codes are written in C, then we will have a mix

framework which is hard to maintain. In contrast, the floating-point data can be used

either in C or C++. To maintain the consistency of our code, so that it will ease future

development for the extension of our current embedded factor graph, we stick to the C

programming.

5.2 Method-1: FPGA as Accelerator

Hardware accelerators are becoming increasingly commonplace in delivering high perfor-

mance computing solutions at a fraction of the cost of conventional supercomputers and

standalone CPU clusters, despite the additional programming effort required to utilize

them [211]. In many applications, FPGAs are used only for providing acceleration to

the other existing processing units (e.g. microprocessors). Since the computation in such

conventional processing units happens sequentially, the presence of such accelerators with

true parallelism will speed up the overall computation. Even with modest configuration

and optimization, the speed-up gain can be higher than its implementation counterpart

using multi-core systems and clusters [212]. In this thesis, this paradigm is applied as the

first approach and its performance result will be compared against the second approach

which will be described in the next section. Fig. 5.6 shows the block diagram of this first

approach.

Zynq-PS

(running high-level

control system

and interfacing to

PC and/or robot)

Zynq-PL
(running factor

product and

marginalization

for Factor Graph)

Fig. 5.6: Using the FPGA part of SoC as an accelerator for a factor graph.

Our method that uses an SoC as an accelerator for a factor graph works as follows. The

main factor graph framework is implemented in C and will be compiled and run on the PS

part of the SoC. This factor graph framework is tailored to match a dedicated application,

for example as the controller of a robot shown in Fig. 5.6. In this scenario, the PS part

of the SoC will be responsible for running the factor graph and for communicating with

external devices such as the host PC (for further data analysis) or the robot (which will

be controlled by a factor graph). During the inference process using the belief propagation

114

5.2 Method-1: FPGA as Accelerator

mechanism, the PS will send the message values to the PL part of SoC. In this PL part,

those messages will be processed by the sum-product algorithm. Hence, the PL only

performs the parallel version of the factor product and marginalization. Once the parallel

computation in PL has been completed, the results will be sent back to the PS and will

be delivered to the external devices or propagated to different nodes within the respective

factor graph running in the PS. During the PL execution, the PS might be in the idle state

or performing some other tasks; it depends on the application.

In the PS part, the main factor graph framework consists of several modules similar to

the PC-based version of the framework (see section 2.4 on page 42), including the popula-

tion codes encoder/decoder. All nodes that have a scheduler for the message-passing are

also implemented in this framework. In the PL part, the factor product and marginaliza-

tion, which perform a lot of loopy computations, are implemented in a parallel fashion by

unrolling the block of code which has a loop. Theoretically, further optimization can be

achieved by utilizing a pipeline mechanism. To communicate the factor graph messages

between PS and PL, the AXI protocol is used. AXI (Advanced eXtensible Interface (AXI))

is the third generation of AMBA (Advanced Microcontroller Bus Architecture) which is

an open-standard developed by ARM for on-chip interconnect specification that manages

the connection of functional blocks in SoC designs. The AXI is the only recommended bus

communication protocol by Xilinx Vivado and is used extensively in this thesis. The factor

graph messages from PS will be sent to PL (and vice versa) in the form of an array. To

facilitate computation on an array, the external memory part (either using the distributed

BRAM or LUTs) must be included in the design. In most parts of our implementation,

BRAM is used instead of LUTs due to the high cost of LUTs (although BRAM is a bit

slower than LUTs). The trade-off between the number of factor nodes and the maximum

cardinality for each variable should match the capacity of BRAM listed in table 5.1. For-

tunately, Xilinx Vivado provides a convenient IP for controlling BRAMs. Fig. 5.7 shows

the block design of the factor graph accelerator.

The accelerator design shown in Fig. 5.7 facilitates the interrupt mechanism so that

when the factor product or the marginalization has been done, PL will send an interrupt

signal which will be caught by the accelerator driver in the Petalinux running on the PS.

The linux kernel then notifies the factor graph program that the sum-product acceleration

has been completed and the factor graph’s message can be fetched from PL. Fig. 5.7

also shows that the SumProduct module has a special input called factor PORTA which

facilitates direct access to the ROM containing an internal function of a factor node. This

internal factor’s function must be supplied in the beginning of the program also using the

device driver mechanism generated by the Vivado-HLS. The number of the functions can

vary (depending on the factor graph network being instantiated in the PS) and can be

determined by the memory address allocated for the SumProduct module. The size of

each factor’s function depends on the number of scope variables and the cardinality of

each variable.

We measure the efficiency of our method using the standard metric commonly used in

FPGA-based designs; i.e. the clock latency for measuring the speed optimization result

and the resource consumption in percentage for measuring the area optimization result.

It has been described in section 5.1.3 that the optimization on one aspect (e.g. the area

115

5 Factor Graphs in System-On-Chip

Fig. 5.7: Block design of the factor graphs engine in an SoC with FPGA as an accelerator.
All modules in the upper region are implemented in the FPGA while the lower region
represents the ARM processor of the Zynq-7000. The modules in the red block
are the main elements of the accelerator while the modules in the green block are
supporting elements that connect the accelerator to the ARM processor.

optimization) will affect the other aspect due to the limited resources. In this thesis, we

are interested to explore these options balancing to find the best solution we can get for our

factor graph. For this experiment, we use the networks shown in Fig. 5.8. All of variable

nodes in the networks are observed; i.e. each node will have its corresponding factor input,

116

5.2 Method-1: FPGA as Accelerator

for example A will be connected to fA, B will be connected to fB, etc. Applying the

unrolling and pipeline mechanism requires that the loop is a perfect or semi-perfect loop.

A perfect loop means that the loop bound is constant while a semi-perfect loop might have

variable bound but needs to apply an exit check protocol. Table 5.2 and table 5.5 show the

comparison of our framework implementation with and without additional optimization.

BA

C

f f
BA

DC

(a) (b)

Fig. 5.8: Networks for test cases.

Tab. 5.2: Latency comparison between unrolling with pipeline vs unrolling without pipeline.

Without Pipeline With Pipeline

3-Variables 4-Variables 3-Variables 4-Variables

Number of

States
min max min max min max min max

10 688 76129 9462 442182 675 34400 9279 160052

20 2574 284244 37848 1768728 2530 120978 36984 628728

Tab. 5.3: FPGA resources consumption (in %) in the pipelined and non-pipelined design of
the network shown in Fig. 5.8(b).

Without Pipeline With Pipeline

Number of

States
BRAM FF LUT BRAM FF LUT

10 48 9 27 48 19 51

20 96 17 52 96 39 83

Tab. 5.4: Comparison of FPGA resource consumption in the network with three and four nodes
(in %). Both networks are fully optimized in term of speed (i.e. using both unrolling
and pipeline mechanisms).

3-Variables 4-Variables

Number of

States
BRAM FF LUT BRAM FF LUT

10 16 8 20 48 19 51

20 32 14 42 96 39 83

117

5 Factor Graphs in System-On-Chip

In table 5.2, the value in min and max columns reflect the minimum and maximum

clock latency that is required to move from one state to the next state in the FSM (finite

state machine) implementation of the algorithm3. From these values, we can estimate how

long it will take for the algorithm to run. These values are only estimations based on the

given clock frequency in the Vivado-HSL and not the real clock frequency of the hardware.

For example, in our design we usually specify the clock frequency to be 100 MHz, so

that the value 688 means it takes 6.88 µs to complete the execution. In real hardware

implementation, where the frequency clock is 667 MHz, the latency 688 is estimated to

be completed in 1.03 µs. Likewise, for the maximum latency of 1768728, it will take

roughly 17.687 ms in 100 Mhz clock systems (which will run effectively 2.6 ms in real

hardware). In that table, we can see that the minimum values do not differ much for

both the optimized and the unoptimized design, revealing the fact that there are some

parts of the code that cannot be further optimized. Usually these values are related with

the inter-block data exchange in the code. The maximum values, on the other hand,

show a big difference between the optimized and the unoptimized design. Dividing the

maximum value obtained from the unoptimized design by the value from the optimized

design shows an average speed-up ratio of 2.53. We also observe that the clock latency is

heavily affected by the number of states used to encode a factor graph’s message, which

increases exponentially.

Table 5.3 shows the optimization efficiency of the design with respect to the number of

FPGA resources consumed by the design. BRAM is the distributed memory units mainly

used for instantiating arrays in our design. The FF (flip-flop) and LUT (look-up-table) are

the main constituents of the configurable logic block in an FPGA. It can be seen in the

table that if we do not use the pipeline mechanism, we can create two independent networks

with 10 states for each variable. However, if we implement the pipeline mechanism, there

is no more space available to create another network even if we use only 10 states for

each variable. With the pipeline mechanism, almost all the resources are consumed by the

network with 20 states variables. The remaining question is then, how big is a network

that can be synthesized when we apply the pipeline mechanism? The answer is shown in

table 5.4. With only three variables connected to a factor node, we can instantiate up to two

independent networks, either using 10 states or 20 states for the variable’s cardinality. It

means, we can implement the network shown in Fig. 2.6(b) on page 27 conveniently because

adding one more hidden variable will not consume too many resources (since the hidden

node H in that network only passes the message without performing any computation).

Such a network is very common to be found in many applications. We have implemented

it using 10 states for its variable’s cardinality and observe that the maximum latency is

reached at point 214056 (which corresponds to the predicted execution time about 0.32 ms

in real hardware). The resource consumption is also increased up to 65% for LUTs and

28% for the FFs. The internal routing and mapping of FPGA resources for this network

is shown in Fig. 5.9.

For the final test case with this method, we perform a complete inference test using the

network shown in Fig. 5.8(a) and with artificial data generated similarly to the data we

3Every code which is written using C/C++ in Vivado-HLS will be transformed into the corresponding
RTL format in which the behavioural process will be synthesized into FSM.

118

5.2 Method-1: FPGA as Accelerator

Fig. 5.9: Inside the chip: the factor graph accelerator program will be translated and mapped
into FPGA resources (BRAM, DSP, FF and LUT) and scattered all over the chip to
match the routing policy of the synthesizer.

used for sensor fusion application (see section 3.1.3 on page 52). We create a dataset with

three variables and use the first variable A as the basis (ground-truth) for creating data

for the other variables (the other variables are just the noisy version of the data in variable

A). The inference task in this case is computing the marginal probability of variable A

given input data for variable B, and C. For this test case, we run the MLE algorithm

on our PC-based factor graph to learn the parameters of the factor node f and send the

results to the embedded factor graph running on the SoC. First we create the network and

run the belief propagation on it using only one processor of SoC4. We feed the dataset to

the network, collect the inference result and send it to the host PC. Next we modify the

program to use the accelerator, re-create the network and re-run the belief propagation

again using the same dataset as before. The resulting data from the inference is sent to

the host PC.

The combined result of these two runs is shown in Fig. 5.10. As expected, the accelerator

can speed-up the factor graph computation with a ratio almost reaching 8-times when the

variable’s cardinality is 25. This proves that the optimization strategy in our module

4Since Z-7020 has two microprocessors in it, we configure the linux kernel to use only one core and disable
the other core.

119

5 Factor Graphs in System-On-Chip

is implemented successfully. Unfortunately we could not test the four-variables network

shown in Fig. 5.8(b) with the number of states higher than 25 using our current hardware,

but we argue that our accelerator can be extended further given a denser FPGA part of

the SoC (for example, the moderate SoC chip in the Zyng-7000 family, that is Z-7035,

has a capacity as much as four times of our Z-7020). This is contrast with the factor

graph without an accelerator which runs only on the microprocessor of the SoC. Without

the accelerator, we can use any number of variable’s cardinality, but at the cost of slow

performance.

Fig. 5.10: Performance comparison of inference execution between accelerated- and not-
accelerated mode by FPGA.

In summary, our accelerator module works well and arguably can be extended into a

more powerful module in a denser chip. Currently we cannot handle a big network with

high precision but the acceleration result scales up with the increasing size of the network’s

parameters. Our current hardware for this accelerator mode produces optimal results when

factor nodes only have three scope variables. Adding more connected variables to the cor-

responding factor node requires a modification on the module because we have to allocate

more memory space in LUTs instead of the BRAMs. Also, our current implementation

of the accelerator still needs bridging access via the microprocessor to the external RAM

where the factor parameters are stored. This in turn will slow down the performance. A

better solution will be using a direct memory access (DMA) to the external memory. This

is an interesting idea which needs to be explored further. However, the DMA access from

the PL requires the use of special IP for handling this mechanism. To our knowledge, this

IP for using DMA via AXI bus will consume a considerable amount of FPGA resources

(up to 10%) which is impractical for our current hardware (see [213] for pros and cons of

using DMA in a design). Considering this trade-off, we decide to rule out this idea in our

current implementation.

120

5.3 Method-2: Factor Graph Framework on FPGA

5.3 Method-2: Factor Graph Framework on FPGA

Using the FPGA as an accelerator is proven to be useful for speeding up the belief prop-

agation computation in a factor graph as shown in Fig. 5.10. However, method-1 has two

limitations:

1. It is still heavily affected by the sequential process of the ARM-processor for encoding

and decoding messages as well as delivering message(s) from node to node. Thus,

it cannot work in a truly parallel fashion in a factor graph network with more than

one factor node since the program running on ARM-processor will determine the

scheduling of the messages propagation (i.e. which node will firstly send the message

to the other nodes).

2. It is not easy to extend the IP core of the accelerator for a larger network whose

nodes reside in another chip.

In order to make a generic implementation of factor graphs in FPGAs (or SoCs), we

extend our first method and develop the second method to implement a whole factor graph

framework in the FPGA. In this method, we want to maximally exploit the abundance of

FPGA’s logic fabrics and its routing channels. Inside the FPGA chip, there are numerous

signal lines that interconnect the logic blocks within the chip. These lines can be arranged

and managed to create buses which later can be customized for our embedded factor graph.

Fortunately, the design software makes this interconnect routing task hidden to the user

unless specified otherwise, thus significantly reduces design complexities.

From our experience with the SpiNNaker system, it becomes clear to us that the routing

management is the key to successfully implement an efficient embedded factor graph (see

the section 4.4 on page 102). In the SpiNNaker system, our embedded factor graph is

constrained by the router component of the SpiNNaker chips which limits the flexibility

of the network construction. We propose a solution for this problem by simplifying the

network such that it contains only triple connections at maximum for each node. However,

we did not implement such a solution yet with the SpiNNaker system but we use such an

idea for developing our second factor graph framework on SoC.

In addition to the similar goals we set to our SpiNNaker version (see section 4.2 on

page 90), we also target the second method towards the following criteria.

1. Continuity The framework should be able to be used in a simple transitional step

from its original PC-based framework. This means, when we have finished simulating

a factor graph network on a PC (using our PC-based framework), the network should

be able to be translated into the SoC-based embedded version seamlessly. A small

modification might be required but it should not burden the application developers

themselves.

2. Modularity Having an environment which offers a high degree of flexibility, the

modules in the SoC-based embedded factor graph should be flexible enough to be

reconfigured or remapped into a new, possibly denser, SoC chip.

121

5 Factor Graphs in System-On-Chip

3. Platform-friendly The modules should be flexible enough to be re-synthesized on

the new version of the development environment, both for the FPGA’s bitstream gen-

eration and the Linux kernel reconfiguration. As we have described in section 5.1.2,

this co-development paradigm requires a careful design of both hardware and software

for the resulting embedded system to work efficiently.

With these goals in mind, we develop our new full embedded factor graph on SoC. This

new framework is composed of several modules with different microarchitectures.

Similar to our previous attempt on creating embedded factor graph in a SpiNNaker sys-

tem, we identify the following core modules necessary to build a complete discrete factor

graph based on population coding: factor and variable nodes, message encoder/decoder,

and scheduler. In this thesis, we regard the factor/variable node and message en-

coder/decoder as the most generic parts of the system where we can use them almost

in any scenario, while the scheduler is a flexible module which can be tailored according to

the application scenario. Hence, we leave the scheduler part as a “template” that should

be modified according to the application. For some applications where the network has

loops, then the scheduler should be modified to meet the preferred scheduling strategy (e.g.

synchronous, asynchronous, residual, etc.). At the moment, we only provide the default

scheduling for tree-like network as asynchronous.

5.3.1 Factor and Variable Node Controller

Basically there is nothing new in the factor and variable node implementation in this second

method. We replicate the factor and variable node classes in our PC-based factor graph

framework into the FPGA version. We then optimize the module with the following default

setting: unrolled into N instances (where N is the variable’s cardinality) and pipelined with

one initiation interval (i.e. fully pipelined without resource sharing of operators).

The basic algorithm for the factor node controller and the variable node controller is the

same because both employ the same message-passing algorithm in equation (2.4) and (2.5).

However, they differ only in the internal factor product operation which only happens for

the factor node. We first create the factor node controller and then reduce its operation

(i.e. removing the internal factor part) to create the variable node controller.

Fig. 5.11a shows the functional symbol of a factor node controller (marked with the

name FNode). It represents three channels bidirectional module that can be connected

up to three variable nodes. Fig. 5.11b shows the resulting IP-block representation already

included in the Xilinx Vivado IP repository after its successful synthesize. The internal

factor’s function can be supplemented into the controller using a simple function call which

is already encapsulated in the common AXI interface together with the main function of

the module. The internal structure of this FNode module is shown in Fig. 5.12.

122

5.3 Method-2: Factor Graph Framework on FPGA

FNode

c
h
1
_
in

c
h
1
_
o
u
t

ch0_in

ch0_out ch2_in

ch2_out

Local Function

(a) Functional Symbol (b) IP Symbol

Fig. 5.11: FNode symbol representation.

Fig. 5.12: Internal block diagram of module FNode shown in Fig. 5.11b.

Within the FNode module, there are four sub-modules: setFactor, UpdateFMsg,

NodeMsgIO, and LocalFactor. Beside this four sub-modules, the FNode module require

several instances of BRAM (or can be replaced with distributed memory using LUTs) to

facilitate data array processing. The sub-module setFactor and LocalFactor work together

and are responsible for managing the internal factor’s function of the corresponding factor

node. The value of this internal factor’s function can be set by using standard function

123

5 Factor Graphs in System-On-Chip

call which is already available in the device driver to make it convenient when using the

embedded Linux the PS part of the SoC. The sub-module NodeMsgIO is responsible for

receiving and delivering messages from/to external variable nodes. It contains three bidi-

rectional channels and has a small table which tracks the messages’ exchange during the

transaction. Whenever a new message arrives, this table will be updated and the sub-

module UpdateFMsg will be notified when incoming messages are complete and ready to

be used for computing the output message. The sub-module UpdateFMsg is the core mod-

ule where we implement the sum-product algorithm. This sub-module also has an internal

memory to save old messages which can be used for example during the training using

MLE or EM algorithm in message-passing scenario. This sub-module also has scheduler

input signals that can be used to control the scheduling of the message-passing exclusively

on this FNode instance. By default, we implement the asynchronous scheduling which is

the standard scheduling for an acyclic factor graph.

From the module FNode, we derive the VNode module which is responsible for handling

a variable node in a factor graph. In principle, the VNode module works similar to the

FNode module but without the functionality for setting up an internal function. The

functional symbol and the IP symbol of this VNode module are shown in Fig. 5.13 while

its internal structure is shown in Fig. 5.14.

VNode

c
h
1
_
in

c
h
1
_
o
u
t

ch0_in

ch0_out ch2_in

ch2_out

(a) Functional Symbol (b) IP Symbol

Fig. 5.13: VNode symbol representation.

There is one more input signal which is present in both FNode and VNode modules

and responsible for giving an ID to a message. This input signal is called MsgIn ID and

is preserved for future improvement of our embedded factor graph. Using this signal, the

node can identify if this message is the same message circulating in the network or this is

a new message. This mechanism is useful for solving the cycling error in a cyclic factor

graph. We borrow this idea from the SpiNNaker system which is called Errant Packet

Trap mechanism [2]. However, we do not fully explored this mechanism yet and we simply

set its counter to be 0, meaning that the incoming message is always assumed to be a new

one. As a consequence, if our embedded factor graph is going to be used for implementing

a cyclic network, then the software running in the PS must check manually if there is a

cycling error in the network.

5.3.2 Message Encoder and Decoder

We implement a special module responsible for encoding and decoding messages called

NodeIO. This module is a direct implementation of our population coding algorithm pre-

124

5.3 Method-2: Factor Graph Framework on FPGA

Fig. 5.14: Internal block diagram of module VNode shown in Fig. 5.13b.

sented in chapter 2. Regarding the structural complexity of the design, this module is sim-

pler than the FNode or VNode modules and contains only a single bidirectional channel.

The functional symbol and the IP symbol of this NodeIO module are shown in Fig. 5.15.

NodeIOvalue_in_out

msg_in

msg_out

(a) Functional Symbol (b) IP Symbol

Fig. 5.15: Node-IO symbol representation.

Basically this module works as follows. This module should only be connected to a

VNode module because it represents the input factor of the corresponding variable node.

Once this module is connected to a VNode (a variable node), we can send a value to the

respective variable node via kernel’s function getStates(). This module then encodes the

value into a probabilistic vector and sends it to the variable node via its output channel.

Afterwards, that vector will be propagated in the network as a message. At some point in

time, this NodeIO module might receive a message from its variable node. When a new

message arrives, this module will start decoding the message and when it’s done, it will

raise an interrupt informing the hardware driver that a new value is ready to be picked

up. The program in the PS then able to retrieve this value via calling the getRealVal()

function of the kernel.

125

5 Factor Graphs in System-On-Chip

In summary, the sending of a value to this NodeIO module will trigger the belief prop-

agation automatically. This message-passing circulation will stop in a definite time if the

the network is an acyclic one. Reading a message arriving at this NodeIO corresponds to

the reading of the marginal value of the corresponding variable node. There is no guaran-

tee, however, that the message circulation will converge (or not) in a cyclic network. To

stop the circulation, the software needs to tell all nodes in the network by sending a value

-1 to the scheduler of each node.

5.3.3 Putting Them All Together

Here we give an example of how to use our embedded factor graph for constructing a

network. An example network, shown in Fig. 5.16(a), has five variable nodes, two factor

nodes and four input nodes. Assume that we have learned the factor’s parameters using

the PC-based factor graph framework, we can send those factor’s parameters to the factor

fABH and fCDH by calling setFactor() through the kernel’s driver prior to running the belief

propagation on the network. We translated the network in Fig. 5.16(a) into its symbolic

diagram depicted in Fig. 5.16(b).

As it can be seen in Fig. 5.16, building the factor graph network using our framework is

straightforward: given a structural description of a network, we can translate it directly to

the symbolic representation. The next step is to draw such diagram in the Xilinx Vivado

Diagram Editor and fetch all corresponding IP blocks from the repository. The complete

diagram for this network is attached in Appendix-C.

5.3.4 Evaluation

Similar to our first method, here we want to evaluate the modules used in this second

approach in terms of their clock’s latency characteristic as well as their consumption on the

FPGA resources. Since the optimization using pipeline mechanism works only with perfect

or semi-perfect loops, we have to specify manually the cardinality of the variables. This

number will be hard-coded in the source code before synthesizing it. For the evaluation, we

specify only five states as the default variable’s cardinal value. This cardinal value is the

highest value we can achieve in our hardware due to limited resources of the Zynq Z-7020.

As before, we compare the overall estimated performance on two scenarios: fully optimized

and unoptimized designs. In a fully optimized design, both unrolling and pipeline are

maximized. Table 5.5 summarizes the characteristics of those modules in a fully optimized

design.

The clock latency parameters in table 5.5 represent only the maximum values; i.e. these

are the longest delay we will get during execution. For the NodeIO module, the encoder

section in general has a higher profile than the decoder section. This is not surprising

because in the encoder part, the sampling of each tuning curve will take more time and

resources due to the use of exp() function to compute the Gaussian distribution. Comparing

to the other module (FNode and VNode), the clock latency is much lower, revealing the

fact that the encoding and decoding of a message will not create a bottleneck for the

entire system. For the FNode and VNode modules, their latency do not differ much since

basically those modules originate from the same source. With the average clock’s latency

126

5.3 Method-2: Factor Graph Framework on FPGA

A

B

C

D

H

fA

fB

fC

fD
fABH

fCDH

(a)

(b)

NodeIO

fA

fB

fC

fD

fABH fCDH
A

B

H C

D

FNodeVNode

NodeIO VNode

VNode FNode VNode

NodeIOVNode

NodeIO

Local Function Local Function

Fig. 5.16: An example of how to construct a factor graph network using core modules of our
factor graph framework. (a) The original network consists of two factor nodes, five
variable nodes, and four IOs. (b) The network in (a) is re-constructed using core
elements of our factor graph framework and later can be implemented in the FPGA.

Tab. 5.5: Summary of latency characteristic and FPGA’s resources consumption of the main
modules in our embedded factor graph.

NodeIO FNode VNode

Encoder Decoder MsgIO
Factor

Product
Sum MsgIO

Factor
Product

Sum

Latency 7780 1829 242 163030 11747 242 163542 10609
BRAM (%) 5 5 2 14 12 2 12 10
DSP48E (%) 7 3 0 2 2 0 2 2
FF (%) 4 3 1 17 10 1 14 10
LUT (%) 12 3 1 9 6 1 7 4

of 160529, it will spend about 0.24 ms for the node to compute an output message when

we run the system with frequency clock 667 MHz.

Comparing the FPGA resources (BRAMs, DSPs, FFs, and LUTs) usage, still FNode

and VNode modules show similar characteristics. In total, the NodeIO module will con-

sume 10% BRAMs, 7% FFs, and 15% LUTs. For the network shown in Fig. 5.16, the total

NodeIO modules will consume 40% BRAMs, 21% FFs, and 60% LUTs. The total FNode

modules will consume 56% BRAMs, 56% FFs, and 32% LUTs. The total VNode modules

will consume 120% BRAMs, 20% FFs, and 60% LUTs. With this excessive resource con-

127

5 Factor Graphs in System-On-Chip

sumption, unfortunately we could not synthesize the network with our current hardware

although we were still able to simulate the network using a denser SoC chip such as Z-

7035 or Z-7045. The unoptimized design, however, requires lower resource consumption.

Table 5.6 shows the unoptimized design also using five states for variable’s cardinality.

Tab. 5.6: Summary of latency characteristic and FPGA resources consumption for implement-
ing the network shown in Fig. 5.16 using only five states for each variable’s cardi-
nality. The modules were synthesize without further optimization. The report was
generated for Zynq Z-7020.

NodeIO FNode VNode

Encoder Decoder MsgIO
Factor

Product
Sum MsgIO

Factor
Product

Sum

Latency 58350 12986 1912 1092301 81054 1912 1112086 74263
BRAM (%) 3 3 1 5 5 1 5 4
DSP48E (%) 2 1 0 1 1 0 1 1
FF (%) 1 1 0 4 2 0 3 2
LUT (%) 3 1 1 2 1 1 1 1

Using the simple module design (without optimization), the total resources for NodeIO

modules are: 24% BRAMs, 8% FFs, and 16% LUTs. The total resources for FNode

modules are: 22% BRAMs, 12% FFs, and 8% LUTs. The total resources for VNode

modules are: 50% BRAMs, 25% FFs, and 15%. Combined for implementing the network

in Fig. 5.16 using Zynq Z-7020, it requires 96% BRAMs, 45% FFs, and 39% LUTs. It

can fit into our small density SoC but with very long delay about 3 ms for a node just to

generate the output message before propagate it out the other nodes.

In summary, the trade-off between area and speed optimization is really a daunting pro-

cess. From the above analysis, we observe that this second method is a resource-hungry

approach. Even with low variable’s cardinality and without optimization, it almost con-

sumes the entire FPGA main resources. Hence, we propose the solutions for this problem

as follows. First, the NodeIO module should be modified such that one instance of this

module can be used by all nodes in the network. A gating mechanism for determining

to which node the encoded message will be delivered could be used to incorporate this

approach. Of course, a new delay effect will be introduced to the system but we can ignore

it in a big network since the total delay will be dominated by delays in the message-passing

computation. Second, there are nodes without intense computation in its microarchitec-

ture, especially the second order variable nodes. For these nodes, it is beneficial if we do

not create a complete working node by deriving it from the FNode module. Rather, we

create a simple message forwarding module. With this approach, we will have different

modules for variable nodes; the choice of using it will depend on the degree of the corre-

sponding variable. Third, the optimization strategy can be set to a moderate level to make

a balance between the area and the speed. Finally, using several FPGA/SoC chips in one

board (similar to the SpiNNaker board shown in Fig. 4.3a on page 92) will give much more

flexibility.

128

5.4 Discussion

5.4 Discussion

In this chapter, we present two different strategies for using an FPGA/SoC as the platform

for an embedded factor graph. In the first approach, we propose to use the FPGA part

in the SoC as the accelerator for the factor graph framework running on the PS part of

the SoC. In the second approach, we propose to build a full factor graph framework along

with its belief propagation scheme. These two approaches have their own advantages

and limitations. For the first method, the main advantage is that, once the module has

been synthesized, it can be used in almost every factor graph running on the PS without

modifying and re-synthesizing the module. Hence, it is advantageous for fast prototyping

of a factor graph application. For the second method, it offers more flexibility and will run

the belief propagation faster compared to the first method, especially in a large network.

Unfortunately, the second method requires a lot of FPGA resources in its implementation.

In section 5.3 we describe our implementation strategy for factor graphs in the FPGA

side of the Xilinx Zynq SoC. A typical question that will arise regarding the routing

mechanism is that, why don’t we use the network on chip (NoC) approach so that the

network can be expanded to a larger system? Actually, we do implement such a concept

but with very limited capabilities. In order to know where the signals which contain

message data should be delivered, we have to “inject” an ID of that message. Since

we develop the system on a node-basis, this simple routing mechanism is implemented

directly on the node. With this approach, we can save a lot of FPGA resources, since

implementing a complete and generic NoC is a resource consuming task for FPGA-based

designs [214][215]. We also agree that a reconfigurable NoC should be used when the

granularity of the network is the main issue, which is not the case with our current factor

graph network. We also have learned during SpiNNaker exploration that there are many

aspects regarding the chip’s semiconductor itself that need to be taken into consideration

to avoid an excessive buses access, for example in the case of non-blocking concurrent

access to the shared resources [216][217].

A small drawback of our “simple” NoC approach is that our embedded factor graph

on the FPGA still requires extra efforts on the side of the factor graph network designer.

However, if we can create a user interface that automatically assigns/allocates the FPGA

resources for this NoC mechanism, then we do not have this problem any more. We consider

this flexible user interface as a potential improvement for our future system. The work of

Czajkowski (see [202]) can be used as the starting point for such further improvement.

In our models, we do not use external memory for storing messages, rather we simply

maximize the utilization of the existing BRAMs and LUTs. The main reason for this

choice is that accessing the external memory independently requires more resources, which

in turn will not leave enough resources for the factor graph modules themselves. Control-

ling external memory needs explicit routing strategies in order to match the interfacing

protocols and timing constrains required by the memory hardware. If we rely on the PS

for intermediating between the FPGA and the external memory chips, then we have to

implement the DMA protocol. Unfortunately, this DMA mechanism (using AXI-DMA IP

in the Vivado library) is not a good choice for our current hardware because it consumes

a considerable amount of FPGA resources.

129

5 Factor Graphs in System-On-Chip

130

6 Evaluation and Outlook

6.1 General Evaluation

6.1.1 On the Applicability of our PC-based Factor Graph Framework

In the initial stage of our research, we focus on developing our own PC-based factor graph

framework in order to get a thorough and deep understanding of how the optimal fac-

tor graph along with its inference process can be developed. Our PC-based factor graph

is developed using C++ and uses the Qt framework for implementing a message-passing

mechanism using SIGNAL-SLOT mechanism. From several examples implemented using

our PC-based factor graph framework, we have very good confidence to apply the frame-

work for broader range of applications. More importantly, it shows very good potential

to be successfully implemented in a dedicated hardware. We also show the improved

performance in terms of computation speed when we implement our factor graph in het-

erogeneous parallel platforms such as a multi-cores computer and a GPU. Although this

is not our main goal, it can be a good starting point for researchers who want to exploit

heterogeneous parallel platforms for running more complex and challenging factor graphs.

In our PC-based implementation, there are two important aspects that we have explored

in this thesis. The first is the learning mechanism in a discrete factor graph. We show that

by using the same inference mechanism, the parameters of the network can be efficiently

learned. If we provide complete data to the network (i.e. without any missing/hidden

variables), then the belief propagation algorithm can be used conveniently to learn the

network’s parameters by estimating the maximum likelihood of the factors in the factor

graph. However, when the data contains missing/hidden information, we have to use an

iterative process to estimate the parameters. Motivated by the work of Gösdorf [73], we

explored and improved the existing expectation maximization (EM) algorithm and we

found out that we can still use the same belief propagation algorithm in an iterative way

to produce an approximation to the likelihood functions of the factors. Further exploration

on the EM algorithm, leads us to the development of its variant. In this extension, we

combine sum-product and max-product algorithms for estimating the parameters. Both

sum-product and max-product algorithms can use the same principle of message-passing.

Although it is natural to use this approach as an extension to the standard EM algorithm,

we found that this approach is a bit trickier than the standard EM algorithm. Regarding

our goal of implementing the belief propagation algorithm in a dedicated hardware, we

argue that this “combination” approach is not suitable for hardware with very limited

memory resources. The reason is, the max-product algorithm that we want to use as the

maximization step of the EM requires keeping all records of the previously found maximizer

state before the final state will be selected as the most probable state that produces the

maximum probability. Although it is easy to be implemented in a PC, we decided not to

131

6 Evaluation and Outlook

implement this combination approach in our current hardware. It does not mean that this

approach should always be discarded, because if we have higher capacity hardware, this

approach will be implementable and give better approximation result then the standard

EM algorithm. Hence, we consider this challenging method for our future work on the

embedded factor graph.

The second is the generality of population codes in a discrete factor graph with the

message-passing as its inference algorithm. In our method, we use a homogeneous neurons

population to represent states of the discretized value. After proper SOM training, the

neurons in the population then specialize themselves to correctly represent regions of the

variable’s domain. There are many methods instead of our population coding that can be

used for discretization. We found several techniques which have similarities to ours in term

of approximating the continuous value using a “specialization” approach. For example, the

method developed by Achan et.al. (see [218]), uses non-uniform expansion of hypercubes

which tries to localize interesting features (such as sharp peaks) in the marginal belief

distributions. However, their method, which also employs a greedy heuristic approach to

select a partitioning with low entropy, seems to be computationally expensive and give

good accuracy only on specific problems. Another method proposed by Noorshams et.al.

(see [101]) tries to approximate the continuous value in two steps of approximation: a

deterministic approximation that involves projecting messages onto the span of r basis

functions, and a stochastic approximation that involves approximating integrals by Monte

Carlo estimates. Their deterministic approximation is quite similar with the population

coding approach in that the continuous value is projected onto a span of basis functions.

Recall that our population coding approach basically also projects the value onto several

radial basis functions represented as neurons. However, their method is focused exclusively

on models with pairwise interactions, i.e. binary factor graph. Our population coding, on

the other hand, can be used in any degree without necessary modification. Compared with

standard methods for discretization in statistical theory, our population coding approach

combined with the SOM technique for learning the neurons specialization shows some

similarities with the MDL-based approach, in particular the one described in [51]. In

principle, both methods use the information content as the basis for dynamic partitioning.

6.1.2 The Mapping Strategy on the SpiNNaker System

The first hardware platform in which we implemented our factor graph framework is the

SpiNNaker system. The idea is to use all available chips on the board as much as possible

for performing fine-grained parallel computation. This parallelism paradigm requires that

all cores should work as an ensemble by distributing workloads among them equally. The

challenge is that the SpiNNaker system uses asynchronous communication protocol whereas

our PC-based factor graph framework was designed in a synchronous fashion. Due to

this fundamental difference, we split the task and transform it into a mapping problem.

As a result, we have two different mapping strategies: population codes mapping and

factor graph’s nodes mapping. This in turn requires different routing management. To

communicate the messages between these two mapping strategies, we exploit the MC

packet transmission protocol. The result of the implementation shows us that there are

several issues regarding the message distribution in our embedded factor graph.

132

6.1 General Evaluation

First, since we use the multicast (MC) packet routing protocol for transmitting an array

of a discretized message, we have to predefine the one-to-one routing path in advance. This

is because in the MC packet protocol, we can only supply the destination core encapsulated

in a masked pattern. We exploit the routing key part of the MC packet to carry information

such as the state ID of the corresponding message dedicated to a certain variable ID and

the operation that we want to execute in the destination core. The state’s value itself

is carried on the payload part of the MC packet. These MC packets distribution might

be triggered by the encoder part (which resides in chip 0,0) or by any nodes in different

chips. The problem is that we have to create the routing table consisting entries of all

possible source-destination pairs. In this thesis, this routing table entry description is

done manually since we are not yet targeting a generic embedded factor graph on the

SpiNNaker system. This generic embedded factor graph will require in-depth exploration in

order to produce an automatic partitioning and routing manager similar to the PACMAN

of the current SpiNNaker application framework for spiking neural networks. Although we

have managed to create an example factor graph on the SpiNNaker, in general this is an

exhaustive process and prone to error. Due to this circumstance, we might need to adapt

the already existing PACMAN framework in the future to incorporate the configuration

steps of our discrete factor graph in addition to its standard configuration menu for spiking

neural network applications.

Second, our partitioning scheme for the routing table leaves the question of the maxi-

mum capacity the implemented factor graph can support. This capacity corresponds to the

maximum number of connections a factor node can have and also the maximum number

of states the factor graph’s message can have. For example, if we define that the variable’s

cardinality is 60 and create a factor graph which has a factor node with four variables as

well as assigning 15 cores for that factor node, then we will end up in a 256 entries in the

routing table. However, if we only have 10 cores available for that factor node, then we

need to assign 1296 entries in the routing table, which is not possible. Hence it is a tricky

implementation strategy. To solve this problem, we might turn our attention to the FFG

discussed in section 4.4 on page 102.

Third, we extensively use the MC packet routing protocol to transmit a factor graph’s

message and we only use SDP protocol for receiving in or sending out the data from/to

the host PC. It might be useful if we also use the SDP protocol for transmitting factor

graph’s messages within the board itself. Our MC packet routing table design seems

reliable enough in a small SpiNNaker system (such as the 4-chips board shown in Fig. 4.3a

on page 92). However, we did not test its efficiency in terms of its actual throughput on a

bigger system yet (such as the 48-chips board shown in Fig. 4.9b on page 103). According

to the SpiNNaker datasheet [2], the SDP mechanism is fast enough for the communication

within the chips direct interconnection. It might be useful, for example, to use the SDP

mechanism to send a large chunk of discretized message to a distance chip rather than

to send the chunk piece-by-piece using the MC packet routing protocol. Hence, for the

improvement of our factor graph on SpiNNaker in the future, we might consider this new

mechanism in addition to the idea of enhancing the PACMAN framework for our factor

graph.

To summarize, we have not created an automatic packet routing management for factor

133

6 Evaluation and Outlook

graphs on a SpiNNaker system yet, but we have laid the foundation of a generic factor

graph framework on a SpiNNaker system. From our experiment, we have gained some

insights to further improve our embedded factor graph. The same insights have inspired

us to develop the second embedded factor graph using a SoC.

6.1.3 The Factor Graph on a Chip

The second hardware platform for our embedded factor graph is the Xilinx SoC Zynq-7000.

We propose two types of implementation: an accelerator vs fully embedded factor graph.

In the accelerator mode, the FPGA inside the SoC is responsible only for performing the

paralleled version of the factor product and summation in the belief propagation algorithm.

While in the full mode, the FPGA is used for implement all aspects of our discrete factor

graph. Much of the in depth evaluations have been given in section 5.4 on page 129. Here

we raise another important issue: the operating system where our embedded factor graph

will run.

One might observe that the second method does not produce a ready-to-go design with

which a non-hardware developer can use without touching too much the design entry in

HDL domain. This is an unfortunate circumstance, because FPGA-based system design

will always require resynthesizing and eventually regenerating the bitstream of the design.

It does not mean that once we generate the bitstream, the hardware-side development

is done. We still need to make sure that the higher level abstraction programmer (i.e.

application programmer) can use our hardware. Actually, the bitstream generation triggers

the next step in embedded system design: developing the driver which is accessible through

a simple API (application programming interface) [219][220]. This is a very challenging

topic and we do not cover all aspects of it except the most important issue related to the

kernel configuration.

Fortunately, the Xilinx Vivado-HLS provides a convenient way to produce the hard-

ware’s driver for every module designed using the Vivado-HLS. However, it appears to us

during the development of our embedded factor graph that the driver produced by Vivado-

HLS seems to be intended for a standalone system1. An empty template for the driver

usage in a Linux-based operating system is provided by Xilinx but needs to be adapted

and completely modified according to the targeted Linux system such as Petalinux [221].

Xilinx argues that this choice should be left to the user since there is no consensus on what

is the best way to invoke the driver in an embedded Linux kernel. Some suggests that

the driver should be automatically loaded when the Linux kernel start but others argue

that the driver should only be loaded whenever the users want to. These two different

paradigms are related to this question: will the driver run in kernel space or in user space?

[222]

In this thesis, we use Petalinux as our embedded Linux platform and we have compiled

the driver differently. For our first method, we prepare the system to run in kernel space;

1In Xilinx terminology, a standalone system means a running program on a microprocessor without
invoking a special supervisory program known as kernel. The standalone system is usually contrasted
to the system which uses an operating system. Both the standalone system or the operating system
can run either on the existing ARM core of the SoC or any soft-processor that can be created on top
of the FPGA logic fabric such as Microblaze or Picoblaze.

134

6.2 Another Possible Platform for Embedded Factor Graphs

hence, the driver will be loaded automatically when the Petalinux starts. The reason

for this decision is that the accelerator driver is small enough to be loaded during kernel

start and there are not so many functions that should be handled in the kernel side.

In our experiment we provide two hardware instances for the accelerator module. The

first instance is intended to be used by a kernel which runs in user space using UIO

mechanism. The second instance is intended to be used in the kernel space. The advantage

of running the driver in user space is that the user’s factor graph program will be completely

independent and not affected by the operating system update. This is because running the

driver in kernel space means we have to recompile the entire kernel when a new modification

has been made to the hardware that affects its driver. This might be a preferable choice

for most future users of our module. But for a long-time run in a robust manner, we

argue that it should not run in user space due to security issues related to the user access

permission in Linux environment [223][224].

However, we cannot use the same approach for our second method because it involves

many different modules’ drivers and unfortunately it is very difficult to compact them

into one block of driver to simplify the loading and accessing. We therefore prefer to use

the full embedded version as a loadable module. We have prepared the system so that

the user who wants to use our second method can conveniently load the drivers using the

appropriate Linux command such as modprobe() for the driver loading and rmmod()

for unloading it. Unfortunately, the Linux driver for our embedded factor graph is not

perfect yet and might contain some bugs that need to be solved by thoroughly examining

the entire source code of the driver.

Finally, we also agree with the conclusion made by Juan Carlos et.al in [225] stating

that in general FPGA-based design for real robotics application is difficult due to two

main reasons: difficulty in changing platform’s functionality (very often requires specialized

person) and tools system dependency. However, we also believe that our embedded factor

graph framework on SoC has a prospective future, because we see an increasing trend of

bringing the FPGA design into the heterogeneous computing platform (such as SystemC,

OpenCL, etc.) and also an increasing effort to bring the embedded Linux kernel into the

mainstream. This in turn will make the future optimization and further development for

broader application easier. Furthermore, the price per chip for FPGA technology also

shows decreasing tendency, which makes the FPGA solution a very good choice in the

future.

6.2 Another Possible Platform for Embedded Factor

Graphs

In this thesis, we explore two different dedicated hardware platforms for implementing

factor graphs. There is another interesting option to be explored in our future work for

improving our second embedded factor graph implementation strategy (i.e. fully embedded

factor graph on a chip). Adapteva Inc. produces a scalable multi-core chip called Epiphany

which has 16 or 64 processors inside the chip that share a common 32 bit memory space

[226] (see Fig. 6.1a for its internal architecture). The core units inside the Epiphany

135

6 Evaluation and Outlook

chip, aside from those 32-bit floating point RISC processors, are the symmetric routers

that are distributed throughout the chip and connect the processors in a 2D grid. This

router topology is simpler than the SpiNNaker router, and according to Adapteva, it

can be used to link up 4095 processors by interlinking many Epiphany chips (see the

example configuration in Fig. 6.1b). Unfortunately, the Epiphany chip was not ready for

full production when we started this research.

Adapteva has developed a prototype board which consists of an Epiphany chip com-

bined with a SoC also from the Zyng-7000 family (see Fig. 6.1c). In this thesis, we have

implemented a factor graph framework in a TE0720 board (which also has a SoC from

the Zynq-7000 family on the board) and we should have no problem to port our factor

graph framework on the Adapteva board. We can then enhance the factor graph module

by utilizing the Epiphany chip for gaining more fine-grained parallelism. This might be an

interesting option for embedding factor graphs on hardware.

6.3 Beyond Limited Hardware Implementations

From chapter 2 to chapter 5, we have demonstrated the “evolution” of our factor graph

framework from the standard PC-based implementation to the full embedded version. The

initial goal of this research, which motivated us to develop the embedded factor graph, is

to create building blocks of a modular machine that can be embedded in a larger system

to produce more powerful, flexible and efficient intelligence machine with cognitive capa-

bilities. This is not an ambiguous goal if we look back to the first era of AI when people

started to dream of having such a machine and we regard this as a progressive vision. In

this thesis, we demonstrate that such a machine can be built using a probabilistic graphical

model framework on top of a reconfigurable dedicated hardware.

We use the population coding principle in our discrete factor graph, a topic that orig-

inates from computational neuroscience. In line with this theme, we also learn from the

field of neuroscience that there is an effort to use graph theory to describe the fundamen-

tal aspect of the information processing of the brain in terms of interconnection between

groups (population) of neurons. Going back to our motivation in this thesis of having

reciprocal benefits between engineering and neuroscience, here we envision our embedded

factor graph to be extended and implemented in a more futuristic and biologically plausible

application such as brain graph for human connectome.

In his paper, Bullmore describes that brain graphs provide a simple way with high de-

grees of generalizability and interpretability to model the human brain connectome, using

graph theory to abstractly define a nervous system as a set of nodes and interconnecting

edges [140]. In such a model, nodes represent collections of similar neurons (in terms of

their intrinsic characteristic), while edges represent structural - and hence functional -

connections between those nodes. A connectome is a complete point-to-point spatial con-

nectivity of neural pathways in the brain which represents a comprehensive map of neural

connections in the brain [227]. This “wiring diagram” of the brain can be used for build-

ing a computational model of whole-brain dynamics. Computational neuroscientists build

these brain graph models using topological and geometrical approaches that demonstrate

both structural and functional organization of the human brain [140][228]. They strive

136

6.3 Beyond Limited Hardware Implementations

to find the best model that consistently demonstrates key topological properties such as

small-worldness, modularity, and heterogeneous degree distributions. Today, many neuro-

scientists use brain graphs as a way of modeling the human brain connectome, by abstractly

defining the nervous system as a set of computational nodes and interconnecting edges.

While the brain graph related project focuses on developing the “perfect” model without

concerning too much the real impact on the intelligence emerged from the model, many

scientists argue that such models should also be consistent with the embodiment theory

in cognitive neuroscience. At least, such models should be able to be used for describ-

ing the predictive capability of the human brain. This transformation from just drawing

the connectome’s wire diagram to a predictive modelling has been made possible by the

extensive use of machine learning [229]. Some literature have demonstrated the appli-

cability of the brain graphs to cognitive neuroscience using machine learning approaches

[230][231][232]. We believe that this is the starting point where we can transform the brain

graph into a probabilistic graphical model. Eventually, this will turn into inverse inference

problem which can be used to synthesize intelligent behavior in a fashion similar to neural

computation in the brain.

We have demonstrated in chapter 3 that our factor graph framework is well suited for

applications in the domain of machine learning and robotics. We argue that we can make a

significant contribution in the future, where machine learning ideas meet technical systems.

Rather than exploring the underlying neural substrate, here we propose to use the inference

mechanism on factor graphs to give better understanding on the relation between brain

graph’s topological features and emerged cognitive intelligence. It is believed that this

cognitive intelligence can naturally be explained if human cognitive representations are

understood to be structured like graphical models [233]. As we have described in chapter

1, this structured representation underlies the mechanism of the perception-action cycle

of human beings which eventually becomes the motivation to bring “life” into robotics

systems. Transforming brain graphs into factor graphs can help the machine learning

community to understand the technical constraints which make those brain graph models

more applicable in technical systems.

In line with this idea, we are also interested to make a link between brain graph theory

and robotics application through factor graphs. One visionary framework that is currently

being conceptualized is the work of Saxena et.al. known as “Robo Brain” [234]. In princi-

ple, their goal has already been conceived by many AI revolutionists decades ago but their

idea to bring the cloud computing down to the everyday robotic systems has attracted

a lot of attention not only from the media, but also robotic scientists and engineers. In

addition to their idea of developing a large-scale computational system that learns from

publicly available Internet resources, computer simulations, and real-life robot trials, they

are also looking into the foundation of graphical models that can be used to create a

comprehensive knowledge-based system. However, their high-level abstraction framework

needs to be interlinked with the real robotics platform. In this circumstance, we see the

big potential of our factor graph to be embedded into such a framework. From chapter

3 to 5, we have demonstrated that our probabilistic graphical models are also capable of

handling such tasks in a low hardware level.

In summary, we saw promising potentials for our proposed factor graph framework in

137

6 Evaluation and Outlook

the future. Starting by exploring the basic principle of factor graph’s applications, we

have demonstrated that we can extend our framework to solve more challenging tasks. We

believe that our factor graph framework will find its place in broader applications in the

future since we have laid the core of a progressive framework. Fig. 6.2 shows our interest

of working beyond the limited hardware implementation.

138

6.3 Beyond Limited Hardware Implementations

(a)

(b)

(c)

Fig. 6.1: The Parallela board and its Epiphany chip. (a) The internal architecture of an
Epiphany chip. It is mainly composed of 16 or 64 RISC processors interconnected
by symmetric router units. (b) An example of using Epiphany chips for building a
massive embedded system in which up to 4095 processors can be linked. (c) The
current Parallela board which uses an Epiphany 16-core and a Zynq Z-7020. Except
for the presence of the Epiphany chip, this Parallela board shares many similarities to
the board TE0720 that we use in this thesis. Figures (a) and (b) are adapted from
[226] while (c) can be found at adapteva website http://www.adapteva.com/

139

http://www.adapteva.com/

6 Evaluation and Outlook

(a) Topological and geometrical properties of a functional brain graph. Left:
In the topological space, the distance between nodes is larger if those
nodes are separated by a longer path length and smaller if they are sepa-
rated by a shorter path length. The size of nodes indicates nodal degree
whereas the color of nodes indicates its lobar identity. Right: Brain
graph plotted in the physical space where the distance between nodes
is the Euclidean distance between regional centroids in the anatomical
space of the real brain. The size of nodes indicates nodal degree whereas
the color of nodes indicates its lobar identity.

(b) Robo Brain: Large-Scale Knowledge Engine for Robots. In this conceptual idea, the authors
intend to utilize an internet-scale system to generate an intelligence system which integrates
multiple data modalities including symbols, natural language, haptic senses, robot trajectories,
visual features, etc. However, in our vision, such a complex machine can be broken down into
many modular parts where each part can be constructed from our embedded factor graph.

Fig. 6.2: Brain graph related experiments and robotic applications that motivate us envisioning
future applications of our embedded factor graph. The top figure is adapted from
[140]. The bottom figure is adapted from [235] although the main idea originally
developed by Robo Brain team [234].

140

7 Summary

This thesis is about an investigation on a probabilistic graphical model known as a factor

graph. We explore the applicability of a factor graph especially in the domain of artificial

intelligence for robotics as well as the strategy to implement it efficiently in dedicated

hardware. The motivation of exploring this factor graph along with its hardware imple-

mentation is because we belief that a factor graph can be used to mimic the information

processing mechanism in the brain. In general, the brain processes information in a way

such that its functional units exchange information between them to produce the overall

performance while maintaining the consistency of brain states throughout the process. We

imitate this mechanism in the belief propagation fashion which can be implemented effi-

ciently in a factor graph. The complexity of the complete brain operation is undoubtedly

beyond the grasp of our current technology, but we can approximate a small part of it and

imitate its behaviour in a computer that can be used to reinforce non-biological technical

systems. Once we understand the main principle of that part, we might be able to con-

struct a larger system by combining it with the other parts. This thesis strives to find an

optimal way to abstract principles from the brain-style information processing mechanism

and implements it as adaptive as possible using various platforms.

We began by exploring the core principle of belief propagation in a factor graph. In

chapter 2, we describe the mechanism of constructing the model as well as the identifica-

tion of the network’s parameters via learning procedures using the inference process. We

started by implementing the standard maximum likelihood estimation (MLE) in a message-

passing scenario and then extended the principle to the complex estimation scenario using

the expectation maximization (EM) paradigm. We show that our program works well in

accommodating the challenge of informational missing in the data. We also describe our

method for working with discrete factor graphs by using a population code. The popula-

tion coding is a principle that originates from neuroscience in which we can encode and

decode a real-valued number into/from a set of probabilistic values. With this approach we

demonstrate that we can have a compact representation of a “message” as well as handling

the uncertainty that commonly arises in a non-ideal system. We also demonstrate that we

can use another concept from neuroscience, which is the self-organizing-map (SOM), to

enhance the population codes so that they can discover and represent the characteristic of

the data adaptively. All of these aspects are implemented in a PC-based program.

In chapter 3, we give several examples ranging from the simple but standard task in the

machine learning domain to the more complex and challenging task in robotics application.

We show that our PC-based factor graph framework can be used to solve problems in

regression and classification tasks. We then demonstrate that we can extend the static

model into a dynamic one using the mechanism similarly to the dynamic Bayesian network,

i.e. by unrolling the model several times so that the dynamic behaviour of the system can

be captured by the model. We complete the chapter by giving examples in the robotics

141

7 Summary

domain. We focus on the kinematics model of two different robot systems: a mobile robot

and a manipulator. We show that our PC-based factor graph works well with these two

robot systems and exemplify the usage of the dynamic factor graph. We give the final

example of a complex robotics system in the context of model-based learning for a mobile

manipulator. In this example, a hybrid robot that is built by combining two robots that

differ in the model and the control is presented. Although not all aspects of this challenging

robot system are covered, we show in principle that our factor graph framework is very well

suitable for solving problem in the state-of-the-art of robotics domain: imitation learning.

We close chapter 3 with confidence that our PC-based factor graph framework produces

very good results and can be implemented in dedicated hardware with similar quality but

with higher performance in terms of power efficiency and higher degree of flexibility. This

is the crucial aspect which plays an important role for a real technical system.

We started exploring the hardware implementation of our factor graph using a SpiN-

Naker system. In chapter 4 we describe that originally the SpiNNaker system is intended

to be used for a specific spike-based neural network application, but we show that we can

exploit the SpiNNaker’s resources so that it can be used for implementing the belief prop-

agation algorithm for factor graphs. To use the SpiNNaker system efficiently for factor

graphs, we use two different strategies for mapping the factor graph components into the

SpiNNaker’s resources. The first is related with the mapping of the population code algo-

rithm, and the second is related with the mapping of factor graph nodes. In both strategies,

we show that the most important aspect of our embedded factor graph lies in the manage-

ment of the routing protocol of the SpiNNaker system. The belief propagation then relies

on how the MC packets are exploited to carry the messages. To exemplify the applicability

of our factor graph on the SpiNNaker system as well as the proof of concept, we present a

network for robotics application which is proven to be well executable with our PC-based

factor graph. The result shows that even though the factor graph on the SpiNNaker system

runs slower than its PC-based version, it actually performs marvellously when we regard

the characteristics of the SpiNNaker hardware. First, each core runs at the clock speed

200 Mhz, which is far below our PC which runs at the clock speed 3300 MHz. Second, it

consumes extremely low power with only about 4 Watt on the Spinn3 board, compared to

700 Watt power consumption of our PC. These are very interesting results which motivate

more applications using our SpiNNaker-based factor graph. To close our exploration on

the SpiNNaker system, we propose to improve the performance of our SpiNNaker-based

factor graph in the future by using the Forney-style factor graph (FFG), which simplifies

the routing mechanism of the belief propagation on the factor graph. With the insights

from this successful implementation, we continued our exploration on the embedded factor

graph using the second hardware: a SoC (System-on-Chip).

In this final hardware exploration, we use a SoC from the family of Xilinx Zynq-7000,

especially the Z-7020. This SoC contains two independent parts: an ARM microprocessor

and an FPGA. We started exploring this device under the common assumption that the

FPGA in the SoC is very useful to speed up processes which run on the microprocessor

part of the SoC. In this paradigm, we use the FPGA only as the accelerator for the

factor graph framework which runs on the ARM processor. As the accelerator, the FPGA

is responsible for transforming the sequential nature of the sum-product algorithm into

142

the parallel fashion. The result shows that the accelerator can speed up the computation

almost up to eight times compared to the plain run of the factor graph without acceleration.

This is a quite impressive result, although we still see some limitations on this approach.

Therefore, we propose the second method in which we maximally use the resources of

the FPGA to produce a fully embedded factor graph. Using this second approach, the

entire factor graph can run on the FPGA part of the SoC. To measure the effectiveness

of our approach, we use two metrics: clock latency and resource consumption. From the

implementation of this second approach, we gain some insights about the nature of the

trade-off between speed-and-area optimization for our factor graph. These will be useful

to achieve much more efficiency when we reimplement our SoC-based factor graph in the

future, probably using a denser and richer resources SoC.

With these results, we are confident that we have already built an important funda-

mental framework for a powerful embedded factor graph that opens many possibilities

for further exploration and applications. Finally, we envision the future applications of

our embedded factor graph in the domain of cognitive intelligence, especially in the di-

rection of a massively distributed computing engine. Our vision on this aspect has been

described thoroughly in chapter 6. In summary, the embedded factor graphs, both using

the SpiNNaker system and a SoC, are the main contribution of this thesis.

143

7 Summary

144

A Appendix-A

A.1 Beyond the Standard Factor Graph

In this thesis, we use standard factor graph notations which are originally introduced by

Kschischang et.al in [31]. However, there exist other notations introduced by Forney in

[236] which are popularly called Forney-style factor graphs (FFGs) and are used commonly

within the communication and signal processing community [237]. Forney introduced

notations that different from standard factor graph notations in order to exploit many

duality phenomena found in coding theory and signal processing (such as in the Fourier

transform and its duality). As a result, his FFG is more compatible with standard block

diagrams and is more suited for hierarchical modeling.

In an FFG, the presence of two different node types in ordinary factor graphs is simplified

by considering the factor nodes as the only active nodes in the network (i.e. all nodes

correspond to factor nodes, whereas variables are represented by edges connecting two

nodes). As a consequence, each variable may only be connected to at most two factor nodes.

This may seem as a strong restriction in representational power compared to ordinary factor

graphs, however, this restriction can be overcome by introducing a specific type of factor

nodes called “equality constraint factor” f=(xa) :=
∏n

i=1 δ(xaj − xai) where f=(xa) = 1 if

and only if xaj = xai . With this constraint, if all variables xai (i.e. f=(xa) = 1) take on the

same value then the factorization of p(X) in equation (2.3) remains unaffected. However,

for all other combinations of variable values (i.e. f=(xa) = 0), p(X) = 0. This way, the

factor f=(xa) prevents any variable from assuming different values than the others and

thus the variable is ’cloned’ in all directions.

An FFG can be obtained from an ordinary factor graph by replacing variable nodes

through edges if these variable nodes are connected to at most two factor nodes, or by

equality constraint factors f=(xa) if these variable nodes are connected to more than two

factor nodes. For an example, the ordinary factor graph in Fig. 4.5 can be converted into

an FFG as shown in Fig. A.1b.

In some cases, an FFG is simpler than an ordinary factor graph with respect to the

sum-product message update rule. This is true especially when we work with Gaussian

factor graphs. Many factor graph models are built using Gaussian distributions to exploit

the nice property of the Gaussian function: if the operands are Gaussian then the result is

also Gaussian. It also means, if the input messages to a linear function node are Gaussian,

then the output message from that node is also Gaussian. Therefore, the whole belief

propagation process can be described by means of the parameters of the messages, e.g.

mean and covariance matrix. Sascha Korl derived several other special factor nodes for

this Gaussian factor graph [63].

Back to Fig. A.1, let’s assume that C is the measurement result of D using noisy sensor

XC and E is the measurement result of D using noisy sensor XE. Also by assuming that

145

A Appendix-A

BA

D EC

fA fB

fABD

fCD fDE
(a)

fAfA fABD fB

=fCD fDE
C E

A B

D

D' D"

(b)

Fig. A.1: An example of converting an ordinary factor graph to an FFG. (a) An ordinary factor
graph similar to the network shown in Fig. 4.5. (b) The resulting FFG from (a) with

the equality constraint function f=(D,D′, D′′)
4
=δ(x− x′)δ(x− x′′). The variable D

is ’cloned’ since it is connected to three factor nodes.

the noise induced by both sensors are Gaussian, we can represent the factor graph shown

in Fig. A.1b into a more detailed version:

The addition symbol ’+’ in Fig. A.2 represents an addition operation. The functional

operation of this symbol in the Gaussian factor graph is represented in Fig. A.3 where

mX is the mean of X, VX is the variance of X, WX is the weighted matrix for X in which

VX = W−1
X , and ξX is the weighted mean of X. More of additional symbols can be found

in [63].

146

A.1 Beyond the Standard Factor Graph

fAfA fABD fB

=+ +
C E

A B

D

D' D"

N N
XC

XE

f(C|D) f(E|D)

Fig. A.2: Detailed version of Fig. A.1b where we assume that the factor fCD represents the
conditional distribution of measurement C for hidden variable D where the sensor has
Gaussian noise characteristics. The symbol ’+’ in this block represents the function
f+(C,NXC

, D′) = δ(D′ + NXC
− C). Likewise, the factor fDE represents the

conditional distribution of measurement E for hidden variable D where the sensor
has Gaussian noise characteristics. The symbol ’+’ in this factor represents the
function f+(E,NXE

, D′′) = δ(D′′ +NXE
− E).

+

Y

ZX mZ = mX + mY

VZ = VX + VY

WZ = WX(WX+WY)
#WY

ξZ = (VX+VX)
#(VXξX+VYξY)

Fig. A.3: An addition symbol represents an addition operation which is very common being
used in Gaussian FFGs. The # represents the Moore-Penrose pseudoinverse of the
corresponding matrix.

147

A Appendix-A

148

B Appendix-B

B.1 Discrete Factor Graph with Population Coding

In this thesis, we have developed a PC-based factor graph framework which uses population

codes for discretizing message’s values. The motivation for developing this framework is

not to produce another new one that competes with so many factor graph frameworks

already exist online, rather to give us insight on how an efficient factor graph can be

developed and implemented in dedicated hardware. Nevertheless, we open our PC-based

factor graph framework for anyone who wants to learn the basic principles of discrete factor

graphs. Our framework was developed in C++ and it requires a special library called Qt,

at least with version 4.8. To use our framework, one can recompile it on his own machine

or use our pre-compiled library, assuming that it is targeted to a 32-bit Linux machine. In

this appendix, we give a simple example of how to use our factor graph framework.

Assume that we want to run an inference on a factor graph with three variables as

shown in Fig. B.1.

BA

C

fA fB

fABC

Fig. B.1: Example three variables factor graph.

The inference task is to compute the value of the variable C given the inputs on the

variable A and B. The following is the code for implementing such task.

149

/************************** The header file ******************************/
/* It contains the class description for the network */
/* In this example we assume that OpenMP is going to be used */
/***/
#ifndef C3VARMAPPING_H
#define C3VARMAPPING_H

#include <QObject>
#include <QVector>
#include <stdio.h>
#include <factorgraph.h> //invoke the factor graph library

#define THREAD_NUM 4

struct parameter
{
 QString _pdf;
 QString _nS;
 QString _vR;
 QString _eR;
 QString _gV;
 bool _verbose;
 QString _dataset;
 QString _testset;
 QString _result;
};

class c3VarMapping : public QObject
{
 Q_OBJECT
public:
 explicit c3VarMapping(parameter p, QObject *parent = 0);
 void run();
private:
 /* Factor Graph nodes */
 CNode A, B, C, fA, fB, fC, fABC;

 /* Messages in training flow */
 CMessage ufA_to_A, ufB_to_B, ufC_to_C;
 CMessage uA_to_fABC, uB_to_fABC, uC_to_fABC;
 /* Messages during inference flow */
 CMessage ufABC_to_C;

 /* Other class members */
 QString JPDfname; /* for reading/storing factor in a file */
 parameter params;
 void init ();
 bool trainJPD ();
 bool infer ();
 void info (char *txt){
 if(params._verbose) printf("%s", txt);
 fflush(stdout);}
};

/* Helper functions for visualization only */
int getPercentage(int i, int total);
int getNumLines(char * fname);

#endif // C3VARMAPPING_H

/************************** The C++ source file **************************/
/* It contains the implemented class for the network */
/***/

#include "c3varmapping.h"
#include <QFile>
#include <cmath>
#include <QDebug>
#include <QCoreApplication>
#include <omp.h>

c3VarMapping::c3VarMapping(parameter p, QObject *parent) :
 QObject(parent)
{
 params = p;
 init();
}

void c3VarMapping::init()
{
 /*********************** create factor graphs ************************/

 /* First, create nodes */
 A.init(FG::Variable, 1, p._nS.toInt());
 fA.init(FG::Factor, ­1, p._nS.toInt());

 B.init(FG::Variable, 2, p._nS.toInt());
 fB.init(FG::Factor, ­2, p._nS.toInt());

 C.init(FG::Variable, 3, p._nS.toInt());
 fC.init(FG::Factor, ­3, p._nS.toInt());

 fABC.init(FG::Factor, ­5);

 /* Second, assign neighborhood */
 fA.addNeighbor(A.getID()); A.addNeighbor(fA.getID());
 A.addNeighbor(fABC.getID());

 fB.addNeighbor(B.getID()); B.addNeighbor(fB.getID());
 B.addNeighbor(fABC.getID());

 fC.addNeighbor(C.getID()); C.addNeighbor(fC.getID());
 C.addNeighbor(fABC.getID());

 fABC.addNeighbor(A.getID()); fABC.addNeighbor(B.getID());
 fABC.addNeighbor(C.getID());

 /* Third, initialize factor nodes */
 QVector<int> s,c; //for scope and cardinal
 s.clear(); c.clear(); s << A.getID(); c << A.getCard(); fA.initFactor(s, c);
 s.clear(); c.clear(); s << B.getID(); c << B.getCard(); fB.initFactor(s, c);
 s.clear(); c.clear(); s << C.getID(); c << C.getCard(); fC.initFactor(s, c);
 s.clear(); c.clear();
 s << A.getID() << B.getID() << C.getID();
 c << A.getCard() << B.getCard() << C.getCard();
 fABC.initFactor(s, c);

 /* Fourth, setup the messages for training */
 ufA_to_A.setID(fA.getID()); ufA_to_A.setName("Message from fA to A");

 ufA_to_A.setScope(A.getID()); ufA_to_A.setCard(A.getCard());
 ufA_to_A.setSourceID(fA.getID());

 ufB_to_B.setID(fB.getID()); ufB_to_B.setName("Message from fB to B");
 ufB_to_B.setScope(B.getID()); ufB_to_B.setCard(B.getCard());
 ufB_to_B.setSourceID(fB.getID());

 ufC_to_C.setID(fC.getID()); ufC_to_C.setName("Message from fC to C");
 ufC_to_C.setScope(C.getID()); ufC_to_C.setCard(C.getCard());
 ufC_to_C.setSourceID(fC.getID());

 uA_to_fABC.setID(A.getID()); uA_to_fABC.setName("Message from A to fABC");
 uA_to_fABC.setScope(A.getID()); uA_to_fABC.setCard(A.getCard());
 uA_to_fABC.setSourceID(A.getID());

 uB_to_fABC.setID(B.getID()); uB_to_fABC.setName("Message from B to fABC");
 uB_to_fABC.setScope(B.getID()); uB_to_fABC.setCard(B.getCard());
 uB_to_fABC.setSourceID(B.getID());

 uC_to_fABC.setID(C.getID()); uC_to_fABC.setName("Message from C to fABC");
 uC_to_fABC.setScope(C.getID()); uC_to_fABC.setCard(C.getCard());
 uC_to_fABC.setSourceID(C.getID());

 /* Finally, setup the messages used in the inference flow */
 ufABC_to_C.setID(fABC.getID());
 ufABC_to_C.setName("Message from fABC to C");
 ufABC_to_C.setScope(C.getID()); ufABC_to_C.setCard(C.getCard());
 ufABC_to_C.setSourceID(fABC.getID());
}

bool c3VarMapping::trainJPD()
{
 /* First, determine the type of probability distribution.
 By default, we assign Gaussian. The other possible values are single,
 binary, beta, and triangle. */
 FG::pdfType type;
 if(params._pdf==”single”) _type = FG::Single;
 else if(params._pdf==”binary”) _type = FG::Binary;
 else _type = FG::Gaussian;

 /* Determine the file for storing the resulted factor in the training */
 JPDfname = params._result;
 if(_type==FG::Gaussian) JPDfname.append(".gjpd");
 else if (_type==FG::Single) JPDfname.append(“.sjpd”);
 else JPDfname.append(".bjpd");

 QFile raw(params._dataset), jpdABC(JPDfname);
 if(!raw.open(QIODevice::ReadOnly | QIODevice::Text)) {
 info("Cannot open the dataset!");
 return false;
 }

 /* 2nd step: build the JPD */
 CFactor jpd[THREAD_NUM], F = fABC.getFactor();
 QVector<double> tmpjpd; //temporary jpd, contains all jpd during iteration

 /* Since we will be using OpenMP, then we decompose the jpd into several
 instances. The following is just to set jpd[i] to NULL */
 F = fABC.getFactor();

 QVector<double> nulljpd(getElementProd(F.getCard()),0.0);
 for(int t=0; t<THREAD_NUM; t++){
 jpd[t].setScope(F.getScope());
 jpd[t].setCard(F.getCard());
 jpd[t].setJPD(nulljpd);
 }

 /* read the training dataset */
 info("Building JPD...\n");
 qint64 nLines = getNumLines(params._dataset.toLocal8Bit().data());
 int i = 0, ci, oi = ­1, j;
 QVector < QVector<int> > ds;
 QString line;
 QStringList strList;

 ds.resize(nLines);
 for(j=0; j<nLines; j++) ds[j].resize(3);
 j=0;
 while(!raw.atEnd()){
 ci = getPercentage(i, nLines); i++;
 if(ci!=oi){
 oi = ci;
 info(QString("\rReading dataset%1\%").arg(ci).toLocal8Bit().data());
 }
 line = raw.readLine();
 strList = line.split(',');
 if(strList.size()==3){
 for(int k=0; k<3; k++) ds[j][k] = strList.at(k).toInt();
 j++;
 }
 }
 raw.close();

 oi = ­1; ci = 0; int cntr = 0; nLines = ds.size();
 //QVector<int> jpdScope = jpd.getScope();

 omp_set_num_threads(THREAD_NUM);

#pragma omp parallel for
 for(i=0; i<ds.size(); i++){
 CPMF pmf(_type, params._nS.toInt(), params._eR.toInt(),
 params._gV.toInt());
 ci = getPercentage(cntr, nLines);
#pragma omp atomic
 cntr++;
 info(QString("Processing %1\%: line­%2 out of %3 by thread­%4\n")
 .arg(ci).arg(i).arg(nLines).arg(omp_get_thread_num())
 .toLocal8Bit().data());

 bool success;
 CFactor product;
 QVector<double> tmpjpd; //temporary jpd, local within the for­loop

 /* process fA and A */
 pmf.setVarValue(ds.at(i).at(0));
 fA.setFactor(pmf.getVarStates());
 ufA_to_A.updateFactor(fA.computeMessage());
 A.putMessage(ufA_to_A);
 uA_to_fABC.updateFactor(A.computeMessage(fABC.getID(), &success));

 if(!success)
 qFatal("Something wrong with message from A node to fABC!");

 /* process fB and B */
 pmf.setVarValue(ds.at(i).at(1));
 fB.setFactor(pmf.getVarStates());
 ufB_to_B.updateFactor(fB.computeMessage());
 B.putMessage(ufB_to_B);
 uB_to_fABC.updateFactor(B.computeMessage(fABC.getID(), &success));
 if(!success)
 qFatal("Something wrong with message from B node to fABC!");

 /* process fC and C */
 pmf.setVarValue(ds.at(i).at(2));
 fC.setFactor(pmf.getVarStates());
 ufC_to_C.updateFactor(fC.computeMessage());
 C.putMessage(ufC_to_C);
 uC_to_fABC.updateFactor(C.computeMessage(fABC.getID(), &success));
 if(!success)
 qFatal("Something wrong with message from C node to fABC!");

 /* Now proceed with MLE */
 /* IMPORTANT: The Order DOES Matter! */
 product = uA_to_fABC;
 //at this point, variable product only contains A

 product.prod(uB_to_fABC, false);
 //now product will contains A and B

 product.prod(uC_to_fABC, false);
 //finally, product should contains A, B and C

 tmpjpd = addVectorElements(jpd[omp_get_thread_num()]
 .getJPD(), product.getJPD());
 jpd[omp_get_thread_num()].setJPD(tmpjpd);
 }

 /* now combine the jpd */
 CFactor jpdAll;
 jpdAll.setScope(F.getScope());
 jpdAll.setCard(F.getCard());
 tmpjpd = jpd[0].getJPD();
 for(int j=1; j<THREAD_NUM; j++)
 tmpjpd = addVectorElements(jpd[j].getJPD(), tmpjpd);
 jpdAll.setJPD(tmpjpd);

 /* 3rd step: normalize jpd */
 info("Normalize JPD and writing to a file");
 tmpjpd = normalizeStates(jpdAll.getJPD());
 jpdAll.setJPD(tmpjpd);

 /* and then write to a file */
 if(!jpdABC.open(QIODevice::WriteOnly | QIODevice::Text)) return false;
 QTextStream jpdOut(&jpdABC);
 for(int i=0; i<tmpjpd.count(); i++)
 jpdOut << QString("%1\n").arg(tmpjpd.at(i));
 jpdABC.close();
 fABC.setFactor(tmpjpd);
 return true;

}

bool c3VarMapping::infer()
{
 bool result = true;
 FG::pdfType type;
 if(params._pdf==”single”) _type = FG::Single;
 else if(params._pdf==”binary”) _type = FG::Binary;
 else _type = FG::Gaussian;

 QString fResName = JPDfname;
 if(_type==FG::Gaussian) fResName.append(".gres");
 else if(_type==FG::Single) fResName.append(“.sres”);
 else fResName.append(".bres");
 QFile fRes(fResName);
 QFile fTest(params._testset);
 QTextStream fOut(&fRes);
 QString line;

 info("Performing inference...\n");

 if(!fRes.open(QIODevice::WriteOnly | QIODevice::Text)) {
 info("Cannot create a file for storing the inference result!");
 return false;
 }

 if(!fTest.open(QIODevice::ReadOnly | QIODevice::Text)) {
 info("Cannot open the validation test file!");
 fRes.close(); return false;
 }

 CPMF pmf(_type, params._nS.toInt(), params._vR.toInt(), params._eR.toInt(),
 params._gV.toInt());
 bool success;
 int res, i = 0, ci, oi = ­1;
 qint64 nLines = getNumLines(params._testset.toLocal8Bit().data());
 QStringList l;
 while(!fTest.atEnd()){
 ci = getPercentage(i, nLines); i++;
 if(ci!=oi){
 oi = ci;
 info(QString("\rReading testset %1\%").arg(ci)
 .toLocal8Bit().data());
 }
 line = fTest.readLine();
 l = line.split(',');
 if(l.size()==3) {

 /* give A to fABC */
 pmf.setVarValue(l.at(0).toInt());
 fA.setFactor(pmf.getVarStates());
 ufA_to_A.updateFactor(fA.computeMessage());
 A.putMessage(ufA_to_A);
 uA_to_fABC.updateFactor(A.computeMessage(fABC.getID(), &success));
 if(!success){
 info("Something wrong with message from A to fABC!");
 result = false; break;
 }

 fABC.putMessage(uA_to_fABC);

 /* give B to fABC */
 pmf.setVarValue(l.at(1).toInt());
 fB.setFactor(pmf.getVarStates());
 ufB_to_B.updateFactor(fB.computeMessage());
 B.putMessage(ufB_to_B);
 uB_to_fABC.updateFactor(B.computeMessage(fABC.getID(), &success));
 if(!success){
 info("Something wrong with message from B to fABC!");
 result = false; break;
 }
 fABC.putMessage(uB_to_fABC);

 /* finally, get the value out for C */
 ufABC_to_C.updateFactor(fABC.computeMessage(C.getID(), &success));
 if(!success){
 info("Something wrong with message from fABC to node C!");
 result = false; break;
 }

 pmf.setVarStates(normalizeStates(ufABC_to_C.getJPD()));
 res = pmf.getiVarValue();
 fOut << QString("%1\n").arg(res);
 }
 }
 fTest.close(); fRes.close();
 if(result)
 info("Performing inference done!");
 else
 info("Performing inference fail!");
 return result;
}

void c3VarMapping::run()
{
 if(trainJPD()) infer();
}

/*********************** HELPER FUNCTIONS ****************************/
/* Tips for getNumLines: wc ­l use_ps_grep_awk_kill.tips | awk '{print $1}'
 * we use awk because the output from “wc ­l” also includes the filename
 */
int getNumLines(char *fname)
{
 int result = ­1;
 char cmd[256];
 sprintf(cmd, "wc ­l %s | awk '{print $1}'",fname);
 FILE *in;
 char buff[10];
 if(!(in = popen(cmd, "r"))){
 return ­1;
 }
 fgets(buff, sizeof(buff), in);
 pclose(in);
 result = atoi(buff);
 return result;
}

int getPercentage(int i, int total)
{
 double result = (double)i*100.0/(double)total;
 return (int)round(result);
}

C Appendix-C

C.1 Embedded Factor Graph on SoC

This is a snapshot of the implementation of the network shown in Fig. 5.16 (page 5.16)

using the SoC Z-7020.

159

C
A

p
p

en
d
ix

-C

160

Bibliography

[1] K. Murphy, Machine Learning: A Probabilistic Perspective. The MIT Press, August

2012.

[2] The University of Manchester, SpiNNaker: Universal Spiking Nerual Network Ar-

chitecture, datasheet version 2.02 ed., January 2011.

[3] S. Temple, AppNote 1 - SpiNN-3 Development Board. SpiNNaker Group, School of

Computer Science, University of Manchester, November 2011.

[4] Xilinx, Zynq-7000 All Programmable SoC Technical Reference Manual. Xilinx, Inc.,

February 2014.

[5] A. Turing, “Computing machinery and intelligence,” Mind, vol. 59, pp. 433–460,

1950.

[6] N. Liberman and Y. Trope, “The psychology of transcending the here and now,”

Science, vol. 322, pp. 1201–1205, 2008.

[7] S. Schaal and N. Schweighofer, “Computational motor control in humans and

robots,” Current Opinion in Neurobiology, vol. 15, no. 6, pp. 675–682, 2005.

[8] S. Schaal, “Is imitation learning the route to humanoid robots?,” Trends in Cognitive

Sciences, vol. 3, pp. 233–242, 1999.

[9] R. Frackowiak and H. Markram, “The future of human cerebral cartography: a novel

approach,” Philosophical Transactions of the Royal Society of London B: Biological

Sciences, vol. 370, no. 1668, 2015.

[10] W. Zhao, G. Agnus, V. Derycke, A. Filoramo, J.-P. Bourgoin, and C. Gamrat,

“Nanotube devices based crossbar architecture: Toward neuromorphic computing,”

Nanotechnology, vol. 21, p. 175202, 2010.

[11] M.Soltiz, D. Kudithipudi, C. Merkel, G. Rose, and R. Pino, “Memristor-based neural

logic blocks for nonlinearly separable functions,” IEEE Transactions on Computers,

vol. 62, pp. 1597–1606, August 2013.

[12] D. Monroe, “Neuromorphic computing gets ready for the (really) big time,” Com-

munications of the ACM, vol. 57, pp. 13–15, 2014.

[13] S. Russell and P. Norvid, Artificial Intelligence: A Modern Approach, 3rd Ed. New

Jersey: Prentice Hall, 2010.

[14] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles and Tech-

niques. Cambridge, Massachusetts: The MIT Press, 2009.

161

Bibliography

[15] M. Wainwright and M. Jordan, “Graphical models, exponential families, and vari-

ational inference,” Foundations and Trends in Machine Learning, vol. 1, no. 1—2,

pp. 1–305, 2008.

[16] C. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[17] D. Schröder, Intelligent Observer and Control Design for Nonlinear Systems.

Springer, 2000.

[18] M. Toussaint and C. Goerick, “A bayesian view on motor control and planning,” in

From Motor Learning to Interaction Learning in Robots, Berlin: Springer, 2010.

[19] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Massachusetts: The MIT

Press, 2005.

[20] J. Pineau, M. Montemerlo, M. Pollack, N. Roy, and S. Thrun, “Towards robotic assis-

tants in nursing homes: Challenges and results,” Robotics and Autonomous Systems,

vol. 42, no. 3, pp. 271–281, 2003.

[21] M. Toussaint, N. Plath, and N. Jetchev, “Integrated motor control, planning, grasp-

ing and high-level reasoning in a blocks world using probabilistic reasoning,” in IEEE

International Conference on Robotics and Automation (ICRA) 2010, (Anchorage,

Alaska), 2010.

[22] R. Deventer, J. Denzler, and H. Niemann, “Control of dynamic systems using

bayesian networks,” in International Conference on Computational Intelligence for

Modelling, Control and Automation (CIMCA 2003), (Wien, Austria), 2003.

[23] A. Hommersom and P. J. Lucas, “Using bayesian networks in an industrial setting:

Making printing systems adaptive,” in 19th European Conference on Artificial Intel-

ligence (ECAI2010), (Lisbon, Portugal), 2010.

[24] M. Jordan, Learning in Graphical Models. Kluwer Academic Pub., 1998.

[25] N. Vlassis and M. Toussaint, “Model-free reinforcement learning as mixture learn-

ing,” in International Conference on Machine Learning, (Montreal, Canada), 2009.

[26] M. Kaess, V. Ila, R. Roberts, and F. Dellaert, “The bayes tree: An algorithmic

foundation for probabilistic robot mapping,” in International Workshop on the Al-

gorithmic Foundations of Robotics, (Singapore), December 2010.

[27] I. Cox and J. Leonard, “Modeling a dynamic environment using a bayesian multiple

hypothesis approach,” Artificial Intelligence, vol. 66, no. 0, pp. 311–344, 1994.

[28] J. Leonard and H. Durrant-whyte, “Simultaneous map building and localization for

an autonomous mobile robot,” in IEEE/RSJ International Workshop on Intelligent

Robots and Systems’91 (IROS’91), (Osaka, Japan), 1991.

162

Bibliography

[29] M. Montemerlo and S. Thrun, “Simultaneous localization and mapping with un-

known data association using fastslam,” in IEEE Int. Conf. Robotics and Automa-

tion, (Taipei, Taiwan.), September 2003.

[30] F. Dellaert and M. Kaess, “Square root sam: Simultaneous localization and mapping

via square root information smoothing,” International Journal of Robotics Research,

vol. 25, December 2006.

[31] F. Kschischang, B. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product

algorithm,” IEEE Transactions On Information Theory, vol. 47, no. 2, pp. 498–519,

2001.

[32] H.-A. Loeliger, “An introduction to factor graphs,” Signal Processing Magazine,

IEEE, vol. 21, pp. 28–41, Jan 2004.

[33] Y. Weiss, C. Yanover, and T. Meltzer, “Map estimation, linear programming and

belief propagation with convex free energies,” in The 23rd Conference on Uncertainty

in Artificial Intelligence (UAI2007), (Vancouver, Canada), pp. 416–425, July 2007.

[34] F. Dellaert and M. Kaess, “Square root sam: Simultaneous location and mapping

via square root information smoothing,” International lJournal of Robotics Research

(IJRR), vol. 25, no. 12, pp. 1181–1213, 2006. Special issue on RSS 2006.

[35] M. Kaess, A. Ranganathan, and F. Dellaert, “isam: Incremental smoothing and

mapping,” IEEE Transactions on Robotics (TRO), vol. 24, pp. 1365–1378, Septmber

2008.

[36] M. Kaess, H. Johannsson, R. Roberts, V. Ila, J. Leonard, and F. Dellaert, “isam2:

Incremental smoothing and mapping using the bayes tree,” International Journal of

Robotics Research (IJRR), vol. 31, pp. 216–235, February 2012.

[37] D. Rosen, M. Kaess, and J. Leonard, “An incremental trust-region method for ro-

bust online sparse least-squares estimation,” in IEEE International Conference on

Robotics and Automation (ICRA) 2012, (St. Paul, Minnesota, USA), pp. 1262–1269,

May 2012.

[38] F. Dellaert, J. Carlson, V. Ila, K. Ni, and C. Thorpe, “Subgraph-preconditioned con-

jugate gradients for large scale slam,” in 2010 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS2010), (Taipei, Taiwan), pp. 2566–2571,

October 2010.

[39] L. Carlone, Z. Kira, C. Beall, V. Indelman, and F. Dellaert, “Eliminating condi-

tionally independent sets in factor graphs: A unifying perspective based on smart

factors,” in IEEE International Conference on Robotics and Automation (ICRA)

2014), (Hongkong, China), May 2014.

[40] T. Meltzer, A. Globerson, and Y. Weiss, “Convergent message passing algorithms

- a unifying view,” in The 25th Conference on Uncertainty in Artificial Intelligence

(UAI2009), (Montreal, Canada), pp. 393–401, June 2009.

163

Bibliography

[41] H. Guo and W. Hsu, “A survey of algorithms for real-time bayesian network in-

ference,” in The joint AAAI-02/KDD-02/UAI-02 Workshop on Real-Time Decision

Support and Diagnosis Systems, (Edmonton, Canada), 2002.

[42] T. Minka, A family of algorithms for approximate Bayesian inference. PhD thesis,

Department of Electrical Engineering and Computer Science, Massachusetts Institute

of Technology, January 2001.

[43] J. Yedidia, W. Freeman, and Y. Weiss, “Constructing free-energy approximations

and generalized belief propagation algorithms,” IEEE Transactions on Information

Theory, vol. 51, no. 7, pp. 2282–2312, 2005.

[44] T. Minka, “Expectation propagation for approximate bayesian inference,” in 17th

Conference in Uncertainty in Artificial Intelligence, (Washington, USA), 2001.

[45] M. Beal, Variational Algorithms for Approximate Bayesian Inference. PhD thesis,

Gatsby Computational Neuroscience Unit, University College London, 2003.

[46] B. J. Frey and N. Jojic, “A comparison of algorithms for inference and learning in

probabilistic graphical models,” IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, vol. 27, no. 9, pp. 1–25, 2005.

[47] W. Savich, M. Moussa, and S. Areibi, “The impact of arithmetic representation on

implementing mlp-bp on fpgas: a study,” IEEE Transaction on Neural Networks,

vol. 18, pp. 240–252, January 2007.

[48] P. Ramadge and W. Wonham, “The control of discrete event systems,” Proceedings

of the IEEE, vol. 77, pp. 81–98, January 1989.

[49] J. Dougherty, R. Kovani, and M. Sahami, “Supervised and unsupervised discretiza-

tion of continuous features,” in The 12th International Conference on Machine Learn-

ing, pp. 194–202, San Francisco: Morgan Kaufmann, 1995.

[50] S. Garcia, J. Luengo, J. Sáez, V. López, and F. Herrera, “A survey of discretiza-

tion techniques: Taxonomy and empirical analysis in supervised learning,” IEEE

Transactions on Knowledge and Data Engineering, vol. 25, pp. 734–750, April 2013.

[51] E. Clarke and B. Barton, “Entropy and mdl discretization of continuous variables

for bayesian belief networks,” International Journal of Intelligent Systems, vol. 15,

pp. 61–92, 2000.

[52] S. Kotsiantis and D. Kanellopoulos, “Discretization techniques: A recent survey,”

GESTS International Transactions on Computer Science and Engineering, vol. 32,

no. 1, pp. 47–58, 2006.

[53] U. Fayyad and K. Irani, “Multi-interval discretization of continuous-valued attributes

for classification learning,” in the International Joint Conference on Uncertainty in

AI (IJCAI’93), (Chambery, France), pp. 1022–1027, 1993.

164

Bibliography

[54] A. Mathis, A. Herz, and M. Stemmler, “Resolution of nested neuronal representations

can be exponential in the number of neurons,” Physical Review Letters, vol. 109,

p. 018103, Jul 2012.

[55] H. Guo and W. Hsu, “A survey of algorithms for real-time bayesian network in-

ference,” in The joint AAAI-02/KDD-02/UAI-02 workshop on Real-Time Decision

Support and Diagnosis Systems, (Edmonton, Alberta, Canada), 2002.

[56] V. Namasivayam, A. Pathak, and V. Prasanna, “Scalable parallel implementation

of bayesian network to junction tree conversion for exact inference,” in The 18th In-

ternational Symposium on Computer Architecture and High Performance Computing

(SBAC-PAD’06), (Ouro Preto, Minas Gerais, Brasil), October 2006.

[57] V. Sudhakar and C. Murthy, “Efficient mapping of backpropagation algorithm onto

a network of workstations,” IEEE Transactions on Systems, Man, and Cybernetics,

Part B, vol. 28, pp. 841–849, 1998.

[58] M. Charalambous, P. Trancoso, and A. Stamatakis, “Initial experiences porting a

bioinformatics application to a graphics processor,” in 10th Panhellenic Conference

on Informatics (PCI2005), (Volas, Greece), November 2005.

[59] D. Ayres, A. Darling, D. Zwickl, P. Beerli, M. Holder, P. Lewis, J. Huelsenbeck,

F. Ronquist, D. Swofford, M. Cummings, A. Rambaut, and M. Suchard, “Beagle:

An application programming interface and high-performance computing library for

statistical phylogenetics,” Systematic Biology, vol. 61, pp. 170–173, 2012.

[60] M. Silberstein, A. Schuster, D. Geiger, A. Patney, and J. Owens, “Efficient compu-

tation of sum-products on gpus through software-managed cache,” in Proceedings of

the 22nd annual international conference on Supercomputing (ICS’08), (New York,

NY, USA), pp. 309–318, ACM, 2008.

[61] N. Piatkowski, “Parallel algorithms for gpu accelerated probabilistic inference,” in

NIPS 2011: workshop on parallel and large-scale machine learning, (Sierra Nevada,

Spain), December 2011.

[62] R. Nasre, M. Burtscher, and K. Pingali, “Morph algorithms on gpus,” in the 18th

ACM SIGPLAN symposium on Principles and practice of parallel programming

(PPoPP’13), (Shenzhen, China), pp. 147–156, February 2013.

[63] S. Korl, A Factor Graph Approach to Signal Modelling, System Identification and

Filtering. PhD thesis, Swiss Federal Institute of Technology, Zürich, 2005.

[64] E. Maneva, Belief Propagation Algorithms for Constraint Satisfaction Problems. PhD

thesis, Graduate Division of the University of California, Berkeley, 2006.

[65] L. Kroc, Probabilistic Techniques for Constraint Satisfaction Problems. PhD thesis,

Faculty of the Graduate School of Cornell University, August 2009.

165

Bibliography

[66] R. Stengel, “Toward intelligent flight control,” IEEE Transaction on System, Man,

and Cybernetics, vol. 23, no. 6, pp. 1699–1725, 1993.

[67] H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Appli-

cations. Springer, 2011.

[68] A. Omondi, J. Rajapakse, and M. Bajger, FPGA Implementations of Neural Net-

works, ch. FPGA Neurocomputers. Springer, 2006.

[69] D. Uliana, K. Kepa, and P. Athanas, “Fpga-based hpc application design for non-

experts,” in 2013 IEEE 24th International Conference on Application-Specific Sys-

tems, Architectures and Processors (ASAP), pp. 261–264, June 2013.

[70] V. Manshinghka, Natively Probabilistic Computation. PhD thesis, Department of

Brain & Cognitive Sciences, Massachusetts Institute of Technology, June 2009.

[71] F. Palmieri, “Learning non-linear functions with factor graphs,” IEEE Transactions

on Signal Processing, vol. 61, no. 17, pp. 4360–4371, 2013.

[72] A. Steimer, Neurally Inspired Models of Belief-Propagation in Arbitrary Graphical

Models. PhD thesis, ETH Zürich, Switzerland, 2012.

[73] D. Göhlsdorf, Motor Control with Graphical Models. PhD thesis, ETH Zürich,

Switzerland, 2012.

[74] S. Roweis and Z. Ghahramani, “A unifying review of linear gaussian models,” Neural

Computation, vol. 11, no. 2, pp. 305–345, 1999.

[75] J. Diard, P. Bessiere, and E. Mazer, “A survey of probabilistic models using the

bayesian programming methodology as a unifying framework,” in International Con-

ference on Computational Intelligence, Robotics and Autonomous Systems (IEEE-

CIRAS), (Singapore), 2003.

[76] D. Barber, Bayesian Reasoning and Machine Learning. Cambridge University Press,

March 2012.

[77] G. Winkler, Image Analysis, Random Fields and Markov Chain Monte Carlo Meth-

ods. Springer-Verlag, 2003.

[78] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala,

M. Tappen, and C. Rother, “A comparative study of energy minimization meth-

ods for markov random fields with smoothness-based priors,” IEEE Transactions on

Pattern Analysis and Machine Intelligence, vol. 30, pp. 1068–1080, June 2008.

[79] S. Li, Markov Random Field Modeling in Image Analysis. Advances in Computer

Vision and Pattern Recognition, Springer-Verlag London Ltd., 2009.

[80] A. Blake and P. Kohli, Markov Random Fields for Vision and Image Processing. The

MIT Press, July 2011.

166

Bibliography

[81] J. Domke, A. Karapurkar, and Y. Aloimonos, “Who killed the directed model?,” in

IEEE Computer Society Conference on Computer Vision and Pattern Recognition

(CVPR 2008), (Anchorage, Alaska, USA), June 2008.

[82] Y. Yeh, K. Breeden, L. Yang, M. Fisher, and P. Hanrahan, “Synthesis of tiled pat-

terns using factor graphs,” in The 40th International Conference and Exhibitation on

Computer Graphics and Interactive Techniques, (Anaheim, California, USA), 2013.

[83] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-

ence. Morgan kaufmann, 1988.

[84] E. Charniak, “Bayesian networks without tears,” AI Magazine, AAAI, vol. 12, no. 4,

pp. 50–63, 1991.

[85] N. Friedman, D. Geiger, and M. Goldszmidt, “Bayesian networks without classifiers,”

Machine Learning, vol. 29, pp. 131–163, 1997.

[86] D. Niedermayer, Innovations in Bayesian Networks: Theory and applications, ch. An

introduction to Bayesian Networks and their contemporary applications, pp. 117–130.

Studies in computational intelligence, Berlin: Springer, 2008.

[87] G. Cooper, “The computational complexity of probabilistic inference using bayesian

belief networks,” Artificial Intelligence, vol. 42, no. 2-3, pp. 393–405, 1990.

[88] D. MacKay, “Probable networks and plausible predictions – a review of practical

bayesian methods for supervised neural networks,” Networks: Computation in Neural

Systems, vol. 6, pp. 469–505, 1995.

[89] B. Frey, “Extending factor graphs so as to unify directed and undirected graphi-

cal models,” in The Nineteenth Conference on Uncertainty in Artificial Intelligence

(UAI), (Acapulco, Mexico), 2003.

[90] K. Murphy, Y. Weiss, and M. Jordan, “Loopy belief propagation for approximate

inference: An empirical study,” in Proceedings of the Fifteenth Conference on Un-

certainty in Artificial Intelligence, UAI’99, (San Francisco, CA, USA), pp. 467–475,

Morgan Kaufmann Publishers Inc., 1999.

[91] A. Ihler, W. J. Fischer III, and A. Willsky, “Loopy belief propagation: Convergence

and effects of message errors,” The Journal of Machine Learning Research, vol. 6,

pp. 905–936, December 2005.

[92] J. Bolt and L. van der Gaag, “On the convergence error in loopy propagation,” in

16th Belgian-Dutch Conference on Artificial Intelligence, BNAIC2004, (Groningen,

The Netherlands), 2004.

[93] J. Mooij and H. Kappen, “Sufficient conditions for convergence of loopy belief prop-

agation,” in the Twenty-First Conference on Uncertainty in Artificial Intelligence,

UAI2005, (Edinburg, Scotland), 2005.

167

Bibliography

[94] G. Elidan, I. McGraw, and D. Koller, “Residual belief propagation: Informed

scheduling for asynchronous message passing,” in Proceedings of the Twenty-second

Conference on Uncertainty in AI (UAI), (Boston, Massachussetts), July 2006.

[95] P. Sen and L. Getoor, “Empirical comparison of approximate inference algorithms

for networked data,” in ICML workshop on Open Problems in Statistical Relational

Learning 2006, SRL2006, (Pittsburgh, Pennsylvania, USA), 2006.

[96] C. Yanover and Y. Weiss, “Finding the m most probable configurations using loopy

belief propagation,” in Advances in Neural Information Processing Systems 16,

pp. 289–296, MIT Press, 2004.

[97] P. Abbeel, D. Koller, and A. Y.Ng, “Learning factor graphs in polynomial time and

sample complexity,” Journal of Machine learning, vol. 7, pp. 1743–1788, 2006.

[98] D. Ackley, G. Hinton, and T. Sejnowski, “A learning algorithm for boltzmann ma-

chines,” Cognitive Science, vol. 9, no. 1, pp. 147–169, 1985.

[99] G. Hinton, “A practical guide to training restricted boltzmann machines,” tech. rep.,

Department of Computer Science, University of Toronto, August 2010.

[100] A. Fischer and C. Igel, “Training restricted boltzmann machines: An introduction,”

Pattern Recognition, vol. 47, pp. 25–39, 2014.

[101] N. Noorshams and M. Wainwright, “Belief propagation for continuous state spaces:

Stochastic message-passing with quantitative guarantees,” Journal of Machine

Learning Research, vol. 14, pp. 2799–2835, 2013.

[102] C. K. Chow and C. Liu, “Approximating discrete probability distributions with de-

pendence trees,” IEEE Transaction on Information Theory, vol. 14, no. 3, pp. 462–

467, 1968.

[103] R. Neal, “Connectionist learning of belief networks,” Artificial Intelligence, vol. 56,

pp. 71–113, 1992.

[104] W. Gerstner and W. Kistler, Spiking Neuron Models: Single Neurons, Populations,

Plasticity. Cambridge University Press, 2002.

[105] J. Kim and J. Pearl, “A computational model for combined causal and diagnostic rea-

soning in inference systems,” in Eighth International Joint Conference on Artificial

Intelligence. IJCAI-83, (Karlsruhe, Germany), 1983.

[106] L. Rabiner, “A tutorial on hidden markov models and selected applications in speech

recognition,” Proceedings of the IEEE, vol. 77, pp. 257–286, February 1989.

[107] Z. Ghahramani, “An introduction to hidden markov models and bayesian networks,”

International Journal of Pattern Recognition and Artificial Intelligence, vol. 15, no. 1,

pp. 9–42, 2001.

168

Bibliography

[108] Y. Weiss and W. Freeman, “On the optimality of solutions of the max-product

belief-propagation algorithm in arbitrary graphs,” IEEE Transactions on Informa-

tion Theory, vol. 47, pp. 736–744, February 2001.

[109] Y. Watanabe and K. Fukumizu, “Graph zeta function in the bethe free energy and

loopy belief propagation,” in Advances in Neural Information Processing Systems 22

(Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta, eds.), pp. 2017–

2025, Curran Associates, Inc., 2009.

[110] Y. Weiss and W. Freeman, “Correctness of belief propagation in gaussian graphical

models of arbitrary topology,” Neural Computation, vol. 13, pp. 2173–2200, October

2001.

[111] M. Tappen and W. Freeman, “Comparison of graph cuts with belief propagation for

stereo, using identical mrf parameters,” in the Ninth IEEE International Conference

on Computer Vision (ICCV), (Nice, France), pp. 900–907, October 2003.

[112] M. Tappen, B. Russell, and W. Freeman, “Efficient graphical models for processing

images,” in the 2004 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR), vol. 2, pp. 302–309, July 2004.

[113] D. Rosen, M. Kaess, and J. Leonard, “Robust incremental online inference over

sparse factor graphs: Beyond the gaussian case,” in IEEE International Conference

on Robotics and Automation (ICRA) 2013, (Karlsruhe, Germany), pp. 1025–1032,

May 2013.

[114] C. Rasmussen, “The infinite gaussian mixture model,” Advances in Neural Informa-

tion Processing Systems, vol. 12, pp. 554–560, 2000.

[115] I. Myung, “Tutorial on maximum likelihood estimation,” Journal of Mathematical

Psychology, vol. 47, pp. 90–100, 2003.

[116] N. Slonim and Y. Weiss, “Maximum likelihood and the information bottleneck,” in

Advances in Neural Information Processing Systems 15 (S. Becker, S. Thrun, and

K. Obermayer, eds.), pp. 351–358, MIT Press, 2003.

[117] J. Jang, C.Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing: A Computational

Approach to Learning and Machine Intelligence. Prentice Hall, 1997.

[118] W. Forst and D. Hoffmann, Optimization - Theory and Practice. Springer, 2010.

[119] G. McLachlan and T. Krishnan, The EM Algorithm and Extensions. Wiley-

Interscience, 2nd ed. ed., 2008.

[120] J. Dauwels, S. Korl, and H.-A. Loeliger, “Expectation maximization as message pass-

ing,” in International Symposium on Information Theory 2005 (ISIT 2005), pp. 583–

586, September 2005.

169

Bibliography

[121] Y. Zhao, J. Xu, and Y. Gao, “A parallel algorithm for bayesian network parameter

learning based on factor graph,” in 2013 IEEE 25th International Conference on

Tools with Artificial Intelligence (ICTAI2013), (Washington DC, USA), pp. 506–

512, November 2013.

[122] J. Mooij, “libDAI: A free and open source C++ library for discrete approximate infer-

ence in graphical models,” Journal of Machine Learning Research, vol. 11, pp. 2169–

2173, August 2010.

[123] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on large clus-

ters,” Communication of the ACM, vol. 51, pp. 107–113, January 2008.

[124] Z. Song, “Bayesian max-product expectation maximization algorithm for structured

sparse signals reconstruction,” Master’s thesis, Iowa State University, 2012.

[125] A. Deneve, P. Latham, and A. Pouget, “Efficient computation and cue integration

with noisy population codes,” Nature Neuroscience, vol. 4, no. 8, pp. 826–831, 2001.

[126] S. Wu, S. Amari, and H. Nakahara, “Population coding and decoding in a neural

field: a computational study,” Neural Computation, vol. 14, no. 5, pp. 999–1026,

2002.

[127] R. Ince, R. Senatore, E. Arabzadeh, F. Montani, M. Diamond, and S. Panzeri,

“Information-theoretic methods for studying population codes,” Neural Networks,

vol. 23, no. 6, pp. 713–727, 2010.

[128] E. Doi and M. Lewicki, “A simple model of optimal population coding for sensory

systems,” PLoS Computational Biology, vol. 10, pp. 1–14, August 2014.

[129] J. M. Beck, W. Ma, R. Kiani, T. Hanks, A. Churchland, J. Roitman, M. Shadlen,

P. Latham, and A. Pouget, “Probabilistic population codes for bayesian decision

making,” Journal Neuron, vol. 60, no. 6, pp. 1142–1152, 2008.

[130] J. Beck, A. Pouget, and K. Heller, “Complex inference in neural circuits with prob-

abilistic population codes and topic models,” Advances in Neural Information Pro-

cessing Systems, vol. 25, pp. 3068–3076, 2012.

[131] N. Rougier and J. Vitay, “Emergence of attention within a neural population,” Neural

Networks, vol. 19, no. 5, pp. 573–581, 2006.

[132] E. Todomorov, “Optimality principles in sensorimotor control,” Nature Neuro-

science, vol. 7, no. 9, pp. 907–915, 2004.

[133] H. Snippe, “Parameter extraction from population codes: A critical assessment,”

Neural Computation, vol. 8, no. 3, pp. 511–529, 1996.

[134] S. Deneve, P. Latham, and A. Pouget, “Reading population codes: a neural im-

plementation of ideal observers,” Nature neuroscience, vol. 2, pp. 740–745, August

1999.

170

Bibliography

[135] X. Cui and A. Alwan, “Robust speaker adaptation by weighted model averaging

based on the minimum description length criterion,” IEEE Transactions on Audio,

Speech, and Language Processing, vol. 15, pp. 652–660, February 2007.

[136] Y. Shulin and C. Kuo-Chu, “Comparison of score metrics for bayesian network learn-

ing,” IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and

Humans, vol. 32, pp. 419–428, May 2002.

[137] R. Rohwer and J. van der Rest, “Minimum description length, regularization, and

multimodal data,” Neural Computation, vol. 8, pp. 595–609, April 1996.

[138] T. Kohonen, “Self-organized formation of topologically correct feature maps,” Bio-

logical Cybernetics, vol. 43, no. 1, pp. 59–69, 1982.

[139] A. Gorban and A. Zinovyev, “Principal manifolds and graphs in practice: from

molecular biology to dynamical systems,” International Journal of Neural Systems,

vol. 20, no. 3, pp. 219–232, 2010.

[140] E. Bullmore and D. Bassett, “Brain graphs: Graphical models of the human brain

connectome,” Annu. Rev. Clin. Psychol., vol. 7, pp. 113–140, December 2011.

[141] C. Butts, “Revisiting the foundations of network analysis,” Science, vol. 325, pp. 414–

416, July 2009.

[142] M. Matell, E. Shea-Brown, C. Gooch, A. Wilson, and J. Rinzel, “A heterogeneous

population code for elapsed time in rat medial agranular cortex,” Behav. Neurosci.,

vol. 125, no. 1, pp. 54–73, 2011.

[143] J. Jun, P. Miller, A. Hernandes, A. Zainos, L. Lemus, C. Brody, and R. Romo,

“Heterogenous population coding of a short-term memory and decision task,” The

Journal of Neuroscience, vol. 30, pp. 916–929, January 2010.

[144] M. Shamir and H. Sompolinsky, “Implications of neuronal diversity on population

coding,” Neural Computation, vol. 18, pp. 1951–1986, August 2006.

[145] K. Murphy, “Software packages for graphical models.” http://www.cs.ubc.ca/

~murphyk/Software/bnsoft.html, 2015.

[146] L. Breiman, “Hinging hyperplanes for regression, classification and function approx-

imation,” IEEE Transaction on Information Theory, vol. 39, no. 3, pp. 999–1013,

1993.

[147] R. Schalkoff, Pattern Recognition: Statistical, Structural and Neural Approaches.

Singapore: John Wiley & Sons, Inc., 1993.

[148] N. Shental, A. Zomet, T. Hertz, and Y. Weiss, “Pairwise clustering and graphi-

cal models,” in Advances in Neural Information Processing Systems 16 (S. Thrun,

L. Saul, and B. Schölkopf, eds.), pp. 185–192, MIT Press, 2004.

171

http://www.cs.ubc.ca/~murphyk/Software/bnsoft.html
http://www.cs.ubc.ca/~murphyk/Software/bnsoft.html

Bibliography

[149] S. Lange, N. Sunderhauf, and P. Protzel, “Incremental smoothing vs. filtering for

sensor fusion on an indoor uav,” in IEEE International Conference on Robotics and

Automation (ICRA) 2013, (Karlsruhe, Germany), pp. 1773–1778, May 2013.

[150] H. Chiu, X. Zhou, L. Carlone, F. Dellaert, S. Samarasekera, and R. Kumar, “Con-

strained optimal selection for multi-sensor robot navigation using plug-and-play fac-

tor graphs,” in IEEE International Conference on Robotics and Automation (ICRA)

2014), (Hongkong, China), May 2014.

[151] V. Indelman, S. Wiliams, M. Kaess, and F. Dellaert, “Information fusion in nav-

igation systems via factor graph based incremental smoothing,” Robotics and Au-

tonomous Systems, vol. 61, pp. 721–738, August 2013.

[152] M. C. J.T. Rolfe, “Multifactor expectation maximization for factor graphs,” in In-

ternational Conference on Artificial Neural Networks (ICANN) 2010, (Thessaloniki,

Greece), pp. 267–276, September 2010.

[153] P. Mirowski and Y. LeCun, “Dynamic factor graphs for time series modeling,” in

Machine Learning and Knowledge Discovery in Databases, European Conference,

ECML PKDD 2009, (Bled, Slovenia), pp. 128–143, September 2009.

[154] R. Saegusa, G. Metta, G. Sandini, and S. Sakka, “Active motor babbling for senso-

rimotor learning,” in IEEE International Conference on Robotics and Biomimetics

2008 (ROBIO2008), pp. 794–799, February 2009.

[155] A. D’Souza, S. Vijayakumar, and S. Schaal, “Learning inverse kinematics,” in In-

ternational Conference on Intelligence in Robotics and Autonomous Systems (IROS

2001), (Hawaii, USA), pp. 298–303, 2001.

[156] M. Lungarella, G. Metta, R. Pfeifer, and G. Sandini, “Developmental robotics: a

survey,” Connection Science, vol. 15, no. 4, pp. 151–190, 2003.

[157] Y. Demiris and A. Dearden, “From motor babbling to hierarchical learning by im-

itation: a robot developmental pathway,” in the Fifth International Workshop on

Epigenetic Robotics: Modeling Cognitive Development in Robotic Systems, (Nara,

Japan), pp. 31–37, July 2005.

[158] D. Caligiore, T. Ferrauto, D. Parisi, N. Accornero, M. Capozza, and G. Baldassarre,

“Using motor babbling and hebb rules for modeling the development of reaching

with obstacles and grasping,” in International Conference on Cognitive Systems 2008

(CogSys2008), (Karlsruhe, Germany), 2008.

[159] A. Streri and J. Feron, “The development of haptic abilities in very young infants:

From perception to cognition,” Infant Behavior and Development, vol. 28, no. 3,

pp. 290–304, 2005.

[160] K. Konolige and M. Agrawal, “Frameslam: from bundle adjustment to realtime visual

mappping,” IEEE Transactions on Robotics, vol. 24, no. 5, pp. 1066–1077, 2008.

172

Bibliography

[161] A. D’Souza, S. Vijayakumar, and S. Schaal, “Learning inverse kinematics,” in IEEE

International Conference on Intelligent Robots and Systems (IEEE/RSJ), (Maui,

Hawaii, USA), pp. 298–303, 2001.

[162] A. Aristidou and J. Lasenby, “Inverse kinematics: a review of existing techniques

and introduction of a new fast iterative solver,” tech. rep., Cambridge University

Engineering Department, September 2009.

[163] R. Diankov, Automated Construction of Robotic Manipulation Programs. PhD thesis,

The Robotics Institute, Carnegie Mellon University, August 2010.

[164] G. Grudic and P. Lawrence, “Iterative inverse kinematics with manipulator configu-

ration control,” IEEE Transactions on Robotics and Automation, vol. 9, pp. 476–483,

August 1993.

[165] T. Fujiwara, Y. Maeda, and H. Ito, “Learning of inverse-kinematics for robot using

high dimensional neural networks,” in SICE Annual Conference 2013 (SICE2013),

pp. 2743–2748, September 2013.

[166] E. Oyama, A. Agah, K. MacDorman, T. Maeda, and S. Tachi, “A modular neu-

ral network architecture for inverse kinematics model learning,” Neurocomputing,

vol. 38–40, pp. 797–805, 2001.

[167] D. Gorinevsky and T. Connolly, “Comparison of some neural network and scattered

data approximations: The inverse manipulator kinematics example,” Neural Com-

putation, vol. 6, pp. 521–542, May 1994.

[168] S.-W. Kim, J. J. Lee, and M. Sugisaka, “Inverse kinematics solution based on fuzzy

logic for redundant manipulators,” in IEEE/RSJ International Conference on Intel-

ligent Robots and Systems ’93 (IROS’93), vol. 2, pp. 904–910, July 1993.

[169] J. Jih-Gau, “Fuzzy neural network approaches for robotic gait synthesis,” IEEE

Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 30,

pp. 594–601, August 2000.

[170] A. Khwaja, M. Rahman, and M. G. Wagner, Advances in Robot Kinematics: Anal-

ysis and Control, ch. Inverse Kinematics of Arbitrary Robotic Manipulators Using

Genetic Algorithms, pp. 375–382. Springer Netherlands, 1998.

[171] F. Chapelle and P. Bidaud, “A closed form for inverse kinematics approximation of

general 6r manipulators using genetic programming,” in IEEE International Confer-

ence on Robotics and Automation (ICRA) 2001, vol. 4, pp. 3364–3369, 2001.

[172] P. Kalra, P. Mahapatra, and D. Aggarwal, “An evolutionary approach for solving

the multimodal inverse kinematics problem of industrial robots,” Mechanism and

Machine Theory, vol. 41, pp. 213–1229, October 2006.

[173] T. Li-Chun and C. Chih, “A combined optimization method for solving the inverse

kinematics problem of mechanical manipulators,” IEEE Transactions on Robotics

and Automation, vol. 7, pp. 489–499, August 1991.

173

Bibliography

[174] J. Sturm, C. Stachniss, and W. Burgard, “A probabilistic framework for learning

kinematic models of articulated objects,” Journal of Artificial Intelligence Research,

vol. 41, pp. 477–526, August 2011.

[175] P. Artemiadis, P. Katsiaris, and K. Kyriakopoulos, “A biomimetic approach to in-

verse kinematics for a redundant robot arm,” Autonomous Robots, vol. 29, no. 3–4,

pp. 293–308, 2010.

[176] M. Ito, “Mechanisms of motor learning in the cerebellum,” Brain Research, vol. 886,

pp. 237–245, December 2000.

[177] M. McDannald, Y. Takahashi, N. Lopatina, B. Pietras, J. Jones, and G. Schoenbaum,

“Model-based learning and the contribution of the orbitofrontal cortex to the model-

free world,” European Journal of Neuroscience, vol. 35, pp. 991–996, April 2012.

[178] S. Lee, S. Shimojo, and J. O’Doherty, “Neural computations underlying arbitra-

tion between model-based and model-free learning,” Neuron, vol. 81, pp. 687–699,

February 2014.

[179] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. MIT Press,

Cambridge, MA, 1998.

[180] D. Song, K. Huebner, V. Kyrki, and D. Kragic, “Learning task constraints for robot

grasping using graphical models,” in 2010 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS2010), pp. 1579–1585, Oct 2010.

[181] S. Schaal, Adaptive Motion of Animals and Machines, ch. Dynamic Movement Primi-

tives - A Framework for Motor Control in Humans and Humanoid Robotics. Springer

Tokyo, 2006.

[182] J. Aleotti and S. Caselli, “Robust trajectory learning and approximation for robot

programming by demonstrations,” Robotics and Autonomous Systems, vol. 54,

pp. 409–413, May 2006.

[183] S. Calinon, F. Guenter, and A. Billard, “On learning, representing, and generalizing

a task in a humanoid robot,” IEEE Transactions on Systems, Man, and Cybernetics,

Part B: Cybernetics, vol. 37, pp. 286–298, April 2007.

[184] K. Loken, “Imitation-based learning of bipedal walking using locally weighted learn-

ing,” Master’s thesis, The University of British Columbia, 2006.

[185] D. Grimes, R. Chalodhorn, and R. Rao, “Dynamic imitation in a humanoid robot

through nonparametric probabilistic inference,” in Proceedings of Robotics: Science

and Systems, (Philadelphia, USA), August 2006.

[186] A. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation with nonlinear dynam-

ical systems in humanoid robots,” in IEEE International Conference on Robotics and

Automation (ICRA) 2002, vol. 2, pp. 1398–1403, May 2002.

174

Bibliography

[187] N. Delson and H. West, “Robot programming by human demonstration: Adapta-

tion and inconsistency in constrained motion,” in IEEE International Conference on

Robotics and Automation (ICRA) 1996, pp. 30–36, 1996.

[188] K. Mülling, J. Kober, O. Krömer, and J. Peters, “Learning to select and gener-

alize striking movements in robot table tennis,” International Journal of Robotics

Research, vol. 32, no. 3, pp. 280–298, 2013.

[189] S. Calinon, Robot Programming by Demonstration: a Probabilistic Approach. EPFL

Press, 1st edition ed., 2009.

[190] A. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal, “Dynamical move-

ment primitives: learning attractor models for motor behaviors,” Neural Computa-

tion, vol. 25, pp. 328–373, February 2013.

[191] E. Rückert, G. Neumann, M. Toussaint, and W. Maass, “Learned graphical models

for probabilistic planning provide a new class of movement primitives,” Frontiers in

Computational Neuroscience, vol. 6, January 2013.

[192] S. Furber, D. Lester, L. Plana, J. Garside, E. Painkras, S. Temple, and A. Brown,

“Overview of the spinnaker system architecture,” IEEE Transactions on Computers,

vol. 62, pp. 2454–2467, December 2013.

[193] E. Painkras, L. Plana, J. Garside, S. Temple, F. Galluppi, C. Patterson, D. Lester,

A. Brown, and S. Furber, “Spinnaker: A 1w 18-core system-on-chip for massively-

parallel neural network simulation,” IEEE Journal of Solid-State Circuits, vol. 48,

pp. 1943–1953, August 2013.

[194] M. Khan, D. Lester, L. Plana, A. Rast, X. Jin, E. Painkras, and S. Furber, “Spin-

naker: Mapping neural networks onto a massively-parallel chip multiprocessor,”

in International Joint Conference on Neural Networks (IJCNN 2008), (Hongkong,

China), 2008.

[195] L. Plana, J. Bainbridge, S. Furber, S. Salisbury, Y. Shi, and J. Wu, “An on-chip

and inter-chip communications network for the spinnaker massively-parallel neural

net simulator,” in The Second ACM/IEEE International Symposium on Networks-

on-Chip, (Newcastle, UK), 2008.

[196] M. Lin, I. Lebedev, and J. Wawrzynek, “High-throughput bayesian computing ma-

chine with reconfigurable hardware,” in The 18th annual ACM/SIGDA International

Symposium on Field Programmable Gate Arrays (FPGA’10), (Monterey, USA), 2012.

[197] X. Jin, M. Luján, M. Khan, L. Plana, A. Rast, S. Welbourne, and S. Furber, “Al-

gorithm for mapping multilayer bp networks onto the spinnaker neuromorphic hard-

ware,” in 2010 Ninth International Symposium on Parallel and Distributed Comput-

ing (ISPDC), pp. 9–16, July 2010.

175

Bibliography

[198] F. Galluppi, S. Davies, A. Rast, T. Sharp, and S. Furber, “A hierarchical con-

figuration system for a massively parallel neural hardware platform,” in The 9th

Conference of Computing Frontiers, (Cagliari, Italy), 2012.

[199] E. Stromatias, F. Galluppi, C. Patterson, and S. Furber, “Power analysis of large-

scale, real-time neural networks on spinnaker,” in The 2013 International Joint Con-

ference on Neural Networks (IJCNN), pp. 1–8, August 2013.

[200] L. Crockett, R. Elliot, M. Enderwitz, and R. Stewart, The Zynq Book: Embedded

Processing with ARM Cortex-A9 on the Xilinx Zynq-7000 All Programmable SoC.

University of Strathclyde, Glasgow, UK, 2014.

[201] IEEE, IEEE Standard for Binary Floating-Point Arithmetic. The Institute of Elec-

trical and Electronics Engineers, Inc., 2008.

[202] T. Czajkowski, Physical Synthesis Toolkit for Area and Power Optimization on FP-

GAs. PhD thesis, Department of Electrical and Computer Engineering, University

of Toronto, Canada, 2008.

[203] Xilinx, Spartan-6 FPGA Memory Controller. Xilinx, Inc., August 2010.

[204] L. Semiconductor, Implementing High-Speed DDR3 Memory Controllers in a Mid-

Range FPGA. Lattice Semiconductor, March 2010.

[205] E. Marchi, M. Cervetto, and M. Tenorio, “A ddr3 memory based time interleaving

fpga implementation for isdb-t standard,” in Programmable Logic (SPL), 2011 VII

Southern Conference on, pp. 1–5, April 2011.

[206] S. Aqueel and K. Khare, “Design and fpga implementation of ddr3 sdram controller

for high performance,” International Journal of Computer Science & Information

Technology (IJCSIT), vol. 3, no. 4, pp. 101–110, 2011.

[207] N. Margolus, “An fpga architecture for dram-based systolic computations,” in The

5th Annual IEEE Symposium on Field-Programmable Custom Computing Machines,

pp. 2–11, April 1997.

[208] P. Chu, RTL Hardware Design Using VHDL: Coding for Efficiency, Portability, and

Scalability. Wiley-IEEE Press, 2006.

[209] D. Capalija and T. Abdelrahman, “An architecture for exploiting coarse-grain par-

allelism on fpgas,” in International Conference on Field-Programmable Technology

2009 (FPT 2009), pp. 285–291, December 2009.

[210] P. Banerjee, M. Haldar, A. Nayak, V. Kim, D. Bagchi, S. Pal, and N. Tripathi,

“A behavioral synthesis tool for exploiting fine grain parallelism in fpgas,” in Dis-

tributed Computing (S. Das and S. Bhattacharya, eds.), vol. 2571 of Lecture Notes

in Computer Science, pp. 246–256, Springer Berlin Heidelberg, 2002.

[211] S. Aluru and N. Jammula, “A review of hardware acceleration for computational

genomics,” IEEE Design Test, vol. 31, pp. 19–30, February 2014.

176

Bibliography

[212] A. Papadopoulosa, I. Kirmitzogloub, V. Promponasb, and T. Theocharides, “Fpga-

based hardware acceleration for local complexity analysis of massive genomic data,”

INTEGRATION, the VLSI Journal, vol. 46, pp. 230–239, June 2013.

[213] Xilinx, LogiCORE IP AXI DMA v7.1. Xilinx, Inc., April 2014.

[214] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, M. Millberg, J. Oberg, K. Tiensyrja,

and A. Hemani, “A network on chip architecture and design methodology,” in IEEE

Computer Society Annual Symposium on VLSI 2002, pp. 105–112, 2002.

[215] S. Sarkar, G. Kulkarni, P. Pande, and A. Kalyaraman, “Network-on-chip hardware

accelerators for biological sequence alignment,” IEEE Transactions on Computers,

vol. 59, no. 1, pp. 29–41, 2010.

[216] S. Furber, S. Temple, and A. Brown, “On-chip and inter-chip networks for model-

ing large-scale neural systems,” in IEEE International Symposium on Circuits and

Systems 2006 (ISCAS 2006), May 2006.

[217] A. Rast, Y. Shufan, M. Khan, and S. Furber, “Virtual synaptic interconnect using an

asynchronous network-on-chip,” in IEEE International Joint Conference on Neural

Networks 2008 (IJCNN 2008), pp. 2727–2734, June 2008.

[218] M. Isard, J. MacCormick, and K. Achan, “Continuously-adaptive discretization for

message-passing algorithms,” in Advances in Neural Information Processing Systems

21 (D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, eds.), pp. 737–744, Curran

Associates, Inc., 2009.

[219] C. Hollabaugh, Embedded Linux: Hardware, Software, and Interfacing. Addison-

Wesley Professional, 1st edition ed., March 2002.

[220] Xilinx, PetaLinux Tools Application Development Guide. Xilinx, Inc., June 2014.

[221] Xilinx, PetaLinux Tools Board Bringup Guide. Xilinx, Inc., June 2014.

[222] J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux Device Drivers. O’Reilly Media

Inc., 3rd edition ed., January 2005.

[223] M. Mitchell, J. Oldham, and A. Samuel, Advanced Linux Programming. New Riders

Publishing, 1st edition ed., January 2001.

[224] Xilinx, PetaLinux Tools Getting Started Guide. Xilinx, Inc., June 2014.

[225] J. Eugenio and M. Estrada, “Hardware/software fpga architecture for robotics ap-

plications,” in the 5th International Workshop on Reconfigurable Computing: Archi-

tectures, Tools and Applications, ARC’09, (Berlin, Heidelberg), pp. 27–38, Springer-

Verlag, 2009.

[226] A. Inc., E64G401 Epiphany 64-core Microprocessor Datasheet. Adapteva Inc., March

2011.

177

Bibliography

[227] A. Toga, K. Clark, P. Thompson, D. Shattuck, and J. V. Horn, “Mapping the human

connectome,” Neurosurgery, vol. 71, no. 1, pp. 1–5, 2012.

[228] M. Cao, J.-H. Wang, Z.-J. Dai, X.-Y. Cao, L.-L. Jiang, F.-M. Fan, X.-W. Song, M.-R.

Xia, N. Shu, Q. Dong, M. Milham, F. Castellanos, X.-N. Zuo, and Y. He, “Topo-

logical organization of the human brain functional connectome across the lifespan,”

Developmental Cognitive Neuroscience, vol. 7, no. 0, pp. 76–93, 2014.

[229] J. Richiardi, S. Achard, H. Bunke, and D. V. D. Ville, “Machine learning with

brain graphs: Predictive modeling approaches for functional imaging in systems

neuroscience,” IEEE Signal Processing Magazine, vol. 30, pp. 58–70, May 2013.

[230] M. Jordan and T. Sejnowski, Graphical Models: Foundations of Neural Computation

(Computational Neuroscience). A Bradford Book: The MIT Press, 2001.

[231] W. Shirer, S. Ryali, E. Rykhlevskaia, V. Menon, and M. Greicius, “Decoding subject-

driven cognitive states with whole-brain connectivity patterns,” Cerebral Cortex,

vol. 22, pp. 158–165, January 2012.

[232] J. Heinzle, M. Wenzel, and J. Haynes, “Visuomotor functional network topology

predicts upcoming tasks,” The Journal of Neuroscience, vol. 32, pp. 9960–9968, July

2012.

[233] D. Danks, Unifying the Mind: Cognitive Representations as Graphical Models. The

MIT Press, September 2014.

[234] A. Saxena, A. Jain, O. Sener, A. Jami, D. Misra, and H. Koppula, “Robo-

brain: Large-scale knowledge engine for robots.” http://www.cs.cornell.edu/ asax-

ena/papers/robobrain2014.pdf, 2014.

[235] W. Magazine, “The plan to build a massive online brain for all the world’s robots.”

http://www.wired.com/2014/08/robobrain/, 2014.

[236] G. F. Jr., “Codes on graphs: normal realizations,” IEEE Transactions on Informa-

tion Theory, vol. 47, pp. 520–548, February 2001.

[237] H.-A. Loeliger, J. Dauwels, J. Hu, S. Korl, L. Ping, and F. Kschischang, “The factor

graph approach to model-based signal processing,” Proceedings of the IEEE, vol. 95,

pp. 1295–1322, June 2007.

178

	Introduction
	From Artificial Intelligence to Probabilistic Graphical Models
	Cognition for Technical Systems
	The Emergence of Graphical Models

	Motivation and Contribution
	Organization

	Modeling in Factor Graphs
	Probabilistic Graphical Models
	Inference and Learning in Factor Graphs
	Building a Factor Graph Model
	Inference Through Belief Propagation
	Parameter Learning

	Population Coding Representation
	Encoding and Decoding Principle
	Performance Evaluation

	Software Framework Development

	Reasoning in Factor Graphs
	Application in Machine Learning
	Factor Graph for Regression
	Factor Graph for Classification
	Factor Graph for Sensor Fusion

	Factor Graph for Dynamic Processes
	Application in Robotics
	Kinematic Model of a Mobile Robot
	Kinematic Model of a Manipulator
	Model-based Learning for Mobile Manipulator

	Discussion

	Factor Graph in SpiNNaker
	Introduction to SpiNNaker
	Mapping Factor Graph on SpiNNaker System
	Neurons Population Mapping
	FG-Nodes Mapping
	Mapping and Routing Factor Graph in SpiNNaker

	Performance Evaluation and Optimization Strategy
	Discussion

	Factor Graphs in System-On-Chip
	Introduction to Xilinx Zynq-7000
	Internal Architecture
	Software Development
	Technical Considerations

	Method-1: FPGA as Accelerator
	Method-2: Factor Graph Framework on FPGA
	Factor and Variable Node Controller
	Message Encoder and Decoder
	Putting Them All Together
	Evaluation

	Discussion

	Evaluation and Outlook
	General Evaluation
	On the Applicability of our PC-based Factor Graph Framework
	The Mapping Strategy on the SpiNNaker System
	The Factor Graph on a Chip

	Another Possible Platform for Embedded Factor Graphs
	Beyond Limited Hardware Implementations

	Summary
	Appendix-A
	Beyond the Standard Factor Graph

	Appendix-B
	Discrete Factor Graph with Population Coding

	Appendix-C
	Embedded Factor Graph on SoC

