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Introduction

The study of the fundamental laws of nature and their contribution to the development of the universe is one
of the most fascinating chapters of today’s basic research in physics. The discovery of the Higgs particle
at CERN [1, 2] confirms the Standard Model of particle physics (SM) impressively and with great detail,
but it does not explain all particle phenomena. Among these are several observed phenomena that definitely
involve physics beyond the SM (BSM):
Based on the standard model of cosmology and according to the results from the Planck mission [3] the
known universe contains only 4.9% of ordinary matter. A huge part of theremainder is so-calleddark
matter (DM). Since it is "dark", it does not interact directly, or only very weakly, with the visible sector,
but it has huge effects due to gravity. This phenomenon is related to particle physics as it seems difficult to
explain these observations on vastly different scales by modifications of gravity.
Extensions of the SM are also motivated by experiments which showneutrino flavor oscillations. Due to
gauge invariance, the SM neutrinos have to be massless at the renormalizable level and hence the flavor
number should be a conserved quantity. This means the observed oscillations indicate that the neutrinos
have a mass, and therefore directly relate to new physics beyond the SM.
A third phenomenon, and probably one of the most important open questions inparticle physics and cos-
mology, is the origin of thebaryon asymmetry of the universe(BAU). The BAU describes the present excess
of matter over anti-matter and can be expressed as the baryon-to-photon ratio nB

nγ
≈ 6 · 10−10 [4–8]. Theories

that explain this excess are collectively called Baryogenesis. Of coursethe boring answer could be that the
universe has always been baryon asymmetric. But, due to symmetry reasons from a theoretical point of
view, and also since there is no evidence of large scale detections for the opposite, it is widely believed that
the primordial universe was baryon symmetric. See for example [9] for a review.
Sakharov stated three minimal conditions that need to be fulfilled for a successful Baryogenesis in his
article [10] from 1967. Those areB violation, C-symmetry andCP-symmetry violation, and interactions
out of thermal equilibrium. The first Sakharov condition is mandatory:B is the number of baryons minus
anti-baryons, which, if conserved, does not allow for dynamic generation of the baryon asymmetry.C and
CPare the charge and charge-parity symmetry, respectively. IfC is conserved, for everyB violating process
a charge conjugated one would exist. Likewise, ifCP is conserved, every number of left- and right-handed
baryons has to be equal to the number of right- and left-handed anti-baryons such that in total no baryon
asymmetry could be generated. The last statement, i.e. thermal non-equilibrium,is necessary for breaking
T symmetry. Assuming thatB or L-number violating processes are present, theCPT theorem otherwise
implies that there are no asymmetries in thermal equilibrium.L is the lepton number.
In the past, Baryogenesis was only thought to be possible by theCPviolating decay of some heavy particles
of grand unified theories (GUTs). Later, the discovery of sphaleron processes in the SM put GUT particle
baryogenesis under pressure. Sphalerons conserve the valueB− L but violateB+ L [11]. Hence, any
primordial baryon asymmetry would have been washed out at the time of electroweak symmetry breaking.
Later on, in the year 1986, Fukugita and Yanagida suggested that an asymmetry generated in the leptonic
sector could also be converted into a baryon asymmetry by those sphaleronprocesses [12] and hence explain
the BAU without requiring GUT theories. This was the birth of Leptogenesis.See for example [13–15] for
recent reviews. In terms of Sakharov conditions,B violation would be realized by the sphaleron process, and
C andCP violation are in principle already included in the SM. However, the SM’sCP-violating Cabibbo-
Kobayashi-Maskawa (CKM) and Dirac phases are much too small to explainthe BAU. Particle processes

1



out of equilibrium were also available in several stages of the early universe, but predicted deviations from
thermal equilibrium are too small.
To generate the BAU from a lepton asymmetry, which is converted into a baryon asymmetry via sphaleron
processes, models of Leptogenesis have to take place at temperatures above, and typically far above, the
electroweak scale. At this stage, the universe cannot simply be described as a weakly interacting dilute
plasma. To derive the lepton asymmetry, the time evolution of particle distribution functions has to be
considered. However, due to the primordial plasma, it is questionable whether those should be done by
semiclassical Boltzmann equations. Therefore, substantial progress was made in the theoretical description
of Non-Equilibrium Quantum Field Theory (NEQFT) related to the Closed-Time-Path (CTP) formalism
[16–19]. Within the CTP, the time evolution of particle distribution functions can be derived from the
Kadanoff-Baym equations, which are related to Boltzmann, Quantum-Boltzmann and Langevin equations
[20–28]. Regarding Leptogenesis, particular progress was also madein calculating thermal corrections to
theCP asymmetry [29–35] and other related questions [36–44].
This thesis contributes on a possible Leptogenesis scenario. Like in most other Leptogenesis models, the
SM is extended by a number of right-handed neutrinos (RHN) with Majoranamasses. This extension
is particularly attractive to the physics community, since the active neutrinos in the SM only come with
left-handed chirality. Furthermore, they are the only SM fermions that do not have a right-handed partner.
See [45] for a nice review on the phenomenology of RHN. In this framework, the SM neutrinos acquire small
masses from mixing through the seesaw mechanism [46–50]. By adding this partner, the resulting theory
may also be embedded in a Grand Unified Theory (GUT) such as SO(10) [51–53]. Under restriction to a
renormalizable theory, the RHN only interact with the weak sector through Yukawa interactions. Therefore,
a possible keV mass right-handed neutrino may provide a natural DM candidate [54,55]. However, though
their masses are in principle unknown and can range between zero and theGUT scale, there are exclusion
windows [56]. Hence, the RHN may be able to explain the above questions allat once.
If those neutrinos exist, a lepton asymmetry is most likely generated by out-of-equilibrium decays of heavy
RHNs into Higgs bosons and leptons. This is the leading order (LO) dominant process in the non-relativistic
(NR) limit, i.e. in case the RHNs have masses much larger than the actual temperature at which the decay
happens. However, if the RHNs have a mass comparable to the temperature or even smaller up to the
ultra-relativistic (UR) limit, the aboveLO process is kinematically suppressed, and radiative corrections
become relevant for Leptogenesis. Hence, for a complete calculation of these interactions, ranging from the
NR to the UR limit, next-to-leading order effects (NLO) must be considered too. The radiative corrections
through massless particle exchanges are afflicted by soft and collinear divergences. Recently, those are
studied in the NR limit [57, 58], and first calculations regarding RHN production in the UR limit have
been performed [59, 60]. In other papers [43, 61–63] radiative corrections have been included by means
of modified dispersion relations, i.e. thermal masses. However, those capture only partly theNLO effects.
Hence, aNLO calculation of the RHN production rate is not available in the full range from the non- to
the ultra-relativistic limit, so far.1 This is important in the weak washout regime, in resonant leptogenesis
and in ARS-type scenarios, for instance. Related to the issue of the RHN production is the lepton flavor
equilibration rate [65–67] and the production of photons in the quark gluonplasma (QGP) [68, 69]. The
lepton flavor equilibration rate determines the temperature at which flavor effects become important for
calculations of the lepton asymmetry.
The present investigation deals with the production rate of massive and massless RHNs. Based on the
two-particle-irreducible (2PI) formulation of the Schwinger-Keldysh or Closed-Time-Path formalism, tools
are derived to analytically and numerically calculate thermal production ratesand transport coefficients
in non-equilibrium QFT. This has the advantage of being a first principle approach that does not rely on
semiclassical approximations, and directly providing the correct description of the physical screening in
the thermal plasma in terms of resummed propagators. The screening regulates certain divergences that

1 Very recently, [64] contributed on the relativistic regime.
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may appear in tree-level scattering diagrams. In this work, the out-of-thermal-equilibrium right-handed
neutrinos are described in a thermal equilibrated bath of the other particles.Their differential and total
production rate is calculated within several approximations and limits, and are compared to the literature.
However, two inconsistencies are found in those calculations that are at least not explained by other authors.
The first one appears when "naively" resumming the Higgs self-energy, and a workaround is provided in this
thesis. The second inconsistency describes an effect, where actually suppressed processes of nearly massless
particles is enhanced by the Bose-Einstein distribution. This enhancement, that appears in perturbative
calculations, prohibits the congruence of massless contributions with nearlymassless contributions to the
RHN production rate.2

Outline

The introductory Chapter 1 provides a brief overview of the Schwinger-Keldysh formalism. It explains how
the Closed-Time-Path emerges in the path integral formulation of NEQFT, and how the Kadanoff-Baym
equations are derived in the 2PI approach. After introducing the WignerSpace and the Gradient Expansion,
the tree-level and resummed variants of several 2-point functions are shown and various associated relations
are summarized.
In the 2nd chapter, the SM extension by means of the RHN and the corresponding Feynman rules are shown.
The following section discusses renormalization matters in thermal field theory.Afterwards, a method is
introduced to easily provide boundary conditions for massive and massless loop integrals. These integrals
possibly cannot be solved in dimensional regularization due to the particle distribution functions. The
method is exemplified by an analytical calculation of a generic spectral function in thermal equilibrium
using tree-level functions. At the end of Chapter 2, the Higgs and lepton self-energies are obtained.
Chapter 3 is devoted to the production rate of the RHN. First the quantum evolution equation for the particle
distributions of RHNs is derived. In Section 3.3, theLO differential production rate for RHNs in the NR
limit is obtained. Section 3.4 addresses the case of massless neutrinos in the URlimit. Furthermore, theLO
rate is derived within perturbative approximations, but also using resummedHiggs and lepton propagators.
Existing results are thereby verified. Section 3.5 concerns the productionrate in the intermediate regime
between the UR and NR limit, using again the perturbative and resummed methods.The non-relativistic
expansion coefficients are derived and fitted to the numerical results at the end of this section.
The considerations used to obtain precise numerical results are described in Chapter 4.
Chapter 5 of this dissertation summarizes the results and provides an outlook topossible further work.

2 Very recently, a similar issue was described in [70].
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Conventions

In this thesis, the following conventions are used.

• Planck’s constant and the speed of light are set toh = c = 1 in natural units.

• The Minkowski metric is fixed bygµν = diag(1,−1,−1,−1).

• If not stated otherwise,k2 always meanskµkµ for any 4-vectork. Likewise,k4 is the same as(k2)2.
However,k0 should be regarded as the zeroth component ofk.

• The plasma 4-vector is calledu with normalizationu2 = 1 and positiveu0. The temperatureT = β−1

is part of the definition of the particle distribution functionf (u · p).

• If not stated otherwise, the integrals
∫

dk0, d|~k| and d cos∡ always run from−∞ . . .∞, 0 . . .∞ and
−1 . . .1, respectively.
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Chapter

1
Schwinger-Keldysh Formalism

The In-Out formalism is the usual method to describe scattering problems in QFT. It is designed to compute
S-matrix elements for processes that consider free particles coming in fromthe infinite past and going out to
the infinite future. At some time scale, these particles are thought to "see" each other and hence interact by
adiabatically switching on and off their interactions. Adiabatically in this sense means that the initial state
vector in the infinite past should be the same as the outgoing state vector in the infinite future. In contrast,
this work studies particle production in the early universe at finite density, where not all particles necessarily
have to be in equilibrium. Hence, the initial state may be out of equilibrium while the outgoing state should
approach equilibrium at some time. For this purpose Schwinger first suggested a framework [16], that was
further developed by Keldysh and others [17–19]. This so called Schwinger-Keldysh or In-In formalism
is an extension of the In-Out formalism that describes particle production,the energy density, the particle
number density and more, in time developing the density matrix of a quantum systemfrom an initial state
at timeti to final timet f . In the following section, only the main difference of this formalism to the In-Out
formalism, the Closed-Time-Path, is derived.

1.1 Closed-Time-Path

The density matrix̂ρ has the physical interpretation of a probabilitypn for finding the quantum mechanical
system in a state|ψn〉

ρ̂(t) =
∑

n

pn|ψn(t)〉〈ψn(t)| . (1.1)

Even if Equation (1.1) is highly compact,pn is a probability and satisfies
∑

n

pn = 1 . (1.2)

In quantum mechanics, any observable quantityO is related to an operator̂O in the Heisenberg picture
through its expectation value

〈O〉 = Tr[ρ̂ Ô] . (1.3)

Equation (1.3) involves the tracing of quantum degrees of freedom, i.e. fluctuations, and statistical degrees
of freedom. In QFT, the trace is realized by integrating over all fields at timet at all spatial points3. The

3 The spatial dependences are suppressed.
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normalization constantN is absorbed into the definition of the integration measure such that〈1〉 = 1:

〈O(t)〉 =
∫

Dψ[t,t]〈ψ(t)|ρ̂(t)Ô(t)|ψ(t)〉 . (1.4)

Here, the subscript at the integration measureDψ provides the integral support in terms of a closed interval
of time slices. This means that modulo the normalization constant,DψC means

DψC =
∏

t∈C

∏

∀~x
dψ(t, ~x) . (1.5)

If the density matrix is only known at some initial timeti , expectation values can still be evaluated att by
time evolving the corresponding states (t > ti):

|ψ(t)〉 = U(t, ti)|ψ(ti)〉 = U†(ti , t)|ψ(ti)〉 = e−iĤ(t−ti−iε)|ψ(ti)〉 (1.6)

=

∫

Dψ̃[ti ,t]|ψ̃(t)〉e
i
∫ t
ti

dx4L(ψ̃, ˙̃ψ;x) 〈ψ̃(ti)|ψ(ti)〉
︸         ︷︷         ︸

∏

~y
δ(ψ̃(ti ,~y)−ψ(ti ,~y))≡δ(ψ̃(ti)−ψ(ti))

. (1.7)

The infinitesimal positiveε guaranties the convergence of the time evolution and is absorbed into the time
arguments. In this way, one obtains

〈O(t)〉 =
∫

Dψ[ti ,ti ]〈ψ(ti)|ρ̂(ti)U(ti , t)Ô(t)U(t, ti)|ψ(ti)〉 . (1.8)

Note that the state vectors can be evolved to any timet f as long as the time of measurementt is betweenti
andt f :

〈O(t)〉 =
∫

Dψ[ti ,ti ]〈ψ(ti)|ρ̂(ti)U(ti , t f )U(t f , t)Ô(t)U(t, ti)|ψ(ti)〉 (1.9)

=

∫

Dψ[ti ,ti ]Dψ
+
[ti ,t]
〈ψ(ti)|ρ̂(ti)U(ti , t f )U(t f , t) Ô(t)|ψ+(t)〉

︸        ︷︷        ︸

|ψ+(t)〉O+(t)

e
i
∫ t
ti

dx4L(ψ+,ψ̇+;x)
δ
(

ψ+(ti) − ψ(ti)
)

(1.10)

=

∫

Dψ[ti ,ti ]Dψ
+
[ti ,t]
Dψ̃+

[t,t f ]
Dψ−

[ti ,t f ]
〈ψ(ti)|ρ̂(ti)|ψ−(ti)〉

e
i
∫ ti
t f

dx4L(ψ−,ψ̇−;x)
δ
(

ψ−(t f ) − ψ̃+(t f )
)

ei
∫ t f
t dx4L(ψ̃+, ˙̃ψ

+
;x)δ

(

ψ̃+(t) − ψ+(t)
)

O+(t)ei
∫ t
ti

dx4L(ψ+,ψ̇+;x)
δ
(

ψ+(ti) − ψ(ti)
)

. (1.11)

The tilde, plus and minus indices have no real meaning, except to separate the different field variables.
After integrating out the deltas, the tilde can be dropped and only plus and minus fields are considered.
Consequently,〈O(t)〉 is expressed as

〈O(t)〉 =
∫

Dψ+
[ti ,t f ]
Dψ−

[ti ,t f ]
〈ψ+(ti)|ρ̂(ti)|ψ−(ti)〉δ

(

ψ−(t f ) − ψ+(t f )
)

O+(t)ei
∫ ti
t f

dx4L(ψ−,ψ̇−;x)
ei

∫ t f
ti

dx4L(ψ+,ψ̇+;x) , (1.12)

which describes the expectation value ofÔ(t) measured by the state|ψ+(t)〉 in a system prepared atti by ρ̂.
The term

∫

Dψ+
[ti ,ti ]
Dψ−

[ti ,ti ]
〈ψ+(ti)|ρ̂(ti)|ψ−(ti)〉 (1.13)
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describes the initial ensemble average. Due to the infinitesimal imaginary part of the time arguments, the+
and− fields can be regarded as one field living ont + iε and ont − iε. The time contours can be combined
into one contourC ≡ C+ ⊕ C− called the CTP or Closed-Time-Path contour as sketched in Figure 1.1.

ti t fC+

C−

ℜ(t)

ℑ(t)

Figure 1.1: CTP contour in the complext plane.

Then, Equation (1.12) can be written even more compactly. However, first,the general observablêO must
be substituted by time-orderedn-point Green-functions. After removinĝO in (1.4) and adding the current
term i

∫ t f

ti
d4xJ(x)ψ(x) to the Lagrangian, the generating functional lnZ[J±] for time-ordered correlation

functions is obtained. Here, time-ordering is meant to be the path-ordering along the CTP. The derivative of
ln Z[J±] with respect to the sources can be written as

〈TCψ(t1) . . . ψ(tn)〉 =
∫

DψC〈ψ+(ti)|ρ̂(ti)|ψ−(ti)〉ψa1(t1) . . . ψ
an(tn)e

i
∫ t f
ti

dx4L(ψC,ψ̇C;x) . (1.14)

L(ψC, . . .) is the short form forL(ψ+, . . .) −L(ψ−, . . .), and thea1 to an are the CTP indices±.
The following part focuses on the density matrix. This can be parametrized as

〈ψ+(ti)|ρ̂(ti)|ψ−(ti)〉 = Nρe
i f [ψC] (1.15)

with

f [ψC] =
∞∑

n=0

∫ t f

ti
d4x1 . . .d

4xn

∑

a1,...,an=±
αa1...an(x1, . . . , xn)ψ

a1(x1) . . . ψ
an(xn) . (1.16)

Nρ is a normalization constant. Theα’s determine the initial correlations, vanish for any time argument
t , ti , and have to fulfillρ̂ to be hermitian, becausêρ must have real eigenvalues. If initial cross correlations
between+ and− fields are neglected,f can be absorbed into the Lagrangian and hence into the definitions
of the sourcesJ±, the masses and the couplings. Therefore, the initial conditions formally disappear but
re-enter as initial conditions for then-point Green-functions.
Now the generating functional of time-ordered correlation functions has the usual form

W[J±] = i ln Z[J±] = i ln
∫

DψCei
∫ t f
ti

d4xL(ψC) . (1.17)

Consequently, the 1PI effective action can be derived by a Legendre transformation with respectto J+ and
J−. Of course, highernPI effective actions can be obtained by addingn-point sources to the Lagrangian and
the corresponding Legendre transform, as it is known from the vacuumtheory.4 The 2PI effective action
especially is the starting point in Section 1.3, where the evolution equations forthe 2-point functions are
formulated. Therefore, some notational conventions need to be introduced. As a last remark,t f is set to
infinity to include correlation functions for arbitrary large times. However,ti still should be finite since the
system would otherwise have an infinite amount of time to equilibrate until a measurement is done. This
means that by settingti to −∞, all correlation functions would have their equilibrium forms. Nevertheless,
ti can be set to zero for simplicity.

4 See for example [71] for details.
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1.2 2-Point Functions in the CTP

In many cases, it is sufficient to consider only 2-point functions. Their general structure is described in this
section. Due to the two time branches of the closed time path, it is possible to construct four different 2-point
functions. These are the time-orderedG++, the anti-time-orderedG−−, and the "greater"G−+ = G> and
"less"G+− = G< Wightman-functions. They are defined in operator notation, in position space, in terms
of a generic charged bosonic field operatorφ in the Heisenberg picture, that has to obey the equal time
commutation relations for canonical quantization

[

φ(x),φ†(y)
]
∣
∣
∣
∣
∣
x0=y0

=
[

φ̇(x), φ̇†(y)
]
∣
∣
∣
∣
∣
x0=y0

= 0 (1.18)

[

φ(x), φ̇†(y)
]
∣
∣
∣
∣
∣
x0=y0

= iδ(3)(~x−~y) , (1.19)

through

iG++
φ (x,y) = 〈Tφ(x)φ(y)†〉 = θ(x0 − y0)iG>

φ(x,y) + θ(y0 − x0)iG<
φ(x,y) (1.20)

iG−−φ (x,y) = 〈T̄φ(x)φ(y)†〉 = θ(y0 − x0)iG>
φ(x,y) + θ(x0 − y0)iG<

φ(x,y〉 (1.21)

iG>
φ(x,y) = 〈φ(x)φ(y)†〉 (1.22)

iG<
φ(x,y) = 〈φ(y)†φ(x)〉 . (1.23)

T andT̄ are the time-ordering and anti-time-ordering operator. Similar relations hold for a fermion fieldψ:

{

ψ(x),ψ(y)
}
∣
∣
∣
∣
∣
x0=y0

=
{

ψ̄(x), ψ̄(y)
}
∣
∣
∣
∣
∣
x0=y0

= 0 (1.24)

{

ψ(x), ψ̄(y)
}
∣
∣
∣
∣
∣
x0=y0

= iδ(3)(~x−~y)1 , (1.25)

iG++
ψ (x,y) = 〈Tψ(x)ψ̄(y)〉 = θ(x0 − y0)iG>

ψ(x,y) + θ(y0 − x0)iG<
ψ(x,y) (1.26)

iG−−ψ (x,y) = 〈T̄ψ(x)ψ̄(y)〉 = θ(y0 − x0)iG>
ψ(x,y) + θ(x0 − y0)iG<

ψ(x,y〉 (1.27)

iG>
ψ(x,y) = 〈ψ(x)ψ̄(y)〉 (1.28)

iG<
ψ(x,y) = −〈ψ̄(y)ψ(x)〉 . (1.29)

However, even if there are four Wightman functions, only two of them are really independent. This reflects
the doubling of the degrees of freedom in thermal non-equilibrium. The two equations that relate those four
functions areG++ + G−− = G> + G<, which already holds on operator level, and the Kramers-Kronig
relation below.
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In fact, it can be useful in practical calculations to distinguish between several redefinitions written out ex-
plicitly in the following table and shown diagrammatically in Figure 1.2:

hermitian propagator GH = 1
2(G

++ −G−−) = 1
2(G

R+GA)

anti-hermitian/ spectral propagatorGA = 1
2(iG

> − iG<) = 1
2(iG

R− iGA)

statistical propagator GF = 1
2(G

++ +G−−) = 1
2(G

> +G<)

retarded propagator iGR = iGH +GA = iG++ − iG< = iG> − iG−−

advanced propagator iGA = iGH −GA = iG++ − iG> = iG< − iG−−

"less" propagator iG< = iGF −GA = iG++ − iGR = iG−− + iGA

"greater" propagator iG> = iGF +GA = iG−− + iGR = iG++ − iGA

time-ordered propagator G++ = GF +GH = G< +GR = G> +GA

anti-time-ordered propagator G−− = GF −GH = G> −GR = G< −GA

Table 1.1: Relations between CTP 2-point functions.

−iA H

F

< −−

R

>++

A

Figure 1.2: This diagram is a possible visualization of the above set of redefinitions. Functions outside of the dashed triangle
are calculated via addition or subtraction of the inner ones according to the arrows as explained by the example:
GH +GF = G++ andGF −GH = G−−. Likewise, the inner functions modulo a factor of 2 are calculated from
the outside ones:G−− +G++ = 2GF andG++ −G−− = 2GH .
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1.3 Kadanoff-Baym Equations in the2PI Approach

With the record of the general structure of 2-point functions at hand, their evolution equations can be derived.
For a generic bosonic fieldφ and a fermionic fieldψ with vanishing field expectation values〈φ〉 = 〈ψ〉 = 0,
the 2PI effective action has the representation

Γ
2PI[∆,S] = itr[∆(0)−1

∆] − itr[S(0)−1
S] + itr ln ∆

−1 − itr ln S−1 + Γ2[∆,S] . (1.30)

∆ andS are dressed 2-point functions forφ andψ respectively, andΓ2 is the sum of all 2-particle irreducible
(2PI) vacuum graphs.∆(0) andS(0) are considered to be the tree-level functions.

Γ
2PI[∆,S] determines the equations of motion for∆ andS by the stationarity conditions

δΓ

δ∆
= 0 ,

δΓ

δS
= 0 . (1.31)

From these, the Kadanoff-Baym-equations for a general bosonic and a fermionic field can be constructed.
By evaluating the functional derivatives in (1.31), the stationarity conditions for ∆, and analogously forS,
become

δΓ[∆,S]

δ∆ba(v,u)
= i∆(0) ab−1

(u,v) − i∆ab−1
(u,v) +

δΓ2[∆,S]

δ∆ba(v,u)
= 0 (1.32)

in CTP notation and position space.a and b are the CTP indices. The definitions of the bosonic and
fermionic self-energy can then be read of modulo conventional signs:

Π
ab(u,v) = iab

δΓ2[∆,S]

δ∆ba(v,u)
(1.33)

Σ/ab(u,v) = −iab
δΓ2[∆,S]

δS/ba(v,u)
. (1.34)

The additional minus sign in (1.34) compensates the minus that appears when the closed fermionic loop
in Γ2 is opened. SinceS andΣ are Dirac vectors, Equation (1.34) is written in a slashed notation. In this
convention,−i times the self-energy is the sum of the corresponding diagrams multiplied bya andb. After
a convolution of (1.32) with∆bc(v,w) and renaming some indices, one obtains

(−∂2
u −m2

φ)i∆
ab(u,v) + i

∑

c=±
c
∫ ∞

0
d4wiΠac(u,w)i∆cb(w,v) = aδabiδ(4)(u− v) . (1.35)

The fermionic analogon is

(i∂/u −mψ)iS/
ab(u,v) + i

∑

c

c
∫ ∞

0
d4wiΣ/ac(u,w)iS/cb(w,v) = aδabiδ(4)(u− v) . (1.36)

By adding and subtracting Equation (1.35) for different values ofa andb, all ++ and−− functions are
substituted by>, <, retarded and advanced ones. Then, a Schwinger-Dyson equation for the retarded and
advanced propagators and an equation for the greater and less propagators can be obtained:

(−∂2 −m2
φ)i∆

R/A + i
(

iΠR/A ⊙ i∆R/A
)

= iδ(4) (1.37)

(−∂2 −m2
φ)i∆

</> + i
(

iΠR⊙ i∆</>
)

+ i
(

iΠ</> ⊙ i∆A
)

= 0 . (1.38)
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Likewise Equation (1.36) can be reduced to

(i∂/ −mψ)iS/
R/A + i

(

iΣ/R/A ⊙ iS/R/A
)

= iδ(4) (1.39)

(i∂/ −mψ)iS/
</> + i

(

iΣ/R⊙ iS/</>
)

+ i
(

iΣ/</> ⊙ iS/A
)

= 0 . (1.40)

Here, the convolution operator⊙ is introduced:

A⊙ B ≡
∫ ∞

0
d4yA(x,y)B(y,z) . (1.41)

After replacing the retarded and advanced functions in (1.38) and (1.40) with spectral and hermitian func-
tions, the Kadanoff-Baym equations are obtained:

(−∂2 −m2
φ)∆

</> −Π
H ⊙ ∆

</> −Π
</> ⊙ ∆

H = Cφ ≡
1
2
(Π> ⊙ ∆

< −Π
< ⊙ ∆

>) (1.42)

(i∂/ −mψ)S/
</> − Σ/H ⊙S/</> − Σ/</> ⊙S/H = C/ψ ≡

1
2
(Σ/> ⊙S/< − Σ/< ⊙S/>) . (1.43)

Cφ andC/ψ are called the collision terms since they vanish in equilibrium.5

1.4 Wigner Space and the Gradient Expansion

In equilibrium the 2-point functionsG(x,y) depend only on the relative coordinatex− y due to fluctuations
that usually take place on microscopic scales. The dependences on the mean coordinatex+y

2 , on the other
hand, typically result from changes on macroscopic scales. These may emerge from a coupling to a slowly
varying external bath or a change in the background metric related to inflation. To separate the microscopic
scales from the macroscopic ones, a Wigner transformation is performed.This is a Fourier transformation
with respect to the relative coordinate:

G
(

x+
r
2

, x− r
2

)

=

∫

d4k

(2π)4
e−ik·rG̃(k, x) . (1.44)

In Wigner space the convolution of 2-point functions reads

A⊙ B ≡
∫

d4yA(x,y)B(y,z) = Ã
(

k,
x+ z

2

)

∗ B̃
(

k,
x+ z

2

)

, (1.45)

where∗ is the Moyal star operator

Ã(k, x) ∗ B̃(k, x) = Ã(k, x)e
−i 1

2

(←−
∂ x·
−→
∂ k−
←−
∂ k·
−→
∂ x

)

B̃(k, x) . (1.46)

Therefore, the evolution equations for the correlation functions have thefollowing form in Wigner space:
convolutions⊙ are replaced by the Moyal star∗, and the derivative with respect to the left variable of the
2-point function∆(u,v) in (1.35) andS/(u,v) in (1.36) becomes

∂u→ −ik +
1
2
∂x . (1.47)

If Ã andB̃do not depend on the mean positionx, their Wigner transformation reduces to the Fourier transfor-
mation. This reduction can be described by the systematic truncation within the expansion of the exponential

5 See the KMS relations in Equation (1.56).
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of the Moyal star, and hence by the number of gradients used to describethe convolution (1.45). This is
called the gradient expansion.er ·∂x is the translation operator. It can be expanded and truncated for an
infinitesimalr, which results in an infinitesimal shift inx. Hence, the gradient expansion is also an expan-
sion in the size of the macroscopic correlation length betweenA and B in (1.45). This means that if the
quantum system that has to be described is close to equilibrium and therefore moving slowly, correlation
functions at some mean coordinatex should only depend on the information close tox, but not for example
on the conditions far away in the space-time. With the help of the gradient expansion, consequently, the
contact to Boltzmann, Langevin and Quantum-Boltzmann equations can be found as explained for example
in [21, 72, 73]. In the following investigation, all 2-point functions are assumed to be in Wigner space such
that the tilde is dropped.

1.5 Tree-Level Equilibrium Green-Functions

In this chapter, some aspects related to Green-functions are examined. Furthermore, an overview of several
relations for the propagators is given. The tree-level functions are solutions of the Klein-Gordon and Dirac
equation that can of course be found in the Equations (1.35) and (1.36) by setting all couplings to zero.
Those solutions, but also solutions to the full interacting theory, have to obey rules that sometimes are
related to thermal equilibrium and sometimes follow from general arguments.

Spectral sum rules: In equilibrium, the Wigner space reduces to the usual Fourier or momentum space.
The momentum space spectral propagators have to obey a sum rule that can be deduced from the
equal-time canonical commutation relation, as explained for example in [74]6. In case of bosons with
the spacial dependence in momentum space, this reads

[

φ(t,~k), φ̇†(t′,~k)
]
∣
∣
∣
∣
∣
t=t′

= i . (1.48)

After writing down the spectral function in operator notation

∆
A(t,~k) =

1
2
(∆> − ∆

<) (t,~k) =
1
2

〈[

φ(t,~k),φ†(0,~k)
]〉

, (1.49)

taking the time derivative att = 0, and considering the Fourier transformation with respect tot, the
following relation is found:

− i
2
= ∆̇

A(t = 0,~k) =
∫

dk0

2π
(−ik0)∆A(k) . (1.50)

Hence, the bosonic spectral sum rule is

∫

dk0

π
k0

∆
A(k) = 1 . (1.51)

In an analogous fashion, (Dirac-) fermions have to obey

∫

dk0

π
S0A(k) =

∫

dk0

π

1
4

tr[γ0S/A(k)] = 1 . (1.52)

Those rules hold also for an interacting theory and should of course alsohold in a similar fashion in
non-equilibrium, since they are directly related to the quantization conditions.

6 The spectral propagator in [74] differs by a factor of two compared to the definition in this study.
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KMS relations: In thermal equilibrium, the greater- and less- Wightman-functions are in addition related
through the Kubo-Martin-Schwinger (KMS) relations which can be inferred, for instance, within the
imaginary time formalism. In thermal equilibrium, the density matrixρ̂ can be written as

ρ̂eq = Ne−βĤ . (1.53)

Ĥ is the Hamiltonian,β is the inverse temperatureT, andN is a normalization constant. By compari-
son with (1.6),ρ̂eq can be regarded as the time evolution operator in imaginary time. Resorting to the
cyclicity of the trace in (1.3) and suitably defined Wightman-functions for complex arguments, one
can show that in position space the equilibrium bosonic Wightman-functions are related by

∆
>(t) = ∆

<(t + iβ) (1.54)

and the fermionic ones by

S/>(t) = −S/<(t + iβ) . (1.55)

In momentum space, those relations give the KMS relations

G>(p) = ∓eβp0
G<(p) . (1.56)

The upper index is used for fermionic Wightman-functions, and the lower one for bosonic ones.

Thermal equilibrium distributions: Due to the KMS relations in thermal equilibrium,G< andG> are
completely determined by the spectral function:

iG<(p) = ∓2 f±(p0)GA(p) (1.57)

iG>(p) = ±2 f±(−p0)GA(p) . (1.58)

f+, f−, and then± in (1.59), are the thermal equilibrium distribution functions for fermions and
bosons, i.e. the Fermi-Dirac and the Bose-Einstein distributions, respectively. They read

{

n±(E) , E>0
±1− n̄±(|E|) , E<0

}

= f±(E)
eq.
=

1
eβE ± 1

. (1.59)

Furthermore, they are defined for positive and negative energy corresponding to particles in the ini-
tial and final state. The statistical factor(1+ n−) describes stimulated emission for bosons and the
(1− n+) results in the Pauli-blocking for fermions. The following rules can be foundin thermal
equilibrium:

f±(E) + f±(−E) = ±1 , (1.60)

1∓ 2 f±(E) = −(1∓ f±(−E)) = sign(E)(1∓ 2 f±(|E|)) , (1.61)

lim
T→0

f±(E) = ±θ(−E) . (1.62)

Equation (1.61) in particular is useful for splittingf± into a thermal and a vacuum part. Additionally,
Majorana particles fulfilln+ = n̄+. Therefore, if the right-hand side term of Equation (1.59) is
ignored, Equations (1.60) and (1.61) also hold for non-equilibrium distributions.
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Kramers Kronig relations: Since the retarded function has a pole below the realk0 axis and is analytic in
the closed upper half plane, its real and imaginary parts are related via Cauchy’s theorem. This results
in the Kramers Kronig relations that relate the hermitian and spectral functions:

GH(p) = −1
π
P
∫

dq0 q0

q02 − p02
GA(q0, ~p) = −2

π
P
∫ ∞

0
dq0 q0

q02 − p02
GA(q0, ~p) (1.63)

and

GA(p) =
1
π
P
∫

dq0 p0

q02 − p02
GH(q0, ~p) =

2
π
P
∫ ∞

0
dq0 p0

q02 − p02
GH(q0, ~p) . (1.64)

This also means that in thermal equilibrium, there is only 1 independent 2-point-function. TheP
∫

denotes the Cauchy principal value integral.

By solving the Klein-Gordon equation for the free theory, using the normalization condition (1.51) and the
boundary condition (1.56), the bosonic Green-functions in thermal equilibrium and momentum space in
their most compact form are given by

∆
A(k) = πδ(k2 −m2)sign(u · k) (1.65)

∆
H(k) = P 1

k2 −m2
. (1.66)

u is the plasma vector andP denotes that this pole should be integrated in the Cauchy principal value sense.
The other functions are obtained from

i∆<(k) = 2∆
A(k) f−(u · k) (1.67)

i∆>(k) = 2∆
A(k)(1+ f−(u · k)) (1.68)

i∆F(k) = (1+ 2 f−(u · k))∆A(k) . (1.69)

For completeness, the retarded and advanced functions are also shown:

i∆R/A =
i

k2 −m2 ± isign(u · k)ε . (1.70)

Note that sign(u · k) = sign(k0), sinceu2 andu0 are positive numbers. It is easy to check that∆
H and−∆

A

are indeed the real and imaginary parts of∆
R, and that the Kramers-Kronig relations hold.

Equivalently, by solving the Dirac equation for the free theory and by using the normalization condition
(1.52) and the boundary condition (1.56), the fermionic Wightman functions inthermal equilibrium are

S/A(k) = π(k/ + m)δ(k2 −m2)sign(u · k) (1.71)

S/H(k) = P k/ + m

k2 −m2
(1.72)

iS/<(k) = 2S/A(k)(− f+(u · k)) (1.73)

iS/>(k) = 2S/A(k)(1− f+(u · k)) (1.74)

iS/F(k) = (1− 2 f+(u · k))S/A(k) (1.75)

iS/R/A(k) =
i(k/ + m)

k2 −m2 ± isign(u · k)ε . (1.76)

Since all unregulated poles that have to be dealt within this work come from hermitian propagators, the
explicit P is dropped. Those poles are always regarded in the Cauchy principalvalue sense. The principal
value integral is just not mentioned everywhere.
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1.6 Resummed Propagators

In Wigner space up to first order in gradients, the Schwinger-Dyson Equations (1.37) for the retarded and
advanced propagators read7

(k2 + ik · ∂x −m2
φ −Π

R/A)i∆R/A = i . (1.77)

The zeroth order solution can simply be read off:

i∆R/A =
i

k2 −m2
φ −ΠR/A

=
i

k2 −m2
φ −ΠH ± iΠA

. (1.78)

Hence, the zeroth order resummed hermitian and spectral propagators are

∆
H =

k2 −m2
φ −Π

H

(k2 −m2
φ −ΠH)2 + (ΠA)2

(1.79)

∆
A =

Π
A

(k2 −m2
φ −ΠH)2 + (ΠA)2

. (1.80)

The hermitian function (1.79) represents a principal value for an infinitesimal Π
A, and (1.80) has the usual

Breit-Wigner form. By taking the formal limitΠA → 0, the resummed spectral function reduces to

∆
A → πsign(ΠA)δ(k2 −m2

φ −Π
H) . (1.81)

In case theΠA vanishes at the pole, the standard infinitesimalε sign(k0) term has to be included.
Likewise, Equation (1.39) reads

(

k/ +
1
2
∂/x −mψ − Σ/R/A

)

iS/R/A = 1 (1.82)

in Wigner space and is expanded up to first order in gradients. The zeroth order solution can be read off:

iS/R/A =
i

k/ −mψ − Σ/R/A
=

i

k/ −mψ − Σ/H ± iΣ/A
. (1.83)

Due to the Dirac structure, the resummed hermitian and spectral functions areslightly different from the
scalar one:

S/H =
(a/ + mψ)(a2 − b2 −m2

ψ) + b/2a · b
(a2 − b2 −m2

ψ)
2 + (2a · b)2

(1.84)

S/A =
(a/ + mψ)2a · b− b/(a2 − b2 −m2

ψ)

(a2 − b2 −m2
ψ)

2 + (2a · b)2
, (1.85)

with

aµ = kµ − Σ
Hµ (1.86)

bµ = Σ
Aµ . (1.87)

7 Only gradients in the mean coordinatex are counted, since microscopic fluctuations can still be large. Then, to first order in
gradients, the convolution ofΠ with ∆ should include the∂k · ∂x terms. Nevertheless, the rate given byΠ is proportional to the
change in the macroscopic scale. Therefore,Π∆ is already effectively of first order in gradients.
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The dispersion relation is basically given by the zeros ofa2− b2−m2
ψ.8 If the width 2a · b vanishes at one of

those poles, aε δµ0 term should be added tobµ. In the formal limitbµ → 0, in the sense of sending couplings
to zero, Equation (1.84) reduces to the usual principal value form plus aremainder, which is of higher order
in the couplings and therefore vanishes. In addition, the spectral function reduces to the tree-level form

S/A → πsign(a · k)(a/ + mψ)δ(a
2 −m2

ψ) (1.88)

plus a remainder, but here this remainder vanishes because it becomes∼ (a2 −m2
ψ)δ(a

2 −m2
ψ).

Finally, if Π
R/A is constant inx, its resummation into∆R/A does not introduce newx dependencies. Hence,

the solutions (1.78)-(1.80) to the zeroth order in gradients are also solutions to first order in gradients. The
same argument also holds for the fermions.

8 At least in our case, one of those zero’s corresponds to a tachyonic pole. This unphysical pole vanishes only if the propagator
numerator is not expanded in couplings. See Chapter 4.7 for the lepton dispersion relation.
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Chapter

2
Extended Standard Model and

First Applications of the CTP

2.1 Lagrangian

The temperature relevant for the considered Leptogenesis scenario is much above the electroweak scale,
such that the Lagrangian has to be considered in the symmetric electroweak phase and the Higgs doubletφ
is present in the primordial plasma. Consider the Standard model extended by a numbern : i = 1 . . .n
of right-handed neutrinos (RHN)Ni with Majorana massesMi , that are singlet under the full SM gauge
group SUC(3) × SUW(2) × UY(1). Then, the most general renormalizable Lagrangian can only provide
new Yukawa interactionsYia between those neutrinos and the left-handed lepton SU(2) doubletsla via

L = LSM +
1
2
ψ̄Ni (i∂/ −Mi)ψNi −

(

Yiaψ̄Ni φ̃
†PLψla + h.c.

)

, (2.1)

with a,b = 1 . . .N and N = 3 being the number of generations of lepton doublets. Here,ψNi equals
Ni + Nc

i with Nc = CN̄T . C is the charge conjugation matrix, such that the Majorana conditionψNi = ψc
Ni

is imposed. The tilded Higgs field is defined asφ̃ = ǫφ∗ with ǫ being the antisymmetric tensor in isospin
space.
If CP is broken, those interactions lead to the production of right-handed neutrinos and hence generate a
lepton number asymmetry for each flavor, too. The lepton number asymmetry can be partly transferred
further between the left-handedla and right-handed active leptonsRb by the Yukawa couplingshab:

LSM ⊃ −
(

habφ
†ψ̄RaPLψlb + h.c.

)

. (2.2)

This leads to the decoherence of correlations between different lepton flavors [26].
Gauge boson interactions with Higgs and top-quarks9 have to be considered at the next order. The first ones
are mediated through

LSM ⊃ (Dφ)†Dφ , (2.3)

where the covariant derivative ofφ equals

Dµφ =
(

∂µ + ig1YφBµ + ig2AA
µ tA

)

φ (2.4)

9 Its coupling strength is much larger than for the other quarks.
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with AA
µ andBµ being the SU(2) and the U(1) gauge bosons, respectively.Yφ = 1

2 is the hypercharge, and

tA = σA

2 are the three generators of weak isospin transformations withA = 1 . . . 3. TheσA are the Pauli
matrices.

The second ones results through Yukawa interactions with the couplinght

LSM ⊃ −
(

htψ̄tRφ
†PLψtL + h.c.

)

(2.5)

between left-handed top quark SU(2) doubletsψtL and right-handed top quark SU(2) singletstR. The SU(3)
color indices are suppressed during this study.

2.2 Selection of Feynman-Rules

The following section presents the vertices that are relevant for this investigation. Again,a andb are flavor
indices, f ,g andh are SU(2) doublet indices, andA and B account for the three generators of SU(2) in
the fundamental representation.p andk are the 4-momenta flowing in the direction of positive charge flow,
which is indicated by the arrow. The color space identity matrix is given by1c. Each vertex comes with an
additional sign corresponding to the+ or − CTP branch.

a b

l R

−ihbaPL (2.6)

a b

R l

−ih†baPR (2.7)

a i

l N

−iYiaǫ
†PL (2.8)

i a

N l

−iY†iaǫPR (2.9)
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tL tR

−ihtPL1c (2.10)

tR tL

−ihtPR1c (2.11)

f g

l/R l/R

−ig1γ
µ (YLPL + YRPR) δg f , for Bµ
YL = −1

2 andYR = −1
−ig2γ

µPLtAg f , for AA
µ

(2.12)

p kf g

−ig1Yφδg f (p+ k)µ , for Bµ
Yφ = 1

2
−ig2tAg f (p+ k)µ , for AA

µ

(2.13)

f g

i2g2
1Y2

φδg fgµν , for BµBν
i 1
2g2

2δ
ABδg fgµν , for AA

µAB
ν

(2.14)
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2.3 Scales and Schemes

The task of this investigation is to calculate production rates relevant for Leptogenesis at
high temperaturesT. Thereby,T is about 109 − 1012GeV, far above the electroweak scaleΛew ≈ 246GeV,
where the SM is unbroken. In this unbroken phase, nearly all particles,except the Higgs and the right-handed
neutrino, must have zero tree-level masses due to gauge symmetries. Sincethe tree-level Higgs mass of
about 125GeV is known at zero temperature, the one at high temperature is given by a renormalization
group running. The running itself is determined by radiative corrections proportional to small couplings.
As a consequence, the tree-level Higgs mass for the theory being defined far above the electroweak scale
is still a small number compared to all other relevant scales. Those are for example the temperatureT,
the still unspecified massmN of the right-handed neutrino, and the external momentum of the relevant pro-
cesses here. IfT ≫ mN, those external momenta are always of orderT, since the phase space prefers large
momenta while Bose-Einstein and Fermi-Dirac distributions prefer small momenta. Hence, the dominant
contributions to particle processes are at momenta of typically 2− 3T. However, ifT ≪ mN, the temper-
ature is negligible and the only scale that can appear is the RHN mass. In the following pages, this limit
is referred to as the "vacuum"-limit, even ifT is still much larger thanΛew. However, the Higgs is always
approximately ultra-relativistic and its tree-level mass is set to zero.
To define the meaning of mass and coupling parameters, renormalization conditions have to be imposed.
But, as thermal effects are UV finite due to the exponential suppression of the Bose-Einstein and Fermi-Dirac
factors, only "vacuum" renormalization conditions are relevant. Thermal effects are treated as quantum
effects due to a thermal plasma of particles of a theory defined at scales of the order of the fixed neutrino
mass much larger thanΛew, and the temperature can be varied as a free parameter. In conclusion, the
couplings are defined by the renormalization group flow to this fixed scale. By choosing different scales
mN, the couplings may in principle be varied as free parameters too. In this study, several couplings are
set to zero to analyze the effect of individual interactions that can be compared to the perturbative results.
The other possibility is to choose a set of couplings according to the renormalization group flow to the
for-Leptogenesis-relevant scale. Those couplings are given in Table 2.1.

RGE scale g1 g2 g3 ht λφ Gl GR

109 GeV 0.394 0.577 0.689 0.600−0.049 0.289 0.155
1012 GeV 0.414 0.552 0.606 0.526−0.082 0.271 0.171

Table 2.1: Values of relevant SM couplings taken from [75].Gl andGR are defined in (2.82) and (2.83).

Typical schemes are the MS orMS scheme, in vacuum. They are not preferable, because integrations
over particle distribution functions have to be taken where dimensional regularization (dim-reg) cannot
be considered in a simple way. Nevertheless, all diagrams may be separatedinto vacuum and thermal
contributions within the thermal perturbation theory. For the vacuum ones, dim-reg is suitable.
Another approach is the on-shell scheme. This states that the propagatorpole should be at the physical mass
scale and should have a residuum of one. This works fine for the right-handed neutrino as long as the limit
mN → 0 is not considered. Since the RHN is a gauge singlet, it is not protected from radiative corrections,
which would give rise to ill-defined counter-terms, in this limit. However, these effects are of higher order
in the Yukawa couplingY than what is needed in this work. Hence, the massless limit works in the on-shell
scheme as well. Possible conditions on the real part of the neutrino self-energy are

Σ/H
N(p/ = mN) = 0 (2.15)

d
dp/

Σ/H
N(p/ = mN) = 0 . (2.16)
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This is not the case for the Higgs. Due to interactions with massless gauge bosons and quarks, the Higgs
self-energy is infrared divergent at zero momenta. It is enough to introduce an infinitesimal fictitious infrared
regulating gauge boson and top-quark mass at some stages. This regulator is set to zero after the IR diver-
gences have canceled out and before physical observables are calculated. However, in case of the on-shell
renormalization for the Higgs, this procedure cancels out IR divergences with UV divergences so that the
whole renormalization process gets unnecessarily complicated. Nevertheless, renormalization conditions
for the Higgs can be imposed at the unphysical momentump2 = −M2 as proposed in [76].

Π
H,vac
φ (p2 = −M2) = 0 (2.17)

d

dp2
Π

H,vac
φ (p2 = −M2) = 0 . (2.18)

This whole vacuum renormalization procedure should be done to get a well-defined meaning of the masses
and the couplings. However, this investigation considers only counter-terms to cancel out UV divergences.
It is considered case by case whether the remaining finite vacuum renormalizations are effectively be sub-
dominant. The appropriate terms are determined within the perturbative calculation.

2.4 General1-Loop Spectral Function using
Gram Determinants

In this thesis, several cut diagrams are calculated numerically. There is a rich analytic tool set for vacuum
diagrams. However, the distribution functions for thermal corrections usually demand numerical integra-
tions. This section introduces a way to easily provide integration domains for massive and massless cut
diagrams. In particular, this method is not restricted to a specific type of cut. It can consider loop diagrams
with any particles being on-shell. The only assumptions made during this work are d = 4 space-time di-
mensions and Feynman diagrams with maximald linear independentd-momentum vectors. The method is
extendable to non-integer dimensions as well as to diagrams with more thand vectors. However, those cases
are not of interest for the present investigation. The technique is not completely new, since special cases can
be found for instance in [77,78]. However, an understanding of the deeper background was not found in the
literature. Therefore, the method is considered to be partly new.
The method of gram determinants is introduced by an example in the following. Furthermore, it is necessary
to calculate the anti-hermitian part of a general 1-loop 2-point function using tree-level propagators once and
for all. The only way to cut such a diagram is through the two internal particles. This means one recovers
an integral of the type

Kab(p) =
∫

d4k

(2π)4
N(p,k,u)∆A1 (k)∆

A
2 (p− k)(1− a fa(k) − b fb(p− k)) (2.19)

multiplied by some constant prefactor.a andb correspond to particle 1 and 2, respectively, and can take the
values+ and−. As usual, a+ is used for a fermionic particle while a− indicates a boson. The possible
numerator algebraN(p,k,u) can only consist of the vectorsp, k andu. Hence, it can always be brought into
a form that involves the scalar productsp2, k2, u2, p · k, p ·u andk ·u.10 11 12 If the d4k is substituted in terms

10 If Kab is a tensor integral, it can be expressed in terms of scalar integrals. Those are obtained via the projection of each tensor
index on the vectorsp andu. Those integrals only involve the scalar products ofp, k andu.

11 Any convolution with further space-time vectors, momenta or tensors canbe expressed as a sum of tensorialKab folded by the
corresponding prefactors.

12 In case ofd = 3, the convolution ofp, k andu with the Levi-Civita symbol can be expressed in terms of above scalar products:
ǫµνρpµkνuρ =

√

gd(p,k,u). gd is the gram determinant given in (2.25).
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of Lorentz invariant scalar products, thek2 andp · k is fixed by the on-shell relations of the internal particles
while k · u remains as the integration variable.13 k · u may only appear in the numerator, if the external
particle is a fermion, due to other gauges than Feynman gauge for gauge bosons, or due to non-equilibrated
thermal distribution functions. Here, only equilibrium is relevant. However,using tree-level functions with

f eq
a (k) = fa(u · k) =

1

eβu·k + a
, (2.21)

the thermal equilibrium,Kab is expressed as

Kab =

∫

d4k

(2π)4
π2N(u · k)sign(u · k)sign(u · (p− k))δ(k2 −m2

1)δ((p− k)2 −m2
2)

(1− a fa(u · k) − b fb(u · (p− k))) . (2.22)

TheN(u · k) is the same as theN(p,k,u) from above – onlyk2 andp · k are replaced byp2 and the masses
via the on-shell delta functions. To obtain dimensionless quantities, all dimensionful factors are rescaled by
the temperatureT = β−1. After integrating out the one irrelevant angular direction and the delta functions,
one is left with

Kab =
θ (−gd(p,k))

25π|~p|

∫

B
dk0N(k0)sign(k0)sign(p0 − k0)(1− a fa(k

0) − b fb(p0 − k0)) . (2.23)

For simplicity, the plasma frame~u = 0 is chosen, sinceu is the only 4-vector in (2.22) that definitely
has a positive norm.14 Other reference frames are possible too, but they usually involve one more linear
independent 4-vector. The result can easily be extended to any other frame in the end. The gd(p,k) is the
gram determinant of the 4-vectorsp andk. It appears in (2.23), sincep needs to be such that the peaks of
the delta functions in (2.22) are hit:

The method of Gram determinants:
Within a Lorentz invariant description of any space-time integral, gram determinants may serve as an
easy way to express the integration domain. A gram matrix is the Hermitian matrix of inner products
of a set of vectorsk1, . . . ,kn:

Gram(k1, . . . ,kn) =





k1 · k1 · · · k1 · kn
...

.. .
...

kn · k1 · · · kn · kn





. (2.24)

The gram determinant is the determinant of such a matrix.

gd(k1, . . . ,kn) = det Gram(k1, . . . ,kn) (2.25)

Obviously, it vanishes if two of its vectors become linear dependent. This in turn means that if the
desired integral contains a number of linear independent space-time vectors, their gram determinants

13 In case thed-vectork only is dotted byp, k or u, the ddk can be written as

ddk =
1
2

dΩ
d−3(−gd(u, p))

3−d
2 gd(u, p,k)

d−4
2 d(u · k)d(p · k)d(k2) (2.20)

for any appropriate space-time dimensiond. Thed− 3 independent angular directions are integrated out by
∫

dΩ
d−3 = Vol(Sd−3),

i.e. the volume of thed− 3 sphere.
14 A general 4-vectorr can serve as a reference frame only if it has positive norm. This means that a Lorentz transformation that

rotatesr into rµ = (r0,~0) must exist.
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are non-zero and sometimes need to have a definite sign.15 In an Euclidean space-time, they represent
the volume of the parallelepiped spanned by the corresponding vectors. Hence, they must be positive.
However in Minkowski space-time, they have to be positive for an odd number and negative for an
even number of vectorski , provided that at least one of them has a positive normk2

1 > 0. This one
vector with positive norm is important since it has to serve as a reference frame for parameterizing
the integral. It is easy to check that the gram determinant ofn linear independent 4-vectors always
has the form

gd(k1,k2, . . . ,kn) = −(−1)nk2
1 |~k2|

2
. . . |~kn|

2
sin2∡(k2,k3) . . . sin2∡(kn−1,kn) (2.26)

by explicitly parameterizing the spatiald− 1 vectors in polar coordinates in the frame ofk1. ∡(ki ,k j)

is the angle between the vectors~ki and~k j . If k1 is not the frame vector, the simple counterexample
gd(k1) = k2

1 R 0 proves the lemma.

Consequently, the determinant gd(p,k) has to be negative in our case withk2 = m2
1 > 0 even for

negativep2. Due to the on-shell deltas, this is

0 > 4gd(p,k) = 4gd(k, p− k) =

∣
∣
∣
∣
∣
∣

2m2
1 p2 −m2

1 −m2
2

p2 −m2
1 −m2

2 2m2
2

∣
∣
∣
∣
∣
∣

. (2.27)

The condition gd(p,k) < 0 provides the usual kinematical constraints for 1↔ 2 processes, which
are allowed in a thermal plasma. However, an additional constraint appears in vacuum, since the
distribution functions become Heaviside functions.

The general structure of a gram determinant shown in Equation (2.26) states that its sign is preserved.
Otherwise, it always vanishes when the boundary of the integration domainB for a corresponding
space-time integral

∫

B
dkd

2 . . .dkd
n for n ≤ d is met. In turn, in the case of (2.23) the domainB can be

defined via the sign of all gram determinants that are made of the vectorsu, p,k, and that have at least
one vector with positive norm. Due to Dodgson’s condensation method for determinants, there is a
relation between all those determinants, and one can show that a minimal set ofconditions is created
from

B ≡ {

gd(u) > 0∧ gd(u, p) < 0∧ gd(u, p,k) > 0
}

, (2.28)

since at leastu2 = 1 is positive. Hence, this definition forB also includes the zero masses case.
Actually, if one reduces (2.28) in case ofp2 > 0, only solutionk0

− < k0 < k0
+ can exist if gd(p,k) < 0:

k0
± =

p0(p2 + m2
1 −m2

2)

2p2
± |~p|

p2

√

−gd(p,k) . (2.29)

Hence, theθ constraint in (2.23) is already encoded inB. The
√

−gd(p,k) in Equation (2.29) is called
the Källen function in the literature. The conditions in (2.28) also serve for negativep2. In this case,
the reduction ofB results in the two casesk0 > k0

− andk0 < k0
+, if gd(p,k) < 0, andk0 ∈ R if

gd(p,k) > 0. However, as long ask2 or (p− k)2 are positive, the gd(p,k) must always be negative.

15 Gram determinants ofn vectors ind integer dimensions forn > d are zero. This is basically the idea of how to extend the
method.
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As long asp2 > 0, thek0
± are such that sign(k0)sign(p0 − k0) = sign(p2 −m2

1 −m2
2). Otherwise, the factor

sign(k0)sign(p0 − k0) is always negative forp2 < 0. Therefore, the sign terms in (2.23) can be put outside
the integral. Equation (2.23) becomes

Kab(p) = − 1

25π|~p|sign(p2 −m2
1 −m2

2)θ(−gd(p,k))K(k0)





∣
∣
∣
∣
∣

k0
+

k0
−
+ θ(−p2)

∣
∣
∣
∣
∣

∞

−∞



 , (2.30)

whereK(k0) is the remaining indefinite integral

K(k0) ≡
∫

dk0N(k0)
(

1− a fa(k
0) − b fb(p0 − k0)

)

. (2.31)

Up to now, the only used assumption is that the integrand ofKab is a function ofp, k andu. In principle, the
same calculation also holds for non-equilibrium distributions as long as they can be written as functions of
those variables. This would only lead to some otherK(k0) integral. Nevertheless, this integral can always
be solved analytically in thermal equilibrium for polynomialN(k0). In case ofN(k0) = 1, theK(k0) is

K(k0) = k0 + ln

∣
∣
∣
∣
∣
∣
∣

b+ ep0−k0

a+ ek0

∣
∣
∣
∣
∣
∣
∣

= k0 + ln

∣
∣
∣
∣
∣
∣

fa(k0)

fb(p0 − k0)

∣
∣
∣
∣
∣
∣

. (2.32)

In Chapter 2.6, the caseN(k0) = k0 is relevant. In this case, (2.31) becomes

K(k0) = ℜ


k
0 ln

∣
∣
∣
∣
∣
∣
∣

a+ ek0

1+ be−p0+k0

∣
∣
∣
∣
∣
∣
∣

+ Li2

(

−aek0) − Li2

(

−be−p0+k0)


 . (2.33)

Li2 is the dilogarithm. For negativep2, the limitsk0→ ±∞ are important in Equation (2.30).

This simple example can of course also be evaluated straight forwardly by solving the constraints|~k| > 0 and
| cos∡(k, p)| < 1 for k0. This is done for a massless diagram in Section 2.5.3. However, the strengthof the
method becomes clear in the "Vertex Type Contributions" sections, since the delta functions can be solved
in terms of its Lorentz invariant scalar products by a simple Gauss elimination, and the gram determinants
only involve scalar products. Hence, the reduction ofB can to some extent be done without mentioning the
explicit way of how the deltas are integrated out. In addition, masses are incorporated easily, since the deltas
are always linear in the squared masses.
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2.5 Higgs Self-Energy

In the following chapters, the 1-loop hermitian and spectral self-energiesof the Higgsφ and leptonsl are
needed. For the Higgs, those are obtained from the "seagull", 4-Higgs,"sunset" and top-loop diagrams.

−iΠφ = + + +

Figure 2.1: Seagull, 4-Higgs, sunset and top-loop diagrams for the Higgs self-energy. Wavy lines correspond to U(1) and SU(2)
gauge bosons.

In the following subsections,Πφ accounts for each diagram separately. However, all contributions areadded
in the end.

2.5.1 Seagull Diagram

Using the Feynman rules from Section 2.2, the hermitian self-energy, i.e. the real part ofiΠφ for the Higgs
with a U(1) and a SU(2) gauge bosonγ ≡ (B, AA) insertion, is calculated.16

−iΠH
φ (p) = −1

2

(

iΠ++
φ (p) − iΠ−−φ (p)

)

(2.34)

= iG
∫

d4k

(2π)4
gµν

1
2

(

i∆++
γ µν(k) + i∆−−γ µν(k)

)

(2.35)

Π
H
φ (p) = −G

∫

d4k

(2π)4
gµνi∆F

γ µν(k) (2.36)

G is the recurring factor

1G = 1Y2
φg2

1 + tAtAg2
2 = 1

1
4

(

g2
1 + 3g2

2

)

. (2.37)

G depends ong1 andg2, i.e. the U(1) and SU(2) gauge couplings, respectively. The plus sign in line (2.35)
comes from the minus of the CTP vertex. By replacing the statistical propagator with ∆

F
γ µν ≡ −gµν∆F

γ in
Feynman gauge and inserting expressions from Section 1.5,Π

H
φ becomes

Π
H
φ (p) = G

∫

d4k

(2π)4
gµνgµν πδ(k

2)(1+ 2 f−(|k0|)) (2.38)

in the plasma frame~u = 0. The 1 in(1+ 2 f (|.|)) corresponds to the vacuum graph, is independent of any
scale and therefore would vanish in dimensional regularization (dimreg). If it is not calculated in dimreg,
this part would be absorbed by the mass renormalizationδm2

φ as explained below.

Π
H,vac
φ (p) = 0 (2.39)

Therefore only the thermal part is of relevance:

Π
H,T,0
φ (p) = 4G

∫

d4k

(2π)3
δ(k2) f−(|k0|) = 1

3
GT2 . (2.40)

16 The seagull has a symmetry factor of1
2 .
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The anti-hermitian part of the seagull diagram vanishes, since it cannot be cut, or since non-equal CPT
indices would have to be considered at the same vertex:

Π
A
φ(p) =

1
2
(iΠ> − iΠ<) = 0 . (2.41)

2.5.2 4-Higgs Diagram

The hermitian part can be calculated in an analogous way and becomes

Π
H
φ (p) =

1
4
λφT

2 . (2.42)

The anti-hermitian part vanishes for the same reason as in case of the seagull.

Π
A
φ (p) = 0 (2.43)

2.5.3 Sunset Diagram

The sunset diagram can be evaluated from

− iΠab
φ (p) = −G

∫

d4k

(2π)4
(p+ k)µ(p+ k)νi∆ab

φ (k)i∆ab
γ µν(p− k) (2.44)

iΠH
φ (p) = G

∫

d4k

(2π)4
(p+ k)µ(p+ k)ν

1
2

(

i∆++
φ (k)i∆++

γ µν(p− k) − i∆−−φ (k)i∆−−γ µν(p− k)
)

. (2.45)

By replacing++ and−− propagators with hermitian and statistical propagators and defining∆γ µν ≡ −gµν∆γ

in Feynman gauge, this equation becomes

Π
H
φ (p) = −G

∫

d4k

(2π)4
(p+ k)2

(

i∆F
φ (k)∆

H
γ (p− k) + ∆

H
φ (k)i∆

F
γ (p− k)

)

. (2.46)

With help of the tree-level functions from Section 1.5 in the plasma frame,

Π
H
φ (p) = − G

2

∫

d4k

(2π)3
(p+ k)2

(

δ((p− k)2 − λ2)

k2

(

1+ 2 f−(|p0 − k0|)
)

+
δ(k2)

(p− k)2 − λ2

(

1+ 2 f−(|k0|)
)
)

(2.47)

must be calculated.λ is a small mass for the gauge fields to regulate infrared divergences that come from
multiple gauge boson scatterings at zero momentum. Later on, before physical observables are calculated,
the gauge invariance is recovered by settingλ to zero. This means that the lnλ cancels in the limitλ → 0
during the derivation of the RHN production rate. Other regulator prescriptions like for example dimreg are
equivalent, but for technical reasons, mass regulation is preferred.Again, the terms proportional to 1 andf
in (1+ 2 f (|.|)) are referred to as vacuum andT , 0 terms respectively. In the vacuum limit,f becomes
a Heaviside theta of minus the argument, see Equation (1.62), and hence it vanishes due to the absolute
values.
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One way to calculate the vacuum term is to calculate∂p2Π
H,vac in the plasma frame.∂p2 cancels possible

UV divergences that would otherwise be absorbed by the mass renormalizationΠ
H,vac,ren = Π

H,vac+ δm2
φ.

SinceΠ
H,vac is independent of the plasma vectoru, the d4k is equivalent to 4πdk0 d|~k||~k|2 in this frame.

The dk0 may be integrated via the on-shell delta functions and d|~k| integrates over the pole. However, the
appearingp2-constant terms are thrown away. Finally, this contribution results in

Π
H,vac
φ (p) =

G

(2π)2
p2



ln





Λ̄
√

|p2 − λ2|



+ const



+ const (2.48)

Π
H,vac,ren
φ (p) =

G

(2π)2
p2ln





Λ
√

|p2 − λ2|



 (2.49)

with Λ̄ being an UV cutoff for |~k|. The "const" terms and the ln(Λ̄) are absorbed by the mass and the wave
function renormalization. Consequently,Λ is the renormalized finite and renormalization scheme dependent
UV cutoff. For comparison, this diagram can also be calculated using dimreg. The sameanalytical structure
then appears, except thatΛ̄ andΛ are replaced by the renormalization scaleµ.
The thermal part is free of IR and UV divergences. Therefore, the fictitious gauge boson massλ can be set
to zero in the beginning. What remains is to evaluateΠ in the plasma frame~u = 0. With a shiftk→ p− k
in the second line of Equation (2.47),Π

H,T,0 can be derived from

Π
H,T,0(p) = − G

(2π)2

∫

dk0d|~k||~k|2d cos∡(k, p)

(

(2p− k)2 + (p+ k)2

(p− k)2

)

δ(k2) f−(|k0|) . (2.50)

∡(k, p) is the angle between~k and~p. By integrating dk0 using the delta function, the d cos∡ integral can be
solved analytically. One ends up with the finite one-dimensional integral

Π
H,T,0(p) = − 1

12
GT2 − G

(2π)2

p2

|~p|

∫

d|~k| f−(|~k|)
∑

±
ln

∣
∣
∣
∣
∣
∣
∣

p2 ± 2|~k|p0 + 2|~k||~p|
p2 ± 2|~k|p0 − 2|~k||~p|

∣
∣
∣
∣
∣
∣
∣

, (2.51)

which is solved numerically. The factor− 1
12 plus the1

3 of the seagull diagram gives14GT2, the literature
value for the thermal or asymptotic mass of the Higgs in the high temperature limit. Seefor example [59]
for a reference.
The spectral Higgs self-energy through the sunset diagram is given by

Π
A
φ (p) = G

∫

d4k

(2π)4
(p+ k)µ(p+ k)ν

1
2

(

i∆>
φ (k)i∆

>
γ µν(p− k) − i∆<

φ(k)i∆
<
γ µν(p− k)

)

(2.52)

= −G
∫

d4k

(2π)4
(p+ k)22∆

A
φ (k)∆

A
γ (p− k) (1+ f−(u · k) + f−(u · (p− k))) (2.53)

= − G
2

∫

d4k

(2π)2
(p+ k)2δ(k2)δ((p− k)2 − λ2)sign(k0)sign(p0 − k0)

(1+ f−(u · k) + f−(u · (p− k))) . (2.54)

After Equation (2.53) is obtained, the result of Chapter 2.4 could be directlyused. There, such an integral
is evaluated for the most general case. Here, however, the ordinary way is shown. Again,λ is introduced to
regulate infrared divergences – not inΠ

A
φ which is finite – but in the right-handed neutrino self-energy later.

Using the deltas,(p+ k)2 becomes 2p2 +O(λ). d|~k| integrates out theδ(k2), and d cos∡(k, p) integrates
the other delta function. Hence,Π

A
φ is obtained from

Π
A
φ(p) = − G

8π
p2

|~p|

∫

B
dk0sign(k0)sign(p0 − k0)

(

1+ f−(k
0) + f−(p0 − k0)

)

(2.55)
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in the plasma frame.B is the induced integration domain

B = {| cos∡| ≤ 1} =
{∣
∣
∣
∣
∣
∣

2p0k0 − p2 + λ2

2|~p|k0

∣
∣
∣
∣
∣
∣
≤ 1

}

(2.56)

=

{

k0
− ≤ k0sign(p0(p2 − λ2)) ≤ k0

+ , p2 ≥ 0
|k0
+| ≤ k0signp0 ∨ k0signp0 ≤ −|k0

−| , p2 < 0
(2.57)

with

k0
± =

|p2 − λ2|
2(|p0| ∓ |~p|) = sign(p2)

1
2
(|p0| ± |~p|) +O(λ2) . (2.58)

The 1 in(1+ f + f ) in (2.55) does not represent the vacuum part alone, since the distribution functions do
not need to have positive arguments. However, the relation

1
2
+ f−(E) =

1
2

sign(E) + sign(E) f−(|E|) (2.59)

is found to hold using Equation (1.61), and Equation (2.55) can be decomposed into a thermal and a vacuum
part. The latter is

Π
A,vac
φ (p) = − G

16π
p2

|~p|

∫

B
dk0

(

sign(k0) + sign(p0 − k0)
)

. (2.60)

If p0 is a fixed positive number, the sign functions are only non-vanishing if 0≤ k0 ≤ p0 such thatB reduces
to p2 ≥ λ2. p0 < 0 exhibits the sameB, but with p0 ≤ k0 ≤ 0. This is the expected behavior in vacuum,
known as the kinematic constraint. Hence, the vacuum part becomes

Π
A,vac
φ (p) = − G

8π
p2

|~p|
(

k0
+ − k0

−
)

θ(p2 − λ2)sign(p0) (2.61)

= − G
8π

(p2 − λ2)θ(p2 − λ2)sign(p0) = − G
8π

p2θ(p2 − λ2)sign(p0) +O(λ2) . (2.62)

However, if the temperature is non-zero, a particle can take energy fromthe thermal bath such that a decay,
which is kinematically forbidden in vacuum, becomes possible. This can be verified with λ = 0 by

Π
A,T,0
φ (p) = − G

8π
p2

|~p|

∫

B
dk0

(

sign(p0 − k0) f−(|k0|) + sign(k0) f−(|p0 − k0|)
)

(2.63)

=
G
4π

p2

|~p|




(|k0

+| − k0
−) − Tln

∣
∣
∣
∣
∣
∣
∣
∣
∣

1− e
|k0
+ |
T

1− e
k0
−
T

∣
∣
∣
∣
∣
∣
∣
∣
∣




sign(p0) (2.64)

=






G
4π

p2

|~p|



θ(p0)|~p| − Tln

∣
∣
∣
∣
∣
∣

1−e
p0+|~p|

2T

1−e
p0−|~p|

2T

∣
∣
∣
∣
∣
∣



 , p2 > 0

G
4π

p2

|~p|



p0 − Tln

∣
∣
∣
∣
∣
∣

1−e
p0+|~p|

2T

1−e
−p0+|~p|

2T

∣
∣
∣
∣
∣
∣



 , p2 < 0
. (2.65)

The sum of the Equations (2.62)+ (2.65) results in the same as what would be obtained by using theK−−
from Section 2.4. TheΠA,T,0

φ (p) is non-vanishing for positive and negativep2, and it is anti-symmetric

in p0, which is the expected behavior. At least on-shell,Π
A
φ is proportional to the Higgs’s rate of decay.

Hence, it should be positive for positivep0. Here, the off-shell vacuum spectral self-energy as well as the
thermal one is negative for positivep0 and for any positivep2. However, the leading order spectral Higgs
self-energy vanishes at the mass shellp2 = 0.17

17 If the Higgs has a non-vanishing tree-level mass, only the vacuum spectral Higgs self-energy obtained from the above diagram
vanishes on-shell. Nevertheless, the thermal correction is even negative for positivep0. Related to this issue are the discussions in
the Sections 3.5.2.3 and 3.5.4.
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2.5.4 Top-Loop Diagram

The Higgs self-energy via the top-quark loop is given by

−iΠab
φ (p) = h2

t trc[1c]

∫

d4k

(2π)4
tr

[

PLiS/ba
t (−k)PRiS/ab

t (p− k)
]

, (2.66)

where trc is the color trace anda,b are CTP indices. By defininggc = trc[1c] = 3, i.e. the number of colors
in SU(3), and extracting the Dirac structure ofS/t(−k) ≡ −k/∆t(k), the self-energy can be obtained from

−iΠab
φ (p) = −gch

2
t

∫

d4k

(2π)4
2(p− k) · k i∆ab

t (k)i∆ab
t (p− k) . (2.67)

Inserting this intoΠ
H = 1

2(Π
++ −Π

−−) results in the same workflow as for the sunset diagram. The UV
renormalized hermitian Higgs self-energy becomes

Π
H,vac,ren
φ (p) = − gch2

t

2(2π)2
p2ln





2Λ
√

|p2 − 4λ2|



 (2.68)

Π
H,T,0
φ (p) =

gch2
t

12
T2 − gch2

t

2(2π)2

p2

|~p|

∫

d|~k| f+(|~k|)
∑

±
ln

∣
∣
∣
∣
∣
∣
∣

p2 ± 2|~k|p0 + 2|~k||~p|
p2 ± 2|~k|p0 − 2|~k||~p|

∣
∣
∣
∣
∣
∣
∣

(2.69)

with λ being a small infrared regulating top-quark mass andΛ being the finite renormalized UV cutoff. λ is
set to zero forT , 0. The spectral self-energy is obtained from (2.67) by

Π
A
φ(p) = h2

t gc

∫

d4k

(2π)4
(p− k) · k (i∆>

t (k)i∆
>
t (p− k) − i∆<

t (k)i∆
<
t (p− k)) (2.70)

= 4h2
t gc

∫

d4k

(2π)4
(p− k) · k ∆

A
t (k)∆

A
t (p− k) (1− f+(u · k) − f+(u · (p− k))) . (2.71)

Through comparison with (2.53), note that(p− k) · k = 1
2 p2 and(p+ k)2 = 2p2, −G can be identified

with gc
2 h2

t under exchange off− ↔ − f+. Consequently, the following calculation can be copied from above.
However, the vacuumk0 boundary conditions are different, since here two particles have the regulating
massλ. The top contribution is given by

Π
A,vac
φ (p) = gc

h2
t

16π
p2θ(p2 − 4λ2)sign(p0) (2.72)

Π
A,T,0
φ (p) = −gc

h2
t

8π
p2

|~p|




(|k0

+| − k0
−) − Tln

∣
∣
∣
∣
∣
∣
∣
∣
∣

1+ e
|k0
+ |
T

1+ e
k0
−
T

∣
∣
∣
∣
∣
∣
∣
∣
∣




sign(p0) (2.73)

=






−gc
h2

t
8π

p2

|~p|



θ(p0)|~p| − Tln

∣
∣
∣
∣
∣
∣

1+e
p0+|~p|

2T

1+e
p0−|~p|

2T

∣
∣
∣
∣
∣
∣



 , p2 > 0

−gc
h2

t
8π

p2

|~p|



p0 − Tln

∣
∣
∣
∣
∣
∣

1+e
p0+|~p|

2T

1+e
−p0+|~p|

2T

∣
∣
∣
∣
∣
∣



 , p2 < 0
. (2.74)

This is the same result as what can be found if theK++ from Section 2.4 is considered. TheΠ
A
φ vanishes

on-shell atp2 = 0, but for positivep2 andp0, both expressions (2.62) and (2.74) are positive.18

18 If the Higgs has a non-vanishing tree-level mass, the vacuum and thermal contributions of this diagram still vanish on-shell
due to the numerator algebra.
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2.5.5 Summary

After adding all contributions together and suppressing the superscriptren, the 1-loop Higgs self-energy is

Π
H,vac
φ (p) =

G

(2π)2
p2ln





Λ
√

|p2 − λ2|



 −
gch2

t

2(2π)2
p2ln





2Λ
√

|p2 − 4λ2|



+O
(

λ2
)

(2.75)

=
G

(2π)2
p2ln

(

Λ

λ

)

− gch2
t

2(2π)2
p2ln

(

Λ

λ

)

+O
(

p4

λ4

)

+O(λ2) (2.76)

Π
H,T,0
φ (p) =

1
4

GT2 +
gch2

t

12
T2 +

1
4
λφT

2 − G

(2π)2

p2

|~p| I2−(p0, |~p|) − gch2
t

2(2π)2

p2

|~p| I2+(p0, |~p|) (2.77)

Π
A,vac
φ (p) = − G

8π
p2θ(p2 − λ2)sign(p0) + gc

h2
t

16π
p2θ(p2 − 4λ2)sign(p0) +O(λ2) (2.78)

Π
A,T,0
φ (p) =






G
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p2

|~p|
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∣
∣
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 , p2 > 0

G
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p0 − Tln

∣
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∣
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∣
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1−e
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2T

1−e
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2T

∣
∣
∣
∣
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 , p2 < 0

+






−gc
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t
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∣
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1+e
p0+|~p|

2T

1+e
p0−|~p|

2T

∣
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∣
∣
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 , p2 > 0

−gc
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t
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p0 − Tln

∣
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∣

1+e
p0+|~p|
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1+e
−p0+|~p|
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∣
∣
∣
∣
∣
∣



 , p2 < 0
(2.79)

with the numerical integrals

I2±(p0, |~p|) =
∫

d|~k| f±(|~k|)
∑

±′
ln

∣
∣
∣
∣
∣
∣
∣

p2 ±′ 2|~k|p0 + 2|~k||~p|
p2 ±′ 2|~k|p0 − 2|~k||~p|

∣
∣
∣
∣
∣
∣
∣

. (2.80)

For precise numerics,I2±(p0, |~p|) may be written as a function of only one argument. Details on this can be
found in Chapter 4.1.
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2.6 Lepton Self-Energy

At leading order in the gauge couplings, a left-handed leptonl can emit and reabsorb a SU(2) and U(1)
gauge boson, while a right-handed leptonRcouples only to U(1). Hence, their self-energies up to this order
is given by the sunset diagram in Figure 2.2.

−iΣ/l/R =

Figure 2.2: Sunset contribution of the lepton self-energy. For leptons of left chirality l, wavy lines indicate U(1) and SU(2) gauge
bosons, while for right chirality leptonsR, only U(1) has to be considered.

This can be evaluated by following the same steps as in Section 2.5.3 from

− iΣ/ab
l/R(p) = −Gl/R

∫

d4k

(2π)4
γµPL/RiS/ab

l/R(p− k)PR/Lγ
νi∆ab

µν(k) (2.81)

with Gl/R being

Gl = 1Y2
Lg2

1 + tAtAg2
2 = 1

1
4
(g2

1 + 3g2
2) ≡ 1G (2.82)

GR = Y2
Rg2

1 = g2
1 . (2.83)

The Σ/l/R decomposes into its Lorenz 4-vector viaΣ/l/R = PR/LγµΣ
µ

l/R
. Due to Lorenz invariance, (2.81)

can only be proportional tou/ andp/. This means that it can be evaluated from the traced self-energies

Σ
µ = (pµ,uµ) ·Gram−1(p,u) ·

(

p · Σ
u · Σ

)

(2.84)

=
1
2
(pµ,uµ) ·Gram−1(p,u) ·

(

tr[p/Σ/]
tr[u/Σ/]

)

, (2.85)

where the inverse Gram matrix ofp andu appears and thel/R subscript is omitted for simplicity. The
wave-function and mass renormalized vacuum hermitian self-energy with a small gauge boson massλ can
be evaluated as

p · ΣH,vac
l/R

(p) =
Gl/R

8π2
p2ln

√

|p2 − λ2|
Λ

(2.86)

u · ΣH,vac
l/R

(p) =
p · u
p2

p · ΣH,vac
l/R

(p) , (2.87)

but the thermal part needs additional care. For later convenience,T , 0 needs to be separated into the hard
thermal loop (HT L) and a remainingT , 0 part. The termHT L means hard thermal loop momenta, i.e.
it refers to the dominant terms in the limit|~k| ≫ {T, p0, |~p|}. This splitting is given by a partial fractioning
in |~k|, which, due tok2 being fixed, is equivalent to a partial fractioning inp · k while holding the partition
functions fixed. This is shown forp · ΣH,T,0(p) in more detail here.

p · ΣH,T,0
l/R

(p) = 4πGl/R

∫

d4k

(2π)4

δ(k2)

(p− k)2

(

−p · k f+(|u · k|) + (p2 − p · k) f−(|u · k|)
)

(2.88)

= Gl/R

∫

d4k

(2π)3
δ(k2)





( f+(|u · k|) + f−(|u · k|))
︸                          ︷︷                          ︸

HT L

+
p2

p2 − p · k (− f+(|u · k|) + f−(|u · k|))
︸                                          ︷︷                                          ︸

T,0





(2.89)
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By integrating the delta function with dk0, the d cos∡(k, p) integral in the plasma frame can be evaluated:

p · ΣH,T,0
l/R

(p) =
Gl/R

(2π)2

(

I3
HT L +

p2

4|~p| (−I2+ + I2−)(p0, |~p|)
)

, (2.90)

with

I3
HT L = 2

∫

d|~k| |~k|( f+(|~k|) + f−(|~k|)) =
π2

2
T2 . (2.91)

The I2± is already defined in (2.80) and account here for thep · ΣH,T,0
(p) contribution. Analogously, the

other contribution is found to be

u · ΣH,T,0
l/R

(p) =
Gl/R

8π2|~p|

(

ln

∣
∣
∣
∣
∣
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p0 + |~p|
p0 − |~p|

∣
∣
∣
∣
∣
∣
I3

HT L + I3
T,0

(p0, |~p|) + p0I2−(p0, |~p|)
)

(2.92)

with

I3
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(p0, |~p|) =
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∣
∣
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∣
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∣

( f+(|~k|) + f−(|~k|)) . (2.93)

The integral in (2.93) can be calculated numerically.
The anti-hermitian part is decomposed into

p · ΣAl/R(p) =
Gl/R

16π
p2

|~p| I0(p0, |~p|) (2.94)

u · ΣAl/R(p) =
Gl/R

8π
1
|~p| I1(p0, |~p|) . (2.95)

The I integrals are defined as

I0(p0, |~p|) =
∫

B
dk0sign(k0)sign(p0 − k0)

(

1− f+(k
0) + f−(p0 − k0)

)

(2.96)

= (I0
vac+ I0

T,0)(p0, |~p|) (2.97)

I1(p0, |~p|) =
∫

B
dk0k0sign(p0 − k0)
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1− f+(k
0) + f−(p0 − k0)

)

(2.98)

= (I1
vac+ I1

T,0)(p0, |~p|) = (I1
vac+ I1

T,0
+ I1

HT L)(p0, |~p|) (2.99)

and evaluate to

I0
vac(p0, |~p|) = θ(p2)|~p|sign(p0) (2.100)
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vac(p0, |~p|) = θ(p2)
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2

(2.102)
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∣
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x= 1
2(p0+|~p|)

x= 1
2(p0−|~p|)

(2.103)

I1
HT L(p0, |~p|) = θ(−p2)

π2

2
T2 . (2.104)

The Li2 is the dilogarithm which was found in Equation (2.33) of Section 2.4.
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Chapter

3
Right-Handed Neutrino Rate

3.1 Preliminaries

In this section, Boltzmann type equations for the right-handed neutrino distribution functions are derived.
These can be obtained from the Kadanoff-Baym equations within several approximations. The present
model for Leptogenesis delivers close-to-equilibrium properties. First,spatial homogeneity and isotropy
can be assumed. Hence, the spatial gradients of (1.43) vanish in Wigner space. Second, all SM particles
are assumed to be in thermal equilibrium.19 For those particles, the time gradients vanish. However, the
right-handed neutrinos are gauge singlets and therefore have a much smaller equilibration rate. For them,
even a large deviation from thermal equilibrium should only equilibrate slowly,such that including time
gradients to first order is assumed to be enough. Expanded up to first order in gradients, the Kadanoff-Baym
equations for the right-handed neutrinos are

(

k/ −mN − Σ/H
N + i

1
2
γ0∂t

)

S/</>
N − Σ/

</>
N S/H

N = C/N =
1
2
(Σ/>NS/<N − Σ/<NS/>N) . (3.1)

The expressionΣ/H
NS/</>

N is sometimes called the non-local contribution to the mass terms. Hence, this

causes dispersive effects. The termΣ/
</>
N S/H

N changes the width of the particles. Finally, the collision term
C/N contains the usual gain and loss terms.
To obtain the production rate for the right-handed neutrinos, the hermitian conjugate is first added:

i
1
2
∂t

{

γ0,S/</>
N

}

+
[

k/ −mN − Σ/H
N,S/</>

N

]

−
[

Σ/
</>
N ,S/H

N

]

= C/N + C/†N . (3.2)

Since (3.1) is still a matrix in flavor space, the hermitian conjugation also acts in theflavor space. When
substituting the tree-level neutrino propagator (1.73) with some general distribution function20 21 for each

19 A small deviation from equilibrium is caused by the Hubble expansion.
20 They must still respect the fact that theNi are Majorana particles and hencefN(p0) + fN(−p0) = 1. See the comment for

(1.61).
21 Don’t get confused with the different notions for the distribution functionsfN(t, p) and fN(t, |~p|). fN(t, p) equals to

fN(t, p0, |~p|) due to homogeneity and isotropy. However,fN(t, p0, |~p|) equals tofN(t, |~p|) only if p0 is fixed at the mass-shell.
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flavor, one observes that the time evolution of those can be obtained by

−
∫

dp0

2π
sign(p0)

1
4

trDirac

[

1
2
∂t

{

γ0, iS/<N(p)
}
]

=

∫

dp0

2π
∂t2p0 fN(t, p)πδ(p2 −m2

N) (3.3)

=
∑

p0=±
√

|~p|2+m2
N

sign(p0)
1
2
∂t fN(t, p) (3.4)

= ∂t fN(t, |~p|) . (3.5)

Hence, the same procedure has to be applied to the other terms in (3.2). For simplicity, dispersive effects
are ignored. Those are caused by the commutator terms. Only the productionvia scatterings and decay
processes is included. The rate is then given by

∂t fN(t, |~p|) = −
1
4

∫

dp0

2π
sign(p0)tr[C/N(p) + C/†N(p)] . (3.6)

Under the assumption that possible off-diagonal correlations in the neutrino propagator are negligible and
that flavor oscillations are rapid enough to not give coherent contributions, a flavor diagonal basis can be
chosen. This is the case if the mass splitting between different neutrino masses corresponding to different
flavors is large enough.
Since the medium corrections for the RHN propagator and its self-energy are proportional to|Y2|, tree-level
propagators can be inserted forS/N up to this order.

∂t fN(t, |~p|) =
1
4

∫

dp0

2π
sign(p0)tr[iΣ/>N(p)iS/<N(p) − iΣ/<N(p)iS/>N(p)] (3.7)

=
1
2

∫

dp0

2π
sign(p0)tr

[

(iΣ/>N(p)(− fN(t, p)) − iΣ/<N(p)(1− fN(t, p)))S/AN (p)
]

(3.8)

Lepton and Higgs are assumed to be in thermal equilibrium such thatΣ/N satisfies the KMS relation (1.56)
and Equations (1.57) and (1.58) can be used:22

∂t fN(t, |~p|) =
∫

dp0

2π
sign(p0)tr[Σ/AN (p)S/AN (p)]

(

(1− f eq
N (p0))(− fN(t, p)) + f eq

N (p0)(1− fN(t, p))
)

. (3.9)

Here, the structure of the collision term in form of gain and loss terms known from Boltzmann equations
becomes obvious. With (1.74) the dp0 integral is solved:

∂t fN(t, |~p|) = −
∫

dp0

2π
tr[p/Σ/AN (p)]πδ(p2 −m2

N)
(

fN(t, p) − f eq
N (p0)

)

︸                    ︷︷                    ︸

δ fN(t,p)

(3.10)

= −
∑

p0=±
√
~p2+m2

N

1
4|p0| tr[p/Σ/AN (p)]δ fN(t, p) (3.11)

∂t fN(t, |~p|) = −
1

2p0
tr[p/Σ/AN (p)]δ fN(t, p)

∣
∣
∣
∣
∣
p0=

√

|~p|2+m2
N

. (3.12)

22 Up to order|Y2| there are only self-energy diagrams that include equilibrated particles. Especially there is no back reaction
diagram that contains the right-handed neutrino itself.
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The last step uses the symmetryp0↔ −p0 of f andΣ/ for Majorana particlesN. At this point, it is intuitive
to introduce the differential production rateΓ

ΓN(|~p|) =
1

2|p0| tr[p/Σ/AN (p)]
∣
∣
∣
∣
∣
p2=m2

n

. (3.13)

Equation (3.12) is a first order differential equation for each mode|~p| with the solution

fN(t, |~p|) = δ fN(t0, p)e−ΓN(|~p|)(t−t0) + f eq
N (|p0|)

∣
∣
∣
∣
∣
p2=m2

N

. (3.14)

For ease of comparison with reference [59], the total production rate is defined at zero initial abundance by
integrating (3.12) over all~p:

γN = 2
∫

d3~p

(2π)3
∂t fN(t, ~p) =

4

(2π)2

∫

d|~p||~p|2 f eq
N (p0)ΓN(|~p|) (3.15)

=
2

(2π)2

∫

d|~p| |~p|
2

|p0| f
eq
N (|p0|)tr[p/Σ/AN (p)]

∣
∣
∣
∣
∣
p2=m2

N

. (3.16)

This is approximately the production rate of singlet Majorana neutrinos in the weak washout regime.

3.2 LO versusNLO in Perturbation Theory and 2PI Formalism

According to (3.16), the differential production rate of right-handed Majorana neutrinos within an equili-
brated plasma is proportional to its anti-hermitian self-energy: tr[p/Σ/AN (p)]. To leading order (LO) in per-
turbation theory, this is given by the processesN↔ lφ andN↔ l̄φ̄ to second order in Yukawa couplingsY.
However, those are exponentially suppressed formN ≪ T, i.e. the ultra-relativistic regime. Hence, next to
leading order (NLO) effects should be included. In the ultra-relativistic limitmN

T → 0 above perturbative
LO effects vanish and the formerNLO reduces to the newLO.

The perturbativeNLO is regarded as the sum of 2-loop diagrams that give the wave-function and vertex
corrections to the 1-loop case.

The perturbative wave-function corrections contain logarithmically enhanced contributions that diverge for
massless neutrinos. Those divergences should be resummed into full propagators, which then also account
for the screening induced by the thermal plasma. Hence, at least the 2PI formalism should be used in the
ultra-relativistic regime and limit. The perturbativeLO contribution and the wave-function corrections are
then contained within the 2PILO, i.e. the 1-loop RHN self-energy.

The vertex correction however is included in the 2PINLO, i.e. the 2-loop self-energy, or in terms of the
effective action at 3-loop order. For a self-consistent description of an effective action up to 3-loop order,
the 3PI formalism should be used according to [79]. The 3PI effective action, on the other hand, also
includes full 3-vertices. Those 3-point functions are basically determined by a leader resummation [60].
Nevertheless, the present investigation shows numerically that the perturbative 2-loop vertex correction is
already finite and does not provide logarithmically enhanced contributions which otherwise would have to
be resummed. This does not clarify the question of whether full 3-verticesgive sizable corrections to the
perturbative case, but at least the perturbative vertex correction does not demand a resummation.
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Consequently, theLO and NLO neutrino production rate is determined by the RHN self-energy which
appears in the 2PI approach up to 2-loop order by the following sum of diagrams:

−iΣ/N = + + + .

Figure 3.1: 2PI contributions to the neutrino production rate. Particles in theloops are left-handed leptons and Higgs, and the wavy
line indicates U(1) and SU(2) gauge bosons. The double lines represent full propagators, and theexternal legs are
understood to be amputated.

Those terms are calculated using several approximations in the next sections. In particular, the full prop-
agators are coupling expanded step by step, as far as non-divergent and physically reasonable results are
obtained. This means that the finalLO andNLO results are small coupling results of the 2PI formalism and
hence valid in the ultra-relativistic limit up to the non-relativistic limit. Furthermore, for mN ≫ T the results
are valid up toNLO in perturbation theory.

3.3 Perturbative LO Result

As explained in the previous section, the perturbative leading order contribution to the neutrino production
rate is given by the interferences of the processesN ↔ lφ andN ↔ l̄φ̄. Via the optical theorem, those are
contained in the imaginary part of

−iΣ/LO
N = + ,

Figure 3.2: TheLO neutrino self-energy: The particles in the loop are lepton and Higgs doublets.

which, in the CTP formalism, corresponds to the anti-hermitian or spectral part of the RHN self-energy. The
tree-level neutrino self-energy can be evaluated from

−iΣ/LO,ab
N (p)=−gw|Y|2

∫

d4k

(2π)4

(

PRiS/ab
l (k)PLi∆ab

φ (p− k) + PLiS/ab
l (k)PRi∆ab

φ (p− k)
)

. (3.17)

The factorgw originates from the isospin-tracegw = tr[ǫ†ǫ], while |Y|2 is shorthand for the matrix product
Y†Y. Since the leptons are massless, both chirality projectors can be put to one side so that they may be
added:PL + PR = 1. In using the tree-level propagators from Section 1.5, the perturbative LO contribution
to the production rate can be obtained from

H(p) ≡ tr[p/Σ/
LO,A
N (p)] = 2gw|Y|2

∫

d4k

(2π)2
p · kδ(k2)δ((p− k)2)sign(k0)sign(p0 − k0)

(

1− f+(k
0) + f−(p0 − k0)

)

(3.18)
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in the plasma frame. This term is calledH for later convenience. The tree-level spectral propagators
contain delta distributions at the mass shell. This way, the CTP generates all possible cut diagrams that can
be evaluated fromΣ/N.
From now on, the calculation for the sunset and top-loop contribution to the Higgs self-energy could be
followed, or one simply uses the general result from Section 2.4. Anyway, after splitting the distribution
functions into a vacuum and a thermal part, the vacuum distribution functionsonly allow for the casep2 > 0
such that the vacuum integral becomes

Hvac(p) =
gw|Y|2
16π

p2

|~p|θ(p2)

∫ k0
+

k0
−

dk0(sign(k0) + sign(p0 − k0)) (3.19)

=
gw|Y|2

8π
p2sign(p0)θ(p2) . (3.20)

By insertion ofHvac into (3.13) on-shell atp2 = m2
N for positivep0, the known vacuum rate

Γ
LO,vac
N =

gw|Y|2
16π

mN (3.21)

is reproduced. The thermal part is obtained from

HT,0(p) =
gw|Y|2

8π
p2

|~p|

∫

B
dk0

(

−sign(p0 − k0) f+(|k0|) + sign(k0) f−(|p0 − k0|)
)

(3.22)

and evaluates in the usual way to

HT,0(p) =
gw|Y|2

8π
p2

|~p|

∫

B
dk0

(

−sign(p0 − k0) f+(|k0|) + sign(k0) f−(|p0 − k0|)
)

(3.23)

= −gw|Y|2
8π

p2

|~p|




2(|k0

+| − k0
−) − Tln

∣
∣
∣
∣
∣
∣
∣
∣
∣

1− e
2|k0

+ |
T

1− e
2k0
−

T

∣
∣
∣
∣
∣
∣
∣
∣
∣




sign(p0) (3.24)

=






−gw|Y|2
8π

p2

|~p|



2θ(p0)|~p| − Tln

∣
∣
∣
∣
∣
∣

1−e
p0+|~p|

T

1−e
p0−|~p|

T

∣
∣
∣
∣
∣
∣



 , p2 > 0

−gw|Y|2
8π

p2

|~p|



2p0 − Tln

∣
∣
∣
∣
∣
∣

1−e
p0+|~p|

T

1−e
−p0+|~p|

T

∣
∣
∣
∣
∣
∣



 , p2 < 0
. (3.25)

Hvac+HT,0 is positive for p2 > 0 and p0 > 0. Altogether, the perturbative leading order differential
production rate is

Γ
LO
N = Γ

LO,vac
N




−1+

T
|~p| ln

∣
∣
∣
∣
∣
∣
∣
∣

1− e
p0+|~p|

T

1− e
p0−|~p|

T

∣
∣
∣
∣
∣
∣
∣
∣




. (3.26)

In the non-relativistic limit, the reference to the plasma vector is negligible. Therefore, (3.26) may be
evaluated in the limit|~p| → 0:

Γ
LO
N

∣
∣
∣
∣
∣
~p=0

= Γ
LO,vac
N

e
mN
T + 1

e
mN
T − 1

= Γ
LO,vac
N

f−(mN)

f+(mN)
= Γ

LO,vac
N (1+ 2 f−(mN)) . (3.27)
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3.4 LO and NLOResults in the Ultra-Relativistic Limit

In the ultra-relativistic limit, formN
T → 0, the perturbative leading order production rate (3.26) vanishes

and loop corrections have to be considered. These are determined by the2PI expansion, which uses full
2-point functions instead of tree-level ones. If expanded in couplings, the cuts of the 1-loop 2PI diagrams
in Figure 3.1 correspond to wave-function corrections to the tree-level process plus the symmetric 1↔ 3
processes shown in Figure 3.3. Therefore, those are referred to aswave-function type diagrams indicated
by awv.

=

︸               ︷︷               ︸

→0

+

Σ/l

+

Πφ

+ higher orders

≈ + + . . .+O
(

|Y2|(G+ h2
t + λφ)

2
)

Figure 3.3: This figure shows the cuts of the perturbatively expanded 1-loop 2PI neutrino self-energy. The sums over the cuts and
both error directions that indicate the charge flow are implicitly assumed. The dots in the second line represent the other
1-loop Higgs self-energy contributions that are shown in Figure 2.1.

The cuts of the 2-loop 2PI diagrams correspond, with tree-level propagators, to vertex corrections and mixed
1↔ 3 and 2↔ 2 processes. They can be found in Figure 3.4.

≈ +O
(

|Y2|(G+ h2
t + λφ)

2
)

Figure 3.4: This figure shows the cuts of the perturbatively expanded 2-loop 2PI neutrino self-energy. Vertical cuts correspond to
vertex corrections, while the diagonal cuts provide the product of mixedtype 1↔ 3 processes. The sums over the cuts
and both error directions that indicate the charge flow are implicitly assumed.

They are called vertex-type diagrams in the following, and are indicated by the superscriptvert. Hence, the
RHN self-energy in the massless limitmN = 0 is separated as

Σ
LO
N0

= Σ
wv
N0

+ Σ
vert
N0

. (3.28)
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3.4.1 Wave-Function Type Contributions

The wv diagram using full propagators has the same structure as Equation (3.17). According to Chap-
ter 1.6, the full propagator for a massless lepton has no scalar part in the numerator such that the left- and
right-handed projectors can be put to one side.23 Hence, thewv contribution, including the sum of both
chiralities, can be written as

iΣ/ab,wv
N (p) = gw|Y|2

∫

d4k

(2π)4
iS/ab

l (p− k)i∆ab
l (k) . (3.29)

By following the decomposition of any 2-point functions into spectral and statistical propagators, the traced
spectral neutrino self-energy is

tr[p/Σ/
A,wv
N (p)] = 2gw|Y|2

∫

d4k

(2π)4
tr[p/S/Al (k)]∆

A
φ (p− k) (1− f+(u · k) + f−(u · (p− k))) . (3.30)

Since only the dominant contribution to this process is needed, the tree-levelone vanishes in the massless
limit, and medium corrections add linearly inG, h2

t andλφ, Equation (3.30) may be decomposed as

tr[p/Σ/
A,wv
N0

(p)] ≡ B0(p) + F0(p) (3.31)

with

B0(p) ≡ tr
[

p/Σ/
A,wv
N0

[∆φ,S/
(0)
l ](p)

]

(3.32)

F0(p) ≡ tr
[

p/Σ/
A,wv
N0

[∆
(0)
φ ,S/l ](p)

]

(3.33)

or diagrammatically as

≈ + .

Figure 3.5: Expansion of thewv diagram according to Equation (3.31). Double and single lines indicate fulland tree-level propa-
gators, respectively. The charge-flow arrows are suppressed, but the sum of both cases is intended.

The index(0) in S/(0)
l and∆

(0)
φ denote the tree-level propagators. This means that theB term involves a

full Higgs and a tree-level lepton propagator, while theF term contains a tree-level Higgs and a full lepton
propagator.
The full propagators obtain plasma induced dispersion relations and a widthdue to their
self-energies. Those effects are treated in two manners, which can be compared to each other in the end.
One approach is to neglectΠ

H
φ and Σ

H
l within the resummed propagators ofB0 andF0. In particular,

those reduced resummed functions are expanded in couplings. The neglected effects are then incorporated
by adding the processesN ↔ lφ and N ↔ l̄φ̄, i.e. the perturbativeLO expressionH0, using tree-level
propagators that include the thermal masses.
The second method is to not approximate the resummed propagators inB0 andF0 at all. In turn, the integrals
have a non-trivial pole structure and can only be evaluated numerically.

23 This argument is repeated in Section 3.4.1.3.
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3.4.1.1 PerturbativeLO Contribution using Thermal Masses

The lepton and Higgs plasma induced dispersion relations are obtained fromΣl andΠφ, respectively. Hence,
the resulting "thermal masses" are momentum dependent even at leading order in the couplings. However,
in the ultra-relativistic limit at high temperatures and typical momenta aboveT, they have to be proportional
to T2, such that only the momentum independent parts are of importance. According to (2.90) and (2.77),
the asymptotic thermal masses are24

(mth
l )

2 =
1
4

GT2 (3.34)

(mth
φ )

2 =
1
4

GT2 +
gc

12
h2

t T2 +
1
2
λφT

2 . (3.35)

Analogously to (3.18), theLO neutrino production rate, incorporating above thermal masses in the form of
tree-level massesml andmφ, can be evaluated from

tr[p/Σ/
LO,A
N (p)] ≡ H(p) = 2gw|Y|2

∫

d4k

(2π)2
p · kδ(k2 −m2

l )δ((p− k)2 −m2
φ)

sign(k0)sign(p0 − k0)
(

1− f+(k
0) + f−(p0 − k0)

)

. (3.36)

With the help of Section 2.4, the vacuum part of (3.36) becomes

Hvac(p) =
gw|Y|2

8π
1
p2

(

p2 + m2
l −m2

φ

)

√

−
∣
∣
∣
∣
∣
∣

2m2
l p2 −m2

l −m2
φ

p2 −m2
l −m2

φ 2m2
φ

∣
∣
∣
∣
∣
∣

sign(p0)θ(p2 −m2
l −m2

φ) . (3.37)

One can easily check that in the limitml ,mφ → 0 the result (3.20) is obtained. Likewise, the thermal part is
evaluated in the plasma frame from

HT,0(p) =
gw|Y|2

8π
1
|~p|

(

p2 + m2
l −m2

φ

)

θ

(

−
∣
∣
∣
∣
∣
∣

2m2
l p2 −m2

l −m2
φ

p2 −m2
l −m2

φ 2m2
φ

∣
∣
∣
∣
∣
∣

)

∫ k0
+

k0
−

dk0
(

sign(k0) f−(|p0 − k0|) − sign(p0 − k0) f+(|k0|)
)

. (3.38)

This becomes for positivep2

HT,0(p) =
gw|Y|2

8π
1
|~p|

(

p2 + m2
l −m2

φ

)

θ

(

−
∣
∣
∣
∣
∣
∣

2m2
l p2 −m2

l −m2
φ

p2 −m2
l −m2

φ 2m2
φ

∣
∣
∣
∣
∣
∣

)

(3.39)

sign(p2 −m2
l −m2

φ)

(

−xθ(p2 −m2
l −m2

φ)sign(p0) + ln
∣
∣
∣
∣
∣

1+ ex

−1+ ex−p0

∣
∣
∣
∣
∣

)∣
∣
∣
∣
∣

x=k0
+

x=k0
−

with the boundary variables

k0
± =

p0(p2 + m2
l −m2

φ)

2p2
± |~p|

2p2

√

−
∣
∣
∣
∣
∣
∣

2m2
l p2 −m2

l −m2
φ

p2 −m2
l −m2

φ 2m2
φ

∣
∣
∣
∣
∣
∣
. (3.40)

In the Equations (3.37) and (3.39)p2 may be set tom2
N, such that, as a side-product, a solution for three arbi-

trary massesH(|~p|; mN,mφ,ml) is found. By settingml = mφ = 0 this can be compared to Equation (3.25).

24 See Section 4.7 for a detailed derivation of the lepton dispersion relation.
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For completeness, the limitp2 = m2
N → 0 is taken:

HT,0
0 (p) = gw|Y|2

m2
φ −m2

l

24π





1+ sign(m2
φ −m2

l )
2T

|~̃p|
ln

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

cosh

(

(m2
φ−m2

l )
2+4m2

l |~̃p|
2

8(m2
φ−m2

l )|~̃p|

)

sinh

(

(m2
φ−m2

l )
2+4m2

φ |~̃p|
2

8(m2
φ−m2

l )|~̃p|

)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣





. (3.41)

Since the on-shell contribution (3.37) vanishes forp2 = m2
N = 0, the effect of the plasma induced thermal

masses is calculated from (3.41) alone. In Figures 3.6 and 3.7 those are called "H usingmth
φ " and "H using

mth
l ". Thosemth

φ andmth
l are the masses in (3.35) and (3.34).

3.4.1.2 Corrections from the Higgs Boson

Using the assumptionΠH
φ (p) = 0, which means neglecting the plasma induced dispersion relation, the

resummed Higgs spectral function from Equation (1.80) may be written as

∆
A
φ (p) ≈

Π
A
φ (p)

p4 +
(

Π
A
φ (p)

)2
≈

Π
A
φ (p)

p4
. (3.42)

The error that is made by this approximation is investigated in the following. The last term in Equation (3.42)
corresponds to the 1-loop correction of the Higgs spectral function withina series expansion to leading
order in the couplingsG, ht and λφ even without neglectingΠH

φ . Π
A
φ is the 1-loop Higgs self-energy

from Section 2.5.5, and for the lepton propagator, the massless tree-levelspectral function (1.71) may be
substituted to Equation (3.30). Then, the scattering correction from the Higgs boson expressed in the plasma
frame becomes

B0(p) = 4gw|Y|2
∫

d4k

(2π)3
p · kδ(k2)sign(k0)

Π
A
φ (p− k)

(p− k)4

(

1− f+(k
0) + f−(p0 − k0)

)

. (3.43)

SinceB0 is evaluated on-shell,p2 can be set to zero. Consequently, after integrating out the delta function,
the numerator 2p · k decreases the pole degree:

B0(p) =
gw|Y|2
(2π)2

∫

d cos∡(k, p)d|~k||~k|
∑

k0=±|~k|

∓
Π
A
φ (p− k)

(p− k)2

(

f+(−k0) + f−(p0 − k0)
)

. (3.44)

SinceΠ
A
φ (p− k) is proportional to(p− k)2, Equation (3.44) is free of divergences and can be calculated

straightforwardly.25 Therefore, the infrared regulating massλ was set to zero in the beginning. Under
restriction to the massless 1-loop spectral Higgs self-energy in vacuum, theconstraint(p− k)2 > 0 allows
only the negative solution fork0 if p0 = +|~p| is treated as positive. Then Equation (3.44) becomes

Bvac
0 (p+) =

(

−G+
gch2

t

2

)

gw|Y|2
2(2π)3

(

π2

12
+ Li2(e

−|~p|)

)

T2 . (3.45)

Li2 is the dilogarithm, andp+ indicates the restriction to positivep0. In the same way, the thermal spectral
Higgs self-energy can be incorporated. When plugging these into (3.16), the total production rate for zero

25 Related to this is the discussion in footnote 33 on page 50.

41



RHN abundance can be integrated out:

γN[B0] ≈
1

(2π)5
gw|Y|2T4

(

π2

12

)2





13
10

(

−G+
gch2

t

2

)

︸               ︷︷               ︸

usingΠ
A,vac
φ

+ 5.8595(7± 6)G+ 1.2213(6± 2)
gch2

t

2
︸                                            ︷︷                                            ︸

usingΠ
A,T,0
φ





(3.46)

≈ gw|Y2|T4
(

3.1496(4± 6) · 10−4G+ 8.7084(7± 7) · 10−5gch
2
t

)

. (3.47)

In case of the the Standard Model valuesgw = 2 andgc = 3, the numerical coefficient in front of the
top Yukawa coupling is 5.2250(8± 4) · 10−4. This is in good agreement to the 5.22· 10−4 of [60]. These
numbers are published with less accuracy in [75] and correspond to the lines "O(G)" and "O(h2

t )" in the
Figures 3.6 and 3.7. TheG in [75] is defined as thegwG of here.

The more realisticB0 is obtained with

∆
A
φ (p) ≈

Π
A
φ (p)

p4 +
(

Π
A
φ (p)

)2
(3.48)

or

∆
A
φ (p) =

Π
A
φ (p)

(

p2 −ΠH
φ (p)

)2
+

(

Π
A
φ (p)

)2
, (3.49)

and in consequenceγN can only be calculated numerically by fixing the couplings. The results using Equa-
tions (3.48) and (3.49) are given in Table 3.1 for several couplings. InFigures 3.6 and 3.7, they are referred
to as "ΠH

φ = 0" and "full", respectively. Checked is the range 10−6 ≤ G ≤ 10−0.1 and 10−3 ≤ ht ≤ 10−0.05,
using 60 points per scan. The "full" result is obtained by splitting the integration region into a "pole" and
a "non-pole" part. These are the lines(a) and(b) in the plots. Details on the numerics can be found in
Chapter 4.4.

γN using eq. (3.48) γN using eq. (3.49)
RGE scale 109 3.58(6± 4) · 10−4 |Y|2T4 −2.63(7± 8) · 10−4 |Y|2T4

RGE scale 1012 3.05(1± 4) · 10−4 |Y|2T4 −2.01(1± 7) · 10−4 |Y|2T4

G = 10−1 3.07(9± 5) · 10−4 |Y|2T42G −3.0(3± 1) · 10−4 |Y|2T42G
G = 10−2 3.14(7± 5) · 10−4 |Y|2T42G −2.6(4± 1) · 10−4 |Y|2T42G
G = 10−3 3.14(9± 5) · 10−4 |Y|2T42G −2.3(7± 1) · 10−4 |Y|2T42G
G = 10−4 3.15(0± 5) · 10−4 |Y|2T42G −2.2(6± 1) · 10−4 |Y|2T42G
G = 10−5 3.15(0± 5) · 10−4 |Y|2T42G −2.2(2± 1) · 10−4 |Y|2T42G
G = 10−6 3.15(0± 5) · 10−4 |Y|2T42G −2.2(0± 1) · 10−4 |Y|2T42G
ht = 10−1 5.22(5± 4) · 10−4 |Y|2T4h2

t 1.55(1± 1) · 10−3 |Y|2T4h2
t

ht = 10−2 5.22(5± 4) · 10−4 |Y|2T4h2
t 1.59(0± 2) · 10−3 |Y|2T4h2

t
ht = 10−3 5.22(5± 4) · 10−4 |Y|2T4h2

t 1.59(3± 2) · 10−3 |Y|2T4h2
t

Table 3.1: Numerical results forγN[B0] of massless right-handed neutrinos in different approximations. The RGE scale couplings
are summarized in Table 2.1. The other cases are calculated for comparison and use only the mentioned coupling while
the others are set to zero.
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Figure 3.6: The figure shows contributions toγN[B0](G) usinght = λφ = 0. The "ΠH
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In the case of the gauge interactions, approximation (3.42) compared to (3.48) is valid up to percent accuracy
for G < 0.1. Furthermore, in the case of the top quark interaction, the difference is smaller than the numerical
error. However, approximation (3.48) compared to the full case of (3.49) loses the information of the thermal
masses of the Higgs and the lepton. In the ultra-relativistic regime, this thermal mass becomes important
since it regularizes the infrared divergences. Hence, it should be included even though the ultra-relativistic
limit appears to be finite without a thermal mass. Both figures show that the thermal mass effect can be
incorporated into (3.48) approximately by adding or subtracting the 1↔ 2 tree-level process, i.e. theH0

term, with tree-level massesmN = ml = 0 andmφ = mth
φ . This approximation then resembles the full result

for G < 10−4 andht < 10−1 separately within percent accuracy.
In the case of the top-quark interaction shown in Figure 3.7,H0 is added. This results in a positive contri-
bution to the neutrino production rate. However, in the case of the gauge boson interactions in Figure 3.6,
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the subtraction ofH0 is at first glance strange. It even turns out to be wrong. The discussion of this sign
is postponed to Chapter 3.5.2.3. For now, only the following short answer isgiven: The on-shell spectral
function can be recovered according to (1.81) by taking the small couplinglimit. This assumes that the

relation sign(ΠAφ (p)) = sign(p0) holds on-shell. However, this is not true for theΠ
A,(γ)
φ from Section 2.5.

TheH0 should only be added. Hence, one may ask whether approach (3.48) plus two timesH0 including
mth
φ approximates the true "full" result better or not. This question is discussed inSection 3.5.4 in detail.

There, a correction of the gauge boson resummed spectral Higgs propagator is formulated. The resulting
corrected rate is plotted in Figure 3.6 and indicated as "full corrected".

3.4.1.3 Corrections from the Lepton

The contributions from the lepton can be calculated in nearly the same way as inthe last section. The full
spectral function of a massless lepton is (1.85):

PLS/Al (p) = PL

γ · a2a · b− γ · b
(

a2 − b2
)

(a2 − b2)2 + (2a · b)2
PR , aµ = pµ − Σ

H
l
µ

, bµ = Σ
A
l
µ

. (3.50)

TheΣ
µ
l is defined in Section 2.6 viaΣ/l = PLγ ·Σl without chiral projectors. Therefore, the explicit notation

γ · a and γ · b is preferred in place ofa/ and b/. S/Al clearly can be defined without projectors. When
Equation (3.50) is inserted into (3.17), the projectors sum up. The resultingF0 term is

F0(p) =
2gw|Y|2
(2π)2

∫

B
dk0d|~k| |

~k|
|~p| p ·S

A
l (k)sign(p0 − k0)

(

f+(−k0) + f−(p0 − k0)
)

. (3.51)

According to (2.84) any appearing scalar products can be expressedby known functions, such that (3.51)
can be evaluated numerically.

An approximation as similar to Equation (3.42) for the Higgs case is only possiblefor large spatial mo-
menta|~k|. The 1-loop correction to the lepton propagator introduces an infrared divergence in the t-channel
exchange of a massless lepton in the processesNl → φγ andNγ → φl. This divergence can be regularized
by giving the neutrino a mass or resumming the 1-loop lepton self-energy to allorders, which dynamically
introduces a thermal mass for the lepton. By using the resummed lepton, the coupling G can effectively be
regarded as the regulator. Therefore, for a smallG, the rate can be expected to be constituted byG, but also
by G ln(G) from the t-channel. The error is then of the orderG2 ln(G).

In the next step, Equation (3.51) is solved numerically up to an relative error of 10−3 for each mode|~p|
separately.26 The evaluated parameter range is 10−1 ≤ G ≤ 1 using 11 points27 and 10−3 ≤ |~p| ≤ 101.5 using
46 points28 both on a logarithmic scale. The result is interpolated and shown in the Figures3.8 and 3.9.
From those, the differential rateΓN0 can be obtained and integrated to give the total rateγN0. The latter is
plotted in Figure 3.10.

26 See Chapter 4.7 for details on the numerics.
27 According to Table 2.1, this is approximately the relevant interval for realistic gauge couplings important for Leptogenesis.
28 When the total rate is calculated, higher|~p| modes are suppressed by the exponential of the distribution function. Since

the neutrinos have a Fermi-Dirac distribution, the lower cutoff is allowed due to suppression by the|~p| factor from the integral

measured3~p
2p0 . In the case of Bose-Einstein distributions, a smaller|~p| could be important.
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Figure 3.10 showsγN0 divided by G in a logarithmic-linear style, such that the expected
G+G ln(G) dependence becomes a straight line. From this the leading coefficients are extracted by a
fit:

γN0[F0]≈
(

1.28(19± 6)G− 0.39(24± 4)G ln(G) + 0.02(8± 3)G2 ln(G)
)

· 10−3gw|Y2|T4 (3.52)

=
(

1.544(4± 4)(2G) − 0.39(64± 6)(2G) ln(2G)

+0.00(89± 7)(2G)2 ln(2G)
)

· 10−3|Y2|T4 . (3.53)

In (3.53) the higher order termG2 ln(G) is included to obtain an error estimate for the lower orders. The
numbers in (3.53) assume the group factorgw = 2 and are arranged such that they can be compared directly
to earlier results published in [75].29

3.4.2 Vertex Type Contributions

Also the vertex type contributionsΣ/vert
N0

, corresponding to the cuts in Figure 3.4, give a sizable contribution
to the neutrino production rate. Those cuts can be calculated along the lines of Chapter 3.5.6, but in the
plasma frame. This was done in [75]. Their result is quoted for later comparison:

γN0[J0] = 3.15· 10−4gw|Y2|GT4 . (3.54)

TheJ0 = tr[p/Σ/
A,vert
N0

(p)] is introduced in accordance with the notation of later chapters.

29 The numeric here is done independently from [75].
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3.5 NLOResults in the Non-Relativistic to the Ultra-Relativistic Regime

The goal of the following section is to find the transition from the ultra-relativistic limit at high temperatures
to the non-relativistic limit at low temperatures compared to the neutrino mass. Thenon-relativistic limit
is dominated by the tree-level processesN ↔ lφ and N ↔ l̄φ̄. Those are calculated in Chapter 3.26
perturbatively. However, the ultra-relativistic limit is dominated by radiative corrections to the tree-level
processes that have to be resummed. This was calculated in the previous chapter. The intermediate regime
should render the crossover from one limit to the other one and thereforeshould be calculated using the
approach that applies for both regions. Hence, the 2PI resummation is used. Nevertheless, it is instructive
to verify that the perturbation theory is well-defined up to some point without resorting to a resummation.

For non-vanishing neutrino masses, the tree-level process is included inthe 2PI 1-loop diagram for the neu-
trino self-energy. Therefore, it may be expanded for simplicity according to Figure 3.11:

≈ + − .

Figure 3.11: Expansion of thewv diagram valid for a RHN mass ranging from the non-relativistic to the ultra-relativistic regime.
Double and single lines indicate full and tree-level propagators, respectively. The charge-flow arrows are suppressed,
but the sum of both cases is intended.

The first two diagrams on the right-hand side were called the wave-functiontype contributions in the last
sections. In the following sections, this terminology is maintained even if the tree-level processH is in-
cluded as well. The last term subtracts the overcountedH , which is already obtained in Equation (3.26).
In case of the 2-loop 2PI diagram, i.e. the vertex type contribution, the expansion shown in Figure 3.12
remains:

≈ .

Figure 3.12: Perturbative expansion of thevert diagram valid for a RHN mass ranging from the non-relativistic to the
ultra-relativistic regime. The sum over both charge flow directions is implicitlyassumed.

Those terms are derived in the following sections.
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3.5.1 Wave-Function Type Contributions - Perturbative Thermal Mass Insertion

In the non-relativistic limit,NLOcorrections to the neutrino rate are given by the coupling expansion of the
corresponding diagrams to second order in the YukawasY andht, to second order in the gauge couplingsg1

andg2, which means first order inG, and to first order in the Higgs quartic interactionλφ. The lepton and
Higgs receive 1-loop corrections from a gauge boson exchange. Furthermore, the Higgs obtains corrections
from a top quark and a Higgs loop. To this order, the full Higgs and lepton propagators may be expanded as

∆φ ≈ ∆
(0)
φ + ∆

(1)
φ (3.55)

S/l ≈ S/(0)
l + S/(1)

l , (3.56)

where a(0) again corresponds to the tree-level function and a(1) to the 1-loop correction. Hence, the

perturbativeNLO corrections from Figure 3.11 are given by∆
(1)
φ and S/(0)

l , and vice versa by∆(0)
φ and

S/(1)
l .30 Here and in all following subsections, those terms are referred to byB andF terms, respectively.

They again correspond to the bosonic and fermionic contributions:

BO(G,h2
t ,λφ)(p) ≡ tr

[

p/Σ/
A,(φ)
N (p)

]

≡ tr
[

p/Σ/
A,wv
N [∆

(1)
φ ,S/(0)

l ](p)
]

(3.57)

F O(G)(p) ≡ tr
[

p/Σ/
A,(l)
N (p)

]

≡ tr
[

p/Σ/
A,wv
N [∆

(0)
φ ,S/(1)

l ](p)
]

. (3.58)

Especially for the comparison with the resummed approach, the specific perturbative expansion order is
mentioned explicitly. However, in the following subsections this is dropped fornotational simplicity.

∆
(1)
φ andS/(1)

l are the sum of spectral and hermitian self-energies. Since the spectral self-energy is the sum of
all cuts of the corresponding diagrams, those terms result in corrections from 2↔ 2 scatterings and 1↔ 3
decays and inverse decays in the present case. Likewise, the terms proportional to the hermitian self-energy
are regarded as wave-function type corrections to the 1↔ 2 process ofN, l andφ. Those are responsible
for the perturbative inclusion of the thermal mass effects. Therefore, theB andF terms can be split further
into a "sca" and a "wv" contribution:B = Bsca+ Bwv andF = F sca+ F wv. In order to derive them, the
1-loop corrections∆(1)

φ andS/(1)
l are consistently expressed by retarded and advanced functions, since those

rely on the Schwinger-Dyson equations:

i∆(1),R/A
φ (p) = i∆(0),R/A

φ (p)(−i)ΠR/A
φ (p)i∆(0),R/A

φ (p) , (3.59)

and the likewise one forS/(1)
l . TheΠφ here is the perturbative 1-loop Higgs self-energy from Section 2.5.

Only the spectral part of∆(1)
φ is needed:

∆
(1),A
φ =

1
2

(

i∆(1),R
φ − i∆(1),A

φ

)

(3.60)

= −1
2

([(

i∆(0),R
φ

)2
−

(

i∆(0),A
φ

)2
]

iΠH
φ +

[(

i∆(0),R
φ

)2
+

(

i∆(0),A
φ

)2
]

Π
A
φ

)

. (3.61)

In the same way, the leptonic correctionS/(1),A
l can be evaluated as

iS/(1),R/A
l (p) = iS/(0),R/A

l (−i)Σ/R/A
l iS/(0),R/A

l = −p/iΣ/R/A
l p/

(

i∆(0),R/A
l

)2
(3.62)

S/(1),A
l (p) = −1

2

([(

i∆(0),R
l

)2
−

(

i∆(0),A
l

)2
]

p/iΣ/H
l p/ +

[(

i∆(0),R
l

)2
+

(

i∆(0),A
l

)2
]

p/Σ/Al p/

)

. (3.63)

30 TheLO termH in Figure 3.11 is obtained from∆(0)
φ andS/

(0)
l .
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Again, ∆l is the scalar or non-Dirac part ofS/l , i.e. S/l(p) = p/∆l(p). The difference between retarded and
advanced scalar tree-level propagators can be evaluated using Cauchy’s integral formula:

∂n
z f (z) =

n!

2πi

�

f (ζ)

(ζ − z)1+n
dζ . (3.64)

The retarded and advanced propagators have poles above and belowthe real axis

i∆R/A(p) =
i

p2 −m2 ± iεsign(p0)
, (3.65)

determined by an infinitesimal positiveε = 0+. In the limit ε→ 0, they become the same function

i∆R/A(p)
ε→0−−−→ i

(z+ − p0)(z− − p0)
, z± ≡ ±

√

~p2 + m2 , (3.66)

but the integral contour has to change to preserve causality. Hence, one may evaluate for some appropriate
test functionf

∫ ∞

−∞
dk0 f (k0)

[(

i∆(0),R
)2−

(

i∆(0),A
)2

]

(k)=
∫ ∞

−∞
dk0 f (k0)

(

i∆(0),R
)2
+

∫ −∞

∞
dk0 f (k0)

(

i∆(0),A
)2

. (3.67)

The poles are moved onto the real axis by settingε to zero. However, the integration contour of Equa-
tion (3.67) changes according to Figure 3.13.

+
ε→0−−−→ +

= ≡ γ

Figure 3.13: Shown is the integration contour in the complexk plane. Thick arrows indicate the direction of integration, and the
dots represent the poles of retarded and advanced∆

(0)(k).

Therefore, Equation (3.67) evaluates to



γ

dk0 f (k0)
i2

(k2 −m2)2
=

∑

z±

2πi∂z±

(

f (z±)

(z∓ − z±)2

)

(3.68)

= 2πi
∑

±

(

∂z± f (z±)

4z2
±
− f (z±)

4z3
±

)

(3.69)

=

∫ ∞

−∞
dk0

∑

±
δ

(

k0 ±
√

~k2 + m2

)

iπ

2k02

(

∂k0 − 1
k0

)

f (k0) . (3.70)

By comparing (3.67) with (3.70), the relation

[(

i∆(0),R
)2 −

(

i∆(0),A
)2

]

(k) =
∑

±
δ

(

k0 ±
√

~k2 + m2

)

iπ

2k02

(

∂k0 − 1
k0

)

(3.71)

can be found to hold under integration, provided the test function is holomorphic within a neighborhood
of k2 = m2. Regarding the present perturbative wave-function type contributions, the only terms that may
spoil the holomorphicity are the sign function and the delta distribution of the corresponding tree-level
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propagator.31 Nevertheless, the sign is not problematic, because as long asmN , 0, a neighborhood of the
pole where the sign is fixed always exists. However, the derivative in Equation (3.71) acts on an on-shell
delta function, which leads to a term of the form

∫

dx f(x)δ(x− y)∂xδ(x− z). While such an integral can be
solved by a partial integration in a symmetric fashion, while always checking for possible consequences on
the integration bounds, it is easier to integrate out all deltas before solving the Cauchy integral. In following
the same calculation starting from

∫

dk0d|~k| f (k0, |~k|)δ(|~k| − (mN ± k0))
[(

i∆(0),R
)2 −

(

i∆(0),A
)2

]

(k) , (3.72)

this rule can be found:

δ(|~k| − (mN ± k0))
[(

i∆(0),R
)2 −

(

i∆(0),A
)2

]

(k) = (3.73)

δ



|~k| −
m2

N −m2

2mN



 δ



k
0 ±

m2
N + m2

2mN





iπ

2m2
N

(

∂k0 ± ∂|~k|
)

.

In the case ofm = 0, both rules act the same way onk2.32 This is of importance for [80] to show the
cancellation of infrared divergences in the wave-function type corrections, as they use the relation (3.71).
To circumvent theδ∂δ term, Equation (3.73) is used thereafter.
Likewise, the sum of retarded and advanced functions squared can beshowed to correspond to a Cauchy
principal value under certain conditions:

[(

i∆(0),R
)2
+

(

i∆(0),A
)2

]

(k) = −2P 1

(k2 −m2)2
. (3.74)

Relation (3.74) alone is not well-defined. It holds only together with an appropriate test function that renders
the principal value finite under integration.
What remains is to clarify why retarded and advanced functions are not simply converted to hermitian and
spectral functions like(i∆(0),R/A)2 = (i∆(0),H ± ∆

(0),A)2. The answer to this goes back to footnote 31.
∆
(0),H and∆

(0),A are the real and imaginary parts of some meromorphic functions∆
(0),R/A that include the

finite ε term. In the limitε→ 0+, those become complex distributions. A product of distributions cannot be
defined without further input, such as the causality prescription obtained from the infinitesimalε term or the
explicit mentioned integration contour above. In other words, an expression like (i∆(0),H ± ∆

(0),A)2 would
involve undefined products of distributions, such as a delta function squared or terms likeδ(x)P1

x.33

In principle, thermal equilibrium may be assumed too, as it applies to this case. However practically, this
assumption can be relaxed: Since the 2PI formulation assumes a full propagator, which is described by
the resummation of all self-energy insertions, at two and higher loops, products of retarded and advanced
propagators appear. In the limitε→ 0, their poles above and below the real axis lead to the so called pinch
singularities. These terms only disappear if, for example for the scalar case, the corresponding distribution
function f satisfiesf iΠ> − (1+ f )iΠ< = 0 [73], which is another form of the KMS relation. Hence,
f should take its equilibrium form. However, a resummation of all loop insertions removes the pinch

31 Even though the complex tree-level propagators should be meromorphic functions, their real and imaginary parts must not be
meromorphic. The sign and delta functions are a consequence of restricting k0 to the real axis.

32 . . . if |~k| = mN ± k0

33 The squared distribution
(

P 1
(p−k)2

)2
was already found in Equation (3.43). In fact, (3.43) is well-defined,sinceΠ

A
φ (p− k)

cancels one of those distributions. However, if the "consistent" result for Π
A
φ from Section 3.5.4 is used within Equation (3.43),

the terms do not cancel. In Equation (3.43) this would become manifest by a logarithmic divergence in(p− k)2, which would be
ascribed to an inconsistent expansion of the resummed spectral function at the right-hand side of Equation (3.42): There, a function
is expanded perturbatively in couplings, and consequently an ill-definedproduct of distributions is obtained.
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singularities, and only equilibrium contributions remain in the propagator in [81]. This is a result of the
Fourier transform, which removes any time dependence such that only equilibrium is possible. Nevertheless,
in Wigner space, the non-equilibrium contributions take their intuitively expected resummed form to all
orders in a gradient expansion, showing that no equilibrium assumptions have to be done [73].
This statement is supported by the following argument: The pinch singularities are a consequence of an
undefined limitε → 0. Nevertheless, in the top down 2PI approach, the full propagators have a width
such that theε can safely be set to zero. Hence, the ill-defined product of distributionsin perturbation
theory becomes a well-defined product of full propagators, such thatno pinch singularities are present.
The perturbative expansion of the full 2PI functions may involve products of distributions, but the correct
treatment of those is determined by the expansion manner and has to be well-defined at all stages.
The next step is to evaluate theB andF terms for a massive on-shell RHN. Hence,p2 is set tom2

N > 0, such
that the Lorentz frame~p = 0 can be chosen. This is of particular importance for some terms, which can
then easily be integrated out analytically. An analogous calculation in the plasmaframe should be possible
too, but in the non-relativistic limit the neutrino frame is appropriate. Since tr[p/Σ/AN (p)] is anti-symmetric
in p0↔ −p0, the calculation may be further restricted top0 = +mN for simplicity.

Lorentz transformations made easy:
Since only three linearly independent 4-momenta have to be considered, i.e.the plasma vectoru, the
neutrino vectorp and the loop momentumk, their important components in thep-frame are related
to the one in theu-frame via their scalar products. From now on, the indexp or u is used to specify
the frame of the corresponding 4-momenta explicitly. Using the definitionp̃µp ≡ mNuµp, the scalar
products ofu, p andk read

p0
u = uu · pu = up · pp = u0

pmN ≡ p̃0
p (3.75)

k0
u = uu · ku = up · kp =

1
mN

p̃p · kp =
1

mN

(

p̃0
pk0

p − |~̃pp||~kp| cos∡(kp, p̃p)
)

(3.76)

pu · ku = pp · kp = mNk0
p . (3.77)

Likewise, one finds

|~pu|2 = p0
u

2 − p2
u = p̃0

p
2 − p̃2

p = |~̃pp|2 (3.78)

|~ku|2 = k0
u

2 − k2
u = k0

u
2 − k2

p . (3.79)

The angle between~ku and~pu is given by

cos∡(ku, pu) =
k0

up0
u − p · k
|~ku||~pu|

(3.80)

with the right-hand side expressed in thep-frame variables from above. Thẽpp equals topu at least
in the zeroth component and the absolute value of its space-like vector. By demanding that̃pp = pu,
the Lorentz transformation is completely fixed.

Hence, thepu dependence ofB andF calculated in theu-frame can be rearranged to ap̃p dependence ofB
andF calculated in thep-frame and vice versa. Note that the momenta in the self-energies of Section 2.5
areu-frame momenta. For the rest of this section, all momenta are thought to be in the frame ofp, if not
explicitly stated otherwise.
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3.5.1.1 Corrections from the Higgs Boson

Taking Equations (3.29) and (3.57), theB term for p0 = +mN is given by

B( p̃) = gw|Y|2
1
2

∫

d4k

(2π)4
tr

[

p/iS/(0),>
l (p− k)i∆(1),>

φ (k) − p/iS/(0),<
l (p− k)i∆(1),<

φ (k)
]

(3.81)

= gw|Y|22
∫

d4k

(2π)4
tr

[

p/S/(0),A
l (p+ k)

]

∆
(1),A
φ (k) ( f−(u · k) + f+(u · (p+ k))) . (3.82)

The sign change ofk from Equation (3.81) to (3.82) is just for convenience and not important. After the
insertion of (3.61) the wave-function correction becomes

Bwv( p̃) = −gw|Y|22

(2π)3

∫

d4kδ((p+ k)2)

[(

i∆(0),R
φ

)2
−

(

i∆(0),A
φ

)2
]

(k)

sign(mN + k0)(p2 + p · k)iΠH
φ (k) ( f−(u · k) + f+(u · (p+ k))) (3.83)

= −gw|Y|2
(2π)2

∫

dk0d|~k|d cos∡(k,u)
∑

±
δ(|~k| ± (mN + k0))

[(

i∆(0),R
φ

)2
−

(

i∆(0),A
φ

)2
]

(k)

|~k|mN|mN + k0|iΠH
φ (k) ( f−(u · k) + f+(u · (p+ k))) . (3.84)

Thisk0 integral may be split into one running from−∞ to−mN and one running from−mN to∞ in order to
fix the term sign(mN + k0). In using theδ(|~k| ± (mN + k0)), the retarded minus advanced functions only have
one pole atk0 = −mN

2 . This allows only for the minus sign in
∑

± and chooses thek0 contourk0 ≥ −mN. The

pole of f−(u · k) does not interfere withk0 = −mN
2 , since the zero ofu · k occurs atk0 = |~̃p|mN cos∡

p̃0−|~̃p| cos∡
> −mN

2 for

|~̃p| > 0. Therefore, a neighborhood can always be found to circlek0 = −mN
2 , such that the Cauchy integral

can be evaluated as in (3.73).Bwv then is

Bwv( p̃) =
gw|Y|2
23π

∫

dk0d|~k|d cos∡(k,u)δ
(

|~k| − mN

2

)

δ
(

k0 +
mN

2

) (

∂k0 + ∂|~k|
)





|~k|(mN + k0)

mN
Π

H
φ (k) ( f−(u · k) + f+(u · (p+ k)))



 . (3.85)

By further defining the recurring integral measure

dFB( p̃,k0, |~k|) ≡ d cos∡(k,u)( f−(u · k) + f+(u · (p+ k))) , (3.86)

Bwv can be written as

Bwv( p̃) =
gw|Y|2
23π





(

∂k0 + ∂|~k|
)




|~k|(mN + k0)

mN

∫

Π
H
φ (k)dFB( p̃,k0, |~k|)









∣
∣
∣
∣
∣ |~k|= mN

2

k0=−mN
2

. (3.87)

If the self-energyΠH
φ evaluates to zero atk2 = 0, the derivatives in (3.87) can only act onΠ

H
φ . Since the

vacuum termΠ
H,vac
φ does not depend onu,

∫

dFB can be evaluated and becomes

FB( p̃,k0, |~k|) ≡
∫

dFB =
mNT

|~k||~̃p|
ln

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

f−
(

k0 p̃0−|~k||~̃p|
mN

)

f+
(
(k0+mN) p̃0+|~k||~̃p|

mN

)

f−
(

k0 p̃0+|~k||~̃p|
mN

)

f+
(
(k0+mN) p̃0−|~k||~̃p|

mN

)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

. (3.88)
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In the limit T → 0, the vacuum part ofFB reads

FB,vac(k0) = sign(k0) − sign(mN + k0) , (3.89)

such thatFB can be separated into a vacuum and a thermal contribution as well:

FB ≡ FB,vac+ FB,T,0 . (3.90)

Using (3.82), (3.61) and (3.74), the scattering part ofB is given by

Bsca( p̃) = 4gw|Y|2mN

∫

d4k

(2π)3
(mN + k0)δ((p+ k)2)sign(mN + k0)

1

(k2)2
Π
A
φ (k) ( f−(u · k) + f+(u · (p+ k))) (3.91)

= 2gw|Y|2mN

∫

d3k

(2π)3

∑

k0=−mN±|~k|

1

(k2)2
Π
A
φ (k) ( f−(u · k) + f+(u · (p+ k))) (3.92)

=
2gw|Y|2
(2π)2

∫

d|~k||~k|2
∑

k0=−mN±|~k|

1

(mN ∓ 2|~k|)k2
Π
A
φ (k)dFB( p̃,k0, |~k|) . (3.93)

Π
A is proportional tok2. It cancels one of thek2 in the denominator, and only one principal value integrable

singularity at|~k| = mN
2 is left.

In the next step,B is split likeΠ
A
φ and inherits its superscripts as in Equation (3.94). In addition,B contains

thermal and vacuum contributions from the exterior distribution functionsf− + f+. Later on, these are
separated too, as shown in Equation (3.95):

Bwv/sca= Bwv/sca,vac+Bwv/sca,T,0 (3.94)

= Bwv/sca,vac,vac+Bwv/sca,vac,T,0 +Bwv/sca,T,0 . (3.95)

Contributions using vacuum self-energies:
The contributions with the vacuum self-energies from (2.76) and (2.78) are

Bwv,vac( p̃) =
gw|Y|2m2

N

26π3

(

G− gch2
t

2

)

ln
(
λ

Λ

)

FB
(

p̃,−mN

2
,
mN

2

)

+O(λ2) (3.96)

Bsca,vac±( p̃) =
2gw|Y|2
(2π)2

∫

d|~k||~k|2
Gθ

((
mN
2 − λ2

2mN

)

∓ |~k|
)

− gch2
t

2 θ
((

mN
2 − 2λ2

mN

)

∓ |~k|
)

8π(mN ∓ 2|~k|)
FB( p̃,−mN ± |~k|, |~k|) +O(λ2) . (3.97)

The sum over± in Bsca,vac is replaced byBsca,vac+ + Bsca,vac−. The second termBsca,vac− is finite in
the infrared, such thatλ can be set to zero. InBsca,vac+, a partial integration leads to a ln(λ), which
cancels the one inBwv,vac.

Bsca,vac+( p̃) =
gw|Y|2
25π3

(

m2
N

4

(

Gln
∣
∣
∣
∣
∣

TmN

λ2

∣
∣
∣
∣
∣
− gch2

t

2
ln

∣
∣
∣
∣
∣

TmN

4λ2

∣
∣
∣
∣
∣

)

FB
(

p̃,−mN

2
,
mN

2

)

+

(

G− gch2
t

2

) ∫ mN
2

0
d|~k|ln

∣
∣
∣
∣
∣
∣
∣

mN − 2|~k|
T

∣
∣
∣
∣
∣
∣
∣

∂|~k|

(

|~k|2FB( p̃,−mN + |~k|, |~k|)
)

+O(λ2)

)

(3.98)
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By redefining

Bvac−( p̃) ≡ Bsca,vac−( p̃) (3.99)

=
gw|Y|2
2(2π)3

(

G− gch2
t

2

) ∫

d|~k||~k|2 1

(mN + 2|~k|)
FB( p̃,−mN − |~k|, |~k|) (3.100)

and

Bvac,Λ +Bvac+ ≡ Bwv,vac+Bsca,vac+ , (3.101)

such thatBvac,Λ contains the renormalization schemeΛ dependence, the resulting functions are free
of the regulating massλ, which therefore can safely be set to zero.

Bvac,Λ( p̃) =
gw|Y|2
27π3

m2
N

(

Gln
∣
∣
∣
∣
∣

TmN

Λ2

∣
∣
∣
∣
∣
− gch2

t

2
ln

∣
∣
∣
∣
∣

TmN

4Λ2

∣
∣
∣
∣
∣

)

FB
(

p̃,−mN

2
,
mN

2

)

(3.102)

Bvac+( p̃) =
gw|Y|2
25π3

(

G− gch2
t

2

) ∫ mN
2

0
d|~k|ln

∣
∣
∣
∣
∣
∣
∣

mN − 2|~k|
T

∣
∣
∣
∣
∣
∣
∣

∂|~k|

(

|~k|2FB( p̃,−mN + |~k|, |~k|)
)

(3.103)

The pure vacuum part, i.e.Bvac± usingFB,vac, can be evaluated analytically:

Bvac+,vac = −gw|Y|2
25π3

(

G− gch2
t

2

)

∫ mN
2

0
d|~k|ln

∣
∣
∣
∣
∣
∣
∣

mN − 2|~k|
T

∣
∣
∣
∣
∣
∣
∣

∂|~k|

(

|~k|2(sign(|~k|) + sign(mN − |~k|))
)

(3.104)

= −gw|Y|2
23π3

(

G− gch2
t

2

) ∫ mN
2

0
d|~k|ln

∣
∣
∣
∣
∣
∣
∣

mN − 2|~k|
T

∣
∣
∣
∣
∣
∣
∣

|~k| (3.105)

= −gw|Y|2
27π3

(

G− gch2
t

2

)

m2
N

(

−3+ 2 ln
(mN

T

))

(3.106)

Bvac−,vac =
gw|Y|2
2(2π)3

(

G− gch2
t

2

) ∫

d|~k||~k|2 1

(mN + 2|~k|)
FB,vac(−mN − |~k|) (3.107)

∼
∫

d|~k||~k|2 1

(mN + 2|~k|)
(sign(|~k|) − sign(mN + |~k|)) = 0 . (3.108)

To obtainBvac+,T,0 andBvac−,T,0 from Equations (3.103) and (3.100) respectively, theFB is replaced
by FB,T,0:

Bvac+,T,0( p̃) =
gw|Y|2
25π3

(

G− gch2
t

2

)

∫ mN
2

0
d|~k|ln

∣
∣
∣
∣
∣
∣
∣

mN − 2|~k|
T

∣
∣
∣
∣
∣
∣
∣

∂|~k|

(

|~k|2FB,T,0( p̃,−mN + |~k|, |~k|)
)

(3.109)

Bvac−,T,0( p̃) =
gw|Y|2
2(2π)3

(

G− gch2
t

2

)

∫

d|~k||~k|2 1

(mN + 2|~k|)
FB,T,0( p̃,−mN − |~k|, |~k|) . (3.110)
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Contributions using thermal self-energies:
Left over are the termsBwv,T,0 andBsca,T,0. SinceΠ

H,T,0
φ (k) has ak-constant part34 and a term

proportional tok2, Bwv,T,0 results from two different contributions:

Bwv,T,0,1( p̃) =
gw|Y|2
23π

Π
H,T,0
φ (k2 = 0)

((

1+
mN

4

(

∂k0 + ∂|~k|
))

FB( p̃,k0, |~k|)
)∣∣
∣
∣
∣ |~k|= mN

2

k0=−mN
2

(3.111)

Bwv,T,0,2( p̃) =
gw|Y|2m2

N

26π3





∫

1

|~ku|

(

GI2−(k
0
u, |~ku|) +

gch2
t

2
I2+(k

0
u, |~ku|)

)

dFB( p̃,k0, |~k|)




∣
∣
∣
∣
∣ |~k|= mN

2

k0=−mN
2

. (3.112)

Since sign(k0
u) equals to sign(k0) andk2 is a Lorentz scalar,I2± can be simplified further in the limit

k0
u → −|~ku|. The second part then reduces to

Bwv,T,0,2( p̃) =
gw|Y|2m2

N

26π3

∫

d cos∡d|~q|




1

|~ku|

(

f−(−|~ku|) + f+( p̃0 − |~ku|)
)

(

G f−(|~q|) +
gch2

t

2
f+(|~q|)

)

ln

∣
∣
∣
∣
∣
∣
∣

|~q| − |~ku|
|~q|+ |~ku|

∣
∣
∣
∣
∣
∣
∣





∣
∣
∣
∣
∣|~ku|= p̃0+|~̃p| cos∡

2

. (3.113)

The remaining scattering contribution is

Bsca,T,0( p̃) =
2gw|Y|2
(2π)2

∫

d|~k||~k|2
∑

k0=−mN±|~k|

1

(mN ∓ 2|~k|)k2
Π
A,T,0
φ (k)dFB( p̃,k0, |~k|) . (3.114)

The Equations (3.113) and (3.114) can be evaluated numerically.

3.5.1.2 Numerical Solution

Figure 3.14 provides an overview of all existingB terms in this expansion, their splittings and the equation
indices. Those functions are evaluated numerically with the tools from Chapter 4.5 within a relative error of
10−3. The evaluated parameter space is spanned by 10−4 ≤ mN ≤ 102 using 61 points on a logarithmic scale,
and 10−3 ≤ |~̃p| ≤ 101.5 using 46 points on a logarithmic scale. For comparison with later results,ht andλφ
are set to zero. Also for ease of comparison, the total rateγN is calculated using the various contributions to
B separately by integrating over|~̃p| from 10−3T to 101.5T. In particular, the parameter space for|~̃p| is chosen
such thatγN can be evaluated within a relative error of 10−3. The results are presented in Figure 3.15. As
mentioned, the additional "O(G)" index indicates the perturbative expansion in the gauge couplings.

34 The thermal mass of the Higgs is(mth
φ )

2 ≡ Π
H,T,0(k2 = 0) = 1

4GT2 +
gch2

t
12 T2 + 1

4λφT2.
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Figure 3.14: Splitting ofBO(G,h2
t ,λφ) by notion of its superscripts. The first separation into vacuum and thermal contributions

corresponds to a separation of the Higgs self-energy into a vacuum andthermal part. The second one splits the
exterior distribution functions, i.e.FB. A boxed node means that the whole branch is renamed as this node.

Γ
N
�
H
T
4
G
g
w
Y
2
L

0.001 0.01 0.1 1 10 100

10-12

10-8

10-4

1

104

mN�T

BOHGL

BOHGL,vac,T¹0

BOHGL,wv,T¹0,1

BOHGL,wv,T¹0,2

BOHGL,sca,T¹0

BOHGL,vac,vac

B0
vac
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0 corresponds to the Higgs contribution

using theΠ
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φ in the massless limit. Solid and dashed lines respectively correspond to positive and negative values.
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As can be seen, the pure vacuum terms summed up inBvac,vac, i.e. the red line, become unimportant in the
ultra-relativistic limit. However, they dominate theO(G) correction to the rateγ[BO(G)], i.e. the thick blue
line, in the non-relativistic limit.
A logarithmic and a power divergence is found for smallmN

T . This results from the Bose-Einstein distribution
in theBwv,T,0,1 term, which is one of the terms that perturbatively include the thermal mass. In the mN

T → 0
limit, the divergent terms can be evaluated analytically:

γN[B
wv,T,0,1(mN ≪ T)]div = gw|Y|2GT4 1

25π3



ln

(

2mN

T

)

− 3ζ(3)

(

T
mN

)2
 , (3.115)

whereζ is the Riemann zeta function. This divergent behavior is no surprise, since the perturbative coupling
expansion is expected to break down for massless Higgs propagator momenta of the order ofT. These
momenta correlate to the neutrino mass and the temperature via the Bose-Einstein distribution. In particular,
the Bose-Einstein pole is regulated bymN

T . Hence, for smallmN
T values, the loop integral is dominated by

small Higgs propagator momenta. At this point, effects from the plasma become important. Those screen
the enhancement inBwv,T,0,1 by inducing a thermal mass non-perturbatively. Conversely, the perturbative
expansion breaks down. The physical screening from the thermal plasma is incorporated by using resummed
propagators as suggested by the 2PI formalism. This is done in Section 3.5.2.
Nevertheless, contact of the scattering terms with the perturbatively expanded result (3.43) should be found
in the ultra-relativistic limit. When all terms that include only the vacuum spectral Higgs self-energy are
added together, the contribution to the total rate for the smallest evaluated neutrino mass is

γN[BO(G),vac](mN = 10−4T) ≈ −1.29(95± 13)
1

(2π)5

(

π2

12

)2

gw|Y|2GT4 . (3.116)

This is in good agreement to the exact factor−1.3G of γN[B0] in Equation (3.46), which is calledBvac
0 in

Figure 3.15.γN[BO(G),vac] corresponds to the lineBO(G),vac,T,0, sinceBO(G),vac,vac and theBO(G),vac,Λ for a
fixed Λ vanish in the massless limit.
Likewise, the contributions that include only the thermal part of the spectralHiggs self-energy should coin-
cide with the factor 5.8596 in Equation (3.46). This is theBO(G),sca,T,0 term from Equation (3.114). In fact,
one can show that by tracing back in the calculation, up to the point where Equation (3.114) is completely
written in terms of Lorentz invariant scalar products and settingmN = 0, this is exactly the same equation
as (3.43). However, the numerical result is

γN[BO(G),sca,T,0](mN = 10−4T) ≈ 17.8(6± 2)
1

(2π)5

(

π2

12

)2

gw|Y|2GT4 . (3.117)

The reason for this mismatch is that the cancellation of the propagator pole in (3.43) with the numerator
algebra works only whenmN is set to zero. To investigate this further, Equation (3.114) can be rewrittenas

BO(G),sca,T,0( p̃) =
2gw|Y|2
(2π)2

∫

d|~k| |
~k|
2

∑

k0=−mN±|~k|

(∓)





1
︸︷︷︸

(a)

− mN

mN ∓ 2|~k|
︸     ︷︷     ︸

(b)





Π
A,T,0
φ (k)

k2
dF B( p̃,k0, |~k|) , (3.118)

where part(b) is the one that was set to zero in the ultra-relativistic calculation. A numerical check of
part(a) evaluates to

γN[Equation (3.118)(a)](mN = 10−4T) ≈ 5.85(957± 586)
1

(2π)5

(

π2

12

)2

gw|Y|2GT4 , (3.119)
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which fits perfectly to the massless result even for more digits than estimated by the error. However, the(b)
part of (3.118) does not vanish under the integral for smallmN, numerically checked up tomN = 10−4T.

γN[Equation (3.118)(b)](mN = 10−4T) ≈ 12.0(0± 3)
1

(2π)5

(

π2

12

)2

gw|Y|2GT4 (3.120)

This non-zero value originates from an interference of three enhancements coming from the Bose-Einstein
distributions withinΠ

A, the Bose-Einstein distribution in dF B, and the principal value at|~k| = mN
2 .

One possible explanation for the non-vanishing(b) part is thatmN = 10−4T may be not small enough. The
(b) term could be evaluated for even smaller masses, and eventually one would find another limit. However,
there is a likewise simple counter-argument: Within the perturbative calculation and after|~p| is integrated
out, the only remaining scales aremN andT. Therefore, modifications of the corresponding physics are
found at approximatelymN ≈ T. Nevertheless, there is no physical reason for a change belowmN < 10−4T.
Another explanation is that the non-vanishing(b) term partly captures the missing thermal mass effects of
(3.43): According to Section 3.4.1.2, the missing orderG correction to Equation (3.43) is given by the 1↔ 2
processesN ↔ lφ andN ↔ l̄φ̄, including a thermal tree-level mass for the Higgs. In the small coupling
limit, this is approximately

γN[H(mφ = mth
φ )][mN = 0,G≪ 1] ≈ 7.75(2± 1)

1

(2π)5

(

π2

12

)2

gw|Y|2GT4 . (3.121)

in comparison to the factor 12.0 of Equation (3.120).
On the other hand, arguments over whether this result in the ultra-relativisticlimit is physically correct or
not are useless. The logarithmic and power divergence for smallmN

T shows the breakdown of perturbation
theory, which states that mathematically a resummation and physically screening processes atmN = 0
are needed. This breakdown happens theoretically at latest at – but practically above – the thermal mass
scalemN ≈ mth

φ . This means that the resummation introduces a new mass scale where the physics changes.
Above that point, the non-vanishing(b) term is acceptable and physically correct, but below it,(b) does not
describe the correct processes.

3.5.1.3 Corrections from the Lepton

The same steps can be applied on the lepton side. First, theS/(1),A
l is written as retarded and advanced

functions, i.e. the expression in Equation (3.63). TheF -terms proportional toΣH are called thewv terms,
and the one proportional toΣA are referred to by thescaterms. When (3.63) is included in

F ( p̃) = gw|Y|22
∫

d4k

(2π)4
tr

[

p/S/(1),A
l (k)

]

∆
(0),A
φ (k− p) ( f−(u · (k− p)) + f+(u · k)) , (3.122)

the Dirac trace together with (2.84) gives

1
4

tr [p/k/Σ/k/] = 2p · k k · Σ − k2 p · Σ (3.123)

=
(

−k2, 2p · k
)

·
(

p · k p · u
k2 k · u

)

·Gram−1(k,u) ·
(

k · Σ
u · Σ

)

(3.124)

for a general Lorentz vectorΣ(k,u) = c1k+ c2u with corresponding scalar coefficientsc1 andc2. In the
case of vacuum self-energiesΣ

vac(k) = c1k, the trace can be reduced to

1
4

tr [p/k/Σ/vack/] = p · k k · Σvac . (3.125)
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First, the abbreviation

dFF ( p̃,k0, |~k|) ≡ d cos∡(k,u) ( f−(u · (k− p)) + f+(u · k)) (3.126)

∫

dFF ( p̃,k0, |~k|) = FF ( p̃,k0, |~k|) = mNT

|~k||~̃p|
ln

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

f−
(
(mN−k0) p̃0+|~k||~̃p|

mN

)

f+
(
−k0 p̃0−|~k||~̃p|

mN

)

f−
(
(mN−k0) p̃0−|~k||~̃p|

mN

)

f+
(
−k0 p̃0+|~k||~̃p|

mN

)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(3.127)

FF ,vac(k0) = sign(k0 −mN) − sign(k0) (3.128)

is introduced. Then, thewv-vacuum expression is derived:

F wv,vac( p̃) = gw|Y|2
1
π2

∫

dk0d|~k|sign(k0 −mN)
1
2




δ(|~k|+ k0 −mN) + δ(|~k| − k0 + mN)

︸               ︷︷               ︸

→0





δ(k0 − mN

2
)
π

4m2
N

(

∂k0 − ∂|~k|
) (

|~k| p · k k · ΣH,vac
l dFF ( p̃,k0, |~k|)

)

(3.129)

= −gw|Y|2
1

23πm2
N

∫

dk0d|~k| δ
(

|~k| − mN

2

)

δ
(

k0 − mN

2

)

(

∂k0 − ∂|~k|
) (

|~k| p · k k · ΣH,vac
l dFF ( p̃,k0, |~k|)

)

. (3.130)

Even if it is the same for this case, one may need to ensure thatδ((k− p)2) is separated into two deltas
with a factor of 1

2|~k|
and not 1

2|k0−mN | . A possible difference could arise due to the derivatives. During the

construction of (3.73), the delta distribution was integrated out by d|~k|while dk0 became the Cauchy integral.
Therefore, 1

2|~k|
is definitely the right choice.

One of the delta functions vanishes, since it is never solved together with thek2 = 0 condition from the

Cauchy integral ofS(1),A
l . Sincek · ΣH,vac

l (k) is proportional tok2, the derivatives can only act on thisk2.
Otherwise the resulting expression would vanish after integrating over the delta distributions. Consequently,

F wv,vac( p̃) = −gw|Y|2
mN

25π

∫

dk0d|~k|dFF
(

p̃,
mN

2
,
mN

2

)

δ
(

|~k| − mN

2

)

δ
(

k0 − mN

2

) (

∂k0 − ∂|~k|
)

k · ΣH,vac
l (3.131)

= −gw|Y|2
Gm2

N

27π3
ln
λ

Λ
FF

(

p̃,
mN

2
,
mN

2

)

(3.132)

is obtained. F wv,vac contains a "finite" part and a part originating from the collinear divergence of the
l → lγ scattering, which is regulated by the fictitious gauge boson massλ. The ln(λ)-dependent part and
the remainder are calledF wv,vac,col( p̃) andF wv,vac, f in, respectively.35

F wv,vac, f in( p̃) = gw|Y|2
Gm2

N

27π3
ln

Λ

T
FF

(

p̃,
mN

2
,
mN

2

)

(3.133)

F wv,vac,col( p̃) = −gw|Y|2
Gm2

N

27π3
ln
λ

T
FF

(

p̃,
mN

2
,
mN

2

)

(3.134)

Likewise,F sca,vac is found to be

F sca,vac( p̃) =
gw|Y|2
(2π)2

∫

d|~k| |~k|
∑

k0=mN±|~k|

±
m2

N + k2

k4
k · ΣA,vac

l (k)dFF
(

p̃,k0, |~k|
)

. (3.135)

35 The introduced ln(.) can take any scale. However, since theΛ in the numerics is set toT, the scaleT is chosen for convenience.
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Sincek · ΣA,vac
l (k) is proportional tok2, the part that arises from thek2 in the numerator is finite, while the

part that arises from them2
N contains a collinear divergence. Hence, those are referred to in the usual way.

F sca,vac, f in( p̃) =
gw|Y|2G

26π3

∫

d|~k| |~k|
∑

k0=mN±|~k|

±θ(k2)sign(k0)dFF
(

p̃,k0, |~k|
)

(3.136)

=
gw|Y|2G

26π3

∫

d|~k| |~k|
∑

±
±θ(mN ± 2|~k|)FF

(

p̃,mN ± |~k|, |~k|
)

(3.137)

F sca,vac,col( p̃) =
gw|Y|2G

26π3

∫

d|~k| |~k|
∑

k0=mN±|~k|

±
m2

N

k2
θ(k2 − λ2)sign(k0)FF

(

p̃,k0, |~k|
)

(3.138)

F sca,vac,col should be split further intoF sca,vac,col± corresponding to the sum, since the fictitious gauge boson
massλ can be set to zero inF sca,vac,col+.

F sca,vac,col+( p̃) =
gw|Y|2G

26π3

∫

d|~k| mN

mN + 2|~k|
|~k|FF

(

p̃,mN + |~k|, |~k|
)

(3.139)

In F sca,vac,col−, a partial integration analogous to the case forBsca,vac+ reveals a ln(λ) term that cancels the
ln(λ) in F wv,vac,col:

F sca,vac,col−( p̃) = −gw|Y|2G
26π3

∫ m2
N−λ

2

2mN

0
d|~k| mN

mN − 2|~k|
|~k|FF

(

p̃,mN − |~k|, |~k|
)

(3.140)

=
gw|Y|2GmN

27π3
ln





mN − 2|~k|
T



 |~k|FF
(

p̃,mN − |~k|, |~k|
)
∣
∣
∣
∣
∣

m2
N−λ

2

2mN

0
(3.141a)

− gw|Y|2GmN

27π3

∫ mN
2

0
d|~k| ln





mN − 2|~k|
T



 ∂|~k|
(

|~k|FF
(

p̃,mN − |~k|, |~k|
))

. (3.141b)

Equation (3.141b) is calledF sca,vac,col−,2. It is finite and it can be calculated numerically. Equation (3.141a),
i.e.F sca,vac,col−,1, added toF wv,vac,col results in

F vac,col−,1 ≡ −
gw|Y|2Gm2

N

28π3
ln

(mN

T

)


F
F

(

p̃,
mN

2
,
mN

2

)

+ 2
T

|~̃p|
ln

∣
∣
∣
∣
∣
∣

p̃0 − |~̃p|
p̃0 + |~̃p|

∣
∣
∣
∣
∣
∣



+O(λ2) (3.142)

=
gw|Y|2Gm2

N

27π3
ln

(mN

T

) T

|~̃p|
ln

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

p̃0 + |~̃p|
p̃0 − |~̃p|

f−
(

p̃0−|~̃p|
2

)

f+
(
−p̃0+|~̃p|

2

)

f−
(

p̃0+|~̃p|
2

)

f+
(
−p̃0−|~̃p|

2

)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

+O(λ2) , (3.143)

such thatλ can safely be set to zero.
All that remains is to write down the thermal contributions. Those can be split intoa T , 0 and aHT L part
as derived in Chapter 2.6. While theT , 0 contributions are perfectly finite, theHT L terms also involve an
infrared divergence from the t-channel exchange of a massless lepton. Therefore, a fictitious lepton massml

is introduced, such that only a collinear divergence regulated byml has to be dealt with. Whenever possible,
ml is set to zero.
The scacontributions can be simplified using theδ((k− p)2) from ∆

(0),A
φ . However, in the case of thewv

contributions, the derivative has to be considered first. Withk · u = k0
u and

δ(|~k|+ k0 −mN)tr
[

p/S/(1),A
l

]∣∣
∣
∣
∣

wv

= δ(|~k| − mN

2
+

m2
l

2mN
)δ(k0 − mN

2
−

m2
l

2mN
)
π

m2
N

(

∂k0 − ∂|~k|
)

(3.144)

1

|~ku|2
(

(|~ku|2 + k0
u

2
)p · k− k2k0

u p · u,k2(k2p · u− k0
u p · k)

)

·
(

k · ΣH
l

u · ΣH
l

)
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= δ(|~k| − mN

2
+

m2
l

2mN
)δ(k0 − mN

2
−

m2
l

2mN
)π (3.145)





m2
N + 2k0

u(k
0
u − p · u)

mNk0
u

2
+

(

∂k0 − ∂|~k|
)

,−mN

k0
u



 ·
(

k · ΣH
l

u · ΣH
l

)

+O(m2
l ) ,

the thermalwv andscaterms, includingml , read

F wv( p̃) = −gw|Y|2
23π

∫

dk0d|~k|δ


k
0 − mN

2
−

m2
l

2mN



 δ



|~k| −
mN

2
+

m2
l

2mN



 (3.146)





m2
N + 2k0

u(k
0
u − p · u)

mNk0
u

2
+

(

∂k0 − ∂|~k|
)

,−mN

k0
u



 ·
[

|~k|dFF ( p̃,k0, |~k|)
(

k · ΣH
l

u · ΣH
l

)]

+O(m2
l )

F sca( p̃) =
gw|Y|2
2π2

∫

d|~k|
∑

k0=M±|~k|

± 1

(k2 −m2
l )

2
|~k|dFF ( p̃,k0, |~k|) (3.147)



2p · k+ k2

|~ku|2
(p · k− k · u p · u) ,

k2

|~ku|2
(

k2p · u− k · u p · k
)


 ·
(

k · ΣAl
u · ΣAl

)

.

The expression proportional tok · ΣH,HT L
l (k) is finite atml = 0. The one proportional tou · ΣH,HT L

l (k)
contains the collinear divergence regulated byml . Therefore, those are split intof in andcol terms.

F wv,HT L, f in( p̃) = −gw|Y|2GT2

26πmN

∫

dk0d|~k|δ
(

k0 − mN

2

)

δ
(

|~k| − mN

2

)





m2
N + 2k0

u(k
0
u − p · u)

k0
u

2
+ mN

(

∂k0 − ∂|~k|
)




[

|~k|dFF ( p̃,k0, |~k|)
]

(3.148)

The finitescapart vanishes, sincek · ΣA,HT L
l = 0:

Fsca,HT L, f in( p̃) = 0 . (3.149)

The collinear divergentwv part contains the ln(ml):

F wv,HT L,col( p̃) =
gw|Y|2GT2m2

N

25π

∫ ln
(

p̃0−|~̃p| cos∡(k,u)
ml

)

(

p̃0 − |~̃p| cos∡(k,u)
)2

dFF
(

p̃,
mN

2
,
mN

2

)

+O
(

m2
l

)

. (3.150)

This ln(ml) cancels the one inFsca,HT L,col−,1. The derivation starts with

Fsca,HT L,col( p̃) =
gw|Y|2GT2

25π

∫

d|~k|
∑

k0=M±|~k|

± 1

k2 −m2
l

|~k|dFF ( p̃,k0, |~k|)

1

|~ku|3
(

k2p · u− k · u p · k
)

θ(−k2 −m2
l ) +O

(

m2
l

)

(3.151)

including the fictitious lepton massml . The minus part is

Fsca,HT L,col−( p̃) =
gw|Y|2GT2

26πmN

∫ ∞

m2
N+m2

l
2mN

d|~k| 1

|~k| − m2
N−m2

l
2mN

|~k|dFF
(

p̃,mN − |~k|, |~k|
)

1

|~ku|3
(

k2p · u− k · u p · k
)
∣
∣
∣
∣
∣
k0=mN−|~k|

+O
(

m2
l

)

, (3.152)
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which equals, due to a partial integration, the sum of

Fsca,HT L,col−,1( p̃) =
gw|Y|2GT2

26πmN

∫

ln





|~k| − m2
N−m2

l
2mN

T




|~k|dFF

(

p̃,mN − |~k|, |~k|
)

1

|~ku|3
(
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∣
∣
∣
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∞
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N+m2
l

2mN

(3.153)

and

Fsca,HT L,col−,2( p̃) = −gw|Y|2GT2

26πmN

∫ ∞

mN
2

d|~k| ln




|~k| − mN
2

T



 ∂|~k|




|~k|dFF

(
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)
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∣
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∣
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. (3.154)

In Fsca,HT L,col−,2, the massml can be set to zero.Fsca,HT L,col−,1 becomes

Fsca,HT L,col−,1( p̃) =
gw|Y|2GT2m2

N

26π

∫ ln
(

m2
l

mNT

)

(

p̃0 − |~̃p| cos∡(k,u)
)2

dFF
(

p̃,
mN

2
,
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2

)

+O
(

m2
l

)

, (3.155)

and withFHT L,col−,1 ≡ Fsca,HT L,col−,1 + Fwv,HT L,col,

FHT L,col−,1 =
gw|Y|2GT2m2

N

26π

∫ ln

(

( p̃0−|~̃p| cos∡(k,u))
2

mNT
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(
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dFF
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2
,
mN

2

)

+O
(

m2
l

)

(3.156)

is free of the regulator. From now on,ml is set to zero. The remaining terms are finite and are summarized
in the following. Due to theθ function,Fsca,HT L,col+ vanishes:

Fsca,HT L,col+( p̃) = 0 . (3.157)

The other terms are

F wv,T,0( p̃) = − gw|Y|2
23πmN

∫

dk0d|~k|δ
(

k0 − mN

2

)

δ
(

|~k| − mN

2

)

(3.158)
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 ·
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k · ΣH,T,0
l

u · ΣH,T,0
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and

Fsca,T,0( p̃) =
gw|Y|2
2π2

∫

d|~k|
∑

k0=M±|~k|

± 1
k4
|~k|dFF ( p̃,k0, |~k|) (3.159)



2p · k+ k2

|~ku|2
(p · k− k · u p · u) ,

k2

|~ku|2
(

k2p · u− k · u p · k
)


 ·




k · ΣA,T,0
l

u · ΣA,T,0
l



 .

3.5.1.4 Numerical Solution

See Figure 3.16 for an overview of the final expressions. Those terms are evaluated numerically in the same
parameter range as the Higgs contribution. Details on the numerics can be found in Chapter 4.5. The results
are presented in Figures 3.17 and 3.18. In the second one, thewv andscacontributions as well as thecol
and f in terms, are summed together for simplicity. However, the distribution functionsFF are separated
into a vacuum and a thermal part to study their individual effects.
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F

sca

T , 0 Equation (3.159)

HT L

col
-

2 Equation (3.154)

1

+ Equation (3.157)

f in Equation (3.149)

vac

f in Equation (3.137)

col
+ Equation (3.139)

-
2 Equation (3.141b)

1

wv

T , 0 Equation (3.158)

HT L

col Equation (3.156)

f in Equation (3.148)

vac

col Equation (3.143)

f in Equation (3.133)

Figure 3.16: Splitting ofF O(G) by notion of its superscripts. The separation into vacuum, thermal andHT L contributions corre-
sponds to a separation of the lepton self-energy. For the numerics, a splitting with respect to the exterior distribution
functions, i.e.FF , is performed too.
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Figure 3.17: Plot ofγN

[

F O(G)
]

(mN) for various contributions ofF O(G) andΛ = T. Solid and dashed lines respectively corre-
spond to positive and negative values.
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Figure 3.18: The same as Figure 3.17, except thatwvandscaas well ascol and f in contributions are added. Solid and dashed lines
respectively correspond to positive and negative values.

In the non-relativistic limit, theF O(G) contribution to the rate is dominated byF O(G),vac,vac. In the ultra-rela-
tivistic limit, it is obtained via a cancellation of mainly three contributions: TheF O(G),HT L,col,vac correction
cancels theF O(G),HT L,col,T,0 contribution at high temperature. Therefore, those terms are reevaluatedto-
gether within one integral. The sum of both is indicated byF O(G),HT L,col,vac+T,0. This one cancels a sizable
contribution fromF O(G),HT L, f in,vac. Altogether, the high temperature limit of the perturbativeF O(G) is
dominated byF O(G),vac, f in,T,0, and hence by the vacuum Higgs self-energy. The other thermal contribu-
tions cancel or are too small to contribute sizably. This non-intuitive behavior could be interpreted as the
breakdown of the perturbation theory, since according to Section 3.4.1.3 the ultra-relativistic limit should be
non-perturbative.
To obtain the validity range of this approach, theF contribution to the RHN rate should also be obtained
via the resummed lepton propagator. This is done in the following section.
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3.5.2 Wave-Function Type Contributions - Resummed Self-Energies

The perturbative coupling expansion of the full propagators that was utilized in the last two sections, is valid
only in a certain parameter range including the non-relativistic limitmN ≫ T. In the intermediate regime
mN ≈ T, and especially whenmN ≈ mth

φ or mN ≈ mth
l , the perturbative expansion is assumed to break

down. In addition, theG ln(G) enhanced part, known from the ultra-relativistic result, could dominate the
perturbativeF contributions and consequently lower the validity range. To check this, a computation using
full 2-point functions has to be done.
Analog to the massless neutrino case, the complexity of the computation is restricted to a 1-loop resummed
propagator for the Higgs, while for the lepton a tree-level propagator is used, and vice versa. The corre-
spondingB term reads in thep-frame

B( p̃) = gw|Y|22
∫

d4k

(2π)4
tr

[

p/S/(0),A
l (p+ k)

]

∆
A
φ (k) ( f−(u · k) + f+(u · (p+ k))) (3.160)

= gw|Y|2
2

(2π)2
mN

∫

d|~k| |~k|2
∑

k0=−mN±|~k|

Π
A
φ

(

k2 −ΠH
φ

)2
+

(

Π
A
φ

)2
dFB( p̃,k0, |~k|) (3.161)

similar to Equation (3.82). The dFB is the reduced integral measure defined in (3.86). Details on the
numerical evaluation of (3.161) can be found in Chapter 4.6.
In contrast to theBO(G,h2

t ,λφ) of Equation (3.82), however, theB here includes theLO processes as well. The
same applies toF .
Likewise, theF term corresponding to (3.122) could be evaluated in thep-frame. However, the lepton has
a complex dispersion relation, which is only known analytically in the HTL approximation in the plasma
frame. As explained in the numerics Chapter 4.7, knowing the position of the poles is of particular impor-
tance for the numerical stability, when the pole width is small. Therefore, it is preferable to calculateF in
theu-frame and to boost the arguments back to thep-frame for comparison with (3.122). The corresponding
representation ofF was already obtained in Equation (3.51), and it is copied here for completeness:

F (pu) =
2gw|Y|2
(2π)2

∫

B
dk0

ud|~ku|
|~ku|
|~pu|

p ·SAl (k)sign(p0
u − k0

u)
(

f+(−k0
u) + f−(p0

u − k0
u)

)

. (3.162)

Nevertheless, a deeper insight to the resummation approach needs to be gained before these integrals can be
evaluated.

3.5.2.1 Resummation of Vacuum Self-Energies

In the present case, there are processes that definitely need to be resummed: The perturbative correction of
theB term possesses amN power divergence in the ultra-relativistic limit. Physically, this is regulated by
thermal plasma screening effects, and technically, it is described via the resummed Higgs propagator. While
F does not have such a divergence, the perturbative form ofF in (3.162) exhibits logarithmic divergences
from the zero momentum exchange of a lepton in thet-channel. This divergence occurs precisely due to the
HTL part of the spectral lepton self-energy. After resummation, those processes contribute parametrically
of orderG ln G.
However, one question in the context of self-energy resummation is served by the infrared divergences of
the vacuum self-energy and their cancellation. Both theΠ

H,vac
φ andΣ/

H,vac
l from Section 2.5 and 2.6 contain

infrared divergences from massless particle exchanges. In the present case, those are regulated by a fictitious
mass parameterλ. This λ shifts the branch cut of the complex self-energy, and hence, it reappears in the
kinematical constraint expressed as the Heaviside theta that is contained in the spectral self-energy. For the
derivation of physical observables, thoseλ terms have to cancel such thatλ can be set to zero.
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In vacuum, this cancellation is guaranteed by the Kinoshita-Lee-Nauenberg (KLN) theorem: It states that
the IR divergences cancel to all orders in perturbation theory within "real" and "virtual" contributions under
the integral. This cancellation to all orders has not been proven so far for finite temperature. However, the
cancellation of the lnλ terms is shown up to a specific coupling order. Therefore, the thermal perturbation
theory, i.e. the "perturbative thermal mass insertion", is free of IR divergences: TheBvac,+ and theF vac,col−

terms are independent ofλ, such thatλ can be set to zero.
The resummed case behaves differently. When the vacuum self-energies are resummed into∆φ andS/l , the
corresponding dispersion relation is modified by a ln(λ) term. On the other side, theλ within the spectral
self-energy can safely be set to zero.36 Therefore, the correspondingB andF do not necessarily have to be
independent ofλ.37

Theλ dependency does not mean that the thermal perturbation theory is not IR-finite above some coupling
order. It only states that the type of resummation that has been done does not include effects to all coupling
orders. In fact, the full propagators of the theory are unknown. However, those are approximated by the
resummation of self-energies obtained up to 1-loop order in thermal perturbation theory. Even back reaction
effects are not – but maybe must be – included. In particular, the full theory also provides plasma induced
thermal masses for the gauge bosons. Those thermal masses replace the regulator massλ and physically
regulate the IR divergence inΠH,vac

φ andΣ/
H,vac
l .

In the literature, the vacuum parts of the hermitian self-energies are usuallyignored during resummation in
the ultra-relativistic limit. See for example [59,60,64]. It is assumed that vacuum effects are dominated by
thermal ones in this limit, as is the case here: FormN ≪ T, the RHN rate is dominated by thermal effects.38

The hermitian vacuum self-energy, or at least the infrared logarithm, is technically absorbed by a vacuum
counter term. In addition to the ultra-relativistic limit, this counter term can be justified also for RHN
masses within the ultra-relativistic regime up to some point in the non-relativistic regime. Since the thermal
perturbation theory is finite in the intermediate and the non-relativistic regime up tosome fixed order, the
counter term should be at least parametrically of higher perturbative order. However, a vacuum counter term
having the same perturbative order as the hermitian vacuum self-energy,must be included. This means that
in order to justify the counter term for allmN, the effects of the hermitian vacuum self-energy have to be
parametrically of higher perturbative order:
The Π

H,vac is a vacuum wave function renormalization. This contributes proportional tom2
N: See Equa-

tions (3.96) and (3.132). Since thermal effects contribute of ordersmNT andT2, vacuum wave function
renormalizations are suppressed aboveT > mN – even in thermal perturbation theory.
In the resummed approach, the convolution of a resummed propagator has tobe analyzed. Therefore, a
generic couplingc and a full spectral propagator∆ is introduced. The sign(x ·u) and the spatial components
of xµ are not important for the argumentation.x is just the energy component. Furthermore,∆ is modeled
by a Breit-Wigner form originating from the resummation:

∆(x) ∼ cΓ

(x2 −m2
0 − c(ax2 + b))2 + (cΓ)2

. (3.163)

The peak position and the width are determined by the renormalized and IR finite hermitian and spectral
self-energies. Close to the pole, their generic form

Π
H ∼ c(ax2 + b) , Π

A ∼ cΓ (3.164)

is assumed.a, b andΓ are appropriate constants. If∆ is convoluted with some other full spectral propaga-
tor χ, the following two extrema are possible. The width ofχ may be much smaller than the one of∆. χ

36 The finiteness of those integrals can be checked numerically.
37 Theλ dependence is checked numerically too.
38 Vacuum processes of massless particles are kinematically suppressed. In the case ofmN = 0, they are kinematically forbidden.

Such processes can be ignored and do not need to be resummed.
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then can be approximated by a delta function. Hence, the convolution∆ ⊙ χ results in∆ evaluated at theχ
particles poley.39 If it is expanded in couplings, the Breit-Wigner width appears at the first coupling order,
while the hermitian self-energy is multiplied by the width and appears within the second coupling order.

∆ ⊙ χ ∼ cΓ

(y−m2
0 − c(ay+ b))2 + (cΓ)2

= c
Γ

(y−m2
0)

2
+ 2c2

Γ
ay+ b

(y−m2
0)

3
+O(c3) (3.165)

Such a form ofχ is relevant in particular in the non-relativistic regime. Therefore, as long as ∆ has a
Breit-Wigner form, non-relativistic effects due to the hermitian self-energy are effectively of higher order in
the coupling.
However, at least in the intermediate and ultra-relativistic regime,χ obtains additional continuum contri-
butionsζ from multi-particle exchanges and thermal particle distributions. The explicit form of ζ does not
need to be specified. At some point, its effective support is much larger than the width of∆. Hence,∆
can be approximated by a delta distribution, which feeds its peak position intoζ during integration. Since
the widthcΓ can be neglected, effects of the peak position and hence the hermitian self-energy are superior
to effects of the spectral one. This argument tells us that the thermal mass, as a consequence of the her-
mitian self-energy, dominates the physics at high temperature. However, effects of the hermitian vacuum
self-energy are exponentially suppressed in the ultra-relativistic regime up to some point in the intermediate
regime. Hence, in order to also guarantee the validity of the last argument in the full intermediate regime,
this specific point needs to be evaluated by a comparison of the perturbative and the resummed approach. As
long as there is a region of agreement, the above argumentation for thermal perturbation theory also justifies
the resummed approach in this range. Such regions forB andF can be found in Section 3.5.5. Those are
the blue areas in the Figures 3.25c and 3.26c, respectively.
In total, this means that during resummation, the effects ofΠH,vac andΣ/H,vac, and analogously the vacuum
counter terms are effectively suppressed. Those effects are neglected in the following numerics. However,
the unproblematicΠA,vac andΣ/A,vac terms are included for resummation.
This argumentation only holds if the resummed propagator∆ really has the Breit-Wigner form. In particular
for mN ≫ T, in the small coupling limit,∆ reduces to the ordinary tree-level delta distribution∆

(0). In this
case, the above counter term is not parametrically suppressed and may modify the renormalization of∆(0)

in comparison to the one of the∆(0) used for the thermal perturbation theory. Hence, both approaches only
agree in this limit, if the renormalization scheme itself provides the correct counter term for the resummation
and for the perturbation theory. Nevertheless, the mentioned range, where both approaches agree, may be
used to switch between the resummation and the perturbation theory. In this way, the full RHN mass range
is covered within any renormalization scheme.

3.5.2.2 Numerical Solution

The numerical results forB andF , respecting the gauge boson and top-quark contributions individu-
ally, are presented in Figures 3.19, 3.20 and 3.21. The integrals are calculated within a relative error of
10−3 for the neutrino massesmN = 10−4 . . .102T divided into 61 points and for each neutrino momentum
|~pu| = 10−3 . . .101.5T using 46 points. In addition, in the case ofB, the couplings are varied in the range
G = 10−6 . . .100 andht = 10−3 . . .100, both divided into 61 points. In the case ofF , the corresponding
range isG = 10−4 . . .100 using 41 points. All variations are regarded logarithmically.
The figures show the contributions to the total neutrino production rate by logarithmic plots. Positive and
negative contributions are indicated respectively by red/yellow and blue. The green lines that are printed at
mN
T = 10−4, show the corresponding ultra-relativistic limits that were obtained in Sections3.4.1.2 and 3.4.1.3.

39 Due to the trilinear interaction inB andF , the third particle carries additional 4-momentump. Hence,y is a function ofp and
the mass ofχ.
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Figure 3.19: This figure showsγN[B](mN,G) for ht = λφ = 0. Red/yellow and blue areas correspond to positive and negative
values, respectively. The green line shows themN = 0 result.
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Figure 3.20: This figure showsγN[B](mN,ht) for G = λφ = 0. Red/yellow and blue areas correspond to positive and negative
values, respectively. The green line shows themN = 0 result.
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Figure 3.21: This figure showsγN[F ](mN,G). Red/yellow and blue areas correspond to positive and negative values, respectively.
The green line shows themN = 0 result.

The plots possess a kink at the corresponding thermal mass and atmN ≈ πT. The kink atmN ≈ πT is where
the decay of RHNs into the plasma particles becomes most effective. Far above that mass scale, the RHN is
too heavy to be influenced by the plasma. Below this scale, the RHN decay stops until the plasma decays
into the RHNs. This is the point of the kink at the thermal mass. IfmN > mth

φ and likewisemN > mth
l ,

the decay of the RHNs into Higgs and leptons is allowed. Otherwise, the Higgs and leptons decay into the
right-handed neutrinos. In the ultra-relativistic regime, good agreement with themN = 0 result is found.
Furthermore, the contributionsγN[B](mN,ht) andγN[F ](mN,G) are positive on the full parameter range.
In contrast, and as expected from Figure 3.6, the values ofγN[B](mN,G) are negative in the ultra-relativistic
regime and for a certain reason also in the non-relativistic regime, except for a small range around
m2

N = (mth
φ )

2 = GT2

4 . The small range in Figure 3.19 with a positive rate is correct up toNLO. How-
ever, the negative rate is wrong. The reason for this is clarified in the following pages. Finally, Section 3.5.4
resolves this matter and identifies the correct way of calculating the rate up toNLO.

3.5.2.3 Causality Violation through Resummation

The negative contribution to the neutrino rate that is obtained in the last sectionby using the resummed
Higgs propagator and gauge boson interactions, cannot be correct. If B were the only contribution, a neg-
ative rate would directly indicate unitarity violation of the theory. One possible thought about this is the
following: The negative sign appears only when the radiative corrections from gauge interactions are in-
cluded to the Higgs. However, the rate calculated fromB is only one contribution to the full physical rate.
Due to gauge invariance, the leptons have to interact with the gauge bosonsas well. Hence, summing the
wave-function type contributionsB + F together with the vertex-type contributions and subtracting the
overcounted tree-level process should cure the negative rate. In fact, a positive rate can be found in the
ultra-relativistic regime already from the sum ofB+ F −H . However, this is a coincidence likely only
because of theG ln G enhancement in the lepton sector. For large neutrino masses, and in particular in the
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non-relativistic limit for smallG, where perturbation theory should be valid, this sum is still negative and in
addition approximately minus theLO rate. The correct answer to this issue resorts only to the Higgs and its
self-energy:

If the other interactions are switched off, the spectral Higgs self-energy up to 1-loop order is determined
by the sunset diagram: It was calculated in Chapter 2.5 using a tree-level gauge boson and a tree-level

.
Figure 3.22: Sunset diagram from Chapter 2.5. The 2PI formalism demands the use of the full Higgs propagator withinΠφ.

Higgs propagator. This is already an approximation, i.e. an expansion up toorderG. Without this approx-
imation, the 2PI formalism demands the use of the resummed Higgs propagator within the calculation of
the self-energy. That including this kind of back reaction should solve theissue can be understood in the
following way:

By using the tree-level Higgs propagator, one obtains a self-energyΠ
A
φ (p) that is negative for positive

p0, p2 but vanishes on-shell atp2 = 0. Likewise, a non-vanishing mass shift is also generated byΠ
H
φ .

When resumming both, a Green-function is obtained that has a pole approximately at the thermal mass
p2 = (mth

φ )
2 > 0. There, the sign ofΠAφ (p) is negative for positive energy and also for arbitrary smallmth

φ .
Consequently, the retarded and advanced resummed propagators havetheir poles on the wrong side in the
complexp0 plane. Hence, the resummation violates causality. Of course, causality should be guaranteed
by the infinitesimaliε term. However, as long as the mass shift does not vanish, theΠ

A
φ does not vanish

on-shell and therefore always dominatesε. This shows that the resummation of the tree-level self-energy
has a vanishing convergence radius in the coupling: Since the mass shift isproportional toG, G must not be
larger than of order of the infinitesimalε. Nevertheless, a causal solution to the Schwinger-Dyson equations
and non-infinitesimalG should be possible.40

These arguments also explain why the resummed lepton propagator does nothave such a problem even for
the same type of self-energy diagram. According to (1.88), the lepton propagatorS/Al obtains its sign from
the on-shell value ofp · ΣAl (p). This value is positive for positivep0.

One possibility to circumvent solving a Schwinger-Dyson type equation and still conserving causality is to
include other interactions for the Higgs. The considered Lagrangian alsocontains Yukawa interactions of
the Higgs with the quarks. Those contribute toΠ

A
φ , such that theG-convergence radius raises proportional

to h2
t . However, within the physical relevant coupling range given in Table 2.1, the gauge couplings are still

much too large for this ansatz. One could also try to partially include the back reaction by using a Higgs
tree-level propagator with at a thermal mass within the derivation of the Higgsself-energy. Such a massive
integral is again easily solved in terms of theKab of Section 2.4. However, this does not resolve the issue
for this case.

40 Likewise, it is possible to argue that in the limit of smallG, the resummed spectral propagator calculated from the 1-loopO(G)
self-energy reduces according to (1.81) to the negative tree-level function. However, the negative tree-level Higgs propagator gives
the previously obtained spectral self-energy times minus one. Therefore, iteratively calculating the self-energy from the resummed
propagator and vice versa are two competing processes. The only solution is to solve both self-consistently.
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3.5.3 Frequency Sums Revisited

In the light of the wave-function type contributions and the issues found in the last sections, the spectral
sum rules (1.51) and (1.52) should be checked. At tree-level those can be verified easily. For example, the
bosonic case is

∫

dk0

π
k0

∆
A(k) =

∫

dk0

π
k0πsign(k0)δ

(

k2 −m2
)

(3.166)

=

∫

dk01
2

∑

±
δ

(

k0 ±
√

~k2 + m2

)

= 1 . (3.167)

The fermionic analogon does not give any new insight. More interesting is the vacuum 1-loop correction
using Higgs spectral function. This involves Section 3.5.1. Furthermore, only the gauge boson interactions
are included.
The∆φ function is split into a tree-level part∆

(0)
φ and a 1-loop correction∆(1)

φ . Since∆
(0),A
φ already results

in 1, the correction term should give zero in the spectral sum. This is

∫

dk0

π
∆
(1),A
φ (k) =

∫

dk0

π

1
2





∑

±
δ
(

k0 ± |~k|
) π

2k02

(

∂k0 − 1
k0

)

k0
Π

H
φ (k) +

2k0

k4
Π
A
φ (k)



 (3.168)

using the perturbative Higgs self-energyΠφ from Section 2.5.5. The term proportional toΠ
H
φ corresponds to

virtual corrections while the term proportional toΠ
A
φ can be identified with real corrections to the tree-level

propagator. The former one evaluates in vacuum to

1

(2π)2
Gln

(

Λ

λ

)

. (3.169)

The Higgs mass renormalizationΠ
H
φ → Π

H
φ + δm2 does not contribute to the spectral sum up to this order

since the derivative ink0 cancels the fraction1
k0 . However, the wave-function renormalizationδZφ occurs

with a factork2, andΛ is the renormalization scheme dependent finite scale.
In contrast, the term proportional toΠAφ is UV divergent for the perturbatively calculated vacuumΠ

A
φ . By

introducing an other UV regulatorΛ′ for k0, this part becomes

− 1

(2π)2
G

∫
Λ
′

0
dk0k0 1

k2
θ(k2 − λ2) = − 1

(2π)2
G ln

(

Λ
′

λ

)

. (3.170)

Hence, the cancellation of infrared divergences can be found in the sum of virtual and real corrections,
i.e. the lnλ vanishes. However, the infiniteΛ′ should somehow cancel the finiteΛ. This UV issue is no
surprise since the Kramers-Kronig relations (1.63) forΠ

H,vac andΠ
A,vac are also not fulfilled. Indeed, both

are non-analytic functions due to the absolute value and the Heaviside theta that appear in the perturbative
calculation of the self-energy. Assuming that (1.63) is fulfilled,

∫

dk0

π

k0

k4
Π
A
φ (k) =

[

∂µ2

∫

dk0

π

k0

k2 − µ2
Π
A
φ (k

0, |~k|)
]∣
∣
∣
∣
∣
µ2=0

(3.171)

= −
[

∂µ2Π
H
φ

(√

|~k|2 + µ2, |~k|
)]∣
∣
∣
∣
∣
µ2=0

(3.172)

= − 1

(2π)2
Gln

(

Λ

λ

)

(3.173)

can be evaluated. The first order correction then adds a zero to the spectral sum rule.

71



Even though the spectral sum seems to be violated, this issue does not spoilthe perturbative calculation of
the neutrino production rate. In the derivation of (3.106) and (3.108), the UV finiteness is guaranteed by
the bounded phase space support in vacuum, and also due to the exponential suppression of the thermal
equilibrium distribution functions at finite temperature.

Finally, the case of a generic resummed propagator is mentioned. When solving the Kadanoff-Baym equa-
tions up to first order in gradients, the retarded and advanced functionsof a scalar field have the form

i∆R/A(p) =
i

p2 −m2 −ΠR/A(p)
. (3.174)

Both are meromorphic functions41 in p0, that have, if causality is conserved, respectively, poles below and
above the real axis. Therefore, for these the Kramers-Kronig relations and their spectral sums have to hold.
In order to evaluate the spectral sum of the full spectral function, Cauchy’s integral formula may be used.
Therefore, the retarded and advanced self-energies are decomposed within Equation (3.174) asΠH ∓ iΠA,
and one obtains the Breit-Wigner type form of∆

A:

∆
A(p) =

Π
A

(p2 −m2 −ΠH)2 + ΠA2
. (3.175)

Even though this expression contains two poles above and two poles below the real p0 axis, Cauchy’s
theorem is not applicable sinceΠ

H andΠ
A are the real and imaginary parts of one meromorphic function.

However, in the quasi-particle approximation, i.e.m2 + Π
H ≡ µ2 and 1

p0 Π
A ≡ Γ are replaced by their value

at the pole.42 Then, a meromorphic integrand is recovered that vanishes for largeℜ(p0) at least like 1
|p0|4 .

The integration contour can be closed by a semicircle at infinity, such that thetwo poles above the real axis
are encircled. Cauchy’s integral formula leads to

�

dk0

π
k0 k0

Γ

(k0 −ω+)(k0 + ω+)(k0 −ω−)(k0 + ω−)
= sign(Γ) (3.176)

with

ω± =

√

µ2 +
1
2

Γ(−Γ ±
√

Γ2 − 4µ2) . (3.177)

Hence, the quasi-particle approximation shows the trend that can be expected for more general self-energies:
The spectral sum equals+1 only if Γ is positive and likewise, if the∆R and∆

A are causal. This is the case
for the Higgs propagator with a resummed top quark loop. Therefore, the positive rate plotted in Figure
3.20 is obtained. However, in case of the gauge bosons, the spectral Higgs self-energy is negative at the
thermal mass shell. In fact, the spectral sum can be checked numerically to be approximately−1 for typical
parameters.43 Every deviation from+1 indicates an inconsistency of the treatment of the physical model.

41 This implies that the self-energies too are solved consistently with the Kadanoff-Baym equations.
42 If iΠA vanishes at the pole, it must be replaced by the usualiε prescription for the retarded and advanced functions.
43 For this numerical evaluation, a UV-cutoff far away from the pole needs to be assumed, since the spectral sum up toinfinity

diverges for the same reason it does above for the perturbative correction. A consistent self-energy resummation should include
back reaction effects, as is explained in the next section. Those self-screenings suppress UV divergences, since the integral support
of the self-energy diagrams is bounded in vacuum and otherwise exponentially suppressed via thermal distribution functions.
Nevertheless, the UV-cutoff in the spectral sum mimics the exponential suppression of the thermal distributions that occurs for the
evaluation of the RHN production rate.
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3.5.4 Restoration of Causality

The spectral sum of about−1 that is found in the last section, explains the negative unphysical rate in Fig-
ures 3.6 and 3.19, why the rate equals approximately minus theLO result in the non-relativistic regime, and
why the pole contribution in the ultra-relativistic regime and limit coincides with minus theH term includ-
ing the thermal mass. Hence, this demands for solving the full system of the resummed Higgs propagator
and its self-energy self-consistently.
This section inspects the consequence of such a self-consistent resummation and provides a workaround to
the wrong resummation. First, a simplified version of the Schwinger-Dyson equation for the spectral Higgs
propagator is analyzed and solved in vacuum. Furthermore, only the problematic interactions of the Higgs
with the gauge bosons is considered.
The resummed form of∆Aφ is known from Equation (1.80). This assumes that the self-energiesΠ

A
φ andΠ

H
φ

are correct and consistent. Consequently, these self-energies are inprinciple functional of all other consistent
n-point functions. Up to 2PI 1-loop order only the gauge boson and the consistent Higgs propagator in
question are needed:

∆
A
φ (p) =

Π
A[∆φ, ∆γ](p)

(

p2 −ΠH
φ [∆φ, ∆γ](p)

)2
+

(

Π
A
φ [∆φ, ∆γ](p)

)2
. (3.178)

As is known from the last chapters,Π
H
φ does not spoil the causality. It only modifies the dispersion relation

and therefore is responsible for the thermal particle mass. Hence, only a sub-leading modification of the

physics is expected from this term, and Equation (3.178) is approximated byΠ
H
φ [∆φ, ∆γ](p) =

(

mth
φ

)2
.

The problematic part isΠAφ . At the perturbative 1-loop order, this term vanishes at the zero mass shell and

becomes negative at any positive mass shell. However, the 2PI 1-loopΠ
A[∆φ, ∆γ] is given by

Π
A
φ [∆φ, ∆γ](p) = −2G

∫

d4k

(2π)4
(p+ k)2

∆
A
φ (k)∆

A
γ (p− k)(1+ f−(u · k) + f−(u · (p− k)) (3.179)

= −2mNG
∫

dk0d cos(k,u)

(2π)2
k0(mN − k0)∆Aφ (k)

(1+ f−(u · k) + f−(u · (p− k))
∣
∣
∣
∣
∣|~k|=|mN−k0|

(3.180)

in the p-frame. For simplicity, the tree-level gauge boson propagator∆
A
γ is used. The Equations (3.178)

and (3.180) form a non-linear system of integro-differential functional equations. When Equation (3.178)
is inserted into (3.180),ΠAφ is solved numerically, for example with the help of spectral methods44. The

solution can be plugged into (3.178), such that finally the propagator can be obtained.45

For simplicity, and as a first hint to the full solution,Π
A,vac
φ is solved in vacuum. Since the plasma vector

u is unimportant in vacuum, Equation (3.180) can be simplified such that the 2-point functions only depend
on one parameterp2 or k2:

Π
A,vac
φ (p2) = − G

23π2p2

∫ p2

−p2
dk2(p4 − k4)∆A,vac

φ (k2) (3.181)

= − G

23π2p2

∫ p2

−p2
dk2(p4 − k4)

Π
A,vac
φ (k2)

(k2 −m2)2 +
(

Π
A,vac
φ (k2)

)2
. (3.182)

44 In a nutshell, this means that the searched function is parameterized by anappropriate fit function like, for example, a polyno-
mial, a Fourier series, or a Legendre or Chebyshev series. The corresponding parameters are then fitted to the equation system.

45 Likewise, the propagator could directly be solved too, but the pole shape of the solution complicates the numerical treatment.
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In the following pages, this equation is solved forΠ
A,vac
φ (p2), with −0.05≤ p2 ≤ 1.00 for a fixed coupling

G = 0.1, and optionally withm= 0 andm= mth
φ .
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Figure 3.23: Comparison of the resummed Higgs propagators which are obtained from the perturbativeΠA,vac
φ of Section 2.5 (red

line) and from Equation (3.182) (blue line). The coupling is fixed byG = 0.1, and the consequences of a thermal mass
are shown. The spectral sums are obtained from the consistent propagators. Regular and dashed lines correspond to
positive and negative values, respectively.
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The plots in Figure 3.23 present the resulting consistent spectral vacuumHiggs propagators and self-energies
in comparison to the incorrectly resummed ones. One can observe a significant change in the pole struc-
ture. In particular, the sign change in the propagators of Figures 3.23a and 3.23e reflects the small positive
value for the self-energies of the Figures 3.23c and 3.23g close to the mass-shell. This ensures causality.
The improved consistency of the resummation is proved by the spectral sum values of approximately+1.
Away from the mass-shell, the convergence of the consistent and incorrect propagators and likewise of the
self-energies is observable in the graphs one the left-hand side. However, far away from the mass-shell, in
the figures on the right-hand side, the propagators and self-energies differ due to the previously mentioned
self-screening in the UV.

Regarding the negative rate contributionγN[B](mN,G) in Figure 3.19, the consistent thermal spectral Higgs
propagator should be solved next to recalculate theB(mN,G) term. In principle, this should also be done
for all couplingsG, ht andλφ. Nevertheless, from the above solution and the spectral sums, one can learn
how to correct the wrong resummed spectral Higgs function.

The resummed spectral Higgs propagator using the 1-loop self-energiesΠ
A
φ (p) andΠ

H
φ (p) from Section 2.5

can be corrected by switching its sign locally at the mass shell. Away from the pole, the true resummed
propagator is well modeled by the inconsistent resummation. In other words,the tree-level propagator with
an appropriate tree-level mass may be added to the inconsistent resummed propagator two times to obtain
the approximated, but causality and spectral sum conserving, resummed spectral propagator:

∆
A,corr
φ (p) ≡

Π
A
φ (p)

(

p2 −ΠH
φ (p)

)2
+

(

Π
A
φ (p)

)2
+ 2πsign(p0)δ(p2 −Π

H
φ (p)) (3.183)

≈
Π
A
φ (p)

(

p2 −ΠH
φ (p)

)2
+

(

Π
A
φ (p)

)2
+ 2πsign(p0)δ(p2 − (mth

φ )
2) . (3.184)

This form is in accordance with the observation in the ultra-relativistic limit, Section 3.4.1.2, Figure 3.6.
There, it was found that only the "pole contribution" appears to have the wrong sign. This is corrected by
(3.184). Nevertheless, the "non-pole contribution" that accounts for the continuum effects far away from the
pole is perfectly fine and unmodified by (3.184).

As stated above, theΠH
φ here is of course only the thermal partΠ

H,T,0
φ . Therefore, the tree-level mass shell is

approximated bymth
φ in Equation (3.184). This has the advantage that the numerical result ofB(mN, |~p|,G),

Section 3.5.2.2, Figure 3.19, may be corrected without a recalculation by simplyadding two times the
massiveH term of Section 3.4.1.1. TheB contains plus the continuum contributions and minus the pole
contribution.H contains only the pole contribution, since this is derived with tree-level propagators:

Bcorr(|~p|; mN,G) = B(|~p|; mN,G) + 2H
(

|~p|; mN,mφ =
1
2

√
GT,ml = 0

)

. (3.185)
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This separation into pole and continuum part in the ultra-relativistic regime coincides with the separation
into LO andNLO effects in the non-relativistic and perturbative regime. For largemN ≫ mth

φ , the incorrect
resummed propagator contains atLO minus the 1↔ 2 processes and atNLO the symmetric 1↔ 3 pro-
cesses. Perturbatively, theNLOeffects are determined by two Higgs propagators and one Higgs self-energy.
While the wrong resummation uses a perturbatively well-defined self-energy, the two Higgs propagators at
NLO are the ones with the wrong pole sign. Since those propagators have the same momentum, the sign
squares and the perturbativeNLO effects are consequently correct implemented. This observation explains
the small strip in Figure 3.19, where the rate is positive. SinceH

(

|~p|; mN,mφ =
1
2

√
GT,ml = 0

)

vanishes
for mN = mφ, the resummedLO 1 ↔ 2 effect vanishes and the positiveNLO rate contribution is directly
found. Therefore,Bcorr is regarded as correct toNLOglobally within the validity range of the resummation.
Using (3.185) the corrected bosonic wave-function type contribution is obtained up toNLO:
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Figure 3.24: This figure showsγN[B](mN,G) for ht = λφ = 0. Red/yellow and blue areas correspond to positive and negative
values, respectively.

3.5.5 Perturbative Thermal Mass Insertion vs Resummation

The two methods for obtaining the next-to-leading order contributions to the neutrino production rate should
be comparable at some stage. Since both approaches differ significantly in the amount of numerical effort,
what is the most practical solution for a given task?
The perturbative method of Section 3.5.1 is valid in the non-relativistic limit up to some point in the interme-
diate regime, while the resummation of thermal corrections is only relevant within the intermediate regime
up to the ultra-relativistic limit. In the intermediate regime, where the RHN mass is of order of the temper-
ature, vacuum effects become less dominant. Therefore, the perturbative wave-function type contribution,
i.e.H(ml = mφ = 0) +BO(G), may directly be compared to the correctedBcorr(G) term in Figure 3.25.
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Figure 3.25: Comparison of the perturbative and resummation approach toBcorr. The blue color gradient presents the relative
difference of the contributions to the total RHN production rate as indicated by thecaptions. The overlaid gray shaded
areas encompass the absolute error of the relative differences due to the numerical error of the results. The relative
difference and the absolute error plots are clipped off below and above the range provided by the legends. Figure 3.25a
compares the resummed to the perturbativeLO approach, while 3.25b compares the resummed to the perturbative
LO+ NLO. Figures 3.25c and 3.25d compare theNLOparts.

The agreement of the resummed approachBcorr to the perturbativeLO termH is found in Figure 3.25a
abovem2

N ' 2.8
√

GT2. The
√

G factor results due to the term (3.115) is resummed intoBcorr. In thermal

perturbation theory, this term diverges in the ultra-relativistic limit like|Y|2GT4
(

T
mN

)2
. Furthermore,γN[H ]

behaves for smallmN like |Y|2T4
(

mN
T

)2
. Equating those results in the observedm2

N ∼
√

GT2 dependence.
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The thin line belowmN < mth
φ is an intersection point of the two terms. This provides no information about

the validity of the perturbative approach.

In comparison to Figure 3.25a, including the perturbativeNLO slightly improves the agreement withBcorr

for smallermN. As can be seen in Figure 3.25b, in the small coupling rangeG < 0.1, the "2%" threshold
shifts closer to the greenm2

N = 2.8
√

GT2 line. However, the worse agreement forG > 0.1 may be a
coincidence, since even though the orderG2 corrections are wrong, they are included inBcorr too.

Figures 3.25c and 3.25d provide the comparison of the orderG corrections. The shown relative differences
have a large error, since the evaluation ofBcorr in the non-relativistic regime for small couplings is domi-
nated by theLO. The resummed sub-leading order is obtained by subtracting theLOH term fromBcorr.
Hence, if two large numbers are subtracted from each other, the small remainder may be smaller than the
small relative error of the large numerical number. Therefore, the plots are overlaid by a transparent gray
shaded color gradient related to the absolute numerical error of the relative differences. Yet one finds two
special lines. The first one,m2

N ' 2.8
√

GT2, that is already discussed above, is relevant in the small cou-
pling range belowG < 10−2. Above that range, between the intermediate and the non-relativistic regime,
the thermal higher order corrections inside ofBcorr spoil the agreement below the mass scale of about
m2

N / 1000GT2. Assuming that the orderG2 correction is thermally enhanced due to Bose-Einstein distri-
butions, a dimensional analysis suggests that those contributions behave like |Y|2G2T4 × mN

T K1(
mN
T ). The

factor mN
T K1(

mN
T ) appears from the d|~p| integral inγN[1] for mN ' 5T. Kn(z) is the modified Bessel function

of the second kind. From Figure 3.15, it is apparent that abovemN ' πT theBO(G) term is determined by

the pure vacuum partsBO(G),vac,vac. SinceγN[BO(G),vac,vac] performs like|Y|2GT4
(

mN
T

)3
K1(

mN
T ), equating

both relations explains them2
N ∼ GT2 boundary. This analysis also explains the crossover atG = 10−2: At

mN ≈
√

1000× 10−2T ≈ πT theBO(G) term switches betweenBO(G),vac,vac andBO(G),wv,T,0,1 domination.
The latter is responsible for the mentioned ultra-relativistic divergence.

Finally, the range abovemN ' 101.4T is considered, where the numerical error is below 5%. Since this
regime is purely non-relativistic, a declining agreement of both approaches is found for small couplings. In
the small coupling limit, the resummed Higgs propagator reduces to the ordinary tree-level propagator. As
explained in Section 3.5.2.1, this means that the arguments for neglecting the hermitian vacuum self-energy
do not hold anymore. Since neglectingΠ

H,vac
φ and setting the renormalization schemeΛ = T do not arise

out of the same renormalization conditions, the approaches have to differ atNLO in this limit. Only a com-
mon renormalization scheme for both approaches, that is valid in vacuum andthe high temperature limit,46

would lead to a perfect agreement. Nevertheless, the crossover between the vacuum renormalization and
the high temperature renormalization specified region can directly be read off in Figure 3.25c. This is given
by the 2% agreement area at approximately the orange line. Consequently,while the resummed approach
is in principle valid in the fullmN mass range, the perturbative approach breaks down for masses below
m2

N / 2.8
√

GT2 = 5.8mth
φ T.47 On the right-hand side, the threshold is expressed coupling independently.

This allows for the following statement: Since this limit arises from theBwv,T,0,1 term in Equation (3.111)
and sinceBwv,T,0,1 diverges formN → 0 independently ofΠH,T,0

φ (k)
∣
∣
∣
k2=0 = (mth

φ )
2, including the top quark

and Higgs self-interaction does not or only slightly modifies this statement on thepart of the resummed ap-
proach.

46 For example with help of the aforementioned thermal gauge boson mass,the vacuum Higgs self-energy is IR finite and can be
resummed.

47 For typical perturbatively acceptable couplingsG < 1, this threshold is much larger than the thermal Higgs mass.
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In the following pages, the equivalent analysis for theF term is performed.
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Figure 3.26: The same as Figure 3.25, but relating toF .

Figure 3.26a provides the comparison of the resummed approach forF to the perturbativeLO H term.
Both terms agree within 4% up to some mass scale of orderm2

N ∼ GT2. This may be related only to
the thermal lepton mass(mth

l )
2 = 1

4GT2, since, in contrast toBO(G), the perturbativeF O(G) is finite in
the ultra-relativistic limit. In adding theNLO contributionF O(G) within Figure 3.26b, the 2% boundary
moves across the thermal mass threshold, i.e. the green line. FormN < mth

l , theG ln G enhancement from
resumming the IR t-channel divergences of the massless lepton exchangedominates the perturbative order
G correction.48 Hence, the perturbative approach breaks down belowmN < mth

l .

48 See Chapter 3.4.1.3.
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The remaining plots, Figure 3.26c - 3.26d, show the comparison of theNLO contributions. In particular,
Figure 3.26c shows the same disagreement for masses belowmN < mth

l .
In the perturbative small coupling range, a large numerical error of the resummedNLO contributions is
found. AbovemN > πT for the couplingG > 0.15, this error drops down below 10% while the relative
difference stays above 18%. This means that a discrepancy of both approaches is found in the non-relativistic
regime. Of course, aboveG > 0.15 orderG2 corrections can be important too. However, since the difference
grows for small couplings and the perturbativeNLOcorrection obtains sizable corrections from the vacuum
Higgs self-energy, the influence of the vacuum renormalization schemeΛ is visible even in the intermediate
regime.49 Therefore, this disagreement is related to the different renormalization schemes.
For the same reason, the approaches supposedly disagree in the small coupling intermediate regime, even
though the large numerical error forbids a strict statement. By going to smallerneutrino massesmN, at
some point in the perturbatively accessible intermediate regime, theΠ

H,vac
φ becomes irrelevant and both

approaches have to agree. This crossover is given by the yellow line atm2
N ≈ 8GT2.

The small deviation up to 8% atmN / 10−1.8 andG < 10−3 may only be related to numerical issues.
Finally, one can conclude: The resummed approach toF is valid in the full RHN mass range, while the
perturbative approach breaks down atmN < mth

l . At LO, the numerical agreement of both approaches is
obtained within the perturbative accessible region. However, due to different renormalization schemes, the
NLO rate contributions differ abovem2

N ' 8GT2. In between those limits, i.e.(mth
l )

2 < m2
N / 8GT2, a

numerical agreement of both approaches is found up toNLO.

49 See Chapter 3.5.1.3 for the details.
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3.5.6 Vertex Type Contributions

This section handles the 2-loop correction to the right-handed neutrino production rate shown in Figure 3.1.
This contribution is called theJ term and is defined by

J(p) ≡ tr[p/Σ/
A,vert
N (p)] = − 1

2 f+(u · p)
tr[p/iΣ/<,vert

N (p)] . (3.186)

Since all internal particles are in equilibrium, the KMS relation (1.57) is utilized atthe second equality. This
step reduces the number of terms to consider. However, the extraction of the vacuum and the thermal part
becomes unintuitive. The 2-loop correction to the right-handed neutrino self-energy can be parametrized as

−iΣ/ab,vert(p) = −
∫

d4k

(2π)4

d4q

(2π)4

(

g2
1YLYφtr[ǫ

†ǫ] + g2
2tr[ǫ†tAǫ(tA)†]

)

(PL + PR)(2(p− k) − q)ν

|Y|2
∑

c,d

cd iS/ac
l (k+ q)γµiS/cb

l (k)i∆γ
cd
µν(q)i∆

ad
φ (p− k− q)i∆db

φ (p− k) (3.187)

= gw|Y|2
1
4

(

g2
1 + 3g2

2

)

︸         ︷︷         ︸

G

∫

d4k

(2π)4
(2(p− k) − q)ν

∑

c,d

cd iS/ac
l (k+ q)γµiS/cb

l (k)

i∆γ
cd
µν(q)i∆

ad
φ (p− k− q)i∆db

φ (p− k) . (3.188)

This already includes the sum of both chiralities. While the 2PI formalism demands resummed 2-point
functions, one may start easy and write downJ with tree-level propagators.

J(p) = − gw|Y|2G
2 f+(u · p)

∫

d4k

(2π)4

d4q

(2π)4
(2(k− p) + q)νtr

[

p/

∑

c,d

cd iS/+c
l (k+ q)γµiS/c−

l (k)i∆γ
cd
µν(q)i∆

+d
φ (p− k− q)i∆d−

φ (p− k)
]

(3.189)

The next step is to replace all time- and anti-time-ordered propagators++ and−− by hermitian and statis-
tical functionsH andF. By shifting the momentak+ q → k andq → −q within the terms proportional
to S/H(k+ q) andS/F(k+ q), and taking into account the relation∆

+−
µν (−q) = ∆

−+
µν (q), the following sym-

metrized form is obtained:

J(p) = − 2gw|Y|2G
2 f+(u · p)

∫

d4k

(2π)4

d4q

(2π)4
(2(k− p) + q)νtr

[

p/
{

iS/H
l (k)γ

µiS/<l (k+ q)i∆γ
F
µν(q)i∆

<
φ(p− k− q)i∆H

φ (p− k) (3.190)

+ iS/H
l (k)γ

µiS/<l (k+ q)i∆γ
H
µν(q)i∆

<
φ(p− k− q)i∆F

φ (p− k) (3.191)

+ iS/F
l (k)γ

µiS/<l (k+ q)i∆γ
H
µν(q)i∆

<
φ(p− k− q)i∆H

φ (p− k) (3.192)

+ iS/H
l (k)γ

µiS/<l (k+ q)i∆γ
>
µν(q)i∆

H
φ (p− k− q)i∆<

φ(p− k) (3.193)

+ iS/F
l (k)γ

µiS/<l (k+ q)i∆γ
F
µν(q)i∆

<
φ(p− k− q)i∆F

φ (p− k) (3.194)

− iS/F
l (k)γ

µiS/<l (k+ q)i∆γ
>
µν(q)i∆

F
φ (p− k− q)i∆<

φ(p− k) (3.195)
}]

. (3.196)

The statistical, greater and less Wightman-functions are on-shell while the hermitian functions are purely
off-shell propagators. All summands with two and four on-shell delta functions vanish such that only six
different cases remain. The lines (3.190) - (3.192) and (3.194) are two-particle cuts with one and three of
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the remaining particles being on-shell. The lines (3.193) and (3.195) correspond to three-particle cuts with
zero and two of the remaining particles being on-shell.
However, (3.194) and (3.195) vanish due to the vanishing phase-space since all internal particles are mass-
less: The vectorsu, p, k andq form a linear independent base of 4-vectors for this diagram. Therefore, there
are seven nontrivial integrations for the integration with respect to d4k and d4q. Hence, the five delta func-
tions leave only two of them. The integration variables of those two non-trivialintegrals can be chosen to be
dk0

u and dq0
u. The integral boundary conditions for them are given by gd(u, p,k) > 0 and gd(u, p,k,u) < 0.50

The first condition is the usual12(p0
u − |~pu|) < k0

u < 1
2(p0

u + |~pu|) for positive p2 and all internal particles
being massless. However, the second condition is simply 0> 4gd(u, p,k,u) = (q0

u)
2p2, which has no real

solution forq0
u. In the case of massive internal particles, this must not necessarily be true.

What remains are the terms proportional to three delta functions. Line (3.193) corresponds to the interfer-
ence of the 1↔ 3 (inverse-) decay process in Figure 3.27a and between the three 2↔ 2 scatterings in the
Figure 3.27b and 3.27d. This constibution is denoted byJ sca, even if the term "scattering" does not strictly
apply. The other lines (3.190)-(3.192) are interferences of the 1-loopvertex corrections, with one of the
internal particles being on-shell, with the tree-level amplitude. See Figures 3.27e and 3.27g. These terms
are calledJvert,1,Jvert,2 andJvert,3, respectively.
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Figure 3.27: Interferences related to the 3-particle cut of the vertex diagram. The thick and thin lines, respectively, correspond to
the RHN and the lepton. The gray blob indicates that this particle is on-shell.

Each of those four contributions obey IR divergences when the hermitianpropagators are on-shell. Since
only the sum of them has to be IR-finite and numerical limits of some regulators going to zero are technically
undesirable, an appropriate way has to be found to parametrize the integrands such that all divergent pieces
cancel. The IR divergences are naturally regulated by the masses of thecorresponding particles. Therefore,
setting these masses to zero means that the IR divergences are located at the boundary of the integration
domain. After integrating out the delta distributions, these domains must not be unique for different cuts
and of course depend on the specific parametrization. With three delta functions, there are four non-trivial

50 See Chapter 2.4 for details.
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integrations left. Their integration variables are chosen to be dx, dy and two angular integrations.51 x
andy are the two inverse hermitian propagators of those contributions. All of the four individual contri-
butions then may have a pole structure of the type1

x, 1
y or 1

xy and different integration domains of the type
x > 0∧ y > 0∧ . . . for appropriately signedx andy. This strategy indeed works out in vacuum, if all those
contributions are add, split and fold alongx = 0 andy = 0 such thatx andy are always positive. All
collinear and mass divergences then cancel such that the integrand becomes IR-finite in vacuum. However,
for the vertex correctionsJvert,2 andJvert,3 the integration domains allow for a principal value integration
at one of the hermitian propagators. This gives no IR-divergence butis at the same time evaluated by means
of thex↔ −x andy↔ −y symmetrization. Only the Bose-Einstein distributions can cause trouble when the
particle momenta become collinear to the plasma vector. They explicitly depend on the mentioned angles,
which are therefore symmetrized too. This strategy works best if the same momentum parametrization is
chosen in each of above vertex corrections. The choice of the momentum parametrization for the scattering
term compared to the vertex terms is unimportant. Nevertheless, the same one maybe chosen. The deriva-
tion of the vacuum part then also simplifies. If the angles are symmetrized, the integrand is IR-finite also for
T , 0.
After all these considerations, this method still has one subtlety. Even if all IRdivergences have canceled,
a symmetric cancellation scheme is introduced like the one used for principal values.52 On the other hand,
a specific scheme is already given by the limit masses→ 0. Therefore, a correction term has to be added
to account for the difference of both schemes. To be precise, the lines (3.190) - (3.193) are divergent and
ill-defined. Only the sum of them is finite. To be able to integrate out the delta distributions in each term
separately, individual finite and well-defined contributions are important. By introducing a fictitious massλ
for the gauge bosons, the divergences are already regulated and theindividual contributions are made finite.
The separate terms can be rearranged working in the limitλ → 0, such that they can be added under one
integral.λ is then set to zero.
The third point to mention is the following: Even if (3.196) is IR-finite, there arestill UV-divergences in
the vacuum part of (3.196). Those have to be renormalized using the Yukawa couplingY. The vacuum
expression and consequently the renormalization can be derived analytically. Hence, only IR and UV finite
thermal contribution with possible principal value integrable singularities needto be evaluated numerically.
The possibility of simplifying the integrand in this way is one of the basic featuresof the diagram, since it is
symmetric under exchange of the two lepton propagators while also exchanging the two Higgs propagators.
Other diagrams of this topology can consist of more terms. Nevertheless, themethod described above should
apply to them too. Further considerations would be required, only if there are less non-trivial integration
variables than hermitian propagators. To continue, the shiftk → p− q, q → k+ q− p is applied to the
whole (3.196). This simplifies the integration over the deltas in the end.

J(p) = − 2gw|Y|2G
2 f+(u · p)

∫

d4k

(2π)4

d4q

(2π)4
(k− q− p)νtr

[

p/
{

iS/H
l (p− q)γµiS/<l (k)i∆γ

F
µν(k+ q− p)i∆<

φ(p− k)i∆H
φ (q) (3.197)

+ iS/H
l (p− q)γµiS/<l (k)i∆γ

H
µν(k+ q− p)i∆<

φ(p− k)i∆F
φ (q) (3.198)

+ iS/F
l (p− q)γµiS/<l (k)i∆γ

H
µν(k+ q− p)i∆<

φ(p− k)i∆H
φ (q) (3.199)

+ iS/H
l (p− q)γµiS/<l (k)i∆γ

>
µν(k+ q− p)i∆H

φ (p− k)i∆<
φ(q) (3.200)

}]

(3.201)

51 In vacuum, those integrals decouple from the plasma vector. Hence, only the two integrations with respect tox andy are
non-trivial.

52 After applying the substitutionx→ 2x, for instance to the scattering contribution, the IR divergent poles still cancel those from
the vertex parts. Nevertheless, the integral value changes.
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3.5.6.1 Vertex Corrections with on-shell Gauge Boson

The vertex correction from Equation (3.201) with the on-shell gauge boson is given by

J(p)vert,1 = − gw|Y|2G
f+(u · p)

∫

d4k

(2π)4

d4q

(2π)4
(k− q− p)νtr

[

p/iS/H
l (p− q)γµiS/<l (k)

]

i∆γ
F
µν(k+ q− p)i∆<

φ(p− k)i∆H
φ (q) (3.202)

= − gw|Y|2G
2(2π)5 f+(u · p)

∫

d4kd4q(k− q− p)νtr [p/(p/ − q/)γνk/]
1

(p− q)2q2

δ
(

k2
)

δ
(

(k+ q− p)2 − λ2
)

δ
(

(p− k)2
)

sign(u · k)sign(u · (k+ q− p))sign(u · (p− k))

(− f+(u · k))(1+ 2 f−(u · (k+ q− p))) f−(u · (p− k)) . (3.203)

d3~k is parametrized in polar coordinates with respect to~u, such that the one free angular parameter in
the p-frame is the azimuthal angle going from 0 to 2π. The polar angle is one of the non-trivial angular
integrations. However, there is stillq. Hence, to really have (3.201) free of this azimuthal angle, polar
coordinates need to be used for d3~q with respect to~k.53 The volume element then is

d4kd4q = dk0dq0d|~k|d|~q|d cos∡(k,u)dφu
k d cos∡(q,k)dφk

q |~k|
2|~q|2 . (3.204)

The dφu
k simply integrates to 2π. Since thep-frame is chosen, the only way to switch from(p− q)2q2

to xy is via the variablesq0 and |~q|. Therefore,δ
(

k2
)

should be integrated with help of d|~k|, δ
(

(p− k)2
)

gets integrated using dk0, andδ
(

(k+ q− p)2 − λ2
)

is integrated with d cos∡(q,k). The Jacobian of this
integration becomes

d4kd4qδ
(

k2
)

δ
(

(k+ q− p)2 − λ2
)

δ
(

(p− k)2
)

= dq0d|~q|d cos∡(k,u)dφk
q
π|~q|

22mN
. (3.205)

The invariant scalar products are

u · p = p̃0 (3.206)

u · k = u0k0 − |~u||~k| cos∡(k,u) =
1

mN

(

p̃0k0 − |~̃p||~k| cos∡(k,u)
)

(3.207)

u · q =
1

mN

(

p̃0q0 − |~̃p||~q|
(

cos∡(k,u) cos∡(q,k) − cos(φk
q) sin∡(k,u) sin∡(q,k)

))

(3.208)

p2 = m2
N (3.209)

p · k = mNk0 =
m2

N

2
(3.210)

p · q = mNq0 (3.211)

k2 = 0 (3.212)

q2 = (q0)2 − |~q|2 (3.213)

k · q =
λ2 − q2 + 2p · q

2
(3.214)

together with

k0 = |~k| = mN

2
(3.215)

cos∡(q,k) =
q2 − λ2 − 2p · q+ 2k0q0

2|~k||~q|
. (3.216)

53 The explicit parametrization can be found in (3.217).
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Foru · q, the explicit parametrization

p =





mN

0
0
0





u =





u0

0
0
|~u|





k = R3(θ
u
k)





k0

0
0
|~k|





q = R3(θ
u
k)R4(φ

k
q)R3(θ

k
q)





q0

0
0
|~q|





(3.217)

modulo the irrelevantφu
k dependence is used.54 Hence, the goal of parametrizingJvert,1 in terms of the

inverse hermitian propagators is obtained by defining

q2 ≡ 2mNx (3.218)

(p− q)2 = mN(mN − 2q0) + q2 ≡ 2mNy . (3.219)

The additional factor 2mN is for convenience, since the integration variables in the scattering part then do
not need to be rescaled later on. Therefore, the transformation rules are

|~q| =
√

(mN

2
+ x− y

)2
− 2mNx (3.220)

q0 =
mN

2
+ x− y (3.221)

dq0d|~q| = −mN

|~q| dxdy . (3.222)

Altogether, theJvert,1 contribution becomes

J(p)vert,1 = − gw|Y|2G
24(2π)4 f+(u · p)

∫

V1

d cos∡(k,u)dφk
qdxdy

λ2 + m2
N −mN(2x+ y)

xy

f+(u · k)(1+ 2 f−(|u · (k+ q− p)|)) f−(u · (p− k)) . (3.223)

Since sign(u · k) = sign(k0) = 1 = sign(u · (p− k)), the integration is exponentially suppressed due to the
f+(u · k) f−(u · (p− k)). Hence, only the 1 in 1+ 2 f−(|u · (k+ q− p)|) can give rise to UV-divergences.
This term is called the vacuum part.J(p)vert,1 is split into

J(p)vert,1,vac =
gw|Y|2G

24(2π)4 f+(u · p)

∫

V1

d cos∡(k,u)dφk
qdxdy

λ2 + m2
N −mN(2x+ y)

xy

(− f+(u · k)) f−(u · (p− k)) (3.224)

and

J(p)vert,1,T,0 =
gw|Y|2G

23(2π)4 f+(u · p)

∫

V1

d cos∡(k,u)dφk
qdxdy

λ2 + m2
N −mN(2x+ y)

xy

f−(|u · (k+ q− p)|)(− f+(u · k)) f−(u · (p− k)) . (3.225)

The sign(u · k)sign(u · (p − k))(− f+(u · k)) f−(u · (p − k)) is just the quantum statistical factor for the
vertex correction generated by the CTP. Otherwise, the true vacuum part55 of Jvert,1 can be separated
too, as it is done for the wave-function type contribution. However, one would then need to calculate
J ∝ Σ/AN out of Σ/>N − Σ/<N. The term (− f+(u · k)) f−(u · (p − k)) would have to be replaced by

54 R3 andR4 are rotation matrices for a spacial rotation around the 3rd and 4th axis, and θy
x is shorthand for∡(x,y). As can be

observed, if thek andq are defined with an additionalR4(φ
u
k) factor, the scalar productsu · k, u · q andk · q are independent ofφu

k.
55 i.e. the temperature-independent part.
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1 − f+(u · k) + f−(u · (p − k)) = θ(k0) + θ(k0 − mN) − f+(|u · k|) + f−(|u · (p − k))|. Consequently,
vacuum-thermal mixing terms would be obtained too, which complicates the expressions.56

The next step is to determine the integration domainV1. Since the Dirac deltas are integrated out by
k0, |~k| and cos∡(q,k), all of them constitute conditions toV1. Nevertheless, these integrations do not
involve any knowledge ofu. ~k was parametrized with respect to~u, but θu

k could have been set to any
value and still lead to the same integral over the deltas. The conclusion is that the p-frame integra-
tion domain given by gd(p) > 0∧ gd(p,k) < 0∧ gd(p,k,q) > 0∧ gd(p,k,q,u) < 0, which is equivalent
to |~k|, |~q| > 0 and| cos∡(k,u)|, | cos∡(q,k)| < 1, reduces to gd(p) > 0∧ gd(p,k) < 0∧ gd(p,k,q) > 0 and
| cos∡(k,u)| < 1. Therefore, after integration over the deltas, only the conditions generated by gd(p,k) and

gd(p,k,q) get affected. The first one is gd(p,k) = −m4
N

4 < 0 . This is fulfilled trivially. The second one is

V1 ≡





4gd(p,k,q)

m2
N

= −
(

λ4 + 4m2
Nxy+ λ2mN(mN − 2(x+ y))

)

> 0





. (3.226)

Obviously, the domainV1 is given byxy < 0 in the limit λ → 0. This is of course the same condition that
one would find by working out the Boolean algebra directly from the conditions|~k| > 0 and| cos∡(q,k)| < 1.
Figure 3.28 shows a plot ofV1. On the left side,λ is set to zero, and on the right oneλ = 0.4mN is used.
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Figure 3.28: Plot of integration domainV1. The two separate areas correspond to the two energy solutions when integrating over
the delta distribution of the blobbed particle in Figure 3.27e.

For completeness, one may check that gd(p,k,q,u) < 0 is always true: After insertion of all variable
substitutions this determinant equals to

gd(p,k,q,u) = (cos2 ∡(k,u) − 1)|~̃p|2 sin2(φk
q)

gd(p,k,q)

m2
N

< 0 . (3.227)

Since gd(p,k,q) has to be positive, this directly infers cos2 ∡(k,u) < 1, as expected.

56 See Section 3.5.6.6 for the evaluation of the vacuum part.
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3.5.6.2 Vertex Corrections with on-shell Higgs

The vertex correction with the on-shell Higgs boson is given by

J(p)vert,2 = − gw|Y|2G
f+(u · p)

∫

d4k

(2π)4

d4q

(2π)4
(k− q− p)νtr

[

p/iS/H
l (p− q)γµiS/<l (k)

]

i∆γ
H
µν(k+ q− p)i∆<

φ(p− k)i∆F
φ (q) (3.228)

= − gw|Y|2G
2(2π)5 f+(u · p)

∫

d4kd4q(k− q− p)νtr [p/(p/ − q/)γνk/]
1

(p− q)2((k+ q− p)2 − λ2)

δ
(

k2
)

δ
(

(p− k)2
)

δ
(

q2
)

sign(u · k)sign(u · (p− k))sign(u · q)
(− f+(u · k)) f−(u · (p− k))(1+ 2 f−(u · q)) . (3.229)

Since the same parametrization as forJvert,1 is used,δ
(

(p− k)2
)

needs to be integrated via dk0, δ
(

k2
)

is integrated with the help of d|~k|, andδ
(

q2
)

is integrated for instance with d|~q|. Hence, the switch from

(p− q)2((k+ q− p)2 − λ2) to xy has to be done via the variablesq0 and cos∡(q,k). The Jacobian of this
integration becomes

d4kd4qδ
(

k2
)

δ
(

(p− k)2
)

δ
(

q2
)

= dq0d cos∡(q,k)d cos∡(k,u)dφk
q
π|~k||~q|
22mN

. (3.230)

In terms of invariant scalar products, this means

u · p = p̃0 (3.231)

u · k = u0k0 − |~u||~k| cos∡(k,u) =
1

mN

(

p̃0k0 − |~̃p||~k| cos∡(k,u)
)

(3.232)

u · q =
1

mN

(

p̃0q0 − |~̃p||~q|
(

cos∡(k,u) cos∡(q,k) − cos(φk
q) sin∡(k,u) sin∡(q,k)

))

(3.233)

p2 = m2
N (3.234)

p · k = mNk0 =
m2

N

2
(3.235)

p · q = mNq0 (3.236)

k2 = q2 = 0 (3.237)

k · q = k0q0 − |~k||~q| cos∡(q,k) (3.238)

together with

k0 = |~k| = mN

2
(3.239)

|~q| = |q0| . (3.240)

x andy are defined to be the invariant momentum squares of the hermitian propagators:

(p− q)2 = p2 − 2p · q ≡ 2mNx (3.241)

(k+ q− p)2 − λ2 = 2k · q− 2p · q− λ2 ≡ 2mNy . (3.242)

Therefore, the transformation rules are

q0 =
mN

2
− x (3.243)

cos∡(q,k) =
−2λ2 −m2

N + 2mN(x− 2y)

mN|mN − 2x| (3.244)

87



dq0d cos∡(q,k) =
2
|~q| dxdy . (3.245)

Altogether, theJvert,2 contribution becomes

J(p)vert,2 = − gw|Y|2G
24(2π)4 f+(u · p)

∫

V2

d cos∡(k,u)dφk
qdxdy

λ2 + mN(mN − x+ 2y)

xy

f+(u · k) f−(u · (p− k))(1+ 2 f−(|u · q|)) . (3.246)

Here, the same quantum statistical factor is obtained as above, since it corresponds to the same 2-particle
cut and it has the same parametrization.Jvert,2 is split according to

J(p)vert,2,vac =
gw|Y|2G

24(2π)4 f+(u · p)

∫

V2

d cos∡(k,u)dφk
qdxdy

λ2 + mN(mN − x+ 2y)

xy

(− f+(u · k)) f−(u · (p− k)) (3.247)

J(p)vert,2,T,0 =
gw|Y|2G

23(2π)4 f+(u · p)

∫

V2

d cos∡(k,u)dφk
qdxdy

λ2 + mN(mN − x+ 2y)

xy

f−(|u · q|)(− f+(u · k)) f−(u · (p− k)) . (3.248)

The integration domainV2 is again only given by gd(p,k) = −m4
N

4 < 0 and gd(p,k,q) > 0:

V2 ≡





4

m2
N

gd(p,k,q) > 0





=

{(

λ2 + 2mNy
) (

λ2 + mN(mN − 2x+ 2y)
)

< 0
}

. (3.249)

In the limit λ→ 0, the domainV2 is given byy = 0 andx = mN
2 + y. This means that the pole atx = 0 has

to be evaluated in the principal value sense and is finite. Figure 3.29 shows aplot of V2.
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Figure 3.29: Plot of integration domainV2. The two separate areas correspond to the two energy solutions when integrating over
the delta distribution of the blobbed particle in Figure 3.27f.
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3.5.6.3 Vertex Corrections with on-shell Lepton

The vertex correction with the on-shell lepton is given by

J(p)vert,3 = − gw|Y|2G
f+(u · p)

∫

d4k

(2π)4

d4q

(2π)4
(k− q− p)νtr

[

p/iS/F
l (p− q)γµiS/<l (k)

]

i∆γ
H
µν(k+ q− p)i∆<

φ(p− k)i∆H
φ (q) (3.250)

= − gw|Y|2G
2(2π)5 f+(u · p)

∫

d4kd4q(k− q− p)νtr [p/(p/ − q/)γνk/]
1

((k+ q− p)2 − λ2)q2

δ
(

(p− q)2
)

δ
(

k2
)

δ
(

(p− k)2
)

sign(u · (p− q))sign(u · k)sign(u · (p− k))

(1− 2 f+(u · (p− q)))(− f+(u · k)) f−(u · (p− k)) . (3.251)

In this parametrization,δ
(

(p− k)2
)

should be integrated using dk0. δ
(

k2
)

is integrated with the help of d|~k|,
andδ

(

(p− q)2
)

can be integrated for instance with d|~q|. Hence, one may switch from((k+ q− p)2− λ2)q2

to xyvia the variablesq0 and cos∡(q,k). The Jacobian of this integration is

d4kd4qδ
(

(p− q)2
)

δ
(

k2
)

δ
(

(p− k)2
)

= dq0d cos∡(q,k)d cos∡(k,u)dφk
q
π|~k||~q|
22mN

. (3.252)

The scalar products are

u · p = p̃0 (3.253)

u · k = u0k0 − |~u||~k| cos∡(k,u) =
1

mN

(

p̃0k0 − |~̃p||~k| cos∡(k,u)
)

(3.254)

u · q =
1

mN

(

p̃0q0 − |~̃p||~q|
(

cos∡(k,u) cos∡(q,k) − cos(φk
q) sin∡(k,u) sin∡(q,k)

))

(3.255)

p2 = m2
N (3.256)

p · k = mNk0 =
m2

N

2
(3.257)

p · q = mNq0 (3.258)

k2 = 0 (3.259)

q2 = 2p · q− p2 (3.260)

k · q = k0q0 − |~k||~q| cos∡(q,k) (3.261)

together with

k0 = |~k| = mN

2
(3.262)

|~q| = |mN − q0| . (3.263)

x andy are defined by

q2 ≡ 2mNx (3.264)

(k+ q− p)2 − λ2 = 2k · q− 2p · k− λ2 ≡ 2mNy . (3.265)
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Hence, the transformation rules are

q0 =
mN

2
+ x (3.266)

cos∡(q,k) =
−2λ2 −m2

N + 2mN(x− 2y)

mN|mN − 2x| (3.267)

d|~q|d cos∡(q,k) =
2
|~q|dxdy . (3.268)

Altogether, theJvert,2 contribution becomes

J(p)vert,3 = − gw|Y|2G
24(2π)4 f+(u · p)

∫

V3

d cos∡(k,u)dφk
qdxdy

λ2 + mN(mN − 2x+ 2y)

xy

(1− 2 f+(|u · (p− q)|)) f+(u · k) f−(u · (p− k)) , (3.269)

which is the sum of

J(p)vert,3,vac =
gw|Y|2G

24(2π)4 f+(u · p)

∫

V3

d cos∡(k,u)dφk
qdxdy

λ2 + mN(mN − 2x+ 2y)

xy

(− f+(u · k)) f−(u · (p− k)) (3.270)

and

J(p)vert,3,T,0 = − gw|Y|2G
23(2π)4 f+(u · p)

∫

V3

d cos∡(k,u)dφk
qdxdy

λ2 + mN(mN − 2x+ 2y)

xy

f+(|u · (p− q)|)(− f+(u · k)) f−(u · (p− k)) . (3.271)

Since it is the same 2-particle cut as for the other vertex corrections,V3 is again only given by gd(p,k,q) > 0:

V3 ≡
{(

λ2 + 2mNy
) (

λ2 + mN(mN − 2x+ 2y)
)

< 0
}

. (3.272)

Obviously,V3 is the same asV2, since both corresponding cuts are topologically symmetric under exchange
of the on-shell Higgs with the lepton, i.e. the diagrams in Figure 3.27f and 3.27g.
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3.5.6.4 Scatterings

Finally, the scattering part is given by

J(p)sca= − gw|Y|2G
f+(u · p)

∫

d4k

(2π)4

d4q

(2π)4
(k− q− p)νtr

[

p/iS/H
l (p− q)γµiS/<l (k)

]

i∆γ
>
µν(k+ q− p)i∆H

φ (p− k)i∆<
φ(q) (3.273)

= − gw|Y|2G
(2π)5 f+(u · p)

∫

d4kd4q(k− q− p)νtr [p/(p/ − q/)γνk/]
1

(p− q)2(p− k)2

δ
(

k2
)

δ
(

(k+ q− p)2 − λ2
)

δ
(

q2
)

sign(u · k)sign(u · (k+ q− p))sign(u · q)
(− f+(u · k))(1+ f−(u · (k+ q− p))) f−(u · q) . (3.274)

If one does not want to deal with a sum of several solutions,δ
(

k2
)

is best integrated by d|~k|. For the same

reason,δ
(

q2
)

should be integrated by d|~q|. However, since(p− q)2(p− k)2 is substituted byxy in the end,

k0 andq0 should be left unchanged. Hence, the remainingδ
(

(k+ q− p)2 − λ2
)

should only be integrated
by d cos∡(q,k). The Jacobian of this integration is

d4kd4qδ
(

k2
)

δ
(

(k+ q− p)2 − λ2
)

δ
(

q2
)

=
π

22
d cos∡(k,u)dφk

qdk0dq0 . (3.275)

The scalar products are

u · p = p̃0 (3.276)

u · k = u0k0 − |~u||~k| cos∡(k,u) =
1

mN

(

p̃0k0 − |~̃p||~k| cos∡(k,u)
)

(3.277)

u · q =
1

mN

(

p̃0q0 − |~̃p||~q|
(

cos∡(k,u) cos∡(q,k) − cos(φk
q) sin∡(k,u) sin∡(q,k)

))

(3.278)

p2 = m2
N (3.279)

p · k = mNk0 (3.280)

p · q = mNq0 (3.281)

k2 = q2 = 0 (3.282)

k · q =
λ2 − p2

2
+ p · k+ p · q (3.283)

together with

|~k| = |k0| (3.284)

|~q| = |q0| (3.285)

cos∡(q,k) =
−λ2 + p2 − 2p · k− 2p · q+ 2k0q0

2|~k||~q|
. (3.286)

x andy are defined by

(p− k)2 = mN(mN − 2k0) ≡ 2mNx (3.287)

(p− q)2 = mN(mN − 2q0) ≡ 2mNy . (3.288)
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This results in

k0 =
mN

2
− x (3.289)

q0 =
mN

2
− y (3.290)

|~k| =
∣
∣
∣
∣
∣

mN

2
− x

∣
∣
∣
∣
∣

(3.291)

|~q| =
∣
∣
∣
∣
∣

mN

2
− y

∣
∣
∣
∣
∣

(3.292)

cos∡(q,k) =
p2 − λ2 − p · k− p · q+ 2k0q0

2|~k||~q|
(3.293)

and consequentlyJ sca becomes

J sca( p̃) =
gw|Y|2G

23(2π)4 f+(u · p)

∫

S
d cos∡(k,u)dφk

qdxdy
λ2 + M2 − 2Mx−My− 2xy

xy
(3.294)

sign
(mN

2
− x

)

sign(−x− y)sign
(mN

2
− y

)

(− f+(u · k))(1+ f−(u · (k+ q− p))) f−(u · q) .

SinceJ is not calculated out ofΣ/>N − Σ/<N, the vacuum part cannot be found by a trivial limitT → 0.57

Hence, the vacuum part should be known by assumption, or the KMS relation should not be used in the
beginning. Without the KMS relation, the statistical factor of this diagram is modulo global sign factors:
(1− f+(u · k)) f−(u · (k+ q− p))(1+ f−(u · q)) − (− f+(u · k))(1+ f−(u · (k+ q− p))) f−(u · q). Hence,
the trivial limit T → 0 reduces the integral support to the area

suppvac = x <
mN

2
∧ y <

mN

2
∧ x+ y > 0 . (3.295)

Consequently, the vacuum part ofJ sca is Equation (3.294) restricted to suppvac. To cancel the IR di-
vergences within the sum of the scattering and vertex parts at the integrandlevel, the statistical factor
sign(u · k)sign(u · (k+ q− p))sign(u · q)(− f+(u · k))(1+ f−(u · (k+ q− p))) f−(u · q) has to be replaced
by the factor sign(E1)sign(E2)(− f+(E1)) f−(E2) from the vacuum vertex corrections.E1 andE2 are re-
spectively theu · k andu · (p− k) from the vertex corrections:

J sca,vac( p̃) =
gw|Y|2G

23(2π)4 f+(u · p)

∫

S∧suppvac

d cos∡(k,u)dφk
qdxdy

λ2 + M2 − 2Mx−My− 2xy
xy

(− f+(E1)) f−(E2) . (3.296)

Whether this is the "true" vacuum part or not is unimportant. Only the cancellation of the IR divergences
has to work. Furthermore, this vacuum part can be evaluated analytically.Afterwards, the thermal part can
be obtained by the subtraction:

J sca,T,0( p̃) = J sca( p̃) −J sca,vac( p̃) . (3.297)

57 In this limit, the internal distribution functions restrict the integral phase space to zero while the external 1
f+(u·p) grows to

infinity for positive p0.
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The integration domainS is again determined by gd(p,k) and gd(p,k,q). The first one evaluates to

gd(p,k) = −
m2

N

4
(mN − 2x)2

< 0 , (3.298)

which is trivially fulfilled. The second one gives

S ≡





4gd(p,k,q)

m2
N

=
(

4xy− λ2
) (

λ2 + m2
N − 2mN(x+ y)

)

> 0





. (3.299)

If λ is set to zero, the boundary is composed of the problematic linesx = 0 andy = 0, andx+ y = mN
2 .

Figure 3.30 shows a plot ofS with and without a non-zeroλ. In vacuum, only region I of Figure 3.30 is
allowed.
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Figure 3.30: This is a plot of integration domainS. Region I is known as the Dalitz plot for 1↔ 3 scatterings. Hence, this area
reflects the process of Figure 3.27a. Likewise, regions II-IV are easily related to the 2↔ 2 processes of Figures 3.27b
and 3.27d, respectively.

3.5.6.5 The IR and UV finite Integrand

In order to add the thermal scattering and vertex corrections to one finite integrand, the symmetrization
operatorO is introduced. This has the intuitive definition

O(r)
∫

A
ψ ≡

∫

A1

ψ+

∫

r [A2]
r [ψ] (3.300)

for some test integrandψ and the symmetrization ruler. The integration areaA = A1⊕ A2 is split according
to r into disjunctA1 andA2, such thatr [A2] is the integration area ofr [ψ]. In this way, the IR and UV finite
integrand is compactly written:

JT,0 = O(cos∡(k,u) → − cos∡(k,u))O(φk
q→ π+ φk

q)O(x↔ y)O(y→ −y)O(x→ −x)
(

Jvert,1,T,0 +Jvert,2,T,0 +Jvert,3,T,0 +J sca,T,0
)

. (3.301)
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Equation (3.301) still carries theλ dependence within the integrand and the integration domain boundaries.
Since (3.301) is IR finite,λ can be set to zero within the integrand and the boundaries.58 However, an IR
finite correction termJT,0,corr has to be added to account for the correct limitλ→ 0:

lim
λ→0
JT,0 = JT,0,λ=0 +JT,0,corr . (3.302)

In JT,0,λ=0 theλ is set to zero even within the boundaries. Therefore, thex-y domainsV1, . . . ,V3 andS
after the symmetrization consist only of the linesx = 0, x = y, x+ y = mN

2 and x− y = mN
2 .59 The

remaining totalx-y area is shown in Figure 3.31. The IR finiteness ofJT,0,λ=0 can be verified by the limit

lim
y→0

yJT,0,λ=0(x,y, . . .) = 0 , (3.303)

while the UV finiteness is ensured by the exponential suppression of the distribution functions.

0 mN

2
mN

0

mN

2

mN

0
mN

2 mN

0

mN

2

mN

Figure 3.31: This plot shows thex−y integration domain forJT,0,λ=0 after all symmetrizations are done. Since the integrand is the
sum of three different 2↔ 2 scatterings and one 1↔ 3 process, the corresponding supports shown in Figures 3.28-3.30
generate discontinuities atx+ y = mN

2 andx− y = mN
2 . The additional splittings are done for numerical convenience.

I - VI is phase space suppressed in the ultra-relativistic limit.

To obtain the correction term, the correct limitλ → 0 relative toλ = 0 has to be evaluated. In the limit
λ → 0, all theλ dependence in (3.301) can be reduced to the boundaries ofx andy. All integrand terms
are split into pieces proportional to1y and remainders. Within the1y terms, a partial integration with respect

58 SinceJT,0 is IR finite, this would otherwise only give corrections of the orderλ andλlnλ. Those vanish in the limitλ→ 0.
59 Hence, the sector spanned by 0< x∧ 0 < y < x is chosen.
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to y is performed, such that the1y pole becomes a ln(y).60 The boundary term of the partial integration
obtains theλ dependence, and the remainder becomes sub-leading inλ. The limit λ → 0 can then be
performed analytically, and only the dx and the angle integrals are left behind. In the following pages, this
procedure is shown in more detail. Here, the notion of the dependence on the remaining variables is dropped
for notational simplicity. The functionsψi(y) represent the terms of the fully symmetrized integrand of
(3.301) multiplied byy, such that they have no pole aty = 0. The indexi reflects the corresponding
integration boundaries given byyi

−(λ) < y < yi
+. Theyi

−(λ) are the lower bound ofy with the property
limλ→0 yi

−(λ) = 0. This means that only the boundariesi are considered, which reduce toy = 0 for λ = 0.
To have well-defined finite integrals in intermediate steps, another functiony− is chosen such that it fulfills
0 < y− < |yi

−| for all i. Hence,y− should also vanish smoothly for smallλ. In the following, the notion ofi
for the irrelevant upper boundyi

+ is dropped too, since one aims for only the correction term. WithinJT,0,
one then has to calculate

JT,0 ∼
∑

i

∫ y+

yi
−(λ)

dy
ψi(y)

y
=

∫ y+

y−(λ)
dy

∑

i

ψi(y)

y
︸                  ︷︷                  ︸

∼JT,0,λ=0

+
∑

i

∫ y−(λ)

yi
−(λ)

dy
ψi(y)

y
︸                   ︷︷                   ︸

∼JT,0,corr

. (3.304)

Since the1
y poles are poles of hermitian propagators, in the case of negativeyi

−(λ), the integral in the
correction term should be regarded as a principal value integral. This is

∑

i

∫ y−(λ)

yi
−(λ)

dy
ψi(y)

y
=

∑

i

ln(|y|)ψi(y)
∣
∣
∣
∣
∣

y−(λ)

yi
−(λ)
−

∑

i

∫ y−(λ)

yi
−(λ)

dy ln(|y|)
︸              ︷︷              ︸

∝λ ln(λ)→0

∂yψi(y) . (3.305)

The remainder is suppressed for smallλ, since∂yψi(y) is smooth aty = 0. In addition, the upper bound
of the boundary term in (3.305) has to vanish under the sum in the limitλ → 0, since otherwiseJT,0,λ=0

would not be IR finite and (3.303) would be untrue. Therefore, one obtains

lim
λ→0

∫ y+

y−(λ)
dy

∑

i

ψi(y)

y
=

∫ y+

0
dy

∑

i

ψi(y)

y
∼ JT,0,λ=0 (3.306)

and

lim
λ→0

∑

i

ln(y−(λ))ψi(y−(λ)) = 0 . (3.307)

The next step is to perform the limitλ→ 0 of the sum of the boundary terms of (3.305) analytically, which
is finite too. In fact,JT,0,corr can be written down in short form as

JT,0,corr = −
∫ 1

0
d cos∡(k,u)

∫ π

0
dφk

q

∫ ∞

0
dx lim

λ→0

∑

i

ln(|yi
−(λ)|)ψi(y

i
−(λ)) . (3.308)

JT,0,λ=0 andJT,0,corr can be calculated numerically without the need of a numerical limit procedure.The
solutions are presented in Section 3.5.6.7.

60 The 1
x pole is phase space suppressed for smally due to the symmetrization inx↔ y.
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3.5.6.6 The Vacuum Part

The thermal part ofJ was shown to be IR and UV finite, and it must be calculated numerically. However,
the vacuum part can be obtained analytically. UsingE1/2 =

1
2

(

p̃0 ∓ |~̃p| cos∡(k,u)
)

, the common factor

A ≡ − 1

2 f+(u · p)
gw|Y|2G

26π4

∫

d cos∡(k,u)dφk
q(− f+(E1)) f−(E2) (3.309)

=
1

32π3



1+
T

|~̃p|
ln





f−( p̃0 − |~̃p|)
f−( p̃0 + |~̃p|)







 (3.310)

can be extracted. The scattering contribution in Equation (3.296) becomes

J sca,vac = −A
∫ mN

2

λ2
2mN

dx
∫ mN

2 + λ2
2mN
−x

λ2
2mN

dy
m2

N + λ2 −mN(2x+ y) − 2xy

xy
(3.311)

= Am2
N

(

−11
4

+
π2

6
− 3ln

(

λ

mN

)

− 2ln2
(

λ

mN

))

+O(λ) . (3.312)

Likewise, the vertex contributions from Equations (3.224), (3.247) and (3.270) are calculated. However,
those are UV divergent. In order to verify the cancellation of the IR divergent ln(λ), an UV cutoff that is
common to all three contributions must be introduced.61 x andy cannot simply be restricted by someΛ:
|x|, |y| < Λ, since they are differently defined for each term. Nevertheless,q0 is a common variable and can
be restricted:

|q0| < Λ . (3.313)

Then, the corresponding UV bound forx andy can be obtained. This leads to

Jvert,1,vac = Am2
N

(

−3
2
+ ln(2)2 − ln

(

2λ
mN

)

+ 2ln2
(

λ

mN

)

− ln

(

λ

mN

)

+ 4ln

(

2Λ

mN

)

− (1− ln(4)) ln

(

Λ

mN

)

+ ln2
(

Λ

mN

))

+O(λ) (3.314)

Jvert,2,vac = Am2
N

(

−π
2

12
− 1

2
ln2(2) − ln(2)ln

(

Λ

mN

)

− 1
2

ln2
(

Λ

mN

)

+

(

1+ 2ln

(

λ

mN

))

ln

(

2Λ

mN

))

+O(λ) , (3.315)

and

Jvert,3,vac = Am2
N

(

2− π
2

12
− 1

2
ln2(2) − ln(2)ln

(

Λ

mN

)

− 1
2

ln2
(

Λ

mN

)

+2ln

(

λ

mN

) (

2+ ln

(

2Λ

mN

))

− ln

(

2Λ

mN

))

+O(λ) . (3.316)

The sum of them gives in total

Jvac = −Am2
N

(

9
4
+ ln

(

2Λ

mN

))

, (3.317)

which is IR finite. This means thatλ can be set to zero in the vacuum expressions too. The remaining UV
divergent lnΛ can be absorbed into the vertex counter term of the Yukawa couplingY by some particular
renormalization scheme.

61 Any UV cutoff in x andy regulates the integrals. However,λ then has to be absorbed into those cutoffs during renormalization.
One would have to cancel IR with UV divergences.
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3.5.6.7 Numerical Solution

The following section presents the numerical results ofJ . Figure 3.32 shows the total rate obtained via the
several contributions ofJ .

Γ
N
�
H
T
4
G
g
w
Y
2
L
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JT¹0,Λ=0 region I,II,III

JT¹0,Λ=0 region IV,V,VI

JT¹0,Λ=0 region VII

J0

Figure 3.32: This figure showsγN[J ](mN) for various contributions ofJ . Solid and dashed lines respectively correspond to
positive and negative values. The corresponding integration regions can be found in Figure 3.31. ForJvac, the UV
regulator equalsΛ = T.

One question discussed in the literature is, whether the vertex diagram with tree-level functions is divergent
for small RHN masses compared to the temperature or not. Such a divergence would indicate the need
of full propagators as suggested by the 2PI formalism. Regarding the numerical results from Figure 3.32,
no evidence for a divergent behavior is found for small RHN masses. Hence, one can expect that the use
of resummed propagators would only give higher order corrections. Nevertheless, the vertex diagram is a
2-loop diagram resulting from a 3-loop vacuum bubble. For a 3-loop complete theory, the 3PI formalism that
introduces full vertices is needed. In 2PI, such full vertices are resembled in form of vertex resummations. A
particular vertex resummation is the ladder resummation, which in the present case sums up the contributions
of an arbitrary number of gauge boson exchanges between the lepton and the Higgs.

= + + + . . . (3.318)

Figure 3.33: The vertex function indicated by the blob represents an infinite amount of gauge boson insertions. Since crossed type
insertions are typically suppressed, the resummation can be reduced to the ladder resummation.

Those exchanges may become important at gauge boson momenta of the order
√

GT, such that all ladder
diagrams could contribute equally to the neutrino rate. Here, the size of the ladder resummation effect
cannot be answered. However, the cancellation of infrared divergences is also shown numerically in the
ultra-relativistic limit up tomN

T = 10−4. Since there are no other scales thanmN andT relevant forγN[J ], a
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significant change for smaller values ofmN
T is not expected.

Nevertheless, the result forγ0[J0] from Equation 3.54 for a massless neutrino is not obtained in the ultra-
relativistic limit. The reason is comparable to the issues found in Equation (3.118) for the ultra-relativistic
limit of theB term. It appears that the limitmN → 0 does not equalmN = 0. The poles of the integrand ofJ
within region I, II and III are enhanced by the interference with the Bose-Einstein distributions of the Higgs
and gauge bosons. The enhancement appears mainly for the 1↔ 3 processes but also part of the 2↔ 2
processes phase space close to the mass divergences at(x,y) = (0, 0), (0, mN

2 ) and (mN
2 , 0). Therefore,

the differential production rate of nearly massless neutrinos appears to have additional sizable contributions
compared to the 2↔ 2 scatterings of perfectly massless neutrinos. The numerical values are:

γvertex
N [JT,0,λ=0,VII ](mN = 10−4T) ≈ 3.06(4± 4) · 10−4T4gwG|Y2| (3.319)

γvertex
N [JT,0,λ=0,I-III ](mN = 10−4T) ≈ 2.39(6± 3) · 10−4T4gwG|Y2| . (3.320)

Hence, only the limit value obtained from region VII fits to the massless result from Section 3.4.2. However,
even if phase space suppressed, the rates from the regions I-III stillare as large as the one from region VII.
SinceJvac andJT,0,corr vanish formN → 0, the total contribution to the rate obtained from the vertex
diagram in the ultra-relativistic limit is

γvertex
N [J ](mN = 10−4T) ≈ 5.46(2± 6) · 10−4T4gwG|Y2| . (3.321)

While for the wave-function type contributionB the disagreement of themN = 0 andmN → 0 case may
or may not be related to the breakdown of perturbation theory, the vertex type contribution is finite even
in the massless limit. Since the RHN mass is not protected by symmetries of the Lagrangian, the massless
calculation itself has to fit the massless limit. In this regard, the disagreement onlymeans that the RHN
mass must not be set to zero under the integral, i.e. integration and limit is not exchangeable.
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3.5.7 Non-Relativistic Limit

In the following,BO(G,h2
t ,λφ) , F O(G) andJT,0 is verified in the non-relativistic limitmN ≫ T. Using the

redefinitionsz = πT
mN

and s = |~̃p|
mN

, theBO(G,h2
t ,λφ) terms are expanded up to the orderm2

NO
(

z6, s4,e−
mN
2T

)

,

whileF O(G) andJT,0 are expanded up to the orderm2
NO

(

z6, s2,e−
mN
2T

)

for simplicity.62 The recurring factor

A is defined asA =
gw|Y|2m2

N

π3 .

3.5.7.1 Expansion Coefficients ofBO(G,h2
t ,λφ)

The series expansion ofBO(G,h2
t ,λφ) for each contribution separately is

Bvac,Λ,vac = A
1
64

ln

(

Λ
2

TmN

) (

G− 3
2

ln(2)h2
t

)

(3.322)

Bvac,+,vac = A
1
27

(

3+ 2 ln

(

T
mN

)) (

G+
3
2

h2
t

)

(3.323)

Bvac,−,vac = 0 (3.324)

Bvac,Λ,T,0 = 0 (3.325)

Bvac,+,T,0 = Az3
(

3
16
ζ(3) +

7
480

z+
45
4
ζ(5)z2

) (

G+
3
2

h2
t

)

(3.326)

Bvac,−,T,0 = Az3
(

− 3
16
ζ(3) +

7
480

z− 45
4
ζ(5)z2

) (

G+
3
2

h2
t

)

(3.327)

Bsca,T,0 = A

(

1
24

z2G+
1
96

z2h2
t

)

(3.328)

Bwv,T,0,1 = −A
1
16

z2
(

G+ h2
t + λφ

)

(3.329)

Bwv,T,0,2 = Az2
((

1
24

+
1
45

z2
)

G+

(

1
32

+
7

240
z2

)

h2
t

)

. (3.330)

ζ is the Riemann zeta function. Altogether, the following series coefficients are obtained forBO(G,h2
t ,λφ) in

the non-relativistic limit:

BO(G,h2
t ,λφ),NR =

gw|Y|2m2
N

π3

(

G

(

3
128

+
1
32

ln

(

Λ

mN

)

+
1
48

z2 +
37
720

z4
)

+ h2
t

(

9
256
− 1

48
z2 +

7
96

z4 +
3

128

(

(−1+ ln(2)) ln
(mN

T

)

− 2 ln(2) ln

(

Λ

T

)))

− λφ
1
16

z2
)

+ m2
NO(z6, s4,e−

mN
2T ) . (3.331)

The thermal expansion coefficients, i.e. 1
48z2 + 37

720z
4 proportional toG and− 1

48z2 + 7
96z4 in case ofh2

t , are
equal to those obtained from [58]. Regarding the numerical result of Figure 3.15, those coefficients may be
verified by a fit. The best fit value for the sum of all thermal contributions,i.e. Equations (3.325)-(3.330),
compared to the numerical data withinmN = (101.5 . . .102)T at |~̃p| = 10−3T is

≈ AG

(

1.00× 1
48π

z2 + 1.06× 37
720

z4
)

. (3.332)

62 Factors ofe−
mN
T are encountered during integration. Those spoil a pure series expansion in mN

T . Nevertheless, expanding in

powers ofe−
mN
T at∞ is possible. In this sense, the upper expansion boundO

(

e−
mN
2T

)

reflects that such exponential suppressed terms

are neglected completely. Afterwards, the remainder is a pure series expansion intomN
T .
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The vacuum terms given by Equations (3.322) - (3.324) are logarithmic enhanced, which is why they are
excluded from the fit (3.332). These give approximately

≈ AG

(

0.998× 3
128

+ 1.000× 1
32

ln

(

T
mN

))

(3.333)

when fitted to the same range withΛ = 1T.

3.5.7.2 Expansion Coefficients ofF O(G)

The non-relativistic series expansion ofF O(G) can be obtained from the following expressions. For simplic-
ity, several contributions are added in the usual fashion:

F vac,col,vac = AG

(

− 1
128

+
1
64

ln
(mN

T

))

(3.334)

F vac,col,T,0 = AG

(

1
96

z2 +
1
60

z4
)

(3.335)

F vac, f in,vac = AG

(

1
256
− 1

64
ln

(

Λ

T

))

(3.336)

F vac, f in,T,0 = AG
1
96

z2 (3.337)

F HT L,col,vac = AG

(

− 1
32

z2 ln
(mN

T

)

+
1
48

z2
)

(3.338)

F HT L,col,T,0 = AG

(

+
1
32

z2 ln
(mN

T

)

− 1
48

z2 − 1
48

z4
)

(3.339)

F HT L, f in,vac = 0 (3.340)

F HT L, f in,T,0 = 0 (3.341)

F T,0 = −AG
1

1440
z4 . (3.342)

Altogether, the non-relativistic limit ofF O(G) is

F O(G)NR =
gw|Y|2m2

N

π3
G

(

− 1
256
− 1

64
ln

(

Λ

mN

)

+
1
48

z2 − 7
1440

z4
)

+ m2
NO(z5, s2,e−

mN
2T ) . (3.343)

The thermal coefficients 1
48z2 − 7

1440z
4 may be compared to [58] and by a fit withinM = (101.7 . . .102)T at

|~̃p| = 10−3T andΛ = 1T. Due to large cancellations, the best fit is stable only if applied to each contribution
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separately:

F vac,col,vac ≈ AG

(

− 1
128
× 1.128+

1
64

ln
(mN

T

)

× 1.015

)

(3.344)

F vac,col,T,0 ≈ AG

(

1
96

z2 × 1.000+
1
60

z4 × 1.038

)

(3.345)

F vac, f in,vac ≈ AG
1

256
× 1.000 (3.346)

F vac, f in,T,0 ≈ AG
1
96

z2 × 1.000 (3.347)

F HT L,col,vac ≈ AG

(

− 1
32

z2 ln
(mN

T

)

× 1.000+
1
48

z2 × 1.040

)

(3.348)

F HT L,col,T,0 ≈ AG

(

+
1
32

z2 ln
(mN

T

)

× 1.003− 1
48

z2 × 1.061− 1
48

z4 × 0.937

)

(3.349)

F HT L, f in,vac ≈ 0.000 (3.350)

F HT L, f in,T,0 ≈ 0.000 (3.351)

F T,0 ≈ −AG
1

1440
z4 × 1.056 . (3.352)

This verifies the numerics in the non-relativistic limit.

3.5.7.3 Expansion Coefficients ofJ

The non-relativistic expansion of the vertex corrections involve the cancellation of IR divergences. There-
fore, these contributions need to be summed up. In total, the expansions

JT,0,NR =
gw|Y|2m2

N

π3
G

(

1
24

z2 +
19
360

z4
)

+ m2
NO(z6, s2,e−

mN
2T ) (3.353)

Jvac,NR = −
gw|Y|2m2

N

π3
G

1
32

(

9
4
+ ln

(

2Λ

mN

))

+ m2
NO(s2,e−

mN
2T ) (3.354)

can be obtained. The thermal coefficients agree with those obtained in [58]. By using the numerical data
from Section 3.5.6.7 withinM = (101.5 . . .102)T at |~̃p| = 10−3T, the fit coefficients are

JT,0,NR ≈
gw|Y|2m2

N

π3
G

(

0.998× 1
24

z2 + 1.01× 19
360

z4
)

. (3.355)

To obtain the correct fit of the second coefficient,JT,0 is evaluated with a relative error of 10−5.
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Chapter

4
Numerics

Within this chapter, details on the numerical treatment of the integrals is provided.63 Since a huge parameter
range spanning over certain physically distinct processes is incorporated, several considerations are required.
These are described in the following sections.
However, the remaining unsolved integrals used for the Higgs and lepton self-energies have to be evaluated
first.

4.1 Notes onI2± and Ī3
T,0

The integralsI2± andĪ3
T,0 are obtained during the derivation of the lepton and Higgs self-energies.They are

used particularly within the resummed propagators and hence are evaluatedseveral times during integration
of theB andF terms. In order to save CPU time,I2± andĪ3

T,0 are precisely solved and saved for later usage.

I2± is defined in (2.80). It depends on the two parametersp0 and |~p| and can be written as a function of
p+ ≡ p0 + |~p| andp− ≡ p0 − |~p|.

I2±(p0, |~p|) = T
∫ ∞

0
dx

1
ex ± 1

ln

∣
∣
∣
∣
∣
∣

(2x+ βp+) (2x− βp−)

(2x− βp+) (2x+ βp−)

∣
∣
∣
∣
∣
∣

(4.1)

The advantage of this reparametrization is that the two-dimensionalI2±(p0, |~p|) can be written in terms of a
one-dimensional functiona:

I2±(p0, |~p|) = T(a±(βp+) − a±(βp−)) . (4.2)

Furthermore, the symmetrya(−y) = −a(y) allows the restriction to positive argumentsy ≥ 0:

a±(y) =
∫ ∞

0
dx

1
ex ± 1

ln
∣
∣
∣
∣
∣

2x+ y
2x− y

∣
∣
∣
∣
∣

, a±(0) = 0 . (4.3)

63 All numerical integrals are done by Mathematica’sNIntegratecommand, with routines lasting from seconds up to roughly 10
minutes per integral value on a typical desktop computer with the aforementioned precision. However, for those timingsNIntegrate
should not output error messages. This can be achieved by the following methods, and otherwise by raising the number of digits,
i.e. Mathematica’sWorkingPrecision, to avoid numerical noise from large cancellations. In special cases, the routines have to be
optimized such that the integrands’ evaluation time is less than∼ 0.01s. Nevertheless, due to the parameter scans’ sheer number of
integrals, parallelization on a computer cluster is suggested.
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In the end, however, the numerically better behaved functionb may be utilized:

b±(y) =
∫ ∞

0
dx

1

ex y
2 ± 1

ln
∣
∣
∣
∣
∣

x+ 1
x− 1

∣
∣
∣
∣
∣

, a±(y) =
y
2

b±(y) . (4.4)

b±(y) is evaluated within a relative error of 10−10 in the range−13.8149≤ ln(y) ≤ 13.8151 at 9839 points
on a logarithmic scale. These values are interpolated and saved for later usage. For larger and smaller values
of y, the asymptotic formulas

b−(y ≥) ≈
2π2

3y
, b−(y ≤) ≈

π2

2
, b+(y ≥) ≈

π2

3y
, b+(y ≤) ≈ 0 (4.5)

can be used.

The same approach applies toĪ3
T,0, which is needed for the lepton self-energy. It is defined in (2.93) and

can be expressed using the auxiliary functionc:

Ī3
T,0(p0, |~p|) = T2

∫ ∞

0
dx

(

1
ex + 1

+
1

ex − 1

)

x ln

∣
∣
∣
∣
∣
∣
∣

β2p2
− − 4x2

β2p2
+ − 4x2

∣
∣
∣
∣
∣
∣
∣

= T2(c(βp−) − c(βp+)) . (4.6)

c(y) reads

c(y) =
∫ ∞

0
dx

(

1
ex + 1

+
1

ex − 1

)

x ln

∣
∣
∣
∣
∣
∣

y2 − 4x2

4x2

∣
∣
∣
∣
∣
∣

, (4.7)

and is evaluated in the range−26.47≤ ln(y) ≤ 13.8151 at 14345 points on a logarithmic scale within a
relative error of 10−10. Again, those values are interpolated and saved. For a largery, the expansion

c(y ≥) ≈ π2

2
ln(y) − π

2

6
(3+ 7 ln(2) − 36 ln(A) + 3 ln(π)) (4.8)

can be used, while for smaller argumentsc is quadratically suppressed and the numerical approximation

c(y ≤) ≈ c̃y2 , c̃ = lim
y→0

c(y)

y2
≈ c(e−26.47)

e−2×26.47
≈ 0.17328679514 (4.9)

is sufficient.A is Glaisher’s constant with the value ln(A) = 1
12 − ζ′(−1).

The 4x2 in the numerator of (4.7) is important for a smally, since otherwise the numerical precision is
spoiled due to a large cancellation in the differencec(p+) − c(p−).
In this way, the final integrands forB andF evaluate at least 100 times faster.

4.2 IMT Transformation

Whenever one integrates over a pole of the typex−β with β < 1 numerically, Mathematica offers the pos-
sibility of applying several so called "singularity handlers". One of them is the IMT transformation, which
appears to be useful in many cases in this study. In the case of a singular point at x = 0 and the integration
region 0< x ≤ 1, the IMT transformation is defined via the substitution rulex→ φ(t,ω), 0 < t < 1,ω > 0,
with

φ(t, p) = e1−t−ω . (4.10)

ω is a parameter that is chosen appropriately to the width of the integrated pole. In the above examplex−β,
φ removes the singular point and the new integrand goes to zero fort → 0. The pole is replaced by a smooth
function with a maximum at a certain point.ω is chosen such that this maximum is placed approximately at
t = 0.2, butω is at least in the range 0.1< ω < 1.6 for numerical stability.
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4.3 PV Transformation

Several perturbative contributions involve 1-dimensional Cauchy principal value (PV) integrations inn di-
mensions.64 These may be evaluated along some suitable complex contours. However, thisinvestigation
aims to stay on the real axis and to use the direct evaluation rule. Principal values are evaluated in a sym-
metric fashion like

P
∫ b

−a

f (x)

x
dx = lim

ε→0+

(∫ −ε

−a
+

∫ b

ε

)

f (x)

x
dx (4.11)

for some positive realsa,b, and a real valued functionf that is smooth in[a,b]. If Equation (4.11) is
extended byn− 1 integrations, the whole expression becomes an-dimensional integral with a singular
hypersurface of dimensionn− 1. Furthermore, this hypersurface may be curved by any smooth coordinate
transformations.
In conclusion, an-dimensional integral with a 1-dimensional Cauchy principal value can be evaluated via

P
∫

V

f (x)

g(x)
dnx = lim

ε→0+

∫

Vε

f (x)

g(x)
dnx . (4.12)

V is the real integration domain containing the smooth pole hypersurfaceΓ = {x|g(x) = 0}. TheVε equals
V minus a neighborhood ofΓ with orthogonal sizeε: Vε = V/Bε(Γ). Bε(Γ) is then-dimensionalε ball
located at all points ofΓ.
The numerical limit in Equation (4.12) can be circumvented by the following two possibilities:

(i) Find a coordinate transformation, such thatΓ is plane. Fold alongΓ symmetrically to obtain one or
more separate finite integrals over a smooth function.
For example, Equation (4.11) with 0< a < b can be split into

(

P
∫ a

−a
+

∫ b

a

)

f (x)

x
dx =

∫ a

0

f (x) − f (−x)

x
dx+

∫ b

a

f (x)

x
dx . (4.13)

The first integral on the right-hand side has no remaining pole, sincef (x) − f (−x) is of orderO(x)
at x = 0.

(ii) Find a complete and disjunct splitting ofV into sub-regionsVi , and a corresponding smooth map from
eachVi to [0, 1]n, such that the limitε→ 0+ in (4.12) is trivial. Sum each integrandi respective toVi

such that the PV pole cancels under the integral.

If there is only one PV pole in the integration area, and ifΓ is plane, option (i) is clearly the better choice.
However, as one may have to deal with multiple poles crossing each other, option (ii) should be mentioned.
It is always possible to construct a bijective mapΦε : [0, 1] → [ε,b] andΨε : [0, 1] → [−a,−ε], such that
Φε(0) = −Ψε(0) = ε, Φε(1) = b andΨε(1) = −a. Equation (4.11) is then equal to

P
∫ b

−a

f (x)

x
dx = lim

ε→0

∫ 1

0

(

f (Φε(τ))

Φε(τ)
Φ
′
ε(τ) −

f (Ψε(τ))

Ψε(τ)
Ψ
′
ε(τ)

)

dτ . (4.14)

′ is the short notation for∂τ. The right-hand side integrand can be evaluated atτ = ε. The series expansion
atε = 0 then results in

f (0)(Φ′0(0) + Ψ
′
0(0))

ε(1−Ψ′0(0))(1+ Φ′0(0))
+ O(ε0) . (4.15)

64 A 1d PV inn dimensions is meant to be a 1d principal value integral which can be foundby a suitable coordinate choice. After
integrating in this direction, the remainingn− 1 dimensions are free of PV singularities and integrable at least close to thepole.
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This pole inε shows that limit and integration can only be exchanged in (4.14) if the connection condition
Φ
′
0(0) = −Ψ

′
0(0) holds. In the case of an-dimensional integral, for a PV pole of degreem, this condition

reads
∂i

n1
Φ(x) = ∂i

n2
Ψ(x) , ∀x ∈ Γ , i = 1 . . .m, (4.16)

with n1 andn2 being the outward oriented normal vectors of the two domains that are separated byΓ. All
poles inε then vanish, andε may be set to zero from the beginning. Hence, the subscriptε is dropped from
Φ andΨ in (4.16). The casem > 1 can be checked the same way.65 However, additional conditions on
the numeratorf and the integration domainV appear form > 1. Nevertheless, iff andV are such that the
integral does exist, the corresponding number of normal derivatives of Ψ andΦ at Γ have to be equal.

4.3.1 Example

In the following equation, a non-trivial and analytically solvable example is considered:

P
∫

V

1

x− 1
2y2

dxdy =
√

2ln
(

3+ 2
√

2
)

+
√

5ln

(

5
2

(

7− 3
√

5
)
)

+ ln
(

6− 2
√

5
)

, (4.17)

with V = {x,y |0 ≤ x ≤ Min(1, 2− y) ∧ 0 ≤ y ≤ −1+
√

5} being the area plotted in Figure 4.1. There are
two numerically problematic points, where procedure (i) is not applicable in a straightforward way without
numerical limits. The point(0, 0) is problematic, sinceΓ is adapting the boundary ofV. At the other point
(3−

√
5,
√

5− 1), Γ is hitting a corner. In order to apply method (ii), the following maps are constructed.
They spanV = V1 ⊕V2 in terms of functions that interpolate linearly between the boundaries, such that the
PV pole atΓ is placed at the linet1 = 0:

r1 : [0, 1]2→ V1, (t1, t2) 7→
((√

5− 3
)

(t1 − 1) t22,
(√

5− 1
)

t2
)

(4.18)

r2 : [0, 1]2→ V2, (t1, t2) 7→
((

3−
√

5
)

t22 + t1
((√

5− 3
)

t22 + 1
)

,
((

2−
√

5
)

t1 +
√

5− 1
)

t2
)

. (4.19)

The functionsΦ andΨ are defined as

Φ(r, s) = r1(r, s) (4.20)

Ψ(r, s) = r2(r(1+ c(s)(r − 1)), s) . (4.21)

c(s) can be solved such that the condition (4.16) is fulfilled for alls ∈ [0, 1].66 In this way, the bijective
maps

Φ : [0, 1]2→ V1,(r, s) 7→
((√

5− 3
)

(r − 1) s2,
(√

5− 1
)

s
)

(4.22)

Ψ : [0, 1]2→ V2,(r, s) 7→



−

(√
5− 3

)

s2+

r
(

1+
(√

5− 3
)

s2
) (

4
(√

5− 2
)

s2 + r
(√

5− 1+ 2
(√

5− 3
)

s2
))

√
5− 1+ 2

(

3
√

5− 7
)

s2
,

s
(

(6− 2
√

5− 7r2 + 3
√

5r2 + 2
(

22− 10
√

5+ r
(

−18+ 8
√

5+
(

5
√

5− 11
)

r
))

s2
)

√
5− 1+ 2

(

3
√

5− 7
)

s2





65 Even though a principal value integral is typically not considered for an integral of a pole of degree 2 or higher, this can be
integrated in the symmetric principal value scheme.

66 Ther-polynomial inΨ is not mandatory. However, it appears to be the most flexible substitution by which this method can be
implemented into Mathematica.
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Figure 4.1: Plot of the(x,y) domainV in (4.17). The coloring shows the splitting into the two regionsV1 andV2. The mesh lines
represent the lines of constantr andsof the coordinate transformations (4.22). The PV hypersurfaceΓ is located at the
green line.

are constructed. They are visualized in Figure 4.1. The mesh lines represent the lines of constantr ands,
such that the smooth normal derivatives ofΦ andΨ can be observed atΓ.
Those variable substitutions are applied to the integrand of (4.17) and result, when added together, in a
smooth dr ds integrand that is free of poles. Consequently, a fast and convergentnumerical solution of
principal value integral (4.17) that fits to the analytic expectations is obtained.
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4.4 Evaluation ofB0

The wave-function type contributionB0(p) for massless on-shell RHNs is defined in Chapter 3.4.1.2. It is
expressed in the plasma frame for positivep0: p0 = +|~p|. The integration variables are cos∡(k, p) and|~k|.
k is the 4-momentum of the lepton.

The coupling expanded form in Equation (3.44) contains the sum of the two branchesk0 = ±|~k|. For
k0 = −|~k| the integrand

d cos∡(k, p)d|~k|
Π
A
φ (p− k)

(p− k)2
|~k|

(

f+(−k0) + f−(p0 − k0)
)
∣
∣
∣
∣
∣
k0=−|~k|

(4.23)

is free of singularities, becauseΠAφ (p− k) is proportional to(p− k)2. This case can be integrated nu-

merically without further considerations. However,B0 can be separated into a vacuum and a thermal part
according toΠAφ . The vacuum part can be solved analytically.

For k0 = +|~k| the integrand has a singularity at|~p| = |~k| in the Higgs’s Bose-Einstein-distribution. How-
ever, this is flattened by the Higgs self-energyΠ

A such that only an integrable peak remains. For numerical
stability, this is integrated by splitting the d|~k| integration range into 0< |~k| < |~p|, |~p| < |~k| < 2|~p|, and the
remaining range 2|~p| < |~k|. The IMT transformation is then utilized to flatten the peak. Those three parts are
integrated separately and add to the final result in (3.46).

For the resummed case using the Higgs propagator (3.48) withoutΠ
H
φ , the pole structure does not change.

Only the integrand becomes more complicated, and the vacuum part needs to be calculated numerically.
Otherwise, the same method can be used.

If Π
H
φ is included,ΠAφ cannot cancel the pole at the Higgs mass shell(p− k)2 = Π

H
φ . This leads to a peak

that is hit during integration within thek0 = −|~k| branch.67 This term has to be split in order to flatten the
peak using the IMT transformation. Hence, the peak position and its width should be known analytically.
SinceΠ

H
φ is well approximated by the thermal massmth

φ

2
= 1

4G+ 1
4h2

t +
1
4λφ in the ultra-relativistic regime,

the peak position is approximated by

|~k|peak=
mth
φ

2

|~p|(1− cos∡(k, p))
. (4.24)

Furthermore, the propagator width along the line|~k| = |~p| is modeled by the constant68

δ|~k| =

∣
∣
∣
∣Π
A
φ

∣
∣
∣
∣

1− cos∡(k, p)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

|~k|2=|~p| |~k|peak

cos∡(k,p)=1−10−3

. (4.25)

The splitting of the integration region is done using those approximations, however the integrand takes the
full Π

H
φ andΠ

A
φ .

This strategy works in particular when the d|~p| integral forγN is included. The integrand can then be
symmetrized in|~k| ↔ |~p|, and the whole integration area shown in Figure 4.2 is parameterized by the three

67 For thek0 = +|~k| branch, the evaluation strategy does not need to be modified.
68 The IMT transformation can of course tolerate a dynamic varying width. However, it is numerically preferable to have some

constant width that applies for the whole integration at once.
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functions(|~p|, |~k|) = r i(t1, t2), (t1, t2) ∈ (0, 1)2:

r1 =





a(1− t2)

−1+
√

a+ 1
t1

,−1+
1
t1
−
√

a(t2 − 1)




(4.26)

r2 =





at1(1− t2)

1+ (−1+
√

a)t1
+

bt2

−1+
√

b+ 1
t1

,−1+
1
t1
−
√

a(−1+ t2) +
√

bt2




(4.27)

r3 =





b

−1+
√

b+ 1
t1

+
t2

1− t2
,−2+

√
b+

1
t1
+

1
1− t2




. (4.28)

È
kÓ
È

ÈpÓÈ

Figure 4.2: This is a plot of the parametrisationsr1, r2 andr3 for some arbitrary numbers 0< a < b. The mesh lines correspond to
lines of constantt1 andt2. The green, blue and yellow lines correspond tot1 = 1, t2 = 0 andt2 = 1 respectively.
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Ther i are derived according to the cutting lines

|~p| = 0 |~k| = ∞ |~k| = |~p| (4.29)

|~k| = a
|~p| |~k| = b

|~p| (4.30)

for some fixed numbers 0< a < b. a and b are chosen to bea =
mth
φ

2

1−cos∡(k,p) and b = 2a, such that

r1 parametrizes the interval 0< |~p| < |~k|peak and r2 is the range|~k|peak < |~p| <
√

2|~k|peak. Therefore,
r1 andr2 correspond to the aforementioned "pole" part whiler3 is the "medium" or "non-pole" contribu-
tion. For the actual numerics, the IMT transformation is applied in all three regions with respect tot2
and the widthω = 10δ|~k|. Furthermore, in the regionsr1 and r2 the IMT transformation with respect to
t3 ≡ 2− 2 cos∡(k, p) with ω = 10−6 is utilized.

All in all, this method yields the aforementioned results. Additionally, this is the general strategy for the
numerical integrals in this work. It can deal with arbitrary widths and is only restricted by the number of
digits used when evaluating the integrand.
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4.5 Evaluation ofBO(G) andF O(G)

The perturbatively calculated wave-function type contributionsBO(G) andF O(G) are integrated along the
same lines. Both are expressed in Chapter 3.5.1 in thep-frame and consist of one- and two-dimensional
integrals in d cos∡(k, p) and d|~k|. The two-dimensional integrals typically feature a principal value integral
at |~k| = mN

2 , a discontinuity at|~k| = mN, and a peak at the Bose-Einstein distribution of the internal Higgs

at (|~k| −mN) p̃0 − |~k||~̃p| cos∡(k, p) = 0. The peak is regulated by the RHN mass and becomes important for
approximatelymN < 0.1T. Furthermore, the(HT L,col) contribution ofF O(G) contains a peak that may
ultimately end up in a principal value type integral in the limitmN → 0. Even ifF O(G) is not evaluated
at mN = 0, this limit should be respected formN < 0.1T to obtain stable numerics. On top of that, some
contributions serve a sign change in cos∡(k, p) ↔ − cos∡(k, p). Those may result in large cancellations
within the integrand of contributions coming from cos∡(k, p) = ±1.
The integration strategy is to parametrize the integration domain by functions incorporating those special
lines, and to apply the IMT and PV transformations afterwards. For the PV transformation, a maximal pole
degree of 1 is assumed. For simplicity, the reparametrizations are applied to alltwo-dimensional integrals,
regardless of whether the corresponding transformation is needed or not. Furthermore, the one-dimensional
integrals are easily extended to two dimensions. Hence, one does not needto analyze each term separately
to find the corresponding parametrization.
After the symmetrization in± cos∡(k, p) ≡ cos, the remaining integration area is 0< cos < 1 and
0 < |~k| < ∞. The special lines are

|~k| = 0 |~k| = mN

2
|~k| = mN (4.31)

|~k| = ∞ |~k| = mN p̃0

p̃0 ± cos|~̃p|
|~k| = κ

mN p̃0

p̃0 − cos|~̃p|
(4.32)

with κ ≥ 2. For technical reasons69

|~k| = 1
2





mN p̃0

p̃0 + cos|~̃p|
+

mN

2



 |~k| = κmN p̃0

p̃0 − cos|~̃p|
cos=

p̃0

5|~̃p|
for p̃0 < 5|~̃p| (4.33)

are included too. The full domain is parametrized by the following 11 functions(cos,|~k|) = r i(t1, t2)
with (t1, t2) ∈ (0, 1)2:

r1 =

(

1− t1 , −mN(t2−1)( p̃0(t2+2)−|~̃p|(t1−1)(3t2+2))
4( p̃0+|~̃p|−|~̃p|t1)

)

(4.34)

r2 =

(

1− t1 ,
mN(|~̃p|(t1−1)(t2−2)+ p̃0(t2+2))

4( p̃0+|~̃p|−|~̃p|t1)

)

(4.35)

r3 =

(

1− t1 , −mN(|~̃p|(t1−1)t2(5t2−4)+ p̃0(t22−4))
4( p̃0+|~̃p|−|~̃p|t1)

)

(4.36)

r4 =
(

1− t1 ,
mN( p̃0−|~̃p|(t1−1)t2)

p̃0+|~̃p|−|~̃p|t1

)

(4.37)

r5 =
(

− p̃0(t1−1)

5|~̃p| , mN(t2(t1(5t2−4)+4)−20)
4(t1−6)

)

(4.38)

r6 =
(

− p̃0(t1−1)

5|~̃p| , mN((t1−1)t2−5)
t1−6

)

(4.39)

r7 =

(

−t1 p̃0+ p̃0+5|~̃p|t1
5|~̃p| ,

mN( p̃0((t1+4)t2−20)−5|~̃p|t1t2)
4( p̃0(t1−6)−5|~̃p|t1)

)

(4.40)

69 The PV transformation is applied using an automated Mathematica code. Thiscode demands those extra lines.
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r8 =

(

−t1 p̃0+ p̃0+5|~̃p|t1
5|~̃p| ,

mN(5|~̃p|t1(1−5t2)t2+ p̃0(5t1t22−(t1+4)t2−20))
4( p̃0(t1−6)−5|~̃p|t1)

)

(4.41)

r9 =
(

−t1 p̃0+t1t2 p̃0+ p̃0−|~̃p|t1t2
p̃0−|~̃p|t1

,
mN( p̃0−|~̃p|t1+|~̃p|(t1−1)t2)

p̃0−|~̃p|

)

(4.42)

r10 =
(

p̃0−p̃0t1
p̃0−|~̃p|t1

,
mN(−|~̃p|t2(|~̃p|t21+ p̃0t2)+|~̃p|t2(|~̃p|t2t21+ p̃0)+ p̃0( p̃0−|~̃p|t1)((κ−1)t22+1))

p̃0( p̃0−|~̃p|)

)

(4.43)

r11 =
(

(t1−1)( p̃0−|~̃p|t1t2)
|~̃p|t1−p̃0

,
κmN( p̃0−|~̃p|t1)

p̃0−|~̃p| + t2
1−t2

)

. (4.44)

These expressions already include the PV transformation at the matching boundaries ofr1 andr2, r3 andr4,
r5 andr6, r7 andr8, andr9 andr10. See Figure 4.3 for a parametric plot of ther i .

È
kÓ
È
�
m
N
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1

2
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4

cos

Figure 4.3: This is a plot of the parametrizationsr i using p̃0 = 2|~̃p| andκ = 2. The mesh lines are lines of constantt1 andt2.

If p̃0 < 5|~̃p|, the parameterizationsr5, . . . , r8 have to be used instead ofr3, . . . , r4. With the help ofκ, the

principal value type pole at|~k| = mN p̃0

p̃0−cos|~̃p| , i.e. the sum ofr9 and r10, is separated from the continuum

integralr11 in d|~k| up to infinity. For the actual numerics, a fixedκ = 2 is used. Furthermore,t1 andt2 are
chosen such that the peaks and poles are all placed att2 = 0.
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The r i are applied to the symmetrizedBO(G) andF O(G) terms. After summing over alli, the IMT trans-
formation is applied att2 = 0, and the integrals overt1 andt2 are evaluated. In this way, the results of the
Figures 3.15 and 3.17 are produced.

4.6 Evaluation ofB

The wave-function type correction to the neutrino production rate using a resummed Higgs boson propagator
is formulated in Section 3.5.2. Here, some remarks are provided on how the results in the Figures 3.19 and
3.20 are derived. The method itself is the same as in the last sections. Only a different parametrization is
encountered.

The parametrization from the Equations (4.34) - (4.44) cannot be used, because the Higgs obtains a thermal
massmth

φ . The following approach appears to be more appropriate. First, the integration variable|~k| is
redefined. Equation (3.161) contains the sum of two terms withk0 = −mN ± |~k|. However,|~k| only appears
in squared form, or multiplied by cos∡(k,u) within k · u. Hence,|~k| can be redefined to be some abstract
variable running from−∞ to∞. In the same step, the sum of the twok0 cases is absorbed. For notational
simplicity, cos is defined as cos≡ cos∡(k,u). Hence, theB integral becomes

B( p̃) = = gw|Y|2
2

(2π)2
mN

∫ ∞

−∞
d|~k| |~k|2

Π
A
φ

(

k2 −ΠH
φ

)2
+

(

Π
A
φ

)2
dFB( p̃,k0, |~k|)

∣
∣
∣
∣
∣
k0=−mN−|~k|

. (4.45)

Within this definition, the propagator has its maximum approximately at|~k| = |~k|1 ≡
m2

N−(mth
φ )

2

2mN
. This value

can be positive or negative. In particular, during variation ofmN and the couplings, a smooth crossover is
encountered. Without the|~k|-redefinition in (4.45), the crossover is numerically much more challenging.
With the redefinition, some reparametrizations that also cross|~k| = 0 smoothly can be found. Of course, a
more precise|~k|1 can be found numerically. However, within the used parameter range the small deviation
of the approximated pole maximum from the true one is much smaller than the pole width. Furthermore,
the additional symmetrization in cos as applied in Section 4.5 is not needed due to the redefinition. In the

limit of small mN, the peak of the Higgs Bose-Einstein distribution is encountered at|~k| = |~k|2 ≡ mN p̃0

p̃0+cos|~̃p| .

Because|~k|2 here is always larger than|~k|1, those peaks do not cross.

The following reparametrizations(cos,|~k|) = r i(t1, t2), t1, t2 ∈ (0, 1)2, are found such that the peaks can be
integrated in the simplest way:

r1 =
(

2t1 − 1 , |~k|1 + 1
2(|~k|1 − |~k|2)t2

)

(4.46)

r2 =
(

2t1 − 1 , |~k|1 + 1
2(|~k|2 − |~k|1)t2

)

(4.47)

r3 =
(

2t1 − 1 , |~k|2 + 1
2(|~k|1 − |~k|2)t2

)

(4.48)

r4 =
(

2t1 − 1 , |~k|2 + 1
2(|~k|2 − |~k|1)t2

)

(4.49)

r5 =
(

2t1 − 1 , 3|~k|1
2 −

|~k|2
2 − 1

t2
+ 1

)

(4.50)

r6 =
(

2t1 − 1 , − |~k|12 + 3|~k|2
2 + 1

t2
− 1

)

. (4.51)

r1, . . . , r4 split the integration domain into symmetric parts around the peaks at|~k|1 and|~k|2. r5, . . . , r6 deal
with the remaining domains up to|~k| = ±∞. Figure 4.4 shows the reparametrizations exemplary.
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Figure 4.4: This is a parametric plot of the parametrizationsr i usingmth
φ = 0. The mesh lines are lines of constantt1 andt2.

The variable transformationsr i are applied to the integrand of (4.45) and summed up. Afterwards, the IMT
transformation is used att2 = 0 to deal with small pole widths, and att1 = 0 to account for the collinear
effects at cos= −1.
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4.7 Evaluation ofF andF0

This section provides remarks on how the wave-function type correction tothe neutrino production rate using
a resummed lepton propagator can be evaluated. The massive RHNF term is formulated in Section 3.5.2.
Likewise, the massless caseF0 can be found in Section 3.4.1.3.
The termF0 is expressed in theu-frame, since this is the only available frame. Otherwise, one may expect
thatF is better formulated and numerically evaluated in the frame of the massive RHN, i.e. the p-frame,
becausemN is the relevant scale. Nevertheless, a lepton in a thermal plasma of gauge bosons has a com-
plex dispersion relation that spoils the simple treatment ofF within the p-frame – as it was done forB in
Section 4.6. Even though the position of the lepton poles can be solved numerically, knowing them ana-
lytically results in a much more stable numerics and is therefore favorable. Thelepton dispersion relation
can be solved analytically in the HTL approximation with respect tou-frame variables, as it can be found
in [82]. Therefore,F is better evaluated in theu-frame. In addition, the method can be copied forF0. In the
following pages, the lepton dispersion relation is derived for the presentcase following the steps of [82].

lepton dispersion relation: According to Equation (3.50) the spectral lepton propagator is

PLS/Al (p) = PL

γ · a2a · b− γ · b
(

a2 − b2
)

(a2 − b2)2 + (2a · b)2
PR , aµ = pµ − Σ

H
l
µ

, bµ = Σ
A
l
µ

. (4.52)

The dispersion relation ofS/l(q) in the HTL approximation is given by the zeros of

(

q− Σ/
H,HT L
l (q)

)2 −
(

Σ/
A,HT L
l (q)

)2
= (4.53)

G2T4ln
(
(q0+|~q|)2

(q0−|~q|)2

) (

−q2ln
(
(q0+|~q|)2

(q0−|~q|)2

)

+ 8q0|~q|
)

− 16
((

G|~q|T2 + 8|~q|3
)2 − 64(q0)2|~q|4

)

1024|~q|4
. (4.54)

In line (4.54), the assumption to find a solution only forq2 > 0 is used. In fact, Equation (4.53) also
has a zero forq2 < 0. Nevertheless, this cancels with the numerator of the propagator such that in total
there is no tachyonic pole. This cancellation works only if the propagator numerator is not expanded
in the couplings.

With help of the substitutionx = q0+|~q|
q0−|~q| , i.e. q0 = |~q| x+1

x−1 , and|~q| = 1
4

√

GT2y, the zeros of (4.54) are
given by

0 = (ln |x| − x+ y+ 1)(xy+ x− 1− xln |x|) . (4.55)

In choosingq0 > |~q| > 0, i.e. x > 1, the two solutions

x+ = −W−1

(

−e−
16|~q|2
GT2 −1

)

(4.56)

x− = −W−1
0

(

−e−
16|~q|2
GT2 −1

)

(4.57)

are obtained.W is the LambertW-function, andW0(z) and W−1(z) are the two real solutions of
z = WeW. x+ and x− are the two "HTL" branches of the dispersion relation that are plotted in
Figure 4.5.
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Figure 4.5: Dispersion relation of the resummed lepton plotted in the case ofG = 1. The density plot in the background shows
u · ΣAl (p), and visualizes the true dispersion relation given by the maxima of the propagator.

The green lines are the zeros of Equation (4.53) without the HTL approximation, and the background
density plot shows logarithmically the full propagator.70 Hence, in the present case, the disper-
sion relation is better modeled by the HTL approximated form than by the expected maxima of the
Breit-Wigner form in Equation (4.52). Nevertheless, regarding the numerics the HTL approximated
dispersion relation

q0
+ = +|~q|

W−1

(

−e−
16|~q|2
GT2 −1

)

− 1

W−1

(

−e−
16|~q|2
GT2 −1

)

+ 1

(4.58)

q0
− = −|~q|

W0

(

−e−
16|~q|2
GT2 −1

)

− 1

W0

(

−e−
16|~q|2
GT2 −1

)

+ 1

(4.59)

is enough for the analysis and also the most advantageous analytically. Figure 4.5 also shows the
asymptotic dispersion relation branches for|~p| ≫ T. In particular, the thermal lepton mass

(mth
l )

2 = 1
4GT2 can be verified by first expandingx+(q) in e−

16|~q|2
GT2 at 0 up to the leading order,

and afterwards expanding the resultingq2 in |~q|T at∞ to the leading order.

70 The vacuum self-energy is dropped according to Section 3.5.2.1.
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The integration domainB for the dk0d|~k| integral inF is determined by

0 < gd(u, p,k) − 1
4

(

(k0 + |~k|)(k0 + |~k| − 2p0) + m2
N

) (

k02 − 2k0(|~k|+ p0) + |~k|2 + 2|~k|p0 + m2
N

)

. (4.60)

The maximum of the Bose-Einstein distribution of the internal Higgs particle is located atk0 = p0. This
peak should be evaluated symmetrically71 even if it is regulated bymN. The domainB, together with the
peak position of the Bose-Einstein distribution, and the peaksk0

± of the lepton propagator given by the above
dispersion relation are used to parametrize the integration domain in terms of functions(k0|~k|) = r i(t1, t2)
with t1, t2 ∈ (0, 1). Under the variation of the parametersmN, |~p| andG, the peaksk0

± move across the
domainB. Therefore,B needs to be parametrized case by case. This is done automatically during evaluation
for each parameter choice independently. Consequently, thoser i cannot be shown here. However, there are
at least 5 different cases that need to be considered. They are sketched in Figure 4.7. Figure 4.6 shows the
parameter space for each case. I-V are relevant formN , 0, and formN = 0 only IV and V need to be
considered. Finally, the results for a massive RHN can be found in the Figure 3.21, and massless neutrinos
are shown in Figure 3.10.
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Figure 4.6: The plot relates the cases I-V to the corresponding parametersmN, |~p| andG relevant forF .

71 i.e. in the principal value scheme, to optimize the numerical cancellation of large contributions.
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Figure 4.7: The figures sketch the five different cases that need to be considered during the integral parametrization for numerical
evaluation ofF andF0. The blue region is the integration domain given by (4.60). The propagator peaks ofSAl (k) are
located at the red lines.
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4.8 Evaluation ofJO(G)

The final numerics chapter provides further remarks on the evaluation routines forJ . J is the sum of
Jvac + JT,0,λ=0 + JT,0,corr. Jvac is already solved analytically in (3.317). However,JT,0,λ=0 and
JT,0,corr need to be evaluated numerically.

The first one is obtained by the symmetrization according to Equation (3.301) and by settingλ = 0. The inte-
gration domain ofJT,0,λ=0 and its splitting are plotted in Figure 3.31. The boundaries of those sub-regions
fit to the propagator poles atx,y = 0 and to the discontinuities which are generated by adding several
contributions of different support.
Even after the symmetrization (3.301) is done, there are still integrable poles from the Bose-Einstein dis-
tributions of the internal bosons at(x,y) = (0, 0) and(x,y) =

(
mN
2 , 0

)

. They are only located in regions
I. . .III, but not in IV. . .VII. Those poles are evaluated numerically using the IMT transformation.
For technical reasons, the polynomial part of the integrand ofJT,0,λ=0 is separated by a partial fractioning
into terms proportional to1

xy,
1
x and 1

y , and the 1 remainder. Those 28 integrals, i.e. 4 fractions multiplied
by 7 regions, are evaluated separately.
In regions I, II and III, the 1

xy and 1
y terms have an opposite sign. This results in a large cancellation for

mN < 0.1T, such that the1
xy and 1

y terms have to be evaluated within one integral. The1
xy and 1

y terms
in regions I. . .III plus the 1 term at region VII form the dominant and non-vanishing contributions in the
ultra-relativistic limit.
For the case of smallmN, there are several other peaks in the integrand from the Bose-Einstein distributions.
For a well-behaved numeric, their positions should be obtained from the symmetrizations. Depending on the
parameter choice, the peaks cross each other in different formations such that one should again analyze each
case in order to find an appropriate parametrization, as is done forF . In fact, by utilizing a large enough
value for Mathematica’sNIntegrateoptionsMinRecursionandMaxRecursion, the integrals can be solved
with a relative error of about 10−3 in the smallmN range in exchange for CPU time.

The other part,JT,0,corr, is derived in Equation (3.308). It accounts for the error that is done by switching
from theλ → 0 prescription to the principal value type prescription. It is a three-dimensional integral with
two integrable poles atx = mN

2 andx = 0, that are related to those at(x,y) =
(

mN
2 , 0

)

and(x,y) = (0, 0)

of JT,0,λ=0. Depending on the parameter choice, a large cancellation of the contributions above and below
x = mN

2 occurs. Hence, this pole is integrated symmetrically even though it is not a principal value. Both
poles,x = mN

2 andx = 0, are integrated using the IMT transformation.

The final results can be found in Chapter 3.5.6.7.
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Chapter

5
Conclusions and Outlook

5.1 Summary

The aim of the present investigation was to formulate an approach to obtain thedifferential production rate of
massive and massless singlet right-handed neutrinos relevant for leptogenesis. Previous attempts were only
able to account for the non-relativistic regime, where the neutrino mass is much larger than the temperature.
Here, several approaches were formulated and analyzed in order to obtain the differential production rate of
massive right-handed neutrinos. In combination, they covered the full mass range from the non-relativistic
up to the ultra-relativistic regime.
The study was based on the Closed-Time-Path formalism, since this is a first-principle approach to thermal
non-equilibrium Quantum Field Theory. Furthermore, the neutrino production rate was derived in the 2PI
approach from the 1- and 2-loop spectral neutrino self-energy. The2PI approach was relevant for a consis-
tent description of the screening effects in the intermediate and ultra-relativistic regime. However, the 2PI
diagrams were expanded in the Standard Model couplings for calculational simplicity, until theNLO of or-
dinary perturbation theory was reached. In this way, the improvement of agradual inclusion of resummation
effects was analyzed up to the point where all soft and collinear divergences were screened by the thermal
plasma.
Up to the 2-loop 2PI order, the neutrino rate is determined by wave-functionand vertex type contributions.
It was pointed out that the wave-function type contributions involved infrared divergences from massless
particle exchanges within the thermal plasma. Those radiative corrections spoiled the perturbation theory
and therefore had to be resummed. Consequently, the wave-function typecontributions could only be pertur-
batively described in the non-relativistic regime. This approach was calledthe "perturbative thermal mass
insertion". Within the perturbative approach, the cancellation of intermediateinfrared divergences of the
real and virtual contributions was confirmed for thermal corrections too.
However, the vertex type contributions behaved much less divergently. Their infrared divergences canceled
out under the integral at the perturbative level. Therefore, the finiteness of the perturbative approach was
checked numerically for neutrino masses up to the ultra-relativistic regime. Noneed for a resummation was
found.
Those numerical results of the wave-function type and vertex type contributions were verified by a fit to
non-relativistic expansion coefficients. In addition, the coefficients were obtained analytically and verified
by the literature.
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In the ultra-relativistic regime, the perturbative wave-function and vertextype contributions possessed an
enhancement that was not found in the ultra-relativistic limit. This discrepancy was thought to be a physical
effect due to interferences of Bose-Einstein distributions. It was not interpreted as the breakdown of the
perturbation theory and the call for resummation, however, this just meant that the massless limitmN → 0
and integration was not exchangeable. This effect enhanced the RHN rate of the vertex type contributions
in the ultra-relativistic limit by a factor of two.
In the intermediate and the ultra-relativistic regime, the full propagators, which are demanded by the 2PI for-
malism, had to be used to describe the wave-function type contributions. Those propagators were obtained
by the resummation of the 1-loop lepton and Higgs self-energies. Since thoseself-energies were obtained
perturbatively, the IR divergences of the hermitian self-energies had tobe absorbed by a vacuum counter
term in addition to the UV renormalization counter terms. The IR counter term wasjustified to provide the
correctNLO rate in the ultra-relativistic regime up to some RHN mass scale in the intermediate regime.
Furthermore, a region of congruence of this resummed approach to the perturbative one was found in the
intermediate regime. Consequently, this region was utilized to switch between bothapproaches in order to
describe theNLO RHN rate in the full mass range.
Furthermore, a subtlety of the Higgs resummed spectral propagator was found. The resummation of the per-
turbatively obtained Higgs self-energy led to a causality violating resummed function due to the neglection
of back reaction effects. In order to obtain the correct resummed Higgs propagator, the Higgsself-energy
itself had to be derived using the resummed Higgs propagator. This kind of Schwinger-Dyson equation was
solved in the vacuum limit, and the solution was found to be causal. As a consequence, an improvement of
the resummed Higgs function relevant for finite temperature was derived.
Finally, a method using gram determinants to easily provide integration domains for massless and
massive loop integrals, and several tools numerically dealing with multi-dimensional integrals having
one-dimensional principal values and poles of the resummed and the distribution functions with arbitrary
widths were investigated. Those contribute to the CTP formalism and theories described bynPI effective ac-
tions, since the particle distribution functions and the resummed functions spoilthe direct analytic evaluation
that is usually applied to loop integrals at zero temperature in perturbation theory.
Some of the results are published in [75,80] – as mentioned in the present text.

5.2 Outlook

There are several aspects in this work that can be investigated further.
First, the renormalization scheme for all relevant particles may be fixed to getwell-defined mass and cou-
pling parameters. Furthermore, the effect of resummed gauge bosons and their thermal masses should be
investigated. In this context, the IR counter term may be removed, such that the resummed approach be-
comes valid in the non-relativistic regime too.
Second, a numerical solution of the causal and resummed thermal Higgs propagator may be found to explain
the validity range of the mentioned analytic improvement in detail.
Third, theNLO right-handed neutrino rate may be evaluated from the wave-function and vertex diagrams
using 2PI functions for all propagators. Hence, one should check whether interferences of the continuum
parts of those propagators give sizable contributions. Even though the vertex diagram was numerically IR
finite in the ultra-relativistic limit, the effects of resummed functions may be investigated. In this context,
the physical correctness of the Bose-Einstein interferences and the resulting rate enhancement of the vertex
type contributions may be confirmed in the massless limit as well.
If those tasks are completed, a major step forward in clarity and understanding of the propagator resumma-
tion may be achieved.
Furthermore, as previously mentioned, the 3PI formalism should be considered for a self-consistent descrip-
tion of an effective action up to 3-loop order. The vertex type contributions then involveresummed vertex
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functions. The size of such vertex resummation effects should be analyzed.
In addition, flavor effects like the flavor resonant enhancement may be investigated using the presented re-
summed functions. In particular, if several bosonic particles are involved, the interferences of Bose-Einstein
distributions may provide additional contributions.
Finally, the mentioned approach can be used to derive production rates and transport coefficients for other
scenarios that physically happen on non-relativistic up to ultra-relativisticscales.
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