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Intfroduction

The study of the fundamental laws of nature and their contribution to théagewent of the universe is one
of the most fascinating chapters of today’s basic research in physiesdiscovery of the Higgs particle
at CERN [1, 2] confirms the Standard Model of particle physics (SM) isgively and with great detail,
but it does not explain all particle phenomena. Among these are sebseMed phenomena that definitely
involve physics beyond the SM (BSM):

Based on the standard model of cosmology and according to the resuftgshHeoPlanck mission [3] the
known universe contains only 4.9% of ordinary matter. A huge part ofeh®ainder is so-calledark
matter (DM). Since it is "dark", it does not interact directly, or only very wBalkvith the visible sector,
but it has huge féects due to gravity. This phenomenon is related to particle physics as it se@mdtdo
explain these observations on vastl§feiient scales by modifications of gravity.

Extensions of the SM are also motivated by experiments which stemirino flavor oscillations Due to
gauge invariance, the SM neutrinos have to be massless at the renorfedixaband hence the flavor
number should be a conserved quantity. This means the observed osdliatiicate that the neutrinos
have a mass, and therefore directly relate to new physics beyond the SM.

A third phenomenon, and probably one of the most important open questigasticle physics and cos-
mology, is the origin of théaryon asymmetry of the univer@®AU). The BAU describes the present excess
of matter over anti-matter and can be expressed as the baryon-to-phti:dxﬂ# r~ 6- 10710 [4-8]. Theories
that explain this excess are collectively called Baryogenesis. Of cdwsm)yring answer could be that the
universe has always been baryon asymmetric. But, due to symmetnnsefaism a theoretical point of
view, and also since there is no evidence of large scale detections fqugbsite, it is widely believed that
the primordial universe was baryon symmetric. See for example [9] feviaw.

Sakharov stated three minimal conditions that need to be fulfilled for a sfat&aryogenesis in his
article [10] from 1967. Those am violation, C-symmetry andC P-symmetry violation, and interactions
out of thermal equilibrium. The first Sakharov condition is mandat&ys the number of baryons minus
anti-baryons, which, if conserved, does not allow for dynamic geioeraf the baryon asymmetrZ and
CPare the charge and charge-parity symmetry, respectiveljidiconserved, for ever violating process

a charge conjugated one would exist. Likewis& R is conserved, every number of left- and right-handed
baryons has to be equal to the number of right- and left-handed antiimesuch that in total no baryon
asymmetry could be generated. The last statement, i.e. thermal non-equililsriveeessary for breaking
T symmetry. Assuming thaB or L-number violating processes are present, @l theorem otherwise
implies that there are no asymmetries in thermal equilibribns.the lepton number.

In the past, Baryogenesis was only thought to be possible by Ehaolating decay of some heavy particles
of grand unified theories (GUTSs). Later, the discovery of sphalerongsses in the SM put GUT patrticle
baryogenesis under pressure. Sphalerons conserve theBrallebut violate B 4+ L [11]. Hence, any
primordial baryon asymmetry would have been washed out at the time ofosleetk symmetry breaking.
Later on, in the year 1986, Fukugita and Yanagida suggested that mmastsy generated in the leptonic
sector could also be converted into a baryon asymmetry by those sphateoasses [12] and hence explain
the BAU without requiring GUT theories. This was the birth of Leptogené&és for example [13-15] for
recent reviews. In terms of Sakharov conditioB¥jolation would be realized by the sphaleron process, and
C andCP violation are in principle already included in the SM. However, the S&Fsviolating Cabibbo-
Kobayashi-Maskawa (CKM) and Dirac phases are much too small to expiBAU. Particle processes
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out of equilibrium were also available in several stages of the early rg@ybut predicted deviations from
thermal equilibrium are too small.

To generate the BAU from a lepton asymmetry, which is converted into a bagymmetry via sphaleron
processes, models of Leptogenesis have to take place at temperatwesaid typically far above, the
electroweak scale. At this stage, the universe cannot simply be debasba weakly interacting dilute
plasma. To derive the lepton asymmetry, the time evolution of particle distributimetifuins has to be
considered. However, due to the primordial plasma, it is questionable erhisibse should be done by
semiclassical Boltzmann equations. Therefore, substantial progressade in the theoretical description
of Non-Equilibrium Quantum Field Theory (NEQFT) related to the Closed-Tiath (CTP) formalism
[16—19]. Within the CTP, the time evolution of particle distribution functions cardbrived from the
Kadandi-Baym equations, which are related to Boltzmann, Quantum-Boltzmann amgbliarequations
[20-28]. Regarding Leptogenesis, particular progress was also imadéulating thermal corrections to
the CP asymmetry [29-35] and other related questions [36—44].

This thesis contributes on a possible Leptogenesis scenario. Like in mestL@htogenesis models, the
SM is extended by a number of right-handed neutrinos (RHN) with Majoraasses. This extension
is particularly attractive to the physics community, since the active neutrinoiskh only come with
left-handed chirality. Furthermore, they are the only SM fermions that dbae a right-handed partner.
See [45] for a nice review on the phenomenology of RHN. In this framkevtbbe SM neutrinos acquire small
masses from mixing through the seesaw mechanism [46-50]. By addingatimep the resulting theory
may also be embedded in a Grand Unified Theory (GUT) such 48@@1-53]. Under restriction to a
renormalizable theory, the RHN only interact with the weak sector throughwa interactions. Therefore,
a possible keV mass right-handed neutrino may provide a natural DM eaad&#l, 55]. However, though
their masses are in principle unknown and can range between zero a@tlhscale, there are exclusion
windows [56]. Hence, the RHN may be able to explain the above questicaisaate.

If those neutrinos exist, a lepton asymmetry is most likely generated by adtolibrium decays of heavy
RHNSs into Higgs bosons and leptons. This is the leading otd@y dominant process in the non-relativistic
(NR) limit, i.e. in case the RHNs have masses much larger than the actual tempeatatthich the decay
happens. However, if the RHNs have a mass comparable to the tempenmatwenosmaller up to the
ultra-relativistic (UR) limit, the abové.O process is kinematically suppressed, and radiative corrections
become relevant for Leptogenesis. Hence, for a complete calculatioes# thteractions, ranging from the
NR to the UR limit, next-to-leading ordeffects (N\LO) must be considered too. The radiative corrections
through massless particle exchanges diigceged by soft and collinear divergences. Recently, those are
studied in the NR limit [57, 58], and first calculations regarding RHN préidacin the UR limit have
been performed [59, 60]. In other papers [43, 61-63] radiativeecbons have been included by means
of modified dispersion relations, i.e. thermal masses. However, thosaeapiy partly theN LO effects.
Hence, aNLO calculation of the RHN production rate is not available in the full range froenntbn- to
the ultra-relativistic limit, so fat. This is important in the weak washout regime, in resonant leptogenesis
and in ARS-type scenarios, for instance. Related to the issue of the Réthigiion is the lepton flavor
equilibration rate [65—67] and the production of photons in the quark ghlasma (QGP) [68, 69]. The
lepton flavor equilibration rate determines the temperature at which fldiest® become important for
calculations of the lepton asymmetry.

The present investigation deals with the production rate of massive andessa&HNs. Based on the
two-particle-irreducible (2PI) formulation of the Schwinger-Keldysh @rggd-Time-Path formalism, tools
are derived to analytically and numerically calculate thermal production eastégransport cdicients

in non-equilibrium QFT. This has the advantage of being a first principbecaeh that does not rely on
semiclassical approximations, and directly providing the correct deseripfithe physical screening in
the thermal plasma in terms of resummed propagators. The screening regaldten divergences that

LVery recently, [64] contributed on the relativistic regime.
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may appear in tree-level scattering diagrams. In this work, the out-af#derquilibrium right-handed
neutrinos are described in a thermal equilibrated bath of the other partithesr differential and total
production rate is calculated within several approximations and limits, ancbarpared to the literature.
However, two inconsistencies are found in those calculations that aresahiet explained by other authors.
The first one appears when "naively" resumming the Higgs self-erengya workaround is provided in this
thesis. The second inconsistency describedfagstewhere actually suppressed processes of nearly massless
particles is enhanced by the Bose-Einstein distribution. This enhancemangpipears in perturbative
calculations, prohibits the congruence of massless contributions with maadgless contributions to the
RHN production raté.

Outline

The introductory Chapter 1 provides a brief overview of the Schwitgdysh formalism. It explains how
the Closed-Time-Path emerges in the path integral formulation of NEQFT, @amdhe Kadanf-Baym
equations are derived in the 2Pl approach. After introducing the Wigpace and the Gradient Expansion,
the tree-level and resummed variants of several 2-point functionbianensand various associated relations
are summarized.

In the 29 chapter, the SM extension by means of the RHN and the correspondingiBayules are shown.
The following section discusses renormalization matters in thermal field thédgrwards, a method is
introduced to easily provide boundary conditions for massive and madetgsintegrals. These integrals
possibly cannot be solved in dimensional regularization due to the parti¢hébdion functions. The
method is exemplified by an analytical calculation of a generic spectral funittithermal equilibrium
using tree-level functions. At the end of Chapter 2, the Higgs and legltesergies are obtained.
Chapter 3 is devoted to the production rate of the RHN. First the quanturtievoequation for the particle
distributions of RHNSs is derived. In Section 3.3, th® differential production rate for RHNs in the NR
limit is obtained. Section 3.4 addresses the case of massless neutrinos inlihetURurthermore, the.O
rate is derived within perturbative approximations, but also using resuritiged and lepton propagators.
Existing results are thereby verified. Section 3.5 concerns the produatemn the intermediate regime
between the UR and NR limit, using again the perturbative and resummed meffoelsion-relativistic
expansion caficients are derived and fitted to the numerical results at the end of this section

The considerations used to obtain precise numerical results are dddoribeapter 4.

Chapter 5 of this dissertation summarizes the results and provides an outlpadsible further work.

2Very recently, a similar issue was described in [70].



Conventions

In this thesis, the following conventions are used.

Planck’s constant and the speed of light are séttoc = 1 in natural units.
The Minkowski metric is fixed by, = diag(1,-1,-1,-1).

If not stated otherwisek? always meang,k* for any 4-vectok. Likewise,k* is the same aék?)?.
However,k? should be regarded as the zeroth componeht of

The plasma 4-vector is calletwith normalizationu® = 1 and positival®. The temperaturé = g1
is part of the definition of the particle distribution functiéfu- p).

If not stated otherwise, the integrafsdko, dk| and dcos always run from-co... 0, 0...00 and
—-1...1, respectively.



CHAPTER

Schwinger-Keldysh Formalism

The In-Out formalism is the usual method to describe scattering problemsliniQsdesigned to compute
S-matrix elements for processes that consider free particles coming ittfecimfinite past and going out to
the infinite future. At some time scale, these particles are thought to "sde'bder and hence interact by
adiabatically switching on andfatheir interactions. Adiabatically in this sense means that the initial state
vector in the infinite past should be the same as the outgoing state vector in tite finfiure. In contrast,
this work studies particle production in the early universe at finite denditgrevnot all particles necessarily
have to be in equilibrium. Hence, the initial state may be out of equilibrium whileukgoing state should
approach equilibrium at some time. For this purpose Schwinger first steghja framework [16], that was
further developed by Keldysh and others [17-19]. This so called BgerKeldysh or In-In formalism
is an extension of the In-Out formalism that describes particle produdhierenergy density, the particle
number density and more, in time developing the density matrix of a quantum sfystaran initial state
at timet; to final timets. In the following section, only the mainfiiérence of this formalism to the In-Out
formalism, the Closed-Time-Path, is derived.

1.1 Closed-Time-Path

The density matriy has the physical interpretation of a probabilityfor finding the quantum mechanical
system in a stat@n)

PO = Puldn(D))Wn(t)!. (L.1)
n
Even if Equation (1.1) is highly compagt,, is a probability and satisfies
D=1, (1.2)
n

In quantum mechanics, any observable quarditis related to an operatad in the Heisenberg picture
through its expectation value

Oy =Trjp0]. (1.3)
Equation (1.3) involves the tracing of quantum degrees of freedom, icudlions, and statistical degrees
of freedom. In QFT, the trace is realized by integrating over all fields at tiateall spatial points The

3 The spatial dependences are suppressed.



normalization constan¥ is absorbed into the definition of the integration measure suckthat 1:

() = f DU WOPOOD (D). (1.4)

Here, the subscript at the integration measDygeprovides the integral support in terms of a closed interval
of time slices. This means that modulo the normalization consfant, means

Dye = L_C[ ];[dw(t,z) . (1.5)

If the density matrix is only known at some initial tinbe expectation values can still be evaluated lay
time evolving the corresponding statés-(t;):

(1)) = Ut ) (t)) = U (1, )l (t)) = e 6y t) (1.6)
f@lﬂ[t. gle(t)e g Ko LI W)y (t)) : 1.7)

1;[ S((6.9) -y (6.y))=6 (9 (ti) -y ()

The infinitesimal positivec guaranties the convergence of the time evolution and is absorbed into the time
arguments. In this way, one obtains

O(t)>=fﬂlﬁ[ti,q](tﬁ(ti)lﬁ(ti)u(ti,t)é(t)U(t,ti)lw(ti)>- (1.8)

Note that the state vectors can be evolved to any tinges long as the time of measuremeig betweert;
andts:

t)) = f Dy W ()P4 U (1, 1)U (tr, O U (1, 6) () (1.9)
N fﬂ¢[ti,ti]ﬂ¢[ti,t}<¢(ti)|ﬁ(ti)u(tiatf)U(tfft)é(t)WJr(t))
gt (£)OT ()

ifdx“L(w,w;x) (gl/+(ti)—lﬁ(ti)) (1.10)

— [ Do 00 DI DY OB ()
iy XL >5(¢,—(tf) gt (tf))éﬁ‘f dx4£(¢+,$*;x)6(¢~,+ () - (1))
0+ (e R LV TN 5 (5 (1) — p (1)) (1.12)

The tilde, plus and minus indices have no real meaning, except to sepaaléfe¢nent field variables.
After integrating out the deltas, the tilde can be dropped and only plus and iglds are considered.
ConsequentlyO(t)) is expressed as

() = [ DU} DU WP (0D (v (20) =0 (1)
O+ (t)el fttfl d><4£(w‘,¢‘:><)ei J:f A Lyt ¥Tix) , (112)

which describes the expectation valuelit) measured by the stajig* (t)) in a system prepared atby p.
The term

[ i D R (1) (1.13)



describes the initial ensemble average. Due to the infinitesimal imaginaryfplaettime arguments, the¢
and- fields can be regarded as one field livingten ic and ont — ie. The time contours can be combined
into one contou€ = C. & C_ called the CTP or Closed-Time-Path contour as sketched in Figure 1.1.

3(t)

L€ Ct ts

Figure 1.1: CTP contour in the compléeplane.

Then, Equation (1.12) can be written even more compactly. However tfiesgeneral observab@ must
be substituted by time-orderedpoint Green-functions. After removing in (1.4) and adding the current
termi ftitf d*xJ(x)¥(x) to the Lagrangian, the generating functionak[d*] for time-ordered correlation
functions is obtained. Here, time-ordering is meant to be the path-ordéoing the CTP. The derivative of
In Z[J*] with respect to the sources can be written as

(Tew(ty) ... p(t)) = f DUt (0PI (603 (1) ..y () b ¥ LWeden) (1.14)

L(Yg¢,...)is the short form forl(y*,...) = L(y~,...), and thea; to a, are the CTP indices.
The following part focuses on the density matrix. This can be parametrized a

W ()t (1)) = Npelve] (1.15)
with
[ te
flyel = ft xS @ X)) U () (1.16)
n=0 " ay,...,an==

N, is a normalization constant. Thes determine the initial correlations, vanish for any time argument
t # t;, and have to fulfilp to be hermitian, becaugemust have real eigenvalues. If initial cross correlations
betweerdt- and- fields are neglected, can be absorbed into the Lagrangian and hence into the definitions
of the sources)*, the masses and the couplings. Therefore, the initial conditions formallgpdiaa but
re-enter as initial conditions for threpoint Green-functions.

Now the generating functional of time-ordered correlation functions hegghal form

W[J*] =ilnZ[3*] =iln f Dyd b L) (1.17)

Consequently, the 1PHective action can be derived by a Legendre transformation with regpéctand

J~. Of course, highenPI effective actions can be obtained by addmpoint sources to the Lagrangian and
the corresponding Legendre transform, as it is known from the vadbaory? The 2PI dfective action
especially is the starting point in Section 1.3, where the evolution equatiotse@-point functions are
formulated. Therefore, some notational conventions need to be intdddeea last remarkt; is set to
infinity to include correlation functions for arbitrary large times. Howevestill should be finite since the
system would otherwise have an infinite amount of time to equilibrate until a nerasat is done. This
means that by settingto —oo, all correlation functions would have their equilibrium forms. Nevertheless
t; can be set to zero for simplicity.

4 See for example [71] for details.



1.2 2-Point Functions inthe CTP

In many cases, it is shicient to consider only 2-point functions. Their general structure isrdesd in this
section. Due to the two time branches of the closed time path, it is possible toumtfstr diferent 2-point
functions. These are the time-ordei®d ™, the anti-time-ordere ", and the "greaterG~+ = G~ and
"less" G~ = G< Wightman-functions. They are defined in operator notation, in positiorespadcerms

of a generic charged bosonic field operagoin the Heisenberg picture, that has to obey the equal time
commutation relations for canonical quantization

[¢<x>,¢*<y>]\xoyo ~ 600,50, L (1.18)
[¢(x>,¢*<y>]\xo_ o i) (x-y), (1.19)
through
G, (xy) = (To(x)(y)") = 6(x° =y)iG; (x,y) +6(Y° - X)iG5 (xy) (1.20)
G, (%, Y) = (To(x)(y)") = 6(y° - X)iG; (x,y) + 6(x° - y))iG5 (x.y) (1.21)
IG5 (x,y) = (6(x)(y)" (1.22)
IG5 (x,y) = ((y) ¢ (x)). (1.23)

WO, =15, =0 (129
w0080, =16 (x-9)1, (125

G, (xy) = (Ty(0F(y)) = 00 = y)iG (x,y) + 6(y° - X)iG5 (x. ) (1.26)
iG,~ (% Y) = (Ty(x)F(y)) = 6y’ ~ X)iG; (% y) + 6(x° ~y°)iG; (x,y) (1.27)
Gy (x,y) = W(X)¥(y) (1.28)
Gy (xy) = =W (y)y(x)). (1.29)

However, even if there are four Wightman functions, only two of them ea#lyrindependent. This reflects
the doubling of the degrees of freedom in thermal non-equilibrium. The twat®ns that relate those four
functions areG™* + G~ = G> + G<, which already holds on operator level, and the Kramers-Kronig
relation below.



In fact, it can be useful in practical calculations to distinguish betweesrakredefinitions written out ex-
plicitly in the following table and shown diagrammatically in Figure 1.2:

hermitian propagator GH (Gt -67) = I(GR+GH

anti-hermitiary spectral propagatorG®* = 1(iG>-iG<) = 3(iGR-iG*)

statistical propagator GF = J(G""+G) = (G +6GY)

retarded propagator iGR = iGH+G* = iGtT-iG< = iGZ-iG—
advanced propagator iGA = iGH-G7 = iGtt-iG> = iG<-iG—
"less" propagator iG< = iGF-G~* = iGTt-iGR = iG—+iG”A
"greater" propagator iG> = iGF+G~H = iG—+iGR = iGtt-iGA
time-ordered propagator Gt = GF4+GH = G<+GR = G +GA
anti-time-ordered propagator G~ = GF-GH = G -GR = G-G"

Table 1.1: Relations between CTP 2-point functions.
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Figure 1.2: This diagram is a possible visualization of the above set efin@ébns. Functions outside of the dashed triangle
are calculated via addition or subtraction of the inner ones according tortbwsaas explained by the example:
GH 4+ GF =G+t andGF -GH = G. Likewise, the inner functions modulo a factor of 2 are calculated from
the outside ones~~ + Gt+ = 2GF andGt+ -G = 2GH.



1.3 Kadandf-Baym Equations in the 2Pl Approach

With the record of the general structure of 2-point functions at haedt,ekiolution equations can be derived.
For a generic bosonic fieleland a fermionic fields with vanishing field expectation valuég) = () = 0,
the 2PI dfective action has the representation

2P, 8] = itr[A@ " A] —itr[S© 7S] +itrin At —itrInS~L + T,[A, S] . (1.30)

A andS are dressed 2-point functions feandy respectively, andl’, is the sum of all 2-particle irreducible
(2P1) vacuum graphsA\(9 andS(©) are considered to be the tree-level functions.

I'2PI[A, S] determines the equations of motion fvrandsS by the stationarity conditions

oI or
— =0 — =0. 131
oA " 6S ( )

From these, the KadaffeBaym-equations for a general bosonic and a fermionic field can berootes.
By evaluating the functional derivatives in (1.31), the stationarity conditionA, and analogously fo,
become

ST[A, S]

oT2[A,S]
SAPa(v, u)

A (0 p—1 - vap—1
= iA@37(y,v) — A (u,v) + oAb )

(1.32)

in CTP notation and position spaca andb are the CTP indices. The definitions of the bosonic and
fermionic self-energy can then be read of modulo conventional signs:

oT2[A, S

ab i

I1*(u,v) = Iab—éAba(v, 0 (1.33)
ab _ . O[AS]

X%(u,v) = |ab—5$ba(v’ R (1.34)

The additional minus sign in (1.34) compensates the minus that appears wehelogtd fermionic loop

in ', is opened. Sinc& and are Dirac vectors, Equation (1.34) is written in a slashed notation. In this
convention—i times the self-energy is the sum of the corresponding diagrams multipliacbgib. After

a convolution of (1.32) witl\"°(v, w) and renaming some indices, one obtains

(32— mR)ia®(uv) +1 Y o f " WIS (U, W)iA®(w, V) = as®is@(u—v).  (1.35)
& Jo
The fermionic analogon is
(idy—my)ig®(u,v) +i Z cfm d*wiy2(u, w)ig®(w, v) = as?®is™ (u-v). (1.36)
—Jo

By adding and subtracting Equation (1.35) foffélient values o& andb, all ++ and—-- functions are
substituted by>, <, retarded and advanced ones. Then, a Schwinger-Dyson equatithe fretarded and
advanced propagators and an equation for the greater and lesggqtmpacan be obtained:

(=07 - mB)iAR A + i (T A 0 1aRA) = i) (1.37)
(=0% —mp)iA™/> +i (TR eiA™/>) +i(il1/> 0iA*) = 0. (1.38)
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Likewise Equation (1.36) can be reduced to
(id —my)igR/A +i(IZV A 0igRA) = is™ (1.39)
(id —my)ig~"> +i(iZReig~") +i(ix"> 0ig?) = 0. (1.40)

Here, the convolution operataris introduced:

AoB= j(; " d*yA(x,y)B(y, 2) . (1.41)

After replacing the retarded and advanced functions in (1.38) and)(Wid®spectral and hermitian func-
tions, the Kadan@-Baym equations are obtained:

(-*-m)A~> —-TTM o A™> —-TI"/> 0 A" = Cy = S (IT 0 A° - TT" 0 A7) (1.42)

= NI

(ig -m)8<> -t os/> -1/ ogl =¢, == (L 08 -L0%). (1.43)

2

C, and¢, are called the collision terms since they vanish in equilibrfum.

1.4 Wigner Space and the Gradient Expansion

In equilibrium the 2-point function§&(x,y) depend only on the relative coordinate y due to fluctuations
that usually take place on microscopic scales. The dependences on Mnemnedinate’%’, on the other
hand, typically result from changes on macroscopic scales. Thesemegefrom a coupling to a slowly
varying external bath or a change in the background metric related to infldioseparate the microscopic
scales from the macroscopic ones, a Wigner transformation is perforihéslis a Fourier transformation
with respect to the relative coordinate:

r r K ier <
S(xr5x-5)= [ G Ol A

In Wigner space the convolution of 2-point functions reads

AGB = fd“yA(x, y)B(y,2) = A(k, X;’ Z) ; B(k, %Z) , (1.45)
wheresx is the Moyal star operator
1 — — _<— .—> N
Ak, x)  B(k, x) = A(k, x)e"z(ax OO "*)B(k, X) . (1.46)

Therefore, the evolution equations for the correlation functions havéotioeving form in Wigner space:
convolutionse are replaced by the Moyal stay and the derivative with respect to the left variable of the
2-point functionA(u, v) in (1.35) and3(u, v) in (1.36) becomes

By — —ik + %ax. (1.47)

If AandB do not depend on the mean positigrtheir Wigner transformation reduces to the Fourier transfor-
mation. This reduction can be described by the systematic truncation withingars&n of the exponential

5See the KMS relations in Equation (1.56).
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of the Moyal star, and hence by the number of gradients used to desieeitb®nvolution (1.45). This is
called the gradient expansior® %« is the translation operator. It can be expanded and truncated for an
infinitesimalr, which results in an infinitesimal shift iR Hence, the gradient expansion is also an expan-
sion in the size of the macroscopic correlation length betweamd B in (1.45). This means that if the
guantum system that has to be described is close to equilibrium and tleenedoing slowly, correlation
functions at some mean coordinatshould only depend on the information closetdut not for example

on the conditions far away in the space-time. With the help of the gradienhsixpa consequently, the
contact to Boltzmann, Langevin and Quantum-Boltzmann equations can i dsiexplained for example

in [21,72,73]. In the following investigation, all 2-point functions arswased to be in Wigner space such
that the tilde is dropped.

1.5 Tree-Level Equilibrium Green-Functions

In this chapter, some aspects related to Green-functions are examiméteriFore, an overview of several
relations for the propagators is given. The tree-level functions duéi@os of the Klein-Gordon and Dirac
equation that can of course be found in the Equations (1.35) and (ly3$tting all couplings to zero.
Those solutions, but also solutions to the full interacting theory, have tp albes that sometimes are
related to thermal equilibrium and sometimes follow from general arguments.

Spectral sum rules: In equilibrium, the Wigner space reduces to the usual Fourier or momentaoe.sp
The momentum space spectral propagators have to obey a sum rulerthz# deduced from the
equal-time canonical commutation relation, as explained for example ifi [f¢ase of bosons with
the spacial dependence in momentum space, this reads

|¢(t.K), (¥ ,K)| o (1.48)
After writing down the spectral function in operator notation
=, 1 - 1 =, - =,
A _ < _ i

taking the time derivative at= 0, and considering the Fourier transformation with respett titoe
following relation is found:

_%::Aﬂu::QE)zvf%§(4wﬁAﬂW)- (1.50)

Hence, the bosonic spectral sum rule is

0
dekOA‘ﬂ(k) =1. (1.51)
T
In an analogous fashion, (Dirac-) fermions have to obey
f7s (k) = f7ztr[y g7(k)] = 1. (1.52)

Those rules hold also for an interacting theory and should of courséaldan a similar fashion in
non-equilibrium, since they are directly related to the quantization conditions.

6 The spectral propagator in [74]ftérs by a factor of two compared to the definition in this study.
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KMS relations: In thermal equilibrium, the greater- and less- Wightman-functions are in addélated
through the Kubo-Martin-Schwinger (KMS) relations which can be imf@grfor instance, within the
imaginary time formalism. In thermal equilibrium, the density magroan be written as

peq= Ne#H . (1.53)
H is the Hamiltoniang is the inverse temperatuiie andN is a normalization constant. By compari-
son with (1.6) peq can be regarded as the time evolution operator in imaginary time. Resorting to the

cyclicity of the trace in (1.3) and suitably defined Wightman-functions for demarguments, one
can show that in position space the equilibrium bosonic Wightman-functienskated by

A (t) = A<(t+iB) (1.54)
and the fermionic ones by
B (1) =-3°(t+iB). (1.55)
In momentum space, those relations give the KMS relations
G>(p) = =P°G<(p). (1.56)
The upper index is used for fermionic Wightman-functions, and the lowefambosonic ones.

Thermal equilibrium distributions: Due to the KMS relations in thermal equilibriurg< and G~ are
completely determined by the spectral function:

<p°>Gf“( p) (1.57)
f.(-p°)G™(p). (1.58)

iG=(p) =
iG”(p)

I-I- +|

f., f_, and then. in (1.59), are the thermal equilibrium distribution functions for fermions and
bosons, i.e. the Fermi-Dirac and the Bose-Einstein distributions, resglgciivhey read

n.(E) B0 | eq. 1
{il—ni(lEl) , E<0 } (B) = ge g (1.59)

Furthermore, they are defined for positive and negative energgsgmnding to particles in the ini-
tial and final state. The statistical fact@t + n_) describes stimulated emission for bosons and the
(1-ny) results in the Pauli-blocking for fermions. The following rules can be foumthermal

equilibrium:
f.(E)+ f.(-E) = +1, (1.60)
15 2f.(E) = —(15 f.(-E)) = sign(E)( (IEl)) (1.61)
lim £.(E) = +0(-E). (1.62)

Equation (1.61) in particular is useful for splittirfg into a thermal and a vacuum part. Additionally,
Majorana particles fulfilln,. = n,.. Therefore, if the right-hand side term of Equation (1.59) is
ignored, Equations (1.60) and (1.61) also hold for non-equilibrium digtdhs.
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Kramers Kronig relations: Since the retarded function has a pole below thek®akis and is analytic in
the closed upper half plane, its real and imaginary parts are related vidysatheorem. This results
in the Kramers Kronig relations that relate the hermitian and spectral functions

o'(p) = ar— T enp = 2f T ety e
Vs Qo — po Jo qo? — p°
and
0 oo 0
o0 = f P E e dp = W et ey
This also means that in thermal equilibrium, there is only 1 independent 2-{poiciion. Thegﬁ
denotes the Cauchy principal value integral.

By solving the Klein-Gordon equation for the free theory, using the norat#diz condition (1.51) and the
boundary condition (1.56), the bosonic Green-functions in thermal eguitbband momentum space in
their most compact form are given by

A(K) = 76(k? — m?)sign(u - k) (1.65)
1
kK2—m2’
u is the plasma vector arfd denotes that this pole should be integrated in the Cauchy principal valu= sens

The other functions are obtained from

A (k) =P (1.66)

iAT(K) = 2A(K) f_(u- k) (1.67)
iA”(K) = 2A7(K) (1 + f_(u-k)) (1.68)
iAF(K) = (1+2f_(u-k))A" (k). (1.69)

For completeness, the retarded and advanced functions are alsa shown

iAR/A = | 1.7
'A k2 —m? +isign(u-K)e (1.70)

Note that sigu- k) = sign(k®), sinceu? andu® are positive numbers. Itis easy to check thitand-A7
are indeed the real and imaginary part&\5f and that the Kramers-Kronig relations hold.

Equivalently, by solving the Dirac equation for the free theory and byguie normalization condition
(1.52) and the boundary condition (1.56), the fermionic Wightman functiotieeimal equilibrium are

(k) = (K + m)5(k% — mP)sign(u- k) (1.71)
g1 (k) = Pkﬁf::z (1.72)
i8(k) = 287 (k) (= f+(u-k)) (1.73)
i%” (k) = 287(k)(1- f, (u-k)) (1.74)
8" (k) = (1-2f, (u-k))$" (k) (1.75)
iSR/A(K) K+ m) (1.76)

T K-—m2xisignu-K)e

Since all unregulated poles that have to be dealt within this work come fromitien propagators, the
explicit # is dropped. Those poles are always regarded in the Cauchy prineipal sense. The principal
value integral is just not mentioned everywhere.
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1.6 Resummed Propagators

In Wigner space up to first order in gradients, the Schwinger-Dysamtiams (1.37) for the retarded and
advanced propagators réad

(K + ik - 0 —mg —TTR/A)iaR/A =i (1.77)
The zeroth order solution can simply be redil o

i i
iAR/A — = . 1.78
k2—mg —TIR/A K2 —mf — [T + 1T (1.78)

Hence, the zeroth order resummed hermitian and spectral propagators ar

AR €~ — 11" 1.79
o (kZ_W\g_HH)2+(Hﬂ)2 (1.79)

A
A = 11 (1.80)

(k2 _ mg _ HH)Z + (Hy{)z ’

The hermitian function (1.79) represents a principal value for an infinitédiifa and (1.80) has the usual
Breit-Wigner form. By taking the formal limfI** — 0, the resummed spectral function reduces to

A — msign(IT)s (k> — nf — 117) . (1.81)

In case thd 1" vanishes at the pole, the standard infinitesisgign(k®) term has to be included.
Likewise, Equation (1.39) reads

(K F o m —ZRA)igtA = 1 (182)

in Wigner space and is expanded up to first order in gradients. Théhzaater solution can be readfo
GR/A _ i _ [ 183
I3 K-m, —¥R/A  K-m,—¥h £igA’ (1.83)

Due to the Dirac structure, the resummed hermitian and spectral functiostighéy different from the
scalar one:

(d +my) (a2~ b2~ 1¢) + 2a- b

H _

B = @ 2P (2a D) (1.84)
(# +my)2a-b-H(a? ~ b* — )

A __

5= (82 -2 —n)2 + (2a-b)? (1.85)
with

A =Kk -z (1.86)
bt = 2. (1.87)

7 Only gradients in the mean coordinatare counted, since microscopic fluctuations can still be large. Thenstfier in
gradients, the convolution dfl with A should include théy - dx terms. Nevertheless, the rate givenIiyis proportional to the
change in the macroscopic scale. Therefdla, is already &ectively of first order in gradients.
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The dispersion relation is basically given by the zeroa’of b* — mg .® If the width 2a- b vanishes at one of
those poles, a &, term should be added . In the formal limitb* — 0, in the sense of sending couplings
to zero, Equation (1.84) reduces to the usual principal value form plisainder, which is of higher order
in the couplings and therefore vanishes. In addition, the spectral faneiituces to the tree-level form

g™ — zsign(a- k) (& + my)s(a® - ) (1.88)

plus a remainder, but here this remainder vanishes because it beedares mg)s(a® — ).

Finally, if TT?/A is constant irx, its resummation int&®?/# does not introduce newdependencies. Hence,
the solutions (1.78)-(1.80) to the zeroth order in gradients are also s@utidimst order in gradients. The
same argument also holds for the fermions.

8 At least in our case, one of those zero’s corresponds to a tachyoleic Fhis unphysical pole vanishes only if the propagator
numerator is not expanded in couplings. See Chapter 4.7 for the leisfmersion relation.
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CHAPTER

Extended Standard Model and
First Applications of the CTP

2.1 Lagrangian

The temperature relevant for the considered Leptogenesis scenariclisabave the electroweak scale,
such that the Lagrangian has to be considered in the symmetric electrohasskgnd the Higgs doubligt

is present in the primordial plasma. Consider the Standard model extegdeddmbem : i = 1...n

of right-handed neutrinos (RHNY; with Majorana masseb/;, that are singlet under the full SM gauge
group S (3) x SUw(2) x Uy(1). Then, the most general renormalizable Lagrangian can only provide
new Yukawa interaction¥j, between those neutrinos and the left-handed leptof2Stoubletd ; via

1. -
L= Lom+ 59 (10 — Mi)yn, ~ (Ya¥nd P, +he), (2.1)

with a,b = 1...N andN = 3 being the number of generations of lepton doublets. Hggeequals

N; -+ N¢ with N© = CNT. C is the charge conjugation matrix, such that the Majorana condjtipr= Uy,

is imposed. The tilded Higgs field is definedd@s= e¢* with e being the antisymmetric tensor in isospin
space.

If CP is broken, those interactions lead to the production of right-handattinos and hence generate a
lepton number asymmetry for each flavor, too. The lepton number asymmetiyecpartly transferred
further between the left-handégand right-handed active leptoRg by the Yukawa couplingBgap:

LsyD - (hab(lﬁ‘;RaPLlﬁlb + h.C.) . (2.2)

This leads to the decoherence of correlations betwetégreint lepton flavors [26].
Gauge boson interactions with Higgs and top-quahie to be considered at the next order. The first ones
are mediated through

Lsu > (Dg)' Dy, (2.3)

where the covariant derivative gfequals

D¢ = (9 +i92YyB, + ig2At?) ¢ (2.4)

9 Its coupling strength is much larger than for the other quarks.
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with A{;\ andB, being the S2) and the 1) gauge bosons, respectively, = % is the hypercharge, and

th = % are the three generators of weak isospin transformationsAvithl...3. Theo™ are the Pauli
matrices.

The second ones results through Yukawa interactions with the coupling
Lsw > — (hafed PLyn + hec) (2.5)

between left-handed top quark 82) doubletsy, and right-handed top quark $p) singletstg. The SU?3)
color indices are suppressed during this study.

2.2 Selection of Feynman-Rules

The following section presents the vertices that are relevant for thistigagen. Again,a andb are flavor
indices, f,g andh are SU2) doublet indices, ané and B account for the three generators of QYin

the fundamental representatignandk are the 4-momenta flowing in the direction of positive charge flow,
which is indicated by the arrow. The color space identity matrix is givelcbyach vertex comes with an
additional sign corresponding to theor — CTP branch.

|
~ihpaPL (2.6)
/\
a b
|
—ih! .Pr (2.7)
a/\b
|
—iYiae PL (2.8)
| N
|
—iY ePr (2.9)
/\
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2.3 Scales and Schemes

The task of this investigation is to calculate production rates relevant fortogepesis at
high temperature$. Thereby,T is about 18 — 10'°GeV, far above the electroweak scalg,, ~ 246GeV,
where the SM is unbroken. In this unbroken phase, nearly all partetespt the Higgs and the right-handed
neutrino, must have zero tree-level masses due to gauge symmetries.thginie-level Higgs mass of
about 12%&eV is known at zero temperature, the one at high temperature is given byamaization
group running. The running itself is determined by radiative correctiosopgstional to small couplings.
As a consequence, the tree-level Higgs mass for the theory beingdi&dinebove the electroweak scale
is still a small number compared to all other relevant scales. Those aredomée the temperaturg,

the still unspecified massy of the right-handed neutrino, and the external momentum of the relevant pr
cesses here. TF > my, those external momenta are always of ofigsince the phase space prefers large
momenta while Bose-Einstein and Fermi-Dirac distributions prefer small momemtacelithe dominant
contributions to particle processes are at momenta of typical®. However, ifT < my, the temper-
ature is negligible and the only scale that can appear is the RHN mass. Inltdvérfg pages, this limit

is referred to as the "vacuum"-limit, evenTifis still much larger tham\¢,,. However, the Higgs is always
approximately ultra-relativistic and its tree-level mass is set to zero.

To define the meaning of mass and coupling parameters, renormalizatioiticmntiave to be imposed.
But, as thermalfects are UV finite due to the exponential suppression of the Bose-Einsteifeami-Dirac
factors, only "vacuum" renormalization conditions are relevant. Therfi@tts are treated as quantum
effects due to a thermal plasma of particles of a theory defined at scales afltreobthe fixed neutrino
mass much larger thaney, and the temperature can be varied as a free parameter. In conclugon, th
couplings are defined by the renormalization group flow to this fixed scafechBosing diferent scales
my, the couplings may in principle be varied as free parameters too. In this sesbral couplings are
set to zero to analyze thdfect of individual interactions that can be compared to the perturbatudtse
The other possibility is to choose a set of couplings according to the rehipatien group flow to the
for-Leptogenesis-relevant scale. Those couplings are given ie 2ab

RGE scale] o1 02 O3 h Ag G Gr
10°GeV | 0.394 0.577 0.689 0.600-0.049] 0.289 0.155
10?2 GeV | 0.414 0.552 0.606 0.526-0.082| 0.271 0.171

Table 2.1: Values of relevant SM couplings taken from [T§]andGr are defined in (2.82) and (2.83).

Typical schemes are the MS MS scheme, in vacuum. They are not preferable, because integrations
over particle distribution functions have to be taken where dimensionalargzation (dim-reg) cannot

be considered in a simple way. Nevertheless, all diagrams may be sepatatedcuum and thermal
contributions within the thermal perturbation theory. For the vacuum oirasiat) is suitable.

Another approach is the on-shell scheme. This states that the proppgigtehould be at the physical mass
scale and should have a residuum of one. This works fine for the ragided neutrino as long as the limit

my — 0 is not considered. Since the RHN is a gauge singlet, it is not protectedr&diative corrections,
which would give rise to ill-defined counter-terms, in this limit. However, theéBects are of higher order

in the Yukawa couplingy than what is needed in this work. Hence, the massless limit works in the tin-she
scheme as well. Possible conditions on the real part of the neutrino setfyesre

I (P =m) =0 (2.15)

d YH(F=my) =0. (2.16)

dp
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This is not the case for the Higgs. Due to interactions with massless gaugesbarsd quarks, the Higgs
self-energy is infrared divergent at zero momenta. It is enough taintean infinitesimal fictitious infrared

regulating gauge boson and top-quark mass at some stages. This reigidatdo zero after the IR diver-

gences have canceled out and before physical observabledarateal. However, in case of the on-shell
renormalization for the Higgs, this procedure cancels out IR divesgenith UV divergences so that the
whole renormalization process gets unnecessarily complicated. Nevssthetaormalization conditions

for the Higgs can be imposed at the unphysical momeniti|s —M? as proposed in [76].

I,"V(p? = -M?) = 0 (2.17)
d
EHS’VaC(pZ =-M?)=0. (2.18)

This whole vacuum renormalization procedure should be done to get al@feled meaning of the masses
and the couplings. However, this investigation considers only countestir cancel out UV divergences.
It is considered case by case whether the remaining finite vacuum rdiratioas are fectively be sub-
dominant. The appropriate terms are determined within the perturbative ¢aloula

2.4 Generall-Loop Spectral Function using
Gram Determinants

In this thesis, several cut diagrams are calculated numerically. Therécis amalytic tool set for vacuum
diagrams. However, the distribution functions for thermal correctionallysdemand numerical integra-
tions. This section introduces a way to easily provide integration domains fesiveaand massless cut
diagrams. In particular, this method is not restricted to a specific type oftadnlconsider loop diagrams
with any particles being on-shell. The only assumptions made during this wek & 4 space-time di-
mensions and Feynman diagrams with maxichiwhear independerd-momentum vectors. The method is
extendable to non-integer dimensions as well as to diagrams with mord We@itors. However, those cases
are not of interest for the present investigation. The technique is ngbletely new, since special cases can
be found for instance in [77,78]. However, an understanding of éleper background was not found in the
literature. Therefore, the method is considered to be partly new.

The method of gram determinants is introduced by an example in the followintheffonore, it is necessary
to calculate the anti-hermitian part of a general 1-loop 2-point functioryusse-level propagators once and
for all. The only way to cut such a diagram is through the two internal pastidi@is means one recovers
an integral of the type

d*k
Kab(P) = f 2na V(P WAT (A7 (p— k) (1~ afa(k) = bo(p~ ) (2.19)
multiplied by some constant prefactarandb correspond to particle 1 and 2, respectively, and can take the
values+ and—-. As usual, at+ is used for a fermionic particle while-aindicates a boson. The possible
numerator algebrbl(p, k, u) can only consist of the vectops k andu. Hence, it can always be brought into

a form that involves the scalar produgis k?, u?, p-k, p-uandk-u.19 11 12|f the d*k is substituted in terms

101t K4p is a tensor integral, it can be expressed in terms of scalar integralse @hmsbtained via the projection of each tensor
index on the vectorp andu. Those integrals only involve the scalar productggdf andu.

11 Any convolution with further space-time vectors, momenta or tensorbe@xpressed as a sum of tensoig} folded by the
corresponding prefactors.

121 case ofd = 3, the convolution op, k andu with the Levi-Civita symbol can be expressed in terms of above scadupts:
€wpP'K'W = 4/gd(p,k, u). gd is the gram determinant given in (2.25).
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of Lorentz invariant scalar products, tkéandp - k is fixed by the on-shell relations of the internal particles
while k - u remains as the integration variaBfe.k - u may only appear in the numerator, if the external
particle is a fermion, due to other gauges than Feynman gauge for gasmyesbor due to non-equilibrated
thermal distribution functions. Here, only equilibrium is relevant. Howewging tree-level functions with

1

the thermal equilibriumkap is expressed as

Kab = I%HZN(U -k)sign(u- K)sign(u- (p—k))6(k?* — m)6((p - k) - ng)

(1-afa(u-K) —bfy(u- (p—Kk))). (2.22)

TheN(u-k) is the same as th(p, k, u) from above — onlyk? andp - k are replaced by? and the masses
via the on-shell delta functions. To obtain dimensionless quantities, all dinmfukfactors are rescaled by
the temperatur@ = 8~1. After integrating out the one irrelevant angular direction and the deligtiturs,
one is left with

= %ﬁ%k» [ dNGE)sign)sign( - K)(L-af(K) ~bR(F-K) . (222)

For simplicity, the plasma fram& = 0 is chosen, since is the only 4-vector in (2.22) that definitely
has a positive norritt Other reference frames are possible too, but they usually involve one linear
independent 4-vector. The result can easily be extended to any odhee in the end. The d@, k) is the
gram determinant of the 4-vectopsandk. It appears in (2.23), singe needs to be such that the peaks of
the delta functions in (2.22) are hit:

The method of Gram determinants:
Within a Lorentz invariant description of any space-time integral, gram mi@tants may serve as an
easy way to express the integration domain. A gram matrix is the Hermitian matriresfpmoducts
of a set of vector&y, ..., kq:

ki-Kg - kg-ky
Gram(ky, ..., ky) = : : . (2.24)
Ko-Ki - K- Kn

The gram determinant is the determinant of such a matrix.
gd(ka, ..., k) = detGrantkq, ..., ky) (2.25)

Obviously, it vanishes if two of its vectors become linear dependent. Thignnieans that if the
desired integral contains a number of linear independent space-timesyahtir gram determinants

13 |n case thel-vectork only is dotted byp, k or u, the d'k can be written as
ok = %dad-3<—gd<u, p)) % gd(u, p.k) Z'd(u- k)d(p- K)d(K?) (2.20)

for any appropriate space-time dimensrThed — 3 independent angular directions are integrated OLﬁtﬂ@d‘3 = Vol (Sd‘?’),
i.e. the volume of thel — 3 sphere.

14 A general 4-vector can serve as a reference frame only if it has positive norm. Thissrthaha Lorentz transformation that
rotatesr into r# = (r®, 0) must exist.
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are non-zero and sometimes need to have a definitd"Sigran Euclidean space-time, they represent
the volume of the parallelepiped spanned by the corresponding vectmseHhey must be positive.
However in Minkowski space-time, they have to be positive for an odd eurabd negative for an
even number of vectollg, provided that at least one of them has a positive nkﬁ"m 0. This one
vector with positive norm is important since it has to serve as a refereageffor parameterizing
the integral. It is easy to check that the gram determinamtlofear independent 4-vectors always
has the form

gd(ke, Kz, ... kn) = —(~1)"RR KL ... Ikl sirPe(ka, k) . .. SirPs (Kn-1, kn) (2.26)

by explicitly parameterizing the spatidl 1 vectors in polar coordinates in the framekef «(k;, k;)

is the angle between the vectdgsand I?,-. If ky is not the frame vector, the simple counterexample
gd(k1) = kZ Z 0 proves the lemma.

Consequently, the determinant(glk) has to be negative in our case wkh = mf > 0 even for
negativep?. Due to the on-shell deltas, this is

2 _ _
0> 4gd(p,k) = 4gd(k, p— k) = p2—2rrr:21€—m§ P Z”r‘% | (2.27)

The condition gélp,k) < O provides the usual kinematical constraints fors12 processes, which
are allowed in a thermal plasma. However, an additional constraint appesacuum, since the
distribution functions become Heaviside functions.

The general structure of a gram determinant shown in Equation (2.26€$ #itat its sign is preserved.
Otherwise, it always vanishes when the boundary of the integration doBnfmina corresponding
space-time integraf; dkg . ..dk{ for n < d is met. In turn, in the case of (2.23) the domairan be
defined via the sign of all gram determinants that are made of the vegiais and that have at least
one vector with positive norm. Due to Dodgson’s condensation method ferndi@ants, there is a
relation between all those determinants, and one can show that a minimatseatdfons is created
from

B = {gd(u) > 0A gd(u, p) < 0Agd(u, p,k) >0}, (2.28)

since at least? = 1 is positive. Hence, this definition fd also includes the zero masses case.
Actually, if one reduces (2.28) in casef > 0, only solutionk® < k® < k% can exist if gdp, k) < O:

o PP(P+m-m) |y
K, = 207 2 —-gd(p, k) . (2.29)

Hence, the constraint in (2.23) is already encodedBnThe +/—gd(p, k) in Equation (2.29) is called
the Kéllen function in the literature. The conditions in (2.28) also serve fgatie p2. In this case,
the reduction ofB results in the two casdé > k% andk® < K3, if gd(p,k) < 0, andk® € R if
gd(p,k) > 0. However, as long a& or (p - k)? are positive, the gb, k) must always be negative.

15Gram determinants af vectors ind integer dimensions fon > d are zero. This is basically the idea of how to extend the
method.
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As long asp? > 0, thek? are such that sigit®)sign(p° — k%) = sign(p? — mé — mg). Otherwise, the factor
sign(k®)sign(p® — k) is always negative fop? < 0. Therefore, the sign terms in (2.23) can be put outside
the integral. Equation (2.23) becomes

©
KanlP) = g ian(? - i~ mE)o(-g p kK () [ +6(-p?

whereK (k%) is the remaining indefinite integral

" ) , (2.30)

—00

K(K°) = fdkON(kO) (1-af(k) - bfy(p°-K%)) . (2.31)

Up to now, the only used assumption is that the integrar€,gfs a function ofp, k andu. In principle, the
same calculation also holds for non-equilibrium distributions as long as timelyecavritten as functions of
those variables. This would only lead to some otki€k®) integral. Nevertheless, this integral can always
be solved analytically in thermal equilibrium for polynomta(k®). In case ofN(k°) = 1, theK (k?) is

b+e |

K(K®) =K +1In — |-

f2(KO) ‘
ek (2.32)

In Chapter 2.6, the case(k®) = k% is relevant. In this case, (2.31) becomes

a+ e’

0\ __ 0
K(K0) = %[k Nl

§ Lip(-ad) - Li, (_be—p°+k°)] . 233)

Li» is the dilogarithm. For negative?, the limitsk® — +co are important in Equation (2.30).

This simple example can of course also be evaluated straight forwardhbggthe constraintk| > 0 and
|cos«(k, p)| < 1 for k9. This is done for a massless diagram in Section 2.5.3. However, the stiriggth
method becomes clear in the "Vertex Type Contributions" sections, sincelaefuhctions can be solved
in terms of its Lorentz invariant scalar products by a simple Gauss eliminatidrthargram determinants
only involve scalar products. Hence, the reductioBafan to some extent be done without mentioning the
explicit way of how the deltas are integrated out. In addition, masses ampareted easily, since the deltas
are always linear in the squared masses.
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2.5 Higgs Self-Energy

In the following chapters, the 1-loop hermitian and spectral self-eneafittee Higgs¢ and leptong are
needed. For the Higgs, those are obtained from the "seagull", 4-Hggsset" and top-loop diagrams.

. /A\\
—IH¢: + [ ) +_+ + +_+““ -~ -

N\
[R— — — — —- = —— —

Figure 2.1: Seagull, 4-Higgs, sunset and top-loop diagrams for thgsHiglf-energy. Wavy lines correspond t61)y and SU2)
gauge bosons.

In the following subsectiond I, accounts for each diagram separately. However, all contributiorasiaesl
in the end.

2.5.1 Seagull Diagram

Using the Feynman rules from Section 2.2, the hermitian self-energy, i.eedhpart ofil 1, for the Higgs
with a U(1) and a SW2) gauge bosoly = (B, A%) insertion, is calculateéf

: 1, o
-1 (p) = —5 (M1, (p) - 11,7 (p)) (2.34)

. 3 S A o
_|Gf(2ﬂ)4g“ E(uAW(l<)+|AW(l<)) (2.35)

H dk . F )
(P = _GIWQ” 1y (K) (2.36)
G is the recurring factor
1

16 = 1vjg; + g, =15 (61 + 365) - (2.37)

G depends og; andgy, i.e. the U1) and SU2) gauge couplings, respectively. The plus sign in line (2.35)
comes from the minus of the CTP vertex. By replacing the statistical propaghtoAEW = —gﬂyAs in
Feynman gauge and inserting expressions from Sectiorm;'.ﬁ)ecomes

d*k
I (p) = © [ 5a 0”0 ma(K2) (14 21 (K) (2.39)
in the plasma framé@ = 0. The 1 in(1+ 2f(|.|)) corresponds to the vacuum graph, is independent of any
scale and therefore would vanish in dimensional regularization (dimréd)isinot calculated in dimreg,
this part would be absorbed by the mass renormaliza\'inq?ms explained below.

I,"*(p) = 0 (2.39)
Therefore only the thermal part is of relevance:
1" 0(p) = 4Gf d'k s(K2)F_ (k%) = lo72 (2.40)
‘ R A |

16 The seagull has a symmetry factorf
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The anti-hermitian part of the seagull diagram vanishes, since it camnotith or since non-equal CPT
indices would have to be considered at the same vertex:

1. N
115 (p) = > (ilT> —iIT%) = 0. (2.41)
2.5.2 4-Higgs Diagram
The hermitian part can be calculated in an analogous way and becomes
1
I (p) = Z/I¢T2. (2.42)
The anti-hermitian part vanishes for the same reason as in case of tlhl.seag

11 (p) =0 (2.43)

2.5.3 Sunset Diagram

The sunset diagram can be evaluated from

_ingb(p) = _Gf (g:;(erk)ﬂ(ij k)viAgb(k)iAf;‘?w(p—k) (2.44)

d*k
it (p) = — k) k)”
(P =6 [ Gk (K
1, : PN
5 (6, (KiAyL(p-K) —ia;~ (KA, (p-K)). (2.45)
By replacing++- and—- propagators with hermitian and statistical propagators and deijipg= —g,,A,
in Feynman gauge, this equation becomes
H d*k 2(i AF H H (i AF
I, (p) = —Gf (2,7)4(p+ k)% (iA5 (KA (p— k) + Af (K)iAF (p-k)) . (2.46)

With help of the tree-level functions from Section 1.5 in the plasma frame,

4
13 (p) =—§f%<p+k>2(
5((p-k)?-2%)
K2
5(k?)
[

(1+2F-(1p° - kD)

- (1+ 2f_(|k°|))) (2.47)
must be calculatedd is a small mass for the gauge fields to regulate infrared divergencesthatfcom
multiple gauge boson scatterings at zero momentum. Later on, before plojsseavables are calculated,
the gauge invariance is recovered by setting zero. This means that theArcancels in the limil — 0
during the derivation of the RHN production rate. Other regulator pipgtgans like for example dimreg are
equivalent, but for technical reasons, mass regulation is prefekgain, the terms proportional to 1 arid
in (14 2f(|.|)) are referred to as vacuum afid# O terms respectively. In the vacuum limft,becomes
a Heaviside theta of minus the argument, see Equation (1.62), and henoésitesadue to the absolute
values.
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One way to calculate the vacuum term is to calcumpﬂ” V&in the plasma framed . cancels possible
UV divergences that would otherwise be absorbed by the mass renatiwaliz H-vacren — yHvac . 6rr12

SinceIT"V2¢ is independent of the plasma vectgrthe d'k is equivalent to #dk0d|k||k| in this frame.
The &° may be integrated via the on-shell delta functions afifintegrates over the pole. However, the
appearingp?-constant terms are thrown away. Finally, this contribution results in

G A
[THwvac p) _ p2 ("’l (—} + Consa -+ const (2.48)
o (P)= o2 w- 2
G A
HH,anren p) = pzll’l[ ] (2-49)
¢ ( ) (271.)2 |p2_/12|

with A being an UV cutéf for |K|. The "const terms and the I(A) are absorbed by the mass and the wave
function renormalization. Consequently,s the renormalized finite and renormalization scheme dependent
UV cutoft. For comparison, this diagram can also be calculated using dimreg. Thesaiygtcal structure
then appears, except thatand A are replaced by the renormalization sgale

The thermal part is free of IR and UV divergences. Therefore, thiéidius gauge boson magscan be set

to zero in the beginning. What remains is to evalddtan the plasma framé = 0. With a shiftk - p—k

in the second line of Equation (2.4T)™"#° can be derived from

(2p-k)>+ (p+k)?
(p-k)?

£(k, p) is the angle betweekand g. By integrating #° using the delta function, the d cosntegral can be
solved analytically. One ends up with the finite one-dimensional integral

HH,T;&O( p) — _

KKK d cosc (K, p) ( )6(k2) £ (IK9)) . (2.50)

p? + 2kip® + 2Kl

L2 Ip_+ 2K
p? + 2|k p° — 2| Bl

G p? S
" 79(p) = - —GT? - —fdkf_ K) > In
(p) = ~136T°~ oz | KT |)Z
which is solved numerically. The facter; plus the: of the seagull diagram givesG T2, the literature
value for the thermal or asymptotic mass of the Higgs in the high temperature limifoiSeeample [59]
for a reference.
The spectral Higgs self-energy through the sunset diagram is gywen b

(2.51)

5(0) = 6 [ S0+ (p+ K3 (15K, (p K~ 1508, (p—k) (252

= —Gf d4k (p+k)22Aﬂ(k)Aﬂ(p—k) (1+ f_(u-k)+ f_(u- (p-k))) (2.53)
(2n)* P ) ) |

G d*k _ .
- 2] e 2 (P K%8()5((p =) =) sign(i®)sign(p° ~ )

L+ Tk + (v (p-K)) (254)
After Equation (2.53) is obtained, the result of Chapter 2.4 could be direstg. There, such an integral

is evaluated for the most general case. Here, however, the ordirgrisvghown. Againg is introduced to
regulate infrared divergences — notﬂ'tjl which is finite — but in the right-handed neutrino self-energy later.

Using the deltas(p + k)2 becomes B2+ O(1). dlK| integrates out thé(k?), and d cog (k, p) integrates
the other delta function. HencE]',d’j is obtained from

I3 (p) = 87r|ﬁ1 fdk05|gn (K0)sign(p® - k%) (1+ f-(K%) + f-(p° - K%)) (2.55)
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in the plasma frameB is the induced integration domain

0,0 _ 12 2
B ={lcos| < 1} = { Zp";TiO“ < 1} (2.56)
[ K2 < K9sign(p®(p? - %)) < KO ,p?>=0
- { K9] < Kosignp? v Ksignp® < J—r|k9| ,p2 <0 (2.57)
with 2
- . 1
& = B — sign(e) L1612 ) + O (258)

The 1in(1+ f + f) in (2.55) does not represent the vacuum part alone, since the distnitfutictions do
not need to have positive arguments. However, the relation

1 1. .
>t f_(E) = 53|gn(E) + sign(E) f_(|El) (2.59)
is found to hold using Equation (1.61), and Equation (2.55) can be dec@dato a thermal and a vacuum

part. The latter is

Avac _ =2 v 0 0 _ 10
IT,Y*(p) = 167r|p1fdk sign(k®) + sign(p° - k7)) . (2.60)
If p°is a fixed positive number, the sign functions are only non-vanishingik® < p° such thaB reduces

to p? > 22, p° < 0 exhibits the sam®, but with p® < k® < 0. This is the expected behavior in vacuum,
known as the kinematic constraint. Hence, the vacuum part becomes

2
I1,"*%(p) = —g—ﬂ% (k2 - K2) 6(p? - 4%)sign(p°) (2.61)
- _f_;;_ﬂ(p2 - 12)6(p? - 2%)sign(p®) = —g p20(p? — 22)sign(p°) + 0(A?). (2.62)

However, if the temperature is non-zero, a particle can take energytifr@thermal bath such that a decay,
which is kinematically forbidden in vacuum, becomes possible. This can Biedexith 2 = 0 by

I,y *(p) = 8ﬂ|p1fdk° sign(p® - KO) f_(1k%) -+ sign(k®) f_(|p° - K)) (2.63)
G P[0, 1o 1- i 0
= D (KL -K2)=Tin =—||sign(p~) (2.64)
1-eT
0
gp_ 6(p°)1A - Tin 1e"or” P2 >0
1B 1- e%ﬂ ’
1 el s 2 (2.65)
4—ﬁ(p —-TIn T ) ,p°<0

The sum of the Equations (2.62) (2.65) results in the same as what would be obtained by using the
from Section 2.4. Th(ﬂ?’”o(p) is non-vanishing for positive and negatipé, and it is anti-symmetric

in p% which is the expected behavior. At least on—shﬁlg‘ is proportional to the Higgs'’s rate of decay.
Hence, it should be positive for positiy. Here, the &-shell vacuum spectral self-energy as well as the
thermal one is negative for positiy#® and for any positivgp?. However, the leading order spectral Higgs
self-energy vanishes at the mass sipél= 0.7

17 1 the Higgs has a non-vanishing tree-level mass, only the vacuuntrapeiggs self-energy obtained from the above diagram
vanishes on-shell. Nevertheless, the thermal correction is evenveetmtpositivep’. Related to this issue are the discussions in
the Sections 3.5.2.3 and 3.5.4.
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2.5.4 Top-Loop Diagram
The Higgs self-energy via the top-quark loop is given by

4

_|Hgb(p) = htztrc[]].c]f(gﬂl;4

tr [PLiBP?(—k)Pri®(p - k)| , (2.66)

where tg is the color trace and, b are CTP indices. By defining. = trc[1¢] = 3, i.e. the number of colors
in SU(3), and extracting the Dirac structure #f(—k) = —KA(k), the self-energy can be obtained from

4
SiI12(p) = ~goh? f (gﬂl;42(p— K) - Kia22(K)iaZ(p - k). (2.67)

Inserting this intd 1" = %(I’I++ —IT7) results in the same workflow as for the sunset diagram. The UV
renormalized hermitian Higgs self-energy becomes

h? 2A
[1H:vacren D) = — gcht p2ln [—) (2.68)
¢ (p) 2(2r)? |p2 — 442

gh2 g 2 p2 - -
n;"Tio(p) — izt Tz_z(i“)zﬁfd|k|f+(|k|)2|n (2.69)

P2 £ 2KIp° + 2|I2||m‘
p? + 2|K|p° - 2/Kil

with A being a small infrared regulating top-quark mass Arlgkeing the finite renormalized UV cuto 1 is
set to zero foil # 0. The spectral self-energy is obtained from (2.67) by

115(6) = e [ <55 (P 1) K (187 (K187 (p—K) a5 (KT () @70
— g [ S (10 KA KA (K (1= () - fufu-(p-K) . (27D

Through comparison with (2.53), note thigt— k) -k = 3p? and (p + k)2 = 2p?, -G can be identified
with g—;htz under exchange df. « —f,. Consequently, the following calculation can be copied from above.
However, the vacuurk® boundary conditions are fiierent, since here two particles have the regulating
massi. The top contribution is given by

2
I1,%(p) = gc% p%6(p* - 44%)sign(p°) (2.72)
K|
h2 p2 1+et || .
Hﬁ’ﬁo(p) _ _gc8_7tr% [(|k9r| K%)= TIn " sign(p°) (2.73)
l+eT
h? p? 0 l+e% 2
~Gogr 1 [0(P))IPI = Tin | =205 P>0
o 1+e 2T
B R |0 TI l+ep27-;lm 2 <0 (274)
~Gegzig [P —TIn L P <

This is the same result as what can be found ifkhe. from Section 2.4 is considered. Tlﬁég‘ vanishes
on-shell atp? = 0, but for positivep? and p°, both expressions (2.62) and (2.74) are positive.

18/ the Higgs has a non-vanishing tree-level mass, the vacuum andaheamiributions of this diagram still vanish on-shell
due to the numerator algebra.
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2.5.5 Summary
After adding all contributions together and suppressing the supersenipghe 1-loop Higgs self-energy is

G A gch? 2A
I1HVvac(p) = pzln[ J— ! pzln( )+O A2 (2.75)
o (P (2r)? p? - 2] 2(277)2 P2 —422] (%)
G o (A ach? p) 2
Inl=1]- | 2.7
<2n 5P n(/l) 2(271) 5p°In +O +0(19) (2.76)
1 gch? G p? gch? p?
'm0 ~GT? L 72 a T2 - 1o (p% 1A]) = s = o (P 2.77
h2
ITy"*(p) = —% p*0(p* - 2%)sign(p°) + go—P0(p° - 44%)sign(p°) + O(4%) (2.78)
5 2+ip
oy | (AT o0
() = G P[0 1 &oﬁe ’ 2
Eﬁ(p ~Tin _e—p°+\p1 p7<0
1-e
+19
—gc8—‘%[ (PP - Tin| Ee2 ”m ) PP>0
+ . p;‘ge d ) (2.79)
_gcs_t%(po—'ﬂn +ep°+m1 P <0
1+e 21
with the numerical integrals
DD p? + 2lK|p° +2|k||rﬂ
(PP, 19) = [ dRI. () (2.80)
; P2+ 2Kip° - 2KIpl |-

For precise numerics. (p° |pl) may be written as a function of only one argument. Details on this can be
found in Chapter 4.1.
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2.6 Lepton Self-Energy

At leading order in the gauge couplings, a left-handed leptoem emit and reabsorb a $2) and U(1)
gauge boson, while a right-handed lepBoouples only to Y1). Hence, their self-energies up to this order
is given by the sunset diagram in Figure 2.2.

—iZir= M

Figure 2.2: Sunset contribution of the lepton self-energy. For leptbleftehirality |, wavy lines indicate (1) and SU2) gauge
bosons, while for right chirality leptor®, only U(1) has to be considered.

This can be evaluated by following the same steps as in Section 2.5.3 from

. d*k . ).
~IZfr(p) = _GI/RIWVuPL/Rl$?/bR(p_ K)Pr/ Ly iASN(K) (2.81)
with Gy /g being
G = Y22 + ththgs = ]1%1(9% +3g2) = 1G (2.82)
Gr = YROT = ¢ . (2.83)

The X, ,r decomposes into its Lorenz 4-vector Vigr = PR/LYny/R- Due to Lorenz invariance, (2.81)
can only be proportional tg andp. This means that it can be evaluated from the traced self-energies

YH = (pf,u) - GranTi(p, u)-( Eg ) (2.84)
1 _ tr px
= é(pﬂ,u“) -Gram(p,u) ( t:[[lAZ]] ) , (2.85)

where the inverse Gram matrix @f and u appears and the/R subscript is omitted for simplicity. The
wave-function and mass renormalized vacuum hermitian self-energy wittakh gauge boson magscan
be evaluated as

G P? -2

H,vac _ MI/R 2

P-ZR (P) = g7 PIn—Ff (2.86)
-u

u- Iy e(p) = %—ZP’ZS’F{“( p). (2.87)

but the thermal part needs additional care. For later convenig&ned) needs to be separated into the hard
thermal loop HTL) and a remainind # 0 part. The ternrHT L means hard thermal loop momenta, i.e.
it refers to the dominant terms in the liniid > {T, p°,18l}. This splitting is given by a partial fractioning
in K|, which, due tak? being fixed, is equivalent to a partial fractioningpn k while holding the partition
functions fixed. This is shown fqs- =™ 7#°(p) in more detail here.

2
pz:'}.gio(p) = 47TG|/RI%% (—p kf+(|l,| k|) + (pz -p- k) f_(|u kl)) (288)
d*k 2
:G|/RfW6(k2) (f+(|u-k|)HnTLLf_(IU-kI))+#(—f+(lwkl)+f—(IU-kI)) (2.89)

T+0
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By integrating the delta function wittkfl, the d cos (k, p) integral in the plasma frame can be evaluated:

G p?
I0'2|H/’FT{¢0(IO) = (ZZ)RZ (|3HTL + m(—ly +122)(p° Iﬁ])) , (2.90)
with
2
IMTE = 2 [ KR (K) + £-(K)) = 572 (2.91)

Thel,, is already defined in (2.80) and account here forphEH'Tio(p) contribution. Analogously, the
other contribution is found to be

G
H,T#0 o I/R
U-ZiR(P) = 872|p] (In

p° -+ Ip]
PO —|p]

1ML+ 15000 191) + p°lz_(p°,|p1)) (2.92)

with

(4 (IK) + F-(IK)) - (2.93)

a0, o (oo | (20K)2 - (90 = 19)?
I3 (p%1A) = fdlk”k“n (2/k))2 - (p° + |@1)2

The integral in (2.93) can be calculated numerically.
The anti-hermitian part is decomposed into

G 2
p-{1a(P) = 1gr 1 1o(0”.19) (2.94)
G 1
u-57(p) = gﬁu(p"m). (2.95)
Thel integrals are defined as
lo(p°,191) = f dk’sign(k%)sign(p° - k%) (1 - £1.(K%) + f-(p° - k%)) (2.96)
B
= (10" + 10"°) (P I71) (2.97)
11(p° 1) = f dk®ksign(p® — K0) (1 4 (k%) + f_(p° - k%)) (2.98)
B
_ (llvac+ |1T¢0)(p0,|m) _ (llvac_i_HT?to_f_ |1HTL)(pO,|[j|) (2.99)
and evaluate to
10"2%(p° Ipl) = 6(p®)IBisign(p°) (2.100)
2+l
107*2(0°, I]1) = ~6(p2)0(p°) 24P~ 6(~p) (p° + 1) + Thn [=—=___ (2.101)
— ef
0
127560, 1) = 0() P10 @2.102)
0 0)2

(1) = o) 208 _p(p2) (B

+R [XT n| 1+ efo + T2Lis (_e%) — T?Li, (ef"o)} R (2.103)
1-et x=3(p°-1p))

11T (6, 1) = 0<—p2>”—22T2. (2.104)

The Liy is the dilogarithm which was found in Equation (2.33) of Section 2.4.
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CHAPTER

Right-Handed Neutrino Rate

3.1 Preliminaries

In this section, Boltzmann type equations for the right-handed neutrino distrbfunctions are derived.
These can be obtained from the Kadfir®aym equations within several approximations. The present
model for Leptogenesis delivers close-to-equilibrium properties. Hpsttial homogeneity and isotropy
can be assumed. Hence, the spatial gradients of (1.43) vanish in Wjgpm. sSecond, all SM patrticles
are assumed to be in thermal equilibridfnFor those particles, the time gradients vanish. However, the
right-handed neutrinos are gauge singlets and therefore have a muiddr gmailibration rate. For them,
even a large deviation from thermal equilibrium should only equilibrate slosugh that including time
gradients to first order is assumed to be enough. Expanded up todiestioigradients, the KadafieBaym
equations for the right-handed neutrinos are

1 1
(K -my - Xy + |§y°at) BN XN TBN = On = 5 (ERE) - LRBY) - (3.1)
The expressioZi$y/” is sometimes called the non-local contribution to the mass terms. Hence, this
causes dispersivdtects. The tern2§/>$n changes the width of the particles. Finally, the collision term

¢\ contains the usual gain and loss terms.
To obtain the production rate for the right-handed neutrinos, the hermitigagate is first added:

200087+ (K- -2 8| - (27 8] = e+ € (3.2)

Since (3.1) is still a matrix in flavor space, the hermitian conjugation also acts fiatioe space. When
substituting the tree-level neutrino propagator (1.73) with some genetabdi®n functiorf® 2! for each

19 A small deviation from equilibrium is caused by the Hubble expansion.

20They must still respect the fact that thg are Majorana particles and henfig(p®) + fn(-p®) = 1. See the comment for
(1.61).

21Don't get confused with the fierent notions for the distribution functionfy(t, p) and fy(t,1p]). fn(t, p) equals to
fn(t, p° 19)) due to homogeneity and isotropy. Howeviy(t, p% 0l) equals tof(t, |f]) only if p is fixed at the mass-shell.
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flavor, one observes that the time evolution of those can be obtained by

0
f_SIQn trDlrac [;& {7’0’ |$§|(p)}] = fd%atzpofN (t, p)ms( p2 - mlz\l) (3.3)

— Z sign( po)%at fn(t, p) (3.4)
pO=2 /Ip*+mg,
= ofn(t, 1)) . (3.5)

Hence, the same procedure has to be applied to the other terms in (3.2)mplicity, dispersive &ects
are ignored. Those are caused by the commutator terms. Only the produetiscatterings and decay
processes is included. The rate is then given by

B (t,19) ———f sign(p)tr[en (p) + €}y (p)] (3.6)

Under the assumption that possibl§diagonal correlations in the neutrino propagator are negligible and
that flavor oscillations are rapid enough to not give coherent contritmtia flavor diagonal basis can be
chosen. This is the case if the mass splitting betwefferdnt neutrino masses corresponding téedent
flavors is large enough.

Since the medium corrections for the RHN propagator and its self-ensggy@portional taY?], tree-level
propagators can be inserted & up to this order.

afn(tIm) = f—slgn JU[IER (P)IBN(P) — XN (P)iIBN (P)] 3.7)

—5 d%sugn( O)tr| (23 (P) (~ (L ) —IZR(P) (L- fn(t,p) BT (P)]  (38)

Lepton and Higgs are assumed to be in thermal equilibrium sucltZihattisfies the KMS relation (1.56)
and Equations (1.57) and (1.58) can be uSed:

At (t,17) = f % sign(p°)tr (22 (p) 82 (p)]
(2= 19(p%) (= (8, B)) + FE(PO) (1 f(t, p))) - (3.9)

Here, the structure of the collision term in form of gain and loss terms knowm Boltzmann equations
becomes obvious. With (1.74) the@lintegral is solved:

o (t1P) = f ——tr[BL (p)]mo(p® — mR) (i (t, p) = f(p%)) (3.10)
st (t.p)
=- ), |p°| tr[BE (P)]o T (t, p) (3.11)
po=+ /PP +ng,

(L 19) = ~5 5 BE (PO ) (3.12)

po= I,

22Up to order|Y?| there are only self-energy diagrams that include equilibrated partickgsectally there is no back reaction
diagram that contains the right-handed neutrino itself.
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The last step uses the symmepY/«< —p° of f and¥ for Majorana particle®N. At this point, it is intuitive
to introduce the dferential production ratgé

N i (p . 3.13
Equation (3.12) is a first orderf@iérential equation for each mog#@ with the solution
(L, 1B) = ot (to, p)e I | fﬁq(|p0|)‘ . (3.14)

p2=n?

N
For ease of comparison with reference [59], the total production ratfiised| at zero initial abundance by

integrating (3.12) over alf:

3
- 2[ (Zﬂ? df(t, p) = fdlmlm £9(p°) T (1) (3.15)

eq A
B () . (3.16)

N

This is approximately the production rate of singlet Majorana neutrinos in éa&washout regime.

3.2 LOversusNLOin Perturbation Theory and 2Pl Formalism

According to (3.16), the dierential production rate of right-handed Majorana neutrinos within aili-equ
brated plasma is proportional to its anti-hermitian self-enerdy¥{ (p)]. To leading orderl(O) in per-
turbation theory, this is given by the procesdes> l¢ andN « [$ to second order in Yukawa couplinys
However, those are exponentially suppressedrigr< T, i.e. the ultra-relativistic regime. Hence, next to
leading order NLO) effects should be included. In the ultra-relativistic Iirﬁ# — 0 above perturbative
LO effects vanish and the form&rLO reduces to the newO.

The perturbativeNLO is regarded as the sum of 2-loop diagrams that give the wave-functibneatex
corrections to the 1-loop case.

The perturbative wave-function corrections contain logarithmically ecéducontributions that diverge for
massless neutrinos. Those divergences should be resummed into fidyptors, which then also account
for the screening induced by the thermal plasma. Hence, at least thergRilism should be used in the
ultra-relativistic regime and limit. The perturbati© contribution and the wave-function corrections are
then contained within the 2RIO, i.e. the 1-loop RHN self-energy.

The vertex correction however is included in the 2RLO, i.e. the 2-loop self-energy, or in terms of the
effective action at 3-loop order. For a self-consistent description offectare action up to 3-loop order,

the 3PI formalism should be used according to [79]. The 3Ricéve action, on the other hand, also
includes full 3-vertices. Those 3-point functions are basically deteuriryyea leader resummation [60].

Nevertheless, the present investigation shows numerically that the @ditarB-loop vertex correction is

already finite and does not provide logarithmically enhanced contributibichvetherwise would have to

be resummed. This does not clarify the question of whether full 3-verisessizable corrections to the

perturbative case, but at least the perturbative vertex correctesmrm demand a resummation.
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Consequently, th& O and NLO neutrino production rate is determined by the RHN self-energy which
appears in the 2PI approach up to 2-loop order by the following sum gfatias:

Yo S 7 AN N2

Figure 3.1: 2PI contributions to the neutrino production rate. Particles ilotips are left-handed leptons and Higgs, and the wavy
line indicates W1) and SU2) gauge bosons. The double lines represent full propagators, amtéraal legs are
understood to be amputated.

Those terms are calculated using several approximations in the next sedtigparticular, the full prop-
agators are coupling expanded step by step, as far as non-divargkphysically reasonable results are
obtained. This means that the finaD andN LO results are small coupling results of the 2PI formalism and
hence valid in the ultra-relativistic limit up to the non-relativistic limit. Furthermooeniy > T the results
are valid up taNLO in perturbation theory.

3.3 Perturbative LO Result

As explained in the previous section, the perturbative leading orderilmatitin to the neutrino production
rate is given by the interferences of the proceds¢es l¢ andN « [¢. Via the optical theorem, those are
contained in the imaginary part of

Figure 3.2: TheLO neutrino self-energy: The particles in the loop are lepton and Higgs dsuble

which, in the CTP formalism, corresponds to the anti-hermitian or specttaditlie RHN self-energy. The
tree-level neutrino self-energy can be evaluated from

. d*k : . : .
—iZ>%(p) = -gulYP? f ) (PRIS°(K)PLIAZ(p— k) + PLIBE(K)PRIAZ(p - k) . (3.17)
The factorg,, originates from the isospin-tragg, = tr[e"¢], while |Y|? is shorthand for the matrix product
Y'Y. Since the leptons are massless, both chirality projectors can be put tidereoghat they may be
added:P_ + Pr = 1. In using the tree-level propagators from Section 1.5, the pertuelda@icontribution
to the production rate can be obtained from

H(p) = BLA D) = 207 [ S1p-ks()a((p- K)signK)sign o - K)

(1- (K% + f-(p°-K?)) (3.18)
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in the plasma frame. This term is callgd for later convenience. The tree-level spectral propagators
contain delta distributions at the mass shell. This way, the CTP generatessblpaut diagrams that can
be evaluated fronXy.

From now on, the calculation for the sunset and top-loop contribution to ihgstself-energy could be
followed, or one simply uses the general result from Section 2.4. Anyaftsr splitting the distribution
functions into a vacuum and a thermal part, the vacuum distribution funaiidgsllow for the casg? > 0
such that the vacuum integral becomes

vac WY P, o o o L0 L0
HY(p) = 6r “51 o(p )fk9 dk”(sign(k”) + sign(p° — k°)) (3.19)
Y2
= S posigni p%)6?). (3.20)

By insertion of 3¢ into (3.13) on-shell ap? = mg, for positive p°, the known vacuum rate

LOvac _ gW|Y|2
I'y 1 67r (3.21)

is reproduced. The thermal part is obtained from

owlYI? p?

H'(p) = = I fB dk® (—=sign(p® - K°) £ (IK%) + sign(k®) f_(1p° - k7)) (3.22)

and evaluates in the usual way to

Y
HT*O(p) = gW' s fdko —sign(p® - K°) . (k%)) + sign(K®) f- (1p° - K°U)) (3.23)
kO
_gulYPp 0|_ 10 i
T 2(k3I-k2) - TIn -5 sign(p°) (3.24)
1-eT
gulY[? p? 20 0 TI 1- eE'JFL 0
—Bﬂ'ﬁ (p)“jl_ n pollj\ ’p>
= gW|Y|2 B #ﬂ (3.25)
o 2p —TIn P ,p? <0

Hvac + HT#0 js positive forp? > 0 andp® > 0. Altogether, the perturbative leading ordeffeiiential
production rate is
1- ep°+|m

pO I8l

I"LO I-vLO vac 1+ —I
I3

] , (3.26)

In the non-relativistic limit, the reference to the plasma vector is negligible. eftwer, (3.26) may be
evaluated in the limitg) — O:

+1 f_ (mN)
I"LO — rLOVﬁCe;— — I-vLO vac — rLO,vac 1 + 2f_(mN . (327)
N -0 N et —1 fi(my) v )
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3.4 LO and NLO Results in the Ultra-Relativistic Limit

In the ultra-relativistic limit, for@ — 0, the perturbative leading order production rate (3.26) vanishes
and loop corrections have to be considered. These are determined ®Rltegpansion, which uses full
2-point functions instead of tree-level ones. If expanded in couplithgscuts of the 1-loop 2PI diagrams

in Figure 3.1 correspond to wave-function corrections to the tree-leeekps plus the symmetricd 3
processes shown in Figure 3.3. Therefore, those are referredaavasfunction type diagrams indicated
by awv.

" + higher orders
AN iw /

+... +O(IYA(G + 12+ 24)?)

Figure 3.3: This figure shows the cuts of the perturbatively expandedpl2PI neutrino self-energy. The sums over the cuts and
both error directions that indicate the charge flow are implicitly assumeelddts in the second line represent the other
1-loop Higgs self-energy contributions that are shown in Figure 2.1.

The cuts of the 2-loop 2PI diagrams correspond, with tree-level pedpegj to vertex corrections and mixed
1 & 3 and 2« 2 processes. They can be found in Figure 3.4.

~ +O0(IYA(G + h + 24)?)

Figure 3.4: This figure shows the cuts of the perturbatively expanded@2PI| neutrino self-energy. Vertical cuts correspond to
vertex corrections, while the diagonal cuts provide the product of ntiyeel 1 < 3 processes. The sums over the cuts
and both error directions that indicate the charge flow are implicitly assumed

They are called vertex-type diagrams in the following, and are indicatedebgugperscriptert. Hence, the
RHN self-energy in the massless limiiy = 0 is separated as

o = I+ I (3.28)
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3.4.1 Wave-Function Type Contributions

The wv diagram using full propagators has the same structure as Equation. (AtZprding to Chap-
ter 1.6, the full propagator for a massless lepton has no scalar part inntierator such that the left- and
right-handed projectors can be put to one sitledence, thewv contribution, including the sum of both
chiralities, can be written as

d*k

(%)4i$f‘b(p— K)iAPE(K) . (3.29)

2" (p) = gul? [
By following the decomposition of any 2-point functions into spectral antissitzal propagators, the traced

spectral neutrino self-energy is

d*k
(2m)*

(X" (p)] = 2gw|Y|2f tr[#7 ()]A7 (P k) (1- f(u-k) + f-(u- (p-Kk))) . (3.30)

Since only the dominant contribution to this process is needed, the treslaetnishes in the massless
limit, and medium corrections add linearly@ h? and,, Equation (3.30) may be decomposed as

tr[BLS"(p)] = Bo(p) + Fo(p) (3.31)
with

Bo(p) = tr[BEL(5, 8 (p)| (3:32)

Fo(p) = tr| T8y, 8 (p)] (3:33)

or diagrammatically as

A z AN s/ AN 7

Figure 3.5: Expansion of thev diagram according to Equation (3.31). Double and single lines indicataridltree-level propa-
gators, respectively. The charge-flow arrows are suppressethdisum of both cases is intended.

The index(0) in $|(0) and Afﬁo) denote the tree-level propagators. This means thaBtherm involves a
full Higgs and a tree-level lepton propagator, while fheéerm contains a tree-level Higgs and a full lepton
propagator.

The full propagators obtain plasma induced dispersion relations and a wvddéh to their
self-energies. Thosedfects are treated in two manners, which can be compared to each other idthe en
One approach is to neglefig' and ZlH within the resummed propagators 8f and . In particular,
those reduced resummed functions are expanded in couplings. Thetadgiects are then incorporated
by adding the processé¢ < l¢p andN < [, i.e. the perturbative.O expressioriHp, using tree-level
propagators that include the thermal masses.

The second method is to not approximate the resummed propagaByaimFo at all. In turn, the integrals
have a non-trivial pole structure and can only be evaluated numerically.

23This argument is repeated in Section 3.4.1.3.
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3.4.1.1 PerturbativeLO Contribution using Thermal Masses

The lepton and Higgs plasma induced dispersion relations are obtainel faomdl I, respectively. Hence,
the resulting "thermal masses" are momentum dependent even at leadéngnaite couplings. However,
in the ultra-relativistic limit at high temperatures and typical momenta aboteey have to be proportional
to T2, such that only the momentum independent parts are of importance. Awgood2.90) and (2.77),
the asymptotic thermal masses#re

1

(m")? = ZGT? (3.34)

(mif)? = 26712 4 Sper2 4 14,72, (3.35)
v T4 12" 2" '

Analogously to (3.18), theO neutrino production rate, incorporating above thermal masses in the form o
tree-level massas andmy, can be evaluated from

LOA _ _ 2 ﬂ ) 2 —K)2 -
w{BEL"(p)) = H(p) = 29ulYP [ Pkl - m)s((p- )2 - )

(27)
sign(k®)sign(p° - k°) (1- £, (K°) + f-(p° - K?)) . (3.36)

With the help of Section 2.4, the vacuum part of (3.36) becomes

vac wlYP? 1 2 p? -y — g
H (p)zva(pz%-mz—”ﬁ)\/_’pz_n:z\z_wﬁ 2”,% ’

sign(p®)6(p* - mf — ) . (3.37)

One can easily check that in the limif, m; — O the result (3.20) is obtained. Likewise, the thermal part is
evaluated in the plasma frame from

f % (sign(k®) f- (1p° k%) — sign(p° - k%) £ (IK°)) - (3-38)
K0

v 2 2 g
) = St G et e T

This becomes for positivp?

wlY? 1 2 2P — P
HT*O(p) = 98|7T| ﬁ(pzﬂtmz—mi)é(—’ p2_nr1?2_mg P znr% ¢ ) (3.39)
1+e |\

sign(p? - nf — ) (—Xé’(lo2 — ¢ — mg)sign(p°) + In ‘

) x=kO

1+ e
with the boundary variables

0p2+n-'|2_m2 2I’T’I|2 p2_nf_n%
2p2 p —

2p2 - 2n?

o
I

(3.40)

In the Equations (3.37) and (3.38) may be set tngN, such that, as a side-product, a solution for three arbi-
trary masse$ (|gl; my, my, m) is found. By settingn = my = 0 this can be compared to Equation (3.25).

24 See Section 4.7 for a detailed derivation of the lepton dispersion relation.
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For completeness, the limif = mg — 0 is taken:

m2 m|2 CcoS —"HZ +4nf|6|2)
- 2T 8(mZ—nv)|p|
HI*O(p) = gulY2—2 1+ sign(m? - (3.41)
o~ (P) 2% s~ g |p| sinyp[ (oAt
8(me-np)If
Since the on-shell contribution (3.37) vanishesfér= m%, = 0, the éfect of the plasma induced thermal

masses is calculated from (3.41) alone. In Figures 3.6 and 3.7 thosdlads ﬁ.‘aétusmgmth and "H using
m™. Thosem(' andm" are the masses in (3.35) and (3.34).

3.4.1.2 Corrections from the Higgs Boson

Using the assumptioﬁlg'(p) = 0, which means neglecting the plasma induced dispersion relation, the
resummed Higgs spectral function from Equation (1.80) may be written as

__ e TP
o+ (i(p)" P

The error that is made by this approximation is investigated in the following. Bheelan in Equation (3.42)
corresponds to the 1-loop correction of the Higgs spectral function wétgeries expansion to leading
order in the couplingss, hy and A, even without neglectinng'. IT7' is the 1-loop Higgs self-energy
from Section 2.5.5, and for the lepton propagator, the massless treespmattal function (1.71) may be
substituted to Equation (3.30). Then, the scattering correction from theslHimgpn expressed in the plasma
frame becomes

(3.42)

I (p-k)
(p—Kk)*

SinceB, is evaluated on-shelp? can be set to zero. Consequently, after integrating out the delta function,
the numerator @- k decreases the pole degree:

ngYI fd cos«(k, p)dkiK] Z

2 d4k 2\ i 0 0 0 0
Bo(p) = 4gulYP [ o555p-ks(K)sign(i) (1- () + (=) . (349)

(27)3

Hﬂ k
P )f+(—k°)+f_(p°—k°)). (3.44)

SinceHg‘(p — k) is proportional to( p — k)2, Equation (3.44) is free of divergences and can be calculated

straightforwardly?®> Therefore, the infrared regulating massvas set to zero in the beginning. Under
restriction to the massless 1-loop spectral Higgs self-energy in vacuumomiseraint(p — k)2 > 0 allows
only the negative solution fd€ if p° = +|g] is treated as positive. Then Equation (3.44) becomes

gchf) gulY[?
2 ) 2(2n)3

B p+) _ (—G + (ﬂ_z + Liz(e—lm))TZ (3.45)
0 12 ' '

Li, is the dilogarithm, ang* indicates the restriction to positie®. In the same way, the thermal spectral
Higgs self-energy can be incorporated. When plugging these into (3hks)otal production rate for zero

25Related to this is the discussion in footnote 33 on page 50.
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RHN abundance can be integrated out:

1 era(72) gch? gch?
wn[Bo) ~ G )5gw| |T4(12) 10( -G+ == )+5859£{7+6)G—|—1221:{6+2) (3.46)
—,_/
usingIT;*"*¢ using1;+7#
~ gulY*T*(3.14964 £ 6) - 107G + 8.70847 £ 7) - 10°°gchy) . (3.47)

In case of the the Standard Model valugs = 2 andg. = 3, the numerical cd&cient in front of the
top Yukawa coupling is 5.22%8 + 4) - 10-4. This is in good agreement to the 5.200~* of [60]. These
numbers are published with less accuracy in [75] and correspond to #s®G)" and "O(h?)" in the
Figures 3.6 and 3.7. THg in [75] is defined as thg,G of here.

The more realisti®g is obtained with

H.?(
A7 (p) (P - (3.48)
p* + (I15'(p))
or
I (p)
A ¢ (3.49)

B (P2 - 1(p))” + (1(p))”

and in consequeneg, can only be calculated numerically by fixing the couplings. The results usjng-E
tions (3.48) and (3.49) are given in Table 3.1 for several couplingBigares 3.6 and 3.7, they are referred
to as TI! = 0" and "full", respectively. Checked is the range 4& G < 10 %' and 103 < hy < 107%%,
using 60 points per scan. The "full" result is obtained by splitting the integraéigion into a "pole" and

a "non-pole" part. These are the ling®) and (b) in the plots. Details on the numerics can be found in
Chapter 4.4.

yN using eg. (3.48) yN using eg. (3.49)
RGE scale 19 | 3.586+4) - 1074|Y’T* —-2.637+8)-1074|Y°T4
RGE scale 1& | 3.051+4)-104|Y?T4  -2.01(1+7)-10°4|Y}*T*

G=10"1 3.07(9+5)- 10 %|YPT?2G -3.0(3+1)-10°*|YP°T*2G
G =107 3.147+5)-1074|YPPT42G -2.6(4+1)-1074|Y?T42G
G=103 3.149+5)- 104|YPT42G -2.3(7+1)-107*|YPT42G
G=10* 3.150+5)-1074|Y2T42G -2.2(6+1)-1074|Y?T42G
G=10° 3.150+5)- 104|Y]PT42G -2.2(2+1)-107*|YPT42G
G=10° 3.150+5)-1074|YP?T42G -2.2(0+1)-1074|Y?T42G

h =101 5.225+4) - 104|YPT*h?  1.551+1)-10°|YPPT*?
hy = 1072 5.225+4)-107*|YPT*h?  1.590+2)-10°3|Y]2T*h?
hy = 1073 5225+ 4) - 1074|YPT*n¢  1.593+2)-1073|Y)2T*n?
Table 3.1: Numerical results fom[Bo] of massless right-handed neutrinos iffetient approximations. The RGE scale couplings

are summarized in Table 2.1. The other cases are calculated for isompand use only the mentioned coupling while
the others are set to zero.
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0.0008] — (I = 0) + (H using n§)

o.oooe; —— full corrected
< 0.0004- — 0
e [ —IH=0
8 0.0002- [
= 00000:7 —— (b) non-pole contribution
2 : — (1Y = 0) - (H using nf))
—0.0002
i — full = (@)+(b)
—0.0004r-
i | ‘ ‘ / —— (a) pole contribution
7 10° 10 0.001 0.01 0.1 1
—— —H using n{’
G g}

Figure 3.6: The figure shows contributionsyig[Bo](G) usinghy = 44 = 0. The 'Hy = 0"line is the rate calculated with (3.48),
while "full" means the rate calculated with (3.4971”usingm;h" is the rate obtained by (3.41).

0.0016+
0.0014- — (Hg =0) + (H using ng‘)
i — full = (@+(b)
< 0.0012-
' I —— (@) pole contribution
< C
B o000 —— H using nff
g i
>Z° 0.0008; I O(htZ)
L o HH =0
0.0006- ¢
‘ ‘ ‘ ‘ : . — (b) non-pole contribution

0.005 0.01 005 0.1 0.5 1.
hy
Figure 3.7: The figure shows contributionsyi[Bg] (ht) usingG = 1, = 0. The 'Hg = 0" line is the rate calculated with (3.48),
while "full" means the rate calculated with (3.49YH"using mfﬁh" is the rate obtained by (3.41). Thé)('htz)" line is
covered by I = 0" in the plot.

In the case of the gauge interactions, approximation (3.42) compared®)ivalid up to percent accuracy
for G < 0.1. Furthermore, in the case of the top quark interaction, therdnce is smaller than the numerical
error. However, approximation (3.48) compared to the full case of J848s the information of the thermal
masses of the Higgs and the lepton. In the ultra-relativistic regime, this thernsallmeaomes important
since it regularizes the infrared divergences. Hence, it should helieat even though the ultra-relativistic
limit appears to be finite without a thermal mass. Both figures show that the therasa éect can be
incorporated into (3.48) approximately by adding or subtracting tke 2 tree-level process, i.e. tldy
term, with tree-level massesy = m = 0 andm, = mfbh. This approximation then resembles the full result

for G < 10* andh, < 10! separately within percent accuracy.
In the case of the top-quark interaction shown in Figure B{y js added. This results in a positive contri-
bution to the neutrino production rate. However, in the case of the gawspm liwteractions in Figure 3.6,
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the subtraction ofH is at first glance strange. It even turns out to be wrong. The discus$ithis sign
is postponed to Chapter 3.5.2.3. For now, only the following short ansvggvas: The on-shell spectral
function can be recovered according to (1.81) by taking the small coulpiig This assumes that the
relation sigrﬁHq{“(p)) = sign(p®) holds on-shell. However, this is not true for tﬁ%"m from Section 2.5.
The Hp should only be added. Hence, one may ask whether approach (3.48pltimesH, including
m}ph approximates the true "full" result better or not. This question is discuss8ddtion 3.5.4 in detail.
There, a correction of the gauge boson resummed spectral Higgsggatop# formulated. The resulting
corrected rate is plotted in Figure 3.6 and indicated as "full corrected".

3.4.1.3 Corrections from the Lepton

The contributions from the lepton can be calculated in nearly the same wayhaslast section. The full
spectral function of a massless lepton is (1.85):

y-a2a-b-y-b(a?-b?)

A _
PLE"(p) = PL (a2 - b2)2 + (2a- b)z

PR, a=p-3z , p=x" (350

TheZ{l is defined in Section 2.6 vig = Py - X, without chiral projectors. Therefore, the explicit notation
v-aandvy-bis preferred in place off andls. $|5“ clearly can be defined without projectors. When
Equation (3.50) is inserted into (3.17), the projectors sum up. The res@#igitgrm is

Folp) = gjj)“ [ dkfhﬁ%p-sf‘<k>sign<p°—k°>(f+<—k°>+f_<p°—k°>). (3.51)

According to (2.84) any appearing scalar products can be exprbgdatbwn functions, such that (3.51)
can be evaluated numerically.

An approximation as similar to Equation (3.42) for the Higgs case is only podsiblarge spatial mo-
mentalk|. The 1-loop correction to the lepton propagator introduces an infravedg@nce in the t-channel
exchange of a massless lepton in the procel$es ¢y andNy — ¢l. This divergence can be regularized
by giving the neutrino a mass or resumming the 1-loop lepton self-energydodalls, which dynamically
introduces a thermal mass for the lepton. By using the resummed lepton, flengdbi can dfectively be
regarded as the regulator. Therefore, for a s@athe rate can be expected to be constitute@Gblut also
by GIn(G) from the t-channel. The error is then of the or@in(G).

In the next step, Equation (3.51) is solved numerically up to an relative efrb0-3 for each modep|

separately® The evaluated parameter range is18 G < 1 using 11 point&’ and 102 < |p| < 10'° using
46 pointg® both on a logarithmic scale. The result is interpolated and shown in the Figifesd 3.9.
From those, the dlierential ratd’y, can be obtained and integrated to give the total yage The latter is
plotted in Figure 3.10.

26 See Chapter 4.7 for details on the numerics.
27 According to Table 2.1, this is approximately the relevant interval fdisimgauge couplings important for Leptogenesis.

28\When the total rate is calculated, highgf modes are suppressed by the exponential of the distribution functiorce Sin
the neutrinos have a Fermi-Dirac distribution, the lower fluallowed due to suppression by tig factor from the integral

3
measureg?‘g. In the case of Bose-Einstein distributions, a smafecould be important.
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Figure 3.8: This figure shows the contribution to the neutrino rate due tgeghason radiation from the lepton forfidirent
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Figure 3.9: The same as Figure 3.8, but vitinterpolated.
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Figure 3.10: The figure shows the contribution/tg[#o](G) and the fit (3.52). There is a blue line behind the green one that is the
total rate obtained by integrating thef@rential rate from the interpolation in Figure 3.9 for all plot points.

Figure 3.10 showsyy, divided by G in a logarithmic-linear style, such that the expected
G + GIn(G) dependence becomes a straight line. From this the leadintjaierts are extracted by a
fit:
Yno[Fo] ~ (1.28(19+ 6)G — 0.3924+ 4)G In(G) + 0.028 + 3)G?In(G)) - 10-3g,| Y2 T* (3.52)
= (1.5444+ 4)(2G) - 0.39(64 £ 6)(2G) In(2G)
+0.00(89+ 7)(2G)?In(2G)) - 1073|Y*T*. (3.53)

In (3.53) the higher order ter®? In(G) is included to obtain an error estimate for the lower orders. The
numbers in (3.53) assume the group factpr= 2 and are arranged such that they can be compared directly
to earlier results published in [75].

3.4.2 \Vertex Type Contributions

Also the vertex type contributiorﬁ‘,(ﬁ”, corresponding to the cuts in Figure 3.4, give a sizable contribution
to the neutrino production rate. Those cuts can be calculated along the fiGésmpter 3.5.6, but in the
plasma frame. This was done in [75]. Their result is quoted for later casgar

o [Fo] = 3.15- 1074, | Y2IGTA. (3.54)
0

TheJo = tr[BX3"*"(p)] is introduced in accordance with the notation of later chapters.

29The numeric here is done independently from [75].
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3.5 NLOResults in the Non-Relativistic to the Ultra-Relativistic Regime

The goal of the following section is to find the transition from the ultra-reldtevisnit at high temperatures
to the non-relativistic limit at low temperatures compared to the neutrino massnorheelativistic limit

is dominated by the tree-level proces$¢s— I¢p andN « [4. Those are calculated in Chapter 3.26
perturbatively. However, the ultra-relativistic limit is dominated by radiativgaections to the tree-level
processes that have to be resummed. This was calculated in the prevaptesrcithe intermediate regime
should render the crossover from one limit to the other one and thergfiordd be calculated using the
approach that applies for both regions. Hence, the 2Pl resummationdis Neeertheless, it is instructive
to verify that the perturbation theory is well-defined up to some point witheadrting to a resummation.

For non-vanishing neutrino masses, the tree-level process is inclutteel 21 1-loop diagram for the neu-
trino self-energy. Therefore, it may be expanded for simplicity accgrtirFigure 3.11:

N _ 7 N _ N _ 7 N _

Figure 3.11: Expansion of thev diagram valid for a RHN mass ranging from the non-relativistic to the uéifativistic regime.
Double and single lines indicate full and tree-level propagators, régglgc The charge-flow arrows are suppressed,
but the sum of both cases is intended.

The first two diagrams on the right-hand side were called the wave-funigfgencontributions in the last
sections. In the following sections, this terminology is maintained even if thddveéprocessH is in-
cluded as well. The last term subtracts the overcouttfedvhich is already obtained in Equation (3.26).
In case of the 2-loop 2PI diagram, i.e. the vertex type contribution, thensigrashown in Figure 3.12
remains:

Q

Figure 3.12: Perturbative expansion of tkert diagram valid for a RHN mass ranging from the non-relativistic to the
ultra-relativistic regime. The sum over both charge flow directions is impliaglsumed.

Those terms are derived in the following sections.
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3.5.1 Wave-Function Type Contributions - Perturbative Themal Mass Insertion

In the non-relativistic limitN LO corrections to the neutrino rate are given by the coupling expansion of the
corresponding diagrams to second order in the Yukavasdh;, to second order in the gauge couplings
andgp, which means first order i6, and to first order in the Higgs quartic interaction The lepton and
Higgs receive 1-loop corrections from a gauge boson exchangtadrnore, the Higgs obtains corrections
from a top quark and a Higgs loop. To this order, the full Higgs and leptopggpators may be expanded as

A~ A + A (3.55)
%~ 3 + 37, (3.56)

where a(0) again corresponds to the tree-level function and ato the 1-loop correction. Hence, the
perturbativeNLO corrections from Figure 3.11 are given IA)Z)” and $|(0), and vice versa b)A;O) and

$|(l).30 Here and in all following subsections, those terms are referred 8 agd ¥ terms, respectively.
They again correspond to the bosonic and fermionic contributions:

B4 (p) = tr | pL ()| = tr| B8 5% () (357)
70 (p) = tr| B (p)| = [ BET1AY 81 (p)| (3:58)

Especially for the comparison with the resummed approach, the specifichznte expansion order is
mentioned explicitly. However, in the following subsections this is droppeddtational simplicity.

Aél) and$|(1) are the sum of spectral and hermitian self-energies. Since the spetftetargy is the sum of
all cuts of the corresponding diagrams, those terms result in correctmmf— 2 scatterings and & 3
decays and inverse decays in the present case. Likewise, the tepostiomal to the hermitian self-energy
are regarded as wave-function type corrections to tke 2 process ofN, | and¢. Those are responsible
for the perturbative inclusion of the thermal maffeets. Therefore, th8 and¥ terms can be split further
into a "scd' and a ‘Wwv' contribution: 8 = 8524+ 8W and¥ = F 5@+ ¥V, In order to derive them, the
1-loop corrections&él) and$|(1) are consistently expressed by retarded and advanced functiorestlsise
rely on the Schwinger-Dyson equations:

i8R A(p) = i8N A(p) () IR A(p)ia ™ A (), (3.59)

and the likewise one fo$|(1). Thell, here is the perturbative 1-loop Higgs self-energy from Section 2.5.

Only the spectral part ofs;l) is needed:
@A _ 1 (1R ., (1A
Al _E(A¢ -ia) ) (3.60)
([ ARV _ (i A @A i1+ o [(i AR (i A @A ]

:—E([(A¢ )—(|A¢ ) i + (|A¢ )+(|A¢ ) 7). (3.61)

In the same way, the leptonic correctiﬁﬁ)'ﬂ can be evaluated as

2

i$|(1),R/A(p) _ i$|(0),R/A(_i)ZIR/Ai$|(O),R/A _ —¢iZ|R/A¢ (iAI(O),R/A) (3.62)

8V (p) = —% ([('Afo) ’R)z - (iAfo)’A)z] pizhp + [(iAfo)'R)Z + (iAI“’)'A)2

0
¢

pr'p). @63

30The LO term#{ in Figure 3.11 is obtained from "’ and$l<o).
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Again, A is the scalar or non-Dirac part &, i.e. %(p) = PAI(p). The diference between retarded and
advanced scalar tree-level propagators can be evaluated usingyGantegral formula:

! f
N (2) = % é%dp (3.64)

The retarded and advanced propagators have poles above andteleal axis
i

R/AS
iIAYR(p) = p2 — m? + iesign(p?) ’

(3.65)

determined by an infinitesimal positige= 0*. In the limite — 0, they become the same function

iAR/A(p) - (z, - pO)i(L —p%)’ Zs = 4 P2+ e, (3.66)

but the integral contour has to change to preserve causality. Hereeanevaluate for some appropriate
test functionf

[aer00) [(05- (14047| o = [d€11) (A R+ [Ar0e) (1404 @67)

The poles are moved onto the real axis by settirtg zero. However, the integration contour of Equa-
tion (3.67) changes according to Figure 3.13.

:%

Y

Figure 3.13: Shown is the integration contour in the compi@kane. Thick arrows indicate the direction of integration, and the
dots represent the poles of retarded and advant®dk).

Therefore, Equation (3.67) evaluates to

i2 _ , f(z.)
Sédkof(ko)m = ;27”64 (m) (3.68)
_ o 0z, f(z:) f(z)
_ZmE( ye 4Zi) (3.69)

_ f:dkog(s 10 \/I22+mz)%(ako—%)f(ko). (3.70)

By comparing (3.67) with (3.70), the relation

(1808 - (12©4] tg = ) 6(k° + &2+ ) % (ako - k_10) (3.71)

can be found to hold under integration, provided the test function is hofamowithin a neighborhood
of k2 = n?. Regarding the present perturbative wave-function type contribytibesonly terms that may
spoil the holomorphicity are the sign function and the delta distribution of theegponding tree-level
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propagatof! Nevertheless, the sign is not problematic, because as lomg as0, a neighborhood of the
pole where the sign is fixed always exists. However, the derivative uratan (3.71) acts on an on-shell
delta function, which leads to a term of the forfuix f (x)d(x — y)dx(x — z). While such an integral can be
solved by a partial integration in a symmetric fashion, while always checkingdssible consequences on
the integration bounds, it is easier to integrate out all deltas before sohar@ahchy integral. In following
the same calculation starting from

f dkCalK (KO, [K))S (1K — (my = KO)) [(iA(O)'R)Z - (iA(O)'A)Z] (K), 3.72)
this rule can be found:
S(IR = (my + k) [(iAm)R)2 - (iA(O)'A)Z](k) - (3.73)
. mﬁ - P rT\2N +m in

In the case ofm = 0, both rules act the same way &h3? This is of importance for [80] to show the
cancellation of infrared divergences in the wave-function type ctiores; as they use the relation (3.71).
To circumvent theds term, Equation (3.73) is used thereafter.

Likewise, the sum of retarded and advanced functions squared csimobeed to correspond to a Cauchy
principal value under certain conditions:

iAOR?Z L (jA(0)A 2] _p_ L

[(.A )+ (18©@4] (k) P e (3.74)
Relation (3.74) alone is not well-defined. It holds only together with anagpate test function that renders
the principal value finite under integration.
What remains is to clarify why retarded and advanced functions arédmplysconverted to hermitian and
spectral functions likgiA(©QR/A)2 = (iAOH 1 A07)2 The answer to this goes back to footnote 31.
A©:H andA©A gre the real and imaginary parts of some meromorphic functiéi€/ A that include the
finite £ term. In the limite — O, those become complex distributions. A product of distributions cannot be
defined without further input, such as the causality prescription obtainedthe infinitesimak term or the
explicit mentioned integration contour above. In other words, an exprebke (iA(©H + A©)-7)2 would
involve undefined products of distributions, such as a delta functiorredwa terms IikeS(x)@%.33
In principle, thermal equilibrium may be assumed too, as it applies to this caseeudr practically, this
assumption can be relaxed: Since the 2PI formulation assumes a full ptopaghich is described by
the resummation of all self-energy insertions, at two and higher loopdupt® of retarded and advanced
propagators appear. In the linit— 0, their poles above and below the real axis lead to the so called pinch
singularities. These terms only disappear if, for example for the scaley tteescorresponding distribution
function f satisfiesfilT> — (1 + f)iTI* = 0 [73], which is another form of the KMS relation. Hence,
f should take its equilibrium form. However, a resummation of all loop insertiensoves the pinch

31Even though the complex tree-level propagators should be meroindypictions, their real and imaginary parts must not be
meromorphic. The sign and delta functions are a consequence aftiegtk? to the real axis.

32 if K= my £ kO
2
33The squared distributio(@ﬁ) was already found in Equation (3.43). In fact, (3.43) is weII-defimimt;eHg‘(p— k)

cancels one of those distributions. However, if the "consistent" resulﬂft‘) from Section 3.5.4 is used within Equation (3.43),

the terms do not cancel. In Equation (3.43) this would become manifestdgarithmic divergence ifip — k)2, which would be
ascribed to an inconsistent expansion of the resummed spectral fuattite right-hand side of Equation (3.42): There, a function
is expanded perturbatively in couplings, and consequently an ill-deffireetiict of distributions is obtained.
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singularities, and only equilibrium contributions remain in the propagator ih [8his is a result of the
Fourier transform, which removes any time dependence such that oriliypagm is possible. Nevertheless,
in Wigner space, the non-equilibrium contributions take their intuitively etqukcesummed form to all
orders in a gradient expansion, showing that no equilibrium assumptawestd be done [73].

This statement is supported by the following argument. The pinch singularigea aonsequence of an
undefined limite — 0. Nevertheless, in the top down 2P| approach, the full propagatees davidth
such that thes can safely be set to zero. Hence, the ill-defined product of distributiopgrturbation
theory becomes a well-defined product of full propagators, suchnihgtinch singularities are present.
The perturbative expansion of the full 2PI functions may involve preglatdistributions, but the correct
treatment of those is determined by the expansion manner and has to befineltt@de all stages.

The next step is to evaluate tleand¥ terms for a massive on-shell RHN. Henpé,is set tomﬁ > 0, such
that the Lorentz framg = 0 can be chosen. This is of particular importance for some terms, which can
then easily be integrated out analytically. An analogous calculation in the pkaama should be possible
too, but in the non-relativistic limit the neutrino frame is appropriate. SingeYtfl(p)] is anti-symmetric
in p® & —p°, the calculation may be further restrictedg®= +my for simplicity.

Lorentz transformations made easy:
Since only three linearly independent 4-momenta have to be considerdteiasma vectau, the
neutrino vectom and the loop momenturk, their important components in theframe are related
to the one in thal-frame via their scalar products. From now on, the ingext u is used to specify
the frame of the corresponding 4-momenta explicitly. Using the defin'ﬂ)ﬁbm mNu‘,‘J, the scalar
products ofu, p andk read

p8 = Uy Pu=Up:Pp= u%mN = pg (3.75)
1 1 oo

KO = Uy Ky = Up - kp = moPokp = o (POKS — 1BplIkol cos(Kp, Pp)) (3.76)

Pu-ky = pp-kp= meg- (3.77)

Likewise, one finds

1P = PO~ P2 = p%° — PE = IBpl? (3.78)
Kol = K —1C = K - 12, (3.79)

The angle betweek, and Bu is given by

= M (3.80)

cos4(ky, pu =
( ) IKull Bul

with the right-hand side expressed in thdérame variables from above. Tl equals topy at least
in the zeroth component and the absolute value of its space-like vectoerBardiing thap, = py,
the Lorentz transformation is completely fixed.

Hence, thep, dependence B and# calculated in thei-frame can be rearranged t@g dependence o
and¥ calculated in thep-frame and vice versa. Note that the momenta in the self-energies of Se&ion 2
areu-frame momenta. For the rest of this section, all momenta are thought to be iraihe ofp, if not
explicitly stated otherwise.
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3.5.1.1 Corrections from the Higgs Boson

Taking Equations (3.29) and (3.57), tBeterm for p° = +my is given by

5(p) = 9u¥?; [ (d4'§ tr|ig(” (p- 101" (k) - pis® (p- K)iAL (K (3.81)
— gulYP2 f (d4) tr[ B8 (p+ )| A K) (Ul + Fr(us (p+K) . (382)

The sign change df from Equation (3.81) to (3.82) is just for convenience and not importafier Ahe
insertion of (3.61) the wave-function correction becomes

BY(p) = _g(v%? f d*ks((p+Kk)?) [(iA;O)’R)Z - (iA;")'A)Z] (K)

sign(my + k%) (p? + p- KT (K) (f-(u-K) + 1 (u- (p+K))) (3.83)
—%\;'22 f dkdkid cosc (k, u) Za(m + (My + K0)) [(iA;")’R)Z— (iA;")'A)Z] (K)
IKimwImy + KT (K) (F-(u-K) + fo(u- (p+K))) . (3.84)

Thisk? integral may be split into one running froawo to —my and one running frommy to co in order to
fix the term sigrimy + k). In using thes(|k| + (my + k) ), the retarded minus advanced functions only have
one pole ak® = -3¢, This allows only for the minus sign i . and chooses thé contourk® > —my. The

pole of f_(u-k) does not interfere witk® = — "2, since the zero af- k occurs ak® = mﬁ > — T for

If| > 0. Therefore, a neighborhood can always be found to cktle —™ such that the Cauchy integral
can be evaluated as in (3.73"" then is

BY(p) = gW| i fdk0d|k|d coss(k,u)é (lkl——) (k0+7)(6k°+8lkl)
{|k|(mN +K0)

— H(;'(k)(f_(u-k)+ f+(u-(p+k)))] . (3.85)
By further defining the recurring integral measure
dFZ(p, K, IK)) = d cose(k,u) (f-(u-k) + f (u- (p+k))), (3.86)

BW can be written as

(3.87)

2371' Ikj=—

0__my
K==

B™(p) = GulYI* ((ako+alﬁl)(w f 115 (k)dF% (p, k°,|R’|)D oy

If the seIf-energ;Hg' evaluates to zero & = 0, the derivatives in (3.87) can only act ﬁfy Since the
vacuum ternﬂj"ac does not depend am deB can be evaluated and becomes

f (k°p°—||2||6|)f ((k0+mN)p°+|E||6|)
F.‘B(p kO ||2|) — deB . myT In - N + my
R KIg |+ (k°p°+|ﬁ||6|)f+((k°+mN)D°—|IZ||6|) '
(e

(3.88)

my
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In the limit T — 0, the vacuum part df % reads
F5va(K0) = sign(k%) — sign(my + k%), (3.89)
such thaf? can be separated into a vacuum and a thermal contribution as well:
FB8 = pBvac_ pBT#0 (3.90)
Using (3.82), (3.61) and (3.74), the scattering paiBa$ given by

£%4(p) = aguivmy [ K + K)3((p + K sign(my + k)

(21)3
(ki)znf(k) (f-(u-K) + fi(u- (p+k))) (3.91)
= 2gu/YPmy f (22;3 Z (ki')zﬂf(k) (f-(u-k) + f(u-(p+k))) (3.92)
KO=—my /K|
2gwIYI o 1 7 .
fd|k|| :—mN+|k| —(mN¢2|R’|)k2H¢ (K)AFZ(p, KO, [KI) . (3.93)

17 is proportional td?. It cancels one of thk? in the denominator, and only one principal value integrable
singularity atkl = " is left.

In the next stepB is split like H;Z‘ and inherits its superscripts as in Equation (3.94). In addifforpntains
thermal and vacuum contributions from the exterior distribution functibnsg f,. Later on, these are
separated too, as shown in Equation (3.95):

@wv/sca_ gwv/scavac | gwv/scaT#0 (3.94)
— @Wv/scavacvac y gwv/scavacT#0 | gwv/scaT#0 (3.95)

Contributions using vacuum self-energies:
The contributions with the vacuum self-energies from (2.76) and (2ré8) a

WV,vac gW|Y|2m2 ch2 A ¢
BT = zensN(G_gzt)ln(X)FB(p n;N n;N)JrO(/lz) (3.99)

= ch? 2
BScavac () — 2gsz|TY2|2 fd||2|||_()|2G9((% B %) + “El) - %9((% - %\T) + |k|)

F3(p, —my = K, IK) +0(42). (3.97)

The sum ovet in 853V s replaced byBscavact 4 gscavac- The second ternsavac js finite in
the infrared, such that can be set to zero. I185°3Vat | g partial integration leads to a(lh), which
cancels the one i8"W":Vac,

gscavact (p) = gévle:Igz (
bis

ﬁ Gm‘T gchl ‘ ‘ F3(p LN @)
4 a2

272
h2
+(G—g" )f dIRiIn
2 ) Jo

+o(?) ) (3.98)

IkI
—T

o (|k| F2(p, —my -+ IR, )
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By redefining

B4 (p) = o) (399
gulYP? ( gchE)f o021 B L
= G- dk|lkl ——————F~Z(p, —mn — |K|, |k|) (3.100)
2(2r)3 2 (my + 2K))
and
8va(;A + Bvac+ = Bwv,vac+ Bscavach (3101)

such thatB'3% contains the renormalization schemedependence, the resulting functions are free
of the regulating mass, which therefore can safely be set to zero.

WY2 chz

B4 (p) = 927| TR (GI ’ -2 5 ’41\2 ) (D - %) (3.102)
Y12 ch? — 2K

B3 (p) = gzglﬂl (G—ﬂ)fo diRiin | ™ 2K j (Ikl F3(p, —my + K, |k|)) (3.103)

The pure vacuum part, i.&82% usingF%Va, can be evaluated analytically:

gvactvac _ _ gW|Y|2 (G _ gChtz)

2573 2

N =
T =4 m _2|k| —)2 . =4 . =4
fo dikin| 2= (|k| (sign(Ki) + sign(my —|k|))) (3.104)
oY (. g my - 2K -
- (G fo dikin | =) (3.105)
owlYI? gcht2 MmN
= (G—T % (-3+2in(T)) (3.106)
2 h2 > =
gac-vac _ SulY| (G— ‘) | d|k||k|2—1 _FSmy - (k) (3.207)
2(2r)3 (M + 2IK))
jﬁw |wamws@vm+m»=o. (3.108)

To obtaingvact:T#0 andBvac-T#0 from Equations (3.103) and (3.100) respectively,fi¥ds replaced
by FB,T#O:

2 2
8vac+,T¢0(p) _ owlY]| (G B gcht)

2573 2
my
Z . |my-2K
fo dlkin [T Ko (|k| FET#(p, —my -+ K, K)) (3.109)
vac-,T#0 OwlYP® [~ gchf
B0 = oG (C 2
f IR —— F5T20(p, —my - K, IK) (3.110)
(mn + 2Ik])
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Contributions using thermal self-energies:
Left over are the term$"*0 and 85470, SincelT}""*°(k) has ak-constant paff and a term

proportional tok?, 870 results from two dferent contributions:

BT (f5) gW|Y|2HH,T¢O(k2 _0)

Bg ¢
(24 5 (06 + ) | F2 (B KR iy (3.111)
K0=-"n
WYZr‘n2 1 - ChZ -
BMTA(p) = %[ f @(Gb_(kg,lkul) + R |z+(k8,|ku|))
dF?(p. K, II?I)) oy (3.112)
K0=—"n

Since sigitk) equals to sig(k®) andk? is a Lorentz scalaip. can be simplified further in the limit
kﬁ — —|kﬁ|. The second part then reduces to

T#0,2 ol YP, 1 > 0w
BNTONp) = =g | deosdd| = ((-al) + (07~ )
geh? ) |q1—|kﬁ|]
Gf(ld) + f.(1d) |In =l ... (3.113)
( 1+ DI g i e e
The remaining scattering contribution is
20wl Y)? 5 2 1 T40 .
BSAT*0 () = W—fd|k||k| ——  IIMTKdFE(p, KO, K . (3.114)
(2r)? ko_ZmNiua (my F 2K)k2 *

The Equations (3.113) and (3.114) can be evaluated numerically.

3.5.1.2 Numerical Solution

Figure 3.14 provides an overview of all existiffgterms in this expansion, their splittings and the equation
indices. Those functions are evaluated numerically with the tools from Ghéptevithin a relative error of
10-3. The evaluated parameter space is spanned tfyd0ny < 107 using 61 points on a logarithmic scale,
and 103 < |p| < 105 using 46 points on a logarithmic scale. For comparison with later resuksid A,

are set to zero. Also for ease of comparison, the totahratie calculated using the various contributions to
B separately by integrating ov from 10-3T to 10“5T. In particular, the parameter space fffiiiis chosen
such thatyy can be evaluated within a relative error of 80 The results are presented in Figure 3.15. As
mentioned, the additionaD(G)" index indicates the perturbative expansion in the gauge couplings.

2
%4 The thermal mass of the Higgs(is}')? = TIMT*0(k? = 0) = 3GT2 + 21,72
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1 Equation (3.111)

2 Equation (3.113)

/
\ vac

va Equation (3.102)
—T=#0
B
vac — Equation (3.106
+ vact
s

]

;

T # 0 — Equation (3.109)

vac —— Equation (3.108)/
|
T # 0 — Equation (3.110

T+0 Equation (3.114)

vac

*/\

ca

~
N

Figure 3.14: Splitting ofBO(GME 1s) by notion of its superscripts. The first separation into vacuum and tthexomaributions
corresponds to a separation of the Higgs self-energy into a vacuunthandal part. The second one splits the
exterior distribution functions, i.&5%. A boxed node means that the whole branch is renamed as this node.

..l — 0O

- 30(G),vac,T¢O

— BOG)wv,T0,1
S BO(G),WV,T#O,Z
— BOG)sca, B0
— gOG)vacyvac

vac
B 0

Ll M| M|
0.001 0.01 0.1

m/T
Figure 3.15: Plot ofyy[8°(®)|(my) for various contributions 0B°(®) and A = T. B¢ corresponds to the Higgs contribution
using ther['vaC in the massless limit. Solid and dashed lines respectively corresponditivgoand negative values.
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As can be seen, the pure vacuum terms summed 82, i.e. the red line, become unimportant in the
ultra-relativistic limit. However, they dominate tii¥G) correction to the rat@[BO(G)], i.e. the thick blue
line, in the non-relativistic limit.

A logarithmic and a power divergence is found for snﬁ%ll This results from the Bose-Einstein distribution
in the B*“T#0:1 term, which is one of the terms that perturbatively include the thermal masse ¥ th> 0
limit, the divergent terms can be evaluated analytically:

1 2m T)\?
w[B™M TN my < T)]aiv = gwlYPGT =— (In (—N) -3£(3) (—) ] : (3.115)
2573 T N

where/ is the Riemann zeta function. This divergent behavior is no surprises giergerturbative coupling
expansion is expected to break down for massless Higgs propagator taocofi¢he order ofT. These
momenta correlate to the neutrino mass and the temperature via the Bose-Eisstibution. In particular,
the Bose-Einstein pole is regulated @ Hence, for small”}—N values, the loop integral is dominated by
small Higgs propagator momenta. At this pointeets from the plasma become important. Those screen
the enhancement iBY%T#0.1 py inducing a thermal mass non-perturbatively. Conversely, the patiueb
expansion breaks down. The physical screening from the thermat@lasncorporated by using resummed
propagators as suggested by the 2P| formalism. This is done in Section 3.5.2.
Nevertheless, contact of the scattering terms with the perturbatively @ggaasult (3.43) should be found
in the ultra-relativistic limit. When all terms that include only the vacuum spectigd$iself-energy are
added together, the contribution to the total rate for the smallest evaluatethaenass is

2,2
yn[BPC)VaY (my = 107%T) ~ —1.2995+ 13) (71T_2) owlYI’GT?. (3.116)

(2r)°
This is in good agreement to the exact factdr3G of yn[Bo] in Equation (3.46), which is calle@{?° in
Figure 3.15.n[89(C)¥aq corresponds to the ling9(C)vasT#0 sinceg?(C)vasvac gnd theB?(®)vasA for g
fixed A vanish in the massless limit.

Likewise, the contributions that include only the thermal part of the spddiggls self-energy should coin-
cide with the factor 5.8596 in Equation (3.46). This is $f&®)5¢aT#0 term from Equation (3.114). In fact,
one can show that by tracing back in the calculation, up to the point wheratigq (3.114) is completely
written in terms of Lorentz invariant scalar products and setting= 0, this is exactly the same equation
as (3.43). However, the numerical result is

2\2
yn[BO©)SAT#0] (my = 1074T) ~ 17.8(6 + 2) ( 2711)5 (’17—2) owlYPGT?. (3.117)

The reason for this mismatch is that the cancellation of the propagator poletB) (8ith the numerator
algebra works only whemy is set to zero. To investigate this further, Equation (3.114) can be rewaisten

. AT#0
29ulY2 - IK ~ my |15 7 (K) .
BO(G).scaT=0(py) — (202 f k5 D, () L —N2|R| I (RKIK), (3118)
KO=—my+[K| (a) &,_/

(b)

where part(b) is the one that was set to zero in the ultra-relativistic calculation. A numerieaikcof
part(a) evaluates to

yn[Equation (3.118)a)](my = 107%T) ~ 5.85957+ 586)

1 (n?) 2~T4
21)5 (1—2) owlYI*GT™, (3.119)

57



which fits perfectly to the massless result even for more digits than estimated bgréin. However, théb)
part of (3.118) does not vanish under the integral for smgllnumerically checked up toy = 1074T.

2\2

yn[Equation (3.118))] (my = 107%T) ~ 12.00 + 3)(71)5 (71T_2) owlYI’GT? (3.120)
This non-zero value originates from an interference of three enh@rds coming from the Bose-Einstein
distributions within[ 1, the Bose-Einstein distribution i/, and the principal value # = %
One possible explanation for the non-vanishiby part is thatmy = 10-4T may be not small enough. The
(b) term could be evaluated for even smaller masses, and eventually one wolddither limit. However,
there is a likewise simple counter-argument: Within the perturbative calculatibmféer|f is integrated
out, the only remaining scales amg andT. Therefore, modifications of the corresponding physics are
found at approximatelyny ~ T. Nevertheless, there is no physical reason for a change malow 1074T.
Another explanation is that the non-vanishifiy term partly captures the missing thermal ma$sats of
(3.43): According to Section 3.4.1.2, the missing o@&orrection to Equation (3.43) is given by the4 2
processeN « lg andN « [, including a thermal tree-level mass for the Higgs. In the small coupling
limit, this is approximately

2\2
IN[H(my = m))][my = 0,G < 1] ~ 7.752+ 1) (71T_2) owlYI’GT?. (3.121)

1
(27)°

in comparison to the factor 12.0 of Equation (3.120).

not are useless. The logarithmic and power divergence for éﬁﬁaihows the breakdown of perturbation
theory, which states that mathematically a resummation and physically screenoepsges atny = 0
are needed. This breakdown happens theoretically at latest at —amticpHy above — the thermal mass
scalemy ~ mg‘. This means that the resummation introduces a new mass scale where the phgsiges.
Above that point, the non-vanishiri) term is acceptable and physically correct, but belowb},does not
describe the correct processes.

3.5.1.3 Corrections from the Lepton

The same steps can be applied on the lepton side. Firsﬁl(ﬁlfé‘ is written as retarded and advanced
functions, i.e. the expression in Equation (3.63). ¥h¢erms proportional t&" are called thevv terms,
and the one proportional ™ are referred to by thecaterms. When (3.63) is included in

d*k
(27)

7(0) = 0?2 [ atr [ 88700 | a0 (- p) (L0 (k=p) + Fu(u-k)) . (3122

the Dirac trace together with (2.84) gives

%tr[pﬂ(ZK] =2p-kk-Z-Kp-T (3.123)
- (—k2,2p-k)-( pk'zk E_'l‘j )-Graml(k, u)-( E? ) (3.124)

for a general Lorentz vectd (k,u) = c1k + cou with corresponding scalar cigientsc; andcy. In the
case of vacuum self-energiB¥?(k) = c;k, the trace can be reduced to

%tr [BKLYAK] = p-kk- Ve, (3.125)
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First, the abbreviation

dF” (p, kO, [K)) = d cose(k, u) (f-(u- (k—p)) + fi(u-k)) (3.126)

f (k) PP +IKil Bl —KpO—|Kil ]
mNT - my +

dF7 (p, K0, [K)) = 7 (p, KO, [K) = NL |y _ ™ 3.127
f (pK% 1) (pK% 1) KIg |+ ((mN—kO p°—|k||r'$|)f (—k°p°+\E||6|) ( )
- my + my
F7vac(k0) = sign(k® — my) — sign(k°) (3.128)
is introduced. Then, thev-vacuum expression is derived:
FIac( p) — g\,\,|Y|27T—12 fdkodﬂzlsign(ko—mN)% S(IK 4+ K® — my) + (IK — K° 4+ my)
——————
-0
5(° - ) (3ho - 3) (IK p- k- EFYGFT (p, I, IK)) (3.129)
2 4m2 oK P ! T '
2 0 o MN
~0ulY; mz | aedris (- a0 )
(00 - 0g) (K p- kk- =2GF7 (p, K, K) ) - (3.130)

Even if it is the same for this case, one may need to ensuresthiat- p)?) is separated into two deltas

with a factor of { and not2|kO s A possible diference could arise due to the derivatives. During the

construction of (3.73), the delta distribution was integrated outﬁby\nj\ile dk® became the Cauchy integral.
Therefore,ﬁ is definitely the right choice.
One of the delta functions vanishes, since it is never solved together wiktf theO condition from the

Cauchy integral osl(l)’ﬂ. Sincek - ZIH"’aC(k) is proportional tok?, the derivatives can only act on tHs.
Otherwise the resulting expression would vanish after integrating oveetteedistributions. Consequently,

TR ) = ~GulYI? ot N f dkCdRidF” (p o, ";N) (s ) (ko : )(ako 9 k- £f"2°(3.131)
Gl YP2 —m'z\'ln ( ™ %) (3.132)

is obtained. #WVVa¢ contains a "finite" part and a part originating from the collinear divecgeof the
| — Iy scattering, which is regulated by the fictitious gauge boson mha3e In(1)-dependent part and
the remainder are calle@"ac( ) andF"VVasfin respectively®

.7_~wv,vac,fin(p) Gl YR nﬁl A|:7’(p ™ @) (3.133)

2773 2

Gng, . A my m

wv,vagcol _ 2 °F NN
a (P) = —gwlYI"57 3 N3 F (b, > ) (3.134)

Likewise, 7 Scavacis found to be
2 5 o rnz + k2 =

T p) = —“2’“2”:;'2 f ARk D =g kXM (kdF” (p, k%K) (3.135)

KO=pry +|K]

35The introduced If) can take any scale. However, since the the numerics is set 0, the scalél is chosen for convenience.
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Sincek - £*Y*(k) is proportional td?, the part that arises from th& in the numerator is finite, while the
part that arises from the12 contains a collinear divergence. Hence, those are referred to inubéway.

grscavac fin gy gW|Y| G fd|k||k| (kz)sign(ko)dFT(D, k0,|lzl) (3.136)
KO= mNj:|k|
Y2G 2o i, IR
- gvyz'eis [ AR Y, zo(my = 2)F (p.mu = i ) (3.137)
_ 0lYP’G m - d
g seavaceol( \26 > fdlkllkl ik_zN 9(k2_12)3|gn(k0)FT(p, k0,|k|) (3.138)
=my=[K

Fscavaceol should be split further intG’SCa"a‘:CO'f corresponding to the sum, since the fictitious gauge boson
massi can be set to zero ifi Scavaceok

7_~scavaqcol+ gv;lg(lge f |k|

= + |Kl, |K 3.139
2|k||| (P M+ 1KL, 1K) (3.139)

In scavaceol- "3 partial integration analogous to the caseﬂé‘?"’“’"j‘c+ reveals a IQ1) term that cancels the
In(/l) in 7_-wv,vaqcol:

m2 12
_ IY2G (2w
o scavaccol p) = _9w f d|k| N |k||:7: f, my — |k| K| (3.140)
( ) 267-(3 0 my — 2|k| ( )
YI2G 21 o
_ gW nN mN - cF > o W
= In( = ]|k||: (p, mN—|k|,|k|)0 (3.141a)
IY?Gmy —~ 2K
_ Gl YT e f dikiIn ( ) & (K7 (p my = K, 1K) - (3.141b)

Equation (3.141b) is callefistavacco-2 |t js finite and it can be calculated numerically. Equation (3.141a),
i.e. Fscavaceol-1 aqded tgFWvvaccol resylts in

g SIS () (22 5T B o) o
IYIZGm,z\, L (p°—|6|)f+(—p°+|6|)
M () gl +||r)||f (p°;5|)f+(-poz-|ﬁ|) ro). ey

such thatt can safely be set to zero.

All that remains is to write down the thermal contributions. Those can be spliifite 0 and aHT L part

as derived in Chapter 2.6. While tiie# 0 contributions are perfectly finite, th¢T L terms also involve an
infrared divergence from the t-channel exchange of a masslessldpterefore, a fictitious lepton mass

is introduced, such that only a collinear divergence regulatad Inas to be dealt with. Whenever possible,
m is set to zero.

The scacontributions can be simplified using thé(k — p)?) from A((po)’ﬂ. However, in the case of thev

contributions, the derivative has to be considered first. W/itlhh = kS and

o SO L S

¥ 0_ (1), T
(K + K - my)tr g ]| = >+ o > " o) ma(ako ) (3.144)

1

k- xH )
Kul?

(R + k%) p - k= 1K p-u, K 2|o-u—k8|0-k))-( 4
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= o(K -+ oMy M

o >~ o7 (3.145)
("‘ﬁ”nki(k"g;p‘“) +ao-0g). |- 3 )+ o0
the thermalvv andscaterms, includingn, read
F(p) = —9”2“';;'2 f dkOdua(s[ ? - %)6[@ - % + %) (3.146)
(mzN i zr:i(kkgz_ P (- ). —%) : [|I2|dFT(D, K, IRI)( ﬁé;ﬂ )] +0(ny)
o) — G > | " | M+lk|iz;mz)zllzlde(D, €, ) (3.147)
e e I

The expression proportional to =" T"(k) is finite atm = 0. The one proportional ta- =" (k)
contains the collinear divergence regulatedpyTherefore, those are split infon andcol terms.

) 2
TWV,HTL,fln(p) — —Mfdkod|k|5 k0 > ) (Ikl——)

26rmy
(mﬁ‘ i Zkg(lf‘) mLILINI (B0 - 5|k|)] [IKeF” (p, KO, 1K) | (3.148)
K
The finite scapart vanishes, sinde- =" = 0
FecafTLin(p) = 0. (3.149)

The collinear divergentv part contains the Ifm):

pO—|f cos«(k,u)
In (—m )

dF” (p M M ) +o(mp).  (3.150)

251 22

Y 2Gsz2
7_~WVHTLCO|(D) Gl f 5
(° - 1Bl cosz(k, u))

This In(m)) cancels the one iFSc3HTLco-1 The derivation starts with

2 2
FSCaHTL,CO|(p) gW|Y| GT fdlkl + > 1 |R‘|d|:7:(p, k0,|lz|)
@ nf
M+|k|
1 2
o — (K*p-u—k-up-Kk)o(-k* - n?) + O (nf) (3.151)
including the fictitious lepton masa. The minus part is
scaHT L,col- OwlYI?GT? 1 - e
F (M) = = mzmz d|k|—m§_ [k (M — [KI, K])
1K e
1
L (p-u-k-u k‘ +o(nd), 3.152
|ku|3( P P )k":mN K () (3.152)



which equals, due to a partial integration, the sum of

5 mon?
Y]2GT? K — = , oo
FscaHTL,coI—,l(p) _ % f|n {% |k|dFT(p, my — |k|,|k|)
1 [ee)
— (k°p-u-k-up-k (3.153)
i ool
and
_ oWl Y’ GT? K- 3
praTeon2(p) = -9 [, aRin| S g ReE” (b i )
2
1
o — (Kp-u-k-up-: k)‘ko M} (3.154)
=mN-—
In FscaHTLeo2 the massn can be set to zerd=Sc3HTL.col-1 hecomes
qu
Y2GT2mR '”( T)
27 J(p0 - Ip cosc(k,u)

and withFHTLeol-1 = FscaHTLcol-1 | FwvHTLcol
i [ (PP cosctlun)”
FHTLeol-1 _ 9W|Y|ZGT2m,2\l f T
- - i
2 (P 1Bl cosc(k, u))

is free of the regulator. From now om is set to zero. The remaining terms are finite and are summarized
in the following. Due to the function, FS¢3HTLCol yanishes:

(p ™ 7)+0(mz) (3.156)

FSCaHTL.c0I+<p) —0. (3.157)
The other terms are
T ) gw|Y|z f ACdiKis ko . ) (|k| _ _) (3.158)
(”‘ZN - Zkgkg'f ——— (9o - ). —%) : [IEIdFT(D, K, IKI) [ l'j: 2:;2 ]l
and
P () = O [ 3 o LReF (p0R) (3.159)

ko= M+|k|
k k2 k_Zﬂ,T;tO
2p-k+ ——(p-k—k-up-u), (kpu kupk))( —
( IKul2 Kul2 u-z

3.5.1.4 Numerical Solution

See Figure 3.16 for an overview of the final expressions. Those temevaluated numerically in the same
parameter range as the Higgs contribution. Details on the numerics camukifd@hapter 4.5. The results
are presented in Figures 3.17 and 3.18. In the second onwythed scacontributions as well as theol
and fin terms, are summed together for simplicity. However, the distribution funcdnare separated
into a vacuum and a thermal part to study their individded s.
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fin Equation (3.133)

/
vac\
col Equation (3.143)
fin Equation (3.148
/ quation (3.148)
Wwv — HTL
\ ol Equation (3.156)
T=0 Equation (3.158)
7 . 1
— T2 Equation (3.141b)
col —
vac/ + Equation (3.139)
/ - fin Equation (3.137)
fin Equation (3.149
- q ( )
sca— HTL — » - + Equation (3.157)
\ . 1
T2 Equation (3.154)

T=+0 Equation (3.159)

Figure 3.16: Splitting of7°(®) by notion of its superscripts. The separation into vacuum, thermaHahidcontributions corre-
sponds to a separation of the lepton self-energy. For the numerickttiagpvith respect to the exterior distribution
functions, i.e.F”, is performed too.
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Figure 3.17: Plot ofyn[#©(®)|(my) for various contributions o ©(®) and A = T. Solid and dashed lines respectively corre-
spond to positive and negative values.
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Figure 3.18: The same as Figure 3.17, exceptwhaindscaas well axol and fin contributions are added. Solid and dashed lines
respectively correspond to positive and negative values.

In the non-relativistic limit, the7°(®) contribution to the rate is dominated #y’(G)vasvac, |n the ultra-rela-
tivistic limit, it is obtained via a cancellation of mainly three contributions: JFHES)-HTLcolvac correction
cancels theFO(G):HTLColT#0 contribution at high temperature. Therefore, those terms are reevatoated
gether within one integral. The sum of both is indicatedAs}®) HTLeolvact T#0 This one cancels a sizable
contribution from#@(G)HTLfinvac  Altogether, the high temperature limit of the perturbat®@(©) is
dominated byF©(G)vacfinT#0 and hence by the vacuum Higgs self-energy. The other thermal aontrib
tions cancel or are too small to contribute sizably. This non-intuitive behawigld be interpreted as the
breakdown of the perturbation theory, since according to Section 3.4€ludth-relativistic limit should be
non-perturbative.

To obtain the validity range of this approach, thecontribution to the RHN rate should also be obtained
via the resummed lepton propagator. This is done in the following section.
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3.5.2 Wave-Function Type Contributions - Resummed Self-Engies

The perturbative coupling expansion of the full propagators that tiléged in the last two sections, is valid
only in a certain parameter range including the non-relativistic limjjt> T. In the intermediate regime
my ~ T, and especially whemy ~ mg‘ ormy ~ m}h, the perturbative expansion is assumed to break
down. In addition, thé&s In(G) enhanced part, known from the ultra-relativistic result, could dominate the
perturbativeF contributions and consequently lower the validity range. To check thigngetation using

full 2-point functions has to be done.

Analog to the massless neutrino case, the complexity of the computation is reldiietd-loop resummed
propagator for the Higgs, while for the lepton a tree-level propagatoses,uand vice versa. The corre-
spondingB term reads in the-frame

B(p) ng|Y|22fi‘2tr[¢$f°)'ﬂ(p+ k)]AZ‘(ka-(u-kH fi(u-(p+K))) (3.160)

(2r)

Hﬂ
fd|k||k| - 2 - SdF5(p, K2, K) (3.161)
o= myeii (€ = T15) + (1157)

similar to Equation (3.82). The RF is the reduced integral measure defined in (3.86). Details on the
numerical evaluation of (3.161) can be found in Chapter 4.6.

In contrast to theBP(Ghts) of Equation (3.82), however, tt# here includes theO processes as well. The
same applies t@ .

Likewise, theF term corresponding to (3.122) could be evaluated ingfieame. However, the lepton has

a complex dispersion relation, which is only known analytically in the HTL axipration in the plasma
frame. As explained in the numerics Chapter 4.7, knowing the position of fles fgoof particular impor-
tance for the numerical stability, when the pole width is small. Therefore, iefe@ble to calculatg in
theu-frame and to boost the arguments back topgHeame for comparison with (3.122). The corresponding
representation of was already obtained in Equation (3.51), and it is copied here for compksten

2gw|YI* 1Kl ,

7(p) = S [ okl p- S (ksion(eg - K) (1 (K + £(-KD) . (3162
u

Nevertheless, a deeper insight to the resummation approach needs todeklgiore these integrals can be

evaluated.

3.5.2.1 Resummation of Vacuum Self-Energies

In the present case, there are processes that definitely need tatvenred: The perturbative correction of
the B term possessesmy power divergence in the ultra-relativistic limit. Physically, this is regulated by
thermal plasma screeninffects, and technically, it is described via the resummed Higgs propagatde Wh
¥ does not have such a divergence, the perturbative fory iof (3.162) exhibits logarithmic divergences
from the zero momentum exchange of a lepton intthieannel. This divergence occurs precisely due to the
HTL part of the spectral lepton self-energy. After resummation, thosegsses contribute parametrically
of orderGInG.

However, one question in the context of self-energy resummation iscsbythe infrared divergences of
the vacuum self-energy and their cancellation. Bothlihe'° anleH*"ac from Section 2.5 and 2.6 contain
infrared divergences from massless particle exchanges. In thenpeese, those are regulated by a fictitious
mass parametet. This A shifts the branch cut of the complex self-energy, and hence, it raeppethe
kinematical constraint expressed as the Heaviside theta that is containedsetttral self-energy. For the
derivation of physical observables, thosterms have to cancel such thatan be set to zero.
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In vacuum, this cancellation is guaranteed by the Kinoshita-Lee-NaugfKeN) theorem: It states that
the IR divergences cancel to all orders in perturbation theory withad™"'e:d "virtual" contributions under
the integral. This cancellation to all orders has not been proven sorffinite temperature. However, the
cancellation of the I terms is shown up to a specific coupling order. Therefore, the thermtairpation
theory, i.e. the "perturbative thermal mass insertion", is free of IR gemses: The3V2+ and thefF vasco-
terms are independent @f such thafl can be set to zero.

The resummed case behavefeatently. When the vacuum self-energies are resummediptandg, the
corresponding dispersion relation is modified by @tlnterm. On the other side, thewithin the spectral
self-energy can safely be set to z8fdTherefore, the correspondijand¥ do not necessarily have to be
independent of.3’

The A dependency does not mean that the thermal perturbation theory is fintttRabove some coupling
order. It only states that the type of resummation that has been doneatdeslude éfects to all coupling
orders. In fact, the full propagators of the theory are unknown. é¥ew those are approximated by the
resummation of self-energies obtained up to 1-loop order in thermal patiemiiheory. Even back reaction
effects are not — but maybe must be — included. In particular, the full théswypaovides plasma induced
thermal masses for the gauge bosons. Those thermal masses replaguth®r masa and physically
regulate the IR divergence Ifi},""*° and "%

In the literature, the vacuum parts of the hermitian self-energies are ugyadiyed during resummation in
the ultra-relativistic limit. See for example [59, 60, 64]. It is assumed thatwmodfects are dominated by
thermal ones in this limit, as is the case here: fAQr< T, the RHN rate is dominated by thermdllexts38
The hermitian vacuum self-energy, or at least the infrared logarithm, isiteadly absorbed by a vacuum
counter term. In addition to the ultra-relativistic limit, this counter term can be jubtiileo for RHN
masses within the ultra-relativistic regime up to some point in the non-relativigiimnee Since the thermal
perturbation theory is finite in the intermediate and the non-relativistic regime spne fixed order, the
counter term should be at least parametrically of higher perturbatiee. dddwever, a vacuum counter term
having the same perturbative order as the hermitian vacuum self-enargiybe included. This means that
in order to justify the counter term for athy, the dfects of the hermitian vacuum self-energy have to be
parametrically of higher perturbative order:

The ITHVa¢ js a vacuum wave function renormalization. This contributes proportionlaﬁ,toSee Equa-
tions (3.96) and (3.132). Since thermdleets contribute of ordensiyT and T2, vacuum wave function
renormalizations are suppressed abbve my — even in thermal perturbation theory.

In the resummed approach, the convolution of a resummed propagator basatalyzed. Therefore, a
generic coupling and a full spectral propagatdris introduced. The sigix- u) and the spatial components
of x* are not important for the argumentatioxis just the energy component. Furthermakes modeled
by a Breit-Wigner form originating from the resummation:

cl’
(x2—mg —c(ax? + b))2 + (cI)2’

The peak position and the width are determined by the renormalized and IR fmnitetian and spectral
self-energies. Close to the pole, their generic form

A(X) ~

(3.163)

11" ~ c(ax +b), IT" ~ I (3.164)

is assumeda, b andI” are appropriate constants.Afis convoluted with some other full spectral propaga-
tor y, the following two extrema are possible. The widthyofay be much smaller than the one/f y

36 The finiteness of those integrals can be checked numerically.
37The 1 dependence is checked numerically too.

38V/acuum processes of massless particles are kinematically suppresgesicase ofny = 0, they are kinematically forbidden.
Such processes can be ignored and do not need to be resummed.
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then can be approximated by a delta function. Hence, the convoliit@g results inA evaluated at thg
particles poley.3° If it is expanded in couplings, the Breit-Wigner width appears at the firspling order,
while the hermitian self-energy is multiplied by the width and appears within thendezmupling order.

r r b
rox~ - ¢ _¢ +2c2r ay+

(y-m@-c(ay+b))2+ (c[)2  (y-mp)2 (y—mp)3

Such a form ofy is relevant in particular in the non-relativistic regime. Therefore, as lang aas a
Breit-Wigner form, non-relativisticféects due to the hermitian self-energy afieetively of higher order in
the coupling.

However, at least in the intermediate and ultra-relativistic regjmehtains additional continuum contri-
butions from multi-particle exchanges and thermal particle distributions. The expicit bf £ does not
need to be specified. At some point, iteetive support is much larger than the widthAaf Hence,A
can be approximated by a delta distribution, which feeds its peak positiog ohicing integration. Since
the widthcI” can be neglectedffects of the peak position and hence the hermitian self-energy are superior
to effects of the spectral one. This argument tells us that the thermal mass, asegwence of the her-
mitian self-energy, dominates the physics at high temperature. Howekemtseof the hermitian vacuum
self-energy are exponentially suppressed in the ultra-relativistic regin@esaome point in the intermediate
regime. Hence, in order to also guarantee the validity of the last argumerg faltintermediate regime,
this specific point needs to be evaluated by a comparison of the perterbatithe resummed approach. As
long as there is a region of agreement, the above argumentation for themueibption theory also justifies
the resummed approach in this range. Such regiongfand# can be found in Section 3.5.5. Those are
the blue areas in the Figures 3.25c and 3.26c, respectively.

In total, this means that during resummation, tfees of[ "¢ andy.":Va® and analogously the vacuum
counter terms arefkectively suppressed. Thosffexts are neglected in the following numerics. However,
the unproblemati€I"*Va¢ andY."va® terms are included for resummation.

This argumentation only holds if the resummed propagateally has the Breit-Wigner form. In particular
for my > T, in the small coupling limitA reduces to the ordinary tree-level delta distributidf . In this
case, the above counter term is not parametrically suppressed and midy tmedenormalization ofz(©)

in comparison to the one of th&? used for the thermal perturbation theory. Hence, both approaches only
agree in this limit, if the renormalization scheme itself provides the correct aaiente for the resummation
and for the perturbation theory. Nevertheless, the mentioned ranges Wbt approaches agree, may be
used to switch between the resummation and the perturbation theory. In thihe#&yll RHN mass range

is covered within any renormalization scheme.

+0(c?) (3.165)

3.5.2.2 Numerical Solution

The numerical results fo and ¥, respecting the gauge boson and top-quark contributions individu-
ally, are presented in Figures 3.19, 3.20 and 3.21. The integrals ardatedcwithin a relative error of
1072 for the neutrino massesy = 107*...10°T divided into 61 points and for each neutrino momentum
|Bul = 1073...10M°T using 46 points. In addition, in the case®f the couplings are varied in the range
G=10°...10° andh, = 10°2...10°, both divided into 61 points. In the case ®f the corresponding
range isG = 10™*... 10° using 41 points. All variations are regarded logarithmically.

The figures show the contributions to the total neutrino production rate layitbmic plots. Positive and
negative contributions are indicated respectively byyeltbw and blue. The green lines that are printed at

@ = 1074, show the corresponding ultra-relativistic limits that were obtained in Se@idnk.2 and 3.4.1.3.

39 Due to the trilinear interaction if® and¥, the third particle carries additional 4-momentpHencey is a function ofp and
the mass of.
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Figure 3.19: This figure showsy[8](mn, G) for hy = 1, = 0. Redyellow and blue areas correspond to positive and negative
values, respectively. The green line showsrig= 0 result.
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Figure 3.20: This figure showgy [8](mn, ht) for G = A4 = 0. Redyellow and blue areas correspond to positive and negative
values, respectively. The green line showsrtig= 0 result.
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Figure 3.21: This figure showay [#](mn, G). Redyellow and blue areas correspond to positive and negative valupscteely.
The green line shows thay = O result.

The plots possess a kink at the corresponding thermal mass emdsanT. The kink atmy ~ #T is where
the decay of RHNs into the plasma particles becomes nfiesitire. Far above that mass scale, the RHN is
too heavy to be influenced by the plasma. Below this scale, the RHN decaywsttipthe plasma decays
into the RHNs. This is the point of the kink at the thermal massnyf > mg‘ and likewisemy > mlth,
the decay of the RHNs into Higgs and leptons is allowed. Otherwise, the Highkeptons decay into the
right-handed neutrinos. In the ultra-relativistic regime, good agreemiémtive my = O result is found.
Furthermore, the contributiongy[8B](mn, hy) andyn|[F](mn, G) are positive on the full parameter range.
In contrast, and as expected from Figure 3.6, the valugg (@] (my, G) are negative in the ultra-relativistic
regime and for a certain reason also in the non-relativistic regime, exoe@ &mall range around
rn,z\l = (mg‘)2 = GTTZ. The small range in Figure 3.19 with a positive rate is correct uplt®. How-
ever, the negative rate is wrong. The reason for this is clarified in thevMiolppages. Finally, Section 3.5.4
resolves this matter and identifies the correct way of calculating the rateNip@o

3.5.2.3 Causality Violation through Resummation

The negative contribution to the neutrino rate that is obtained in the last ségtiasing the resummed
Higgs propagator and gauge boson interactions, cannot be cofréttvdre the only contribution, a neg-
ative rate would directly indicate unitarity violation of the theory. One possilaght about this is the
following: The negative signh appears only when the radiative correcfimm gauge interactions are in-
cluded to the Higgs. However, the rate calculated fBns only one contribution to the full physical rate.
Due to gauge invariance, the leptons have to interact with the gauge baseredl. Hence, summing the
wave-function type contribution® + # together with the vertex-type contributions and subtracting the
overcounted tree-level process should cure the negative ratectirafpositive rate can be found in the
ultra-relativistic regime already from the sum 8f+ ¥ — H. However, this is a coincidence likely only
because of th& In G enhancement in the lepton sector. For large neutrino masses, and inlpaitidhe
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non-relativistic limit for smallG, where perturbation theory should be valid, this sum is still negative and in
addition approximately minus tHeO rate. The correct answer to this issue resorts only to the Higgs and its
self-energy:

If the other interactions are switchedf,othe spectral Higgs self-energy up to 1-loop order is determined
by the sunset diagram: It was calculated in Chapter 2.5 using a tree-kwgé doson and a tree-level

_—4—3—4/\—%—4—_

Figure 3.22: Sunset diagram from Chapter 2.5. The 2P| formalismadds the use of the full Higgs propagator withlg.

Higgs propagator. This is already an approximation, i.e. an expansionardeoG. Without this approx-
imation, the 2PI formalism demands the use of the resummed Higgs propagator thvitlcalculation of
the self-energy. That including this kind of back reaction should solvésgwee can be understood in the
following way:

By using the tree-level Higgs propagator, one obtains a self—erié@&p) that is negative for positive

p°, p? but vanishes on-shell a = 0. Likewise, a non-vanishing mass shift is also generatedilfy
When resumming both, a Green-function is obtained that has a pole apptelyiraaithe thermal mass

p? = (m]")? > 0. There, the sign dff;!(p) is negative for positive energy and also for arbitrary smgll
Consequently, the retarded and advanced resummed propagatothdiapeles on the wrong side in the
complexp® plane. Hence, the resummation violates causality. Of course, causalityl sfeoguaranteed

by the infinitesimale term. However, as long as the mass shift does not vanist,I{heloes not vanish
on-shell and therefore always dominatesThis shows that the resummation of the tree-level self-energy
has a vanishing convergence radius in the coupling: Since the mass phifp@tional toG, G must not be
larger than of order of the infinitesimal Nevertheless, a causal solution to the Schwinger-Dyson equations
and non-infinitesima should be possibl&?

These arguments also explain why the resummed lepton propagator dées@such a problem even for
the same type of self-energy diagram. According to (1.88), the Ieptomgabprisf"‘ obtains its sign from
the on-shell value op - Zlﬂ(p). This value is positive for positive®.

One possibility to circumvent solving a Schwinger-Dyson type equation tilhdomserving causality is to
include other interactions for the Higgs. The considered Lagrangiarcatgains Yukawa interactions of
the Higgs with the quarks. Those contributeﬁg', such that th&-convergence radius raises proportional
to h?2. However, within the physical relevant coupling range given in TabletBelgauge couplings are still
much too large for this ansatz. One could also try to partially include the backioa by using a Higgs
tree-level propagator with at a thermal mass within the derivation of the Higiffenergy. Such a massive
integral is again easily solved in terms of tkg, of Section 2.4. However, this does not resolve the issue
for this case.

40| ikewise, it is possible to argue that in the limit of sm@llthe resummed spectral propagator calculated from the 16G)
self-energy reduces according to (1.81) to the negative tree-lavetibn. However, the negative tree-level Higgs propagator gives
the previously obtained spectral self-energy times minus one. Therétferatively calculating the self-energy from the resummed
propagator and vice versa are two competing processes. The ortipsaduto solve both self-consistently.
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3.5.3 Frequency Sums Revisited

In the light of the wave-function type contributions and the issues foundeinatst sections, the spectral
sum rules (1.51) and (1.52) should be checked. At tree-level thoskecaerified easily. For example, the
bosonic case is

f dkOkOAﬂ(k) = f d—wkonsign(ko)é(kz—n?) (3.166)
fdkol ( \/k2+mZ)—l (3.167)

The fermionic analogon does not give any new insight. More interestingeisabuum 1-loop correction
using Higgs spectral function. This involves Section 3.5.1. Furthermaig tle gauge boson interactions
are included.

The A, function is split into a tree-level paﬁéo) and a 1-loop correction;l). SinceAbe)’ﬂ already results
in 1, the correction term should give zero in the spectral sum. This is

0 0 0
fdk A (k)zf%%(Zé(kOiM) v (ako klo)kOHH(k)jL%Hﬂ(k) (3.168)

using the perturbative Higgs self-eneidy from Section 2.5.5. The term proportionallT[g‘ corresponds to

virtual corrections while the term proportionalltbf can be identified with real corrections to the tree-level
propagator. The former one evaluates in vacuum to

n (%) . (3.169)

(27)?

The Higgs mass renormalizatidmi; - Hg + 6 does not contribute to the spectral sum up to this order
since the derivative ik° cancels the fractior-k)%. However, the wave-function renormalizatiéf, occurs
with a factork?, andA is the renormalization scheme dependent finite scale.

In contrast, the term proportional Iibdf“ is UV divergent for the perturbatively calculated vacu]][ﬁ. By
introducing an other UV regulatax’ for kO, this part becomes

E f " dkokoie(kz—az) = -—=Gln (A) (3.170)

(27)2" Jo k2 B (271) A '
Hence, the cancellation of infrared divergences can be found in tineo$wirtual and real corrections,
i.e. the In1 vanishes. However, the infinitd” should somehow cancel the finite This UV issue is no
surprise since the Kramers-Kronig relations (1.63)[fi3FV2¢ andIT7V2¢ are also not fulfilled. Indeed, both
are non-analytic functions due to the absolute value and the Heaviside thetgpgear in the perturbative
calculation of the self-energy. Assuming that (1.63) is fulfilled,

dk® k° dk® K 0 >
f7gnf(k) [%zf;mnf(k ’lkl)};ﬁo (3.171)
:_[aﬂzn;(\/|ﬁ|2+y2,|ﬁ|)] N (3.172)

can be evaluated. The first order correction then adds a zero to ttteadgeim rule.
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Even though the spectral sum seems to be violated, this issue does nohspeEturbative calculation of
the neutrino production rate. In the derivation of (3.106) and (3.108)Ut finiteness is guaranteed by
the bounded phase space support in vacuum, and also due to the rigdaswepression of the thermal
equilibrium distribution functions at finite temperature.

Finally, the case of a generic resummed propagator is mentioned. WhergsthleiKadanff-Baym equa-
tions up to first order in gradients, the retarded and advanced funcienscalar field have the form

AR/A()
A A

(3.174)

Both are meromorphic functiofisin p°, that have, if causality is conserved, respectively, poles below and
above the real axis. Therefore, for these the Kramers-Kronig retatind their spectral sums have to hold.
In order to evaluate the spectral sum of the full spectral function, Besiintegral formula may be used.
Therefore, the retarded and advanced self-energies are deanpitisin Equation (3.174) agt +iI14,

and one obtains the Breit-Wigner type formzf':

06
A _
AP = (p2— 2 —TTH)2 4 T2 (3.175)

Even though this expression contains two poles above and two poles bedowatp® axis, Cauchy’s
theorem is not applicable sin€&" andIT” are the real and imaginary parts of one meromorphic function.
However, in the quasi-particle approximation, .+ IT" = ;2 and%flﬂ = T are replaced by their value

at the pole®? Then, a meromorphic integrand is recovered that vanishes for ¥afgé) at least Iikelp+l4.
The integration contour can be closed by a semicircle at infinity, such thawtheoles above the real axis
are encircled. Cauchy'’s integral formula leads to

dk® Kor _
567k0(k0—w+)(k0+w+)(k0_w—)(ko+w_) = sign(T’)

(3.176)

with

1
ot — \/ﬂz+ Ir(rs JrP-42). (3.177)

Hence, the quasi-particle approximation shows the trend that can baexp@omore general self-energies:
The spectral sum equalsl only if I is positive and likewise, if thaR andA” are causal. This is the case
for the Higgs propagator with a resummed top quark loop. Therefore,dsitie rate plotted in Figure
3.20 is obtained. However, in case of the gauge bosons, the spectgd sttf-energy is negative at the
thermal mass shell. In fact, the spectral sum can be checked numericad\apploximately-1 for typical
parameteré? Every deviation fromi-1 indicates an inconsistency of the treatment of the physical model.

41This implies that the self-energies too are solved consistently with the K&dBaym equations.
42t {117 vanishes at the pole, it must be replaced by the Lisyatescription for the retarded and advanced functions.

43 For this numerical evaluation, a UV-cufdar away from the pole needs to be assumed, since the spectral sunintipitp
diverges for the same reason it does above for the perturbativection. A consistent self-energy resummation should include
back reaction fects, as is explained in the next section. Those self-screenings ssippradivergences, since the integral support
of the self-energy diagrams is bounded in vacuum and otherwise empally suppressed via thermal distribution functions.
Nevertheless, the UV-cufibin the spectral sum mimics the exponential suppression of the thermédbualigins that occurs for the
evaluation of the RHN production rate.
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3.5.4 Restoration of Causality

The spectral sum of aboutl that is found in the last section, explains the negative unphysical raig-in F
ures 3.6 and 3.19, why the rate equals approximately minus@result in the non-relativistic regime, and
why the pole contribution in the ultra-relativistic regime and limit coincides with minag-tterm includ-
ing the thermal mass. Hence, this demands for solving the full system ofghmneed Higgs propagator
and its self-energy self-consistently.
This section inspects the consequence of such a self-consistent retsomamna provides a workaround to
the wrong resummation. First, a simplified version of the Schwinger-Dysoatieq for the spectral Higgs
propagator is analyzed and solved in vacuum. Furthermore, only thiepratic interactions of the Higgs
with the gauge bosons is considered.
The resummed form oig‘ is known from Equation (1.80). This assumes that the self—endfgj‘bandl"[;'
are correct and consistent. Consequently, these self-energiegpéreiple functional of all other consistent
n-point functions. Up to 2PI 1-loop order only the gauge boson and theistent Higgs propagator in
qguestion are needed:
A

A(p) = 1714, A,1(P) . (3.178)

(P =TT 8, 4,]()" + (TT5[A9, A,)(P))

As is known from the last chapterﬂg' does not spoil the causality. It only modifies the dispersion relation

and therefore is responsible for the thermal particle mass. Hence, only-l@ading modification of the
physics is expected from this term, and Equation (3.178) is approximatéﬁiyt[)&,,;,Ay](p) = (mg‘)z.
The problematic part iﬂg‘. At the perturbative 1-loop order, this term vanishes at the zero maisasd

becomes negative at any positive mass shell. However, the 2P1 T38¢p,4, A, ] is given by

I1,'[Ag, A ] (P) :—2Gfﬂ(p+ K)2AS (K)AT (p—K) (14 f-(u-k) + f-(u- (p—k))  (3.179)

(2r)*
= —2mNGf%ko(mN - ko)AZ‘(k)
(1+f_(u-k)+ f_(u-(p-k)) (3.180)

IK|=Imy—kO|

in the p-frame. For simplicity, the tree-level gauge boson propag@)n’s used. The Equations (3.178)
and (3.180) form a non-linear system of integréetiential functional equations. When Equation (3.178)
is inserted into (3.180)11(/{“ is solved numerically, for example with the help of spectral metffbdghe
solution can be plugged into (3.178), such that finally the propagatoreabthined?®

For simplicity, and as a first hint to the full squtioﬁLjf""ac is solved in vacuum. Since the plasma vector
uis unimportant in vacuum, Equation (3.180) can be simplified such that then2fpoctions only depend
on one parametear? or k?:

G p?
Avac, 2\ __ 2/ 4 Avac/,2
IT""(p%) T Lozdk (p* = KHATVE(K?) (3.181)
G p2 H?,VaC(kZ)
= % 2f20u<2(p4_k4) ra—t (3.182)
Pt Jop (K2 — @) —|—(H¢' (k2))

441n a nutshell, this means that the searched function is parameterizeddppeopriate fit function like, for example, a polyno-
mial, a Fourier series, or a Legendre or Chebyshev series. Thesponiding parameters are then fitted to the equation system.

45 ikewise, the propagator could directly be solved too, but the pole sHzhe solution complicates the numerical treatment.
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In the following pages, this equation is solved fay"*( p?), with —0.05< p? < 1.00 for a fixed coupling
G = 0.1, and optionally witm = 0 andm = m{}".
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Figure 3.23: Comparison of the resummed Higgs propagators wheobbaained from the perturbati\lzé(;’f""'slC of Section 2.5 (red
line) and from Equation (3.182) (blue line). The coupling is fixeddy 0.1, and the consequences of a thermal mass
are shown. The spectral sums are obtained from the consistengptopm Regular and dashed lines correspond to

positive and negative values, respectively.
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The plots in Figure 3.23 present the resulting consistent spectral vadigg®s propagators and self-energies
in comparison to the incorrectly resummed ones. One can observe a signitigange in the pole struc-
ture. In particular, the sign change in the propagators of Figures 3r2B3a.23e reflects the small positive
value for the self-energies of the Figures 3.23c and 3.23g close to thesimabks This ensures causality.
The improved consistency of the resummation is proved by the spectralauss\of approximately-1.
Away from the mass-shell, the convergence of the consistent and@ast@nopagators and likewise of the
self-energies is observable in the graphs one the left-hand side. Hgvievaway from the mass-shell, in
the figures on the right-hand side, the propagators and self-enerffersdiie to the previously mentioned
self-screening in the UV.

Regarding the negative rate contributigg 8] (my, G) in Figure 3.19, the consistent thermal spectral Higgs
propagator should be solved next to recalculateBfwy, G) term. In principle, this should also be done
for all couplingsG, hy and,. Nevertheless, from the above solution and the spectral sums, oneacan le
how to correct the wrong resummed spectral Higgs function.

The resummed spectral Higgs propagator using the 1-loop self—enﬁlﬁi(qts) anng‘ (p) from Section 2.5
can be corrected by switching its sign locally at the mass shell. Away fromdlee fhe true resummed
propagator is well modeled by the inconsistent resummation. In other vibedge-level propagator with
an appropriate tree-level mass may be added to the inconsistent resunapagdaor two times to obtain
the approximated, but causality and spectral sum conserving, resurpetchs propagator:

A,corr _ Hf(p) : 0 2 H
A (p) = > 5 + 2rsign(p-)s(p” - 115 (p)) (3.183)
(-1 (p))" + (I (p))
A
~ I, (p) 5+ 2nsign(p)s(p? - (mfH)?). (3.184)

(P2 - 18 (p))’ + (117 (p))

This form is in accordance with the observation in the ultra-relativistic limit, Se®id.1.2, Figure 3.6.
There, it was found that only the "pole contribution" appears to have tbagwsign. This is corrected by
(3.184). Nevertheless, the "non-pole contribution" that accountséardhtinuum #ects far away from the
pole is perfectly fine and unmodified by (3.184).

As stated above, tﬂég here is of course only the thermal pEIf'T**O. Therefore, the tree-level mass shell is

approximated byntd)h in Equation (3.184). This has the advantage that the numerical re®i(heg, | 5], G),
Section 3.5.2.2, Figure 3.19, may be corrected without a recalculation by sadding two times the
massiveH term of Section 3.4.1.1. Th8 contains plus the continuum contributions and minus the pole
contribution.H contains only the pole contribution, since this is derived with tree-levelggaiors:

B (18 My, G) = B(Ipl; My, G) +2W(Irﬂ;mN,m¢ = %V@T,m =0|. (3.185)
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This separation into pole and continuum part in the ultra-relativistic regimeidais with the separation
into LO andNLO effects in the non-relativistic and perturbative regime. For langes mg‘, the incorrect
resummed propagator containsL& minus the 1« 2 processes and &tLO the symmetric 1 3 pro-
cesses. Perturbatively, the_O effects are determined by two Higgs propagators and one Higgs self-energy
While the wrong resummation uses a perturbatively well-defined self-gribeytwo Higgs propagators at
NLO are the ones with the wrong pole sign. Since those propagators havertbarsanentum, the sign
squares and the perturbatiMd O effects are consequently correct implemented. This observation explains
the small strip in Figure 3.19, where the rate is positive. Siﬁt(wl; mn, My = %\/GT, m = 0) vanishes

for my = my, the resummedO 1 « 2 effect vanishes and the positil O rate contribution is directly
found. ThereforeB®" is regarded as correct dLO globally within the validity range of the resummation.
Using (3.185) the corrected bosonic wave-function type contributiontesreded up taNLO:

w/(T4gwY2G)

0.10
my/T ' 10.

10°

Figure 3.24: This figure showgy [8](mn, G) for hy = A4 = 0. Redyellow and blue areas correspond to positive and negative
values, respectively.

3.5.5 Perturbative Thermal Mass Insertion vs Resummation

The two methods for obtaining the next-to-leading order contributions to tteime production rate should
be comparable at some stage. Since both approacfiesgignificantly in the amount of numericafert,
what is the most practical solution for a given task?

The perturbative method of Section 3.5.1 is valid in the non-relativistic limit upriegmint in the interme-
diate regime, while the resummation of thermal corrections is only relevant withimtérmediate regime
up to the ultra-relativistic limit. In the intermediate regime, where the RHN mass iglef of the temper-
ature, vacuumféects become less dominant. Therefore, the perturbative wave-fungtiercontribution,
i.e. H(m = m, = 0) + 89, may directly be compared to the correc®8" (G) term in Figure 3.25.
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Figure 3.25: Comparison of the perturbative and resummation agiptoaB°°"". The blue color gradient presents the relative
difference of the contributions to the total RHN production rate as indicated loagtions. The overlaid gray shaded
areas encompass the absolute error of the relatiVereinces due to the numerical error of the results. The relative
difference and the absolute error plots are clippgétdelow and above the range provided by the legends. Figure 3.25a
compares the resummed to the perturbati@approach, while 3.25b compares the resummed to the perturbative
LO+ NLO. Figures 3.25¢ and 3.25d compare MEeO parts.

The agreement of the resummed appro®Ef" to the perturbatived.O term H is found in Figure 3.25a
abovem?, 3 2.8VGT2. The VG factor results due to the term (3.115) is resummed $%'. In thermal

perturbation theory, this term diverges in the ultra-relativistic limit |H<EGT4(mlN)2. Furthermoreyn|[H]
behaves for smalthy like |Y|2T4($)2. Equating those results in the observef ~ VGT?2 dependence.
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The thin line belonwmy < mfﬁh is an intersection point of the two terms. This provides no information about
the validity of the perturbative approach.

In comparison to Figure 3.25a, including the perturbahiNeO slightly improves the agreement wifBf°"
for smallermy. As can be seen in Figure 3.25b, in the small coupling ra&ge 0.1, the "2%" threshold
shifts closer to the greemﬁ, = 2.8VGT? line. However, the worse agreement 8r> 0.1 may be a
coincidence, since even though the or@ércorrections are wrong, they are includedsff™ too.

Figures 3.25c and 3.25d provide the comparison of the @d=arrections. The shown relativefiirences
have a large error, since the evaluatiorB5f"" in the non-relativistic regime for small couplings is domi-
nated by thd.O. The resummed sub-leading order is obtained by subtracting@&f term from B°°'",
Hence, if two large numbers are subtracted from each other, the smalhdEmanay be smaller than the
small relative error of the large numerical number. Therefore, the ptets\gerlaid by a transparent gray
shaded color gradient related to the absolute numerical error of theveatiffierences. Yet one finds two
special lines. The first oanN 2 2.8VGT?, that is already discussed above, is relevant in the small cou-
pling range belowG < 1072. Above that range, between the intermediate and the non-relativistic regime,
the thermal higher order corrections inside &' spoil the agreement below the mass scale of about
m,z\l < 1000GT2. Assuming that the ordés? correction is thermally enhanced due to Bose-Einstein distri-
butions, a dimensional analysis suggests that those contributions belapg@éT4 x ™Ky (). The
factor T Ky () appears from thedl integral inyn [1] for my 2 5T. Ky (2) is the modified Bessel function

of the second kind. From Figure 3.15, it is apparent that abgye 7T the 8°(©) term is determined by
the pure vacuum partg?(G)vasvac  gincey [89(C)vasvaq performs Iike|Y|2GT4($)3 Ki(S), equating
both relations explains thua,z\I ~ GT? boundary. This analysis also explains the crossover at 1072: At

my ~ V1000x 10-2T ~ #T the B2(©) term switches betweeBO(G)vacvac gnd gO(G)wiT#0.1 domination.
The latter is responsible for the mentioned ultra-relativistic divergence.

Finally, the range abovay 2 10T is considered, where the numerical error is below 5%. Since this
regime is purely non-relativistic, a declining agreement of both appredstieund for small couplings. In

the small coupling limit, the resummed Higgs propagator reduces to the ordiearletrel propagator. As
explained in Section 3.5.2.1, this means that the arguments for neglectingthigdrevacuum self-energy

do not hold anymore. Since neglectihfy"®° and setting the renormalization scheme= T do not arise

out of the same renormalization conditions, the approaches havéapatiNLO in this limit. Only a com-

mon renormalization scheme for both approaches, that is valid in vacuuth@hifjh temperature limf®

would lead to a perfect agreement. Nevertheless, the crossover bdfreeeacuum renormalization and

the high temperature renormalization specified region can directly be feimdrigure 3.25c. This is given

by the 2% agreement area at approximately the orange line. Consequdrildythe resummed approach

is in principle valid in the fullmy mass range, the perturbative approach breaks down for masses below
m, s 2.8VGT? = 5.8m§th.47 On the right-hand side, the threshold is expressed coupling independently
This allows for the following statement: Since this limit arises from#4&7#01 term in Equation (3.111)

and sinceB""T*01 diverges fomy — 0 independently ofT,""*°(k)|,,_, = (m")?, including the top quark

and Higgs self-interaction does not or only slightly modifies this statement quatthef the resummed ap-
proach.

46 For example with help of the aforementioned thermal gauge boson thasg&cuum Higgs self-energy is IR finite and can be
resummed.

47 For typical perturbatively acceptable couplifgs< 1, this threshold is much larger than the thermal Higgs mass.
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In the following pages, the equivalent analysis for fhéerm is performed.
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Figure 3.26: The same as Figure 3.25, but relating to

Figure 3.26a provides the comparison of the resummed approach forthe perturbativd O H term.
Both terms agree within 4% up to some mass scale of arger~ GT2. This may be related only to
the thermal lepton masgn")? = 1GT2, since, in contrast t@°(®), the perturbativer °(® is finite in
the ultra-relativistic limit. In adding th&LO contribution#°(©) within Figure 3.26b, the 2% boundary
moves across the thermal mass threshold, i.e. the green Iinen,\F@rn\th, theGIn G enhancement from
resumming the IR t-channel divergences of the massless lepton exahamieates the perturbative order
G correction®® Hence, the perturbative approach breaks down betguk m}h.

48 See Chapter 3.4.1.3.
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The remaining plots, Figure 3.26¢ - 3.26d, show the comparison dfltl@ contributions. In particular,
Figure 3.26¢ shows the same disagreement for masses b@lowrfh.

In the perturbative small coupling range, a large numerical error ofédeernmed\ LO contributions is
found. Abovemy > T for the couplingG > 0.15, this error drops down below 10% while the relative
difference stays above 18%. This means that a discrepancy of bothepgsd@afound in the non-relativistic
regime. Of course, abo@ > 0.15 ordelG? corrections can be important too. However, since tliedince
grows for small couplings and the perturbatiN&O correction obtains sizable corrections from the vacuum
Higgs self-energy, the influence of the vacuum renormalization scieimeisible even in the intermediate
regime?® Therefore, this disagreement is related to thfedent renormalization schemes.

For the same reason, the approaches supposedly disagree in the siplitigcimtermediate regime, even
though the large numerical error forbids a strict statement. By going to snmallgrino massemy, at
some point in the perturbatively accessible intermediate regimel,TghVé'?‘c becomes irrelevant and both
approaches have to agree. This crossover is given by the yellow ing at8GT2.

The small deviation up to 8% aty < 10°1-% andG < 103 may only be related to numerical issues.

Finally, one can conclude: The resummed approach te valid in the full RHN mass range, while the
perturbative approach breaks dowma{ < m}h. At LO, the numerical agreement of both approaches is
obtained within the perturbative accessible region. However, dudfreiit renormalization schemes, the
NLO rate contributions dier aboven? 2 8GT2. In between those limits, i.e(m")? < g 5 8GT?, a
numerical agreement of both approaches is found ipL©®.

49 See Chapter 3.5.1.3 for the details.
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3.5.6 Vertex Type Contributions

This section handles the 2-loop correction to the right-handed neutridogtion rate shown in Figure 3.1.
This contribution is called thg term and is defined by

_ 1 4
2f,(u-p)
Since all internal particles are in equilibrium, the KMS relation (1.57) is utilizédeasecond equality. This

step reduces the number of terms to consider. However, the extractioa wd¢hum and the thermal part
becomes unintuitive. The 2-loop correction to the right-handed neutrifiersergy can be parametrized as

J(p) = tr[pLI*"(p)] = - tr[BiZy " (p)] - (3.186)

—ig?overt(p) = - f % (d4(; (GEYLYytr[€”e] + ghtre te(t)]) (PL + Pr) (2(p- k) — @)
|Y|22cd Bk + Q)i (K)in,()iAZ%(p - k- @)iAgP(p- k) (3.187)

— gulYP 5 (6 + 38) [ DK @p—K -0 Y ik + a8k
(20" 4 |

G
iA,e0(Q)ing" (p— k- q)irg*(p-k) . (3.188)

This already includes the sum of both chiralities. While the 2PI formalism desnssimmed 2-point
functions, one may start easy and write dqQ@mwith tree-level propagators.

2 4 4
J(p) = —2?:'(\[1' _C;) f (gﬂl; (;?4(2&— p) +q)'tr| B

D cdigC(k+ apigf (Kis, (@i, (p-k-a)iag (p-k) (3.189)
cd

The next step is to replace all time- and anti-time-ordered propagaterand—— by hermitian and statis-
tical functionsH andF. By shifting the moment& 4+ g — k andq — —q within the terms proportional
to 3" (k+g) andg" (k + q), and taking into account the relatidn;~(-q) = Af (q), the following sym-
metrized form is obtained:

7(p) — - 22N [ 0K 29 (elk-p) + 0]
il (K)y“i%r (K+ Q)iny | (Q)ia; (p—k-a)iaf (p—k) (3.190)
+i%l (K785 (k+ Q)id, 1 (@)iag (p—k-q)iAf (p-k) (3.191)
+iBF (K% (k+ )iy (@)iag (p—k-a)iay (p-k) (3.192)
+il (K785 (k+ )i, (a)iAl (p—k-q)ids (p—k) (3.193)
iBF ()78 (k+ Q)id,;, (@)ia; (p—k-q)iaf (p-k) (3.194)
iBF ()78 (k+ )i, (a)iaf (p—k-q)iag (p-k) (3.195)
}] (3.196)

The statistical, greater and less Wightman-functions are on-shell while thetiaa functions are purely
off-shell propagators. All summands with two and four on-shell delta funeti@mish such that only six
different cases remain. The lines (3.190) - (3.192) and (3.194) are ttiolpauts with one and three of
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the remaining particles being on-shell. The lines (3.193) and (3.195)spame to three-particle cuts with
zero and two of the remaining particles being on-shell.

However, (3.194) and (3.195) vanish due to the vanishing phase-spae all internal particles are mass-
less: The vectors, p, k andq form a linear independent base of 4-vectors for this diagram. Thexdfeere
are seven nontrivial integrations for the integration with respectiadd dq. Hence, the five delta func-
tions leave only two of them. The integration variables of those two non-tintiedjrals can be chosen to be
dk and di®. The integral boundary conditions for them are given bjugg, k) > 0 and gdu, p, k, u) < 0.0
The first condition is the usud(pl — Iul) < k3 < 3(pd + IPul) for positive p? and all internal particles
being massless. However, the second condition is simpiy@d(u, p, k,u) = (g9)?p?, which has no real
solution forg?. In the case of massive internal particles, this must not necessarilyebe tru

What remains are the terms proportional to three delta functions. Line {Zd8&sponds to the interfer-
ence of the 1 3 (inverse-) decay process in Figure 3.27a and between the thte@ 2catterings in the
Figure 3.27b and 3.27d. This constibution is denotedB§?, even if the term "scattering" does not strictly
apply. The other lines (3.190)-(3.192) are interferences of the 1vedgx corrections, with one of the
internal particles being on-shell, with the tree-level amplitude. See Figu2@e &nd 3.27g. These terms
are calleqyVertt, gvert2 and gvert3, respectively.
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(e) ® )

Figure 3.27: Interferences related to the 3-particle cut of the vertgxatia The thick and thin lines, respectively, correspond to
the RHN and the lepton. The gray blob indicates that this particle is on-shell.

Each of those four contributions obey IR divergences when the hernpit@geagators are on-shell. Since
only the sum of them has to be IR-finite and numerical limits of some regulatorg tyozero are technically
undesirable, an appropriate way has to be found to parametrize the imdegach that all divergent pieces
cancel. The IR divergences are naturally regulated by the massesanirtheponding particles. Therefore,
setting these masses to zero means that the IR divergences are locatetd@irttlary of the integration
domain. After integrating out the delta distributions, these domains must natitpeeufor diferent cuts
and of course depend on the specific parametrization. With three deltéofusythere are four non-trivial

50 See Chapter 2.4 for details.
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integrations left. Their integration variables are chosen to ke dgt and two angular integratior8. x
andy are the two inverse hermitian propagators of those contributions. All ofdineihdividual contri-
butions then may have a pole structure of the tﬁp% or X—ly and diferent integration domains of the type
x>0Ay>O0A...forappropriately signeda andy. This strategy indeed works out in vacuum, if all those
contributions are add, split and fold alomg= 0 andy = O such thatx andy are always positive. All
collinear and mass divergences then cancel such that the integraorddsetR-finite in vacuum. However,
for the vertex correctiong Ve"*? and 7™ the integration domains allow for a principal value integration
at one of the hermitian propagators. This gives no IR-divergencis htithe same time evaluated by means
of thex & —xandy < —y symmetrization. Only the Bose-Einstein distributions can cause trouble when the
particle momenta become collinear to the plasma vector. They explicitly depeneé amettitioned angles,
which are therefore symmetrized too. This strategy works best if the samemhomearametrization is
chosen in each of above vertex corrections. The choice of the momeatametrization for the scattering
term compared to the vertex terms is unimportant. Nevertheless, the same obe ntesen. The deriva-
tion of the vacuum part then also simplifies. If the angles are symmetrized téigeand is IR-finite also for

T #0.

After all these considerations, this method still has one subtlety. Even if aiidtgences have canceled,
a symmetric cancellation scheme is introduced like the one used for princlpak¥ On the other hand,

a specific scheme is already given by the limit masse8. Therefore, a correction term has to be added
to account for the dierence of both schemes. To be precise, the lines (3.190) - (3.193)vargatit and
ill-defined. Only the sum of them is finite. To be able to integrate out the deltabditms in each term
separately, individual finite and well-defined contributions are importayptnBoducing a fictitious mass

for the gauge bosons, the divergences are already regulated dandittdual contributions are made finite.
The separate terms can be rearranged working in the limit 0, such that they can be added under one
integral. A is then set to zero.

The third point to mention is the following: Even if (3.196) is IR-finite, there stk UV-divergences in
the vacuum part of (3.196). Those have to be renormalized using theevdukouplingY. The vacuum
expression and consequently the renormalization can be derived aalilytitence, only IR and UV finite
thermal contribution with possible principal value integrable singularities teebd evaluated numerically.
The possibility of simplifying the integrand in this way is one of the basic featfrdge diagram, since itis
symmetric under exchange of the two lepton propagators while also exnlyahg two Higgs propagators.
Other diagrams of this topology can consist of more terms. Neverthelessethed described above should
apply to them too. Further considerations would be required, only if theréeas non-trivial integration
variables than hermitian propagators. To continue, the Bhift p—q, g —» k+ q— p is applied to the
whole (3.196). This simplifies the integration over the deltas in the end.

20ulYI1°G dk d*
J(D)Z—ZE:VU' p)f(zn)“ (27:;4(k q p)vtr[pj{
iB/" (p— a)y"i8y (K)iAy,, (k+q-p)iag(p-k)ia(a) (3.197)
iB{ (p—a)y"iB7 (K)iA,,, (k+a - p)iag(p-K)irg () (3.198)
+igF (p—a)yiBy (K)id,,, (k+a-p)iag (p- k)i (q) (3.199)
i (p- a)7i%7 (K)iA,~, (k+q- piaf (p-k)iaj(q) (3.200)
}] (3.201)

511n vacuum, those integrals decouple from the plasma vector. Henbethentwo integrations with respect toandy are
non-trivial.

52 After applying the substitutiorn — 2x, for instance to the scattering contribution, the IR divergent poles stilletanose from
the vertex parts. Nevertheless, the integral value changes.
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3.5.6.1 \Vertex Corrections with on-shell Gauge Boson

The vertex correction from Equation (3.201) with the on-shell gaugerbissgiven by

v __GilYPG kg
J(p)Vertt = f+(u.p)f(2ﬂ)4(2ﬂ)4(k q- p)'tr [ Big] (p— )y*i% (K]
AL, (k+q-p)iag(p- k)il (q) (3.202)
_ owlYI’G y 1
20205t (u-p) fd4kd4q(k—q—p) tr[¢(¢‘¢)7vk]m

5(k%)5((k+q-p)® = 22)6((p-k)?)sign(u-k)sign(u- (k+ q- p))sign(u- (p-k))

(=f(u-k) (2 +2f(u- (k+9-p)))f-(u-(p-kK)). (3.203)
oK is parametrized in polar coordinates with respectiteuch that the one free angular parameter in
the p-frame is the azimuthal angle going from 0 t@.2The polar angle is one of the non-trivial angular

integrations. However, there is stil Hence, to really have (3.201) free of this azimuthal angle, polar
coordinates need to be used fégavith respect tk.>2 The volume element then is

d*kd*q = dk®do® K| digi d cos<(k, u) dgj d cos(q, k) dgk K12 (3.204)

The dp; simply integrates to2 Since thep-frame is chosen, the only way to switch frofp - 1)°q?
to xy is via the variableg® and|q. Therefores (k?) should be integrated with help ofigi 6 ((p-k)?)

gets integrated usingk8, andé((k+ q-p)?- /12) is integrated with d cos(q, k). The Jacobian of this
integration becomes

41, 44 2 2 32 2\ _ 4q0 k_7ldl

d*kd*q6 (kK)o ((k+q-p)® - 2%)5((p-k)?) = do°digid cos(k, u) d¢q22mN . (3.205)
The invariant scalar products are
u-p=p° (3.206)
u-k = u’k — |tk coss (k, u) = mi (P°K% - IBIKI cos (k, u) ) (3.207)
N
u-q= mi (p°a® - 18ilqi (cos<(k, u) cos«(q, k) — cog(gk) sin«(k, u) sin«(q, k))) (3.208)
N
P> = g, (3.209)
me
p-k=mykd = 7'“ (3.210)
p-q=mng’ (3.211)
K2 = (3.212)
¢? = (¢”)? - g (3.213)
2 42 .
k-q= ﬁq—ZJFqu (3.214)
together with
K = K = % (3.215)
2_ 12 _on. 0
cos«(qg,k) = a-4 28 9+ 2K : (3.216)
2K dl

53The explicit parametrization can be found in (3.217).
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Foru- g, the explicit parametrization

my P KO qo
0 0 0 0

P=| o u=| 4 k=Rs(60)| a = Rs(60)Ra(¢g)Ra(0) | (3.217)
0 ] K] a

modulo the irrelevany, dependence is uséd. Hence, the goal of parametrizing'®"! in terms of the
inverse hermitian propagators is obtained by defining

9 = 2myX (3.218)
(p-a)? = my(my - 24°) + % = 2myy. (3.219)

The additional factor 2y is for convenience, since the integration variables in the scattering partthe
not need to be rescaled later on. Therefore, the transformation reles ar

2
4 = \/(% + x—y) - 2myX (3.220)
o = % Fx—y (3.221)
dePdiq) = —%\'dxdy. (3.222)

Altogether, the7Ve"! contribution becomes

vertl _ awlYI°G K %+ m2N - my(2X+Y)
J () = 22 (0 ) Vld cos«(k, u) dg dxdy Xy
fr(u-k)(1+2f_(u-(k+g-p)))f-(u-(p-k)). (3.223)

Since sigriu- k) = sign(k®) = 1 = sign(u- (p-k)), the integration is exponentially suppressed due to the
fr(u-k)f_(u- (p—k)). Hence, only the 1 in ¥ 2f_(ju- (k4 g— p)|) can give rise to UV-divergences.
This term is called the vacuum pagf.(p) ™! is split into

vertlyac _ gw|Y|2G K A2+ rr|’2\l - My (ZX +y)
J(p) = 220, (0 p) vld cosz(k, u) dgf dxdy 5
(= (u-k) f-(u- (p—K)) (3.224)
and
vert1T#0 _ gW|Y|2G K 24+ mZN —mn(2X+y)
J(p) = B () Vld coss(k, u) def dxdy 5
f(lu- (kK+a=p))(=f+(u-k) f-(u- (p-k)). (3.225)

The sigriu - k)sign(u- (p—k))(=fy(u-k))f_(u- (p—k)) is just the quantum statistical factor for the
vertex correction generated by the CTP. Otherwise, the true vacuuri? par7Ve"! can be separated
too, as it is done for the wave-function type contribution. However, ooaladvthen need to calculate
J o Y out of XY - X5. The term (—fi(u-k))f-(u- (p—-k)) would have to be replaced by

54Rs andRy are rotation matrices for a spacial rotation around the 3rd and 4th axis}as shorthand fo(x,y). As can be
observed, if thé& andq are defined with an addition&(¢})) factor, the scalar products k, u- g andk - g are independent afy.

55 .e. the temperature-independent part.
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1-fi(u-k) + f_(u-(p=k)) = 6(kK° +6(k®—my) - f (lu-K) + f_(lu- (p—k))|. Consequently,
vacuum-thermal mixing terms would be obtained too, which complicates the siqne®

The next step is to determine the integration dom#n Since the Dirac deltas are integrated out by
K, |kl and cox(q, k), all of them constitute conditions td;. Nevertheless, these integrations do not
involve any knowledge ofl. K was parametrized with respect @ but 6; could have been set to any
value and still lead to the same integral over the deltas. The conclusion is &hatftame integra-
tion domain given by gtb) > 0A gd(p,k) < 0Agd(p,k,q) > 0Agd(p,k,q,u) <0, which is equivalent
to |K|, |g) > 0 and| cos(k, u)|, | cos(q, k)| < 1, reduces to ggb) > 0A gd(p,k) < 0 gd(p,k,q) > 0 and

|cos«(k,u)| < 1. Therefore, after integration over the deltas, only the conditions g&tkby gdp, k) and

gd(p, k, q) get dfected. The first one is 4@, k) = —@ < 0. This is fulfilled trivially. The second one is

Vlz{ﬂﬂggiﬂ::_@4+mﬁﬁy+ﬂqmdmN_qx+y»)>o}. (3.226)
N

Obviously, the domaiV is given byxy < 0 in the limitA — 0. This is of course the same condition that
one would find by working out the Boolean algebra directly from the contitio > 0 and| cos«(q,k)| < 1.
Figure 3.28 shows a plot &f;. On the left sideg is set to zero, and on the right one= 0.4my is used.
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—my

My —‘% 0 "if'“ my —my —""7"‘ 0 % my
(@)1 =0 (b) 2 = 0.4my

Figure 3.28: Plot of integration domaify. The two separate areas correspond to the two energy solutions whgraiimg over
the delta distribution of the blobbed particle in Figure 3.27e.

For completeness, one may check thatmé#, g,u) < 0 is always true: After insertion of all variable
substitutions this determinant equals to

gd(p,k, q)
m2

N

gd(p.k g, u) = (co £(k,u) — 1)IF° sir?(gK) <0. (3.227)

Since gdp, k, q) has to be positive, this directly infers dogk, u) < 1, as expected.

56 See Section 3.5.6.6 for the evaluation of the vacuum part.
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3.5.6.2 \Vertex Corrections with on-shell Higgs

The vertex correction with the on-shell Higgs boson is given by
ez __ GWlYPG [ d'k d'g v [ -
J(p) "2——f+(u p)f(zﬂ)4(2ﬂ) (k—q-p)"tr|Big (p— a)7*i%" ()]
iA, (K4 g - p)ids(p- k)AL (a) (3.228)
_ gulYIPG A , 1
St o) k- a- Dt (B8 -dnK] e

5(k?) 8 ((p-k)?) s (oP) sign(u- k)sign(u- (p - k))sign(u-q)
(~ i (u-K) f-(u- (p-K)) (1 +2F(u-q)). (3.229)

Since the same parametrization as 6! is used,d((p— k)z) needs to be integrated visk® 6(k2)
is integrated with the help of|id, and&(qz) is integrated for instance with|@. Hence, the switch from

(p-9)%((k+g- p)? - 1?) to xy has to be done via the variablgsand cos(q, k). The Jacobian of this
integration becomes

41, 44 2 2\ (2 _ 40 (K]
d*kd*qs (K)o ((p—k)?) 6 (a?) = do’d cose(q, k) d cosz(k, u) dg P (3.230)
In terms of invariant scalar products, this means
u-p= po (3.231)
u-k = u’k — |0k cosz (k, u) = nf (P°K® - Ikl cos (K, u) ) (3.232)
N
_ 100 & _ K\ i :
u-q=— (p°q” - IBlial (cos<(k, u) cose(q, k) — cos(gk) sin«(k, u) sin«(q, k))) (3.233)
N
p* =g (3.234)
o_ ™
p-k=myk’ = - (3.235)
p-q=mng’ (3.236)
k= =0 (3.237)
k-q = k%P - |Kllg cos«(q, k) (3.238)
together with
— K= % (3.239)
jal = lo°]. (3.240)
x andy are defined to be the invariant momentum squares of the hermitian progagator
(p—a)® = p*-2p-q = 2myX (3.241)
(k+q-p)2-22=2k-q-2p-q- 1% = 2myy. (3.242)
Therefore, the transformation rules are
¢ = ? ~x (3.243)
—22% - M2, + 2my (X - 2
cos«(q, k) = N N(x—2) (3.244)

mn|my — 2X|
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2

dq®d cos«(g,k) = d dxdy. (3.245)
Altogether, the7Vé"? contribution becomes
awlYI°G K A2 4+ my(my = X4 2y)
J(p)vert? = - d cos«(k, u) doK dxd
P = gyt u- ) Jy, @ OX W WY
f(u-K)f-(u-(p-k))(1+2f_(ju-ql)). (3.246)

Here, the same quantum statistical factor is obtained as above, sincesgpmrds to the same 2-particle
cut and it has the same parametrizatigif®"*? is split according to

ol Y°G ‘ A2 4 my(my = X+ 2y)
J (p)vertavac — d cosz(k, u) dgX dxd
®) 22T (0 p) by O WY
(=f (u-k)F-(u- (p=k)) (3.247)
ol YI°G ‘ A2 4 my(my = X+ 2y)
J (p)veraT=0 — d cos«(k, u) dgk dxd
(P )T (up) ¢ X B EY
£ (lu-g) (= f4 (u-K) f-(u- (p-K)) . (3.248)
The integration domail, is again only given by gb, k) = —% <0andgdp,k q) > 0:
4
Vs = {ng( p.k,q) > o} = {(42 + 2muy) (4% + M (my - 2x+ 2y)) < O} . (3.249)
N

In the limit A — 0, the domairV, is given byy = 0 andx = " +y. This means that the pole at= 0 has
to be evaluated in the principal value sense and is finite. Figure 3.29 shuwatsad V».
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Figure 3.29: Plot of integration domalp. The two separate areas correspond to the two energy solutions whgraiimg over
the delta distribution of the blobbed particle in Figure 3.27f.
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3.5.6.3 \Vertex Corrections with on-shell Lepton

The vertex correction with the on-shell lepton is given by

ver IY?G d*k d* e [ e
J(p) L3=—gw(u p)f<2ﬂ)4<273 (k—q-p)"tr [ Big (p- a)y"i%; (K]
iAy, (k4 q-p)ing(p-Kk)iaf (g) (3.250)
 alYPG ) 1
gt ) a0

5((p-a)?)o (kz) ((p—k)?)sign(u- (p-a))sign(u-k)sign(u- (p-k))
(1=-2f(u-(p-a)))(=fr(u-k))f-(u-(p-k)). (3.251)

In this parametrizations ((p - k)?) should be integrated using® ¢ (k?) is integrated with the help okl
ands ((p - q)z) can be integrated for instance witigid Hence, one may switch froifk + q - p)2 — 42)g?
to xy via the variables?’ and cos (g, k). The Jacobian of this integration is

41, 44 2 2 2\ _ A0 k7T|E||d|
d*kd*qs ((p-a)?) 6 (k*) 5 ((p-k)?) = dgd cosz(q, k) d cosz(k, u) d¢q22mN . (3.252)
The scalar products are
u-p= p° (3.253)
u-k = uPk — |tk coss (k, u) = r: (p)ok0 — |PlIk| cosz (K, u)) (3.254)
N
u-q= (p q° - 1Blidl (cos«(k, u) cos«(q, k) - cog(g) sin«(k, u) sin«(q, k))) (3.255)
o2 = mzN (3.256)
o ™
p-k=myk” = - (8.257)
p-q=mng’ (3.258)
k?» =0 (3.259)
" =2p-q-p’ (3.260)
k-q = K¢ - [kl cos«(q, k) (3.261)
together with
K — K = mZN (3.262)
ol = Imn -] (3.263)
x andy are defined by
o = 2mnX (3.264)
(k+q-p)?2-12=2k-q-2p-k- 1% = 2myy. (3.265)
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Hence, the transformation rules are

P = % +x (3.266)

—22%2 - Mg, + 2my(x - 2y)
cos«(qg,k) = i — 2x] (3.267)
digld cos«(q, k) = %dxdy. (3.268)

Altogether, the7Vé"? contribution becomes

vert3 _ gW|Y|2G K 224 mN(mN —2X+ 2y)
J(p)"*" = (20t (U p) v3d cos (k, u)detdxdy xy
(1= 21, (Ju- (p— ) f+ (u-K) - (u- (p—K)), (3.269)
which is the sum of
vert3yvac __ gwlYI’G K A2 4+ my(my - 2x + 2y)
J(p) = 20t (0 ) V3d cos« (k, u)dgkdxdy xy
(~f4 (u-10) £ (u- (p—K)) (3.270)
and
vernaTs0 _ ___ GwlYI’G o A2+ my(my - 2x+ 2y)
J(p) =R, (0 D) Vsdcosz(k, u)dg¥dxdy xy
£ (1u- (p= o)) (= (u- K)) - (u- (p=K)). (3.271)

Since itis the same 2-particle cut as for the other vertex correc@ns again only given by gab, k,q) > 0:
V3 = {(22 + 2myy) (22 + my (my — 2x+ 2y)) < O} . (3.272)

Obviously,Vs is the same a¥5, since both corresponding cuts are topologically symmetric under exehang
of the on-shell Higgs with the lepton, i.e. the diagrams in Figure 3.27f and 3.27g
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3.5.6.4 Scatterings

Finally, the scattering part is given by

T(p)*e2=

2 4 4
) (gnl; (gn?zl(k— a-p)'tr[ B8 (p— )%y (k)|

in,~ (k+a-p)iag (p-k)isg(a) (3.273)
__GlYPG Hedbalk— a_ n)” _ 1

Pyt | ddak-a- pulp (s Ak =i
5(K?) 6 ((k+a-p)®—2%)6(c?)sign(u-k)signu- (k+ g - p))sign(u- q)
(=f(u-Kk)(1+ f(u-(k+q-p)))f-(u-q). (3.274)

If one does not want to deal with a sum of several solutiélfukz,) is best integrated bylla. For the same
reasoné(qz) should be integrated bydl. However, sincd p— q)?(p - k)? is substituted byy in the end,

k® and g should be left unchanged. Hence, the remaim(‘@(Jr q-p)>%- /12) should only be integrated
by d cox(q, k). The Jacobian of this integration is

d*kd*qs (k)8 ((k+ - p)? - 42)5(c?) = %d cos(k, u) dg dk®dgC (3.275)

The scalar products are

u-p=p° (3.276)
u-k = %k — bk cosz (k, u) = mi (P°K® - Ikl cos (K, u) ) (3.277)
N
u-q= miN (p°a® - 1Bilqi (cos<(k, u) cos«(q, k) — cog(gk) sin«(k, u) sin«(q, k))) (3.278)
p> = g, (3.279)
p-k = myk° (3.280)
p-q=mng’ (3.281)
K=¢¢=0 (3.282)
/12_ 2
k-q= 2p +p-k+p-q (3.283)
together with
Kl = K| (3.284)
lal = Ig°| (3.285)
24 p2—2p.-k—2D. 040
cose(q k) = — TP~ =2p-k=2p-q+ 20d" (3.286)
ile|

x andy are defined by

(p—k)% = my(my - 2K°) = 2myx (3.287)
(p-a)? = my(my - 2¢°) = 2myy. (3.288)
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This results in

KO — % _x (3.289)

o’ = % -y (3.290)

K = % - x’ (3.291)

ldl = ‘mN —y‘ (3.292)

cos«(q,k) = PP--p-k-p-q+ 2K (3.293)

2IKiidl
and consequently *“®becomes

T*4p) = 0 23‘;“ L:LZG f dcosz(k, u)d¢>‘c‘1dxdy/12 +M* - 2l\):|yx — My=2xy (3.294)

sign( " - x)sugn(—x—y)sugn(7 ~Y) (= Fe (U R) (1 + T (u- (k+q-p)) f-(u-a) .

Since J is not calculated out ofy — ¥y, the vacuum part cannot be found by a trivial liffit— 0.7
Hence, the vacuum part should be known by assumption, or the KMS rekdtimuld not be used in the
beginning. Without the KMS relation, the statistical factor of this diagram is rieoglobal sign factors:
(-1 (u-k)f(u-(k+ag-p))(1+ f(u-a)) = (= (u-k))(1+ f-(u- (k+g-p)))f-(u-q). Hence,
the trivial limit T — O reduces the integral support to the area

supp,aC:x<%Ay<%/\x+y>O. (3.295)

Consequently, the vacuum part gf°¢@ is Equation (3.294) restricted to sygp To cancel the IR di-
vergences within the sum of the scattering and vertex parts at the intelgnagidthe statistical factor
sign(u - k)sign(u- (k+q-p))sign(u-q)(—=f+(u-k))(1+ f_(u- (k+q-p)))f-(u-q) has to be replaced
by the factor sigE;)sign(Ez)(-f+(E1)) f-(E2) from the vacuum vertex correction&; and E; are re-
spectively theu- k andu- (p — k) from the vertex corrections:

scavaci ) GwlYI’G f q I u)dekd 22+ M? - 2Mx— My — 2xy
TP = 5 2050 B) Jsraon. cos (K, u)degdxdy Xy
(—f+(E1)) f-(E2). (3.296)

Whether this is the "true" vacuum part or not is unimportant. Only the catioellaf the IR divergences
has to work. Furthermore, this vacuum part can be evaluated analytiaétywards, the thermal part can
be obtained by the subtraction:

JscaT;tO(p) = J5%(p) — geeavac(py) (3.297)

57n this limit, the internal distribution functions restrict the integral phase spaczero while the extern (ﬁ 5y grows to
N
infinity for positive p°.
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The integration domais is again determined by @@, k) and gd p, k, q). The first one evaluates to

m 2
gd(p.k) = -1 (my —2x)° <0, (3.298)
which is trivially fulfilled. The second one gives
4 k
S= {w = (4xy— /12) (224 mg - 2my(x+y)) > o} . (3.299)
N

If Ais setto zero, the boundary is composed of the problematic ¥ines) andy = 0, andx+y = %
Figure 3.30 shows a plot & with and without a non-zera. In vacuum, only region | of Figure 3.30 is
allowed.
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Figure 3.30: This is a plot of integration domen Region | is known as the Dalitz plot for & 3 scatterings. Hence, this area
reflects the process of Figure 3.27a. Likewise, regions II-1V aséyegelated to the 2-» 2 processes of Figures 3.27b
and 3.27d, respectively.

3.5.6.5 The IR and UV finite Integrand

In order to add the thermal scattering and vertex corrections to one finigranty the symmetrization
operatolO is introduced. This has the intuitive definition

o) fA v = fA 2 f[ T (3.300)

for some test integrangd and the symmetrization rute The integration areA = A; & A, is split according
tor into disjunctA; andAy, such that [Ay] is the integration area afy|. In this way, the IR and UV finite
integrand is compactly written:

J 0 = O(cos«(k,u) - —coss(k,u))O(gk = m+ ¢5)O0(x & y)O(y = —y)O(x = —X)
(jvertl,T¢0+jverL2,T¢O +jvert3,T¢0 +jscaT¢0) . (3_301)
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Equation (3.301) still carries thedependence within the integrand and the integration domain boundaries.
Since (3.301) is IR finited can be set to zero within the integrand and the boundafi¢towever, an IR
finite correction terny7 T#2€°" has to be added to account for the correct litnit> 0:

/IlimojT;ﬁO — jT;tO,/IZO +jT¢O,Corr . (3302)

In J7#04=0 the A is set to zero even within the boundaries. Therefore xtjgeglomainsVy, ..., Vs andS
after the symmetrization consist only of the lines= 0, x =y, x+y = T andx-y = .5 The
remaining totak-y area is shown in Figure 3.31. The IR finitenesgfdf*%4=C can be verified by the limit

lim yJT*91=0(xy,...) =0, (3.303)
y—

while the UV finiteness is ensured by the exponential suppression of tinidwli®n functions.
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Figure 3.31: This plot shows the- y integration domain foff T#01=0 after all symmetrizations are done. Since the integrand is the
sum of three dferent 2 2 scatterings and one<: 3 process, the corresponding supports shown in Figures 3.28-3.30
generate discontinuities at+ y = % andx-y = % The additional splittings are done for numerical convenience.
| - VI is phase space suppressed in the ultra-relativistic limit.

To obtain the correction term, the correct limit— O relative tod = 0 has to be evaluated. In the limit
A — 0, all theA dependence in (3.301) can be reduced to the boundariesmmdy. All integrand terms
are split into pieces proportional %)and remainders. Within th§ terms, a partial integration with respect

58Since7T*0 is IR finite, this would otherwise only give corrections of the ordendlnA. Those vanish in the limit — 0.
59Hence, the sector spanned by A 0 < y < xis chosen.
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toy is performed, such that th# pole becomes a [1).%° The boundary term of the partial integration
obtains thel dependence, and the remainder becomes sub-leadiag The limit A — 0 can then be
performed analytically, and only thexénd the angle integrals are left behind. In the following pages, this
procedure is shown in more detail. Here, the notion of the dependence mmtlining variables is dropped
for notational simplicity. The functiongi(y) represent the terms of the fully symmetrized integrand of
(3.301) multiplied byy, such that they have no pole yt= 0. The indexi reflects the corresponding
integration boundaries given by (1) <y < y"+. They (1) are the lower bound of with the property
lim,-o0Y- (1) = 0. This means that only the boundariese considered, which reduceyte= 0 for 2 = 0.

To have well-defined finite integrals in intermediate steps, another fungtiechosen such that it fulfills

0 <y_ < |y |foralli. Hencey_ should also vanish smoothly for small In the following, the notion of

for the irrelevant upper bour;.dI'Jr is dropped too, since one aims for only the correction term. Wighii°,

one then has to calculate

Y+ lﬁi wl
T wa) dy )(/ f Z vily) +Zf dy— (3.304)

~kyT;tO,,l:O NJT#O,corr

Since the% poles are poles of hermitian propagators, in the case of neg,éﬂ(vé, the integral in the
correction term should be regarded as a principal value integral. This is

% f " - Sty \ ) f dyin(y) dwi(y).  (3.305)

odIn(a ) 0

The remainder is suppressed for smalkincedyy;(y) is smooth ay = 0. In addition, the upper bound
of the boundary term in (3.305) has to vanish under the sum in thelimit0, since otherwisgy #0140
would not be IR finite and (3.303) would be untrue. Therefore, ondrubta

(Y wily) ™ Uily)  ;T404=0
Llinofy_u)dyz v _fo dyZ v g (3.306)
and
5@02 In(y-(2))wi(y-(4)) = 0. (3.307)

The next step is to perform the limit— 0 of the sum of the boundary terms of (3.305) analytically, which
is finite too. In fact, 7 T*%€°"" can be written down in short form as

g T#ocorr _ —fold cos(k, u) f:d¢g j;mdeiLnOZIn(l)/_(/l)l)wi (v (2)). (3.308)

JT#01=0 and g T#0co'" can be calculated numerically without the need of a numerical limit proce@hee.
solutions are presented in Section 3.5.6.7.

60 The%( pole is phase space suppressed for syndille to the symmetrization k< y.
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3.5.6.6 The Vacuum Part

The thermal part off was shown to be IR and UV finite, and it must be calculated numerically. Haywev
the vacuum part can be obtained analytically. Udig, = % (po T 1Pl cos«(k, u)), the common factor

_ 1 gulY’G )
AS S up o0 fd cosz(k, u)dgg(-f: (E)) f-(Ez) (3.309)
f-(p° - Ipl
N is(” = '”( L ]] (3.310)
3on Bl U (p° +1pI)
can be extracted. The scattering contribution in Equation (3.296) becomes
2
gseavac f de 2 +2mN X dy mﬁ + A% —mn(2x+y) — 2xy (3.311)
Xy
ZmN 2mN
s (A
=AM |- + 5 ~3n{ -2\ ]|+ O0(Y). (3.312)
mN my

Likewise, the vertex contributions from Equatlons (3.224), (3.247) &8r2irQ) are calculated. However,
those are UV divergent. In order to verify the cancellation of the IRrdeet In1), an UV cutdf that is
common to all three contributions must be introdu€edk andy cannot simply be restricted by some
IX,lyl < A, since they are dlierently defined for each term. Neverthelagsis a common variable and can
be restricted:

¥ < A (3.313)

Then, the corresponding UV bound feandy can be obtained. This leads to

grenivac Aﬁﬁ(——+ln |n(2 )+2|2(nf) In(/l)+4l (ZmA)

N MmN N
—(1-=1In(4))In (mAN) +In? (mAN)) +0(2) (3.314)
Jrenavac — Am,z\,( e 2 2)—|n(2)|n(m£N)—%|n2(m£N)
+ (1 + 2|n(miN)) In (%)) o), (3.315)

and
gretsvac — ang (2 -5 éln (2) =In(2)In (mi) - %mZ(A)
+2|n(miN)(2+ '”(anA)) _in (Z—A)) +0(1). (3.316)

N my
The sum of them gives in total

ac _ nﬁ,( (ZA)) | (3.317)

mn
which is IR finite. This means thatcan be set to zero in the vacuum expressions too. The remaining UV

divergent In\ can be absorbed into the vertex counter term of the Yukawa coulling some particular
renormalization scheme.

61 Any UV cutoff in x andy regulates the integrals. Howevarthen has to be absorbed into those éistduring renormalization.
One would have to cancel IR with UV divergences.
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3.5.6.7 Numerical Solution

The following section presents the numerical result§goFigure 3.32 shows the total rate obtained via the
several contributions qQf .

0.001¢

10° 3 —_— jT#O/I:O_'_JT#O,corr_'_Jvac
7 . jT#O,A:O

J— jT#O,corr

— gac

— g T#04=0 region L, 11,11

107

N/ (T*GgwY?)

10° — g0 region IV,V,VI
—— g T#04=0 region VI

— Jo

101

0.001 0.01 — “H(‘J‘.l " 1 10 100

my/T
Figure 3.32: This figure showgy|[J](mn) for various contributions off. Solid and dashed lines respectively correspond to
positive and negative values. The corresponding integration reginbe found in Figure 3.31. FgrVac, the UV
regulator equals\ = T.

One question discussed in the literature is, whether the vertex diagram weiewed functions is divergent
for small RHN masses compared to the temperature or not. Such a divergentd indicate the need
of full propagators as suggested by the 2P| formalism. Regarding therimahresults from Figure 3.32,
no evidence for a divergent behavior is found for small RHN massescé] one can expect that the use
of resummed propagators would only give higher order correctionseriesless, the vertex diagram is a
2-loop diagram resulting from a 3-loop vacuum bubble. For a 3-loop tatmheory, the 3PI formalism that
introduces full vertices is needed. In 2PI, such full vertices arenbkl in form of vertex resummations. A
particular vertex resummation is the ladder resummation, which in the presersuras up the contributions
of an arbitrary number of gauge boson exchanges between the legtdmeaidiggs.

(3.318)

Figure 3.33: The vertex function indicated by the blob represents aiténdimount of gauge boson insertions. Since crossed type
insertions are typically suppressed, the resummation can be reducedadder resummation.

Those exchanges may become important at gauge boson momenta of tha/GHesuch that all ladder
diagrams could contribute equally to the neutrino rate. Here, the size of tderlagsummation féect
cannot be answered. However, the cancellation of infrared dimeegeis also shown numerically in the
ultra-relativistic limit up to@ = 1074, Since there are no other scales thanandT relevant foryy [T], a
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significant change for smaller values®¥ is not expected.

Nevertheless, the result fop[ 0] from Equation 3.54 for a massless neutrino is not obtained in the ultra-
relativistic limit. The reason is comparable to the issues found in Equation (Fdrli®e ultra-relativistic
limit of the Bterm. It appears that the limity — 0 does not equahy = 0. The poles of the integrand gf
within region I, Il and 11l are enhanced by the interference with the Boisstein distributions of the Higgs
and gauge bosons. The enhancement appears mainly for<he brocesses but also part of the2 2
processes phase space close to the mass divergencey)at= (0, 0), (0,73¢) and (3,0). Therefore,

the diferential production rate of nearly massless neutrinos appears to Hditiersal sizable contributions
compared to the 2> 2 scatterings of perfectly massless neutrinos. The numerical values are:

e LT OO (my = 107°T) ~ 3.06(4 + 4) - 107*T*guGIY?| (3.319)
Yyt g T#OA=0HI (my = 1079T) ~ 2.396 + 3) - 10T g GIY?. (3.320)

Hence, only the limit value obtained from region VIl fits to the massless rasuait $ection 3.4.2. However,
even if phase space suppressed, the rates from the regions I-ldIrstdls large as the one from region VII.
Since JVa and 7 T#0o vanish formy — 0, the total contribution to the rate obtained from the vertex
diagram in the ultra-relativistic limit is

yxlertex[j] (my = 10—4-|—) ~ 5.46(2 + 6) - 104T4g,GIY2|. (3.321)

While for the wave-function type contributia the disagreement of they = 0 andmy — 0 case may
or may not be related to the breakdown of perturbation theory, the verpexcoyntribution is finite even
in the massless limit. Since the RHN mass is not protected by symmetries of the giagrahe massless
calculation itself has to fit the massless limit. In this regard, the disagreemenimesalys that the RHN
mass must not be set to zero under the integral, i.e. integration and limit isci@reeable.
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3.5.7 Non-Relativistic Limit

In the following, BO(G.4) | 70(C) and 7T#0 is verified in the non-relativistic limitny > T. Using the
redefinitionsz = Z- ands = ﬂ the BO(GM.4) terms are expanded up to the orae;O (26, s4,e‘r2—¥),
while 79(C andj’”0 are expanded up to the oro‘eﬁ,()(z6 e r2—'#) for simplicity.8? The recurring factor

Ais defined af\ = w

3.5.7.1 Expansion Cofficients of BO(Gf.)

The series expansion 6°(G4) for each contribution separately is

1 A2 3
vagAvac _ A — 3 5
? ~Aea" (T )(G 2" (Z)ht) (3.322)
T 3
vag+,vac __ a & T 3,
§ ~ A (3+ ? In(mN )) (G * zht) (3.323)
g =0 (3.324)
g =0 (3.325)
’ 3
vag+,T+#0 e 3.,
? Az?’( {3+ 780 2+ 4( )22)(G+ th) (3.326)
7 45 3
vac—,T+0 2 45 3.,
? Azg( 5/(3) + 57~ 547 ) (G + zht) (3.327)
scaT#0 _ af L 1,5
s A(24ZZG * 9622 ht) (3.328)
BT AT Z(G -+ ) (3.329)
wv, T#0,2 1 7
8 =AZ ((24+ 4522)6 + (32 + 24022) ht) (3.330)

{ is the Riemann zeta function. Altogether, the following seriedfaments are obtained faBOGME) in
the non-relativistic limit:

Y|2mg 3 1 A 1 37
0(GRA)NR _ WYITMy 1 37
B —(6(128+32| ( )+ 7+ 24)

3 48> " 720
9 1 A
+h2(256 rriay —z4+@((—1+ln(2))ln( S ) 21n(2) In(?)))
—4¢16 Z)+ Mo, e 7). (3.331)

The thermal expansion cfigients, i.e. 57° + =57* proportional toG and-7* + &7* in case oh?, are
equal to those obtained from [58]. Regarding the numerical result uf@@ 15 those cdigcients may be
verified by a fit. The best fit value for the sum of all thermal contributioes,Equations (3.325)-(3.330),
compared to the numerical data withiy = (104°...10%)T at|f| = 10°T is

37
AG(l 00x 4—22 + 1.06x ﬁ)z“) (3.332)

62 Factors ofe" T are encountered during integration. Those spoil a pure series ampalmé'% Nevertheless, expanding in
powers ofe T atoois possible. In this sense, the upper expansion bdl(mﬁz*#') reflects that such exponential suppressed terms
are neglected completely. Afterwards, the remainder is a pure sedasg®n into@
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The vacuum terms given by Equations (3.322) - (3.324) are logarithmi&neeld, which is why they are
excluded from the fit (3.332). These give approximately

3 T
~ AG (0 998x 28 + 1.000x 37 In( )) (3.333)

when fitted to the same range with= 1T.

3.5.7.2 Expansion Cofficients of #9(©)

The non-relativistic series expansion®f(®) can be obtained from the following expressions. For simplic-
ity, several contributions are added in the usual fashion:

gvaccolvac _ A (_ 1_]2'8 + 614| (@)) (3.334)
Gvaceol T#0 _ AG(9_622 + a)Z4) (3.335)
gvacfinvac _ AG(ZJ{—';G 614 In (?)) (3.336)
FyacfinT#0 _ AG Z2 (3.337)
gHTLcolvac _ A (__22| (m?) + 4_:;22) (3.338)

1 m 1 1

HTLcolT#0 _ el INY_ =2 =
F AG(+ 3222In( : ) = 4824) (3.339)
FHTLfinvac _ (3.340)
FHTLfinT20 _ o (3.341)

—5 1

T"’#O _AGW) (3.342)

Altogether, the non-relativistic limit of °(¢)

o@nr _ SYPMy (_i_i (A) 1 __) -
F = Gl-5z5 = 52" 4822 144024 +mOo(2, e 7). (3.343)

The thermal coficients %22 — t1z7* may be compared to [58] and by a fit withih = (10%7... 10%)T at
I8l = 10°3T andA = 1T. Due to large cancellations, the best fit is stable only if applied to each catitrib
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separately:

1
vaccol,vac ~ - _

F AG( X 1128+ 64In( . )xlOl% (3.344)

vagcol, T#0 __ ) —

F ~ AG( 5 6z2 x 1.000+ 60z4 X 1.03% (3.345)

1
vagfin,vac _ -

F AG256>< 1.000 (3.346)
gvacfinT#0 Ac;—z2 x 1.000 (3.347)
HTLeolvac AG(——ZZ |n( . ) X1.000+ 22 x 1. 04(3 (3.348)

HTLcolT0 N — _1

F AG(+ zzln( : ) % 1.003 4822 X 1061~ 7 7 x 0.937) (3.349)

7_~HT L,fin,vac ~ 0.000 (3350)

FHTLinT0 _ 0 900 (3.351)
T#0  _

F Ac;1440z4 % 1.056. (3.352)

This verifies the numerics in the non-relativistic limit.

3.5.7.3 Expansion Cofficients of 7

The non-relativistic expansion of the vertex corrections involve theatkation of IR divergences. There-
fore, these contributions need to be summed up. In total, the expansions

TAONR _ gwllemﬁ, 1 19 ™

J ——5 G 2422+ 360z4 +mo(8, e ) (3.353)
VacNR _gw|\(|2m§l 1(9 2A ™

g = -3 Gg(z+n ) m,0(s, e 71) (3.354)

can be obtained. The thermal ¢beients agree with those obtained in [58]. By using the numerical data
from Section 3.5.6.7 withit = (10%°...10%)T at|f| = 10°3T, the fit codficients are

Y2 19
gTeNR O ﬂl i (0 998 _Zz +1.01x %f) (3.355)

To obtain the correct fit of the second ¢deent, 7 7# is evaluated with a relative error of 10
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CHAPTER

Numerics

Within this chapter, details on the numerical treatment of the integrals is pro¥idgidce a huge parameter
range spanning over certain physically distinct processes is incoeplposeveral considerations are required.
These are described in the following sections.

However, the remaining unsolved integrals used for the Higgs and lefdfeensggies have to be evaluated
first.

4.1 Notes onl,, and I3"*°

The integrald,, andi3z'*° are obtained during the derivation of the lepton and Higgs self-enefiey.are

used particularly within the resummed propagators and hence are evaaagéedl times during integration
of theB and¥ terms. In order to save CPU timle,. andl_gT‘&0 are precisely solved and saved for later usage.

l,, is defined in (2.80). It depends on the two paramep®rand|p| and can be written as a function of
p+ = p° +Iplandp- = p° - |@l.
(2x+Bp+) (2x-Bp-)
(%1 =T [ ox ’ (4.2)
ex+1 (2x-Bpy) (2x+Bp-)

The advantage of this reparametrization is that the two-dimensign@®, |3|) can be written in terms of a
one-dimensional functioa:

12, (P 19) = T (a:(Bp+) —a=(Bp-)) . (4.2)
Furthermore, the symmetg(-y) = —a(y) allows the restriction to positive arguments 0:
(T 1 2X+y B
_fo gy |3 , a,(0) = 0. (4.3)

63 All numerical integrals are done by Mathematicl®tegratecommand, with routines lasting from seconds up to roughly 10
minutes per integral value on a typical desktop computer with the afort@ned precision. However, for those timingintegrate
should not output error messages. This can be achieved by the falométhods, and otherwise by raising the number of digits,
i.e. Mathematica'sVorkingPrecisionto avoid numerical noise from large cancellations. In special casesotiines have to be
optimized such that the integrands’ evaluation time is less thai®1s. Nevertheless, due to the parameter scans’ sheer number of
integrals, parallelization on a computer cluster is suggested.
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In the end, however, the numerically better behaved fundtioray be utilized:
°° 1 Xx+1

b.(y) = dx In‘ ’

=) fc; er+1 Ix-1

b:(y) is evaluated within a relative error of 1% in the range-13.8149< In(y) < 13.8151 at 9839 points
on a logarithmic scale. These values are interpolated and saved for Eger. for larger and smaller values
of y, the asymptotic formulas

27.(2
b_(y>) ~ 3y

can be used.

, a(y)=3b.(y). (44

N
N

T

b-(y<) ~ = cobe(y2)x . bi(yg)=0  (45)

The same approach appliesl_tﬁio, which is needed for the lepton self-energy. It is defined in (2.93) and
can be expressed using the auxiliary function

_ 1 1
T#0, .0 2
I3 (p,lﬁl)— [ j(;dx( l—|— l)xln

c(y) reads

BPp2 - 4%
BPP7 — 4%

= T2(c(Bp-) —c(Bps)) . (4.6)

y2 _ 4X2
4x2

c(y) = fomdx(exil + exl_l)xln , 4.7)

and is evaluated in the range6.47 < In(y) < 13.8151 at 14345 points on a logarithmic scale within a
relative error of 10%°. Again, those values are interpolated and saved. For a lgrtfe expansion

2 2

c(y>) ~ % In(y) - % (3+7In(2) - 36In(A) + 3In(r)) (4.8)

can be used, while for smaller argumeais quadratically suppressed and the numerical approximation

- cy) c(e®)
c(y <) ~ ey’ : ¢=lm V2 e2x2ear

~ 0.17328679514 (4.9)

is sufficient. A is Glaisher’s constant with the value(l) = 5 - ¢/(-1).

The 4¢? in the numerator of (4.7) is important for a smgjlsince otherwise the numerical precision is
spoiled due to a large cancellation in th&eiiencec(p..) — c(p-).

In this way, the final integrands f@& and¥ evaluate at least 100 times faster.

4.2 |IMT Transformation

Whenever one integrates over a pole of the typéwith 8 < 1 numerically, Mathematicaffers the pos-
sibility of applying several so called "singularity handlers”. One of themadRhT transformation, which
appears to be useful in many cases in this study. In the case of a singuibatx = 0 and the integration
region O< x < 1, the IMT transformation is defined via the substitution le ¢(t,w),0<t< 1,0 > 0,
with

p(t,p) =€, (4.10)

w is a parameter that is chosen appropriately to the width of the integrated pahe dbove exampbe™,

¢ removes the singular point and the new integrand goes to zete+¥dd. The pole is replaced by a smooth
function with a maximum at a certain point.is chosen such that this maximum is placed approximately at
t = 0.2, butw is at least in the range 04 w < 1.6 for numerical stability.
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4.3 PV Transformation

Several perturbative contributions involve 1-dimensional Cauchy ipahgalue (PV) integrations in di-
mension$* These may be evaluated along some suitable complex contours. Howevéryéisisgation
aims to stay on the real axis and to use the direct evaluation rule. Princlpab\are evaluated in a sym-

metric fashion like )
f(x

= | 411

f, oty ([ )5 (411

for some positive realg, b, and a real valued functiofi that is smooth ina,b]. If Equation (4.11) is
extended byn — 1 integrations, the whole expression becomasdimensional integral with a singular
hypersurface of dimensiam— 1. Furthermore, this hypersurface may be curved by any smooth catzdin
transformations.

In conclusion, ax-dimensional integral with a 1-dimensional Cauchy principal value cavdleated via

F) e ) 9
f/ﬁd X_g"l& fvg g(x)d X. (4.12)

V is the real integration domain containing the smooth pole hypersurfaegx/g(x) = 0}. TheV, equals
V minus a neighborhood df with orthogonal size:: V. = V/B.(T'). B.(T) is then-dimensionak ball
located at all points af .

The numerical limit in Equation (4.12) can be circumvented by the following tvasibdities:

() Find a coordinate transformation, such tlias plane. Fold alond symmetrically to obtain one or
more separate finite integrals over a smooth function.
For example, Equation (4.11) with<a < b can be split into

(f f) dx_faL):(_)de+LbL)?)dx. (4.13)

The first integral on the right-hand side has no remaining pole, difxe— f (—x) is of orderO(x)
atx=0.

(i) Find a complete and disjunct splitting bfinto sub-region¥;, and a corresponding smooth map from
eachV; to [0, 3", such that the limit — O™ in (4.12) is trivial. Sum each integramdespective td/;
such that the PV pole cancels under the integral.

If there is only one PV pole in the integration area, anf i§ plane, option (i) is clearly the better choice.
However, as one may have to deal with multiple poles crossing each otkien ¢i) should be mentioned.

It is always possible to construct a bijective m@p: [0,1] — [g,b] and¥, : [0, — [-a —¢], such that
®.(0) = -¥.(0) = ¢ P.(1) = band¥.(1) = —a. Equation (4.11) is then equal to
b 1
f ) iy — i f (—f@g“))@;(r) _HEG) (‘FE(T”‘Y;(T))dT. (4.14)
_a X e-0 Jo q)g(T) Tg(T)

’is the short notation fad.. The right-hand side integrand can be evaluated-ate. The series expansion

ate = 0 then results in ) )
f(0)(P5(0) +¥5(0)

e(1-Y4(0))(1+ @(0))

+0(9). (4.15)

64 A 1d PV inn dimensions is meant to be a 1d principal value integral which can be fouaduitable coordinate choice. After
integrating in this direction, the remainimg- 1 dimensions are free of PV singularities and integrable at least close polthe
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This pole ine shows that limit and integration can only be exchanged in (4.14) if the ctionamndition
d(0) = —¥;(0) holds. In the case of a-dimensional integral, for a PV pole of degreethis condition
reads _ _

O, ®(X) =0, ¥(x),Vxel',i=1...m, (4.16)

with n; andny being the outward oriented normal vectors of the two domains that areasegdnyl’. All
poles ine then vanish, and may be set to zero from the beginning. Hence, the subsciiptropped from
® andV¥ in (4.16). The casen > 1 can be checked the same WfayHowever, additional conditions on
the numeratoif and the integration domaw appear fom > 1. Nevertheless, if andV are such that the
integral does exist, the corresponding number of normal derivati#samd® atT" have to be equal.

4.3.1 Example

In the following equation, a non-trivial and analytically solvable example isicered:

1 5
ﬁi — dxdy = V2In(3+2V2) + x/éln(E (7- 3\/3)) +1In(6-25), (4.17)

with V = {x,y|0 < x < Min(1,2—y) A0 < y < -1+ V/5} being the area plotted in Figure 4.1. There are
two numerically problematic points, where procedure (i) is not applicable tramktforward way without
numerical limits. The poin0, 0) is problematic, sinc& is adapting the boundary &f. At the other point
(3- V5, v5-1), Tis hitting a corner. In order to apply method (ii), the following maps are cociste
They sparV = V; @ V7 in terms of functions that interpolate linearly between the boundaries, sattineh
PV pole atl’ is placed at the ling, = O:

r1: (0,12 > Vi, (ti,t2) = ((V5-3) (i - 1) 15, (V5 - 1) o) (4.18)
ra:[0,12 = Va, (13, 12) |—>((3— \/E)t§ +t1((\/§—3)t§ + 1) ,
(2- VB)t1 + V5-1)tp) . (4.19)
The functionsP and¥ are defined as
D(r,s) =rq(r,s) (4.20)
¥(r,s) =ra(r(1+c(s)(r-1)),s). (4.21)

c(s) can be solved such that the condition (4.16) is fulfilled forsadl [0, 1].6¢ In this way, the bijective
maps

®:[0,1% - Vy,(r,5) — ((V5-3) (r-1) &, (V5-1)5) (4.22)
¥ : 0,12 5 Va,(r,8) = | - (V5-3) s+

r(1+(v5-3))(4(V5-2)+r(V5-1+2(V5-3)<))
V6-1+2(3V5-7)¢ ’
s((6-2V5-7r2+3V5r2 +2(22-10V5+r (-18+8V5+ (55— 11)r)) <)
V5-1+2(3V5-7)¢?

65 Even though a principal value integral is typically not considered for segial of a pole of degree 2 or higher, this can be
integrated in the symmetric principal value scheme.

66 Ther-polynomial in¥ is not mandatory. However, it appears to be the most flexible substitufiamizh this method can be
implemented into Mathematica.
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Figure 4.1: Plot of th€x,y) domainV in (4.17). The coloring shows the splitting into the two regidisandV,. The mesh lines
represent the lines of constardinds of the coordinate transformations (4.22). The PV hypersuifasdocated at the
green line.

are constructed. They are visualized in Figure 4.1. The mesh lines eepthe lines of constamtands,
such that the smooth normal derivativesiohnd¥Y can be observed &t

Those variable substitutions are applied to the integrand of (4.17) anld, ieben added together, in a
smooth d ds integrand that is free of poles. Consequently, a fast and convengem¢rical solution of
principal value integral (4.17) that fits to the analytic expectations is obtained
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4.4 Evaluation of By

The wave-function type contributiaBo(p) for massless on-shell RHNs is defined in Chapter 3.4.1.2. Itis
expressed in the plasma frame for positpfe p° = +|@|. The integration variables are co&, p) and|K|.
k is the 4-momentum of the lepton.

The coupling expanded form in Equation (3.44) contains the sum of the tamchesk® = +|K. For
KO = —|K the integrand
L I (p=k)
dcos«(k, p) dK %M (f1(=K0) + f_(p° - ko))‘ (4.23)

KO=—|K|

is free of singularities, becauﬁég"(p— k) is proportional to(p — k)2. This case can be integrated nu-

merically without further considerations. Howev& can be separated into a vacuum and a thermal part
according td‘[i‘. The vacuum part can be solved analytically.

Fork® = +|k| the integrand has a singularity | = |K| in the Higgs's Bose-Einstein-distribution. How-
ever, this is flattened by the Higgs self-enefds such that only an integrable peak remains. For numerical
stability, this is integrated by splitting thekflintegration range into & K| < ||, Il < |kl < 2/p], and the
remaining range|p| < [k.. The IMT transformation is then utilized to flatten the peak. Those three parts a
integrated separately and add to the final result in (3.46).

For the resummed case using the Higgs propagator (3.48) W[f[ﬁ;uthe pole structure does not change.
Only the integrand becomes more complicated, and the vacuum part neegledtcblated numerically.
Otherwise, the same method can be used.

If T} is included I T} cannot cancel the pole at the Higgs mass st k)* = TT}|. This leads to a peak
that is hit during integration within thi® = —|k| branch®” This term has to be split in order to flatten the
peak using the IMT transformation. Hence, the peak position and its widtlicshe known analytically.
SincelT} is well approximated by the thermal mae§2 = 3G+ ih? + 14, in the ultra-relativistic regime,
the peak position is approximated by

2
mth

0 _ ¢
|k|peak— |ﬁ|(1—COSA(k, p)) . (4-24)

Furthermore, the propagator width along the lije= |pl is modeled by the consta&ft

7]

1—coss (K, p) | K*=Inikipea
f.:osz(k,p):l—l()‘3

5Kl = (4.25)

The splitting of the integration region is done using those approximations veowre integrand takes the
full T andIT;".

This strategy works in particular when theépdintegral foryy is included. The integrand can then be
symmetrized inkl o |Al, and the whole integration area shown in Figure 4.2 is parameterized by ¢ee thr

67 For thek? = +|k| branch, the evaluation strategy does not need to be modified.

68 The IMT transformation can of course tolerate a dynamic varying widthwéver, it is numerically preferable to have some
constant width that applies for the whole integration at once.
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functions(|p}, [K) = ri(ts, t2), (t1,t2) € (0, 1)%

a(l—tz) 1
=|——% 14> _+alt -1 4.26
it vt T valte )) (4.26)
at(1-tp) bt, 1
o= + —14+ = - vVa(-1+1t) + Vbt 4.27
Tl 1+ Va1 vb+ ¢ t ( 2) ? (4.27)
b to 1 1
r3 = + -2+ Vb+ = + . 4.28
° -1+ \/B—|—% 1-1% ty 1—t2] (4.28)

P

Figure 4.2: This is a plot of the parametrisationsr, andrz for some arbitrary numbers®a < b. The mesh lines correspond to
lines of constant; andt,. The green, blue and yellow lines corresponthte- 1,t, = 0 andt, = 1 respectively.
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Ther; are derived according to the cutting lines

B =0 K| = oo K = Ipl (4.29)
- a i b
Kl = — K=— 4.30
K| 5 K| o (4.30)
th2
for some fixed numbers & a < b. a andb are chosen to ba = — andb = 2a, such that

1-cos«(k,p)
r, parametrizes the interval @ || < |I2|peak andr; is the rangaﬂpeak < |pl < \/?ll?lpeak. Therefore,
ri andr;, correspond to the aforementioned "pole" part whigas the "medium” or "non-pole” contribu-
tion. For the actual numerics, the IMT transformation is applied in all thremmegwith respect tdy
and the widthw = 106|I2|. Furthermore, in the regiorrg andr, the IMT transformation with respect to
t3 = 2 -2 cos«(k, p) with w = 107% is utilized.

All'in all, this method yields the aforementioned results. Additionally, this is the rgéstrategy for the

numerical integrals in this work. It can deal with arbitrary widths and is oes$tricted by the number of
digits used when evaluating the integrand.
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4.5 Evaluation of 82(©) and #9(©)

The perturbatively calculated wave-function type contributi®?s®) and #°(©) are integrated along the
same lines. Both are expressed in Chapter 3.5.1 irptframe and consist of one- and two-dimensional
integrals in d cog(k, p) and dk.. The two-dimensional integrals typically feature a principal value integral
atllzl = % a discontinuity atRl = my, and a peak at the Bose-Einstein distribution of the internal Higgs

at (|I2| —my) p0 - |I2||6| cos«(k, p) = 0. The peak is regulated by the RHN mass and becomes important for
approximatelymy < 0.1T. Furthermore, théHTL, col) contribution of 79(©) contains a peak that may
ultimately end up in a principal value type integral in the limiy — 0. Even if¥9(©) is not evaluated
atmy = 0, this limit should be respected fany < 0.1T to obtain stable humerics. On top of that, some
contributions serve a sign change in e¢k, p) & —cos«(k, p). Those may result in large cancellations
within the integrand of contributions coming from ca¥, p) = +1.

The integration strategy is to parametrize the integration domain by functiongorating those special
lines, and to apply the IMT and PV transformations afterwards. For thed&gformation, a maximal pole
degree of 1 is assumed. For simplicity, the reparametrizations are appliedwo-alimensional integrals,
regardless of whether the corresponding transformation is needed ¢turthermore, the one-dimensional
integrals are easily extended to two dimensions. Hence, one does ndbraelyze each term separately
to find the corresponding parametrization.

After the symmetrization int cos«(k, p) = cos, the remaining integration area is<0 cos < 1 and

0 < |k| < . The special lines are

= = m =
Kl = Kl = 7“ Kl = my (4.31)
0 (0]
K = oo K| = OmN—p K| = KOmN—p (4.32)
pO + cos|f| pP — cos|f|
with « > 2. For technical reasofts
0 0 0
K = 1(% + %) = % cos= P for p° < 5/ (4.33)
p” + cos|p| p” — cos|p| S|Pl

are included too. The full domain is parametrized by the following 11 functions|K|) = ri(ts, t2)
with (t,t2) € (0,12

R - )
o=(1-y MG SAe) ) (4.35)
:( -y _mN(I6|<t1;2>pt§fl>;jélz§°(t%—4)>) (4.36)
o (1m0, i)
:( p°;|1m , mN(rz(tlittzl:g+4>—zo>) (4.38)
:( F"’;llﬁl , e 5>) (4.39)
o= g RO ) 40

69The PV transformation is applied using an automated Mathematica codecotresiemands those extra lines.
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| —tap+p+5iBi my (518t (1-5t2)ta+p° (Btat3 - (t144)1,-20) )
f8 = ( 5/l ’ 4(p°(t1-6)-5Iplts ) (4.41)
ro = ( —ty PO+ tato PO+ PO Bitato my (pP-IPit+IBl(h-1)t) ) (4.42)

PO-1plts ’ P18 '

_( P-fu m (-1Bit2 (1B15+ p°t2 ) +1Bit2 (1Bit2t2+p°) +p°( PO 1Bty ) ((x-1)2+1)) ) 4.43
10 (po—lﬁm ’ P(P°-17) (4.43)

_( t=)(p-IPut) g (pP-1Bt) | q, ) 4.44
f11 ( 1Bt C T e T ) (4.44)

These expressions already include the PV transformation at the matchinday@es of; andr,, r3 andry,
rs andrg, r7 andrg, andrg andrio. See Figure 4.3 for a parametric plot of the
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Figure 4.3: This is a plot of the parametrizationsisingp® = 2|f] and« = 2. The mesh lines are lines of constanandt,.

If p° < 5| 6|, the parameterizations, ..., rs have to be used instead i, . . ., r4. With the help ofx, the

principal value type pole akl = pOTZc?;ﬂ’ i.e. the sum ofg andryg, is separated from the continuum

integralryq in dllzl up to infinity. For the actual numerics, a fixed= 2 is used. Furthermoré, andt, are
chosen such that the peaks and poles are all pladed-a0.
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Ther; are applied to the symmetrizeP(®) and#9(©) terms. After summing over al| the IMT trans-
formation is applied at, = 0, and the integrals ovey andt, are evaluated. In this way, the results of the
Figures 3.15 and 3.17 are produced.

4.6 Evaluation of B

The wave-function type correction to the neutrino production rate usiegtamrmed Higgs boson propagator
is formulated in Section 3.5.2. Here, some remarks are provided on howsthlesria the Figures 3.19 and
3.20 are derived. The method itself is the same as in the last sections. Offigrardiparametrization is
encountered.

The parametrization from the Equations (4.34) - (4.44) cannot be usedibe the Higgs obtains a thermal
massrrfﬁh. The following approach appears to be more appropriate. First, the a'utimgwariablell?l is

redefined. Equation (3.161) contains the sum of two terms it —my + IKl. However,K| only appears

in squared form, or multiplied by cagk, u) within k- u. Hence,|l2| can be redefined to be some abstract
variable running from-co to co. In the same step, the sum of the tkfcases is absorbed. For notational
simplicity, cos is defined as cascos«(k, u). Hence, theB integral becomes

2
(27)?

B(p)= =aulYP My f d|l?||l?|2(2 d SdF 8 (p, K, K)) . (4.45)
-0 k2 -T11

2+ )

T . . . oo mA—(mih)2 .
Within this definition, the propagator has its maximum approximateli at |k|; = 2mN¢ . This value
can be positive or negative. In particular, during variatiommgfand the couplings, a smooth crossover is
encountered. Without thi-redefinition in (4.45), the crossover is numerically much more challenging.
With the redefinition, some reparametrizations that also dkbss O smoothly can be found. Of course, a
more precis¢|2|1 can be found numerically. However, within the used parameter range thledaviation
of the approximated pole maximum from the true one is much smaller than the pole Widtiermore,
the additional symmetrization in cos as applied in Section 4.5 is not needed dwertm#iinition. In the

limit of small my, the peak of the Higgs Bose-Einstein distribution is encounter¢d at|l2|2 = pOTZE;ﬁ'

Becaus¢|2|2 here is always larger thaﬁl, those peaks do not cross.

The following reparametrizatior(s:os,|E|) = ri(t1, t2), t1, t2 € (0, 1)?, are found such that the peaks can be
integrated in the simplest way:

n=(2u-1, K+ 3(Ki-IK2)t ) (4.46)
rp=(2u-1 , K+ 3(K2-IKt2 ) (4.47)
r3=(21-1 , K+ 3(Ky—IK2)t ) (4.48)
fa = ( 2.-1 , K2+ (K- Kt ) (4.49)
s=(2u-1, oot (4.50)
o=(2u-1, Badeiion) (4.51)

ri,...,rs split the integration domain into symmetric parts around the pea||?ﬁ zamdll?lz. rs,...,rs deal
with the remaining domains up tkl = +co. Figure 4.4 shows the reparametrizations exemplary.
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The variable transformationgare applied to the integrand of (4.45) and summed up. Afterwards, the IMT
transformation is used & = 0 to deal with small pole widths, and at = 0 to account for the collinear
effects at cos= -1.
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4.7 Evaluation of # and %y

This section provides remarks on how the wave-function type correctitie toeutrino production rate using
a resummed lepton propagator can be evaluated. The massiverRidivn is formulated in Section 3.5.2.
Likewise, the massless cagg can be found in Section 3.4.1.3.

The term¥y is expressed in the-frame, since this is the only available frame. Otherwise, one may expect
thatF is better formulated and numerically evaluated in the frame of the massive RHRhé.p-frame,
becausany is the relevant scale. Nevertheless, a lepton in a thermal plasma of gasmesbwms a com-
plex dispersion relation that spoils the simple treatmenf afithin the p-frame — as it was done f@ in
Section 4.6. Even though the position of the lepton poles can be solved naltyekoowing them ana-
Iytically results in a much more stable numerics and is therefore favorableleptun dispersion relation
can be solved analytically in the HTL approximation with respeai-foame variables, as it can be found
in [82]. Therefore is better evaluated in theframe. In addition, the method can be copieddgr In the
following pages, the lepton dispersion relation is derived for the preseat following the steps of [82].

lepton dispersion relation: According to Equation (3.50) the spectral lepton propagator is

y-a2a-b-y-b(a?-b?)
P& (p)=P PR , a=p'-x | p=xM" @52
LB (p) L @ 0)2 1 (2a.D) R Pt -2 | (4.52)

The dispersion relation @ (q) in the HTL approximation is given by the zeros of

(a-%" Q) ~ (T () = (4.53)
G274 (T, ) (~oPin ({6550 ) + cllat) - 16((GIaT? + 8a)” - 64(cC)2a1’)
1024q"

(4.54)

In line (4.54), the assumption to find a solution only é8r> 0 is used. In fact, Equation (4.53) also
has a zero fog? < 0. Nevertheless, this cancels with the numerator of the propagator saahtibtal
there is no tachyonic pole. This cancellation works only if the propagatoenator is not expanded
in the couplings.

With hslp of the substitutiox = q |d|’ i.e.q® = g%, and|q = £ +/GT?y, the zeros of (4.54) are
given by

O=(InIX—-x+y+1)(xy+x—1-xn|x). (4.55)

In choosingg® > |g > 0, i.e.x > 1, the two solutions

1692 4

X = —W_l( e o2~ ) (4.56)
_16q%

X = —ng(—e o1 ) (4.57)

are obtained.W is the LambertW-function, andWp(z) andW_1(z) are the two real solutions of
z = Wé'. x, andx_ are the two "HTL" branches of the dispersion relation that are plotted in
Figure 4.5.
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Figure 4.5: Dispersion relation of the resummed lepton plotted in the caSe=efl. The density plot in the background shows
u- Zf‘[(p), and visualizes the true dispersion relation given by the maxima of thegatqr.

The green lines are the zeros of Equation (4.53) without the HTL apprdwimand the background
density plot shows logarithmically the full propagafBr.Hence, in the present case, the disper-
sion relation is better modeled by the HTL approximated form than by the expewgrima of the
Breit-Wigner form in Equation (4.52). Nevertheless, regarding the nigsyére HTL approximated
dispersion relation

1692 1
Wy (e S -

Q% = +ldl — (4.58)
e |
W_1 (—e GT ) +1
_1892 4
Wo (—e GT2 ) -1
o = - (4.59)

1692 4
wol-e B 1

is enough for the analysis and also the most advantageous analyticallye Bigualso shows the

asymptotic dispersion relation branches fgr > T. In particular, the thermal lepton mass
2

164
(m}h)2 = 2GT? can be verified by first expanding, (q) in € e at 0 up to the leading order,
and afterwards expanding the resultifgn @ at co to the leading order.

70The vacuum self-energy is dropped according to Section 3.5.2.1.
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The integration domaiB for the ck° dik integral in¥ is determined by
1 = >, = - -
0 < ga(u, p.K) — 5 (K0 + 1K) (€ + 1K - 2p°) + n§)) (k°2 — 2KO(IK + p°) + K + 2IKip® + mZN) . (4.60)

The maximum of the Bose-Einstein distribution of the internal Higgs particle igddcatk® = p°. This
peak should be evaluated symmetric&llgven if it is regulated byny. The domainB, together with the
peak position of the Bose-Einstein distribution, and the p&&kd the lepton propagator given by the above
dispersion relation are used to parametrize the integration domain in termsctibhs{kOK|) = r;(ts, t2)
with t1,t; € (0,1). Under the variation of the parametery, |p| andG, the peakskg move across the
domainB. Therefore B needs to be parametrized case by case. This is done automatically dutiragiena
for each parameter choice independently. Consequently, thoaanot be shown here. However, there are
at least 5 dierent cases that need to be considered. They are sketched in FiguFégdire 4.6 shows the
parameter space for each case. |-V are relevanifprz 0, and formy = 0 only IV and V need to be
considered. Finally, the results for a massive RHN can be found in theeF8g21, and massless neutrinos
are shown in Figure 3.10.

1.0

10.

1.0

IpI/T

0.10

mN/T

10.

Figure 4.6: The plot relates the cases I-V to the corresponding ptaesmg, |§| andG relevant forf .

"1j.e. in the principal value scheme, to optimize the numerical cancellatiomgsf tontributions.
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4.8 Evaluation of 59(©)

The final numerics chapter provides further remarks on the evaluatigmes forJ. J is the sum of
gyac 4 gT#04=0 4 qT#0cor  qgvac g glready solved analytically in (3.317). However, #9410 and
JT#0c0m need to be evaluated numerically.

The first one is obtained by the symmetrization according to Equation (3.88Dbyssettingl = 0. The inte-
gration domain off T*94=0 and its splitting are plotted in Figure 3.31. The boundaries of those sulmregio
fit to the propagator poles aty = 0 and to the discontinuities which are generated by adding several
contributions of diferent support.

Even after the symmetrization (3.301) is done, there are still integrable polestfie Bose-Einstein dis-
tributions of the internal bosons éx,y) = (0,0) and(Xx,y) = (% 0). They are only located in regions
I...lll, but notin IV.. .VII. Those poles are evaluated numerically using the IMT transformation.

For technical reasons, the polynomial part of the integrang'o?=9 is separated by a partial fractioning
into terms proportional t 5 )l( and%, and the 1 remainder. Those 28 integrals, i.e. 4 fractions multiplied
by 7 regions, are evaluated separately.

In regions I, 1l and III, thexiy and;l, terms have an opposite sign. This results in a large cancellation for

my < 0.1T, such that the;(l—y and% terms have to be evaluated within one integral. 'E@and% terms

in regions |..lll plus the 1 term at region VII form the dominant and non-vanishingticoations in the
ultra-relativistic limit.

For the case of smathy, there are several other peaks in the integrand from the Bose-Einstgibudtions.

For a well-behaved numeric, their positions should be obtained from the dyizettiens. Depending on the
parameter choice, the peaks cross each otheffierdint formations such that one should again analyze each
case in order to find an appropriate parametrization, as is dor€.fon fact, by utilizing a large enough
value for Mathematica'dlintegrateoptionsMinRecursionand MaxRecursionthe integrals can be solved
with a relative error of about 18 in the smallmy range in exchange for CPU time.

The other partg T#0°" is derived in Equation (3.308). It accounts for the error that is dgr@itching
from thea — 0 prescription to the principal value type prescription. It is a three-dimaakiotegral with
two integrable poles at = B andx = 0, that are related to those (at y) = (3, 0) and(x,y) = (0,0)
of 77#01=0_ Depending on the parameter choice, a large cancellation of the contribatione and below
X = % occurs. Hence, this pole is integrated symmetrically even though it is not@paivalue. Both
poles,x = ¥ andx = 0, are integrated using the IMT transformation.

The final results can be found in Chapter 3.5.6.7.
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CHAPTER

Conclusions and Outlook

5.1 Summary

The aim of the present investigation was to formulate an approach to obtaiffdrential production rate of
massive and massless singlet right-handed neutrinos relevant fordapgig. Previous attempts were only
able to account for the non-relativistic regime, where the neutrino mass s lamger than the temperature.
Here, several approaches were formulated and analyzed in ordaaio the diferential production rate of
massive right-handed neutrinos. In combination, they covered the ful mage from the non-relativistic
up to the ultra-relativistic regime.

The study was based on the Closed-Time-Path formalism, since this is aificplerapproach to thermal
non-equilibrium Quantum Field Theory. Furthermore, the neutrino ptiamhucate was derived in the 2Pl
approach from the 1- and 2-loop spectral neutrino self-energy2Phapproach was relevant for a consis-
tent description of the screeninffects in the intermediate and ultra-relativistic regime. However, the 2PI
diagrams were expanded in the Standard Model couplings for calcullegiomalicity, until the NLO of or-
dinary perturbation theory was reached. In this way, the improvemergrafcal inclusion of resummation
effects was analyzed up to the point where all soft and collinear diveegemere screened by the thermal
plasma.

Up to the 2-loop 2PI order, the neutrino rate is determined by wave-funatidrvertex type contributions.
It was pointed out that the wave-function type contributions involved iattalivergences from massless
particle exchanges within the thermal plasma. Those radiative correcpioiledsthe perturbation theory
and therefore had to be resummed. Consequently, the wave-functiorotygibutions could only be pertur-
batively described in the non-relativistic regime. This approach was dhléetperturbative thermal mass
insertion”. Within the perturbative approach, the cancellation of intermentittged divergences of the
real and virtual contributions was confirmed for thermal corrections too.

However, the vertex type contributions behaved much less divergemidyr ififrared divergences canceled
out under the integral at the perturbative level. Therefore, the firdteaokthe perturbative approach was
checked numerically for neutrino masses up to the ultra-relativistic regimeaebid for a resummation was
found.

Those numerical results of the wave-function type and vertex type cotitiits were verified by a fit to
non-relativistic expansion céiecients. In addition, the cdigcients were obtained analytically and verified
by the literature.
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In the ultra-relativistic regime, the perturbative wave-function and vestp& contributions possessed an
enhancement that was not found in the ultra-relativistic limit. This discrgpaas thought to be a physical
effect due to interferences of Bose-Einstein distributions. It was not ietegh as the breakdown of the
perturbation theory and the call for resummation, however, this just meatritih massless limity — 0
and integration was not exchangeable. Tlisa enhanced the RHN rate of the vertex type contributions
in the ultra-relativistic limit by a factor of two.

In the intermediate and the ultra-relativistic regime, the full propagatorsvanedemanded by the 2PI for-
malism, had to be used to describe the wave-function type contributionse phogagators were obtained
by the resummation of the 1-loop lepton and Higgs self-energies. Sincedblismnergies were obtained
perturbatively, the IR divergences of the hermitian self-energies had absorbed by a vacuum counter
term in addition to the UV renormalization counter terms. The IR counter ternjustiied to provide the
correctNLO rate in the ultra-relativistic regime up to some RHN mass scale in the intermediate regime
Furthermore, a region of congruence of this resummed approach tortinebptive one was found in the
intermediate regime. Consequently, this region was utilized to switch betweeaymtbaches in order to
describe theNLO RHN rate in the full mass range.

Furthermore, a subtlety of the Higgs resummed spectral propagator was féhe resummation of the per-
turbatively obtained Higgs self-energy led to a causality violating resumnmexdiéen due to the neglection
of back reaction fects. In order to obtain the correct resummed Higgs propagator, the sitfgsnergy
itself had to be derived using the resummed Higgs propagator. This kinthefigger-Dyson equation was
solved in the vacuum limit, and the solution was found to be causal. As a amrse®| an improvement of
the resummed Higgs function relevant for finite temperature was derived.

Finally, a method using gram determinants to easily provide integration domainsdesless and
massive loop integrals, and several tools numerically dealing with multi-dimeaisiotegrals having
one-dimensional principal values and poles of the resummed and the distribunctions with arbitrary
widths were investigated. Those contribute to the CTP formalism and theeseslied byPI efective ac-
tions, since the patrticle distribution functions and the resummed functiongispdirect analytic evaluation
that is usually applied to loop integrals at zero temperature in perturbatiorytheo

Some of the results are published in [75, 80] — as mentioned in the present tex

5.2 Outlook

There are several aspects in this work that can be investigated further.

First, the renormalization scheme for all relevant particles may be fixed wejkedefined mass and cou-
pling parameters. Furthermore, th@eet of resummed gauge bosons and their thermal masses should be
investigated. In this context, the IR counter term may be removed, such ¢heasmmed approach be-
comes valid in the non-relativistic regime too.

Second, a numerical solution of the causal and resummed thermal Higggptor may be found to explain
the validity range of the mentioned analytic improvement in detail.

Third, theNLO right-handed neutrino rate may be evaluated from the wave-function atex\kagrams
using 2PI functions for all propagators. Hence, one should cheekheh interferences of the continuum
parts of those propagators give sizable contributions. Even thouglettexwiagram was numerically IR
finite in the ultra-relativistic limit, the #ects of resummed functions may be investigated. In this context,
the physical correctness of the Bose-Einstein interferences andstligrg rate enhancement of the vertex
type contributions may be confirmed in the massless limit as well.

If those tasks are completed, a major step forward in clarity and undeirsgaofdthe propagator resumma-
tion may be achieved.

Furthermore, as previously mentioned, the 3PI formalism should be coedifite a self-consistent descrip-
tion of an dfective action up to 3-loop order. The vertex type contributions then invelsemmed vertex
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functions. The size of such vertex resummatifieets should be analyzed.

In addition, flavor &ects like the flavor resonant enhancement may be investigated using skeatedtre-
summed functions. In particular, if several bosonic particles are invptiiednterferences of Bose-Einstein
distributions may provide additional contributions.

Finally, the mentioned approach can be used to derive production ratésaasport cogicients for other
scenarios that physically happen on non-relativistic up to ultra-relatiasttes.
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