
n3l - Int’l Summer School and Workshop on Non-Normal and Nonlinear
Effects in Aero- and Thermoacoustics, June 18 – 21, 2013, Munich

NONLINEAR SELF-EXCITED THERMOACOUSTIC

OSCILLATIONS OF A DUCTED PREMIXED FLAME:
BIFURCATIONS AND ROUTES TO CHAOS

Karthik Kashinath∗1, Iain C. Waugh1, Matthew P. Juniper1

1 Cambridge University Engineering Department, Trumpington Street, Cambridge - CB2 1PZ, United Kingdom
∗ Corresponding author: kk377@cam.ac.uk

We study the bifurcations of a ducted two-dimensional premixed flame using numeri-
cal simulations of the coupled dynamical system. When the flame position in the duct is
changed the system undergoes transition to period-1, quasi-periodic, period-2, frequency-
locked and chaotic oscillations via different bifurcations. For certain parameter ranges mul-
tiple stable solutions exist and the ultimate state reached depends on the initial condi-
tions. Hence there is hysteresis and mode switching is possible. Often the system traverses
through intermediate states before reaching its final stable state. Two routes to chaos are
established for this system: the period-doubling route and the Ruelle-Takens-Newhouse
route. Flame images show that the flame wrinkles have multiple time and length scales,
which reflect the nonlinear behaviour seen in the time series. This study complements re-
cent experiments by providing a reduced order model with approximately 5000 degrees of
freedom that captures much of the complex nonlinear dynamics observed in the laboratory.

Most studies of nonlinear thermoacoustics assume that the oscillations are periodic with a dominant
frequency and a fixed amplitude, in other words, they assume that the system always reaches a period-1
limit cycle. Recent experiments, however, reveal that even simple thermoacoustic systems exhibit non-
linear behaviour that can be far more complicated than period-1 limit cycle oscillations [1–3]. By vary-
ing a control parameter in their thermoacoustic system, Kabiraj et al. show that the system undergoes
several bifurcations resulting in a variety of nonlinear oscillations including quasi-periodic, frequency-
locked and chaotic oscillations [1]. Experiments in large industrial scale thermoacoustic systems by
Gotoda et al. reveal that as the equivalence ratio increases, the thermoacoustic behaviour undergoes
a significant transition from stochastic fluctuations to periodic oscillations through low-dimensional
chaotic oscillations [4].

A few models do not assume a priori that the system reaches period-1 oscillations [5–8]. But these
models generally assume that the unsteady heat release rate is a simple, often polynomial, function of
the pressure or velocity fluctuations, so that the study may be analytically tractable. This assumption,
however, is unrealistic because the heat release rate of flames depends not only on the instantaneous
acoustic pressure or velocity, but also on historical values, because a flame has memory [9]. The current
flame shape and heat release rate depends on the integrated effect of past perturbations. Hence, simple
analytical descriptions of heat release rate that do not account for memory effects cannot capture the
complexities of unsteady flame dynamics.

In this study, therefore, we use a more realistic flame model with simple duct acoustics and do not
assume a priori that the system reaches a period-1 oscillation. We investigate the nonlinear dynamics
of a ducted two-dimensional premixed flame using numerical simulations of the coupled nonlinear dy-
namical system. This resembles the thermoacoustic system that has recently been investigated in detail
experimentally by Kabiraj et al. but differs in the fact that we use a 2-D flame and not an axisymmetric
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one [3]. We use techniques and well-established results from dynamical systems theory and nonlinear
time series analysis to understand the nonlinear behaviour of this system.

This study relies on analyses of the time series from several simulations of the coupled system for
different parameter values and initial conditions. This is a time-consuming process. Continuation tech-
niques are more efficient at tracking limit cycles and their bifurcations. Waugh has developed a matrix-
free continuation method for a similar thermoacoustic system with an axisymmetric flame [10] and
shown in a separate paper in this conference how this technique can provide insights into the behaviour
of the coupled nonlinear system [11].

1 The Thermoacoustic Model

We focus on the nonlinear dynamics of the flame, keeping the acoustic system simple. In this study we
consider a duct open at both ends with a two-dimensional laminar premixed flame located at a distance
x̃ f from one end. The acoustics can be treated linearly even for large acoustic velocity fluctuations be-
cause the perturbation Mach number remains small [12]. A compact flame assumption is used here
because we assume that the flame length is small compared to the wavelengths of the duct’s acoustic
modes. The governing equations in dimensional and non-dimensional form have been described in
detail in previous studies that have used the same acoustic model [?, 13]. In this formulation we have
not accounted for the effect of temperature change across the flame on the acoustic modeshapes and
frequencies. This is a reasonable assumption, however, because the flame occupies a small fraction of
the cross-section of the duct (0.2), although this means quantitative comparisons with experiments are
not possible.

The flame is described by the kinematic G-equation model using a level set approach. The principal
assumptions of the model are that (1) the flame is a thin surface separating unburnt reactants from
burnt products; (2) the influence of gas expansion across the flame front is negligible. These simplifi-
cations allow the flame to be modelled with a much smaller system than would be required for fully-
resolved CFD. Assumption (1) allows for the flame to be tracked using the G-equation, which we have
described in detail in our previous studies [14, 15]. Assumption (2) allows for the velocity field to be
independently specified, neglecting the effect that the heat release has on the flow-field. In a coupled
self-excited system as in the present study, however, the velocity field around the flame is perturbed by
the acoustic field at the burner.

Studies of acoustically forced premixed flames have shown that acoustic waves induce velocity per-
turbations at the base of the flame [16, 17]. These velocity perturbations then travel along the flame,
distorting its surface and therefore causing flame area fluctuations that result in unsteady heat release
rate oscillations. Therefore the perturbation velocity is modelled as a travelling wave that originates at
the burner lip [18]. Experiments on laminar premixed flames [19] and direct numerical simulations in
our previous work [15] have shown that the phase speed of these velocity perturbations is not equal to
the mean flow. It is a function of the forcing frequency but is independent of the forcing amplitude. Fur-
thermore, we found that for a slot-stabilized 2-D premixed flame it is usually less than the mean flow in
the range of frequencies relevant to thermoacoustic oscillations.

The acoustic perturbations in this study are non-harmonic and therefore we cannot use a frequency-
dependent phase speed because the frequencies are not known a priori. So we assume a constant phase
speed, but one that is different from the mean flow. Accordingly, the non-dimensional streamwise per-
turbation velocity field may be found by solving the 1-D advection equation,

∂u

∂t
+ 1

K

∂u

∂x
= 0 (1)

where, K = ũ0/ũc is the ratio of the mean flow velocity to the phase speed of velocity perturbations.
In our previous work we have shown that K has a strong effect on the nonlinear behaviour and that
subcritical bifurcations exist only for K > 1 [14, 15]. We assume K = 1.1 in this study. The boundary
condition is that the velocity perturbation in the flame domain at the burner lip equals the acoustic
velocity at the flame position, u(xbur ner , t ) = uacousti c (x f , t ). Therefore the axial velocity at a point in
the flame domain is the delayed acoustic velocity at the flame position, with a delay equal to the time
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taken for the travelling wave to propagate from the burner to that point. As in our previous work [15,20],
we solve the continuity equation within the flame domain to find the transverse velocity perturbation
field.

We have chosen to anchor the base of the flame to the burner lip. Recent experiments on a self-excited
ducted premixed flame show that flame lift-off occurs at large velocity fluctuation amplitudes and can
lead to complicated nonlinear behaviour such as intermittency, ultimately leading to flame blow-out
[3]. This cannot be captured in our model. Flash back, however, is allowed to occur using the boundary
condition proposed by Dowling [21] and implemented in the level set solver by Waugh [10]. We have
neglected in the influence of curvature on the flame speed in this study, but this has been included in
a continuation analysis of a similar thermoacoustic system by Waugh [10]. Neglecting curvature effects
on the flame speed results in very sharp cusps on the flame surface, which is unrealistic. This, however,
allows faster computations because curvature is a second order quantity that requires a much smaller
timestep for numerical stability.

For premixed flames with constant flame speed, the heat release rate is proportional to the flame
surface area, which is calculated as in previous studies [14, 15, 22]. The simple velocity model we use
here results in an unsteady heat release rate whose mean is less than the steady heat release rate of the
unperturbed flame, which is unphysical. The thermoacoustic oscillations are not affected by the mean
heat release rate, however, so this simple model is retained.

Figure 1: Bifurcation diagrams with flame position, x f , as control parameter with different numbers of
Galerkin modes, Ng , in the discretization: (a) Ng = 1, (b) Ng = 2, (c) Ng = 3, (d) Ng = 5, (e)
Ng = 10, (f) Ng = 19, (g) Ng = 20 and (h) Ng = 21. At a given value of x f the points on the dia-
grams are the peaks and troughs of the velocity time series data once the system has reached
a stable state. (a) shows that for Ng = 1 the system always reaches a period-1 limit cycle. As the
number of modes is increased modal interactions result in more complicated solutions such as
period-2, frequency-locked and quasi-periodic solutions. Further, the maximum amplitudes
of oscillations are significantly higher than the single-mode case (a). Comparing (f), (g) and (h)
shows that the solutions are independent of the discretization when Ng is sufficiently large.

The evolution equations of the coupled nonlinear system: the G-equation, the acoustic equations
and perturbation velocity equations are solved simultaneously numerically using a WENO 5th order
scheme in space [23] with a 3rd order TVD Runge-Kutta scheme [24] for time integration. The non-
dimensionalized spatial and temporal resolution in all the simulations are 5×10−3 and 10−3 respectively,
with a uniform mesh spacing in both spatial directions. For the G-equation computations, the local
level set method is used to achieve a significant reduction in computational cost [25] and is solved
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using LSGEN2D, a general level set method solver, developed by Hemchandra [26] with extensions and
modifications by Waugh [10].

2 Results

2.1 Bifurcation diagrams

The qualitative nature of a nonlinear dynamical system is best described by the bifurcation diagram,
which shows the changes in the nature of solutions to the governing equations as a control parame-
ter changes. The number of Galerkin modes used in the discretization of the acoustic equations affects
the interactions between different acoustic modes and therefore the solutions of the governing equa-
tions. When there is more than one Galerkin mode, there can be energy transfer between the modes via
the heat release rate term in the energy equation, resulting in a more complex behaviour and a non-
harmonic acoustic waveform.

Figure 1 shows bifurcation diagrams with flame position, x f , as control parameter using different
numbers of Galerkin modes, Ng . At a given value of x f the points on the diagrams are the peaks and
troughs of the velocity time series data once the system has reached a stable state. We choose the veloc-
ity at the flame position as this is most relevant for the flame dynamics.

Figure 2: Bifurcation diagram with flame position, x f , as control parameter. The u f values are the peaks
and troughs of the time-series once the system has settled to its final stable state. One set
of points was obtained by increasing x f starting from the stable state at the previous x f .
The other set of points was obtained by decreasing x f . The different colours represent the
most dominant acoustic mode in the power spectra; mode-1 is shown in red, mode-2 in blue,
mode-3 in black and mode-4 in green. Other parameter values are φmean = 0.85, L f /R = 7,
L f /ML0 = 2.2, K = 1.1. The sequence of bifurcations are explained in the text. This chart shows
that the system can have stable period-1, period-2, period-4, frequency-locked, quasi-periodic
and chaotic states depending on the x f and initial conditions. There are several bi-stable re-
gions, hence the system has hysteresis and mode-switching is possible.

Figure 1(a) shows that for just one mode in the acoustics the system always reaches a period-1 limit
cycle. The maximum oscillation amplitude occurs at x f = 0.25 and is about one half of the mean flow.
In our previous work we have shown that period-1 limit cycles obtained in the frequency domain using
a flame describing function (FDF) approach are the same as those obtained in the time domain using
a single Galerkin mode in the discretization [14]. This is because the FDF approach is quasi-linear and
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ignores the contribution of harmonics in the heat release rate to the acoustic velocity and pressure,
as is the case when only one mode is used for the discretization. Furthermore, by definition, the FDF
approach cannot include modal interactions.

As the number of modes is increased we see that modal interactions result in more complicated solu-
tions such as period-2, frequency-locked and quasi-periodic solutions. Further, the amplitudes of oscil-
lations are significantly higher than the single-mode case. This shows that even though the amplitudes
of oscillations in the higher modes are very small because they are heavily damped, they have a strong
effect on the oscillation amplitude and the nature of solutions of the whole system.

Comparing subfigures (f), (g) and (h), i.e. Ng = 19, 20 and 21, we see that the solutions are nearly
independent of the discretization when Ng is sufficiently large. We have used 20 modes for the rest of
the simulations in this study.

Finally, it is interesting to see that just a few modes (3 to 5) are necessary to capture most of the
complicated features seen in the fully converged solution using 20 modes (Fig. 1(g)). This is promising
for time domain computations. In the frequency domain, however, it is not trivial to extend the FDF
approach to include the effect of modal interactions because this requires forcing the flame at multiple
frequencies simultaneously to capture the response of the flame to non-harmonic inputs.

Figure 2 shows the bifurcation diagram with flame position, x f , as control parameter. One set of
points was obtained by increasing x f starting from the stable state at the previous x f . The other set
of points was obtained by decreasing x f . The different colours represent the most dominant acoustic
mode in the power spectra.

The sequence of bifurcations from right to left (decreasing x f ) are: subcritical Hopf from a stable
fixed point to an unstable period-1 oscillation at x f = 0.48, fold bifurcation from an unstable to a stable
period-1 oscillation (mode-1) at x f = 0.487, supercritical Neimark-Sacker to quasi-periodic oscillations
at x f = 0.435. This branch of solutions (mode-1) loses stability at x f = 0.42 and the system tends to
quasi-periodic oscillations with a dominant frequency near that of mode-2. This branch of solutions
(mode-2) has a fold bifurcation at x f = 0.456, beyond which the system falls back to the mode-1 branch
via an unstable period-1 attractor. Therefore 0.42 < x f < 0.456 is a bistable region which shows that the
system has hysteresis and that mode switching is possible in this range of x f .

Figure 3: Time series of velocity and heat release rate for the different types of oscillation corresponding
to different flame positions of figure 2: (a) period-1 oscillation at x f = 0.45, (b) period-2 oscil-
lation at x f = 0.3, (c) quasi-periodic oscillation at x f = 0.4, (d) frequency-locked oscillation at
x f = 0.286 and (e) chaotic oscillation at x f = 0.046

In the narrow band of 0.418 < x f < 0.42 on the mode-2 branch the system has frequency-locked
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solutions. For 0.347 < x f < 0.418 the solutions are quasi-periodic and this branch goes to a period-1
oscillation via a supercritical Neimark-Sacker bifurcation at x f = 0.347. The system undergoes a period-
doubling bifurcation at x f = 0.311 to period-2 oscillations, which lose stability at x f = 0.289 and the
system switches back to mode-1 dominant quasi-periodic oscillations via an unstable quasi-periodic
attractor. 0.289 < x f < 0.296 is a bistable region where quasi-periodic and period-2 oscillations co-exist.
Similar features are noticed for 0 < x f < 0.289.

Importantly, between x f = 0.03 and x f = 0.1 there exist bands of chaos with different strange attrac-
tors. For sizeable intervals of x f at least two stable attractors co-exist and the final state reached by the
system depends on the initial conditions. Hence the system shows hysteresis and mode-switching is
possible in these multi-stable regions.

2.2 Nonlinear time series analyses

Figure 3 shows time series of the acoustic velocity at the flame position normalised by the mean flow
velocity, U0, and the heat release rate normalised by the mean heat release, Q̇0, for the different types of
oscillation corresponding to different flame positions of figure 2: (a) x f = 0.45, (b) x f = 0.3, (c) x f = 0.4,
(d) x f = 0.286 and (e) x f = 0.046. The initial condition is the steady unperturbed flame. In all cases the
system is linearly unstable and perturbations grow exponentially before nonlinear effects come into
play and the system settles on an attractor.

Figure 4: Power spectra of velocity (labelled 1) and heat release rate (labelled 2) for the different types of
oscillation in figure 3: (a) period-1 oscillation at x f = 0.45, (b) period-2 oscillation at x f = 0.3,
(c) quasi-periodic oscillation at x f = 0.4, (d) frequency-locked oscillation at x f = 0.286 and (e)
chaotic oscillation at x f = 0.046

In figure 3(a) the system is first attracted towards an unstable period-1 oscillatory state before be-
ing repelled, and finally settling on a period-1 attractor. The velocity and heat release rate oscillations
are not sinusoidal, but they are periodic. In figure 3(b) the system is first attracted towards an unsta-
ble quasi-periodic oscillatory state before being repelled, and finally settling on a period-2 attractor,
where the oscillations alternate between a large and a small cycle. Such behaviour cannot be captured
in models that assume a single dominant frequency in the acoustic velocity, such as the describing func-
tion approach. In figure 3(c) the system settles on to a quasi-periodic attractor, where the oscillations
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never repeat themselves. In figure 3(d) the system is first attracted towards an unstable quasi-periodic
oscillatory state before being repelled, and finally settling on a frequency-locked attractor, where the
oscillations repeat themselves every few cycles, in this case, every five cycles. In figure 3(e) the system
settles on to a chaotic attractor, where the oscillations never repeat themselves, i.e. they are aperiodic.

Figure 4 shows power spectra of the velocity (a1 to e1) and heat release rate (a2 to e2) time series
shown in figure 3. The spectra are calculated using a long duration time series (300 nondimensional
time units) after the system has reached its stable state. Figure 4(a) shows that spectra of period-1 os-
cillations have a dominant frequency and its higher harmonics because the signal is not sinusoidal.
The higher hamonics in the velocity spectrum (a1) are weaker compared to those in the heat release
rate spectrum (a2) because high frequencies are strongly damped in the acoustic model. Figure 4(b)
shows that spectra of period-2 oscillations have a dominant peak and a second peak at exactly half
the frequency, and their higher harmonics. Figure 4(c) shows that spectra of quasi-periodic oscillations
are characterised by two frequencies that are incommensurate with each other. Side bands around the
higher harmonics of the most dominant frequency are present due to nonlinear interactions between
the two incommensurate frequencies. These secondary peaks are seen at frequencies that are linear
combinations of the two incommensurate frequencies. Figure 4(d) shows that spectra of frequency-
locked oscillations are characterised by two frequencies that are commensurate with each other. As in
Figure 4(c), the side bands are due to nonlinear interactions. Figure 4(e) shows that spectra of chaotic
oscillations are noisy and generally broadband with peaks at certain frequencies that are close to the
natural acoustic frequencies of the duct.

Figure 5: Phase portraits and Poincaré sections of velocity and heat release rate for the different types
of oscillation corresponding to the timeseries of figure 3: (a) period-1 limit cycle oscillation
at x f = 0.45, (b) period-2 oscillation at x f = 0.3, (c) quasi-periodic oscillation at x f = 0.4, (d)
frequency-locked oscillation at x f = 0.286 and (e) chaotic oscillation at x f = 0.046.
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A phase space diagram can be reconstructed from the time series using the methods described in
the literature on nonlinear time series analysis [27]. The Poincaré section is a transverse section of the
phase portrait and has the same stability properties as the flow and shows unique characteristics for
every type of attractor [28]. Figure 5 shows the phase portraits and Poincaré sections of the velocity (on
the left) and heat release rate (on the right) for the different types of oscillation seen in figures 3 and 4,
after the system has reached its stable state.

Figure 5 shows that periodic oscillations (or limit cycles), i.e. (a), (b) and (d), are closed loops in phase
space. A period-1 oscillation, (a), is a single loop, a period-2 oscillation, (b), is a double loop and a
frequency-locked oscillation, (d), is a k-loop where k is the least common multiple of the two com-
mensurate frequencies that characterise the oscillation. Their corresponding Poincaré sections have
two points, four points or 2k points. Figure 5(c) shows that quasi-periodic oscillations are tori in phase
space, in this case 2-tori because the oscillations have two incommensurate frequencies. On a quasi-
periodic attractor the system never repeats itself and hence spans the entire surface of the torus, as
is implied by the closed loops of the corresponding Poincaré section. Figure 5(e) shows that chaotic
oscillations appear to fill an entire volume in phase space and an area in the Poincaré section.

It is clear that the phase portraits and Poincaré sections represent the different types of oscillation in
a clear and distinct way and hence are useful tools in time series analyses of dynamical systems.

Figure 6: This figure shows the correlation sum, C (m,R) (left column), and its local slope,
∂logC (m,R)/∂logR (middle column), as functions of the Euclidean distance, R/Rmax , for an
embedding dimension up to m = 7. Shown in the right column is the correlation dimension
defined as the average slope (∂logC (m,R)/∂logR), over the range of radii where the slope re-
mains fairly constant, as a function of the embedding dimension, m. (a) through (e) corre-
spond to period-1, period-2, quasi-periodic, frequency-locked and chaotic oscillations respec-
tively. (a) to (d) are at the same operating conditions as (a) to (d) of Fig. 3, while (e) has the same
conditions as Fig. 3(e), except that L f /ML0=1.88 and x f = 0.4 for this case.
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The correlation dimension measures the number of active degrees of freedom in a dynamical sys-
tem and is used to determine the nature of an attractor [27]. We use the algorithm of Grassberger &
Procaccia [29] implemented in the online package TISEAN by Hegger et al. [30], with up to 7 embed-
ding dimensions. Figure 6 shows the correlation sum and its local slope as functions of the Euclidean
distance for an embedding dimension up to 7. On the right is the correlation dimension defined as
the average slope over the range of radii where the slope remains fairly constant, as a function of the
embedding dimension. For periodic oscillations (a, b and d), the correlation dimension and hence the
number of degrees of freedom is 1. For quasi-periodic oscillations (c) it is 2 and for chaotic oscillations
(e) it is not an integer, in this case 3.5±0.2.

2.3 The role of unstable attractors

Figure 7: The time series, phase portraits and Poincaré sections of trajectories starting from the steady
base state to the final stable state with one or more intermediate states: (a) x f = 0.480, (b)
x f = 0.440, (c) x f = 0.420, (d) x f = 0.347 and (e) x f = 0.2651. For (a) to (d) L f /ML0 = 2.2 and for
(e) L f /ML0 = 2.0. The following windows of the time series are used to extract the intermediate
states: (a) 120 < t < 200 and 350 < t < 500, (b) 40 < t < 60, 110 < t < 150 and 400 < t < 500, (c)
25 < t < 35, 100 < t < 180 and 300 < t < 500, (d) 10 < t < 20 and 100 < t < 500, (e) 40 < t < 140
and 250 < t < 500. The final stable state is shown in blue.

Figure 7 shows the time series, phase portraits and Poincaré sections of trajectories starting from the
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steady base state to the final stable state via intermediate states. These intermediate states are close
to the unstable attractors of the system. Trajectories in the neighbourhood of unstable attractors are
attracted towards them in some directions but repelled in others. Unstable attractors partition the phase
space into basins of attraction of different attractors. Identifying the unstable attractors of a dynamical
system is crucial because bifurcations occur at the intersections of stable and unstable manifolds, which
are the basins of attraction of stable and unstable attractors [31].

The phase portraits of sections of the time series are used to identify these unstable states. In figure
7(a) the system is first attracted towards an unstable period-1 limit cycle (red) and then repelled by
it to a stable period-1 limit cycle of larger amplitude (blue). In (b) the system is attracted towards the
same unstable period-1 limit cycle as in (a) and then repelled away. Before it settles on a stable period-1
limit cycle (blue), there is a slow decay of one of the components of the perturbation. In (c) the initial
behaviour similar to that in (b) but here the system lingers around an unstable quasi-periodic period
state (green) for a long time before it is repelled to its final quasi-periodic state. This shows that the first
quasi-periodic state (green) is unstable. In (d) the system is strongly attracted from its steady base state
towards a quasi-periodic state (red) and equally strongly repelled away from it to finally settle on to a
stable period-1 limit cycle. In (e) the path to the stable quasi-periodic state (blue) is via an unstable
period-1 limit cycle (red) of a large amplitude.

Figure 8: Period dou-
bling route to
chaos: bifurca-
tion diagram

Figure 9: Period doubling route to chaos: PSD of u f showing the emer-
gence of subharmonics ( f/2 (b2), f/4 (b3), f/8 (b4)) at the x f

values shown on the figures, finally leading to chaotic oscil-
lations at x f = 0.288 (b5).

Figure 7 shows clearly that the system has several unstable attractors, making the trajectories of the
system extremely complex. This is a common feature of nonlinear dynamical systems and has recently
been observed in hydrodynamic systems as well [32]. As mentioned by Gibson et al. [32], once a sys-
tem’s unstable attractors have been determined, the next step is to determine how the system dynamics
interconnects the neighbourhoods of these unstable attractors. We leave this for future work.
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Figure 10: The Ruelle-Takens-Newhouse route to chaos observed in the L f /ML0 range of 1.88 to 2.15 (x f =
0.4). (a) through (l) show the Poincaré sections of the final state. The quasi-periodic state (2-
torus) in (a) develops corrugations on its surface due to stretching and folding (see (c), (d),
(e) and (f)). This is followed by torus breakdown (see (g), (h) and (i)) to chaos (see (j), (k), (l)).

Figure 11: The Ruelle-Takens-Newhouse route to chaos (continued): (a) through (l) show the power
spectra of u f corresponding to the same subfigures in figure 10. This route to chaos is char-
acterised by the emergence of a third frequency (see (f), (g) and (h)) that is incommensurate
with the two frequencies of the quasi-periodic state (marked f1 and f2 in (a)).

2.4 Routes to chaos

If a nonlinear system exhibits chaotic dynamics it is natural to ask how this chaotic behaviour emerges
as a parameter is varied. The three most common routes to chaos are via the period doubling cascade,
the Ruelle-Takens-Newhouse route and intermittency [33]. In our study we have identified two routes
to chaos: the period-doubling and the Ruelle-Takens-Newhouse routes.
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Figures 8 and 9 show the period doubling cascade as the flame position is changed. On the left is the
bifurcation diagram constructed using the negative peaks of the time series of u f and on the right are
the power spectra at flame locations just after each period doubling bifurcation. The first period dou-
bling bifurcation from period-1 to period-2 oscillations is subcritical (not shown here) at x f = 0.307. The
arrows at x f = 0.308 show that the transition to period-2 oscillations is abrupt. The subsequent bifurca-
tions occur at x f = 0.301 (period 2 to 4) and x f = 0.296 (period 4 to 8) and are supercritical. The power
spectra on the right show the introduction of a subharmonic frequency at half the lowest frequency at
each period-doubling bifurcation, ultimately leading to chaotic oscillations with a broadband spectrum
and a few peaks at x f = 0.2861.

Ruelle, Takens and Newhouse showed that three successive Hopf bifurcations, producing three in-
dependent frequencies, generates a 3-torus that can become unstable and be replaced by a strange
attractor [33]. This route to chaos has been observed in recent experiments of a similar thermoacoustic
system [2].

Figure 12: Instantaneous flame images of the self-excited flame for different types of oscillation: (a)
period-1 oscillation at x f = 0.435 (mode-2 branch) (b) period-2 oscillation at x f = 0.3, (c)
quasi-periodic oscillation at x f = 0.4, (d) frequency-locked oscillation at x f = 0.286 and (e)
chaotic oscillation at x f = 0.4. For (a) through (d) all other parameters are the same as in fig-
ure 3, while (e) has the same parameters as figure 6(e). 15 images are shown for each case
spanning 3 cycles of the dominant frequency.

Figure 10 shows the Ruelle-Takens-Newhouse route to chaos as the natural acoustic frequency of the
duct, L f /ML0, is changed. The Poincaré sections of phase portraits show that the initially stable quasi-
periodic state (2-torus) in figure 10(a) develops corrugations on its surface (see figures 10(c), (d), (e) and
(f)). The wrinkling of the surface of the attractor is characteristic of the two-fold operation leading to a
strange attractor: stretching and folding. This is followed by torus breakdown (see figures 10(g), (h) and
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(i)) to chaos (see figures 10 (j), (k), (l)). The power spectra of acoustic velocity at the flame position in
figure 11 show the emergence of a third frequency (see figures 11(f), (g) and (h)) that is incommensurate
with the two frequencies of the quasi-periodic state (marked f1 and f2 in figure 11(a)). This is a unique
characteristic of the Ruelle-Takens-Newhouse route to chaos.

Figure 12 shows snapshots of the flame during different types of oscillation: (a) period-1, (b) period-2
(c) quasiperiodic (d) frequency-locked and (e) chaotic. 15 images are shown for each case spanning 3
cycles of the dominant frequency. In (a) the snapshots 1-5, 6-10 and 11-15 are all identical, showing that
the oscillation is indeed period-1. In (b) the snapshots 1-5 and 6-10 differ slightly but 11-15 are the same
as 1-5, showing that the oscillation is period-2. Hence two cycles alternate here. In (c) a gradual shift in
flame shapes can be seen across 1-5, 6-10 and 11-15, which shows a low frequency modulation of the
dominant mode of oscillation. In (d) the behaviour is similar to (e), but the second frequency is exactly
one-fifth of the first, hence the oscillation is periodic and the cycle repeats itself after 25 snapshots (not
shown here). In (e) the oscillations are chaotic and the cycles never repeat themselves, however, the
flame shapes have the same features as in the previous cases, viz. cusp formation and pinch-off.

These snapshots reflect the periodicity (or lack of it) in each type of oscillation. Further, they show
that while the basic flame dynamics, such as cusp formation, advection of wrinkles along the flame and
pinch-off at the tip, remain the same in all cases, clear differences exist in the shape of the cusps and the
instants when they are formed at the base of the flame. This is because the generation of wrinkles at the
base of the flame depends strongly on the acoustic velocity at the flame base, which in turn depends
strongly on the type of oscillation. Finally, these flame shapes are similar to those in experiments, but
lack the rounding off of cusps due to curvature and strain effects [3]. However, these experiments have
also shown intermittency due to repeated flame lift-off and reattachment [3]. Such behaviour cannot
be captured in this model because the flame remains attached to the burner at all times.

3 Conclusions

In this study a reduced order model of a ducted premixed flame is simulated and analysed using tech-
niques from nonlinear time series analysis and dynamical systems theory.

The bifurcations of this system for varying flame position in the duct are identified. As the flame is
moved from the centre of the duct to the entrance the system undergoes transition to period-1 limit cy-
cle oscillations via a subcritical Hopf bifurcation followed by subsequent bifurcations that lead to quasi-
periodic, period-two, frequency-locked as well as chaotic oscillations. For certain parameter ranges
more than one stable solution exists and the ultimate state reached depends on the initial conditions.
Hence there is hysteresis and mode-switching is possible. The influence of the number of coupled
acoustic modes on this behaviour is analysed. It is shown that a single mode assumption, which is
equivalent to the describing function approach, underpredicts the oscillation amplitude in large re-
gions of parameter space and fails to capture the bifurcations and multi-stability seen in the multi-
modal case.

The phase portraits of the states of the system are reconstructed from the time series. The Poincaré
sections of these phase portraits are shown to be powerful tools to identify the stable and unstable at-
tractors. They show that the system often traverses through several intermediate states before reaching
its final stable state. Further, two routes to chaos are established for this system: the period-doubling
route and the Ruelle-Takens-Newhouse route and these are corroborated by analyses of the power spec-
tra. Instantaneous snapshots of the oscillating flame show the multiple time and length scales of the
flame wrinkles, which reveal the strongly non-harmonic behaviour of the time series.

This reduced order model with approximately 5000 degrees of freedom reproduces much of the
rich behaviour seen in recent experiments on a similar thermoacoustic system and provides a tool to
further investigate this nonlinear behaviour. The close correspondence between this model and low-
dimensional chaotic dynamical systems will prove useful because the variety of results from dynamical
systems can be brought to bear on thermoacoustics.
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