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A low-order, state-space modeling approach for thermoacoustic systems has been devel-
oped, which is based on present and past values of nodal characteristic wave amplitudes.
The method allows to simulate the time evolution of the system state, but also the effi-
cient computation of the (pseudo-)spectrum of the evolution operator. It is demonstrated
by comparison with a frequency-domain ”network model” that eigenmodes and asymp-
totic linear stability are predicted correctly. The influence of various model parameters
(downstream reflection coefficient, temperature ratio across the heat source, magnitude
and spread of heat source time delays) on transient growth of perturbation energy is ex-
plored. Furthermore, it is shown how frequency-dependent boundary impedances can be
modelled through FIR or IIR filters. The discussion in the present paper is limited to simple
test cases, but the approach can be generalized to systems with non-trivial topology.

1 Introduction

The combustion dynamics community has learned in recent years that thermoacoustic systems are
in general non-normal [1, 2, 10, 11]. Suijth and co-workers have investigated possible consequences
of non-normality for the stability of combustion systems. In this context, a variety of comparatively
simple configurations – a Rijke tube and laminar diffusion or premix flames – have been studied [1,2,10].
The models for these configurations made use of the Galerkin technique frequently used for linear and
nonlinear analysis of thermoacoustic stability [3].

The motivation for the present work was to develop a modelling approach that is in a sense close
to the popular low-order ”network models” [4, 9, 13]. The method should be able to consider configu-
rations with non-trivial system topology, non-ideal boundary conditions, variation of mean properties
across system elements, and even realistic heat source models. At the same time, the model should re-
sult in a ”standard formulation” with linear matrix operator, such that the tools developed for analysis
of nonnormal effects [1, 20, 21] can be applied.

The paper is organized as follows: first the low-order ”network model” for an n-τ thermoacoustic
system is reviewed, as this will serve as a validation case for the new formulation. Then the state space
approach is introduced, starting from a very simple application to a resonator tube, and moving on to
the n-τ system. Some aspects of non-normality are then explored, in particular the impact of large and
distributed time lags, and non-trivial reflection coefficients.
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Figure 1: Network model of resonator / Rijke tube

2 Network model of n-τ-system

It is assumed that the reader is familiar with basic acoustics, so instead of starting ”from scratch”, we
just introduce some notation and go into medias res quickly. We consider a system as shown in Fig. 1,
i.e. a heat source placed in a duct [2, 4, 9, 13] The heat source is placed at position lc . This parameter is
not set to lc = L/4, as it should be for a proper Rijke tube with two open ends, but instead considered as
an adjustable model parameter.

Riemann invariants or characteristic wave amplitudes f and g (also denoted as p+ and p− by some
authors) are related to the primitive acoustic variables as follows,

f = 1

2

(
p ′

ρc
+u′

)
, g = 1

2

(
p ′

ρc
−u′

)
. (1)

A downstream traveling wave f undergoes a change in phase exp{iωl /c} as it travels with the speed
of sound c across the distance lc from the inlet ”i ” to the cold side of the heat source ”c”, and similar for
the wave g traveling in the upstream direction,1. such that the transfer matrix of the duct is obtained as:(

fc

gc

)
=

(
e−i klc 0

0 e i klc

)(
fi

gi

)
. (2)

with a wave number k ≡ω/c for plane waves without mean flow and dissipative effects. For the duct to
the right of the heat source, the transfer matrix is of the same form, but the speed of sound c = √

γRT
and the length l may be different.

The pressure drop across the heat source (which is a wire mesh or ”gauze” in a Rijke tube) is negli-
gible for sufficiently small mean-flow Mach numbers, pc = ph , while momentary rate of heat release
Q̇(t ) depends on the velocity uc (t − τ) at the upstream side of the heat source ”c” at an earlier time
t −τ. Assuming small amplitudes of perturbation and an acoustically compact heat source [4, 9, 12, 14],
linearization yields the famous n-τ model for a heat source with time lag τ,

p ′
h = p ′

c ,

u′
h = u′

c +n u′
c (t −τ).

This simple model has played a prominent role in the development of the theory of combustion insta-
bilities in rocket engines, is used frequently as a pedagogical example, and is even relevant as a building
block for models of ”real-world” turbulent premix flames [2, 4, 9, 13]. The time-lag τ is an important
model parameter, as it controls the phase-alignment between fluctuations of pressure and heat release
and thus the sign of the Rayleigh integral. The value of τ is usually determined by convective processes
and scales with the length of the heat source. The interaction index n is related to the increase in mean
temperature T across the heat source. For example, n = (Th/Tc −1)/2 for the gauze of a Rijke tube. In

1A note on nomenclature: we make no explicit distinction between acoustic variables in the time domain and in the frequency
domain. Most of the time we are in frequency space, and the f ’s and g ’s are to be understood as complex-valued Fourier
transforms of time series.
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Figure 2: Frequency (left) and growth rate (right) of the fundamental mode m = 0 of the n-τ model
with interaction index n = 0.25 as a function of time lag τ. Numerical solution (——) of the
dispersion relation (7) vs. approximate analytical solution eq. 9) (– – –)

the present work, both n and τ are considered adjustable model parameters.
In terms of the characteristic wave amplitudes, the coupling relations across the heat source are

( fh + gh) = ξ( fc + gc ), with ξ≡ ρhch

ρc cc
, (3)

fh − gh =
(
1+n e−iωτ

)
( fc − gc ). (4)

Without essential loss of generality, an acoustically ”closed end” u′ = 0 is imposed at the left boundary
and therefore fi −gi = 0. At the right boundary, an exit reflection coefficient Rx ≡ gx / fx may be imposed.
For the moment, an ”open end” with p ′ = 0 and thus fx + gx = 0 (or Rx =−1) is assumed.

The equations for the eight unknowns fi , gi , . . . gx may be written in matrix & vector notation as

S

 fi
...

gx

=

 0
...
0

 . (5)

with the ”system matrix” S. A non-trivial solution exists only if the characteristic equation Det(S) = 0 is
fulfilled. Inspection of the coupling relations (2) - (4) shows, that the coefficients of the system matrix
depend on geometrical and physical parameters – length l , speed of sound c, density ρ, the interaction
index n, and the time lag τ – which are fixed for a given system. However, the frequencyω, which appears
in the wave number and the time-lag term, is not fixed a priori. Thus, there may be eigenfrequenciesωm

of the system, such that Det(S)|ω=ωm = 0.
From the characteristic equation, the dispersion relation

coskc lc coskh lh −ξsinkc lc sinkh lh

(
1+n e−iωτ

)
= 0, (6)

can be derived [9], with ki =ω/ci ; i = h,c. This equation cannot be solved explicitly for eigenfrequencies
ωm , so in general one has to resort to numerical root finding to identify solutions.

An approximate analytical solution for the special case lc = lh = l ≡ L/2, ρh = ρc and cc = ch = c is
presented in McManus et al. [9]: Introducing dimensionless variables – with duct length L and wave
passage time L/c as characteristic length and time scales, respectively – the characteristic equation (6)
is simplified to

cosω−n e−iωτ sin2 ω

2
= 0. (7)

For n = 0, i.e. in the absence of thermo-acoustic coupling between velocity and heat release at the
gauze, the solutions to this equation are the familiar quarter-wave modes with wave lengthsλ= 1/4,3/4, . . .
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and frequencies

ωm = (2m +1)
π

2
; m = 0,1,2, . . . . (8)

Note that these eigenfrequencies are purely real, so with an assumed time dependence∼ exp(iωt ), there
is no amplification or damping of the eigenmodes.

For non-zero, but small interaction index n, the eigenfrequencies can be determined approximately
as ωm +ω′

m with small deviations ω′
m ¿ωm from the quarter-wave eigenfrequencies ωm . To first order

in n,ω′
m , series expansion of (7) yields

ω′
m ≈ (−1)m n

2
e−iωmτ. (9)

As explained above, an eigenmode is stable if its imaginary part

ℑ(ω′
m) ≈ (−1)m+1 n

2
sinωmτ, (10)

is positive, because then its amplitude decays as exp
(−ℑ(ω′

m)t
)
.

It is not difficult to solve the dispersion relation numerically for larger values of n (and indeed for
arbitrary values of the parameters l ,c,n,τ as well as arbitrary reflection coefficients at the duct ends).
A simple Matlab script is included on the n3l CD. Numerical results for the case n = 0.25 are compared
against the ”weak interaction approximation” n ¿ 1 in Fig. 2.

3 State-space model

Schuermans et al [15,16] have developed a powerful state space approach for thermo-acoustic systems,
that is based on a modal expansion for the Green’s function. For complex geometries, the basis modes
for the expansion can be determined numerically (e.g. with finite-element methods), thus the method
is very flexible and can be used for geometries of applied interest. The motivation for the present ap-
proach was to develop a simpler ”toy model”, suitable for exploring aspects of non-normality in thermo-
acoustic instability.

3.1 Acoustic eigenmodes of a resonator tube

Consider an ideal resonator tube of length L with two closed ends, u′(x = 0) = u′(x = L) = 0 as shown
in Fig. 3. A discrete-time, state-space model of this system can be constructed by tracking the tempo-
ral evolution of the right-going characteristic wave amplitude f at some location ”x”. A state vector(

f (t )
x,m

)
,m = 1, . . . M is introduced, with a ”memory index” m such that f (t )

x,0 denotes the value of the wave

amplitude fx at the present time t , while f (t )
x,m refers to an earlier time t −m∆t .

To start with the simplest possible case, a very short state vector of length M = 2 and a large (non-
dimensional) time increment ∆t = 1 are chosen. With this choice, the time increment ∆t is equal to

fx,m

u'=0

L

u'=0

(t)

Figure 3: Wave amplitude fx in a resonator tube of length L with two closed ends.
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the time required for an acoustic wave to travel across the length of the tube. Assuming ideal reflection
coefficients R = 1 at the closed ends and neglecting dissipation within the tube, the signal strength | f |
is not diminished with time.

An evolution operator for the state vector
(

f (t )
x,1, f (t )

x,2

)
can be constructed from the following two rela-

tions:

f (t+1)
x,0 = f (t )

x,1, (11)

f (t+1)
x,1 = f (t )

x,0. (12)

The first equation expresses the fact that an acoustic signal f requires a time interval 2∆t = 2 to travel
once around the resonator tube. The second equation does not describe ”system physics”, i.e. acoustic
wave propagation, but simply expresses the fact that ”tomorrow’s yesterday is today”.

Eqns (11) and (12) allow to formulate a state-space model in standard form with evolution operator
matrix L: (

fx,0

fx,1

)(t+1)

= L
(

fx,0

fx,1

)(t )

=
(
0 1
1 0

)(
fx,0

fx,1

)(t )

. (13)

The eigenvalues λi and corresponding eigenvectors vi , i = 1,2 of the matrix L are

λ1 =−1, v1 =
(

1
−1

)
, λ2 = 1, v2 =

(
1
1

)
(14)

For the first eigenvector, L2v1 = v1, i.e. the system returns to its initial state after two time steps. In
other words, the period of oscillation T = 2∆t = 2, which indicates that this eigenmodes is the well-
known half-wave fundamental acoustic mode of a resonator with two closed ends. The eigenfrequency
ω1 = 2π/T = π of this mode can be deduced also directly from the eigenvalue λ1 =−1 = e iπ: the phase
advance per time step ω1∆t =π and therefore

ω1 = π

∆t
=π,

which obviously corresponds to the fundamental acoustic eigenmode.

The second eigenmode found is a spurious (or ”aliased”) mode, because its eigenfrequency ω2 =
2π/∆t is twice the Nyquist frequency ωNyq = π/∆t . In order to increase the frequency resolution and
thus describe more than just the fundamental mode, it is necessary to decrease the sampling interval
∆t . For example ∆t = 1/2 results in a 4×4 evolution operator


fx,0

fx,1

fx,2

fx,3


(t+1)

=


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0




fx,0

fx,1

fx,2

fx,3


(t )

. (15)

As in eqn (13), the first row of L describes wave propagation around the duct, while rows 2 – 4 merely
”update history”. With double the frequency resolution, we find four eigenvectors. Only the first two are
physical

λ1 = i = e iπ/2, v1 =


1
−i
−1
i

 , λ2 =−1 = e iπ, v2 =


1
−1
1
−1

 . (16)

The evolution operator L phase advances the first eigenvector v1 by π/2, such that four times steps are
required to return to the initial state. The corresponding eigenfrequency is ω1 = 2π/T = 2π/4∆t = π,
which again corresponds to the fundamental mode. The eigenfrequency of the 2nd eigenvector is twice
as high, corresponding obviously to the 2nd acoustic mode with wave length equal to the length of the
duct.

5



Mangesius, Polifke

3.2 A state-space ”network model” for the resonator tube

The simple model for a resonator tube introduced in the previous section makes use of a state vector
with ”memory”, which is constructed from a single variable, i.e. the right-going wave fx at one monitor
point within the resonator. Now it will be shown how this formulation can be generalized to a low-order
state-space model for acoustic ”networks” with – in principle – arbitrary topology. With reference to fig
1, the model variables are the characteristic wave amplitudes f , g at a network ”node”. For the case of a
resonator tube (without heat source), the node is only a monitor point, where acoustic waves pass back
and forth without any scattering, such that

fh = fc and gc = gh . (17)

Wave propagation and reflection, on the other hand, imply that

f (t+1)
c,0 = g (t )

c,C for (C +1)∆t = τc = 2lc /cc , (18)

g (t+1)
h,0 = Rx f (t )

h,H for (H +1)∆t = τh = 2lh/ch . (19)

The parameters τc and τh denote the time lags associated with wave propagation back and forth across
the upstream (index ”c”) and downstream (”h”) sections of the setup, respectively.

From eqns (17) – (19), a state space model can be constructed in terms of the ”outgoing” character-

istic wave amplitudes
(

f (t )
h,m

)
,m = 0, . . . H and

(
g (t )

c,m

)
,m = 0, . . .C . In the simplest case with lc /cc = lh/ch ,

exit reflection coefficient Rx = 1, and C = H = 1, a model with evolution operator L identical to the
previous example is obtained:


fh,0

fh,1

gc,0

gc,1


(t+1)

=


0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0




fh,0

fh,1

gc,0

gc,1


(t )

. (20)

Note that the interpretation of the matrix coefficients differs from the previous case: now the 1st as well
as the 3rd row express wave propagation, while only the 2nd and 4th rows represent the ”history up-
dates”. Of course, the eigenfrequencies and -modes resulting from eq. (20) are identical to the previous
example.

The formulation introduced in this section allows considerable flexibility. For example, with an ”open
end” downstream boundary condition Rx = −1, the quarter-wave modes with eigenfrequencies ωm =
1/2,3/2,5/2, . . . are properly identified (see the example Matlab script on the n3l CD). The highest eigen-
frequency that can be identified must be smaller than the Nyquist frequency ωNyq = (C + H + 2)π/2.
More than that, it should be obvious how the ansatz presented here can be generalized to networks
with several monitor planes (or ”network nodes”), with the state vector comprised of present and previ-
ous values of outgoing characteristic wave amplitudes fi and g j . Instead of discussing an example with
such non-trivial topology, it will be shown next how an n −τ heat source model can be introduced.

3.3 A state-space model for the n-τ thermoacoustic system

The state vector is constructed in terms of the wave amplitudes fh and gc at the heat source (the ”node”
of the model). The coupling relation (3) for the pressure across the heat source implies that

f (t+1)
h,0 + g (t+1)

h,0 = ξ f (t+1)
c,0 +ξg (t+1)

c,0 . (21)

Introducing eqns (18) and (19) to eliminate the variables fc and gh , one obtains,

f (t+1)
h,0 −ξg (t+1)

c,0 =−Rx f (t )
h,H +ξg (t )

c,C . (22)
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Figure 4: Spectrum and pseudospectrum of n-τ thermoacoustic system with τ = 0.1, interaction index
n = 0.25, ratio of specific impedances ξ= 1, and downstream reflection coefficient Rx =−0.75.
Left: Angular frequencies (non-dimensional) and cycle increments of the first 10 eigenmodes
computed from the characteristic equation of a low-order, frequency-domain model (¦) and
as the eigenmodes of the operator L of the discrete-time, state-space model presented in this
work (◦). Right: Pseudospectrum of L for ε= 0.1 with C = H = 9 and Q = 1

Similarly one derives from the relation (4) for the velocity fluctuations

f (t+1)
h,0 − g (t+1)

h,0 = f (t+1)
c,0 − g (t+1)

c,0 +n
(

f (t+1)
c,Q − g (t+1)

c,Q

)
, (23)

f (t+1)
h,0 + g (t+1)

c,0 = Rx f (t )
h,H + g (t )

c,C +ng (t )
c,C+Q −ng (t )

c,Q−1, (24)

where Q∆t = τ, i.e. the ”memory” of the heat source extends over a number of Q time steps.

Linear combination of these two equations yields the required ”state update” relations for the un-
knowns f (t+1)

h,0 and g (t+1)
c,0 :

f (t+1)
h,0 = −Rx

1−ξ
1+ξ f (t )

h,H + 2ξ

1+ξ g (t )
c,C − nξ

1+ξ g (t )
c,Q−1 +

nξ

1+ξ g (t )
c,C+Q , (25)

g (t+1)
c,0 = 2Rx

1+ξ f (t )
h,H + 1−ξ

1+ξ g (t )
c,C − n

1+ξ g (t )
c,Q−1 +

n

1+ξ g (t )
c,C+Q . (26)

For the case n = 0 (no unsteady heat release) and ξ = ρhch/(ρc cc ) = 1 (no temperature jump, i.e. no
steady heat release), these equations reduce to the relations (17) – (19) for the monitor plane of the
resonator tube.

The evolution operator L for the n-τ system is built from these two equations plus the ”history up-
dates” for the state vector, which result in ”1”-entries on the sub-diagonal.

The cycle increment Γm of a mode m with temporal evolution ∼ exp(−iωm t ) is defined as the relative
increment in amplitude per period of oscillation Tm ,

Γm ≡ exp

(
−2π

ℑ(ωm)

ℜ(ωm)

)
−1 (27)

For the mth eigenmode of a discrete time model, the relative increment in amplitude per time step
should be proportional to the cycle increment

|λm | = 1+ Γm

Tm
∆t ,

7
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Figure 5: Time evolution of wave amplitude fh of most unstable mode (cycle increment Γ = −0.0097)
with model parameter values τ= 0.1, n = 0.25, ξ= 1, Rx =−0.75 and time step sizes∆t = 0.1 (¦)
and ∆t = 0.02 (——)

and therefore

Γm = (|λm |−1)
Tm

∆t
= (|λm |−1)

2π

arg(λm)
. (28)

Frequencies ℜ(ωm) and cycle increments Γm computed with the state space model are compared
against results of the low-order frequency domain model in Fig. 4. Model parameters were set to time
lag τ = 0.1, interaction index n = 0.25, ratio of specific impedances ξ = 0.4, and downstream reflection
coefficient Rx =−0.75, such that all eigenmodes exhibit a negative cycle increment. Overall, the agree-
ment between the predictions of the two formulations is very good. For large decay rates, in particular
for the first mode, the comparison shows discrepancies. The following explanation is offered: for large
decay rates and low frequencies (large period Tm), the amplitude reached by extrapolating the slope
at time t = 0 to time t = Tm predicts a lower amplitude than an exponential decay, where the slope
decreases gradually in the time interval 0 → Tm .

With the state space model it is of course also possible to ”march in time” by repeated application of
the evolution operator L to an initial state vector. Exemplary results are shown in Fig. 5, which shows
the temporal evolution of the most unstable mode for the chosen model parameters (see the figure
caption). For this mode, the cycle increment is almost zero, the decay in amplitude over ten periods is
barely discernible.

The model of Sujith at al. for the n-τ thermoacoustic system [2,10] does not take into account a jump
in mean temperature with ξ 6= 1 across the heat source. Also, the formulation of the heat source involves
a Taylor series in time lag τ and thus is limited to small values of the time lag τ < 0.3. The state space
formulation presented here can take these effects into account without difficulty. In particular the time
lag need not be small, such that larger, more realistic values of τ can be chosen. Furthermore, a spread
in time lags, as it is often observed in flame transfer functions [6, 7] can also be considered. Results for
such cases will be presented in the next section.

4 Non-normal effects

The evolution operator L for the resonator tube with ”open end” boundary conditions R = 1 – see eqn
(15) – is a circulant matrix and therefore normal [5]. One can easily confirm this numerically by checking
that LL† −L†L = 0 (within machine accuracy). Imposing non-ideal boundary conditions with reflection
coefficients |R| 6= 1 results in general in a non-normal operator L, as pointed out by Nicoud et al. [11].

The evolution operator for the n-τ system with coupling conditions (25) and (26) across the heat
source is also found to be non-normal provided that one or several of the following conditions are met:

• reflection at the boundaries is not ideal, |R| 6= 1,

• the ratio of specific impedances ξ ≡ ρhch/ρc cc 6= 1, i.e. mean temperature T and thus density ρ
and speed of sound c change across the heat source,

• the interaction index n is not zero, i.e. the rate of heat release is fluctuating

8
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Figure 6: Transient evolution ||Lk || for n-τ system with τ = 0.1, n = 0.25, ξ = 1, Rx = −0.75. C = H = 9,
such that ∆t = 0.1

With the eigtool package of Wright [21] it is very easy to compute pseudospectra [20] of the dis-
crete time evolution operator L. The pseudospectrum for the linearly stable case discussed previously
is shown in Fig. 4. The contour lines for ε= 0.1 do not extend significantly beyond the unit circle, which
suggests that at these conditions no strong transient growth should be expected. This is confirmed by
the transient behaviour of ||Lk || shown in Fig. 6: with the first time step, the norm jumps to a value
||Lk || ≈ 1.4, stays at that level for about 10 time steps and then decays in an erratic manner, so that
Gmax ≈ 2.

A ratio of specific impedances ξ= 0.4 corresponds to a temperature ratio Th/Tc = 6.25, which is a typ-
ical value for lean combustion of hydrocarbon fuels. Changing ξ to this value results (with C = 19, H =
9,Q = 1) in a cycle increment Γ=−0.0097, i.e. the system is marginally linearly stable. The pseudospec-
trum (not shown) is very similar to the one shown in Fig. 4. The temporal evolution of the norm ||Lk ||
reaches a plateau slightly above 1.5 – corresponding to Gmax ≈ 2 – for time steps k = 10 to 20, after which
decay begins.

The time lag of premix flames is often of the order τ≈ 0.5 – 2 (in non-dimensional units), see e.g. [7].
Increasing the time lag to τ = 0.5 only moderate transient growth with Gmax ≈ 2 is observed (see e.g.
the red line in Fig. 9). However, for these parameter values, even the most unstable mode decays rather
quickly, while Nagaraja et al. observed that largest transient growth is often observed at the border of
linear instability [10]. Thus the interaction index was increased from n = 0.25 to n = 1.2, resulting in
a marginally stable system. For these conditions, persisting transient dynamics with Gmax > 30 is ob-
served, see Fig. 7.

Finally, a heat source with a spread of time lags,

u′
h = u′

c +
∑
k

hk u′
c (t −k∆t ), (29)

was considered. A very simple configuration with hk = n;k = 10,11,12 and hk =−n;k = 13,14. The low-
frequency limit of this transfer function is the same as for the n-τ model, but an intermediate peak

Rx -1 -0.75 -1 -0.75 -0.75 -0.75 -0.75
ξ 1 1 0.4 0.4 1 0.4 0.4
n 0 0 0 0 0.25 0.25 1.2

H (L) 0 0.44 0.56 0.43 0.80 0.56 0.70
κ2(L) 0 1.33 2.30 1.79 16.4 13.5 4.95

Table 1: Scalar measures of non-normality for the n-τ system with C = 19, H = 9,Q = 10. Lengths and
times have been non-dimensionalized with lc and 2lc /cc such that ∆t = 1/(C +1)

9



Mangesius, Polifke

0 100 200 300 400 500 600 700 800 900
0

2

4

6

8

k

||
 L

k
||

Figure 7: Transient evolution ||Lk || for n-τ system with τ= 0.5, n = 1.2, ξ= 0.4, Rx =−0.75. C = 19, such
that ∆t = 0.05, H = 9

and subsequent decay of the gain are observed, as it is typical for premix flames [6, 7, 17]. With a large
interaction index n = 1.2, the system with distributed time lags is linearly unstable at intermediate fre-
quencies. If one reduces n until linear stability is regained, only moderate transient growth with G ≈ 7
after about 40 time steps is observed (not shown).

Scalar measures of non-normality [19] are the Henrici number H (L) ≡ |LL† −L†L|/|L|2 and the con-
dition number κ2(L) ≡ ||L|| ||L−1||. A few example values are shown in Table 1.

5 Filter based models for non-trivial transfer functions

To go beyond ”toy models” with the state space ansatz presented here, it should be possible to integrate
FIR or IIR filter models of acoustic elements from frequency-dependent transfer matrix coefficients
(which in turn may be deduced from flame transfer functions, boundary impedances, etc). Some first
results for transient evolution obtained with IIR/FIR-based models for the downstream boundary are
presented in this section.

In qualitative analogy to Levine-Schwinger [8], a digital filter representing a frequency-dependent
reflection of acoustic waves

Rx (ω) = 1− ω

ωNyq
(30)

at the right ext ”x” of the duct is adopted, see Fig. 8. The transfer function is of the form

H(z−1) = B(z−1)

A(z−1)
= b0 +b1z−1 +·· ·+bm z−m

a0 +a1z−1 +·· ·+an z−n , (31)

where z−1 is the shift operator, so that the k-th output can be written as weighted sum of past inputs (x)
and outputs (y):

y(i ) = 1

a0

(
b0x(i )+b1x(i −1)+·· ·+bm x(i −m)−a1 y(i −1)−·· ·an y(i −n)

)
(32)

IIR and FIR filters can be distinguished, where for the latter one the output is calculated just by the in-
puts, thus the coefficients a1, · · · , an = 0 and a0 = 1. IIR filters additionally maie use of past outputs
(feedback) so that the same transfer function can be represented by an IIR filter of an order much
smaller than the one of an adequate FIR filter. However, the use of feedback may render the overall
system more unstable [18].

To implement the filter into the state-space model, the Toeplitz matrix representation for arbitrary
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Figure 8: Transfer functions for the open end reflection: order-3 IIR filter, order-18 FIR filter and desired
relation (ideal)

LTI filters is used. An output y(i ) is produced via the transfer function H on excitation with x(i ) so that

y =


y(0)
y(1)
y(2)

...

=


h(0)
h(1) h(0)
h(2) h(1) h(0)

...
. . .

. . .
. . .




x(0)
x(1)
x(2)

...

= H x. (33)

This is the matrix form for the convolution operation y(i ) = h(i )∗x(i ) =∑i
k=0 hk x(i −k), i = 0,1, . . . for

the time discrete sampled signal. For the IIR-case the filter matrix is of size 4×4 in contrast to a 19×19
FIR filter matrix.

In Fig. 9 the transient behavior of the evolution operator including the open end reflection condition
modeled by FIR and IIR filters is compared against results obtained with a constant reflection coeffi-
cient Rx = −0.75. With the digital filters used, discrete ”jumps” in the transient evolution are less pro-
nounced. This is not surprising, considering that the reflection coefficient imposed represents a (mild)
low-pass filter. On the other hand, the filters also introduce more oscillatory or ”wavy” behaviour, and
Gmax is increased. Moreover, the two filters show significant differences among each other, although
their frequency response (important for long-time asymptotic behaviour) is very similar, except for the
highest and lowest frequencies, see Fig. 8. The IIR filter results in a more complicated evolution, pos-
sibly due to internal dynamics caused by the feedback coefficients. Another noteworthy observation,
with consequences not understood at time of writing, is that the condition number of the evolution
operator L increases form order 101 to 1016 with introduction of the filters. This might be an indicator
of pseudo-resonance.
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1

1.5

2

k

||
L

k
||

 

 

Figure 9: Transient behavior of the evolution operator with downstream reflection coefficient Rx =
−0.75 (——), and linearly decreasing reflection coefficient described by order-3 IIR (−·−·) and
order-18 FIR (– – – ). Model parameters τ= 0.5, n = 0.25, ξ= 0.4 C = 79, such that ∆t = 0.0125,
H = 40
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6 Conclusions

A simple, discrete-time, state-space model for thermo-acoustic systems has been introduced2. Heat
source models with large time lags or a spread of time lags can be considered without difficulty. Also,
a jump of mean temperature, density and speed of sound across the heat source, as well as non-ideal
boundary conditions with reflection coefficients |R| 6= 1 can be taken into account. From the evolution
operator L for the state vector, the spectrum as well as the pseudospectrum can be computed very
easily. It has been shown that results - in particular frequencies and cycle increments of eigenmodes up
to the Nyquist frequency - are equivalent to predictions obtained with a standard frequency-domain,
low-order ”network model”.

Non-ideal boundary conditions, discontinuities in specific impedance, or unsteady heat release ren-
der the evolution operator nonnormal. The pseudospectra as well as the transient evolution of ||Lk ||
suggest that transient growth of oscillation energy for this model is only moderate. Note however, that
a systematic search for large transient growth has not yet been carried out.

IIR or FIR filters could be used to describe acoustic elements with frequency dependent transfer ma-
trix coefficients in the context of the state space model presented here. More realistic heat release dy-
namics, as it is observed, e.g, in swirl flames, or heat source models with ”internal dynamics” could
be considered in this way. First results obtained with IIR and FIR models for a frequency dependent
boundary reflection factor have shown unexpected discrepancies, that have not yet been fully analyzed
at the time of writing.
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