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Imagine you have created a linear thermo-acoustic model of a gas turbine
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You find the growth rates and frequencies of linear modes of the model (the

eigenmodes)

Acoustic network model + flame model Linear modes of the model
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When you change the model, the growth rates and frequencies of the modes also
change. You could calculate how much they change using a finite difference

method but this would take many calculations.

Acoustic network model + flame model Linear modes of the model
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What if you could calculate the sensitivity of an eigenvalue to every single
degree of freedom with just two calculations?
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A square matrix, L , can be decomposed into a square matrix, Q , a diagonal
matrix, Z , and the inverse of Q.

L=QXQ !
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A square matrix, L , can be decomposed into a square matrix, Q , a diagonal
matrix, Z , and the inverse of Q.
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Post-multiplying by Q shows that the columns of Q are the eigenvectors of L .
(In more detail, these are the right eigenvectors of L )
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Post-multiplying by Q shows that the columns of Q are the eigenvectors of L .
(In more detail, these are the right eigenvectors of L )
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Post-multiplying by Q shows that the columns of Q are the eigenvectors of L .
(In more detail, these are the right eigenvectors of L )
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Pre-multiplying by Q' shows that the rows of Q- are the left eigenvectors of L
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Pre-multiplying by Q' shows that the rows of Q- are the left eigenvectors of L
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Pre-multiplying by Q' shows that the rows of Q- are the left eigenvectors of L
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Because Q1 Q =1, the rows of Q' are orthogonal to all but one of the columns of
Q . In other words, the left and right eigenvectors are bi-orthogonal.
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Because Q1 Q =1, the rows of Q' are orthogonal to all but one of the columns of
Q . In other words, the left and right eigenvectors are bi-orthogonal.
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Because Q1 Q =1, the rows of Q' are orthogonal to all but one of the columns of
Q . In other words, the left and right eigenvectors are bi-orthogonal.
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In summary, every square matrix, L , has a set of right eigenvectors and a
set of left eigenvectors, which are bi-orthogonal to each other.

L=QXQ !
/\

Right eigenvectors Left eigenvectors

LQ = QX Q 'L=x2Q"
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Let us consider a linearized problem in the time domain (state space formulation)

d
~a=L
T q

If t runs from 0 to «© then g can be expressed as a sum of eigenmodes

N

q=>» a;q;exp(oit)
i=1

each of which obeys
0;q; = Lq;
These are the right eigenfunctions of L (L — UZI) qz = (
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L=QXQ !
LQ = QX
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(L — 0 zI) q; = 0
Let us consider what happens when we make a very small change to L:

L - L+ el

The eigenvalues and the right eigenvectors change as well:

o; — 0; + €00;
4i — 4; + €0q;
and the new matrix, eigenvalues, and right eigenvectors satisfy:

((L + €5L) — (O'Z' + 650'2')1) (qz + 6561@) =0
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(L + edL) — (0y + €d07)I)(q; + €6;) = 0O

At order ¢, this is:
(L — 0;1)edq; + (€0l — €do;1)q; = 0

We pre-multiply by the /eft eigenvector:

(@) " (L — 0:1)e6d; + (@) (6L — edoI)@; = 0
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Q—lL _ EQ—l

Q! = | B e
g

(@7 = o;(gH)"
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(L + edL) — (0y + €d07)I)(q; + €6;) = 0O

At order ¢, this is:
(L — 0;1)edq; + (€0l — €do;1)q; = 0

We pre-multiply by the /eft eigenvector:

(@)™ (L — o:1)edd; + (@) (edL — edoI)@; = 0
@hfsLq = (@) "0,
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(L + edL) — (0y + €d07)I)(q; + €6;) = 0O

At order ¢, this is:
(L — 0;1)edq; + (€0l — €do;1)q; = 0

We pre-multiply by the /eft eigenvector:

(@h" (L — oil)edd; + (1) (6L — €5 1) = 0
Lq; = (qi)H50z‘qz'
SLa,;
4; )" 4
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We could find the left eigenvectors using the fact that Q' Q = |
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But there is an easier way to find the left eigenvectors.

Take the Hermitian transpose (the conjugate transpose) of the expression
satisfied by the left eigenvector, and re-arrange:

@)"(L—od) = 0
(@) (L -aD)" = 0
(L-—oDg = 0
(L" —ormal = 0
The left eigenvectors of L are the right eigenvectors of LH.
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In summary, here is how you evaluate the effect that any change to L has on
an eigenvalue

Express your problem in state space form:

d
—a =L
dtq q
(L — O’ZI)(A}Z =0

Find the corresponding /left eigenvector:

(LY~ oiT)q]

Choose a right eigenmode:

|
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In summary, here is how you evaluate the effect that any change to L has on
an eigenvalue

Now you can work out how ANY change to L will change that eigenvalue
~T\H ~
(qz’ )7 0Lg;
A .“ H A
(q@' ) q;
OL could represent:

« achange in the base state (base state sensitivity)

» the addition of a passive feedback device

» the addition of an active feedback device

« achange in one of the terms in the governing equations, to assess its
influence on the instability

» the most influential point-wise feedback mechanism (structural
sensitivity)
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For example, let us apply this to a simple linear oscillator

Here is a simple linear oscillator, which is a second order ODE:
T+br+c=0

It can be written as two first order ODEs:
T o=y
y = —by—cx

And this can be expressed in state space form:

d
“a=L
dtq q
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The first eigenvalue, right eigenvector, and left eigenvector are (by hand):

—b+ Vb% — 4c

o1 — 9
. [2] ] 2 '
Q1—_§_1 T _—b—|—\/b2_4c_
R L —2c” _
ql__?jf_l — _—b*—\/b*2—40*_
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The second eigenvalue, right eigenvector, and left eigenvector are (by hand):

—b—Vb% —4c

09 — 2
A 2 '
LT, T b VP4
A_‘___j\jT- L | _26* |
q2__?;T_2 — __b*_I_\/b*2_4C>k_
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If you are feeling energetic, you can check that the eigenvectors are bi-
orthogonal

@l a) = (-2¢) @)+ (-0 = Vo2 —aer) (=b+ Vo2 —de)
= () + (—b+ V2 —de) (~b+ VB2 — 4c)
— (—4c) + (62 — b /12 — de + b2 — 4c)
— 20> — 2b\/b% — 4c — 8¢
= 2(b% — 4c) — 26/ b2 — 4c
—2¢)" (2) + (=b" = Vb2 - 4c*)* (b — V2 —1c)
—de) + (—b + M) (—b — M)

(
(

= (—4c) + (b* — b* + 4c)
0
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If you are feeling energetic, you can check that the eigenvectors are bi-
orthogonal

|
DO

)" (2) + (—b* +/b*2 — 4(:*)* (—b — /b2 — 4(:)
—4e) + (—b VB 4(:) (—b VB 4(:)
—4e) + (b2 +2bV/02 —de + b2 — 4c)

= 202 4+ 2b\/b% — 4c — 8¢
= 2(b* — 4c) + 2bV/ b2 — 4c

7@ UNIVERSITY OF

- IR

“§> CAMBRIDGE



Let us consider the effect of a new feedback mechanism (e.g. negative damping)

ET + Y

T

Y

(L 4+ 6L)q
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Its influence can be worked out by hand and then compared with a new
eigenvalue calculation (again, by hand)

o1 =
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We can repeat this for all possible feedback mechanisms

ziz UNIVERSITY OF
“$» CAMBRIDGE




We can also find how the eigenvalue changes when the base state
parameters, b and c, change.

Qon| _ _ 9™ _ b 1
ob |, <{ﬂ,ql> 2vb% —4c 2
do1| g3 B —1

dc |, @, an) Vb2 — 4c
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Now let us apply this to a simple thermoacoustic system

J. Fluid Mech. (2013), vol. 719, pp. 183-202. (© Cambridge University Press 2013 183
do1:10.1017/jfm.2012.639
Sensitivity analysis of a time-delayed
thermo-acoustic system via an adjoint-based
approach

Luca Magrit and Matthew P. Juniper
Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, UK

(Received 25 July 2012; revised 1 November 2012; accepted 17 December 2012)
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The system is a Rijke tube containing a hot wire

Diagram of the Rijke tube
/s

air flow hot wire
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Non-dimensional governing equations
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4Balasubramanian, K. and Sujith, R.I. “Thermoacoustic instability in a Rijke tube: nonnormality and nonlinearity” Phys.

Fluids Vol. 20, 2008, 044103.
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The governing equations are discretized by considering the fundamental ‘open
organ pipe’ mode and its harmonics. This is a Galerkin discretization.

Discretization into basis functions
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The governing equations are discretized by considering the fundamental ‘open
organ pipe’ mode and its harmonics. This is a Galerkin discretization.

Discretization into basis functions

U P
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Non-dimensional discretized governing equations
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4Balasubramanian, K. and Sujith, R.I. “Thermoacoustic instability in a Rijke tube: nonnormality and nonlinearity” Phys.
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We linearize the nonlinear heat release term and the time delay (hence creating
linear ODEs instead of nonlinear DDEs). This creates the state space form.

Nonlinear time-delayed term

Qo=

up(t —7) K

'r<<3
N

Linear with no time delay

4Balasubramanian, K. and Sujith, R.I. “Thermoacoustic instability in a Rijke tube: nonnormality and nonlinearity” Phys.
Fluids Vol. 20, 2008, 044103.
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We linearize the nonlinear heat release term and the time delay (hence creating
linear ODEs instead of nonlinear DDEs). This creates the state space form.

_u1 -
\ /
~__—
N\ PN
q = unN N N
P1 /\
~_
PN
_pN_ N
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We consider a passive control device at position x..

Diagram of the Rijke tube

V7
air flow hot wire @ passive control device
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We consider a passive control device at position x..

Diagram of the Rijke tube
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air flow hot wire @ passive control device
—&Lf— T c

u(z,)

UNIVERSITY OF

CAMBRIDGE




We consider a passive control device at position x..

Diagram of the Rijke tube

V7
air flow hot wire @ passive control device
—&Lf— T c

eu(x.)

UNIVERSITY OF

CAMBRIDGE




We consider a passive control device at position x_ , which can either feed into the
energy equation

Diagram of the Rijke tube

7
air flow hot wire @ passive control device
—&Lf— T c

Non-dimensional governing equations
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We consider a passive control device at position x_ , which can either feed into the
energy equation or the momentum equation.

Diagram of the Rijke tube

7
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—&Lf— T c

@ >

Non-dimensional governing equations
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For example, here is the effect of a passive feedback device that, at a given point
in space, produces a force proportional to the acoustic velocity. It has most

influence at the downstream end of the tube.

Feedback from u into — Effect on the growth rate
the momentum equaton | ————- Effect on the frequency
2 — ~
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o 0.5f
270
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dp  Jdu 1
2= T gp TP O3+W( ™)

t |

acoustics damping heat release at the hot wire
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The effect of all other passive devices can also be calculated.

— Effect on the growth rate

Feedback from u into
————— Effect on the frequency

the momentum equation
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For example, here is the effect of a device that increases the heat release when
the acoustic pressure increases. It has most influence around the middle of the

tube.

Ju dp

5t " Bx

Op  Ou N V2 N2
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acoustics damping heat release at the hot wire
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For example, here is the effect of a device that increases the heat release when
the acoustic velocity increases. It has very little influence on the growth rate, but

greater influence on the frequency.

Ou  Jdp
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Ot o

ot  Ox 3
t t

acoustics damping heat release at the hot wire
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These building blocks can be combined in any (linear) way:

— Effect on the growth rate

Feedback from u into
————— Effect on the frequency

the momentum equation
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For example, here is the influence of another hot wire as a function of its position
within the tube.

air flow hot wire control hot wire
—

Change in the eigenvalue that would be caused by feedback from another hot wire

Growth-rate drift

Frequency drift

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Le L
/1 Fin. diff.
: " —e—DA
control hot wire position A —CA,

7 CA,




We can compare this with the Rayleigh Index for the same hot wire.

Most destabilizing \Q‘N& Growth-rate drift Frequency drift

No effect

Most stabilizing

The sign _ooz e H_M '

matches the |.--===--""" T . RS
Rayleigh hot wire position _e_{)\ “1 hot wire position
Index v CA,
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The sensitivity analysis is linear so we test its predictions by applying these
feedback mechanisms to the fully nonlinear system

(a) Time integration of the nonlinear system

005 I I I I I I I
2, 0--.."'
_005 | | | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
(b) FFT for ¢t < 1000
0.5 : :
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The sensitivity analysis is linear so we test its predictions by applying these
feedback mechanisms to the fully nonlinear system

Turning the control hot wire on

0.05

-0.05
0

0.5

g% UNIVERSITY OF
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(a) Time integration of the nonlinear system
T T T T T T
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(b) FFT for t < 1000




The sensitivity analysis is linear so we test its predictions by applying these
feedback mechanisms to the fully nonlinear system

Turning the control hot wire on

(a) Time integration of the nonlinear system
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We can also calculate the change in the eigenvalue when the base state is
changed.

air flow hot wire
—

Sensitivity to changes in the base state: wire temperature (left) time delay (right)

Growth-rate drift - Growth-rate drift - 7

0.01

—~ 0.005¢
Sl
(0.




A laminar vortex breakdown bubble can be used as a toy model for the
recirculating zone in a gas turbine combustion chamber.
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Using adjoint methods, we find the most
receptive and most sensitive regions of the flow.

Qadri & Juniper (2013)

streamlines (lines) and azimuthal velocity (colours)

the shape of the most unstable mode (it spirals)

the receptivity to external forcing

the sensitivity to internal feedback

the sensitivity to base flow modification
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Using adjoint methods, we discover which
physical feedback mechanisms drive the

instability.

Qadri & Juniper (2013)

effect of the B destabilizing
axial velocity ... | ﬁ
> (l‘.
... on the axial momentum equation
~ neutral
stabilizing
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Using adjoint methods, we discover which
physical feedback mechanisms drive the

instability.

Qadri & Juniper (2013)

effect of the destabilizing

axial velocity ...

v

effect of the

: : ~ neutral
radial velocity ...

effect of the

azimuthal velocity ... stabilizing

°‘§

1 2 3

A . A momentum
azimuthal equation

3 1 2

...on the ... axial 'T\ radial
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| will demonstrate the base state sensitivity analysis on the varicose
oscillation of a helium jet (in the absence of buoyancy)

Passive control of global instability in low-density jets

Ubaid Ali Qadri,} Gary J. Chandler,! and Matthew P. Juniper?
Department of Engineering, Uniwersity of Cambridge, CB2 1PZ Cambridge,
UK

(submitted to Physics of Fluids in April 2013)
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Given a base flow (top), we calculate the right eigenvector (direct global mode)
and the left eigenvector (adjoint global mode).

Streamlines of base flow

Local abs. growth rate

|
o
~

Direct global mode

g
22
(O]
o

Adjoint global mode

Radius, r
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Sensitivity to a steady axial force

4
x 10 4

N W

Radius, r

Sensitivity to a steady radial force
x 10*

Radius, r

Sensitivity to a steady heat input
x 10*

Radius, r

o UTE (e o
0 2 4 6 8 10
Axial distance, x Axial distance, x




It is most interesting to examine the eigenvalue’s sensitivity to physical objects
that can be placed in the flow.

Sensitivity to a thin adiabatic ring

Total change in growth rate, 6 o drag Total change in frequency,d o drag

Sensitivity to a thin hot ring

Total change in growth rate,d o Total change in frequency,d o

hotring hotring




The same analysis can be performed on flames, to examine their hydrodynamic
stability. Here is a lifted jet diffusion flame.
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The lifted jet diffusion flame has two unstable hydrodynamic modes: one
high frequency, one low frequency. They are caused by different regions of
the flow.

Mode A: wavemaker region

S,
I
B R




This flame turns out to be hyper-sensitive to some changes. We may find
that thermoacoustic systems are also hyper-sensitive.

Sensitivity of the eigenvalue to a steady heat input
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change to the linear operator

adjoint eigenvector

change to the eigenvalue

N (A?.l:;r )H(SVL(AM

(50’@ —
taha”
|

direct eigenvector

conjugate transpose
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