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Imagine you have created a linear thermo-acoustic model of a gas turbine  

cylindrical polar coordinates x, r and θ and write the pressure,
density, temperature and velocity as p, ρ , T and (u,v,w), respec-
tively. We will assume a perfect gas, p = RgasρT . The flow
is taken to be composed of a steady axial mean flow (denoted by
bars) and a small perturbation (denoted by dashes). We make one
of two assumptions about the combustor geometry: either we as-
sume it is axially long (typical of industrial gas turbines) or that it
has a narrow annular gap compared to its circumference (typical
of aeroengines). The mean flow for either cases can be assumed
to be one-dimensional. For the former case, the perturbations
will also be one-dimensional (at least at frequencies of practical
interest). In the latter case, circumferential and axial variations
of the perturbation could be important but radial variation can be
neglected. We consider perturbations with complex frequency
ω , i.e. we have p = p̄(x)+ p�(x,θ , t) with p� = Re [p̂(x,θ)eiωt ],
(and similarly for the other flow variables). We may consider
the perturbations as a sum of circumferential modes by writing
p̂(x,θ) = !Nn=−N p̂neinθ and so on (where N is sufficiently large
that the higher-order modes can be neglected). If the geometry
is axisymmetric throughout then the circumferential modes can
be considered independently. However if the symmetry is bro-
ken (for instance by a Helmholtz resonator being present [17])
the modes can become coupled and must be calculated together.
Note that for the case of a one-dimensional geometry, only the
plane waves are present and we simply have N = 0.

The geometry is composed of a network of modules describ-
ing its features, such as straight ducts, area changes and combus-
tion zones. For the straight duct modules, wave propagation is
used to relate the perturbations at one end of the duct to those
at the other. The rest of the modules are assumed to be acous-
tically compact. Here quasi-steady conservation laws for mass,
momentum and energy are used to relate the flow at the inlet
and exit of the module, accounting for any force or heat input
applied within the module. At a combustion zone, the unsteady
heat release is related to the flow disturbances by a (linear) flame
transfer function. Acoustic boundary conditions are assumed to
be known at the inlet and outlet of the geometry. The proce-
dure to find the resonant modes is to guess an initial value for ω
and calculate the perturbations, starting at the inlet and stepping
through the modules to the outlet. In general this solution will
not match the outlet boundary condition. ω is then iterated to
satisfy this constraint. (For coupled circumferential modes, the
relative phase and magnitude of the modes at the inlet must also
be calculated.) The frequency of the mode is then Re(ω)/(2π),
and we define the growth rate as − Im(ω). If the growth rate is
negative the mode is linearly stable and would not be expected
to be seen in practice, whereas if the growth rate is positive the
mode is unstable and would grow in amplitude until nonlinear
effects become important and a limit cycle is achieved. More de-
tails on this linear model are given in [18], with the procedure for
coupled circumferential modes described in [17].

The above references only consider geometries with a sin-
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Figure 1. Schematic diagrams of possible application of
thermoacoustic network model (top) and modelling approach (bottom).

gle flow-pathway from the inlet to the outlet, however it is pos-
sible to extend the model to have multiple pathways. These ad-
ditional ‘secondary paths’ may originate by splitting of the flow
or from secondary inlets to the geometry. The paths can later
terminate as dead ends, or by joining into other paths. Flow
from one path to another through holes can also be incorpo-
rated. This means that cooling flows and staged combustion
can be modelled. Schematic diagrams of a possible applica-
tion and modelling approach are shown in Fig. 1. At the start
of each secondary path there is an unknown parameter for the
perturbation (such as the ratio of the mass-flux perturbations
at a flow split), and at the end of each path there is a bound-
ary condition (such as û = 0 at a dead end). However, due
to the linearity of the model, calculation of these simply in-
volves the solution of a (P+ 1)-dimensional complex matrix
equation (or (P+ 1)(2N + 1)-dimensional for coupled circum-
ferential modes), where P is the number of secondary paths.

A general review of linear methods for combustion instabil-
ity in LPP gas turbines in given [7, 8].

3 NONLINEAR FLAME MODEL
We assume that combustion takes place at a single combus-

tion zone, i.e. there is no radial or axial staging (however, this
constraint can be relaxed; see Section 5.3). This combustion zone
is assumed to be acoustically compact in the axial direction (i.e.
short compared to the wavelength of flow perturbations). We as-
sume that a ring of D premix ducts or burners is present. For
simplicity, we take these to be identical and uniformly spaced
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You find the growth rates and frequencies of linear modes of the model (the 
eigenmodes) 
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is taken to be composed of a steady axial mean flow (denoted by
bars) and a small perturbation (denoted by dashes). We make one
of two assumptions about the combustor geometry: either we as-
sume it is axially long (typical of industrial gas turbines) or that it
has a narrow annular gap compared to its circumference (typical
of aeroengines). The mean flow for either cases can be assumed
to be one-dimensional. For the former case, the perturbations
will also be one-dimensional (at least at frequencies of practical
interest). In the latter case, circumferential and axial variations
of the perturbation could be important but radial variation can be
neglected. We consider perturbations with complex frequency
ω , i.e. we have p = p̄(x)+ p�(x,θ , t) with p� = Re [p̂(x,θ)eiωt ],
(and similarly for the other flow variables). We may consider
the perturbations as a sum of circumferential modes by writing
p̂(x,θ) = !Nn=−N p̂neinθ and so on (where N is sufficiently large
that the higher-order modes can be neglected). If the geometry
is axisymmetric throughout then the circumferential modes can
be considered independently. However if the symmetry is bro-
ken (for instance by a Helmholtz resonator being present [17])
the modes can become coupled and must be calculated together.
Note that for the case of a one-dimensional geometry, only the
plane waves are present and we simply have N = 0.

The geometry is composed of a network of modules describ-
ing its features, such as straight ducts, area changes and combus-
tion zones. For the straight duct modules, wave propagation is
used to relate the perturbations at one end of the duct to those
at the other. The rest of the modules are assumed to be acous-
tically compact. Here quasi-steady conservation laws for mass,
momentum and energy are used to relate the flow at the inlet
and exit of the module, accounting for any force or heat input
applied within the module. At a combustion zone, the unsteady
heat release is related to the flow disturbances by a (linear) flame
transfer function. Acoustic boundary conditions are assumed to
be known at the inlet and outlet of the geometry. The proce-
dure to find the resonant modes is to guess an initial value for ω
and calculate the perturbations, starting at the inlet and stepping
through the modules to the outlet. In general this solution will
not match the outlet boundary condition. ω is then iterated to
satisfy this constraint. (For coupled circumferential modes, the
relative phase and magnitude of the modes at the inlet must also
be calculated.) The frequency of the mode is then Re(ω)/(2π),
and we define the growth rate as − Im(ω). If the growth rate is
negative the mode is linearly stable and would not be expected
to be seen in practice, whereas if the growth rate is positive the
mode is unstable and would grow in amplitude until nonlinear
effects become important and a limit cycle is achieved. More de-
tails on this linear model are given in [18], with the procedure for
coupled circumferential modes described in [17].

The above references only consider geometries with a sin-

Turbine

Outer cooling flow

Inner cooling flow
burners

Pilot

burners
Main

Compressor

Combustion
chamber

Pilot
burners

Main
burners

Inner cooling flow

Outer cooling flow

Choked
outletinlet

Choked
Split

Split
Split Join

Holes

Holes

end

end
Dead

Dead
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thermoacoustic network model (top) and modelling approach (bottom).

gle flow-pathway from the inlet to the outlet, however it is pos-
sible to extend the model to have multiple pathways. These ad-
ditional ‘secondary paths’ may originate by splitting of the flow
or from secondary inlets to the geometry. The paths can later
terminate as dead ends, or by joining into other paths. Flow
from one path to another through holes can also be incorpo-
rated. This means that cooling flows and staged combustion
can be modelled. Schematic diagrams of a possible applica-
tion and modelling approach are shown in Fig. 1. At the start
of each secondary path there is an unknown parameter for the
perturbation (such as the ratio of the mass-flux perturbations
at a flow split), and at the end of each path there is a bound-
ary condition (such as û = 0 at a dead end). However, due
to the linearity of the model, calculation of these simply in-
volves the solution of a (P+ 1)-dimensional complex matrix
equation (or (P+ 1)(2N + 1)-dimensional for coupled circum-
ferential modes), where P is the number of secondary paths.

A general review of linear methods for combustion instabil-
ity in LPP gas turbines in given [7, 8].

3 NONLINEAR FLAME MODEL
We assume that combustion takes place at a single combus-

tion zone, i.e. there is no radial or axial staging (however, this
constraint can be relaxed; see Section 5.3). This combustion zone
is assumed to be acoustically compact in the axial direction (i.e.
short compared to the wavelength of flow perturbations). We as-
sume that a ring of D premix ducts or burners is present. For
simplicity, we take these to be identical and uniformly spaced
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When you change the model, the growth rates and frequencies of the modes also 
change. You could calculate how much they change using a finite difference 
method but this would take many calculations. 
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tion zones. For the straight duct modules, wave propagation is
used to relate the perturbations at one end of the duct to those
at the other. The rest of the modules are assumed to be acous-
tically compact. Here quasi-steady conservation laws for mass,
momentum and energy are used to relate the flow at the inlet
and exit of the module, accounting for any force or heat input
applied within the module. At a combustion zone, the unsteady
heat release is related to the flow disturbances by a (linear) flame
transfer function. Acoustic boundary conditions are assumed to
be known at the inlet and outlet of the geometry. The proce-
dure to find the resonant modes is to guess an initial value for ω
and calculate the perturbations, starting at the inlet and stepping
through the modules to the outlet. In general this solution will
not match the outlet boundary condition. ω is then iterated to
satisfy this constraint. (For coupled circumferential modes, the
relative phase and magnitude of the modes at the inlet must also
be calculated.) The frequency of the mode is then Re(ω)/(2π),
and we define the growth rate as − Im(ω). If the growth rate is
negative the mode is linearly stable and would not be expected
to be seen in practice, whereas if the growth rate is positive the
mode is unstable and would grow in amplitude until nonlinear
effects become important and a limit cycle is achieved. More de-
tails on this linear model are given in [18], with the procedure for
coupled circumferential modes described in [17].

The above references only consider geometries with a sin-

Turbine

Outer cooling flow

Inner cooling flow
burners

Pilot

burners
Main

Compressor

Combustion
chamber

Pilot
burners

Main
burners

Inner cooling flow

Outer cooling flow

Choked
outletinlet

Choked
Split

Split
Split Join

Holes

Holes

end

end
Dead

Dead

Figure 1. Schematic diagrams of possible application of
thermoacoustic network model (top) and modelling approach (bottom).
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sible to extend the model to have multiple pathways. These ad-
ditional ‘secondary paths’ may originate by splitting of the flow
or from secondary inlets to the geometry. The paths can later
terminate as dead ends, or by joining into other paths. Flow
from one path to another through holes can also be incorpo-
rated. This means that cooling flows and staged combustion
can be modelled. Schematic diagrams of a possible applica-
tion and modelling approach are shown in Fig. 1. At the start
of each secondary path there is an unknown parameter for the
perturbation (such as the ratio of the mass-flux perturbations
at a flow split), and at the end of each path there is a bound-
ary condition (such as û = 0 at a dead end). However, due
to the linearity of the model, calculation of these simply in-
volves the solution of a (P+ 1)-dimensional complex matrix
equation (or (P+ 1)(2N + 1)-dimensional for coupled circum-
ferential modes), where P is the number of secondary paths.

A general review of linear methods for combustion instabil-
ity in LPP gas turbines in given [7, 8].
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We assume that combustion takes place at a single combus-

tion zone, i.e. there is no radial or axial staging (however, this
constraint can be relaxed; see Section 5.3). This combustion zone
is assumed to be acoustically compact in the axial direction (i.e.
short compared to the wavelength of flow perturbations). We as-
sume that a ring of D premix ducts or burners is present. For
simplicity, we take these to be identical and uniformly spaced

3 Copyright " 2008 by ASME

Acoustic network model + flame model 

•  Many degrees of freedom 

Linear modes of the model 

Frequency 

Growth rate 

unstable 
stable 



What if you could calculate the sensitivity of an eigenvalue to every single 
degree of freedom with just two calculations?  

cylindrical polar coordinates x, r and θ and write the pressure,
density, temperature and velocity as p, ρ , T and (u,v,w), respec-
tively. We will assume a perfect gas, p = RgasρT . The flow
is taken to be composed of a steady axial mean flow (denoted by
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tion zones. For the straight duct modules, wave propagation is
used to relate the perturbations at one end of the duct to those
at the other. The rest of the modules are assumed to be acous-
tically compact. Here quasi-steady conservation laws for mass,
momentum and energy are used to relate the flow at the inlet
and exit of the module, accounting for any force or heat input
applied within the module. At a combustion zone, the unsteady
heat release is related to the flow disturbances by a (linear) flame
transfer function. Acoustic boundary conditions are assumed to
be known at the inlet and outlet of the geometry. The proce-
dure to find the resonant modes is to guess an initial value for ω
and calculate the perturbations, starting at the inlet and stepping
through the modules to the outlet. In general this solution will
not match the outlet boundary condition. ω is then iterated to
satisfy this constraint. (For coupled circumferential modes, the
relative phase and magnitude of the modes at the inlet must also
be calculated.) The frequency of the mode is then Re(ω)/(2π),
and we define the growth rate as − Im(ω). If the growth rate is
negative the mode is linearly stable and would not be expected
to be seen in practice, whereas if the growth rate is positive the
mode is unstable and would grow in amplitude until nonlinear
effects become important and a limit cycle is achieved. More de-
tails on this linear model are given in [18], with the procedure for
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gle flow-pathway from the inlet to the outlet, however it is pos-
sible to extend the model to have multiple pathways. These ad-
ditional ‘secondary paths’ may originate by splitting of the flow
or from secondary inlets to the geometry. The paths can later
terminate as dead ends, or by joining into other paths. Flow
from one path to another through holes can also be incorpo-
rated. This means that cooling flows and staged combustion
can be modelled. Schematic diagrams of a possible applica-
tion and modelling approach are shown in Fig. 1. At the start
of each secondary path there is an unknown parameter for the
perturbation (such as the ratio of the mass-flux perturbations
at a flow split), and at the end of each path there is a bound-
ary condition (such as û = 0 at a dead end). However, due
to the linearity of the model, calculation of these simply in-
volves the solution of a (P+ 1)-dimensional complex matrix
equation (or (P+ 1)(2N + 1)-dimensional for coupled circum-
ferential modes), where P is the number of secondary paths.

A general review of linear methods for combustion instabil-
ity in LPP gas turbines in given [7, 8].

3 NONLINEAR FLAME MODEL
We assume that combustion takes place at a single combus-

tion zone, i.e. there is no radial or axial staging (however, this
constraint can be relaxed; see Section 5.3). This combustion zone
is assumed to be acoustically compact in the axial direction (i.e.
short compared to the wavelength of flow perturbations). We as-
sume that a ring of D premix ducts or burners is present. For
simplicity, we take these to be identical and uniformly spaced
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A square matrix, L , can be decomposed into a square matrix, Q , a diagonal 
matrix, Σ , and the inverse of Q. 

1.3.1 Some maths for powerpoint

L = QΣQ−1

LQ = QΣ

Q−1L = ΣQ−1

q̂1 q̂2 q̂3

q̂†
1 q̂†

2 q̂†
3

q̂i q̂j

q̂†
i

q̂†
j

Lq̂i = σiq̂i

(L− σiI)q̂i = 0

(q̂†
i
)HL = σi(q̂

†
i
)H

(q̂†
i
)H(L− σiI) = 0

I

d

dt
q = Lq

q =
N�

i=1

αiq̂i exp(σit)

σiq̂i = Lq̂i

1.3.2 Physical interpretation
{sec_005_025}

The first eigenvalue is

σ1 =
−b+

√
b2 − 4c

2
(65) {equ_015_005}

If b = 0 then σ1 = i
√
c and q̂1 = [2, 2i

√
c]T . The solution to (22) is therefore an undamped

oscillation with frequency
√
c, in which x and y are in temporal quadrature and the amplitude

of y is
√
c times the amplitude of x.

When 0 < b < 2
√
c, the real component of σ is −b and is the damping in the system. The

natural frequency also changes. The amplitude of the oscillations is:
����

�
x
y

����� =
� √

x̂x̂∗√
ŷŷ∗

�
exp(σrt) (66) {equ_015_010}

where
√
x̂x̂∗ = 2 (67) {equ_015_010}

�
ŷŷ∗ =

�
−b+

�
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−b−

�
b2 − 4c

�
(68) {equ_015_020}

=
�
b2 − b2 + 4c (69) {equ_015_025}

= 2
√
c (70) {equ_015_030}

and therefore the amplitude of y is still
√
c times the amplitude of x.
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ŷŷ∗
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ŷŷ∗

�
exp(σrt) (66) {equ_015_010}

where
√
x̂x̂∗ = 2 (67) {equ_015_010}

�
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ŷŷ∗ =

�
−b+

�
b2 − 4c

��
−b−

�
b2 − 4c

�
(68) {equ_015_020}

=
�
b2 − b2 + 4c (69) {equ_015_025}

= 2
√
c (70) {equ_015_030}

and therefore the amplitude of y is still
√
c times the amplitude of x.

6

1.3.1 Some maths for powerpoint

L = QΣQ−1

LQ = QΣ

Q−1L = ΣQ−1

q̂1 q̂2 q̂3

q̂†
1 q̂†

2 q̂†
3

q̂i q̂j

q̂†
i

q̂†
j

Lq̂i = σiq̂i

(L− σiI)q̂i = 0

(q̂†
i
)HL = σi(q̂

†
i
)H

(q̂†
i
)H(L− σiI) = 0

I

d

dt
q = Lq

q =
N�

i=1

αiq̂i exp(σit)

σiq̂i = Lq̂i

1.3.2 Physical interpretation
{sec_005_025}

The first eigenvalue is

σ1 =
−b+

√
b2 − 4c

2
(65) {equ_015_005}

If b = 0 then σ1 = i
√
c and q̂1 = [2, 2i

√
c]T . The solution to (22) is therefore an undamped

oscillation with frequency
√
c, in which x and y are in temporal quadrature and the amplitude

of y is
√
c times the amplitude of x.

When 0 < b < 2
√
c, the real component of σ is −b and is the damping in the system. The

natural frequency also changes. The amplitude of the oscillations is:
����

�
x
y

����� =
� √

x̂x̂∗√
ŷŷ∗
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ŷŷ∗ =

�
−b+

�
b2 − 4c

��
−b−

�
b2 − 4c

�
(68) {equ_015_020}

=
�
b2 − b2 + 4c (69) {equ_015_025}

= 2
√
c (70) {equ_015_030}

and therefore the amplitude of y is still
√
c times the amplitude of x.

6

A square matrix, L , can be decomposed into a square matrix, Q , a diagonal 
matrix, Σ , and the inverse of Q. 



1.3.1 Some maths for powerpoint

L = QΣQ−1

LQ = QΣ

Q−1L = ΣQ−1

q̂1 q̂2 q̂3

q̂†
1 q̂†

2 q̂†
3

q̂i q̂j

q̂†
i

q̂†
j

Lq̂i = σiq̂i

(L− σiI)q̂i = 0

(q̂†
i
)HL = σi(q̂

†
i
)H

(q̂†
i
)H(L− σiI) = 0

I

d

dt
q = Lq

q =
N�

i=1

αiq̂i exp(σit)

σiq̂i = Lq̂i

1.3.2 Physical interpretation
{sec_005_025}

The first eigenvalue is

σ1 =
−b+

√
b2 − 4c

2
(65) {equ_015_005}

If b = 0 then σ1 = i
√
c and q̂1 = [2, 2i

√
c]T . The solution to (22) is therefore an undamped

oscillation with frequency
√
c, in which x and y are in temporal quadrature and the amplitude

of y is
√
c times the amplitude of x.

When 0 < b < 2
√
c, the real component of σ is −b and is the damping in the system. The

natural frequency also changes. The amplitude of the oscillations is:
����

�
x
y

����� =
� √

x̂x̂∗√
ŷŷ∗
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ŷŷ∗
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ŷŷ∗

�
exp(σrt) (66) {equ_015_010}

where
√
x̂x̂∗ = 2 (67) {equ_015_010}

�
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ŷŷ∗

�
exp(σrt) (66) {equ_015_010}

where
√
x̂x̂∗ = 2 (67) {equ_015_010}

�
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ŷŷ∗ =

�
−b+

�
b2 − 4c

��
−b−

�
b2 − 4c

�
(68) {equ_015_020}

=
�
b2 − b2 + 4c (69) {equ_015_025}

= 2
√
c (70) {equ_015_030}

and therefore the amplitude of y is still
√
c times the amplitude of x.

6

1.3.1 Some maths for powerpoint

L = QΣQ−1

LQ = QΣ

Q−1L = ΣQ−1

q̂1 q̂2 q̂3

q̂†
1 q̂†

2 q̂†
3

q̂i q̂j

q̂†
i

q̂†
j

Lq̂i = σiq̂i

(L− σiI)q̂i = 0

(q̂†
i
)HL = σi(q̂

†
i
)H

(q̂†
i
)H(L− σiI) = 0

I

d

dt
q = Lq

q =
N�

i=1

αiq̂i exp(σit)

σiq̂i = Lq̂i

1.3.2 Physical interpretation
{sec_005_025}

The first eigenvalue is

σ1 =
−b+

√
b2 − 4c

2
(65) {equ_015_005}

If b = 0 then σ1 = i
√
c and q̂1 = [2, 2i

√
c]T . The solution to (22) is therefore an undamped

oscillation with frequency
√
c, in which x and y are in temporal quadrature and the amplitude

of y is
√
c times the amplitude of x.

When 0 < b < 2
√
c, the real component of σ is −b and is the damping in the system. The

natural frequency also changes. The amplitude of the oscillations is:
����

�
x
y

����� =
� √

x̂x̂∗√
ŷŷ∗
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ŷŷ∗ =

�
−b+

�
b2 − 4c

��
−b−

�
b2 − 4c

�
(68) {equ_015_020}

=
�
b2 − b2 + 4c (69) {equ_015_025}

= 2
√
c (70) {equ_015_030}

and therefore the amplitude of y is still
√
c times the amplitude of x.

6

1.3.1 Some maths for powerpoint

L = QΣQ−1

LQ = QΣ

Q−1L = ΣQ−1

q̂1 q̂2 q̂3

q̂†
1 q̂†

2 q̂†
3

q̂i q̂j

q̂†
i

q̂†
j

Lq̂i = σiq̂i

(L− σiI)q̂i = 0

(q̂†
i
)HL = σi(q̂

†
i
)H

(q̂†
i
)H(L− σiI) = 0

I

d

dt
q = Lq

q =
N�

i=1

αiq̂i exp(σit)

σiq̂i = Lq̂i

1.3.2 Physical interpretation
{sec_005_025}

The first eigenvalue is

σ1 =
−b+

√
b2 − 4c

2
(65) {equ_015_005}

If b = 0 then σ1 = i
√
c and q̂1 = [2, 2i

√
c]T . The solution to (22) is therefore an undamped

oscillation with frequency
√
c, in which x and y are in temporal quadrature and the amplitude

of y is
√
c times the amplitude of x.

When 0 < b < 2
√
c, the real component of σ is −b and is the damping in the system. The

natural frequency also changes. The amplitude of the oscillations is:
����

�
x
y

����� =
� √

x̂x̂∗√
ŷŷ∗
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ŷŷ∗ =

�
−b+

�
b2 − 4c

��
−b−

�
b2 − 4c

�
(68) {equ_015_020}

=
�
b2 − b2 + 4c (69) {equ_015_025}

= 2
√
c (70) {equ_015_030}

and therefore the amplitude of y is still
√
c times the amplitude of x.

6

1.3.1 Some maths for powerpoint

L = QΣQ−1

LQ = QΣ

Q−1L = ΣQ−1

q̂1 q̂2 q̂3

q̂†
1 q̂†

2 q̂†
3

q̂i q̂j

q̂†
i

q̂†
j

Lq̂i = σiq̂i

(L− σiI)q̂i = 0

(q̂†
i
)HL = σi(q̂

†
i
)H

(q̂†
i
)H(L− σiI) = 0

I

d

dt
q = Lq

q =
N�

i=1

αiq̂i exp(σit)

σiq̂i = Lq̂i

1.3.2 Physical interpretation
{sec_005_025}

The first eigenvalue is

σ1 =
−b+

√
b2 − 4c

2
(65) {equ_015_005}

If b = 0 then σ1 = i
√
c and q̂1 = [2, 2i

√
c]T . The solution to (22) is therefore an undamped

oscillation with frequency
√
c, in which x and y are in temporal quadrature and the amplitude

of y is
√
c times the amplitude of x.

When 0 < b < 2
√
c, the real component of σ is −b and is the damping in the system. The

natural frequency also changes. The amplitude of the oscillations is:
����

�
x
y

����� =
� √

x̂x̂∗√
ŷŷ∗
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ŷŷ∗
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ŷŷ∗
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ŷŷ∗ =

�
−b+

�
b2 − 4c

��
−b−

�
b2 − 4c

�
(68) {equ_015_020}

=
�
b2 − b2 + 4c (69) {equ_015_025}

= 2
√
c (70) {equ_015_030}

and therefore the amplitude of y is still
√
c times the amplitude of x.

6

1.3.1 Some maths for powerpoint

L = QΣQ−1

LQ = QΣ

Q−1L = ΣQ−1

q̂1 q̂2 q̂3

q̂†
1 q̂†

2 q̂†
3

q̂i q̂j

q̂†
i

q̂†
j

Lq̂i = σiq̂i

(L− σiI)q̂i = 0

(q̂†
i
)HL = σi(q̂

†
i
)H

(q̂†
i
)H(L− σiI) = 0

I

d

dt
q = Lq

q =
N�

i=1

αiq̂i exp(σit)

σiq̂i = Lq̂i

1.3.2 Physical interpretation
{sec_005_025}

The first eigenvalue is

σ1 =
−b+

√
b2 − 4c

2
(65) {equ_015_005}

If b = 0 then σ1 = i
√
c and q̂1 = [2, 2i

√
c]T . The solution to (22) is therefore an undamped

oscillation with frequency
√
c, in which x and y are in temporal quadrature and the amplitude

of y is
√
c times the amplitude of x.

When 0 < b < 2
√
c, the real component of σ is −b and is the damping in the system. The

natural frequency also changes. The amplitude of the oscillations is:
����

�
x
y

����� =
� √

x̂x̂∗√
ŷŷ∗
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ŷŷ∗ =

�
−b+

�
b2 − 4c

��
−b−

�
b2 − 4c

�
(68) {equ_015_020}

=
�
b2 − b2 + 4c (69) {equ_015_025}

= 2
√
c (70) {equ_015_030}

and therefore the amplitude of y is still
√
c times the amplitude of x.

6

1.3.1 Some maths for powerpoint

L = QΣQ−1

LQ = QΣ

Q−1L = ΣQ−1

q̂1 q̂2 q̂3

q̂†
1 q̂†

2 q̂†
3

q̂i q̂j

q̂†
i

q̂†
j

Lq̂i = σiq̂i

(L− σiI)q̂i = 0

(q̂†
i
)HL = σi(q̂

†
i
)H

(q̂†
i
)H(L− σiI) = 0

I

d

dt
q = Lq

q =
N�

i=1

αiq̂i exp(σit)

σiq̂i = Lq̂i

1.3.2 Physical interpretation
{sec_005_025}

The first eigenvalue is

σ1 =
−b+

√
b2 − 4c

2
(65) {equ_015_005}

If b = 0 then σ1 = i
√
c and q̂1 = [2, 2i

√
c]T . The solution to (22) is therefore an undamped

oscillation with frequency
√
c, in which x and y are in temporal quadrature and the amplitude

of y is
√
c times the amplitude of x.

When 0 < b < 2
√
c, the real component of σ is −b and is the damping in the system. The

natural frequency also changes. The amplitude of the oscillations is:
����

�
x
y

����� =
� √

x̂x̂∗√
ŷŷ∗
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ŷŷ∗

�
exp(σrt) (66) {equ_015_010}

where
√
x̂x̂∗ = 2 (67) {equ_015_010}

�
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The eigenvector q̂i is known as the right eigenvector. It is also possible to define the left
eigenvector q̂†

j
, which satisfies:

(q̂†
i
)
H
(L− σiI) = 0 (54) {equ_010_205}

(I have used the Hermitian transpose, but the standard transpose would be just as good.) The

left and right eigenvectors are bi-orthogonal:

(q̂†
j
)
H q̂i = δij (55) {equ_010_210}

(I think that this is by construction, coming from the matrix eigenvalue decomposition: L =

QΛQ
−1

, in which q̂i are the columns of Q and q̂†
j
are the rows of Q

−1
; these are constructed

such that Q
−1

Q = I, which is the bi-orthogonality condition.)

Now, let us consider a perturbation to the direct operator such that L → L + �δL and

q̂i → q̂i + �δq̂i and σi → σi + �δσi. Equation (53) becomes:

�
(L + �δL)− (σi + �δσi)I

�
(q̂i + �δq̂i) = 0 (56) {equ_010_215}

At order � this is:

(L− σiI)�δq̂i + (�δL− �δσiI)q̂i = 0 (57) {equ_010_220}

Now we pre-multiply by the ith adjoint eigenfunction:

(q̂†
i
)
H
(L− σiI)�δq̂i + (q̂†

i
)
H
(�δL− �δσiI)q̂i = 0 (58) {equ_010_225}

The first term is zero because of (54). The second becomes:

(q̂†
i
)
HδLq̂i = (q̂†

i
)
Hδσiq̂i (59) {equ_010_225}

which can be rearranged to:

δσi =
(q̂†

i
)
HδLq̂i

(q̂†
i
)H q̂i

(60) {equ_010_225}

Therefore, if we want to find the shift in the ith eigenvalue, σi, caused by any perturbation to

the operator, L, you need just (i) the direct eigenfunction, q̂i, and (ii) the adjoint eigenfunction,

q̂†
i
. It is very easy to calculate the adjoint eigenfunction. Let’s return to (54):

(q̂†
i
)
H
(L− σiI) = 0 (61) {equ_010_230}

�
(q̂†

i
)
H
(L− σiI)

�H
= 0 (62)

(L− σiI)
H q̂†

i
= 0 (63)

(L
H − σ∗

i I)q̂
†
i

= 0 (64)

So the adjoint eigenvectors are the (right) eigenvectors of LH
and the adjoint eigenvalue is the

complex conjugate of the direct eigenvalue (it would be the direct eigenvalue if I had used the

standard transpose in the definition of (54)).

5
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Therefore, if we want to find the shift in the ith eigenvalue, σi, caused by any perturbation to

the operator, L, you need just (i) the direct eigenfunction, q̂i, and (ii) the adjoint eigenfunction,
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. It is very easy to calculate the adjoint eigenfunction. Let’s return to (54):
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standard transpose in the definition of (54)).
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ŷŷ∗

�
exp(σrt) (66) {equ_015_010}

where
√
x̂x̂∗ = 2 (67) {equ_015_010}

�
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ŷŷ∗
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The eigenvector q̂i is known as the right eigenvector. It is also possible to define the left
eigenvector q̂†
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, which satisfies:
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i
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H
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(I have used the Hermitian transpose, but the standard transpose would be just as good.) The

left and right eigenvectors are bi-orthogonal:

(q̂†
j
)
H q̂i = δij (55) {equ_010_210}

(I think that this is by construction, coming from the matrix eigenvalue decomposition: L =

QΛQ
−1

, in which q̂i are the columns of Q and q̂†
j
are the rows of Q

−1
; these are constructed

such that Q
−1

Q = I, which is the bi-orthogonality condition.)

Now, let us consider a perturbation to the direct operator such that L → L + �δL and

q̂i → q̂i + �δq̂i and σi → σi + �δσi. Equation (53) becomes:

�
(L + �δL)− (σi + �δσi)I

�
(q̂i + �δq̂i) = 0 (56) {equ_010_215}

At order � this is:
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Now we pre-multiply by the ith adjoint eigenfunction:
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H
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The first term is zero because of (54). The second becomes:

(q̂†
i
)
HδLq̂i = (q̂†
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Hδσiq̂i (59) {equ_010_225}

which can be rearranged to:

δσi =
(q̂†
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HδLq̂i

(q̂†
i
)H q̂i

(60) {equ_010_225}

Therefore, if we want to find the shift in the ith eigenvalue, σi, caused by any perturbation to

the operator, L, you need just (i) the direct eigenfunction, q̂i, and (ii) the adjoint eigenfunction,

q̂†
i
. It is very easy to calculate the adjoint eigenfunction. Let’s return to (54):

(q̂†
i
)
H
(L− σiI) = 0 (61) {equ_010_230}

�
(q̂†
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= 0 (63)
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So the adjoint eigenvectors are the (right) eigenvectors of LH
and the adjoint eigenvalue is the

complex conjugate of the direct eigenvalue (it would be the direct eigenvalue if I had used the

standard transpose in the definition of (54)).
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Because Q-1 Q = I , the rows of Q-1 are orthogonal to all but one of the columns of 
Q . In other words, the left and right eigenvectors are bi-orthogonal. 
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ŷŷ∗
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Let us consider a linearized problem in the time domain (state space formulation)  

If t runs from 0 to ∞ then q can be expressed as a sum of eigenmodes  

each of which obeys  

These are the right eigenfunctions of L  
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ŷŷ∗

�
exp(σrt) (66) {equ_015_010}

where
√
x̂x̂∗ = 2 (67) {equ_015_010}

�
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ŷŷ∗

�
exp(σrt) (66) {equ_015_010}

where
√
x̂x̂∗ = 2 (67) {equ_015_010}

�
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ŷŷ∗ =

�
−b+

�
b2 − 4c

��
−b−

�
b2 − 4c

�
(68) {equ_015_020}

=
�
b2 − b2 + 4c (69) {equ_015_025}

= 2
√
c (70) {equ_015_030}

and therefore the amplitude of y is still
√
c times the amplitude of x.

6

1.3.1 Some maths for powerpoint

L = QΣQ−1

LQ = QΣ

Q−1L = ΣQ−1

q̂1 q̂2 q̂3

q̂†
1 q̂†

2 q̂†
3

q̂i q̂j

q̂†
i

q̂†
j

Lq̂i = σiq̂i

(L− σiI)q̂i = 0

(q̂†
i
)HL = σi(q̂

†
i
)H

(q̂†
i
)H(L− σiI) = 0

I

d

dt
q = Lq

q =
N�

i=1

αiq̂i exp(σit)

σiq̂i = Lq̂i

1.3.2 Physical interpretation
{sec_005_025}

The first eigenvalue is

σ1 =
−b+

√
b2 − 4c

2
(65) {equ_015_005}

If b = 0 then σ1 = i
√
c and q̂1 = [2, 2i

√
c]T . The solution to (22) is therefore an undamped

oscillation with frequency
√
c, in which x and y are in temporal quadrature and the amplitude

of y is
√
c times the amplitude of x.

When 0 < b < 2
√
c, the real component of σ is −b and is the damping in the system. The

natural frequency also changes. The amplitude of the oscillations is:
����

�
x
y

����� =
� √

x̂x̂∗√
ŷŷ∗
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The eigenvector q̂i is known as the right eigenvector. It is also possible to define the left
eigenvector q̂†

j
, which satisfies:

(q̂†
i
)
H
(L− σiI) = 0 (54) {equ_010_205}

(I have used the Hermitian transpose, but the standard transpose would be just as good.) The

left and right eigenvectors are bi-orthogonal:

(q̂†
j
)
H q̂i = δij (55) {equ_010_210}

(I think that this is by construction, coming from the matrix eigenvalue decomposition: L =

QΛQ
−1

, in which q̂i are the columns of Q and q̂†
j
are the rows of Q

−1
; these are constructed

such that Q
−1

Q = I, which is the bi-orthogonality condition.)

Now, let us consider a perturbation to the direct operator such that L → L + �δL and

q̂i → q̂i + �δq̂i and σi → σi + �δσi. Equation (53) becomes:

�
(L + �δL)− (σi + �δσi)I

�
(q̂i + �δq̂i) = 0 (56) {equ_010_215}

At order � this is:

(L− σiI)�δq̂i + (�δL− �δσiI)q̂i = 0 (57) {equ_010_220}

Now we pre-multiply by the ith adjoint eigenfunction:

(q̂†
i
)
H
(L− σiI)�δq̂i + (q̂†

i
)
H
(�δL− �δσiI)q̂i = 0 (58) {equ_010_225}

The first term is zero because of (54). The second becomes:

(q̂†
i
)
HδLq̂i = (q̂†

i
)
Hδσiq̂i (59) {equ_010_225}

which can be rearranged to:

δσi =
(q̂†

i
)
HδLq̂i

(q̂†
i
)H q̂i

(60) {equ_010_225}

Therefore, if we want to find the shift in the ith eigenvalue, σi, caused by any perturbation to

the operator, L, you need just (i) the direct eigenfunction, q̂i, and (ii) the adjoint eigenfunction,

q̂†
i
. It is very easy to calculate the adjoint eigenfunction. Let’s return to (54):

(q̂†
i
)
H
(L− σiI) = 0 (61) {equ_010_230}

�
(q̂†

i
)
H
(L− σiI)

�H
= 0 (62)

(L− σiI)
H q̂†

i
= 0 (63)

(L
H − σ∗

i I)q̂
†
i

= 0 (64)

So the adjoint eigenvectors are the (right) eigenvectors of LH
and the adjoint eigenvalue is the

complex conjugate of the direct eigenvalue (it would be the direct eigenvalue if I had used the

standard transpose in the definition of (54)).
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Let us consider what happens when we make a very small change to L: 

The eigenvalues and the right eigenvectors change as well: 

and the new matrix, eigenvalues, and right eigenvectors satisfy: 
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At order ε , this is: 

We pre-multiply by the left eigenvector: 
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1.3.2 Physical interpretation
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√
b2 − 4c

2
(65) {equ_015_005}

If b = 0 then σ1 = i
√
c and q̂1 = [2, 2i

√
c]T . The solution to (22) is therefore an undamped

oscillation with frequency
√
c, in which x and y are in temporal quadrature and the amplitude

of y is
√
c times the amplitude of x.

When 0 < b < 2
√
c, the real component of σ is −b and is the damping in the system. The

natural frequency also changes. The amplitude of the oscillations is:
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ŷŷ∗
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ŷŷ∗
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Reminder: 

The eigenvector q̂i is known as the right eigenvector. It is also possible to define the left
eigenvector q̂†

j
, which satisfies:

(q̂†
i
)
H
(L− σiI) = 0 (54) {equ_010_205}

(I have used the Hermitian transpose, but the standard transpose would be just as good.) The

left and right eigenvectors are bi-orthogonal:

(q̂†
j
)
H q̂i = δij (55) {equ_010_210}

(I think that this is by construction, coming from the matrix eigenvalue decomposition: L =

QΛQ
−1

, in which q̂i are the columns of Q and q̂†
j
are the rows of Q

−1
; these are constructed

such that Q
−1

Q = I, which is the bi-orthogonality condition.)

Now, let us consider a perturbation to the direct operator such that L → L + �δL and

q̂i → q̂i + �δq̂i and σi → σi + �δσi. Equation (53) becomes:

�
(L + �δL)− (σi + �δσi)I

�
(q̂i + �δq̂i) = 0 (56) {equ_010_215}

At order � this is:

(L− σiI)�δq̂i + (�δL− �δσiI)q̂i = 0 (57) {equ_010_220}

Now we pre-multiply by the ith adjoint eigenfunction:

(q̂†
i
)
H
(L− σiI)�δq̂i + (q̂†

i
)
H
(�δL− �δσiI)q̂i = 0 (58) {equ_010_225}

The first term is zero because of (54). The second becomes:

(q̂†
i
)
HδLq̂i = (q̂†

i
)
Hδσiq̂i (59) {equ_010_225}

which can be rearranged to:

δσi =
(q̂†

i
)
HδLq̂i

(q̂†
i
)H q̂i

(60) {equ_010_225}

Therefore, if we want to find the shift in the ith eigenvalue, σi, caused by any perturbation to

the operator, L, you need just (i) the direct eigenfunction, q̂i, and (ii) the adjoint eigenfunction,

q̂†
i
. It is very easy to calculate the adjoint eigenfunction. Let’s return to (54):

(q̂†
i
)
H
(L− σiI) = 0 (61) {equ_010_230}

�
(q̂†

i
)
H
(L− σiI)

�H
= 0 (62)

(L− σiI)
H q̂†

i
= 0 (63)

(L
H − σ∗

i I)q̂
†
i

= 0 (64)

So the adjoint eigenvectors are the (right) eigenvectors of LH
and the adjoint eigenvalue is the

complex conjugate of the direct eigenvalue (it would be the direct eigenvalue if I had used the

standard transpose in the definition of (54)).
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2
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c and q̂1 = [2, 2i
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c]T . The solution to (22) is therefore an undamped

oscillation with frequency
√
c, in which x and y are in temporal quadrature and the amplitude

of y is
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c times the amplitude of x.

When 0 < b < 2
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c, the real component of σ is −b and is the damping in the system. The
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(I have used the Hermitian transpose, but the standard transpose would be just as good.) The

left and right eigenvectors are bi-orthogonal:

(q̂†
j
)
H q̂i = δij (55) {equ_010_210}

(I think that this is by construction, coming from the matrix eigenvalue decomposition: L =

QΛQ
−1

, in which q̂i are the columns of Q and q̂†
j
are the rows of Q

−1
; these are constructed

such that Q
−1

Q = I, which is the bi-orthogonality condition.)

Now, let us consider a perturbation to the direct operator such that L → L + �δL and

q̂i → q̂i + �δq̂i and σi → σi + �δσi. Equation (53) becomes:
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�
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At order � this is:
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)
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(q̂†

i
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i
)H q̂i
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Therefore, if we want to find the shift in the ith eigenvalue, σi, caused by any perturbation to

the operator, L, you need just (i) the direct eigenfunction, q̂i, and (ii) the adjoint eigenfunction,

q̂†
i
. It is very easy to calculate the adjoint eigenfunction. Let’s return to (54):
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H − σ∗
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†
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So the adjoint eigenvectors are the (right) eigenvectors of LH
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complex conjugate of the direct eigenvalue (it would be the direct eigenvalue if I had used the

standard transpose in the definition of (54)).
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Take the Hermitian transpose (the conjugate transpose) of the expression 
satisfied by the left eigenvector, and re-arrange: 

The left eigenvectors of L are the right eigenvectors of LH. 



In summary, here is how you evaluate the effect that any change to L has on 
an eigenvalue 

1.3.1 Some maths for powerpoint

L = QΣQ−1

LQ = QΣ

Q−1L = ΣQ−1

q̂1 q̂2 q̂3

q̂†
1 q̂†

2 q̂†
3

q̂i q̂j

q̂†
i

q̂†
j

Lq̂i = σiq̂i

(L− σiI)q̂i = 0

(q̂†
i
)HL = σi(q̂

†
i
)H

(q̂†
i
)H(L− σiI) = 0

I

d

dt
q = Lq

q =
N�

i=1

αiq̂i exp(σit)

σiq̂i = Lq̂i

1.3.2 Physical interpretation
{sec_005_025}

The first eigenvalue is

σ1 =
−b+

√
b2 − 4c

2
(65) {equ_015_005}

If b = 0 then σ1 = i
√
c and q̂1 = [2, 2i

√
c]T . The solution to (22) is therefore an undamped

oscillation with frequency
√
c, in which x and y are in temporal quadrature and the amplitude

of y is
√
c times the amplitude of x.

When 0 < b < 2
√
c, the real component of σ is −b and is the damping in the system. The

natural frequency also changes. The amplitude of the oscillations is:
����

�
x
y

����� =
� √

x̂x̂∗√
ŷŷ∗

�
exp(σrt) (66) {equ_015_010}

where
√
x̂x̂∗ = 2 (67) {equ_015_010}

�
ŷŷ∗ =

�
−b+

�
b2 − 4c

��
−b−

�
b2 − 4c

�
(68) {equ_015_020}

=
�
b2 − b2 + 4c (69) {equ_015_025}

= 2
√
c (70) {equ_015_030}

and therefore the amplitude of y is still
√
c times the amplitude of x.
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Express your problem in state space form: 

Choose a right eigenmode: 

Find the corresponding left eigenvector:  
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The eigenvector q̂i is known as the right eigenvector. It is also possible to define the left
eigenvector q̂†

j
, which satisfies:

(q̂†
i
)
H
(L− σiI) = 0 (54) {equ_010_205}

(I have used the Hermitian transpose, but the standard transpose would be just as good.) The

left and right eigenvectors are bi-orthogonal:

(q̂†
j
)
H q̂i = δij (55) {equ_010_210}

(I think that this is by construction, coming from the matrix eigenvalue decomposition: L =

QΛQ
−1

, in which q̂i are the columns of Q and q̂†
j
are the rows of Q

−1
; these are constructed

such that Q
−1

Q = I, which is the bi-orthogonality condition.)

Now, let us consider a perturbation to the direct operator such that L → L + �δL and

q̂i → q̂i + �δq̂i and σi → σi + �δσi. Equation (53) becomes:

�
(L + �δL)− (σi + �δσi)I

�
(q̂i + �δq̂i) = 0 (56) {equ_010_215}

At order � this is:

(L− σiI)�δq̂i + (�δL− �δσiI)q̂i = 0 (57) {equ_010_220}

Now we pre-multiply by the ith adjoint eigenfunction:

(q̂†
i
)
H
(L− σiI)�δq̂i + (q̂†

i
)
H
(�δL− �δσiI)q̂i = 0 (58) {equ_010_225}

The first term is zero because of (54). The second becomes:

(q̂†
i
)
HδLq̂i = (q̂†

i
)
Hδσiq̂i (59) {equ_010_225}

which can be rearranged to:

δσi =
(q̂†

i
)
HδLq̂i

(q̂†
i
)H q̂i

(60) {equ_010_225}

Therefore, if we want to find the shift in the ith eigenvalue, σi, caused by any perturbation to

the operator, L, you need just (i) the direct eigenfunction, q̂i, and (ii) the adjoint eigenfunction,

q̂†
i
. It is very easy to calculate the adjoint eigenfunction. Let’s return to (54):

(q̂†
i
)
H
(L− σiI) = 0 (61) {equ_010_230}

�
(q̂†

i
)
H
(L− σiI)

�H
= 0 (62)

(L− σiI)
H q̂†

i
= 0 (63)

(L
H − σ∗

i I)q̂
†
i

= 0 (64)

So the adjoint eigenvectors are the (right) eigenvectors of LH
and the adjoint eigenvalue is the

complex conjugate of the direct eigenvalue (it would be the direct eigenvalue if I had used the

standard transpose in the definition of (54)).
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Now you can work out how ANY change to L will change that eigenvalue 

 δL could represent: 
•  a change in the base state (base state sensitivity) 
•  the addition of a passive feedback device 
•  the addition of an active feedback device 
•  a change in one of the terms in the governing equations, to assess its 

influence on the instability 
•  the most influential point-wise feedback mechanism (structural 

sensitivity) 

In summary, here is how you evaluate the effect that any change to L has on 
an eigenvalue 



For example, let us apply this to a simple linear oscillator 

1 What is represented by the overlap of direct and adjoint
global modes?

{sec_005_005}
In this version, I am incorporating feedback from JMC and CC, and also thinking about how I

will present this in Munich.

1.1 Definition of the direct and adjoint operators
{sec_005_010}

We can overlap the direct and adjoint global modes in several ways. For instance, we can look

at each element of the structural sensitivity. But what does this mean and how can we check

that it is valid? I will demonstrate it on a simple linear oscillator and hope that this provides

insight to more elaborate problems. This linear oscillator is a mass-spring-damper system whose

displacement, x, obeys the governing equation:

ẍ+ bẋ+ c = 0 (1) {equ_005_005}

This second order ODE can be written as two first order ODEs by introducing the velocity, y:

ẋ = y (2) {equ_005_010}
ẏ = −by − cx (3) {equ_005_015}

or equivalently

ẋ− y = 0 (4) {equ_005_011}
ẏ + by + cx = 0 (5) {equ_005_016}

We define the state vector q and the operator L such that (2) and (3) can be written as:

dq

dt
− Lq = 0 (6) {equ_005_020}

where

q =

�
x
y

�
(7) {equ_005_025}

Lq =

�
0 1

−c −b

� �
x
y

�
(8) {equ_005_035}

Similarly, we say that the adjoint state vector, q†, evolves according to the adjoint operator, L
†
,

such that

dq†

dt
− L

†q†
= 0 (9) {equ_005_038}

We define the inner product between two state vectors, q† and q to be:

�q†,q� = �
�
x†

y†

�
,

�
x
y

�
� = x†

∗
x+ y†

∗
y (10) {equ_005_040}

and we define the adjoint operator, L
†
, through the relationship:

�q†,Lq� = �L†q†,q� (11) {equ_005_045}
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1.3.2 Physical interpretation
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The first eigenvalue is

σ1 =
−b+
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(65) {equ_015_005}

If b = 0 then σ1 = i
√
c and q̂1 = [2, 2i

√
c]T . The solution to (22) is therefore an undamped

oscillation with frequency
√
c, in which x and y are in temporal quadrature and the amplitude

of y is
√
c times the amplitude of x.

When 0 < b < 2
√
c, the real component of σ is −b and is the damping in the system. The

natural frequency also changes. The amplitude of the oscillations is:
����

�
x
y

����� =
� √

x̂x̂∗√
ŷŷ∗

�
exp(σrt) (66) {equ_015_010}

where
√
x̂x̂∗ = 2 (67) {equ_015_010}

�
ŷŷ∗ =

�
−b+

�
b2 − 4c

��
−b−

�
b2 − 4c

�
(68) {equ_015_020}

=
�
b2 − b2 + 4c (69) {equ_015_025}

= 2
√
c (70) {equ_015_030}

and therefore the amplitude of y is still
√
c times the amplitude of x.
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Here is a simple linear oscillator, which is a second order ODE: 

It can be written as two first order ODEs: 

And this can be expressed in state space form: 



from which one obtains σ†
1 = σ∗

1 and σ†
2 = σ∗

2. The corresponding adjoint eigenvectors are found

as follows:

�
−σ∗

1 −c∗

1 −b∗ − σ∗
1

� �
x̂†

ŷ†

�

1

=

�
0

0

�
(42) {equ_010_055}

By inspection of the top line of (42),

q̂†
1 =

�
x̂†

ŷ†

�

1

=

�
−2c∗

−2σ∗
1

�
=

�
−2c∗

−b∗ −
√
b∗2 − 4c∗

�
(43) {equ_010_060}

q̂†
2 =

�
x̂†

ŷ†

�

2

=

�
−2c∗

−2σ∗
2

�
=

�
−2c∗

−b∗ +
√
b∗2 − 4c∗

�
(44) {equ_010_065}

Here, I have assumed that (b2 − 4c) is a negative number, so that the argument of the square

root is negative. This means that the square root term is imaginary and therefore that its sign

swaps when the complex conjugate is taken. If (b2−4c) is positive then the square root terms in

(43) and (44) change sign. This probably will not matter because we (always?) use the adjoint

term on the LHS of the inner product and therefore only use its complex conjugate, about which

there is no ambiguity.
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ŷ

�

1

=

�
2

−b+
√
b2 − 4c

�
(46) {equ_010_075}

σ†
1 = σ∗

1 (47) {equ_010_080}

q̂†
1 =

�
x̂†

ŷ†
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ŷ

�

1

=

�
2

−b+
√
b2 − 4c

�
(46) {equ_010_075}

σ†
1 = σ∗

1 (47) {equ_010_080}

q̂†
1 =

�
x̂†

ŷ†
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ŷ†

�

2

=

�
−2c∗

−b∗ +
√
b∗2 − 4c∗

�
(52) {equ_010_120}

1.3 Alternative derivation

This derivation arose out of discussions with Jan Pralits and after re-reading Flavio Giannetti’s

notes from the first AIM meeting

We have an operator L from (8), which gives rise to an eigenvalue problem. This direct

eigenvalue problem (27) can be written as:

(L− σiI)q̂i = 0 (53) {equ_010_200}

4

The second eigenvalue, right eigenvector, and left eigenvector are (by hand): 



If you are feeling energetic, you can check that the eigenvectors are bi-
orthogonal  

We can check this for q̂1, q̂2, q̂
†
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Note that, for a lightly-damped oscillator, b2 − 4c is less than zero, which means that (89) and

(102) are negative. The eigenfunctions can be normalized such that �q̂†
1, q̂1� = 1 and �q̂†

2, q̂2� = 1
but this makes the expressions for the eigenfunctions quite unwieldy and is not necessary for
what follows, as long as �q̂†, q̂� remains in the expressions (usually in the denominator).

1.4.1 Application to generalized eigenvalue problems

Each direct operator, A and B, is related to its adjoint, A† and B†, by equations identical to
(11) and its equivalent for the Fourier-decomposed problem (81). Therefore, from (81),
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j , q̂i� (106) {equ_017_035}
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If you are feeling energetic, you can check that the eigenvectors are bi-
orthogonal  



if â = q̂†
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I think I have really nailed this now (but have not yet written it down). See my APS presentation.

1.6.1 The effect of an extrinsic feedback mechanism

I find it most instructive to consider the extrinsic feedback mechanism first. For example, let’s
add a small extrinsic feedback mechanism that feeds from x into the first governing equation:

ẋ = �x+ y (224) {equ_025_005}
ẏ = −by − cx (225) {equ_025_010}

The operator is now:

(L + δL)q =

�
� 1
−c −b

� �
x
y

�
(226) {equ_025_015}

or in other words:

δL =

�
� 0
0 0

�
(227) {equ_025_020}

We can work out the change in eigenvalue by starting from (203):

δσ1 =
�q̂†

1, δLq̂1�
�q̂†

1, q̂1�
(228) {equ_025_030}
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�q̂†
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= �
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√
b2 − 4c
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√
b2 − 4c

× 2(b2 − 4c) + 2b
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b2 − 4c
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b2 − 4c

(232) {equ_025_050}

= �
−8c(b2 − 4c)− 8cb

√
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4(b2 − 4c)2 − 4b2(b2 − 4c)
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= �
−2c(b2 − 4c)− 2cb

√
b2 − 4c

(b2 − 4c)2 − b2(b2 − 4c)
(234) {equ_025_060}
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−2c(b2 − 4c)− 2cb

√
b2 − 4c

−4cb2 + 16c2
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b2 − 4c

2(b2 − 4c)
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= �
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2(b2 − 4c)

�
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= �

�
1

2
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b

2
√
b2 − 4c

�
(238) {equ_025_080}
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Let us consider the effect of a new feedback mechanism (e.g. negative damping) 



if â = q̂†
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Its influence can be worked out by hand and then compared with a new 
eigenvalue calculation (again, by hand)  



We can repeat this for all possible feedback mechanisms 

As a check, I will work out δσ1 using the technique from (29) to (32). Note that the above
technique is only valid for small � because it has used the eigenfunctions at the original value
of σ. Therefore, the technique from (29) to (32) cannot be true for general � and the following
derivation will require a MacLaurin expansion for small �. I will use the notation σ�

j ≡ σj + δσj
for convenience:
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jI� = 0 (239) {equ_025_085}
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and therefore in the limit of � → 0,
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which is the same as (238) above, which was derived using the structural sensitivity method.
We can repeat this for small perturbations to the other three components of δL:
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The corresponding changes in the eigenvalue σ1 are:
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We can also find how the eigenvalue changes when the base state 
parameters, b and c, change.  

1.6.3 The effect of the intrinsic feedback mechanism

Now let us consider the case in which δL = �L (i.e. δL is just ‘more of L’). This is what I
call an ‘increase in the intrinsic feedback mechanism’. This tells us the influence of the intrinsic
physical feedback mechanism or mechanisms in the governing equations. We want to look at
individual terms within this feedback mechanism, if we can. From (6), with (1 + �) in front of
L, we know that the eigenvalue, σ1, will increase by a factor of (1+ �), as will σ2. By combining
the expression for δL:

δL = �

�
0 1
−c −b

�
(259) {equ_025_175}

with the elemental changes (253) to (256), we find that

δσ1 = 0�×
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. . . (261) {equ_025_185}

. . . −c�× 1√
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. . . (262) {equ_025_190}

. . . −b�×
�
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2
− b

2
√
b2 − 4c

�
(263) {equ_025_195}

and we know from (158) to (162) that these sum to �σ, as required. Furthermore, if δL is
proportional to L then the eigenfunctions do not change as L changes in magnitude (only the
eigenvalue changes). This means that, in this case, � does not have to be a small number.
This explains why (260) to (263) with � = 1 are identical to the contributions of each feedback
mechanism to the eigenvalue itself, found in (148), (156), and (157), and repeated here:
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ŷ†∗(−cx̂)

�q̂†
1, q̂1�

=
−c√
b2 − 4c

(265) {equ_025_205}
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2
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2
√
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(266) {equ_025_210}

As an aside, it is worth calculating the sensitivity of the eigenvalue to b and c from these
expressions. By inspection of (251) to (252) ,

∂σ1
∂b

����
c

= − ŷ†∗ŷ

�q̂†
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=
b

2
√
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− 1
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(267) {equ_025_215}

∂σ1
∂c

����
b

= − ŷ†∗x̂

�q̂†
1, q̂1�

=
−1√
b2 − 4c

(268) {equ_025_220}

As a check, these match exactly the expressions derived from the explicit expression for the
eigenvalue: (193) and (194).
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Now let us apply this to a simple thermoacoustic system 
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Sensitivity analysis of a time-delayed
thermo-acoustic system via an adjoint-based

approach
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We apply adjoint-based sensitivity analysis to a time-delayed thermo-acoustic system:
a Rijke tube containing a hot wire. We calculate how the growth rate and frequency
of small oscillations about a base state are affected either by a generic passive control
element in the system (the structural sensitivity analysis) or by a generic change to
its base state (the base-state sensitivity analysis). We illustrate the structural sensitivity
by calculating the effect of a second hot wire with a small heat-release parameter.
In a single calculation, this shows how the second hot wire changes the growth rate
and frequency of the small oscillations, as a function of its position in the tube.
We then examine the components of the structural sensitivity in order to determine
the passive control mechanism that has the strongest influence on the growth rate.
We find that a force applied to the acoustic momentum equation in the opposite
direction to the instantaneous velocity is the most stabilizing feedback mechanism.
We also find that its effect is maximized when it is placed at the downstream
end of the tube. This feedback mechanism could be supplied, for example, by an
adiabatic mesh. We illustrate the base-state sensitivity by calculating the effects of
small variations in the damping factor, the heat-release time-delay coefficient, the heat-
release parameter, and the hot-wire location. The successful application of sensitivity
analysis to thermo-acoustics opens up new possibilities for the passive control of
thermo-acoustic oscillations by providing gradient information that can be combined
with constrained optimization algorithms in order to reduce linear growth rates.

Key words: acoustics, flow control, instability control

1. Introduction
In a thermo-acoustic system, heat-release oscillations couple with acoustic-pressure

oscillations. If the heat release is sufficiently in phase with the pressure, these
oscillations grow, sometimes with catastrophic consequences. Using adjoint sensitivity
analysis, we identify the most influential components of a thermo-acoustic system
and quantify their influence on the frequency and growth rate of oscillations. This
technique shows how a thermo-acoustic system should be changed in order to extend
its linearly stable region.

† Email address for correspondence: lm547@cam.ac.uk



Diagram of the Rijke tube 

Non-dimensional governing equations 

hot wire air flow 

acoustics damping heat release at the hot wire 

The system is a Rijke tube containing a hot wire 

(note the time delay in the heat release term) 

system is normal, trajectories grow or decay monotonically around the periodic solutions and fixed point.
If the system is non-normal, however, some trajectories can grow strongly away from the periodic solution
or fixed point to which they ultimately decay. If the set of possible trajectories are thought of as lines of
spaghetti in state space, then nonlinearity describes where they end up and where they started from, while
non-normality describes how tangled they are.

Another conclusion concerns the relative importance of linear, nonlinear, and non-normal behaviour.
The stability around the fixed point is the most important starting point and this is what would be called
a conventional linear analysis. The next most important factor is the nature of the Hopf bifurcation, which
can either be found with a weakly nonlinear analysis (§IV), with a continuation method, or with a Flame
Describing Function. This determines whether the Hopf bifurcation is subcritical or supercritical. If it is
subcritical, then triggering is possible. If it is supercritical then triggering is not certain, but may still be
possible. (Higher order nonlinearities need to be considered in order to see whether there is a fold bifurcation
to an unstable periodic solution.)

The fully nonlinear behaviour can be calculated with a continuation method. At the moment this is time-
consuming, even for relatively small systems, but with faster algorithms and increased computing power,
it may become feasible for larger systems. Continuation methods find fixed point and periodic solutions.
Other solutions exist, such as multi-periodic, quasi-periodic, and chaotic solutions, but these are difficult to
find with conventional continuation methods. The nonlinear periodic behaviour can also be estimated with
an FDF analysis.

Once the nonlinear behaviour has been determined, one can consider the non-normal behaviour. If
triggering is not possible (e.g. if the bifurcation is supercritical) then non-normality is little more than
an interesting curiosity that makes a system more sensitive to noise. If triggering is possible, however,
then the transient growth caused by non-normality provides a mechanism for a system to trigger, via the
unstable periodic solution, from low amplitude initial pulses or low amplitude noise.38 This helps to explain
experimental results2 concerning triggering and mode switching.
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The governing equations are discretized by considering the fundamental ‘open 
organ pipe’ mode and its harmonics. This is a Galerkin discretization.  

Discretization into basis functions 

Non-dimensional governing equations 

acoustics damping heat release at the hot wire 

(note the time delay in the heat release term) 
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The governing equations are discretized by considering the fundamental ‘open 
organ pipe’ mode and its harmonics. This is a Galerkin discretization.  

Non-dimensional discretized governing equations 

Bypass transition in thermoacoustics 

u p Discretization into basis functions 

system is normal, trajectories grow or decay monotonically around the periodic solutions and fixed point.
If the system is non-normal, however, some trajectories can grow strongly away from the periodic solution
or fixed point to which they ultimately decay. If the set of possible trajectories are thought of as lines of
spaghetti in state space, then nonlinearity describes where they end up and where they started from, while
non-normality describes how tangled they are.

Another conclusion concerns the relative importance of linear, nonlinear, and non-normal behaviour.
The stability around the fixed point is the most important starting point and this is what would be called
a conventional linear analysis. The next most important factor is the nature of the Hopf bifurcation, which
can either be found with a weakly nonlinear analysis (§IV), with a continuation method, or with a Flame
Describing Function. This determines whether the Hopf bifurcation is subcritical or supercritical. If it is
subcritical, then triggering is possible. If it is supercritical then triggering is not certain, but may still be
possible. (Higher order nonlinearities need to be considered in order to see whether there is a fold bifurcation
to an unstable periodic solution.)

The fully nonlinear behaviour can be calculated with a continuation method. At the moment this is time-
consuming, even for relatively small systems, but with faster algorithms and increased computing power,
it may become feasible for larger systems. Continuation methods find fixed point and periodic solutions.
Other solutions exist, such as multi-periodic, quasi-periodic, and chaotic solutions, but these are difficult to
find with conventional continuation methods. The nonlinear periodic behaviour can also be estimated with
an FDF analysis.

Once the nonlinear behaviour has been determined, one can consider the non-normal behaviour. If
triggering is not possible (e.g. if the bifurcation is supercritical) then non-normality is little more than
an interesting curiosity that makes a system more sensitive to noise. If triggering is possible, however,
then the transient growth caused by non-normality provides a mechanism for a system to trigger, via the
unstable periodic solution, from low amplitude initial pulses or low amplitude noise.38 This helps to explain
experimental results2 concerning triggering and mode switching.
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We linearize the nonlinear heat release term and the time delay (hence creating 
linear ODEs instead of nonlinear DDEs). This creates the state space form. 

The equations are linearized

Nonlinear time-delayed term

Linear with no time delay

4

State variables decomposed into basis functions (Galerkin met.)

Sensitivity analysis of a thermo-acoustic system via adjoint equations 185

q̇ = 2√
3
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+ u(t − τ )
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�1/2
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δ(x − xh), (2.3)

where u, p and q̇ are the non-dimensional velocity, pressure, and heat-release rate,

respectively. The hot wire is placed at x = xh, which is modelled by the Dirac delta

(generalized) function δ(x − xh). The system has four control parameters: ζ , which

is the damping; β, which encapsulates all relevant information about the hot wire,

base velocity, and ambient conditions; τ , which is the time delay; and xh, which

is the position of the hot wire. The values of β, τ and xh are given in the figure

captions along with the damping constants c1 and c2. In § 3 we will explain how ζ
is related to c1 and c2. Equations (2.1)–(2.2) are derived from the Navier–Stokes and

energy equations by assuming first-order acoustics, as explained in Culick (1971). The

heat-release rate in (2.3) is modelled with a modified form of King’s law (Heckl 1990;

Matveev 2003). Note that throughout this paper we define the heat-release parameter

β to be

√
3/2 times the heat-release parameter β defined in Juniper (2011). The

heat-release term (2.3) is linearized around a fixed point of the system, where |u| � 1.

In addition, (2.3) is also linearized in time, assuming that the time-delay coefficient is

sufficiently small compared with the period of the highest Galerkin mode (§ 3):
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�
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�
δ(x − xh). (2.4)

By substituting (2.1) into (2.4), we obtain an equivalent expression for the linearized

heat-release law:
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�
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�
δ(x − xh). (2.5)

It is important to anticipate that, although (2.4) is physically equivalent to (2.5), the

systems of the linearized governing equations (2.1), (2.2), (2.4) and (2.1), (2.2), (2.5)

will produce two different sets of adjoint equations (§ 4).

3. Numerical discretization
The partial differential equations (2.1), (2.2), (2.4), which govern the thermo-

acoustic system, are discretized into a set of ordinary differential equations by

choosing an orthogonal basis that matches the boundary conditions. This procedure

is also known as the Galerkin method. The variables are expressed as:

u(x, t) =
N�

j=1

ηj(t) cos(jπx), p(x, t) = −
N�

j=1

�
η̇j(t)
jπ

�
sin(jπx). (3.1)

The state of the system is given by the amplitudes of the Galerkin modes that

represent velocity, ηj, and those that represent pressure, η̇j/jπ. The state vector of

the discretized system is the column vector χ ≡ (u, p)T
, where u ≡ (η1, . . . , ηN)T

and p ≡ (η̇1/π, . . . , η̇N/Nπ)T
. The discretized problem can be represented in matrix

notation:

dχ

dt
= Γχ , (3.2)

where Γ is the 2N × 2N direct matrix and χ is the 2N × 1 state vector. The basis

functions, cos(jπx) and sin(jπx), are the eigenfunctions of the undamped acoustic

system is normal, trajectories grow or decay monotonically around the periodic solutions and fixed point.
If the system is non-normal, however, some trajectories can grow strongly away from the periodic solution
or fixed point to which they ultimately decay. If the set of possible trajectories are thought of as lines of
spaghetti in state space, then nonlinearity describes where they end up and where they started from, while
non-normality describes how tangled they are.

Another conclusion concerns the relative importance of linear, nonlinear, and non-normal behaviour.
The stability around the fixed point is the most important starting point and this is what would be called
a conventional linear analysis. The next most important factor is the nature of the Hopf bifurcation, which
can either be found with a weakly nonlinear analysis (§IV), with a continuation method, or with a Flame
Describing Function. This determines whether the Hopf bifurcation is subcritical or supercritical. If it is
subcritical, then triggering is possible. If it is supercritical then triggering is not certain, but may still be
possible. (Higher order nonlinearities need to be considered in order to see whether there is a fold bifurcation
to an unstable periodic solution.)

The fully nonlinear behaviour can be calculated with a continuation method. At the moment this is time-
consuming, even for relatively small systems, but with faster algorithms and increased computing power,
it may become feasible for larger systems. Continuation methods find fixed point and periodic solutions.
Other solutions exist, such as multi-periodic, quasi-periodic, and chaotic solutions, but these are difficult to
find with conventional continuation methods. The nonlinear periodic behaviour can also be estimated with
an FDF analysis.

Once the nonlinear behaviour has been determined, one can consider the non-normal behaviour. If
triggering is not possible (e.g. if the bifurcation is supercritical) then non-normality is little more than
an interesting curiosity that makes a system more sensitive to noise. If triggering is possible, however,
then the transient growth caused by non-normality provides a mechanism for a system to trigger, via the
unstable periodic solution, from low amplitude initial pulses or low amplitude noise.38 This helps to explain
experimental results2 concerning triggering and mode switching.
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We linearize the nonlinear heat release term and the time delay (hence creating 
linear ODEs instead of nonlinear DDEs). This creates the state space form. 

1.3.1 Some maths for powerpoint

L = QΣQ−1

LQ = QΣ

Q−1L = ΣQ−1

q̂1 q̂2 q̂3

q̂†
1 q̂†

2 q̂†
3

q̂i q̂j

q̂†
i

q̂†
j

Lq̂i = σiq̂i

(L− σiI)q̂i = 0

(q̂†
i
)HL = σi(q̂

†
i
)H

(q̂†
i
)H(L− σiI) = 0

I

d

dt
q = Lq

q =
N�

i=1

αiq̂i exp(σit)

σiq̂i = Lq̂i

1.3.2 Physical interpretation
{sec_005_025}

The first eigenvalue is

σ1 =
−b+

√
b2 − 4c

2
(65) {equ_015_005}

If b = 0 then σ1 = i
√
c and q̂1 = [2, 2i

√
c]T . The solution to (22) is therefore an undamped

oscillation with frequency
√
c, in which x and y are in temporal quadrature and the amplitude

of y is
√
c times the amplitude of x.

When 0 < b < 2
√
c, the real component of σ is −b and is the damping in the system. The

natural frequency also changes. The amplitude of the oscillations is:
����

�
x
y

����� =
� √

x̂x̂∗√
ŷŷ∗

�
exp(σrt) (66) {equ_015_010}

where
√
x̂x̂∗ = 2 (67) {equ_015_010}

�
ŷŷ∗ =

�
−b+

�
b2 − 4c

��
−b−

�
b2 − 4c

�
(68) {equ_015_020}

=
�
b2 − b2 + 4c (69) {equ_015_025}

= 2
√
c (70) {equ_015_030}

and therefore the amplitude of y is still
√
c times the amplitude of x.

6

q =





u1
...

uN

p1
...

pN







Diagram of the Rijke tube 

hot wire air flow 

We consider a passive control device at position xc. 

xc
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We consider a passive control device at position xc. 



Diagram of the Rijke tube 

Non-dimensional governing equations 

hot wire air flow 

acoustics damping heat release at the hot wire 
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We consider a passive control device at position xc , which can either feed into the 
energy equation 



Diagram of the Rijke tube 

Non-dimensional governing equations 

hot wire air flow 

acoustics damping heat release at the hot wire 

�u(xc)δ(x− xc)

xc

a passive control device 

momentum eq. 

We consider a passive control device at position xc , which can either feed into the 
energy equation or the momentum equation. 



Feedback from u into 
the momentum equation 
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Effect on the growth rate 
Effect on the frequency 

For example, here is the effect of a passive feedback device that, at a given point 
in space, produces a force proportional to the acoustic velocity. It has most 
influence at the downstream end of the tube.  

xc

acoustics damping heat release at the hot wire 

�u(xc)δ(x− xc)
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The effect of all other passive devices can also be calculated. 

xc

xc



Feedback from p into 
the energy equation 
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For example, here is the effect of a device that increases the heat release when 
the acoustic pressure increases. It has most influence around the middle of the 
tube.  

xc

acoustics damping heat release at the hot wire 

�p(xc)δ(x− xc)
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For example, here is the effect of a device that increases the heat release when 
the acoustic velocity increases. It has very little influence on the growth rate, but 
greater influence on the frequency.  

xc

acoustics damping heat release at the hot wire 

�u(xc)δ(x− xc)
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These building blocks can be combined in any (linear) way: 

xc



Structural sensitivity

Where should we insert a second hot wire to make 
the system more stable ?
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6

- The structural sensitivity is the 
sensitivity of the system to small changes 
in the thermo-acoustic operator. These 
changes, due to passive feedback 
mechanisms, are proportional to some state 
variable, depending on what physics they 
represent.
- In this case we perturb the operator by a 
feedback mechanism proportional to u and 
affecting the pressure equation: this is a 
second hot wire with a small heat release 
parameter. 
- These curves give the eigenvalue drift, or 
sensitivity, that would be caused by the 
presence of a second hot wire placed at Xc. 
The main hot wire is fixed in its position, 
that is at a quarter of the length  of the 
duct. 
- The exact solution is taken to be the one 
given by finite difference. The discrepancy 
between the methods is due to numerical 
truncation errors.

Change in the eigenvalue that would be caused by feedback from another hot wire 

hot wire air flow control hot wire 

control hot wire position 

For example, here is the influence of another hot wire as a function of its position 
within the tube. 
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We can compare this with the Rayleigh Index for the same hot wire.  
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parameter in the most stabilizing location (0.8) 
predicted by structural sensitivity analysis. 
(2nd part of the equation)
- When the 2nd hot wire is off the system is 
unstable and pressure oscillations grows
- When the 2nd hot wire is on, at t=1000, the 
system become stable 
- The shift in frequency, calculated via a Fast 
Fourier transform, coincides with the prediction 
coming from adjoint analysis.
- So, the answer to the question is yes, it does. 

The sensitivity analysis is linear so we test its predictions by applying these 
feedback mechanisms to the fully nonlinear system 
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Base-state sensitivity
Is a change in base-state always effective? 
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- In base state sensitivity we wonder where 
a change in the base state parameters is most 
effective in function of the position of the 
heating source, which is the hot wire.
- Here there is no second hot wire.
- The base state parameters of interest are 
beta and tau, and here the growth rate is 
presented
- Just read

hot wire position 

hot wire air flow 

Sensitivity to changes in the base state: wire temperature (left) time delay (right) 

We can also calculate the change in the eigenvalue when the base state is 
changed.  



A laminar vortex breakdown bubble can be used as a toy model for the 
recirculating zone in a gas turbine combustion chamber.  

gas turbine combustion (Re ~ 105 - 106) vortex breakdown bubble (Re ~ 200) 



Using adjoint methods, we find the most 
receptive and most sensitive regions of the flow. 
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[4] F. Giannetti, P. Luchini. Structural sensitivity of the first instability of the cylinder wake. J. Fluid

Mechanics, 581, 167–197 (2007)

[5] O. Marquet, D. Sipp, L. Jacquin. Sensitivity analysis and passive control of the cylinder wake.
J. Fluid Mechanics, 615, 221–252 (2008)

Figure 1: From top (a) streamlines and azimuthal velocity (colour) of the baseflow at Sw = 1.0 and
Re = 200; (b) real component of the radial velocity of the direct global mode; (c) real component of
the radial velocity of the adjoint global mode; (d) structural sensitivity map; (e) sensitivity of growth
rate to steady momentum forcing.

streamlines (lines) and azimuthal velocity (colours) 

the shape of the most unstable mode (it spirals) 
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the sensitivity to base flow modification 
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the sensitivity to internal feedback 
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Using adjoint methods, we discover which 
physical feedback mechanisms drive the 
instability. 

effect of the 
axial velocity … 

… on the axial momentum equation 

destabilizing 

stabilizing 
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Qadri & Juniper (2013) 
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Using adjoint methods, we discover which 
physical feedback mechanisms drive the 
instability. 

effect of the 
axial velocity … 

effect of the 
radial velocity … 

effect of the 
azimuthal velocity … 

… on the …  axial radial azimuthal momentum 
equation 

destabilizing 

stabilizing 

neutral 

Qadri & Juniper (2013) 



I will demonstrate the base state sensitivity analysis on the varicose 
oscillation of a helium jet (in the absence of buoyancy) 

Passive control of global instability in low-density jets
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Given a base flow (top), we calculate the right eigenvector (direct global mode) 
and the left eigenvector (adjoint global mode).  Passive control of global instability in low-density jets
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FIG. 1. (a) Streamlines of the base flow and (b) the local absolute growth rate of an isothermal

helium jet at Re = 470. (c) The direct global mode and (d) the adjoint global mode, shown as the

real part of the axial momentum. (e) The structural sensitivity.

rates of addition per unit volume of mass, momentum, and thermal energy into the flow.

In this linear stability framework, the control force has a steady component, F̄, that acts

on the base flow, q̄, and a linearized perturbation, f ′, that acts on the linear perturbations,

q′. The effects of these two components are modelled separately following the approach of

Marquet et al19.

The eigenvalue of the global mode, λ, is a function of the base flow fields, q̄, and these

are, in turn, functions of the steady components of the forcing terms, F̄. The effect of F̄ on

λ is calculated by formulating a constrained Lagrangian problem

L = λ − 〈q̄+,N (q̄) + F̄〉 − 〈q̂+, λq̂− Lq̂〉 (7)

and calculating ∇F̄λ, the functional derivative of λ with respect to (w.r.t) F̄. This is

labelled the sensitivity of the eigenvalue to steady forcing. The nonlinear and linearized

8

Streamlines of base flow 

Direct global mode 

Adjoint global mode 

Local abs. growth rate 
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(a) Sensitivity to a steady axial force
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(b) Sensitivity to a steady radial force
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(c) Sensitivity to steady heat input
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FIG. 2. The sensitivity of the marginally unstable eigenvalue of a helium jet at Re=470 to steady

forcing, ∇F̄λ. The colours show the sensitivity of the growth rate, ∇σ (left), and frequency, ∇ω

(right) to a (a) steady axial body force, F̄x (b) steady radial body force, F̄r, and (c) steady heat

input, ψ̄. The contour lines show the absolute value of ∇λ for each row.

V. PASSIVE CONTROL USING AN AXISYMMETRIC CONTROL RING

A. The effect of an adiabatic control ring

We now assume that the control force is provided by a thin ring at the same temperature

as the fluid, which we call an adiabatic ring. The ring is at (xc, rc), centred on the jet axis,

and provides a force on the flow that is equal and opposite to the drag force on the ring.

The ring is thin, so the non-dimensional steady and unsteady components of this force can

12

Change in growth rate 

Change in growth rate 

Change in frequency 

Change in frequency 

Change in frequency 

Sensitivity to a steady axial force 

Change in growth rate 

Sensitivity to a steady radial force 

Sensitivity to a steady heat input 
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FIG. 3. The predicted change (scaled by CDdw) in the marginally unstable eigenvalue of a helium

jet due to the drag on a thin axisymmetric control ring, δλdrag . The colours show the real (left) and

imaginary (right) parts of the total change in the eigenvalue, δλdrag (top), the change due to the

steady component of the drag force, δλF̄ (middle), and the change due to the unsteady component

of the drag force, δλf ′ (bottom). The contours show the absolute value of δλ for each row. The

shading on all the plots is equal and goes from -0.0043 (blue) to 0.0043 (red).

B. The effect of a heated control ring

We now consider the additional influence of heat transfer from the hot ring. Chandler21

calculated the steady and unsteady components of the heat transfer to be:

ψ̄T (x, r) = cψdη
w|m̄|η(Tw − T̄ )δ2(x − xc, r − rc), (12a)

ψ′

T (x, r, t) = ψ̂T (x, r)eλt, (12b)

where ψ̂T (x, r) = cψdη
w|m̄|η

(

(Tw − T̄ )η
m′ · m̄

|m̄|2
− T ′

)

δ2(x − xc, r − rc). (12c)
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FIG. 4. The predicted change in the marginally unstable eigenvalue of a helium jet, δλhotring, due

to the drag and heat transfer from a thin hot-wire with dw = 0.1 and Tw = 0.01. The colours show

the real (left) and imaginary (right) parts of the total change in the eigenvalue, δλhotring (top), the

change due to the steady components of the drag and heat transfer, δλF̄ + δλT̄ (middle), and the

change due to the unsteady components of the drag and heat transfer, δλf ′ + δλT ′ (bottom). The

contours show the absolute value of δλ for each row. The shading on all the plots is equal and goes

from -0.0068 (blue) to 0.0068 (red).

vious studies on incompressible and compressible flows7,22. The stability of the flow is

determined by a competition between the production of disturbances at a point and their

advection away from that point. An increase in production or a decrease in advection are

destabilizing, while a decrease in production or an increase in advection are stabilizing. To

identify these terms in the LMN equations, we express the direct linear equations in terms of

the velocity, rather than the momentum. The advective terms can then be identified easily

and re-expressed in terms of the momentum. The sensitivity of the advective terms in the

16

Sensitivity to a thin adiabatic ring 

Sensitivity to a thin hot ring 

It is most interesting to examine the eigenvalue’s sensitivity to physical objects 
that can be placed in the flow.  



The same analysis can be performed on flames, to examine their hydrodynamic 
stability. Here is a lifted jet diffusion flame.  

131

Figure 7.2: The steady baseflow for a lifted diffusion flame at Re = 1000 and
Da = 600, 000. The streamlines show the axial and radial velocity and the
colour shows contours of reaction rate, log(ω̄). The thick black line shows
the stoichiometric surface, which corresponds to a contour of Z̄ = 0.333.

The equations are discretized on a grid with 511 × 1025 points for a

domain measuring 10.0×10.0 jet diameters in the radial and axial directions

respectively. At the inlet, the velocity and mixture fraction profiles used by

Nichols & Schmid (2008) are imposed. These top-hat profiles are formed from

Michalke’s profile number two, with a small coflow of oxidizer surrounding

the jet. The coflow velocity is 1% of the jet velocity. The temperature

profile at the inlet is set to be uniform but a Gaussian-shaped impulse at

(x, r) = (2.0, 0.5) is applied to ignite the fuel-oxidizer mixture in order to

obtain the base flow.

A steady base flow was obtained for a Damkohler number Da = 600, 000

by Chandler (2010) using SFD. This steady lifted diffusion flame is shown in

figure 7.2. This matches the flame found in Nichols & Schmid (2008).

7.3 Global stability and structural sensitivity

The global stability of this steady base flow is studied for perturbations with

m = 0. The two most unstable modes are shown in figures 7.3 and 7.4.

The first of these modes, labelled mode A, has an eigenvalue of λ =

Streamlines and contours of reaction rate 



The lifted jet diffusion flame has two unstable hydrodynamic modes: one 
high frequency, one low frequency. They are caused by different regions of 
the flow.  134

Figure 7.5: The wavemaker, as defined by 2.24 for modes A and B. This is
equivalent to the definition of Giannetti & Luchini (2007).

The structural sensitivity, as defined by Giannetti & Luchini (2007) for

the incompressible Navier–Stokes equations in the velocity-pressure formu-

lation, is given by the dyadic product of the direct and adjoint global mode

velocity vectors. For the LMN formulation used in this thesis, the equiv-

alent quantity is the dyadic product of the direct and adjoint global mode

momentum vectors, Sij = m̂im̂
+
j . The components of this tensor represent

the effect of changes in the feedback between the different components of the

momentum on the eigenvalue of the global mode. The Frobenius norm of this

tensor for modes A and B are shown in figure 7.5. For mode A, this quantity

is maximal at (x, r) = (0.35, 0.58), while, for mode B, this quantity is max-

imal at (x, r) = (3.27, 1.03). According to Giannetti & Luchini (2007), this

identifies the region in space which is most sensitive to perturbations in the

inherent feedback mechanism driving the instability: the wavemaker region.

This means that the wavemaker for mode A lies is the shear layer in the pre-

mixing region of the lifted flame, while the wavemaker for mode B lies in the

shear layer along the outer surface of the flame. This confirms the conclusion

Mode A: wavemaker region 

Mode B: wavemaker region 



This flame turns out to be hyper-sensitive to some changes. We may find 
that thermoacoustic systems are also hyper-sensitive. 
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Linear global stability analysis Nichols et al (2008)
Da Growth rate σ Frequency, St Nonlinear St

500, 000 0.159 0.217 0.284
600, 000 −0.083 0.315 0.284
700, 000 −0.459 0.141 stable

Table 7.1: Comparison of growth rates and frequencies for mode A from a
linear global stability analysis with frequencies from table 1 of Nichols &
Schmid (2008).

Linear global stability analysis Nichols et al (2008)
Da Growth rate σ Frequency, St Nonlinear St

500, 000 0.020 0.027 0.025
600, 000 0.010 0.034 0.035
700, 000 −0.010 0.037 stable

Table 7.2: Comparison of growth rates and frequencies for mode B from a
linear global stability analysis with the low-frequency oscillations observed
in figure 3 of Nichols & Schmid (2008).

Figure 7.9: The sensitivity of the marginally stable eigenvalue of mode A for
the lifted flame in figure 7.2 at Da = 600, 000, to steady forcing, ∇F̄λ. The
colours show the sensitivity of the growth rate (left), and frequency (right).
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Figure 7.10: The sensitivity of the marginally stable eigenvalue of mode B for
the lifted flame in figure 7.2 at Da = 600, 000, to steady forcing, ∇F̄λ. The
colours show the sensitivity of the growth rate (left), and frequency (right).

shear layer and flame base. From a practical point of view, however, it would

be difficult to use a control device in these regions because the flame would

tend to attach to the control device.

For mode B, on the other hand, regions of moderate to high sensitivity

extend upto two jet diameters away from the jet axis and beyond. Passive

control of this mode may, therefore, be a feasible option. A previous study

by Toong et al. (1965) found that the flicker of a diffusion flame on a burn-

ing cylinder could be stabilized by placing a non-burning control cylinder on

either side of the burning cylinder. From the top frame of figure 7.10, it can

be deduced that the drag force from a thin control ring has a strong effect

on the eigenvalue: close to the flame it stabilizes mode B, while further from

the flame, it destabilizes mode B. The drag force from a control ring also

has a equivalently strong effect on the frequency of this mode: close to the

flame, it increases the frequency, while further from the flame, it decreases

the frequency. For reference, Toong et al. (1965) observed the frequency of

oscillations to increase but this is expected to depend on the exact location

of the control cylinders. It is interesting that, in contrast to mode A, heating

Sensitivity of the eigenvalue to a steady heat input 



Summary 

direct eigenvector 

change to the linear operator 

adjoint eigenvector 

conjugate transpose 

change to the eigenvalue 


