
FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Dissertation in Informatik

Cross-layer Data-centric Usage Control

Enrico Lovat

ii

FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Lehrstuhl XXII - Software Engineering

Cross-layer Data-centric Usage Control

Enrico Lovat

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Helmut Seidl

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Alexander Pretschner

2. Prof. Dr. Frank Piessens,

Katholieke Universiteit Leuven, Belgium

Die Dissertation wurde am 13.05.2015 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 16.06.2015 angenommen.

Acknowledgments

First and foremost, I shall thank my supervisor, Prof. Dr. Alexander Pretschner. Without
your guidance, your example and our loud discussions, probably no part of this work
would have ever been completed. Your sharpness and conciseness, especially in scientific
writing, the ethic and the passion you put in teaching, the intellectual honesty of admitting
when you are wrong and the strength of your arguments when you are not, are only some
of the aspects of your leadership that I admire and plan to emulate in the future.

My second thanks goes to my second supervisor, Prof. Dr. Frank Piessens. Thanks for
providing me extremely valuable feedback; I am grateful for the opportunity of benefiting
from your clever advices and my main regret is not having exploited it more often.

Thanks to the German Research Foundation (DFG), which supported this work through
the Priority Program 1496 “Reliably Secure Software Systems RS3”, grants PR-1266/1-2-3.

I would like to thank some of my fellow colleagues and my co-authors for their direct
contributions to this work. In particular, thank you Florian, Johan, Martin, Prachi and To-
bias for positively engaging in those stimulating never-ending discussions; together with
conferences and paper reviews, those represent my idea of scientific research.

Thanks to Alexander, Christoph, Cornelius and Sebastian for their picky reviews on the
first drafts of this dissertation; you definitely improved its quality.

Thanks to all the Bachelor and Master students who did their thesis under my supervi-
sion and whose results, mentioned in this work, confirmed the feasibility of the theoretical
models I have been working on.

I would like to express my gratitude also to some individuals who contributed, at vari-
ous stages of my life, to my choice of becoming a computer scientist: thanks Santa Claus,
for bringing me my first PC when I was nine; thanks Nico, for making me fall in love with
programming before I was legally allowed to drive a scooter; thanks A., for laughing at
me in front of my parents, during a vocational guidance event, when I said that I would
like to attend a technical high school and become a computer scientist; thanks Prof. Minio,
for teaching me how to think instead of how to write code; and thank you K. for making
sure that a Master degree was not enough.

Without these people’s intervention, I would probably be a carpenter, a bartender or an
underpaid code monkey. Most likely a bartender.

Last but not least, I want to thank my family for the unconditional support I received
over these years: Thanks to my parents, who made me the man I am today with their
education and their hard-working example, I did not forget that. Thanks to my wife, for
giving up her life to blindly follow me in this adventure; I appreciate all the sacrifices you
did to let me pursue this goal and, without your support, this work would have never been
possible. And finally, thanks to my beautiful daughter: You are the reason why I arrive
late in the morning and I leave early in the evening, taking precious time from my work.
You are also the reason why the moment I arrive home marks only half of my working
day. And yet, you are the reason why nevertheless I am looking forward to come home
every night. Thank you for rearranging my priorities.

v

vi

Abstract

Usage control is concerned with what happens to data after access has been granted.
In the literature, usage control models have been defined on the grounds of events that,
somehow, are related to data. Within the system, data (e.g. “a picture”) may exist in form
of different representations, possibly located at different layers of abstraction (e.g. a file, a
set of pixels in a window, a Java object, a memory region, etc...). In order to protect data,
one must observe and control the usage of all its different representations.

This research proposes a usage control model and a language that capture the distinc-
tion between data and representations of data. In this framework, policies can constraint the
usage of single representations (e.g., delete file1.jpg after thirty days) as well as all repre-
sentations of the same data (e.g., if file2.jpg is a copy of file1.jpg, also delete file2.jpg), even
at different layers of abstraction (e.g. if a process is rendering the content of file1.jpg in a
window, close the window and kill the process).

The core contribution of this work is the formalization and implementation of the first
generic model that integrates usage control and cross-layer data flow tracking, and it is
presented in the first part of this work.

The second part addresses the problem of refining the precision of the framework by
augmenting the data flow tracking component with additional information about the sys-
tem. In particular, this dissertation analyzes three approaches that leverage, respectively,
information about structure of data, amount of data and results from static information
flow analysis. All the solution are formalized, implemented and evaluated, and represent
the second major contribution of this work.

vii

viii

Zusammenfassung

Nutzungskontrolle beschäftigt sich mit der Frage, was mit Daten nach deren initialer
Freigabe passieren darf und soll. In der Literatur wurden Modelle der Nutzungskontrolle
bisher stets auf Basis von Ereignissen definiert, die einen mehr oder weniger klaren Bezug
zu den zu kontrollierenden Daten haben. Daten treten innerhalb eines Systems allerdings
in verschiedenen Repräsentationen, und potentiell auf verschiedenen Abstraktionsebenen
(z.B. als Datei, als Menge von Pixeln in einem Fenster, als Java Objekt, oder als Region
im Hauptspeicher), auf. Um die Nutzung eines Datums kontrollieren zu können, müssen
daher alle Repräsentationen des Datums überwacht und kontrolliert werden.

In der vorliegenden Arbeit wird ein Modell und eine Spezifikationssprache für ein Kon-
zept der Nutzungskontrolle vorgeschlagen, das explizit zwischen Daten und deren Re-
präsentationen unterscheidet. Mit diesem Konzept ist es möglich, sowohl Policies bezüglich
einzelner Repräsentationen (z.B. “lösche file1.jpg innerhalb von 30 Tagen”), als auch aller
Repräsentationen eines Datums (z.B. “falls file2.jpg eine Kopie von file1.jpg ist, lösche auch
file2.jpg”) zu spezifizieren und diese auf verschiedenen Abstraktionsebenen durchzuset-
zen (z.B. “falls ein Prozess den Inhalt von file1.jpg in einem Fenster anzeigt, dann schließe
dieses Fenster und beende den entsprechenden Prozess”).

Der erste Teil der Arbeit beschäftigt sich mit dem Hauptbeitrag der selbigen, nämlich
der Formalisierung und Implementierung des ersten generischen Modells, das abstrakti-
onsübergreifende Datenflussverfolgung in das Konzept der Nutzungskontrolle integriert.

Der zweite Teil der Arbeit adressiert das Problem der Verfeinerung der Präzision
durch Adaption der Datenflussverfolgungskomponenten mit zusätzlichen Informationen
über das betrachtete System. Insbesondere diskutiert diese Arbeit drei Ansätze, die die
Präzision des Konzepts durch Analyse der Struktur, Berücksichtigung der Quantität von
Daten, sowie durch die Integration von Ergebnissen aus statischer Informationsflussanaly-
se verbessern. Die Formalisierung, Implementierung, und Evaluation dieser Ansätze stellt
den zweiten Hauptbeitrag dieser Arbeit dar.

ix

x

Contents

Acknowledgements v

Abstract vii

Zusammenfassung ix

Outline of the Thesis xv

1. Introduction 1
1.1. Goal . 3
1.2. Research Description . 3

1.2.1. Problem . 3
1.2.2. Thesis Statement . 4
1.2.3. Solution Strategy . 5
1.2.4. Contribution . 5

1.3. System Model and Assumptions . 6
1.4. Running Scenario . 7
1.5. Structure . 7

Part I - Representation-Independent Data Usage Control 11

2. Background: Usage Control 11
2.1. System Model . 11

2.1.1. Events . 11
2.1.2. Refinement . 12
2.1.3. Semantic Model of Events and System Runs 12

2.2. Specification-Level Policies . 13
2.2.1. Propositions . 13
2.2.2. Conditions Outside Temporal and First Order Logic 14
2.2.3. Formal Semantics of Events . 14
2.2.4. First Order Future Time Formulae . 15

2.3. Implementation-Level Policies . 16
2.3.1. Past Time Conditions . 17
2.3.2. ECA Rules . 18
2.3.3. Default Behavior . 18
2.3.4. Composition and Mechanisms . 19
2.3.5. Example . 19

2.4. Policy Activation and Violation . 20

xi

Contents

2.5. Detective and Preventive Enforcement . 20

3. Usage Control Marries Data Flow Tracking 23
3.1. System model . 24
3.2. Data, Containers, and Events . 25

3.2.1. Computing the Data State . 26
3.2.2. State-based Operators . 26

3.3. Use Case (Single Layer) . 28
3.3.1. Notation . 29
3.3.2. Operating System Layer . 30
3.3.3. Application Layer . 31

3.4. Soundness (Single Layer) . 33
3.4.1. Security Property at the ⊥ Layer . 35
3.4.2. Sources and Destinations . 36
3.4.3. Single Layer Soundness . 36

3.5. Conclusions . 38

4. Cross-layer Data Flow Tracking 39
4.1. Motivating Example . 40

4.1.1. File loading . 40
4.1.2. File saving . 41

4.2. A Sound Cross-layer Monitor . 41
4.2.1. Soundness (Multi-layer) . 41
4.2.2. Simple Model . 43
4.2.3. XA Oracle . 44

4.3. A Sound and Precise Cross-layer Monitor . 45
4.3.1. Increasing Precision: Example . 47
4.3.2. Event Behaviors . 48
4.3.3. XB Oracle . 49
4.3.4. Refined Model and Algorithm . 51

4.4. Use Case (Multi-layer) . 53
4.4.1. Instantiation of XA . 53
4.4.2. Instantiation of XB . 54
4.4.3. Step-by-step Example . 55

4.5. Conclusions . 57

5. System Design and Implementation 59
5.1. Architecture . 59

5.1.1. Policy Enforcement Point . 60
5.1.2. Policy Decision Point . 60
5.1.3. Policy Information Point . 61
5.1.4. Interplay . 61

5.2. Implementation and Evaluation . 63
5.2.1. Label Creep . 64

xii

Contents

Part II - Taming Label Creep: Enhanced Data Flow Tracking 67

6. Structured Data Flow Tracking 69
6.1. Introduction . 69

6.1.1. Bottle-neck Pattern . 70
6.1.2. Proposed Solution . 70
6.1.3. Example Scenario . 72

6.2. Formal Model . 74
6.3. Structured Data Flow Tracking . 74

6.3.1. Merge Operations . 75
6.3.2. Split Operations . 76
6.3.3. Checksum . 77

6.4. Instantiations . 78
6.5. Evaluation . 78

6.5.1. Preliminary Test . 79
6.5.2. Experiment Settings . 79
6.5.3. Experiment Description . 80
6.5.4. Handling of Non-Atomic Events . 81
6.5.5. RQ1 - Precision . 81
6.5.6. RQ2 - Performance . 85

6.6. Challenges and Conclusions . 87

7. Intra-process Data Flow Tracking 89
7.1. Introduction . 89

7.1.1. Example Scenario . 90
7.1.2. Summary . 92

7.2. Approach . 92
7.2.1. Static Analysis . 93
7.2.2. Instrumentation . 95
7.2.3. Runtime . 96

7.3. Evaluation . 97
7.3.1. Settings . 97
7.3.2. RQ1 - Precision . 98
7.3.3. RQ2 - Performance of the Static Analyzer 99
7.3.4. RQ3 - Runtime Performance . 100

7.4. Discussion . 101
7.5. Extensions . 103
7.6. Challenges and Conclusions . 104

8. Quantitative Data Flow Tracking 107
8.1. Introduction . 107

8.1.1. Motivation . 108
8.1.2. Example Scenario . 109

8.2. Measuring Data Quantities . 110
8.3. Quantitative Data Flow Tracking . 111

8.3.1. Provenance Graphs . 112

xiii

Contents

8.3.2. Runtime Construction . 113
8.3.3. Step-by-step Example . 114
8.3.4. Rationale . 115
8.3.5. Computation of κ . 115
8.3.6. Correctness . 116
8.3.7. Simplification . 116

8.4. Quantitative Policies . 118
8.4.1. Semantic Model . 118
8.4.2. Policies . 118

8.5. Evaluation . 120
8.5.1. Implementation and Methodology . 120
8.5.2. RQ1 - Precision . 121
8.5.3. RQ2 - Performance . 125
8.5.4. Discussion . 127

8.6. Challenges and Conclusions . 127

9. Related Work 129
9.1. Author’s Prior Work . 129
9.2. Usage Control . 130
9.3. Information Flow Control . 131

9.3.1. Static Approaches . 131
9.3.2. Dynamic Approaches . 132
9.3.3. Hybrid Approaches . 133

10. Conclusions 137
10.1. Future Work . 140

Appendix 145

A. Data Usage Control Language - Concrete Syntax 145

B. Soundness Proof - Cross-layer 151
B.1. Soundness of R̂A⊗B . 151
B.2. Soundness of ṘA⊗B . 151

C. Soundness Proof - Quantitative Data Flow Tracking 155
C.1. Correctness of Tracking . 155
C.2. Correctness of Optimizations . 156

Bibliography 159

xiv

Contents

Outline of the Thesis
CHAPTER 1: INTRODUCTION

This chapter is an introduction to the topic and to the fundamental issues addressed by
this thesis. It discusses motivation, context, assumptions and limitations of the solutions
presented in this work.

Part I - Representation-Independent Data Usage Control

The first part describes the major contribution of this thesis: a formal model and a language for data
usage control that addresses representations of data at and across different layers of abstraction.

CHAPTER 2: BACKGROUND: USAGE CONTROL

This chapter describes a formal model and a language for usage control, mostly based on
results from the literature [76], that represents the starting point for the work described in
these pages. Part of the content is taken from an unpublished work co-authored by the
author of this dissertation [137].

CHAPTER 3: USAGE CONTROL MARRIES DATA FLOW TRACKING

This chapter describes a generic model and language to augment the usage control con-
cepts of Chapter 2 with data flow tracking features. This work is one of the core contribu-
tions of the thesis and has been published in [138]. The discussion on soundness is taken
from [109], an unpublished work co-authored by the author of this dissertation.

CHAPTER 4: CROSS-LAYER DATA FLOW TRACKING

This chapter describes a generic model to track flows of data across different instances
of the model described in Chapter 3. This work represents the second major contribu-
tion of the thesis and is part of two unpublished works co-authored by the author of this
dissertation [109, 137].

CHAPTER 5: SYSTEM DESIGN AND IMPLEMENTATION

This chapter describes a generic architecture to instantiate the concepts described in the
previous chapters. Despite some similarities with the XACML [143] system model, this
architecture is part of the author’s contribution and has been published in [138] and [100],
both co-authored by the author of this dissertation.

Part II - Taming Label Creep: Enhanced Data Flow Tracking

The second part of the work describes three different models for data flow tracking that enhance the
precision of the model described in Part I. Each solution is implemented and evaluated in terms of
precision and performance, also with respect to the basic model.

CHAPTER 6: STRUCTURED DATA FLOW TRACKING

This chapter describes an extension of the model in which the tracking precision is im-
proved using information about the structure of data. A preliminary version of this work

xv

Contents

has been published in [108], a publication co-authored by the author of this disserta-
tion. The implementation and evaluation of the model are part of this thesis’s original
contribution.

CHAPTER 7: INTRA-PROCESS DATA FLOW TRACKING

This chapter presents a second solution to improve the precision of the model introduced
in Chapter 3. In this work, co-authored by the author of this dissertation and published in
[107], the goal is achieved by leveraging static information flow analysis results.

CHAPTER 8: QUANTITATIVE DATA FLOW TRACKING

This chapter presents a third extension of Chapter 3’s model. In this work, co-authored by
the author of this dissertation and published in [110], the basic model is augmented with
information about the amount of data transferred by system events. This supports more
expressive policies and containers declassifcation criteria to mitigate overapproximation
issues.

Background:
Usage Control

Usage Control
Marries

Data Flow
Tracking

Cross-layer
Data Flow
Tracking

Intra-process
Data Flow
Tracking

Structured
Data Flow
Tracking

Quantitative
Data Flow
Tracking

PART I PART II

System Design and Implementation

CHAPTER 9: RELATED WORK

This chapter discusses related work from the literature, including author’s prior work.

CHAPTER 10: CONCLUSIONS

This chapter summarizes the conclusions of this thesis and presents possible future work
that could stem from the presented results.

N.B.: Almost every chapter of this dissertation is based on different publications authored or co-
authored by the author of this dissertation. Such publications are mentioned in the short descrip-
tions above and described in more details in Section 9.1. Due to the obvious content overlapping,
quotes from such publications within the respective chapters are not marked explicitly.

xvi

1. Introduction

From the picture uploaded on a social network, to the access log of an enterprise server,
from intelligence information on a secret services’ laptop to the home address associated
to a supermarket’s loyalty card, the amount and variety of sensitive data stored and pro-
cessed by today’s computing systems has reached levels that were unimaginable only two
decades ago. The emergence of mobile and ubiquitous computing, together with the rise
of cloud-based services and technologies, contributed to drastically increase the amount of
personal and other generic sensitive data produced. The central role of information tech-
nologies in this scenario emphasizes the importance of solutions to control access to and
usage of sensitive data.

Historically, the discipline studying how to express and enforce selective restrictions of
access to certain resources (i.e. data) was access control [148]. However, the purpose of
access control ends once a party gets access to the data. The extension of access control
that also investigates the problem of specifying and enforcing what may, must and must
not happen to data after access to it has been granted is called Usage Control.

Examples of usage control requirements are “delete this file after 30 days”, “don’t copy
this picture” or “notify owner of this data upon access”. Given its overwhelming pres-
ence in today’s multimedia, perhaps the most common and well-known instance of usage
control is Digital Right Management (DRM) technologies [12, 116, 133].

Usage control is relevant in different domains, including the management of intellec-
tual property, privacy, the management of secrets, and compliance with regulations. In
terms of privacy, users may want, among other things, to control exactly how their medi-
cal information, loyalty card records, telecommunication connection records, and banking
information are used and by whom. This has become more and more an issue with the
growth of popularity of largely unprotected social network sites, where users intentionally
or inadvertently publish huge amount of personal data. At least in Europe, in addition to
EU-wide legal requirements, current developments clearly indicate a potential or actual
political fallout when large sets of citizen or customer data become available [135].

In terms of intellectual property, the increasing trend of implementing business pro-
cesses in a distributed manner via outsourcing requires the exchange of confidential infor-
mation between companies, like blueprints, results of experiments, etc.. Companies are
obviously interested in such data being used solely according to their expectations, espe-
cially when such companies are administrations, state departments, intelligence agencies
or the military, who want to have control over how secret information is disseminated.

Finally, the need for usage control is also reflected in regulations. In Europe, an exam-
ple is the EU directive 95/46/EC [3], which requires data to be collected and used only
according to a specified purpose; in the United States, the Sarbanes-Oxley Act (SOX) [2]
requires specific data to be retained for five years; and the US Health Insurance Portability
and Accountability Act (HIPAA) [1] stipulates strict documentation requirements on the
dissemination of data [106].

1

1. Introduction

Figure 1.1.: Example of data (social network profile picture) that exists in form of multi-
ple representations at different layers of abstraction: as a set of pixel at the
windowing level (top), as a DOM element within the memory of the browser
(center), and as a cache file at the operating system layer (bottom).

Usage control and enforcement mechanisms have historically been defined on the ground
of events, leveraging techniques such as complex event processing [112] and runtime ver-
ification [102]. Policy languages for expressing usage control requirements have been in-
vestigated in the last decade by several authors [47, 11, 18, 128, 173, 76, 40, 154, 160] and
tailored usage control solutions have been proposed for specific layers of abstraction, in-
cluding machine languages [52, 166], Java [39, 86], enterprise service bus [63, 126], dedi-
cated applications such as Internet Explorer [49] and Mozilla Firefox [100].

The goal of the work presented in this dissertation is to investigate a different aspect of
the problem of policy specification and enforcement: the data dimension. While require-
ments are usually expressed in terms of specific representations, like “do not print
pic.jpg”, it is often the case that the policy writer’s actual intention is to protect the
abstract data, e.g. “the picture”, and not just one of its representations, e.g. a file. The fun-
damental difference is that while in both cases file pic.jpg could not be printed, a literal
interpretation of the policy implies that a copy of the file or a screenshot of the window in
which the file is rendered could.

To enforce such a requirement, one must consider that a picture may exist in multiple
representations within the system, which potentially reside at different layers of abstrac-
tion, like network packets, window pixmaps, Java objects, data base records, or files, as
depicted in the example in Figure 1.1.

Moreover, the system may contain multiple copies of the same file or multiple clones
of an object. Usage control requirements usually concern integrity and confidentiality prop-

2

1. Introduction

erties. While the former refer to one or some specific representations (e.g. “content of file
/etc/passwd cannot be modified”, but any copy of it can), the latter typically address all the
representations of the same data at once (e.g. “this report cannot leave the local system”, no
matter which copy).

The general issue with existing usage-control solutions [129, 126, 76, 143, 62, 63, 40] is
their focus on events, ignoring the fact that the same sensitive data may exist within the
system in multiple representations. The fundamental problem addressed by this work,
thus, is whether and how it is possible to build a usage control framework that allows for
the specification of requirements that address all the different representations of the same
data at once and that defines how such policies should be enforced.

1.1. Goal

The goal of this work is a usage control framework that is at least as expressive as exist-
ing solutions from the literature, allowing for the specification and enforcement of all the
relevant kinds of requirements, such as:

• rights and duties (“do not print” and “notify admin if copying”),
• temporal constraints (“delete after thirty days”),
• event-defined conditions (“report can be disseminated only after being officially approved

by the CEO”),
• cardinality constraints (“at most five copies”),
• spatial constraints (“within Germany”),
• purpose conditions (“for statistical purposes only”) and
• environment conditions pertaining to organization (“compliance with ISO 17799”) and

technology (“open only if personal firewall activated”).
Such requirements, usually based on law and regulations, self-regulation, and economic
interest, have been proven to be relevant by different requirements elicitation studies [80,
77, 82, 78].

Moreover, the outcome framework must be aware of all the different representations of
data within the system and supports specification and enforcement of policies on all of
them at once (“this picture can not be printed”, no matter which copy of it). In addition to be
faithful to the real system, the framework should be as precise as possible in identifying
the different representations of data without, at the same time, significantly impacting on
the performances of the overall system, i.e. the system usability should not be compro-
mised. Considering that the notion of “the system is still usable” depends on the specific
instantiation contexts, the framework should also allow for different configurations of pre-
cision/performance tradeoff.

1.2. Research Description

1.2.1. Problem

To achieve the goal, the following research questions must be addressed:

• How can usage control requirements be specified and enforced over all the represen-
tations of the same data at once?

3

1. Introduction

• How can the relation between data representations and events at different layers be
modeled? What determines flows of data across different layers of abstraction?

• What does it mean that a certain data flow tracking solution is “sound”?

• How can the precision of the data flow tracking model be augmented with additional
information about the system? In particular,

– What role can the structure of data play in this task?

– How can results from static information flow analysis help?

– How can the amount of data in the different representations be quantified? How
can it be used to improve precision?

– How can the improvement in terms of precision be quantified?

• What is the overhead induced by the framework? Which aspects of the system affect
it and how?

1.2.2. Thesis Statement

This work tries to answer the questions in Section 1.2, confirming the thesis that

It is possible to formalize and to realize a sound and non-trivial
generic usage control framework to constraint the usage of data in
form of all its different representations, at and across different layers
of abstraction, with acceptable performance overhead.

More precisely,

TS-1: It is possible to formalize a system that supports expression and enforcement of
usage control requirements on different representations of the same data at once,
even when data is disseminated across different layers of abstractions;

TS-2: Because of its generic nature, such model can be instantiated and implemented for
different layers of abstraction;

TS-3: The model is sound, i.e. correct, and non-trivially precise. In other words, the model
is more precise than trivial approaches like “every data is possibly stored in every
container”, which are sound but useless in practical terms;

TS-4: The precision of the enforcement can be adjusted by augmenting the model with
additional information about the system;

TS-5: The performance overhead imposed by the implementations of the model is accept-
able, i.e. depending on the use case, it does not compromise the overall system
functionality.

4

1. Introduction

1.2.3. Solution Strategy

The goal will be achieved in three major steps, that aim at answering all the research ques-
tions in Section 1.2:

1. Extending a generic usage control model from the literature [76, 81] with data flow
tracking features, to relate the different representations of data within the system.
The result will be a generic model instantiatable at arbitrary layers of abstraction in
the system.1

2. Defining a generic model to track flows of data across different instances of the model
defined in step 1, possibly across different layers of abstraction (cross-layer data flow
tracking) in a non-trivial overapproximating way. This will support integration of
enforcement mechanisms at different layers which would in turn provide system-
wide usage control.

3. Refining the results of steps 1 and 2, in terms of precision e.g. considering data
flow tracking approaches that accounts for structural or quantitative aspects of data
or leveraging other forms of analysis, like static information flow analysis. Each
different solution will be implemented and evaluated, both in terms of precision and
performance.

1.2.4. Contribution

The contributions of this work are:
• The first generic language for policy specification that supports the distinction be-

tween data and representations of data (Chapter 3);
• The first generic model for data usage control, instantiatable at arbitrary layers of

abstraction, that can enforce such policies (Chapter 3);
• The first generic model for system-wide data flow tracking, based on the combina-

tion of multiple instantiations of the model at different layers of abstraction (Chap-
ter 4);

• A definition of soundness for data flow tracking for a generic layer of abstraction
with respect to canonical notions from information theory (Section 3.4) ;

• A definition of soundness for data flow tracking across multiple layers of abstraction
and a proof of soundness of the generic model for cross-layer data flow tracking
(Section 4.3.4);

• Some well-defined notions of precision that allow for quantitative comparison of
different data flow tracking models (Section 6.5.5, Section 7.3.2 and Section 8.5.2);

• Three possible extensions of the model for data flow tracking and their evaluations,
that confirm the possibility of tracking precision improvement by introducing addi-
tional information about the system and with minimal performance overhead (Chap-
ter 6, Chapter 7 and Chapter 8).

1The formal language used as basis for this work [76] already supports the first four types of requirements
mentioned in Section 1.1. In terms of environment conditions and purpose and spatial constraints, respec-
tive information is assumed to exist in form of externally available attributes, encoded as propositions in
the language (eval operator, see Chapter 2).

5

1. Introduction

1.3. System Model and Assumptions

In this work, usage control is assumed to take place in the context of systems like those
described in [81, 76]. In these models, a data consumer, c, requires access to a certain data d
from a data provider, p. Together with its request, c provides a description of its enforcement
capabilities. After performing access control checks [103] to make sure c is entitled to
get access to d, p checks whether c is also able to enforce the usage control restrictions
associated to d, specified in policy π. In case c is not able to enforce π, different strategies
can be applied, like ignoring c’s request, modifying π to a more relaxed version, sending a
declassified (e.g. anonymized) version of d to c or using other form of enforcement outside
the digital world (e.g. non-disclosure agreements contracts). If both access and usage
control checks succeed, instead, p sends d to c, together with a policy π to be enforced by
c. When c receives d, its local usage control infrastructure takes care of deploying π and
enforcing it on every usage of d.

The work described in this dissertation can be located at this point of the negotiation
process: it focuses on the policies and the enforcement mechanisms, and it assumes all of
the above negotiation and deployment steps to have already taken place. It also assumes
that the execution of every event that affects or makes use of sensitive data is mediated
by the usage control infrastructure. This happens by means of monitoring technologies
based on two entities, signalers and monitors. Signalers, like the system call interposition
framework described in Section 3.3.2, make events visible to the monitor, which consume
them, check adherence to the deployed policies, and possibly take specified actions, like
denying the execution of the event, modifying the value of some parameter or executing
compensative actions. This process is described in detail in Chapter 5.

The possibility of modifying or denying the execution of a certain event requires the
signaler to be capable of notifying the monitor about the intention of executing a certain
event before the event is actually executed. This is a fundamental requirement in order to
enforce usage control policies in a preventive fashion, i.e. to make sure that violations of the
policy never take place. If the signaler is not capable of changing or denying the execution
of a certain event or if it is only capable of observing events after they already happened,
usage control can only be enforced in a detective fashion, and only compensative additional
actions can be taken (e.g. “notify the system administrator”).

Finally, if c redistributes data d to a third party, the negotiation process is assumed to take
place again, in this case with c in the role of data producer. Note that c can only distribute
d with an associated policy that is at least as restrictive as π, i.e. with no less duties and
no more permissions. The integration of existing work from the literature that tackles the
problem of policy evolution [139, 134] with the model presented in the next chapters is a
straightforward exercise, but it has been intentionally left out of this work for the sake of
simplicity and clarity in the explanation.

In usage controlled systems, an attacker is an entity that attempts to use data in ways
that differ from what is specified by the respective policy. Depending on the intention
of the attacker, it is possible to distinguish two categories of policy violations: those per-
formed by motivated attackers that intentionally try to circumvent restrictions and misuse
the data, and those due to unintentional behaviors of the user of the system that accidentally
tries to misuse data (e.g. trying to print a classified document on a public printer). While
this distinction is irrelevant at the model level, in the latter case it is possible to make more

6

1. Introduction

relaxed assumptions about the system. For instance, even if the user has enough permis-
sions to kill the usage control process, it is reasonable to assume that this will not happen,
because it is in the user’s interest that the usage control framework works properly. Con-
versely, in order to cope with the first class of attackers, the remaining of this work assumes
also the following to hold:

• all the implementations of the the monitors for the different layers of abstraction,
the usage control infrastructure, the storage and the communication channels for the
framework metadata (e.g. in-between different monitors) are correctly implemented
and free of any vulnerability that might allow attackers to obtain illegitimate per-
missions or to perform side channels attacks, e.g. switching off the complete usage
control infrastructure;

• the usage control solutions is always up and running and not tampered with, and
• any other running software on the system cannot interfere with the execution of the

usage control solutions, e.g. by hiding relevant data usage events from the signaler.

1.4. Running Scenario

The following scenario is going to be used as a reference in the remaining of this work:

Alice works as analyst at ACME Inc., a smartphone manufacturer. All
sensitive projects at ACME are stored in a central repository, accessible
by each client machine, like Alice’s. Often enough, Alice requires infor-
mation about new models under development. Her job includes analyz-
ing it and comparing it with data from field experiments and from various
public sources to the end of writing reports for suppliers and for other de-
partments. Such projects are ACME’s main asset and the primary chal-
lenge for the company is to contain the leakage of sensitive information.

In the next chapters, different elaborations and specializations of this generic scenario
will be used to illustrate how, under different circumstances, and at what price, the various
approaches described in this work can help mitigating the data leakage issue.

1.5. Structure

The remaining of this work is divided in two parts.
The first part describes a model for event-driven usage control (Chapter 2) and shows

how it can be extended with basic data flow tracking capabilities (Chapter 3). The model is
then extended to allow multiple instantiations to cooperate (Chapter 4). The architecture
of the framework and a discussion about concrete instantiations of the model is presented
in Chapter 5.

The second part of this dissertation discusses three approaches to refine the precision of
the data flow tracking component. Each of these solutions leverages additional informa-
tion about the system, specifically: structure of data (Chapter 6), static information flow
analysis results (Chapter 7) and amount of data transferred by system events (Chapter 8).

7

1. Introduction

Background:
Usage Control

Usage Control
Marries

Data Flow
Tracking

Cross-layer
Data Flow
Tracking

Intra-process
Data Flow
Tracking

Structured
Data Flow
Tracking

Quantitative
Data Flow
Tracking

PART I PART II

System Design and Implementation

The evaluation of each solution and the tradeoff additional precision/performance over-
head is discussed individually within the respective chapters.

In Chapter 9 the relevance of the work presented in this dissertation is justified by com-
parison with related work from the literature. Previous work from the author is also pre-
sented in the same chapter (Section 9.1). Finally, limitations and strategies to possibly
overcome them in future work are discussed in Chapter 10. A concrete syntax for the data
usage control language can be found in in Appendix A, together with the detailed proofs
of soundness of the cross-layer model and of the simplification rules of the quantitative
data flow tracking model (Chapter 8), respectively in Appendix B and Appendix C.

8

Part I
Representation-Independent Data

Usage Control

9

2. Background: Usage Control

This chapter describes a formal model and a language for usage control, mostly
based on results from the literature [76], that represents the starting point for
the work described in these pages. Part of the content is taken from an unpub-
lished work co-authored by the author of this dissertation [137].

Background:
Usage Control

Usage Control
Marries

Data Flow
Tracking

Cross-layer
Data Flow
Tracking

Intra-process
Data Flow
Tracking

Structured
Data Flow
Tracking

Quantitative
Data Flow
Tracking

PART I PART II

System Design and Implementation

Usage Control policies specify constraints on traces of events, defined in Section 2.1. The
language used to specify them is roughly a linear temporal logic with some macros for car-
dinality operators. The second part of this chapter presents and discusses the differences
between specification-level policies (see Section 2.2), which describe what the constraints
are, and implementation-level policies (see Section 2.3), which specify how the usage con-
trol requirements should be enforced. Finally, Section 2.4 discusses how to activate pol-
icy enforcement and how to react to policy violation and Section 2.5 concludes with an
overview of different aspects related to detective enforcement.

2.1. System Model

2.1.1. Events

Events (set E) are defined by a name (set EName) and a set of parameters. Parameters are
defined by a name (set PName) and a value (set PV alue). Formally,

E ⊆ EName× P(PName× PV alue).
For an event e ∈ E , let e.n denote the event’s name and e.p the set of its (parameter,

value) pairs.
For reasons that will become more clear in Chapter 3, e.p always contains a parameter

obj ∈ PName that denotes the primary target object of event e. For example,

print 7→ {obj 7→ report.xls, quality 7→ 100, pages 7→ 1-5} ∈ E

11

2. Background: Usage Control

specifies that the first five pages of report.xls should be printed at 100% quality. In policies,
events may occur with variables that map names (set VName) to possible values (set VVal).

V ar = V Name→ V V al for VVal ⊆ P(PValue ∪ EName).

Given a set of variables, the set of possibly variable events VE is then defined as

VE ⊆ (EName ∪ V Name)× P(PName× (PV alue ∪ V Name))

where variables are assumed to respect the types, i.e., to range over event names or param-
eter values. For instance, for V ar = {v1 7→ {report1.xls, report2.xls}, v2 7→ {51, . . . , 100}},
the variable event print 7→ {obj 7→ v1, quality 7→ v2} ∈ VE represents any event that
prints either report1.xls or report2.xls with a quality greater than 50%. In the following,
VarsIn(t) will denote the set of variables in a term t.

2.1.2. Refinement

When one wants to specify a constraint on an event, some parameters may be more rele-
vant than others. For instance, it may be relevant that report1 .xls has been printed, but the
quality with which it has been printed may be irrelevant. This is captured by the refine-
ment relation between non-variable events, which states that an event e1 refines an event
e2 if e1 and e2 have the same name and if the value of every parameter specified in e2 has
the same value in e1, i.e. if the set of pairs (parameter name, parameter value) provided by
e2 is a subset of that for e1. Formally,

refinesEv ⊆ E × E
∀e1, e2 ∈ E : e1 refinesEv e2 ⇔ e1.n = e2.n ∧ e1.p ⊇ e2.p

For instance, given three events,

ea = print 7→ {obj 7→ report.xls, quality 7→ 80}
eb = print 7→ {obj 7→ report.xls}
ec = print 7→ {obj 7→ report.xls, quality 7→ 100}),

according to the definition, ea is a refinement of eb (ea refinesEv eb), but ea is not a re-
finement of ec, because of the disagreement on the quality parameter. Event refinement
is very useful in policy specification because it allows to only specify values for relevant
parameters, assuming a universal quantification over those that are not mentioned.

In contrast, when a system is running and an event actually “happens”, all its parame-
ters are specified, i.e. they have a value. The event is then called a “maximum refinement”.
The set of such maximally refined events, maxRefEv, is defined as

maxRefEv = {e ∈ E | @e′ ∈ E : e′ 6= e ∧ e′ refinesEv e}.

2.1.3. Semantic Model of Events and System Runs

Enforcing policies in a preventive fashion (see Section 1.3) requires the capability of distin-
guishing between the intention of executing an event and its actual concrete execution. For

12

2. Background: Usage Control

instance, the event triggered by clicking a button in a graphical user interface is different
from the execution of command associated to the button; the first event can be considered
the “intention” of executing the second. Note that if one can only observe events that al-
ready happened, one would need to be able to undo events in order to perform preventive
enforcement, and that is often impossible.

Since in a system run all parameters are specified when an event takes place, the set of
system events is defined as

S ⊆ maxRefEv × {intended, actual}.

System runs are modeled as traces,

Trace : N→ P(S),

that map abstract moments in time to sets of system events.
Note that for simplicity’s sake, events that are observed within the same timestep are

assumed to be independent to each other, meaning that the state at the beginning of the fol-
lowing timestep is the same regardless of the order in which they are executed. While this
may sound like a restrictive assumption, in concrete experience with actual implementa-
tions (see Section 3.3) it has always been possible to establish a total order between events
within the same timestep by leveraging additional information, e.g. system timestamp.
For this reason, the instantiations described in Section 3.3 are defined in terms of single
events rather than sets.

2.2. Specification-Level Policies

Specification-level policies express constraints on the system events in form of trace prop-
erties, in contrast to implementation-level policies (see Section 2.3), which describe how
specification-level policies should be enforced. Specification-level policies are described
by first order temporal formulae.

2.2.1. Propositions

The first order propositional part of policies is defined by

Γ ::= VE | N | String | Γ op Γ | . . .
Ψ ::= (Ψ) | false | Ψ implies Ψ | E(VE) | I(VE) | eval(Γ) | forall V Name in V V al : Ψ.

For shortness of notation, let common shortcuts in Ψ be defined as follows:

• true for false implies false ,

• not(ψ) for ψ implies false ,

• ψ1 or ψ2 for (not ψ1) implies ψ2, and

• ψ1 and ψ2 for not(ψ1 implies not ψ2), and

• exists vn in V S : ψ for not(forall vn ∈ V S : not ψ).

13

2. Background: Usage Control

Whenever no confusion between semantics and syntax is possible, in the following the
symbols→,¬,∧,∨,∀,∃,∈will be used for implies, not , and , or , forall , exists, in .
I(·) and E(·) syntactically capture the distinction between intended and actual events

introduced in the previous subsection.
In order to keep formalization more clean and concise, the additional distinction be-

tween first and ongoing events, treated by previous work [76], is not considered here. This
distinction was used to disambiguate the semantics of terms like “play the song at most
twice”, which could be interpreted as (1) “play the song twice” (no matter for how long) as
well as (2) “play the song for at most two moments in time” (no matter if consecutively or in
two different sessions). However, this distinction does not introduce any new fundamental
challenge, and, as such, it has been explicitly ignored in this work.

2.2.2. Conditions Outside Temporal and First Order Logic

eval is used for the specification of conditions on actual events. A full language Γ for
the respective computation is not provided here. One choice could be XPath, that was
also used in the implementations described in [105, 138]. As an example, with vn1, vn2 ∈
V Name,

V ar = {vn1 7→ {0, . . . , 100}, vn2 7→ {simple,matte, glossy, photo}}
E(print 7→ {obj 7→ catalog.xls, quality 7→ vn1, paper 7→ vn2})

→
Ä
eval(vn2 6= photo) → eval(vn1 ≤ 70)

ä
specifies that catalog.xls cannot be printed on non-photographic paper with quality higher
than 70%. The use of eval makes it possible to specify conditions on (absolute) time and
location, one of the requirements described in Section 1.1. This has, for instance, been
implemented [55] for mobile phones to the end of enforcing requirements such as “do not
use outside company premises.” The semantics of eval(γ) is left unspecified and referred
to as

[[eval(γ)]]eval.

2.2.3. Formal Semantics of Events

The semantics of events is defined by |=e⊆ S × Ψ as follows: For a variable event e that
contains a variable v ∈ V ar with vn = dom(v) and for x ∈ V ar(vn), let e[vn 7→ x] denote
the result of replacing all occurrences of the variable’s name vn in e by the value x. More
than one substitution may be specified within the square brackets. Then, let

Instε : VE → P(E)

define a function that generates all ground substitutions of an event with variables, i.e.,

∀e ∈ VE , vn1 . . . vnk ∈ V Name, V S1 . . . V Sk ∈ V V al :
VarsIn(e) = {vn1 7→ V S1, . . . , vnk 7→ V Sk}

⇒ Instε(e) = {e[vn1 7→ vv1, . . . , vnk 7→ vvk] |
∧k
i=1 vvi ∈ V Si}.

14

2. Background: Usage Control

The semantics of possibly variable events is defined as

∀e′ ∈ maxRefEv; e ∈ VE
(e′, actual) |=eE(e)⇐⇒ ∃e′′ ∈ E : e′ refinesEv e′′ ∧ e′′ ∈ Instε(e)

∧ (e′, intended) |=e I(e) ⇐⇒ ∃e′′ ∈ E : e′ refinesEv e′′ ∧ e′′ ∈ Instε(e).

2.2.4. First Order Future Time Formulae

Overloading the propositional operators, the abstract syntax of the future temporal logic
for specifying usage control requirements is defined as

Φ ::= (Φ) | Ψ | Φ implies Φ | forall V Name in V V al : Φ |
Φ until Φ | Φ after N | replim(N,N,N,Ψ) | repuntil(N,Ψ,Φ)

plus the macros true,not(ϕ), ϕ1 and ϕ2, ϕ1 or ϕ2, exists vn in V V : ϕ as described in Sec-
tion 2.2.1. Whenever no confusion between semantics and syntax is possible, in the follow-
ing the symbols→,¬,∧,∨, ∀, ∃,∈will be used for implies, not , and , or , forall , exists, in .
The intuitive semantics of the propositional and first order operators is as usual:

• until is the weak until operator of LTL: ϕ1 until ϕ2 is true iff ϕ1 is true until ϕ2

eventually becomes true, or ϕ1 is true eternally;

• ϕ after n is true iff ϕ becomes true after n timesteps;

• replim(n, l, r, ψ) is true if ψ is true in-between l and r times within the next n steps;

• repuntil(n, ψ, χ) is true iff ψ is true at most n times until χ eventually becomes true,
or until eternity if χ never becomes true.

It is convenient to add four further shortcuts to the syntax:

• �ϕ for ϕ until false specifies that ϕ will always be true in the future;

• n repmax ψ, defined as repuntil(n, ψ, false), specifies that ψ should be true at most n
times in the future;

• ψ within n for replim(n, 1, n, ψ) and ψ during n for replim(n, n, n, ψ) for n ∈ N, ϕ ∈
Φ, ψ ∈ Ψ describe that ψ will become true at least once (within) or continuously
(during) in the next n steps.

Lifting the notation for substitutions of events, for a formula ϕ ∈ Φ that contains a variable
vn ∈ V ar, the formula ϕ[vn 7→ vv] will denote the result of substituting all occurrences of
vn in ϕ by value vv ∈ V ar(vn).

15

2. Background: Usage Control

The formal semantics is defined by |=f⊆ (Trace× N)× Φ as follows.

∀t ∈ Trace;n ∈ N;ϕ ∈ Φ : (t, n) |=f ϕ⇔ ϕ 6= false ∧Ä
∃e ∈ VE : (ϕ = E(e) ∨ ϕ = I(e)) ∧ ∃e′ ∈ t(n) : e′ |=e ϕ

∨∃ψ, χ ∈ Φ : ϕ = ψ implies χ ∧ ¬((t, n) |=f ψ) ∨ (t, n) |=f χ
∨∃γ ∈ Γ : ϕ = eval(γ) ∧ [[ϕ]]eval = true
∨∃vn ∈ V Name; vs ∈ V V al;ψ ∈ Φ :
ϕ = (forall vn in vs : ψ) ∧ ∀vv ∈ vs : (t, n) |=f ψ[vn 7→ vv]

∨∃ψ, χ ∈ Φ : ϕ = ψ until χ ∧
Ä
∀v ∈ N : n ≤ v ⇒ (t, v) |=f ψ

∨∃u ∈ N : n < u ∧ (t, u) |=f χ ∧ ∀v ∈ N : n ≤ v < u⇒ (t, v) |=f ψ
ä

∨∃m ∈ N;ψ ∈ Φ : ϕ = ψ after m ∧ (t, n+m) |=f ψ
∨∃m ∈ N1; l, r ∈ N;ψ ∈ Ψ : ϕ = replim(m, l, r, ψ)∧
l ≤ #{j ∈ N1 | j ≤ m ∧ (t, n+ j) |=f ψ} ≤ r
∨∃m ∈ N;ψ ∈ Ψ, χ ∈ Φ : ϕ = repuntil(m,ψ, χ)

∧
Ä
(∃u ∈ N1 : (t, n+ u) |=f χ ∧ (∀v ∈ N1 : v < u⇒ ¬((t, n+ v) |=f χ))

∧(#{j ∈ N1 | j ≤ u ∧ t(n+ j) |=f ψ}) ≤ m)

∨(#{j ∈ N1 | t(n+ j) |=f ψ}) ≤ m
ää

2.3. Implementation-Level Policies

A specification-level policy describes a particular usage control requirement that has to be
satisfied, i.e. what should be enforced. With an implementation-level policies (ILP), one
specifies how this should happen. In general, this can be achieved by inhibition, modifi-
cation, and execution [132]: consider for instance the policy “non-anonymized data cannot
leave the system without notifying the administrator”. Adherence to this policy can be ensured
at the implementation level in different ways, like by denying any attempt of sending
non-anonymized data outside the system (inhibition) or by notifying the administrator
(execution of an external event) or actually anonymizing the data when data is about to
leave the system (modification).

ILPs for preventive enforcement (detective enforcement is discussed in Section 2.5) can
be described as event-condition-action rules [132]: if the intention of executing a certain
event e, denoted as I(e), is detected and allowing its execution would make the condition
ϕ true, then one of the following compensative actions is performed:

Inhibition The intended event e is not converted into an actual event (¬E(e)).

Execution Event e may be executed, unless other ILPs prohibit it, and a further set of
events,

∧n
i=1 I(xi), is executed in addition. Since these events themselves can be

subject to treatment by ILPs, they are specified as intended and not actual events.

Modification The execution of e is allowed, but in a modified form, e.g. changing the
value of a certain parameter. This is equivalent to inhibiting the execution of e and
executing its modified version e′. In general, a modifier is modeled as the combina-
tion of an inhibitor (for e) and an executor (of e′ or, in general, of an arbitrary set of
events).

16

2. Background: Usage Control

2.3.1. Past Time Conditions

At runtime, decisions about a certain event can be taken only based on the trace of events
that already happened, i.e. on the past events. For this reason, conditions for ILPs are
specified in a past variant of language Φ, called Φ−, defined as

Φ− ::= (Φ−) | Ψ | Φ− implies− Φ− | forall V Name in V V al : Φ−|
Φ− since− Φ− | Φ− before− N | replim−(N,N,N,Ψ) | repsince−(N,Ψ,Φ−)

plus the shortcuts true−, not−, and−, or−, exists . Once again, if no confusion between se-
mantics and syntax is possible, in the following the symbols→,¬,∧,∨, ∀, ∃,∈will be used
for implies−, not−, and−, or−, forall , exists, in . As in the future case, it is convenient to
add four further shortcuts to the syntax:

• �ϕ for ϕ since− false , which is true if ϕ is true in all timesteps before and including
the current timestep;

and, for n ∈ N, ϕ ∈ Φ and ψ ∈ Ψ,

• ψ repmax− n for repsince−(n, ψ, false), to stipulate that ψ must have happened at
most n times in the past;

• ψ within− n for replim−(n, 1, n, ψ), to stipulate that ψ has happened at least once in
the past n steps;

• ψ during− n for replim−(n, n, n, ψ), which stipulates that ψ must have been true in
each of the past n steps.

Lifting the notation for substitutions of events, for a formula ϕ ∈ Φ− that contains a
variable vn ∈ V ar, let ϕ[vn 7→ vv] denote the result of substituting all occurrences of
vn in ϕ by value vv ∈ V ar(vn). The semantics of Φ− is defined by the infix operator
|=f−⊆ (Trace× N)× Φ− defined as:

∀t ∈ Trace;n ∈ N;π ∈ Φ− : (t, n) |=f− π ⇔ (π 6= false)∧Ä
∃e ∈ VE : (π = E(e) ∨ π = I(e)) ∧ ∃e′ ∈ t(n) : e′ |=e π

∨ ∃ψ, χ ∈ Φ− : π = ψ implies− χ ∧ ¬((t, n) |=f− ψ) ∨ (t, n) |=f− χ
∨ ∃γ ∈ Γ : π = eval(γ) ∧ [[π]]eval = true
∨ ∃vn ∈ V Name; vs ∈ V V al;ψ ∈ Φ− :

π = (forall vn in vs : ψ) ∧ ∀vv ∈ vs : (t, n) |=f− ψ[vn 7→ vv]

∨ ∃ψ, χ ∈ Φ− : π = ψ since− χ ∧
Ä
(∀v ∈ N : v ≤ n⇒ (t, v) |=f− ψ)

∨(∃u ∈ N : u ≤ n ∧ (t, u) |=f− χ ∧ ∀v ∈ N : u < v ≤ n⇒ (t, v) |=f− ψ)
ä

∨ ∃m ∈ N;ψ ∈ Φ− : π = ψ before− m ∧ n ≥ m ∧ (t, n−m) |=f− ψ
∨ ∃m, l, r ∈ N;ψ ∈ Ψ; : ϕ = replim−(m, l, r, ψ)

∧ l ≤ (#{j ∈ N | j ≤ min(m,n) ∧ t(n− j) |=f− ψ}) ≤ r
∨ ∃m ∈ N;ψ ∈ Ψ;χ ∈ Φ; e ∈ E : ϕ = repsince−(m,ψ, χ)

∧
Ä
(∃u ∈ N1 : n ≥ u ∧ (t, n− u) |=f− χ ∧ (∀v ∈ N : v < u⇒ ¬((t, n− v) |=f− χ))

∧(#{j ∈ N | j ≤ u ∧ t(n− j) |=f− ψ} ≤ m))

∨(#{j ∈ N | j ≤ n ∧ t(n− j) |=f− ψ} ≤ m)
ää

17

2. Background: Usage Control

2.3.2. ECA Rules

Let tr ⊆ VE × Φ−, defined as

tr(ve, ϕ)⇔
Ä
I(ve) ∧ (E(ve)→ ϕ)

ä
(2.1)

denote the situation (trigger event ve and condition ϕ ∈ Φ−) under which a specific ILP is
supposed to fire. The model distinguishes between three different kinds of ILPs, based on
the kind of actions they perform:

• minh ⊆ VE × Φ− for the inhibitors,

• mexc ⊆ VE × Φ− × P(VE) for executors, and

• mmod ⊆ VE × Φ− × P(VE) for the modifiers.

Let ∀VarsIn(ϕ) be a shortcut for ∀vn1 ∈ V V1 : . . . : ∀vnk ∈ V Vk if VarsIn(ϕ) = {vn1, . . . , vnk}
and V ar(vni) = V Vi for all i ≤ k. ILPs are defined as

minh(ve, ϕ) ⇔ ∀VarsIn(ve) : tr(ve, ϕ)→ ¬E(ve)
mexc(ve, ϕ,Exc) ⇔ ∀VarsIn(ve) : tr(ve, ϕ)→ ∧

xi∈Exc I(xi)
mmod (ve, ϕ,Mod) ⇔ ∀VarsIn(ve) : tr(ve, ϕ)→ (¬E(ve) ∧mexc(ve, ϕ,Mod)).

Note that inhibitors can be expressed as modifiers via minh(ve, ϕ) ↔ mmod (ve, ϕ, ∅). The
choice of using a slightly redundant notation here is motivated by readability’s sake. For
fixed sets of n1 inhibiting, n2 modifying and n3 executing ILPs, their composition com-
putes to

M ↔
n1∧
i=1

minh(veinhi , ϕinhi) ∧
n2∧
i=1

mmod (vemodi , ϕmodi ,Modi) ∧
n3∧
i=1

mexc(veexci , ϕexci , Exci).

(2.2)

2.3.3. Default Behavior

The final step is to allow intended events to become actual events, as long as no other ILP
forbids them; in other words, the default policy is allow on all events. If there is an in-
tended event I(e), in a real system, it is always maximally refined, e ∈ maxRefEv . e should
be allowed, i.e. E(e) should be executed, if no modifying or inhibiting ILP fires. Such
an ILP fires if e refines any ground substitution of its trigger event and, at the same time,
makes the ILP’s condition true. Taken together, the default rule is expressed as follows.
If there is a maximally refined intended event, then either there must be a correspond-
ing actual event; or a modifying or inhibiting ILP is triggered, which would prohibit the
corresponding actual event. Formally,

Mdefault ↔
∧

e∈maxRefEv
I(e)→

(
E(e) ∨

∨
(ve, ϕ) :

M → minh (ve, ϕ)∨
M → mmod (ve, ϕ,Mod)

∃VarsIn(ve) : refinesEv ve ∧ ϕ
)

(2.3)
where the ILP definitions are assumed to contain pairwise mutually disjoint set of vari-
ables.

18

2. Background: Usage Control

2.3.4. Composition and Mechanisms

The composition of a set of ILPs is defined by

Mcomplete ↔M ∧Mdefault . (2.4)

In terms of the architecture described in Chapter 5, the policy decision point evaluates
the instantiations of Equation 2.1 (which in part also occur in Equation 2.3), and the pol-
icy enforcement point implements the right hand sides of the instances of Equation 2.3
and the “allow” case—where an intended event is transformed into an actual event—in
Equation 2.3.

The formula �(Mcomplete) defines the semantics of all combined ILPs in a system. It is
possible that this leads to an inconsistent definition. This is the case, for instance, if one
modifying ILP transforms an a into a b, and another modifying ILP transforms a b into an
a. This problem of conflicting ILPs, formally expressed as inconsistency, and other formal
analysis problems (e.g. does a certain implementation level policy actually enforce a given
specification-level policy?) are not treated in this work. An approach to tackle the problem
by leveraging model-checking technologies is discussed in [139].

ILPs and default rules can be implemented using runtime verification or complex event
processing technology. While, strictly speaking, the composition of ILPs (i.e. the predicates
in Mcomplete) configures mechanisms, for brevity’s sake the term mechanism will be used in
the following to refer to both aspects, the monitoring technology and the configuration
ILPs. This also explains why ILPs are denoted by the letters M and m.

For the sake of conciseness, the above definition of ILPs slightly simplifies the definition
in [132]: The definition from the literature allows for the specification of multiple subse-
quent events to be performed by modifying or executing ILPs.

2.3.5. Example

As an example, consider a security requirement stipulating that Alice can print a report,
called report .xls , only if it has been previously approved by Bob. A respective specification-
level policy would be

¬(E(print 7→ {obj 7→ report .xls}) until E(approve 7→ {obj 7→ report .xls, by 7→ Bob}).

Such policy can be enforced by different kinds of ILPs, like

• an inhibiting ILP that makes sure the report is not printed before approval,

minh(print 7→ {obj 7→ report .xls},
�(¬E(approve 7→ {obj 7→ report .xls, by 7→ Bob}}) before− 1))

• a modifying ILP that adds a watermark to the printed report if it has not been ap-
proved,

mmod (print 7→ {obj 7→ report .xls},
�(¬E(approve 7→ {obj 7→ report .xls, by 7→ Bob}})) before− 1,
{print 7→ {obj 7→ report .xls,watermark 7→ “unapproved”}})

19

2. Background: Usage Control

• or an executing ILP that triggers the automated notification of the administrator,

mexc(print 7→ {obj 7→ report .xls},
�(¬E(approve 7→ {obj 7→ report .xls, by 7→ Bob}})) before− 1,
{notify 7→ {obj 7→ report .xls, dst 7→ admin,msg 7→ ”unapproved printing”}}).

2.4. Policy Activation and Violation

Defining the semantics of combined ILPs as �(Mcomplete), as suggested in Section 2.3.4,
does not state from which point onwards this formula should hold. A simplistic approach
is to assume that all ILPs are active from time point 0 onwards. In reality, with policy
lifecycle management, for an ILP π with name π, there would be activation and deactiva-
tion events parameterized by the name of the ILP and an abstract moment in time, n. The
semantics of a ILP would then amount to

�(activate(π, n) =⇒ π until deactivate(π)),

starting at activation time n, and the operators of Φ− would have to be augmented by a
further parameter n and adjusted to “look back” only until max (0, n). Policy lifecycle man-
agement, however, is not the subject of this work, and this issue is not furtherly discussed
here.

In the system described in this work, once a policy is violated, it remains violated for-
ever, i.e. the violation is reported at every moment in time after the one in which the
violation occurred. After reporting the violation once, however, other strategies could be
applied, such as deactivating the policy, or resetting it to its initial state, or locking the
complete system (i.e. inhibiting every possible event). Depending on the context, each of
this strategies may or may not make sense. Because a correct answer does not exists in
general, policies themselves should state what happens after they have been violated for the first
time. If this information is not present, then the policy lifecycle management should rely
on some default strategies. This problem, tightly connected to the policy lifecycle man-
agement issues, is not part of this work, (and thus intentionally ignored,) assuming the
intervention of a security expert, after a reported violation, to restore the system to a safe
state.

2.5. Detective and Preventive Enforcement

Inhibitors and modifiers are used for preventive enforcement: their goal is to ensure that a
policy is adhered to. Executors can be used for both preventive and detective enforcement.
An example for preventive enforcement has been presented in Section 2.3.5. Executors can
be instrumental for detective enforcement as well: the event to be executed then is a mere
logging event.

There also is a second possibility to implement detective enforcement that directly uses
specification-level, i.e., future time, policies rather than ILPs. For safety properties—and
all realistic usage control properties are safety properties because in realistic systems all
duties are time-bounded—there exists an earliest moment in time when a policy is violated

20

2. Background: Usage Control

or satisfied forever. The respective shortest “good” and “bad” prefixes can be precisely de-
fined and detected at runtime [101, 79]. If the violation of a specification-level policy is
detected by using this technology, then any kind of compensating action can be under-
taken. These include undoing an action, lowering trust ratings, implementing penalties,
etc. Formal details are provided elsewhere [81].

21

2. Background: Usage Control

22

3. Usage Control Marries Data Flow Tracking

This chapter describes a generic model and language to augment the usage con-
trol concepts of Chapter 2 with data flow tracking features. This work is one of
the core contributions of the thesis and has been published in [138]. The discus-
sion on soundness is taken from [109], an unpublished work co-authored by the
author of this dissertation.

Background:
Usage Control

Usage Control
Marries

Data Flow
Tracking

Cross-layer
Data Flow
Tracking

Intra-process
Data Flow
Tracking

Structured
Data Flow
Tracking

Quantitative
Data Flow
Tracking

PART I PART II

System Design and Implementation

As introduced in Chapter 1, data (e.g. a picture) exists within a system in form of multi-
ple representations. These possibly reside at different layers of abstraction (e.g. a file at the
operating system layer, a set of pixels at the windowing manager layer, a browser object
at the application layer, etc.). Usage control requirements are often naturally expressed in
terms of data (“delete this picture”) rather than layer-specific representations (“unlink file1,
file2,..., filen, empty clipboard, delete mailxyz from archive, erase backupabc, etc. ”). In the
remaining of this work, these representations are called containers.

In order to enforce policies related to data rather than containers (and thus events), a
system must distinguish between the two, i.e. usage control decisions should take into
account the dissemination of data among different containers. For instance, the require-
ment “delete this picture” should be enforced by deleting every container that contains this
picture’s data.

In the next sections, the usage control model and language described in the previous
chapter are augmented with data flow tracking features, to track data dissemination at an
arbitrary layer of abstraction (the generalization to data flows across layers is the goal of
Chapter 4). The fundamental research questions addressed in this chapter are

How can usage control requirements be specified and enforced over all
representations of the same data at once?

What does it mean that a certain data flow tracking solution is “sound”?

23

3. Usage Control Marries Data Flow Tracking

3.1. System model

Let systems be described as tuples

(D,S, C,F ,Σ, σi,R)

whereD is a set of data elements, S is the set of system events introduced in Section 2.1.3, C
is a set of containers andF is a set of identifiers used to simplify model renaming activities.

States Σ are defined by three mappings:

• a storage function s of type C → P(D) that describes which set of data is potentially
stored in which container;

• an alias function l of type C → P(C) that captures the fact that some containers may
implicitly get updated whenever other containers do;

• a naming function f that provides names for containers and that is of type F → C.

Therefore,
Σ = (C → P(D))× (C → P(C))× (F → C).

σi ∈ Σ is the initial state of the system in which any container is mapped to an empty set
of data and has no name. The transition relation (or monitor)

R ⊆ Σ× P(S)→ Σ

is the core of the data flow tracking model, encoding how the execution of events affects the
dissemination of data in the system. At runtime, the usage control infrastructure maintains
the data state Σ. Events are intercepted, and the information state is updated according to
R. Note that R applied to a sequence of events is the recursive application of R to each
event in the sequence (i.e. R(σ, 〈e1, e2, ..., en〉) = R(R(...R(σ, e1), e2)...en).

As already mentioned in Section 2.1.3, events happening within the same timestep are
assumed to be independent from each other, i.e. any possible serialization of them would
result in the same state:

∀σ ∈ Σ : R(σ, ∅) = σ
∀σ ∈ Σ;Es ⊆ S; e ∈ S : e ∈ Es =⇒ R(σ,Es) = R(R(σ, {e}), Es \ {e})

Again, this assumption may sound restrictive, but in concrete implementations it is seldom
the case that multiple events take place at the same time; when that is the case, it is usually
possible to establish a clear order between events by observing additional parameters, e.g.
system timestamp.

In the usage control model of Chapter 2, data is addressed by referring to specific repre-
sentations of it as event parameters. For instance, the ILP described in Section 2.3.5 stipu-
lates that if a file (a specific representation and a specific container) called report.xls has not
been approved, it cannot be exported. The model described in this chapter addresses the
situation where a copy of that file, report2.xls, should not be exported either.

To this end, the semantic model is extended by data usages that allow for the specification
of protection requirements for all representations rather than just one. Using the data flow
tracking model, the framework computes the data state of the system at each timestep n:

24

3. Usage Control Marries Data Flow Tracking

it considers the system trace until n, extracts the respective events in each step, iteratively
computes the successor data state for each data state and eventually obtain the data state
at time n. In an implementation, of course, the recursive computation is done using state
machines to maintain the data state of the system at each moment in time (see Chapter 5).

3.2. Data, Containers, and Events

The framework needs to distinguish between data and containers for data. At the speci-
fication layer, this leads to the distinction between two classes of events according to the
“type” of the obj parameter (see Section 2.1.1): events of class dataUsage define actions
on data objects. The intuition is that these pertain to every representation of the data. In
contrast, events of class containerUsage refer to one single container. In a real system, only
events of class containerUsage can happen. This is because each monitored event in a trace
targets a specific representation of the data (a file, a memory region, etc). dataUsage events
are used only in the definition of policies, where it is possible to define a rule abstracting
from the specific representation of a data item.

There also exists a third class of events, noUsage events, that do not define usages of
containers or data. noUsage events include notifications, penalties, etc. The obj parameter
of noUsage events is equal to ∅. Every event that is not a containerUsage nor a dataUsage
event is a noUsage event. Let getclass be the function that extracts the type of events.

EventClass = {dataUsage, containerUsage, noUsage}
getclass : E → EventClass
D ∪ C ⊆ PV alue ∧ C ∩ D = ∅

The system has to satisfy the following conditions:

∀e ∈ E : getclass(e) = dataUsage ⇐⇒ ∃par ∈ D : (obj 7→ par) ∈ e.p
∀e ∈ E : getclass(e) = containerUsage ⇐⇒ ∃par ∈ C : (obj 7→ par) ∈ e.p.
∀e ∈ E : getclass(e) = noUsage ⇐⇒ (obj 7→ ∅) ∈ e.p.

Note that dataUsage events are similar to events with a variable obj parameter (see Sec-
tion 2.1.1), where in this case the variable is quantified over every container that contains
a certain data item. The fundamental difference between the two categories is that, in
dataUsage events, the set V V Al of possible values for variable obj is not fixed, but it may
change at every moment in time, reflecting the changes in data dissemination.

Section 2.1.2 introduced relation refinesEv and the idea of implicit quantification over
unmentioned parameters when specifying events in policies. For example, if an obli-
gation prohibits the event print 7→ {obj 7→ rep.xls}, then the event print 7→ {obj 7→
rep.xls, printer 7→ HP − 001} is prohibited as well.

This definition is now extended: an event of class dataUsage can be refined by an event
of class containerUsage if the latter is related to a specific representation of the data the
former refers to. As in the original definition, in both cases the more refined event can
have more parameters than the more abstract event.

An event e1 refines an event e2 if and only if
• e1 and e2 both have the same class (containerUsage or dataUsage) and
• e1 refinesEv e2;

25

3. Usage Control Marries Data Flow Tracking

or
• if e1 is a containerUsage and e2 a dataUsage event,
• e1 and e2 have the same event name,
• in the current data state, there exists a data item d stored in a container c such that

(obj 7→ c) ∈ e1.p and (obj 7→ d) ∈ e2.p, and
• all parameters (except for obj) of e2 have the same value in e1, and e1 may possibly

have additional parameters.
Note that this in this definition, the data dissemination state Σ is needed in order to decide
the refinement. Formally, relation

refinesEvi ⊆ (E × Σ)× E ,

which checks whether one event e1 refines another event e2 also w.r.t. data and containers,
is defined as

∀e1, e2 ∈ E ,∀σ ∈ Σ : (e1, σ) refinesEvi e2 ⇐⇒
(getclass(e1) = getclass(e2) ∧ e1 refinesEv e2)∨
(getclass(e1) = containerUsage ∧ getclass(e2) = dataUsage∧
e1.n = e2.n ∧ ∃d ∈ D, ∃c ∈ C : d ∈ σ.s(c)∧
obj 7→ c ∈ e1.p ∧ obj 7→ d ∈ e2.p ∧ e2.p \ {obj 7→ d} ⊆ e1.p \ {obj 7→ c}).

where σ.s denotes the storage function of state σ.

3.2.1. Computing the Data State

Function states : (Trace × N)→ Σ is used to compute the information state σ at a given
moment in time.

states(t, n) =

{
σi if n = 0

R(states(t, n− 1), t(n− 1)) if n > 0

states(t ,n) represents the state of data dissemination after executing trace t until timestep
n − 1 included, i.e. the state in which events at time n are executed. With the help of
refinesEvi and states, it is possible to redefine the satisfaction relation for event expressions
in the context of data and container usages by adding the data state as additional argument
to |=e, obtaining |=e,i⊆ (S × Σ)×Ψ, defined as:

∀e′ ∈ maxRefEv,∀e ∈ VE ,∀σ ∈ Σ,∃e′′ ∈ E :
((e′, actual), σ) |=e,i E(e) ⇐⇒ (e′, σ) refinesEvi e

′′ ∧ e′′ ∈ Instε(e)
∧ ((e′, intended), σ) |=e,i I(e) ⇐⇒ (e′, σ) refinesEvi e

′′ ∧ e′′ ∈ Instε(e).

3.2.2. State-based Operators

In the semantic model, policies are defined on sequences of events. The idea of a policy is
to describe certain situations to be avoided or enforced. However, in practice there usually
is an almost infinite number of different sequences of events that lead to the same situation,
e.g., the copy or the deletion of a file. Instead of listing all these sequences, it appears more
convenient in situations of this kind to define a policy based on the description of the

26

3. Usage Control Marries Data Flow Tracking

(data flow state of the) system at that specific moment. To define such types of formulae,
the model supports a new set of state-based operators, called Φs,

Φs ::= isNotIn(D,P(C))|isCombinedWith(D,D)

plus the macro isOnlyIn(D,P(C)) with isOnlyIn(d,Cs)⇔ isNotIn(d, C \ Cs).
Intuitively, isNotIn(d,Cs) is true if data d is not present in any of the containers in set

Cs. This is useful to express constraints such as “report .xls must not be distributed over the
network”, which becomes �(isNotIn(report .xls, {cnet})) for a network container (i.e. any
socket) cnet . isCombinedWith(d1, d2) checks if data items d1 and d2 are combined in one
container. This is useful to express simple Chinese Wall policies. isOnlyIn , the dual of
isNotIn , is used to express concepts such as “data d has been deleted” (isOnlyIn(d, ∅)).

Leveraging the states function defined before, the semantics of the data usage operators
in Φs can be defined in terms of event traces by |=s⊆ (Trace × N)× Φs:

∀t ∈ Trace;n ∈ N;ϕ ∈ Φs;σ ∈ Σ : (t, n) |=s ϕ ⇐⇒ σ = states(t, n)∧
∃d ∈ D, Cs ⊆ C : ϕ = isNotIn(d,Cs) ∧ ∀c′ ∈ C :
d ∈ σ.s(c′) =⇒ c′ /∈ Cs
∨∃d1, d2 ∈ D : ϕ = isCombinedWith(d1, d2) ∧ ∃c′ ∈ C :
d1 ∈ σ.s(c′) ∧ d2 ∈ σ.s(c′).

The language Φ can now be augmented with the state based operators in Φs, obtaining
the new language Φi

Φi ::= (Φi)|Ψ|false|Φi implies Φi|forall V Name in V V al : Φ|
Φi until Φi|Φi after N|replim(N,N,N,Ψ)|repuntil(N,Ψ,Φi)
|Φs

and its semantics |=f,s⊆ (Trace × N)× Φi

∀t ∈ Trace;n ∈ N;ϕ ∈ Φi : (t, n) |=f,s ϕ⇔ ϕ 6= false ∧Ä
∃e ∈ VE : (ϕ = E(e) ∨ ϕ = I(e)) ∧ ∃e′ ∈ t(n) : e′ |=e ϕ

∨∃ψ, χ ∈ Φi : ϕ = ψ implies χ ∧ ¬((t, n) |=f ψ) ∨ (t, n) |=f,s χ
∨∃γ ∈ Γ : ϕ = eval(γ) ∧ [[ϕ]]eval = true
∨∃vn ∈ V Name; vs ∈ V V al;ψ ∈ Φi :
ϕ = (forall vn in vs : ψ) ∧ ∀vv ∈ vs : (t, n) |=f,s ψ[vn 7→ vv]

∨∃ψ, χ ∈ Φi : ϕ = ψ until χ ∧
Ä
∀v ∈ N : n ≤ v ⇒ (t, v) |=f,s ψ

∨∃u ∈ N : n < u ∧ (t, u) |=f,s χ ∧ ∀v ∈ N : n ≤ v < u⇒ (t, v) |=f,s ψ
ä

∨∃m ∈ N;ψ ∈ Φi : ϕ = ψ after m ∧ (t, n+m) |=f,s ψ
∨∃m ∈ N1; l, r ∈ N;ψ ∈ Ψ : ϕ = replim(m, l, r, ψ)∧
l ≤ #{j ∈ N1|j ≤ m ∧ (t, n+ j) |=f,s ψ} ≤ r
∨∃m ∈ N;ψ ∈ Ψ, χ ∈ Φi : ϕ = repuntil(m,ψ, χ)

∧
Ä
(∃u ∈ N1 : (t, n+ u) |=f,s χ ∧ (∀v ∈ N1 : v < u⇒ ¬((t, n+ v) |=f,s χ))

∧(#{j ∈ N1|j ≤ u ∧ t(n+ j) |=f,s ψ}) ≤ m)

∨(#{j ∈ N1|t(n+ j) |=f,s ψ}) ≤ m
ää

∨ϕ ∈ Φs ∧ (t, n) |=s ϕ

27

3. Usage Control Marries Data Flow Tracking

Note that the definition of Φi and of its semantics are almost identical to those of Φ, except
for the last line (highlighted in red), which includes the state based operators from Φs.

In a similar way, it is possible to define a past variant of the language (Φ−i) and its se-
mantics |=fs−⊆ (Trace × N)× Φ−i .

Φ−i ::= (Φ−i)|Ψ|false|Φ−i implies− Φ−i |forall V Name in V V al : Φ−i |
Φ−i since− Φ−i |Φ−i before− N|replim−(N,N,N,Ψ)|repsince−(N,Ψ,Φ−i)
|Φs

∀t ∈ Trace;n ∈ N;π ∈ Φ−i : (t, n) |=fs− π ⇔ (π 6= false)∧Ä
∃e ∈ VE : (π = E(e) ∨ π = I(e)) ∧ ∃e′ ∈ t(n) : e′ |=e π

∨ ∃ψ, χ ∈ Φ−i : π = ψ implies− χ ∧ ¬((t, n) |=fs− ψ) ∨ (t, n) |=fs− χ
∨ ∃γ ∈ Γ : π = eval(γ) ∧ [[π]]eval = true
∨ ∃vn ∈ V Name; vs ∈ V V al;ψ ∈ Φ−i :

π = (forall vn in vs : ψ) ∧ ∀vv ∈ vs : (t, n) |=fs− ψ[vn 7→ vv]

∨ ∃ψ, χ ∈ Φ−i : π = ψ since− χ ∧
Ä
(∀v ∈ N : v ≤ n⇒ (t, v) |=fs− ψ)

∨(∃u ∈ N : u ≤ n ∧ (t, u) |=fs− χ ∧ ∀v ∈ N : u < v ≤ n⇒ (t, v) |=fs− ψ)
ä

∨ ∃m ∈ N;ψ ∈ Φ−i : π = ψ before− m ∧ n ≥ m ∧ (t, n−m) |=fs− ψ
∨ ∃m, l, r ∈ N;ψ ∈ Ψ; : ϕ = replim−(m, l, r, ψ)

∧ l ≤ (#{j ∈ N|j ≤ min(m,n) ∧ t(n− j) |=fs− ψ}) ≤ r
∨ ∃m ∈ N;ψ ∈ Ψ;χ ∈ Φ; e ∈ E : ϕ = repsince−(m,ψ, χ)

∧
Ä
(∃u ∈ N1 : n ≥ u ∧ (t, n− u) |=fs− χ ∧ (∀v ∈ N : v < u⇒ ¬((t, n− v) |=fs− χ))

∧(#{j ∈ N|j ≤ u ∧ t(n− j) |=fs− ψ} ≤ m))

∨(#{j ∈ N|j ≤ n ∧ t(n− j) |=fs− ψ} ≤ m)
ää

∨ ϕ ∈ Φs ∧ (t, n) |=s ϕ

Leveraging |=fs− , ILP definitions of Section 2.3.2 can be augmented to allow for state-
based operators in the conditions (ϕ ∈ Φ−i). An example of a possible concrete syntax for
the language is given in Appendix A.

3.3. Use Case (Single Layer)

As a proof-of-concept, the combined model described above has been instantiated for the
application scenario described in Section 1.4. In this context, two instances of the model are
considered: one for the Microsoft Excel application used by Alice to prepare her reports
(EX) and one for the underlying Microsoft Windows (OS) operating system (in case of
other operating systems, like OpenBSD, an additional monitor may be required for the
windowing manager [136]).

Alice works as analyst for ACME Inc., a smartphone manufacturer. Her
job consists in editing and preparing reports for suppliers and for other
departments. Alice uses Microsoft Excel to prepare her reports and a
third-party application, also used by all suppliers, to place the orders.
In order to prevent accidental and intentional disclosures of sensitive
data, information flow control mechanisms are in place at the application
level, e.g. preventing highly sensitive reports form being printed on

28

3. Usage Control Marries Data Flow Tracking

shared printers, and at the operating system layer, e.g preventing files
that are tagged as confidential from begin sent outside the com-
pany premises and from appearing in a screenshot.

Note that requirements like ”This sheet of the workbook cannot be printed” or “No screenshot
of this report can be taken” can be enforced by tracking data at the single layers individually;
examples of requirements that require cross-layer tracking of data can be found in Chap-
ter 4. The second part of this work addresses the problem of how to enforce different kinds
of requirements and/or the same kind of requirements in a more precise way.

3.3.1. Notation

The instantiation of the transition relation R for different layers of abstraction can be
formalized in a simple way by introducing a function update notation. For a function
m : S → T and an s ∈ S, let m[s← expr] = m′ with m′ : S → T such that

m′(y) =

®
expr if y = s
m(y) otherwise

This notation is also lifted to sets of changed domain elements. For a variable x→ X with
X ⊆ S, m[x← expr]x∈X = m′ with m′ : S → T such that

m′(y) =

®
expr if y ∈ X
m(y) otherwise

This notation simplifies the description of the storage, alias, and naming functions up-
dates in the data flow model e.g. to describe that an event adds a new mapping between a
specific data item and a container. Multiple function updates on disjoint sets with simul-
taneous and atomic replacements can be defined within a single expression as follows:

m[x1 ← exprx1 ; . . . ;xn ← exprxn]x1∈X1,...,xn∈Xn =(
· · ·
Ä
(m[x1 ← exprx1]x1∈X1)[x2 ← exprx2]x2∈X2

ä
· · ·
)
[xn ← exprxn]xn∈Xn .

Besides this function update notation, the asterisk operator r∗ is used to denote the tran-
sitive reflexive closure of a relation r. In particular, the notation l∗(c) is used to retrieve the
closure of the alias function l which effectively returns all containers ci that are transitively
referenced by container c.

For the sake of brevity, this section uses a simplified notation for system events: events,
in the previous sections denoted by E ⊆ EName × P(PName × PValue), in this section are
modeled as projections of the corresponding API calls, system calls, etc.. The projection is
done in a way that events only contain parameters that are relevant in terms of data flow.
Events are then denoted by E := EName(PV alue, . . . , PV alue), where the association be-
tween parameter values and names is implicitly given by their order.

Note that the monitors described in the next sections are specified in terms of single
events; this is because, as discussed in Section 2.1.2, multiple events observed in the same
timestep are independent. As such, they can be processed in a serialized fashion and re-
sult in the same final state regardless of the processing order. Also note that while in

29

3. Usage Control Marries Data Flow Tracking

Section 3.1 traces of the system are defined in terms of maximally refined events, the se-
mantics for the monitors described in this section only mentions few relevant parameters
for the events. This choice has been made to keep the notation simple and focused on the
relevant parameters; the reader must be aware that an implicit universal quantification
over the parameters that are not mentioned is always intended.

3.3.2. Operating System Layer

This example considers an instantiation of the model at the operating system layer for
Microsoft Windows. This instantiation is based on the interception of function calls to
the Windows API, the primary API of Windows, used by user-mode processes to access
system resources and utilize extended system functionality like I/O or network commu-
nication. The choice of monitoring calls to the Windows API rather than calls to the native
kernel API is motivated by the sparse documentation of the native API and its lack of
high-level functionality, for e.g. user interface manipulation.

Conceptually, the Windows enforcement mediates the communication between user-
mode processes and the operating system. Technically, the interception of calls to the Win-
dows API is realized through function call interposition within the respective processes.
More precisely, a subset of relevant Windows API calls is rerouted from user-mode pro-
cesses to a custom detouring library that takes care of pre-processing and forwarding them
to the evaluation infrastructure. Note, that this does not require any manual modification
of the applications, thus supporting monitoring and control of any legacy Windows appli-
cation that uses the standard Windows APIs.

To model the flow of data within this layer of abstraction, the data flow model described
in Section 3.1is instantiated as follows: The set of data containers C is represented by enti-
ties that can contain data like windows, files, I/O devices, or the system clipboard:

C := CWindows ∪ CFiles ∪ CDevices ∪ CClipboard ∪ CM ,
where mp ∈ CM refers to the container modeling the memory of process p. The set of
names F covers all unique identifiers to these containers, i.e. windows (FwHandle), pro-
cesses (Fpid), file and device handles (FfHandle ∪FdHandle) and absolute file names (FfName).
Note that, in contrast to window handles, which are unique system-wide, different pro-
cesses (e.g. with process ids “123” and ”456”) may associate the same file handler (e.g. “3”)
to different files (“file1” and “file2”) or devices. For this reason, F is defined as

F := FwHandle ∪ FfName ∪ FdName ∪ (Fpid on (FfHandle ∪ FdHandle))

where A on B indicates the set of all the single labels composed by the concatenation of
an element in A and an element in B, separated by a colon1. In the same example, the
labels “123:3” and “456:3” would be part of the domain of the naming function f , as well
as “file1” and “file2”, and f(123:3) = f(file1) and f(456:3) = f(file2).

Due to its enormous complexity, modeling the data flow behavior of the entire Windows
API is daunting and not necessary to cover most data usage cases at this layer of abstrac-
tion. For this reason, the semantics of only a limited subset of events is presented here. A
more comprehensive overview can be found in [164].

1To maintain a simple notation, the operator on is overloaded to single elements such that
(A on B = C) =⇒ (a on b = c) for any A = {a}, B = {b} and C = {c}.

30

3. Usage Control Marries Data Flow Tracking

Note that at the model level, the instantiation for Microsoft Windows does not funda-
mentally differ from the instantiation for any other operating system, like Android [55] or
OpenBSD [73]. This is because each basic operating system event has a counterpart in any
specific system, e.g. a WriteFile API call in Microsoft Windows and a write system call in a
Unix system.

CreateFile Event

CreateFile is used to retrieve a handle to a (new or already existing) file, specified via its
absolute file name. It thus creates a mapping between file name and handle.

∀s : C → P(D), ∀l : C → P(C),∀f : F → C,∀p ∈ Fpid ,∀fn ∈ FfName , ∀fh ∈ FfHandle :Ä
(s, l, f) ,CreateFile (p, fh, fn) , (s, l, f [(p on fh)← f(fn)])

ä
∈ R.

ReadFile Event

ReadFile induces a flow from a file to a process memory container. As in general it is not
possible to know exactly which parts of a file are sensitive and where exactly in the process
memory the sensitive parts flow to, a conservative estimation needs to be taken, assuming
that all data flows into the process memory and all referenced containers (e.g. all windows
belonging to the calling process).

∀s : C → P(D), ∀l : C → P(C),∀f : F → C, ∀p ∈ Fpid ,∀fh ∈ FfHandle :Ä
(s, l, f) ,ReadFile (p, fh) , (s[t← s(f(p on fh)) ∪ s(t)]t∈l∗(mp),l,f)

ä
∈ R

WriteFile Event

WriteFile results in a flow from a process memory container to a file. Here, a similar coarse-
grained estimation of data flows is performed, as it is not possible to assess which parts of
the process memory are written to the file.

∀s : C → P(D), ∀l : C → P(C),∀f : F → C, ∀p ∈ Fpid ,∀fh ∈ FfHandle :Ä
(s, l, f) ,WriteFile (p, fh) , (s[f(fn)← s(f(fn)) ∪ s(mp)], l, f)

ä
∈ R

3.3.3. Application Layer

The second instantiation of the generic model considered in the running example is for
the Microsoft Excel spreadsheet application. At this level, the interception of data usage
related events is performed through a custom Excel Add-in. Events in this context are trig-
gered at the GUI level and cover tasks like opening a workbook, deleting a row, computing
a value using data from different cells, creating a chart, or opening the print preview. Many
events, e.g. print, are intercepted for usage control purposes (“the content of this sheet can-
not be printed”), but their execution does not affect the dissemination of data in the model
or, in case of events like save, such dissemination cannot be modeled in a non-trivial way

31

3. Usage Control Marries Data Flow Tracking

within Excel (e.g. flows of data from/to files). A model that captures data flows across
different instantiations more precisely is described in Chapter 4.

In this domain, containers are the single cells (CCell), whole worksheets (CSh), or whole
workbooks (CWb), all the slots of the internal office clipboard (COCB) and the printer (cPrint);
additionally, a special container (cU) to model the flow of data from/to files needs to be
considered. This container is needed to model cross-layer events and its existence is moti-
vated in detail in Section 3.4. Thus,

C = CCell ∪ CSh ∪ CWb ∪ COCB ∪ {cPrint , cU}

To identify these containers, the naming set F contains unique identifiers for each cells
and each printer. Cell identifiers are of the standard form (w, sh, r, c) ∈ WB PATHS ×
SHEETS × ROWS × COLS , where w is a possible path for a workbook, sh is the name
of the worksheet in the given workbook and r and c identify, respectively, the row and
the column of the cell. The special value ∅ indicates a universal quantification over that
field, so while (file1 .xls,Sheet1 , 5, 3) indicates the cell (5,3) of sheet Sheet1 in workbook
file1 .xls , (file1 .xls, ∅, ∅, ∅) is the label for the container that models the complete file1 .xls
workbook, (file1 .xls,Sheet1 , ∅, ∅) is the label for the container that models Sheet1 , and
(file1 .xls,Sheet1 , 5, ∅) and (file1 .xls,Sheet1 , ∅, 3) are the labels for, respectively, the com-
plete row number 5 and the complete column number 3 of Sheet1 in file1 .xls . Thus,

F = WB PATHS × SHEETS × ROWS × COLS

In this model, alias relations (see Chapter 3) are used to capture the fact that the value
of a cell may depend on the values of other cells and to model the relation between a
workbook, all the worksheet contained in it and all the cells contained in them. The event
set E contains all Excel events that potentially lead to a flow of data between the specified
containers.

Again, for brevity’s sake, only the semantic of a limited subset of the modeled events
is presented here. A more comprehensive overview can be found in [149] Note that this
model only considers data flows within the spreadsheet application; as mentioned before,
tracking data flows between Excel and the underlying operating system is out of the scope
of this instantiation and is the goal of the model presented in Chapter 4.

Print Event

Print sends the content of the active workbook to the printer. Because it is possible to print
only part of the workbook, the event is modeled in a generic way using the parameter
sel ⊆ F to represent the set of selected cells to be printed. Notice that the data transferred
to the printer is the content of the selected cells plus the content of every cell referenced by
them, which is retrieved using the alias function l.

∀s : C → P(D), ∀l : C → P(C),∀f : F → C,∀sel ⊆ F :

((s, l, f),Print(sel), (s[cPrint ← s(cPrint)
⋃
c∈{c|∃c′∈sel :c∈l∗(c′)} s(c)], l, f)) ∈ R

32

3. Usage Control Marries Data Flow Tracking

Erase Event

An erase event is observed when the content of a cell is deleted. In this case, the storage
associated to the selected cell is deleted, and every alias to the cell is removed. As for the
previous event, let sel ⊆ F be the set of selected cells.

∀s : C → P(D), ∀l : C → P(C),∀f : F → C,∀sel ⊆ F :

((s, l, f),Erase(sel),

(s[f(n)← ∅]∀n∈sel , l[x← l(x) \ {f(n)}] ∀x ∈ {x|∃n ∈ sel : x ∈ l∗(n)}
∀n ∈ sel

, f)) ∈ R

Sheet Rename Event

When a sheet is renamed, all the references to the cells of that sheet need to be updated.
Such update is modeled using the information provided by this event, i.e. the name of the
workbook in which the sheet is located (wb), the old name (old) and the new name (new)
of the sheet.

∀s : C → P(D), ∀l : C → P(C),∀f : F → C :

((s, l, f),SheetRename(wb, old ,new),

(s, l, f [(wb,new , r, c)← f(wb, old , r, c); (wb, old , r, c)← ∅] ∀r ∈ ROWS
∀c ∈ COLS

, f)) ∈ R

3.4. Soundness (Single Layer)

This section formalizes a definition of soundness for data flow tracking at a generic layer of
abstraction. This definition is then used as a basis to justify the soundness of the cross-layer
models described in Chapter 4.

Note that, for simplicity’s sake, the discussion of soundness in the remaining of this
chapter and in the next one will assume the state of the system to be given by a storage
function only. For this reason, the storage of a container c in state σ can be denoted as σ(c).
Integrating alias and naming function would only make the formalization more complex
without introducing any additional fundamental challenge; for this reason, aliases and
names are ignored in this section.

The model described so far can be instantiated at an arbitrary layer of abstraction, e.g.
operating system, a data base, a windowing system, an application, etc. Let A be such
layer. The goal of this section is to formalize desirable properties by relating the model
for A to a very low level model ⊥ with intuitive completeness and correctness properties.
One could think at ⊥ as the level of the CPU and volatile as well as persistent memory
cells, representing the real execution of the system. This layer provides a notion of value
of the containers V : C → N that indicates the actual value stored in memory, and a trace
execution semantics that changes the value of containers eval : V × seq(S⊥)→ V , such that
the system at ⊥ is given by (D⊥,S⊥, C⊥,Σ⊥, σi,R⊥,V, eval).

A in contrast is some distinct higher layer. Set L denotes the set of all these high layers,
while L⊥ = L ∪ {⊥}. For † ∈ L, C† denotes the set of containers at layer †. Note that the
set of data D is layer-independent. Any layer A is related to ⊥ by a pair of functions γ

33

3. Usage Control Marries Data Flow Tracking

and α that associate events and containers as follows: The idea is that an A-layer container
corresponds to a set of ⊥-layer containers (volatile and persistent memory cells) and an
A-layer action to a sequence of CPU-level instructions (machine instructions such as MOV,
BNE, ADD, LEQ). For a layer † ∈ L⊥, each state σ† ∈ Σ† is defined by the respective
storage component (see discussion at the beginning of this section).

Relating states and events The model presented in Chapter 2 defines traces as sequences
of sets of events. For simplicity’s sake, the discussion on soundness presented here and in
the next chapter will assume traces to be given by sequences of events. This assumption
does not introduce any fundamental restriction, because given a trace in terms of sets of
events t, it is always possible to determine a sequence of events s such that R(σ, t) =
R(σ, s), thanks to the assumption of independence of events within the same timestep
(see Section 2.1.3).

Events at any layer are assumed to be unique and to contain an implicit timestamp
and duration, yielding a natural order on a trace’s events. Each event at a higher layer
corresponds to a sequence of CPU-level instructions.

The discussion of soundness in this section and in the next chapter assumes it is possible
to bijectively map an abstract sequence of events to a concrete sequence of events. This
embodies the fundamental assumption of a single-core system: all traces can be uniquely
sequentialized. Note that, in this sense, the concretization and abstraction functions are
ideal: they deterministically relate ordered set of unique events with timestamps. This
corresponds to the intuition that they relate to “what has really happened” in a monitored
system, where for instance scheduling of concurrent processes has already been fixed.

The goal will be thus to reason about what has happened at the lowest layer, without
ever actually having to monitor it, by assuming partial information on these abstraction/-
concretization functions.

Moreover, events at ⊥ that do not correspond to an event at a higher layer are deliberately
ignored, e.g. those generated by an application for which there is no explicit monitor. The
implication is that this usage control framework approach can only be sound w.r.t. those
CPU-layer instructions for which a monitor at some layer exists.

In the following, abstraction and concretization functions for events and states are de-
fined. For this purpose, α and γ are overloaded as follows. Let † ∈ L:

Events : γ† : seq(S†)→ seq(S⊥), α† : seq(S⊥)→ seq(S†)
States : γ† : Σ† → Σ⊥, α† : Σ⊥ → Σ†
Containers : γ† : C† → P(C⊥), α† : C⊥ → P(C†).

such that
γ†(σ†)=

¶
(c⊥, σ†(c†)) : c† ∈ dom(σ†) ∧ c⊥ ∈ γ†(c†)

©
α†(σ⊥)= {(c†, σ⊥(c⊥)) : c⊥ ∈ dom(σ⊥) ∧ c† ∈ α†(c⊥)}.

Additionally, ∀C ⊆ C† : γ†(C) =
⋃
c∈C γ†(c) and ∀C ⊆ C⊥ : α†(C) =

⋃
c∈C α†(c).

At each layer † ∈ L, there exists a special container cU† that represents the abstraction of
all those ⊥-layer containers that are not observable within † (∀c⊥ ∈ C⊥ : (∀c† ∈ C† \ {cU† } :

α†(c⊥) 6= c†) =⇒ (α†(c⊥) = cU†)). By definition σ(cU†) = D for any state σ, because D, i.e.
all data, is a conservative estimation for the content of an unknown container.

34

3. Usage Control Marries Data Flow Tracking

Given two states σ1 and σ2 at the same abstraction layer †, let σ1 onσ σ2 denote the state
at the same layer given by the union of the respective storage function.

σ1 onσ σ2 = {(c,D)|c ∈ C† ∧D = σ1(c) ∪ σ2(c)}

Recall that events at any layer are assumed to be unique and to contain an implicit times-
tamp, yielding a natural order on a trace’s events. The ordered trace consisting of unique
elements present in t1 and t2, traces of events at layer †, is denoted as t1 ont t2.

Strategy In the following, the notion of taint propagation at the lowest abstraction layer
(⊥) is related with that of weak secrecy. An ideal monitor R#

⊥ , sound with respect to weak
secrecy, is defined in Section 3.4.1. This monitor is then used to define a notion of soundness
(with respect to ⊥) for a single layer A, which will then be used in Chapter 4 to justify
soundness of the cross-layer data flow tracking.

3.4.1. Security Property at the ⊥ Layer

Data flow tracking estimates which containers are “dependent” from the data stored in
some other containers after a system run. The strongest guarantees in this sense are given
by Non-Interference [67], which relates dependency of inputs and outputs in terms of pairs
of executions (or state of variables before and after executing a program [159]). In the
context of this work, Non-Interference can be defined as:

Definition 3.1 (Non-Interference). Let CiH , CoH ⊆ C⊥ be sets of containers at ⊥. A trace t⊥ ∈
seq(S⊥) respects Non-Interference w.r.t. CiH , CoH if

∀v, v′ ∈ V :
∧

c∈C⊥\CiH

v(c) = v′(c) =⇒
∧

c∈C⊥\CoH

eval(v, t⊥)(c) = eval(v′, t⊥)(c)

In other words, the values of a certain memory region (represented by low) containers
are independent from its complement (the high containers) after execution of a trace at ⊥.
This represents the notion of absence of flows from high to low containers. Monitoring Non-
Interference is unfeasible [158] because it is a property over sets of traces (hyperproperty).
Nevertheless, the goal of this work is to monitor data flows in single system runs. A
relaxed notion of Non-Interference which can be monitored is formally captured by weak-
secrecy [158].

Weak-secrecy relates a certain execution branch of a program with all other execution
branches that exhibit the same behavior in terms of direct flows. To formally define this
property in the context of this work, consider a trace t⊥ ∈ seq(S⊥). The branch-free version
of t⊥, denoted as bf(t⊥), consists of the same assembly-level instructions in the same order,
except for branch statements such as BNE, which are removed from the observed trace.

Definition 3.2 (Weak secrecy). Let CiH , CoH ⊆ C⊥ be sets of containers at ⊥. A trace t⊥ ∈
seq(S⊥) respects weak-secrecy w.r.t. CiH , CoH if its branch-free version bf(t) is Non-Interferent
w.r.t. CiH ,CoH .

R⊥ is the monitor that propagates labels in-between containers at layer ⊥ as conse-
quence of the execution of a trace.

35

3. Usage Control Marries Data Flow Tracking

Definition 3.3. A monitorR⊥ is sound w.r.t. weak-secrecy if given an initial state σi, for all data
items d ∈ D, all traces t⊥ ∈ seq(S⊥) respect weak-secrecy for the initial partition of the containers
as induced by d: CiH = {c ∈ C⊥ | d ∈ σi(c)} and, at the end of trace t⊥, the resulting partition of
the containers as computed by the monitor: CoH = {c ∈ C⊥ | d ∈ R⊥(σi, t⊥)(c)}.

In other words, if R⊥ claims a container c does not hold data d after the execution of a
trace, then the values of c are independent from the values of d in the weak-secrecy sense.
In the remaining of this section and in the respective argument for multi-layer systems in
Chapter 4, R#

⊥ is assumed to be the most precise sound monitor, i.e. for all d ∈ D and all
traces t⊥ ∈ seq(S⊥), the output partition CoH induced by any sound monitor includes the
CoH partition induced byR#

⊥ .

3.4.2. Sources and Destinations

In practical terms, from the point of view of R#
⊥ , events move data from a containers to

another: an instruction typically reads from a certain memory region and writes to another.
For any given event e and a transition function R#

⊥ , let the functions SR#
⊥

: S⊥ → 2C⊥ and

DR#
⊥

: S⊥ → 2C⊥ denote, respectively, the set of source and the set of destination containers
of the events. These two functions are assumed to be given as an oracle of the event, such
that the following property holds:

∀σ, ∀c ∈ C⊥, ∀d ∈ D :

d ∈ R#
⊥(σ, e)(c) =⇒ d ∈ σ(c) ∨ (∃c′ ∈ SR#

⊥
(e) : d ∈ c′ ∧ c ∈ DR#

⊥
(e)).

In other words, if after executing e a certain container c contains data d, then dwas already
present in c before the execution of e, or there was a flow from a container in the sources
of e to c, making c a destination.

Note that different partitions may fulfill this property. In the following, the oracle is
assumed to provide the most precise ones, i.e. such that e respects weak secrecy w.r.t. SR#

⊥
,

C⊥ \ DR#
⊥

, and w.r.t C⊥ \ SR#
⊥
,DR#

⊥
. In other words, there is Non-Interference between the

partitions induced by sources and destinations, as depicted in Figure 3.1. Intuitively, this
ensures sufficient “precision” of the source and destination functions: all relevant sources
and all relevant destinations are captured. For any layer † ∈ L, let SR† and DR† represent
the set of source and destination containers in C† such that the same relation also holds
betweenR†, C† and data.

For simplicity’s sake, the notation of S and D is overloaded for traces of events t ∈
seq(S†) as SR†(t) =

⋃
e∈t SR†(e) and DR†(t) =

⋃
e∈tDR†(e). A similar overloading also

applies to sets of events.

3.4.3. Single Layer Soundness

A state of the system σA ∈ ΣA is sound if, for every container cA ∈ CA, the estimation of
the data stored in cA is a superset of (a sound estimation of) the data “actually” stored in
it, i.e. of the data stored in the concretization of cA. For this reason, soundness is defined
w.r.t. a ⊥-state and to a fixed pair of concretization/abstraction functions γA/αA.

36

3. Usage Control Marries Data Flow Tracking

S
D

� �0

Figure 3.1.: Semantic property of source and destination partitions of a trace of events
[109]. Circles represent the same whole memory; sources and destinations may
hence overlap. Arrows indicate Non-Interference between respective memory
regions before (σ) and after (σ′) the execution of a trace of events.

Definition 3.4. A state σA is sound w.r.t. σ⊥, written σ⊥ ` σA, if and only if

∀cA ∈ CA : σ(cA) ⊇
⋃

c⊥∈γA(cA)

σ⊥(c⊥).

This implies that ∀σA ∈ ΣA : γA(σA) ` σA and that ∀σ⊥ ∈ Σ⊥ : σ⊥ ` αA(σ⊥).
The data flow analysis for A is sound w.r.t. ⊥ if the transition relation RA preserves the

soundness of the state (w.r.t. the canonical R#
⊥ of Definition 3.3), i.e. if, given σA sound

w.r.t. σ⊥, ∀eA ∈ SA : R#
⊥(σ⊥, γA(eA)) ` RA(σA, eA).

The analysis for A is sound w.r.t ⊥ if the initial state of the system σiA is sound w.r.t. σi⊥
and if RA is sound w.r.t. R#

⊥ . Note that the definition of soundness is relative to flows
observable at the ⊥-layer and, necessarily, to a given concretization function.

Definition 3.5. A monitor RA at a layer A is sound w.r.t. ⊥, written R#
⊥ ` RA, if given an

initial state σi⊥ ` σiA, modeling any trace of events tA ∈ seq(SA) results in a state σA which is
sound with respect to the state reached by the canonicalR#

⊥ at ⊥ for γA(tA). Formally,

∀tA ∈ seq(SA), σiA ∈ ΣA, σ
i
⊥ ∈ Σ⊥ :

R#
⊥ ` RA ⇐⇒ σi⊥ ` σiA ∧R

#
⊥(σi⊥, γA(tA)) ` RA(σiA, tA)

Lemma 3.6. If R#
⊥ ` RA for some RA then for all tA ∈ seq(SA), the corresponding γA(tA) ∈

seq(S⊥) respects weak-secrecy for the partitions induced by d ∈ D: CiH = γA({c ∈ CA | d ∈
σi(c)}) and the resulting partition of the containers as computed by the monitor at A: CoH =
γA({c ∈ CA | d ∈ RA(σi, tA)(c)}).

This follows directly from the definition of soundness of a monitor and of weak-secrecy,
because the partitions induced by d at A are supersets of the corresponding partitions at
⊥. Note that also as direct corollary of soundness at A it follows that

SR#
⊥

(γA(e)) ⊆ γA(SR†(e))
DR#

⊥
(γA(e)) ⊆ γA(DR†(e)).

37

3. Usage Control Marries Data Flow Tracking

3.5. Conclusions

The work described in this chapter describes a language and a model to specify and en-
force usage control requirements over all the representations of the same data at once. The
framework is built on top of the usage control model described in the previous chapter and
the different representations are identified by mean of a data flow tracking monitor that
models the propagation of data in correspondence of system events’ execution. The defini-
tion of the language and of the system model for concrete data-centric usage control answers
the first research question presented at the beginning of the chapter and represents the first
major contribution of this thesis.

Additionally, Section 3.4 formalizes the notion of soundness for a generic data flow
tracking system, which answers the second research question and provides the basic nota-
tion and definitions for the discussion about soundness of the results presented in the next
chapter.

38

4. Cross-layer Data Flow Tracking

This chapter describes a generic model to track flows of data across different in-
stances of the model described in Chapter 3. This work represents the second ma-
jor contribution of the thesis and is part of two unpublished works co-authored
by the author of this dissertation [109, 137].

Background:
Usage Control

Usage Control
Marries

Data Flow
Tracking

Cross-layer
Data Flow
Tracking

Intra-process
Data Flow
Tracking

Structured
Data Flow
Tracking

Quantitative
Data Flow
Tracking

PART I PART II

System Design and Implementation

Section 3.4 presented a notion of soundness for data flow tracking at one particular layer
of abstraction with respect to the lowest abstraction layer ⊥. Such definition is based on
the same idea of the relaxed variant of Non-Interference called weak secrecy. The goal of
this chapter is to leverage these concepts in order to (1) define soundness for data flow
tracking in the presence of multiple monitors for different layers of abstraction, (2) provide
an algorithm that operationalizes the construction of a model to track flows of data across
the different monitors and (3) prove the soundness of such algorithm. The remaining of
this chapter is structured in four sections:

• Section 4.1 introduces two running examples, based on the instantiations described
in Section 3.3, that are used to motivate the design choices;

• Section 4.2 formalizes the notion of soundness for a monitor in a composed system,
defines R̂A⊗B , a simple monitor for a system composed by two layers of abstraction
A and B and prove its soundness;

• Section 4.3 shows an example where additional information about A and B can lead
to a more precise cross-layer tracking and presents a composed monitor ṘA⊗B to
perform it. This section also contains a formal argument for the soundness of ṘA⊗B ,
which constitutes the major result of this chapter and one of the main contributions
of this thesis;

• Section 4.4 describe in detail an instantiation of ṘA⊗B for the running example.

39

4. Cross-layer Data Flow Tracking

Note that for simplicity’s sake, this work assumes a system composed by only two layers
A and B; if the system is composed by n > 2 layers, then the same approach described in
these pages can be applied recursively considering the n−th layer as A and the composi-
tion of the other n− 1 layers as B.

The fundamental research questions addressed in this chapter are

How can the relation between data representations and events at
different layers be modeled?

What determines flows of data across different layers of abstraction?

What does it mean that a cross-layer data flow tracking solution is “sound”?

4.1. Motivating Example

Alice works as analyst for ACME Inc., a smartphone manufacturer. Her
job consists in editing and preparing reports for suppliers and for other
departments. Alice uses Microsoft Excel to prepare her reports and a
third-party application, also used by all suppliers, to place the orders.
In order to prevent accidental and intentional disclosures of sensitive
data, data flow control mechanisms are in place at the operating sys-
tem layer, e.g preventing files that are tagged as confidential from being
sent outside the company premises or printed. The problem for Alice is
that once she loads a file that is protected by a policy, e.g. “do not print”,
the same restriction applies to every further file she subsequently opens
or saves.

The running examples in this work are based on the two instantiations of the model de-
scribed in Section 3.3: EX for Microsoft Excel, and OS for its underlying Microsoft Windows
operating system. While the remaining of this chapter will focus on Excel and Windows,
however, the events considered at the two layers will be generic, i.e. events that have a
counterparts in any other operating system or application, like WRITE(), which corre-
sponds to a WriteFile API call in Microsoft Windows and to a Write system call in a
Unix system, or loading and saving a file from/to the disk.

4.1.1. File loading

The first example, depicted in Figure 4.1 is the typical operation of loading a workbook
w from file f .xls stored on the hard disk. This results in the event LOAD(w, f .xls) at
layer EX and in a sequence of READ(fd, pid) system calls at layer OS, preceded by a
OPEN(f .xls, fd, pid) system call to open the file handler and followed by a CLOSE(fd, pid)
to close it, where pid is the process id of the Excel instance. If the container representing
file f .xls at the OS layer contained a certain data d, one would expect that after the load,
also the container representing workbook w at the EX layer contains d. In other words, in

40

4. Cross-layer Data Flow Tracking

order to be intuitively sound1, the system should reflect the fact that data d flowed from the
file container at layer OS to the workbook container at layer EX.

...
OPEN(f .xls, fd)

LOAD(w, f .xls)

READ(fd, pid) CLOSE(fd)
...

t

OS

EX

d
cf .xls

d
w

Figure 4.1.: Example of cross-layer flow of data d generated by loading a file in Excel [137].

4.1.2. File saving

The second example is the dual of the previous operation: saving the workbook w to
file f .xls . It corresponds to a SAVE(w, f .xls) event at the EX layer and to a sequence of
WRITE(fd, pid) system calls at the OS layer (enclosed by an OPEN(f .xls, fd, pid) and a
CLOSE(fd, pid) events like in the File loading example). In this scenario, the flow of data
d from the workbook in Excel to the file at the OS layer could be completely modeled at the
OS layer: every data previously accessed by (i.e. stored in the container of) Excel process
(from now on denoted as mapp) is then stored in the container representing the file. Such
overapproximation is introduced also when the workbook being saved contains no sensi-
tive data: at the OS layer no information about the sensitiveness of the content saved into
the file is available and thus a conservative approach is taken. In a multi-layer context,
this can be improved by having the data flow tracking monitor at the EX layer notifying
the monitor at the OS layer about the data being saved (and implicitly, about the data not
being saved), so the WRITE() system calls can be modeled precisely, mitigating the over-
approximation issue.

4.2. A Sound Cross-layer Monitor

This section defines a notion of layer composition and discusses possible ways in which
events observable at one layer may interfere with another layer. It then shows a first
overly-conservative way to model composition and proves its soundness.

4.2.1. Soundness (Multi-layer)

Without loss of generality, it is safe to assume that CA ∩ CB = ∅ for each pair of distinct
A,B ∈ L⊥. Given two sound models for two layers of abstractions A and B in a system,

1a formalization of soundness is provided in Section 4.2.1

41

4. Cross-layer Data Flow Tracking

...
OPEN(f .xls, fd)

SAVE(w, f .xls)

WRITE(fd, pid) CLOSE(fd)
...

t

OS

EX
d
w

d
cf .xls

d,e
mEX WRITE()

Figure 4.2.: Example of cross-layer flow that refines existing flows [137]. Note that if OS
layer were considered in isolation, cf .xls would contain both data d and e

the goal is to define a sound model for the system composed by A and B, denoted A⊗B.
The composed system is defined using the abstraction and concretization functions to

compose the observations of monitors at the single layers. Let CA⊗B = CA∪CB be the set of
of containers in the composed system and TA⊗B ⊆ seq(SA)×seq(SB) the set of event traces,
given by pairs of traces observed inA andB. The composed state σA⊗B ∈ ΣA⊗B ⊆ ΣA×ΣB

is given as a pair of states in layers A and B respectively.
The notion of state soundness for single layers given in Definition 3.4 can then be ex-

tended to composed states as follows:

Definition 4.1 (Soundness Composed State). A state σA⊗B is sound w.r.t to a state σ⊥, written
σ⊥ ` σA⊗B , if both components of the state are sound w.r.t. σ⊥, i.e.

σ⊥ ` σA⊗B ⇐⇒ σ⊥ ` (σA⊗B)|A ∧ σ⊥ ` (σA⊗B)|B

where the notation |l denotes the projection of the state to layer l.

In the following, the notation |l will also be used to denote the projection of traces of
events to layer l. Given this definition of states and traces of events, it is possible to derive
an ideal (w.r.t. ⊥) composed monitor given by concretization and abstraction functions.

From a mathematical point of view, it is simple to compose two monitors as follows.

Definition 4.2 (Ideal composed monitor). Let tA and tB be traces at layers A and B, respec-
tively, and σA and σB initial sound states. Let σ⊥A⊗B = γA(σA) onσ γB(σB), t⊥A⊗B = γA(tA) ont

γB(tB) and σ′⊥A⊗B = R#
⊥(σ⊥A⊗B, t

⊥
A⊗B). The functionR#

A⊗B : ΣA⊗B×TA⊗B → ΣA⊗B is defined
as:

R#
A⊗B((σA, σB), (tA, tB)) = (αA(σ

′⊥
A⊗B), αB(σ

′⊥
A⊗B)).

Practically speaking, however, one does not have access to the particular sequence of
events occurring at ⊥, i.e. to the ideal R#

⊥ monitor and to precise concretization/abstrac-
tion functions for the containers. Nevertheless, it is possible to characterize sound approx-
imations of composed monitors.

42

4. Cross-layer Data Flow Tracking

Ac



A B

d

)(Ac)(Bc

Bc

d

d
d

Figure 4.3.: Example of containers at different layers with overlapping concretizations. In
this case, it is possible that data d, written to cA by an event at layer A can be
read out of cB at layer B.

Definition 4.3 (Soundness of composing monitor). A monitorRA⊗B is sound w.r.t⊥, written
R#
A⊗B ` RA⊗B if for all σA, σB, tA, tB with

σ′ = RA⊗B((σA, σB), (tA, tB))

then the projections to A-layer containers σ′|A and B-layer containers σ′|B are sound with respect
toR#

⊥(γA(σA) onσ γB(σB), γA(tA) ont γB(tB)).

Note that, without any additional information about the relation between A and B, the
only sound approximation for σ′ = RA⊗B(σ, (tA, tB)) is ∀c ∈ CA⊗B : σ′(c) = D, i.e. ev-
ery container possibly contains any data. This is because there may be shared resources
between layers that are unknown to the single monitors and are only visible at ⊥: if there
exist cA ∈ CA and cB ∈ CB such that γA(cA) ∩ γB(cB) 6= ∅; in this case, it is possible that
any data d may be transferred to cA by some event eA ∈ SA, and because of the non-
empty intersection of the concretizations, d could be stored in γB(cB) too, as depicted in
Figure 4.3.

Unless d ∈ cA, this is a violation of the soundness of A⊗B, because cA ∈ CA ⊆ CA⊗B
and while cA does not contain d, its concretization does (σA⊗B(cA) 6⊇ σ⊥(γA(cA))).

4.2.2. Simple Model

Definition 4.4 (Related Containers). Two containers cA and cB at different layers are called
related, written cA ∼ cB , if their concretizations overlap. Formally,

∀cA ∈ CA,∀cB ∈ CB : cA ∼ cB ⇐⇒ γA(cA) ∩ γB(cB) 6= ∅.

One approach to provide a sound estimation of the composed state σA⊗B is to maintain
the content of related container “synchronized” across the layers, assuming such a relation
between containers to be given.

43

4. Cross-layer Data Flow Tracking

Definition 4.5 (Simple Model). Leveraging the source and destination sets for events in the trace,
a sound monitor for the composed system R̂A⊗B : ΣA⊗B × TA⊗B → ΣA⊗B can be defined as:

∀c ∈ CA⊗B :

R̂A⊗B(σ, (tA, tB))(c) =

®
σ(c) ∪⋃c′∈SA⊗B

σ(c′) if c ∈ DA⊗B ∨ ∃ c̃ ∈ DA⊗B : c ∼ c̃
σ(c) otherwise

with SA⊗B = SRA
(tA) ∪ SRB

(tB) and DA⊗B = DRA
(tA) ∪ DRB

(tB).

Theorem 4.6 (Simple Model Soundness). Given a state σ⊥, two states for two different layers
of abstraction σA and σB sound w.r.t. σ⊥ and the two respective transition functions RA and RB
sound w.r.t. R#

⊥ , then R̂A⊗B is sound.

σ⊥ ` σA ∧ σ⊥ ` σB ∧R#
⊥ ` RA ∧R

#
⊥ ` RB =⇒ R#

A⊗B ` R̂A⊗B

A detailed proof is given in Appendix B.1. The intuition behind the proof comes from
the definitions of source and destination containers of events (see Section 3.4.2).

Let σ be the initial state of the system. The idea is that if the state σ′ after the execution
of trace t ∈ TA⊗B is not sound, then there must exists a data d stored in a ⊥-container c⊥
that is not present in container c = αA⊗B(c⊥). This can only be the case if, either, d was
already stored in c⊥ in state σ or d has been transferred to c⊥ by the execution of t.

The first case is not possible, because the soundness of σ implies that d was also stored
in c and because R̂A⊗B only appends data to containers, if d was stored in c in σ, it would
still be there in σ′. The second case is not possible because, as the proof shows in detail,
this would violate the definition of SA⊗B and DA⊗B for t. Therefore state σ′ cannot be
unsound, confirming the soundness of R̂A⊗B .

4.2.3. XA Oracle

The definition of R̂A⊗B relies on the notion of related containers, which in turn depends on
the definition of γ. As discussed in Section 3.4, α and γ are usually not available in practice
and thus cannot be used for the construction of R̂A⊗B . As also discussed before, without
any information about the relation between A and B, the only sound approximation for
R̂A⊗B is the trivial monitor in which every container could possibly contain any data.

Although the complete definition of γ and αmay not be available, it is often the case that,
in some contexts, partial information about it is known by domain experts (e.g. the set of
related containers). The goal of this section is to model this partial information in form of
oracles and formalize refined data flow tracking models that, leveraging on properties of
these oracles, provide more precise results. In the following the properties of these oracles
will be formalized. Note that, operationally, such oracles will have to be instantiated by
experts (see Section 4.4).

The core idea behind the oracles is that if more information about the relation between
A and B is available, a more precise sound model can be constructed.

An instantiation of R̂A⊗B requires the existence of an oracle XA : CA⊗B → P(CA⊗B) that
provides information about related containers: for each container c ∈ CA⊗B , XA returns
the set of all the containers related to c at other layers, i.e.

44

4. Cross-layer Data Flow Tracking

Definition 4.7 (Oracle Assumption 1).

∀c ∈ CA⊗B : XA(c) = {c′ ∈ CA⊗B | ∃l ∈ L : c′ ∈ Cl ∧ c /∈ Cl ∧ c ∼ c′}.
Leveraging XA, it is also possible to model the sync operator, which will be useful in the

following. Given a state of the system, the operator sync : ΣA⊗B → ΣA⊗B returns a new
state in which all the data stored in each container have been propagated to all the related
containers at other layers:

∀c ∈ CA⊗B, σ ∈ ΣA⊗B : sync(σ)(c) = σ(c) ∪⋃c′∈XA(c) σ(c′).

Because the sync operator only adds data to containers, it is easy to prove that if σ is a
sound state (see Section 3.4.3), then σ′ = sync(σ) is also a sound state.

4.3. A Sound and Precise Cross-layer Monitor

In the model for usage control described in Chapter 3, events are assumed to be instanta-
neous, i.e. the time required to execute an event is considered to be negligible w.r.t to the
length of a timestep. Although negligible at one layer, however, in a multi-layer context
the duration of an event may cover several timesteps at the other layer. For instance, at
the EX layer, the SAVE() event is considered as a single atomic event, although during the
time required to execute a SAVE() event, many WRITE() system call events at layer OS
may take place.

In a multilayer context, the notion of timestep must be granular enough to cover for the
precision of both layers; for example, if the highest frequency at which EX can observe user
events is every 100 milliseconds and layer OS observes system calls with the precision of a
millisecond, then a model for the combined system must be able to observe events at least
every millisecond.

For this reason, the duration of “long” events in the combined system (like SAVE()) is
modeled with two atomic events that respectively represent the moment in which the event
starts (SAVES()) and the moment in which the event ends (SAVEE()).

Definition 4.8. Let tS(e) : S → N and tE(e) : S → N be two functions that return, respectively,
the time at which a certain event e starts and ends.

Let t† be a trace of events at layer †. For any event e† ∈ S† it holds that e† terminates only
after starting (tS(e†) < tE(e†)) and for every event e† observed, the single layer monitors
report an event eS† at time tS(e†) to notify the beginning of e† and an event eE† at time tE(e†)
to notify its end.

Technically, this assumption may require a modification to the monitoring infrastruc-
ture, although in all the example instantiations mentioned in this dissertation, it has al-
ways been trivial to observe the duration of an event, and thus to replace the signaling of
the event with two, one right before its execution and one right after.

For † ∈ {A,B}, let S−† ⊆ S† × {S,E} be the set of such indexed events that denote when
events in S† start and end, and T −† ⊆ seq(S−†) the set of respective system traces. Let
ser : seq(S†) → seq(S−†) be the operator that converts a trace of events t† ∈ seq(S†) into
its indexed equivalent t−† ∈ seq(S−†) by replacing every event e† ∈ t† with the sequence
〈eS† , eE† 〉.

45

4. Cross-layer Data Flow Tracking

SAVES()

3 4 5 6

SAVEE()

7

SAVE()

Figure 4.4.: Example of a SAVE() event lasting from timestep 3 to timestep 7 [137].

Lemma 4.9. For each monitor R† († ∈ L), there always exists a monitor R−† : Σ† × S−† → Σ†
such that ∀σ† ∈ Σ†,∀t† ∈ T −† : R†(σ, t†) = R−† (σ, ser(t†)).

Proof. GivenR†, the monitorR−† , defined as

R−† (σ, (e†, i)) =

®
σ if i = S
R†(σ, e†) if i = E

respects the property.

It is thus possible to assume, without loss of generality, that every monitor for a layer †
is defined over events in S−† ; such monitor is denoted asR−† .

Definition 4.10 (Serializable trace). A trace t = (tA, tB) is serializable if for every pair of events
eA ∈ tA, eB ∈ tB , tS(eA) 6= tS(eB) and tE(eA) 6= tE(eB).

Let EA⊗B = SA ∪ SB and S−A⊗B = SA⊗B × {S,E}. Let T −A⊗B ⊆ seq(S−A⊗B) be the set
of event traces in the composed system. For notation’s simplicity’s sake, let γA⊗B be the
overloading of γ for CA⊗B , ΣA⊗B , events and traces of events in the composed system. If a
trace t = (tA, tB) ∈ seq(SA)× seq(SB) is serializable, then it is possible to construct a trace
t− ∈ T −A⊗B that is equivalent to t, in the sense that it is possible to reconstruct each one
given the other. t− is given by the events in ser(tA) ont ser(tB) sorted by timestamp. Let
also assumeR#−

A⊗B to be the overloaded version of the ideal monitor for traces in T −A⊗B .
The monitor for the composed system ṘA⊗B described at the end of this chapter (see Sec-

tion 4.3.4) assumes the trace of input events t = (tA, tB) to be serializable and provided in
form of a sequence of events in S−A⊗B

ṘA⊗B : ΣA⊗B × S−A⊗B → ΣA⊗B

To simplify the notation, whenever a composed trace contains a certain event eS directly
followed by eE , the pair of events is replaced by e. For instance, the trace of events
〈LOADS(),OPENS(),OPENE(),READS(),READE(),CLOSES(),CLOSEE(),LOADE()〉
will be written 〈LOADS(),OPEN(),READ(),CLOSE(),LOADE()〉. For simplicity of
notation, the monitor R−OS for the operating system used in the running example is
assumed to be constructed from ROS in the way described in the proof of Theorem 4.9.
For this reason, in the remaining of this work start events at the OS layer will be ignored
and only end events will be discussed.

46

4. Cross-layer Data Flow Tracking

UcEX w appm

)(EX
Uc)(appm

)(f.xlsc)(w



A B
f.xlsc

 D D d d

Figure 4.5.: Example of application loading a file, according to single layer monitors [109].
Dotted sets represent actual SR#

⊥
and DR#

⊥
sets.

4.3.1. Increasing Precision: Example

Consider the example in Section 4.1 of Excel loading file f .xls . The act of loading the file
generates the trace

t = 〈LOADS(f .xls),OPEN(f .xls, fd),READ(fd),CLOSE(fd),LOADE(f .xls)〉

where the first and last events happen at layer EX and all other events at layer OS.
Because files are not properly modeled in EX, the source of the transfer in EX is given by

cUEX (see definition of cU in Section 3.4). Because the file is unknown, it could possibly carry
any data. This explains why ∀σ† ∈ Σ† : σ†(c

U
†) = D. The execution of t|EX induces then a

flow of all data D from cUEX to w, where w is an internal container of the application, e.g. a
document. (R−A in Figure 4.5)

At the operating system layer, in contrast, the file has a proper abstraction. Let cf .xls be
such a container and d the data stored in it. The execution of t|OS is then modeled in OS as
a flow from cf .xls to the container mapp representing the whole memory of the application.
(R−B in Figure 4.5)

If EX and OS were considered in isolation, the storage of w and mapp after the execution
of t would be, respectively D and d. Using the model presented in Section 4.2.2 instead,
both containers would contain D, a sound but coarse approximation.

A better approximation can be provided by observing that γOS(cf .xls) ⊆ γEX(cUEX) and
γEX(w) ⊆ γOS(mapp), the latter because any internal object of the application is stored
within its process memory. Assuming the application process has not accessed any other
sensitive data, after the execution of t the content of all the ⊥-containers in γOS(mapp),
which include those in γEX(w), is at most d, as reported by R−OS and because of its sound-
ness. Therefore, no more data than d can be stored in γEX(w).

Following this intuition, a more precise monitor for the combined system can be realized
my modeling t as a flow from γOS(f .xls) to γEX(w). In the resulting state, both w and mapp

contain d. Note that this result is more precise thanR−EX’s estimation.

47

4. Cross-layer Data Flow Tracking

A similar precision refinement would happen when Excel tries to save data d into a
certain file. In this case, layer EX would provide a refinement for the operating system
layer, which otherwise would transfer the whole content of mapp to the file, i.e. every
data accessed by Excel until that moment of time (e.g. like data d and e in the File saving
example in Section 4.1.2).

4.3.2. Event Behaviors

What the scenarios in the last section illustrate is that sometimes one layer has a more
precise knowledge than the other about the sources of a certain event (e.g. the content of
the file in the File loading example, the data to be saved in the File saving example), while
the other layer has a finer-grained understanding of the destination of the transfer (e.g. the
Excel specific container w in the File loading example, the target file in the File saving
example). Let the term cross actions indicate those high-level operations, like ‘EX loading
file f .xls’ or ‘EX saving to file f .xls’, that correspond to traces of events at both layers in
which this refinement situation holds.

In the following, events generated by cross actions will be categorized according to
their role in such “refinement”: the terms IN, OUT and INTRA will be used to indicate
the behaviors of events in cross actions.

IN INTRA OUT

Figure 4.6.: Graphical representation of the behaviors of an event in cross-layer settings
[137]. Squares indicate layer boundaries and arrows indicate data flows in-
duced by the event’s execution.

For instance, if a certain cross action generates two events eA ∈ S−A and eB ∈ S−B such
that γA(SR−A(eA)) ⊆ γB(SR−B (eB)) and γB(DR−B (eB)) ⊆ γA(DR−A(eA)), eA is an OUT event
(or eA behaves as an OUT event), and eB is (or behaves as) an IN event. The general intuition
is that OUT events at one layer provides data that is consumed by respective IN events at
the other layer. This information can be used to refine the modeling as described in the
previous example. If an event is neither IN nor OUT then it is an INTRA event.

In completely independent layers or when a layer is considered in isolation, every event
is an INTRA event. In a multi-layer context an INTRA event at layer † propagates data
within † according toR−† and, in turn, to any other layer according to XA.

Hence, in addition to the dependency between layers generated by related containers
and discussed in Section 4.2.2, also a second class of cross-layer flows needs to be included
into the model, i.e. the class of those cross-layer flows due to respective IN and OUT events.

48

4. Cross-layer Data Flow Tracking

READE(fd′, pid)

LOADS(w, f .xls)

OPENE(f .xls, fd)

LOAD(w, f .xls)

READE(fd, pid) CLOSEE(fd)

LOADE(w, f .xls)

t
t0 t1 t2 t3 t4 t5

‘EX loading file f .xls’

Figure 4.7.: Example of scope [137]. The cross action ‘EX loading file f .xls’ starts
with event LOADS() and terminates with events LOADE().

Definition 4.11. A cross-layer flow of data is generated by either:
• executing an event that transfers data to a container at one layer that is related with a con-

tainer at the other layer, or
• a cross action generating a sequence of events at both layers that includes at least one IN

event at one layer and at least one respective OUT event at the other layer.

The intuition behind IN and OUT events is that, in spite of what the single layer monitors
may estimate, the only data written to the destinations of a certain IN event is at most the
same data read by the respective OUT events at the other layer. The next section formalizes
this notion in form of an additional oracle.

4.3.3. XB Oracle

In a multi-layer system, the behavior of a given event may differ in different contexts. For
instance, in the example of Excel loading f .xls , a READ() event signaled by the operating
system is related to a LOAD() event at the application layer, only if the process that invoked
the system call is Excel and if the target file of the system call is f .xls . If the same file is read
by another process, the behavior of the corresponding READ() event should be INTRA,
because the system call would not be part of any cross action.

Similarly, if Excel is loading two files at the same time, then the trace of events contains
two LOAD() events and at least two READ() events and a sound and precise modeling
requires to match each LOAD() with the respective READ() events only.

To capture this distinction, the model assumes the existence of unique identifiers, called
scopes, that relates IN and OUT events that pertain to the same cross action. Every cross
action is associated to a distinct scope label, and only the events at both layers generated
by the same cross action are associated to that same scope id. For instance, consider the
example in Figure 4.7: while the first READ() system call does not correspond to any cross
action, and as such it is modeled as an INTRA event, the second one happens in the context
of Excel loading f .xls . For this reason, it is modeled as an OUT event with respect to the
scope ‘EX loading file f .xls’.

The need for this distinction motivates the definition of the second oracle XB of type

XB : S−A⊗B × ΣA⊗B → {IN,OUT,INTRA} × SCOPE

where SCOPE is the set of cross action’s labels, like ‘EX loading file f .xls’. XB

maps each event to its respective behavior in the context of a specific cross action. In the

49

4. Cross-layer Data Flow Tracking

loading example, XB(READ(fd, pid), σ) = (OUT,‘EX loading file f .xls’), where σ
is the state after executing the trace until time 2 included.

Note that the state of the system in terms of storage is usually not enough to distinguish
the behavior of a certain event. Consider again the example in Figure 4.7: In terms of
storage, the state of the system at time t0, i.e. when the first READ() takes place, is the same
as the state at time t2, when the second READ() is observed. In addition to the concrete
parameters of the system calls, the difference is in the fact that the second READ() system
call takes place after the loading of f .xls started (i.e. after LOADS()) and before it ended.

In other words, the behavior of an event depends on the current state of the system, the
value of its parameters and the sequence of events that took place so far. For this reason, every
trace of events in the combined model is also stored as part of the state resulting from its
execution.

Intermediate Containers

It is possible that multiple IN (OUT) events correspond to the same OUT (IN) event, e.g.
one LOAD() event may correspond to multiple READ() system calls. Additionally, in
serialized traces, respective IN and OUT events take place in different moments in time.
For these reasons, it is necessary to aggregate and to store the content of the data being
transferred by the OUT events in a way that it is usable by the future corresponding IN
events.

A more precise definition for a composed system also models the existence of a container
csc for each scope sc ∈ SCOPE . Every OUT event of scope sc will write into csc and every
IN event of scope sc will read from csc. Container csc ∈ Csc is called the intermediate con-
tainer of the cross layer flow sc. Storage information for the intermediate containers must
also be maintained as part of the system state in form of storage function ssc : Csc → P(D).

Let cs be a source of an OUT event and cd a destination of the respective IN event. The
flow from cs to cd is modeled in two steps: first as a flow from cs to the intermediate
container csc and then as a flow from csc to cd (see Figure 4.8 for an example).

For this reason, this work considers only serialized traces where IN events take place
after the respective OUT events2. This assumption is not restrictive in practice and always
held in concrete instantiations of the model.

In summary, the relation between two given layers A and B can be encoded by using
the oracles

XA : CA⊗B → 2CA⊗B

XB : ΣA⊗B × S−A⊗B → {IN,OUT,INTRA} × SCOPE

Let te denote the subtrace of events in trace t from the beginning until event e included, and
let σe be a short notation for the state reached by the ideal monitor R#−

A⊗B after executing
te from the initial state, i.e. σe = R#−

A⊗B(σi, te). The oracles, by definition, guarantee the
following property:

2The case of IN events taking place before the respective OUT events can be modeled with additional assump-
tions, e.g. using a placeholder to overapproximate the content after execution of IN events and replacing
it with the precise value after execution of the corresponding OUT event, but is not discussed in this work
for simplicity’s sake.

50

4. Cross-layer Data Flow Tracking

OS

EX

csc
d

d
cf .xls

d
w

READ(fd, pid)

LOADE(w, f .xls)

t

Figure 4.8.: Graphic representation of intermediate container for scope sc =
‘EX loading file f .xls’, where csc stores data d read by the (OUT)
READ(fd, pid) system call at layer OS until it is read by the (IN)
LOADE(w, f .xls) event in EX [137].

Definition 4.12 (Oracle Assumption 2). Let t ∈ T −A⊗B be a trace of events terminating with the
IN event eI and let EO ⊆ S−A⊗B be the set of respective OUT events in t. After executing t in an
ideal monitoring, the destination containers of eI contain at most the content of the sources of all
the events in eO at the time of their execution.Ç

XB(σe
I
, eI) = (IN, sc) ∧

∀e ∈ EO : XB(σe, e) = (OUT, sc)

å
=⇒ σe

I
(DR#(eI)) ⊆ ⋃e∈EO σe(SR#(e))

whereR# stands forR#−
A⊗B .

The intuition behind this property is that if the oracle XB states that a certain event e
is an IN event in a trace, then the execution of e will transfer to e’s destination containers
at most the data stored in the sources of the respective OUT events in the past trace. This
intuition is the key behind the refined precision offered by ṘA⊗B in comparison to R̂A⊗B .

4.3.4. Refined Model and Algorithm

Given the models for A and B and these two oracles, the model A⊗B for the composed
system is specified as follows:

(D,S−A⊗B, CA⊗B,ΣA⊗B, σi, ṘA⊗B)

The set of containers CA⊗B is given by CA ∪ CB ∪ Csc, with Csc being the set of intermediate
containers. Remember that containers in Csc represent no real container in the system, i.e.
∀c ∈ Csc : γA⊗B(c) = ∅. A state of the system σA⊗B ∈ ΣA⊗B corresponds to the state of the
two layers A and B, the storage function for intermediate containers ssc : Csc → P(D) and
the trace of past events tr ∈ T −A⊗B .

CA⊗B = CA ∪ CB ∪ Csc
ΣA⊗B ⊆ ΣA × ΣB × (Csc → P(D))× T −A⊗B

The main result of this thesis is to show that a composition algorithm for cross-layer data
flow tracking, based on the aforementioned oracles, is sound w.r.t. to an ideal monitor at
⊥, and thus to weak-secrecy.

51

4. Cross-layer Data Flow Tracking

Given two sound instantiations of the generic model for two layersA andB and the two
oracles defined above, a sound and precise modeling of the data flows within and across
these two layers is captured by the transition relation ṘA⊗B defined in Algorithm 1. a||b
denotes the concatenation of traces a and b. Note that the formalization considers the
generic case where σA and σB are in turn composed by multiple layers, i.e. they may be
instances of the cross-layer model themselves. Thus σ = (σA, σB, ssc, tr) = (sA ∪ sB ∪
ssc, trA ont trB).

ALGORITHM 1: ṘA⊗B((σA, σB, ssc, tr), e)

1 sscRET ←−ssc; σARET
←−σA; σBRET

←−σB ;
2 (beh, sc)←−XB((σA, σB, ssc, tr), e);
3 switch beh do
4 case INTRA
5 if e ∈ S−A then
6 σARET

←−R−A(σA, e);
7 else
8 σBRET

←−R−B(σB, e);
9 case IN

10 if e ∈ S−A then
11 σARET

←−(sA[t← sA(t) ∪ ssc(csc)]t∈DR−
A

(e));

12 else
13 σBRET

←−(sB[t← sB(t) ∪ ssc(csc)]t∈DR−
A

(e));

14 case OUT
15 if e ∈ S−A then
16 sscRET←−ssc[csc ← sA(t)]t∈SR−

A

(e);

17 σARET
←−R−A(σA, e);

18 else
19 sscRET←−ssc[csc ← sB(t)]t∈SR−

A

(e);

20 σBRET
←−R−B(σB, e);

21 endsw
22 return sync(σARET

, σBRET
, sscRET , tr||〈e〉)

Theorem 4.13. Given two oracles XA and XB , correct according to oracle assumptions 1 and 2,
two monitors for two layers of abstraction R−A, R−B , an initial state σA⊗B = (σA, σB, 〈〉) and a
serializable trace of events t ∈ T −A⊗B , if σA and σB are sound w.r.t. σ⊥ andR−A andR−B are sound
w.r.tR⊥, then ṘA⊗B((σA, σB), (tA, tB)) is sound w.r.t. R#

A⊗B .á
σ⊥ ` σA ∧
σ⊥ ` σB ∧
R⊥ ` R−A ∧
R⊥ ` R−B

ë
=⇒ R#

A⊗B ` ṘA⊗B.

52

4. Cross-layer Data Flow Tracking

A detailed proof is provided in Appendix B.2. The intuition is that, for INTRA events,
ṘA⊗B behaves similarly to R̂A⊗B , and therefore it is sound, and for OUT events related
to a scope sc, the content of the sources is also stored in a container csc, from where it
can be “read” by the corresponding IN events and transferred to their destinations. The
soundness then comes from Definition 4.12.

Note that the assumption on the serializability of the input trace for ṘA⊗B is not re-
strictive, because any trace of events tA⊗B = (tA, tB) in A⊗B can be seen as the longest
possible concatenation of subtraces ti = (tiA, tiB), such that

• any event starting in ti also terminates within ti, and vice versa (∀e ∈ SA ∪ SB :
(e, S) ∈ ti ⇐⇒ (e, E) ∈ ti); and

• the concatenation of all the tiAs corresponds to tA and the concatenation of all the
tiBs corresponds to tB ((t1A||t2A||. . .||tnA) = tA ∧ (t1B||t2B||. . .||tnB) = tB).

Then, for each ti,

RA⊗B(σ, ti) =

®
ṘA⊗B(σ, ti) if ti is serializable
R̂A⊗B(σ, ti) otherwise

is a sound monitor that is no less precise than R̂A⊗B(σ, t) and does not require t to be
serializable.

4.4. Use Case (Multi-layer)

This section describes in detail a simplified concrete instantiation of the combined model
for the two layers used as running example (EX and OS, see Section 4.1).

4.4.1. Instantiation of XA

When combining EX with OS, the behavior of SAVE() and LOAD(), as well as that of
WRITE() and READ(), should reflect the fact that data is being sent/read from across
boundaries.

In terms of the first oracle, XA a concrete implementation needs to model the fact that
every container in EX is related to the container that represents the memory of the Excel
process at OS layer. For the sake of simplicity, in this example this connection is assumed
to be statically defined as

XA = {(cEX, cOS)|cEX ∈ CEX ∧ cOS = mapp}

where mapp is the container representing the memory of the Excel process.
A real implementation, however, would also take into account that the Excel process

may be killed and then restarted, resulting in a different mapp container every time. In that
case, the definition of the XA oracle would need to be updated accordingly, e.g. in corre-
spondence of the system calls EXIT() that kill the Excel instance and CREATE PROCESS()
that start the new instance.

53

4. Cross-layer Data Flow Tracking

4.4.2. Instantiation of XB

The definition of function XB() is presented in Algorithm 2. As discussed in Section 4.3.3,
the different behavior of the events depend on the current state of the system and on the
past trace of events. For instance, consider the code for the WRITEE() events, between
line 2 and line 11 of Algorithm 2.

In order to decide if the behavior of the event is INTRA or IN, the oracle checks whether
at the current moment in time there is any saving cross action of workbookw to file f being
performed. This is done in line 5 by checking if in the past trace any SAVE(w, f) event
started (SAVES(w, f) ∈ tr) and not yet finished (SAVEE(w, f) 6∈ tr).

ALGORITHM 2: XB((σA, σB, ssc, tr), e)

1 switch e do
2 case WRITEE(fd, pid)
3 for each file f in OS do
4 for each workbook w in EX do
5 if (SAVES(w, f) ∈ tr) ∧ (SAVEE(w, f) 6∈ tr) then
6 sc←−‘EX saving workbook w to file f’;
7 if (pid = 〈pid of Excel〉) ∧ (σ.f(f) = σ.f(fd, pid)) then
8 return (IN, sc)
9 end

10 end
11 end
12 case READE(fd, pid)
13 for each file f in OS do
14 for each workbook w in EX do
15 if (LOADS(w, f) ∈ tr) ∧ (LOADE(w, f) 6∈ tr) then
16 sc←−‘EX loading workbook w from file f’;
17 if (pid = 〈pid of Excel〉) ∧ (σ.f(f) = σ.f(fd, pid)) then
18 return (OUT, sc)
19 end
20 end
21 end
22 case SAVES(w, f .xls)
23 return (OUT, ‘EX saving workbook w to file f’);
24 case LOADE(w, f .xls)
25 return (IN, ‘EX loading workbook w from file f’);
26 otherwise
27 return (INTRA, ∅)
28 end
29 endsw

The dual check is performed for the READ() system calls, while for any SAVES() and
LOADE() events, the behavior does not require any particular check on the past trace,
because each instance of these events is relative to a different scope. This is a consequence

54

4. Cross-layer Data Flow Tracking

DOWNLOAD(URL, reports.zip)

OPENE(reports.zip, fd) WRITEE(fd, pid) CLOSEE(fd)

t‘Firefox downloading reports.zip from URL’

Figure 4.9.: Example of cross action initiated by an event at one layer
(DOWNLOAD(P, reports.zip)) and terminated by an event at the other layer
(CLOSE(fd)). Adapted from [137].

of the fact that in the running example the LOAD() event at layer EX is blocking and any
corresponding event at layer OS takes place in-between the beginning (LOADS()) and the
end (LOADE()) of such event and the same holds for SAVE(): every cross action that
determines a cross-layer flow always starts and ends together with the respective EX event.

In general, however, this is not necessarily the case. The cross action may be initiated and
terminated by events at any (and not necessarily the same) layer. For instance, consider
the additional example of OS and a monitor for a browser application, like Mozilla Firefox,
and the scenario of a user downloading file reports.zip from URL.

The Firefox event DOWNLOAD(URL, reports.zip) is not blocking, but returns immediately
while the download proceeds in background until file reports.zip is completely saved on
the local machine. This means that the end event DOWNLOADE(URL, reports.zip) will prob-
ably appear in the trace before the last WRITE() system call associated to the ‘Firefox
downloading reports.zip from URL’ cross action.

Therefore, in order to decide the IN behavior of the WRITEE(fd, pid) system calls, the
XB definition will check the past trace for the presence of the event that started the down-
load (DOWNLOADS(URL, reports.zip)) and for the lack of the respective CLOSEE(fd, pid),
where fd is the file descriptor pointing to file reports.zip and pid is the process id of Firefox.

4.4.3. Step-by-step Example

Figure 4.10 shows a Step-by-step execution of the File loading example discussed through-
out this whole chapter. For shortness of notation, let sc =‘EX loading file f .xls’ and
pid = 〈process id of Excel〉; for the same reason, the past trace tr is also not reported.

Assuming an initial state where a file descriptor fd′ for a certain file f .xls ′ have been al-
ready created, the first READE(), at time t0, behaves according to its intra-layer semantics
and transfers the content of file f .xls ′ to mapp , the container that represents the memory
of the Excel process. After LOADS() initiates the cross action sc =‘EX loading file
f .xls’ at time t1, the OPENE() system call at time t2 behaves according to its intra-layer
semantics and creates a new file pointer fd to file f .xls . The READE() system call at time
t3 behaves according to its OUT semantics and transfers the data in file f .xls to mappand to
the intermediate container csc. CLOSE() system call at time t4 closes the file descriptor fd
and finally LOADE() at time t5 concludes the cross action transferring the content of csc to
the container w (and, via XA, also to mapp , although it already contained it).

The final state of the system reflects the fact that the content of file f .xls at the operating
system layer has been loaded into the Excel container w. Note the difference between the
execution of the READ() system calls at time t0 and at time t3.

55

4. Cross-layer Data Flow Tracking

READE(fd′, pid)

LOADS(w, f .xls)

OPENE(f .xls, fd)

LOAD(w, f .xls)

READE(fd, pid) CLOSEE(fd)

LOADE(w, f .xls)

t
t0 t1 t2 t3 t4 t5

‘EX loading file f .xls’

t e XB(σ, e)
σ′ = R(σ, e) = {{s, l, f}, tr}
s l f

Initial state:
(cf .xls′ , e)

(cf .xls , d)

f .xls ′ → cf .xls′

f .xls → cf .xls

fd′ → cf .xls′

t0 READE(fd′, pid) (INTRA, ∅)
(cf .xls′ , e)

(cf .xls , d)

(mapp , e)

f .xls ′ → cf .xls′

f .xls → cf .xls

fd′ → cf .xls′

t1 LOADS(w, f .xls) (INTRA, ∅)
(cf .xls′ , e)

(cf .xls , d)

(mapp , e)

f .xls ′ → cf .xls′

f .xls → cf .xls

fd′ → cf .xls′

t2 OPENE(f .xls, fd) (INTRA, ∅)
(cf .xls′ , e)

(cf .xls , d)

(mapp , e)

f .xls ′ → cf .xls′

f .xls → cf .xls

fd′ → cf .xls′

fd→ cf .xls

t3 READE(fd, pid) (OUT, sc)

(cf .xls′ , e)

(cf .xls , d)

(mapp , {d, e})
(csc, d)

f .xls ′ → cf .xls′

f .xls → cf .xls

fd′ → cf .xls′

fd→ cf .xls

t4 CLOSEE(fd) (INTRA, ∅)

(cf .xls′ , e)

(cf .xls , d)

(mapp , {d, e})
(csc, d)

f .xls ′ → cf .xls′

f .xls → cf .xls

fd′ → cf .xls′

t5 LOADE(w, f .xls) (IN, sc)

(cf .xls′ , e)

(cf .xls , d)

(mapp , {d, e})
(csc, d)

(w, d)

f .xls ′ → cf .xls′

f .xls → cf .xls

fd′ → cf .xls′

Figure 4.10.: Step-by-step example of cross-layer data flow [137]. For shortness, sc denotes
scope ‘EX loading file f .xls’, pid = 〈process id of Excel〉 and mapp the
container representing the memory of the Excel process. Past trace of events
tr and start events at OS layer are not reported.

56

4. Cross-layer Data Flow Tracking

4.5. Conclusions

This chapter investigated the problem of combining different instances of the generic model
for data flow tracking described in Chapter 3. It showed that given a system composed by
two layers of abstraction A and B, a sound tracking of flows of data from containers in A
to containers in B and vice versa requires the specification of the relationship between A
and B; the pure knowledge of the models for A and B does not suffice.

The model for two layers generalizes by recursion to the case for n layers: as mentioned
at the beginning of this chapter, if the system is composed by n > 2 layers, then the same
approach described in these pages can be applied recursively considering the n−th layer
as A and the composition of the other n − 1 layers as B. Note that the ont operator is
associative, i.e. given three traces tA, tB and tC at three different layers of abstraction,
(γ(tA) ont γ(tB)) ont γ(tC) = γ(tA) ont (γ(tB) ont γ(tC)). Considering that all the different
monitored layers represent abstractions of the same real system, and thus concretize to the
same ⊥-layer, the associativity of the ont operator imposes no constraints about the order
in which the layers are combined or to the general applicability of the approach. Note that
the definition of ṘA⊗B already supports the possibility that A and B are, in turn, instances
of the cross layer model (see Section 4.3.4).

The only aspect that is affected by the combining order is the notion of INTRA, IN and
OUT, which depends on the layer boundaries; for instance, the same event at layer A may
be an IN event when combining A and B, and an INTRA event at layer AB when merging
C with AB, where AB is the result of the combination of A and B. For this reason, the
information provided by the oracles depends on the pair of layers considered, and thus,
for more than 2 layers, on the order of the combination.

This chapter also showed that with additional information about the relation between
A and B, it is possible to obtain information about data dissemination that is more precise
than what is offered by the data flow tracking at the single layers considered in isolation.
While in each specific instance, the problem of tracking flows of data across layers of ab-
stractions can be easily solved with ad-hoc solutions [138, 41, 122], the model presented in
this chapter is the first approach that aims at generalizing the process, separating aspects
that are common to every instantiation (e.g. the definition of ṘA⊗B) from those specific of
each single domain (e.g. the definition of the oracles).

These results address the fundamental research questions presented at the beginning of
this chapter. In particular, Section 4.2 formalizes the relation between data representations
and events at different layers of abstraction, Definition 4.11 captures the notion of flows of
data across different layers of abstraction, and Section 4.2.1 provides a formal definition of
soundness for cross-layer data flow tracking, based on the single layers’ soundness defined
in Section 3.4.

It is worth noting that this work describes only three different behaviors for events
(INTRA,IN and OUT); this is a simplistic assumption, because semantics of events that in-
deed behave differently in a multi-layer context do not always fall into one of these three
categories. For instance, in a multi-layer context some events may modify intra-layer alias
relationships at another layer or some OUT events may overwrite the content of the inter-
mediate container whilst other OUT events may simply append to it. The model described
in these pages takes safe overapproximations for these cases, but depending on how pre-
cise the general model should be, one can specify many different additional behaviors.

57

4. Cross-layer Data Flow Tracking

Each behavior must then be encoded in ṘA⊗B , in order to define its semantics, and the
definition of the XB oracle needs to be accordingly updated.

Taking this approach to the extreme case where a different behavior is specified for each
event in the system, the resulting model would be equivalent to a manual specification of
the transition relationR for the complete system; this, in terms of effort, is equivalent to (or
even worse than) an ad-hoc solution. Therefore, such a solution would obviously nullify
the benefit of a generic model. In concrete instantiations of this model (see Section 9.1), the
minimal set of cross-layer behaviors described in this chapter has always been enough to
capture all the relevant cross-layer flows with an adequate level of precision.

58

5. System Design and Implementation

This chapter describes a generic architecture to instantiate the concepts de-
scribed in the previous chapters. Despite some similarities with the XACML
[143] system model, this architecture is part of the author’s contribution and
has been published in [138] and [100], both co-authored by the author of this
dissertation.

Background:
Usage Control

Usage Control
Marries

Data Flow
Tracking

Cross-layer
Data Flow
Tracking

Intra-process
Data Flow
Tracking

Structured
Data Flow
Tracking

Quantitative
Data Flow
Tracking

PART I PART II

System Design and Implementation

5.1. Architecture

The concepts described in the previous chapters can be operationalized in a layer-agnostic
generic architecture. Such architecture is formed by three main components, depicted in
Figure 5.1:

• a Policy Enforcement Point or PEP, which is in charge of intercepting system events
and notifying them to the decision point;

• a Policy Decision Point or PDP, which receives events from the PEP and checks whether
their execution complies with the security policy;

• a Policy Information Point or PIP, that keeps track of the dissemination of data through-
out the system and supports the PDP in the decision process.

The following sections elaborate on the internal behavior and interaction between these
components. Note that, as mentioned in Section 1.3, the negotiation phase with the data
provider, the deployment of the security policies to be enforced, nor the subsequent cre-
ation of sensitive data in the initial representation of containers are discussed here: these
topics are secondary to the goal of this work and are discussed in related work from the
literature [138, 98, 99, 81].

59

5. System Design and Implementation

PIP

PDP

Layer of

abstraction
PEP

(a) Single-layer

Layer 1 PEP

Layer n PEP

...

PIP

PDP

(b) Multiple Layers

Figure 5.1.: Interplay of the components in different settings

5.1.1. Policy Enforcement Point

The role of the PEP is to implement the ILP enforcement mechanisms described in Sec-
tion 2.3.2. PEPs intercept intended and actual events, signal them to the PDP and, accord-
ing to the response, allow, inhibit or modify them. Additionally, the PEP is also respon-
sible of executing compensative actions, like those in the “action” part of an executor ILP
(see Section 2.3).

Because of the nature of its role, the implementation of any policy enforcement point is
bound to a specific layer of abstraction. In different contexts, the architecture presented in
this work has been used with implementations of PEPs for different layers of abstraction,
including OpenBSD [73], Android [55], Windows [164], Chromium [163], Thunderbird
[105], Firefox in conjunction with social networks [100, 111], smart metering infrastructures
[97, 59], an enterprise service bus [126], and camera surveillance systems [26].

5.1.2. Policy Decision Point

The role of the Policy Decision Point is to check whether the events signaled by the PEP
violate the policies, or, for intended events, would violate the policies if executed. More
precisely, the PDP checks if the execution of an event would make the condition of any
ECA rule evaluate to true, i.e. if the event triggers the mechanism.

The PDP component represents, conceptually, the core of the whole architecture. While
the implementations of the PDP mentioned in this dissertation are based on one specific
algorithm [75], any runtime verification algorithm can also be used [102]. In contrast to the
PEP, the generic nature of the PDP makes it possible to reuse the same implementation for
instantiations of the model for different system layers: only the binding of events in the
system to events specified in the policies has to be performed. Nevertheless, different ver-
sions of the PDP implementation, possibly written in different languages, have been used
in different works (see Section 9.1), often with different features and capabilities. The im-
plementations used for the evaluation of the models in the second part of this dissertation
are no exception. For this reason, precision and performance evaluation details of each

60

5. System Design and Implementation

extension implementation are described separately in the respective evaluation sections.
The languages Φ and Φ− described in the previous chapters are based on temporal logic;

the large amount of already available work on runtime monitoring [102, 24, 23, 25] can
thus be exploited to synthesize efficient monitors both for specification-level and (the con-
dition part of) implementation-level policies. The implementation of the evolution of the
data state, necessary to implement Φs, is described in the next section.

5.1.3. Policy Information Point

In order to take a decision, the PDP may require additional information concerning the
dissemination of data among the different representations (e.g., to decide about a state-
based formula or a data usage event). For this reason the PDP queries the Policy Informa-
tion Point. The PIP represents a (layer-specific) implementation of the data flow tracking
model presented in Chapter 3. To properly maintain the correct status of the system, the
PIP updates its data state σ ∈ Σ according to each event it receives from the PEP.

At the implementation level, different solutions can be used to store the data state, rang-
ing from databases to files, and from dynamic linked lists to arrays, depending on the
different needs of the specific layer of abstraction. Conceptually, however, they all provide
the same functionality. The implementation of the state transition relation, necessary to
implement Φs, is straightforward: at each moment in time, any intercepted event is noti-
fied by the PEP to the PIP, which updates the data state according to the transition function
%. This simple implementation yields a state machine that computes the data state at every
given moment in time. If a data usage event or a state-based operator is used in the spec-
ification of a policy (and thus in the synthesized monitor), the PDP can consult such state
machine to retrieve all the containers that contain the respective data item, and evaluate
the policy with respect to all these containers.

5.1.4. Interplay

The interplay of PEP, PDP, and PIP is shown in Figure 5.2. Whenever the PDP checks an
actual (containerUsage) event e against a data usage event u in a policy, the PIP is consulted
to check if the data item referred to by u is contained in the container referred to by e.

Single-layer

In the single-layer case, the PEP intercepts desired and actual events of a specific system
layer and forwards them to the PDP for evaluation. Based on the PDP’s decision the PEP
either allows, inhibits, or modifies the signaled event, and potentially generates additional
events if a matching policy demands so (Executors, see Section 2.3.2).

To conduct this evaluation, the PDP tries to match the events received from the PEP
against deployed ILPs (events refinement, see Section 3.2). To evaluate the corresponding
policies, in particular the condition part of the ECA rules, (see Section 2.3) the PDP uses
a runtime verification algorithm. In some cases, e.g. if the trigger part of an ECA rule
concerns a data-usage event (see Section 3.2), or the condition part contains a state-based
formula (see Section 3.2.2), the PDP needs additional information for the policy evaluation.

61

5. System Design and Implementation

{allow | modify | inhibit | execute}

{OK | execute}

notify (event[c])

notify (event[c])

evaluate(conditions, event[c], data_state)

notify (event[c])

OK

{OK | execute}

{allow | modify | inhibit | execute}

updateFormulae (event[c])

data_state

data-flow state (c)?

update data-flow state

OK

PEP PDP PIP

if
[event[c] is an actual event]

Figure 5.2.: Single-layer behavior [137].

In these cases the PDP queries the PIP for information about data dissemination, e.g. to
know the relationship between a certain data item and its representations.

Finally, if the desired event is transformed into an actual event and executed by the PEP,
the PEP notifies the PDP about the execution, which then updates corresponding formulae.
The PDP in turn, propagates the notification about the executed actual event to the PIP, in
order to allow it to update the data flow model accordingly. The evolution of the data
flow model is internally performed by updating the data state σ ∈ Σ according to the
semantics of the executed event, defined within the transition relation %. Figure 5.2 depicts
the corresponding sequence of interactions.

The runtime verification of mechanisms within the PDP are realized on the basis of
tableaux. In particular, the implementations described in these pages implement the al-
gorithm proposed by Rosu, Havelund, and Geilen [74], which only maintains the current
state of a formula, thus allowing for runtime verification without the need of storing the
complete event history. The data flow tracking functionality of the PIP is implemented as
a state machine, whose state transitions are triggered by the evaluation of the semantics
of incoming events. More specifically, the formal semantics is translated into sequences of
updates of the storage, alias and naming function of the model. These updates are then
performed on the basis of the name and the parameter values of the actual events the PIP
receives from the PDP.

62

5. System Design and Implementation

Multi-layer

The architecture of a multi-layered system corresponds to the architecture for the single
layer, with the only difference that there exists a monitor (i.e. a PEP) for each layer of
abstraction (see Figure 5.1b). All the different PEPs signal events to the same PDP. Because
of the likely different notion of timestep at different layers, some minor assumptions needs
to be taken about the monitors, the speed at which they notify events to the PDP and the
possible interactions between the layers. All of these assumptions are discussed in detail
in Chapter 4, together with a description of the respective PIP.

These differences, however, do not require any change in the architecture: the sequence
diagram describing the components interactions in this case would be identical to the one
depicted in Figure 5.2 for the single case, where the PEP agent represents any of the mul-
tiple PEPs in the system.

Multi-system

The model defined in Chapter 4 for the tracking of data across two layers of abstraction
does not require the two layers to be part of the same physical machine. This implies
that, at least in principle, the work described in this dissertation could also be applied
out-of-the-box to distribute systems. However, while at the model level the approach is
conceptually the same, technically it is fundamentally different.

Distributed systems introduce a number of challenges to usage control and data flow
tracking, both conceptual (e.g. taking decisions if the network is down and the PDP is
unreachable) and technical (e.g. a centralized PDP requires every PEP to notify every
event remotely, generating a huge amount of traffic). For this reason, this work focuses on
single physical systems only. Additional challenges introduced by the distributed aspects
are addressed by related work in the literature [61, 91, 92].

5.2. Implementation and Evaluation

In contrast to the Policy Enforcement Point, which is bound by its very nature to a specific
layer of abstraction, the Policy Decision Point and the Policy Information Point compo-
nents in this architecture could be implemented in a layer-agnostic manner and shared by
PEPs at any layer. During the development of the research presented in this thesis, instan-
tiations of the data usage control framework have been implemented and evaluated for
different layers of abstraction, [55, 91, 100, 97, 27, 26, 163, 105, 165] including the two ex-
amples described in Section 3.3 and Section 4.4 [164, 149], often by students in the context
of their Bachelor and Master theses under the author’s supervision.

In terms of performance, PEPs are usually implemented in form of reference monitors
[51]. Depending on the layer of abstraction considered, the overhead such monitors intro-
duce ranges from 2-3 orders of magnitude [136] to almost negligible under normal usage
(i.e. no stress testing) [55]. The performance of the PDP and PIP implementations depends
on multiple factors, like number of policies, frequency of events, number of parameters
of the events, communication interface (network vs direct function call), amount of data
elements already present in the system, etc. With few exceptions, like the model for quan-
titative data flow tracking described in Chapter 8, the overhead induced by PDP and PIP

63

5. System Design and Implementation

computation is in general negligible compared to the overhead induced by the PEP. Some
examples of implementations are discussed in the evaluation sections of the models in the
second part of this work (Section 6.5,Section 7.3 and Section 8.5). More detailed evaluations
for specific layers of abstractions can be found in the respective literature (see Chapter 9).

While a discussion about formal soundness of the generic model is provided in Sec-
tion 3.4 and Section 4.2, correctness of all the different implementations have always been
shown in the literature by case studies only. The general idea is to provide some exem-
plary traces of events (like “〈 copy A to B, delete A 〉”), the result of the execution of which
is intuitive (e.g. “A is deleted and B contains what A contained before the execution”), and
then verify that the model is in the correspondent states after processing the same traces.

A common source of problems for any implementation of the generic model for data
flow tracking is the so-called label creep issue, described below.

5.2.1. Label Creep

Data flow tracking is based on taint analysis. The general rule of taint analysis is

“the result of an operation should be marked with all taint marks of its operands”.

In the terms used in the rest of this work, this conveys the point that if any of the operands
contains certain sensitive data, after the execution of the operation such data is possibly
stored in the result of the operation too.

Taint analysis is composed by three phases:

• Initial classification of containers;

• Propagation of data according to the general rule described above and

• Declassification of containers, e.g. if all content of a container is deleted.1

In the literature, like in this framework, data flow tracking has been used to support
security and therefore the analysis results tend to be conservative, i.e. reporting false pos-
itives. Such overapproximations cumulate over time and lead to the so-called label creep
situation, in which all taint marks are associated with many system containers. In this con-
text, further data flow tracking becomes pointless because, according to the analysis, data
is already stored everywhere; moreover, if the usage of tracked data is constrained by poli-
cies, even the system’s stability might get compromised, because every marked container,
actually containing the data or not, would be subject to the constraints.

The second part of this work presents different models for data flow tracking that aim
at mitigating label creep by augmenting the framework with additional information about
the system.

1 A data item represents a policy that imposes restrictions on the usage of data, therefore classification corre-
sponds to storing data into a container and declassification corresponds to removing it.

64

Part II
Taming Label Creep: Enhanced Data

Flow Tracking

65

The second part of this work discusses different enhanced models for data flow tracking. In the
following, the term “basic model” refers to the (data flow tracking component of the) model de-
scribed in the first part. The goal of the solutions described in this part is an improvement in terms
of analysis precision w.r.t to the basic model. For each approach presented, assumptions, limita-
tions, strengths and drawbacks are discussed. While some of these solutions could in principle be
combined and applied at the same time, each approach is evaluated individually at the end of the
respective chapter for a better understanding.

67

68

6. Structured Data Flow Tracking

This chapter describes an extension of the model in which the tracking precision
is improved using information about the structure of data. A preliminary ver-
sion of this work has been published in [108], a publication co-authored by the
author of this dissertation. The implementation and evaluation of the model are
part of this thesis’s original contribution.

Background:
Usage Control

Usage Control
Marries

Data Flow
Tracking

Cross-layer
Data Flow
Tracking

Intra-process
Data Flow
Tracking

Structured
Data Flow
Tracking

Quantitative
Data Flow
Tracking

PART I PART II

System Design and Implementation

6.1. Introduction

The model for cross-layer data flow tracking presented in Chapter 4 shows how to combine
data flow tracking at different layers of abstraction to obtain a more precise estimation of
the data dissemination within the system. The intuition is that, given an instantiation of the
model for a layer of abstraction, it is possible to leverage additional information about the
system (in that case, a monitor for another layer) to improve the precision of the tracking.

This chapter exploits the same fundamental intuition to refine the precision of the track-
ing, in this case by leveraging information about the structure of data. In those scenarios
where such additional information is available this solution can help mitigating the prob-
lems introduced by an overly-conservative data flow analysis (label creep, see Section 5.2.1).
The fundamental research questions addressed in this chapter are

How can the precision of the data flow tracking model be augmented
with additional information about the structure of data?

How can the improvement in terms of precision be quantified?

What is the overhead induced by this approach?

Which aspects of the system influence the results?

69

6. Structured Data Flow Tracking

6.1.1. Bottle-neck Pattern

Practical experience with the instantiation of the basic model at different layers in real
systems suggests that a common source of overapproximations is the bottle-neck pattern,
depicted in Figure 6.1: If the content of multiple containers with different data is merged
into a single container, then the resulting container (intermediate container, from now on)
correctly stores all of the data in its sources. By applying the basic rule of taint propaga-
tion (“the result of an operation should be marked with all taint marks of its operands”,
see Section 5.2.1), further operations on this intermediate container unconditionally prop-
agate all these data items, often leading to label creep.

Scenarios in which the bottleneck pattern can be observed include but are not limited to:
saving/loading application-specific content (multiple containers) to/from one file, com-
pression of several files into one archive and subsequent decompression, copy-pasting
data via the clipboard, and transferring content via pipes or sockets. In all of them, each
destination container (like a file extracted from an archive) should only contain the data
initially stored in one specific source (the same file before compression), rather than all
data items in the intermediate container (archive file).

src1

merge c split

src2

dst1

dst2

Figure 6.1.: Bottle-neck pattern [108].

The solution presented in this chapter builds on one central observation: in all of these
scenarios there exists a pair of dual merge and split operations. While a merge operation
(such as zip) aggregates content from different sources into one intermediate container, like
c in Figure 6.1, the corresponding split operation (such as unzip) reads the same content and
separates it into multiple containers, each matching exactly one of the source containers.

6.1.2. Proposed Solution

The solution proposed here is a generic model for data flow tracking that, in correspon-
dence of a merge operation, stores into the intermediate container a special structured data
item. Such data represents all data items of the source containers, but stores additional
information concerning which source contained which one, like a snapshot of the storage
function (see Section 3.1) for those containers. This information is then exploited by split
operations to propagate only selected data to each destination, thus effectively declassifying
all the other destination containers. This mitigates the label creep issue by decreasing the
amount of false positives.

Consider the example depicted in Figure 6.2: file1 and file2 , respectively containing data
d1 and data d2, are archived into a file named archive.zip. When the archive is extracted, a
flow of data from archive.zip to two files (file1

′ and file2
′) takes place. Each of the two files

is a copy of the respective source. The idea behind the structured taint mark is to associate
to archive.zip, during compression, a new taint mark dstr that maps file1 to d1 and file2 to
d2; during extraction, such mapping is used to associate to file1

′ (file2
′) only data d1 (d2),

70

6. Structured Data Flow Tracking

instead of both d1 and d2, or even dstr, as a straightforward application of the basic taint
propagation rule would suggest.

=
file1
file2 d2

d1

dstrfile2'

d2d1

file2

d2

file2

d2

file2'

d2

file1'

d2d1

file1

d1

file1

d1

file1'

d1

archive.zip

d2d1

archive.zip

dstr

Figure 6.2.: Example of data flow tracking without (left) and with (right) structured data
flow tracking (Packing and extracting an archive file).

Note that in many scenarios, especially when data flows across different layers of ab-
straction and thus its representation changes “format”, a trivial solution to the problem
without the use of structured taint is to encode the data items, i.e. metadata, as additional
content within the container, e.g. into the file where an application is saving, and to reuse
this information at loading time. This way, the propagation of the taint mark for certain
content will be carried out automatically by the events that transfer the content itself.

However, data flow tracking analysis should interfere as little as possible with the orig-
inal behavior of the system, and because of this, the proposed solution achieves the same
result in a transparent way, never changing the actual content being transferred by a system
event. The motivation behind this choice is twofold: on one hand, changing the content
may compromise the integrity of a container or make it unusable (e.g. by invalidating its
signature); on the other hand, this solution is generic enough to be applicable at any layer
and does not depend on nor is constrained by the technical representation of a container.
With respect to existing solutions that pursue this approach (see Chapter 9), this approach
does not require additional number or types of events, finer granularity of containers, nor
qualitative/semantic analysis of the transferred content.

Also note, that the precision of the analysis for the intermediate container is equivalent
to that of basic taint propagation (see Section 6.3.2); the reduction in terms of false positives
is obtained only in the destination containers of the split operation.

Before performing declassification, however, it is important to make sure that the struc-
tured data item associated with an intermediate container is valid: the structured data must
not have been propagated due to overapproximations, and the integrity of the intermedi-
ate container’s content must be assured; if this is not the case, the analysis falls back to
basic taint propagation. To this end, additional integrity checks are performed (see Sec-
tion 6.3.3).

Problem. This chapter tackles the problem of label creep in taint-based data flow track-
ing analyses.

Solution. The proposed solution is a generic model for taint-based data flow tracking
of structured data, that can be instantiated for different contexts at different system layers.

71

6. Structured Data Flow Tracking

Contribution. The contribution of this work is the first generic solution for event-based
structured data flow tracking. This model transparently builds, propagates, and uses spe-
cial data items that reflect the inherent structure of data without semantic analysis of the
tracked content. With minimal assumptions on the system and without modifying the
number or the granularity of events or containers, this model can increase the precision of
existing data flow tracking analyses and mitigate the label creep problem.

Assumptions. In addition to the usual assumptions (see Section 1.3), this model requires
the existence of dual merge and split events as explained above. These events

• must be detectable and identifiable at runtime,
• must have clearly defined semantics, in particular in terms of data propagation,
• must be trusted, i.e. there must exist confidence that they behave according to the

expected semantics.

6.1.3. Example Scenario

Alice works as an analyst for a smartphone manufacturer. Alice’s duties
include gathering information about new models under development and
combining it with data from field experiments and from various public
sources into reports for suppliers and for other departments. Reports are
prepared in Excel, and every exchange of data across departments
happens in form of archived files (e.g. zip archives). In addition to
the usual security precautions, like forbidding the installation of third-
party software, each enterprise machine is equipped with an OS-layer
monitor that tracks the execution of every system call and blocks/reports
those attempting to send sensitive data to unauthorized remote addresses.
The OS model rely on a basic taint propagation approach for the track-
ing that usually performs pretty well, despite introducing minor over-
approximation; sometimes, however, it creates some trouble in the
collaboration between departments. Whenever Alice sends an archive
containing a set of reports to be added to the repository, if one of the
reports is protected by the policy “don’t send to ThatCompany inc.”,
none of the reports within the same archive can be sent to that partic-
ular destination. Similarly, if Alice protects one sheet within a work-
book with the policy “this sheet should not be printed”, when Bob
receives the file no sheet can be printed.

Consider Alice opening two files, rep1 .xls and rep2 .xls , respectively containing work-
books Book1 and Book2 . Assume rep1 .xls is protected by the “do not send to X”-policy.
The cross-layer model presented in Chapter 4 can be used to propagate this restriction
only to Book1 and not to Book2 . Similarly, when Alice saves a workbook as rep3 .xls ,
the cross-layer model can be used to distinguish whether Alice is saving Book1 or Book2 ,
and consequently propagate the policy to rep3 .xls only when necessary. In a nutshell, the
cross-layer model can be used in this context to distinguish one file from the other within
Excel.

Assume now that Alice edits Book2 and specifies a policy for cell B3 on sheet Sheet3
that stipulates that if the document is printed, the content of such cell should be replaced

72

6. Structured Data Flow Tracking

Rep.xls

d2
d1

Save (M,f) Load (M,f)

d2

d1

d2d1d2d1d2d1

d2d1d2d1d2d1
d2d1d2d1d2d1

d2d1d2d1d2d1

d2d1

d2d1d2d1

d2d1d2d1

d2d1

Save (M,f) Load (M,f)

d2

d1

dstr
Sheet3!B3

Sheet4 d2

d1

=

Rep.xls

dstr

d2

d1

Figure 6.3.: Example of data flow tracking without (top) and with (bottom) structured data
flow tracking (Saving and re-loading a file with MS Excel).

by a black rectangle (Modifier ILP, see Section 2.3), and a policy for sheet Sheet4 stating
that the content of Sheet4 should not be disclosed over the network. Let associate the first
policy to data item d1 and the second policy to data item d2 . When Alice saves Book2
into rep.xls , the monitor for Excel should propagate d1 and d2 to the monitor for the OS,
which in turn associates them to rep.xls . The problem is that the OS monitor does not
“understand” abstractions like “cell” or “sheet”, which are proper of the Excel domain,
and therefore associates d1 and d2 to the complete file. Although this is sound from a
security perspective (it is a conservative overestimation of the content to be protected), the
mapping between the data items and the specific parts of the document is lost. When the
file, or a copy of it, is opened again in Excel, in order to stay conservative the monitor for
Excel needs to propagate the taint marks d1 and d2 to any container associated to the loaded
file, i.e. to any container in Book2 (Figure 6.3, top).

In summary, the improvement provided by the cross-layer model in this example is
bounded by the granularity of the tracking at the OS layer.

The same identical problem can be observed when multiple reports, marked with differ-
ent policies, are stored in a single zip file. Also in this case the OS monitor is not capable
of distinguishing between different parts of the archive and therefore associates the whole

73

6. Structured Data Flow Tracking

file to any data stored in the source files. When the archive is extracted, every destination
file is marked with all the taint marks of the archive file, similarly to what happens in the
Excel scenario (see Figure 6.2, left).

Leveraging structured taint marks, in contrast, the intermediate representation can pre-
serve storage information about the sources and use it to declassify the destination in case
of split operations (Figure 6.2, right and Figure 6.3, bottom).

6.2. Formal Model

The model for structured data flow tracking (from now on called structured model, for
brevity’s sake) is an extension of the basic model presented in Chapter 3. In the structured
model, a system is described as a tuple

(D,S, C,F ,V , partId , checksum,Σ, σi,R)

where D, S, C and F represent, respectively, the sets of data items, system events, contain-
ers and container labels of the basic model. In this model, F also contains a set FP ⊆ F of
identifiers for parts of data structures (explained in more detail in Section 6.3), also called
partIDs.

partId : C 7→ FP assigns partIDs to containers. partId is used in split operations to
decide which part of a structured taint mark corresponds to a destination container. In the
model partId is an oracle, while Section 6.4 describes possible instantiations of it.

checksum : (C × D)→ V is another oracle that computes a checksum of the content of a
specific container (e.g. the hash of a file), with V the set of all possible checksum values.

In addition to the storage, alias and naming functions (see Section 3.1), a state of the
system σ = (s, l, f, struct , checkList) is also defined by

• a structure function of type struct : D → P(FP × P(D)), mapping data items to a
structure. A data item associated to a non-empty structure is called structured data
or structured taint mark;

• a checklist checkList ⊆ P(D ×V), used to check whether the structure associated to a
certain taint mark is valid.

Like in the basic model, Σ is the set of all system states, including the initial state σi and
R ⊆ Σ× S → Σ is the transition relation that encodes how a state σ ∈ Σ must be updated
in case an event occurs.

6.3. Structured Data Flow Tracking

Sometimes data presents an inherent structure: a mail has a recipient, a subject, and a
body; a story is divided into chapters and sections; a song into chorus and verses, etc. Al-
though sometimes this structure is reflected by the container in which the data is stored,
conceptually it remains a property of the data rather than the container. Data structure is
preserved even when its concrete representation is “obfuscated”, e.g. by means of com-
pression. For this reason, the structured model binds the structure to the data item (i.e. the
taint mark) rather than to the container.

74

6. Structured Data Flow Tracking

More precisely, if some data carries an inherent structure, the relative taint mark is asso-
ciated with a set of partIDs {partID1, . . . , partIDn} ⊆ FP , each of which is in turn associated
with a set of taint marks. The rationale is that these partIDs identify the different parts of
the structured data (a certain worksheet or a certain cell in the example in Figure 6.3) whilst
the associated taint marks represent the data items associated with the corresponding part
(e.g., d2 for ‘Sheet4’). Formally, the relation between each taint mark and its structure is
given by the function

struct : D → P(FP × P(D)).

For any unstructured data d, struct(d) = ∅.
Associating the structure with the taint mark rather than a container presents the advan-

tage that the taint mark is propagated independently of the type of containers in which the
content is actually stored and independently of whether operations on such containers are
aware of the structure or not. This allows for easily reuse data flow event semantics from
Section 3.3 and from other work from the literature [138, 136, 164, 100, 91, 73], i.e. to seam-
lessly integrate with existing instantiations at different system layers. Only the semantics
of those events that correspond to merge and split operations need to be updated.

Note that the structured model supports the nesting of structured taint marks. Also
note, that if a container c is marked with a structured taint mark d, with σ.struct(d) =
{(p1, {d1}), (p2, {d2})}, then both restrictions imposed by d1 and d2 apply to c.

Let flat : Σ × D → 2D be an operator that returns the set of atomic (i.e. non-structured)
data items stored within a certain structure (the one associated to the given data item). flat
corresponds to the transitive closure application of the struct function, and is defined as

∀σ ∈ Σ, d ∈ D : flat(σ, d) = {d′ ∈ D|(d′ = d ∧ σ.struct(d′) = ∅)∨
(∃f ∈ FP , D ∈ P(D), d′′ ∈ D : (f,D) ∈ σ.struct(d) ∧ d′′ ∈ D ∧ d′ ∈ flat(σ, d′′)}

For instance, for the examples described in Figure 6.2 and Figure 6.3, flat(σ, dstr) = {d1, d2},
with σ being any state right after the creation of the intermediate container.

The flat operator can be used to adjust the notion of event refinement given in Section 3.2
to cope with structured data, by replacing the check d ∈ σ.s(c) with d ∈ ∪d′∈σ.s(c)flat(σ, d′).
Note that the first part of the definition of the flat operator implies that for any non-
structured data item d in state σ, flat(σ, d) = d, and, consequently, that for any container c
that does not contain any structured data item, ∪d′∈σ.s(c)flat(σ, d′) = σ.s(c).

∀e1, e2 ∈ S,∀σ ∈ Σ : (e1, σ) refinesEv i e2 ⇐⇒
(getclass(e1) = getclass(e2) ∧ e1 refinesEv e2)∨
(getclass(e1) = containerUsage ∧ getclass(e2) = dataUsage∧
e1.n = e2.n ∧ ∃d ∈ D,∃c ∈ C : d ∈ ∪d′∈σ.s(c)flat(σ, d′)∧
obj 7→ c ∈ e1.p ∧ obj 7→ d ∈ e2.p ∧ e2.p \ {obj 7→ d} ⊆ e1.p \ {obj 7→ c}).

6.3.1. Merge Operations

In some scenarios it is possible to contain label-creep by leveraging additional information
about merge operations. In the terminology of this work, merge operations are special
system events that

• aggregate data from multiple sources into a single destination container,

75

6. Structured Data Flow Tracking

• have corresponding dual split operations, and
• allow us to infer information about the structure of data.

The latter usually comes from external knowledge about the system, e.g. the fact that
process ‘zip’ is an archiver. The inferred structure is associated with a new structured taint
mark for the destination container (i.e. the intermediate container in a bottleneck pattern).

Formally, a merge operation mo(SRC , dst) merges the content of the set of source con-
tainers SRC ⊆ C into the single destination container dst ∈ (C\SRC) in a structured way.
This means that all taint marks associated with all source containers are grouped into mul-
tiple (possibly overlapping) sets, each of which is identified by a partID. The partIDs are
derived by some properties of the set SRC , e.g. the name of the containers, and they are
captured by the layer-specific function partId : C 7→ FP . At the model level, partId is the
oracle that determines which parts of a structured taint mark correspond to which desti-
nation container of a split operation. While the implementation of partId is instantiation-
specific (see Section 6.4 for some examples), the semantics of any merge event mo can be
described in a generic way as

∀σ, σ′ ∈ Σ, ∀SRC ⊆ C,∀dst ∈ C\SRC : (σ,mo(SRC , dst), σ′) ∈ R =⇒
σ′.s(dst) = σ.s(dst) ∪ {dstr}∧
σ′.l = σ.l∧
σ′.f = σ.f∧
σ′.struct(dstr) = {(partId(c), σ.s(c))|c ∈ SRC}∧
σ′.checkList = (σ.checkList \ {(dstr, v)|v 6= checksum(dst , dstr)})

∪ {(dstr, checksum(dst , dstr))}

where dstr represents a previously unused data item, i.e. such that ∀c ∈ C, ∀d ∈ σ.s(c) :
(dstr 6= d) ∧ (dstr 6∈ flat(σ, d)), and σ.s, σ.l, σ.f , σ.struct and σ.checkList indicate, respec-
tively, the storage, alias, naming and structure functions, and the checklist of state σ. Per-
forming a merge operation requires updating the list of valid checksums, which is why the
old checksum values of (dst , dstr) are replaced with the new checksum value.

While merge operations are implicitly assumed to be atomic, in real systems a merge op-
eration might be composed of multiple subsequent events. In this case, the structure must
be built incrementally; this more complex case is not discussed in this work (see Section 6.6
for more details).

6.3.2. Split Operations

A split operation so(src,DST) is the dual of a corresponding merge operation. It propa-
gates the content of one source container src ∈ C to a set of destination containers DST ⊆ C.
In the bottleneck pattern, the source container src corresponds to the intermediate con-
tainer. In contrast to normal taint propagation events, split operations leverage the fact
that the source container is marked with a structured taint mark. As this structure was
built based on information about the corresponding merge operation, split operations use
this additional information to declassify the destination containers DST . In other words,
split operations do not necessarily propagate all taint marks associated with the source
container src to all destination containers DST , but only selected taint marks to selected
containers.

76

6. Structured Data Flow Tracking

For this reason, split operations do not follow the conservative approach of overapprox-
imating data flows. Instead, they perform selected declassification of the destination con-
tainers, thus mitigating the label creep problem. Which taint marks are in fact propagated
to which destination containers is determined by the application of the partId function to
each destination container. If the result is such that a corresponding partID exists in one
of the source container’s structured taint marks, only the taint marks related to this partID
are propagated; if no such match is found, all taint marks are blindly propagated, which is
equivalent to basic taint propagation. Formally:

∀σ, σ′ ∈ Σ,∀src ∈ C,∀DST ⊆ C\{src} : (σ, so(src,DST), σ′) ∈ R =⇒
∀dst ∈ DST : σ′.s(dst) = σ.s(dst)
∪{d′ ∈ D | ∃d ∈ σ.s(src),∃D′ ⊆ D : (partId(dst), D′) ∈ σ.struct(d)∧

(d, checksum(src, d)) ∈ σ.checkList ∧ d′ ∈ D′}
∪{d ∈ σ.s(src) | 6 ∃D′ ⊆ D : (partId(dst), D′) ∈ σ.struct(d)∧

(d, checksum(src, d)) ∈ σ.checkList}∧
σ′.l = σ.l∧
σ′.f = σ.f∧
σ′.struct = σ.struct∧
σ′.checkList = σ.checkList

Note that the last part of the definition of the storage component guarantees that if
(d, checksum(src, d)) is not in σ.checkList the integrity of the source container has been
compromised and thus the model falls back to basic taint propagation.

Also note that the enhancement in terms of precision is only achieved at the time of the
split operation. As already mentioned in Section 6.1.2, whenever a restriction is associated
with a taint mark d, it applies to every container c that is marked with d, either directly
(d ∈ σ.s(c)) or indirectly (d ∈ flat(σ, d′) ∧ d′ ∈ σ.s(c)).

6.3.3. Checksum

Given a certain container c ∈ C and a structured data item d, checksum : (C × D) → V
computes a value that is used to decide whether the structure of d is reliable for the content
of c or not. This value is called checksum and V is the set of all possible checksum values. In
some cases, the structure is valid only if the content matches exactly the content for which
the structure has been created (e.g. in the archiver case, the hash of a file), which makes
the result of checksum(c, d) independent of the value of d.

In other cases the content may be changed, usually augmented, and still be valid. In
these cases, the checksum values depend only on those parts of the content that are listed
in the structure of d. For instance, if the content is an XML document, then the checksum
will look at the integrity of only those nodes mentioned in the structure. For parts that are
not mentioned in the structure, or, in general, if the checksum-check fails, the conservative
“propagate-everything” approach applies. A generic hash function, like MD5 or SHA1, is
in general a good choice for a checksum function, although, depending on the considered
scenario, sometimes it may be too restrictive.

The list of valid checksums is stored in a relationship called checkList . Given a container,
a data item and a checksum for its structure, checkList returns whether the checksum is

77

6. Structured Data Flow Tracking

valid or not. Note that although the parameter of checksum is in C, the function is com-
puted on the actual content of the container, and thus its definition is layer specific.

6.4. Instantiations

The model described so far is applicable to any scenario similar to the Excel example
(see Section 6.1.3), where application-specific data flow tracking is combined with tracking
at the operating system layer. However, there are more situations in which the structured
model can improve the precision of basic taint propagation.

Consider the action of copy-and-pasting multiple data within an application. Although
the system clipboard preserves the structure of the content, if the clipboard is modeled
as a single container [105, 165], it behaves as an intermediate container in the bottleneck
pattern and propagates all taint marks of the sources to all destination containers. In this
case the event “copy” (“paste”) corresponds to a merge (split) operation. The instantiation
of partId is application-specific, e.g. for a spreadsheet application it would map the cells
to their ‘coordinates’, while for a word processor it would work on internal identifiers of
sections, paragraphs, or words.

Similarly, consider a data flow tracking analysis for the operating system [73], where
containers are files, pipes and memory locations, and events are system calls; unless there
exists a dedicated monitor for the application, whenever a process reads from a file, its
memory gets associated with all the data stored in that file. Such data is then be propagated
to every file the process writes. However, in the special case of an archive process such as
‘zip’, the extraction (split) of an archive propagates to each extracted file only the data
items that were associated with it at the moment the archive was created (merge), rather
than all taint marks associated with the archive file, as depicted in Figure 6.2. Function
partId maps source and destination containers using their relative filenames. In Section 6.5
an instantiation of the model for this particular case is implemented and evaluated.

The structured model also applies in distributed scenarios, e.g. when many files are
transferred over a TCP connection. While existing solutions [91] address the problem of
how to propagate the taint marks from one system to another, the communication chan-
nel behaves like the intermediate container in the bottle-neck pattern. In this scenario, the
merge operation is the sequence of read (from files) and write (to the socket) events ob-
served on the “sender” side, whereas the split operation corresponds to the dual sequence
on the “receiver” side. In a simple file transfer scenario, function partId would map source
and destination containers using filenames.

In all these examples, a simple hash of the content or a set of hash values for the different
parts of the content could be used for the checksum function, to guarantee that the to-be-
split content exactly matches the one at the time of merge.

6.5. Evaluation

This section describes the experiments conducted to evaluate the improvement in terms
of precision offered by the structured model and the relative cost in terms of performance
loss. These experiments address the following research questions:

78

6. Structured Data Flow Tracking

RQ1 How much more precise is the structured approach with respect to the estimation
provided by the basic model?

RQ2 How much slower is the structured model with respect to the basic model?

A first preliminary test based on the implementation of the Excel example (see Section 6.1.3)
is presented in see Section 6.5.1. Afterward, the settings of the systematic set of experi-
ments used for the evaluation are illustrated in Section 6.5.2, elaborating on the problem
of monitoring non atomic events in Section 6.5.4. The experiments addressing the two
research questions are then described in Section 6.5.5 (RQ1), and in Section 6.5.6 (RQ2).
Finally, the results of the experiments are discussed in Section 6.6.

6.5.1. Preliminary Test

In order to test the improvement in terms of precision of the structure data flow tracking,
the scenario described in Section 6.1.3 has been implemented. The implementations for
the usage control framework for Microsoft Excel [149] and for Microsoft Windows [164],
taken from the literature, are described in Section 3.3. Both implementations have been
connected to the same PDP and to the same PIP extended with structured data flow track-
ing concepts, with SAVE() and LOAD() events configured as Merge- and Split-operations,
respectively.

As expected, in correspondence of a SAVE() event, a new structured data item was cre-
ated in the model, containing all the data stored in the Excel workbook, with the respective
references. The structured data-item was then stored in the container representing the des-
tination file according to the cross-layer model. From then on, operating system events that
copied, moved or deleted the file or one of its copies were detected by the operating sys-
tem monitor and modeled accordingly. Any further LOAD() event was then modeled as
a cross-layer split-event, correctly restoring the mapping between each cell of the opened
document and the respective data.

However, because the Excel monitor only intercepts user events (like clicking on the
save button, or pressing CTRL+C), it turned out to be a non-trivial effort to automate the
simulation of such events, in particular for performance evaluation. For this reason, and to
prove the general applicability of the solution to different contexts, the structured model
has been systematically tested in different settings.

6.5.2. Experiment Settings

The experiments described in this section are executed on a system with a 2.3GHz Intel
Core 2 Duo E6400 and 2GB of RAM running a vanilla version of Linux Mint 17 [7]. The
implementation of the Policy Enforcement Point (see Section 5.1.1) is taken from the liter-
ature [91], and is based on a modified version of the strace tool [9]. The tests have been
performed executing the rest of the usage control infrastructure on the same machine and
connecting the components using the Thrift protocol [56] via a local network connection.

79

6. Structured Data Flow Tracking

6.5.3. Experiment Description

In the scenario discussed in Section 6.1.3, Alice exchanges reports with other departments
in form of archive files, e.g. zip files. A typical use case is that Alice takes some of the
reports that she has recently been working on, compresses them into a zip file, and send
them to the concerned department, where another clerk unzips the archive and makes use
of its content to create other reports.

The instantiation of the structured model at the operating system layer models every
creation of an archive using the zip command as a merge event and every invocation of
the unzip command as the respective split event.

The experiment starts from a state in which an initial set of ten files, representing ten
sensitive reports, has been created. Each file is composed by 100 identical lines (identical
to each other and different from those in other files), each containing the identifier of the
sensitive data contained in that specific document, e.g. “Data01”.

A script then generates a set of random traces of events from the following classes:

• zip filedst filesrc1 ...filesrcn , to create a new archive called filedst containing a copy
of all the files filesrc1 ...filesrcn ;

• unzip filesrc filedst1 ...filedstn , to extract filedst1 ...filedstn from the archive filesrc;

• copy filesrc filedst, to create a new copy of filesrc called filedst;

• delete file, to delete a file called file;

• integrate filedst N filesrc1 ...filesrcn , to integrate an existing report with some infor-
mation from other reports. In particular, for the simulation, such command is im-
plemented as a small executable that reads N random lines from each source file
filesrc1 ...filesrcn and appends them to filedst.

Note that only valid traces are generated: for instance, if a trace contains an unzip event
at time t, then executing the trace from the beginning until time t − 1 starting from the
initial state with the ten files described before, it must be the case that at time t there exists
at least an archive that has been created and not deleted; similarly, if the state at time t− 1
results in only one file in the system, then the event at time t can not belong to class delete .

Each trace is executed in the monitored system and its execution time recorded for per-
formance evaluation (see Section 6.5.6). The list of unique lines within each file is also
stored and compared with the estimation provided by the structured model and by the
basic model like the one presented in Section 3.3.2 (see Section 6.5.5).

Due to the lack of real world usage profiles, the creation of the traces is randomized as-
signing a different probability to each of the five event types. This probability reflects the
frequency with which events from a certain class are likely to appear in the final trace. Ad-
ditionally, other aspects of the traces have been parametrized, like the maximum number
of sources in a merge events, the size of the initial files, the number of lines being merged
by integrate events, etc. For each combination of parameters, 100 different traces have been
generated and only average values and standard deviation are reported, in order to factor
out random noise.

80

6. Structured Data Flow Tracking

Depending on the goal of the measurements (precision vs performance), different sen-
sitivity tests have been performed to identify which variables have a direct impact on the
results. The outcome of these tests are discussed in the respective sections.

6.5.4. Handling of Non-Atomic Events

Because a model for non-atomic split and merge events is still work in progress (see Sec-
tion 10.1), in the experiments, zip and unzip commands have been modeled in a special
way, similar to atomic events.

In correspondence of merge events, the structured data was built upon observing the
respective execve event, one of the first system calls triggered by any command. The
execve system call contains the complete list of command line parameters used to in-
voke the process, and thus it contains all the information needed to build the structured
data. This imposes the further assumption that data in the source files does not change
in-between the moment in which the execve system call is observed and the last source
is read; although it may sound restrictive, this behavior is actually enforced by the appli-
cation itself, which fails if any input file is modified during the archiving process. Once
the structured data item dstr is built, it is propagated to the intermediate container using
the cross layer model described in Chapter 4. The instantiation is dual to the running “File
saving” example (see Section 4.1.2), with execve being the SAVES() event, the corre-
sponding exit system call being the SAVEE() event and dstr being the data to be saved.

For the split events, the approach is similar: once execve of the split event is observed,
the structured data stored in the intermediate container is retrieved and a number of cross
actions (one per destination file) is initiated. Each cross action conceptually represents the
split-event process action of “saving” the partial (according to the structure) data to each
specific destination. In the case of split events, the cross action terminates upon observing
the CLOSE() event on the destination file.

6.5.5. RQ1 - Precision

Metric

By design, the structured data flow tracking model is no less precise than the basic model
described in Section 3.3.2, assuming the equivalence between a structured data item and
the set of all the non-structured data item recursively stored in it (i.e. its flattened struc-
ture). It is therefore no surprise that after executing an arbitrary trace of events, the set of
(flattened) data stored in a certain container c according to the structured tracking is al-
ways a (not-necessarily proper) subset of the data stored in c according to the basic model.
Similarly, the estimation provided by the structured tracking is always a (not-necessarily
proper) superset of the actual data stored in the container after executing the same trace,
an indication of the soundness of the approach.

However, in order to quantify such improvement, the following metric has been used to
measure precision:

precision(c) =

1 if #actual(c) = #estim(c)
#actual(c)
#estim(c) otherwise

81

6. Structured Data Flow Tracking

where

• #estim(c) is the number of different data items stored in a container c according to
the considered data flow tracking model, and

• #actual(c) is the number of different data items actually stored in a container c. At
the model level, this would be the output of an oracle. In the implementation, where
c is a text file, such oracle returns the number of different lines in c. If c is an archive,
it corresponds to the number of unique lines in all the text files stored (possibly re-
cursively) in c, i.e. actual(c) =

⋃
f archived in c actual(f)

The set of unique lines in a document represents the different initial files the content of
the document has been built from. Consequently, it corresponds to the actual data stored
in the file. A sound data flow tracking must estimate at least such set of data for the re-
spective document. A precise model would estimate exactly such set. If the model is too
conservative, the estimation may also contain additional elements. Precision is measured
in the number of such additional elements over the total.

Note that the computation of estim(c) uses the flattened version of each data stored in
c. Referencing the Excel example illustrated in Figure 6.3, this means that if the inter-
mediate container c1 contains the two non-structured data items d1 and d2 and the in-
termediate container c2 contains dstr, which is a structured data item associated to the
structure Sheet3!B3 → d1, Sheet4 → d2, then estim(c1) = estim(c2) = {d1, d2} and
#estim(c1) = #estim(c2) = 2, confirming the intuition that the precision does not im-
prove for intermediate containers.

Results

As discussed in Section 6.5.3, different combinations of parameters have been tested dur-
ing the generation of the event traces. It is worth noticing, first of all, that the two ap-
proaches model in a different way only events of class zip and unzip; the data flow prop-
agation semantics (R) for any other event is the same in the basic model and in the struc-
tured model. Also note that the precision in the modeling of zip events is the same for both
models, as discussed at the end of the previous section.

Secondly, events of class integrate are the only ones that can introduce some impreci-
sion in the structured model. To grasp the intuition behind this, consider the example of
a file containing n different kinds of data. Intuitively, if only one line is read from this
file, the tracking cannot distinguish which data has been read, and needs to assume that
possibly all the n data have been read, a conservative overapproximation. Conversely, for
the traces that do not contain integrate events, the structured model always provides max-
imum precision (∀c ∈ C : precision(c) = 1), while the basic model still introduces some
overapproximation due to unzip events.

For these reasons, the tests in terms of precision focused specifically on these two classes
of events, integrate and unzip.

Integrate events The first set of tests aimed at measuring the impact of the integrate
events frequency over the precision. While fixing the probability for any other event class
to the same value, different frequencies for the integrate events have been tested. Results

82

6. Structured Data Flow Tracking

0

0,2

0,4

0,6

0,8

1

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

P
re

ci
si

o
n

Frequency

Precision [Integrate]

Basic

Structured

Figure 6.4.: Average precision for different frequencies of integrate events in the trace. All
other events equally distributed among other classes. Traces composed by 250
commands. Standard deviation reported in error bars. Note that error bars top
caps overlap for high frequencies.

are presented in Figure 6.4. The frequency of the integrate events is given on the x-axis.
The y-axis represents the average precision for all the containers in the system at the end
of the trace execution. Error bars indicate the standard deviation.

Figure 6.4 confirms the above intuition that integrate events have a negative impact on
the overall precision of the structured data flow tracking. More precisely, Figure 6.4 shows
that the higher the frequency of integrate events, the closer the basic model and the struc-
tured model behave. For frequencies of integrate events above 40%, the estimations pro-
vided by the two models are already statistically indistinguishable from each other.

It is important to note that in this set of experiments, each of the initial files contains 32K
lines and that integrate events were configured to merge into the destination container 100
random lines from each of at most 5 different source files. Using smaller files or merging
more content during integrate events would lead to a slightly different behavior: depend-
ing on the ratio between content being merged and size of the files, after a certain threshold
the precision for both models starts to increase again with the frequency of integrate events,
as Figure 6.4 shows for values above 75%. The intuition, in this case, is that the more often
data is “mixed” among containers, the more likely it is that, at the end, all data have been
transferred to the destination, making the estimation correct again. Recalling the example
above of reading one line from a file containing n different data, the more often such event

83

6. Structured Data Flow Tracking

0

0,2

0,4

0,6

0,8

1

0% 5% 10% 15% 20% 25% 30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95% 100%

P
re

ci
si

o
n

Frequency

Precision [Unzip]

Basic

Structured

Figure 6.5.: Average precision for different frequencies of integrate events in the trace. All
other events equally distributed among other classes. Traces composed by 250
commands. Standard deviation reported in error bars.

takes place among the same containers, the more likely is that, at the end, all the n data
items end up being read, making the initial estimation correct.

Note that when the trace is composed only by integrate events, the two models provide
identical estimations.

Unzip events The variable that mainly impacts precision in the structured tracking, how-
ever, is the frequency of unzip events. Similarly to the first one, the second set of exper-
iments consisted in executing traces with different frequencies of unzip events. This is
the only type of events for which the two approaches significantly diverge (the structured
approach does not improve the precision for merge events, see Section 6.1.2); it is thus
interesting to observe how much the estimation provided by the two models diverged for
higher frequency of such events. As shown in Figure 6.5, the difference between the two
graphs is significant, and while the structured model exhibits an asymptotic convergence
to 1 (the higher the weight of the unzip events, the smaller the frequency of any other
event, in particular of class integrate, the only ones that may introduce overapproxima-
tion), the negative impact of unzip events on the precision of the basic model is crisply
clear.

Like in the previous set of experiments, for high frequencies of unzip events in the trace
(> 75%) the trend changes. In this case, the motivation is that a high frequency of unzip

84

6. Structured Data Flow Tracking

events implies a low frequency of zip events, meaning that only few different archives
are created. For this reason, the precision of the basic model starts to increase again, due
to the fact that the overapproximation introduced by unzip events is limited to those few
archives, i.e. the more unzip events in the trace, the less other files, for which the initial
estimation is given and correct, are modified.

Note that traces with frequency of unzip events equal to 100% are actually composed by
one zip event followed by equivalent unzip events (extracting the same files from the same
archive), otherwise the traces would not be valid. In this extreme case, the precision after
the trace is equivalent to the precision after executing a trace composed only by the first
two events. Also note that for this set of experiments, the size of the initial files is irrelevant
because every zip/unzip event reads and writes the whole content of the archive.

Similar kind of sensitivity tests were performed on other variables but none of them
seems to directly affect precision as the frequency of unzip and integrate events does.

6.5.6. RQ2 - Performance

In order to answer RQ2, the third set of experiments compares the native execution time
of the single traces to the time required to execute them with the basic monitor and with
the monitor for structured data flow tracking. For this set of experiments, all event classes
are assigned the same frequency, i.e. trace events are uniformly distributed among the
different classes. The results are reported in Figure 6.6.

Compared to the native execution, the basic model is on average 4.3 times slower.
Roughly half of the additional time is induced by the system call interception framework
(PEP, see Section 5.1.1), while the other half is required for the modeling of the events
(PDP, see Section 5.1.2, and PIP, see Section 5.1.3). The execution monitored with a struc-
tured model, in contrast, introduces an average overhead of 4.9x, out of which a factor of
0.2x is due to the computation of the checksum. In all the experiments, MD5 hash function
has been used as checksum.

It is worth noting that the implementation of the PEP is taken from another work in the
literature [91] and has not been optimized for the specific scenario considered. [91] is based
on strace [9], which is a debugging userspace utility for Linux; other solutions, possibly
based on different technologies, like virtual machine introspection [60], may offer better
performance, but may also introduce additional issues, e.g. bridging the semantic gap
[46]. Further solutions for runtime monitoring are described in related work (Chapter 9).

Note that the described implementation is intended to support preventive usage control;
this means that the execution of every intercepted event is blocked until the PDP verifies
that its execution is allowed. Performance could be significantly improved in case that
detective enforcement suffices, by simply buffering event requests and processing them as
a bulk from time to time, meanwhile directly allowing their execution.

Additionally, the implementation of the PDP and the communication interface between
PEP and PDP are intentionally kept generic, in order to be used by different implemen-
tations at different layers of abstraction, like the Excel implementation described in Sec-
tion 3.3.3; this includes, for instance, performing the communication between PEP and
PDP using the Thrift protocol [56] over a local network connection, which is slower than a

85

6. Structured Data Flow Tracking

0

1

2

3

4

5

6

7

8

9

10

11

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400

Ti
m

e
(s

ec
)

Trace Length

Runtime performance

Native

Basic

Structured

Structured (w/o checksum)

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400

0%

100%

200%

300%

400%

500%

600%

O
ve

rh
ea

d

Trace Length

Overhead Relative to Native Execution

Basic

Checksum

Structured

Figure 6.6.: Execution time comparison for traces of different length, absolute (top) and
relative to the native execution time (bottom).

86

6. Structured Data Flow Tracking

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

2¹⁰ 2¹¹ 2¹² 2¹³ 2¹⁴ 2¹⁵ 2¹⁶ 2¹⁷ 2¹⁸ 2¹⁹ 2²⁰ 2²¹ 2²² 2²³ 2²⁴

R
el

at
iv

e
O

ve
rh

e
ad

Size of initial files (bytes)

MD5 Computation Overhead

Figure 6.7.: Average time overhead introduced by the computation of the MD5 checksum
for different sizes of the initial files. Standard deviation in error bars.

direct function call. The latter solution, however, offers less flexibility in terms of including
additional monitors to the system.

Finally, the size of the files manipulated by the events significantly affects the native
execution time of a trace and the time required to compute the checksum during each
split and merge event. As shown in Figure 6.7, the bigger the size of the files, the smaller
the impact of the checksum computation over the total execution time of the trace. In
contrast, the time required for the modeling is independent of the size of the files. This
depends on the fact that, in general, the time required to model an event is independent of
the time required to execute an event. In other words, instantiations of the same model for
layers of abstraction where events take longer, are less frequent and more complex than
system calls, e.g. GUI interactions [100, 149, 105], are likely to result in smaller, when not
negligible, relative performance overhead.

6.6. Challenges and Conclusions

This chapter presented a new idea for a generic model to reduce overapproximations in
taint-based data flow tracking. It discusses a formalization of the model, and the imple-
mentation and evaluation of some exemplary instantiations. The key idea behind the pre-
sented model is to leverage information about events that propagate data in a structured
manner. Section 6.5 formalizes a possible metric to quantify the precision of a data flow

87

6. Structured Data Flow Tracking

tracking solution and evaluates an exemplary instantiation of the structured model w.r.t.
an instantiation of the model presented in Chapter 3, both in terms of precision and perfor-
mance. The evaluation identifies the different aspects of the system, like the computation
of an MD5 hash or the type of a certain event, that influence such results. These results
offer a specific answer to the fundamental research questions presented at the beginning
of this chapter.

In terms of limitations, the lack of real world usage profile and the consequent fuzzy
trace generation process pose an obvious threat to the validity of any results’ generaliza-
tion claim, as mentioned in Section 6.5.3. Additionally, this work assumes merge and split
operations to be atomic. Yet, in some scenarios these operations actually correspond to se-
quences of events, like in the experiments described in the previous section. The approach
suggested in Section 6.5.4, however, is not applicable to any scenario.

A more generic approach would be to model every event in the sequence using basic
taint-propagation and then, in correspondence of the last event, replace the result with the
structured taint mark. The drawback of this solution is that in some scenarios merge/split
operations correspond to possibly infinite sequences of events, like a network stream of
data. In these cases, split events may take place before the merge sequence is over. For this
reason, an extension of the structured model that supports an incremental building of the
structure is part of future work.

At a technical level, additional challenges come from finding appropriate checksum and
partId functions for the concrete implementations, although a basic hash function like
MD5 or SHA1 should work for most scenarios; the structured model is general enough
to support any choice, as long as partId maps each source container (before merge) and its
respective destination container (after split) to the same partID.

88

7. Intra-process Data Flow Tracking

This chapter presents a second solution to improve the precision of the model
introduced in Chapter 3. In this work, co-authored by the author of this disser-
tation and published in [107], the goal is achieved by leveraging static informa-
tion flow analysis results.

Background:
Usage Control

Usage Control
Marries

Data Flow
Tracking

Cross-layer
Data Flow
Tracking

Intra-process
Data Flow
Tracking

Structured
Data Flow
Tracking

Quantitative
Data Flow
Tracking

PART I PART II

System Design and Implementation

7.1. Introduction

Information flow tracking [42, 43] tackles the problem of observing flows of data from
sources (including input parameters to methods, sockets, files) to sinks (return values ren-
dered on a screen, sockets, files). Information flow analysis systems can answer the ques-
tion of whether or not data has (potentially) flowed or will (potentially) flow from a source
to a sink. Different information flow analyzes cater for different definitions of source-sink
dependencies, mainly distinguishing between explicit information flows (direct informa-
tion flows or data flows) and control-flow dependencies, or implicit information flows. Data
flow tracking solutions are generally tailored to one particular layer of abstraction, like
source code, byte code, machine code, or the operating system layer (see Chapter 9).

As described in the first parts of this dissertation, data flow tracking technologies can
be used to support distributed data usage control concepts. Chapter 4 discusses in detail
the importance of performing data flow tracking at multiple layers of abstraction, to the end
of expressing more complex system-wide policies such as “any representation of my data
must be deleted after thirty days” and to preserve the high-level semantics of objects (e.g.
“a mail”) and events (e.g. “forward”), which is otherwise hard to capture at lower layers.
But this benefit comes at a price: even a small number of monitors running in parallel may
seriously compromise the performance of the overall system, and dedicated high-level
monitors are not always available for every domain. In these cases, the usual solution is to
rely on conservative estimations provided by lower layers.

89

7. Intra-process Data Flow Tracking

APP

OS

R1 R2 R3

P

APP

OS

R1 R2 R3

Figure 7.1.: Example of data flow tracking without (left) and with (right) information about
how data flows through the application. Note that in the second case, no flow
of data towards resource R2 is reported

For instance, as depicted in Figure 7.1, if a dedicated monitor for a process is not avail-
able (see Figure 7.1, left), an OS-layer monitor would have to treat the process as a “black
box” and assume that every sensitive data it got in touch with (resource R1) is propagated
to every future output. This solution likely introduces many false positives and in this
sense grossly overapproximates the set of potential information flows. Knowing that only
certain outputs depend on a particular input (see Figure 7.1, right), the analysis can be
propagate the sensitivity of the inputs only to those outputs and not to the others.

This chapter proposes an approach to retrieve and leverage this information to mitigate
the overapproximation issue. The core idea behind this solution is to replace the runtime
monitoring of how data flows through a process (or its black-box overapproximation) by
consultations of a statically pre-computed mapping between its inputs and outputs.

The fundamental research questions addressed in this chapter are

How can the precision of the data flow tracking model be augmented
with static information flow analysis results?

How can the improvement in terms of precision be quantified?

Which aspects of the static analysis affect the precision of the approach and
how?

What is the overhead induced by this approach and what influences it?

7.1.1. Example Scenario

Alice works as analyst for ACME Inc., a smartphone manufacturer. In
order to prevent employees to work with out-of-date information, ACME
enforces the policy “upon logout, delete every local copy of reports
or contacts data”. After every login, Alice has to download from the
central repository the fresh version of the reports she is interested in and
the address of the suppliers or customers she needs to send the reports
to. In this context, a data flow tracking system is in place to automati-
cally find every copy of sensitive data to be deleted within the system.

90

7. Intra-process Data Flow Tracking

However, if the tracking is imprecise and introduces many false posi-
tives, additional possibly important resources may be accidentally
deleted as well.

Consider the setting illustrated in Figure 7.2: Alice uses the Zipper application to archive
multiple reports into a single archive file, which she then sends to the company’s Ftp-
Server using the Ftp-Client application. In this scenario, an archive (File3) is created
from different reports (E and F) and sent to a remote server. Assume that data E and F
are protected by the “delete upon logout” policy, which is enforced by a usage control
infrastructure at the OS-layer. Current usage control solutions for operating systems [164,
73] consider each running process as a black box, i.e. they do not track how data flows
through the application, but limit their observation to the interactions of the application
with the OS. When sensitive data E and F are read by the Zipper application (Zipper’s
Source1 in Figure 7.2) all further output may contain (possibly partially) E and F, and are
therefore subject to the “delete upon logout” constraint.

This includes, among the rest, Sink2, used to automatically store Zipper’s updated
configuration settings into file ZipConfig upon exit. If this happens, then Zipper’s con-
figuration file will be deleted upon logout, compromising the functionality of the applica-
tion. Similarly, every other file created by Zipper afterward would be marked as possibly
containing E and F, and thus deleted.

The same concerns also apply for the Ftp-Client. FTP works with two channels, one for
commands, and one for payload. In a black-box monitoring situation, once sensitive data
is read, every write to any of the two channels may be possibly carrying sensitive informa-
tion, and, as such, it should propagate the taint to the socket connection, and possibly to
the recipient side. In this case, the credentials on the Ftp-Server side sent via the command
channel would also be marked as “to-be-deleted”.

Operating System

FTP-Client

File 1
E

C

F

Ctrl-Socket

Password

Data-Socket

Zipper

ZipConfig File 3
E F

Source 2

Source 1 Sink 1

E F E F

Source 4

Source 3 Sink 3

Sink 2

P

P
Sink 4

File 2

E F

E F

C

C

Figure 7.2.: Example inter-application data flow [107]. Data E+F enter Zipper from
Source1 and leave via Sink1, enter Ftp-Client via Source4 and leave via
Sink3.

91

7. Intra-process Data Flow Tracking

7.1.2. Summary

The approach presented in this chapter, detailed in Section 7.2, improves the precision
of information-flow tracking system-wide, i.e. through and in-between different process-
es/applications, like the flow of data E and F through the Zipper application (Source1→
Sink1) into File3 and then through the Ftp-Client application (Source4→ Sink3) till
the payload channel. Section 7.3 shows that this solution introduces lower execution over-
head than other dynamic monitors for comparable scenarios.

Problem. The concurrent execution of multiple monitors at different layers of abstrac-
tion allows to exploit high-level semantic information (e.g., “screenshot” or “mail”) but
is performance-wise expensive and requires dedicated monitoring technologies for every
layer/application. On the other hand, relying only on estimates provided by other layers
(e.g., the black-box approach) improves performance, but at the price of (possibly signifi-
cant) precision loss.

Solution. This chapter proposes a dynamic monitoring approach for generic processes
that replaces runtime intra-process data flow tracking by consultations of a statically com-
puted taint-propagation table. Such a monitor is more performant than equivalent runtime
monitors for the same application and more precise than the OS-layer overapproximation
adopted when such a monitor is not available.

Contribution. This work represents the first combination of static and dynamic data
flow tracking for different layers of abstraction and through multiple different applications.
This solution improves the precision of OS-layer data flow tracking with minimal intra-
process runtime tracking overhead.

7.2. Approach

The work described in this chapter considers a setting with monitors at two layers of ab-
straction: a dynamic monitor at the OS-layer, based on system-call interposition [73] like
the one described in Section 3.3, and an inline reference monitor at the application level,
which observes the execution of source and sink events. The goal is to improve tracking
precision at the OS-layer with minimal performance penalties. Although the approach is
generic in nature and could be applied to any language or binary code, this work focuses
on an instantiation for the Java Bytecode (JBC) layer.

In the following, the standard terms from the literature source and sink will be used to
indicate, respectively, a method (or one of its parameters) invoked by the application to
input data from the environment, and for the dual invocation to output something to the
environment. In special contexts, like Android, it is possible to find in the literature de-
tailed lists of source and sink methods [140], but in general the choice is left to the analyst.
In this work, a source (sink) is the invocation of a Java standard library method that over-
rides any overloaded version of InputStream.read (OutputStream.write) or Reader.read
(Writer.write), or a method that indirectly invokes one of them, e.g., Properties.load(),
which uses an input stream parameter to fill a properties table.

The monitoring approach in this case roughly consists of tracking flows of data through
an application by replacing the runtime monitoring of each event with the static mapping
between its inputs and its outputs: if a source in an application is executed, the respective

92

7. Intra-process Data Flow Tracking

input’s taint mark is stored. When a sink is executed, all sources (and therefore all taint
marks) with potential flows to this sink are determined using a static mapping of potential
flows between sources and sinks. There is hence a need to instrument sources and sinks,
but not all the instructions in-between them.

The approach consists of the following three phases:
A. Static analysis In this phase an application X is analyzed for possible information

flows between sources and sinks. The result of this phase is a report containing a list of
all sources and sinks in the application and a mapping from each sink to all the sources it
may depend on.

B. Instrumentation In this phase all sinks and sources identified by the static analysis
(and only those instructions) are instrumented in the bytecode of X, allowing to monitor
their execution.

C. Runtime In this phase the instrumented application is executed. Every time a source
or a sink of X is executed, the injected monitor interacts with the monitor for the OS to
exchange information about the data being read or written using the cross-layer data flow
tracking approach described in Chapter 4.

In the remainder of this section, these phases will be described in detail, using Zipper
and Ftp-Client as examples. Notice, however, that in principle the same approach can be
applied in a push-button fashion to any Java program.

7.2.1. Static Analysis

In the static analysis phase, the code of a given application is statically analyzed for infor-
mation flows, in order to create a report containing the list of all sources and sinks in the
code and the dependencies between them.

This goal is achieved using JOANA [6, 70], a state-of-the art static information flow anal-
ysis tool for Java applications, built on top of the WALA framework [10]. Notice that this
generic approach is not bound to any specific tool, but it can leverage any static informa-
tion flow tool. Also note that the techniques used by JOANA are also used by other static
analysis tools (e.g. [153]).

JOANA operates in two steps: first, it builds a Program Dependence Graph (PDG) [54] of
the application; second, it applies slicing-based information flow analysis [72] on the PDG
to find out which set of the sources influences which sinks. In order to reduce the number
of false positives, JOANA leverages several program analysis techniques. The remaining
of this subsection elaborates on some fundamentals of the technologies used by JOANA,
namely PDGs, slicing, and some of the various analysis options offered by the tool.

PDGs and Slicing. A PDG is a language-independent representation of a program. The
nodes of a PDG represent statements and expressions, while edges model the syntactic
dependencies between them.

There exist different kinds of dependencies, among which the most important are data
dependencies and control dependencies. Data dependencies occur whenever a statement uses
a value produced by another statement, whereas control dependencies arise when a state-
ment or expression controls whether another statement is executed or not. The PDG in Fig-
ure 7.3 contains a data dependency between the statements in line 1 and in line 2 because
the latter uses the value of x produced by the former. It also contains a control dependency

93

7. Intra-process Data Flow Tracking

1 x = 1;
2 y = 2x - 5;
3 if (y > 42) {
4 z = 1;
5 } else {
6 z = 2;
7 }

x = 1

y = 2x - 5

y > 42

z = 1z = 2

data dep.

control dep.

Figure 7.3.: A code snippet and its PDG [107].

between the if -statement in line 3 and the statements in line 4 and line 6 because whether
line 4 or line 6 is executed depends on the value of the if -expression in line 3.

PDG-based information flow analysis uses context-sensitive slicing [142], a special form
of graph reachability: given a node n of the PDG, the backwards slice of that node contains
all nodes from which that node is reachable by a path in the PDG that respects calling-
contexts. For sequential programs, it has been shown [84, 162] that a nodem not contained
in the backwards slice of n cannot influence n, hence PDG-based slicing on sequential pro-
grams guarantees non-interference [68]. It is also possible to construct [95, 64] and slice
[125, 65] PDGs for concurrent programs. However, in concurrent programs there are ad-
ditional kinds of information flows, e.g. probabilistic channels [147], so that mere slicing
is not enough to cover all possible information flows between a source and a sink. A PDG-
and slicing-based algorithm providing such guarantee has recently been developed and
integrated into JOANA [64, 66].

Analysis Options. JOANA is highly configurable and allows to configure different as-
pects of the analysis, e.g. to ignore all control flow dependencies caused by exceptions, or
to specify the different types of points-to analysis [17] that are used to build the PDG. Points-
to-analysis is an analysis technique which aims to answer the question which heap loca-
tions a given pointer variable may reference. JOANA uses points-to information during
PDG construction to determine possible information flows through the heap and therefore
depends heavily on the points-to analysis precision.

There exist several kinds of points-to analyzes which lead to a variety of concrete ana-
lyzes [146] of different precisions and costs. One dimension of precision is context-sensitivity.
Intuitively, a context-sensitive points-to analysis distinguishes multiple instances of meth-
ods by some property of their calling contexts. This keeps the points-to sets for reference
variables which are local to the method (like parameters and local variables) separated for
distinguished calling contexts and hence allows for more precision in subsequent analyzes.

JOANA supports different flavors of context-sensitivity. This work uses only two of
them, k-CFA and object-sensitive points-to analysis. k-CFA [150, 117] uses as context infor-
mation the top k items of the runtime call stack, i.e. the history of the last k call sites (i.e.

94

7. Intra-process Data Flow Tracking

methods and bytecode offsets of the particular call instruction) that eventually transferred
control to the method under analysis. In contrast, object-sensitive [118] points-to analysis
does not consider the runtime call stack, but instead uses the receiver object as discrimina-
tor, i.e. it distinguishes multiple instances of a non-static method by the object on which
the method was called.

More details on the different points-to analyzes, which are not the main scope of this
dissertation, can be found in the cited related works. Note that, once again, the general
idea behind this approach is independent of the specific tool (e.g. JOANA) or the specific
points-to analysis adopted.

The outcome of this phase is a list of the sources and sinks in the code of the application
and a table that lists all the sources each sink depends on.

7.2.2. Instrumentation

In this phase, the report generated by the static analysis is used to instrument each iden-
tified source and sink. For each source or sink, the analysis reports the signature and the
exact location (parent method and bytecode offset).

1 void zipIt(String file, String srcFolder) {
2 fos = new FileOutputStream(file);
3 zos = new ZipOutputStream(fos);
4 fileList = this.generateFileList(srcFolder);
5 byte[] buffer = new byte[1024];
6 for (String file : fileList) {
7 ze = new ZipEntry(file);
8 zos.putNextEntry(ze);
9 in = new FileInputStream(file);

10 int len;
11 while ((len = in.read(buffer)) > 0)
12 zos.write(buffer, 0, len);
13 in.close();}}

Listing 7.1: Java code fragment from Zipper

Consider the code snippet in Listing 7.1, used in the Zipper application: static infor-
mation flow analysis detects the flow from the source at line 11 (Source1), where the
to-be-zipped files are read, to the sink at line 12 (Sink1), where they are written into the
archive. Listing 7.2 shows the corresponding analysis report: line 1 to line 9 specify that
the return value of the read method invocation at bytecode offset 191 in method zipIt
is identified as Source1. The same holds for Sink1 (line 11 - line 19), but in this case the
first parameter (line 18) is a sink, not a source. In the final part, the report also provides
information about the dependency between Sink1 and Source1 (line 21 - line 25), which
is then used to model possible flows.

Each reported source and sink is wrapped with additional, injected bytecode instruc-
tions using the OW2-ASM [8] instrumentation tool. In the following, the set of these ad-
ditional instructions is referred to as inline reference monitor. The outcome of this phase
is an instrumented version of the original application, augmented with a minimal inline
reference monitor that interacts with the OS-layer monitor when a source or a sink is exe-
cuted. This way incoming/outgoing flows of data from/to a resource, like files or network
sockets, can be properly modeled.

In terms of the architecture described in Chapter 5 and of the ṘA⊗B algorithm for cross-
layer data flow tracking described in Chapter 4, the reference monitor injected in this phase

95

7. Intra-process Data Flow Tracking

acts as a PEP that notifies the PIP component about the beginning and the end of the
execution of a source/sink bytecode instruction; these events can be seen as the start and
end events at the application level in the Excel examples described in Section 3.3. In this
sense, the execution of a source (resp. sink) instruction is modeled like the LOAD() (resp.
SAVE()) events in Excel.
1 <source>
2 <id>Source1</id>
3 <location>JZip.zipIt(Ljava/lang/String;Ljava/lang/String;)V:191
4 </location>
5 <signature>
6 java.io.FileInputStream.read([B)I
7 </signature>
8 <return/>
9 </source>

10 ...
11 <sink>
12 <id>Sink1</id>
13 <location>JZip.zipIt(Ljava/lang/String;Ljava/lang/String;)V:185
14 </location>
15 <signature>
16 java.util.zip.ZipOutputStream.write([BII)V
17 </signature>
18 <param index="1"/>
19 </sink>
20 ...
21 <flows>
22 <sink id="Sink1">
23 <source id="Source1"/>
24 </sink>
25 </flows>

Listing 7.2: Static analysis report listing sinks, sources and their dependencies

7.2.3. Runtime

This phase of the approach corresponds to the actual runtime data flow tracking, where the
instrumented application is executed in a dynamically monitored OS. At runtime, a single
OS-layer monitor exchanges information with multiple inlined bytecode-level reference
monitors, one per application. Note that by assumption, the information to be tracked is
initially stored somewhere in the system, e.g. in some files or coming from certain network
sockets, and marked as sensitive. For instance, in the example of Figure 7.2, data E and F
are already stored in File1 and File2, respectively.

Once a source instruction is about to be executed, the instrumented code queries the OS-
monitor to obtain information about the sensitivity of the content in input. It then stores
this information associated to the source id (e.g. ZipConfig → Source2 in Figure 7.2).
When a sink instruction is about to be executed, the instrumented code fetches the infor-
mation about the sensitiveness of all the sources the current sink depends on according to the
flow map in the analysis report (Source2 → Sink2). Such information denotes all the
possible inputs the current output may depend on, but, most importantly, it denotes all
the inputs the current output does not depend on: this is where the overapproximation is
mitigated.

With this approach, even if the application reads additional data (like data E in Fig-
ure 7.2) before generating the output, the sensitivity associated to the sink (and, conse-

96

7. Intra-process Data Flow Tracking

quently, to the output file) remains the same, as long as the additional input is not used to
generate the output. In contrast, if the process is treated as a black-box, then every output
will be as sensitive as the union of all the sources acquired till then.

Lastly, the information about the content being output by the current sink (Sink2 →
ZipConfig) is forwarded back to the OS monitor, so it can carry on the tracking outside
the boundaries of the single application.

7.3. Evaluation

The goal of the work described in this chapter is to improve data flow tracking precision at
the OS-layer, possibly introducing minimal runtime overhead. For this reason, the work is
evaluated in terms of precision (false positives1) and in terms of performance. The evaluation
addresses the following research questions by means of case studies:

RQ1 How much more precise is this approach with respect to the estimation provided by
the OS-layer monitor alone?

RQ2 How long does the static analysis phase take?

RQ3 How much slower is the instrumented application, and how does it compare with a
purely dynamic solution?

Firstly, the analysis is performed on the applications described in the running example,
Zipper and Ftp-Client. The Zipper application (∼400 lines of code) has been developed
for the purpose of this evaluation, while the Ftp-Client was found online [5]. The code
of these apps is intentionally minimal, in order to facilitate manual inspection of the re-
sults. Moreover, these applications stress-test the proposed solution because the approach
instruments only entry and exit points in the code (sources and sinks), but the vast major-
ity of executed instructions are indeed sources or sinks; for comparison, the same solution
has also been executed on a third use case, an application with little I/O and large amount
of computation in-between: the Java Grande Forum Benchmark Suite [4], a benchmark
for computationally expensive Java applications. Among others, this framework has been
chosen to compare the evaluation results to those of related work [31].

7.3.1. Settings

The evaluation was performed on a system with a 2.6 GHz Xeon-E5 CPU and 3GB of RAM.
All the applications have been a statically analyzed using the different configurations de-
scribed in Section 7.3.2. For each of these configurations, the median execution time of
at least 30 independent executions is reported, to weed out possible environmental noise.
The implementation used as OS monitor, has been already presented in Section 3.3.2.

All the runtime experiments use the objsens-D (see Section 7.3.2) report from the static
analysis phase. The decision is motivated by the highest precision of this configuration in
preliminary tests; however, tests with any other analysis resulted in statistically indistin-
guishable runtime performances.

1Static analysis is assumed to be correct, i.e. all the real flows that can be statically identified are correctly
reported by the analysis by assumption, without any false negative. Limitations of this approach are
discussed in Section 7.3.2

97

7. Intra-process Data Flow Tracking

7.3.2. RQ1 - Precision

To answer question RQ1 some considerations need to me made: First, by construction,
the approach cannot be less precise than treating the processes as black boxes (= every
output contains every source read so far), the typical conservative estimation made by
monitors based on system-call interposition [73]. Second, while dynamic analyzes usually
rely on explicit flows only, static analyzes may consider additional kinds of dependencies
between instructions (e.g. control-flow dependencies), generating more dependencies be-
tween sources and sinks. Third, even when configured to report explicit-flows only, a static
approach considers every possible execution at once, meaning that if at least one execution
leads to the flow, then the sink statically depends on the source.
1 in=input();
2 if (cond) {
3 out=in;
4 }
5 output(out);

For instance, for the simple sequence of instructions on the left, the
analysis will report that the sink at line 5 depends on the source at
line 1, although this is true only for those values that make condition
cond at line 2 evaluate to true. A runtime monitor would report the

dependency only during those runs where cond is satisfied. Replacing the runtime mon-
itoring with a static dependency table introduces overapproximation by making the sink
depending on the source during every execution, regardless of cond’s value.

To perform experiments on the scenario described in Section 7.1.1, three files have been
created, two filled with random content and assigned to data E and F respectively, and one
containing the configuration for Zipper, assigned to data C. In this scenario, the only data
read from the standard input is the password, thus marked as P. Then, after executing the
scenario (i.e. archiving the files using Zipper and sending them to the server using Ftp-
Client), the different monitors must estimate the sensitivity of the content that reached the
ftp sockets at the end of the run. As expected, executing the scenario in the presence of just
a monitor for the OS-layer (black-box approach), the estimation is rather coarse-grained
(every data reached both sockets). The execution with the proposed solution, instead,
provided the expected result (data E and F flowed only to the data socket, while P flowed
only to the control socket).

This approach is by construction no less precise than the black-box approach, so it is no
surprise that this result confirms the improvement in terms of precision of the solution.
However, it is hard, if not impossible, to quantify such improvement in general terms, in
order to answer RQ1. Considering that a black-box approach would always be as precise
as this approach when every source is connected to every sink, one possible metric for
precision improvement could be based on the number of source-to-sink dependencies that
can be safely discarded by the static analysis. With this argument, let #flows denote the
number of statically computed dependencies between sources and sinks. Precision is then
measured as

1− #flows

#sources×#sinks

where 0 indicates that every source flows to every sink (like in the black box approach) and
1 indicates that all the sinks are independent from the sources, i.e. no data propagation.
Literature offers no better metric to measure precision of static analysis with respect to
black-box dynamic monitoring.

The static analyzer is run on both the Zipper and the Ftp-Client with different analysis
options (see Section 7.2.1). As depicted in Table 7.1, various points-to analyzes have been

98

7. Intra-process Data Flow Tracking

Points-To Time (s) #Sources/#Sinks Precision (DI / D)

Ftp-C
lient

0-1-CFA 32 9 / 46 38% / 51%
1-CFA 64 9 / 46 58% / 73%
2-CFA 153 9 / 46 58% / 73%
objsens 220 9 / 46 38% / 74%

Z
ipper

0-1-CFA 53 10 / 56 24% / 43%
1-CFA 82 10 / 55 25% / 53%
2-CFA 185 10 / 55 55% / 78%
objsens 353 10 / 55 57% / 84%

JG
FBS

0-1-CFA 211 8 / 84 56% / 59%
1-CFA 580 8 / 81 71% / 75%
2-CFA 626 8 / 81 71% / 77%
objsens 360 8 / 81 73% / 79%

Table 7.1.: Static analysis results for different configurations [107]. Precision is defined as
1− (#flows/(#sources×#sinks))

.

tested (0-1-CFA [71], 1-CFA, 2-CFA, object-sensitive) with (DI) and without (D) consider-
ing implicit information flows. According to the formula above, the improved precision of
the instrumented version of the applications varies between 24% and 84% for the Zipper,
between 38% and 74% for the Ftp-Client and between 56% and 79% for the Java Grande Fo-
rum Benchmark Suite, depending on the configuration. Although object-sensitive points-
to analysis and k-CFA are incomparable in theory, object-sensitivity tends to deliver more
precision in various client analyzes [118, 104]. This effect can in part also be observed here,
at least for the configurations in which indirect flows are ignored (D). The reason is that
the points-to analysis result is mainly used to compute the data dependencies and has only
limited effect on the control dependencies. For the Ftp-Client, object-sensitivity delivered
worse precision than 1- and 2-CFA.

Note that these numbers are hard to relate to dynamic values, because they depend on
the specific application under analysis and they do not take into account how many times
a certain source/sink instruction is executed at runtime.

7.3.3. RQ2 - Performance of the Static Analyzer

The results of the evaluation of the static analyzer are shown in Table 7.1. The constructed
PDGs have between 7× 104 and 5× 105 nodes and between 6× 105 and 9× 106 edges. In
the “direct-flows-only” (D) configurations, PDGs have between 11% and 34% fewer edges
than in the respective “direct-and-indirect-flows” (DI) configurations. In general, most of
the execution time (80-90%) was spent on PDG construction, whereas the majority of the
remaining time was spent on slicing. The execution time of the static analyzer largely
depends on the points-to analysis used to build the PDG. This comes from the fact that
the actual PDG construction makes heavy use of the result of the points-to analysis, which
can greatly vary in size with different settings: a larger points-to result makes the PDG
construction phase more expensive.

99

7. Intra-process Data Flow Tracking

Size (bytecode)
orig.→instr.

Average
overhead per
sink/source

Overhead in total

Intra Intra+OS Intra Intra+OS [93] [31] [94]

Zipper 1611→ 2192 2.06x 22.92x 2.09x 34.28x 220.4x - -
Ftp-Client 9191→ 9785 0.16x 4.37x 0.28x 6.75x 25.7x - -

JGFBS 29003→ 30123 6.33x 144.65x 0.001x 0.07x 10.5x 0.25x - 1x -

Zipper32 1611→ 2192 0.24x 7.11x 0.33x 11.61x 19.7x - 15.2x - 28.1x

Table 7.2.: Runtime analysis results. Underlined value taken from the literature, all others
measured. Values in italic refer to results of comparable tests (see Section 7.3.4).
Zipper32 indicates the archiving of 261MB using internal buffers 32 times bigger.

7.3.4. RQ3 - Runtime Performance

The proposed solution has been compared to other information-flow tracking solutions
from the literature, either by running the tool on the same scenario used to evaluate the
solution from the literature [31] or, when possible, by running the tools from the literature
on the same test cases chosen for this work. The latter is the case for LibDFT [93], a tool
for binary-level instrumentation based on the Intel PIN [113] framework, used to track
flows of data through a certain process. [31] instead is a hybrid information-flow tracking
tool for the Java virtual machine. Other candidate tools for the comparison (like [36, 41,
175]) could not be executed, because their source codes were tailored to specific legacy
systems, libraries or environments, or lacked the necessary documentation to configure
them properly and to get them running for comparison purposes.

Time measurements are reported in Table 7.2, published in [107]. The first column shows
the difference in size between the original application (including libraries, if different from
the standard Java APIs), measured in number of bytecode instructions.

The evaluation of runtime performance is based on multiple experiments: recalling the
scenario in Section 7.1.1, the first set of experiments simulates the transfer of a 20K file
to a remote server using Ftp-Client and its compression using Zipper. Another set of ex-
periments consisted in running the tool on a computationally expensive task with limited
I/O, the Java Grande F.B.S., used in [31]’s evaluation. The results consist of the total time
required to execute each test case 1) natively (i.e. without instrumentation), 2) with just the
intra-process monitor but without the monitor at the OS-layer (columns Intra in Table 7.2),
and 3) with monitors at both layers (columns Intra+OS).

As mentioned before, the Zipper and Ftp-Client applications are stress-testing the ap-
proach because they transfer data in blocks of 1KB at a time. This results in a huge number
of read/write events: for comparison, creating a zip file of 261MB of Linux source code
with Zipper generated ∼122K write and ∼256K read events, whereas gzip, an equivalent
tool used in [94]’s evaluation, only generates 3781 writes and 7969 read system calls for the
same input and the same output.

Because [94] is a dynamic monitor that connects information flow tracking results for
multiple applications on multiple hosts in the same system (system-wide tracking), a com-
parison to this work is particularly relevant. To perform it, an additional set of experiment
has been executed: compressing 261MB with the Zipper application after increasing the

100

7. Intra-process Data Flow Tracking

size of the buffers by a factor of 32x. This way, Zipper generates the same number of I/O
events of the tool used in [94] when executed on the same inputs. Although comparing
different applications (Zipper and gzip) is always tricky, since the number and type of gen-
erated events is almost identical, the comparison is still informative and likely fair. These
results are presented in the last row of Table 7.2. The overhead for zipping 261MB (11.61x)
using Zipper is smaller than the best value for gzip mentioned in [94] (15.2x-28.1x). Sim-
ilarly, the overhead on the Java Grande F.B.S. (0.07x) is one order of magnitude smaller
than the results in [31] (0.25x-0.5x).

Notice that the static analysis and the instrumentation phases take place only once per
application. For this reason, they are excluded from the computation of the relative run-
time overhead (columns Intra and Intra+OS in Overhead, Table 7.2). Also, the values in
Table 7.2 do not include the time required to boot the Java Virtual Machine, which is inde-
pendent of the instrumentation and thus irrelevant. It is worth noticing that while differ-
ent configurations of LibDFT has been tested, in the best case only overheads one order of
magnitude larger than those reported in the original paper[93] could be reproduced.

7.4. Discussion

This section elaborates on some of the technical and fundamental highlight and limitations
of this approach and provides a general summary of the experimental results.

By combining static and dynamic data flow technologies, the approach described here
managed to analyze and to track system-wide information flows between different appli-
cations and across different application layers (and different systems). As results show
(see Table 7.1), depending on the applied points-to analysis it is possible to tune the preci-
sion of the tracking system significantly. Although the runtime overhead highly depends
on the number of instrumented sources/sinks and on how an application is implemented,
in the aforementioned case studies (a non-optimized implementation of) this approach can
perform better than existing solutions in terms of either, precision or performance.

On computationally intensive tasks, for instance, like the Java Grande F.B.S., the tool ex-
hibited a negligible overhead in practice (<0.07x), while in other I/O intensive scenarios,
the performance is comparable to, if not worse than, existing solutions from the literature.
To better understand the factors that influence the performance, the remainder of this sec-
tion analyzes some of the limitations of the general approach described here.

Firstly, static analysis is by its nature not able to distinguish every possible execution and
therefore introduces overapproximations, which results in imprecision in the information
flow analysis. One possibility to improve precision, is the use of more precise points-to an-
alyzes (see Section 7.2.1), but this usually comes at the price of considerably longer analysis
times (see Table 7.1) and higher memory consumption, meaning scalability problems.

This scalability issue can be mitigated by tuning the implementation. Also, the static
analysis only has to be performed once per application and could be outsourced to a high
performance server which precomputes the tables once for each program. It is also rea-
sonable to assume that in a real scenario the source-sink dependency table comes together
with the application in a signed form, similar to proof-carrying code. This obviously intro-
duces some key management issues, which are out of the scope of this work and therefore
not discussed.

101

7. Intra-process Data Flow Tracking

The scalability problems are worsened by the fact that even small Java programs use
large parts of the Java standard library – sometimes just referencing a prominent class
name causes a whole avalanche of static initializers to be executed –, which makes the
structures which JOANA constructs (call graph, PDG) very large. Currently, JOANA per-
forms a whole-program analysis, which means that all the libraries used by the code under
analysis need to be analyzed every time. There exists an approach to make the PDG con-
struction more modular by pre-computing appropriate approximations of library PDGs
and re-using them when calls of library methods are encountered [69], but this approach
has not been fully integrated yet, so it is unclear whether it brings considerable perfor-
mance gains in practice.

Another limitation of JOANA (and of static analysis in general) is the inability to prop-
erly analyze applications that do not have a main entry point but that are used through
callback handlers (e.g. Swing): Analyzing callback-based applications requires a model
that captures the way the callback handlers are used (e.g. which simulates the user). Such
a model could for example be obtained by running the application, by specification in a
dedicated language or by simulating all possible callback connections.

Also, JOANA currently ignores reflective code. Like callbacks, dealing with reflection
in a sound but not overly imprecise way is not a JOANA-specific issue, but rather a fun-
damental challenge in static analysis, for which a general precise solution is impossible.
Additional analyzes like string analysis may help to resolve some reflective code (e.g. find
out the name of a dynamically loaded class) but in general, either very coarse assumptions
have to be made, or unresolvable reflective code has to be ignored. Some approaches like
[29] exploit runtime information to resolve reflection.

In the context of this work, it is important to clarify the notion of information flow used
for the static analysis phase. In the examples described here, for instance, information
flows solely caused by exceptions have been intentionally ignored. This has to do with
the fact that every I/O operation may cause an exception, making the execution of every
source influencing every following sink by possible failing. While the proposed tool can
handle exceptional control-flow, this feature has been disabled in the tests.

Note that if the static analysis phase is configured to detect explicit flows only, then
the combination of the runtime monitors for the OS and the inlined reference monitor in
the application guarantees a property similar to the one described in Section 4.2.1, based
on Volpano’s weak secrecy [158]. However, it would be easy to circumvent the analysis
by transforming each direct assignment within the application into an “indirect” assign-
ment (i.e. a loop that leaks the value of a variable one bit at a time via a control-flow
dependency). This way, the analysis would report no dependencies between sources
and sinks. On the other hand, sound and precise system-wide non-interference assess-
ments (including implicit flows) require a static analysis of all the applications together
at once. This is because independent analyzes for the single applications are inherently
non-compositional, e.g. they cannot model dependencies generated by the concurrent in-
teractions on shared resources [147]. Due to its exponential nature, a global all-at-once
analysis would be unfeasible even for a small number of applications of a reasonable size
and would also likely lead to results that are too conservative to be useful (i.e. too many
false positives).

The approach described in this chapter lies somehow in-between these two extremes:
by considering implicit flows during the intra-process tracking, for each application it can

102

7. Intra-process Data Flow Tracking

guarantee the non-interference between inputs and outputs if they do not appear in the
report, while at the same time it also models the flow of data across different applica-
tions. This property is stronger than weak secrecy and than the single-layer soundness
(see Section 3.4), which ignores intra-process implicit flows, but still weaker than system-
wide non-interference, due to the aforementioned general lack of compositionality of the
analyzes for different applications

7.5. Extensions

The approach described in the previous sections represents the core idea behind the solu-
tion. Different improvements and specializations are possible. This section describes the
most relevant ones, and the price they would come at.

Firstly, as shown in Listing 7.2, the report generated by the static analysis phase is cur-
rently context-insensitive. This means that it distinguishes sources and sinks by the name of
their containing method and the bytecode offset of the corresponding instruction, but does
not take into account any information about the context in which the containing method
is invoked, and calling contexts may help in gaining precision. There exist several flavors
of context-sensitivity, and for JOANA, the kind of contexts which can be incorporated into
the report is determined by the kind of points-to analysis (see Section 7.2.1) used. For sim-
plicity’s sake, the following example uses 1-CFA to illustrate the potential for precision
gains of context-sensitive analysis reports. Consider the following code snippet:

1 class A {
2 public m(int x){
3 output(x);
4 }
5 }

6 class B {
7 public main(int i){
8 A a = new A();
9 x = input();

10 if (i == 0)
11 a.m(x);
12 a.m(42);
13 }
14 }

Let assume that at runtime the method main is only executed with parameter i 6= 0.
Hence, method A.m is only invoked from line 12 which means that sink t in line 3 is not
influenced by source s in line 9. JOANA is able to determine this statically, if run with
1-CFA as points-to analysis. In this example, it would distinguish two contexts of t: The
context c1 in which A.m is invoked from line 11 and the context c2 in which A.m is invoked
from line 12. Due to context-sensitivity of the used slicing algorithm, JOANA then deduces
that there may be a flow from s to t in c1 but no flow from s to t in c2.

In a context-insensitive flow report, in contrast, all contexts of twould be merged: There
would be only one instance of t and a flow from s to t would be reported simply because
there exists at least one context c of t (namely c1) such that t may be influenced by s if it is
executed in c.

Of course, distinguishing between multiple instances of (i.e. contexts for) sources and
sinks may result in a rise of the absolute number of reported flows. Nevertheless, there is
a potential precision gain if at runtime the additional context information is also used to
decide that a given sink is not influenced by a given source. It is also worth mentioning
that, in order to make the instrumented code recognize the execution context of a cer-

103

7. Intra-process Data Flow Tracking

tain sink at runtime, additional instrumentation is required. Depending on the kind of
context-sensitivity, this may impact considerably on the runtime overhead. In order to
keep the runtime overhead to a minimum, the proof-of-concept implementation of the
tool described in this work compromises the possible additional precision in favor of the
performance benefit of not requiring additional instrumentation.

Another way to make the analysis more precise is to “help” it by introducing manual
declassification annotations or hand-refined source and sink specification. Although pos-
sible, this additional improvement has not been investigated in detail because the envi-
sioned application context of this solution is a scenario where the static analysis is per-
formed automatically and the code under analysis is possibly unknown.

The last possible extension that has not been discussed is the possibility of enforcing us-
age control requirements at the level of Java Bytecode in a preventive fashion [58], i.e. to exe-
cute a certain source/sink only if the tracker’s response is affirmative. While implementation-
wise this required only a minor addition to the instrumentation step, this line of work has
been abandoned for two reasons: the instability of the system when blocking methods, and
the difficulty to express higher-level usage control policies. Any interesting policy at the
bytecode level that was identified during this research could be expressed and enforced in
an easier way at different layers.

7.6. Challenges and Conclusions

This chapter described an approach to improve the precision of system-wide data flow
tracking by integrating static information flow analysis results with runtime technologies.
The proposed solution can track flows of data through an application and in-between dif-
ferent applications with a runtime overhead that, in the case studies, was better than sim-
ilar approaches from the literature. At present, any claim of generalization of these results
to other scenarios cannot be substantiated, but no fundamental argument against it has
been found either.

While the proof-of-concept implementation discussed in the evaluation section connects
executed Java code to an OS-layer runtime monitor, the general methodology presented in
this chapter is not restricted to specific programming languages or tools, so instantiations
for languages other than Java are possible. For instance, static approximations for flows in
a data base could be connected to dynamic measurements in a Java application.

The work presented here is the first system-wide runtime analysis that replaces the in-
ternal behavior of applications by their static source/sink dependencies. Although hybrid
approaches have already been proposed in the literature, this kind of integration of static
and dynamic results is the first of its kind.

Experiments confirmed the intuition that the improvement of precision and performance
depends on the type of information flows to consider as well as on the amount of I/O in-
structions compared to the total number of instructions. This solution is particularly suit-
able for situations in which this ratio is rather low, i.e. for those applications that perform
large computations on small number of inputs and produce a limited number of outputs.

These results, detailed in the respective sections throughout the chapter, constitute valid
and well-substantiated answers to the fundamental research questions presented at the
beginning of this chapter.

104

7. Intra-process Data Flow Tracking

Future research will focus on application of this work to other programming languages
and the x86-binary level, although static analysis tools at this layer exhibit bigger limi-
tations. Additionally, further investigations may provide a better understanding of the
issues described in Section 7.5, in particular of context-sensitive analysis reports, which
offer higher precision at the price of additional code instrumentation.

105

7. Intra-process Data Flow Tracking

106

8. Quantitative Data Flow Tracking

This chapter presents a third extension of Chapter 3’s model. In this work, co-
authored by the author of this dissertation and published in [110], the basic
model is augmented with information about the amount of data transferred by
system events. This supports more expressive policies and containers declassif-
cation criteria to mitigate overapproximation issues.

Background:
Usage Control

Usage Control
Marries

Data Flow
Tracking

Cross-layer
Data Flow
Tracking

Intra-process
Data Flow
Tracking

Structured
Data Flow
Tracking

Quantitative
Data Flow
Tracking

PART I PART II

System Design and Implementation

8.1. Introduction

The first part of this work already discussed how data flow tracking concepts can be ex-
ploited to support usage control. Using the model presented in Chapter 3, one can track
the distribution of data among different containers in the system at any time and, using
such information, enforce advanced usage control requirements such as “every copy of this
data item must be deleted in 30 days.” However, the information this model can offer about a
certain container c and a certain datum d is binary: either c potentially contains (possibly
partially) d, or it does not, similarly to the notion of tainting in information flow analyses.

This chapter proposes a refinement of this model that keeps track of the (estimated)
amount of data that flows to a container: it does not limit the analysis to whether or not
data flowed, but it tries to answer the question of how much data flowed?

The fundamental research questions addressed in this chapter are

How can the precision of the data flow tracking model be augmented
with additional information about the amount of data?

How can the amount of data in the different representations be quantified
and how can it be used to improve precision?

107

8. Quantitative Data Flow Tracking

How can the improvement in terms of precision be quantified?

What is the overhead induced by the solution?

Which aspects of the system does it depend on?

8.1.1. Motivation

In information flow analysis, quantitative measurements are usually applied to source
codes, in order to determine how many bits of information are transferred from some
specific inputs to some specific outputs by one, some or every possible execution of a pro-
gram. Similarly to the extension described in Chapter 6, these approaches cope with both
explicit and implicit flows, due to the presence of a control-flow. But when this informa-
tion is not available, only explicit flows can be measured, and that is the general case of
the system considered in this chapter.

One may object that quantitative information-flow analysis without implicit flows is not
significantly challenging; that is only partially true. Consider, for instance, a representation
resulting from the merging of other two; as explained in Section 8.3, a precise estimation of
the amount of data stored in the merged representation may require the whole history of
every transfer of the secret across the system. And even though every kind of information
can be measured in bits, different encodings may result in significantly different sizes for
representations of the same data, especially when representations reside at different lay-
ers of abstractions. Note that the work described in this chapter focuses on quantitative
measurement techniques that assume just one type of data (fixed encoding, no compres-
sion); the issues related to the more general case of different encodings are discussed in
Section 8.5.4.

The benefit offered by a correct measure of the amount of data stored and flowing across
different representations is twofold: on one hand it allows specification of quantitative poli-
cies such as “if a file contains more than 10% of data from the customer database, then it must be
deleted on logout”; on the other hand, it lays the basis for reasonable declassification criteria,
like in the exemplary scenario described at the end of this section.

The other solutions proposed in the second part of this dissertation (see Chapter 6 and
Chapter 7) aim at tackling the label creep problem (see Section 5.2.1) by refining Chapter 3’s
analysis in terms of false positives. Given the same initial state of data dissemination and
the same trace of events, these models leverage additional information about the system in
order to reduce the number of containers that possibly contain the data after the execution
of the trace; in contrast, the approach described in this chapter would result in the same
number estimated by the basic model. The improvement in terms of label-creep mitiga-
tion stems from the possibility of applying the restriction associated to the sensitive data
only to those containers that contain a certain amount of such data, e.g. “if a file contains more
than 10% of data from the customer database, then it must be deleted on logout”. In this sense, a
file containing less than 10% of customer data is equivalent to a file that contains no cus-
tomer data, reducing the impact of the restriction over system functionality when the taint
propagation analysis is too conservative.

108

8. Quantitative Data Flow Tracking

Quantitative measurements are useful for preventive enforcement but also for a posteriori
analyses (see Section 1.3). Consider a company’s software querying a customer database
and the policy access to these data allowed during opening hours only. Without preventive
enforcement mechanisms, employees might take home sensitive data. Often, sometimes
this may be the only way to get the job done in time, in spite of the policy violation. For
auditing purposes, it should then at least be recorded how much sensitive data have been
disclosed. An auditor spotting a policy violation that concerns only 0.01% of customer
data once a month may decide to ignore it, while daily disclosure, or disclosure of 30% of
data, must be sanctioned.

This concept of acceptable exception is very important in security in practice. Even though
confidential data should never be disclosed, this restriction is occasionally circumvented
to accomplish specific tasks. While quantifying the threshold between an acceptable ex-
ception and a violation to report depends on the context-specific security goal (e.g., cost
in case of disclosure), thanks to the model for quantitative data flow tracking presented in
this chapter (quantitative model, from now on) it is possible to measure quantitative flows
of data and to enforce rules on them.

The quantitative model provides information about the amount of data stored in repre-
sentations for usage control purposes. Nevertheless, it could be used also in other contexts
or in combination with other techniques (e.g. risk analyses).

Problem. This work investigates the problem of measuring flows of data and how to
embed such measurements into the usage control framework described in the first part of
this dissertation.

Solution. This chapter defines a formal model for dynamic quantitative information
flow measurements that (i) extends the basic tainting approach with quantitative mea-
surements and (ii) augments the expressiveness of the existing model by allowing specifi-
cations of quantity-based policies.

Contribution. The contribution of this work is a generic layer-agnostic model for quan-
titative data flow tracking that can be instantiated to different layers of abstraction and that
uses a non-probabilistic layer-specific quantitative measure for data (units). An exemplary
instantiation of the model at the OS-layer is also implemented and evaluated.

8.1.2. Example Scenario

Alice works as an analyst for a smartphone manufacturer. Her job in-
cludes combining information about new models under development with
data from field experiments and from various public sources into reports
for suppliers and for other departments. To prevent leakage of sensitive
data, each enterprise machine implements measures such as forbidding
the installation of third-party software. However, too restrictive mea-
sures, such as preventing sensitive data from being saved locally, proved
not to be very effective in the past. This is because they slow down the
business process too much and sometimes were circumvented on a reg-
ular basis. For this reason, each machine is equipped with an OS-layer
monitor that tracks the amount of sensitive data that is processed
by each system call. This system aims at the enforcement of policies
such as: if a file contains more than 1MB of sensitive data, then it

109

8. Quantitative Data Flow Tracking

must be saved in encrypted form and may not be emailed. Such
a policy allows Alice to send to a supplier some details about a specific
smartphone, like for example size, weight or screen resolution, but pre-
vents her from disclosing too many details such as a high-resolution pic-
tures of the circuit board. In order to prevent violations of the policy by
splitting data in multiple different files and mails, the aggregated num-
ber of chunks mailed to the same destination is recorded and stored for a
reasonable amount of time, e.g., until the phone is publicly released.

8.2. Measuring Data Quantities

The goal of a data flow tracking model is to track the distribution of data across differ-
ent containers. If some data is stored in a particular container, and an action (e.g., a copy
command or a query) transfers half of the content of the container into a new one, intu-
ition suggests that also half of the data is stored in the new representation. Following this
intuition, the model for quantitative data flow tracking presented here (from now on, quan-
titative model) refines the so-called tainting approach (yes, data is stored in this container /
no, it is not) by the notion of quantity (5Mb of data are stored in this representation). Given
a specific container, such as a file or a database, knowing how much different sensitive data
is stored in it helps enforcing policies such as if more than 1MB of data related to a phone
specification is stored in a file, then that file must be encrypted and deleted on log out.

Let data unit be the smallest part of a container that can be addressed by an event of
the system, like a system call or a query, and let size of a container be the number of units
that compose it. The size of an event is the number of units the event processes. Units
may differ depending on the layer of instantiation. For example, at the database layer,
records (or cells) are units (“database d.db contains 14 sensitive records”) whereas at the file
system layer, containers are measured in bytes or blocks, depending on the granularity of
the events that operate on them (“file f.doc contains 150KB of sensitive data”). If data flows
across different layers, units at one layer must be converted into units of the other layer.
Conversion issues are discussed in Section 8.5.4.

The goal of this quantitative model is to estimate how many different units of sensitive
data are stored in a specific container. Multiple copies of the same unit stored in the same
container do not make the container more sensitive than the single copy: if a document
contains the same paragraph twice, it contains as much information as a document with
only one instance of this paragraph. Given a data source (the initial representation), the
quantitative model estimates how many different units of a certain data item are stored in
each container of the system at a specific moment in time. This means that if a container
c contains q units of data d, then, by looking at c, one may come to know up to q different
units of (the initial representation of) d.

Each unit is assumed to be as informative as any other unit, i.e. no unit is more im-
portant than another. If this assumption cannot be justified, then the data items must be
structured into parts of different informative value, and that each part is then tracked sep-
arately, possibly leveraging information about special events in the system, as discussed
in Chapter 6. Covert or side-channels are not considered (e.g., knowing whether a unit
has been copied or not does not leak any information about its actual value). Compression

110

8. Quantitative Data Flow Tracking

P
re

c
is

io
n

A B

C D

E F

Copy C and F

Coarse-grained tainting
A B

C D

E F

 Quantitative tracking

C FFine-grained tainting

Figure 8.1.: Copying two blocks C and F: coarse-grained tainting (equivalent to copying
the whole container); quantitative tracking (two blocks are copied without
knowing which ones); fine-grained tainting (knowing copied blocks) [110].

and/or different encoding schemas conflict with the assumption of informative equality
of units. However, in closed or semi-closed environments as in Section 8.1.2’s example, it
is reasonable to assume the behavior of every single event or process in the system to be
known, and therefore also where compression takes place. For simplicity’s sake, this case
is not considered in the presented solution (see Section 8.5.4 for more details).

Knowing how many data units are stored in a container does not necessarily imply knowl-
edge of which data units. Knowing exactly which units of data are transferred requires
monitoring and storage capabilities that may not be available in every scenario. For exam-
ple, in a database system, it may be reasonable to log the number of records retrieved by a
query (size of the result table), but not to log the complete content of each query (values in
the result table).

Figure 8.1 illustrates how the precision of the quantitative approach discussed in this
chapter lies in-between the precision of coarse-grained and fine-grained tainting ap-
proaches. Coarse-grained tainting tracks data at the level of containers: if one data unit
flows to a container, the whole container is considered as sensitive as if the complete data
item had been transferred to it. Fine-grained tainting tracks each data unit independently
and computes exactly which data unit is stored in each container. The quantitative method
proposed here records the size of each event and infers that the destination container of
a transfer operation of size n contains at most n different data units, but not which ones. If
tracking every data unit is not possible or requires too many storage or computational
resources, the quantitative approach can be a good compromise between security and
usability.

8.3. Quantitative Data Flow Tracking

This section describes a model to compute for every container, at each moment in time, an
upper bound for the number of different units of a sensitive data item stored in it.

The model relies on three abstractions: data, containers, and events. For simplicity’s
sake, this approach considers only three types of events affecting the amount of data in a
container: container initializations, transfers of data units from one container to another
(e.g., copying or appending parts of a file), and deletion of data from a container (e.g.,
deleting some records from a database table). These abstract events need to be instanti-

111

8. Quantitative Data Flow Tracking

ated according to the instantiation of the model (e.g., system calls for an OS, queries for a
database). After introducing this simple model, its relation to the one presented in Chap-
ter 3 is discussed.

Initially, each container in the system contains no unit of sensitive data. If an event in-
troduces new sensitive data into the system, the event is modeled by mapping the number
of new sensitive units of data to its initial representation(s). Usually, the initial amount of
sensitive data corresponds to the size of the initial representation, but the model allows
for the case where a data item is only partially sensitive, i.e. the number of sensitive units
may be strictly smaller than the size of the initial representation.

After the initialization of data d, every event in the system that corresponds to a transfer
or deletion of units of d in some container is monitored. The remaining of this section
shows how different events may lead to different upper bounds for the number of sensitive
units in each container.

The amount of sensitive data transferred by an event is bounded by the amount of sensi-
tive data stored in the source container. This bound can sometimes be improved. Consider
two transfers of 6 units each from a container A of size 10 to a new container B. Simply
adding units to the destination after every transfer would assign to B an upper bound of
12, even though A is bounded by 10 (hence no more than 10 different units could have
flowed from A to B).

A similar observation can be made if a container receives data from multiple related
sources. Consider a scenario where 6 units are transferred from A of size 10 to B. An
additional transfer of 6 units from A to C and a subsequent transfer of 6 units from C to
B would lead to the same result of B containing 12 different units—but all the units in B
originate in A of size 10. To increase precision, it is important to keep track of previous
transfers. In the model, this historic information is stored in provenance graphs.

8.3.1. Provenance Graphs

For simplicity’s sake, the remaining of this section assumes that there exists only one data
item d in the system. Multiple data items can be handled with several provenance graphs,
one per item, as discussed in Section 8.4.

Data provenance is recorded by a flow graph G = (N , E). Each node n ∈ N in this
graph represents a container at a specific moment in time, encoded by a natural number:
N ⊆ C × N, where C is the set of containers. N also contains a special external source
node (S, 0) ∈ N for the data item for which the graph is built. Edges E ⊆ N × N × N
represent events that add data to or remove data from containers. The label of an edge is
the actual amount (number of units) of data that flowed from the source container to the
destination container in the considered event. As a consequence, it also is an upper bound
for the amount of sensitive data units that flowed from the source node’s container to the
destination node’s container. Its precise value is determined by the event, e.g., 100 bytes
or 10 records have been copied.

The goal of the provenance graph is to support the computation of an upper bound
for the number of different sensitive units of data d in each container in the system. For
reasons that will become apparent in step 6 of the example below, this is computed on the
grounds of a provenance graph. Section 8.3.2 defines κ, the function that computes such

112

8. Quantitative Data Flow Tracking

an upper bound for those nodes of the provenance graph that correspond to the containers
in the current (that is, latest) timestep.

8.3.2. Runtime Construction

A provenance graph is incrementally built at runtime. This gives rise to a sequence of
graphs G0, . . . ,Gt for each moment in time, t. Let Gt = (Nt, Et) for all t. For a node n ∈ Nt,
let κ(n) be the above mentioned upper bound for the maximum number of sensitive units
in the container that corresponds to the node (the computation of κ is discussed below).
For every event at time t, at most one new node and one or two new edges are created.
This evolves Gt−1 into Gt where Gt−1 is a subgraph of Gt.

The following are possible graph evolutions:

I step The initialization of data is modeled by copying all data from the data source node
to an initial container ci. Assuming the event at time t is the initialization, events of this
type add a node (ci, t) to Nt−1 and, for d being composed by m units of sensitive data,
an edge

Ä
(S, 0),m, (ci, t)

ä
to Et−1, which yields Gt = (Nt, Et).

C steps If, at time t, container c1 may contain some sensitive units and the event copies,
without knowledge of whether or not they are sensitive, ` units of data from container
c1 to c2, then the model adds a node (c2, t) and the first or both of the following two
edges to Gt−1:

C1 step
Ä
(c1, t

′), `, (c2, t)
ä

for the node (c1, t
′) ∈ Nt−1 with t′ < t such that there is no

(c1, t
′′) ∈ Nt−1 with t′ < t′′ < t (this ensures that data is copied from the “latest

representation” of container c1).

C2 step If c2 already exists (copying then is appending), its content at time t − 1 also
needs to be considered. In this case, there exists a t′ < t such that (c2, t

′) ∈ Nt−1 and
there is no t′′ with t′ < t′′ < t such that (c2, t

′′) ∈ Nt−1. To make sure that the sensitive
content of c2 at time t′ (which is the same as at t − 1) is not forgotten at time t, the
edge

Ä
(c2, t

′), κ((c2, t
′)), (c2, t)

ä
is added to Et−1. Replacing the label κ((c2, t

′)) by ∞
would not impact correctness nor precision; the choice of κ((c2, t

′)) is motivated by
presentation concerns. Remember that κ((c2, t

′)) is an upper bound for the number
of sensitive units in c2 at time t′ and therefore also an upper bound for the number of
sensitive units that can flow from (c2, t

′) to (c2, t).

T step If the event at time t is a truncation of c, the amount of sensitive data in c (i.e.
κ((c, t′)) such that (c, t′) ∈ Nt−1 and (c, t′′) ∈ Nt−1 =⇒ t′′ ≤ t′) is compared to the new
size of c, m. Since a container cannot store more sensitive data than its actual size, if
κ((c, t′)) > m, a node (c, t) and an edge

Ä
(c, t′),m, (c, t)

ä
are added to Gt−1. Otherwise,

no new node is added.

At each moment of time, provenance graphs are defined to be the smallest relations
satisfying the above three properties. Note that a C step can be performed with more than
one source container. This is modeled as a C1 step for each source container and only one
C2 step if the destination container already exists.

113

8. Quantitative Data Flow Tracking

630

2

7 8

20

5 6

S,0

A,1

B,2

C,3

D,6

D,4

D,5

5 C,7

Figure 8.2.: Example provenance graph at time t = 6. Dashed arrows are C2 steps.

8.3.3. Step-by-step Example

Consider the example in Figure 8.2.

1. First, containerA is initialized with the content from the external data source (an I step).
This yields node (A, 1) as well as the edge labeled 20 from (S, 0) to (A, 1), indicating
that the data item in question contains 20 units of sensitive data (and possibly more
non-sensitive data). The only useful estimation is κ((A, 1)) = 20. Note that this only
measures the number of sensitive units; similar to S, A may well contain more non-
sensitive units of data.

2. In the second step, 5 units of data are copied from A to B, which results in node (B, 2)
and the edge labeled 5 from (A, 1) to (B, 2) (a C1 step). Since only five units of data
have been moved, κ((B, 2)) = 5 is reasonable.

3. The third event copies 30 units of data from container A to container C (another C1
step), resulting in an edge with label 30 from node (A, 1) to a newly created node (C, 3).
Note that it is possible to copy 30 units because the size of A may well exceed the
number of sensitive units. Still, since A contains at most 20 units of sensitive data, 20 is
also an upper bound for the number of sensitive units in C, yielding κ((C, 3)) = 20.

4. The fourth event copies 6 units from C to D (another C1 step). This yields a new node
(D, 4) and an edge labeled 6 from node (C, 3) to (D, 4). As discussed in the previous
point, C contains at most 20 sensitive units, and a conservative estimation must assume
that all data copied from C to D is sensitive, thus κ((D, 4)) = 6.

5. The fifth event copies 2 units from B to D (a C1&C2 step). This results in a new node
(D, 5), an edge labeled 2 from (B, 2) to (D, 5) and, in order to reflect the content previ-
ously contained in D, another new edge from (D, 4) to (D, 5) labeled 6 (which is the κ
value of (D, 4)). The maximum number of sensitive units in D now is κ((D, 5)) = 8, the
sum of at most 2 units from B and at most 6 units from the earlier instance of D.

6. The sixth event copies another 7 units from B to D (another C1&C2 step). This creates a
new edge labeled 7 from (B, 2) to a new node (D, 6), and an edge labeled κ((D, 5)) = 8
from (D, 5) to (D, 6). This is where the computation of a precise value for κ becomes

114

8. Quantitative Data Flow Tracking

non-trivial. A first estimate for the upper bound is κ((D, 6)) = 8+7, a result of the flows
from B and an earlier version of D to D, similar to what happened in step 5. However,
as discussed at the beginning of this section, actual flows are upper bounds for flows of
sensitive data, and since κ((B, 2)) = 5 and κ((D, 5)) = 8, it is impossible to have more
than 13 distinct sensitive units inD. A better estimation is hence κ((D, 6)) = 5+8. Yet, it
is impossible that 13 different units flowed fromA toD: The upper bound of κ((D, 5)) =
8 units of sensitive data includes 2 units received from B (step 5). Since these units do
not need to be counted twice, D cannot contain more than κ((D, 6)) = 5 + 6 different
sensitive units.

7. The seventh event truncates the size of container C to the new size of 5. This results in
a new node (C, 7) and an edge labeled 5 from (C, 3) to (C, 7). κ((C, 7)) = 5, because C
is now composed of 5 units only, i.e. C contains at most 5 different sensitive units.

8.3.4. Rationale

Step 6 of the example motivates the use of provenance graphs: The fact that (D, 6) nec-
essarily contains duplicates of two units of sensitive data is something that can be known
only by considering the history of data flows (in this case, step 5 that appended two units of
data to container D—and the transfer of sensitive data in step 5 depends on steps 2 and 4,
as explained below). It is this historical knowledge that allows to reduce the upper bound
κ((D, 6)) from 13 to 11 units.

In fact, the number of units transferred from (B, 2) to (D, 5) (i.e. the 6th event) is not the only
relevant influence for the computation of κ((D, 6)); regardless of the number of units that had
been transferred from B to D in step 5, the upper bound would still be κ((D, 6)) = 11.
From this perspective, the provenance graph now reveals that (B, 2) and (D, 5) together
cannot contain more than 5+6 units of sensitive data: historically,B received 5 units in step
2 and D received 6 units in step 4. This information is stored in the form of the edge labels. This
motivates the computation of κ via the max-flow/min-cut theorem rather than via recur-
sive computations on predecessors or dominators of the newly created nodes as follows.
Remember that the actual flows of possibly non-sensitive data in-between containers (the
edge labels) are upper bounds for the flow of sensitive data. They can hence be interpreted
as capacities for sensitive data in the flow graph. Then, the upper bound for the amount of
different sensitive data in each container (corresponding to a node n) equals the maximum
flow of sensitive data from the source node to this node n. In the example, the max flow to
D in step 6 is determined by steps 2 and 4, corresponding to the edges from (A, 1) to (B, 2)
and from (C, 3) to (D, 4).

8.3.5. Computation of κ

The definition of κ then is simple: if n ∈ Nt is the new node created in timestep t, then
κ(n) = maxflowGt((S, 0), n). Since every container can be the destination of a copying
event in the next step (a C step), the κ value of any node needs to be available at any
moment in time.

Algorithmically, this can be done by computing at most only one max-flow/min-cut
on a directed acyclic graph per event (for the new node): because the model never adds

115

8. Quantitative Data Flow Tracking

incoming edges to existing nodes, their κ value is constant over time and does not need to
be recomputed.

8.3.6. Correctness

The model is correct if, at each moment in time, the number of different units of a sensitive
data item actually contained in a container is not greater than the computed κ value. Let
ϕ be the oracle function that provides this actual amount for a node (i.e. container and
moment in time). Note that ϕ is not defined but just assumed to exist.

Let also assume all events in the system to be adequately reflected in the construction
of the flow graph. Whenever an event moves data in-between containers, such event is
used to construct the provenance graph according to the description above. Conversely,
no edge or node is added without the corresponding event. This assumption connects the
model (provenance graph) to the real system. Note that κ denotes a property of the model
and ϕ a property of the real world.

The proof that ∀t ∈ N∀c ∈ C : ϕ(c, t) ≤ κ((c, t)) indeed holds is provided in Section C.1.

8.3.7. Simplification

Because the complexity of the computation of maximum flows depends on the size of the
graph, it is desirable to keep graphs small. Obviously, any reduction in size should pre-
serve the correctness and the precision of the algorithm presented above. The simplification
rules described in the following are motivated by the observation that a sequence of event
can sometimes be shortened to another sequence that leads to a smaller provenance graph
that provides the same upper bounds for every current and future container.

Intuitively, provenance graphs Gt and G′t are equivalent if

(i) for each container c, if n and n′ are the most recent nodes created for c in Gt and G′t
respectively, then κ(n) = κ′(n′) where κ′(n′) = maxflowG′t((S, 0), n′);

(ii) if the content of any set of containers (i.e. most recent nodes) is copied to a (possibly
new) container after time t, then the evolutions of the two graphs yield the same
upper bounds for the amount of sensitive data in this container.

(i) stipulates that the two graphs yield identical upper bounds for every container. Since
future evolutions of a provenance graph add edges to the respective most recent nodes
only, (ii) stipulates that independently of the events that connect such nodes in the future,
the maximum flows from the source to the new nodes must be identical in both graphs.

Formally, let the set of current nodes cnG(X) represent the nodes in G that are the latest
representation of each container in X ⊆ C:

∀G = (N , E), X ⊆ C : cnG(X) = {(c, t)|c ∈ X ∧ (c, t) ∈ N ∧ ∀t′ : (c, t′) ∈ N =⇒ t′ ≤ t}.
Assuming a set of containers X , Gt,X denotes the graph in which every node in cnGt(X)
is connected to a dummy node dn that represents a virtual sink of all future operations
on the nodes in cnGt(X) (and therefore all future evolutions of Gt on every possible set of
containers):

Gt,X = (Nt ∪ {dn}, Et ∪
⋃

n∈cnGt (X)

{(n,∞, dn)}).

116

8. Quantitative Data Flow Tracking

Definition 8.1 (Equivalence of Provenance Graphs). Let κt,X(n) = maxflowGt,X ((S, 0), n)
for any node n, and, similarly, κ′t,X(n) = maxflowG′t,X

((S, 0), n). Equivalence of provenance
graphs is then defined by the following invariant:

Gt ∼ G′t ⇐⇒ ∀X ⊆ C : κt,X(dn) = κ′t,X(dn)

The following are the most relevant cases identified during this research where, given
a provenance graph, a smaller but equivalent provenance graph could be obtained. Small
graphs considerably increase performance in the experiments of Section 8.5.2. The proof
that these simplifications are correct in that the original provenance graph, Gt, is equivalent
to the modified graph, G′t (i.e. ∀t ∈ N : Gt ∼ G′t), is provided in Appendix C.

Removal of a truncation.

If at time k there is a copying action of size q from ca to a new container cb, and a truncation
of cb to size m occurs at time t > k, and, between these two events, there is no other
truncation or transfer to cb, and the sum of transfers from cb is lower than q −m, then this
sequence leads to a provenance graph equivalent to the one yielded by the sequence that
transfers exactly m data units to cb at time k, copies data from ca instead of cb from time
k + 1 to t − 1, and does not contain the truncation of cb at time t. Thus, the simplification
consists in modifying the edge label of the copying step at time k, replacing any further
copying action from cb by a copying action from ca, and removing the final truncation.

Removal of a copy (case 1).

If a copying action from ca to cb of size s1 takes place at time k, and another copying action
from cc to cb of size s2 occurs at time t > k, and in between these two events there is no
truncation or transfer to ca or to/from cb, then this sequence leads to a provenance graph
that is equivalent to the one yielded by the sequence that directly transfers s1 and s2 data
units at time k from ca and cc, respectively. Thus, the simplification consists in adding cc
to the source containers of the copying at time k and removing the last copying step.

Removal of a copy (case 2).

If at time k there is a copying action from ca to a new container cb of size s1, and another
copying action also from ca to cb of size s2 occurs at time t > k, and in between these two
events there is no truncation or transfer to ca or cb, and the sizes of all transfers from cb after
time k sum to a value that is below s1, then this sequence leads to a provenance graph that
is equivalent to the one yielded by the sequence that copies s1 + s2 data units at time k
and does not contain the final transfer. The simplification in this case consists in replacing
the amount transferred at time k (s1) with the value s1 + s2 and removing the last copying
step.

117

8. Quantitative Data Flow Tracking

8.4. Quantitative Policies

8.4.1. Semantic Model

Provenance graphs are now used to generalize the model presented in Chapter 3 by com-
bining quantitative data flow tracking with data usage control.

In the quantitative model, the state of the system is given by the association between
each data item and its provenance graph (Σq = D → Graph). Provenance graphs consist
of nodes, Nodes ⊆ C × N, i.e. container-timestamp pairs. Nodes contains a reserved
identifier (S, 0) that stands for the external source of data for each graph. Provenance
graphs are modeled as a (partial) function of type Graph = Nodes × Nodes → N which
associates each edge with the corresponding event’s size, i.e. the number of flowed data
items.

Given a provenance graph and an event, function step : (Graph× S)→ Graph updates
the graph according to the rules presented in Section 8.3. The quantitative model assumes
that each concrete event in the system is (1) mapped to one of the abstract events and
therefore possible graph evolutions (init, transfer, truncation) and (2) associated with a
size, possibly 0. In real implementations, however, each system event may correspond to a
sequence of possible graph evolutions, e.g. “move A to B” corresponds to a transfer form
A to B followed by the truncation of A to 0. For simplicity’s these cases are assumed to
be handled internally by the step function, mapping each system event to the respective
sequence of graph evolutions, applying all of them to the input graph and returning only
the final result.

Then, Rq : (Σq × S) → Σq models the application of event e to each provenance graph
in σ. This is done by function step: ifRq(σ, e) = σ′, then σ′(d) = step(σ(d), e) for each data
item d ∈ dom(σ).

Quantitative usage control policies are defined over traces that map abstract time points
to events (Trace : N→ P(S)).

Given a trace t, function statesq : (Trace× N) → Σ computes the information state at a
given moment in time n as

statesq(t, n) =

®
σi if n = 0
Rq(statesq(t, n− 1), t(n− 1)) otherwise

.

Note that, as for the basic model, the assumption of independence of events within the
same timestep is assumed to hold (see Section 2.1.3). For this reason, in the definition of
statesq, Rq has been overloaded to handle sets of events (in form of any arbitrary serial-
ization).

8.4.2. Policies

A general discussion on usage control policies can be found in Chapter 3. Here, the focus is
on one possible way of restricting data quantities. To this end, the model needs to capture
function κ introduced in Section 8.3. Given a graph Gt and a container c, function K :
(Graph × C) → N returns the maximum amount of different sensitive units stored in c
according to the provenance graph Gt. K corresponds to the application of κ() to the most
recent version of c in Gt.

118

8. Quantitative Data Flow Tracking

Let Φq be the set of operators to specify quantitative policies, defined as

Φq ::= atMostInEach(D,N,P(C)) | atMostInSet(D,N,P(C))
where

• atMostInEach(d, q, C) specifies that at most q units of data d may flow to any
of the containers belonging to set C. For instance, the policy “No outgoing mail can
contain more than 10KB of sensitive data” is, at each moment in time, expressed as
atMostInEach(d, 10KB, MAILS), where MAILS is the set of containers that rep-
resents outgoing mails.

• atMostInSet(d, q, Cs) limits the combined capacity of a set of containers. For
example, the policy “No more than 1MB of customer data can be saved on a removable
device” could be checked by the proposition atMostInSet(d,1MB,REMOVABLE),
where REMOVABLE is the set of containers that represent files on removable devices.

Given a trace and a time point, the semantics |=q⊆ (Trace× N)× Φq of these quantitative
data usage operators is defined by

∀t ∈ Trace,∀n ∈ N, ∀φ ∈ Φq, ∀σ ∈ Σ : (t, n) |=q φ ⇐⇒
σ = statesq(t, n) ∧ ∃d ∈ D, Cs ⊆ C, Q ∈ N :

φ = atMostInEach(d,Q,Cs) ∧ ∀c ∈ Cs : K(σ(d), c) ≤ Q ∨
φ = atMostInSet(d,Q,Cs) ∧∑c∈CsK(σ(d), c) ≤ Q

Using Φq only simple information flow policies can be specified. To express more complex
policies, like those presented in Section 8.1, Φq must be embedded into the full temporal
logic language defined in Chapter 3, obtaining the new language Φiq

Φiq ::= (Φiq)|Ψ|false|Φiq implies Φiq|forall V Name in V V al : Φ|
Φiq until Φiq|Φiq after N|replim(N,N,N,Ψ)|repuntil(N,Ψ,Φiq)|
Φs|Φq

and its semantics |=iq⊆ (Trace × N)× Φiq

∀t ∈ Trace;n ∈ N;ϕ ∈ Φiq : (t, n) |=iq ϕ⇔ ϕ 6= false ∧Ä
∃e ∈ VE : (ϕ = E(e) ∨ ϕ = I(e)) ∧ ∃e′ ∈ t(n) : e′ |=e ϕ

∨∃ψ, χ ∈ Φiq : ϕ = ψ implies χ ∧ ¬((t, n) |=f ψ) ∨ (t, n) |=iq χ
∨∃γ ∈ Γ : ϕ = eval(γ) ∧ [[ϕ]]eval = true
∨∃vn ∈ V Name; vs ∈ V V al;ψ ∈ Φiq :
ϕ = (forall vn in vs : ψ) ∧ ∀vv ∈ vs : (t, n) |=iq ψ[vn 7→ vv]

∨∃ψ, χ ∈ Φiq : ϕ = ψ until χ ∧
Ä
∀v ∈ N : n ≤ v ⇒ (t, v) |=iq ψ

∨∃u ∈ N : n < u ∧ (t, u) |=iq χ ∧ ∀v ∈ N : n ≤ v < u⇒ (t, v) |=iq ψ
ä

∨∃m ∈ N;ψ ∈ Φiq : ϕ = ψ after m ∧ (t, n+m) |=iq ψ
∨∃m ∈ N1; l, r ∈ N;ψ ∈ Ψ : ϕ = replim(m, l, r, ψ)∧
l ≤ #{j ∈ N1|j ≤ m ∧ (t, n+ j) |=iq ψ} ≤ r
∨∃m ∈ N;ψ ∈ Ψ, χ ∈ Φiq : ϕ = repuntil(m,ψ, χ)

∧
Ä
(∃u ∈ N1 : (t, n+ u) |=iq χ ∧ (∀v ∈ N1 : v < u⇒ ¬((t, n+ v) |=iq χ))

∧(#{j ∈ N1|j ≤ u ∧ t(n+ j) |=iq ψ}) ≤ m)

∨(#{j ∈ N1|t(n+ j) |=iq ψ}) ≤ m
ää

∨ϕ ∈ Φs ∧ (t, n) |=s ϕ
∨ϕ ∈ Φq ∧ (t, n) |=q ϕ

119

8. Quantitative Data Flow Tracking

Notice that the definition of Φiq and of its semantics are almost identical to those of Φ, ex-
cept for the for the last line, which includes the state based operators from Φs. Using the Φiq

language, it is then possible to specify policies such as always(¬atMostInSet(d, q, Cs) ⇒
notify) that issue a notification whenever the amount of data d stored in the specified set
of containers Cs exceeds q. This kind of policies is used in the experimental evaluation
in Section 8.5.

8.5. Evaluation

The adequacy of the quantitative model in terms of the scenario in Section 8.1 has been
evaluated by conducting different sets of experiments, which measured precision and per-
formance of the model alone, i.e. at an abstract level, and in concrete instantiations at the
operating system layer (see Section 3.3.2), where the abstract events are associated system
calls and API calls.

8.5.1. Implementation and Methodology

Remember that Alice performs a sequence of report generation/ update actions in the
phone scenario presented in Section 8.1 and that she is subjected to a set of policies of
the kind always(¬atMostInSet(d, 1MB,MAIL)⇒ notify) (see Section 8.4). An action is
a transfer of some units of data from a specification or from an existing report to another
(possibly new) report. This experiment consists in generating random sequences of actions
of different lengths, and observing the evolution of the model during their execution. In
each step, Alice can choose between creating a new and updating an existing report with
probability PN. The analyses in the remainder of this section refer to average and median
values of the execution of 100 sequences for each length.

The first set of experiments (atomic, denoted by A), modeled each action after the initial-
ization as one single abstract event, either a T or a C step (see Section 8.3), where speci-
fications and reports are containers. The second set of experiments (syscalls, denoted by
S), instantiated the model to the operating system layer (Linux) and performed quantita-
tive data flow tracking at this layer. In this refined context, events are system calls, and
containers are files, pipes, memory locations, and message queues. Specifically, the MAIL
set from the above policy is a set of sockets for email communication. Specifications and
reports are modeled as files, and each abstract action from the first set of experiments
corresponds to one system call or a sequence of system calls: initialization is done in the
beginning by extracting the data item d to be protected from the policy and mapping it to
the initial representation; truncation is modeled as open() with the overwrite flag set, as
truncate(), ftruncate(), or unlink(); transfer is modeled by mmap(), as read()
from file to process, and as write() from process to file or socket. These are the concrete
events used to define the Rq relation in Section 8.4. They also refine, by disjunction, the
abstract events specified in the above policy.

The length of an event sequence depends on the size of the files and of the transfers in-
volved. In the tests, one abstract action corresponds, on average, to 40 system calls. Each
experiment started from the same arbitrary yet fixed amount of (sensitive) specifications
and (initially non-sensitive) reports. For both experiments, the model is evaluated with

120

8. Quantitative Data Flow Tracking

0%

20%

40%

60%

80%

100%

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

Pe
rc

en
ta

ge
 o

f
se

n
si

ti
ve

 r
ep

o
rt

s

Number of actions

Quantitative policy

U=0

U=5K

U=10K

U=15K

U=20K

U=30K

U=50K

Figure 8.3.: Percentage of reports considered sensitive by a quantitative policy vs. number
of actions (PN=50%)

(denoted s) and without (denoted n) simplification. The syscalls tests without simplifica-
tion (i.e. the Sn configuration), consider only sequences of at most 1024 actions because
the time required to perform 100 executions longer than 1024 is prohibitive without sim-
plification.

In the second set of experiments, the quantitative model is instantiated at the operat-
ing system layer. The amount of bytes that a process tries to read/write from/to a file
corresponds to the event size used by the tracking framework. If any of the defined poli-
cies does not allow the respective system call to be executed, the system call is denied.
Otherwise, the system call is dispatched to the kernel and executed as usual.

The experiments address the following questions:

RQ1 How precise is the quantitative model (i.e. how far is the estimated value from the
exact amount of different sensitive data units)?

RQ2 What is the overhead induced by the quantitative model w.r.t native execution?

8.5.2. RQ1 - Precision

One problem with possibilistic data flow tracking is usability: because of the involved
over-approximations, systems quickly become unusable because very many data items
are quickly tainted (“label creep”, see Section 5.2.1). For a typical run of the system, Fig-
ure 8.3 shows the relative number of reports considered sensitive (tainted) for the policy

121

8. Quantitative Data Flow Tracking

0%

20%

40%

60%

80%

100%

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

Pe
rc

en
ta

ge
 o

f
d

if
fe

re
n

t
se

n
si

ti
ve

 u
n

it
s

Number of actions

Precision (1 container)

Coarse-grained tainting (size)

Quantitative tracking

Fine-grained tainting (exact)

Figure 8.4.: Estimation of different sensitive units in an exemplary container during one
execution (PN=50%). Before the 16th action, no sensitive data is stored in the
container.

“do not distribute a report if it contains more than U units of sensitive data”, for different val-
ues of U (50K is the number of sensitive units in the system), as a function of the number
of hitherto executed actions. The figure suggests that usability may indeed be increased
because reports are considered sensitive less quickly and thus not blocked when sent, de-
pending on the value of U . Note that all curves are well below the uppermost reference
line U = 0 (possibilistic estimation).

A second perspective is provided by Figure 8.4, which shows how many units are con-
sidered sensitive according to different tracking methods for a typical container. As ex-
pected, the quantitative estimation is in-between coarse-grained and fine-grained tainting.

To more precisely answer the first research question it is necessary to know in general
how close the quantitative tracking curve is to the fined-grained tainting curve; the smaller
this gap is, the more precise the model is. Therefore, to empirically measure the precision
of the model for a container c at a specific moment in time, let precision be defined by
function Prec as

Prec(c) =

1 if Size(c) = Exact(c)
Size(c)−Estim(c)
Size(c)−Exact(c) Otherwise

,

where Size(c) is the total number of data units in c (including non-sensitive data and
duplicates), Exact(c) is the precise number of different sensitive units in c, and Estim(c)
is the number computed by the model, i.e. the value of κ. Thus, Exact(c) ≤ Estim(c) ≤
Size(c). The estimation is most accurate if Estim(c) = Exact(c) (i.e. Prec(c) = 1), and the

122

8. Quantitative Data Flow Tracking

0%

20%

40%

60%

80%

100%

0

0,2

0,4

0,6

0,8

1

2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

Satu
ratio

nP
re

ci
si

o
n

Number of actions

Precision and Saturation

PN=100%

PN=80%

PN=60%

PN=40%

PN=20%

PN=0%

Average report saturation (PN=0%)

Figure 8.5.: Median precision vs. number of events and percentage of new reports for
syscalls tests

worst case (Prec(c) = 0) is Estim(c) = Size(c). In the special case Size(c) = Exact(c),
the estimation is still correct (i.e. Prec(c) = 1). The proportion of non-sensitive units (or
duplicates of sensitive units) in a container c that are incorrectly considered additional
different sensitive units by the model corresponds to 1− Prec(c).

Precision obviously depends on the sequence of actions considered. For instance, if the
user always copies the complete content of one container to another, then the quantity-
based approach will not be more precise than any coarse-grained tainting approach. Sim-
ilarly, if the user always copies the same few specific units from a container that contains
a lot of other sensitive units, the quantity-based approach will be significantly less precise
than a fine-grained tainting approach. However, it is interesting to see how the precision
evolves in scenarios in-between these two extremes.

Figure 8.5 shows the median precision for all containers after Alice performed a number
of transfers. Since she can choose between creating a new report or updating an existing
one, in this test the probability PN that she creates a new report in each step varies from
0, where no new report is created but only existing ones are updated, to 1, where every
action creates a new report. Precision monotonically decreases for each value of PN but
0. For PN = 0, only updates of existing reports are possible: Alice keeps transferring
data to and in-between the same fixed set of reports, with the consequence that after a
while all data in the specifications is transferred to every report. Let max be the maximum
number of different sensitive units in the specifications (and thus, in the system). If a report
contains all specification data (Exact(c) = max), such report is saturated, because no more

123

8. Quantitative Data Flow Tracking

1

10

100

1000

10000

100000

2
(82)

4
(166)

8
(332)

16
(662)

32
(1313)

64
(2622)

128
(5241)

256
(10501)

512
(21005)

1024
(42034)

2048
(84115)

4096
(168319)

8192
(336248)

G
ra

p
h

 N
o

d
e

s

Number of actions (syscall events)

Graph Size

Syscall without simplification

Atomic without simplification

Atomic with simplification

Syscall with simplification

Figure 8.6.: Graph size vs number of actions (PN=50%), layer of abstraction
(Atomic/Syscall), with (s) and without (n) simplification. Note that As
and Ss overlap.

different sensitive units can be added to it. Considering thatmax is an upper bound for the
estimation, precision for saturated containers is equal to 1 (max = Exact(c) ≤ Estim(c) ≤
max =⇒ Exact(c) = Estim(c)), and the closer to saturation a container is, the higher its
precision will be. Figure 8.5 shows the positive correlation, after some time, between the
median precision (dotted line) and the average report saturation (average (Exact(c)/max)
over every report container c, dashed line) for PN = 0. For other values of PN , median
precision asymptotically decreases to a limit that depends on PN : the higher PN , the
higher the precision.

Simplification

Without simplification (Section 8.3), the provenance graph grows by one node and one or
two edges per event on a sensitive container. Memory and also time consumption may
then become critical because max-flow computation time is quadratic in the size of the
graph. In particular, monitoring Alice’s behavior at the operating system layer requires
observing many events (∼ 40 system calls per action), which significantly impacts the size
of the provenance graph.

Figure 8.6 shows the growth of the provenance graph as the number of actions increases.
This test compares the monitoring of each action as an atomic transfer (1 action = 1 event)
with the instantiation at the OS-layer (1 action ∼ 40 events), with and without simplifica-
tion. By construction, the graphs grow by at most one node after each event. As expected,

124

8. Quantitative Data Flow Tracking

0,001

0,01

0,1

1

10

100

1000

2
(82)

4
(166)

8
(332)

16
(662)

32
(1313)

64
(2622)

128
(5241)

256
(10501)

512
(21005)

1024
(42034)

2048
(84115)

4096
(168319)

8192
(336248)

Ti
m

e
(s

ec
o

n
d

s)

Number of actions (syscall events)

Time overhead

Graph (not simpl.)

Estimation

Graph (simpl.)

Native Execution

Figure 8.7.: Time overhead for the syscalls tests (PN=50%) with and without QDFT, with
and without optimizations.

monitoring a forty-fold number of events is reflected in a graph forty times larger (Sn).
However, simplification (Ss) made the graph as small as the atomic one (As), with direct
implications in terms of time required to capture a new event, as explained in the next
section. After 336248 events, Ss contains 5460 nodes only, which is less than 2% of the
non-simplified graph’s size.

8.5.3. RQ2 - Performance

In addition to precision, it is also interesting to evaluate the storage and the time required
to update the quantitative model when receiving an event. As for the graph’s size, per-
formance depends on the sequence of actions performed by the user. The implementation
requires a fixed amount of ∼12Mb of RAM plus ∼285 bytes per node and ∼110 bytes per
edge, i.e. less than 17Mb in total for traces of more than 330K events. Because these num-
bers are negligible on modern machines, the performance analysis focuses on the time
dimension.

Worst-case scenario

As mentioned in Section 8.3.2, it is possible for every C2 step to replace the edge’s capacity
by∞without impacting correctness or precision. This allows to build a provenance graph
at runtime without computing max-flow: only if a usage event (i.e. an event whose execu-
tion is constrained by a quantitative policy) addressing a container c is observed, max-flow

125

8. Quantitative Data Flow Tracking

from source to c is computed (lazy evaluation). Concretely, in the considered scenario this
means computing max-flow only upon observing a write() system call to one of the con-
tainers in MAILS, and not for every read() and write() in the trace. For instance, if
only 1 in every 10 reports is actually sent via email (the rest is sent to other departments),
then the median overhead after 8192 actions (336248 events) is 43 seconds instead of 72
(124% vs 211%).

To answer the second research question, the performance overhead of maintaining the
provenance graph with and without applying optimizations (simplification rules and lazy
evaluation) is measured. Figure 8.7 shows the median performance overhead compared
to the native execution time. For the optimized case, Figure 8.7 distinguishes between the
minimum overhead, introduced by the pure creation of the graph, without any max-flow
computation (Graph (simpl.)) and the maximum overhead, required to compute max-
flow after the execution of each event (Estimation). Although the time to maintain the
non-simplified graph grows very quickly (13700% of the native execution time for 1024
actions), the overhead remains quite small for the optimized version (43 seconds, 124%,
two orders of magnitude less than before for traces 8 times longer). In this example, a
max-flow computation on such graphs always requires less than 115 msec.

Average-case scenario

The numbers obtained from the previous experiments make scalability a concern in the
worst case. However, these experiments were designed to stress this particular aspect. In or-
der to test whether or not scalability is an issue in an average real-world scenario, another ex-
periment has been conducted: the quantitative model has been instantiated for another op-
erating system (MS Windows), where events are API calls (WriteFile(), ReadFile(),
CreateFile(), etc.) and containers are files, pipes and memory locations. As the previ-
ous experiments, this one considered a set of sensitive source files and the creation of 64
reports with PN=50%. This scenario simulates a user opening two files with a text editor
(notepad or wordpad) and copy-pasting some content from each source to a third file, pos-
sibly adding some (non-sensitive) content before saving it. Note that the destination could
be either a new report or an existing one.

With respect to the previous experiments, this scenario shows two important differences:
a) in addition to the API calls generated by the user interaction, every other API call in
the system is monitored, including those generated by background processes; b) some
processes in Windows read/write files using many API calls with blocks of fixed size (e.g.
4KB for notepad), whilst other transfer large amounts of data in a single call, similar to the
behaviors of, respectively, the syscalls and the atomic experiments described before.

For this experiment, a total of 60K API calls has been observed, out of which 48K were
filtered using trivial heuristics (like ignoring certain system services). The remaining 12K
were circa 10% related to sensitive data and 90% unrelated “noise” calls created by other
processes. All the 12K calls were sent to the quantitative model and translated into respec-
tive I, C or T actions, updating the graph and requiring for each event an estimation of
the sensitive data in its target container. The total time needed by the model to handle all
the updates was ∼40msec, less than 17% of the native execution time of the 12K API calls.
With respect to the total time required by a fast user to perform the task (at least 5 seconds
per report), this overhead is not perceivable. This further instantiation of the model shows

126

8. Quantitative Data Flow Tracking

that it is indeed usable in a realistic scenario.

8.5.4. Discussion

The experimental results confirm that the precision of the quantitative model lies in-between
a coarse-grained and a fine-grained tainting approach. Although highly dependent on the
properties of the sequences of actions analyzed, the precision of quantitative estimations
in the use cases considered is usually quite good (i.e. the estimated amount of different
sensitive units is close to the exact amount). In terms of performance, without the applica-
tion of simplification rules the expected quadratic dependence between time required to
perform an operation on the graph and its size (which, in turn, is linearly growing with
the number of actions performed) is observed. With the introduction of simplification and
lazy evaluation, the size of the graph decreases by more than one order of magnitude and
the performance of the model improves significantly.

The quadratic complexity of the max-flow algorithm will always be a limit to the scala-
bility of this approach; however, in an average-case scenario the overhead introduced by
the model may remain negligible. In several contexts, moreover, sensitivity of data is time-
bounded, e.g., a phone specification may be sensitive only until the phone is released, hence
no need to maintain a provenance graph afterward.

Finally, if the traces used for experiments represented real-world documents creation,
it is unlikely that Alice would anyway notice an overall overhead of 72 seconds during
the preparation of more than 8000 reports (∼ 9ms per report). Though this overhead does
not take into account the delay introduced by the system call interposition framework (up
to 270% [73], and 1-3 orders of magnitude for other layers of abstraction [136]), the delay
introduced by the quantitative model is absolute, i.e. independent of the time required to
perform or intercept the actions. This means that, for instance, 1ms to update the provenance
graph may be an intolerable overhead when modeling the execution of a system call, but
may at the same time be a negligible delay for a BPEL or ESB event [126].

8.6. Challenges and Conclusions

This chapter presented an extension of the model for data flow tracking discussed in Chap-
ter 3 that leverages information about quantities of data stored in containers. It proved the
correctness of the model and assessed its precision and performance by discussing an im-
plementation of it and embedding it in the usage control framework presented in the first
part of this dissertation.

The precision of the result depends on the specific actions performed by the user, and
can either be as good as that of a fine-grained approach that knows exactly how many
different units of each data are stored in every container, or as as bad as that of a coarse-
grained approach which is only aware of the possibility of data being stored in a certain
container, but without any information about the amount of it. Usually, the precision of the
quantitative model lies somewhere in between the two by over-approximating the exact
amount of sensitive units.

The results described in this chapter, in particular the integration of data quantities in
the model, the definition of tracking precision in Section 8.5.2, and, in general, the evalu-

127

8. Quantitative Data Flow Tracking

ation performed in Section 8.5 satisfactorily address the fundamental research questions
discussed at the beginning of this chapter.

Augmenting the data flow tracking model with the quantitative features described in
this chapter allows the framework to support the notion of acceptable exceptions, i.e. quan-
titative policies defined a posteriori. For example, in case of a data leakage, analyzing the
logs of the actions with the quantitative model may establish that only 0.1% of sensitive
data have been leaked. At this point, an auditor may decide that this violation is still ac-
ceptable, whereas it is unlikely that a policy defines a leakage of 0.1% to be acceptable in
advance, i.e. before the leakage happens.

Some of the limitations of this work that will be addressed as future work are: coping
with compression, modeling sources of data of variable sizes and investigating the prob-
lem of measuring data across different layers of abstraction (i.e. converting units of data),
which at the moment can only be treated in very special cases (i.e. when representations
are compressed/converted using fixed-ratios). If compression of multiple files into a sin-
gle archive is a common event in the scenario, maybe a model that leverages structure of
data (see Chapter 6)) rather than its amount could provide better results.

128

9. Related Work

This chapter relates the work presented in this dissertation to similar work from the litera-
ture. Many of the results described in this dissertation have been presented and published
at international conferences and workshops; Section 9.1 presents an overview of them,
whilst the following sections put the results in the context of existing solutions from the
literature. Relevant literature is organized by separating related works in terms of usage
control (see Section 9.2) from related work in terms of information flow tracking, in turn
distinguishing between approaches based on static (see Section 9.3.1), dynamic (see Sec-
tion 9.3.2) and hybrid (see Section 9.3.3) analyses.

9.1. Author’s Prior Work

All the conference publications cited in this section are co-authored by the author of this dissertation.

The model described in Chapter 3 is the first model that combines event-driven usage
control with data flow tracking for an arbitrary layer of abstraction. The architecture of the
framework (see Chapter 5) has been published in [100], while the complete model for an
arbitrary layer of abstraction has been firstly presented in [138]. At the time of writing, the
cross layer model presented in Chapter 4 is submitted for peer-reviewing [109].

While all the three extensions presented in the second part have been developed more or
less in parallel, the model for quantitative data flow tracking (see Chapter 8) was the first
to be published [110], whereas a preliminary version of the model for structured data flow
tracking (see Chapter 6) was published just few months later [108]. Chapter 7 discusses in
detail the idea of replacing dynamic intra-process data flow tracking with a simple moni-
tor for input and output instructions that leverages static information flow analysis result.
This idea has been initially investigated in the context of Android applications [141], but
the analysis described in this dissertation tackles the problem from a more general per-
spective that subsumes the results presented in [141]. At the time of writing, such more
comprehensive work has been accepted for publication [107]. Lastly, the author also dis-
cussed how to secure inter-layer communication for usage control within a hypervisor in
[120] and [121].

The implementations of the monitors for the MS Windows operating system has been
developed within the context of a Master thesis’s work [165] supervised by the author,
as well as the monitor for MS Excel [149], and a number of monitors for other layers of
abstraction [163, 105, 27].

129

9. Related Work

9.2. Usage Control

The major contribution of the this thesis’s work is the combination of data flow detec-
tion with usage control and the formalization of a general-purpose policy specification
language for usage control.

In terms of general-purpose usage control models, the model presented in Chapter 3
exhibits some similarities with the models underlying XACML [143], Ponder2 [154] and
UCON [129]. The first two, however, do not provide formalized support for cardinality
or temporal operators (free text fields exist, but the respective requirements are hard to
enforce). UCON supports complex conditions [174], and has been used in applications
at different system layers, such as the Java Virtual Machine [124], the Enterprise Service
Bus [62] and cloud federations [16], but assumes that data never leaves the data provider’s
realm, implicitly making UCON policies device-dependent.

Enforcement of usage control requirements has been done for the OS layer [48, 170, 73,
21, 130], for the X11 layer [136], for Java [39, 86, 50], the .NET CIL [45] and machine lan-
guages [52, 166, 41]; at the level of an enterprise service bus [63, 126]; for dedicated appli-
cations such as the Internet Explorer [49] and in the context of digital rights management
[12, 116, 133]. These solutions focus on either data flow tracking or event-driven usage con-
trol. The model described in this dissertation, in contrast, tackles both dimensions of the
problem at the same time and since it is layer-independent, it can be instantiated to each
of these layers. An exception is the work of Kelbert et al. [91, 92], that adapted the generic
model of Chapter 3 to distributed systems, in order to face the additional challenges this
domain presents (see Section 5.1.4).

At the level of binary files, the Garm tool [41], described in more detail in Section 9.3.3,
combines data tracking with an enforcement mechanism for basic usage control. Garm fo-
cuses on access control, trust and policy management aspects, while the goal of the work
presented in this dissertation is a generic model and a policy language to express and
enforce advanced usage control requirements for arbitrary system layers. Data flow con-
finement is also intensely studied at the operating system layer [48, 170, 130]; here, this
work differs in that it aims at enforcing complex usage control policies.

Note that, in addition to purpose and environmental constraints (see Section 1.1), the
language described in Chapter 2 assumes information about spatial context (e.g. GPS lo-
cation) to be given as parameter of the events, and the respective semantics to be defined
by an external operator (eval operator, see Chapter 2). Existing solutions from the liter-
ature [89, 20] offers detailed solutions to embed context information in the architecture
and to implement a respective operator to evaluate spatial constraints; in contrast to this
framework, however, these solutions are tailored to mobile devices contexts and do not
aim at a generic solution for arbitrary layers of abstraction.

A multitude of policy languages [47, 11, 18, 128, 173, 76, 40, 154, 160] has been proposed
in literature, but none of them addresses the data dimension like this work does; they allow
for definitions of usage restrictions for specific rather than all representations of data, and
their semantic models do not consider data flows. A remarkable exception is the work of
Kumari et al. (built on top of the results presented in the first part of this dissertation [138]),
who developed a framework for policy translation [98, 99] to transform policies described
in high-level domain-specific language into implementation level policies as described in
Section 2.3.

130

9. Related Work

Complex event processing [112] and runtime monitoring [102] are suitable for monitor-
ing conditions of usage control policies. As such, they address one aspect of the problem,
namely the monitoring part, and do not cater to data flow. Concepts from the state of the
art in these disciplines has been used in this work to support efficient runtime monitoring
of usage control policies.

9.3. Information Flow Control

Information flow tracking, in the context of security policy enforcement [147], is at least
thirty years old [53]. The two main approaches are static [42, 119, 85] and runtime check-
ing, based on dynamic tainting analysis. This section discusses the position of this work
with respect to static and dynamic approaches in Section 9.3.1 and Section 9.3.2, respec-
tively. More recently, many solutions tried to combine these two approaches in order to
compensate the limitations of one with the strengths of the other. Such hybrid approaches
and their relation to this work are discussed in Section 9.3.3

9.3.1. Static Approaches

Static approaches analyze application code before it is executed and aim to detect all pos-
sible information flows [42, 157]. A given program is certified as secure, if no information
flow can be found. Such a static certification can for example be used to reduce the need
for runtime checks [43]. Various static approaches (apart from PDGs, already discussed
in Section 7.2.1) can be found in the literature, which are usually based on type checking
[157, 123, 131] or flow analysis [42, 15, 14, 22]. As discussed in Section 7.4, however, be-
cause of their nature, static approaches can hardly handle dynamic aspects of applications,
like callbacks or reflective code, and are confined to the application under analysis. For this
reason, this work focuses on dynamic and hybrid approaches.

Some relevant work, however, can be found in the field of static analysis when it comes
to quantify information flows (see Chapter 8). In this sense, Denning [44] firstly proposed
to quantitatively measure information flow, defining the amount of information trans-
ferred in a flow as “the reduction in uncertainty (entropy) of a random variable”. Solutions
in this area (e.g., [34, 35]) rely on a specific entropy of the input distribution or universally
quantify over all input distributions. In contrast to these solutions and in addition to the
already mentioned focus on runtime systems, the quantitative data flow tracking approach
presented in Chapter 8 is independent of any stochastic notion of input data distribution.

In parallel to the work described in Chapter 6, Alvim et al. [13] developed an abstract
model for quantitative information flow tracking that accounts for the structure of data.
The paper proposes a framework to quantify information leakage independently of the
syntactic representation of the secrets, defined in terms of fields that are combined to form
structures. The key idea is the notion of “worth assignment” which is introduced to asso-
ciate each structure with a worth (e.g. in proportion to the harm that would result from
disclosure). Like the framework proposed in these pages, [13] distinguishes the notion of
data (information, in this case) from the specific representation. However, while promis-
ing from a theoretical perspective, no realistic instantiation of the model is discussed in the
report. In contrast to the concrete implementations described in Section 3.3 and Section 4.4

131

9. Related Work

and the detailed evaluation in Section 6.5, [13] presents only a theoretical evaluation of the
model, based on the comparison with other formal results from information theory.

9.3.2. Dynamic Approaches

Dynamic approaches [19], usually based on dynamic taint analysis, track data flows at
runtime, taking into account information which is not available for a static analysis, like
user input or the system time, which imposes additional data flow. Note that with the
exception of the work described in Chapter 7 (which is a hybrid approach and, as such,
discussed in the next subsection) the work presented in this dissertation restricts the stan-
dard notion of information flow analysis, which also caters to implicit flows and aims at
non-interference assessments [145, 67, 114, 72]: the usage control framework models only
flows from container to container. This explains why the term “data flow” is preferred to
“information flow”.

Several techniques have been proposed for dynamic taint analysis, mainly for detecting
malware and unknown vulnerabilities in software [37, 152, 30], checking integrity (tainted
data should not affect normal behavior of the program, where tainted means “possibly
bad”) [37, 38] and confidentiality (public output should not be influenced by tainted data,
where tainted stands for “possibly secret”) [33, 115, 167].

However, most of them are “hybrid” approaches, because they rely on static annota-
tions to account for implicit flows [42, 155]. In contrast, the general approach behind this
work does not require any static annotation to perform the analysis (with the exception,
again, of the extension described in Chapter 7). A common pattern in all these solutions
is the idea that monitoring should be done “as close to the hardware as possible” [167].
Existing solutions are hence based on binary rewriting [32, 37, 36, 90, 127, 115], memory
and pointer analysis [151, 152], partial- or full-system emulation [83, 172, 167, 33, 41] or on
making information flow a first-class OS abstraction [48, 169, 96]. In contrast, the intuition
behind the multi-layer approach presented in this work, which also motivates the choice
of a generic language, is that high-level events such as “print” or “play” or “screenshot”
are handled more conveniently at higher layers of abstraction because they can directly
been observed there. For this reason, the general model (see Chapter 3 and Chapter 4) is
deliberately not bound to any specific architecture or platform.

In [50], a purely dynamic data flow tracking approach is implemented in TaintDroid to
realize system-wide real-time privacy monitoring in Android, tracking data flows at the
variable-, method-, file-, and message-level. Although the results show only a relatively
small runtime overhead, TaintDroid’s focus is limited to explicit data flow tracking and it
is tailored to a specific system (Android). Yin et al. propose Panorama [167], a system-wide
taint-based data flow tracking approach at the hardware and OS-layer. Panorama gener-
ates taint-graphs that represent how data items flow through a system and uses them to
detect and identify privacy-breaching malware behavior. Although the approach yields a
zero false negatives rate, Panorama slows the system under analysis down by an average
factor of 20x and does not cater to implicit flows. [93] presents LibDFT, a solution that
uses shadow tag maps to store taint marks for each single register and memory address.
At runtime these marks are properly propagated (via explicit information flows only) ac-
cording to the executed binary instruction. Although LibDFT’s reported evaluation [93]
mentions little performance overhead, these numbers could not be reproduced in the eval-

132

9. Related Work

uation performed in Chapter 7: as the measurements in Table 7.2 show, on all the use cases
LibDFT imposes a bigger performance overhead than the solution proposed in Chapter 7.
Additionally, LibDFT tracks flows of data only through a certain process, ignoring flows
towards OS resources, e.g. files, or other layers of abstraction, e.g. the X11 layer [136],
which is instead the goal of this work.

As already mentioned, the goal of all the solutions discussed so far in this section is a
dedicated model for data (or, sometimes information-) flow tracking for one specific layer
of abstraction. A remarkable exception to this trend stems from the area of provenance
aware storage systems: in [122] representations of data are considered at three system lay-
ers at the same time (network, file system, workflow engine). Depending on the type of
content being handled, the approach relies on different tracking solutions that interacts
with each other and exchange taint results across different layers. While the idea of track-
ing data across different layers of abstraction goes into the same direction of the work
presented here, the focus of [122] is not a generic model but rather a three-layer model
tailored and customized on the three specific layers discussed in the paper. For example,
the taint marks are propagated across the layers without any special form of structured
aggregation, in contrast to what can be done with the work described in this dissertation
(e.g. in the “Excel saving data to a file”-example see Section 6.1.3).

9.3.3. Hybrid Approaches

Hybrid approaches aim at combining advantages from static and dynamic data flow track-
ing approaches and to mitigate runtime-overhead in particular. Usually, in a hybrid ap-
proach, the application under analysis first undergoes a static analysis phase and after that,
based on the results, a dynamic analysis phase.

[31] presents a hybrid, taint-based solution for fine-grained information flow analysis
in Java-based applications, with a focus on Java-based server-frontends and client-side
browser extensions. Similar to the approach presented in Chapter 7, authors of [31] split
their analysis (under the assumption that only Java bytecode is available) into a static and
a dynamic analysis phase. During the static phase they compute so called security anno-
tations that are used later on during the dynamic phase to track data flow and to enforce
security policies by blocking specific method calls at runtime. However, it is unclear how
the enforcement actually happens, as denying method calls at the bytecode level may lead
to critical instability at runtime. In [144] the authors propose to augment a hybrid data
flow tracking approach with declassification rules to downgrade the security levels of spe-
cific information flows. This way, all possible flows between input and output channels
are detected and enforcement can be performed by allowing, inhibiting, and/or modifying
the execution of the intercepted events. Although both [31, 144] show promising results,
they do not take into account possible flows between different applications and abstrac-
tion layers, missing the system-wide dimension of the problem, which is a major goal of
the overall work describe these pages.

[168] proposes another hybrid data flow tracking approach where programmers have
to statically specify filter and policy objects that are used at runtime to track the flow of
data through an application. [88] and [87] go a step further and decouple information flow
tracking logic in a separate thread from application logic. That way, they could reduce the
runtime-overhead to the magnitude of 2.3x. Once again, the results in [168, 88, 87] focus

133

9. Related Work

only on one specific abstraction layer and do not take into account inter-process system-
wide data flows.

The authors of [41] present Garm, which aims at tracking data provenance information
across multiple applications and machines. Garm instruments application binaries to track
and to store the data flow within and across applications, and beyond that, to monitor in-
teractions with the OS. This solution differs from the general approach presented in this
dissertation in many senses: First of all, although it address multiple layers of abstrac-
tion at the same time, like [122] it does not describe a general model applicable to differ-
ent number or type of layers, but rather a “hard-coded” solution for the specific layers
of abstraction considered. Secondly, in addition to the more advanced types of policies
enforceable by the usage control framework (see Chapter 3), the goal of the provenance
tracking that performed in Chapter 8 is fundamentally different from Garm’s: the prove-
nance is used to determine how much data comes from where, whereas Garm, like other
approaches in literature, aims at detecting what data comes from where. Lastly, concern-
ing the instrumentation of applications, although Garm makes also use of a static analysis
phase, such task is only a mean to optimize the placement of the runtime monitors (similar,
for instance, to [28]); this practically makes Garm a fully-dynamic approach, in contrast to
the generic approach describe in this dissertation, which can also integrate static analysis
results (see Chapter 7) and provides better performance results1

[172] presents Neon, a fine-grained data flow tracking approach for derived data man-
agement. Neon is implemented as an extension for the XEN Virtual Machine Monitor and
tracks data flow on the granularity of individual bytes by tainting each memory address
with a n-bit taint mark. That taint mark is propagated on each memory write or read access
through and across systems. Although Neon presents a sophisticated fine-grained track-
ing approach to mitigate false positives in the analysis (i.e. data becoming tainted through
an unintended dependency), the byte-level tainting approach adopted by Neon limits the
number of different data trackable in parallel to 32. In contrast, the system described in
Chapter 3 supports a virtually unbounded set of different data items per container. The fo-
cus on the byte-level also prevents Neon to capture and properly (i.e. precisely) model the
high-level semantics of events, like “taking a screenshot” or “forwarding a mail”, which is
instead the main strength of the multi-layer approach.

Similar to the extension described in Chapter 7, other approaches in the literature at-
tempted at modeling system-wide information flows, in the sense of inter-application
communication, by instrumenting sources and sinks in monitored applications. For the
intra-application tracking the literature offers solutions relying on pure dynamic tracking
[94] as well as, on static analysis results [141]. All of them, however, perform the inter-
application flow tracking relying on the “simultaneous” execution of a sink in the sender
application and a source in the receiver. None of them can model a flow towards an exter-
nal resource, like a file, or toward a non-monitored application. In these scenarios, these
approaches lose track of the data, while the solution described in Chapter 7, relying on
another monitor at the operating system layer, can cope with these situations, in the latter
case by rolling-back to the black-box tracking (see Section 7.3).

1The evaluation presented in Section 7.3.4 does not discuss a performance comparison with the Garm tool
because, even after contacting the author for the code, it was not possible to get the tool running, mainly
due to the legacy libraries and dependencies required. This statement is then supported only by the results
described in the original paper [41]

134

9. Related Work

The solution described in Chapter 7 injects the (statically computed) source-sink infor-
mation into the application byte code using an approach called IRM (Inline Reference
Monitor) [51]. In the literature, IRM approaches can be found at different layers [171, 156].
IRMs usually inject code into a target applications to intercept sensitive events together
with the security property to be enforced and the code to decide its violation. In con-
trast to this architecture, the solution presented in Chapter 7 injects a reference monitor
(PEP, see Section 5.1.1) that notifies events to an external tracker. This allows for tracking
data across multiple layers and, possibly, systems in distributed settings and provides the
flexibility of changing policies for data and for applications at runtime, without requiring
restarting nor re-instrumenting the running applications. In general, any solution based on
the architecture discussed in Chapter 5 sees multiple policy enforcement points notifying
events to a single (conceptual) centralized decision point, which can then be implemented
either a single centralized component or in a distribute fashion [91].

The work described in Chapter 8 was inspired by [115], where authors measure infor-
mation flow as a network flow capacity. Their tool estimates the amount of information
flowing through a program in one (or some) specific execution(s), using static code instru-
mentation to detect implicit flows. The model described in this pages can be instantiated at
different layers of abstraction, including the level of source code considered by McCamant
et al, thus generalizing the notion of explicit flows, and does not assume the existence of
a control flow, making it suitable also to runtime systems. The main difference between
the two approaches is in the interpretation of the analysis results: while estimations pro-
vides by the model in Chapter 8 only refer to units of actual data, [115]’s mixes bits of data
(due to explicit flows) with bits of indirect information (control flow dependencies), giv-
ing a complete different interpretation of the results. Since the usage control framework is
based on the observation of events and therefore does not consider control flow dependen-
cies, it does not “quantify” implicit flows, not even when leveraging static analysis results
(see Chapter 7). At the cost of manual instrumentation, these are, in contrast, considered
in [115].

The idea of measuring information flows by considering information as an incompress-
ible fluid flowing through a network appears also in [161], where it has been applied to the
socio-information networks domain. This model uses data flow risk estimations for access
control purposes, assuming likelihood of information leakages (e.g., in-between subjects)
to be given. The work presented in Chapter 8, in contrast, is domain-agnostic and relies
only on the size of actions that actually took place, giving a clear interpretation to the
results.

135

9. Related Work

136

10. Conclusions

The work described in this dissertation shows how an existing usage control framework
taken from the literature (see Chapter 2) can be augmented with basic data flow tracking
capabilities (see Chapter 3) to capture the distinction between data and representations of
data. Thanks to its generic nature, the combined model can be instantiated at different lay-
ers of abstraction and multiple instances could possibly cooperate for tracking purposes.
A detailed description of how to formalize the relation between the layers and how to syn-
chronize their tracking information is presented in Chapter 4, while the architecture of the
framework is discussed in Chapter 5.

The expressiveness of policies that can be specified and enforced with this framework
is not matched by any other solution from the literature; related works are comparable to
this either in terms of information flow control or of usage control (see Chapter 9). As a
proof of concept, the model has been instantiated in the context of the reference scenario
described in Section 1.4, providing some details about the single layers instantiations in
Section 3.3 and about their connection in Section 4.4.

The simplicity of the basic data flow tracking model presented in Chapter 3 introduces
coarse overapproximations in concrete instantiations. The second part of this dissertation
discusses different strategies to mitigate such imprecision by augmenting the data flow
tracking model with additional information about the system.

The first extension (see Chapter 6) leverages information about the structure of data;
knowing that certain events in the system aggregate data from different sources in a struc-
tured manner can help mitigating the overapproximation introduced when data is sepa-
rated again. The second extension (see Chapter 7) exploits results from static information
flow analysis at runtime, to model the flows of data through a given application. This offers
a sound estimation, potentially more precise than assuming every input flowed to any out-
put and never worse. The third and last extension presented in this work (see Chapter 8),
leverages information about the amount of data transferred by events in the system. The
label creep mitigation, in this case, stems from the additional expressiveness of the lan-
guage, which allows for specification of policies that apply only to those representations
containing at least a certain amount of data.

The decision to present, instantiate and evaluate each of the three extensions individ-
ually was motivated by the sake of explanation’s simplicity. Each solution showed an
improvement in terms of precision, quantified in each evaluation, together with its price
in terms of performance loss. In some cases, like in the case of the intra-process data flow
tracking, such a tradeoff could be tuned by the choice of different static analyses. Note that
the modularity of the combined model allows for a very easy replacement of the data flow
tracking component, and the three extensions presented in this work are not intended to
be an exhaustive list of alternatives.

137

10. Conclusions

Combining extensions The three extensions could also be combined into a single model,
provided all the required system information (merge/split events, static analysis results
and amount of data transferred by system events) to be available.

Intuitively, such model would look like a “parallel” instantiation of the three solutions:
the state of the system would be the cross product of the state of each solution, and ev-
ery system event would be notified in parallel to each solution. Upon receiving the event,
each model would evolve independently from the others. Assuming all the solutions to
be sound, the interpretation of the model is the following: At any moment in time, given a
container c and a data d, the composed system provides an estimation k of the maximum
amount of different units of data d stored in c. How to use this information to express and
enforce usage control policies has been already discussed in the first part of this disserta-
tion and in Section 8.4. The value k is given by the estimation provided by the quantitative
model for c and d, if according to the other two models d is stored in c; otherwise, k = 0.

The intuition is based on the assumption that each solution is sound. If, according to one
of the models, data is not stored in a certain container, then any other model that states the
opposite does it because of overapproximation, possibly because it is unaware of some
aspects of the system, e.g. the existence merge/split events. In other words, the output of
the combined model is the “intersection” of the single models’ estimations.

Finally, it is worth noticing that the extensions and any combination of them are ap-
plicable also when the respective system information is not available, by using fallback
values that result in the same precision of the basic model. More specifically, the model
for structured data flow tracking can be applied also without any split/merge event in the
system; the model for intra-process data flow tracking can be used without static analysis
results by replacing them with the black box approach, i.e. mapping every source to every
sink; the quantitative model can be applied also if the amount of data transferred by a
certain event is not available, because the event can always be conservatively modeled by
an edge of infinite size. Nevertheless, the goal of these extensions is to improve the preci-
sion by leveraging additional information about the system, and if such information is not
available, the lack of precision improvement would not justify the additional performance
overhead introduced by any of the different approaches.

Performance The performance results described in this dissertation are measured us-
ing non-optimized proof-of-concepts implementations. Additional programming effort is
very likely to improve the results, but just by constant factors (the fundamental complex-
ity of some problems, like maximum flow computation, is independent of the concrete
implementations). The purpose of these evaluations is to prove the general feasibility of
the presented ideas, and to investigate which factors affect scalability and how.

When arguing about performance, it is worth to remember that the results described
in these pages mainly come from stress-testing the implementations and that the overhead
introduced by the models is independent of the native execution time of the monitored events.
This means that, for instance, one millisecond required to update the data flow tracking
model may be an intolerable overhead when monitoring the execution of a system call,
while, at the same time, representing a negligible delay for a BPEL or ESB event [126]. The
contribution of this work is not a solution with optimal performance for a specific system
or use case, but rather a generic framework for different types of systems and scenarios.

138

10. Conclusions

Assumptions The framework for data usage control described in these pages can be ef-
fective only if the assumptions listed in Section 1.3 hold. In many scenarios, some of these
assumptions may bee too strong or too restrictive, in particular when protecting against
motivated attackers in completely open settings. A representative example of the difficulty
of this problem is the continuous failures of DRM technologies [57].

Nevertheless, this does not imply that the solutions presented in this work, or, in gen-
eral, usage control solutions are useless. For instance, while in a completely open environ-
ment an assumption like “the user cannot kill the usage control process” is indeed unrealistic,
in closed or semi-closed environments, like a private corporation’s IT infrastructure or a
public library’s terminal, it is not unreasonable to assume that the user of the system does
not have enough privileges to perform such action; similarly, if it is the user himself that
runs the framework to prevent the possibility of accidentally misusing the data, it is per-
fectly reasonable to assume that the user will not kill the framework process, even if he
could. Thus, in general, the assumptions behind the work described in these pages can
bee too restrictive or absolutely reasonable, depending on the framework’s instantiation’s
context.

Conclusion This research confirmed the initial thesis that it is possible to extend event-
driven usage control with data flow tracking concepts. In particular,

• it shows how to formalize a system that supports expression and enforcement of
usage control requirements on different representations of the same data at once
(Chapter 3), even when data is disseminated across different layers of abstractions
(Chapter 4) [Thesis Statement TS-1];

• it describes different instantiations of the model (Section 3.3) for at least two different
layers of abstraction, confirming its generic nature [Thesis Statement TS-2];

• it presents a notion of soundness for data flow tracking (Section 3.4), based on canon-
ical notions from information flow control literature, and proves the soundness of the
data flow tracking in terms of such definition (Section 4.2) [Thesis Statement TS-3];

• it discusses different ways (Chapter 6, Chapter 7 and Chapter 8) to quantify the pre-
cision of the enforcement and to increase it with additional information about the
system [Thesis Statement TS-4];

• by means of case studies (Section 6.5, Section 7.3 and Section 8.5), it shows empirical
evidences, the respective cost in terms of performance overhead, and the situations
in which the overhead induced by a more precise model does not compromise the
overall system functionality [Thesis Statement TS-5].

In conclusion, the work presented in this dissertation addresses the general problem of
specifying and enforcing data usage control requirements in a generic system, at and across
different layers of abstraction; it discusses how to improve the precision of the enforcement
and at what price; and it proves, by mean of case studies, that the ideas are indeed feasi-
ble in practice. Depending on the chosen data flow tracking model, some solutions (e.g.
structured data flow tracking) may scale better than others for larger numbers of events
(e.g. see static analysis, Section 7.3.3 or provenance graphs, Section 8.3.1).

139

10. Conclusions

The lesson learned from this work is that it is important to clearly identify the properties
of the target system before deciding how to instantiate one of the proposed solutions for
data usage control described in these pages. The choice of which approach offers the best
tradeoff between precision and performance for the given context is determined, among
the rest, by the number, type and frequency of events to be monitored, the additional
information about the system and the expressiveness of the requirements to be enforced
(i.e. do policies talk about quantity of data?), and the attacker model (system assumptions
required to cope with motivated attackers are stronger and may make one solution more
effective than another).

For example, consider a system where the main use case involves Alice editing and
archiving different reports in compressed files shared with other departments. The struc-
tured model may be appropriate if only a monitor at the operating system layer is available
and the archiver process is a specific well-defined one; if the source code of the archiver
process is available, and is not particularly complex (i.e. static analysis can provide mean-
ingful results in reasonable time), the extension for intra-process data flow tracking may
help; if policies talk also about amount of data in a certain representation (see Section 8.4),
the quantitative model may be a better choice, as long as the number and frequency of
events is low, due to its quadratic complexity. If the number and frequency of events
is high, monitoring events at the operating system layer introduce non-negligible over-
heads; if performance is a priority, maybe a model at the application layer would be more
appropriate. However, unless this is combined with an OS-layer one, events like “taking
a screenshot of the application’s window” may offer a simple solution for a motivated
attacker to generate undesired data flows that are not captured by the monitor.

An important result of this work is that no “silver bullet” for data usage control has been
found: as extensively argued above and throughout this dissertation, the reason is that a
one-size-fit-all solution probably does not even exist, because any approach can be more
or less appropriate than another, depending on the properties of the system to control.

10.1. Future Work

While satisfactorily answering the fundamental research question of this thesis, the differ-
ent parts of the research presented in this dissertation lay the ground for additional future
work. First of all, a single model integrating all the different extensions presented in part
III is part of the future work. Although each extension introduces minimal changes to the
basic model, the integration of multiple extensions introduces some conceptual challenges
that require additional work. For instance, quantitatively measuring data structured in dif-
ferent encodings, or quantifying flows of data across layers modeled with static analysis
results, require to overcome some fundamental limitations of the model for quantitative
data flow tracking presented in Chapter 8 in terms of encoding and compression.

In terms of the general framework, some of the assumptions mentioned in Section 1.3
could be relaxed, e.g. integrating a model for policy evolution [134] to support redistribu-
tion of usage controlled data or the analysis of which kind of formal guarantees can the
data consumer offers to the data provider during the negotiation phase. Policy manage-
ment deliberately is not covered by the work presented in this dissertation. Existing work
from the literature [99] could be integrated into the usage control framework, possibly

140

10. Conclusions

augmenting the architecture with a dedicated component.
The focus of this work was explicitly on isolated physical system; another line of work

that can stem from the results presented in this dissertation is the extension of the frame-
work to distributed systems. While some preliminary work based on the the model of
Chapter 3 that addresses distributed systems can be found in the literature [91, 92], the
additional challenges in this context (see Section 5.1.4) make distributed usage control an
interesting source of challenges to tackle.

The models presented in Chapter 3 and Chapter 4 have been formally proved correct
(Appendix B) and evaluated in terms of some use cases in the different extensions’ eval-
uation sections. An overall comparison in terms of precision or performance between the
models and the extensions presented in the second part would not make much sense due
to the fundamental nature and the large number of variables influencing the different ap-
proaches. Nevertheless, for a given system in a limited set of use cases, many alternative
instantiations of this work are possible, at single or multiple layers of abstraction, and
relying on different additional information about the system. For instance, in one instan-
tiation a file could be modeled as a single container, whereas in another one the payload,
the filename, and the date of creation could be considered different containers. Similarly,
events could propagate sensitivity in a straightforward manner or instead could be carry-
ing information about the structure or the amount of data. The choice of the granularity
of the instantiation and of the additional system information integrated into the data flow
tracking model directly impacts performance and usability, as proved by the evaluations
presented in part II; all these different instantiations could also be compared in a properly
designed user study to identify the best tradeoff between security (in terms of precision)
and usability (from the user perspective, e.g. in performing certain tasks). Such evaluation
would be a good complement to the work described in these pages.

141

10. Conclusions

142

Appendix

143

A. Data Usage Control Language - Concrete
Syntax

The following is an example of concrete syntax, in XML format, for the language described
in Chapter 3. The core part is the definition of a a mechanism (line 197 - line 206), reported
here for ease of explanation:

197 <complexType name="MechanismBaseType">
198 <sequence>
199 <element name="timestep" type="tns:TimeAmountType" minOccurs="0" maxOccurs="1" />
200 <element name="trigger" type="tns:EventMatchingOperatorType" minOccurs="0"

maxOccurs="1" />
201 <element name="condition" type="tns:ConditionType" minOccurs="0" maxOccurs="1" />
202 <element name="authorizationAction" type="tns:AuthorizationActionType"

minOccurs="0" maxOccurs="0" />
203 <element name="executeAction" type="tns:ExecuteActionType" minOccurs="0"

maxOccurs="unbounded" />
204 </sequence>
205 <attribute name="name" type="string" use="required" />
206 </complexType>

Each mechanism is uniquely identified by a name (line 205). The first (optional) element
of a mechanism is called timestep (line 199) and specifies the amount of time within which
events are considered to be happening at the same time. If unspecified, this corresponds
to a single timestep of the monitor, meaning that no event can be happening “at the same
time” of another event. This is an obvious consequence of processing events in a serialized
fashion (see Section 2.1.3), and the purpose of this field is to overcome such limitation and
define the size of a timestep for each single mechanism.

The trigger element (line 200) corresponds to the trigger event of an ECA mechanism,
while line 201 contains the condition. Note that both are optional argument of a mech-
anism: it the event is not specified, the mechanism will be triggered at the end of each
timestep (as defined above), whereas an empty condition corresponds to the default value
of true. The action part of an ECA mechanism is modeled by two elements: an authoriza-
tion action (line 202), which specifies whether the trigger event is allowed to be executed
or not (line 189-line 195), possibly with modified parameters (line 186), and a list of addi-
tional actions to execute (line 203). With the different combinations of these two elements
it is possible to model all the different types of ILPs described in Section 2.3.

The rest of the specification covers aspects like the definition of time ranges (line 3-
line 26), the specification of conditions, with the list of all the operators (line 41-line 174),
and the definition of a policy as a list of mechanisms (line 208-line 215). Note that state-
based operators (line 124-line 129) are modeled with a single operator that takes one
mandatory parameter and two optional additional parameters. The syntax check, in this
case, is performed within the code that implements the PIP. In addition to the operators
specified in Chapter 3), this choice is motivated by the additional offered flexibility of

145

A. Data Usage Control Language - Concrete Syntax

embodying new data-flow-related operators, like e.g. the quantitative measurements op-
erators defined in Section 8.4, without the need to modify the language specification.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <schema xmlns="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www22.in.tum.de/enforcementLanguage"
xmlns:tns="http://www22.in.tum.de/enforcementLanguage"
xmlns:event="http://www22.in.tum.de/enforcementLanguage/event"
xmlns:cnd="http://www22.in.tum.de/enforcementLanguage/condition"
elementFormDefault="qualified">

3 <simpleType name="TimeUnitType">
4 <restriction base="string">
5 <enumeration value="TIMESTEPS" />
6 <enumeration value="NANOSECONDS" />
7 <enumeration value="MICROSECONDS" />
8 <enumeration value="MILLISECONDS" />
9 <enumeration value="SECONDS" />

10 <enumeration value="MINUTES" />
11 <enumeration value="HOURS" />
12 <enumeration value="DAYS" />
13 <enumeration value="WEEKS" />
14 <enumeration value="MONTHS" />
15 <enumeration value="YEARS" />
16 </restriction>
17 </simpleType>
18
19 <attributeGroup name="TimeAmountAttributeGroup">
20 <attribute name="amount" type="long" use="required" />
21 <attribute name="unit" type="tns:TimeUnitType" use="optional" default="TIMESTEPS"

/>
22 </attributeGroup>
23
24 <complexType name="TimeAmountType">
25 <attributeGroup ref="tns:TimeAmountAttributeGroup" />
26 </complexType>
27
28 <complexType name="ParameterType">
29 <attribute name="name" type="string" use="required" />
30 <attribute name="value" type="string" use="required" />
31 </complexType>
32
33 <complexType name="ExecuteActionType">
34 <sequence>
35 <element name="parameter" type="tns:ParameterType" minOccurs="0"

maxOccurs="unbounded" />
36 </sequence>
37 <attribute name="name" type="string" use="required" />
38 <attribute name="id" type="string"></attribute>
39 </complexType>
40
41 <complexType name="ConditionType">
42 <sequence>
43 <group ref="tns:Operators" minOccurs="1" maxOccurs="1" />
44 </sequence>
45 </complexType>
46 <complexType name="ConditionParamMatchType">
47 <attribute name="name" type="string" use="required" />
48 <attribute name="value" type="string" use="required" />
49 </complexType>
50 <complexType name="NotType">
51 <sequence>
52 <group ref="tns:Operators" />
53 </sequence>
54 </complexType>
55 <complexType name="TrueType">

146

A. Data Usage Control Language - Concrete Syntax

56 <sequence />
57 </complexType>
58 <complexType name="FalseType">
59 <sequence />
60 </complexType>
61 <complexType name="OrType">
62 <sequence>
63 <group ref="tns:Operators" minOccurs="2" maxOccurs="2" />
64 </sequence>
65 </complexType>
66 <complexType name="AndType">
67 <sequence>
68 <group ref="tns:Operators" minOccurs="2" maxOccurs="2" />
69 </sequence>
70 </complexType>
71 <complexType name="ImpliesType">
72 <sequence>
73 <group ref="tns:Operators" minOccurs="2" maxOccurs="2" />
74 </sequence>
75 </complexType>
76 <complexType name="SinceType">
77 <sequence>
78 <group ref="tns:Operators" minOccurs="2" maxOccurs="2" />
79 </sequence>
80 </complexType>
81 <complexType name="AlwaysType">
82 <sequence>
83 <group ref="tns:Operators" />
84 </sequence>
85 </complexType>
86 <complexType name="BeforeType">
87 <sequence>
88 <group ref="tns:Operators" />
89 </sequence>
90 <attributeGroup ref="tns:TimeAmountAttributeGroup" />
91 </complexType>
92 <complexType name="DuringType">
93 <sequence>
94 <group ref="tns:Operators" />
95 </sequence>
96 <attributeGroup ref="tns:TimeAmountAttributeGroup" />
97 </complexType>
98 <complexType name="WithinType">
99 <sequence>

100 <group ref="tns:Operators" />
101 </sequence>
102 <attributeGroup ref="tns:TimeAmountAttributeGroup" />
103 </complexType>
104 <complexType name="RepLimType">
105 <sequence>
106 <group ref="tns:Operators" />
107 </sequence>
108 <attributeGroup ref="tns:TimeAmountAttributeGroup" />
109 <attribute name="lowerLimit" type="long" use="required" />
110 <attribute name="upperLimit" type="long" use="required" />
111 </complexType>
112 <complexType name="RepSinceType">
113 <sequence>
114 <group ref="tns:Operators" minOccurs="2" maxOccurs="2" />
115 </sequence>
116 <attribute name="limit" type="long" use="required" />
117 </complexType>
118 <complexType name="RepMaxType">
119 <sequence>
120 <group ref="tns:Operators" />

147

A. Data Usage Control Language - Concrete Syntax

121 </sequence>
122 <attribute name="limit" type="long" use="required" />
123 </complexType>
124 <complexType name="StateBasedOperatorType">
125 <attribute name="operator" type="string" use="required" />
126 <attribute name="param1" type="string" use="required" />
127 <attribute name="param2" type="string" use="optional" />
128 <attribute name="param3" type="string" use="optional" />
129 </complexType>
130 <complexType name="EvalOperatorType">
131 <sequence>
132 <element name="content" type="string" />
133 </sequence>
134 <attribute name="type" type="string" use="required" />
135 </complexType>
136 <group name="Operators">
137 <choice>
138 <element name="true" type="tns:TrueType" />
139 <element name="false" type="tns:FalseType" />
140 <element name="not" type="tns:NotType" />
141 <element name="or" type="tns:OrType" />
142 <element name="and" type="tns:AndType" />
143 <element name="implies" type="tns:ImpliesType" />
144 <element name="eventMatch" type="tns:EventMatchingOperatorType" />
145 <element name="conditionParamMatch" type="tns:ConditionParamMatchType" />
146 <element name="since" type="tns:SinceType" />
147 <element name="always" type="tns:AlwaysType" />
148 <element name="before" type="tns:BeforeType" />
149 <element name="during" type="tns:DuringType" />
150 <element name="within" type="tns:WithinType" />
151 <element name="repLim" type="tns:RepLimType" />
152 <element name="repSince" type="tns:RepSinceType" />
153 <element name="repMax" type="tns:RepMaxType" />
154 <element name="stateBasedFormula" type="tns:StateBasedOperatorType" />
155 <element name="eval" type="tns:EvalOperatorType" />
156 </choice>
157 </group>
158 <simpleType name="ParamMatchDataTypes">
159 <restriction base="string">
160 <pattern value="dataUsage|containerUsage" />
161 </restriction>
162 </simpleType>
163 <complexType name="ParamMatchType">
164 <attribute name="name" type="string" use="required" />
165 <attribute name="value" type="string" use="required" />
166 <attribute name="type" type="tns:ParamMatchDataTypes" use="optional"

default="containerUsage" />
167 </complexType>
168 <complexType name="EventMatchingOperatorType">
169 <sequence>
170 <element name="paramMatch" type="tns:ParamMatchType" minOccurs="0"

maxOccurs="unbounded" />
171 </sequence>
172 <attribute name="action" type="string" use="required" />
173 <attribute name="isActual" type="boolean" use="required" />
174 </complexType>
175
176 <complexType name="ModifyActionType">
177 <sequence>
178 <element name="parameter" type="tns:ParameterType" minOccurs="0"

maxOccurs="unbounded" />
179 </sequence>
180 </complexType>
181 <complexType name="AuthorizationInhibitType">
182 <sequence />

148

A. Data Usage Control Language - Concrete Syntax

183 </complexType>
184 <complexType name="AuthorizationAllowType">
185 <sequence>
186 <element name="modify" type="tns:ModifyActionType" minOccurs="0" maxOccurs="1" />
187 </sequence>
188 </complexType>
189 <complexType name="AuthorizationActionType">
190 <choice>
191 <element name="allow" type="tns:AuthorizationAllowType" />
192 <element name="inhibit" type="tns:AuthorizationInhibitType" />
193 </choice>
194 <attribute name="name" type="string" use="required" />
195 </complexType>
196
197 <complexType name="MechanismBaseType">
198 <sequence>
199 <element name="timestep" type="tns:TimeAmountType" minOccurs="0" maxOccurs="1" />
200 <element name="trigger" type="tns:EventMatchingOperatorType" minOccurs="0"

maxOccurs="1" />
201 <element name="condition" type="tns:ConditionType" minOccurs="0" maxOccurs="1" />
202 <element name="authorizationAction" type="tns:AuthorizationActionType"

minOccurs="0" maxOccurs="0" />
203 <element name="executeAction" type="tns:ExecuteActionType" minOccurs="0"

maxOccurs="unbounded" />
204 </sequence>
205 <attribute name="name" type="string" use="required" />
206 </complexType>
207
208 <complexType name="PolicyType">
209 <sequence>
210 <element name="mechanism" type="tns:MechanismBaseType" minOccurs="1"

maxOccurs="unbounded" />
211 </sequence>
212 <attribute name="name" type="string" use="required" />
213 </complexType>
214
215 <element name="policy" type="tns:PolicyType" />
216
217 </schema>

149

A. Data Usage Control Language - Concrete Syntax

150

B. Soundness Proof - Cross-layer

B.1. Soundness of R̂A⊗B

Proof. Let σ = (σA, σB) be the initial state of the system, and σ′A the state at layerA after ex-
ecuting the trace (tA, tB) (σ′A = R̂A⊗B((σA, σB), (tA, tB))|A). Let tA⊗B = γA(tA) on γB(tB),
and let σ⊥ be the initial state at bottom such that σ⊥ ` σA. Finally, let σ′⊥ = R#

⊥(σ⊥, tA⊗B).
If R̂A⊗B is sound, then σ′A is sound w.r.t σ′⊥ (σ′⊥ ` σ′A).

Assume that σ′A is not sound.
This implies that there exists a data item d and a container cA such that d 6∈ σ′A(cA) but
∃ c⊥ ∈ σ′⊥ : d ∈ σ′⊥(c⊥) ∧ c⊥ ∈ γ(cA).

By definition of SR#
⊥

then either (1) d ∈ σ⊥(c⊥) or (2) d has been transferred to c⊥ by
events in tA⊗B , i.e. ∃ c′⊥ ∈ SR#

⊥
(tA⊗B) : d ∈ σ⊥(c′⊥) and c⊥ ∈ DR#

⊥
(tA⊗B).

(1) cannot be the case, since σ⊥ ` σA implies d ∈ σA(cA) and the composed monitor only
adds data to containers (d ∈ σA(cA) =⇒ d ∈ σ′A(cA)).

Therefore (2) must hold. By soundness ofRA andRB , it follows that c′⊥ ∈ SR#
⊥

(tA⊗B) ⊆
γA(SRA

(tA)) ∪ γB(SRB
(tB)) and c⊥ ∈ DR#

⊥
(tA⊗B) ⊆ γA(DRA

(tA)) ∪ γB(DRB
(tB)). Thus,

the abstraction of c′⊥ and c⊥ must belong to the sources and destinations of the trace at the
higher level, i.e. ∃ cA⊗B ∈ SA⊗B : cA⊗B ∈ αA⊗B(c⊥) ∧ d ∈ σ(cA⊗B) and ∃ c′A⊗B ∈ DA⊗B :

c′A⊗B ∈ αA⊗B(c⊥). This implies that either cA = c′A⊗B or cA ∼ c′A⊗B . But then, since R̂A⊗B
propagates all data in SA⊗B to DA⊗B and to all related containers, then d ∈ cA, which is a
contradiction. A similar argument holds for an unsound approximation of B.

Figure B.1 depicts the partitions of the memory in sources/non-sources and
destinations/non-destinations according to monitoring at each layer. Recalling the prop-
erty of source and destination sets (autorefsec:ucdft:sourceDest) there cannot be flows to
memory regions outside the destination set.

B.2. Soundness of ṘA⊗B

Proof. In this proof, an inductive argument for the soundness of the approach over the
length of the trace is provided.

Base Case. Given a trace composed by the single event e, and assuming the state of the
system is the initial state σi, there are three cases for the cross-layer behavior of e, and they
are defined by the oracle XB (Algorithm 2). Assume e is an event in A (the case for B is
analogous).

If the behavior of e is INTRA, it means that e is not part of any cross-layer flow and
is thus modeled as a layer internal event using R−A. In this case, the execution of e may

151

B. Soundness Proof - Cross-layer

� �0

A

B

?

S
D

S
D

S D

Figure B.1.: Composition of potential flows between layers for a trace (tA, tB). Circles rep-
resent the whole memory. Partitions are induced by sources and destinations
of the trace at the respective layer. Note the resulting Non-Interference prop-
erty at ⊥ (arrow).

either generate new flows of data within A, (captured by R−A and sound because R⊥ `
R−A), or to B (via related containers). The latter kind of flows is captured by the sync
operation (line 22), which propagates the possibly new content to the related containers in
B, identified by the XA oracle.

If the behavior of the first event is OUT, the algorithm will write the content of its sources
to its target (line 17) (sound estimation thanks to single layer soundness) and to an inter-
mediate container (line 16). Because intermediate containers have no concretization in ⊥,
their content is irrelevant for soundness checks; the resulting state at ⊥ is then the same
as for the INTRA case and, after syncing the content with the containers at the other layer
(line 22), the soundness can be confirmed using the same argument.

The case of e being an IN event is not considered because the first event cannot be an IN
event by assumption (traces represent real executions, and IN events only take place after
at least one respective OUT event, see Section 4.3.3).

Inductive Case. Given t = tp||〈e〉 and assuming σ = ṘA⊗B(σiA⊗B, t
p) sound w.r.t σ⊥ =

R⊥(σi⊥, γA⊗B(tp)) by inductive hypothesis, the goal of this step is to show that state σ′ =
ṘA⊗B(σ, e) is also sound. As before, e is assumed to be an event at layer A (the case for B
is analogous).

As in the previous case, e can be either an INTRA, an IN or an OUT event.
If e is an INTRA event, then the same argument of the base case applies, i.e. the estima-

tion given byR−A and the sync operator is sound.
If e is an OUT event, then the behavior remains the same as for the base case: OUT events

are equivalent to INTRA event because the intermediate containers are not relevant for
soundness purposes due to their empty ⊥-concretization.

The core of the model is the transition relation in case e is an IN event. Let sc be the
scope of e given by XB . Every container in the destination of e is updated with the data

152

B. Soundness Proof - Cross-layer

stored in the intermediate container csc (line 11).
The intuition of soundness of this step is the following: LetEO be the set of all those OUT

event in tp associated to the same scope sc of e. Each event in EO transferred the content
of its sources to csc (line 16). The content of such sources is a sound overapproximation of
the content of their concretization, because any state reached during execution of trace tp

is sound by inductive hypothesis. Let teo be the subtrace of t from the beginning until eo

(excluded).
Because no event can delete content from csc, σ(csc) is a conservative estimation of the

content of all the sources of the events in EO, i.e.

σ(csc) ⊇
⋃

eo∈EO

⋃
c∈S
R#
⊥
(γA⊗B(eo))

R#
⊥(γA⊗B(σ), γA⊗B(teo))(c),

which by Definition 4.12 is a superset of the content of the concretization of the destination
containers of e. Thus, transferring the content of σ(csc) to the destinations of e (line 11)
results in a sound state.

In more details, it is clear from the algorithm (line 11) that e only appends the content
of the intermediate container to its target. If this violates the soundness definition, there
must exists a container c ∈ DR−A(e) and a data d ∈ D such that d 6∈ σ′(c) while there exists
a container c⊥ ∈ γA⊗B(c) that contains d in σ′⊥ = R⊥(σ⊥, γA(e)). Note that:

1. If d ∈ σ⊥(c⊥), the soundness of σ requires that d ∈ σ(c). But d ∈ σ(c) is not possible,
because IN events such as e only append data to their destination, and d ∈ σ(c) =⇒
d ∈ σ′(c). Therefore d 6∈ σ(c⊥).

2. If d 6∈ σ(c⊥) and d ∈ σ′(c⊥), it means that the event e⊥ ∈ E⊥ that transferred d to c⊥
must be part of γA(e).

3. If e⊥ ∈ γA(e), d ∈ R−A(σ, e)(c), because R−A is sound. But d 6∈ ṘA⊗B(σ, e)(c). Consider-
ing that e is an IN event, this can only happen if d ∈ σ(csc), where sc is the scope of the
cross-layer event e is part of (line 11). In order for ṘA⊗B to be unsound, it must be the
case that d 6∈ σ(csc).

4. Because e is an IN event, at least one corresponding OUT event must have taken place
in tp. Let EO be the set of all the OUT events in tp that are related to e (i.e. with the same
scope id sc). From Definition 4.12, there must exists an event eo ∈ EO in the trace, such
that d ∈ σO⊥(γB(SR−B (eO))), where σO is the state of the system right before the execution

of eO and σO⊥ is its concretization.

5. Considering that σO is a state of the system reachable by a subtrace of t, σO⊥ ` σO by
inductive hypothesis. Such soundness implies that if d ∈ σO⊥(γB(SR−B (eO))), then d ∈
σO(SR−B (eO)). Being eO an OUT event with respect to scope sc, d ∈ ṘA⊗B(σO, eO)(ssc)

(line 16). In particular, because the content of intermediate containers is never erased
(multiple repetitions of the same cross action are assigned different scope ids), d ∈
ṘA⊗B(σO, eO)(ssc) =⇒ d ∈ σ(ssc), which is impossible because d 6∈ σ(csc) (see point 3)

6. =⇒ absurd, i.e. it is not possible that the state σ′ = ṘA⊗B(σ, e) is not sound.

153

B. Soundness Proof - Cross-layer

154

C. Soundness Proof - Quantitative Data Flow
Tracking

The two correctness proofs assume that the label of edges corresponding to C2 steps are
∞ rather than κ((c2, t

′)) for the source container c2 and a time t′ ∈ N. Since κ((c2, t
′)) <∞,

this does not impact correctness. Precision also is not impacted because the edge can,
in any case, not transfer more than κ((c2, t

′)) units. The reason for not using ∞ in the
definition of the C2 step is that, throughout Chapter 8, this would have obscured the dual
nature of edge labels as capacities and actual flows — actual flows are never infinite.

C.1. Correctness of Tracking

To show correctness of the model in the sense of Section 8.3, ∀t ∈ N∀c ∈ C : ϕ(c, t) ≤
κ((c, t)) must be proved.

The proof is by induction. It is trivial for the empty provenance graph of the base case.
The inductive step assumes that correctness has been established for all Gt′ with t′ < t: The
induction hypothesis (∗) is ∀c ∈ C∀t′ ∈ N : t′ < t =⇒ ϕ(c, t′) ≤ κ((c, t′)).
I step: The only edge from (Sd, 0) to (ci, t) is the newly created one with label m. Conse-
quently, κ((ci, t)) = m. There are exactly m different units in ci by assumption, and hence
ϕ(ci, t) = m ≤ κ((ci, t)).
T step: A container c (most recent node with time stamp t′ < t) is reduced to size m.
If m ≥ κ((c, t′)), the provenance graph is not modified, thus Gt = Gt−1. This implies
κ((c, t)) = κ((c, t′)) which, by induction hypothesis (∗) was a correct estimation for ϕ(c, t′).
Since truncating actions remove data from a container, the amount of sensitive data in c
can be either the same of or less than before. Therefore, κ((c, t′)) is still a correct estimation,
i.e. ϕ(c, t) ≤ κ((c, t)) .

If, instead, m < κ((c, t′)), then node (c, t) is added as a successor of (c, t′) with an edge
labelled m. Because (c, t′) is the only predecessor of (c, t), the min cut will now contain
exactly this edge, hence κ((c, t)) = m. This estimation is also correct, because if the new
size of c is m, then c cannot contain more than m different units of sensitive data, i.e.
ϕ(c, t) ≤ κ((c, t)).
C1 step: ` units of data are to be copied from cA to a cB that does not exist at time t−1. This
introduces a new edge e` with label ` from (cA, t

′) to the newly created (cB, t) where t′ is the
most recent timestamp for cA. Because cB cannot contain more different units of sensitive
data than cA, it holds that ϕ(cB, t) ≤ min(`, ϕ(cA, t

′)). Let α = κ((cA, t
′)). By induction

hypothesis (∗), ϕ(cA, t
′) ≤ α. Hence ϕ(cB, t) ≤ min(`, α). If ` < α, {e`} is the only edge

crossing the minimal cut, and κ((cB, t)) = `. If ` ≥ α, then κ((cB, t)) = κ((cA, t
′)) = α. In

both cases ϕ(cB, t) ≤ κ((cB, t)).
C1 step immediately followed by a C2 step: Assume a copy of ` units of data from con-
tainer cA to the existing container cB . By construction of the provenance graph, there are

155

C. Soundness Proof - Quantitative Data Flow Tracking

t′ < t and t′′ < t and nodes (cA, t
′), (cB, t

′′) ∈ Nt−1, a new node (cB, t) ∈ Nt, and two edges
e` = ((cA, t

′), `, (cB, t)) and ek =
Ä
(cB, t

′′),∞, (cB, t)
ä
∈ Et.

Note that by construction in every Eτ (τ < t), all labels corresponding to I, C1, and T
steps measure actual flows of data (sensitive and non-sensitive units) in-between contain-
ers and are determined by the action corresponding to the step. These edge labels can
be interpreted as upper bounds for the flow of sensitive units: For each edge (action), it is
impossible that more sensitive than overall units flow.

All edges
Ä
(c, t′′′),∞, (c, τ)

ä
∈ Eτ for all τ < t corresponding to C2 steps also pro-

vide (trivial) upper bounds for the flow of sensitive units. By induction hypothesis (∗),
ϕ(cA, t

′) ≤ κ((cA, t
′)) and ϕ(cB, t

′′) ≤ κ((cB, t
′′)). The same argumentation as for the edge

labels in Eτ applies to the newly created labels in Et: The label ` of e` is an upper bound for
the flow of sensitive units from (cA, t

′) because it is impossible that more sensitive units
flow than overall units flow. The label ∞ is an upper bound for the number of sensi-
tive units in (cB, t

′′), ϕ(cB, t
′′), which by induction hypothesis is bounded from above by

κ((cB, t
′′)).

In sum, all edge labels in Et are upper bounds for the flow of sensitive units for all kinds
of steps. Edge labels can hence be seen as capacities for flows of sensitive data units.

Then, every cut of the provenance graph between (Sd, 0) and (cB, t) partitions the nodes
in two sets: the source set containing (Sd, 0) and the destination set containing (cB, t). Since
labels are capacities for flows of different sensitive units, the size of every cut between
(Sd, 0) and (cB, t) is an upper bound for the amount of different sensitive units that flowed
to any node in the destination set. Specifically, for every cut between (Sd, 0) and (cB, t),
ϕ(cB, t) can’t exceed the size of this cut.

Finally, by definition, κ((cB, t)) is the maximum flow between (Sd, 0) and (cB, t). By the
max-flow/min-cut theorem, this is equivalent to the value of a minimal cut that separates
(cB, t) from (Sd, 0). κ((cB, t)) hence necessarily is an upper bound for ϕ(cB, t).

Note that the proof’s structure also shows that the max-flow must be computed explic-
itly for combined C1&C2 steps only—for the others, κ values can directly be determined.

C.2. Correctness of Optimizations

This section proves equivalence ∼ of a graph Gt with its optimized version G′t according to
the rules presented in Section 8.3.

Let I(a, q) denote actions that initialize a container a with q units of sensitive data,
C(a1, q1, a2, q2, . . . , b) actions that transfer q1 units and q2 units from container a1 and a2
to b, respectively, and T (a, q) truncations of container a to q units. C is the set of contain-
ers. While function maxflow returns a number, let mincut returns the cut.

Removal of Truncation. For a sequence of events tr = (ε0, . . . , εk, . . . , εt) such that

∃k ∈ N∀ca, cb, c ∈ C, q, x ∈ N, i ∈ [k + 1..t− 1], j ∈ [0..k − 1] :
εk = C(ca, q, cb) ∧ εt = T (cb,m)∧
εj 6= I(cb, x) ∧ εj 6= C(c, x, cb)∧
εi 6= T (cb, x) ∧ εi 6= C(c, x, cb)∧
κ((cb, k)) > m ∧ sY +m ≤ q

156

C. Soundness Proof - Quantitative Data Flow Tracking

where sY =
∑
εi=C(cb,x,c)∈tr x, let tr′ be the new sequence

tr′ = (ε0, . . . , εk−1, C(ca,m, cb), ε
′
k+1 . . . , ε

′
t−1)

with ε′i = C(ca, qi, ci) if εi = C(cb, qi, ci) and ε′i = εi otherwise, for every i ∈ [k + 1..t − 1].
The following shows that tr′ results in a simpler (i.e. smaller), yet equivalent graph than tr.

Let (ca, u) be the source node of the copy action at time k and, because there is no trun-
cation or transfer to cb in between times k+ 1 and t− 1, let (cb, k) be the source node of the
truncation action at time t. Let

N ′t = Nt \ {(cb, t)} and
E ′t =

(
Et \
Ä
{((cb, k),m, (cb, t)), ((ca, u), q, (cb, k))} ∪⋃εi=C(cb,qi,ci){((cb, k), qi, (ci, i))}

ä)
∪Ä

{((ca, u),m, (cb, k))} ∪⋃εi=C(cb,qi,ci){((ca, u), qi, (ci, i))}
ä
.

Let X ⊆ C be a set of containers. κt,X(d) 6= κ′t,X(d) =⇒ ((ca, u), q, (cb, k)) ∈
mincutGt,X ((S, 0), d) because any other edge has the same value in both graphs, but this is
impossible (i.e. it is not a minimum cut) since q ≥ m+ sY . Hence G′t ∼ Gt.

Removal of Copy (case 1). For a sequence of events tr = (ε0, . . . , εk, . . . , εt) such that

∃k ∈ N∀c, ca ∈ C, q ∈ N, i ∈ [k + 1..t− 1], x ∈ N :
εk = C(ca, s1, cb) ∧ εt = C(cc, s2, cb)∧
εi 6= T (cb, x) ∧ εi 6= C(c, x, cb)∧
εi 6= C(cb, x, c) ∧ εi 6= T (ca, x) ∧ εi 6= C(c, x, ca),

let tr′ be the new sequence tr′ = (ε0, . . . , εk−1, C(ca, s1, cc, s2, cb), . . . , εt−1). tr′ results in a
simpler, yet equivalent graph. Let (ca, u) be the source node of the copy action at time k,
(cb, v) the current node for cb (if any) at time k − 1, and (cc, w) the source node of the copy
action at time t. Let

N ′t = Nt \ {(cb, t)} and
E ′t = (Et \ {((cb, k),∞, (cb, t)), ((cc, w), s2, (cb, t))}) ∪ {((cc, w), s2, (cb, k))}.

Let X ⊆ C be a set of containers. If cb 6∈ X , then κt,X(d) = κ′t,X(d) because no flow would
go through the modified part. If cb ∈ X ,

κt,X(d) 6= κ′t,X(d) =⇒
Ä
((cc, w), s2, (cb, k)) ∈ mincutG′t,X ((S, 0), d)∧
((cc, w), s2, (cb, t)) 6∈ mincutGt,X ((S, 0), d)

ä
.

This is impossible since the node (cb, t) must be separated from (S, 0) by the cut and
s2 < ∞. Therefore, having ((cc, w), s2, (cb, k)) in the cut in G′t implies that ((cc, w), s2, (cb, t))
is in the cut in Gt. Hence G′t ∼ Gt.

Removal of Copy (case 2). For a sequence of events tr = (ε0, . . . , εk, . . . , εt) such that

∃k ∈ N∀ca, c ∈ C, q, x ∈ N, i ∈ [k + 1..t− 1], j ∈ [0..k − 1] :
εk = C(ca, s1, cb) ∧ εt = C(ca, s2, cb)∧
εj 6= I(cb, x) ∧ εj 6= C(c, x, cb)∧
εi 6= T (cb, x) ∧ εi 6= C(c, x, cb)∧
εi 6= T (ca, x) ∧ εi 6= C(c, x, ca)∧
s1 >

∑
εi=C(cb,x,c) x

157

C. Soundness Proof - Quantitative Data Flow Tracking

let tr′ be the new sequence tr′ = (ε0, . . . , εk−1, C(ca, s1 + s2, cb), . . . , εt−1). tr′ results in a
simpler, yet equivalent graph.

Let (ca, u) be the source node of the copy action at time k and

Y = {((cb, k), qi, (ci, i))|i ∈ [k + 1..t− 1], ci ∈ C, qi ∈ N, εi = C(cb, qi, ci) ∈ tr}

the destination nodes of the copy steps from cb between time k + 1 and time t − 1. Let sY
be the sum of those edges’ capacities. Let

N ′t= Nt\{(cb, t)} and
E ′t = Et\{((cb, k),∞, (cb, t)), ((ca, u), s1, (cb, k)), ((ca, u), s2, (cb, t))}

∪{((ca, u), s1 + s2, (cb, k))}

Let X ⊆ C be a set of containers. κt,X(d) 6= κ′t,X(d) =⇒ Y ∩mincutGt,X ((S, 0), d) 6= ∅.
Let sX be the sum of those edges’ capacities, i.e.

sX =
∑

((cb,k),qi,(ci,i))∈Y ∩mincutGt,X ((S,0),d)

qi.

Since κt,X(d) 6= κ′t,X(d), it means s1 < sX . But this is impossible since sX ≤ sY ≤ s1.
Hence G′t ∼ Gt.

158

Bibliography

[1] An Act To amend the Internal Revenue Code of 1986 to improve portability and
continuity of health insurance coverage in the group and individual markets, to
combat waste, fraud, and abuse in health insurance and health care delivery, to
promote the use of medical savings accounts, to improve access to long-term care
services and coverage, to simplify the administration of health insurance, and for
other purposes. http://www.gpo.gov/fdsys/pkg/CRPT-104hrpt736/pdf/
CRPT-104hrpt736.pdf(last access: 11.05.2015).

[2] An Act to protect investors by improving the accuracy and reliability
of corporate disclosures made pursuant to the securities laws, and for
other purposes. http://www.gpo.gov/fdsys/pkg/PLAW-107publ204/pdf/
PLAW-107publ204.pdf(last access: 11.05.2015).

[3] Directive 95/46/EC of the European Parliament and of the Council of 24
October 1995 on the protection of individuals with regard to the process-
ing of personal data and on the free movement of such data. http:
//eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:
31995L0046(last access: 11.05.2015).

[4] Java Grande Forum Benchmark Suite. https://www2.epcc.ed.ac.
uk/computing/research_activities/java_grande/index_1.
html(last access: 11.05.2015).

[5] JavaFTP, http://sourceforge.net/projects/javaftp/
(last access: 16.06.2014.).

[6] JOANA. http://joana.ipd.kit.edu(last access: 11.05.2015).

[7] Linux Mint, http://www.linuxmint.com/(last access: 11.05.2015).

[8] OW2-ASM instrumentation framework. http://asm.ow2.
org/(last access: 11.05.2015).

[9] Strace, http://sourceforge.net/projects/strace/. Last Access:
11.05.2015.

[10] T.J.Watson Library for Analysis (WALA), http://wala.sf.
net(last access: 11.05.2015).

[11] Multimedia framework (MPEG-21) – Part 5: Rights Expression Language, 2004.
ISO/IEC standard 21000-5:2004.

159

http://www.gpo.gov/fdsys/pkg/CRPT-104hrpt736/pdf/CRPT-104hrpt736.pdf
http://www.gpo.gov/fdsys/pkg/CRPT-104hrpt736/pdf/CRPT-104hrpt736.pdf
http://www.gpo.gov/fdsys/pkg/PLAW-107publ204/pdf/PLAW-107publ204.pdf
http://www.gpo.gov/fdsys/pkg/PLAW-107publ204/pdf/PLAW-107publ204.pdf
http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:31995L0046
http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:31995L0046
http://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:31995L0046
https://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/index_1.html
https://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/index_1.html
https://www2.epcc.ed.ac.uk/computing/research_activities/java_grande/index_1.html
http://sourceforge.net/projects/javaftp/
http://joana.ipd.kit.edu
http://www.linuxmint.com/
http://asm.ow2.org/
http://asm.ow2.org/
http://sourceforge.net/projects/strace/
http://wala.sf.net
http://wala.sf.net

Bibliography

[12] Adobe. Adobe LiveCycle Rights Management ES. http://www.adobe.com/
products/livecycle/modules.displayTab3.html(last access: 11.05.2015),
August 2010.

[13] Mário S. Alvim, Andre Scedrov, and Fred B. Schneider. When not all bits are equal:
Worth-based information flow. In Martı́n Abadi and Steve Kremer, editors, Principles
of Security and Trust, volume 8414 of Lecture Notes in Computer Science, pages 120–139.
Springer Berlin Heidelberg, 2014.

[14] Torben Amtoft, Sruthi Bandhakavi, and Anindya Banerjee. A logic for information
flow in object-oriented programs. In Conference Record of the 33rd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’06, pages 91–102,
New York, NY, USA, 2006. ACM.

[15] Torben Amtoft and Anindya Banerjee. Information flow analysis in logical form. In
Roberto Giacobazzi, editor, Static Analysis, volume 3148 of Lecture Notes in Computer
Science, pages 100–115. Springer Berlin Heidelberg, 2004.

[16] G.F. Anastasi, E. Carlini, M. Coppola, P. Dazzi, A. Lazouski, F. Martinelli, G. Mancini,
and P. Mori. Usage control in cloud federations. In IEEE International Conference on
Cloud Engineering (IC2E), pages 141–146, March 2014.

[17] L. Andersen. Program Analysis and Specialization for the C Programming Language. PhD
thesis, University of Copenhagen, 1994.

[18] P. Ashley, S. Hada, G. Karjoth, C. Powers, and M. Schunter. Enter-
prise Privacy Authorization Language (EPAL 1.2). IBM Technical Report,
2003. http://www.zurich.ibm.com/security/enterprise-privacy/
epal/Specification/(last access: 11.05.2015).

[19] Thomas H. Austin and Cormac Flanagan. Efficient purely-dynamic information flow
analysis. In Proceedings of the ACM SIGPLAN Fourth Workshop on Programming Lan-
guages and Analysis for Security, PLAS ’09, pages 113–124, New York, NY, USA, 2009.
ACM.

[20] Guangdong Bai, Liang Gu, Tao Feng, Yao Guo, and Xiangqun Chen. Context-aware
usage control for android. In Sushil Jajodia and Jianying Zhou, editors, Security
and Privacy in Communication Networks, volume 50 of Lecture Notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications Engineering, pages 326–
343. Springer Berlin Heidelberg, 2010.

[21] H. Balinsky, D.S. Perez, and S.J. Simske. System call interception framework for data
leak prevention. In Enterprise Distributed Object Computing Conference (EDOC), 2011
15th IEEE International, pages 139–148, Aug 2011.

[22] Jean-Pierre Banâtre, Ciarán Bryce, and Daniel Le Métayer. Compile-time detection
of information flow in sequential programs. In Proceedings of the Third European Sym-
posium on Research in Computer Security, ESORICS ’94, pages 55–73, London, UK, UK,
1994. Springer-Verlag.

160

http://www.adobe.com/products/livecycle/modules.displayTab3.html
http://www.adobe.com/products/livecycle/modules.displayTab3.html
http://www.zurich.ibm.com/security/enterprise-privacy/epal/Specification/
http://www.zurich.ibm.com/security/enterprise-privacy/epal/Specification/

Bibliography

[23] David Basin, Matúš Harvan, Felix Klaedtke, and Eugen Zălinescu. Monpoly: Mon-
itoring usage-control policies. In 2nd International Conference on Runtime Verification
(RV 2011). LNCS, 2011.

[24] David Basin, Felix Klaedtke, and Samuel Müller. Monitoring security policies with
metric first-order temporal logic. In 15th ACM Symposium on Access Control Models
and Technologies (SACMAT), pages 23–33. ACM Press, 2010.

[25] Andreas Bauer, Martin Leucker, and Jonathan Streit. SALT — Structured Assertion
Language for Temporal Logic. In Proceedings of the 8th International Conference on For-
mal Methods and Software Engineering, ICFEM’06, pages 757–775, Berlin, Heidelberg,
2006. Springer-Verlag.

[26] Pascal Birnstill and Alexander Pretschner. Enforcing privacy through usage-
controlled video surveillance. In 10th IEEE International Conference on Advanced Video
and Signal Based Surveillance (AVSS), pages 318–323, Aug 2013.

[27] Asish Kumar Biswas. Towards improving data driven usage control precision with
intra-process data flow tracking. Master’s thesis, Department of Informatics, Tech-
nische Universität München, 2014.

[28] Eric Bodden, Patrick Lam, and Laurie Hendren. Clara: A framework for partially
evaluating finite-state runtime monitors ahead of time. In Howard Barringer, Ylies
Falcone, Bernd Finkbeiner, Klaus Havelund, Insup Lee, Gordon Pace, Grigore Rosu,
Oleg Sokolsky, and Nikolai Tillmann, editors, Runtime Verification, volume 6418 of
Lecture Notes in Computer Science, pages 183–197. Springer Berlin Heidelberg, 2010.

[29] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. Taming
reflection: Aiding static analysis in the presence of reflection and custom class load-
ers. In Proceedings of the 33rd International Conference on Software Engineering, ICSE
’11, pages 241–250, New York, NY, USA, 2011. ACM.

[30] Lorenzo Cavallaro, Prateek Saxena, and R. Sekar. On the limits of information flow
techniques for malware analysis and containment. In Proceedings of the 5th Interna-
tional Conference on Detection of Intrusions and Malware, and Vulnerability Assessment,
DIMVA ’08, pages 143–163, Berlin, Heidelberg, 2008. Springer-Verlag.

[31] D. Chandra and M. Franz. Fine-grained information flow analysis and enforcement
in a java virtual machine. In Twenty-Third Annual Computer Security Applications Con-
ference (ACSAC), pages 463–475, Dec 2007.

[32] Winnie Cheng, Qin Zhao, Bei Yu, and Scott Hiroshige. Tainttrace: Efficient flow
tracing with dynamic binary rewriting. In Proceedings of the 11th IEEE Symposium
on Computers and Communications, ISCC ’06, pages 749–754, Washington, DC, USA,
2006. IEEE Computer Society.

[33] Jim Chow, Ben Pfaff, Tal Garfinkel, Kevin Christopher, and Mendel Rosenblum. Un-
derstanding Data Lifetime via Whole System Simulation. In Proceedings of the 13th
USENIX Security Symposium, volume Volume 13, pages 22–22. USENIX, USENIX
Association, 2004.

161

Bibliography

[34] D Clark, S Hunt, and P Malacaria. Quantitative Analysis of the Leakage of Confi-
dential Data. Electronic Notes in Theoretical Computer Science, 59:238–251, 2002.

[35] Michael R. Clarkson, Andrew C. Myers, and Fred B. Schneider. Belief in information
flow. In Proceedings of the 18th IEEE Workshop on Computer Security Foundations, CSFW
’05, pages 31–45, Washington, DC, USA, 2005. IEEE Computer Society.

[36] James Clause, Wanchun Li, and Alessandro Orso. Dytan: A generic dynamic taint
analysis framework. In Proceedings of the 2007 International Symposium on Software
Testing and Analysis, ISSTA ’07, pages 196–206, New York, NY, USA, 2007. ACM.

[37] Manuel Costa, Jon Crowcroft, Miguel Castro, Antony Rowstron, Lidong Zhou, Lin-
tao Zhang, and Paul Barham. Vigilante: End-to-end containment of internet worm
epidemics. ACM Transactions on Computer Systems (TOCS), 26(4):9:1–9:68, December
2008.

[38] Jedidiah R. Crandall and Frederic T. Chong. Minos: Control data attack prevention
orthogonal to memory model. In Proceedings of the 37th Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO 37, pages 221–232, Washington, DC,
USA, 2004. IEEE Computer Society.

[39] Mads Dam, Bart Jacobs, Andreas Lundblad, and Frank Piessens. Security moni-
tor inlining for multithreaded java. In Proceedings of the 23rd European Conference on
ECOOP 2009 — Object-Oriented Programming, Genoa, pages 546–569, Berlin, Heidel-
berg, 2009. Springer-Verlag.

[40] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The pon-
der policy specification language. In Morris Sloman, EmilC. Lupu, and Jorge Lobo,
editors, Policies for Distributed Systems and Networks, volume 1995 of Lecture Notes in
Computer Science, pages 18–38. Springer Berlin Heidelberg, 2001.

[41] Brian Demsky. Garm: cross application data provenance and policy enforcement.
In Proceedings of the 4th USENIX conference on Hot topics in security, HotSec’09, pages
10–10, Berkeley, CA, USA, 2009. USENIX Association.

[42] Dorothy E. Denning. A lattice model of secure information flow. Communications of
the ACM, 19(5):236–243, May 1976.

[43] Dorothy E. Denning and Peter J. Denning. Certification of programs for secure in-
formation flow. Communications of the ACM, 20(7):504–513, July 1977.

[44] Robling Denning and Dorothy Elizabeth. Cryptography and data security. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1982.

[45] L. Desmet, W. Joosen, F. Massacci, K. Naliuka, P. Philippaerts, F. Piessens, and
D. Vanoverberghe. The S3MS.NET Run Time Monitor: Tool Demonstration. Elec-
tronic Notes in Theoretical Computer Science, 253(5):153–159, 2009.

162

Bibliography

[46] Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich, Jonathon Giffin, and Wenke Lee.
Virtuoso: Narrowing the semantic gap in virtual machine introspection. In Pro-
ceedings of the 2011 IEEE Symposium on Security and Privacy, SP ’11, pages 297–312,
Washington, DC, USA, 2011. IEEE Computer Society.

[47] R. Iannella (ed.). Open Digital Rights Language v1.1, 2008. http://odrl.net/1.
1/ODRL-11.pdf(last access: 11.05.2015).

[48] Petros Efstathopoulos, Maxwell Krohn, Steve VanDeBogart, Cliff Frey, David
Ziegler, Eddie Kohler, David Mazières, Frans Kaashoek, and Robert Morris. La-
bels and event processes in the asbestos operating system. ACM SIGOPS Operating
Systems Review, 39(5):17–30, October 2005.

[49] Manuel Egele, Christopher Kruegel, Engin Kirda, Heng Yin, and Dawn Song. Dy-
namic spyware analysis. In 2007 USENIX Annual Technical Conference on Proceedings
of the USENIX Annual Technical Conference, ATC’07, pages 18:1–18:14, Berkeley, CA,
USA, 2007. USENIX Association.

[50] William Enck, Peter Gilbert, Byung-Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick
McDaniel, and Anmol N. Sheth. Taintdroid: An information-flow tracking sys-
tem for realtime privacy monitoring on smartphones. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and Implementation, OSDI’10, pages
1–6, Berkeley, CA, USA, 2010. USENIX Association.

[51] Úlfar Erlingsson. The Inlined Reference Monitor Approach to Security Policy Enforcement.
PhD thesis, Ithaca, NY, USA, 2004.

[52] Úlfar Erlingsson and Fred B. Schneider. Sasi enforcement of security policies: A
retrospective. In Proceedings of the 1999 Workshop on New Security Paradigms, NSPW
’99, pages 87–95, New York, NY, USA, 2000. ACM.

[53] J. S. Fenton. Memoryless subsystems. The Computer Journal, 17(2):143–147, February
1974.

[54] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence
graph and its use in optimization. ACM Trans. Program. Lang. Syst., 9(3):319–349,
July 1987.

[55] Denis Feth and Alexander Pretschner. Flexible data-driven security for android. In
Proceedings of the 2012 IEEE Sixth International Conference on Software Security and Reli-
ability, SERE ’12, pages 41–50, Washington, DC, USA, 2012. IEEE Computer Society.

[56] Apache Software Foundation. Apache Thrift software framework, https://
thrift.apache.org(last access: 11.05.2015).

[57] Electronic Frontier Foundation. Digital Rights Management: A failure in the de-
veloped world, a danger to the developing world. https://www.eff.org/wp/
digital-rights-management-failure-developed-world-danger-
developing-world(last access: 11.05.2015).

163

http://odrl.net/1.1/ODRL-11.pdf
http://odrl.net/1.1/ODRL-11.pdf
https://thrift.apache.org
https://thrift.apache.org
https://www.eff.org/wp/digital-rights-management-failure-developed-world-danger-developing-world
https://www.eff.org/wp/digital-rights-management-failure-developed-world-danger-developing-world
https://www.eff.org/wp/digital-rights-management-failure-developed-world-danger-developing-world

Bibliography

[58] Alexander Fromm, Florian Kelbert, and Alexander Pretschner. Data protection in a
cloud-enabled smart grid. In Jorge Cuellar, editor, Smart Grid Security, volume 7823
of Lecture Notes in Computer Science, pages 96–107. Springer Berlin Heidelberg, 2012.

[59] Alexander Fromm, Florian Kelbert, and Alexander Pretschner. Data protection in a
cloud-enabled smart grid. In SmartGridSec, pages 96–107, 2013.

[60] Tal Garfinkel and Mendel Rosenblum. A virtual machine introspection based archi-
tecture for intrusion detection. In In Proc. Network and Distributed Systems Security
Symposium, pages 191–206, 2003.

[61] Richard Gay, Heiko Mantel, and Barbara Sprick. Service automata. In Proceedings of
the 8th International Conference on Formal Aspects of Security and Trust, FAST’11, pages
148–163, Berlin, Heidelberg, 2012. Springer-Verlag.

[62] Gabriela Gheorghe, Paolo Mori, Bruno Crispo, and Fabio Martinelli. Enforcing ucon
policies on the enterprise service bus. In Proceedings of the 2010 international conference
on On the move to meaningful internet systems: Part II, OTM’10, pages 876–893, Berlin,
Heidelberg, 2010. Springer-Verlag.

[63] Gabriela Gheorghe, Stephan Neuhaus, and Bruno Crispo. xESB: An Enterprise Ser-
vice Bus for Access and Usage Control Policy Enforcement. In Masakatsu Nishigaki,
Audun Jøsang, Yuko Murayama, and Stephen Marsh, editors, Trust Management IV,
volume 321 of IFIP Advances in Information and Communication Technology, pages 63–
78. Springer Berlin Heidelberg, 2010.

[64] D. Giffhorn. Slicing of Concurrent Programs and its Application to Information Flow
Control. PhD thesis, Karlsruher Institut für Technologie, 2012.

[65] Dennis Giffhorn and Christian Hammer. Precise slicing of concurrent programs.
Automated Software Engineering, 16(2):197–234, 2009.

[66] Dennis Giffhorn and Gregor Snelting. A new algorithm for low-deterministic secu-
rity. International Journal of Information Security, pages 1–25, 2014.

[67] Joseph A. Goguen and José Meseguer. Security policies and security models. In IEEE
Symposium on Security and Privacy, pages 11–20, 1982.

[68] Joseph A. Goguen and José Meseguer. Unwinding and inference control. IEEE Sym-
posium on Security and Privacy, 0:75, 1984.

[69] J. Graf. Information Flow Control with SDGs — Improving Modularity, Scalability and
Precision for Object Oriented Languages. PhD thesis, KIT. Forthcoming.

[70] J. Graf, M. Hecker, and M. Mohr. Using joana for information flow control in java
programs - a practical guide. In Proceedings of the 6th Working Conference on Program-
ming Languages (ATPS 2013), 2013.

[71] David Grove and Craig Chambers. A framework for call graph construction algo-
rithms. ACM Trans. Program. Lang. Syst., 23(6):685–746, November 2001.

164

Bibliography

[72] Christian Hammer and Gregor Snelting. Flow-sensitive, context-sensitive, and
object-sensitive information flow control based on program dependence graphs. In-
ternational Journal of Information Security, 8(6):399–422, October 2009.

[73] M. Harvan and A. Pretschner. State-based usage control enforcement with data flow
tracking using system call interposition. In Network and System Security, 2009. NSS
’09. Third International Conference on, pages 373–380, Oct 2009.

[74] Klaus Havelund and Grigore Rosu. Synthesizing monitors for safety properties. In
Joost-Pieter Katoen and Perdita Stevens, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems, volume 2280 of Lecture Notes in Computer Science, pages
342–356. Springer Berlin Heidelberg, 2002.

[75] Klaus Havelund and Grigore Rosu. Efficient monitoring of safety properties. Inter-
national Journal on Software Tools for Technology Transfer (STTT), 6, Aug 2004.

[76] M. Hilty, A. Pretschner, D. Basin, C. Schaefer, and T. Walter. A policy language for
distributed usage control. In Proceedings of the 12th European Conference on Research in
Computer Security, ESORICS’07, pages 531–546, Berlin, Heidelberg, 2007. Springer-
Verlag.

[77] M. Hilty, A. Pretschner, C. Schaefer, C. Schaefer, and T. Walter. Usage Control Re-
quirements in Mobile and Ubiquitous Computing Applications. In Systems and Net-
works Communications, 2006. ICSNC ’06. International Conference on, pages 27–27, Oct
2006.

[78] Manuel Hilty. Specification and Enforcement in Distributed Usage Control. PhD thesis,
ETH Zürich, 2008.

[79] Manuel Hilty, David Basin, and Alexander Pretschner. On obligations. In Proceedings
of the 10th European Symposium on Research in Computer Security, ESORICS’05, pages
98–117, Berlin, Heidelberg, 2005. Springer-Verlag.

[80] Manuel Hilty, Alexander Pretschner, and Felix Akeret. Anforderungen für verteilte
nutzungskontrolle, 2005. SIEMENS AG (CH) internal report.

[81] Manuel Hilty, Alexander Pretschner, Christian Schaefer, and Thomas Walter. En-
forcement for usage control — a system model and an obligation language for dis-
tributed usage control. Technical Report I-ST-020, DOCOMO Euro-Labs, 2006.

[82] Manuel Hilty, Alexander Pretschner, Thomas Walter, and Christian Schaefer. Usage
Control Requirements in Mobile and Ubiquitous Computing Applications. Technical
Report I-ST-015, DOCOMO Euro-Labs, 2005.

[83] Alex Ho, Michael Fetterman, Christopher Clark, Andrew Warfield, and Steven
Hand. Practical taint-based protection using demand emulation. In Proceedings of
the 1st ACM SIGOPS/EuroSys European Conference on Computer Systems 2006, EuroSys
’06, pages 29–41, New York, NY, USA, 2006. ACM.

165

Bibliography

[84] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs. In Proceedings of the ACM SIGPLAN 1988 Conference on Programming Lan-
guage Design and Implementation, PLDI ’88, pages 35–46, New York, NY, USA, 1988.
ACM.

[85] James W. Gray III. Toward a mathematical foundation for information flow security.
In IEEE Symposium on Security and Privacy, pages 21–35, 1991.

[86] Iulia Ion, Boris Dragovic, and Bruno Crispo. Extending the java virtual machine
to enforce fine-grained security policies in mobile devices. In Proceedings of AC-
SAC 2007 (the 23rd Annual Computer Security Applications Conference), Miami Beach,
Florida, December 2007.

[87] Kangkook Jee, Vasileios P. Kemerlis, Angelos D. Keromytis, and Georgios Portoka-
lidis. Shadowreplica: Efficient parallelization of dynamic data flow tracking. In
Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications
Security, CCS ’13, pages 235–246, New York, NY, USA, 2013. ACM.

[88] Kangkook Jee, Georgios Portokalidis, Vasileios P. Kemerlis, Soumyadeep Ghosh,
David I. August, and Angelos D. Keromytis. A general approach for efficiently
accelerating software-based dynamic data flow tracking on commodity hardware.
In 19th Annual Network and Distributed System Security Symposium, NDSS 2012, San
Diego, California, USA, February 5-8, 2012, 2012.

[89] Christian Jung, Denis Feth, and Christian Seise. Context-aware policy enforcement
for android. In Proceedings of the 2013 IEEE 7th International Conference on Software
Security and Reliability, SERE ’13, pages 40–49, Washington, DC, USA, 2013. IEEE
Computer Society.

[90] Min Gyung Kang, Stephen McCamant, Pongsin Poosankam, and Dawn Song.
DTA++: Dynamic taint analysis with targeted control-flow propagation. In Proceed-
ings of the 18th Annual Network and Distributed System Security Symposium, San Diego,
CA, February 2011.

[91] Florian Kelbert and Alexander Pretschner. Data usage control enforcement in dis-
tributed systems. In Proceedings of the Third ACM Conference on Data and Application
Security and Privacy, CODASPY ’13, pages 71–82, New York, NY, USA, 2013. ACM.

[92] Florian Kelbert and Alexander Pretschner. Decentralized distributed data usage con-
trol. In Dimitris Gritzalis, Aggelos Kiayias, and Ioannis Askoxylakis, editors, Cryp-
tology and Network Security, volume 8813 of Lecture Notes in Computer Science, pages
353–369. Springer International Publishing, 2014.

[93] Vasileios P. Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D.
Keromytis. Libdft: Practical dynamic data flow tracking for commodity systems.
In Proceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Virtual Execution Envi-
ronments, VEE ’12, pages 121–132, New York, NY, USA, 2012. ACM.

166

Bibliography

[94] Hyung Chan Kim, Angelos D. Keromytis, Michael Covington, and Ravi Sahita. Cap-
turing information flow with concatenated dynamic taint analysis. In Proceedings
of the The Forth International Conference on Availability, Reliability and Security, ARES
2009, March 16-19, 2009, Fukuoka, Japan, pages 355–362, 2009.

[95] J. Krinke. Advanced Slicing of Sequential and Concurrent Programs. PhD thesis, Univer-
sität Passau, 2003.

[96] Maxwell Krohn, Alexander Yip, Micah Brodsky, Natan Cliffer, M. Frans Kaashoek,
Eddie Kohler, and Robert Morris. Information flow control for standard os abstrac-
tions. SIGOPS Oper. Syst. Rev., 41(6):321–334, October 2007.

[97] Prachi Kumari, Florian Kelbert, and Alexander Pretschner. Data protection in het-
erogeneous distributed systems: A smart meter example. In Dependable Software for
Critical Infrastructures, October 2011.

[98] Prachi Kumari and Alexander Pretschner. Deriving implementation-level policies
for usage control enforcement. In Proceedings of the Second ACM Conference on Data
and Application Security and Privacy, CODASPY ’12, pages 83–94, New York, NY,
USA, 2012. ACM.

[99] Prachi Kumari and Alexander Pretschner. Model-based usage control policy deriva-
tion. In Proceedings of the 5th International Conference on Engineering Secure Software
and Systems, ESSoS’13, pages 58–74, Berlin, Heidelberg, 2013. Springer-Verlag.

[100] Prachi Kumari, Alexander Pretschner, Jonas Peschla, and Jens-Michael Kuhn. Dis-
tributed data usage control for web applications: A social network implementation.
In Proceedings of the First ACM Conference on Data and Application Security and Privacy,
CODASPY ’11, pages 85–96, New York, NY, USA, 2011. ACM.

[101] Orna Kupferman and Moshe Y. Vardi. Model checking of safety properties. Form.
Methods Syst. Des., 19(3):291–314, October 2001.

[102] Martin Leucker and Christian Schallhart. A brief account of runtime verification.
Journal of Logic and Algebraic Programming, 78(5):293–303, May 2009.

[103] Matthias Leumann. Policy evaluation and negotiation in distributed usage control.
Master’s thesis, Department of Informatics, ETH Zürich, 2007.

[104] Ondřej Lhoták and Laurie Hendren. Context-sensitive points-to analysis: Is it worth
it? In Alan Mycroft and Andreas Zeller, editors, Compiler Construction, volume 3923
of Lecture Notes in Computer Science, pages 47–64. Springer Berlin Heidelberg, 2006.

[105] Michael Lörscher. Usage control for a mail client. Master’s thesis, Department of
Informatics, Kaiserslautern University of Technology, 2012.

[106] Volkmar Lotz, Emmanuel Pigout, Peter M. Fischer, Donald Kossmann, Fabio Mas-
sacci, and Alexander Pretschner. Towards systematic achievement of compliance in
service-oriented architectures: The master approach. WIRTSCHAFTSINFORMATIK,
50(5):383–391, 2008.

167

Bibliography

[107] Enrico Lovat, Alexander Fromm, Martin Mohr, and Alexander Pretschner. SHRIFT
System-wide HybRid Information Flow Tracking. In ICT Systems Security and Privacy
Protection, IFIP Advances in Information and Communication Technology. Springer
Berlin Heidelberg, 2015.

[108] Enrico Lovat and Florian Kelbert. Structure matters - A new approach for data flow
tracking. In 35. IEEE Security and Privacy Workshops, SPW 2014, San Jose, CA, USA,
May 17-18, 2014, pages 39–43, 2014.

[109] Enrico Lovat, Martı́n Ochoa, and Alexander Pretschner. Cross-layer data flow track-
ing (submitted). 2015.

[110] Enrico Lovat, Johan Oudinet, and Alexander Pretschner. On quantitative dynamic
data flow tracking. In Proceedings of the 4th ACM Conference on Data and Application
Security and Privacy, CODASPY ’14, pages 211–222, New York, NY, USA, 2014. ACM.

[111] Enrico Lovat and Alexander Pretschner. Data-centric multi-layer usage control en-
forcement: A social network example. In Proceedings of the 16th ACM Symposium on
Access Control Models and Technologies, SACMAT ’11, pages 151–152, New York, NY,
USA, 2011. ACM.

[112] David Luckham. The power of events: An introduction to complex event process-
ing in distributed enterprise systems. In Nick Bassiliades, Guido Governatori, and
Adrian Paschke, editors, Rule Representation, Interchange and Reasoning on the Web,
volume 5321 of Lecture Notes in Computer Science, pages 3–3. Springer Berlin Heidel-
berg, 2008.

[113] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building
customized program analysis tools with dynamic instrumentation. In Proceedings of
the 2005 ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI ’05, pages 190–200, New York, NY, USA, 2005. ACM.

[114] Heiko Mantel. Possibilistic definitions of security - an assembly kit. Computer Secu-
rity Foundations Workshop, IEEE, 0:185, 2000.

[115] Stephen McCamant and Michael D. Ernst. Quantitative information flow as network
flow capacity. SIGPLAN Not., 43(6):193–205, June 2008.

[116] Microsoft. Active Directory Rights Management Services Windows.
https://technet.microsoft.com/en-us/library/dn339006(v=ws.
10).aspx(last access: 11.05.2015), 2015.

[117] Matthew Might, Yannis Smaragdakis, and David Van Horn. Resolving and exploit-
ing the k-cfa paradox: Illuminating functional vs. object-oriented program analysis.
In Proceedings of the 2010 ACM SIGPLAN Conference on Programming Language Design
and Implementation, PLDI ’10, pages 305–315, New York, NY, USA, 2010. ACM.

[118] Ana Milanova, Atanas Rountev, and Barbara G. Ryder. Parameterized object sen-
sitivity for points-to analysis for java. ACM Trans. Softw. Eng. Methodol., 14(1):1–41,
January 2005.

168

https://technet.microsoft.com/en-us/library/dn339006(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/dn339006(v=ws.10).aspx

Bibliography

[119] Jonathan K. Millen. Covert channel capacity. In Proceedings of the 1987 IEEE Sympo-
sium on Security and Privacy, Oakland, California, USA, April 27-29, 1987, pages 60–66,
1987.

[120] Cornelius Moucha, Enrico Lovat, and Alexander Pretschner. A hypervisor-based
bus system for usage control. In Proceedings of the Sixth International Conference on
Availability, Reliability and Security (ARES), pages 254–259, August 2011.

[121] Cornelius Moucha, Enrico Lovat, and Alexander Pretschner. A virtualized usage
control bus system. Journal of Wireless Mobile Networks, Ubiquitous Computing, and
Dependable Applications (JoWUA), 2(4):84–101, 2011.

[122] Kiran-Kumar Muniswamy-Reddy, Uri Braun, David A. Holland, Peter Macko, Di-
ana Maclean, Daniel Margo, Margo Seltzer, and Robin Smogor. Layering in prove-
nance systems. In Proceedings of the 2009 Conference on USENIX Annual Technical
Conference, USENIX’09, pages 10–10, Berkeley, CA, USA, 2009. USENIX Association.

[123] Andrew C. Myers. Jflow: Practical mostly-static information flow control. In Pro-
ceedings of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’99, pages 228–241, New York, NY, USA, 1999. ACM.

[124] Srijith K. Nair, Andrew S. Tanenbaum, Gabriela Gheorghe, and Bruno Crispo. En-
forcing drm policies across applications. In Proceedings of the 8th ACM workshop on
Digital rights management, DRM ’08, pages 87–94, New York, NY, USA, 2008. ACM.

[125] Mangala Gowri Nanda and S. Ramesh. Interprocedural slicing of multithreaded
programs with applications to java. ACM Trans. Program. Lang. Syst., 28(6):1088–
1144, November 2006.

[126] Ricardo Neisse, Alexander Pretschner, and Valentina Di Giacomo. A trustworthy
usage control enforcement framework. 2012 Seventh International Conference on Avail-
ability, Reliability and Security, 0:230–235, 2011.

[127] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. In Proceedings of the 2007 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’07, pages 89–100, New
York, NY, USA, 2007. ACM.

[128] Open Mobile Alliance. DRM Rights Expression Language V2.1, 2008.
http://www.openmobilealliance.org/Technical/release_program/
drm_v2_1.aspx(last access: 11.05.2015).

[129] Jaehong Park and Ravi Sandhu. The UCONABC Usage Control Model. ACM Trans.
Inf. Syst. Secur., 7(1):128–174, February 2004.

[130] Miodrag Petkovic, M. Popovic, Ilija Basicevic, and Djordje Saric. A host based
method for data leak protection by tracking sensitive data flow. In Engineering of
Computer Based Systems (ECBS), 2012 IEEE 19th International Conference and Workshops
on, pages 267–274, April 2012.

169

http://www.openmobilealliance.org/Technical/release_program/drm_v2_1.aspx
http://www.openmobilealliance.org/Technical/release_program/drm_v2_1.aspx

Bibliography

[131] François Pottier and Vincent Simonet. Information flow inference for ml. ACM Trans.
Program. Lang. Syst., 25(1):117–158, January 2003.

[132] A. Pretschner, M. Hilty, D. Basin, C. Schaefer, and T. Walter. Mechanisms for us-
age control. In Proceedings of the 2008 ACM Symposium on Information, Computer and
Communications Security, ASIACCS ’08, pages 240–244, New York, NY, USA, 2008.
ACM.

[133] A. Pretschner, M. Hilty, F. Schutz, C. Schaefer, and T. Walter. Usage control enforce-
ment: Present and future. Security Privacy, IEEE, 6(4):44–53, July 2008.

[134] A. Pretschner, F. Schütz, C. Schaefer, and T. Walter. Policy evolution in distributed
usage control. Electron. Notes Theor. Comput. Sci., 244:109–123, August 2009.

[135] Alexander Pretschner. An Overview of Distributed Usage Control. In Knowledge
Engineering: Principles and Techniques Conference, pages 25–33, 2009.

[136] Alexander Pretschner, Matthias Büchler, Matus Harvan, Christian Schaefer, and
Thomas Walter. Usage control enforcement with data flow tracking for x11. In
Proceedings of the 5th International Workshop on Security and Trust Management, pages
124–137, 2009.

[137] Alexander Pretschner, Florian Kelbert, Prachi Kumari, Enrico Lovat, and Tobias
W uechner. Distributed Data Usage Control. Springer, 2015.

[138] Alexander Pretschner, Enrico Lovat, and Matthias Büchler. Representation-
independent data usage control. In Proceedings of the 6th International Conference, and
4th International Conference on Data Privacy Management and Autonomous Spontaneus
Security, DPM’11, pages 122–140, Berlin, Heidelberg, 2012. Springer-Verlag.

[139] Alexander Pretschner, Judith Rüesch, Christian Schaefer, and Thomas Walter. For-
mal analyses of usage control policies. In ARES, pages 98–105, 2009. Policy de-
scriptions for experiments available at http://www22.in.tum.de/fileadmin/
papers/ares09-experiments.pdf.

[140] Siegfried Rasthofer, Steven Arzt, and Eric Bodden. A machine-learning approach for
classifying and categorizing android sources and sinks. Proceedings of the Network and
Distributed System Security Symposium (NDSS 2014), 2014.

[141] Siegfried Rasthofer, Steven Arzt, Enrico Lovat, and Eric Bodden. DroidForce: En-
forcing Complex, Data-Centric, System-Wide Policies in Android. In Proceedings of
the 9th International Conference on Availability, Reliability and Security (ARES). IEEE,
September 2014.

[142] Thomas Reps, Susan Horwitz, Mooly Sagiv, and Genevieve Rosay. Speeding up
slicing. ACM SIGSOFT Software Engineering Notes, 19(5):11–20, December 1994.

[143] Erik Rissanen. Extensible access control markup language v3.0. http://docs.
oasis-open.org/xacml/3.0/(last access: 11.05.2015), 2010.

170

http://www22.in.tum.de/fileadmin/papers/ares09-experiments.pdf
http://www22.in.tum.de/fileadmin/papers/ares09-experiments.pdf
http://docs.oasis-open.org/xacml/3.0/
http://docs.oasis-open.org/xacml/3.0/

Bibliography

[144] Bruno P. S. Rocha, Mauro Conti, Sandro Etalle, and Bruno Crispo. Hybrid static-
runtime information flow and declassification enforcement. Trans. Info. For. Sec.,
8(8):1294–1305, August 2013.

[145] John Rushby. Noninterference, transitivity and channel-control security policies,
1992.

[146] Barbara G. Ryder. Dimensions of precision in reference analysis of object-oriented
programming languages. In Proceedings of the 12th International Conference on Compiler
Construction, CC’03, pages 126–137, Berlin, Heidelberg, 2003. Springer-Verlag.

[147] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, 21(1):5–19, 2003.

[148] R.S. Sandhu and P. Samarati. Access control: principle and practice. Communications
Magazine, IEEE, 32(9):40–48, Sept 1994.

[149] Shakti Saxena. Data usage control in office application. Master’s thesis, Department
of Informatics, Technische Universität München, 2014.

[150] O. Shivers. Control flow analysis in scheme. In Proceedings of the ACM SIGPLAN
1988 Conference on Programming Language Design and Implementation, PLDI ’88, pages
164–174, New York, NY, USA, 1988. ACM.

[151] Asia Slowinska and Herbert Bos. Pointless tainting?: Evaluating the practicality
of pointer tainting. In Proceedings of the 4th ACM European Conference on Computer
Systems, EuroSys ’09, pages 61–74, New York, NY, USA, 2009. ACM.

[152] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas Devadas. Secure Program
Execution via Dynamic Information Flow Tracking. ACM SIGPLAN Notices - ASP-
LOS, 39(11):85–96, October 2004.

[153] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri Weisman.
Taj: Effective taint analysis of web applications. In Proceedings of the 2009 ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’09,
pages 87–97, New York, NY, USA, 2009. ACM.

[154] Kevin Twidle, Emil Lupu, Naranker Dulay, and Morris Sloman. Ponder2 - a pol-
icy environment for autonomous pervasive systems. In Proceedings of the 2008 IEEE
Workshop on Policies for Distributed Systems and Networks, POLICY ’08, pages 245–246,
Washington, DC, USA, 2008. IEEE Computer Society.

[155] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni, Blome J. A., G. A.
Reis, M. Vachharajani, and D. I. August. Rifle: An architectural framework for user-
centric information-flow security. In Proceedings of 37th annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO 37, pages 243–254, 2004.

[156] Dries Vanoverberghe and Frank Piessens. A caller-side inline reference monitor for
an object-oriented intermediate language. In Gilles Barthe and FrankS. de Boer, edi-
tors, Formal Methods for Open Object-Based Distributed Systems, volume 5051 of Lecture
Notes in Computer Science, pages 240–258. Springer Berlin Heidelberg, 2008.

171

Bibliography

[157] Dennis Volpano, Cynthia Irvine, and Geoffrey Smith. A sound type system for se-
cure flow analysis. Journal of Computer Security, 4(2-3):167–187, January 1996.

[158] Dennis M. Volpano. Safety versus secrecy. In Proceedings of the 6th International Sym-
posium on Static Analysis, SAS ’99, pages 303–311, London, UK, UK, 1999. Springer-
Verlag.

[159] Dennis M. Volpano and Geoffrey Smith. A type-based approach to program security.
In Proceedings of the 7th International Joint Conference CAAP/FASE on Theory and Prac-
tice of Software Development, TAPSOFT ’97, pages 607–621, London, UK, UK, 1997.
Springer-Verlag.

[160] W3C. The Platform for Privacy Preferences 1.1 (P3P1.1) Specification, 2005. http:
//www.w3.org/TR/2005/WD-P3P11-20050104/(last access: 11.05.2015).

[161] Ting Wang, Mudhakar Srivatsa, Dakshi Agrawal, and Ling Liu. Modeling data flow
in socio-information networks: A risk estimation approach. In Proceedings of the 16th
ACM Symposium on Access Control Models and Technologies, SACMAT ’11, pages 113–
122, New York, NY, USA, 2011. ACM.

[162] Daniel Wasserrab and Denis Lohner. Proving information flow noninterference by
reusing a machine-checked correctness proof for slicing. In 6th International Verifica-
tion Workshop - VERIFY-2010, 2010.

[163] Patrick Wenz. Data Usage Control for ChromiumOS. Master’s thesis, Department
of Informatics, Karlsruhe Institute of Technology, 2012.

[164] Tobias Wüchner and Alexander Pretschner. Data loss prevention based on data-
driven usage control. In 23rd IEEE International Symposium on Software Reliability
Engineering (ISSRE), pages 151–160, Nov 2012.

[165] Tobias Wüechner. Implementation of usage control for the windows api. Master’s
thesis, Department of Informatics, Kaiserslautern University of Technology, 2011.

[166] Bennet Yee, David Sehr, Gregory Dardyk, J. Bradley Chen, Robert Muth, Tavis Or-
mandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. Native client: A sand-
box for portable, untrusted x86 native code. In Proceedings of the 2009 30th IEEE
Symposium on Security and Privacy, SP ’09, pages 79–93, Washington, DC, USA, 2009.
IEEE Computer Society.

[167] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin Kirda.
Panorama: Capturing system-wide information flow for malware detection and
analysis. In Proceedings of the 14th ACM Conference on Computer and Communications
Security, CCS ’07, pages 116–127, New York, NY, USA, 2007. ACM.

[168] Alexander Yip, Xi Wang, Nickolai Zeldovich, and M. Frans Kaashoek. Improving
application security with data flow assertions. In Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles, SOSP ’09, pages 291–304, New York,
NY, USA, 2009. ACM.

172

http://www.w3.org/TR/2005/WD-P3P11-20050104/
http://www.w3.org/TR/2005/WD-P3P11-20050104/

Bibliography

[169] Nickolai Zeldovich, Silas Boyd-Wickizer, Eddie Kohler, and David Mazières. Mak-
ing information flow explicit in histar. In Proceedings of the 7th USENIX Symposium
on Operating Systems Design and Implementation - Volume 7, OSDI ’06, pages 19–19,
Berkeley, CA, USA, 2006. USENIX Association.

[170] Nickolai Zeldovich, Silas Boyd-Wickizer, and David Mazières. Securing distributed
systems with information flow control. In Proceedings of the 5th USENIX Symposium
on Networked Systems Design and Implementation, NSDI’08, pages 293–308, Berkeley,
CA, USA, 2008. USENIX Association.

[171] Bin Zeng, Gang Tan, and Úlfar Erlingsson. Strato: A retargetable framework for
low-level inlined-reference monitors. In Proceedings of the 22Nd USENIX Conference
on Security, SEC’13, pages 369–382, Berkeley, CA, USA, 2013. USENIX Association.

[172] Qing Zhang, John McCullough, Justin Ma, Nabil Schear, Michael Vrable, Amin Vah-
dat, Alex C. Snoeren, Geoffrey M. Voelker, and Stefan Savage. Neon: System support
for derived data management. In Proceedings of the 6th ACM SIGPLAN/SIGOPS In-
ternational Conference on Virtual Execution Environments, VEE ’10, pages 63–74, New
York, NY, USA, 2010. ACM.

[173] Xinwen Zhang, Jaehong Park, Francesco Parisi-Presicce, and Ravi Sandhu. A logical
specification for usage control. In Proceedings of the Ninth ACM Symposium on Access
Control Models and Technologies, SACMAT ’04, pages 1–10, New York, NY, USA, 2004.
ACM.

[174] Xinwen Zhang, Jaehong Park, Francesco Parisi-Presicce, and Ravi Sandhu. A logical
specification for usage control. In Proceedings of the Ninth ACM Symposium on Access
Control Models and Technologies, SACMAT ’04, pages 1–10, New York, NY, USA, 2004.
ACM.

[175] David (Yu) Zhu, Jaeyeon Jung, Dawn Song, Tadayoshi Kohno, and David Wetherall.
Tainteraser: Protecting sensitive data leaks using application-level taint tracking.
SIGOPS Operating System Review, 45(1):142–154, February 2011.

173

	Acknowledgements
	Abstract
	Zusammenfassung
	Outline of the Thesis
	Introduction
	Goal
	Research Description
	Problem
	Thesis Statement
	Solution Strategy
	Contribution

	System Model and Assumptions
	Running Scenario
	Structure

	Part I - Representation-Independent Data Usage Control
	Background: Usage Control
	System Model
	Events
	Refinement
	Semantic Model of Events and System Runs

	Specification-Level Policies
	Propositions
	Conditions Outside Temporal and First Order Logic
	Formal Semantics of Events
	First Order Future Time Formulae

	Implementation-Level Policies
	Past Time Conditions
	ECA Rules
	Default Behavior
	Composition and Mechanisms
	Example

	Policy Activation and Violation
	Detective and Preventive Enforcement

	Usage Control Marries Data Flow Tracking
	System model
	Data, Containers, and Events
	Computing the Data State
	State-based Operators

	Use Case (Single Layer)
	Notation
	Operating System Layer
	Application Layer

	Soundness (Single Layer)
	Security Property at the Layer
	Sources and Destinations
	Single Layer Soundness

	Conclusions

	Cross-layer Data Flow Tracking
	Motivating Example
	File loading
	File saving

	A Sound Cross-layer Monitor
	Soundness (Multi-layer)
	Simple Model
	XA Oracle

	A Sound and Precise Cross-layer Monitor
	Increasing Precision: Example
	Event Behaviors
	XB Oracle
	Refined Model and Algorithm

	Use Case (Multi-layer)
	Instantiation of XA
	Instantiation of XB
	Step-by-step Example

	Conclusions

	System Design and Implementation
	Architecture
	Policy Enforcement Point
	Policy Decision Point
	Policy Information Point
	Interplay

	Implementation and Evaluation
	Label Creep

	Part II - Taming Label Creep: Enhanced Data Flow Tracking
	Structured Data Flow Tracking
	Introduction
	Bottle-neck Pattern
	Proposed Solution
	Example Scenario

	Formal Model
	Structured Data Flow Tracking
	Merge Operations
	Split Operations
	Checksum

	Instantiations
	Evaluation
	Preliminary Test
	Experiment Settings
	Experiment Description
	Handling of Non-Atomic Events
	RQ1 - Precision
	RQ2 - Performance

	Challenges and Conclusions

	Intra-process Data Flow Tracking
	Introduction
	Example Scenario
	Summary

	Approach
	Static Analysis
	Instrumentation
	Runtime

	Evaluation
	Settings
	RQ1 - Precision
	RQ2 - Performance of the Static Analyzer
	RQ3 - Runtime Performance

	Discussion
	Extensions
	Challenges and Conclusions

	Quantitative Data Flow Tracking
	Introduction
	Motivation
	Example Scenario

	Measuring Data Quantities
	Quantitative Data Flow Tracking
	Provenance Graphs
	Runtime Construction
	Step-by-step Example
	Rationale
	Computation of
	Correctness
	Simplification

	Quantitative Policies
	Semantic Model
	Policies

	Evaluation
	Implementation and Methodology
	RQ1 - Precision
	RQ2 - Performance
	Discussion

	Challenges and Conclusions

	Related Work
	Author's Prior Work
	Usage Control
	Information Flow Control
	Static Approaches
	Dynamic Approaches
	Hybrid Approaches

	Conclusions
	Future Work

	Appendix
	Data Usage Control Language - Concrete Syntax
	Soundness Proof - Cross-layer
	Soundness of
	Soundness of A B

	Soundness Proof - Quantitative Data Flow Tracking
	Correctness of Tracking
	Correctness of Optimizations

	Bibliography

