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Abstract

Being able to obtain a model of a dynamical system is useful for a variety of

purposes, e.g. condition monitoring and model-based control. The dynamics of

complex technical systems such as gas or wind turbines can be approximated by

data driven models, e.g. recurrent neural networks. Such methods have proven

to be powerful alternatives to analytical models which are not always available or

may be inaccurate. Optimizing the parameters of data-driven models generally

requires large amounts of operational data. However, data is a scarce resource

in many applications, hence, data-efficient procedures utilizing all available data

are preferred.

In this thesis, recurrent neural networks are explored and developed which

allow for data-efficient knowledge transfer from one or multiple source tasks to

a related target task that lacks sufficient amounts of data. Multiple knowledge

transfer scenarios are considered: dual-task learning, multi-task learning, and

transfer learning. Dual-task learning is a particular case of multi-task learn-

ing in which multiple tasks are learned simultaneously, thus, allowing to share

knowledge among the tasks. Transfer learning implies a sequential protocol in

which the target task is learned subsequent to learning one or multiple source

tasks. Knowledge transfer is explored and applied in the context of fully and

partially observable system identification to improve the model of a little ob-

served system by means of auxiliary data from one or multiple similar systems.

Fully observable system identification assumes that the observed system state

corresponds to the true state while partial observability implies the observation

of either a subset of the state variables or proxy variables.

The primary contribution of this thesis comprises a novel recurrent neural net-

work architecture for knowledge transfer which uses factored third-order tensors

to encode cross-task and task-specific information within composite affine trans-

formations. This model is investigated in a series of experiments on synthetic
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as well as real-world gas turbine data. Empirically, the proposed Factored Ten-

sor Recurrent Neural Network architecture outperforms the other considered

methods consistently in all experiments by transferring information from one or

multiple well-observed source task(s) to a little observed target task. Without

any transfer approach, the target task cannot be modeled successfully because

of insufficient amounts of available data. Besides this empirically proven merit,

the proposed Factored Tensor Recurrent Neural Network is appealing due to its

principal approach of incorporating cross-task and task-specific information into

the architecture, thereby, allowing for task-specific adaptation in a data-efficient

way.
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4.3.1 Näıve RNN . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.2 RNN+ID . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.3.3 FTRNN . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 The Fully Observable Dual-Task Learning Problem . . . . . . . 65

4.4.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . 67

4.4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5 The Fully Observable Dual-Task Learning Problem with Regu-

larization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.5.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . 74

4.5.2 Regularization . . . . . . . . . . . . . . . . . . . . . . . . 75

viii



Contents

4.5.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.6 The Fully Observable Transfer Learning Problem . . . . . . . . 80

4.6.1 Formal Problem Definition . . . . . . . . . . . . . . . . . 81

4.6.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.6.3 Training Time . . . . . . . . . . . . . . . . . . . . . . . . 89

4.6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Exploiting Similarity in Partially Observable System Identifi-

cation Tasks 91

5.1 Partially Observable System Identification . . . . . . . . . . . . 92

5.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1.2 Formal Problem Definition . . . . . . . . . . . . . . . . . 92

5.2 Partially Observable System Identification with RNNs . . . . . . 93

5.3 Partially Observable Multi-System Identification with RNNs . . 95
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CHAPTER 1

Introduction

Much technological progress has been made in the area of machine learning to

automatically find structure in data. Especially in the field of deep learning,

methods have been developed that are competitive with human judgment on

difficult classification tasks (Taigman et al., 2014). However, many such meth-

ods make the assumption that the data-generating process is time-invariant.

This assumption is strong and may not always hold in practice. The following

examples describe real-world scenarios which motivated the research presented

in this thesis and for which this assumption is likely invalid.

Example 1.1 Consider an industrial plant that is subject to modifications over

time. During normal operation, the system behavior is observed and a simulation

model is trained from the collected data. As a consequence of the modifications,

the plant’s dynamical properties change thereby invalidating the available model.

However, an accurate model is needed as soon as possible after recommissioning

the plant. Given that the overall plant remains largely the same, no fundamental

changes of the general structure and complexity of the dynamics are expected.

Therefore, information collected prior to the plant modifications can be exploited

to learn a new model with significantly fewer data from the modified plant, com-

pared to learning a new model from scratch.

Example 1.2 Consider multiple similar industrial plants, e.g. plants of the

same family, that have been operated and observed for sufficient time such that

the recorded data are a representative sample of their dynamical properties.

Then, a model of each plant can be derived from fitting its parameters to the

data which may be utilized for e.g. condition monitoring or model based control

(Schäfer et al., 2007b). Over time, new instances of this family may be deployed
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1 Introduction

and commissioned. However, observing each new one sufficiently long in order

to learn a good model is impractical because the plant would need to be operated

using default methods until enough data have been gathered. Hence, the goal is

to learn an accurate model of a new plant with as little data as possible, i.e. as

soon as possible after commissioning. The fact that prior knowledge of similar

plants is available lends itself to exploiting this knowledge and transferring it to

the new plant.

More abstractly, there may be a task for which only little data is available,

but plenty of additional data from one or multiple related task(s) is accessible.

Näıvely, only the data from the new task is used to learn a model which likely

shows inferior performance because of lacking data. Alternatively, based on the

assumption that the tasks are sufficiently related to each other it may be possible

to exploit their relation and utilize the data from the related task(s) as prior

knowledge about the global structure of the new task. Then, only particular

aspects of the new task need to be inferred which is likely to require significantly

less data.

This thesis addresses the question of how to make effective use of prior knowl-

edge in the context of modeling dynamical systems. Multiple knowledge trans-

fer scenarios are explored which are applied in the context of modeling the

dynamics of fully observable dynamical systems and soft-sensor modeling un-

der partial observability. Full observability assumes that the observed system

state corresponds to the true state while partial observability is given when

only observations of either a subset of the state variables or proxy variables

are accessible. Many real-world systems are partially observable because their

state is observed through sensors, but the set of sensor values at a given point

in time does not fully determine the state of the system. A simple example is

the task of quantifying the acceleration of a car by observing its speedometer.

The speedometer displays the momentary speed of the car, but the reading at

a single point in time does not give information about its acceleration. How-

ever, aggregated information from one or multiple preceding readings allows to

reconstruct the missing information. While this example is rather simplistic,

the dynamics of complex technical systems such as gas or wind turbines are

typically much more complicated. Consequently, data-driven models such as

recurrent neural networks (Bailer-Jones et al., 1998; Zimmermann & Neuneier,
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2001) have proven to be powerful alternatives to analytical models which are

not always available or may be inaccurate (Schäfer et al., 2007a). Optimizing

the parameters of data-driven models generally requires large amounts of oper-

ational data. However, data is a scarce resource in many applications. Hence,

data-efficient procedures utilizing all available data are preferred including data

from other systems based on the prior knowledge of system similarity.

Two system identification problems are explored. The first problem deals

with fully observable multi-system identification under the paradigms dual-task

and transfer learning. Dual-task learning is a special case of multi-task learn-

ing where multiple tasks are learned simultaneously within a joint model, thus,

enabling knowledge transfer among the tasks. Transfer learning implies a se-

quential protocol in which the target task is learned subsequent to learning

multiple source task models. Experiments were conducted using the cart-pole

and mountain car dynamics because they are well known benchmarks, intu-

itively configurable in order to obtain multiple similar systems, and convenient

for generating arbitrary amounts of data. In the dual-task learning setting,

a scarcely observed target system is modeled by exploiting plenty of auxiliary

data from a related source system. Several model architectures are compared

by plotting the respective model error against the data ratio between the source

and target system data. In the transfer learning setting, a scarcely observed tar-

get system is modeled by exploiting auxiliary data from multiple related source

systems according to the sequential protocol implied by the learning paradigm.

Several model architectures are compared by plotting the respective model error

against numerous target system configurations. The second problem deals with

partially observable multi-system identification under the multi-task learning

paradigm. Therein, a NOx emission sensor of a real-world gas turbine is mod-

eled based on a historical sequence of other environment and control sensor

values. Since the emission sensor model of the target system is inaccurate when

it is trained exclusively on the target system data, data from multiple related

turbines are used to augment the training data set. Several model architectures

are compared by plotting the respective model predictions as well as the ground

truth for each instance in the test set.
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1 Introduction

1.1 Contributions

The field of knowledge transfer has received increased attention in recent years as

an emerging field within the area of machine learning. However, much research

has focused on classification problems with non-sequential inputs, e.g. with ap-

plications in computer vision or natural language processing, while knowledge

transfer in the context of dynamical system modeling has mostly remained un-

studied. The major contributions of this thesis are summarized as follows:

1. The importance of knowledge transfer among related dynamical systems

is introduced and motivated through industrial use cases where system

identification needs to be performed in the absence of sufficient data of a

target system.

2. Related work on knowledge transfer and other relevant prior work in ma-

chine learning is identified and discussed such that the novel approaches

presented in this thesis are associated with prior research.

3. Viable approaches for knowledge transfer among related systems are ex-

plored and proposed that enable effective utilization of data from the re-

lated systems to serve as prior knowledge of the target system in the

model building process. In particular, a novel recurrent neural network

architecture family is proposed for this purpose. In addition, a novel reg-

ularization technique is presented which strengthens the prior assumption

of the systems’ relatedness to increase data-efficiency with respect to the

target system.

4. The learning tasks of fully and partially observable system identification

are studied, and two learning paradigms—multi-task learning, and transfer

learning—are explored, which relate to different application scenarios.

5. Empirical analyses of the proposed methods are conducted in the above-

described learning problems and paradigms on data from simulations and

real-world gas turbines.

Over the course of the doctoral research, several papers have been authored and

published in peer-reviewed media which lay the foundation of this thesis. The

publications are listed and summarized as follows:
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• Spieckermann, S., Düll, S., Udluft, S., Hentschel, A., and Runkler, T.

Exploiting similarity in system identification tasks with recurrent neural

networks. In Proceedings of the 22nd European Symposium on Artifi-

cial Neural Networks, Computational Intelligence and Machine Learning

(ESANN), 2014a.

The problem of fully observable system identification of a target system

despite insufficient amounts of available data through effective utilization

of additional data from a related system was addressed. The Factored Ten-

sor Recurrent Neural Network architecture was proposed and empirically

evaluated on synthetic simulation data.

• Spieckermann, S., Düll, S., Udluft, S., Hentschel, A., and Runkler, T.

Exploiting similarity in system identification tasks with recurrent neural

networks. Neurocomputing, (Special Issue ESANN 2014), 2015. Extended

version. Invited paper.

The preceding work was extended by analyzing the proposed Factored

Tensor Recurrent Neural Network architecture in more in-depth and mo-

tivated based on theoretical grounds. Further, the empirical evaluation

of the model was extended to a second simulation and additional anal-

yses were conducted with regard to the weighting of each system in the

optimization objective.

• Spieckermann, S., Düll, S., Udluft, S., and Runkler, T. Regularized re-

current neural networks for data efficient dual-task learning. In Proceed-

ings of the 24th International Conference on Artificial Neural Networks

(ICANN), 2014c.

A novel regularization technique was proposed which penalizes dissimilar-

ity between the target system and the related system asymmetrically such

that only the target system parameters are tied to those of the related

system but not vice versa. Experiments were conducted on two synthetic

simulations.

• Spieckermann, S., Düll, S., Udluft, S., and Runkler, T. Multi-system iden-

tification for efficient knowledge transfer with factored tensor recurrent

neural networks. In Proceedings of the European Conference on Machine

Learning (ECML), Workshop on Generalization and Reuse of Machine
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1 Introduction

Learning Models over Multiple Contexts, 2014b.

The problem of fully observable system identification of a target system by

means of effective utilization of additional data from multiple related sys-

tems using the transfer learning paradigm was investigated. The afore pro-

posed Factored Tensor Recurrent Neural Network architecture was evalu-

ated in this learning paradigm on two synthetic simulations.

• Spieckermann, S., Udluft, S., and Runkler, T. Data-efficient temporal re-

gression with multi-task recurrent neural networks. In Advances in Neural

Information Processing Systems (NIPS), Second Workshop on Transfer

and Multi-Task Learning: Theory meets Practice, 2014.

A real-world problem of partially observable system identification in the

multi-task learning paradigm was studied. There, the afore proposed Fac-

tored Tensor Recurrent Neural Network was adapted and evaluated on

data from six real-world gas turbines.

1.2 Overview of the Thesis

The thesis consists of three main parts: (i) the introduction, motivation, outline,

and theoretical background in Chapters 1 and 2; (ii) an introduction to multi-

task and transfer learning with recurrent neural networks on sequential data

as well as the development of appropriate architectures including the proposed

Factored Tensor Recurrent Neural Network in Chapter 3; (iii) the application of

such methods to fully and partially observable multi-system identification using

multiple learning paradigms in Chapters 4 and 5. Chapter 2 reviews the general

concepts of machine learning and knowledge transfer, neural networks and rele-

vant learning algorithms, hidden Markov models, tensor factorization, the sys-

tem identification learning problem, relevant simulations of dynamical systems,

and a software package that enables rapid prototyping of complex neural archi-

tectures. Chapter 3 introduces two learning paradigms—multi-task and transfer

learning—and discusses their relatedness. Then, the space of recurrent neural

network architectures capable of performing knowledge transfer among multiple

tasks with sequential data is explored and suitable approaches are identified

and developed. In particular, the Factored Tensor Recurrent Neural Network

architecture is proposed and discussed. Chapter 4 addresses the problem of fully
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1.2 Overview of the Thesis

observable system identification under the constraint of few available data from

the system of interest. The dual-task learning, regularized dual-task learning,

and transfer learning scenarios are studied for exploiting the similarity of the

system of interest with other related systems. Experiments were conducted to

compare the effectiveness of the respective approaches. Chapter 5 investigates

the problem of partially observable system identification again under the con-

straint of insufficient data of the system of interest. The multi-task learning

paradigm is studied for exploiting the similarity of the system of interest with

other related systems. Experiments were conducted on real-world gas turbine

data. Chapter 6 concludes the work presented in this thesis and suggests future

research directions.
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CHAPTER 2

Theoretical Background

This chapter provides a theoretical background on the main concepts of machine

learning, which form the basis of the research presented in this thesis. First, the

field of machine learning is briefly introduced (Section 2.1). Therein, basic con-

cepts such as the hypothesis space, parameter space, data distribution, empirical

risk minimization, and the exponential family distribution are covered. Second,

the problem of and motivation for knowledge transfer is discussed wherein vari-

ous transfer settings and approaches are presented giving an overview of the field

(Section 2.2). Third, a particular class of parametric models—neural networks—

is revised (Section 2.3) ranging from the most basic type of neural network—the

perceptron—to multi-layer perceptrons to recurrent neural networks. Fourth,

learning and optimization algorithms are discussed (Section 2.4), covering the

idea of backpropagation, the Hessian-Free optimization algorithm, and the prob-

lem of overfitting. Fifth, the hidden Markov model being a popular choice for

sequence modeling tasks is introduced (Section 2.5). Sixth, the field of tensor

factorization is presented (Section 2.6) by introducing relevant notation and

concepts, a particular factorization technique called Parallel Factor Analysis,

and typical applications. Seventh, the process of system identification is briefly

outlined (Section 2.7) followed by a formal introduction of two simulations of

dynamical systems (Section 2.8). Finally, the software library which was used

to implement all models in this thesis is discussed (Section 2.9).

2.1 Machine Learning

Machine learning is a subject within computer science, with close relation to

other fields such as statistics and mathematical optimization, that is concerned

9



2 Theoretical Background

with computer software and algorithms enabling machines to learn autonomously

from data. Several definitions have been proposed by researchers over more than

half a century:

Definition 2.1 Field of study that gives computers the ability to learn without

being explicitly programmed. (Samuel, 1959)

Definition 2.2 A computer program is said to learn from experience E with

respect to some class of tasks T and performance measure P, if its performance

at tasks in T, as measured by P, improves with experience E. (Mitchell, 1997)

Definition 2.3 Machine Learning is the field of scientific study that concen-

trates on induction algorithms and on other algorithms that can be said to

“learn”. (Kohavi & Provost, 1998)

More formally, the goal of machine learning is to find a hypothesis h within a

hypothesis space H that approximates the structure or relationships described

by a data distribution D. A hypothesis h can be parametric, i.e. the hypothesis

can be parameterized by a set of adaptive weights θ within a parameter space

Θ, or non-parametric, i.e. the hypothesis relies on the data itself. In the scope of

this thesis only the hypothesis subspace of parametric hypotheses is considered

and further discussed in the following paragraphs.

Let X be an input space and Y be a target space with x ∈ X and y ∈ Y . Fur-

ther, let D denote an unknown probability distribution over the product space

X × Y , and (x, y) ∼ D be a sample drawn from this distribution. A parametric

hypothesis space H = {hθ | θ ∈ Θ} consists of hypotheses hθ : X → Y , that rep-

resent the mapping from the input space to the target space. The hypothesis

space H determines the family of hypotheses that are assumed to be able to

approximate the data generating process. The choice of H typically requires

domain knowledge of an expert. The parametric members hθ of the hypothesis

space are particular instances within the space. The optimal parametric hy-

pothesis h∗θ within the predefined hypothesis space H is obtained by minimizing

the generalization error ε with respect to the parameters θ over the data dis-

tribution D. The generalization error uses an appropriate task-dependent loss

L : Y × Y → R to quantify the difference between the prediction hθ(x) and the
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2.1 Machine Learning

target y.

h∗θ = arg min
hθ∈H,θ∈Θ

ε(hθ) (2.1a)

= arg min
hθ∈H,θ∈Θ

∫

X×Y
p(x, y)L(hθ(x), y)dxdy (2.1b)

= arg min
hθ∈H,θ∈Θ

E(x,y)∼D[L(hθ(x), y)] (2.1c)

Unfortunately, ε is not available in practice. Instead, only a finite number m ∈ N
samples (x(i), y(i)), i = 1, ...,m, drawn from the distribution D is available, i.e.

D = {(x(i), y(i)) ∼ D | i = 1, ...,m} with |D| = m. Thus, the empirically optimal

hypothesis ĥθ is found by minimizing the empirical error ε̂ on the data set D.

ĥθ = arg min
hθ∈H,θ∈Θ

ε̂D(hθ) (2.2a)

= arg min
hθ∈H,θ∈Θ

1

|D|
∑

(x,y)∈D
L(hθ(x), y) (2.2b)

Whether the empirical error ε̂ is a suitable proxy for the expected error ε depends

on the complexity of the mapping to be approximated, the complexity class of

the hypothesis space, and on the number and quality of the samples.

The loss function L is often chosen according to the distribution of the target

variable conditioned on the data, e.g. y|x ∼ N (µ, σ2). Assuming y|x is drawn

from a member of the exponential family of distributions, maximum likelihood

estimation yields a matching loss function. Let η denote the natural/canonical

parameter of the distribution, T (y) be the sufficient statistic, and a(η) be the

log partition function. Then, the exponential family of distributions is defined

by the term

p(y; η) = b(y) · eηTT (y)−a(η). (2.3)

Many common distributions are part of the exponential family. To obtain the

Gaussian distribution from the exponential family, which is a common assump-

tion for the target variable in many regression problems, one must choose η = µ,

T (y) = y, a(η) = µ2

2
= η2

2
, b(y) = 1√

2π
e
−y2
2 . The hypothesis shall predict

E(x,y)∼D[y|x], thus, it must satisfy hθ(x) = E(x,y)∼D[y|x; θ]. Given a specific hy-

pothesis the optimal choice of parameters is found by maximizing the likelihood.

11
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θ̂ = arg max
θ∈Θ

`(θ;D) (2.4a)

= arg max
θ∈Θ

∏

(x,y)∈D

dim(y)∏

i=1

1√
2πσi

e
− 1

2σ2
i

(yi−[hθ(x)]i)
2

(2.4b)

For mathematical convenience the log-likelihood instead of the likelihood is max-

imized which is an equivalent optimization objective because the logarithmic

function is monotonic.

θ̂ = arg max
θ∈Θ

ln `(θ;D) (2.5a)

= arg max
θ∈Θ

ln
∏

(x,y)∈D

dim(y)∏

i=1

1√
2πσi

e
− 1

2σ2
i

(yi−[hθ(x)]i)
2

(2.5b)

= arg max
θ∈Θ

∑

(x,y)∈D

dim(y)∑

i=1

Ç
− ln(

√
2πσi)−

1

2σ2
i

(yi − [hθ(x)]i)
2

å
(2.5c)

= arg max
θ∈Θ

∑

(x,y)∈D

dim(y)∑

i=1

− 1

2σ2
i

(yi − [hθ(x)]i)
2 (2.5d)

= arg max
θ∈Θ

∑

(x,y)∈D

dim(y)∑

i=1

−(yi − [hθ(x)]i)
2 (2.5e)

Then, maximizing the log-likelihood is equivalent to minimizing the negative

log-likelihood which is equivalent to minimizing the mean squared error.

θ̂ = arg min
θ∈Θ

{− ln `(θ;D)} (2.6a)

= arg min
θ∈Θ

∑

(x,y)∈D

dim(y)∑

i=1

(yi − [hθ(x)]i)
2 (2.6b)

= arg min
θ∈Θ

∑

(x,y)∈D
MSE(hθ(x), y) (2.6c)

The mean squared error is a common loss function in many regression problems

including the ones presented in this thesis. Other common loss functions in-

clude cross-entropy used for binomial and multinomial target variables as well

as heuristics such as the ln cosh function to reduce the importance of outliers,

the hinge loss max(0, 1− yhθ(x)), and many more.

12



2.2 Knowledge Transfer

2.2 Knowledge Transfer

Knowledge transfer denotes the process of using previously gained knowledge

from related tasks to improve the ability of learning a new task compared to

learning the task in isolation. The question of how to share or transfer knowledge

among multiple learning tasks dates back at least two decades.

Caruana (1993) suggested that learning multiple tasks simultaneously may

yield better generalization compared to learning multiple individual tasks sepa-

rately. He considered multiple related learning tasks to be sources of inductive

bias with mutual benefit to each other. Caruana focused on neural networks

which model multiple tasks by sharing the hidden layer in a three-layer network.

Thrun (1996) introduced the lifelong learning framework in which he derived

inspiration from human learning behavior. While a classical perspective on

learning theory is concerned with finding the optimal hypothesis that describes a

set of observed data of a particular task within a given hypothesis space, humans

follow a different learning paradigm where prior knowledge from a vast amount of

experience of related learning tasks is utilized. Thrun illustrates this perspective

with an intuitive example: “[...] when learning to drive a car, years of learning

experience with basic motor skills, typical traffic patterns, logical reasoning,

language and much more precede and influence this learning task. The transfer

of knowledge across learning tasks seems to play an essential role for generalizing

accurately, particularly when training data is scarce”. Figure 2.1 illustrates the

difference between classical machine learning and transfer learning.

Significant research has been conducted since to explore methods allowing to

transfer knowledge in various ways across domains and tasks, typically to alle-

viate the lack of labeled data in a target domain by exploiting prior knowledge

from one or multiple relevant source domain(s)/task(s). Three major survey

papers have been published in recent years that provide excellent overviews of

the field. Taylor & Stone (2009) and Torrey & Shavlik (2009) focus on trans-

fer learning in the context of reinforcement learning. Reinforcement learning

is concerned with training an agent to act optimally in a given environment

with respect to a particular task. Each action, that the agent invokes, returns

a reward to the agent. The agent’s goal is to accumulate as much reward as

possible over time which, in turn, implies a well-behaved agent with respect to

the underlying task. While this thesis is not concerned with control tasks, some

13
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Data Data · · · Data

Learning
Algorithm

Learning
Algorithm

· · · Learning
Algorithm

Model Model · · · Model

Task #1 Task #2 Task #N

(a) Classical machine learning

Data Data · · · Data

Knowledge
Learning
Algorithm

Model

Task #1 Task #2 Task #N

(b) Transfer learning

Figure 2.1: Comparison of classical machine learning vs. transfer learning. The

illustration is adapted from Pan & Yang (2010).

of the aspects discussed in the papers are closely related to transfer learning

in the context of modeling dynamical systems. Pan & Yang (2010) provide

a more general perspective on the topic, formalize the problem of knowledge

transfer across domains and tasks, identify various transfer learning settings,

their applicability in different situations and under different constraints, as well

as approaches how to achieve knowledge transfer, and depict which approach is

viable or compatible with each learning setting.

2.2.1 Formal Definition

A learning problem consists of a domain D = (X,P ), where X is an input space

and P a probability measure which gives the marginal probability P (x) of each

example input x ∈ X, and a learning task T = (Y, h), where Y is a target space

and h : X → Y is the hypothesis that models P (y|x), y ∈ Y , which is learned

from the training data D = {(x(i), y(i)) ∼ D | i = 1, ...,m}. In a transfer learning

scenario, there are source domains DS,i and learning tasks TS,i, i ∈ N, and there

is a target domain DT and a learning task TT . Given this scenario, a formal

definition of transfer learning, which was adapted from Pan & Yang (2010), is

provided as follows.

14
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Definition 2.4 (Transfer learning (Pan & Yang, 2010)) Given the source

domains DS,i and the learning tasks TS,i, a target domain DT and a learning task

TT , transfer learning aims to improve the learning of the target task hypothesis

hT : XT → YT in the target domain DT by utilizing the knowledge from DS,i and

TS,i where DS,i 6= DT , i.e. XS,i 6= XT and/or PS,i 6= PT , or TS,i 6= TT , i.e.

YS,i 6= YT and/or hS,i 6= hT , ∀i ∈ N.

2.2.2 Aspects of Transfer

Transfer learning requires the awareness and careful consideration of a variety of

aspects concerning what kinds of knowledge shall be transferred, what sources

of knowledge shall be selected, and how to proceed given certain constraints

imposed by the nature of the tasks and the used learning algorithm. Taylor

& Stone (2009) identify and formalize different aspects relevant for knowledge

transfer in the context of reinforcement learning. They categorize transfer learn-

ing based on the following key aspects:

Allowed task differences. There may be numerous ways in which tasks can

differ. Major task differences include non-identical state and/or action

spaces, different observation functions, different reward functions as well

as different dynamical properties, i.e. state transitions. Depending on

the problem at hand, one or multiple differences may occur among the

set of tasks. The task differences immediately affect the choice of viable

approaches for successful knowledge transfer among the tasks.

Source task selection. There may be one or multiple tasks to exploit, but some

subset of the tasks may not be suitable to improve the learning of the

target task. Source task selection may be performed by humans based

on domain knowledge or it may proceed automatically using an algorithm

that estimates the relatedness and utility of the available source tasks with

respect to the target task. Source tasks are not guaranteed to be useful

and may even harm the learning process of the target task.

Transferred knowledge. There are multiple kinds knowledge that can be trans-

ferred among tasks ranging from low-level knowledge, such as raw data

instances, to rather high-level knowledge, like task-specific or multi-task

(sub)models that may serve as priors for the target task.
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Task mappings. Tasks may have different state and/or action spaces and/or

observation functions. For instance, the state variables may only be par-

tially observable and different tasks may only be able to observe non-

identical subsets of the state variables. It is also conceivable that multiple

tasks observe the same subset of the state variables, but the variables are

observed differently, e.g. sensors may be measuring the same quantities

in different units. In such situations, it is desirable to map the available

information to a unified representation which may be achievable either

manually using domain knowledge or automatically from data.

Allowed learners. The choice of the learning algorithm may constrain the com-

patible scenarios. For instance, a partially observable system may require

a method to reconstruct the full state while it is readily available given a

fully observable system.

2.2.3 Settings

While traditional machine learning assumes identical source and target do-

mains/tasks, the domains and/or tasks may differ in a transfer learning setting.

Pan & Yang (2010) distinguish three transfer learning settings which account

for different task relations between the source and target domains/tasks.

Inductive transfer learning. Inductive transfer learning utilizes few labeled data

from the target domain to induce the target function of interest by trans-

ferring knowledge typically from labeled data in the source domain. When

large amounts of labeled data are available in the source domain, induc-

tive transfer learning is similar to multi-task learning except that it is

only concerned with improving the target task performance by utilizing

information from the source task.

Transductive transfer learning. Transductive transfer learning assumes iden-

tical source and target tasks but different domains. Further, while there

are labeled data available in the source domain, only unlabeled data are

available in the target domain. Transductive transfer can be divided into

two cases where (i) the source and target domains are actually different,

and (ii) the feature spaces of the source and target domains are equal, but

the marginal probability distributions are different.
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Unsupervised transfer learning. Unsupervised transfer learning assumes no la-

beled data in the source or target domain. It is, in principle, similar to

the inductive transfer learning setting, however, it is concerned with unsu-

pervised learning tasks such as clustering, dimensionality reduction, and

density estimation in the target domain.

Each of these settings can be addressed by a (sub)set of the different approaches

presented in the next subsection.

2.2.4 Approaches

Knowledge transfer can be achieved in multiple ways by transferring different

kinds of information, e.g. a weighted subset of the training data from the source

domain may be reused to improve learning in the target domain, a common

feature representation may be sought which is useful for both the source and

target domains, parameters may be shared within a joint model, or particular

domain properties may be exploited. Pan & Yang (2010) distinguish different

approaches to transfer learning which are listed as follows.

Instance transfer. Instance transfer assumes labeled data in the source domain

which are re-weighted for the target domain in order to be useful.

Representation transfer. Representation transfer aims to learn representations

of the input that are useful for the source and target tasks, thus, reducing

domain divergence in the feature representation space.

Parameter transfer. Parameter transfer aims to learn parameters that are, at

least in part, shared among multiple tasks. Many parameter transfer

approaches use a regularization framework that ties the parameters of the

tasks. Alternatively, models may be composed of cross-task and task-

specific parameters (e.g. Caruana, 1993). Representation and parameter

transfer methods may be related under some circumstances. For instance,

a model may be composed of a task-dependent feature extraction layer,

which maps the domain spaces to a common task-invariant feature space,

followed by a shared classifier/regressor (e.g. Ajakan et al., 2014).

Relational knowledge transfer. Relational knowledge transfer assumes non-

i.i.d. relational domains where relational knowledge is mapped from the
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source domain(s) to the target domain.

2.2.5 Discussion

According to Pan & Yang, some approaches have been applied in all transfer

settings while others have not yet been explored in some settings. Table 2.1

provides an overview of the relations between approaches and settings. The

work presented in this thesis uses a parameter transfer approach in the inductive

transfer learning setting.

Settings

Inductive Transductive Unsupervised

A
p

p
ro

a
ch

e
s

Instance X X

Representation X X X

Parameter X

Relational knowledge X

Table 2.1: Comparison of the application of transfer learning approaches in dif-

ferent transfer settings (Pan & Yang, 2010).

Prominent applications of transfer learning, that have attracted much atten-

tion in recent years, are vision, acoustics or natural language which require

learning good representations of the typically high-dimensional data for further

processing. In supervised learning tasks only relatively few labels of a target

task are available which motivated researchers to investigate into transfer learn-

ing approaches to share a common representation across multiple tasks using

unsupervised methods (e.g. Glorot et al., 2011; Bengio, 2012). However, lit-

erature research indicates that multi-task and transfer learning approaches for

system identification tasks using recurrent neural networks (RNN) have not

been explored before. The problems investigated in this thesis exhibit data that

is typically relatively low-dimensional and structured, e.g. a system is observed

through sensors each measuring a particular aspect of the system. Hence, the

kind of representation or feature learning tasks as they are common with natural

data are uncommon in the considered scenarios.
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2.3 Neural Networks

Neural networks (e.g. Kröse & van der Smagt, 1994) are biologically inspired

nonlinear parametric models. They consist of neurons, which are represented

as nodes in the network, and synapses, which are represented as connections or

adaptive weights between nodes. The value of a weight determines the connec-

tion strength between two neurons. In order to identify the relationship between

the presented inputs and targets the weights are adapted, or learned, such that

the expected error of the model is minimized. Neural networks are highly con-

figurable models which allows the designer to incorporate domain knowledge

into the architecture. Among the vast space of possibilities several key architec-

tures have emerged. The following subsections will introduce the perceptron,

multi-layer perceptron, and the Elman recurrent neural network architecture.

2.3.1 Perceptron

The perceptron is the most basic type of neural network (Rosenblatt, 1958;

Minsky & Papert, 1988). It implements a simple artificial neuron with a thresh-

old function whose incoming weights are adaptive and learned from data. As

opposed to the logistic regression model, whose output is a weighted linear com-

bination of the inputs followed by a smooth nonlinear sigmoid function yielding

values in the range ]0, 1[, the perceptron’s output is a weighted linear combina-

tion of the inputs forced to the binary values {0, 1} by means of a threshold.

Mathematically, the perceptron hypothesis is defined by the equation

hθ(x) =





1 if wTx+ b > 0

0 else
(2.7)

where x ∈ Rn is the input vector, w ∈ Rn is the weights vector, and b ∈ R is

a bias weight, thus, θ = {w, b}. Figure 2.2 illustrates the perceptron model.

After the weights are initialized randomly or with zero values they are adapted

to minimize the empirical error between the predicted output ŷ = hθ(x) and the

target y ∈ {0, 1} using the perceptron learning rule.

w ← w + α(y − ŷ) • x (2.8a)

b← b+ α(y − ŷ) (2.8b)
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x1 x2 . . . xn1

ŷ

w 1

w
2

w
nb

Figure 2.2: Perceptron

The bold bullet “•” denotes the pointwise vector product and α > 0 is the

learning rate. The perceptron learning rule is similar to the gradient descent

learning rule, which is covered in Section 2.4.1.

2.3.2 Multi-Layer Perceptron

The multi-layer perceptron (MLP) is an extension of the perceptron consisting of

multiple layers of artificial neurons equipped with nonlinear activation functions.

In contrast to the perceptron model the MLP is able to extract increasingly

abstract representations of the inputs by stacking multiple layers of hidden

neurons on top of each other. It has been proven that the MLP is a universal

function approximator, i.e. it can approximate any continuous function on a

compact domain with arbitrary accuracy, provided it has at least a single hidden

layer with a sufficient number of neurons (Cybenko, 1989; Hornik et al., 1989;

Hornik, 1991; Haykin, 1998).

To formalize the model, let ni denote the dimensionality of layer i in an MLP.

Further, let W (i) ∈ Rni×ni+1 be the weight matrix from layer i to layer i + 1,

b(i) ∈ Rni+1 be the bias weight vector of layer i + 1, and φ(i) : R → R be an

elementwise nonlinear activation function applied to layer i. Typical activation
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functions are

tanh(x) :=
ex − e−x
ex + e−x

(2.9)

logistic(x) :=
1

1 + e−x
(2.10)

relu(x) :=




x if x > 0

0 else
. (2.11)

Figure 2.3 depicts the activation functions. An MLP with l layers (including

−3 −2 −1 1 2 3

−1

1

x

φ(x)

(a) φ(x) = tanh(x)

−3 −2 −1 1 2 3

0.5

1

x

φ(x)

(b) φ(x) = logistic(x)

−1 −0.5 0.5 1

0.5

1

x

φ(x)

(c) φ(x) = relu(x)

Figure 2.3: Activation functions

the input and output layer) is described by the following equations.

z(1) = x (2.12a)

a(2) = W (1)z(1) + b(1) (2.12b)

z(2) = φ(2)(a(2)) (2.12c)

...

a(l) = W (l−1)z(l−1) + b(l−1) (2.12d)

z(l) = φ(l)(a(l)) (2.12e)

ŷ = z(l) (2.12f)

Figure 2.4 depicts the MLP architecture.

Let θ := {W (1), b(1), ...,W (l−1), b(l−1)} be the parameters of the MLP of equa-

tions (2.12a) to (2.12f). Then, the optimal parameters θ∗ of the model are found

by minimizing the error between the model output and the data (x, y) ∈ D given

the inputs x and the targets y.

θ∗ = arg min
θ

1

|D|
∑

(x,y)∈D
L(ŷ, y) (2.13)
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Figure 2.4: Multi-Layer perceptron with l layers including the input and output

layer.

2.3.3 Recurrent Neural Networks

Recurrent neural networks (RNN) are powerful models for sequence modeling

tasks (e.g. Rehkugler & Zimmermann, 1994; Mikolov et al., 2010; Socher, 2014).

In contrast to multi-layer perceptrons (also known as feed-forward neural net-

works), RNNs are cyclic with temporal delays in the recurrent connections.

Thus, they are able to naturally model sequential data and learn to build an

internal temporal memory. A common recurrent architecture is known as the

Elman network (Elman, 1990). Similar to MLPs, RNNs are universal approxi-

mators as well (Schäfer & Zimmermann, 2006; 2007). In addition, they possess

the computational power of a Turing machine (Siegelmann & Sontag, 1991).

Let nu and nv denote the dimensionality of layer u and v in an RNN. Further,

let Wvu ∈ Rnv×nu be the weight matrix from layer u to layer v, bv ∈ Rnv be

the bias vector of layer v, and φ : R → R be an elementwise nonlinear func-

tion as described in Section 2.3.2. The input vectors (x[1], ..., x[T ]), x[t] ∈ Rnx ,

of the Elman RNN are processed sequentially and mapped to a hidden state

sequence (h[1], ..., h[T ]), h[t] ∈ Rnh . Based on the hidden state sequence the out-

put sequence (ŷ[1], ..., ŷ[T ]), y[t] ∈ Rny , is computed. The Elman RNN is defined
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recursively for t = 1, ..., T by the following equations

h[0] = hinit (2.14a)

h[t] = φh(Whxx[t] +Whhh[t−1] + bh) (2.14b)

ŷ[t] = φy(Wyhh[t] + by) (2.14c)

with some initial state hinit ∈ Rnh . It is common to either set hinit = 0 or treat

it as an additional parameter vector to be learned. Figure 2.5 illustrates the

Elman RNN architecture using recurrent connections in the hidden layer. An

1 x[t]1 x[t]2 . . . x[t]nx

1 h[t]1 h[t]2 . . . h[t]nh

ŷ[t]1 ŷ[t]2 . . . ŷ[t]ny

Figure 2.5: Elman RNN

alternative visualization of RNN architectures draws the network unfolded in

time for a finite number of time steps. To improve readability only clusters of

neurons are drawn instead of each individual one. An arrow then represents a

full connection between two clusters of neurons, i.e. each neuron in the source

cluster is connected with each neuron in the destination cluster. Figure 2.6

depicts the network architecture unfolded for three time steps.

Let θ := {Whx,Whh, bh,Wyh, by} be the RNN parameters of equations (2.14a)

to (2.14c). Then, the optimal parameters θ∗ of the model are found by fitting

the model to the data, given the inputs x[t] and the targets y[t], over a fixed

number of T time steps.

θ∗ = arg min
θ

1

|D| · T
∑

(x[1],y[1]...,x[T ],y[T ])∈D

T∑

t=1

L(ŷ[t], y[t]) (2.15)
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Figure 2.6: Elman RNN unfolded over time

Initialization. The parameter initialization of RNNs is more sensitive com-

pared to feed-forward neural networks in order to achieve robust optimization

(Jaeger & Haas, 2004; Sutskever et al., 2013). Special care should be taken

to initialize the hidden-to-hidden matrix Whh because it primarily affects the

dynamics and memory of information propagated through time. According to

Jaeger & Haas, when the spectral radius of Whh is less than 1, the network

“forgets” exponentially due to repeated multiplication of the hidden state with

the matrix which can lead to vanishing gradients. On the other hand, when its

spectral radius is larger than 1, the network dynamics may become chaotic and

can lead to exploding gradients. Results by Sutskever et al. suggest to rescale

the randomly initialized matrix Whh to have a spectral radius around 1.1.

Block validation. In order to estimate the generalization performance of a

model, a test set needs to be set aside before training whose examples are not

used to optimize the model parameters. For non-sequential models, the data

set simply needs to be split into two subsets. However, the procedure requires

special care to be taken when dealing with sequential data. A sequential model

requires examples that span multiple time steps which are usually created by

the concatenation of examples obtained from a fixed-size sliding window moved

along the time axis. When splitting the resulting data set into training and
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test subsets, some of the examples in both the training and test set contain the

same observations. Figure 2.7 illustrates the issue. At the top of the figure, a

time

Figure 2.7: Creation of training and test examples with sequential data.

sequence of observations is shown from which windows of four time steps are

extracted to create a data set suitable for training and evaluation. When the

resulting data set is split into two subsets, six examples close to the splitting

point contain observations that are also contained in the other subset. Thus,

an observations seen during training is also part of the test set. However, it is

important to have training and test sets that do not overlap in order to avoid

misleading generalization performance estimates. Düll et al. (2012) propose a

procedure called block validation which omits examples that have overlapping
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observations in the training and test set. Further, they suggest to select multiple

blocks at random instead of splitting the data set into two contiguous chunks.

2.4 Learning & Optimization

Learning the parameters of a neural network is typically performed using first-

order optimization techniques, such as gradient descent or variants thereof. To

do so, it is necessary to compute the partial derivatives of the error function with

respect to the parameters. While, in general, this simply requires multivariate

calculus and, in particular, means applying the chain rule repeatedly, it is not

immediately obvious that computing the partial derivatives näıvely results in

redundant computations. However, combining the rules of calculus and dynamic

programming yields an algorithm called backpropagation which is an efficient

way of obtaining the partial derivatives.

The following subsections introduce the backpropagation algorithm and Hessian-

Free optimization—a second-order optimization method that has been shown to

be a powerful technique to learn the parameters of recurrent neural networks.

Further, complex models, such as neural networks, are prone to overfitting, i.e.

memorizing input patterns rather than inferring the underlying structure from

examples. Several techniques to reduce this phenomenon have emerged some of

which are revised in this section.

2.4.1 Backpropagation

The backpropagation algorithm (Rumelhart, 1986; Rumelhart et al., 1988) is

an efficient method to compute the partial derivatives of an error function with

respect to its parameters. In essence, it combines multivariate calculus with dy-

namic programming in order to reuse previously computed parts of the gradient.

A three-layer feed-forward network as introduced in Section 2.3.2 will serve as an

example to derive the algorithm and discuss its importance for efficient learning.

Let θ = {W (1), b(1),W (2), b(2)} be the parameters of a three-layer perceptron
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described by (2.16a) to (2.16f).

z(1) = x (2.16a)

a(2) = W (1)z(1) + b(1) (2.16b)

z(2) = φ(a(2)) (2.16c)

a(3) = W (2)z(2) + b(2) (2.16d)

z(3) = φ(a(3)) (2.16e)

ŷ = z(3) (2.16f)

A single example x is propagated through the network and compared against

the ground truth y using the squared error E(θ;x, y) = 1
2

∑n3
i=1(yi − ŷi)2. Let •

denote the elementwise product, or Hadamard product, of two vectors. First,

the partial derivative of the error with respect to W (2) is computed.
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The partial derivative with respect to b(2) is obtained similarly.

∂E

∂b(2)
= (z(3) − y) • φ′(a(3)). (2.18)
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Second, the partial derivative with respect to W (1) is computed as follows.
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The partial derivative with respect to b(1) is obtained similarly.

∂E

∂b(2)
= ((W (2))T ((z(3) − y) • φ′(a(3)))) • φ′(a(2)). (2.20)

After examining (2.17i) and (2.19l) more closely it becomes obvious that ∂E
∂W (1)

contains part of the computation of ∂E
∂W (2) . More precisely, the term (z(3) −

y) • φ′(a(3)) is present in both expressions. The idea of backpropagation is
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to reuse parts of the derivative computed in higher layers, i.e. layers close to

the output of the network, in order to compute the derivatives of lower layers.

Therefore, parts of the derivatives of the higher layers are tabulated and looked

up instead of recomputed by the lower layer derivatives. Then, computing the

derivatives looks similar to the forward propagation shown in (2.16a) to (2.16f)

but performed in reverse direction, hence, the term backpropagation. First, the

errors are propagated backwards yielding the following local error message, or

so-called delta messages.

δ(3) = (z(3) − y) • φ(a(3)) (2.21a)

δ(2) = ((W (2))T δ(2)) • φ(a(2)) (2.21b)

Second, once the delta messages are computed the partial derivatives are easily

obtained as follows.

∂E

∂W (2)
= δ(2)(z(2))T (2.22a)

∂E

∂b(2)
= δ(3) (2.22b)

∂E

∂W (1)
= δ(2)(z(1))T = δ(2)xT (2.22c)

∂E

∂b(1)
= δ(2) (2.22d)

While this example demonstrates the backpropagation algorithm for a three-

layer feed-forward network, it generalizes for an arbitrary number of layers as

well as for recurrent architectures, whose extension is called backpropagation

through time (BPTT), and for arbitrary directed acyclic computation graphs,

which is called backpropagation through structure (BTS). Using the first deriva-

tives computed by backpropagation, the model parameters are adapted to min-

imize the error function. Often, simple first-order optimization methods, such

as (stochastic) gradient descent or variants thereof, are used. However, it has

been observed that learning the parameters of recurrent neural networks with

first-order optimization methods may be troublesome due to the so-called van-

ishing and exploding gradient problem (Hochreiter, 1991; Bengio et al., 1994;

Hochreiter et al., 2001). The next subsection introduces a second-order opti-

mization method that has been shown to overcome these difficulties and which
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is capable of handling even a large number of parameters—a common property

of neural network models.

2.4.2 Hessian-Free Optimization

Hessian-Free optimization (Martens, 2010; Martens & Sutskever, 2011; 2012)

is an approximate Newton method suitable for training models with a large

number of parameters, e.g. neural networks. Especially in deep learning, where

many layers of abstraction are used to extract complex features from the input

data, slow and ineffective learning has been observed. Non-random initialization

through layerwise pre-training using Restricted Boltzmann Machines (Hinton &

Salakhutdinov, 2006) and shallow autoencoders (Bengio et al., 2007) has been

found to give significant improvements. However, these approaches are designed

for deep feed-forward neural networks which is a rather strong limitation given

the flexibility entailed by general neural networks. Since Hessian-Free optimiza-

tion is a general optimization method, it imposes fewer constraints on the model.

Martens & Sutskever demonstrated that this approach is well suited for non-

convex neural network objective functions that had been difficult to optimize

including deep feedforward and recurrent neural networks.

In contrast to first-order optimization methods, Hessian-Free optimization

constructs a local quadratic approximation of the objective function at the cur-

rent location in the parameter space, thus, utilizing curvature information in

addition to the gradient. Let B(θ(k−1)) be the curvature matrix, e.g. the Hessian

H(θ(k−1)) of the objective f(θ) := ε(hθ) at θ(k−1) where hθ is the parameterized

hypothesis as described in Section 2.1. Then, a local quadratic approximation

M (k−1) of f at θ(k−1) is formed using the Taylor expansion up to degree two.

M (k−1)(∆θ) = f(θ(k−1)) +∇f(θ(k−1))T∆θ +
1

2
(∆θ)TB(θ(k−1))∆θ (2.23)

Using M (k−1), the parameters are updated according to the following rule

θ(k) = θ(k−1) + α(k)

Ç
arg min

∆θ∈Θ
M (k−1)(∆θ)

å
, (2.24)

provided that the minimizer exists, with the step length α(k) ∈ [0, 1] typically

chosen using line-search (Nocedal & Wright, 2006). Martens & Sutskever pro-

pose to use the backtracking line-search starting with α(k) = 1.
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The minimizer of M (k−1) exists if B(θ(k−1)) is positive definite and is found by

the Newton step (∆θ(k))∗ = θ(k−1)−B−1(θ(k−1))∇f(θ(k−1)). There are a number

of problems with the standard Newton method when used to optimize neural

network objective functions.

1. First, B(θ(k−1)), e.g. the Hessian matrix, is prohibitively large for models

with many parameters such as neural networks. It requires computing

and storing the number of parameters squared. Architectures nowadays

may easily consist of millions of parameters yielding a matrix with 1012 or

more entries.

2. Second, even if B(θ(k−1)) could be computed and stored, inverting it, or

equivalently solving the system of equationsB(θ(k−1))∆θ(k) = −∇f(θ(k−1)),

is impractical.

3. Third, since most neural network objectives are non-convex its Hessian is

not positive definite everywhere in the parameter space. Thus, B(θ(k−1)) =

H(θ(k−1)) may not always be invertible.

Martens & Sutskever address these obstacles as follows. In order to guarantee

semi positive definiteness of B(θ(k−1)) they use the generalized Gauss-Newton

matrix instead of the Hessian, which is an approximation of the Hessian matrix.

For details, see (Martens & Sutskever, 2012, Section 6). Since the generalized

Gauss-Newton matrix is only semi-positive definite, but inverting a matrix re-

quires strict positive definiteness, Tikhonov damping is added which raises all

eigenvalues by a small positive number λ > 0, thus, making it strictly positive

definite. Further, the generalized Gauss-Newton matrix is symmetric. Inversion

of this matrix is performed by solving the above system of equations using the

(preconditioned) conjugate gradient method (Golub & van Loan, 1996; Nocedal

& Wright, 2006) which is an iterative algorithm with desirable convergence prop-

erties. In theory, and given infinite precision arithmetic, the conjugate gradient

method is guaranteed to converge in at most |θ| iterations. However, in practice,

and despite finite precision arithmetic, it typically reaches a small residual after

many fewer than |θ| iterations. For details, please consult the above referenced

literature. Finally, computing and storing the curvature matrix can be avoided

due to the work of Pearlmutter (1994) and by observing that the conjugate
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gradient method merely requires the matrix-vector product of the system ma-

trix (typically the generalized Gauss-Newton matrix) with an internal vector.

Pearlmutter proposes a computationally efficient method called the R-operator,

similar in notion to the backpropagation algorithm, which computes the product

of the Hessian with a vector exactly without explicitly forming the matrix.

Algorithm 2.1 outlines the steps of the Hessian-Free optimization method.

To achieve good performance, Martens & Sutskever summarize a bag of tricks

Algorithm 2.1 Hessian-Free optimization based on (Martens & Sutskever,

2012)

Require: θ(0), λ

∆θ(0) ← 0

k ← 1

while not converged do

Select a data set D′ ⊆ D to compute the gradient

Compute descent direction d← −∇θ(k−1)f(θ(k−1)) on D′

Select a data set D′′ ⊆ D to compute the curvature

Compute a preconditioning matrix P at θ(k)

Define A(v) ≡ G(θ(k−1))v + λIv on D′′ using the R-operator

Choose a decay constant ζ ∈ [0, 1]

∆θ(k) ← PCG(d,A, ζ∆θ(k−1), P )

Update λ with the Levenberg-Marquardt method

Choose step size α, e.g. using backtracking line-search

θ(k) ← θ(k−1) + α∆θ(k)

k ← k + 1

end while

including advice to use large mini-batches, different data sets D′ ⊆ D to com-

pute the gradient and D′′ ⊆ D to compute the curvature matrix where usually

|D′| > |D′′|, a typical choice of the decay constant ζ = 0.95, which is similar in

notion with momentum methods, a dynamic adaptation rule of the Tikhonov

damping strength λ according to the Levenberg-Marquardt method, and the

use of backtracking line-search as a fallback to ensure a descent step on the

error surface. Learning the parameters of recurrent neural networks is further

improved by adding a regularization term to the curvature estimate called struc-

32



2.4 Learning & Optimization

tural damping (Martens & Sutskever, 2011). The intuition behind structural

damping is as follows. Adjusting the parameters of a recurrent neural network,

in particular the hidden-to-hidden matrix Whh, causes large fluctuations in the

hidden state sequence due to the recursive and highly nonlinear nature of this

model. Thus, large parameter update steps may be untrustworthy and harm-

ful to the optimization process. To avoid this issue, one could reduce the step

size α, or, similarly, use a large Tikhonov damping coefficient λ, but this alle-

viates the advantage of utilizing curvature information to make larger update

steps in the directions of low curvature. Instead, structural damping penalizes

large changes in the hidden state sequence, thus, the parameters themselves are

not regularized but rather the effect of their update with respect to the hidden

dynamics.

2.4.3 Overfitting

Overfitting is a phenomenon commonly faced in statistics and machine learning

when a model memorizes the presented data instead of identifying the underlying

structure. It typically occurs when complex models, i.e. models with many

degrees of freedom, are fitted to comparatively few examples. Consequently,

such a model has poor generalization capabilities which become apparent when

it is tested on an independent set of examples that was unseen during training.

To avoid overfitting, several techniques have emerged such as regularization,

early stopping, and ensemble learning, among others.

Regularization

Regularization is a method to reduce the effective model complexity by intro-

ducing additional information to the model typically by imposing (smoothness)

constraints on its parameters (Girosi et al., 1995). The most common techniques

in machine learning are known as L1 and L2 regularization which are added to

the objective function to be minimized. They penalize the model parameters

according to the Lp norm which, in the case of p = 1, yields sparse parameters

or, in the case of p = 2, avoids large values. Especially in the neural networks

community the L2 regularization is also known as weight decay.

Another more recently introduced and popular approach is called dropout

(e.g. Hinton et al., 2012; Srivastava et al., 2014; Bayer et al., 2014). It randomly
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sets incoming neurons to zero in each training example and, thus, prevents co-

adaptation feature extractors. Alternatively, dropout can be considered a model

averaging technique where an exponential number of submodels shares the same

set of parameters.

Early Stopping

Early-stopping (e.g. Yao et al., 2007) is a different kind of regularization tech-

nique that does not rely on altering the model and/or the objective function.

However, the underlying idea is similar to that of L2 regularization which as-

sumes that smaller parameter values are preferable. Early-stopping monitors an

estimate of the generalization error on a validation set whose examples are not

used to update the model parameters. As long as the error on the validation set

improves sufficiently, training proceeds. Else, the training procedure is stopped

following the assumption that the model is starting to memorize rather than

generalize.

Ensemble Learning

Ensemble learning is a technique to utilize multiple models of a given learn-

ing task to improve predictive performance. There exist various approaches

to form an ensemble of learners, e.g. bagging, boosting, mixture of experts, or

stacked generalization are some of the most widely used methods. In the bag-

ging approach (Breiman, 1996), each ensemble member learns the same task on

a subset of the training data drawn at random with replacement. Boosting is

similar to bagging except that the different ensemble members are trained on a

subset of the data that are expected to be most informative with respect to the

other members. In the mixture of experts ensemble (Jacobs et al., 1991; Jordan

& Jacobs, 1994), multiple models are combined using a gating network which

learns to select the most appropriate ensemble member given a particular input.

Stacked generalization (Wolpert, 1992) is a technique similar to the mixture of

experts except that the experts are combined using a meta-model that is trained

subsequent to the training of the ensemble members.
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2.5 Hidden Markov Models

This brief introduction to hidden Markov models is based on a tutorial by Ra-

biner (1989) and an introduction paper by Stamp (2004).

Hidden Markov models (HMM) are stochastic time-discrete generative models

which assume a system to be a Markov process with the following property:

Definition 2.5 (Markov property #1) Given a random variable X[t], which

can assume the set of values x = {x1, x2, ..., xN}, then the probability of the event

x[t] ∈ x occurring at time t ∈ N depends only on the preceding event x[t−1] ∈ x,

i.e. P (X[t] = x[t]|X[t−1] = x[t−1], X[t−2] = x[t−2], ..., X[1] = x[1]) = P (X[t] =

x[t]|X[t−1] = x[t−1]).

In contrast to Markov models, the states of a hidden Markov model are invisible.

Instead, a sequence of observations is assumed to be generated by a sequence of

hidden states. The relationship between the hidden states and the observations

gives the second assumption made in a hidden Markov model.

Definition 2.6 (Markov property #2) Given a random variable X[t], which

can assume the set of values x = {x1, x2, ..., xN}, and a random variable Y[t],

which can assume the set of values y = {y1, y2, ..., yM}, then the probability of

the observed event y[t] ∈ y occurring at time t ∈ N depends only on the hidden

event x[t] ∈ x occurring at time t ∈ N, i.e. P (Y[t] = y[t]|X[t] = x[t], X[t−1] =

x[t−1], ..., X[1] = x[1]) = P (Y[t] = y[t]|X[t] = x[t]).

Thus, the state transition probabilities as well as the probability distribution

over the possible observations conditioned on the hidden state are parameters

of the HMM. Prominent applications of HMMs are found in natural language

processing, e.g. speech and handwriting recognition, DNA sequencing, and some

other domains where temporal pattern recognition is required. Figure 2.8 de-

picts an illustration of a hidden Markov model.

A hidden Markov model is defined by a 5-tuple λ = (S, V,A,B, π) where S

denotes the set of possible hidden states, V denotes the set of possible observa-

tions, A denotes the state transition probability matrix, B denotes the emission

probability matrix, and π is the initial state probability distribution. More

specifically, the components are defined as follows:
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Markov process s[t−1] s[t] s[t+1]
A A

Observations v[t−1] v[t] v[t+1]

B B B

Figure 2.8: Hidden Markov model

• S = {s1, s2, ..., sN} is the set of unobserved states which are the possible

values of the random variable X[t] at time t ∈ N.

• V = {v1, v2, ..., vM} is the set of possible observations being the emissions

of the random variable Y[t] at time t ∈ N.

• A ∈ [0, 1]N×N is the state transition probability matrix modeling P (X[t+1] =

sj|X[t] = si) = Aij where
∑N
j=1Aij = 1 ∀j ∈ {1, 2, ..., N}.

• B ∈ [0, 1]n×m is the emission matrix where bi(vj) = P (Y[t] = vj|X[t] = si)

is the probability of making the observation vj given the unobserved state

si.

• π ∈ [0, 1]N is the initial probability distribution over the states S, i.e.

P (X[1] = si) = πi where
∑N
i=1 πi = 1.

Thus, the parameters of the hidden Markov model are summarized as θ =

{A,B, π}. A common and natural assumption is to constrain the state tran-

sition probabilities A and the emission matrix B to be time-invariant, i.e. the

probabilities do not change over time.

A hidden Markov model may be used in several inference scenarios.

Decoding/Filtering. Given the parameters θ of the model, the probability dis-

tribution π over the initial states, and a sequence of observations (Y[1], Y[2], ..., Y[T ]),

the task is to determine the probability distribution over the hidden states

X[T ] after T time steps, i.e. P (X[T ]|Y[1], X[2], ..., Y[T ]). The hidden Markov

model assumes that the underlying process moves through a sequence of

states which emit the corresponding observations (Y[1], Y[2], ..., Y[T ]).
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Smoothing. Given the parameters θ of the model, the probability distribution

π over the initial states, and a sequence of observations (Y[1], Y[2], ..., Y[T ]),

the task is to determine the probability distribution over the hidden states

X[T−∆t] after T − ∆t time steps with ∆t ∈ N and 1 < ∆t < T , i.e.

P (X[T−∆t]|Y[1], X[2], ..., Y[T ]). This task is similar to the decoding/filtering

task, but instead of predicting the hidden state distribution at the end of

the observed sequence, it shall be predicted somewhere in the middle of

the sequence.

Prediction. Given the parameters θ of the model, the probability distribution

π over the initial states, a sequence of observations (Y[1], Y[2], ..., Y[T ]), and

a non-negative integer ∆t, the task is to determine the probability distri-

bution over the hidden states X[T+∆t] after T + ∆t ∈ N time steps, i.e.

P (X[T+∆t]|Y[1], X[2], ..., Y[T ]). This task is similar to the decoding/filtering

task, but instead of predicting the hidden state distribution at the end of

the observed sequence, it shall be predicted after an additional ∆t time

steps without the availability of further observations from the ∆t addi-

tional time steps.

Learning. Given a sequence of observations Y = (Y[1], Y[2], ..., Y[T ]), the task is

to determine the parameters θ∗ which maximize the probability of the

observed sequence given a hidden state sequence X = (X[1], X[2], ..., X[T ]),

i.e.

θ∗ = arg max
θ

P (Y ) (2.25a)

= arg max
θ

∑

X

P (Y,X) (2.25b)

= arg max
θ

∑

X

P (Y |X)P (X) (2.25c)

= arg max
θ

∑

X

T∏

t=1

P (X[t]|X[t−1], X[t−2], ..., X[1])P (Y[t]|X[t]) (2.25d)

= arg max
θ

∑

X

T∏

t=1

P (X[t]|X[t−1])P (Y[t]|X[t]). (2.25e)

Given the learned parameters θ∗, it is possible to determine the probability

of a new observed sequence under the model.
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2.6 Tensor Factorization

This section is largely based on a paper by Kolda & Bader (2009). Selected

parts of the paper, that are relevant to this thesis, are summarized. The reader

is referred to the paper for a detailed overview and introduction to tensor fac-

torization and its applications.

2.6.1 Tensors

Tensors are multidimensional arrays. The number of dimensions is called order

(or, alternatively, ways or modes). Tensors are a generalization of the more com-

monly known lower dimensional array types being vectors (first-order tensors)

and matrices (second-order tensors). Tensors with more than two dimensions

are called higher-order tensors.

Tensor slice. The slice of a tensor is a matrix-valued subtensor. It is obtained

by fixing all but two indices. For third-order tensors the slices are distinguished

as horizontal, lateral, and frontal slices. Figure 2.9 visualizes the different slice

types of a third-order tensor.

(a) Horizontal slices (b) Lateral slices (c) Frontal slices

Figure 2.9: Slice types of a third-order tensor.

Tensor rank. The rank of a tensor, i.e. rank(·), is defined as the minimum

number of rank-one tensors that, when summed up, yield the original tensor

(Hitchcock, 1927; Kruskal, 1977). An N -th order rank-one tensor X is defined

as the outer product of N vectors a1, ..., aN , i.e.

X = a1 ◦ a2 ◦ ... ◦ aN , (2.26)

38



2.6 Tensor Factorization

where ◦ denotes the outer product of vectors. Figure 2.10 depicts a third-order

rank-one tensor. Determining the rank of a higher-order tensor is more involved

=

Figure 2.10: Third-order rank-one tensor.

than doing so for a matrix. The maximum rank of a general third-order tensor

X ∈ Rm×n×p is weakly upper-bounded (Kruskal, 1977).

rank(X) ≤ min{mn,mp, np} (2.27)

Tighter upper bounds on the maximum rank are known for third-order tensors

with two slices, i.e. X ∈ Rm×n×2, (JáJá, 1979; Kruskal, 1977).

rank(X) = min{m,n}+ min

®
m,n,

ú
max{m,n}

2

ü´
(2.28)

Results by Ten Berge (1991) show that the typical rank of a tensor X ∈ Rn×n×2

is n or n+ 1.

2.6.2 Parallel Factor Analysis

Parallel Factor Analysis (Hitchcock, 1927; Harshman, 1970; Harshman & Lundy,

1994), or PARAFAC, is a tensor factorization method which decomposes an N -

th order tensor into a sum of rank one tensors, i.e. the sum of outer products ofN

vectors. Figure 2.11 visualizes the PARAFAC decomposition applied to a third-

order tensor. An alternative view on PARAFAC applied to third-order tensors

shifts the focus to the decomposition of a particular slice. Let A ∈ Rm×n×p and

Aei is the i-th frontal slice, then it may be decomposed into

Aei ≈ U diag(Sei)V (2.29)

with U ∈ Rm×r, S ∈ Rr×p, V ∈ Rr×n. Figure 2.12 illustrates PARAFAC ac-

cording to the slice-based view. This perspective on the third-order PARAFAC

may be understood as a weighted sum of rank one matrices where the weights

are different for each slice. The slice-based perspective on PARAFAC is the

preferred perspective in this thesis.
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≈ + + + · · ·

Figure 2.11: PARAFAC of a third-order tensor.

≈

Figure 2.12: PARAFAC of a third-order tensor (alternative view).

2.6.3 Applications

Tensor factorization has had a wide a range of applications including psycho-

metrics (e.g. Cattell, 1944; Carroll & Chang, 1970), chemometrics (e.g. Appellof

& Davidson, 1981; Andersen & Bro, 2003), telecommunications (e.g. Sidiropou-

los et al., 2000a;b; Sidiropoulos & Budampati, 2002; De Lathauwer & Castaing,

2007), and neuroscience (e.g. Mocks, 1988; Mitchell & Burdick, 1994; Andersen

& Rayens, 2004; Martınez-Montes et al., 2004).

More recently, recommendation systems have become prominent applications

of tensor factorization methods. A well known example of such is the “Netflix

Prize”1 which was a competition held by Netflix, Inc., a provider of DVD rental

and on-demand video streaming. A brief outline of the Netflix Prize shall serve

as an example to describe the idea behind tensor factorization approaches in

this context.

The Netflix Prize was held to improve models that predict the rating of a

movie given by a particular user based on previously recorded user-movie-ratings

without any additional information about the user and movie. In order to sim-

1http://www.netflixprize.com
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plify the illustration of tensor factorization, the date of the rating is ignored

in this example. The set of triples (user,movie, rating), where the users and

movies are encoded as nonnegative integers and the ratings are values in the set

{1, 2, 3, 4, 5}, can be represented by a sparse matrix X ∈ {0, 1, ..., 5}#users×#movies

where a zero represents a missing rating of a particular movie given by a partic-

ular user. The matrix is sparse because most users have only rated a few movies.

Figure 2.13 illustrates the user-movie-ratings matrix. Factorization of this rat-
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Figure 2.13: Example of the Netflix user-movie-ratings matrix.

ing matrix into low-rank components of the users and movies, i.e. PARAFAC in

two dimensions, was a basic approach in the competition. Figure 2.14 depicts

the low-rank factorization of the rating matrix. When fitted to the data matrix,

latent representations of the users and movies are obtained whose pairwise inner

products approximate the corresponding ratings in the rating matrix. The num-

ber of latent factors affects the rank of the approximated rating matrix. After

learning the components, it turns out that they can be interpreted as properties

of the users and movies, e.g.

• the movie may have a particular genre such as “action” and a user with

this genre preference will be more likely to give a high rating;

• the movie may be serious in some sense and a user with a preference for
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Figure 2.14: Low-rank decomposition of the Netflix user-movie-ratings matrix.

rather light content will be less likely to give a high rating;

• the movie may be targeted rather for the male audience and the rating

will be affected by the user’s gender.

Thus, matrix factorization of a data matrix aims to find a low-dimensional

concept space that explains the observed data by computing the inner product

of the entities in the given relation. While the presented approach is rather

basic, much more sophisticated methods were being developed over the course

of the competition (e.g. Koren, 2009; Töscher et al., 2009; Piotte & Chabbert,

2009). Since they are not the focus of this thesis the reader is referred to the

respective literature for more information.

Tensors and factored representations are becoming increasingly popular as

ingredients in neural architecture design (Sutskever et al., 2011; Yu et al., 2012;

2013; Socher et al., 2013a;b; İrsoy & Cardie, 2015) where they are used as

learnable multi-linear operators rather than being an object that represents

data.

2.7 System Identification

System identification denotes the process of building mathematical models of

dynamical systems based on observed, or measured, data using statistical meth-
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ods. Such models are typically distinguished as white, grey, and black box mod-

els. White box models are usually based on the fundamentals of physics, e.g.

Newton’s laws of motion, but they often become too complex or even impossible

to derive in real-world applications. Grey box models are hybrids that rely on

both a basic understanding of the system as well as on experimental data to

estimate remaining unknown parameters. Grey box models are also known as

semi-physical models (Forssell & Lindskog, 1997). Black box models rely en-

tirely on observed measurements without utilizing any prior model. They are

particularly common and useful when the system is poorly understood and/or

very complex to describe using analytical methods. In this thesis black box

models are investigated.

2.8 Artificial Benchmarks

This section introduces two artificial benchmarks which are well known in the

reinforcement learning community. Their dynamics are described analytically

and, thus, enable sampling data from varying configurations. Being able to

easily generate data from similar dynamical systems is an important requirement

in this thesis.

2.8.1 Cart-Pole

The cart-pole simulation (Michie & Chambers, 1968a;b; Barto et al., 1983; Sut-

ton & Barto, 1998; Florian, 2007) consists of a cart, which moves on a one-

dimensional track, and a pole hinged to the cart. Two control problems are

commonly addressed in the context of this dynamical system: the pole swing-

up task and the balancing task. In the swing-up task, the pole initially hangs

downward and shall be swung up such that it is finally balanced in an upright

position. The swing-up is achieved by applying an appropriate action sequence,

i.e. a force applied to the cart, using as few steps as possible. The balancing

task is a subtask of the swing-up task in which the pole starts in an upright

position and shall remain balanced. Figure 2.15 depicts an illustration of the

cart-pole environment. The state description consists of the tuple (x, ẋ, α, α̇)

being the position x ∈ R and velocity ẋ ∈ R of the cart as well as the angle

α ∈]−180°, 180°] and angular velocity α̇ ∈ R of the pole. Contrary to settings
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−2.4 2.4x
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Figure 2.15: Cart-pole environment.

used in common reinforcement learning tasks, no constraints are enforced on

the pole angle. In order to avoid discontinuities in the representation of the

pole angle when the pole swings beyond 180°, its decomposition into the sine

and cosine components is used. This transformation yields the new state space

tuple (x, ẋ, cos(α), sin(α), α̇). The action space consists of the force a ∈ [−1, 1]

applied to the cart. The cart-pole simulation is observed every τ = 0.02 s.

The cart-pole dynamics can be described by a set of differential equations.

While first stated by Michie & Chambers (1968a;b), the simulation was popular-

ized by Barto et al. (1983) and Sutton & Barto (1998), however, with incorrect

equations as discovered by Florian (2007) who published a corrected set of equa-

tions as follows.

α̈ =
g sin(α) + cos(α)

(−F−mplα̇2 sin(α)
mc+mp

)

l
(

4
3
− mp cos2(α)

mc+mp

) (2.30a)

ẍ =
F +mpl(α̇

2 sin(α)− α̈ cos(α))

mc +mp

(2.30b)

The evolution of the dynamics can be approximated using the Euler method

given a sufficiently high sampling frequency.

2.8.2 Mountain Car

The mountain car simulation (Sutton & Barto, 1998) consists of an underpow-

ered car initially located in a valley. In control problems the learning objective

is to drive the car up the hill. Since the car is underpowered, it must gain mo-

mentum in order to reach its goal position. Figure 2.16 depicts an illustration of
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f(x) = 1
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Figure 2.16: Mountain car environment.

the mountain car environment. The mountain shape follows the trigonometric

function f(x) = 1
3

sin(3x). The state description consists of the tuple (x, ẋ),

x ∈ [−1.2, 0.6] and ẋ ∈ [−0.07, 0.07], being the position and velocity of the car.

The action space consists of the acceleration a ∈ {−1, 0, 1} of the car which

is altered to be continuous-valued in this thesis, i.e. a ∈ [−1, 1], to make the

simulation more realistic.

The mountain car dynamics can be described by the following update equa-

tions with typical values of the acceleration factor γ = 0.001 and the gravity

g = −0.0025.

ẋ[t+1] = ẋ[t] + γa+ g cos(3x) (2.31a)

x[t+1] = x[t] + ẋ[t+1] (2.31b)

2.9 Implementation

All model implementations are based on Theano (Bergstra et al., 2010; Bastien

et al., 2012). “Theano is a Python library that allows you to define, optimize,

and evaluate mathematical expressions involving multi-dimensional arrays effi-

ciently.”2 Theano allows to express a model, the objective to be optimized as

well as the optimization algorithm through a symbolic graph of mathematical

2http://deeplearning.net/software/theano
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symbolic types, e.g. scalar, vector, matrix, etc., and operations, e.g. matrix-

{vector,matrix} multiplication, elementwise functions, slicing/indexing. Defin-

ing a computational graph follows NumPy’s interface very closely making it

convenient to use and easy to adopt. Defining computations symbolically im-

plies several advantages over “direct” implementations. First and foremost, a

symbolically defined optimization objective allows for automatic differentiation

which is a core ingredient in many machine learning algorithms in order to fit

the model parameters to data. Automatic differentiation is not only conve-

nient it also accelerates the prototyping of new models as well as reduces errors

in taking and implementing derivatives manually. Second, the availability of

the computational graph in symbolical form allows for graph optimization that

may replace expression patterns by equivalent but computationally faster and/or

numerically more stable expressions. The graph optimization framework also

enables substituting generic operations, that would eventually be executed on

the CPU, by other implementations, that may be executed on a different device

such as a GPU. Third, once a graph is optimized it gets compiled on-the-fly

by automatically generating C/C++/CUDA/OpenCL code and executing the

corresponding native compiler. A compiled function is transparently accessible

from within Python.

Listing 1 depicts code of a logistic regression model that illustrates the usage

of Theano.
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Listing 1 Example of logistic regression implemented using Theano.
import numpy as np

import theano

import theano.tensor as T

floatX = theano.config.floatX

# define input and target

x = T.matrix(’x’)

t = T.vector(’t’)

# define and initialize parameters

w = theano.shared(np.zeros(100, dtype=floatX))

b = theano.shared(np.zeros( 1, dtype=floatX))

# compute logistic regression output

y = T.nnet.sigmoid(theano.dot(x, w) + b)

# define optimization objective

cost = T.nnet.binary_crossentropy(y, t).mean()

# compute gradients w.r.t. parameters

gw, gb = theano.grad(cost, [w, b])

# define SGD optimization

updates = [(w, w - 0.001 * gw), (b, b - 0.001 * gb)]

# compile Theano function which performs a single update step

f = theano.function([x, t], cost, updates=updates)
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CHAPTER 3

Multi-Task and Transfer Learning with

Recurrent Neural Networks

This chapter presents recurrent neural network architectures that are capable

of transferring knowledge among related sequence learning tasks by means of

parameter sharing. First the meaning, utility, and relatedness of multi-task and

transfer learning is discussed (Section 3.1). Second, terminological differences

and similarities between the learning paradigms multi-task and transfer learn-

ing are scrutinized in order to clearly distinguish the implications of both terms

(Section 3.2). Third, three recurrent neural networks architectures suitable for

multi-task and transfer learning on sequential data are introduced (Section 3.3).

They form the conceptual bases of the models used in the subsequent chapters.

Two simple approaches to learning joint models of multiple tasks are introduced

and discussed. Thereafter, the Factored Tensor Recurrent Neural Network ar-

chitecture is presented which is one of the main contributions of this thesis.

Its natural way of incorporating task-specific as well as cross-task parameters

is elaborated on by drawing the connection between recurrent neural language

modeling and multi-task and transfer learning with factored tensor parameters

on sequential data.

The subsequent sections are based on the following list of publications as part

of the doctoral research:

• Spieckermann, S., Düll, S., Udluft, S., Hentschel, A., and Runkler, T.

Exploiting similarity in system identification tasks with recurrent neural

networks. In Proceedings of the 22nd European Symposium on Artifi-

cial Neural Networks, Computational Intelligence and Machine Learning

(ESANN), 2014a.
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• Spieckermann, S., Düll, S., Udluft, S., Hentschel, A., and Runkler, T.

Exploiting similarity in system identification tasks with recurrent neural

networks. Neurocomputing, (Special Issue ESANN 2014), 2015. Extended

version. Invited paper.

• Spieckermann, S., Düll, S., Udluft, S., and Runkler, T. Multi-system iden-

tification for efficient knowledge transfer with factored tensor recurrent

neural networks. In Proceedings of the European Conference on Machine

Learning (ECML), Workshop on Generalization and Reuse of Machine

Learning Models over Multiple Contexts, 2014b.

3.1 Multi-Task Learning

Multi-task learning is a learning paradigm in machine learning that aims to

reduce the model error of a target task by utilizing related auxiliary learning

tasks. Thus, the model exploits commonalities among the provided tasks where

the auxiliary tasks serve as an inductive bias. “Inductive bias is anything that

causes an inductive learner to prefer some hypotheses over other hypotheses.

Bias-free learning is impossible; much of the power of an inductive learner follows

directly from the power of its inductive bias (Mitchell, 1980). [...] One does not

usually think of training signals as a bias; but when the training signals are for

tasks other than the main task, it is easy to see that, from the point of view

of the main task, the other tasks may serve as a bias.” (Caruana, 1997) This

approach often leads to improved generalization due to inductive transfer.

Multi-task learning can happen in multiple ways. Let (x, y) denote a training

example consisting of an input vector x and a target y in a supervised learning

problem. Instead of simply learning the mapping from x to y, it may be possible

to come up with additional targets (y′, y′′, ...) whose error signals help guide

the learning process to discover more robust and generally useful patterns in

the inputs across a variety of related tasks. The resulting model may share

the parameters of its feature extraction component, e.g. the input-to-hidden

weights of a feed-forward neural network, and predict the targets based on the

cross-task hidden representation. Another common approach is to couple task-

specific parameters by means of regularization to enforce information sharing.

Alternatively, a training example (i, x, y) may originate from a specific task
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indexed i while all tasks share a common target y. The tasks then differ in

terms of their mapping from x to y. The latter scenario will be investigated in

this thesis.

3.2 Multi-Task vs. Transfer Learning

Multi-task and transfer learning are two related learning paradigms with similar

goals but different angles of approach. The common goal of both paradigms is

to reduce the model error of the target model by utilizing one or multiple related

auxiliary task(s).

Caruana (1997) distinguishes between parallel and sequential transfer where

parallel transfer is performed through multi-task learning and sequential transfer

translates to transfer learning. Multi-task learning means to learn a joint model

of all tasks, i.e. the target task and all auxiliary tasks, simultaneously. In

contrast, transfer learning implies a sequence in which the models are learned.

Typically, the target task is learned subsequent to the auxiliary tasks. Thus,

the target task learning process cannot interact with the auxiliary tasks.

Another perspective was formulated by Pan & Yang (2010). They distinguish

multi-task and transfer learning as follows: “[...] transfer learning aims to ex-

tract the knowledge from one or more source tasks and applies the knowledge to

a target task. In contrast to multitask learning, rather than learning all of the

source and target tasks simultaneously, transfer learning cares most about the

target task. The roles of the source and target tasks are no longer symmetric

in transfer learning.”

3.3 Multi-Task Recurrent Neural Networks

This section identifies a number of neural network based models that enable

multi-task learning of sequential data. While there are many ways to implement

multi-task learning, this chapter focuses on parameter sharing approaches where

data-efficiency is obtained by using many cross-task and few task-specific pa-

rameters. An RNN as introduced in Section 2.3.3 may allocate task-specific pa-

rameters in the input-to-hidden, hidden-to-hidden, and hidden-to-output trans-

formations. Making one of those components task-specific has implications on
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the nature of the tasks, in what aspects they are similar and dissimilar, and

how this knowledge can be incorporated into the joint model. For instance, in

natural language processing a sequence of words may be subject to multiple si-

multaneous classification tasks such as sentiment classification of a sentence and

named entity recognition of each word. A typical approach would be to have a

cross-task recurrent feature extraction and task-specific classification layers fol-

lowing the assumption that features of the two tasks may be mutually beneficial

because they reveal more information about the overall problem structure. Al-

ternatively, multiple tasks may share the same learning problem, but the input

data may originate from different domains. For instance, product reviews in an

online shop may be available from different product categories and the task is

to infer their sentiment. In this case, the feature extraction may be task-specific

while the classification submodel is the same for both tasks.

The following subsections present variants of RNN models that are general

in concept but selected with system identification tasks in mind. It is assumed

that the different tasks have identical input and output spaces.

3.3.1 Näıve RNN

The most näıve approach of multi-task learning is to learn a joint model for

all tasks. Figure 2.6 depicts a graphical representation of the model. The data

of all tasks are concatenated prior to learning. Thus, the joint model needs to

generalize over all tasks. Generalization is possible if the factors that distinguish

the tasks can be quantified and are observable. Making them available to the

model allows for task discrimination. Otherwise, the model can only learn the

average task at best and should be inferior to simple ways of incorporating task-

discriminating information. This model serves as a baseline to ensure that tasks

are in fact non-identical or to indicate that task-discriminating information is

not available.

3.3.2 RNN+ID

In absence of task-discriminating factors, a simple way to distinguish the tasks

is to tag each task with a positive integer task identifier i ∈ I, i.e. the training

examples of each task are tagged and concatenated to form a multi-task data
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set. This tag may be provided to the model at each sequential step as an extra

input encoded as the i-th Euclidean standard basis vector ei with dim(ei) = |I|
also known as “one-hot” encoding. The equations of the RNN+ID architecture

are obtained by substituting (2.14b) with (3.1).

h[t] = φh(Whxx[t] +Whhh[t−1] +Whiei + bh) (3.1)

Figure 3.1 depicts a graphical representation of the RNN+ID architecture. In

x[t−1] x[t] x[t+1]

1 1 1

h[t−1] h[t] h[t+1]

Whx Whx Whxei ei ei

Whh Whh

ŷ[t−1] ŷ[t] ŷ[t+1]

Wyh Wyh Wyh

b h b h b h

b y b y b y

Figure 3.1: RNN+ID architecture for multi-task learning on sequential inputs.

fact, computing Whiei means selecting the i-th column of Whi so the system

identifier introduces a separate bias for each system. The cross-system bias

bh and the specific biases accessed through Whiei can be absorbed into a new

system-specific bias ›Whiei = bh +Whiei. Thus, (3.1) can be rewritten as

h[t] = φh(Whxx[t] +Whhh[t−1] +›Whiei). (3.2)

3.3.3 Factored Tensor Recurrent Neural Network

(FTRNN)

The previous subsection showed that providing the network with a “one-hot”

encoded system identifier ei is in fact equivalent to learning a different hidden

layer bias ›Whiei for each system. The bias of a particular neuron determines its
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activity threshold. Making the bias task-specific thus allows to learn a different

threshold for each task. However, the main transformation from one layer is due

to a parameter matrix Wvu ∈ Rnv×nu , so it is a natural choice to use a different

parameter matrix Wvu for each task. Multiple such matrices can be viewed as

frontal slices of a third-order tensor Wvui ∈ Rnv×nu×|I|.

The primary source of the idea that yields the model of this subsection is

a paper on character-level language modeling using recurrent neural networks

(Sutskever et al., 2011). Language modeling is commonly defined as the task

of assigning the probability of occurrences to a given sequence of words. That

is, given a word vocabulary V and a sequence of words (w[1], ..., w[k]), w[i] ∈
V , the language model yields P (w[1], ..., w[k]). By using the chain rule this

joint probability can be decomposed into factors of conditional probabilities as

follows.

P (w[1], ..., w[k]) = P (w[k]|w[1], ..., w[k−1])P (w[k−1]|w[1], ..., w[k−2]) · · · (3.3a)

= P (w[1])
k∏

i=2

P (w[i]|w[1], ..., w[i−1]) (3.3b)

Recurrent neural networks are a natural and effective choice to estimate the

conditional probabilities (Mikolov et al., 2010). However, Sutskever et al. ar-

gue that a modified architecture with so-called “multiplicative” connections is

superior to the standard architecture in the character-level language modeling

task. Multiplicative interactions are derived as follows. In order to improve the

expressiveness of the model the parameter matrix Whh is conditioned on the

current input character, thus, yielding a different state transition per charac-

ter. Näıvely, the parameters would be stored in a third-order tensor where each

slice represents the transition matrix of a particular character in the vocabulary.

Although the vocabulary of characters is much smaller than the prohibitively

large vocabulary of words the size of the three-way tensor is impractical never-

theless. Sutskever et al. propose to learn a factored representation as used by

Taylor & Hinton (2009), who model multiple motion styles from images using

Restricted Boltzmann Machines. While not explicitly stated in any of the papers

the proposed factorization is known as Parallel Factor Analysis (PARAFAC, see

Section 2.6.2 for details) for three-way tensors where the vectors of the third

mode can be viewed as latent representations, or factors, of each character that

adjust the state transition matrix.
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This idea can be transferred to multi-task recurrent neural networks. In

contrast to the language model, in which each frontal slice of the parameter

tensor is associated with a character in the alphabet, the tensor holds a frontal

slice per task. However, learning separate parameter matrices for each task has

two major drawbacks.

1. Each additional system substantially increases the number of adaptive

parameters which reduces data efficiency with respect to each task. This

is of particular concern with regard to a little observed task.

2. The transformation, induced by each parameter matrix, is learned inde-

pendently for each task, i.e. no information is shared among equivalent

transformations across the tasks although it is most likely that they in

fact do share structure.

Decomposing a three-way tensor Wvui according to PARAFAC yields a factored

tensor of the form

Wvuiei ≈ Wvf diag(Wfiei)Wfu (3.4)

with Wvui ∈ Rnv×nu×|I|, Wfu ∈ Rnf×nu , Wvf ∈ Rnv×nf , and Wfi ∈ Rnf×|I|.

Figure 3.2 depicts a visualization of the factorization. One perspective on the

ei

u v•

Wfi

Wfu Wvf

Figure 3.2: Third-order tensor decomposition using PARAFAC that, when ex-

panded, approximates the i-th frontal slice. The node having the

•-symbol in its center is a “multiplication node”, i.e. the input vec-

tors of the node are multiplied component-wise. In contrast, the

standard nodes imply the summation of all input vectors.

factored tensor representation as an approach to sharing structure among multi-

ple tasks is the following. Let ek denote the k-th Euclidean standard basis vector
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with an appropriate dimensionality, eTkWfu is the k-th row of Wfu, Wvfek is the

k-th column of Wvf and eTkWfiei is the k-th element of the diagonal matrix

diag(Wfiei). Expanding the i-th slice of the factored tensor, i.e. the expanded

parameter matrix for system i ∈ I, can be written as the weighted sum of

rank-one matrices (Wvfek)
Ä
eTkWfu

ä
, i.e.

Wvuiei ≈
nf∑

k=1

(Wvfek)
Ä
eTkWfiei

ä Ä
eTkWfu

ä
. (3.5)

The equality of (3.4) and (3.5) can be shown as follows. Let v ∈ Rn be an n-

dimensional column vector whose k-th element denotes vk = eTk v. The diag(v)

operator maps the vector v to a diagonal matrix in Rn×n and is defined as

follows.

diag(v) :=
∑

k

eke
T
k vk (3.6)

In the following, let [W ]ab denote the element of the matrix W at row a and

column b. Using (3.6), the diagonal matrix diag(Wfiei) can be written as

diag(Wfiei) = diag

ÑÑ
∑

a,b

[Wfi]abeae
T
b

é
ei

é
(3.7a)

= diag

Ñ
∑

a,b

[Wfi]abea(e
T
b ei)

é
(3.7b)

= diag

Ñ
∑

a,b

[Wfi]abeaδbi

é
(3.7c)

= diag

Ç∑
a

[Wfi]aiea

å
(3.7d)

=
∑

k

eke
T
k

Ç
eTk
∑

a

[Wfi]aiea

å
(3.7e)

=
∑

k,a

eke
T
k e

T
k ea[Wfi]ai (3.7f)

=
∑

k,a

eke
T
k δka[Wfi]ai (3.7g)

=
∑

k

eke
T
k [Wfi]ki (3.7h)

=
∑

k

ek[Wfi]kie
T
k . (3.7i)
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3.3 Multi-Task Recurrent Neural Networks

Substituting this result in (3.5) yields

Wvuiei ≈ Wvf (diag(Wfiei)Wfu (3.8a)

= Wvf

( nf∑

k=1

ek[Wfi]kie
T
k

)
Wfu (3.8b)

=
nf∑

k=1

(Wvfek)[Wfi]ki(e
T
kWfu). (3.8c)

Since [Wfi]ki is the element in the k-th row and i-th column of Wfi, i.e. a scalar

number, it is equivalently expressed as eTkWfiei. Substitution of this term into

(3.8c) yields (3.5).

Wvuiei ≈ Wvf (diag(Wfiei)Wfu (3.9a)

=
nf∑

k=1

(Wvfek)(e
T
kWfiei)(e

T
kWfu) (3.9b)

The tasks’s unique characteristics are encoded as the weights of the summed

rank-one matrices and thus Wvf and Wfu, which are shared among the tasks,

must learn appropriate column and row values such that the task-specific weight-

ing of their sum of corresponding outer products best approximates the optimal

task-specific transformation Wvuiei. Due to the factored tensors, only nf pa-

rameters are specific to each task compared to nunv parameters for independent

parameter matrices Wvui. Their limited degree of freedom forces the model to

identify common structure among the tasks. This way, every task has its own

set of transformations that, however, are not independent.

A factored tensor recurrent neural network may replace some or all weight

matrices by factored tensors. Figure 3.3 depicts a standard recurrent neural

network where possible locations of factored tensor parameters are highlighted.
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1 1 1

x[t−1] x[t] x[t+1]

1 1 1

h[t−1] h[t] h[t+1]

Whx Whx Whx

b h b h b h

Whh Whh

ŷ[t−1] ŷ[t] ŷ[t+1]

Wyh Wyh Wyh

b y b y b y

ei

u v•

Wfi

Wfu Wvf

Figure 3.3: Factored Tensor Recurrent Neural Network for multi-task learning

on sequential inputs. The node having the •-symbol in its center

is a “multiplication node”, i.e. the input vectors of the node are

multiplied component-wise. In contrast, the standard nodes imply

the summation of all input vectors.
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CHAPTER 4

Exploiting Similarity in Fully Observable

System Identification Tasks

This chapter addresses the problem of fully observable system identification

of a target system for which only an inaccurate model can be learned due to

insufficient amounts of available data. To reduce the model error, multiple

approaches along the lines of dual-task and transfer learning using recurrent

neural networks are proposed and empirically evaluated.

The chapter is structured as follows. First, the problem of fully observable

system identification is introduced and formalized (Section 4.1). Second, a re-

current neural network architecture suitable for fully observable system iden-

tification is presented (Section 4.2). Third, the original problem is extended

to a multi-system identification task where only few observations are available

from the target task while sufficient information from auxiliary systems can be

utilized (Section 4.3). The recurrent neural network architectures developed in

Section 3.3 are adapted to the fully observable multi-system identification prob-

lem. Two problem settings are investigated: a dual-task learning (Section 4.4)

and a transfer learning (Section 4.6) scenario. Each problem is formalized and

matching models are discussed. In addition, a new regularization technique is

presented for the dual-task learning scenario which penalizes dissimilar system-

specific parameters to further strengthen the prior assumption of the systems’

similarity (Section 4.5). Experiments are conducted for each of the scenarios

to compare the effectiveness of multiple recurrent neural network architectures

in transferring information from the auxiliary system(s) to the target system.

The results show that the proposed Factored Tensor Recurrent Neural Network,

which is one of the main contributions of this thesis, outperforms the other ap-

proaches in all experiments.
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4 Exploiting Similarity in Fully Observable System Identification Tasks

The subsequent sections are based on the following list of publications as part

of the doctoral research:

• Spieckermann, S., Düll, S., Udluft, S., Hentschel, A., and Runkler, T.

Exploiting similarity in system identification tasks with recurrent neural

networks. In Proceedings of the 22nd European Symposium on Artifi-

cial Neural Networks, Computational Intelligence and Machine Learning

(ESANN), 2014a.

• Spieckermann, S., Düll, S., Udluft, S., Hentschel, A., and Runkler, T.

Exploiting similarity in system identification tasks with recurrent neural

networks. Neurocomputing, (Special Issue ESANN 2014), 2015. Extended

version. Invited paper.

• Spieckermann, S., Düll, S., Udluft, S., and Runkler, T. Multi-system iden-

tification for efficient knowledge transfer with factored tensor recurrent

neural networks. In Proceedings of the European Conference on Machine

Learning (ECML), Workshop on Generalization and Reuse of Machine

Learning Models over Multiple Contexts, 2014b.

• Spieckermann, S., Düll, S., Udluft, S., and Runkler, T. Regularized re-

current neural networks for data efficient dual-task learning. In Proceed-

ings of the 24th International Conference on Artificial Neural Networks

(ICANN), 2014c.

4.1 Fully Observable System Identification

4.1.1 Introduction

The task discussed in this chapter is to learn the state transition function

of a fully observable deterministic dynamical system by observing its current

state s[t], an action a[t], and the resulting successor state s[t+1]. In general,

the state transition function of such a system is described by some function

s[t+1] = f(s[t], a[t]). However, in practice the learning process of this function

often benefits from predicting the sequence of successor states (s[t+1], ..., s[t+T ])

given a trajectory of T actions (a[t], ..., a[t+T−1]) for T ∈ N \ {1} time steps in-

stead of predicting only a single step. For instance, if a system is observed at
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4.2 Fully Observable System Identification with RNNs

a high frequency, two subsequently observed states are typically very similar

and a single step model would achieve low error by simply learning the identity

function of the input state. In contrast, predicting a T -step trajectory will yield

a large error for such a degenerate model thus forcing the learning process to

find a better solution.

4.1.2 Formal Problem Definition

A system, observed in fixed time intervals τ , is defined by the tuple (S,A, f) with

a state space S, an action space A, and an unknown state transition function

f : S × A→ S describing the temporal evolution of the state.

Let D be a set of state transition observations (s, a, s′) ∈ D where each

observation describes a single state transition from state s ∈ S to state s′ ∈ S
caused by action a ∈ A. Further, let D denote a data set of size |D| drawn from

a probability distribution D.

Let H ⊆ {h |h : S×A→ S} denote a hypothesis space, i.e. a set of functions

that are assumed to approximate the state transition function f . Further, let

L : S × S → R denote an error measure between a predicted successor state

ŝ′ and the true successor state s′. The optimal hypothesis h∗, i.e. the best

approximation of f within the considered space of hypotheses, minimizes the

expected error ε(h) := E(s,a,s′)∼D[L(h(s, a), s′)] where E denotes the expectation

operator, hence, h∗ = arg minh∈H ε(h). Since D is generally unknown, an ap-

proximately optimal hypothesis is determined by minimizing the empirical error

ε̂D(h) := 1
|D|
∑

(s,a,s′)∈D L(h(s, a), s′) induced by a hypothesis h on a data set D,

hence, ĥ = arg minh∈H ε̂D(h).

4.2 Fully Observable System Identification

with Recurrent Neural Networks

In order to model the state transition function of an open fully observable dy-

namical system, a recurrent neural network may be defined which receives the

initial state vector s[1] and a sequence of T actions (a[1], ..., a[T ]) yielding the

predicted successor state sequence (ŝ[2], ..., ŝ[T+1]). The network is defined by
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4 Exploiting Similarity in Fully Observable System Identification Tasks

the following equations.

h[1] = φh(Whss[1] + b1) (4.1a)

h[t+1] = φh(Whaa[t] +Whhh[t] + bh) (4.1b)

ŝ[t+1] = φs(Wshh[t+1] + bs). (4.1c)

More specifically, the initial state s[1] is mapped to the hidden state h[1] of the

RNN by a linear transformation followed by the nonlinear function φh(·), applied

pointwise, which is typically chosen as tanh(·). From there, the hidden state

h[t] and the action a[t] are mapped to form the predicted hidden successor state

h[t+1]. The hidden successor state h[t+1] is then mapped back to the observed

state space yielding the predicted successor state ŝ[t+1]. The state space of a

dynamical system is often real-valued and unbounded, hence, φs(·) becomes the

identity function. Figure 4.1 depicts a graphical representation of the RNN

architecture.

1 1 1 1

s[1] a[1] a[2] a[3]

1 1 1

h[1] h[2] h[3] h[4]

Wha Wha Wha

b 1 b h b h b h

Whs

Whh Whh Whh

ŝ[2] ŝ[3] ŝ[4]

Wsh Wsh Wsh

b s b s b s

Figure 4.1: Recurrent neural network architecture for fully observable system

identification.
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4.3 Fully Observable Multi-System Identification with RNNs

4.3 Fully Observable Multi-System

Identification with Recurrent Neural

Networks

4.3.1 Näıve RNN

The most näıve approach to exploit information from one dynamical system

and share it with another one is to concatenate the data of both systems and

learn a joint model. This way, the model is forced to generalize over the different

properties of the systems. However, since the training examples of both systems

are not distinguished, the model can only learn the average dynamics which may

be vastly suboptimal for rather different systems. This fact makes the Näıve

RNN a good baseline model to ensure that the tasks are non-identical and

cannot be explained by observed inputs.

The following subsections discuss two recurrent neural architectures that are

able to distinguish the systems through an integer identifier. For both models,

the hidden state h[t] is considered an internal representation of the equivalent

real state representation of the systems. It is assumed that the state spaces and

the corresponding semantics are identical for both systems, i.e. if the observed

states of the two systems are identical, they describe identical system states.

4.3.2 RNN+ID

One way to incorporate information that allows the model to distinguish be-

tween the systems is to tag each training example with an identifier i ∈ I,

which corresponds to the system that generated the data. This tag may be

provided to the model at each time step as an extra input encoded as the i-th

Euclidean standard basis vector ei with dim(ei) = |I|. The equations of the

RNN+ID architecture are obtained by substituting (4.1b) with (4.2).

h[t+1] = φh(Whaa[t] +Whhh[t] +Whiei + bh) (4.2)

Figure 4.2 depicts a graphical representation of the RNN+ID architecture. In

fact, computing Whiei means selecting the i-th column of Whi so the system

identifier introduces a separate bias for each system. The cross-system bias
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Wsh Wsh Wsh
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Figure 4.2: RNN+ID architecture for fully observable multi-system identifica-

tion.

bh and the specific biases accessed through Whiei can be absorbed into a new

system-specific bias ›Whiei = bh +Whiei. Thus, (4.2) can be rewritten as

h[t+1] = φh(Whaa[t] +Whhh[t] +›Whiei). (4.3)

4.3.3 FTRNN

The previous subsection showed that providing the network with a “one-hot”

encoded system identifier ei is in fact equivalent to learning a different hidden

layer bias ›Whiei for each system. The bias of a particular neuron determines

its activity threshold. Making the bias system-specific thus allows to learn a

different threshold for each system. However, the state evolution of a system is

predominantly determined by the matrix Whh, which models the state evolution

without external forces, and by the matrix Wha, which models the effect of an

external force applied to the system. Given that all systems share identical state

and action spaces, these two matrices should be made system-specific.

The idea of introducing third-order tensors as parameter matrices conditioned

on a categorical input, as described in Section 3.3.3, can be applied to the multi-

system identification problem. Following the arguments made above an immedi-

ate approach is to learn separate parameter matrices Whhiei and Whaiei for each
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4.4 The Fully Observable Dual-Task Learning Problem

system where Whhi ∈ Rnh×nh×|I| and Whai ∈ Rnh×na×|I| are third-order tensors.

As argued in Section 3.3.3 learning separate parameter matrices for each system

has two major drawbacks regarding the number of parameters harming data effi-

ciency and regarding the independence of each parameter matrix which prevents

information sharing within the transformation. Decomposing the three-way ten-

sors Whhi and Whai according to PARAFAC yields the factored tensors of the

form

Whhiei ≈ Whfh diag(Wfhiei)Wfhh (4.4a)

Whaiei ≈ Whfa diag(Wfaiei)Wfaa (4.4b)

Substituting the matrices Whh and Wha by their corresponding factored tensors

yields the equations of the FTRNN by substituting (4.1b) with (4.5).

h[t+1] = φh(Whfa diag(Wfaiei)Wfaaa[t] +

Whfh diag(Wfhiei)Wfhhh[t] + bh)

(4.5)

Figure 4.3 depicts a graphical representation of the FTRNN architecture. Due to

the factored tensors, only nf parameters are specific to each system compared

to nunv parameters for independent parameter matrices Wvui. Their limited

degree of freedom forces the model to identify common structure among the

systems. This way, every system has its own set of transformations describing

the contributions of the previous hidden state and the current external force to

yield the current hidden state. However, these transformations are not indepen-

dent for each system since they are composed of two cross-system components

and one system-specific component.

4.4 The Fully Observable Dual-Task Learning

Problem

The fully observable dual-task learning problem addresses the task of learning

the state transition function of a little observed fully observable dynamical sys-

tem by utilizing data from a well-observed similar system. In order to achieve

this goal, the data of both systems are used to learn a joint model thereof such

that information is shared among the two systems. Typical applications of this
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1 1 1

s[1] a[1] a[2]
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ŝ[2] ŝ[3]
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Figure 4.3: FTRNN architecture for fully observable multi-system identification.

The nodes having the •-symbol in their centers are “multiplication

nodes”, i.e. the input vectors of the nodes are multiplied component-

wise. In contrast, the standard nodes imply the summation of all

input vectors.
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4.4 The Fully Observable Dual-Task Learning Problem

scenario are situations where a technical system undergoes maintenance pro-

cedures after a sufficiently long period of operation that cause the system to

change, or the deployment of a new instance whose data of observations are

augmented by those of a related system.

4.4.1 Problem Definition

Let I := {1, 2} denote a set of identifiers for fully observable deterministic

systems, which are observed in fixed time intervals τ and show similar dynamics.

A system is defined by the tuple (S,A, fi) with a state space S, an action space

A, and an unknown state transition function fi : S × A → S describing the

temporal evolution of the state.

Let Di be a set of state transition observations (i, s, a, s′) ∈ Di of the i-th

system where each observation describes a single state transition from state

s ∈ S to state s′ ∈ S caused by action a ∈ A. Further, let D =
⋃
i∈I Di denote

a data set of size |D| drawn from a probability distribution D.

Let H ⊆ {h |h : S×A→ S} denote a hypothesis space, i.e. a set of functions

that are assumed to approximate the state transition function fi. Further, let

L : S×S → R denote an error measure between a predicted successor state ŝ′ and

the true successor state s′. The optimal hypothesis h∗i , i.e. the best approxima-

tion of fi within the considered space of hypotheses, minimizes the conditional

expected error εi(h) := E(j,s,a,s′)∼D[L(h(s, a), s′) | j = i] where E denotes the

expectation operator, hence, h∗i = arg minh∈H εi(h). Since D is generally un-

known, an approximately optimal hypothesis is determined by minimizing the

empirical error ε̂D(h) := 1
|D|
∑

(·,s,a,s′)∈D L(h(s, a), s′) induced by a hypothesis h

on a data set D, hence, ĥi = arg minh∈H ε̂Di(h).

Given sufficient data D1, it is expected that |ε1(ĥ1) − ε1(h∗1)| ≤ ε for some

small positive ε. In contrast, assuming the amount of data D2 is insufficient,

|ε2(ĥ2) − ε2(h∗2)| � ε and ĥ2 may be useless. The problem addressed in this

section is to develop and assess methods that yield a better hypothesis of the

insufficiently observed system through dual-task learning in order to utilize aux-

iliary information from D1 as prior knowledge of the transition function f2.

Therefore, the hypothesis space and the empirical error are redefined as fol-

lows. Let H ′ ⊆ {h |h : I × S × A → S} denote an extended hypothesis space,

which includes the system identifier into the product space of arguments and
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4 Exploiting Similarity in Fully Observable System Identification Tasks

thus approximates both transition functions by a single function. Further, let

ε̂′D(h) := 1
|D|
∑

(i,s,a,s′)∈D wiL(h(i, s, a), s′) denote the empirical error of a hy-

pothesis h ∈ H ′ with the system-specific error weight wi. If the the empirically

optimal hypothesis ĥ′ = arg minh∈H′ ε̂
′
D(h) (D =

⋃
i∈I Di) yields a smaller ex-

pected error than ĥ2, i.e. ε2(ĥ′2) < ε2(ĥ2) with ĥ′2(s, a) := ĥ′(2, s, a), information

from the well observed system is successfully utilized in the hypothesis search

to find a better hypothesis of f2 despite few data.

4.4.2 Experiments

In order to assess the effectiveness of the FTRNN model in comparison with

the competing models, experiments were conducted using the frictionless cart-

pole (see Section 2.8.1) and mountain car (see Section 2.8.2) simulations. For

each simulation, two instances with non-identical but similar state transition

functions were configured. The data sets D1 and D2 were obtained by observing

the state transitions (i, s, a, s′) along a trajectory of 500 actions (a[1], ..., a[500])

defined by the equations

a[0] = 0 (4.6a)

ã[t] ∼ U(−1, 1) (4.6b)

a[t] = max(−1,min(1, a[t−1] + ã[t])). (4.6c)

with U being the uniform distribution. These equations describe a random walk

of actions clipped to the domain of the action space. After every 500 steps, the

simulation was reset to its initial state. The examples used to train and evalu-

ate the models were generated by extracting T -step windows of the sequences of

observations. In order to decorrelate examples of the training, validation, and

generalization data sets, the block validation method discussed in Section 2.3.3

was used. D1 consisted of 15 000 examples (i = 1, s[1], a[1], ..., s[T ], a[T ], s[T+1])

and was split into a training set D1,T containing 10 000 examples and a val-

idation set D1,V sized 5000. The data set D2 was obtained the same way,

however, training and validation set sizes were reduced to {10000, 5000, ..., 156}
and {5000, 2500, ..., 78} respectively throughout the experiments. Experiments

were conducted on two simulations in order to (i) compare the model error

as a function of D2,T and D2,V, and (ii) assess whether D2,T and D2,V should

be upsampled to match the sizes of D1,T and D1,V or not. The loss function
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4.4 The Fully Observable Dual-Task Learning Problem

for training was chosen to be the mean squared error (MSE) between the pre-

dicted and the true successor state sequence, i.e. L(ŝ[2], ..., ŝ[T+1], s[2], ..., s[T+1]) =
1
2

∑T
t=1 ‖s[t+1] − ŝ[t+1]‖2

2. An alternative choice is the “ln cosh” loss function in

case outliers are a concern (Neuneier & Zimmermann, 1998). To evaluate the

model performances, the average MSE per time step per output component was

used, i.e. Ltest = 1
T dim(s)

L.

Learning the state transition function of the differently configured systems

cannot be solved through mere generalization because the quantities that invoke

the different dynamical behavior are hidden. The only information that allows

to distinguish the systems is a categorical system identifier. Thus, the hidden

quantities need to be inferred from observations making the problem a dual-task

learning problem rather than a problem of generalization.

Cart-Pole

Two cart-pole instances (CP1 and CP2) were configured to have the pole lengths

0.5 and 1.0, and the pole masses 0.05 and 0.1, respectively. Figure 4.4 depicts

the performance of the best-of-five model (determined by the lowest error on

D1,V ∪ D2,V with |D1,V| = 5000 and |D2,V| = 1
2
|D2,T|) with T = 10 evaluated

on D2,G with |D2,G| = 100 000. In each run, the initial model parameters were

sampled at random. For all networks, the hidden state dimension was set to

nh = 10. The hyperparameters of the FTRNN were set to nfh = nh and nfa = 1.

The simple RNN model was only trained on data from CP2. The other models,

i.e. the Näıve RNN, RNN+ID and FTRNN, were trained on the concatenated

data set D1 ∪ D2. The model parameters were optimized using Hessian-Free

optimization with the structural damping coefficient (see Section 2.4.2) set to

µsd = 0.1, a maximum number of 10 000 updates, at most 150 conjugate gradient

(CG) iterations using all training examples to compute the gradient, and a

random subset of the training data set sized 5000 to estimate the local curvature

of the error surface. In addition, an early stopping procedure with a patience

of 50 updates was used to reduce overfitting.

The first set of experiments, whose results are depicted in Figure 4.4a, com-

pared the errors of the different models provided that D2,T and D2,V were up-

sampled such that |D2,T| = |D1,T| and |D2,V| = |D1,V|. As a result, the simple

RNN performed well for |D2,T| ∈ {1250, 2500, 5000, 10 000} but degraded rapidly
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Näıve RNN
RNN+ID
FTRNN

(a) Model errors with upsampled data from CP2 plotted on a logarithmic scale.
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(ĥ
′ )
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(b) Model errors with (solid lines) and without (dotted lines) upsampled data from

CP2.

Figure 4.4: Experimental results using the cart-pole simulation. The plots show

the error of the best-of-five model determined by the validation set

error. The error is the MSE per state component per time step

between the predicted and the true successor state sequence plotted

against the varying training set sizes of CP2 for a fixed number of

|D1,T| = 10 000 training examples of CP1.
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given fewer training examples. A considerable improvement was achieved by the

Näıve RNN given |D1,T| = 10 000 and |D2,T| ∈ {156, 312, 625} despite its dis-

ability to distinguish between the two cart-poles. The RNN+ID model yielded

an expected improvement over the Näıve RNN since it was provided information

to tell examples of the two cart-poles apart. Thus, it was able to actually encode

differences between the state transition functions of the two cart-poles. How-

ever, as shown in Section 4.3.2, the additional feature vector ei merely acts as

a system-specific bias in the hidden state of the RNN which limits its ability to

properly account for the similar but non-identical state transition function of the

two cart-poles. The FTRNN outperformed the Näıve RNN and the RNN+ID

models consistently. Only for a data ratio of
|D1,T|
|D2,T| = 10 000

156
the error increased

notably and got close to the error of the RNN+ID model.

The second set of experiments, whose results are illustrated in Figure 4.4b,

compared the effect of upsampling D2,T and D2,V versus keeping their original

sizes during training. It turned out that upsampling the data sets was consis-

tently superior, especially for increasing data ratios
|D1,T|
|D2,T| . In particular, the

error of the Näıve RNN increased significantly when no upsampling was used,

but also the RNN+ID and FTRNN models performed worse without upsam-

pling.

Mountain Car

Two mountain car instances (MC1 and MC2) were configured with gravity val-

ues 0.001 and 0.003. Figure 4.5 depicts the performance of the best-of-five

model (determined by the lowest error on D1,V ∪D2,V with |D1,V| = 5000 and

|D2,V| = 1
2
|D2,T|) with T = 10 evaluated on D2,G with |D2,G| = 100 000. In each

run, the initial model parameters were sampled at random. For all networks,

the hidden state dimension was set to nh = 5. The hyperparameters of the

FTRNN were set to nfh = nh and nfa = 1. The simple RNN model was only

trained on data from MC2. The other models, i.e. the Näıve RNN, RNN+ID

and FTRNN, were trained on the concatenated data set D1 ∪ D2. The model

parameters were optimized using Hessian-Free optimization with the structural

damping coefficient (see Section 2.4.2) set to µsd = 0.1, a maximum number of

10 000 updates, at most 50 conjugate gradient (CG) iterations using all training

examples to compute the gradient, and a random subset of the training data
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(a) Model errors with upsampled data from MC2 plotted on a logarithmic scale.
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(b) Model errors with (solid lines) and without (dotted lines) upsampled data from

MC2 plotted on a logarithmic scale.

Figure 4.5: Experimental results using the mountain car simulation. The plots

show the error of the best-of-five model determined by the validation

set error. The error is the MSE per state component per time step

between the predicted and the true successor state sequence plotted

against the varying training set sizes of MC2 for a fixed number of

|D1,T| = 10 000 training examples of MC1.
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4.4 The Fully Observable Dual-Task Learning Problem

set sized 5000 to estimate the local curvature of the error surface. In addition,

an early stopping procedure with a patience of 50 updates was used to reduce

overfitting.

The first set of experiments, whose results are depicted in Figure 4.5a, com-

pared the errors of the different models provided that D2,T and D2,V were up-

sampled such that |D2,T| = |D1,T| and |D2,V| = |D1,V|. As a result, the simple

RNN performed well in general, but its error increased for an increasing data

ratio
|D1,T|
|D2,T| . In contrast to the cart-pole experiments, the Näıve RNN performed

orders of magnitude worse than all other models. The RNN+ID modeled the

state transition function of MC2 considerably more accurately than the Näıve

RNN, but it was almost consistently worse than the simple RNN. It only out-

performed the simple RNN for |D2,T| = 156. The FTRNN again performed

consistently best by a significant margin in comparison with the other models.

Surprisingly, it even achieved a smaller error than the simple RNN for small

data ratios
|D1,T|
|D2,T| . For |D2,T| = 156 its error was more than an order of magni-

tude smaller than the error of the simple RNN. Upon further investigation, the

RNN turned out to be slightly underfitting given many training examples.

The second set of experiments, whose results are illustrated in Figure 4.5b,

compared the effect of upsampling D2,T and D2,V versus keeping their original

sizes during training. The observations made during the mountain car experi-

ments were qualitatively consistent with those of the cart-pole experiments. For

all models, upsampling the data yielded smaller model errors.

4.4.3 Discussion

The problem class of modeling the state transition function of a dynamical sys-

tem from few observations by utilizing auxiliary data from a similar system was

introduced, motivated and formalized. For this purpose, the Factored Tensor

Recurrent Neural Network (FTRNN) architecture was presented, discussed, and

its effectiveness was assessed in a series of experiments using the cart-pole and

mountain car simulations. The FTRNN was compared with two variants of

recurrent neural networks which implement different approaches of information

sharing in a dual-task learning setting. In addition, it was also investigated

whether the few data of the target system should be upsampled to match the

amount of data of the source system, thus, giving equal weight to the source
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4 Exploiting Similarity in Fully Observable System Identification Tasks

and target systems in the training objective. As a result, the FTRNN turned

out consistently and significantly superior to the compared methods on both

simulations across the range of considered data ratios. Further, the experi-

ments showed that matching the data set sizes of the two system by means of

upsampling yielded a smaller error for all models.

4.5 The Fully Observable Dual-Task Learning

Problem with Regularization

Given only few training examples from the target system the parameters of

its corresponding model may converge to unfavorable values as the available

information is insufficient. To address this problem, a regularization term, which

extends the optimization objective of the FTRNN model, is presented preventing

the model of the target system from diverging from the model of the source

system. The latter is assumed to be trustworthy because its parameters are

fitted to sufficiently many and rich data. Given the prior assumption of the

systems’ similarity the regularization acts as a similarity enforcing constraint

applied to the model parameters.

4.5.1 Problem Definition

The problem definition of this section extends the problem definition of Sec-

tion 4.4.1. The empirical error ε̂′D(h) := 1
|D|
∑

(i,s,a,s′)∈D wiL(h(i, s, a), s′) of a

hypothesis h ∈ H ′ is extended by a regularization term that constrains the

choice of hypotheses in a way that the prior assumption of the two system be-

ing similar is further strengthened. The regularized empirical error ε̂′D,λ(h) :=
1
|D|
∑

(i,s,a,s′)∈D wiL(h(i, s, a), s′) + λ||h|| is obtained through an additional ad-

ditive term. If the empirically optimal hypothesis ĥ′λ = arg minh∈H′ ε̂
′
D,λ(h)

(D =
⋃
i∈I Di) yields a smaller expected error than ĥ′ and ĥ2, i.e. ε2(ĥ′2,λ) <

ε2(ĥ′2) < ε2(ĥ2) with ĥ′2(·, ·) := ĥ′(2, ·, ·), the regularization method improves

the utilization of information from the well observed system in the hypothesis

search to find a better hypothesis of f2 despite few data.
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4.5 The Fully Observable Dual-Task Learning Problem with Regularization

4.5.2 Regularization

Let Ω: Rnf×|I| → R+ be a regularization function that maps a matrix, whose

columns hold the system-specific parameters of each system, to a non-negative

real-valued regularization cost. The function asymmetrically penalizes the Eu-

clidean distance between two columns of the parameter matrix, i.e. the system-

specific parameters of the target system are tied to those of the source system but

not vice versa. In the limit of a strong regularization coefficient, the regularized

FTRNN objective makes the FTRNN and Näıve RNN equivalent because the

system-specific parameters are forced to be equal. The regularization function

is defined as

Ω(Wfi) = ‖const(Wfi)e1 −Wfie2‖2
2 (4.7)

where const(·) is a function whose argument is made constant with respect to

differentiation, i.e.
∂const(Wfi)

∂Wfi
= 0. The error function, minimized with respect

to θ = θcross ∪ θspecific with θcross = {Whs, b1,Wfaa,Whfa ,Wfhh,Whfh , bh,Wsh, bs}
and θspecific = {Wfai,Wfhi}, is given by

E(θ;λa, λh) = ε̂D(hFTRNN,θ) + λaΩ(Wfai) + λhΩ(Wfhi). (4.8)

Thus, the optimal parameters θ∗ are found as follows:

θ∗ = arg min
θ

E(θ, λa, λh) (4.9)

The hyperparameters λa ≥ 0 and λh ≥ 0 are determined via cross-validation.

There are two reasons for constraining the effect of the regularization to the

target system. First, the system-specific parameters of the source system are

assumed to be well determined by the data. Hence, there is no need to exploit

information from the target system. In fact, the little and possibly incomplete

information about the target system might even corrupt the parameters of the

source system. Second, the cross-system parameters adjust according to the

dual-task learning objective which is the minimization of (4.8). Since the data

of the target system are considered insufficient and likely incomplete, minimizing

the prediction error on the training data is likely to generalize poorly for this

system. Thus, not only the system-specific parameters of the target system but

also the cross-system parameters may adjust unfavorably. By constraining the

system-specific parameters of the target system to remain similar to those of
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4 Exploiting Similarity in Fully Observable System Identification Tasks

the source system, the cross-system parameters are less likely to be affected

by incomplete information about the target system. Note, however, that the

regularization nevertheless affects the system-specific parameters of the source

system implicitly via the cross-system parameters, but the effect should be much

more lenient.

4.5.3 Experiments

Experiments were conducted on the cart-pole (see Section 2.8.1) and mountain

car (see Section 2.8.2) simulations. For each simulation two different instances

of the respective systems were instantiated. One of the two systems was desig-

nated the source system from which sufficient data were available while the other

system was designated the target system which had only been observed insuffi-

ciently in order to learn an accurate model thereof. The experiments especially

focused on large data ratios between the source and target systems assessing

the effectiveness of the regularization technique in such situations. Regulariza-

tion coefficients in an appropriate range were compared across a range of data

ratios. The training, validation, and test data sets were created using the block

validation method (see Section 2.3.3).

Cart-Pole

Sequences of 1000 actions a[t] ∼ U(−1, 1) were applied to the cart-pole every τ =

0.02 s for which the resulting state transitions were observed. After completing

a sequence, the simulation was reset to its initial state. Two different cart-poles,

whose configurations varied in terms of the pole length lpole and pole mass mpole,

were observed. The two cart-poles were configured by setting lpole ∈ {0.5, 1.0}
and mpole = 0.1lpole. For cart-pole 1 (CP1), a training data set with 10 000 and

a validation data set with 5000 examples were created. For cart-pole 2 (CP2),

various training data sets sized {10 000, 5000, ..., 625} and validation data sets

sized {5000, 2500, ..., 312} were created. During training, the two training and

validation data sets were concatenated and the data of CP2 were upsampled

to be equal in size with those of CP1. To test the performance of the models,

a generalization data set for CP2 sized 30 000 was created. The FTRNN was

configured using nh = nfh = 10, nfa = 2 and T = 10. The regularization

strength was set to λ = λa = λh ∈ {10−4, 10−3, 10−2}. The maximum number
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4.5 The Fully Observable Dual-Task Learning Problem with Regularization

of parameter updates was set to 10 000. The number of conjugate gradient (CG)

iterations per update was limited to 150. The gradient was computed using the

full training set and the curvature was estimated using 5000 examples.

Figure 4.6 depicts the performance of the FTRNN with and without regular-

ization. The performance metric is the median of five runs of the average MSE
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Figure 4.6: Experimental results of the cart-pole simulation. The average MSE

per state component per time step of the predicted and the true

successor state sequence is plotted against the varying training set

size of CP2 for |D1,T| = 10 000 training examples of CP1.

per state component per predicted time step. At the beginning of each run, a

new parameter initialization was sampled at random.

The experiments on the cart-pole simulation revealed superior performance of

the regularized FTRNN over the plain FTRNN for |D2,T| = 625. The smallest

error was obtained by setting λ = 10−2. A large coefficient reduced the error for

|D2,T| = 625 but increased it for |D2,T| ∈ {1250, 2500, 5000, 10 000} compared

to the plain FTRNN was observed. This observation is plausible because the

regularization constrains the parameters of CP2 to be close to those of CP1.

When enough data of CP2 were available, this heuristic was likely invalid and

harmful to the model performance. However, given only few data of CP2, it

guided the parameters towards a better optimum.
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Mountain Car

Sequences of 500 actions (a[1], ..., a[500]), computed by the equations

a[0] = 0 (4.10a)

ã[t] ∼ U(−1, 1) (4.10b)

a[t] = max(−1,min(1, a[t−1] + ã[t])), (4.10c)

were applied to the mountain car. After completing a sequence, the simulation

was reset to its initial state. Two mountain cars, whose configurations differed

in terms of the gravity g ∈ {0.0005, 0.0009}, were observed. For mountain car

1 (MC1), a training data set with 10 000 and a validation data set with 5000

examples were created. For mountain car 2 (MC2), various training data sets

sized {10 000, 5000, ..., 156} and validation data sets sized {5000, 2500, ..., 78}
were created. During training, the two training and validation data sets were

concatenated and the data of MC2 were upsampled to be equal in size with

those of MC1. To test the performance of the models, a generalization data

set for MC2 sized 100 000 was created. The FTRNN was configured using

nh = nfh = 10, nfa = 2 and T = 10. The regularization strength was set to

λ = λa = λh ∈ {10−3, 10−2, 10−1}. The maximum number of parameter updates

was set to 5000. The number of conjugate gradient (CG) iterations per update

was limited to 100. The gradient was computed using the full training set and

the curvature was estimated using 10 000 examples.

Figure 4.7 depicts the performance of the FTRNN with and without regular-

ization. The performance metric is the average MSE per state component per

predicted time step of the best model among five runs, determined by the val-

idation set error. At the beginning of each run, a new parameter initialization

was sampled at random.

The experiments on the mountain car simulation revealed superior perfor-

mance of the regularized FTRNN over the plain FTRNN for |DT,2| ∈ {312, 156}.
Given |DT,2| = 312 and for λ = 10−3, a relative error reduction of approxi-

mately 76 % compared to the plain FTRNN. For |D2,T| = 156 and λ = 10−2,

the regularization yielded a relative improvement of approximately 83 %. Sim-

ilar to the observations made in the cart-pole experiments, the regulariza-

tion reduced the error for |D2,T| ∈ {312, 156} but tended to increase it for

|D2,T| ∈ {625, 1250, ..., 10 000}.
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Figure 4.7: Experimental results of the mountain car simulation. The average

MSE per state component per time step of the predicted and the

true successor state sequence is plotted against the varying training

set size of MC2 for |D1,T| = 10 000 training examples of MC1.
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4.5.4 Discussion

A regularization technique for the Factored Tensor Recurrent Neural Network

(FTRNN) to learn the dynamics of an insufficiently observed target system by

exploiting its similarity with a well observed source system in a dual-task learn-

ing approach was presented. The FTRNN disentangles cross-system properties

from peculiarities allowing to share knowledge efficiently among the systems.

When information from the target system was insufficient in order to learn an

accurate FTRNN model, it was discovered that especially the system-specific

parameters converged to unfavorable values. This section addressed the prob-

lem through regularization which penalizes dissimilarities between the system-

specific parameters of the source and target system asymmetrically such that

the system-specific parameters of the target system were penalized for diverg-

ing from those of the source system but not vice versa. The effectiveness of

this approach was demonstrated on the cart-pole and mountain car simulations

achieving significantly lower errors using the regularized FTRNN compared to

the plain FTRNN.

4.6 The Fully Observable Transfer Learning

Problem

In this section, an efficient transfer learning approach based on recurrent neural

networks with factored tensor components is introduced. The goal is to identify

a target system based on few observations by exploiting its similarity with mul-

tiple well observed source systems. First, a joint model of the source systems is

trained which encodes cross-system properties and system-specific characteris-

tics into disjoint subsets of the model parameters. Second, a model of the target

system is obtained by merely fitting the system-specific parameters to the few

data of the target system while the cross-system parameters remain fixed. The

benefits of this approach are manifold. First, once a joint model of the source

systems is learned, knowledge transfer to a target system is fast, i.e. parameter

optimization converges within seconds, whereas learning the parameters of an

RNN from scratch can take many hours or even days. Second, this approach is

data-efficient with respect to the number of required target system observations
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because the general dynamics of the source systems were identified based on

plenty of observations. Third, this method alleviates tedious hyperparameter

tuning, especially for the case of few available target system observations, since

the number of system-specific parameters is small and their effect on the overall

model is highly constrained. Fourth, the model complexity of the approach with

respect to a single system is identical to the complexity of the corresponding

simple RNN. Therefore, its evaluation time for a new system is the same.

The following subsections formalize the fully observable transfer learning

problem and present experimental results of the proposed neural architecture

with alternative approaches on data obtained from the cart-pole and mountain

car simulations. The empirical results are discussed and conclusions are drawn.

4.6.1 Formal Problem Definition

Let I := {1, 2, 3, ...} denote the set of identifiers for fully observable deterministic

systems, which are observed in fixed time intervals τ and show similar dynamics.

A system is defined by the tuple (S,A, fi) with a state space S, an action space

A, and an unknown state transition function fi : S × A → S describing the

temporal evolution of the state.

Let Di be a set of state transition observations (i, s, a, s′) ∈ Di of the i-th

system where each observation describes a single state transition from state

s ∈ S to state s′ ∈ S caused by action a ∈ A. Further, let D =
⋃
i∈I Di denote

a data set of size |D| drawn from a probability distribution D.

Let H ⊆ {h |h : S×A→ S} denote a hypothesis space, i.e. a set of functions

that are assumed to approximate the state transition function fi. Further, let

L : S×S → R denote an error measure between a predicted successor state ŝ′ and

the true successor state s′. The optimal hypothesis h∗i , i.e. the best approxima-

tion of fi within the considered space of hypotheses, minimizes the conditional

expected error εi(h) := E(j,s,a,s′)∼D[L(h(s, a), s′) | j = i] where E denotes the

expectation operator, hence, h∗i = arg minh∈H εi(h). Since D is generally un-

known, an approximately optimal hypothesis is determined by minimizing the

empirical error ε̂D(h) := 1
|D|
∑

(·,s,a,s′)∈D L(h(s, a), s′) induced by a hypothesis h

on a data set D, hence, ĥi = arg minh∈H ε̂Di(h).

Let the set of system identifiers I refer to |I| − 1 source systems with plenty

of available data and one target system with only few data, i.e. |D|I|| � |Di| for
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all i ∈ I \ {|I|}. Given the sufficient amount of data from the source systems

i ∈ I\{|I|}, |εi(ĥi)−εi(h∗i )| ≤ ε for some small positive ε. In contrast, given only

few data D|I| from the target system, |ε|I|(ĥ|I|)− ε|I|(h∗|I|)| � ε and ĥ|I| may be

useless. The problem addressed in this section is to develop and assess methods

that yield a better hypothesis of the insufficiently observed system through

transfer learning in order to utilize auxiliary information from
⋃
i∈I\{|I|}Di as

prior knowledge of the transition function f|I|.

Therefore, the hypothesis space and the empirical error are redefined as fol-

lows. Let H ′ ⊆ {h |h : I × S × A → S} denote an extended hypothesis space,

which includes the system identifier into the product space of arguments and

thus approximates both transition functions by a single function. Further, let

ε̂′D(h) := 1
|D|
∑

(i,s,a,s′)∈D wiL(h(i, s, a), s′) denote the empirical error of a hypoth-

esis h ∈ H ′ with the system-specific error weight wi. If the empirically optimal

hypothesis ĥ′ = arg minh∈H′ ε̂
′
D(h) (D =

⋃
i∈I Di) yields a smaller expected error

than ĥ|I|, i.e. ε|I|(ĥ′|I|) < ε|I|(ĥ|I|) with ĥ′|I|(s, a) := ĥ′(|I|, s, a), information from

the well observed system was successfully utilized in the hypothesis search to

find a better hypothesis of f|I| despite few data.

4.6.2 Experiments

Experiments were conducted using two standard simulations: the frictionless

cart-pole (see Section 2.8.1) and mountain car (see Section 2.8.2) simulations

both modified from their originals to support continuous actions. For each

simulation, five different source system instances were labeled {1, ..., 5} and

various other instances were labeled {6}. The properties of the target systems

were configured at random according to some distribution. Each system was

observed under a random policy to obtain data for training and evaluation. In

order to decorrelate the examples of the training, validation and generalization

data sets, the block validation method discussed in Section 2.3.3 was applied.

Let Di,T denote the set of training examples, let Di,V be the validation set

and Di,G be the generalization set for system i ∈ {1, ..., 6}. The data set sizes

of the target system were assumed to be much smaller than those of the source

systems, i.e. D6,T � Di,T and D6,V � Di,V for i ∈ {1, ..., 5}. Each example was

represented as a tuple (i, s[1], ..., s[T+1], a[1], ..., a[T ]).

The following protocol was used for all experiments:
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1. Simple RNN models were trained for all source systems with different data

set sizes to roughly determine the amount of training examples needed to

learn good and poor models of the state transition function.

2. Data set sizes were chosen according to the results of step 1. The Näıve

RNN, RNN+ID, and FTRNN models were trained on the concatenated

training sets of all source systems (plenty of data) until the validation

error, evaluated on the concatenated validation sets, stopped improving

for at least 50 parameter updates. In addition, simple RNN models were

trained for all target systems (few data) using their corresponding data

sets until the validation error stopped improving for at least 50 parameter

updates. This process was repeated five times, each time with a fresh

random initialization of the model parameters. Among the five runs, the

best set of parameters was picked according to the validation set error.

3. For the RNN+ID and FTRNN architecture, the cross-system parameters

were transferred to the target system model by initializing its cross-system

parameters with the parameters of the source systems’ model. The system-

specific parameters of the target system model were initialized as the aver-

age of the system-specific parameters of the source systems’ model. When

training the target system model, only the system-specific parameters were

fitted to the training data of the target system until the validation set error

stopped improving for at least 50 parameter updates. The cross-system

parameters were considered constant with respect to the optimization ob-

jective. This process was repeated for all target systems.

4. Finally, the errors of the RNN, Näıve RNN, RNN+ID, and FTRNN models

were evaluated on the generalization data sets of the target systems. For

the RNN+ID and FTRNN models, the system-specific parameters of the

respective target system model, which had been obtained in the previous

step, were used.
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Cart-Pole

A cart-pole was observed every τ = 0.02 s for sequences of 500 actions (a[1], ..., a[500])

computed by the equations

a[0] = 0 (4.11a)

ã[t] ∼ U(−1, 1) (4.11b)

a[t] = max(−1,min(1, a[t−1] + ã[t])). (4.11c)

After every 500 steps, the simulation was reset to its initial state. Differ-

ent cart-poles, whose configurations varied in terms of the pole length lpole

and pole mass mpole, were observed. Each cart-pole i ∈ I \ {|I|} was con-

figured by setting lpole ∈ {0.5, 0.6, 0.7, 0.8, 0.9} and mpole = 0.1lpole, and data

sets of size |Di,T| = 10 000, |Di,V| = 5000, and |Di,G| = 100 000 were cre-

ated. Further, various other cart-pole configurations were created by sampling

lpole ∼ U(0.3, 1.1). The corresponding data sets were sized |D6,T| = 156,

|D6,V| = 78 and |D6,G| = 100 000. The RNNs were configured as follows:

nh = nfh = 20, nfa = 1, T = 10. The parameters were fitted to the data using

Hessian-Free optimization with structural damping (see Section 2.4.2 for details)

with the structural damping coefficient µsd = 0.1 and the initial Levenberg-

Marquardt coefficient λLM = 1.0. The gradient of the optimization objective

with respect to the parameters was computed using 10 000 examples selected at

random without replacement from the training data set. During the conjugate

gradient (CG) iterations, 5000 examples from the training data set were selected

at random without replacement. The CG method ran for at most 150 iterations

per update. Further, at most 10 000 parameter updates were allowed. These

hyperparameters were not exhaustively cross-validated, but they were found to

work well based on testing several different settings.

Figure 4.8 depicts the results of the experiments conducted using the cart-pole

simulation.

Figure 4.8a shows the similarity of the cart-poles labeled {1, ..., 5} by evalu-

ating every RNN model on every cart-pole configuration. Clearly, the models

were accurate when trained and evaluated on the same configuration, but the

accuracy decreased notably when a model was trained on a data from a partic-

ular cart-pole configuration and evaluated on data from another one. Further,

increasing the difference between the pole lengths and pole masses of two cart-
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Figure 4.8: Experimental results of the cart-pole simulation. The plots show

the mean squared error, evaluated on the generalization data sets

sized 100 000, divided by the number of state components and the

number of predicted time steps. (a) compares the similarity of the

source systems by evaluating an RNN model learned from 10 000

training examples of cart-pole x and evaluates the model on cart-

pole y using the corresponding generalization data set. (b) compares

the error of the different models for various target systems using

156 training examples to learn the system-specific parameters of the

FTRNN and RNN+ID and all parameters of the RNN. The dotted

vertical lines indicate the source system configurations used to learn

the cross-system parameters of the FTRNN and RNN+ID as well

as the parameters of the Näıve RNN.
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poles made the respective models less accurate when evaluated on the other

cart-pole. Thus, adjusting the pole length and mass of the cart-poles yields

non-identical but nevertheless similar dynamical systems.

Figure 4.8b depicts the MSE divided by the number of state components and

the number of predicted time steps against the different cart-pole configurations

for the considered models.

The experiments show that the FTRNN was able to successfully learn a joint

model of the five different cart-pole configurations labeled {1, ..., 5} such that an

accurate target system model could be learned from only 156 training examples

by transferring the cross-system parameters of the source systems’ model to the

target system model. In comparison with the Näıve RNN and RNN+ID model,

the FTRNN performed best by a significant margin followed by the RNN+ID

and the Näıve RNN. This order of the model performances was consistent in

the interpolation range lpole ∈ [0.5, 0.9] as well as the tested extrapolation

range lpole ∈ [0.3, 0.5[ ∪ ]0.9, 1.1]. Learning an RNN model from only 156

training examples of a single target system was insufficient in order to learn the

parameters of a system-specific model.

Mountain Car

A mountain car was observed for sequences of 500 actions (a[1], ..., a[500]) com-

puted by the equations

a[0] = 0 (4.12a)

ã[t] ∼ U(−1, 1) (4.12b)

a[t] = max(−1,min(1, a[t−1] + ã[t])). (4.12c)

After every 500 steps, the simulation was reset to its initial state. Different

mountain cars, whose configurations varied in terms of the gravity g, were ob-

served. Each mountain car i ∈ I \ {|I|} was configured by setting g ∈ {0.0010,

0.0015, 0.0020, 0.0025, 0.0030}, and data sets of size |Di,T| = 10 000, |Di,V| =

5000 and |Di,G| = 100 000 were created. Further, various other mountain car

configurations were created by sampling g ∼ U(0.0005, 0.005). The correspond-

ing data sets were sized |D6,T| = 156, |D6,V| = 78 and |D6,G| = 100 000. The

RNNs were configured as follows: nh = 10, nfh = nfa = 3, T = 10. The pa-

rameters were fitted to the data using Hessian-Free optimization with structural
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4.6 The Fully Observable Transfer Learning Problem

damping (see Section 2.4.2 for details) with the structural damping coefficient

µsd = 0.1 and the initial Levenberg-Marquardt coefficient λLM = 1.0. The

gradient of the optimization objective with respect to the parameters was com-

puted using 10 000 examples selected at random without replacement from the

training data set. During the conjugate gradient (CG) iterations, 5000 exam-

ples from the training data set were selected at random without replacement.

The CG method ran for at most 50 iterations per update. Further, at most

10 000 parameter updates were allowed. These hyperparameters were not ex-

haustively cross-validated, but they were found to work well based on testing

several different settings.

Figure 4.9 depicts the results of the experiments conducted using the moun-

tain car simulation.

Figure 4.9a shows the similarity of all pairs of the five mountain cars labeled

{1, ..., 5} by evaluating every RNN model on every mountain car configuration.

Similar to the cart-pole experiments, varying the gravity of the the mountain car

simulation yielded non-identical but similar dynamical systems since a model

trained on a particular mountain car configuration was a less accurate model

of another configuration. The accuracy decreased as the difference of the two

gravity settings increased.

Figure 4.9b depicts the performance of our considered models plotting the

MSE divided by the number of state components and the number of predicted

time steps against the different mountain car configurations.

The mountain car experiments support the results of the cart-pole experi-

ments. Again, the FTRNN performed best by a significant margin followed

by the RNN+ID. The Näıve RNN yielded the largest error among the consid-

ered models. This order of the model performances is consistent in the inter-

polation range g ∈ [0.001, 0.003] as well as the tested extrapolation range

g ∈ [0.0005, 0.001) ∪ (0.003, 0.005]. The error of a simple target system RNN

model using 156 training examples was large and erratic across the set of target

systems. This suggests that it does not suffice to use few training examples of

each target system to learn an accurate model.

87



4 Exploiting Similarity in Fully Observable System Identification Tasks

0 1 2 3 4

Evaluated on mountain car x

0

1

2

3

4

T
ra

in
ed

on
m

ou
n
ta

in
ca

r
y

10−4

10−3

10−2

10−1

(a) Similarity of the source systems

1 2 3 4 5

·10−3

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

g

1
T

d
im

(S
)
ε̂ D

G
(ĥ
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Figure 4.9: Experimental results of the mountain car simulation. The plots

show the mean squared error, evaluated on the generalization data

set sized 100 000, divided by the number of state components and the

number of predicted time steps. (a) compares the similarity of the

source systems by evaluating an RNN model learned from 10 000

training examples of mountain car x and evaluates the model on

mountain car y using the corresponding generalization data set. (b)

compares the error of the different models for various target systems

using 156 training examples to learn the system-specific parameters

of the FTRNN and RNN+ID and all parameters of the RNN. The

dotted vertical lines indicate the source system configurations used

to learn the cross-system parameters of the FTRNN and RNN+ID

as well as the parameters of the Näıve RNN.
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4.6 The Fully Observable Transfer Learning Problem

4.6.3 Training Time

Besides the ability to exploit prior knowledge in order to decrease the model

error despite only few available observations of a target system, the proposed

transfer learning approach speeded up the training process dramatically. To

demonstrate this additional benefit, the training time of a simple RNN model

given sufficient data was compared with the time it took to train the system-

specific parameters of the FTRNN model given few data. Figure 4.10 visualizes

the training times for the cart-pole and mountain car simulations. As a result,

101 102 103 104 105 106

FTRNN (MC)

RNN (MC)

FTRNN (CP)

RNN (CP)

Training time (seconds)

Figure 4.10: Training times of the RNN and the FTRNN for the cart-pole and

mountain car simulations. The RNN was trained with 10 000 train-

ing examples from a random parameter initialization. In contrast,

the FTRNN was pre-trained on the source systems and only the

system-specific parameters, initialized as the average of the system-

specific parameters of the source systems’ model, were learned from

the training data set of a target system.

the FTRNN was not only able to successfully transfer knowledge from a set of

relevant source systems to an insufficiently observed target system, but it was

also able to achieve high model accuracy within a small fraction of the time

needed to train a comparable RNN model given sufficient training data. The

speed-up for the cart-pole simulation was approximately 25 000× and more than

5000× for the mountain car simulation. Thus, after a joint model of a set of

source systems had been learned, it was possible to adapt the model to a target

system virtually instantaneously.
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4 Exploiting Similarity in Fully Observable System Identification Tasks

4.6.4 Discussion

The Factored Tensor Recurrent Neural Network (FTRNN) model was presented

which enables efficient knowledge transfer in system identification tasks to learn

the state transition function of a target system from few available observations

given multiple well observed similar source systems. Besides the advantage of

obtaining an accurate model despite few data, learning a target system model

converged within seconds whereas, in contrast, learning an independent model

from scratch, given enough data, often took many hours or even days. In addi-

tion, hyperparameter tuning was significantly reduced despite few data because

the ratio between the amount of training data and the number of adaptive pa-

rameters was reasonable. Last, evaluation of the FTRNN and a standard RNN

have identical complexity because the factored weight matrix per system can be

expanded prior to evaluation.

To demonstrate the effectiveness of the proposed method, experiments were

conducted using the well known cart-pole and mountain car simulations. The

FTRNN model was compared with two more plain approaches to this problem—

the Näıve RNN and the RNN+ID model. The first one was a simple RNN which

learned the state transition function of multiple systems from a concatenated

data set. The second one was a simple RNN with an extra “one-hot” input

vector disclosing the system that generated the example to the model. The

FTRNN performed consistently better than the RNN+ID and the Näıve RNN

using both simulations.
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CHAPTER 5

Exploiting Similarity in Partially Observable

System Identification Tasks

This chapter addresses the problem of partially observable system identifica-

tion of a target system despite only few available data. Standard modeling

approaches, that learn a model only from the target system data, are inappli-

cable in this setting because the amount of data is insufficient. However, addi-

tional data from related but probably non-identical systems may provide prior

knowledge about the target system and should be utilized in the model building

process. Therefore, several multi-task recurrent neural network architectures,

which are able to utilize information from related tasks as prior knowledge of

the target task, are proposed and empirically evaluated.

The chapter is structured as follows. First, the problem of partially observ-

able system identification in the context of soft-sensor modeling is introduced

and formalized (Section 5.1). Second, a recurrent neural networks architecture

suitable for partially observable system identification is presented (Section 4.2).

Third, the original problem is extended to a multi-system identification task

where only few observations are available from the target system while sufficient

information from auxiliary systems can be utilized (Section 5.3). The recurrent

neural network architectures developed in Section 3.3 are adapted to the par-

tially observable multi-system identification problem. A real-world experiment,

whose goal is to model NOx emissions of Siemens gas turbines, is conducted

employing the multi-task learning paradigm to transfer information from the

auxiliary systems to the target system (Section 5.4). Therefore, multiple vari-

ants of recurrent neural networks are proposed and empirically evaluated.

The subsequent sections are based on the following publication as part of the

doctoral research:
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5 Exploiting Similarity in Partially Observable System Identification Tasks

• Spieckermann, S., Udluft, S., and Runkler, T. Data-efficient temporal re-

gression with multi-task recurrent neural networks. In Advances in Neural

Information Processing Systems (NIPS), Second Workshop on Transfer

and Multi-Task Learning: Theory meets Practice, 2014.

5.1 Partially Observable System Identification

5.1.1 Introduction

Partially observable system identification is the process of obtaining a model

of a dynamical system using experimental data where the state of the system

cannot be fully observed by the available measuring devices, e.g. sensors. By ag-

gregating a sequence of observations, it may be possible to estimate the state of

the system. Most real-world systems are partially observable. Consider a com-

plex technical system such as a gas turbine equipped with sensors which record

various measurements within the system, e.g. the temperature and pressure af-

ter the compressor before the combustion chamber. Despite the great number

of installed sensors the state of the turbine is not fully observed at a single mo-

ment in time. To overcome partial observability, the observable quantities are

aggregated over time such that the state of the system can be approximated.

5.1.2 Formal Problem Definition

A system, observed in fixed time intervals τ , is defined by the tuple (S,A, f) with

a state space S, an action space A, and an unknown state transition function

f : S × A → S describing the temporal evolution of the state. Further, let

S ′ ⊂ S be a subspace of the state space and gS : S → S ′ be an observation

function which maps S to S ′. Similarly, let gA : A → A′ define an observation

function that maps the action space to a subspace. It is assumed that only S ′

and A′ can be observed.

Let D be a set of observations (x[t−d+1], ..., x[t], y[t]) ∈ D with x[·] ∈ X ⊂
S ′ × A′, y[·] ∈ Y , Y ⊂ S ′, X ∩ Y = ∅. Further, let D denote a data set of size

|D| drawn from a probability distribution D.

Let H ⊆ {h |h : Xd → Y }, d ∈ N, denote a hypothesis space, i.e. a set of

functions that are assumed to approximate the mapping from a sequence of
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5.2 Partially Observable System Identification with RNNs

state and action observations to a disjoint target state observation. Further,

let L : Y × Y → R denote an error measure between a predicted target ŷ and

the ground truth y. The optimal hypothesis h∗ minimizes the expected error

ε(h) := E(x[t−d+1],...,x[t],y[t])∼D[L(h(x[t−d+1], ..., x[t], y[t])] where E denotes the ex-

pectation operator, hence, h∗ = arg minh∈H ε(h). Since D is generally unknown,

an approximately optimal hypothesis is determined by minimizing the empiri-

cal error ε̂D(h) := 1
|D|
∑

(x[t−d+1],...,x[t],y[t])∈D L(h(x[t−d+1], ..., x[t], y[t]) induced by a

hypothesis h on a data set D, hence, ĥ = arg minh∈H ε̂D(h).

5.2 Partially Observable System Identification

with Recurrent Neural Networks

Partially observable sequences are often modeled using hidden Markov models

(see Section 2.5). Given a sequence of observations (x[1], ..., x[T ]) the hidden

state transition probabilities and emission parameters are learned such that the

probability of an observed sequence given a corresponding hidden state sequence

is maximized. Thus, learning the parameters of a hidden Markov model may

be considered an unsupervised learning problem. However, the problem class

investigated in this chapter differs from unsupervised sequence learning. Instead

of learning a model of probable sequences, the relationship between a target

variable and a sequence of disjoint environmental and control observations shall

be learned. The model may be viewed as a composite model consisting of a state

estimation sub-model, which infers a hidden state from the sequence of input

observations, and a regression sub-model, which learns the mapping from the

hidden state to the target variable. While it may be possible to stack a hidden

Markov model for the state estimation and, e.g., a linear regression model, this

approach appears unnatural and inefficient since the state estimation is likely

to include information that is irrelevant to the regression task. In contrast,

a model that learns the input-output mapping directly likely aggregates only

relevant information from the input sequence in order to optimally predict the

target variable.

Recurrent neural networks are an appropriate choice to perform state esti-

mation (Schäfer & Udluft, 2005; Yadaiah & Sowmya, 2006) with a supervised

target. In order to model a state component of a partially observable dynamical
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system as a function of other observed state and action variables, a recurrent

neural network may be defined which processes a sequence of state and ac-

tion observations (x[t−d+1], ..., x[t]) yielding the predicted target state variable

ŷ[t]. Instead of predicting only a single step, a technique called overshooting,

i.e. predicting multiple steps, has shown improved results (Zimmermann & Ne-

uneier, 2001; Zimmermann et al., 2007). The network is defined by the following

equations.

h[−d] = 0 (5.1a)

h[t] = φh(Whhh[t−1] +Whxx[t] + bh) (5.1b)

∀t ≥ 1: ŷ[t] = φy(Wyhh[t] + by) (5.1c)

The sequence of state and action observations is mapped to the correspond-

ing hidden state sequence by a linear transformation followed by the nonlinear

function φh(·) which is typically chosen as tanh(·). This allows the network to

learn the extraction of relevant information from different time steps which is

necessary to perform the prediction for t ≥ 1. Depending on the distribution

of y[T ]|x[1], ..., x[T ] a matching activation function φy(·) is chosen. Figure 4.1

x[−1] x[0] x[1] x[2]

1 1 1 1

1 1

h[−1] h[0] h[1] h[2]

Whx Whx Whx Whx

Whh Whh Whh

ŷ[1] ŷ[2]

Wyh Wyh

b y b y

b h b h b h b h

Figure 5.1: Recurrent neural network for partially observable system identifica-

tion.

depicts a graphical representation of the RNN architecture.

94



5.3 Partially Observable Multi-System Identification with RNNs

5.3 Partially Observable Multi-System

Identification with Recurrent Neural

Networks

5.3.1 Näıve RNN

The most näıve approach to exploit information from multiple dynamical sys-

tems and share it with another one is to concatenate the data of all systems

and learn a joint model. This way, the model is forced to generalize over the

different properties of the systems. However, since the training examples of the

systems are not distinguished, the model can only learn the average task which

may be vastly suboptimal for rather different systems.

The following subsections discuss two recurrent neural architectures that are

able to distinguish the systems through an integer identifier. In both models,

the hidden state h[t] accumulates relevant information from past time steps into

an aggregated representation that contains information relevant to the given

learning task.

5.3.2 RNN+ID

One way to incorporate information that allows the model to distinguish be-

tween the systems is to tag each training example with an identifier i ∈ I,

which corresponds to the system that generated the data. This tag may be

provided to the model at each time step as an extra input encoded as the i-th

Euclidean standard basis vector ei with dim(ei) = |I|. The equations of the

RNN+ID architecture are obtained by substituting (5.1b) with (5.2).

h[t] = φh(Whhh[t−1] +Whxx[t] +Whiei + bh) (5.2)

Figure 5.2 depicts a graphical representation of the RNN+ID architecture. In

fact, computing Whiei means selecting the i-th column of Whi so the system

identifier introduces a separate hidden layer bias for each system. The cross-

system bias bh and the specific biases accessed through Whiei can be absorbed

into a new system-specific bias ›Whiei = bh+Whiei. Thus, (5.2) can be rewritten

as

h[t] = φh(Whhh[t−1] +Whxx[t] +›Whiei). (5.3)
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Figure 5.2: RNN+ID architecture for partially observable multi-system identi-

fication.

5.3.3 FTRNN

Similar to the FTRNN model proposed in Section 4.3.3 which learns the state

transition function of a fully observable dynamical system using auxiliary data

from (a) related system(s), the factored tensor weights can be used to extract

system-specific features from the sequence of observations of multiple partially

observable systems in a data-efficient manner. More specifically, in order to re-

alize a system-specific memory mechanism, the memory transition matrix Whh

should be conditioned on the system i ∈ I. Naively, a different matrix could

be learned for each system resulting in a third-order tensor Whhi ∈ Rnh×nh×|I|.

Thus, the frontal slices of the tensor represent the memory transition matrices

for each system. However, as argued in Section 3.3.3 learning parameters of the

full tensor is suboptimal given only limited amounts of data from the target

system. Instead, a factored representation of the tensor is learned which con-

sists of cross-system and system-specific parameters. Thus, the expanded linear

transformation of each system shares information across all systems yielding

a more data-efficient approach to the problem. The equations of the FTRNN

architecture are obtained by substituting (5.1b) with (5.4).

h[t] = φh(Whf diag(Wfiei)Wfhh[t−1] +Whxx[t] + bh) (5.4)
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Figure 5.3 depicts a graphical representation of the FTRNN architecture.

x[−1] ei x[0] ei x[1] ei x[2]

1 1

1 1 1 1

h[−1] • h[0] • h[1] • h[2]

Whx Whx Whx Whx

Wfh Whf Wfh Whf Wfh Whf

Wfi Wfi Wfi

ŷ[1] ŷ[2]

Wyh Wyh

b y b y

b h b h b h b h

Figure 5.3: FTRNN for partially observable multi-system identification. The

node having the •-symbol in its center is a “multiplication node”,

i.e. the input vectors of the node are multiplied component-wise.

In contrast, the standard nodes imply the summation of all input

vectors.

5.4 The Partially Observable Multi-Task

Learning Problem

The partially observable multi-task learning problem addresses the task of learn-

ing a regression function with temporal dependencies of a little observed par-

tially observable dynamical system by utilizing data from multiple well-observed

similar systems. In order to achieve this goal, the data of all systems are used to

learn a joint model thereof such that information is shared among the systems.

Typical applications of this scenario are situations in which a new instance is

deployed and observed only for a short time until the model, e.g. a soft-sensor,

shall be operational. In case multiple other systems with similar properties, e.g.

systems of the same family, have been operated sufficiently long, the informa-

tion can be utilized as prior knowledge about general structural commonalities

among the systems. Then, the few data from the target system are expected to

suffice in order to learn its peculiarities.
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5.4.1 Formal Problem Definition

Let I := {1, 2, ...} denote a set of identifiers for partially observable deterministic

systems that show similar dynamics. A system, observed in fixed time intervals

τ , is defined by the tuple (S,A, fi), i ∈ I, with a state space S, an action space

A, and an unknown state transition function fi : S × A → S describing the

temporal evolution of the state. Further, let S ′ ⊂ S be a subspace of the state

space and gS : S → S ′ be an observation function which maps S to S ′. Similarly,

let gA : A→ A′ define an observation function that maps the action space to a

subspace. It is assumed that only S ′ and A′ can be observed.

Let Di be a set of observations (i, x[t−d+1], ..., x[t], y[t]) ∈ Di of the i-th system

with x[·] ∈ X ⊂ S ′ × A′, y[·] ∈ Y , Y ⊂ S ′, X ∩ Y = ∅. Further, let D =
⋃
i∈I Di

denote a data set of size |D| drawn from a probability distribution D.

Let H ⊆ {h |h : Xd → Y }, d ∈ N, denote a hypothesis space, i.e. a set of func-

tions that are assumed to approximate the mapping from a sequence of state and

action observations to a disjoint target observation. Further, let L : Y ×Y → R
denote an error measure between a predicted target ŷ and the ground truth y.

The optimal hypothesis h∗i minimizes the conditional expected error εi(h) :=

E(j,x[t−d+1],...,x[t],y[t])∼D[L(h(x[t−d+1], ..., x[t], y[t]) | j = i] where E denotes the expec-

tation operator, hence, h∗i = arg minhi∈H εi(h). Since D is generally unknown,

an approximately optimal hypothesis is determined by minimizing the empir-

ical error ε̂D(h) := 1
|D|
∑

(·,x[t−d+1],...,x[t],y[t])∈D L(h(x[t−d+1], ..., x[t], y[t]) induced by

a hypothesis h on a data set D, hence, ĥi = arg minh∈H ε̂Di(h).

Given sufficient data D|I|, it is expected that |ε|I|(ĥ|I|)−ε|I|(h∗|I|)| ≤ ε for some

small positive ε. In contrast, assuming the amount of data D|I| is insufficient,

|ε|I|(ĥ|I|) − ε|I|(h∗|I|)| � ε and ĥ|I| may be useless. The problem addressed in

this section is to develop and assess methods that yield a better hypothesis of

an insufficiently observed system through multi-task learning in order to uti-

lize auxiliary information from
⋃
i∈I\{|I|}Di as prior knowledge of the transition

function f|I|.

Therefore, the hypothesis space and the empirical error are redefined as fol-

lows. Let H ′ ⊆ {h |h : I × Xd → Y } denote an extended hypothesis space,

which includes the system identifier into the product space of arguments and

thus jointly approximates the functions of each system. Further, let ε̂′D(h) :=
1
|D|
∑

(i,x[t−d+1],...,x[t],y[t])∈D wiL(h(i, x[t−d+1], ..., x[t]), y[t]) denote the empirical error
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of a hypothesis h ∈ H ′ with the system-specific error weight wi. If the the empir-

ically optimal hypothesis ĥ′ = arg minh∈H′ ε̂
′
D(h) (D =

⋃
i∈I Di) yields a smaller

expected error than ĥ|I|, i.e. ε|I|(ĥ′|I|) < ε|I|(ĥ|I|) with ĥ′i(x[t−d+1], ..., x[t]) :=

ĥ′(i, x[t−d+1], ..., x[t], ), information from the well observed system was success-

fully utilized in the hypothesis search to find a better hypothesis of f|I| despite

few data.

5.4.2 Experiments

The utility of the models presented in Section 5.3 was evaluated on real-world gas

turbine data comprising various hardware configurations. In particular, various

burners had been installed and tested over the course of several weeks during

which sensor data were being collected. The goal was to obtain a model of the

NOx emissions given ambient conditions, e.g. temperature, pressure, humidity,

and control parameters, e.g. angle of the inlet guide vane, position of fuel valves,

in total 23 values per time step. As a result of the different configurations, the

NOx production changed. Despite only relatively few samples of one of the

configurations an accurate NOx model of this instance was required.

Six learning tasks I = {1, ..., 6}, each defining the above described modeling

task on data from turbines with different hardware configurations, were avail-

able. Out of the six tasks, five source tasks {1, ..., 5} were selected which served

as prior knowledge for the target task labeled {6}. The examples used to train

and evaluate the models were generated by extracting T -step windows of the

sequences of observations. The data sets were decorrelated using the block val-

idation method discussed in Section 2.3.3. The source tasks’ data comprised

6072, 7126, 5448, 8335, and 1361 training examples, and there were 3182 ex-

amples available of the target task {6}. In addition, the training examples of

the target task were upsampled to match the average number of samples of the

source tasks. In order to evaluate the model error a test set with 8895 examples

was set aside.

The first step was to gradually gain an understanding of the nature and dif-

ficulty of the task. Therefore, a simple L2-regularized linear regression model,

which learned the mapping X → Y , a multi-step L2-regularized linear regression

Xd → Y mapping a sequence of inputs to the target variable, and a linear RNN

model as described in Section 5.2 with nh ∈ {5, 8, 10, 20} and d = T = 5 were
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compared. An ensemble of 10 members with randomly initialized parameters

was formed whose predictions were averaged. Figure 5.4 compares the results

of these models using the mean squared error per time step of the zero mean

unit variance NOx targets according to the training set standardization. The
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Figure 5.4: Comparison of the linear model performances in modeling the NOx

emissions of a target gas turbine without knowledge transfer from

other related turbines.

plot shows that none of the linear models was able to accurately predict the

NOx emissions. Among these models, the linear regression which took input

observations from five past subsequent time steps into account, performed best

in relative terms but poorly in absolute terms nevertheless. This result sug-

gested that (i) the linear hypothesis was invalid and (ii) there was a temporal

dependency between the target observation and the inputs, which is expected

in this domain due to delayed effects in the turbine dynamics.

To improve performance, nonlinear RNN models learned only from the tar-

get task data as well as multi-task models, i.e. the Näıve RNN, RNN+ID and

FTRNN, were compared. The models were configured as follows: nfh = nh ∈
{5, 8, 10, 20}, T = 10, d = 5. Ensembles of 10 members with randomly ini-

tialized parameters were formed whose predictions were averaged. Figure 5.5

compares the results of the explored models using the mean squared error per
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time step of the zero mean unit variance NOx targets according to the train-

ing set standardization. As shown in Figure 5.5a the FTRNN performed best

across the range of considered hidden layer sizes. The RNN+ID yielded a com-

parable but consistently larger error. Compared to the RNN trained only on

the target task data, the two models yielded an improvement on the order of a

factor 10. The Näıve RNN, which was the simplest multi-task learning model

in the comparison, suffered from the auxiliary learning tasks. In order to better

understand the implications of these results the prediction quality of the models

is depicted in Figure 5.5b by comparing their predicted (rescaled) NOx values

with the ground truth. Although the target task RNN outperformed the Näıve

RNN in terms of the MSE it can be observed that it was in fact unable to learn

the input-output relationship but rather predicted a nearly constant value on

the test set. The Näıve RNN appeared to have captured some of the structure of

the input-output relationship, but could not adjust properly to each individual

task. In contrast, the RNN+ID and FTRNN could accurately predict the NOx

emissions despite only few data of the target task.

5.4.3 Discussion

This section demonstrated the utility of multi-task learning in the context of

real-world gas turbine NOx emission modeling. In a first set of experiments gas

turbine NOx emissions were modeled by simple linear models in order to better

understand the difficulty of the task. As it turned out these models were unsuc-

cessful in inferring the relationship between the observable sensor readings and

the NOx emissions from the available data of the target gas turbine. However,

the results indicated that there were temporal dependencies between the NOx

emissions and the input observations likely due to delayed effects in the turbine

dynamics which was a hypothesis consistent with a domain understanding of

the problem at hand. A second set of experiments showed that a recurrent

neural network trained on the target turbine data alone achieved better but

still rather poor predictive performance, too, due to insufficient data. However,

the model was able to predict a small region in the test data comparatively

accurately while the remaining regions appeared to be modeled as an average of

the observed NOx measurements. In order to augment the target turbine data,

auxiliary data from multiple related source turbines were utilized by three vari-
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RNN Näıve RNN RNN+ID FTRNN

0

1

2

3

4

1.
9
9

2.
1

0.
1
1

6
.9

2
·1

0
−
2

2
.9

9

1.
98

6.
2
5
·1

0
−
2

5.
11
·1

0
−
2

0
.6

4

2
.3

9

8.
12
·1

0
−
2

7.
5
1
·1

0
−
2

0.
58

2.
71

0
.1

1

7.
69
·1

0−
2

M
S

E

nh = 5 nh = 8

nh = 10 nh = 20

(a) Comparison of the model errors for different recurrent neural network architec-

tures and different hidden layer sizes. The plot shows the MSE of the first NOx

prediction using the standardized values. A column represents a particular size of

the hidden layer, i.e. the number of hidden neurons, in the corresponding recurrent

neural network architecture.

−2

0

2

S
ca

le
d

N
O

x
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(b) Comparison of the model predictions for different recurrent neural network ar-
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set. The x-axis indicates the row number of the test example. The plot is split

into two subplots to better distinguish the error curves.

Figure 5.5: Comparison of the nonlinear model performances in modeling the

NOx emissions of a target gas turbine with and without knowledge

transfer from other related turbines.
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ants of recurrent neural network architectures designed to shared information

among all systems. Among them was the novel Factored Tensor Recurrent Neu-

ral Network which encodes cross-system and system-specific information into a

factored third-order tensor. As a result, training a simple RNN (i.e. the Näıve

RNN) on the concatenated source and target system data turned out unsuc-

cessful. The RNN+ID, which received a one-hot encoded task identifier as an

additional input, yielded a significantly more accurate NOx model and, thus,

a significant improvement over simpler approaches. The FTRNN consistently

outperformed all other models.

Multi-task learning is a promising learning paradigm to obtain an accurate

model of a NOx sensor when only few data of a particular target task are avail-

able. Prior knowledge about the relationship between environmental sensor

values and NOx emissions could be incorporated successfully by means of the

Factored Tensor Recurrent Neural Network in the conducted experiments. The

improvement from a model learned only on the target task data to a multi-task

model was significant.
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CHAPTER 6

Conclusions & Future Work

6.1 Conclusions

In this thesis, the problem of data-driven fully and partially observable sys-

tem identification given only few target system data was introduced, motivated

by real-world industrial use cases, and formally defined. Different approaches

to obtain an accurate model of the little observed task of interest were devel-

oped and benchmarked. Knowledge transfer among similar dynamical systems

was explored under three learning paradigms: dual-task learning, multi-task

learning, and transfer learning. In particular, a novel recurrent neural network

architecture—the Factored Tensor Recurrent Neural Network—was proposed.

This network architecture utilizes prior knowledge from similar systems by en-

coding system-specific and cross-system information within a joint model using

factored third-order tensors according to the Parallel Factor Analysis factor-

ization scheme. Therein, system-specific information is encoded in the frontal

diagonal slices of the third-order core tensor. Thus, only few parameters per

system need to be learned compared to the number of cross-system parameters

which are encoded into two full matrices. Therefore, training the model is highly

data-efficient with respect to learning the peculiarities of each individual system.

The architecture is theoretically motivated and inspired by a mathematically

similar formulation previously used in a natural language modeling context. In

addition, a novel regularization technique was proposed for the Factored Tensor

Recurrent Neural Network when used in the dual-task learning setting where

plenty of data from a source system and only few data from a target system

are available. The regularization penalizes diverging system-specific parameters

asymmetrically by tying the parameters of the target system to those of the
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source system but not vice versa. Thus, only the target system parameters are

encouraged to remain close to the reliably learned source system parameters,

but biased and/or unreliable information from the target system does not affect

the parameters of the source system sub-model. Experiments were conducted

on two synthetic simulations and real-world gas turbine data.

In all experiments, a näıve model of the respective target task, which was

merely learned from few examples of that task, was unable to generalize well to

a representative set of unseen examples. Augmenting the training examples of

the target task with auxiliary data from one or multiple related task(s) could

improve the unmodified model in most cases, but the resulting performance

was insufficient nevertheless. This observation is explained by the fact that

additional data, although originating from different but related sources, may

help in principle, but the model was not aware that the examples had not been

generated by the same task. Providing the model with task-discriminating infor-

mation was the key to enabling effective and data-efficient knowledge transfer

among related tasks. The obvious approach, in which a task identifier is en-

coded as a “one-hot” vector and fed to the model at each time step, requires no

particular knowledge concerning the nature of the tasks’ similarities and dissim-

ilarities. However, this knowledge was available in the conducted experiments

and it is likely available, at least in part, in real-world problems. Incorporating

it into the model according to the proposed Factored Tensor Recurrent Neural

Network architecture decreased the model error by more than an order of mag-

nitude in some of the conducted experiments. The Factored Tensor Recurrent

Neural Network consistently achieved lower model errors in all experiments.

Although significantly more empirical evidence would be required to support

a general superiority of the Factored Tensor Recurrent Neural Network across a

broad spectrum of problems and applications, this thesis laid out the foundation

of promising research direction to effectively utilize data from related dynamical

systems as prior knowledge of the system of interest. While the Factored Tensor

Recurrent Neural Network was motivated and developed in the context of system

identification tasks, it is in fact a general model suitable for knowledge transfer

among related sequence learning tasks.
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6.2 Future Work

An interesting continuation of this work may be found in the reinforcement

learning domain. Reinforcement learning has been successfully applied in real-

world industrial use cases (e.g. Schäfer et al., 2007a) which are, at the same

time, likely subject to limited data availability. In model-based reinforcement

learning, models of the state transition and reward functions need to be learned

before an optimal policy can be obtained. These models may be difficult to

learn given only few data from the target system. However, when data from

similar systems is available, it is likely possible to learn a better model using

the methods proposed in this thesis. In particular, it would be interesting to

extend the Recurrent Control Neural Network (Schäfer et al., 2007b) by the fac-

tored tensor components to enable parameter transfer among multiple related

systems in the model as well as policy learning phases. Thus, not only the state

transition submodel but also the policy submodel might be able to benefit from

the auxiliary information available from related systems. In model-free rein-

forcement learning, learning models of the state transition and reward functions

is bypassed. For instance, a neural network based approach to this problem is

the Policy Gradient Neural Rewards Regression (Schneegaß et al., 2007) which

may be extended by factored tensor components in order to combine informa-

tion from multiple related systems. Investigations along these lines would be

interesting and relevant both academically and with regard to practical appli-

cation. Finally, it would be interesting to conduct studies of the FTRNN model

in the context of other sequence learning problems in order to assess its ability

as a general approach to RNN-based multi-task and transfer learning through

parameter transfer.
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