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Abstract

To assess the properties of the recently discovered Higgs boson, as well as to search for pos-
sible physics beyond the Standard Model, very precise theoretical predictions of both signal
and background processes are warranted. Leading-order calculations in perturbation the-
ory have shown to be insufficient to reach the required precision, which necessitates shifting
to next-to-leading order (NLO), where loop diagrams appear. Furthermore, with the larger
center-of-mass energy at the Large Hadron Collider, the multiplicity of the particles produced
and the kinematic probability of creating massive particles will increase as well. Especially
at these multi-particle processes, the number of loop diagrams will be of a magnitude that
makes automation of these calculations imperative. In this dissertation the developments to-
ward fully automated evaluation of one-loop scattering amplitudes at hadron colliders will be
presented.

Several techniques have been developed in recent years to simplify the computation of one-loop
diagrams. Particularly successful was the integrand reduction algorithm as implemented in the
code Samurai, which decomposes the integrand of the loop integral into a sum of fundamental
contributions and extracts the coefficients of this decomposition, which can then be used to
write the amplitude as a linear combination of scalar master integrals. The loop integration
is effectively replaced by the much simpler task of fitting the coefficients of a multivariate
polynomial in the loop momentum. Samurai was however unable to process so-called higher-
rank integrands, which appear in the calculation of processes involving effective couplings.
The expansion of the integrand reduction algorithm to include higher-rank diagrams was
implemented in the extended code Xsamurai.

Xsamurai is incorporated in GoSam, a framework for the automated evaluation of one-loop
scattering amplitudes. This framework has in recent years been enhanced with a number of
new features and improvements in speed, stability and accuracy. These improvements and the
extension to higher-rank capability allowed GoSam to compute three of the most important
Higgs boson production processes at LHC: Higgs boson production in association with jets
in vector boson fusion (pp → H + jets in VBF), in association with a top anti-top pair and
a jet (pp → Htt̄j) and Higgs production in gluon fusion in association with up to three jets
(pp→ H + 3j in GF). Currently, because of the extension to higher rank, GoSam is the only
code able to calculate this last process.

For full NLO calculations, one-loop calculations are just one ingredient and Monte Carlo
programs are needed to provide the others. For this reason, an interface between GoSam
and the Monte Carlo program MadGraph5_aMC@NLO was constructed, yielding a powerful
framework that will be capable of computing any process at NLO precision needed in the LHC
era.
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1 � Introduction

On the 4th of July 2012, ATLAS and CMS, two experiments at the Large Hadron Collider
(LHC) at the particle physics laboratory CERN, together announced the discovery of a new
boson [18,19], which was later confirmed to be consistent with the Higgs boson of the Standard
Model. The Nobel prize 2013, a mere fifteen months later, was awarded to François Englert
and Peter Higgs who were among the first to postulate a particle like this had to exist, in the
context of the Brout-Englert-Higgs mechanism [20–25]. These two events mark the triumphant
conclusion of a search that has been ongoing for almost half a century since the original set of
papers appeared in 1964. With its last missing predicted building block now discovered, the
Standard Model has been confirmed as our most accurate description of elementary particles
at present. It has been validated over the course of decades by a great number of experiments,
leading to some of the most accurate measurements in physics.

Nevertheless, there are numerous indications that the Standard Model cannot be the ultimate
theory of nature. Regardless of its great success, the Standard Model suffers from a list of
shortcomings. It has no explanation for Dark Matter and Dark Energy, nor for the extreme
difference in strength between the weak force and the gravitational force, neutrino oscilla-
tions or the observed excess of matter over anti-matter in the universe. Apart from these
unexplained phenomena in nature, there are also indications from the theoretical side. The
Standard Model does not include a description of gravity at the quantum level, and there is
no explanation for the large variety in masses appearing in the Standard Model. The Higgs
boson mass acquires quantum corrections that require the Standard Model to have an extreme
amount of fine-tuning of its parameters, known as the hierarchy problem. Over the years, a
large number of theories have been developed to account for these problems, which are collec-
tively known as Beyond the Standard Model (BSM) theories. Now that the Higgs boson has
been found, the focus of the LHC will shift to searching for indications of BSM physics.

Both precise measurements of the Higgs properties and searches for BSM physics are plagued
by enormous SM backgrounds. At hadron colliders in particular, these will predominantly be
dictated by Quantum Chromodynamics (QCD). QCD is an asymptotically free theory, meaning
that its coupling αs becomes small for high energies, allowing for a perturbative treatment,
whereas at low energies the coupling becomes large and the validity of perturbation theory
breaks down. At this energy regime the partons cluster into hadrons. This is a challenging
property for measurements at hadron colliders, because at the high energies of the collision
the constituents of the proton, the quarks and gluons, behave like free particles, whereas
the detectors operate in the low energy limit where only bound states occur. The main
task of particle physics phenomenology is to translate theoretical models into experimentally
measurable predictions. In particular for the QCD induced processes at hadron colliders, the
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1 Introduction

phenomenological approach is to factorize events based on the energy scales at which they
operate. Events at hadron colliders are quite involved, primarily because in general both the
initial and final state are not precisely known. Contrary to the situation at e+e− colliders like
the Large Electron-Positron Collider (LEP), which operated between 1989 and 2000 at CERN,
at hadron colliders the colliding particles are not well-defined point-like particles. Hadrons
comprise a number of valence quarks, three in the case of baryons. At higher energies, they
contain also an infinite sea of light quark anti-quark pairs and gluons. Probing a hadron at
energy Q2 allows for sea quarks with masses mq � Q. Parton Distribution Functions (PDFs)
give the probability of finding a parton when probing a hadron with a certain energy, hence
they govern which partons participate in the hard interaction. The hard interaction is the
high energy part of the event that can be calculated perturbatively. The QCD evolution from
the hard interaction down to hadronization scale, which is typically around ΛQCD = 1 GeV ,
is achieved through emission of quarks and gluons in what is known as a parton shower. The
resulting hadrons will often still decay into the particles that can be observed by the detector.
The beam remnants can have a secondary interactions, leading to a further complication in
disentangling the event. Figure 1.1 gives an overview of an event at a hadron collider.

Figure 1.1.: An illustration of an event at hadron colliders, inspired by a similar picture by the Sherpa
collaboration [26]. The event can be factorized in different energy scales. The hard interaction,
which can be calculated perturbatively, is shown in red. The incoming hadrons contain gluons,
sea quarks and three valence quarks. Which of those participate in the hard interaction is
governed by the PDFs. The produced partons will radiate, shown in dark blue. These partons
are evolved by a parton shower, until they reach the hadronization scale, shown in light blue.
The particles that form at this stage can be stable or unstable, in the latter case decaying into
even more particles. Photons, shown in yellow, can be radiated at any stage. Apart from the
primary hard interaction, there can be secondary interactions at high energy scales, shown in
purple.

In order to confirm the new boson is indeed the Standard Model Higgs boson, several of its
properties have to be measured. These include its spin, its CP -properties and its couplings to
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other particles. To determine these properties as accurate as possible, very precise theoretical
predictions are necessary. Furthermore, precise theoretical predictions and accurate modelling
of the background are needed to constrain the model parameters of any new physics that may
be found. In general, searching for new particles in colliders requires ever higher center-of-
mass energies to probe new physics regimes. These high energy scales have two important
effects on the final state of the hard interaction: There is an increase both in multiplicity of
the final state and in the kinematic probability of creating massive particles.

Hence, there has been an increasing need for precise theoretical predictions of massive multi-
particle processes. In fact, over recent years, theoretical precision has only just managed to
keep up with its experimental counterpart. Central to theoretical predictions for the hard
interaction is the computation of scattering amplitudes, which describe the probability of
particles interacting. Exact computations of observables are not realistic in a quantum field
theory like the Standard Model and therefore resorting to perturbation theory is required.
Aiming at higher precision then means going to higher ordes in perturbation theory, which
complexifies the computation since it requires the calculation of loop diagrams. Calculations
at leading order (LO) in perturbation theory, very commonly used until recently for almost
all relevant processes, have become insufficient and the standard has shifted to next-to-leading
order (NLO) calculations.

Theoretical uncertainties originate from two different sources. Firstly, there are parametric
uncertainties, which are caused by the uncertainty on the input parameters, such as the un-
certainty on the precise value of the top mass. Secondly, there is the truncation uncertainty,
which is the uncertainty that is caused by truncating the perturbative expansion. A common
approach to estimate the truncation uncertainty is to assess the dependence on the renormal-
ization and factorization scale. These scales are unphysical, hence at infinite order observables
are expected to be independent of the choice of this scale. LO calculations however show a
strong dependence on these scales. Increasing the order of the calculation therefore makes
the calculated quantity less dependent on the scale, thereby reducing the uncertainty of the
calculation, which is nicely illustrated in Figures 1.2 and 1.3.

Figure 1.2.: Example of the effect of going to higher-order calculations. Shown is the dependence on the
renormalization and factorization scale µ of the total cross section of the process pp → Hj,
at Leading Order (LO), Next-to-Leading Order (NLO) and Next-to-Next-to-Leading Order
(NNLO) [7,27].
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√
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pp → tt̄, at Leading Order (LO), Next-to-Leading Order (NLO) and Next-to-Next-to-Leading
Order (NNLO) [28], together with the measurements of ATLAS and CMS at

√
s = 7 TeV and√

s = 8 TeV. The error bands are obtained by varying the renormalization and factorization
scale.

For NLO calculations, in particular the one-loop contributions used to be a bottleneck. This
motivated the development of novel techniques and dedicated programs for one-loop calcula-
tions. The methods based on unitarity have been particularly influential. Unitarity, in essence
just a statement about conservation of probability, leads to the optical theorem, relating the
total cross section to the imaginary part of the scattering amplitude. This can be used to show
that an amplitude factorizes into lower-point amplitudes when one cuts, i.e. puts on-shell, a
set of internal propagators. These techniques stimulated the development of concepts which
have been explored systematically in the framework of generalized unitarity [29,30]. From the
traditional approach to the calculation of one-loop diagrams, known as Passarino-Veltman
reduction [31], it naturally follows that any one-loop integral can be decomposed into a basis
of scalar master integrals, with up to four legs. The calculation then simplifies to the task of
determining the coefficients of this decomposition, which is what methods such as generalized
unitarity and improved tensor reduction [32] aim to do. An important element leading to
the development of further sophisticated numerical methods was the universal decomposition
in four dimensions of the numerator of a one-loop integrand, known as integrand decomposi-
tion [33–36]. Combined with generalized unitarity, it was realized that the coefficients of the
master integrals can be extracted by using the knowledge of the mathematical structure of the
integrands. The integrands of Feynman diagrams are rational functions of the components of
the loop momentum, with numerators that are polynomial in these components and as many
quadratic denominators as there are external legs, coming from the propagators inside the
loop. Any integrand can be expressed as a linear combination of fundamental contributions,
which are expressions with numerators that are irreducible polynomial residues. The so-called
multiple cut conditions, in which the propagators are put on-shell simultaneously, then func-
tion as projectors to isolate the corresponding residues. These residues have a form that is
process independent, whereas the actual values of the coefficients are process dependent. A
subset of the coefficients obtained in this way can then be identified with the ones multiply-
ing the master integrals. In this way, the complicated task of loop integration is reduced to

4



the much simpler task of fitting the coefficients of a (multivariate) polynomial. This method
was later generalized to full d-dimensional integrand-reduction as implemented in the code
Samurai [37], which revealed a richer polynomial structure of the residues.

Driven by the development of these new techniques, over the last couple of years, one could
witness a surge in NLO calculations, sometimes referred to as the NLO revolution. This name
was mainly motivated by the remarkable increase in the final state multiplicity of the available
processes. In the 1990s, NLO calculations were available for 2 → 2 processes at most. This
increased to 2 → 3 in the early years of the 21st century. At the dawn of the second decade,
this suddenly rose within a few years to 2 → 6 processes with the calculation in 2013 of
pp → W + 5j at NLO [38]. This spectacular increase was in fact very much needed: The
list of processes for which theoretical NLO prediction are warranted at LHC energy scales
are often 2 → 4 or even higher final state multiplicity. This effectively means that the sheer
number of loop diagrams to be calculated, frequently in the order of O(103 − 104), poses a
practical problem on its own. For a long time NLO calculations were done on a process-by-
process basis, often requiring the effort of a large number of people for a long time, in recent
years the focus therefore has been forced to shift to the automation of NLO calculations.

The GoSam framework [1, 39] for the automated computation of one-loop diagrams was de-
signed with this automation as primary motivation. The name of the framework originates
from its original constituents Golem95C [40–43], a program based on tensor reduction, and
the before mentioned Samurai. Later Ninja [44, 45] was added as third reduction proce-
dure.

The developments in the context of the work performed for this dissertation were focused
around this framework. The code Samurai was originally not designed with the capability of
calculating processes with so-called higher-rank numerators. These kind of numerators appear
in particular in one-loop calculations in which the Higgs boson is produced through effective
gluon-Higgs boson couplings, a production channel known as gluon fusion. Therefore, to be
able to calculate processes involving gluon fusion, Samurai was extended to include higher-
rank functionality. This extended code, named Xsamurai [12], is a generic reduction library
that can be interfaced to any code. The deeper understanding of the structure of the residue,
combined with the implementation in Xsamurai allowed for the calculation of Higgs boson
production in gluon fusion in association with jets at full NLO in QCD. This calculation was
performed in association with two [5] and three jets [4,7,9]. The latter calculation, a six-point
process with over thirteen thousand one-loop diagrams, pushed the computational capability
of the original GoSam framework to its limit. This sparked the need for several improvements,
which eventually together with a variety of new features were collected in an updated version
of the code, which was released in [1]. An important contribution to the development of
this new version were the tests performed on the stability of the code, which were presented
originally in [2]. Among other improvements, the new features also included the possibility
to have massive gauge bosons inside the loop. As an illustration to the usefulness of this
capability, the NLO QCD virtual corrections to the production of a Higgs boson in vector
boson fusion in association with up to three jets were calculated. The GoSam framework was
also used to calculate the production of a Higgs boson in association with a top anti-top pair
and an additional jet at NLO in QCD [3]. This process is phenomenologically important to
measure the relevant properties of the Higgs boson, but was considered very difficult because
of the massive particles in the loop and the appearance of two mass scales.
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1 Introduction

Besides the virtual corrections given by the one-loop diagrams, several other ingredients are
needed for full NLO calculations. These are provided by Monte Carlo programs, which also
take care of the other elements depicted in Figure 1.1: The use of PDFs, the matching to
parton showers and any decays of the final state particles. In order to facilitate the commu-
nication between Monte Carlo programs and one-loop providers like GoSam, a standardized
interface was designed, known as the Binoth-Les-Houches-Accord [8, 46]. This standard was
used to build an interface [6] between the Monte Carlo program MadGraph5_aMC@NLO [47]
and GoSam2.0. The resulting powerful framework, harnessing the strengths of both codes,
promises to be able to calculate virtually any phenomenologically relevant full NLO process.

The structure of this dissertation is given in the following outline. A review of the collider
physics relevant for this work will be given in Chapter 2, followed by a brief introduction to
the Standard Model in Chapter 3. In Chapter 4, the Passarino-Veltman reduction and the
d-dimensional integrand decomposition algorithm will be discussed in detail.

After setting these theoretical preliminaries, the developments in the context of the work
performed for this dissertation will be explored. In Chapter 5, the implementation of the
d-dimensional integrand decomposition algorithm in Samurai will be presented and we will
focus specifically on Xsamurai.

Chapter 6 will then cover the automation of one-loop calculations. It will give an overview
of the GoSam framework and its improvements collected in GoSam2.0, as well as discuss
the tests on the stability of the code presented in [2]. The details of the Binoth-Les-Houches
Accord, which was used in combination with GoSam for the calculation of several impor-
tant processes, will be discussed here as well. In particular the improvements of the update
presented in [8] and implemented in GoSam2.0 will be explained.

The novel techniques and their automation as presented in these two chapters lead to a very
strong tool which was exploited in the calculation of three of the most important Higgs bo-
son production channels at the LHC. The results of these three Higgs boson phenomenology
projects are collected in Chapter 7. Firstly, the NLO QCD corrections to Higgs boson pro-
duction in vector boson fusion in association with up to three jets (pp→ H + 3j in VBF) will
be discussed. Secondly, the results of the full NLO QCD calculation of the production of a
Higgs boson in gluon fusion in association with jets (pp→ H + jets in GF) will be presented.
Thirdly, the full NLO QCD calculation of Higgs boson production in association with a top
anti-top pair and an additional jet (pp→ Htt̄j) is presented.

Finally, in Chapter 8, the details of the work on the interface between GoSam and the Monte
Carlo program MadGraph5_aMC@NLO will be discussed. As an illustration, we will focus on
the full NLO QCD calculation of the production of a top anti-top pair in association with two
photons.
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2 � Collider physics

The goal of particle physics is to develop a mathematical theory which describes the dynamics
of the fundamental building blocks of matter. This theory should allow to make predictions
for quantities and observables which can be measured directly in experiments. In quantum
mechanics, the probability of measuring a final state |f〉 starting from an initial state |i〉 is
described by the unitary S-matrix,

P(i→ f) = |〈f |S|i〉|2 . (2.1)

The S-matrix can be split in a noninteracting part, which is simply the identity operator, and
the part that is caused by interactions, which is known as the T -matrix,

S = 1 + iT . (2.2)

The conservation of momentum can be written explicitly by splitting off a delta-function,

〈f |iT |i〉 = (2π)4δ(4)(ki − kf ) · iM(i→ f) , (2.3)

where ki and kf are the momenta of the incoming and outgoing particles respectively and
where the invariant matrix elementM was introduced. The total cross section also includes
the integration over the available phase space of the final state particles and dividing by the
incoming flux. Hence, the cross section for a 2→ n scattering process with momenta {kµi } is
given by

dσ =
1

2E1E2|v1 − v2|
n+2∏

j=3

d3kj
(2π)22Ej

δ(4)(k1 + k2 −
n+2∑

j=3

kj)|M|2 , (2.4)

with Ej denoting the energy of a particle and |v1 − v2| being the relative velocity of the
colliding beams in the laboratory frame. In this way, the details of the interaction, the
dynamics, contained in the matrix elementM, are separated from the elements that do not,
the kinematics.

2.1. Parton Distribution Functions

The calculation of cross sections becomes more complicated when the initial state particles
are hadrons, as is the case at Tevatron and LHC. Considering a hard scattering process of two
hadrons with momenta P1 and P2, the cross section can be written as

σ(P1P2 → X) =
∑

ij

∫ 1

0
dx1

∫ 1

0
dx2fi(x1, µ

2
F )fj(x2, µ

2
F )

∫
dσ̂ij(x1P1, x2P2, αs(µ

2
F ), Q2/µ2

F ) .

(2.5)
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2 Collider physics

σ̂ij(2 → n)

P2
fj(x2, µF )

x2P2

x1P1

P1
fi(x1, µF )

Figure 2.1.: Pictorial representation of a hadronic interaction. The colliding hadrons have momenta P1

and P2. The parton distribution functions fi and fj at factorization scale µF govern which
constituents participate in the partonic interaction σ̂ij and with which momentum fractions.
The partonic interaction is then calculated using 2.4.

The summation is over all possible initial state partons i and j. The momenta of the incoming
partons, which are assumed massless, participating in the hard interaction are p1 = x1P1 and
p2 = x2P2. Q is the characteristic scale of the hard interaction. The functions fi(x1, µ

2
F ) and

fj(x2, µ
2
F ) are the parton distribution functions (PDFs), which parametrize the probability of

quarks and gluons from the hadron participating in the hard interaction. The partonic cross
section σij is then again given by equation (2.4). A pictorial representation is given in Figure
2.1.

QCD makes no predictions on the parton content of hadrons, therefore the only way to deter-
mine the shape of the PDFs is to fit the data of experiments. The usual procedure is to start
with non-perturbative PDFs at low scale and fit to experimental data, which can be for exam-
ple data from Deep Inelastic Scattering (DIS) experiments. The DGLAP equations [48–51],
which express how a PDF changes as a function of the energy scale at which they are probed,
are then used to evolve to the wanted scale. The final result then still depends on a variety
of parameters, among which the order in perturbative QCD at which the calculation is per-
formed, which input data is used, how the heavy quarks are treated and which assumptions are
made about the PDFs. In Figure 2.2 the PDF set MSTW2008 [52] is shown as an example.

2.2. NLO calculations

Computations in particle physics are performed in a perturbative expansion of a coupling con-
stant. This is possible when the expansion parameter is sufficiently small in the energy regime
that is being considered. For example, a cross section in perturbative quantum chromodynam-
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2.2 NLO calculations
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Figure 2.2.: The NLO PDF set MSTW2008 [52] at two different energy scales Q2 = 10 GeV2 and Q2 = 104

GeV2. Shown is the probability density for finding a parton with transverse momentum fraction
x. The uncertainty bands are at 68% confidence level.

ics (see Section 3.2) can be written as an expansion in the strong coupling constant αs,

σ = αbs

[
σ(0) +

αs
2π
σ(1) +

(αs
2π

)2
σ(2) + · · ·

]
. (2.6)

The Leading Order (LO) contribution, σ(0), contains only the so-called tree-level diagrams,
which contain no loops or additional radiation. The contribution to the cross section is given
by the sum over all coherently interfering tree-level diagrams, which we denote by A0,

σ(0) ∝
∑
|M|2tree =

∑
A†0A0 . (2.7)

One order higher, there are two types of contributions. The real contribution is given by
diagrams which feature additional radiation, denoted by A0,1, interfered with themselves,

σR ∝
∑
|M|2radiation =

∑
A†0,1A0,1 . (2.8)

The virtual contribution is given by diagrams which contain a loop, denoted by A1, interfered
with the tree level-diagrams,

σV ∝
∑
|M|21-loop =

∑
A†1A0 +A†0A1 . (2.9)

The next order in the expansion is then given by the sum of the two,

σ(1) = σV + σR . (2.10)

One-loop diagrams can be UV divergent. UV divergences arise through integrating over inter-
nal loop-momenta, as we will show in Chapter 4. These divergences need to be regularized, i.e.
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2 Collider physics

made visible in a consistent way, through a regularization method. One often used method is
dimensional regularization, because it preserves Lorentz and gauge invariance. In this method
loop-calculations are performed in d = 4 − 2ε dimensions and at the end the limit ε → 0 is
taken. Commonly used varieties are conventional dimensional regularization (CDR), ’t Hooft-
Veltman regularization (tHV) [53] and dimensional reduction (DRED) [54]. See [55–57] for a
discussion on the different schemes.

Using dimensional regularization, UV divergences appear as poles 1/ε, which can then be ab-
sorbed in a redefinition of the fields and parameters, a procedure known as renormalization.
This is accomplished by adding counterterms to the Lagrangian that exactly cancel the di-
vergent parts of the Lagrangian. These counterterms do not only make the final result finite,
but also redefine the meaning of the input parameters. The form of the finite parts, as well as
the exact meaning of the parameters that remain, depend on the renormalization conditions
given by the chosen renormalization scheme. Two often used schemes are the minimal sub-
traction scheme (MS-scheme) and the modified minimal subtraction scheme (MS-scheme),
which differ by the finite terms that are absorbed in the counter-terms.

A full Next-to-Leading-Order (NLO) calculation then consists of the three ingredients men-
tioned above. However, both of the two types of corrections, σV and σR, can be infrared
divergent. IR divergences arise if an emitted gluon from a quark line is either soft (vanishing
energy) or collinear (vanishing angle between two particles).

k1

k2

Figure 2.3.: Infrared divergences can occur if an external parton splits into two massless particles.

Consider a general process where an external massless particle splits into two massless par-
ticles. This could be a parton emitting a gluon or a gluon splitting into a quark pair. The
internal propagator is given by

1

(k1 + k2)2
=

1

2E1E2(1− cos θ12)
. (2.11)

where E1 and E2 are the energies of the two particles and θ12 is the angle between them. This
expression diverges for either E1 → 0, E2 → 0 or θ12 → 0. Similarly, loop-diagrams exhibit
IR divergences when the loop momentum becomes arbitrarily small or collinear to an external
massless particle. Since from quantum mechanics it is known that all indistinguishable pro-
cesses with the same final state have to be summed together, real radiation contributions where
a particle becomes unresolved and the corresponding virtual contributions have to be added
together. Upon summation, all divergences cancel at every order in perturbation theory. This
is a consequence of the Bloch-Nordsieck [58] and Kinoshita-Lee-Naunberg theorems [59, 60],
which state that observable transition probabilities are free from soft and collinear divergences.
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2.3 Jet algorithms

In order not to spoil the cancellation of the divergences, an observable Jm which depends on
m final state momenta k1, . . . , km should be infrared safe, i.e. it has to fulfill the following
two requirements:

Jm+1(. . . , ki, . . . , kj , . . .) −→ Jm(. . . , ki + kj , . . .), if ki ‖ kj ,
Jm+1(. . . , ki, . . .) −→ Jm(. . . , ki−1, ki+1, . . .), if ki → 0 .

(2.12)

When performing a numerical phase space integral, the presence of IR divergences is still
a problem, since they become explicit only after integration. One then needs a subtraction
scheme to regulate these infinities at the integrand level. In this method a term is subtracted
from the (m+1)-particle integral, and is added back to the m-particle integral, while integrat-
ing over the phase space of the additional particle. In summary, the full NLO cross section is
given by

σNLO =

∫

m

[
d(4)σB +

∫

loop
d(d)σV +

∫

1
d(d)σS

]
+

∫

m+1

[
d(4)σR − d(4)σS

]
. (2.13)

where the integrals outside the brackets are over the m- and (m + 1)-particle phase space,
and the ones inside the brackets over the internal loop momentum and the additional single
particle phase space. The m- and (m+ 1)-particle integrals are now IR finite on their own.

There are several subtraction schemes available. One that is very often used is the Catani-
Seymour dipole formalism [61, 62]. Other subtraction methods are the antenna subtraction
method [63,64] and the FKS approach [65]. Calculating subtraction terms is numerically time
consuming and only necessary in the vicinity of a collinear and/or soft limit. Therefore,
in [66, 67], a slightly modified version of Catani-Seymour dipole subtraction was proposed,
which introduced the α parameter with α ∈ (0, 1]. This parametrizes the region for which
subtraction terms are non-zero, with at α = 1 the full Catani-Seymour dipole subtraction.
The α parameter is not only useful in restricting the phase space for which subtraction terms
need to be calculated, but can also be used as a test of the numerical stability of a result: The
full correction should be independent of slightly varying the α parameter.

2.3. Jet algorithms

The calculations in perturbative QCD work with final states that can include partons. How-
ever, whenever these particles are produced, they will immediately start radiating off more
partons until they have reached the hadronization energy scale, a process known as parton
showering. At the end of the partons shower the partons cluster into hadrons, which can
subsequently decay into even more particles. What in the end hits the detector is a large
collection of hadrons. The clustering of these particles into jets that are defined in an unam-
biguous way is far from trivial. A jet is defined in a set of rules that govern how to cluster
particles and how to assign a momentum to the resulting jet. The first jet algorithm was
developed in the late 1970s by Sterman and Weinberg [68]. It defined an event as having two
jets when a fraction 1 − ε of the energy of the event was contained in two cones that had
an opening half-angle of δ, which is an example of a cone algorithm. Cone algorithms today
are still being used in hadron colliders, even though they have evolved substantially. Many
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2 Collider physics

cone algorithms now make use of iterative cones, in which a seed particle i is taken for an
initial direction and the momenta of all particles j within a cone of radius R around i, with
azimuthal angle φ and rapidity y (or pseudo-rapidity η),

∆R2
ij ≡ (yi − yj)2 + (φi − φj)2 < R2 , (2.14)

where the rapidity y or pseudorapidity η are defined as

y =
1

2
ln
E + pz
E − pz

, η = − ln tan
θ

2
, (2.15)

in terms of energy and momentum in the direction of the beam axis, and longitudinal angle
θ. The dimensionless parameter R2 is called the jet radius. The particles in the jet are then
summed and the resulting vector is used as a new seed i in this iterative algorithm. The
algorithm stops when a stable configuration for the cone is reached.

Another class of algorithms are the sequential recombination algorithms, which define a mea-
surement of distance between two particles and order the particles into jets from the bottom
up. The kt algorithm, first described in [69], for example defines (in e+e− collisions)

yij =
2min(E2

i , E
2
j )(1− cos θij)

Q2
, (2.16)

with Q2 the total energy of the event, Ei and Ej the energies of the particles i and j respec-
tively, and θij the longitudinal angle between them. The algorithm then proceeds by searching
for the smallest instance of yij . If this is below a certain threshold then i and j are combined
into a new particle and the procedure is repeated with this new set of particles. When there
are no particle pairs left with yij below the threshold, all remaining are declared jets. In the
collinear limit θij � 1, yij reduces to the squared transverse momentum of i with respect to
j, which is the reason behind the name of the algorithm. When the incoming particles are
hadrons, the algorithm is a bit more complicated [70, 71]. Instead of the dimensionless yij ,
two dimensionful distances dij and diB are defined as

dij = min((pit)
2, (pjt )

2)
∆R2

ij

R2
, diB = (pit)

2 , (2.17)

with ∆Rij as defined in equation (2.14) and pit and p
j
t the transverse momentum with respect

to the beam axis. The algorithm then searches for the minimal value in the combined sets of
dij and diB. The particles are combined into a new particle if the minimum value is a dij .
If the minimum value is a diB, it is declared a jet and removed from the list. The algorithm
stops when there are no particles left. This version of the kt algorithm has a new parameter
R, which plays a similar role as the R in cone algorithms.

If one generalizes the kt algorithm to allow for any power p of transverse momenta,

dij = min((pit)
2p, (pjt )

2p)
∆R2

ij

R2
, diB = (pit)

2p , (2.18)

with p = 1 for the kt algorithm, other possible choices become apparent. The algorithm
with p = 0 is known as the Cambridge/Aachen algorithm [72], and particularly the choice
p = −1, introduced as the anti-kt algorithm in [73], has been used very frequently in recent
calculations.
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2.4 Photon isolation

2.4. Photon isolation

Similarly as in the case of additional gluon radiation, also additional photons in the final
state have to be treated with care to ensure IR safety. Photons can appear in the final state
through two mechanisms. They are either produced in the hard scattering process, which
can be calculated using perturbative QCD, or they appear in the fragmentation process of
the parton shower. The Frixione isolation procedure [74] is a method to isolate photons in
an infrared safe way. Given a photon and a hadron i, in this method one first calculates the
angular distance Riγ , which in the case of hadronic collisions is given by

Riγ =
√

(ηi − ηγ)2 + (φi − φγ)2 , (2.19)

with η and φ being the pseudorapidity and azimuthal angle respectively. The event is rejected
if the following condition is not fulfilled,

∑

i

ETi θ(δ −Riγ) ≤ X (δ) for all δ ≤ δ0 , (2.20)

where ETi is the transverse energy of the hadron and δ0 is the radius of isolation one has to set
in advance. The function X (δ) has to vanish as δ → 0. In the Frixione isolation procedure, it
is given by

X (δ) = ETγ εγ

(
1− cos δ

1− cos δ0

)n
, (2.21)

with ETγ being the transverse energy of the photon. Often the choice εγ = n = 1 is made.

13





3 � Standard Model

All calculations in this work are processes that are allowed in the Standard Model (SM) of
particle physics. The essential parts of this model will be discussed in this chapter, leading
to a set of Feynman rules as building blocks collected in Appendix A. The standard model is
a quantum field theory in which the interactions can be derived from local symmetries called
gauge symmetries. The most often used formulation is the Lagrange formalism, where all
kinematic, mass and interaction terms are presented in a functional called the Lagrangian. By
performing a four-dimensional integration over this functional the action of the theory can be
obtained. The full Lagrangian of the Standard Model (SM) consists of the following different
parts,

LSM = LYM + Lferm + LH + LY uk + Lgf + Lgh , (3.1)
where the subscript text indicate respectively the Yang-Mills part, the fermionic part, the
Higgs part, the Yukawa part, the gauge-fixing part and the Fadeev-Popov ghost part, which
will be discussed below.
The Lagrangian of the Standard Model is invariant under transformations of the symmetry
group SU(3)C ⊗ SU(2)w ⊗ U(1)Y ,

U(θs, θw, θY ) = exp

{
igsT

aθas + igIiwθ
i
w − ig′

Yw
2
θY

}
≡ U(θs)U(θw)U(θY ) , (3.2)

where θs, θw and θY are arbitrary real parameters and gs, g′ and g are the couplings of their
respective gauge groups. T ac (a = 1, . . . , 8), Iiw (i = 1, . . . 3) and Yw are the generators of the
gauge groups. The fundamental representations most often used for them are T a = λa/2 and
Ii = σi/2, with the Gell-Man matrices λa and Pauli matrices σi. When going from global to
local gauge invariance, the Lagrangian only stays invariant if the normal space-time derivative
is replaced with a covariant derivative,

∂µ → Dµ = ∂µ + igsT
a
c F

a
µ + igIiwW

i
µ + ig′

Yw
2
Bµ , (3.3)

where the new fields F aµ , W i
µ and Bµ are called gauge fields.

3.1. Electroweak sector

We will focus first on the electroweak (EW) sector of the SM, which is realized through
spontaneous symmetry breaking of the SU(2)w ⊗ U(1)Y part of the SM gauge symmetry. The
mechanism behind this is known as the Higgs mechanism. Since we will not consider higher-
order EW processes in this work, the gauge fixing and ghost parts of the Lagrangian will be
ignored in this section.
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3 Standard Model

3.1.1. Higgs mechanism

Explicit mass terms for the gauge bosons in the Lagrangian, for example proportional to
W i
µW

µ
i for the W-bosons, would lead to violation of gauge invariance. The Higgs mechanism

is a way to give gauge boson a mass through the introduction of a new scalar field in the
Langrangian. This is the third term in equation (3.1),

LH = (DµΦ)†(DµΦ)− V (Φ) , (3.4)

with the potential

V (Φ) = −µ2(Φ†Φ) +
λ

4
(Φ†Φ)2 . (3.5)

Φ transforms as a complex scalar doublet of SU(2)w with weak hypercharge YΦ = 1,

Φ =

(
φ+

φ0

)
. (3.6)

In order to have vacuum stability, λ needs to be positive. µ2 needs to be positive to get a
nonzero vacuum expectation value (VEV) Φ0 of Φ. Minimizing the potential gives

Φ†0Φ0 =
v2

2
, v = 2

√
µ2

λ
. (3.7)

If the vacuum expectation value needs to be electrically neutral, the upper component of Φ0

has to be zero. Φ0 is then fixed up to a phase, with the common choice of Φ0 = (0, v/
√

2)T

This freedom of choice for Φ0 is the spontaneous breaking of the SU(2)w ⊗ U(1)Y symmetry
down to the electromagnetic U(1)em symmetry. Splitting off the vacuum expectation value, we
can reparametrize Φ in terms of the physical real Higgs field H and the unphysical Goldstone
boson fields φ+ and χ by

Φ =

(
φ+

φ0

)
, with φ0 =

1√
2

(v +H + iχ) . (3.8)

The simplest choice is the unitary gauge, in which φ+ and χ vanish. The mass eigenstates can
be obtained by diagonalizing the mass matrix arising in the Lagrangian. The photon field Aµ
and the Z-boson field Zµ are given by the rotation

(
Zµ
Aµ

)
=

(
cw −sw
sw cw

)(
W 3
µ

Bµ

)
, (3.9)

with

cw = cos θw =
g√

g2 + (g′)2
,

sw = sin θw =
√

1− c2
w .

(3.10)

The angle θw is called the weak mixing angle. The electric unit charge is then given by

e =
gg′√

g2 + (g′)2
. (3.11)

16



3.1 Electroweak sector

Recombining the two remaining fields to the charge eigenstates,

W±µ =
1√
2

(W 1
µ ∓ iW 2

µ) , (3.12)

gives the charged weak gauge bosons of positive and negative charge e, the W-bosons.

Inserting equation (3.8) in the original Lagrangian (3.4), we get in the unitary gauge,

LH,u.gauge =
1

2
(∂H)2 +

g2

4
(v+H)W+

µ W
−µ +

g2

8c2
w

(v+H)2ZµZ
µ +

µ2

2
(v+H)2− λ

16
(v+H)2 .

(3.13)
Defining

MW =
gv

2
, MZ =

MW

cw
, MH =

√
2µ2 , (3.14)

we can substitute the parameters λ, µ2 and v for the masses of the bosons,

LH,u.gauge =
1

2
(∂H)2 +

1

2
M2
HH

2 +M2
WW

+
µ W

−µ +
1

2
M2
ZZµZ

µ

+ gMWHW
+
µ W

−µ +
g2

4
H2W+

µ W
−µ +

gMZ

2cw
HZµZ

µ +
g2

4c2
w

H2ZµZ
µ

− gm2
H

4MW
H3 − g2M2

H

32M2
W

H4 + constant .

(3.15)

We now have explicit mass terms for the gauge bosons, as well as a number of interaction
terms, which lead to the Feynman rules collected in Appendix A.

3.1.2. Yang-Mills Lagrangian

The first two terms in the Lagrangian of equation (3.1) describe the gauge bosons and fermions
before symmetry breaking. The Yang-Mills part, LYM , describes the free propagators and the
interactions of the gauge fields,

LYM = −1

4
W i
µνW

µν
i −

1

4
BµνB

µν − 1

4
F aµνF

µν
a , (3.16)

with the field strength tensors

W i
µν = ∂µW

i
ν − ∂νW i

µ − gεijkW j
µW

k
ν , i = 1, 2, 3 ,

Bµν = ∂µBν − ∂νBµ,
F aµν = ∂µA

a
ν − ∂νAaµ − gsfabcAbµAcν , a, b = 1, .., 8 .

(3.17)

εijk and fabc are the usual structure constants of the SU(2) and SU(3) group. The QCD part
will be covered in the next section. The EW interaction terms can be derived through writing
out WµνW

µν and BµνBµν ,

−1

4
W i
µνW

µν
i = −g(∂µW

1
ν − ∂νW 1

µ)Wµ2W ν3

+ g(∂µW
2
ν − ∂νW 2

µ)Wµ1W ν3 − g(∂µW
3
ν − ∂νW 3

µ)Wµ1W ν2

= ig[(∂µW
+
ν − ∂νW+

µ )Wµ−W ν3 − (∂µW
−
ν − ∂νW−µ )Wµ+W ν3

+
1

2
(∂µW

3
ν − ∂νW 3

µ)(Wµ+W ν− −Wµ−W ν+)] ,

(3.18)
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3 Standard Model

and then substitutingW 3
µ = cwZµ+swAµ and g = e/sw. Similarly, one can write-out BµνBµν

substituting Bµ = cwAµ − swZµ and g′ = e/cw. From the result one can derive the Feynman
rules collected in Appendix A.

3.1.3. Fermions

The interactions between the fermions and the gauge field are given by the first part of the
Lagrangian given in (3.1),

Lferm = iΨ̄`
L /DΨ`

L + iψ̄eR /Dψ
e
R + iΨ̄Q

L
/DΨQ

L + iψ̄uR /Dψ
u
R + iψ̄dR /Dψ

d
R . (3.19)

In SU(2)w, the fermions occur as left-handed doublets ΨL, with weak isospin Iiw = σi/2 and
right-handed singlets ψR with Iiw = 0. Writing out the covariant derivatives explicitly shows
the fermion-gauge boson interactions, from which its Feynman rules can be derived, which are
given in Appendix A. The Gell-Mann-Nishijima relation gives an expression for the electric
charge Q in terms of the weak hypercharge Yw through

Q = I3
w + Yw/2 . (3.20)

An overview of the fermions in the Standard Model is given in table 3.1.

1st generation 2nd generation 3rd generation I I3
w Yw Q

quarks ΨQ
L


u
d



L


c
s



L


t
b



L

1
2
1
2

1
2

−1
2

1
3
2
3

2
3

−1
3

ψuR uR cR tR 0 0 4
3

2
3

ψdR dR sR bR 0 0 −2
3 −1

3

leptons Ψ`
L


νe
e



L


νµ
µ



L


ντ
τ



L

1
2
1
2

1
2

−1
2

−1

−1

0

−1

ψeR eR µR τR 0 0 −2 −1

Table 3.1.: The fermions in the Standard Model. In SU(2)w, the fermions occur as left-handed doublets and
right-handed singlets. There are three generations of fermions. The last four columns give the
weak isospin I, its third component I3w, the weak hypercharge Yw and the electromagnetic charge
Q. The latter is given by equation (3.20).

3.1.4. Yukawa couplings and fermion masses

The fourth part of the SM Lagrangian (3.1) in its most generic form is

LY uk = −Ψ̄LG`ψ
`
RΦ− Ψ̄QGuψ

u
Riσ

2Φ∗ − Ψ̄QGdψ
d
RΦ + h.c. , (3.21)

where h.c. abbreviates Hermitian conjugate. `, u and d are meant to represent leptons and up-
and down-type quarks respectively. Because there are three generations, Gf with f = `, u, d
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3.2 Quantum chromodynamics

are complex 3 × 3 matrices. The off-diagonal elements of these matrices mix left- and right-
handed fermions from different generations. This oscillation of flavor is removed by switching
from a flavor basis into a mass basis (ψ̂τi, with the generations i = 1, 2, 3),

ψ̂fτi = Ufτij ψ
f
j , τ = L,R , (3.22)

which diagonalizes the matrices Gf ,

UfLGf (UfR)† =

√
2

v



mf1 0 0

0 mf2 0
0 0 mf3


 . (3.23)

Changing into the mass basis causes the Cabibbo-Kobayashi-Maskawa (CKM) matrix, defined
as

V = UuL(UdL)† , (3.24)

to appear in the interaction between fermions and the charged gauge bosons in (3.19). We
will assume to always be in the mass basis and remove the hat from the fermionic fields from
here on. In the unitary gauge the Yukawa Lagrangian simplifies to

LY uk = −
∑

f

mf (ψ̄fLψfR + ψ̄fRψfL)

(
1 +

H

v

)
, (3.25)

from which another set of Feynman rules collected in Appendix A can be derived. Notice that
the Higgs mechanism not only introduced mass terms in the Lagrangian, but also predicts an
interaction of the Higgs field with the fermions with a coupling proportional to their masses.

3.2. Quantum chromodynamics

The Lagrangian of quantum chromodynamics (QCD) consists of three parts. The classical
part, the gauge fixing part and the ghost Lagrangian,

LQCD = Lcl + Lgf + Lgh . (3.26)

The covariant derivative is defined as

(Dµ)ab = ∂µδab + igsA
C
µ t
C
ab fundamental representation ,

(Dµ)AB = ∂µδAB + igsA
C
µ T

C
AB adjoint representation ,

(3.27)

where tCab and T
C
AB the generator of the fundamental and adjoint representation of the gauge

group respectively,

[tA, tB] = ifABCtC , [TA, TB] = ifABCTC , (TA)BC = −ifABC . (3.28)

Using the conventional normalization choice,

Tr tAtB = TRδ
AB, TR =

1

2
, (3.29)
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3 Standard Model

the color matrices have the following properties
∑

A

tAabt
A
bc = CF δac , TrTATB = CAδ

AB . (3.30)

In QCD, the Casimir operators are given by

CF =
4

3
, CA = 3 . (3.31)

The classical part, which is extracted from several terms of (3.1), is given by

Lcl = −1

4
FAµνF

µν
A +

∑

f

q̄a(i /Dab −mqδab)qb , (3.32)

where the sum goes over the flavors f of the quarks (d, u, s, c, b and t) and with FAµν being
the field strength tensor for the gluon field AAµ

FAµν = ∂µA
A
ν − ∂νAAµ − gsfABCABµACν . (3.33)

gs is the strong coupling constant, which is related to the symbol

αs =
g2
s

4π
. (3.34)

There are several choices available for the gauge fixing terms. One that is used most often is
the covariant gauge fixing term,

Lgf = − 1

2λ
(∂µAAµ )2 , (3.35)

with the gauge fixing parameter λ, which is usually set to unity (the Feynman gauge). This
does require the introduction of a ghost field via the ghost Lagrangian, to cancel the unphysical
degrees of freedom present in covariant gauges,

Lgh = (∂µη
A)(Dµ

ABη
B) . (3.36)

The ghost fields are scalar fields, but they obey fermionic anti-commutation relations. The
Lagrangian in equation (3.26) leads to the Feynman rules in QCD, given in Appendix A.

3.2.1. Asymptotic freedom

When calculating higher order terms in αs, often ultraviolet (UV) divergences will appear.
In renormalizable theories these divergences can be absorbed by redefining the fields and pa-
rameters in the Lagrangian. The most important free parameter is the bare coupling gs.
Dimensional regularization introduces a mass scale µR, which is an unphysical scale. This
means that for a general observable R, which depends on the energy scale Q and the renor-
malization scale, the renormalization group equation applies,

µ2
R

d

dµ2
R

R(Q2/µ2
R, αs) =

[
µ2
R

d

dµ2
R

+ µ2
R

∂αs
∂µ2

R

∂

∂αs

]
R(Q2/µ2

R, αs) = 0 . (3.37)
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3.2 Quantum chromodynamics

The coefficient of the second term is called the beta-function,

β(αs) ≡ µ2
R

∂αs(µ
2
R)

∂µ2
R

. (3.38)

This equation shows that the coupling constant αs depends on the energy scale, hence it is
referred to as a running coupling constant αs(Q2). β(αs) can be expanded in terms of αs,

β(αs) = −bαs(Q2)
[
1 + b′αs(Q2) +O(α2

s(Q
2))
]
. (3.39)

Defining nf as the number of flavors of massless quarks, the coefficients b and b′ are given
by

b =
33− 2nf

12π
, b′ =

153− 19nf
24π2b

=
153− 19nf

2π(33− 2nf )
. (3.40)

Neglecting b′ and all higher order terms, equation (3.38) is solved for αs as

αs(Q
2) =

αs(µ
2
R)

1 + αs(µ2
R)b ln(Q2/µ2

R)
. (3.41)

Notice that b is positive as long as the number of massless flavors is smaller than 33
2 , which

it quite comfortably is in the Standard Model. Equation (3.41) is divergent for values of the
scale below the so called Landau pole Q2 = ΛQCD,

ΛQCD = µ2
R exp

[
−1

bαs(µ2
R)

]
. (3.42)

This gives an estimate of the scale below which the approximation breaks down. When
decreasing the energy, the coupling constant becomes large and the perturbative expansion is
no longer a valid approximation. This increase in coupling strength leads to confinement and
prevents colored particles to appear as free particles. For large energies, on the other hand,
the coupling constant asymptotically goes to zero, which is known as asymptotic freedom.

3.2.2. Scale dependence at NLO

For an N -point process, NLO observables should be indepedent of the renormalization scale
up to order αN+1

s (µ2
R), which can be written explictely as

µ2
R

dσNLO
dµ2

R

= 0 +O
(
αN+2
s (µ2

R)
)
. (3.43)

The only µ2
R-dependence is contained in the coupling constants and the virtual contribution.

It is therefore illustrative to rewrite equation (2.13) with explicit µ2
R-dependence,

dσNNLO
dΦ

= αNs (µ2
R)B + αN+1

s

[
V (µ2

R) +R
]
, (3.44)

where we used the differential cross section to not be distracted by the phase space integrals
and used the abbreviations B, V and R for the Born, Virtual and Real contributions at the
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3 Standard Model

respective orders in αs. Using the QCD β-function, we can now write out the left-hand side
of equation (3.43) as

µ2
R

dσNLO
dµ2

R

= µ2
R

d(αNs (µ2
R))

dµ2
R

B + µ2
R

d(αN+1
s (µ2

R))

dµ2
R

(V (µ2
R) +R) + µ2

R

dV (µ2
R)

dµ2
R

αN+1
s (µ2

R))

= NαN−1
s (µ2

R)µ2
R

d(αs(µ
2
R))

dµ2
R

B + µ2
R

dV (µ2
R)

dµ2
R

αN+1
s (µ2

R)) +O
(
αN+2
s (µ2

R)
)

= −NbαN+1
s (µ2

R)B + µ2
R

dV (µ2
R)

dµ2
R

αN+1
s (µ2

R)) +O
(
αN+2
s (µ2

R)
)
.

(3.45)

The full expression of the condition in (3.43) can now be rewritten, neglecting the higher order
terms, to the differential equation

µ2
R

dV (µ2
R)

dµ2
R

αN+1
s (µ2

R)) = NbB , (3.46)

which can be solved to give the difference between V at the renormalization scale and the
characteristic energy scale Q2,

V (µ2
R)− V (Q2) = NbB ln

(
µ2
R

Q2

)
. (3.47)

This means one can split the virtual contribution into a sum of a µ2
R-independent term at a

scale Q2 and a logarithmic term. In the notation of equation (3.44),

dσNNLO
dΦ

= αNs (µ2
R)B + αN+1

s (µ2
R)

[
V (Q2) +Nb ln

(
µ2
R

Q2

)
B

]
+ αN+1

s (µ2
R)R . (3.48)
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4 � One-loop calculations in Quantum Field Theory

One-loop calculations have long been a bottleneck to the advancement of NLO calculations.
Over the years several techniques have been designed to calculate them most effectively. In
this chapter we will first discuss the regularization of one-loop integrals using the dimensional
regularization method. We will then discuss Passarino-Veltman reduction and integrand re-
duction.

4.1. Regularization

n1

2 5

43

q

Figure 4.1.: A generic n-point loop-diagram

The most generic way to write a one-loop amplitde with n legs, as depicted in Figure 4.1 is

An =

∫
d4q

N(q)

D0D1 · · ·Dn−1
, (4.1)

where N(q) is a numerator that depends on the loop momentum q and the propagators Di

are given by

Di = (q + pi)
2 −m2

i , (p0 6= 0) . (4.2)

Naive dimensional analysis, writing d4q = q3dqdΩ3, immediately shows that this will give rise
to divergences for q → ∞, known as ultraviolet divergences. Denoting the rank in q of the
numerator as r and noting that every denominator is of the order q2, we have

lim
q→∞

∫
q3+rdq

q2n
∝ lim

q→∞
qr+4−2n , (4.3)
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4 One-loop calculations in Quantum Field Theory

which shows that integrals with a numerator of rank r ≥ 2n − 4 are UV divergent. In
particular, from the integrals with N(q) = 1, known as scalar integrals, the tadpole and bubble
integrals are UV divergent. The most common way to regularize these infinities is dimensional
regularization, in which the four-dimensional integral is replaced by a d-dimensionsal one, with
the common choice d = 4− 2ε.

∫
d4qf(q)→

∫
ddq̄f(q̄) . (4.4)

Objects with dimension d = 4−2ε are denoted with a bar. We will denote the −2ε-dimensional
part of q̄ as µ,

/̄q = /q + /µ , with q̄2 = q2 − µ2 . (4.5)

In d dimensions, the Clifford algebra generalizes to

ḡµν ḡµν = d, γ̄αγ̄µγ̄
α = (2− d)γ̄µ, Tr(Ī) = 2d/2 . (4.6)

We will use for explicit calculations

ḡµν = gµν + g̃µν , γ̄µ = γµ + γ̃µ , (4.7)

which in particular means that

g̃µν ḡµν = −2ε, g̃µν q̄
µq̄ν = −µ2, g̃µνk

µ = 0 , (4.8)

for any four-dimensional vector kµ. The expression for the one-loop integral generalizes to

An =

∫
ddq̄ A(q̄, ε) ,

A(q̄, ε) =
N (q̄, ε)

D̄0D̄1 · · · D̄n−1
. (4.9)

where the propagators D̄i are given by

D̄i = (q̄ + pi)
2 −m2

i = (q + pi)
2 −m2

i − µ2, (p0 6= 0) . (4.10)

N in its most general form is composed of three terms, as an expansion in ε,

N (q̄) = N1(q, µ2) + εN2(q, µ2) + ε2N3(q, µ2) . (4.11)

In the remainder of this chapter N will be written, with an implicit understanding that one
should read any of {N1, N2, N3}.

4.2. Tensor reduction

To avoid notation with obscuring indices on indices, we will use (ijk..) ≡ (i1i2i3..) as much
as possible. This will of course not be possible in recurrence relations, but will help to clear
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4.2 Tensor reduction

up the notation of the integrals. In renormalizable theories, the rank of the numerator cannot
exceed the number of denominators,

r ≤ n . (4.12)

This means that in one-loop calculations one will encounter integrals of the form

Ii =
1

iπd/2

∫
ddq̄

1

D̄i
(4.13)

Iij ; I
µ
ij ; I

µν
ij =

1

iπd/2

∫
ddq̄

1; q̄µ; q̄µq̄ν

D̄iD̄j
(4.14)

Iijk; I
µ
ijk; I

µν
ijk; I

µνρ
ijk =

1

iπd/2

∫
ddq̄

1; q̄µ; q̄µq̄ν ; q̄µq̄ν q̄ρ

D̄iD̄jD̄k
(4.15)

Iijk`; I
µ
ijk`; I

µν
ijk`; I

µνρ
ijk`; I

µνρσ
ijk` =

1

iπd/2

∫
ddq̄

1; q̄µ; q̄µq̄ν ; q̄µq̄ν q̄ρ; q̄µq̄ν q̄ρq̄σ

D̄iD̄jD̄kD̄`
. (4.16)

Using the fact that there are only four independent vectors in four-dimensional space-time,
in [75, 76], it was shown that integrals with more than four denominators can always be
expressed as a linear combination of lower point integrals.

4.2.1. Passarino-Veltman reduction

The integrals listed above are tensors that transform under the Lorentz group transformations.
Therefore, for example the bubble integral of rank one, Iµij , has to transform like a vector. The
vector space in this case is very limited, since there is just one independent vector available.
This means that one can write the integral expanded in this very simple basis as

Iµij = B1(ij)kµ1 . (4.17)

Coefficient like B1(ij) are called form factors. Its argument is meant to keep track of the
denominators of the expanded integral. Specifically, the argument (ij) shows that the masses
mi and mj are present.

In the determination of form factors, often one encounters the product of the internal momen-
tum qµ with an external momentum kµn. If kn is defined as the effective incoming momentum
between denominators Din−1 and Din , i.e. kn = pj − pi, then it is possible to write

2kn · q̄ = D̄in − D̄in−1 + fin , (4.18)

where fin is defined to be

fin ≡ m2
in+1
−m2

in − k2
n − 2kn ·

n−1∑

α=1

kα . (4.19)

Specifically relevant for this section which will only feature bubbles and triangles, we have

fi = m2
j −m2

i − k2
1 , (4.20)

fj = m2
k −m2

j − k2
2 − 2k1 · k2 . (4.21)
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4 One-loop calculations in Quantum Field Theory

We can now contract the expression in equation (4.17) with k1,

k2
1B1(ij) =

1

iπd/2

∫
ddq̄

q̄ · k
D̄iD̄j

=
1

2iπd/2

∫
ddq̄

D̄j − D̄i + fi
D̄iD̄j

=
1

2iπd/2

(∫
ddq̄

1

D̄i
−
∫
ddq̄

1

D̄j
+

∫
ddq̄

fj
D̄iD̄j

)
,

(4.22)

which can be solved to give an expression of the form factor in terms of scalar integrals.

B1(ij) =
1

2k2
1

(Ii − Ij + fiIij) . (4.23)

When considering triangles of rank one, Iµijk, there are two independent vectors available,
therefore an expansion featuring two form factors is required,

Iµijk = C1(ijk)kµ1 + C2(ijk)kµ2 . (4.24)

We will use the short-hand notation with the numerator of the integrand as argument in
square brackets,

Iijk[N (q)] =
1

iπd/2

∫
ddq̄

N (q)

D̄iD̄jD̄k
. (4.25)

Contracting with all possible combinations of k1 and k2 gives a system of equations

G2

(
C1(ijk)
C2(ijk)

)
=

(
Iijk[q̄ · k1]
Iijk[q̄ · k2]

)
, (4.26)

where G2 is the 2× 2 Gram matrix

G2 =

(
k2

1 k1 · k2

k1 · k2 k2
2

)
, (4.27)

and we can write

Iijk[q̄ · k1] =
1

iπd/2

∫
ddq̄

q̄ · k1

D̄iD̄jD̄k
=

1

2iπd/2

∫
ddq̄

D̄j − D̄i + fj
D̄iD̄jD̄k

, (4.28)

which can be rewritten as a sum of scalar integrals,

Iijk[q̄ · k1] =
1

2

(
Iik − Ijk + fiIijk

)
. (4.29)

Similarly,

Iijk[q̄ · k2] =
1

2

(
Iij − Iik + fjIijk

)
. (4.30)

The coefficients can now be obtained by simply inverting the system in (4.26),
(
C1(ijk)
C2(ijk)

)
= G−1

2

(
Iijk[q̄ · k1]
Iijk[q̄ · k2]

)
. (4.31)

Tensor integrals with a higher rank can be treated in the same way to reduce them to lower
rank and lower point integrals. For example, the bubble of rank two can be written as

Iµνij = B00g
µν +B11k

µ
1k

ν
1 . (4.32)
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4.2 Tensor reduction

Contracting with gµν gives
gµνI

µν
ij = 4B00 + k2

1B11 . (4.33)

Contracting the d dimensional numerator N(q̄) = q̄µq̄ν with the four-dimensional gµν projects
out the four-dimensional part of the numerator, which can then be rewritten,

gµνI
µν
ij =

1

iπd/2

∫
ddq̄

q2

D̄iD̄j
=

1

iπd/2

∫
ddq̄

D̄i +m2
0 + µ2

D̄iD̄j
= Ij +m2

0Iij + Iij [µ
2] . (4.34)

Contracting with k1ν gives
k1νI

µν
ij = k2

1B00 + k4
1B11 , (4.35)

and

k1νI
µν
ij =

1

iπd/2

∫
ddq̄

q̄µ(q̄ · k1)

D̄iD̄j
=

1

iπd/2

∫
ddq̄

1

2

q̄µ(D̄j − D̄i + fi)

D̄iD̄j

=
1

2

(
Iµi − I

µ
j + fiI

µ
ij

)
.

(4.36)

Notice that the rank one tadpole integral Iµi is zero because it is anti-symmetrical in q̄. For
the other tadpole we have to manipulate the expression by adding and subtracting kµ,

Iµj =
1

iπd/2

∫
ddq̄

(q̄µ + kµ)− kµ
(q̄ + k)2 −m2

j

= −kµIj . (4.37)

where the first term now does vanish because of anti-symmetry. Also, we have already dis-
cussed how to reduce the rank one bubble Iµij , whose result is given in (4.23). After contracting
the last equation again with k1µ, we have the two equations,

4B00 + k2
1B11 = Ij +m2

0Iij + Iij [µ
2] ,

k2
1B00 + k4

1B11 = +k1µ

(
1

2
fiB1(ij) + Ij

)
kµ1 =

1

4
fi(Ii − Ij + fiIij) +

1

2
k2Ij .

(4.38)

which can be solved for B00 and B11,

B00 =
1

12k2

{
(m2

i −m2
j + k2)Ii + (m2

j −m2
i + k2)Ij

+((k2 +m2
j −m2

i )− 4k2m2
i )Iij + Iij [µ

2]

}

B11 =
1

3k4

{
(m2

i −m2
j + k2)Ii + (m2

i −m2
j + 2k2)Ij

+(k4 + k2(m2
i − 2m2

j ) + (m2
i −m2

j )
2) + Iij [µ

2]

}
.

(4.39)

The d-dimensional integral appearing in this expression is a remnant of the shift to d dimen-
sions. It can be calculated explicitly (see Appendix B.1),

Iij [µ
2] =

1

iπd/2

∫
ddq̄

µ2

D̄iD̄j
= −1

2

[
m2
i +m2

j −
1

3
k2

]
+O(ε) . (4.40)
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4 One-loop calculations in Quantum Field Theory

Terms like these are called rational terms, because the numerator and the denominator are
polynomials, which is the definition of a rational expression. Using this, the expressions can
be worked out, mutatis mutandis, to the expressions given e.g in Appendix C of [77].

The integral of a triangle of rank two can be written as

Iµνijk = C00g
µν + C11k

µ
1k

ν
1 + C12k

µ
1k

ν
2 + C21k

µ
2k

ν
1 + C22k

µ
2k

ν
2 , (4.41)

where the arguments, which are (ijk) for all form factors, are temporarily suppressed for
increased readability. Contracting one time with kµ1 and kµ2 gives

k1µI
µν
ijk = kν1 (k2

1C11 + k1 · k2C12 + C00) + kν2 (k2
1C12 + k1 · k2C22) ,

k2µI
µν
ijk = kν1 (k1 · k2C11 + k2

2C12) + kν2 (k1 · k2C12 + k2
2C22 + C00) .

(4.42)

The left-hand side of the first equation can be expanded as

k1µI
µν
ijk =

1

iπd/2

∫
ddq̄

q̄ν(q̄ · k)

D̄iD̄jD̄k
=

1

2

(
Iνik − Iνjk + fiI

ν
ijk

)
, (4.43)

which is a sum of bubbles and a triangle of rank one. The reduction of both of those classes
was covered above, but one has to be careful to put the bubbles in the right format. For Iνik,
the independent momentum to construct the basis is k1 + k2,

Iνik = B1(ik)(kν1 + kν2 ) . (4.44)

For Iµjk, a shift of the integration variable q̄ → q̄ − k1 is needed,

Iνjk =
1

iπd/2

∫
q̄ν

((q̄ + k1 + k2)2 −m2
j )(q̄ + k1 + k2)2 −m2

k

=
1

iπd/2

∫
q̄ν − kν1

((q̄ + k2)2 −m2
j )(q̄ + k2)2 −m2

k

= B1(jk)kν2 − Ijkkν1 .

(4.45)

The reduction of the triangle of rank one is already given in (4.24). Similarly, for the left-hand
side of the second equation we have

k2µI
µν
ijk =

1

2

(
Iνij − Iνik + fjI

ν
ijk

)
. (4.46)

The reductions of these three are all given above.

Collecting all the terms proportional to either kν1 or kν2 to get the two expressions in the format
of equation (4.42), shows that we can write

G2

(
C11(ijk)
C12(ijk)

)
=

(
Rc11

Rc12

)
, G2

(
C21(ijk)
C22(ijk)

)
=

(
Rc21

Rc22

)
, (4.47)

where we defined

Rc11 =
1

2

(
f1C1(ijk) +B1(ik) + Ijk − 2C00(ijk)

)

Rc12 =
1

2
(f2C1(ijk) +B1(ij)−B1(ik))

Rc21 =
1

2
(f1C2(ijk) +B1(ik)−B1(jk))

Rc22 =
1

2
(f2C2(ijk)−B1(ik)− 2C00(ijk)) .

(4.48)
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4.2 Tensor reduction

The last form factor can be found by contracting Iµνijk with gµν ,

gµνI
µν
ijk =

1

iπd/2

∫
q2

D̄iD̄jD̄k
=

1

iπd/2

∫
D̄i +m2

i + µ2

D̄iD̄jD̄k
= Ijk +m2

i Iijk + Iijk[µ
2] . (4.49)

Contracting the expansion in equation (4.42) with gµν gives

gµνI
µν
ijk = 4C00 +Rc11 +Rc22 (4.50)

, which means one ends up with

C00(ijk) =
1

4

(
2m2

i Iijk + 2Iijk[µ
2]− fjC2(ijk)− fiC1(ijk) + Ijk

)
. (4.51)

The d-dimensional integral can again be calculated explicitly (see Appendix B.1),

Iijk[µ
2] =

1

iπd/2

∫
ddq̄

µ2

D̄iD̄jD̄k
=

1

2
+O(ε) . (4.52)

It is illustrative to summarize the reduction steps discussed here schematically,

Cij → C00, Ci, Bi, Ijk

C00 → Ci, Ijk, Iijk, R

Ci → Iij , Iik, Ijk, Iijk

B11 → Iij , Ii, Ij , R

B00 → Iij , Ii, Ij , R

Bi → Ii, Ij , Iij .

(4.53)

This pattern generalizes for all integrals with rank r ≤ n and is given for example in Table
2.1 of [78]. Any one-loop integral can be reduced until it is decomposed into a basis of scalar
integrals. This basis consists of the scalar tadpole, bubble, triangle and box integral. In d-
dimensions, this is not a complete basis because of the appearence of rational terms. Hence
one can write

∫
ddq

N̄(q)

D̄1..D̄n
=
∑

(ijkl)

c
(ijkl)
4,0 Iijkl +

∑

(ijk)

c
(ijk)
3,0 Iijk +

∑

(ij)

c
(ij)
2,0 Iij +

∑

i

ci1,0Ii +R . (4.54)

The procedure is known as Passarino-Veltman reduction and was introduced in [31].

4.2.2. Singular kinematic regions

The calculation of the form factors requires to invert the Gram matrix. These inverse Gram
matrices can cause numerical instabilities when applying Passarino-Veltman reduction. As a
simple example, we will consider the inverse Gram matrix in the 2× 2 case, given by

G−1
2 =

1

∆G(k1, k2)

(
k2

2 −k1 · k2

−k1 · k2 k2
1

)
, (4.55)
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4 One-loop calculations in Quantum Field Theory

where
∆G(k1, k2) = det(G2) = k2

1k
2
2 − (k1 · k2)2 . (4.56)

In the limit in which k1 and k2 are collinear, this determinant vanishes and the inverse Gram
matrix becomes singular. However, this singularity only occurs because in this limit the
expansion in (4.24) of Iµijk is incorrect, since k1 and k2 are no longer independent. Therefore,
the algebraic solution to this particular problem is to introduce a new basis with independent
vectors. For this purpose, we can write k2 as a linear combination of k1 and a unit vector nµ

perpendicular to k1,
kµ2 = κkµ1 + δnµ, n2 = 1, k1 · n = 0 . (4.57)

The collinear region is now parametrized by δ � 1. Introducing a new vector,

kµ2
′
= δnµ , (4.58)

we can write the decomposition as

Iµijk = C1k
µ
1 + C2

′kµ2
′
, (4.59)

which gives a Gram determinant

∆G(k1, k2
′) = δ2k2

1 . (4.60)

Contracting with k1 and k2
′ and solving for for C1 and C2

′ gives

C1 =
Iijk[q̄ · k1]

k2
1

, C2
′ =

k2
1Iijk[q̄ · k2

′]
∆G(k1, k2

′)
. (4.61)

C1k
µ
1 is of course finite, and because k2

′ = O(δ) and C2
′ = O(δ−1), also C2

′k2
′ is finite,

making the whole expansion for Iµijk finite. Expanding Iµijk, and with it C2
′, in the Master

Integrals basis obscures this cancellation, because contributions to it come from various parts
in the expansion. This is one of the main problems of a plain application of Passarino-
Veltman reduction, because these so-called exceptional points lead to numerical instabilities,
even though there is no divergence of the original integral.

4.3. Rational terms

The treatment of the rational terms, which originate from calculating the integrals in d dimen-
sions, is an important part of the calculation, for which several strategies have been developed.
There are two sources of rational terms, denoted R1 and R2, whose sum is the full rational
term,

R = R1 +R2 . (4.62)

In essence, R2 comes from the d dimensionality of the numerators, whereas R1 comes from
the d dimensionality of the denominators. The latter is illustrated by the calculation that
was being performed when we introduced the rational term: For the four-dimensional q2 to
cancel against one of the denominators, it was needed to add a term with N(q̄) = µ2, which
integrates to a rational expression. The R1 rational terms therefore originate in the mismatch
between the four-dimensional numerator and the d-dimensional denominators.
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4.3 Rational terms

4.3.1. Structure of rational terms

The structure of the rational terms becomes especially clear using the notation of the integrand
reduction. We will save the detailed discussion for the next section, in which we will discuss
the full d-dimensional integrand reduction, but for now we will use the fact that the numerator
can be written as a product of polynomials in q and µ2 times a collection of denominators
(the full expression will be given in equation (4.133)),

N̄(q̄) =
∑

i

∆̄(i)(q, µ
2)
∏

j /∈(i)

D̄j ≡ ∆̄⊗ D̄ . (4.63)

Here a short-hand notation is introduced with the symbol ⊗ to indicate the sum of products
with the proper number of denominators for the respective terms. We can separate the terms
multiplying at least one power of µ2 from the rest in an explicit polynomial description,

∆̄(i)(q, µ
2) =

∑

k=0

(µ2)k∆(i)k = ∆(q) + µ2
∑

k=1

(µ2)k−1∆(i)k = ∆(i) + ∆̃(i) . (4.64)

We can use a similar notation for the numerator,

N̄(q, µ2) =
∑

k=0

(µ2)kNk = N0(q) + µ2
∑

k=1

(µ2)k−1Nk = N0(q) + Ñ(q, µ2) . (4.65)

Dropping the indices (i) and arguments to improve readibility, this means we can write for
the numerator

N̄ = N0 + Ñ = ∆̄⊗ D̄ = (∆ + ∆̃)⊗ D̄ = ∆⊗ D̄ + ∆̃⊗ D̄ . (4.66)

The product of denominators in the first term will cancel against the corresponding ones in
the denominator and the integral will reduce to a sum of scalar integrals. Note that all terms
contained in ∆̃ multiply at least one power of µ2. The full rational term is therefore acquired
by the integration over the second term,

I[∆̃⊗ D̄] = R . (4.67)

where the definition in equation (4.25) was reused. We will now show the separation of R into
R1 and R2. We define R2 as the integral over the d-dimensional part of the numerator,

R2 = I[Ñ ] . (4.68)

The remaining part N0 can be written again as a sum over products between polynomials and
denominators,

N0 = ∆̄0 ⊗ D̄ . (4.69)

Notice however that the denominators have a µ2 dependence and the final result of the expres-
sion, N0(q), does not. This means that the polynomial itself must contain some µ2 dependence,
to ensure a cancellation. We can separate again the µ2 dependent and independent parts,

∆̄0 ≡ ∆̄0(q, µ2) = ∆0 + ∆̃0 . (4.70)

The remaining part of the numerator can therefore be written as

N0 = (∆0 + ∆̃0)⊗ D̄ = ∆0 ⊗ D̄ + ∆̃0 ⊗ D̄ . (4.71)
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4 One-loop calculations in Quantum Field Theory

We define the integration over the second part as R1

I[∆̃0 ⊗ D̄] = R1 . (4.72)

Comparing the two approaches shows that indead the full rational term is the sum of R1 and
R2,

I[N̄ ] = I[∆0 ⊗ D̄] +R1 +R2

I[N̄ ] = I[∆0 ⊗ D̄] +R

}
R = R1 +R2 . (4.73)

In the traditional approach, all quantities appearing (the numerators, denominators and the
polynomials) are considered four-dimensional,

N0 = ∆0 ⊗D . (4.74)

To separate the rational term, the replacement D = D̄ + µ2 needs to be made,

N0 = ∆0 ⊗D = ∆0 ⊗ (D̄ + µ2) = ∆0 ⊗ D̄ + F (∆0, µ
2, D̄) , (4.75)

where a function F was introduced to indicate the remaining nontrivial sum of products
between ∆0, powers of µ2 and collections of denominators. Comparing with equation (4.71),
it is clear that the integral over this function is in fact R1,

I[F (∆0, µ
2, D̄)] = I[∆̃0 ⊗ D̄] = R1 , (4.76)

which leads to the conclusion that ∆̃0 can be constructed from products of ∆0 with denomi-
nators and powers of µ2,

∆̃0 ≡ ∆̃0(∆0, µ
2, D̄) . (4.77)

This means it is feasible to treat the integrand as being four-dimensional and then calculate
the R1 term from the four-dimensional polynomials ∆(i)0.

4.3.2. R2 rational terms from effective rules

The R2 contribution is defined by the integral over the −2ε-dimensional part of the numerator.
Writing

N̄(q̄) = N(q) + Ñ(q, µ2, ε) , (4.78)

we have

R2 =
1

iπd/2

∫
ddq̄

Ñ(q, µ2, ε)

D̄0..D̄n
. (4.79)

As an example, we will consider the one-loop vertex correction in QED (see Figure 4.2), which
can be written as

N̄(q̄) = e3
{
γ̄β(/Q1 +me)γµ(/Q2 +me)γ̄

β
}

= N(q) + Ñ(q, µ2, ε) , (4.80)

with

N(q) = e3
{
γβ(/Q1 +me)γµ(/Q2 +me)γ

β
}

Ñ(q, µ2, ε) = e3
{

2ε(/Q1 +me)γµ(/Q2 +me)− εµ2γµ + µ2γβγµγ
β
}
.

(4.81)
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k1

k2

q̄

Q̄1

Q̄2

µ

Figure 4.2.: One-loop correction to the QED vertex.

Using the integrals
∫
ddq̄

µ2

D̄iD̄jD̄k
=

iπ2

2
+O(ε) , (4.82)

∫
ddq̄

qµqν

D̄iD̄jD̄k
=

iπ2

2ε
+O(1) , (4.83)

the contributions to R2 can be obtained. Because of the ε in front, the first term only gives
finite contributions for the combination /qγµ/q

−εγαγµγβ
1

(2π)4

∫
qαqβ

D0D1D2
= − i

16π2
γµ +O(ε) . (4.84)

The second term will give results of order O(ε). The third term gives

γβγµγ
β 1

(2π)4

∫
µ2

D0D1D2
= − i

16π2
γµ +O(ε) . (4.85)

The full R2 contribution therefore is

R2 = − ie
3

8π2
γµ +O(ε) , (4.86)

which shows that R2 can be computed by adding an effective Feynman rule. This procedure
was outlined in [79].

4.4. Construction of a massless basis

Throughout the rest of this chapter, it will prove to be convenient to work in a basis of four
massless vectors. This means we will write q, the four-dimensional part of q̄, as

q = −p0 + x1e1 + x2e2 + x3e3 + x4e4 . (4.87)

In particular, for the basis, we want that

e2
i = 0, e1 · e3 = e1 · e4 = 0, e2 · e3 = e2 · e4 = 0, e1 · e2 = −e3 · e4 . (4.88)
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4 One-loop calculations in Quantum Field Theory

We will first show that it is always possible to construct two massless vectors from two massive
ones. One can then take, in the notation of the spinor helicity mechanism presented in
Appendix C,

eµ3 =
〈e1|γµ|e2]

2
, eµ4 =

〈e2|γµ|e1]

2
, (4.89)

to get a four-dimensional massless basis [33, 80, 81]. For the two massive vectors used to
construct this basis, at the four- and three-point level, one can take two of the external
momenta. At the two-point level, there is only one independent external momentum and at
the one-point level there are none, so there one needs one respectively both massive vectors
to be chosen arbitrarily.

Given two massive vectors K1 ad K2, we need to construct two massless ones (e2
1 = e2

2 = 0)
that serve as a basis for the massive ones,

(
K1

K2

)
=

(
a b
c d

)(
e1

e2

)
. (4.90)

We first need to get the inverse of this matrix, which is the adjoint divided by the determi-
nant, (

e1

e2

)
=

1

ad− bc

(
d −b
−c a

)(
K1

K2

)
. (4.91)

We have the two equations that state that the e’s are massless to reduce the number of
coefficients by two,

e2
1 =

(
dK1 − bK2

ad− bc

)2

= 0⇒ d2K2
1 + b2K2

2 − 2bdK1 ·K2 = 0 . (4.92)

This is a quadratic equation that we can solve for d,

d =
2bK1 ·K2 ±

√
4b2(K1 ·K2)2 − 4b2K2

1K
2
2

2K2
1

= b

[
K1 ·K2 ±

√
(K1 ·K2)2 −K2

1K
2
2

K2
1

]
=
bγ±
K2

1

,

(4.93)

where we introduced the shorthand notation γ± for the numerator with a plus or minus sign
in front of the square root,

γ± = K1 ·K2 ±
√

(K1 ·K2)2 −K2
1K

2
2 . (4.94)

We can do the same with the equation e2
2 = 0 to get a similar relation between a and c,

c =
aγ±
K2

1

. (4.95)

The denominator in the expressions for e1 and e2 become singular if the same sign is chosen
for the γ’s of c and d. We therefore choose

d =
bγ+

K2
1

(4.96)

c =
aγ−
K2

1

. (4.97)
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Notice that the sum of the two is

γ+ + γ− = 2K1 ·K2 , (4.98)

and the product of of the two γ’s is simply

γ+γ− = K2
1K

2
2 , (4.99)

which can be used to rewrite the denominator as

ad− bc = ad

(
1− bc

ad

)
= ad

(
1− γ−

γ+

)
= ad

(
1− K2

1K
2
2

γ2
+

)
. (4.100)

Calling the expression between brackets β,

β = 1− K2
1K

2
2

γ2
+

, (4.101)

we get for e1

e1 =
1

adβ
(dK1 − bK2) =

1

aβ

(
K1 −

K2
1

γ+
K2

)
. (4.102)

For e2 we get

e2 =
1

adβ
(−cK1 + aK2) =

1

dβ

(
− γ−
K2

1

K1 +K2

)
=

1

dβ

(
K2 −

K2
2

γ+
K1

)
. (4.103)

a and d can be chosen freely, so we conveniently set them to one, which gives our final result,

e1 =
1

β

(
K1 −

K2
1

γ+
K2

)
, e2 =

1

β

(
K2 −

K2
2

γ+
K1

)
. (4.104)

There are two fractions that occur often, so it is useful to rewrite this expression,

r1 =
K2

1

γ+
, r2 =

K2
2

γ+
, (4.105)

which gives for their product
r1r2 =

γ−
γ+

. (4.106)

We then have for β
β = 1− r1r2 , (4.107)

and for the two basis vectors

e1 =
1

β
(K1 − r1K2), e2 =

1

β
(K2 − r2K1) . (4.108)

This can be used to simplify the product between the two,

e1 · e2 =
1

β2

(
K1 ·K2 − r1K

2
2 − r2K

2
1 + r1r2K1 ·K2

)

=
1

β2

(
γ+ + γ−

2
− 2γ− +

γ−
γ+

(
γ+ + γ−

2

))

=
γ+

2β2

(
1− 2

γ−
γ+

+
γ2
−
γ2

+

)
=

γ+

2β2
(1− r1r2)2

=
γ+

2
.

(4.109)
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4.5. d-dimensional integrand decomposition

In Section 4.2 has been shown that a generic n-point integral can be decomposed in a set
of Master Integrals (MIs) times coefficients, but that in d dimensions rational terms appear
because of the integration over terms proportional to µ2. A different approach was developed
in [35, 36], that treats the integrals Ii1···ik [(µ2)α] appearing as being part of the MI basis. In
the remainder of this chapter, we will drop the bar-notation for d-dimensional denominators,
as no four-dimensional ones will appear anymore. The full expression for a generic n-point
integral is then

An =

∫
ddq̄A(q̄) =

∑

(ijk`m)

∫
ddq̄

c
(ijk`m)
5,0 µ2

DiDjDkDlDm

+
∑

(ijk`)

∫
ddq̄

c
(ijk`)
4,0 + c

(ijk`)
4,4 µ4

DiDjDkDl
+
∑

(ijk)

∫
ddq̄

c
(ijk)
3,0 + c

(ijk)
3,7 µ2

DiDjDk

+
∑

(ij)

∫
ddq̄

c
(ij)
2,0 + c

(ij)
2,9 µ

2

DiDj
+
∑

(i)

∫
ddq̄

c
(i)
1,0

Di
. (4.110)

The notation (ijk..) is meant to signify that the summation goes over all combinations of
{ijk..}. Denoting the MIs in their usual way,

Ii1···ik [α] ≡
∫
ddq̄

α

Di1 · · ·Dik

, Ii1···ik ≡ Ii1···ik [1] , (4.111)

one can rewrite this as

An =

n−1∑

(ijk`)

{
c

(ijk`)
4,0 Iijk` + c

(ijk`)
4,4 Iijk`[µ

4]

}
+

n−1∑

(ijk)

{
c

(ijk)
3,0 Iijk + c

(ijk)
3,7 Iijk[µ

2]

}
+

n−1∑

(ij)

{
c

(ij)
2,0 Iij + c

(ij)
2,1 Iij [(q + pi) · e2] + c

(ij)
2,2 Iij [((q + pi) · e2)2] + c

(ij)
2,9 Iij [µ

2]

}
+
n−1∑

i

c
(i)
1,0Ii .

(4.112)

The two additional bubbles are included to remedy the possible vanishing of Gram-determinants
[34]. Integrals with µ2 in the numerator can be traded for higher dimensional ones using (see
Appendix B.1),

Ii1···ik [(µ2)rf(q, µ2)] =
1

πr

r∏

κ=1

(
κ− 3 +

d

2

)∫
dd+2r q̄

f(q, µ2)

Di1 · · ·Dik

. (4.113)

Equation (4.110) holds at the integral level. In order to get a similar expression at the integrand
level, it is not allowed to simply remove the integral signs, because this would ignore the overall
integration constants of all the individual integrals. Rather, one needs to add so called spurious
functions, functions that vanish upon integration. Using the notation:

∫
ddq̄

fsijk..(q̄)

DiDjDk..
= 0 (4.114)
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=r ≤ n c4,0 + c4,4 d + 4 + c3,0

+ c2,0

+ c2,9 d + 2 + c1,0

+ c2,1

+ c2,2

+ c3,7 d+ 2

r=2

r=1

Figure 4.3.: Depiction of the decomposition of a generic integral in a set of master integrals.

we can write the corresponding equation at the integrand level:

A(q̄) =
∑

(ijk`m)

c5,0µ
2 + fsijk`m(q̄)

DiDjDkDlDm

+
∑

(ijk`)

c4,0 + c4,4µ
4 + fsijk`(q̄)

DiDjDkDl
+
∑

(ijk)

c3,0 + c3,7µ
2 + fsijk(q̄)

DiDjDk

+
∑

(ij)

c2,0 + c2,1w + c2,2w
2 + c2,9µ

2 + fsij(q̄)

DiDj
+
∑

(i)

c1,0 + f si (q̄)

Di
,

(4.115)

with w = (q + pi) · e2. Collecting all terms in one symbol, we can write the numerators in a
generic form,

A(q̄) =
∑

(ijk`m)

∆ijk`m(q̄)

DiDjDkDlDm
+
∑

(ijk`)

∆ijk`(q̄)

DiDjDkDl

+
∑

(ijk)

∆ijk(q̄)

DiDjDk
+
∑

(ij)

∆ij(q̄)

DiDj
+
∑

(i)

∆i(q̄)

Di
.

(4.116)

We now have the task to find the parametric form for the ∆ij... If a part of the numerator
can be expressed in terms of propagators that appear in the denominator, this would reduce
this part to a lower level term in the summation. Therefore, these nominators can only be
multivariate polynomials in the Irreducible Scalar Products (ISPs) involving q. For example, a
term proportional to q2 cannot appear in the numerator, because it can be reduced to a term
proportional to one of the denominators and another scalar product involving q,

q2 = Di − 2q · pi − p2
i +m2

i . (4.117)

In order to find the most generic form of any polynomial, one needs to know its rank. As
stated before, in a renormalizable theory, the rank of the numerator cannot exceed the number
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of of propagators,
r ≤ n , (4.118)

so for now we will use this limitation. When we will consider effective vertices later on, it will
turn out to alter this rule.

4.6. Parametric form of the numerators

All considering, the strategy will consists of the same steps for every level. Firstly, all the
ISPs need to be determined. Then, the most generic multivariate polynomial in these ISPs up
to the rank allowed by equation (4.118) is to be constructed. Finally, if this yields products
of ISPs which in combination are again reducible, they ought to be excluded.

4.6.1. Five-point contributions

At the five point contribution, due to momentum conservation, there are four independent
momenta. Therefore, one can construct a four-dimensional basis using these vectors. There
are in this basis then five independent scalar products, q2 and q ·Ki. We already know that
q2 is reducible. Furthermore, one can write

q ·Ki = q · (pi − pi−1) ∝ Di −Di−1 + const . (4.119)

Therefore, there are no ISPs at the five-point level and we would have only the coefficients
of unity, µ2 and µ4 left. However, in [82], it was shown that those can be written as linear
combinations of one another and that it is most convenient to keep the one of µ2. One can
write

(
µ2
)α

=
[
Di +m2

i − p2
i − 2 (q · pi)− q2

]α

=
[
Di +m2

i − p2
i − 2 (q · pi)− 2 (q · e1)(q · e2) + 2 (q · e3)(q · e4)

]α

= constant terms + RSPs ,

(4.120)

where RSP is meant to indicate Reducible Scalar Products. This means one can express all
powers of µ2 in terms of one particular one (µ2)α0 . Choosing α0 = 1, we have

∆ijk`m(q, µ2) = c
(ijk`m)
5,0 µ2 . (4.121)

4.6.2. Four-point contributions

At the four-point contribution, there are three independent vectors. Now, in order to find the
ISPs, we replace e3 and e4 with the new vectors,

v ≡ (K3 · e4)e3 + (K3 · e3)e4

v⊥ ≡ (K3 · e4)e3 − (K3 · e3)e4 .
(4.122)
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v is now a linear combination of K1, K2 and K3. v⊥ is orthogonal to all the external momenta.
In this basis we can find five independent scalar products,

q2, (q · e1), (q · e2), (q · v), (q · v⊥) . (4.123)

q2 is reducible and the next three are linear combinations of Ki. Therefore (q · v⊥) is the only
ISP at this level. The metric of this basis can be written as

gµν =
eµ1e

ν
2 + eµ2e

ν
1

e1 · e2
+
vµvν

v2
+
vµ⊥v

ν
⊥

v2
⊥

. (4.124)

This can be used to write q2 as

q2 = qµqνg
µν ⇒ (q · v⊥)2 = v2

⊥

(
q2 +

(q · e1)(q · e2)

e1 · e2
+

(q · v)2

v2

)
. (4.125)

All terms between brackets are reducible, therefore also (q · v⊥)2 is reducible. Any higher
powers of (q · v⊥) can be rewritten with (q · v⊥)2 split out. Hence, although in principle we
should consider polynomial terms up to rank four, only one power of this ISP is enough,

∆ijk`(q, µ
2) = ∆R

ijk`(q, µ
2) + c

(ijk`)
4,0 + c

(ijk`)
4,2 µ2 + c

(ijk`)
4,4 µ4 , (4.126)

with
∆R
ijk`(q, µ

2) =
(
c

(ijk`)
4,1 + c

(ijk`)
4,3 µ2

)
(q + pi) · v⊥ . (4.127)

4.6.3. Three-point contributions

At the three-point contribution, there are only two independent external vectors. This means
that only e1 and e2 are linear combinations of the external momenta and therefore (q · e3) and
(q · e4) are ISPs. The metric in this case is

gµν =
eµ1e

ν
2 + eµ2e

ν
1

e1 · e2
− eµ3e

ν
4 + eµ4e

ν
3

e3 · e4
. (4.128)

As in the previous section, starting with the reducibility of q2, it is easy to show that
(q · e3)(q · e4) can be written as

(q · e3)(q · e4) =
e3 · e4

2

(
(q · e1)(q · e2)

e1 · e2
− q2

)
, (4.129)

which again has between brackets expressions that are reducible and makes the cross product
as a whole reducible, as are its higher powers. The ISPs are therefore limited to just powers
of (q · e3) and (q · e4) and cross products with µ2, up to a total rank of three,

∆ijk(q, µ
2) = ∆R

ijk(q, µ
2) + c

(ijk)
3,0 + c

(ijk)
3,7 µ2 , (4.130)

with

∆R
ijk(q, µ

2) =
(
c

(ijk)
3,1 + c

(ijk)
3,8 µ2

)
(q + pi) · e3

+
(
c

(ijk)
3,4 + c

(ijk)
3,9 µ2

)
(q + pi) · e4

+ c
(ijk)
3,2 ((q + pi) · e3)2 + c

(ijk)
3,5 ((q + pi) · e4)2

+ c
(ijk)
3,3 ((q + pi) · e3)3 + c

(ijk)
3,6 ((q + pi) · e4)3 .
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4.6.4. Two-point contributions

At the two-point contribution, there is only one independent external momentum vector. The
other massive vector needed to construct the massless basis can be chosen randomly, but this
means that only one of (q ·e1) and (q ·e2) is reducible, where we will choose the former. (q ·e2),
(q · e3) and (q · e4) are then irreducible. The metric from the previous section is still valid,
and therefore also the argumentation not to have cross product of the type (q · e3)(q · e4) still
holds. Cross products with (q · e2) are irreducible though, and we get up to rank two

∆ij(q, µ
2) = ∆R

ij(q, µ
2) + c

(ij)
2,0 + c

(ij)
2,9 µ

2 , (4.131)

with

∆R
ij(q, µ

2) = c
(ij)
2,1 (q + pi) · e2 + c

(ij)
2,2 ((q + pi) · e2)2

+ c
(ij)
2,3 (q + pi) · e3 + c

(ij)
2,4 ((q + pi) · e3)2

+ c
(ij)
2,5 (q + pi) · e4 + c

(ij)
2,6 ((q + pi) · e4)2

+ c
(ij)
2,7 ((q + pi) · e2)((q + pi) · e3)

+ c
(ij)
2,8 ((q + pi) · e2)((q + pi) · e4) .

4.6.5. One-point contributions

Since we have no independent momentum vector available at the one-point contribution, we
have to construct our basis with two random massive vectors and we have the full set of four
ISPs: (q · e1), (q · e2), (q · e3) and (q · e4). The expression up to rank one gives trivially

∆i(q, µ
2) = c

(i)
1,0 + c

(i)
1,1((q + pi) · e1) + c

(i)
1,2((q + pi) · e2)

+ c
(i)
1,3((q + pi) · e3) + c

(i)
1,4((q + pi) · e4) .

(4.132)

4.7. Integrand reduction algorithm

The expressions that have been established for the numerators of equation (4.116) are inde-
pendent of the specific process under consideration. The actual numerical values of all the
coefficients, on the other hand, do depend on the specific process. An efficient way to obtain
these values of the coefficients is by using the method invented by Ossola, Papadopoulos and
Pittau [33, 34], and later extended in [35, 36], which is therefore often refered to as the OPP
method. Multiplying equation (4.116) on both sides with all the propagators of the diagram,
an explicit expression for the numerator is obtained,

N(q̄) =

n−1∑

(ijk`m)

∆ijk`m(q̄)

n−1∏

h6=i,j,k,`,m
Dh +

n−1∑

(ijk`)

∆ijk`(q̄)

n−1∏

h6=i,j,k,`
Dh +

+

n−1∑

(ijk)

∆ijk(q̄)

n−1∏

h6=i,j,k
Dh +

n−1∑

(ij)

∆ij(q̄)

n−1∏

h6=i,j
Dh +

n−1∑

i

∆i(q̄)

n−1∏

h6=i
Dh , (4.133)
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which allows one to see instantly that the ∆ij.. are just the residues of the diagram with the
corresponding propagators put on shell after sutraction of the higher order levels.

∆ijk`m(q̄) = Resijk`m

{
N(q̄)

D0 · · ·Dn−1

}

∆ijk`(q̄) = Resijk`

{
N(q̄)

D0 · · ·Dn−1
−

n−1∑

(ijk`m)

∆ijk`m(q̄)

DiDjDkD`Dm

}

∆ijk(q̄) = Resijk

{
N(q̄)

D0 · · ·Dn−1
−

n−1∑

(ijk`m)

∆ijk`m(q̄)

DiDjDkD`Dm
−

n−1∑

(ijk`)

∆ijk`(q̄)

DiDjDkD`

}

∆ij(q̄) = Resij

{
N(q̄)

D0 · · ·Dn−1
−

n−1∑

(ijk`m)

∆ijk`m(q̄)

DiDjDkD`Dm

−
n−1∑

(ijk`)

∆ijk`(q̄)

DiDjDkD`
−

n−1∑

(ijk)

∆ijk(q̄)

DiDjDk

}
,

∆i(q̄) = Resi

{
N(q̄)

D0 · · ·Dn−1
−

n−1∑

(ijk`m)

∆ijk`m(q̄)

DiDjDkD`Dm
+

−
n−1∑

(ijk`)

∆ijk`(q̄)

DiDjDkD`
−

n−1∑

(ijk)

∆ijk(q̄)

DiDjDk
−
n−1∑

(ij)

∆ij(q̄)

DiDj

}
. (4.134)

Since N(q̄) is generally known for each diagram, we now have all the ingredients to write
down the algorithm:

• Start at the highest level available. For pentagons and larger diagrams, the
highest level is the quintuple cut.

• Subtract the previous levels from the integrand.

• For all combinations, cut all the corresponding propagators to calculate the
residue. These cuts impose conditions on the components of q̄.

• Sample, i.e. evaluate at a convenient q̄ that is allowed by the cut conditions,
the residue as many times as there are coefficients to be determined.

• Determine the coefficients by solving this system of equations.

• Go down one level.

Figure 4.4.: The integrand reduction algorithm.

This algorithm was implemented in the program Samurai [37] and its extension Xsamurai
[12], which will be the subject of the next chapter.
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With the d-dimensional integrand reduction algorithm defined, in this chapter we will look
at its implementation, where we will go through all the levels of the integrand decomposition
algorithm systematically. In Section 5.1 we will consider the normal rank situation, followed
by the higher-rank extension in Section 5.2. We will follow closely the implementation in the
program Samurai [37] and its extension Xsamurai [12].

5.1. Samurai: d-dimensional integrand reduction

We will make frequent use of the Discrete Fourier Transformation (DFT) to project out the
coefficients. Therefore, first we will look at how the DFT works for simple polynomials.

5.1.1. Discrete Fourier Transformation (DFT)

Figure 5.1.: Illustration of the idea of sampling symmetrically in the complex plane, in this case for n = 7.

There are no restrictions other than the cut imposed conditions to the values of q̄ used in
the sampling, apart from avoiding to make the system of equations degenerate. However, if
the size of the system becomes large, the solutions may become such large expressions that
they loose accuracy when evaluated numerically. We therefore need a systematic approach.
As an illustrative example, we will first look at how to determine the coefficients of a simple
univariate polynomial up to rank n,

P (x) = c0 + c1x+ c2x
2 + ...+ cnx

n . (5.1)
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An efficient way to determine these coefficients is to sample symmetrically in a circle in the
complex plane (an illustration is given in Figure 5.1),

xk = ρ exp

[
−2πi

k

n+ 1

]
, (5.2)

thereby obtaining the values

Pk = P (xk) =
n∑

l=0

clρ
l exp

[
−2πi

k

(n+ 1)
l

]
, (5.3)

and then use the orthogonality relation,

N−1∑

n=0

exp

[
2πi

k

N
n

]
exp

[
−2πi

k′

N
n

]
= Nδkk′ , (5.4)

to project out the coefficients,

cl =
ρ−l

n+ 1

n∑

k=0

Pk exp

[
2πi

k

n+ 1
l

]
. (5.5)

This procedure is of course the simple discrete Fourier transformation (DFT). In [83], this
method was first explored in the context of projecting out the coefficients of the residues in
integrand decomposition. In the actual calculations, ρ depends on the external kinematics, and
in certain cases it can become small. Notice that the above formula for the coefficients becomes
numerically unstable in this case. Therefore, to employ the idea of DFT, in the multivariate
polynomials we have to deal with, we will manipulate the DFT sampling procedure to achieve
expressions for coefficients which are stable also when radius of the DFT sampling is small, as
long as the cut is non-degenerate. A cut is degenerate when the solution of a given cut at level
m, makes m+ 1 denominators vanish. This situation occurs in correspondence with vanishing
Gram determinants. In this cases the integrand reduction must be modified, since the form
of the residue changes as well. The recent study in [84] allows for the determination of the
residues also in such bad kinematic configurations, but in the current implementation of the
integrand reduction algorithm, hereby discussed, we will focus on non-degenerate cuts.

5.1.2. Quintuple cut

At the quintuple cut, we want to determine the coefficient in the expression for the residue

∆ijk`m(q, µ2) = c
(ijk`m)
5,0 µ2 . (5.6)

The five cuts,
Di = Dj = Dk = D` = Dm = 0 , (5.7)

impose five conditions on the components of q̄.
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Di

Dj

Dk Dℓ

Dmq

K1

K2

K3

K4

K5

Figure 5.2.: A quintiple cut.

Determining the sampling value

The first cut we consider is

Di = q2 −m2
i − µ2 = 0⇒ q2 = m2

i + µ2 . (5.8)

This can be used subsequently to write

Dj = (q +K1)2 −m2
j − µ2 = 0⇒ 2(q ·K1) = m2

j −m2
i −K2

1 , (5.9)

and
Dm = (q −K2

5 )2 −m2
m − µ2 = 0⇒ 2(q ·K5) = m2

i −m2
m +K2

5 . (5.10)

Writing q =
∑
xiei and using the notation of Section 4.4, with K1 and K5 as massive vectors

for the basis, we can write

q ·K1 = (bx1 + ax2)e1 · e2 = (r1x1 + x2)e1 · e2 ,

q ·K5 = (dx1 + cx2)e1 · e2 = (x1 + r2x2)e1 · e2 .
(5.11)

Equating the two expressions for both scalar products, we end up with two equations for the
two variables x1 and x2,

r1x1 + x2 =
m2
j −m2

i −K2
1

2e1 · e2
,

x1 + r2x2 =
m2
i −m2

m +K2
5

2e1 · e2
,

(5.12)

which we can solve,

x1 =
m2
m −m2

i −K2
5 + r2(m2

j −m2
i −K2

1 )

2e1 · e2(−1 + r1r2)
,

x2 =
m2
i −m2

j +K2
1 + r1(m2

i −m2
m +K2

5 )

2e1 · e2(−1 + r1r2)
.

(5.13)

Using expression (4.109) we can rewrite this as

x1 =
m2
m − r2m

2
j − (1 + r2)m2

i − 2e1 · e2r2(1 + r1)

2e1 · e2(−1 + r1r2)
,

x2 =
−m2

j − r1m
2
m + (1 + r1)m2

i + 2e1 · e2r1(1 + r2)

2e1 · e2(−1 + r1r2)
,

(5.14)
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which is the form implemented in Samurai. To determine x3 and x4 we consider the remaining
two cuts. Using the expression for q2 that was derived before and defining, mainly for visibility,
the effective second and third vector v2 = K1 +K2 and v3 = K1 +K2 +K3, we can write

Dk = (q + v2)2 −m2
k − µ2 = 0⇒ 2(q · v2) = m2

k −m2
i − v2

2 ,

D` = (q + v3)2 −m2
` − µ2 = 0⇒ 2(q · v3) = m2

` −m2
i − v2

3 .
(5.15)

Unlike K1 and K2, these two vectors do have contributions in the e3 and e4 direction. Note
that our basis is not a standard orthonormal one, so the elements v(i) are not simply (v · ei),
but rather

v(1) =
v · e2

e1 · e2
, v(2) =

v · e1

e1 · e2
, v(3) = − v · e4

e1 · e2
, v(4) = − v · e3

e1 · e2
. (5.16)

Given the definition of q and the properties of the basis, this means one can write

2(q · v) = 2(e1 · e2)
[
x1v

(2) + x2v
(1) − x3v

(4) − x4v
(3)
]

= 2 [x1(v · e1) + x2(v · e2) + x3(v · e3) + x4(v · e4)] .
(5.17)

So in the end, scalar products between two vectors in this basis still work normally. Therefore,
combining with equation (5.15), one is left with the following system of equations:

2 [x1(v2 · e1) + x2(v2 · e2) + x3(v2 · e3) + x4(v2 · e4)] = m2
k −m2

i − v2
2 ,

2 [x1(v3 · e1) + x2(v3 · e2) + x3(v3 · e3) + x4(v3 · e4)] = m2
` −m2

i − v2
3 ,

(5.18)

which can be solved for x3 and x4. Defining for increased readibility

fi = v2
i + 2x1(vi · e1) + 2x2(vi · e2) , (5.19)

the solutions are

x3 =
(v2 · e4)(f3 +m2

i −m2
` )− (v3 · e4)(f2 +m2

i −m2
k)

2(v2 · e3)(v3 · e4)− 2(v3 · e3)(v2 · e4)
,

x4 =
(v3 · e3)(f2 +m2

i −m2
k)− (v2 · e3)(f3 +m2

i −m2
` )

2(v2 · e3)(v3 · e4)− 2(v3 · e3)(v2 · e4)
.

(5.20)

We have determined four variables using five equations, so there still is one variable that we
can fix, which is µ2. This can be easily done through rewriting equation (5.8) to

µ2 = q2 −m2
i = 2e1 · e2(x1x2 − x3x4)−m2

i . (5.21)

Determining the coefficient

With q̄ = (µ2, x1, x2, x3, x4) fully fixed, it is now trivial to extract the one coefficient at this
level,

c
(ijk`m)
5,0 =

∆ijk`m(q, µ2)

µ2
. (5.22)
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Di

Dj

Dk

Dℓ
q

K1

K2 K3

K4

Figure 5.3.: A quadruple cut.

5.1.3. Quadruple cut

At the quadruple cut, we want to determine the coefficient in the expression

∆ijk`(q, µ
2) = c

(ijk`)
4,0 + c

(ijk`)
4,2 µ2 + c

(ijk`)
4,4 µ4 +

(
c

(ijk`)
4,1 + c

(ijk`)
4,3 µ2

)
(q + pi) · v⊥ . (5.23)

The four cuts,
Di = Dj = Dk = D` = 0 , (5.24)

impose four conditions on the components of q̄.

Determining the sampling values

The first steps involving the cuts of Di, Dj and D` are identical to the quintuple cut case.
After the appropriate substitution of vectors and indices, the result for x1 and x2 is therefore
the same,

x1 =
m2
` −m2

i −K2
4 + r2(m2

j −m2
i −K2

1 )

2e1 · e2(−1 + r1r2)
,

x2 =
m2
i −m2

j +K2
1 + r1(m2

i −m2
` +K2

4 )

2e1 · e2(−1 + r1r2)
,

(5.25)

where now K1 and K4 are used to construct the basis. To get x3 and x4, we need to consider
the first cut again and write out q2,

q2 = 2e1 · e2(x1x2 − x3x4) = m2
i + µ2 ⇒

x3x4 = x1x2 −
m2
i + µ2

2e1 · e2
≡ C1(µ2) .

(5.26)

Note that we will not be able to fix µ2 anymore with only four equations, so the product of x3

and x4 is a constant that still depends on what one chooses for the value of µ2. Now consider
the last equation, again defining v2 = K1 +K2. Following the same steps as in the quintuple
cut, we still get

2 [x1(v2 · e1) + x2(v2 · e2) + x3(v2 · e3) + x4(v2 · e4)] = m2
k −m2

i − v2
2 , (5.27)
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5 Extended d-dimensional integrand reduction

which can be rewritten as

x3(v2 · e3) + x4(v2 · e4) = −x1(v2 · e1)− x2(v2 · e2) +
1

2

(
m2
k −m2

i − v2
2

)
≡ C2 , (5.28)

to get again an expression which involves x3 and x4 that is equal to a constant. In combination,
we can substite x3 to get a quadratic expression in x4,

C1(v2 · e3)− C2x4 + (v2 · e4)x2
4 = 0 . (5.29)

Solving it gives two possible values for x4,

x4 =
C2 ±

√
C2

2 − 4C1(v2 · e3)(v2 · e4)

2(v2 · e4)
. (5.30)

The value of x3 can then be obtained by substituting back in either equation (5.26) or equation
(5.28).

Determining the coefficients

Equation (5.23) is simple enough to choose convenient values for µ2 without much further
consideration. Choosing µ2 = 0 and µ2 = +µ2

s both two times, with the plus- and minus-
solutions q± from equation (5.30), and −µ2

s one further time gives a non-degenerate system
of equations,

∆ijk`( 0, q±) = c
(ijk`)
4,0 + c

(ijk`)
4,1 (q± + pi) · v⊥

∆ijk`(+µ
2
s, q±) = c

(ijk`)
4,0 + c

(ijk`)
4,2 µ2

s + c
(ijk`)
4,4 µ4

s +
(
c

(ijk`)
4,1 + c

(ijk`)
4,3 µ2

s

)
(q± + pi) · v⊥

∆ijk`(−µ2
s, q+) = c

(ijk`)
4,0 − c(ijk`)

4,2 µ2
s + c

(ijk`)
4,4 µ4

s +
(
c

(ijk`)
4,1 − c(ijk`)

4,3 µ2
s

)
(q+ + pi) · v⊥ ,

(5.31)

where µ2
s can be any non-zero value, in particular µ2

s = 1 further simplifies the system. The
solutions for the coefficients can now be obtained by solving this system of equations. They
are too involved to show here, but can be found in the source code of Samurai. The sampling
for the quadruple cut is summarized in Table 5.1.

Quadruple cut number of samplings

Λ(0, q) 2
Λ(+µ2

s, q) 2
Λ(−µ2

s, q) 1

Table 5.1.: The number of samplings per polynomial at the quadruple cut at normal rank.
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Figure 5.4.: A triple cut.

5.1.4. Triple cut

At the triple cut, we want to determine the coefficients in the expression given in equation
(4.130). It will be more useful if we expand q in its basis right away,

∆ijk(µ
2, x3, x4) = c

(ijk)
3,0 + c

(ijk)
3,7 µ2

+
(
c

(ijk)
3,1 + c

(ijk)
3,8 µ2

)
(e1 · e2)x4

+
(
c

(ijk)
3,4 + c

(ijk)
3,9 µ2

)
(e1 · e2)x3

+ c
(ijk)
3,2 (e1 · e2)2x2

4 + c
(ijk)
3,5 (e1 · e2)2x2

3

+ c
(ijk)
3,3 (e1 · e2)3x3

4 + c
(ijk)
3,6 (e1 · e2)3x3

3 . (5.32)

The three cuts,
Di = Dj = Dk = 0 , (5.33)

impose three conditions on the components of q̄.

Determining the sampling values

Again, as in the previous two cuts, we use two of these conditions to fix x1 and x2,

x1 =
m2
k −m2

i −K2
3 + r2(m2

j −m2
i −K2

1 )

2e1 · e2(−1 + r1r2)
,

x2 =
m2
i −m2

j +K2
1 + r1(m2

i −m2
k +K2

3 )

2e1 · e2(−1 + r1r2)
.

(5.34)

The last remaining cut and its consequential condition remains of the same shape as before
as well,

x3x4 = x1x2 −
m2
i + µ2

2e1 · e2
≡ C(µ2) . (5.35)

This fixes the relation between the three variables x3, x4 and µ2.
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5 Extended d-dimensional integrand reduction

Determining the coefficients

Let us start with choosing µ2 = 0, since this will reduce the number of terms in equation
(4.130) from ten to seven: Three multiplying x3, three multiplying x4 and one overall constant.
Defining C0 ≡ C(0), one can now either replace x4 → C0/x3 and sample seven times over
x3 using the DFT or instead replace x3 → C0/x4 and sample seven times over x4. This will
give identical results, since it only changes the direction one goes symmetrically around the
complex plane. This gives expressions for the coefficients that are inversely proportional to C0

and this will cause problems if C0 is close to zero. An alternative way is to sample four times
with x3 and three times with x4, which will give rise to coefficients proportional to 1 − C0

n

with a certain power n, which is numerically unsafe around C0 = 1. In fact, the system of
equations is degenerate for C0 = 1, since the first point one samples on in the first batch is
(x3, x4) = (1, C0) and the first point in the second batch is (x3, x4) = (C0, 1). One should
therefore implement both sampling strategies and branch in the code according to the value
of C0. For the remaining coefficients, one can choose a sampling value µ2 = µ2

s with the only
restriction that C(µ2

s) is nonzero and sample three times with either x3 or x4, replacing one
with C(µ2

s) divided by the other. The sampling strategy for the triple cut is summarized in
Table 5.2.

Triple cut C = 0 C 6= 0

Λ(0, x3, C0/x3) 4 7
Λ(0, C0/x4, x4) 3 0

Λ(µ2
s, x3, C(µ2

s)/x3) - 3

Table 5.2.: The number of samplings per polynomial at the triple cut at normal rank.

5.1.5. Double cut

Di

Dj

q

K1

Figure 5.5.: A double cut.

At the double cut, we want to determine the coefficients in the expression

∆ij(µ
2, x1, x3, x4) = c

(ij)
2,0 + c

(ij)
2,9 µ

2 + c
(ij)
2,1 (e1 · e2)x1 + c

(ij)
2,2 (e1 · e2)2x2

1

− c(ij)
2,3 (e1 · e2)x4 + c

(ij)
2,4 (e1 · e2)2x2

4

− c(ij)
2,5 (e1 · e2)x3 + c

(ij)
2,6 (e1 · e2)2x2

3

− c(ij)
2,7 (e1 · e2)2x1x4 − c(ij)

2,8 (e1 · e2)2x1x3 .
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5.1 Samurai: d-dimensional integrand reduction

The two cuts,
Di = Dj = 0 , (5.36)

impose two conditions on the components of q̄.

Determining the sampling values

Notice that at this level we have only one independent external vector to build our basis with.
A convenient choice for the second vector is

K2 =

(
c
K0

1

|K0
1 |
,
−c√

3

Ki
1

|Ki
1|

)
, (5.37)

where c can be any positive constant. Notice that K2
2 = 0 and that

K1 ·K2 = c|K0
1 |+

∑

i

c√
3
|Ki

1| > 0 . (5.38)

This means that γ+ = 2K1 ·K2, r2 = 0 and β = 1, which in turn means that e1 · e2 = K1 ·K2

and therefore

r1 =
K2

1

2e1 · e2
. (5.39)

The second cut, which gives a similar relation between x1 and x2 as before,

r1x1 + x2 =
m2
j −m2

i −K2
1

2e1 · e2
, (5.40)

can therefore now be rewritten as an explicit dependence of x2 on the now free variable x1,

x2(x1) =
m2
j −m2

i −K2
1 (1 + x1)

2e1 · e2
. (5.41)

The other cut imposes a constraint on the relation between µ2, x1, x3 and x4,

x3x4 = x1x2(x1)− m2
i + µ2

2e1 · e2
≡ F (µ2, x1) . (5.42)

Determining the coefficients

Let us start with choosing x1 = µ2 = 0, which reduces our polynomial from ten to five terms.
Notice that

F00 ≡ F (0, 0) =
−m2

i

2e1 · e2
, (5.43)

which can very easily be zero (every time a massless particle appears in the loop). In all other
cases, because in equation (5.38) we noticed that e1 · e2 = K1 · K2 is always positive, F00

is a negative number. This means that we cannot simply sample five times with (x3, x4) =
(x3, F00/x3), which will give coefficients inversely proportional to F00 again. Instead, we have
to split again, sampling two times with x3 and three times with x4 or vice versa.
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5 Extended d-dimensional integrand reduction

In the next step we have to choose x1 nonzero. One possibility is to sample three times
with x1 = 1, but in order to discriminate between the coefficients of x1 and x2

1, at least one
additional time should be sampled with x1 = −1. The three times should again be split in
two times with x4 and one time with x3. For the final coefficient one should have µ2 nonzero,
but now x1 can be set to zero to reduce the complexity of the equation.

The whole procedure for the double cut is summarized in Table 5.3.

∆(µ2, x1) x3 x4

∆(0, 0) 3 2
∆(0, 1) 2 1

∆(0,−1) 1 0
∆(µ2

s, 0) 1 0

Table 5.3.: The number of samplings per polynomial at the normal rank double cut.

5.1.6. Single cut

Di
q

Figure 5.6.: A single cut.

At the single cut, we want to determine the coefficients in the expression of equation (4.132).
Expanded in its basis this simply reads

∆i(q, µ
2) = c

(i)
1,0 + c

(i)
1,1(e1 · e2)x2 + c

(i)
1,2((e1 · e2)x1

− c(i)
1,3(e1 · e2)x4 − c(i)

1,4(e1 · e2)x3 .
(5.44)

The only cut,
Di = 0 , (5.45)

imposes one condition on the components of q̄.

Determining the sampling values

At this level there is just one overall relation between the five variables,

x1x2 − x3x4 =
m2
i + µ2

2e1 · e2
≡ G(µ2) , (5.46)
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5.2 Xsamurai: Higher rank integrand reduction

Determining the coefficients

Note that µ2 is not present in the polynomial anymore at this level (and this rank). There
are so few coefficients at this level that one can choose convenient values by hand, because
a DFT-based sampling would not add anything. There are several ways to sample correctly,
one possibility is listed in Table 5.4.

∆(x1, x2, x3, x4)

∆(G, 1, 0, 0)
∆(−G,−1, 0, 0)
∆(G, 1, 1, 0)
∆(0, 1,−1, G)
∆(0, 1, 1,−G)

Table 5.4.: One of the possible choices at the normal rank single cut.

5.2. Xsamurai: Higher rank integrand reduction

In renormalizable theories, the rank in q and µ2 of the numerator of each residue cannot exceed
the number of propagators. However, when one considers effective field theories, additional
powers can appear. There are several more exotic models that cause higher-rank numerators
to appear, such as models which feature a graviton. Particularly important for the following
chapters will be the effective field theory which employs the large top mass limit in the Higgs
boson production via gluon fusion (GF). In the plain Standard Model, only the fermionic
propagator and the three-gluon vertex contribute one power of the loop momentum to the
numerator of the integrand. All the other propagators and vertices have no momentum de-
pendence in the numerator, as can be easily verified by looking at the Feynman rules collected
in Appendix A. In the large top mass limit, however, the loop of the loop-induced Higgs
boson production in GF is effectively shrunk to a new vertex. The Feynman rules that follow
show that this effective vertex contributes two powers of the momentum to the rank of the
numerator. This means that in this theory, the rank of the numerators, at every level, can
exceed the number of propagators by exactly one,

r ≤ n+ 1 . (5.47)

This alters the decomposition of equation (4.112) which acquires additional terms,

δAn =

n−1∑

(ijk)

c
(ijk)
3,14 Iijk[µ

4] +
n−1∑

(ij)

{
c

(ij)
2,13 Iij [((q + pi) · e2)3] + c

(ij)
2,10 Iij [µ

2((q + pi) · e2)]

}

+
n−1∑

i

{
c

(i)
1,14 Ii[µ

2] + c
(i)
1,15 Ii[((q + pi) · e3)((q + pi) · e4)]

}
. (5.48)

These additional master integrals are given in Appendix B.1.1. The form of the residues in
equation (4.116) has to be extended as well [85].
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= r ≤ nr ≤ n + 1

+ c2,10 + c1,14 + c1,15

+ c2,13 r = 3

d + 2

+ c3,14 d+ 4

r = 2d + 2
r = 1

Figure 5.7.: Depiction of the decomposition of a generic integral with higher rank in a set of master integrals.

5.2.1. Parametric form of the higher-rank residues

To clearly distinguish between normal and higher-rank residues, we will use ∆ijk.. for the
former and Λijk.. for the latter. The final results are collected in Appendix D. Note that
especially the additional lower-point contributions are numerous, which will warrant a more
systematic sampling strategy at those levels.

Five-point contributions

At the five-point level, the numerator could now contain terms with µ6. However, for the
same reason as before with 1 and µ4, these can be rewritten as a linear combination of the
already existing µ2, which means nothing changes at higher rank,

Λijk`m(q, µ2) = ∆ijk`m(q, µ2) . (5.49)

Four-point contributions

At the four-point level, terms up to rank five can appear. However, terms of higher power of
(q · v⊥) are still reducible, so there is only one new term in the higher-rank polynomial,

Λijk`(q, µ
2) = ∆ijk`(q, µ

2) + c
(ijk`)
4,5 µ4 (q + pi) · v⊥ . (5.50)

Three-point contributions

At the three-point level, there are five new terms to the higher-rank residues,

Λijk(q, µ
2) = ∆ijk(q, µ

2) + c
(ijk)
3,14 µ4

+c
(ijk)
3,10 µ2 ((q + pi) · e3)2

+c
(ijk)
3,11 µ2 ((q + pi) · e4)2

+c
(ijk)
3,12 ((q + pi) · e3)4

+c
(ijk)
3,13 ((q + pi) · e4)4 . (5.51)
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5.2 Xsamurai: Higher rank integrand reduction

Two-point contributions

At the two-point level, because of all the cross product that are of rank three, the amount of
terms increases massively from ten to twenty,

Λij(q, µ
2) = ∆ij(q, µ

2)

+µ2
(
c

(ij)
2,10 (q + pi) · e2 + c

(ij)
2,11 (q + pi) · e3 + c

(ij)
2,12(q + pi) · e4

)

+c
(ij)
2,13 ((q + pi) · e2)3 + c

(ij)
2,14((q + pi) · e3)3 + c

(ij)
2,15 ((q + pi) · e4)3

+c
(ij)
2,16((q + pi) · e2)2((q + pi) · e3)

+c
(ij)
2,17((q + pi) · e2)2((q + pi) · e4)

+c
(ij)
2,18((q + pi) · e2)((q + pi) · e3)2

+c
(ij)
2,19((q + pi) · e2)((q + pi) · e4)2 . (5.52)

One-point contributions

Finally, also at the one-point level the increase of terms in the higher-rank residues is enormous,
with ten new coefficients to a total of fifteen. Note that for historical reasons, there is no c(i)

1,9,

Λi(q, µ
2) = ∆i(q, µ

2) +

+c
(i)
1,5((q + pi) · e1)2 + c

(i)
1,6((q + pi) · e2)2

+c
(i)
1,7((q + pi) · e3)2 + c

(i)
1,8((q + pi) · e4)2

+c
(i)
1,10((q + pi) · e1)((q + pi) · e3) + c

(i)
1,11((q + pi) · e1)((q + pi) · e4)

+c
(i)
1,12((q + pi) · e2)((q + pi) · e3) + c

(i)
1,13((q + pi) · e2)((q + pi) · e4)

+c
(i)
1,14 µ

2 + c
(i)
1,15((q + pi) · e3)((q + pi) · e4) . (5.53)

5.2.2. Quintuple and quadruple cut at higher rank

Since there are no new coefficients at higher rank for the quintuple cut, the way to acquire
the one coefficient at this level remains unchanged.

At the quadruple cut, there is one new coefficient, which means we will have to sample one
additional time. The obvious extension, sampling now also two times with −µ2

s, with both
solutions q±, gives an efficient way to obtain all six coefficients.

5.2.3. Triple cut at higher rank

Although the number of coefficients has increased considerable for the triple cut going to
higher rank, the strategy to determine them remains essentially the same. According to the
value of C0 ≡ C(µ2 = 0), one can use a DFT on the nine coefficients that do not multiply a
power of µ2 or has to split it in 5 + 4 sampling with x3 and x4. The remaining six coefficients
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5 Extended d-dimensional integrand reduction

Quadruple cut number of samplings

Λ(0, q) 2
Λ(+µ2

s, q) 2
Λ(−µ2

s, q) 2

Table 5.5.: The number of samplings per polynomial at the quadruple cut at higher rank.

cannot be determined in one DFT, since, for a fixed value µ2 = µ2
s, this would not be able to

discriminate between the coefficients of µ2 and µ4. Therefore, one final sampling at µ2 = −µ2
s

is necessary. The restriction that C(µ2
s) 6= 0 still applies.

Triple cut C = 0 C 6= 0

Λ(0, x3, C/x3) 5 9
Λ(0, C/x4, x4) 4 0

Λ(+µ2
s, x3, C/x3) - 5

Λ(−µ2
s, 1, C) - 1

Table 5.6.: The number of samplings per polynomial at the triple cut at higher rank.

5.2.4. Double cut at higher rank

The extension to higher rank at the quintuple, quadruple and triple cut has been relatively
straightforward. Although there were slightly more terms in the polynomial, the strategy to
determine the coefficients did not change significantly. This is different at the lower two levels.
The sheer number of coefficients at these levels demand that we search more stringently for
options to reduce the number of coefficients to be determined simultaneously. Let us look
more closely at equation (5.42), and write out the explicit x1 dependence,

x3x4 = Ax2
1 +Bx1 + C(µ2) ≡ F (µ2, x1) , (5.54)

which is a simple univariate quadratic function in x1 with

A =
−K2

1

2e1 · e2
(5.55)

B =
m2
j −m2

i −K2
1

2e1 · e2
(5.56)

C(µ2) = −m
2
i + µ2

2e1 · e2
. (5.57)

Notice that these three semi-constants (it is probably preferable to avoid calling them coeffi-
cients) can in principle all be zero. Every combination of one, two or all three of them being
zero simplifies the system considerably. It is therefore really beneficial for us to consider all of
them, in a way similar to the treatment of C0 at the triple cut, implementing all possibilities
and building a branching structure around them. It is worth noting that rather than avoiding
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5.2 Xsamurai: Higher rank integrand reduction

F = 0, we are better off actually aiming at F = 0, since this will yield expressions for the
coefficients that are smaller and numerically much more stable. We will therefore try to use
solutions to (5.54) as sampling values. In order to compactify the description, from here on
the phrase ‘sample (n+m)’ times will be an abbreviation of ‘Sample n times with x3 and m
times with x4 using the DFT’.

First seven coefficients

Let us start again by putting µ2 = x1 = 0, which reduces number of coefficients to be
determined to seven. The value of A and B are now irrelevant and this puts us back in
the situation we also had in the normal rank, which means our strategy will be the same.
F00 ≡ F (0, 0) can be zero or nonzero depending on the value of m2

i , and based on this we
either sample (7 + 0) times with x3 or (4 + 3) times with x3 and x4.

Coefficients at µ2 = 0

Depending on A, B and C being zero or nonzero, and on the value of the discriminant
D =

√
B2 − 4AC there could be zero, one, two or infinite nonzero solutions to equation

(5.54). An overview is given in Table 5.7.

number of nonzero solutions

A = B = C = 0 ∞
A = B = 0 0
A = C = 0 0
B = C = 0 0
A = 0 1
B = 0 2
C = 0 1
all nonzero, D > 0 2
all nonzero, D = 0 1
all nonzero, D < 0 0

Table 5.7.: Number of nonzero solutions to equation (5.54) for all combinations of A, B and C being zero or
nonzero.

If present, let us define the first (second) nonzero solution to F (0, x1) = 0 as x1a (x1b). Here,
and for later on, we also need to define random nonzero values y1, y2 and y3. We cannot
simply use one value for x1 at this stage, because it would be impossible to distinguish all
coefficients. Also, we need at least one sampling for which F 6= 0. Since there are nine new
coefficients at this stage, we have to be careful that these first eight samplings should not be
split into (4 + 4), because this could lead to overlapping samplings when F (0, x1) = 1, similar
to the situation at the triple cut. The strategy at this point therefore is as follows: Sample x1

at the first solution (3 + 2) times, or if there is no nonzero solution (5 + 0) times at a random
value. Then sample x1 at the second solution (2 + 1) times or (3 + 0) at a second random
value if there is no second solution. Finally sample x1 one time at a third random value, that
is nonzero and not a solution of equation (5.54), with (x3, x4) = (1, F ).
This leads to the pseudo-code in Figure 5.8 to maximally use solutions to F (0, x1) = 0.
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5 Extended d-dimensional integrand reduction

if (A==B==C==0)
x1s1 = y1
Sample x1=x1s1 (3+2)

else if ( (A==B==0) or (A==C==0) or (B==C==0) or D<0 )
Sample x1=y1 (5+0)

else
if (A==0)

x1s1 = -C/B
else if (C==0)

x1s1 = -B/A
else

x1s1 = (-B-sqrt(D)/(2A)
Sample x1=x1s1 (3+2)

if (A==B==C==0)
x1s2 = y2
Sample x1=x1s2 (2+1)

else if ( (A==0) or (C==0) or (D<0) )
Sample x1=y2 (3+0)

else
x1s2 = (-B+sqrt(D))/(2A)
Sample x1=x1s2 (2+1)

Sample x1=y3 (1+0)

Figure 5.8.: Pseudo-code for maximal use of the solutions to F (0, x1) = 0. x1s1 (x1s2) is the first (second)
solution of this equation, equivalent to xa (xb) in the text. y1, y2 and y3 are random nonzero
values that are not solutions, corresponding to y1, y2 and y3 in the text. (n+m) is an abbreviation
for: Using the DFT, sample n times with x3 and m times with x4.

Coefficients at nonzero µ2

To get the remaining four coefficients, which are all multiplying terms containing µ2, there is
one further simplification to reduce the size of the system of equations that need to be solved
simultaneously. This is to give µ2 a value µ2

s, but let one other variable be zero. Since setting
either one of x3 or x4 to zero will make the value of the other irrelevant, and therefore less
useful to sample with, the obvious choice is to set x1 = 0 and sample three times. Naturally,
we split again in (2 + 1) if F (µ2, 0) = 0 and sample simply (3 + 0) if F (µ2

s, 0) 6= 0. For
the final disentanglement of all coefficient, the last sampling should be with all variables, e.g.
(µ2, x1, x3, x4) = (µ2

s, 1, 1, F ).

The whole procedure is summarized in Table 5.8.

58



5.2 Xsamurai: Higher rank integrand reduction

F = 0 F 6= 0

Λ(0, 0, x3, F/x3) 4 7
Λ(0, 0, F/x4, x4) 3 0

Λ(0, x1a, x3, F/x3) 3 5
Λ(0, x1a, F/x4, x4) 2 0

Λ(0, x1b, x3, F/x3) 2 3
Λ(0, x1b, F/x4, x4) 1 0

Λ(0, x1c, 1, F ) 1 1

Λ(µ2
s, 0, x3, F/x3) 2 3

Λ(µ2
s, 0, F/x4, x4) 1 0

Λ(µ2
s, 1, 1, F ) 1 1

Table 5.8.: The number of samplings per polynomial at the double cut at higher rank. x1a (x1b) is the
first (second) nonzero solution to F (0, x1) = 0 if such a solution exists, and a random number
otherwise. x1c is always a random number.

5.2.5. Single cut at higher rank

At the single cut we can optimize in a similar fashion as at the double cut. G(0) will be
zero most of the time, but can also be nonzero when dealing with massive particles in the
loop. Therefore, also here we have to implement both possibilities and branch in the code. If
G(0) = 0, this has the nice advantage that we can set a whole range of variables to zero, which
will dramatically reduce the complexity of the system we are trying to solve. If G(0) 6= 0,
only a pair of variables can be set to zero, but then one can still apply a simple DFT. Hence,
to acquire the first ten coefficients, we first set x3 = x4 = 0 and sample on x1 and x2 (3 + 2)
times if G = 0 and (5 + 0) times otherwise. Then, symmetrically, we set x1 = x2 = 0 and
sample with x3 and x4 either (3 + 2) or (5 + 0) times, again dependent on the value of G. For
the next four coefficients, the ‘cross terms’ that multiply x1 or x2 with x3 or x4, we first set
(x3, x4) = (1, 0) and sample with x1 and x2 either (1 + 1) or (2 + 0) times, then do the same
with (x3, x4) = (0, 1). Finally, we need a way to determine the coefficient multiplying µ2, so we
set µ2 = µ2

s, and set (x1, x2, x3, x4) = (0, 0, 0, 0) if G(µ2
s) = 0 or (x1, x2, x3, x4) = (1, G, 0, 0)

otherwise. The procedure for the single cut is summarized in Table 5.9.

5.2.6. Numerical considerations

Although this procedure works well algebraically, there is one caveat when one wants to
implement it in a code, which is the selection on C, F and G at their respective levels being
zero or nonzero. Numerically, this means that one needs to set a threshold, e.g. 10−10, below
which a number is considered a zero. The arbitrariness of the actual value of the threshold
is of course an unwanted feature. Moreover, even if variables pass the threshold, the result
can diverge if manipulated enough. For example, at the triple cut in the final expressions for
the coefficients, a factor of 1/C20 is not uncommon. If C were 10−9 to begin with, it would
have passed the threshold, but 1/C20 would be of the order 10−29, which is far below the
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5 Extended d-dimensional integrand reduction

G = 0 G 6= 0

Λ(0, x1, G/x1, 0, 0) 3 5
Λ(0, G/x2, x2, 0, 0) 2 0

Λ(0, 0, 0, x3, G/x3) 3 5
Λ(0, 0, 0, G/x4, x4) 2 0

Λ(0, x1,−G/x1, 1, 0) 1 2
Λ(0,−G/x2, x2, 1, 0) 1 0

Λ(0, x1,−G/x1, 0, 1) 1 2
Λ(0,−G/x2, x2, 0, 1) 1 0

Λ(µ2
s, 0, 0, 0, 0) 1 0

Λ(µ2
s, 1, G, 0, 0) 0 1

Table 5.9.: The number of samplings per polynomial at the single cut at higher rank.

double precision (10−16) most codes use for their variables. Fortunately, our treatment of the
triple and double cut has been constructed to work as well as possible around these problems.
In the single cut case, however, it has proven to be necessary to introduce an intermediate
branch. Apart from the branches for G = 0 and G 6= 0, a new branche was implemented for
G ∼ 0, where G ∼ 0 is defined as the absolute value of G being in the range [10−10, 10−1].
The sampling is done with G present as a variable, but it is executed as if G were zero, i.e.
split into (3 + 2) in the first step instead of (5 + 0) etc.

5.2.7. Xsamurai

The changes described above were implemented in Samurai. This extended version was
therefore named Xsamurai [12]. Mathematica was used to perform the DFTs and solve the
large system of equations. The expressions for the coefficients were written out to Fortran
and put in Samurai. Also the selection of sampling values for q̄ and the combination with the
master integrals had to be rewritten. Some additional master integrals were implemented using
the expressions given in [86]. Several tests were performed to check the validity of Xsamurai.
A number of processes that are provided in Samurai as example processes were calculated
with the same settings in Samurai and Xsamurai. These processes included for example
QED corrections to γγ → γγ, with a fermion loop and massive and massless photons, and a
hexagon with a tensor of aribitrary rank as numerator. The first comparison was to confirm
that at normal rank all coefficients matched between the two codes, and that the higher-rank
coefficients in Xsamurai were reconstructed as numerically zero. Also all so called N = N
tests were performed. These tests, presented in [37, 87], exploit the fact that there are two
representations of the numerator present in the code, namely the input numerator and the
reconstructed numerator in terms of algebraic expressions involving the calculated coefficients.
These test can be performed both at the level of a residue of every individual cut (the local
N = N -test) or at the level of the entire diagram (the global N = N -test). Comparing
the results of the N = N -tests for normal rank processes between both codes also gave a
good indication of the loss of precision due to the larger size of the systems of equations that
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are needed to be solved simultaneously at higher rank. At higher rank, comparisons with
Samurai were not possible, but the N = N -tests could still be performed.
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6 � Automation of one-loop calculations

In this chapter we will describe the automation of one-loop calculations, as implemented in
the framework GoSam. An overview of the code is given in Section 6.1 and a discussion on
its stability and rescue system in Section 6.2. In Section 6.3, we will describe the interface
of one-loop providers like GoSam to Monte Carlo programs, which is necessary for full NLO
calculations.

6.1. The GOSAM framework

The algorithm outlined in the previous chapter was constructed with the idea of automation
in mind. The OPP method has been at the basis of various codes, for example cuttools [87].
The specific reduction method described in detail in Section 5.1 has been implemented in the
code Samurai [37] and the extension to higher-rank presented in Section 5.2 in its exten-
sion Xsamurai [12]. A different approach to one-loop calculations, via Passarino-Veltman
reduction, was implemented in the code Golem95C [40–43]. Both codes required a frame-
work around them to translate the physical processes to the integrands that are input to
both reduction programs. Collaborating on this framework resulted in the Python-based
software package GoSam [39], which is an open source package and uses open source third-
party dependencies only. Furthermore, it has been constructed to work with all versions of
the Binoth-Les-Houches Accord (BLHA) [8, 46], which allows interfacing to a large number
of Monte Carlo Programs (MCs), and can therefore be used fairly easily to do full NLO cal-
culations. This will be covered in Section 6.3. We will first assume one runs GoSam as a
standalone code.

6.1.1. Overview

A schematic workflow of GoSam is depicted in Figure 6.1. After installing the code and all
of its dependencies, the user can write a process card that defines the process in terms of
incoming and outgoing particles and the perturbative order of the calculation. Additional
options, such as filtering out certain diagrams or activating certain optimizations to be used,
can be specified in the card as well. If the input card is called process.in, the generation of
the code is invoked by typing

$ gosam.py process.in
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6 Automation of one-loop calculations

GoSam

user input file process.in

GoSam
gosam.py process.in

diagram drawing and code generation:
QGraf | FORM | Spinney

reduction: Xsamurai | Ninja | Golem95C | . . .

integral libraries: OneLOop | Golem95C | QCDLoop | . . .

Virtual one-loop amplitude

Figure 6.1.: The basic workflow of GoSam. The user writes an input card process.in, on which the ex-
ecutable gosam.py is invoked. GoSam will then start drawing the diagrams using QGRAF.
FORM and/or haggies are then used to generate and optimize the code. During run-time,
any of the reduction programs Xsamurai, Ninja or Golem95C can be used to reduce the
integrands. Combined with the expressions for the integrals, using any of the integral libraries
OneLOop, QCDLoop or the ones present in Golem95C, this yields the result for the virtual
one-loop amplitude. The modular setup of the code means it is relatively easy to include new
reduction programs or integral libraries.

This will call QGRAF [88] to generate the diagrams of the process. After the files are created,
typing

$ make source

will make FORM [89, 90] generate the algebraic expressions for the amplitudes. In this step,
spinney [91] is used for the spinor algebra in FORM. In older versions of GoSam, haggies [92]
was used for the code generation as well, but recently this has been replaced with features
from FORM4 [90].

Finally, typing

$ make compile
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6.1 The GOSAM framework

will compile all the Fortran90 files. A simple example to illustrate this is given in Appendix
E.

Diagram generation

Diagrams in GoSam are generated by QGRAF. QGRAF has its own syntax of excluding
diagrams that are unwanted. This includes options to specify or exclude the use of certain
propagators or vertices and options to impose constraints on the allowed topologies, like
excluding tadpole configurations. In GoSam, these possibilities have been extended by an
additional Python-filter. A comprehensive list of all possibilities of diagram selection can be
found in the manual.

Code generation

In preparation of the numerical evaluation of the numerators, first factors of µ2, as defined
in (4.5), or dot-products involving the loop momentum q are separated from other factors.
The remaining expressions are substituted by abbreviation symbols. These abbreviations are
calculated only once for each phase space point.

Integral libraries

The evaluation of the Master Integrals that appear in expressions (4.112) can be delegated to
external integral libraries. The integrand reduction programs of GoSam can use the integral
libraries OneLOop [93] or QCDLoop [94]. Tensorial reconstruction using the libraries for
the integrals already present in Golem95C is an alternative possibility. The higher-rank
extension as given in expression (5.48) can also be used with these three programs. Because
of the modular structure of the code, interfaces with other integral libraries, such as e.g.
LoopTools [95,96], PJFRY [97] or Collier [98] should be relatively easy to implement.

6.1.2. Amplitudes convention

For this section we will assume that the user wants to calculate the QCD corrections to a
process. The tree-level matrix element squared in GoSam is given by

|M|2tree = A†0A0 = (gs)
2b · a0 , (6.1)

with b being the number of QCD couplings at tree-level. The fully renormalized one-loop
matrix element is then

|M |21-loop = A†1A0 +A†0A1 = 2<[A†0A1] = |M |2bare + |M |2ct,δmQ + |M |2ct,αs + |M |2wf,g + |M |2wf,Q

=
αs(µ

2)

2π

(4π)ε

Γ(1− ε)(gs)
2b ·
[
c0 +

c−1

ε
+
c−2

ε2
+O(ε)

]
,

(6.2)
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6 Automation of one-loop calculations

where the five terms are respectively the bare matrix element squared, the counterterms for
the masses of the quarks and for the coupling, and the renormalization terms of the wave
functions of the gluons and quarks. Calling the subroutine samplitude returns an array with
(a0, c0, c−1, c−2). Averaging over initial state helicities and colors is part of the default setup.
Calling the subroutine ir_subtractions returns an array with the IR poles, calculated from
their universal behavior. This provides a way to check the accuracy of the result (see Section
6.2.1).

UV renormalization in QCD

GoSam uses the MS-scheme for the massless quarks and gluons. For massive quarks, instead,
subtraction at zero momentum is employed. QCD renormalization is performed automati-
cally, EW renormalization at present still needs to be implemented by hand. The QCD mass
counterterm is given by

δm

m
=
αs
2π

(4π)ε

Γ(1− ε)
CF
2

(
µ2

m2

)ε [
3

ε
+ 5− 1tHV

]
, (6.3)

where 1tHV equals one in the ’t Hooft-Veltman scheme (tHV) and zero in the dimensional
reduction scheme (DRED). The renormalization of αs is given by

|M|2ct,αs = b · αs
2π

(4π)ε

Γ(1− ε) |M|
2
tree ·


−β0

ε
+

2TR
3ε

nf+nf,h∑

q=nf+1

(
µ2

m2
q

)ε
+
CA
6

(1− 1tHV)


 , (6.4)

with β0 = (11CA−4TRnf )/6 (corresponding to 2πb as defined in equation (3.40)) and nf and
nf,h the number of light and heavy quarks respectively. The wave function renormalization of
massive quark external lines is given by

|M|2wf,Q = −αs
2π

(4π)ε

Γ(1− ε)
CF
2

∑

Q(m)∈Qh

(
µ2

m2

)ε [
3

ε
+ 5− 1tHV

]
· |M|2tree , (6.5)

where Qh is the set of external massive quark lines. The wave function of the gluons is affected
by the availability of closed fermion loops of heavy quarks. Denoting the number of external
gluon lines by Ng, we can write this contribution as

|M|2wf,g = −αs
2π

(4π)ε

Γ(1− ε)Ng
2TR
3ε

nf+nf,h∑

q=nf+1

(
µ2

m2
q

)
· |M|2tree . (6.6)

The user can switch on or off parts of the renormalization with several keywords defined in the
configuration module file. These keywords can also be specified in the card used to generate the
process. The keyword renormalisation can be set to 0, 1 or 2. renormalisation=0 switches
off the renormalization and none of the counterterms are present. renormalisation=2 only
includes |M|2ct,δm,Q, which is the counterterm coming from the terms in the form of (6.3).
renormalisation=1 allows for more detailed control of the renormalization, in which every
term can be switched on or off independently, using the following keywords:

renorm_logs set to false disables the generation of logarithms in all counterterms.
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6.1 The GOSAM framework

renorm_beta set to false sets the term |M|2ct,αs to zero.

renorm_mqwf set to false sets the term |M|2wf,Q to zero.

renorm_mqse set to false sets the term |M|2ct,δmQ to zero.

renorm_decoupling set to false sets the term |M|2wf,g to zero.

By default, renormalisation is set to 1 and all keywords listed above are set to true.

6.1.3. Integrand reduction programs

In GoSam there is a choice of three integrand reduction programs. Since the release of
GoSam2.0, all of them support higher rank as well.

XSAMURAI

The original release of Samurai [37] was the implementation of the integrand reduction al-
gorithm as described in Section 5.1. Xsamurai [12] is an implementation of the extension
of Samurai to higher rank as described in Section 5.2. In the latest release of the package,
the code has at every cut-level n an implementation for a numerator of a rank in the range
0 < r ≤ (n+ 1), and switches automatically to the right branch according to the value of the
rank of the current numerator being processed. This makes sure no coefficients are calculated
which are known to be algebraically zero, thereby leading to a considerable increase in speed
and accuracy of the code.

GOLEM95

Golem95C [40–43] employs tensorial reconstruction in the traditional Passarino-Veltman
reduction approach. Tensorial reconstruction is a relative time-consuming process, but is in
general numerically more stable than the other reduction programs. Hence Golem95C is
used in GoSam primarily as a rescue program, meaning it will recalculate results for phase
space points for which there is reason to doubt their stability. The rescue system is explained
in more detail in Section 6.2.

NINJA

In [84, 99], the method presented in Chapter 5 has been refined. It was realized that one can
obtain the residues more efficiently through the use of multivariate polynomial division and
algebraic geometry. The idea of these novel methods, originally presented in [80, 100] and
elaborated in [85], is to extract the coefficients in the d-dimensional integrand-reduction by
performing a Laurent expansion of the integrand. When the multiple-cut conditions are not
fully constraining the loop momentum, the solutions are functions of free parameters. They
can, for example, depend on the components of momentum. In the method Chapter 5, the
general strategy is to sample with the parameters and solve system of equations. However, one
first always needs to subtract the contributions from higher-point residues. Instead, in [85], it
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6 Automation of one-loop calculations

is proposed to perform a Laurent expansion in one of the free parameters. Since the integrand
and subtraction terms have the same polynomial behavior of the residue in the asymptotic
limit, the contributions of subtraction terms are corrections at the coefficient level rather than
integrand level. This causes the system of equations to become diagonal rather than triangular,
which means a massive reduction in number of coefficients present in every subtracted term.
In particular, boxes and pentagons are separated from the other levels entirely.

This method of integrand-reduction via Laurent expansion has been implemented in a semi-
numerical way in the c++ library Ninja [44,45], and interfaced to the GoSam framework [2]
for the evaluation of virtual one-loop scattering amplitudes. Tests show a large improvement
in numerical accuracy and computing speed. Also Ninja uses external integral libraries to
calculate the Master Integrals which are multiplied with the calculated coefficients to get the
integrated result. It can switch between different libraries at run-time and there are interfaces
available with OneLOop [93, 101], which is the default, and LoopTools [95, 96]. Ninja is
also capable of computing integrals with higher rank, i.e. with r ≤ n + 1 in the terminology
of Section 5.2. In the interface between GoSam and Ninja, GoSam provides the analytic
expressions for the integrands of one-loop diagrams, which are required to adapt the algebraic
manipulation of the integrands.

6.1.4. GOSAM-2.0

In the first years after its release, GoSam has been used to calculate a wide variety of processes
[3–5, 102–111]. Many of these processes pushed the limits in terms of final state multiplicity
or number of NLO diagrams to be calculated. This triggered the need for improvement of
the code on several fronts. Version 2.0 of GoSam [1] collected all these improvements. The
resulting code shows considerable improvement in speed, both in the generation of the code
and in the evaluation of the amplitudes. The generated code is written in a more compact
way and has proven to give a more stable numerical evaluation. The code can now deal with
effective theories and BSM physics. Several more improvements will be discussed below.

Code generation improvements

In the original version of GoSam, haggies was used to write the Fortran code for the
amplitudes. In GoSam2.0, this functionality has been replaced for a substantial part with
the features provided by FORM4 [90], which produces more compact code. This speeds up
the evaluation of the amplitudes by roughly a factor ten.

Numerical polarization vectors

By default, for massless gauge bosons (photons and gluons), numerical polarization vectors are
used. This means that the helicity configurations for these particles are evaluated numerically,
using a code with generic polarization vectors, instead of writing separate code for each helicity
configuration. Writing polvec=explicit in the input card switches off this feature, which can
be useful to manually choose the reference vectors for each helicity configuration or to check
Ward identities.
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6.1 The GOSAM framework

Grouping and summing

Already in the original version of GoSam, the kinematic matrix Sij of diagrams was analyzed
to group diagrams together that shared a common set of denominators. Grouping these
kind of diagrams together yielded a great improvement in efficiency with both the integrand
reduction of Samurai and the classical tensor reduction of Golem95C. The feature is still
present for those two reduction programs. In GoSam2.0, a similar new feature was added
known as diagsum. In Figure 6.2, comparing diagrams (A) with (C) or (B) with (D), one
sees that they only differ by the assignment of the momenta, but that the topology of the
diagrams is the same. When this mode is activated, the code combines diagrams which differ
only by a subdiagram and processes them as one. This reduces the number of calls to the
reduction program, which speeds up the computation. There are two types of topologies that
are summed with diagsum. Firstly, diagrams that have a different propagator external to the
loop but are identical otherwise are summed by FORM even before being processed, like (A)
and (B) or (C) and (D) in Figure 6.2. Secondly, diagrams are summed if they have the same
external propagators but have different particles in the loop, like in Figure 6.3. By default,
GoSam2.0 has diagsum actived.

3 Colour Basis

|c1〉 = 1q
(1)
i1

q
(2)
i2

q̄
(1)
i1

q̄
(2)
i2

(13)

|c2〉 = 1q
(1)
i1

q
(2)
i2

q̄
(2)
i2

q̄
(1)
i1

(14)

4 BLABLA

4.1 Group 9 (5-Point)

General Information

The maximum effective rank in this group is 5.

4.1.1 Diagrams
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Figure 6.2.: All these diagrams are summed when the diagsum option is set to diagsum=true, because they
share a common tree part. A and B only differ because of the external propagator γ versus Z.
A and C are topologically identical, except for the assignment of the momenta.
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Figure 6.3.: These three diagrams are summed when the diagsum option is set to diagsum=true, because
they share a common loop propagator with a different particle inside the loop.

Electroweak scheme choice

For the regularization and renormalization in the Standard Model, there are several elec-
troweak parameters of which only three are independent. This leads to different possible
electroweak scheme choices, which choose which three of those parameters are input and
which two are calculated. There is not a unique scheme highly favored by the community,
and this means that GoSam should be able to switch easily between the EW schemes, to
compare with other calculations or to interface to Monte Carlo programs. By default GoSam
uses the mass of the W and the Z bosons (MW and MZ) and the elementary charge e or the
fine-structure constant α = e2/4π as input parameters, but there are eight other possibilities
implemented, which can be activated in the input card through the variable ewchoice. They
are given in Table 6.1. The relations between the parameters can be found in Section 3.1.

ewchoice input parameters derived parameters

1 GF, MW, MZ e, sw
2 α, MW, MZ e, sw
3 α, sw, MZ e, MW

4 α, sw, GF e, MW

5 α, GF, MZ e, MW, sw
6 e, MW, MZ sw
7 e, sw, MZ MW

8 e, sw, GF MW, MZ

Table 6.1.: Possible choices to select the electroweak scheme. sw is an abbreviation for the sine of the weak
mixing angle. Of course, when one sets e to one in the card, the last three options are not possible.

Complex masses

Unstable fermions and gauge bosons can be treated by introducing a corresponding decay
width. The complex mass scheme described in [112] is a consistent way to treat the resulting
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complex W and Z-boson masses. In this scheme, the boson masses are shifted in the complex
plane,

m2
V → µ2

V = m2
V − imV ΓV , V = W,Z . (6.7)

The definition of the weak mixing angle has to be modified as well to obey gauge invariance,

cos2 θW =
µ2
W

µ2
Z

. (6.8)

Both GoSam and the integral libraries it uses are capable of using complex masses. Two new
model files were introduced for this, named sm_complex for a model with a full CKM matrix
and smdiag_complex for a model with a diagonal CKM matrix.

6.2. Stability test and rescue system

It is important to have reliable techniques to assess the accuracy of the final results of GoSam.
In particular, we want to determine in a regularized way, for every phase space point (PSP),
the precision of the finite part and the IR poles. The general approach in GoSam is to check
the accuracy of every PSP and if this is below a certain threshold, either discard the point or
repeat the evaluation with a different reduction program. This procedure is known as a rescue
system.

6.2.1. Precision tests

There are several ways to detect low precision on a PSP that are implemented in various
automated tools for the calculation of one-loop diagrams.

pole test

A commonly used method to quickly assess the precision of a PSP is to compare the computed
infrared pole coefficients with their known analytic values, which are given by the universal
behavior of infrared singularities [113]. The calculation of the analytic values takes negligible
additional time, so this evaluation of the precision basically comes for free. It will, however,
in general give an overestimation of the precision, because not all diagrams that take part in
the calculation actually contribute to the poles. The actual accuracy of the finite part will
therefore in general be lower than the ones of the poles.

scaling test

The scaling properties of the scattering amplitude under a transformation of multiplying all
physical scales (the momenta, the masses and the renormalization scale) with the same factor
can be used to test the precision. Using dimensional analysis on equation (2.4) shows the
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scaling property of the matrix element. For an n-point amplitude, multiplying all physical
scales with a factor x gives

|M(xki, xµi, xmi)|2 = x2(4−n)|M(ki, µi,mi)|2 . (6.9)

In [114] it was shown that comparing the results of the evaluation with the original scales and
with the rescaled ones gives an estimation of the precision which shows a very good correlation
with the actual precision of the finite parts.

rotation test

Scattering amplitudes are invariant under azimuthal rotation of the final state around the
beam axis, the direction of the incoming particles. Comparing the evaluation with the original
vectors and the evaluation with the rotated vectors gives another estimate of the precision
in integrand reduction methods. Notice that this kind of a rotation leaves the initial states
invariant, as well as the relative positions of the final state particles. It does however lead to
different bases of the parametrization of the residues and different coefficients that multiply
the master integrals. The numerical values of the computed master integrals will also differ.
This technique was validated in [2] and discussed in more detail in Section 6.2.2.

N = N tests

Within integrand-reduction based codes, an additional type of tests, performed on the numer-
ator before integration, known as N = N tests, has been presented in [37, 87], see Section
5.2.7 for more details. This technique, however, works at the level of an individual diagram
instead of on the full result. Using this method as rescue system is therefore not practical.

While the scaling and the rotation test provide a more reliable estimate of the precision of the
finite parts that enter in the phase space integration, their downside is that they require two
evaluations of the same matrix element, therefore leading to a doubling in the computation
time.

6.2.2. Rescue system in GOSAM

As argued before, performing the pole test does not increase the computation measurably, but
the test will overestimate the precision. The scaling and rotation tests provide a more reliable
estimate of the accuracy of the finite part, but they effectively double the computation time.
In GoSam, therefore, a hybrid method is implemented which features three thresholds: Plow,
Phigh and Pfin. After the computation of the matrix elements, GoSam checks the precision
δpole, defined as

δpole =

∣∣∣∣
SIR − S
SIR

∣∣∣∣ , (6.10)

where S is the single pole provided by GoSam and SIR is the single pole known from the uni-
versal behavior of infrared singularities. From this the precision of the single pole is calculated
through

Ppole = − log10(δpole) , (6.11)
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which is a representation of the precision that corresponds to the intuitive way of counting
agreeing digits. GoSam then compares this number with two of the thresholds. If Ppole ≥
Phigh the point is accepted without further tests. The threshold Phigh needs to be set to such
a high number that passing this selection indeed means that it is very unlikely that the finite
part is bad. If Ppole ≤ Plow the point is discarded or sent to the rescue system if present. The
idea behind this is that if the pole already shows a low precision, it is very likely the finite
part is equally bad or worse. In the intermediate region Plow < Ppole < Plow, the estimated
precision on the pole coefficients is not enough to confidently declare a point good or bad.
Only on this class of points a recalculation of the point using the rotation test is performed.
Defining the finite part evaluated before and after the rotation as Afin and Afin

rot respectively,
the error δrot estimated with the rotation is defined as

δrot = 2

∣∣∣∣∣
Afin
rot −Afin

Afin
rot +Afin

∣∣∣∣∣ . (6.12)

Notice that we now do not have an absolute reference of the correct result, like before with
SIR for the poles. The best we can do now is compare the difference of the two finite parts
with their average. In a similar fashion as before, the precision of the rotation test is defined
as

Prot = − log10(δrot) . (6.13)

In [2] and here in Section 6.2.3 it is shown that Prot gives a reliable estimate of the precision of
the finite part. The point is then accepted if Prot > Pfin and discarded otherwise. The values
of the three thresholds Phigh, Plow and Pfin can be set by the user, either in the input card
or even after the code has generated. In the input card, Phigh, Plow and Pfin correspond to
PSP_chk_th1, PSP_chk_th2 and PSP_chk_th3 respectively. Note that the rotation test can be
bypassed altogether by equating the two initial thresholds Plow = Phigh, which will cause the
code to only use the pole test for the evaluation of the precision and the selection of points.

6.2.3. Precision tests on massive high-multiplicity processes

To assess the precision of the GoSam2.0 framework, in [2], several five-, six- and seven-point
processes were tested. Here the rotation test as discussed before was employed to estimate
the precision on the finite part. In order to know if the rotation test indeed gives a reasonable
estimate of the precision, the process ud̄ → Wbb̄g with massive bottom quarks, a non-trivial
process, was generated twice: one copy in the standard double precision and one copy in
quadruple precision. Then 104 points for this process were generated and evaluated with both
codes, which will be denoted here as A and Aquad respectively. The process was also evaluated
in double precision after rotating the phase space point, whose result we will denote here as
Arot. The exact error was defined δex as

δex =

∣∣∣∣
Aquad −A
Aquad

∣∣∣∣ , (6.14)

and the estimated error δrot as

δrot = 2

∣∣∣∣
Arot −A
Arot +A

∣∣∣∣ . (6.15)
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Figure 6.4.: Correlation plot based on 104 points for the process ud̄→Wbb̄g with massive bottom quarks.

These two can be used to construct an expression for the correlation,

C =
log10(δrot)

log10(δex)
− 1 . (6.16)

The distribution of this quantity is plotted in Figure 6.4. There are two features of this plot
that are worth noting. Firstly, if the rotation test would be a perfect way of estimating the
precision, the value of C would be zero every time. Notice that by taking the logarithm in
equation (6.16), the plot shows roughly the number of agreeing digits. The fact that there are
hardly any points outside the range [−0.2, 0.2], means that the rotation in general estimates the
number of agreeing digits correctly within an error of far less than one digit. Secondly, the plot
is very symmetrical around zero. This means that the rotation test is equally overestimating
and underestimating the precision of the results.

Let us define the precision of the finite part as P0 = log10(δ0), with δ0 defined by equation
(6.12). Using equation (6.10) for the single and double poles and with the known expressions
for the IR poles instead of the results in quadruple precision, we can similarly define P−1 =
log10(δ−1) and P−2 = log10(δ−2) as the precisions of the single and double pole.

In Figures 6.5 , the distributions of P0, P−1 and P−2 are plotted for two challenging processes,
uū → Huūgg (Hjjjj) in VBF (see Section 7.1) and gg → tt̄Hg (tt̄Hj, see Section 7.3)
respectively. These two plots were produced using 1 · 105 and 5 · 104 phase space points
respectively, without cuts in the selection of the points. The points were generated using
rambo, which is an algorithm that provides points randomly distributed over the entire
available phase space of the final state particles. Now a threshold like in Section 6.2 can be
set to have a rejection criterion above which a point is considered bad. This threshold is of
course very process dependent and one should consider the actual phenomenological analysis
when setting it. Table 6.2 specifies the percentage of points with a precision that fails this
rejection criterion, for different values of this threshold and for the two processes shown.
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Figure 6.5.: Precision plots for gg → tt̄Hg (left) and for uū → Huūgg in VBF (right) the distributions are
obtained using respectively 5 · 104 and 105 randomly distributed phase space points.

P0 uū→ Huūgg gg → tt̄Hg

−3 0.02% 0.06%
−4 0.04% 0.16%
−5 0.08% 0.56%

Table 6.2.: Percentage of bad points as a function of the rejection threshold P0 for the two subprocesses
mentioned in the text.

Example processes

The GoSam+Ninja interface was used to compute a large number of non-trivial processes,
with six, seven or even eight external particles. The processes to test were selected to have
massive particles running in the loop or as final state particles. Among these processes there
were four for which the virtual NLO QCD contributions had not been calculated before. These
were the processes pp → Wbb̄+ n jets (n = 1, 2), pp → Zbb̄j, pp → Ztt̄j, pp → V V V j (with
V = W,Z), pp → ZZZZ, and pp → H + n jets (n = 4, 5) in VBF. If the bottom quark was
present in the final state, it was considered massive. The details of all these processes can be
found in the appendices of [2]. In Appendix F.3, the processes pp→ tt̄e+e− and pp→ tt̄e+e−j
are presented in more detail as an example.

6.3. Binoth Les Houches Accord

GoSam, as introduced in the previous section, is one of many programs dedicated to the
calculation of one-loop diagrams. Other programs might choose a less automated generic
approach and instead focus on the optimization of a specific process. For example, the program
NJET [115] is a library for the evaluation of one-loop virtual corrections to the production of
multi-jet final states in massless QCD. Also on the side of the Monte Carlo programs (MCs),
there are numerous options. In recent years one could witness a lot of activity in calculations
using Sherpa [26], the MadGraph framework [116] and aMC@NLO [117] (recently merged
in MadGraph5_aMC@NLO [47], see Chapter 8), Powheg [118], Herwig [119] and PYTHIA8
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[120]. With increasingly difficult processes to compute, the need for the ability of combining
MCs with so-called One-Loop-Providers (OLPs) like GoSam quickly rose as well. In [46] a
standardized interface between MCs and OLPs was proposed under the name Binoth-Les-
Houches Accord (BLHA). This first version of the BLHA is still used for some processes. It is
often referred to as BLHA1 and will be discussed in Section 6.3.1. Recently, an update of the
interface has been presented in [8]. The changes in this new version (BLHA2) with respect to
the first one will be discussed in Section 6.3.2.

6.3.1. BLHA1

The original version of the BLHA proposed a standardized way for the OLPs and the MCs
to interact. It noted that the interface should not limit the OLP in any way, but at the
same time it should try to shield the internal working of the OLP for the MCs as much as
possible. It divided the interface in two steps: The initialization phase and the run-time
phase. The purpose of the initialization phase was to communicate the basic information to
the OLP. Minimal requirements at this step are to specify the partonic subprocesses, certain
input parameters and to fix some basic options. In the run-time phase then, the OLP would be
called to provide phase space point dependent values. This includes the one-loop contribution
plus additional information.

Initialization phase

In the initialization phase the MC starts by writing out a file named order file. This contains
information about the subprocesses and is processed by the OLP, which then writes a contract
file in response.

order file

The order file can contain a number of flags. We will go through the most important ones
here.

• MatrixElementSquaredType specifies whether the returned matrix elements are color (C)
or helicity (H) (or both or neither) summed or averaged through keywords like CHsummed,
Csummed Hsummed, NOTsummed or CHaveraged etc.

• The flag CorrectionType specifies what type of NLO calculation is being performed;
options are QCD, EW or QED.

• The flags AlphasPower and AlphaPower specify the powers of αs and α of the process.

• The flag IRregularisation specifies which regularization scheme is used for the treat-
ment of IR divergences. Often used keywords here are CDR, DRED and tHV. Notice that
it is assumed that the OLP produces output that is UV renormalized. Also, the BLHA
suggest to use natural numbers h̄ = c = 1 and to use as standard the unit GeV .
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• Not all OLPs evaluate the couplings, because it can be useful to provide only the kine-
matic information. The flag OperationMode specifies whether this is the case through the
keyword CouplingsStrippedOff. The MC then has to take care of the multiplication
with the correct powers of αs and α.

• Comments are written with a #.

• At the end of the file the requested subprocesses are listed, using the format

[PDGcode1] [PDGcode2] -> [PDGcode3] ... [PDGcodeN]

for a 2→ N − 2 process, where PDGcode uses the standard numbering from the Particle
Data Group. The most frequently used numbers are given in Table 6.3. Anti-particles
are given by corresponding negative number, i.e. −1 is a d̄, −11 is a e+, −24 is a
W− etc. The full list is much longer than the summary given in Table 6.3, because it
also encodes several other theories beyond the Standard Model, and also includes all
composite particles (mesons and baryons etc.), that are used in hadronization codes.

quarks leptons bosons other
d 1 e− 11 g 21 p (proton) 2212
u 2 νe 12 γ 22 n (neutron) 2112
s 3 µ− 13 Z 23 j (jet) 93
c 4 νµ 14 W+ 24
b 5 τ− 15 H 25
t 6 ντ 16

Table 6.3.: The most often used Particle Data Group codes (PDG codes). Anti-particles are given by the
corresponding negative number. Note that particle 25 is the Standard Model Higgs boson, several
other numbers exist to code Beyond the Standard Model particles, including supersymmetric
Higgs particles. Numbers 81−100 are reserved for internal MC use, so 93 for a jet, as in Sherpa,
might not be true everywhere.

contract file

In the contract file the OLP writes basically a copy of the order file, with its response attached
at the end of each line. The response is separated from the flag and keywords by a |. If there
are no problems, the OLP responds simply with OK. Otherwise, it writes Error, followed by
an explanation of the error, for example: Error: file not found. The response for the list
of subprocesses is an integer label.

run-time phase

At run-time, some OLPs need to be reminded of the contract file. This is done through a
function OLP_Start(string,integer), which takes as arguments the filename of the contract
file and returns an integer that indicates success with the value 1. After this, the evaluation
of the subprocesses is called through the function OLP_EvalSubProcess(..) which takes the
following arguments:
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• The integer label of the subprocess.

• A one-dimensional array of the momenta of the external particles, with the format
(Ei, p

x
i , p

y
i , p

z
i ,mi) for all particles i.

• The renormalization scale µR.

• The value of αs(µR) or an array parameters with αs(µR) as its first entry this value.
The latter was chosen for GoSam.

• An array to be filled with the results, with the format (c−2, c−1, c0, a0).

where c−2, c−1, c0 and a0 are the double pole, single pole, finite part and Born amplitude
squared, as defined in (6.2) and (6.1), respectively.

6.3.2. BLHA2

The update of the BLHA known as BLHA2 [8] is not backwards compatible. Since there
are still numerous interfaces that work with BLHA1, the first new flag introduced in BLHA2
is InterfaceVersion which can be either BLHA1 or BLHA2. The function OLP_Start already
present in BLHA1 is still there, but the initialization phase has been extended with a new
function, OLP_Info(olp_name, olp_version, message), that takes as argument the name
of the OLP and its version and returns a message that enumerates the publications that need
to be cited when using this OLP.
An important new function is OLP_SetParameter(para,re,im,ierr), which can be used both
to define static parameters at the start once and for all, or to define dynamic parameters at
run-time. It takes a string for the name of the parameter to be set, followed by two doubles to
allow for complex parameters. The return value ierr is defined to indicated success when it
equals one and failure when it equals zero. If it is equal to two this means that the parameter
is unknown or the setting is ignored, but that the code will proceed anyway. The function
OLP_PrintParameter(filename) prints out the current parameter settings to a file specified
in the argument. The output format is parameter_name value state, where value can be
a complex number in the (a, b) notation for a complex number a + ib. state is optional to
distinguish whether the parameter was set by OLP_SetParameter or defined internally.
The function calling for the evaluation of the subprocesses has changed significantly. To
avoid confusion with the function OLP_EvalSubProcess in BLHA1, its updated version in
BLHA2 has had its name extended to OLP_EvalSubProcess2. The function takes five ar-
guments: OLP_EvalSubProcess2(i, pp, mu, rval, acc). The first three arguments are
unchanged with respect to the previous version: an integer label to indicate the subprocess,
a one-dimensional array for the momenta and masses of all particles involved, and the renor-
malization scale. The coupling constants, however, are left out because those can now be set
using OLP_SetParameter. The fourth argument are the return values in the same format as
before. The last argument states the accuracy as estimated by the OLP. This can be either
a fractional accuracy in double precision or a binary check result, where zero means simply it
passed the check and a large number means it failed. An overview of the BLHA2 is given in
Figure 6.3.2.

78



6.3 Binoth Les Houches Accord

Monte Carlo OLP

write order file

read contract file

read order file

write contract file

 runtime  phase

call OLP_Start

 call OLP_Info

call OLP_PrintParameter

call OLP_SetParameter (static parameters)

give phase space point, scale

return result, accuracy

compute Born,  real 
radiation, IR subtraction full NLO result

  run initialisation  phase

call OLP_SetParameter (dynamic parameters)

pre-runtime  phase

call OLP_EvalSubProcess2 compute virtual part

Figure 6.6.: The flowchart of BLHA2. The MC first writes an order file with the calculation requirements
that is read and processed by the OLP. The OLP then writes a contract file as a confirmation.
The MC then goes through an initialization phase in which the static parameters are fixed.
During run-time the MC can still set dynamic parameters. The MC provides the OLP with a
phase space point and a scale for a certain subprocess, for which the OLP returns the result and
accuracy. The Born can be calculated by either the MC or the OLP. The MC takes care of the
real radiation contributions and the IR subtraction.
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7 � Higgs boson phenomenology
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Figure 7.1.: The four most important Higgs boson channels. At the top gluon fusion (left) and vector boson
fusion (right). At the bottom HV production (left) and tt̄H production (right).

There are four important channels to produce a Higgs boson at the LHC. The most important
one is Higgs boson production in gluon fusion (GF), in which two gluons produce a Higgs
boson via a top loop. Important for measuring the couplings to the other electroweak gauge
bosons are the production in vector boson fusion (VBF), to which Higgs boson production
in association with jets in GF is an obvious background, and Higgs boson production in
association with a vector boson (HV production), also known as Higgsstrahlung. An important
channel to directly measure the Yukawa couplings is Higgs boson production in association
with a top anti-top pair (tt̄H). These four channels are depicted in Figure 7.1. Their cross
sections at highest known order as a function of the center-of-mass energy are given on the
left of Figure 7.2.

The Higgs particle is of course very short-lived and decays well before direct detection would
be possible. It decays predominantly into the heaviest pair of particles that is kinematically
available. On the right of Figure 7.2, the branching ratios are given for a range of values for
the Higgs boson mass around 125 GeV. From this figure, it is clear that most of the time a
Higgs particle will decay into a bb̄ pair, but other decay channels might be easier to detect.
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Figure 7.2.: On the left the cross sections of Higgs boson production channels are given at highest known
order as a function of the center-of-mass energy

√
s [7]. pp → H is Higgs boson production in

Gluon Fusion (GF), which has a cross section which is consistantly about an order of magnitude
larger than the other channels. pp → qqH is Higgs boson production in Vector Boson Fusion
(VBF), other important channels are Higgs boson production in association with a vector boson
(Z or W±) and in association with a heavy quark anti-quark pair (bb̄ and tt̄). On the right,
the branching ratios for possible Higgs boson decays are given for a Higgs boson mass around
125 GeV [7]. Although the decay into a bb̄ pair has the highest decay width, it is notoriously
difficult to separate from the QCD background. Therefore other channels, such as H → γγ and
H → µ+µ−, although occurring less frequent, are often considered more useful for Higgs boson
detection.

7.1. Higgs boson plus jets production in Vector Boson Fusion

The production of a Higgs boson through vector boson fusion (VBF) is considered one of
the most important Higgs boson production channels. It can assist in determining the CP -
properties of the Higgs boson and in constraining the couplings of the Higgs boson to the heavy
gauge bosons. The dominant background to the production of a Higgs boson in association
with jets in VBF is the gluon fusion (GF) channel, which will be covered in Section 7.2. Since
the main decay channels of the Higgs boson are H → bb̄ and H → W+W− (see Figure 7.2),
other important backgrounds are those in which these decay products are produced directly,
such as in the process pp → W+W−jj. t-channel exchanges of quarks and gluons have a
tendency to produce harder and more central radiation than the t-channel exchange of vector
bosons present in VBF. This is because the color singlet exchange in VBF suppresses central
region jet activity, resulting in a typical VBF signature of two forward-backward pointing hard
jets with a large rapidity gap. Therefore, applying what is known as VBF cuts, requiring a
large rapidity separation of the two jets and applying stringent cuts on the decay products of
the Higgs boson, offers a way to suppress all mentioned background processes considerably.

pp → H + 3j in VBF is an interesting process to calculate with GoSam because of the
possibility of the vector bosons appearing in the loop, which illustrates the need for the
complex mass scheme implemented in GoSam2.0.
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7.1.1. Diagram selection
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Figure 7.3.: Two examples of subprocesses occurring in pp→ H + 2j in VBF.

There are seven independent subprocesses for this process, assuming a diagonal CKM matrix.
Other subprocesses can be mapped onto these six through crossing and relabeling. These
subprocesses are for pp→ H + 2j:

uu → H uu , d d → H dd ,

u d → H ud , u s → H us ,

u c → H uc , d s → H ds ,

u s → H d c . (7.1)

The list of subprocesses for pp → H + 3j is a trivial modification of this one, adding an
additional gluon to the final state. Only starting at pp → H + 4j the list becomes more
involved, because of possible splittings of gluons into quarks. Since electroweak couplings to
fermions are proportional to the electric charge of the fermion, the charge of the quark matters
when determining this list. For example, even with a diagonal CKM matrix, uc → uc is not
identical to us → us. Also, because of the diagonal CKM matrix, subprocesses cannot be
remapped if the quarks are from different generations; for example, us → Hus cannot be
calculated from ud → Hud, because the latter can have W boson exchanges. Notice that
topologically, crossing also yields Higgsstrahlung diagrams with the vector boson decaying
hadronically (see Figure 7.4).

H

V

q

q̄

q′

q̄′

V

Figure 7.4.: Crossing VBF subprocesses can lead to topologies that are classified as Higgsstrahlung with the
vector boson subsequently decaying hadronically.

Since they are of the correct order, α3 at LO and α3αS at NLO QCD, these Higgsstrahlung
diagrams need to be added to the calculation of pp→ H + 2j. However, the typical forward-
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backward pointing jet signature of VBF is absent in their contribution. Therefore, imposing
a cut on the rapidity separation should make this contribution negligible.

In GoSam, the diagrams are drawn automatically from an input of initial and final state
particles and the order of the diagram. In that case, one needs to be careful not to include
loop induced Higgs boson production diagrams that use the gluon as a bridge, such as the
one shown in Figure 7.5. These kind of diagrams are of the same order as the loop-diagrams
that are NLO QCD corrections to the subprocesses of pp → H + 2j in VBF, however, there
are no Born diagrams to which they are a QCD correction. They are in fact Born diagrams
themselves, but at a higher order than what we are considering. Together with the selection
not to have the Higgs boson being emitted from a quark line, the correct selection of diagrams
in GoSam can be achieved by adding the following lines to the input card

filter.lo=lambda d: (not d.vertices(QUARKS,QUARKS,H) > 0)
filter.nlo=lambda d: ( (not d.vertices(QUARKS,QUARKS,H) > 0) and (d.chord(g) > 0) )

The filter d.chord(g) > 0 requires the diagrams to be generated to have at least one gluon
in the loop.

H

u

d

u

d

ZZ

Figure 7.5.: Loop induced Higgs boson production. Although this diagram is of the same order (g3W g2s) as
loop-corrections to the subprocesses of pp→ H + 2j in VBF, there is actually no Born diagram
to which this one can be a QCD correction. It is therefore a Born diagram at an order higher
than the one we are considering. Hence, attention should be paid to removing it from the regular
calculation.

7.1.2. Higgs boson plus two jets in VBF

pp→ H+2j in VBF is known at NNLO QCD accuracy [121]. The NLO QCD corrections have
been calculated in [122,123]. Although in principle pentagons could appear in this calculation,
they do not contribute to this process. This is because of color algebra in the squared matrix
element.

Because the vector bosons are colorless, the color algebra structure of a pentagon has two
fermion loops connected by a gluon propagator, see Figure 7.6.
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Figure 7.6.: The color algebra of the squared matrix element, |MV |2 ∝ 2Re (M1-loopM∗Born), involves two
traces of the SU(3) generator taij .

Any of those two connected loops is essentially the trace of the generator of SU(3), which is zero:

= Tr(ta) = 0

This makes pp→ H + 2j in VBF a relatively easy process to calculate, because although it is
a five-point process, the loops are maximally three-point.

Comparison fixed order cross sections

The process pp → H + 2j in VBF was calculated using MCFM, VBFNLO, Sherpa+GoSam
and aMC@NLO+GoSam. For the latter, a preliminary version of the interface described in
Chapter 8 was used. In aMC@NLO the possibility exists to remove the diagrams in which the
vector bosons appear in the s-channel. The parameters used are given in Table 7.1.

Parameter value
√
s 8 TeV

MH 125 GeV
MZ 91.1876 GeV
MW 80.398 GeV
ΓZ 2.50842 GeV
ΓW 2.097673 GeV
GF 1.6637 · 10−5 GeV−2

Table 7.1.: The parameters used in the comparison between various programs of the process pp→ H + 2j in
VBF.

Given in this table are the input parameters for the electroweak scheme used by MCFM,
VBFNLO and Sherpa+GoSam, where the input parameters are MZ , MW and GF . Instead,
in aMC@NLO, the input parameters are MZ , GF and α, which were calculated from the given
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values by hand. For the jets, the kt algorithm was used, requiring jets with

ptj > 20, |ηj | < 4.5, ∆Rjj > 0.8 . (7.2)

In the calculations using Sherpa and aMC@NLO, Fastjet [73,124,125] was used. The PDF
set used was CTEQ6mE [126]. The NLO QCD calculation was performed with VBF cuts, the
LO calculation both with and without VBF cuts. In this case, because the Higgs boson is not
decayed, the VBF cuts only consists of a requirement on the rapidity separation of the two
jets,

|ηjj | > 4.0 . (7.3)

LO without VBF cuts LO with VBF cuts NLO with VBF cuts

MCFM 1204.8± 0.2 601.0± 0.7 615.5± 1.7
VBFNLO 1204.6± 0.9 601.7± 0.7 612.5± 1.5
Sherpa+GoSam 1627.1± 1.9 601.5± 0.5 618.3± 1.0
aMC@NLO+GoSam 1627.0± 1.6 599.2± 0.2
aMC@NLO+GoSam (excl. s-channel) 1202.0± 1.0 598.8± 0.4 614.7± 2.1

Table 7.2.: The LO and NLO total cross sections with various programs, using the setup of parameters and
cuts described in the text. The LO result is given with and without VBF cuts. aMC@NLO
has the explicit option of removing vector bosons from the s-channel. Comparing the first two
columns it is clearly visible that the VBF cuts effectively remove the s-channel contributions.

In the first two columns of Table 7.2, the LO total cross sections are given with and without
applying the VBF cuts given in (7.3). Without the cuts, there is a distinct difference between
the programs that include the diagrams with s-channel vector bosons and those which exclude
them. Among the members of either of those categories, the results agree very well. When
applying the VBF cuts, the differences between all programs disappear. This shows that VBF
cuts are indeed very efficient in removing the effect of the Higgsstrahlung diagrams. The NLO
total cross sections with the VBF cuts in place all agree very well.

7.1.3. Higgs boson plus three jets in VBF

The simplification of the calculation of pp→ H + 2j in VBF caused by the color algebra does
not hold anymore when adding an extra jet. Hence, in the calculation with an additional jet,
boxes, pentagons and hexagons can appear. The number of loop diagrams for pp → H + 2j
and pp → H + 3j in VBF are given for comparison in Table 7.3 and one can see that there
are actually nine times as many diagrams to calculate for the latter. Apart from the added
complexity through the increase in possible loop sizes, also now the vector bosons can appear
in the loop, which requires the use of the complex mass scheme. The full calculation of
pp → H + 3j in VBF at NLO QCD appeared only very recently [127]. Up until then,
the only calculations that were available omitted the pentagons and hexagons, because their
contribution is small [128].

Results

The virtual corrections to pp → H + 3j in VBF were calculated using GoSam with the
complex mass scheme activated. The CKM matrix was taken to be diagonal, leading to the

86
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pp→ H + 2j 240 pp→ H + 3j 2160

us→ Hdc 24 us→ Hdcg 216
uc→ Huc 24 uc→ Hucg 216
us→ Hus 24 us→ Husg 216
ds→ Hds 24 ds→ Hdsg 216
ud→ Hud 48 ud→ Hudg 432
uu→ Huu 48 uu→ Huug 432
dd→ Hdd 48 dd→ Hddg 432

Table 7.3.: The number of loop diagrams for pp→ H + 3j in VBF.

Parameter value

α−1 137.036√
s 500 GeV

MH 125 GeV
MZ 91.1876 GeV
MW 80.376 GeV
ΓZ 2.4952 GeV
ΓW 2.124 GeV

Table 7.4.: The parameters used in the evaluation phase space points for pp→ H + 3j in VBF.
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Figure 7.7.: Using the setup as given in the text with the parameters set to the values in Table 7.4, the
subprocesses us → Hdcg, uc → Hucg and uu → Huug were evaluated for one phase space
point. The final state of this phase space point was rotated around the x-axis, perpendicular to
the beam axis in the z-direction, and the subprocesses reevaluated at a hundred different values
of the angle of this rotation. The finite part of the calculation is plotted here against this angle.

seven independent subprocesses listed in Table 7.3. The setup given in Table 7.4 was used to
calculate the results for a non-exceptional phase space point provided by rambo. For each of
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the subprocesses, this result is listed in Appendix F.1.

For three of the subprocesses, uu → Huug, uc → Hucg, and us → Hdcg, an analysis of
the stability of the result was performed. Starting from the phase space point given in the
appendix, the subprocesses were evaluated at the phase space point with the final state rotated
around an axis perpendicular to the beam axis. In Figure 7.7, the finite part of the calculation
is plotted against this rotation angle. The figure shows that no instabilities are encountered.

GoSam is also capable of including even more jets to Higgs boson production in VBF, as was
shown for example by the subprocesses of pp→ H + 4j in VBF used for the stability tests of
GoSam in Section 6.2.

7.2. Higgs boson plus jets production in Gluon Fusion

From Figure 7.2 it is clear that the most frequent production channel of the Higgs boson at
LHC is through gluon fusion (GF). In the Standard Model, the production of a Higgs boson in
GF is a loop induced process, where the interaction is mediated through a heavy quark loop.
This is predominantly a top loop, because of its high mass and the resulting strong Yukawa
coupling.

The computation of gg → H at LO [129] and at NLO, both in the heavy top-mass limit
[130, 131] and with the full top- and bottom mass dependence maintained [132, 133], have
been known for a long time now. gg → H has been calculated at NNLO and very recent even
at NNNLO, only in the heavy top-mass limit, in [134–136] and [137] respectively.

Including a jet in the final state opens up the possibility of quarks in the initial state. pp →
H + 1j at LO and NLO have been calculated as part of the calculations of gg → H at NLO
and NNLO respectively. Recently, it was calculated at NNLO [27, 138]. pp → H + 2j was
calculated at LO with full top-mass dependence in [139]. The calculation at NLO in the heavy
top-mass limit followed in [140]. pp → H + 3j was calculated at LO in the heavy top-mass
limit in [141] and more recently with full top-mass dependence in [142].

7.2.1. Effective Field Theory

It has been shown [143] that one can replace the heavy fermion loop by an effective local
interaction, known as the infinite top mass limit (mt →∞). In this limit the loop effectively
shrinks to a point and this vertex is then described by the following Lagrangian,

L = −geff
4
Htr

(
GµνG

µν
)
. (7.4)

In the MS scheme, the coefficient geff is given by [130,131]

geff = − αs
3πv

(
1 +

11

4π
αs

)
+O(α3

s) , (7.5)

where v is the Higgs boson vacuum expectation value. Expanding the terms in the Lagrangian
leads to the Feynman rules given in Appendix A.3. An illustration is given in Figure 7.2.1.
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7.2 Higgs boson plus jets production in Gluon Fusion

Notice that if the gluons are in the loop, the first vertex in Figure 7.2.1 contributes two powers
of the loop momentum q to integrand. This can lead to the higher-rank numerators as de-
scribed in Section 5.2. The other two effective vertices do not lead to higher-rank polynomials:
The coupling of a Higgs boson and three gluons and the coupling of a Higgs boson and four
gluons contribute no powers of q at all. The appearance of higher-rank numerators in the loop
caused by the effective vertices made the production of a Higgs boson in association with up
to three jets in GF at NLO an excellent first application of Xsamurai.

gs

gs

gs

gEW

gs

gs

gEW

geffF2

geffgsF3

mt → ∞

mt → ∞

mt → ∞
gs

gs

gs

gs

gEW geffg
2
sF4

F4 ∝ 1

F3 ∝ 1

F2 ∝ q2

Figure 7.8.: Illustration of the heavy top-mass limit, in which the top loop shrinks to an effective vertex. The
exact expressions are given in Appendix A.3. Important to note is the momentum dependence
of the kinematic factors, parametrized here by Fi. The numerators in the expressions for F3 and
F4 do not depedent on the momenta of the particles involved. However, the numerator of F2 is
proportional to the square of the loop momentum q, if the gluons are in the loop.

In [144, 145] the validity of this approximation was analyzed in the NNLO calculation of
gg → H. It was shown that the large mt approximation works very well, with the effect of
the top quark mass suppressed terms being less than one percent, far below the uncertainty
due to scale variations.

7.2.2. Higgs boson plus two jets in GF

In [5] the full calculation of pp→ H + 2j at NLO was presented, using GoSam for the virtual
corrections. The full process pp→ H + 2j has the following partonic processes in its contract
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file:

q q → H q q , q q̄ → H q q̄ ,

q q̄ → H g g , q q̄ → H q′ q̄′ ,

q q′ → H q q′ , q g → H g q ,

q̄ q → H q q̄ , q̄ q′ → H q′ q̄ ,

g q → H g q , g g → H q q̄ ,

g g → H g g . (7.6)

Of course, these processes are not independent, because they can be mapped to each other
using crossing and/or relabeling. The minimal set of these subprocesses that GoSam identifies
and generates are

g g → H g g , g g → H q q̄ ,

q q̄ → H q q̄ , q q̄ → H q′ q̄′ . (7.7)

The code for these subprocesses was tested in a non-exceptional phase space point. The results
are given in Appendix F.4. The poles showed very good agreement with the ones obtained
from the universal IR behavior. Additionally, the benchmark point presented in [146] was
tested and excellent agreement was found.

Interface

The calculation was performed using GoSam for the virtual amplitudes and the Monte Carlo
program Sherpa [26] for the LO diagrams and the real radiation matrix elements. Sherpa
also regularized the soft and collinear singularities via the Catani-Seymour dipole formalism
for the subtraction terms, and performed the integration over phase space. The employed
interface between Sherpa and GoSam was using the BLHA1 standards.

Setup and parameters

The singularities (ultraviolet, IR and collinear) were regularized through dimensional reduction
(DRED). The MS scheme was used to renormalize the UV divergences. The parameters used
for the calculation are listed in Table 7.5.

Parameter value
√
s 8 TeV

mH 125 GeV
GF 1.6639 · 10−5 GeV−2

αLO
s (MZ) 0.129783
αNLO
s (MZ) 0.117981

v2 (
√

2GF )−1

Table 7.5.: The parameters used in the calculation of pp→ H + 2j in GF.
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The variable ewchoice from Table 6.1 was set to 1, withMW = 80.385 GeV andMZ = 91.188
GeV.

For the parton distribution functions (PDFs), CTEQ6L1 and CTEQ6mE [126] were used for the
LO and NLO calculations respectively. The publicly available library LHAPDF [147] was
employed to interface with the PDF sets in a calculation in a standardized way. The jets were
clustered using the anti-kT algorithm, as given by the Fastjet package [73, 124, 125]. The
cuts on the jets were set to:

pt,j ≥ 20GeV, |ηj | ≤ 4.0, R = 0.5 . (7.8)

There was no decay mode included for the Higgs boson, which was therefore treated as a
stable on-shell particle. The factorization and renormalization scale at its central value were
defined at

µ = µR = µF = ĤT , (7.9)

where the following definition was used

ĤT =
√
M2
H + p2

t,H +
∑

j

pt,j , (7.10)

with pt,H and pt,j as the transverse momenta of the Higgs boson and the final state partons.
The strong coupling at this scale, αs(µ), is calculated by the PDF set from the initial value
of αs(MZ) in Table 7.5. To assess the theoretical uncertainties, µ was varied in the range

1

2
ĤT < µ < 2ĤT . (7.11)

By taking the envelope of the distributions at these different scales, the error could be esti-
mated.

Reduction to normal rank

Comparing the results using Samurai and its extension Xsamurai, it was realized that
although higher-rank numerators appear in the calculation, they can always be reduced to
normal rank in an integrand reduction approach. For this process, higher-rank integrands
only appear in diagrams with a purely gluonic loop involving only three-gluon vertices and
one effective Higgs coupling. The generic numerator Γε1···εn of a one-loop diagram including
an effective ggH coupling with (n+ 1) denominators can be written as

Γε1···εn ≡ Fµ1µ2 Gµ1µ2ε1···εn , (7.12)

where q is the loop momentum and Fµ1µ2 is the effective gluon Higgs vertex defined as

Fµ1µ2 = δab
(
qν1q

µ
2 − q1 · q2 g

µν
)

and Gµ1µ2ε1···εn is the numerator of a tree-level diagram with (n+2) denominators. The latter
can be represented by
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distributions of about 1.5, over a large fraction of kine-
matical range, and a decrease of the scale uncertainty of
about 50%.

The evaluation of the virtual corrections constitutes an
application of the d-dimensional integrand reduction to
theories with higher dimensional operators.

Finally, as an initial step towards the evaluation of pp →
Hjjj at NLO, we presented first results for the one-loop
matrix elements of the partonic processes with a quark-
pair in the final state.

Acknowledgements

We thank the Sherpa collaboration for encouraging and
stimulating discussions and feedback on the manuscript.
We also would like to thank Thomas Hahn for his tech-
nical support while structuring the computing resources
needed by our codes, and Joscha Reichel for feedback on
the extended-rank version of samurai.

The work of H.v.D., G.L., P.M., and T.P. was supported
by the Alexander von Humboldt Foundation, in the frame-
work of the Sofja Kovaleskaja Award Project “Advanced
Mathematical Methods for Particle Physics”, endowed by
the German Federal Ministry of Education and Research.

G.O. was supported in part by the National Science
Foundation under Grant PHY-1068550.

H.v.D. and G.L. thank the Center for Theoretical
Physics of New York City College of Technology for hos-
pitality during the final stages of this project.

The Feynman diagrams present in this paper are drawn
using FeynArts [72].

Appendix A. Effective Higgs-gluon vertices

The operator L in Eq. (1) describes the gluon-Higgs in-
teraction in the large top-mass limit and leads to the fol-
lowing set of Feynman rules:

H

g1

g2

= −igeffFµ1µ2
c1,c2

H

g3

g1

g2 = geffgs Fµ1µ2µ3
c1,c2,c3

H

g2

g3

g1

g4

= igeffg
2
s Fµ1µ2µ3µ4

c1,c2,c3,c4

where we define

Fµ1µ2
c1,c2

= δc1c2 (pµ2

1 pµ1

2 − p1 · p2 gµ1µ2) ,

Fµ1µ2µ3
c1,c2,c3

= fc1c2c3

[
gµ1µ2 (pµ3

1 − pµ3

2 )

+ gµ2µ3 (pµ1

2 − pµ1

3 )

+ gµ3µ1 (pµ2

3 − pµ2

1 )
]
,

Fµ1µ2µ3µ4
c1,c2,c3,c4

= fc1c2ifc3c4i[ g
µ1µ4gµ2µ3 − gµ1µ3gµ2µ4 ]

+ fc1c3ifc2c4i[ g
µ1µ4gµ2µ3 − gµ1µ2gµ3µ4 ]

+ fc1c4ifc2c3i[ g
µ1µ3gµ2µ4 − gµ1µ2gµ3µ4 ].

(A.1)

In Eq. (A.1) sum over repeated indices is understood.

Appendix B. Higher-rank integrands

Higher-rank integrands, i.e. integrands where the pow-
ers of loop momenta in the numerator is higher than the
numbers of denominators, are present in diagrams with
a Higgs boson coupled to a purely gluonic loop involving
only three-gluon vertices. The generic numerator Γε1···εn

of a (n + 1)-denominator one-loop diagram can be written
as

Γε1···εn ≡ Fµ1µ2 Gµ1µ2ε1···εn , (B.1)

where Fµ1µ2 is the Hgg vertex defined in Eq. (A.1), and
Gµ1µ2ε1···εn is the numerator of an (n + 2)-gluon tree-level
diagram, which can be represented by

ε2

ε1

εn

≡

µ2

µ1

q

µ2

µ1

ε2

ε1

εn

q

We are interested in the leading behaviour in q of Γε1···εn ,
and we want to show that the highest-rank terms, with
rank r = n + 2, are proportional to the loop momentum
squared, q2. In order to show it, we neglect all external
momenta and all the terms proportional to q2.

From Eq. (A.1), one trivially has

Fµ1µ2 = qµ1 qµ2 + O(q2) , (B.2)

while the generic tensor structure of Gµ1µ2ε1···εn is

Gµ1µ2ε1···εn = qµ1T µ2ε1···εn

1 + qµ2T µ1ε1···εn

2 +

+ gµ1µ2T ε1···εn
g + O(q2) , (B.3)

where T1, T2, and Tg are tensors which may depend on q
as well. Indeed Eq. (B.3) is fulfilled for n = 0, 1,

Gµ1µ2 = gµ1µ2

Gµ1µ2ε1 = gµ1ε1qµ2 + gµ2ε1qµ1 − 2gµ2µ1qε1 , (B.4)

6

Neglecting all external momenta and all the terms that are proportional to q2, equation (7.12)
can be written as

Fµ1µ2 = qµ1 qµ2 +O(q2) , (7.13)

The generic tensor structure of Gµ1µ2ε1···εn can be written as

Gµ1µ2ε1···εn = qµ1T µ2ε1···εn1 + qµ2T µ1ε1···εn2 +

+ gµ1µ2T ε1···εng +O(q2) , (7.14)

with T1, T2, and Tg being tensors which could also depend on q. Equation (7.14) is given for
n = 0 and n = 1 as

Gµ1µ2 = gµ1µ2

Gµ1µ2ε1 = gµ1ε1qµ2 + gµ2ε1qµ1 − 2gµ2µ1qε1 , (7.15)

For n > 1 equation (7.14) can be proven to hold by induction over n, using

Gµ1µ2ε1···εn = G µ2ε1···εn−1
µ Gµ1µεn , (7.16)

which can be represented as

while for n > 1 it can be proven by induction over n by
using

Gµ1µ2ε1···εn = G µ2ε1···εn−1
µ Gµ1µεn , (B.5)

that is

≡

ε1 ε2 εn

q
µ2 µ1

ε1 ε2 εn−1

µ2

µ
q

εn

µ1

µ

Combining Eq. (B.2) and Eq. (B.3), it is easy to realize
that each rank-(n + 2) term of an n + 1-denominator dia-
gram Γε1···εn is proportional to q2. The factor q2 simplifies
against one denominator leading to a rank n numerator of
an n-denominator integrand.

Appendix C. Benchmark points for pp → Hjj

In this appendix we provide numerical results for the
renormalized virtual contributions to the processes (4), in
correspondence with the phase space point in Table C.1.
The parameters can be read from Eqs. (6), while the renor-
malization and factorization scales are set to the Higgs
mass value. The assignment of the momenta proceeds as
follows

g(p1) g(p2) → H(p3) g(p4) g(p5) ,

g(p1) g(p2) → H(p3) q(p4) q̄(p5) ,

q(p1) q̄(p2) → H(p3) q(p4) q̄(p5) ,

q(p1) q̄(p2) → H(p3) q′(p4) q̄′(p5) . (C.1)

The results are collected in Table C.2 and are computed
using DRED. In the second column of the table we provide
the LO squared amplitude,

c0 ≡ |Mtree-level|2
(4παs)2g2

eff

, (C.2)

and the coefficients ai defined in Eq. (12). As a check
on the reconstruction of the renormalized poles, in the
last column we show the values of a−1 and a−2 obtained
by the universal singular behavior of the dimensionally
regularized one-loop amplitudes [65].

Appendix D. Benchmark points for pp → Hjjj

In this appendix we collect first numerical results for the
renormalized virtual contributions to

g(p1) g(p2) → H(p3) q(p4) q̄(p5) g(p6) ,

q(p1) q̄(p2) → H(p3) q(p4) q̄(p5) g(p6) ,

q(p1) q̄(p2) → H(p3) q′(p4) q̄′(p5) g(p6) . (D.1)

gg → Hgg

c0 0.1507218951429643 · 10−3

a0 59.8657965614009
a−1 −26.4694115468536 −26.46941154671207
a−2 −12.00000000000001 −12.00000000000000

gg → Hqq̄

c0 0.5677813961826772 · 10−6

a0 66.6635142370683
a−1 −16.5816633315627 −16.58166333155405
a−2 −8.66666666666669 −8.666666666666668

qq̄ → Hqq̄

c0 0.1099527895267439 · 10−5

a0 88.2959834057198
a−1 −10.9673755313443 −10.96737553134440
a−2 −5.33333333333332 −5.333333333333334

qq̄ → Hq′q̄′

c0 0.1011096724203529 · 10−6

a0 33.9521626734153
a−1 −13.8649292834138 −13.86492928341388
a−2 −5.33333333333334 −5.333333333333334

Table C.2: Numerical results for the processes listed in Eq. (C.1)

gg → Hqq̄g

b0 0.6309159660038877 · 10−4

a0 48.68424097859422
a−1 −36.08277727147958 −36.08277728199094
a−2 −11.66666666667209 −11.66666666666667

qq̄ → Hqq̄g

b0 0.3609139855530763 · 10−4

a0 69.32351140490162
a−1 −29.98862932963380 −29.98862932963629
a−2 −8.333333333333339 −8.333333333333334

qq̄ → Hq′q̄′g

b0 0.2687990772405433 · 10−5

a0 15.79262767177915
a−1 −32.35320587070861 −32.35320587073038
a−2 −8.333333333333398 −8.333333333333332

Table D.3: Numerical results for the processes listed in Eq. (D.1)

The results, collected in Table D.3, have been computed
using the parameters in Eqs. (6), with the renormalization
and factorization scales set to the Higgs mass value, and
choosing the phase space point given in Table D.4. In
particular, in the second column of Table D.3, we provide

7

The combination of equation (7.13) and equation (7.14) then shows that every rank-(n + 2)
term of a diagram with n+1 denominators Γε1···εn is proportional to q2. In essence a factor q2

can be removed together with one denominator, which leads to an integrand of n denominators
which has a numerator of rank n. This meant the numerically faster original version of
Samurai could be used.
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7.2 Higgs boson plus jets production in Gluon Fusion

Results

With the setup as described above, the following cross sections were obtained,

σLO[pb] = 1.90+0.58
−0.41 , σNLO[pb] = 2.90+0.05

−0.20 . (7.17)

Converting the results from DRED to the tHV scheme, there was excellent agreement for the
subprocesses with MCFM (version 6.4). For the computation of the LO distribution 2.5× 107

phase space points were used. For the NLO distributions, 4.0 × 106 phase space points were
used for the Born and the virtual correction and 5.0 × 108 points for the computation of
the real radiation. In Figure 7.9 the distributions of the transverse momentum pT and the
pseudorapidity η of the Higgs boson are given. The K-factor, defined for each bin as the
NLO result divided by the LO result, is consistently at a value of about 1.5− 1.6 over a large
kinematic range.

Figure 7.9.: Distributions of the transverse momentum pT and pseudorapidity η of the Higgs boson in the
process pp→ H + 2j in GF.

The NLO calculation is clearly less dependent on the unphysical scale µ, as the estimated error
through scale variation is reduced by about 50%. In Figure 7.10 and 7.11 the distributions
of the transverse momentum and pseudorapidity of the first and second jet respectively are
shown. Also for the pseudorapidity distributions of the jets, the K-factor is very flat at about
1.5 − 1.6. For the transverse momentum distributions, however, the shapes change slightly.
For the leading jet, the K-factor decrease from 1.6 to 1.4 with increasing pT , whereas for the
second jet, it increase from 1.4 to 1.6.
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Figure 7.10.: Distributions of the transverse momentum pT and pseudorapidity η of the first jet in the process
pp→ H + 2j in GF.

Figure 7.11.: Distributions of the transverse momentum pT and pseudorapidity η of the second jet in the
process pp→ H + 2j in GF.

7.2.3. Higgs boson plus three jets in GF

For pp → H + 3j [4], there are numerous channels that can all be mapped by crossing and
relabeling to four independent subprocesses

g g → H g g g , g g → H q q̄ g ,

q q̄ → H q q̄ g , q q̄ → H q′ q̄′ g . (7.18)

94



7.2 Higgs boson plus jets production in Gluon Fusion

Figure 7.12.: Examples of hexagon diagrams which enter in the six-parton one-loop amplitudes for qq̄ →
Hqq̄g and gg → Hggg. The dot represents the effective ggH vertex.

The number of NLO diagrams increases massively for each additional jet, see Table 7.6. There
are well over thirteen thousand diagrams to be computed; many of which have higher-rank
terms, including sixty rank-seven hexagons. We checked for gauge invariance by generating the
code with analytical polarization vectors and checking their Ward identities by replacing the
polarization vectors one at the time with their momenta. Similarly as in the previous section,
the results for a non-exceptional phase space point are provided for the four subprocesses in
Appendix F.5.

pp→ H + 0j 2 NLO

gg → H 2 NLO

pp→ H + 1j 62 NLO

qq → Hg 14 NLO

gg → Hg 48 NLO

pp→ H + 2j 926 NLO

qq′ → Hqq′ 32 NLO

qq → Hqq 64 NLO

qg → Hqg 179 NLO

gg → Hgg 651 NLO

pp→ H + 3j 13179 NLO

qq′ → Hqq′g 467 NLO

qq → Hqqg 868 NLO

qg → Hqgg 2519 NLO

gg → Hggg 9325 NLO

Table 7.6.: The number of NLO diagrams for the production of Higgs boson plus jets in gluon fusion, split
out for the different subprocesses, as generated by GoSam.

To check the stability of the result, we evaluated the phase space point of the appendix with
the final state rotated around an axis perpendicular to the beam axis. In Figure 7.13, it can
be seen that no instabilities occur.

95



7 Higgs boson phenomenology

-50

0

50

100

150

π/2 π 3π/2 2π

a
0

Angle θ around y-axis

qq̄ → Hq′q̄′g

qq̄ → Hqq̄g

gg → Hqq̄g

gg → Hggg

Figure 7.13.: Finite-term a0 of the virtual matrix-elements for qq̄ → Hq′q̄′g (green), qq̄ → Hqq̄g (blue),
gg → Hqq̄g (orange) and gg → Hggg (red) for the phase space point given in Table F.9
with the final state particles rotated around the y axis, perpendicular to the beam axis. The
processes were reevaluated at a hundred different values of the angle of this rotation.

Interface

Since at the time there was no Monte Carlo program available that could provide all the
ingredients for a full NLO calculation, a hybrid setup was constructed. GoSam and Sherpa
were used for the Born and virtual contributions and an ad hoc framework consisting of
MadGraph [148, 149], MadDipole [150, 151] and MadEvent [152] was constructed for
the real contributions, the subtraction terms and the integrated dipoles. Several tests were
performed to check the consistency of this interface. Firstly, the calculation of pp → H + 2j
was redone with this hybrid setup and found agreement with the results using only Sherpa
with GoSam. Then, it was checked that the LO diagrams for pp→ H + 3j matched between
MadGraph and Sherpa. Finally, the independence of the α-parameter (see Section 2.2) was
confirmed.

Setup and parameters

The setup of this calculation was almost identical to the one of the calculation of pp→ H+2j.
The only difference was that for the central renormalization and factorization scale, now we
used µ = mH in the effective vertices, so the overall scale dependence of the strong coupling
was

α5
s → α2

s(mH)α3
s(ĤT /2) . (7.19)

If the Born term is evaluated at different scales {µi}, equation (3.48) generalizes to a sum of
logarithms for each individual coupling constant,

dσNNLO
dΦ

=

N∏

i=1

αs(µ
2
i )B + αN+1

s (µ2
R
′
)


V (Q2) + b

N∑

i=1

ln

(
µ2
i

Q2

)
B


+ αN+1

s (µ2
R
′′
)R . (7.20)
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This scale compensation at NLO is ensured independently for each µi that is varied. For
the scale compensation the actual values of µ2

R
′ and µ2

R
′′ are irrelevant because αs(µ2

R) −
αs(µ

2
R
′
) = O(α2

s). Since in NLO calculations often just one renormalization scale is used, a
useful reformulation of this formula is to use for the renormalization scale of the virtual term
the geometric mean of the {µ2

i },

µ2
R =




N∏

i=1

µ2
i




1/N

. (7.21)

This is equivalent to evaluating the virtual contribution at a random scale µ2
0 and compensating

by adding logarithms for each scale, i.e. adding to the full expression a term

αN+1
s (µ2

R
′
)bB

N∑

i=1

ln

(
µ2
i

µ2
0

)
. (7.22)

This procedure was recently derived in [153].

Results

With this setup we acquired the following total cross sections:

σLO[pb] = 0.962+0.51
−0.31 , σNLO[pb] = 1.18+0.01

−0.22 . (7.23)

We varied the renormalization and factorization scale simultaneously around the central value,
by a factor 2 and 1

2 . The result is given in Figure 7.14. It can be seen that including the NLO
corrections strongly reduces the scale dependence of the total cross section.
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Figure 7.14.: Scale dependence of the total cross section of pp→ H + 3j in GF at LO and NLO. The scale
µ was varied around the central scale µ0 = ĤT /2, by evaluating the process for five values in
the range µ0/4 < µ < 4µ0.

In Figure 7.15, the pT distributions of the Higgs boson and the three jets are shown. An
interesting feature of all four distributions is that the K-factor seems to go down linearly from
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low to high transverse momentum: For values below about 150 − 200 the NLO corrections
enhance the distributions, for higher values they decrease them. The K-factor is explicitly
shown for the pT of the Higgs boson.
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Figure 7.15.: Transverse momentum (pT ) distributions of the Higgs boson (left), including the K-factor, and
the first, second, and third leading jet (right) in the process pp→ H + 3j in GF.

7.2.4. H+2j and H+3j with ATLAS setup

A follow-up study of Higgs boson plus two and three jets production in gluon fusion was
presented in [7]. Here, specific ATLAS cuts on the jets were used,

R = 0.4 , pT > 30GeV , |η| < 4.4 . (7.24)

and Ninja was used instead of Xsamurai as integrand reduction library. Furthermore, the
Higgs boson mass was changed to mH = 126 GeV and the central scale set to µ = ĤT /2 for
both processes this time. This setup produced the following full LO and NLO cross sections.
For pp→ H + 2j:

σLO[pb] = 1.23+37%
−24% σNLO[pb] = 1.590+4%

−7%

and for pp→ H + 3j:

σLO[pb] = 0.381+53%
−31% σNLO[pb] = 0.485−3%

−13%

Several preliminary distributions are presented in [7]. In Figure 7.16 the distributions of the
transverse momentum and rapidity of the Higgs boson using this setup are given. Figures
7.17, 7.18 and 7.19 show these distributions for the leading, second leading and third leading
jet respectively.

7.3. Higgs boson production in association with a tt̄ pair and a
jet

The production of a Higgs boson in association with a tt̄ pair is a very important process,
because it allows for a direct measurement of the Standard Model Yukawa coupling. Although
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Figure 7.16.: Transverse momentum (pT ) and rapidity (y) distributions for the Higgs boson in the process
pp→ H + 3j in GF, using the ATLAS setup.
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Figure 7.17.: Transverse momentum (pT ) and rapidity (y) distributions for the leading jet in the process
pp→ H + 3j in GF, using the ATLAS setup.

in theory this could be measured with Higgs boson production in association with any massive
quark anti-quak pair, since the Yukawa coupling is proportional to the quarks mass, the
one with the tt̄ pair is by far the most relevant. Furthermore, differential observables and
distributions of this process help in determining the coupling structure and parity properties
of the Higgs boson [117,154]. However, this process is difficult to measure with high statistics.
Not only does it require a large center of mass energy for the creation of three heavy particles,
which is suppresed by the PDFs, but also separating the signal and the background is far from
trivial [155].
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Figure 7.18.: Transverse momentum (pT ) and rapidity (y) distributions for the second leading jet in the
process pp→ H + 3j in GF, using the ATLAS setup.
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Figure 7.19.: Transverse momentum (pT ) and rapidity (y) distributions for the third leading jet in the process
pp→ H + 3j in GF, using the ATLAS setup.

7.3.1. pp→ Htt̄j

The production of pp → Htt̄ at NLO in QCD has been calculated a while back [156–160].
In recent years, with the LHC going to higher center of mass energies, the process has been
getting renewed attention [117, 154, 155, 161]. In [3], the calculation with an additional jet
in the final state was presented: pp → Htt̄j. Phenomenological analysis of this process is
warranted, since the extra jet has an important impact on the kinematic region with high
transverse momentum. In Figure 7.20, two example one-loop diagrams for this process are
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shown.

Figure 7.20.: Example of one-loop diagrams contributing to the NLO QCD corrections of gg → tt̄Hg and
qq̄ → tt̄Hg.

7.3.2. Renormalization of the Yukawa coupling

GoSam automatically takes care of UV renormalization in QCD, but not of EW quantities.
The renormalization of the Yukawa coupling of the Htt̄-vertex appearing in this calculation
therefore needs to be considered separately. The Yukawa coupling is proportional to the
top-mass, for which we know the renormalization,

g0
Htt = −im

0
t

v
= −i(mt + δmt)

v
, (7.25)

where v = 2MW /gW is the Higgs vacuum expectation value. The squared matrix element
is proportional to the square of the expression, 2<[A†0A1] ∝ (g0

Htt)
2, but since we know that

δmt ∝ αs (see (6.3)), we can ignore terms (δm)2 ∝ α2
s, because they are of a higher order

than the one we are considering. Therefore the Yukawa counterterm is given by

|M|2ct,Yuk = −
(

2δmt

mt

)
· |M|2tree = −αs

2π

(4π)ε

Γ(1− ε)CF
(
µ2

m2
t

)ε [
3

ε
+ 5− 1tHV

]
· |M|2tree

= −αs
2π

(4π)ε

Γ(1− ε)CF
[

3

ε
+ 3 ln

(
µ2

m2
t

)
+ 5

]
· |M|2tree +O(ε) ,

(7.26)

where in the last line the expression was truncated in the dimensional reduction scheme
(DRED) at order O(ε). From this one can read that the single pole acquires an additional
piece,

δc−1 = −3CF · |M|2tree , (7.27)

and for the finite part this additional piece is

δc0 = −
[
5CF + 3CF ln

(
µ2

m2
t

)]
|M|2tree . (7.28)

This is also the renormalization procedure followed in [157] and [159].

7.3.3. Setup and parameters

For the Born and real radiation contributions, the Monte Carlo program Sherpa [26] and
the library Amegic [162] were used. Sherpa uses the Catani-Seymour dipole formalism [61,
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62] and also performs the integration over the phase space and the analysis. The virtual
contributions were provided by GoSam, using OneLOop [93] to provide the master integrals.
This process was the first application where the integrand reduction program Ninja was used.
The interface between Sherpa and GoSam was realized using the BLHA1 standards. There
are two independent subprocesses for this calculation,

q q̄ → t t̄ H g , g g → t t̄ H g , (7.29)

while the other subprocesses can be calculated by using crossings and/or relabeling. The
ultraviolet, infrared and collinear singularities were regularized using DRED. Furthermore,
following [157, 159], we used the MS scheme with the wave functions of the partons renor-
malized on-shell, causing the corresponding renormalization constants to exactly cancel the
external self-energy corrections. The functioning of Ninja was checked against Samurai
with ten thousand phase space points. We checked the cancellation of the poles from Ninja
against their known values and verified the gauge invariance by replacing the external polar-
ization vectors with their momentum to check the Ward identities. Just a few per mill of the
points were unstable and all of them were recovered using Golem95C as rescue system. A
non-exceptional phase space point for this process is given in Appendix F.6.

The EW scheme was set to the default in GoSam, i.e. ewchoice equal to 1. The parameters
for this calculation are given in Table 7.7.

Parameter value
√
s 8 TeV

mH 126 GeV
mt 172.5 GeV
mW 80.419 GeV
mZ 91.1876 GeV
α−1
EW 132.50698

Table 7.7.: The parameters used in the calculation of pp→ Htt̄j.

The PDF sets used were CTEQL1 for the LO calculation and CT10 for the NLO one. We used
the anti-kt algorithm implemented in Fastjet with the following cuts

pt,j ≥ 15GeV, |ηj | ≤ 4.0, R = 0.5 . (7.30)

The calculations were performed using two different choices for the central renormalization
and factorization scales µR = µF = µ0, namely µ0 = ĤT and µ0 = 2×GAT with

ĤT =
∑

final
states f

∣∣pT,f
∣∣ , (7.31)

GAT = 3
√
mT,H mT,tmT,t̄ +

∑

j

|pT,j | , (7.32)

where the sum goes over the light partons j and GAT abbreviates transverse geometric aver-
age.

102



7.3 Higgs boson production in association with a tt̄ pair and a jet

7.3.4. Results

To validate our setup we first calculated the process without the additional jet, pp → Htt̄.
We compared it with the results in [117,163] and found excellent agreement.

Proceeding to pp → Htt̄j, with this setup, for the two scale choices, we obtain the total LO
and NLO cross sections reported in Table 7.8.

Central Scale σLO [fb] σNLO [fb]

2×GAT 80.03+35.64
−23.02 100.6+0.00

−9.43

ĤT 88.93+41.41
−26.13 102.3+0.00

−15.82

Table 7.8.: Total cross section for pp→ tt̄Hj for different choices of the central scale at LO and NLO.

We varied the renormalization and factorization scale simultaneously around the two central
values and the result shows that the scale dependence is strongly reduced, see Figure 7.21.
Both central scales appear to be close to the local extremum and are therefore close to the
physical scale.
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Figure 7.21.: Scale dependence of the total cross section for pp→ Htt̄j at LO and NLO of.

In Figure 7.22 the invariant mass distributions of the tt̄ pair at NLO are shown for the
processes with and without the additional jet, relative to the LO of pp → Htt̄j. These plots
have µ = 2 × GAT as renormalization and factorization scale. For the process including the
jet, the NLO distribution shows an increase with respect to the LO of about 20-35 percent,
but a decrease with respect to the NLO of pp → Htt̄. This is because the jet takes away
energy from tt̄ pair, which is in particular visible around the threshold. For higher values, the
curves get closer.

In Figures 7.23 the distributions of the transverse momentum and pseudo-rapidity of the Higgs
boson are given. The renormalization and factorization scale used for these plots was µ = ĤT .
NLO corrections become especially important in the kinematical regions of high transverse
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momentum and low pseudo-rapidity. These are indeed the kinematical regions for boosted
analyses [161,164].

Figure 7.22.: Invariant mass distributions of the tt̄-pairs for pp → tt̄H and pp → tt̄Hj at NLO relative to
the pp→ tt̄Hj at LO for µ = 2×GAT .

Figure 7.23.: Transverse momentum pT and pseudo-rapidity η distribution of the Higgs boson at LO and
NLO for µ = ĤT .
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8 � Framework for fully automatic NLO calculations

MadGraph5_aMC@NLO [47] is a publically available and fully automated framework for the
computation of LO and NLO cross sections, also matched to parton showers, for any process. It
merged its predecessors MadGraph5 [116] and aMC@NLO [117] into one code, with additional
functionality. MadGraph5_aMC@NLO has a built-in OLP module called MadLoop [163], that
employs both an integrand decomposition procedure based on the OPP method and a tensor
integral reduction procedure.

8.1. Overview MadGraph5_aMCatNLO

MadGraph5_aMC@NLO can be run through an interactive session, both for the generation
of the code for a specific process and its actual calculation. Alternatively, one can use input
cards specifying the details of the process. When generating a process, one needs to indicate
if the process is to be calculated at LO or NLO. It will then proceed to write the code for
the process in a directory specified by the user. When the generation is done, one can choose
to launch the calculation, specifying either a fixed order calculation or including a parton
shower. Decaying the particles using the MadSpin module [165] is also a possibility. In the
code there is the possibility to write an analysis_card to generate histograms, where the
user implements his own analysis.

8.2. Description of the interface

The interface between GoSam and MadGraph5_aMC@NLO is based on the BLHA1 stan-
dards [46]. MadGraph5_aMC@NLO can write a BLHA order file, which is then processed
by GoSam. The BLHA1 defines an array to pass the numerical value of parameters that
are dynamical variables. The definition of the parameters passed through this array is set in
the order file using the keyword Parameters. Although in principle extendable to up to ten
parameters, at present only the first entry is used, to communicate the value of αs. The order
and contract files for the process computed in Section 8.4 are shown in Figures 8.2 and 8.2.

In order to run MadGraph5_aMC@NLO with GoSam, a recent version of MadGraph5_-

aMC@NLO and GoSam should be installed and the path to GoSam included in the $PATH
environment variable. When running the interactive session of MadGraph5_aMC@NLO, the
command set OLP GoSam (case sensitive) changes the employed OLP from its default Mad-
Loop to GoSam. Alternatively, the file /input/mg5_configuration.txt can be directly
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#OLE_order written by MadGraph5_aMC@NLO

MatrixElementSquareType CHaveraged
CorrectionType QCD
IRregularisation CDR
AlphasPower 2
AlphaPower 2
NJetSymmetrizeFinal Yes
ModelFile ./param_card.dat
Parameters alpha_s

# process
21 21 -> 22 22 6 -6
2 -2 -> 22 22 6 -6
1 -1 -> 22 22 6 -6
-2 2 -> 22 22 6 -6
-1 1 -> 22 22 6 -6

Figure 8.1.: Example of an order file used in the interface between MadGraph5_aMC@NLO and GoSam.

edited to include the line OLP = GoSam.
After this is set, an NLO process can be generated in the usual way. The final step in the
generation of a process, generating a directory for the output using the output <dirname>
command, will now also generate a directory <dirname>/OLP_virtuals which contains the
order and contract files along with a log file of the GoSam generation script gosam.py and a
directory /Virtuals which contains the actual GoSam code.

8.3. Benchmark processes

In [47] a large number of example processes were calculated at LO and NLO, in the latter
case using MadLoop. Using the interface, a couple of these processes with up to five ex-
ternal particles were recalculated. Firstly, the LO and NLO results were confirmed using
MadGraph5_aMC@NLO with MadLoop, then the NLO result was recalculated using the
interface with GoSam.

The list of parameters and cuts used for this reproduction of [47] is given in Table 8.3. The
PDF set used was MSTW2008nlo with error at 68% confidence level (both for LO and NLO).
The central scale was chosen to be

µ0 =
∑

i

ĤT /2, with ĤT =
√
p2
T,i +m2

i , (8.1)

with the sum over the final state particles, and the renormalization and factorization scales
were varied between µ0

2 < µF , µR < 2µ0. The jet algorithm used was the anti-kt algorithm,
and photons were isolated using Frixione isolation with εγ = n = 1 (see Section 2.4). The
CKM matrix was chosen to be diagonal and all widths were set to zero.

The statistics per process were increased until the error was reduced to the same order of
magnitude as the one quoted for that process in [47]. For some processes, this increase in
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# vim: syntax=olp
#@OLP GoSam 2.0.0
#@IgnoreUnknown True
#@IgnoreCase False
#@SyntaxExtensions
MatrixElementSquareType CHaveraged | OK
CorrectionType QCD | OK
IRregularisation CDR | OK
AlphasPower 2 | OK
AlphaPower 2 | OK
NJetSymmetrizeFinal Yes | OK # Ignored by OLP
ModelFile ./param_card.dat | OK
Parameters alpha_s | OK
21 21 -> 22 22 6 -6 | 1 2
2 -2 -> 22 22 6 -6 | 1 0
1 -1 -> 22 22 6 -6 | 1 3
-2 2 -> 22 22 6 -6 | 1 1
-1 1 -> 22 22 6 -6 | 1 4

Figure 8.2.: Example of a contract file used in the interface between MadGraph5_aMC@NLO and GoSam.

masses
mH 125 GeV
mt 173.2 GeV
nf 5

jets
R = 0.5, pTj < 30, |ηj | < 4.0

photons
Rγ = 0.7, pTγ < 20, |ηγ | < 2.0
ε = n = 1.0

Table 8.1.: The parameters and cuts used for the reproduction of several processes in [47].

statistics was done through combining multiple runs of lower statistics through a weighted
mean. For n measurements xi with statistical error σi, this weighted mean is given by

〈x〉 =

(
n∑

i=1

xi
σ2
i

)(
n∑

i=1

1

σ2
i

)−1

, (8.2)

and its standard deviation by

σ =

(
n∑

i=1

1

σ2
i

)− 1
2

. (8.3)

In Table 8.3 these results are collected. It shows in the last column the agreement between
the two results as the fraction of the standard deviation,

|xG − xM |√
σ2
G + σ2

M

, (8.4)
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8 Framework for fully automatic NLO calculations

MadGraph5_aMC@NLO + MadLoop MadGraph5_aMC@NLO + GoSam st.dev.

pp→ Z LO (4.248± 0.005) · 104

NLO (5.410± 0.022) · 104 (5.414± 0.013) · 104 0.088

pp→ Zj LO (7.209± 0.005) · 103

NLO (9.742± 0.035) · 103 (9.712± 0.040) · 103 0.564

pp→ Zjj LO (2.348± 0.006) · 103

NLO (2.665± 0.010) · 103 (2.672± 0.029) · 103 0.228

pp→W± LO (1.375± 0.002) · 105

NLO (1.773± 0.007) · 105 (1.779± 0.013) · 105 0.406

pp→W±j LO (2.045± 0.001) · 104

NLO (2.843± 0.010) · 104 (2.832± 0.024) · 104 0.423

pp→W±jj LO (6.805± 0.015) · 103

NLO (7.786± 0.030) · 103 (7.851± 0.098) · 103 0.634

pp→ tt̄ LO (4.584± 0.003) · 102

NLO (6.741± 0.023) · 102 (6.746± 0.025) · 102 0.147

pp→ tt̄γ LO (1.204± 0.001) · 100

NLO (1.744± 0.005) · 100 (1.745± 0.001) · 100 0.157

pp→ tt̄Z LO (5.273± 0.004) · 10−1

NLO (7.598± 0.026) · 10−1 (7.619± 0.009) · 10−1 0.756

pp→ tt̄H LO (3.579± 0.003) · 10−1

NLO (4.608± 0.016) · 10−1 (4.608± 0.006) · 10−1 0.012

pp→ tt̄Hj LO (2.674± 0.041) · 10−1

NLO (3.244± 0.025) · 10−1 (3.205± 0.009) · 10−1 1.455

Table 8.2.: Reproduction of fixed order NLO cross sections in pb for a number of processes from [47] with
GoSam. The last column shows the agreement between the two numbers using formula (8.4).

where xG ± σG and xM ± σM are the results using GoSam and MadLoop respectively.
Results that are less than two standard deviations apart were classified as being in good
enough agreement.

8.4. Production of a top anti-top pair in association with two
photons

In addition to the comparison of the processes listed in Table 8.3, which were used to validate
the interface, a more thorough analysis was performed for the production of a top anti-top
pair in association with two photons, which will be presented in ??. This is an important
background to the production of a Higgs boson with a top anti-top pair, pp→ Htt̄, with the
Higgs boson subsequently decaying into two photons.
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8.4 Production of a top anti-top pair in association with two photons

8.4.1. Setup

Two different cases for the center-of-mass energy were considered, 8 TeV and 13 TeV. The setup
was very similar to the one in Section 8.3, but there are some important differences. The mass
of the Higgs boson was set to mH = 125 GeV, the mass of the top quark to mt = 173.2. The
process was calculated in the nf = 5 model. As indicated in [166], the value of the electroweak
coupling should be set to its low energy limit α−1

EW = 137.0. The mass of the Z boson was set to
mZ = 91.1876 GeV and the value of the Fermi constant to GF = 1.16639·10−5, which fixes the
electroweak scheme. For the jets that can occur in the real radiation, the anti-kt algorithm was
used, as implemented in the code Fastjet [73,124,125], with minimal transverse momentum
pjTmin = 20 GeV, jet-radius R = 0.4 and maximal absolute pseudo-rapidity |ηj | < 4.4. For the
photons, Frixione isolation (see Section 2.4) was used, with minimal transverse momentum
pγTmin = 20, radius of isolation Rγ < 0.4 and Frixione parameters n = 1.0 and εγ = 1.0.
Furthermore, an isolation radius between the two photons Rγγ = 0.4 was implemented by
hand. In leading order calculations, the PDF set CTEQ6L1 [126] was used, at next-to-leading
order the PDF set CT10. The renormalization and factorization scale were set to µR = µF = µ0

with
µ0 = ĤT /2, with ĤT =

∑

final state i

mT,i , (8.5)

where the sum goes over the final state particles.

8.4.2. Comparison with Sherpa and MadLoop

To confirm the interface was working properly, first the total integrated cross section was cal-
culated at LO and NLO for three combinations: MadGraph5_aMC@NLO + GoSam, Sherpa
+ GoSam and MadGraph5_aMC@NLO + MadLoop. The results are given in Tables 8.3
and 8.4. The LO is calculated by the MC alone, hence at LO there are only two numbers to
compare. The LO cross sections agreed very well.

√
s = 8 TeV Sherpa+GoSam MadGraph5_aMC@NLO + MadLoop MadGraph5_aMC@NLO + GoSam

LO 1.0246± 3.51 · 10−4 1.0241± 5.50 · 10−4

NLO 1.3593± 1.80 · 10−3 1.3507± 5.85 · 10−3 1.3537± 1.21 · 10−3

Table 8.3.: Total cross sections in fb at center-of-mass energy
√
s = 8 TeV for combinations of MCs and

OLPs, at LO and NLO.

√
s = 13 TeV Sherpa + GoSam MadGraph5_aMC@NLO + MadLoop MadGraph5_aMC@NLO + GoSam

LO 3.1101± 1.65 · 10−3 3.1131± 1.72 · 10−3 3.1102± 1.69 · 10−3

NLO 4.3875± 6.83 · 10−3 4.3576± 1.59 · 10−2 4.3194± 1.89 · 10−2

Table 8.4.: Total cross sections in fb at center-of-mass energy
√
s = 13 TeV for combinations of MCs and

OLPs, at LO and NLO.

Proceeding to NLO, notice that MadGraph5_aMC@NLO + MadLoop agrees excellently with
MadGraph5_aMC@NLO + GoSam, which also was the conclusion in the last section. Also,
Sherpa+GoSam agrees very well with MadGraph5_aMC@NLO + MadLoop.
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8 Framework for fully automatic NLO calculations

To fully test the remaining relation, between Sherpa+GoSam and MadGraph5_aMC@NLO

+ GoSam, the process with center-of-mass energy 8 TeV was rerun for both combinations
with higher statistics and an analysis file in place to create differential distributions. These
are shown in Figures 8.3, 8.4 and 8.5. The ratio of the two results is shown at the bottom
of each plot. The width of the band of this ratio is calculated by using the relative errors in
quadrature:

σratio =

√(
σS
xS

)2

+

(
σMG

xMG

)2

(8.6)

where x and σ are the result and error for a bin for Sherpa (S) and MadGraph5_aMC@NLO

(MG).
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Figure 8.3.: The distributions of the transverse momenta of the four particles, using Sherpa + GoSam
(blue) and MadGraph5_aMC@NLO + GoSam (red). The width of the band in the ratio plot
at the bottom of each plot is calculated using equation (8.7).
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Figure 8.4.: The distributions of the invariant mass mγγ (left) and separation ∆Rγγ (right) of the two
photons, using Sherpa + GoSam (blue) and MadGraph5_aMC@NLO + GoSam (red). The
width of the band in the ratio plot at the bottom of each plot is calculated using equation (8.7).
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Figure 8.5.: The LO distributions of the rapidity of the hardest photon (left) and second hardest photon
(right), using Sherpa + GoSam (blue) and MadGraph5_aMC@NLO + GoSam(red). The
width of the band in the ratio plot at the bottom of each plot is calculated using equation (8.7).

8.4.3. Phenomenological results

In Figures 8.6, 8.7, 8.8 and 8.9 the differential distributions for the calculation using MadGraph5_-

aMC@NLO + GoSam are shown again, but this time with respect to the same distributions
at LO. It is interesting to note that the K-factor is really flat at about 30% for the entire range
of transverse momentum distributions (figure 8.6), as well as for the rapidity distributions of
the photons (figure 8.9). For the invariant mass mγγ of the two photons and their separa-
tion ∆Rγγ (figure 8.7), although less so in the high energy tail, this also seems to hold quite
well. The rapidity distributions of the top and the anti-top (figure 8.8) show a more involved
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8 Framework for fully automatic NLO calculations

K-factor. Similarly as before, the bandwidth of the K-factor is given by

σK-factor =

√(
σNLO
xNLO

)2

+

(
σLO
xLO

)2

. (8.7)
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Figure 8.6.: The LO (blue) and NLO (red) distributions of the transverse momenta of the four particles.
The width of the band in the K-factor at the bottom of each plot is calculated using equation
(8.7).
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8.4 Production of a top anti-top pair in association with two photons
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Figure 8.7.: The LO (blue) and NLO (red) distributions of the invariant mass mγγ (left) and seperation
∆Rγγ (right) of the two photons. The width of the band in the K-factor at the bottom of each
plot is calculated using equation (8.7).
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Figure 8.8.: The LO (blue) and NLO (red) distributions of the rapidity of the top (left) and anti-top (right).
The width of the band in the K-factor at the bottom of each plot is calculated using equation
(8.7).
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Figure 8.9.: The LO (blue) and NLO (red) distributions of the rapidity of the hardest photon (left) and
second hardest photon (right). The width of the band in the K-factor at the bottom of each
plot is calculated using equation (8.7).
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9 � Conclusions

With the successful running of the LHC in recent years and the resulting increased precision of
experimental measurements, efforts on increasing the precision on theoretical predictions have
had to keep pace. This requirement manifested itself at two frontiers: Firstly, due to increased
center-of-mass energy, there was an increased need for higher final state multiplicity processes,
often including massive particles. Secondly, calculations at higher orders in perturbation
theory were warranted, in particular the standard had to shift from leading order to next-to-
leading order (NLO) in perturbation theory to obtain the desired accuracy. The combination
of these two elements leads to calculations with thousands or even tens of thousands of one-
loop diagrams. It was this challenge that pushed for more efficient ways to treat one-loop
calculations, as well as for the automation of these kind of calculations.

With this in mind, several novel techniques for one-loop calculations were developed in recent
years. We discussed the mechanics of Passarino-Veltman reduction, but we mainly focused on
the d-dimensional integrand reduction algorithm as implemented in Samurai. This code is
embedded in GoSam, an automated framework for the generation and evaluation of one-loop
diagrams, which was described with a particular focus on its recent upgrade to GoSam2.0.
As an example of the strength and range of capabilities of the framework, the virtual QCD
corrections to the production of a Higgs boson with two and three associated jets in vector
boson fusion (pp → H + jets in VBF) were computed. The tests performed on the precision
and stability of GoSam2.0 were described, as well as its application to a process very relevant
to LHC, the production of a Higgs boson in association with a tt̄ pair and an additional jet
(pp → Htt̄j). The Higgs boson production channel with the highest cross section, as well
as the main background to VBF, is through gluon fusion. The effective vertex appearing in
this calculation can cause the rank of the numerator of the integrand to exceed the number of
denominators; one-loop diagrams with this property are hence known as higher-rank diagrams.
The original integrand reduction algorithm was not equipped to handle these higher-rank
numerators and therefore had to be extended. This extension was implemented in Xsamurai,
which was used for the calculation of the associated production of a Higgs boson with two
and three additional jets in gluon fusion (pp → H + 3j in GF). The latter encompasses the
calculation of well over thirteen thousand loop diagrams and can therefore without doubt
be considered among the most challenging NLO calculations ever performed. Because of the
higher-rank extension, GoSam is to this date the only program capable of calculating this
process. One-loop calculations are only one ingredient of a full NLO calculation; the other ones
are provided by Monte Carlo programs (MCs). With the increase in number of available one-
loop providers (OLPs) like GoSam, as well as Monte Carlo tools, the need for a standardized
interface between the two became apparent. This standard, known as the Binoth-Les Houches
Accord (BLHA), was described, as well as its recent upgrade. Particular detail was given to the

115



9 Conclusions

implementation of the BLHA to the interface between GoSam and MadGraph5_aMC@NLO,
focussing on the production of a tt̄ pair in association with two photons (pp → tt̄γγ), an
important background process to pp→ Htt̄.

It is worth to stress again the importance of automation in modern particle physics phe-
nomenology. Many of the calculations performed in recent years, including some of the more
challenging ones described in this work, were unthinkable only a decade ago. Yet, these cal-
culations proved to be imperative by the parallel swift advancement on the experimental side.
The framework presented in this work covers a wide range of ingredients, from the algebraic
treatment of integrands all the way to distributions of observables in Monte Carlo event simu-
lations. In essence, thanks to the full automation of all its ingredients and the realized interface
between them, NLO calculations that used to require years of expertise and dedication have
been reduced to figuratively ‘pressing a button’.
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A � Feynman rules

In this appendix the Feynman rules derived in Chapter 3 and Section 7.2 are collected.

A.1. Electroweak sector

The Feynman rules collected in this section are derived in Section 3.1. They are given in
the unitary gauge. GoSam uses a different gauge, in which Goldstone bosons and ghosts
can participate. However, these are only relevant when doing NLO EW calculations, which
are not discussed in this work. Goldstone bosons can and do appear in the calculation of
Higgs boson production in VBF, but since their couplings to fermions are proportional to the
fermion mass, this contribution is zero. For clarity, the notation gW is used as the coupling
of SU(2)w, corresponding to g in Section 3.1.

Vector boson propagator Higgs boson propagator

k
µ ν

photon

−igµν

k2 + iε

V=W,Z

−i
k2 −m2

V + iε

(
gµν − kµkν

m2
V

) k
i

k2 −mH + iε

Fermion-vector boson vertex

µ

Fermion-photon vertex

− iQf eγµ

Lepton-W vertex

− i gW
2
√

2
γµ(1− γ5)

Fermion-W vertex

− i ef

2
√

2 sin θW
γµ(1− γ5)Vji

Fermion-Z vertex

− i ef

2 sin θW cos θW
γµ(V −Aγ5)

with V = If3 − 2Qf sin θW and A = If3 .
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A Feynman rules

W-Photon,Z three-vertex

µ

λ

ν

k1

k2

k3

W±

W∓

Z, γ igV
(
gµν(k1 − k2)λ + gνλ(k2 − k3)µ + gλµ(k3 − k1)ν)

)
with gV = e, e cot θW for γ,Z.

W-{Photon,Z} four-vertex

ν

µ α

βW∓

W± V

V

− igV1gV2

(
2gαβgµν − gαµgβν − gανgβµ

)
with gV = e, e cot θW for γ,Z.

W-boson four-vertex

ν

µ α

βW±

W± W±

W±

ig2W

(
2αβgµν − gαµgβν − gανgβµ

)

fermion-Higgs boson coupling W-Higgs boson three-vertex

H − i gW
2mW

mf

µ

H

ν

W±

W∓

igWmW g
µν
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A.2 Quantum Chromodynamics

Z-Higgs boson three-vertex Higgs boson three-vertex

µ

H

ν

Z

Z

i
e

sin θW cos θW
mZg

µν H

H

H

− i 3gW
2mW

m2
H

W-Higgs boson four-vertex Z-Higgs boson four-vertex

ν

µ

W∓

W± H

H

i
g2W
2
gµν

ν

µ

Z

Z H

H

i
e2

2 sin2 θW cos2 θW
gµν

Higgs boson four-vertex

H

H H

H

− i 3g2W
4m2

W

m2
H

A.2. Quantum Chromodynamics

The Feynman rules collected in this section are derived in Section 3.2. λ is the gauge fixing
parameter as defined by expression (3.35).

Gluon propagator

k
µ, a ν, b iδAB

k2 + iε

(
−gµν + (1− λ)

kµν

k2 + iε

)
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A Feynman rules

Ghost propagator Quark propagator

k
i j δAB

i

(k2 + iε)

k
i j δab

i

(/k −m+ iε)ji

Three-gluon vertex

µ

ν

σ

k1

k2

k3

− gsfABC
(
gµν(k1 − k2)ρ + gνρ(k2 − k3)µ + gρµ(k3 − k1)ν

)

Four-gluon vertex

µ

ν σ

ρ

−ig2s
(
fEACfEBD (gµνgρσ − gµσgνρ)

fEADfEBC (gµνgρσ − gµρgνσ)

fEABfECD (gµσgνσ − gµσgνρ)
)

Ghost-gluon vertex Quark-gluon vertex

ν
k

gsf
ABCkµ

i

ν

j

− igs(tA)cb(γ
µ)ji

120



A.3 Effective Higgs boson vertices

A.3. Effective Higgs boson vertices

In this section the Feynman rules for effective Higgs boson vertices are collected, using geff as
given by equation (7.5).

Higgs boson-gluon three-vertex

µ, a

H

ν, b

k1

k2

− igeffδab (kν1k
µ
2 − k1 · k2 g

µν)

Higgs boson-gluon four-vertex

ν, b

µ, a H

ρ, c

k1

k2 k3

geffgsf
ABC[ gµν (kρ1 − k

ρ
2) + gνρ (kµ2 − k

µ
3 ) + gρµ (kν3 − kν1 )

]

Higgs boson-gluon five-vertex

ν, b

µ, a

H

ρ, c

k1
k2

k3

σ, d
k4

igeffg
2
s

(
fABEfCDE [ gµσgνρ − gµρgνσ ]

+fACEfBDE [ gµσgνρ − gµνgρσ ]

+fADEfBCE [ gµρgνσ − gµνgρσ ]
)
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B � One-loop integrals

In this appendix explicit expressions for relevant one-loop integrals are derived. We will make
frequent use of the Gamma function,

Γ(t) =

∫ ∞

0
dxxt−1e−x , (B.1)

which is the generalization of the factorial function from natural to real and complex num-
bers,

Γ(n) = (n− 1)! ∀n ∈ N . (B.2)

It has the properties
Γ(1) = 1, Γ(z + 1) = zΓ(z), z ∈ C . (B.3)

The expressions for scalar integrals used in this section can be found in the literature, for
example in Appendix A.1 of [167]. Important to note here is that

lim
ε→0

(εIi) = m2
i , lim

ε→0

(
εIij
)

=
1

2
, lim

ε→0

(
εIijk

)
= 0 . (B.4)

B.1. Higher dimensional integrals

Integrals with a power of µ2 in the numerator of the integrand can always be rewritten to
higher dimensional ones. Consider an integral

∫
ddq̄(µ2)rf(qα, µ2) =

∫
d4q

∫
d−2εµ(µ2)rf(qα, µ2) . (B.5)

In general for an integration over an n-dimensional space, one has

dnx = xn−1dxdΩn−1,

∫
dΩn =

2π(n+1)/2

Γ
(
n+1

2

) , (B.6)

so we can write, using the fact that dµ = 1
2(µ2)−1dµ2,

∫
d−2εµ(µ2)rf(qα, µ2) =

∫
dΩ−1−2ε

∫ ∞

0
dµ2(µ2)−1−ε−rf(qα, µ2)

=

∫
dΩ−1−2ε∫
dΩ2r−1−2ε

∫ ∞

0
d2r−2εµf(qα, µ2) .

(B.7)
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B One-loop integrals

Since r ∈ N, we can write for the factor in front,
∫
dΩ−1−2ε∫
dΩ2r−1−2ε

=
1

πr
Γ(r − ε)
Γ(−ε) =

1

πrΓ(−ε)(r − ε− 1)Γ(r − ε− 1) = · · ·

=
1

πrΓ(−ε)(r − ε− 1)(r − ε− 2) · · · (1− ε)(−ε)Γ(−ε)

=
1

πr

r∏

κ=1

(κ− 1− ε) .

(B.8)

Together with the four dimensional part, we therefore have

∫
ddq̄(µ2)rf(qα, µ2) =

1

πr

r∏

κ=1

(κ− 1− ε)
∫
dd+2r q̄f(qα, µ2) . (B.9)

B.1.1. Iij[µ2]

Contracting expression (4.32) with g̃µν instead of the four-dimensional part, we have

Iij [µ
2] = 2εB00 . (B.10)

Filling in the known expression for B00 from equation (4.39), we end up with

Iij [µ
2] =

1

2

(
m2
i +m2

j −
k2

3

)
+O(ε) . (B.11)

B.1.2. Iijk[µ2]

Contracting expression (4.41) with g̃µν removes all the four-dimensional terms multiplying
kµi k

ν
j and we have

Iijk[µ
2] = 2εC00 =

1

2
ε
(

2m2
i Iijk + 2Iijk[µ

2]− fjC2(ijk)− fiC1(ijk) + Ijk

)
. (B.12)

Iijk is of order O(ε). For C1 and C2, which are linear combinations of the two integrals

Iijk[q̄ · k1] =
1

2

(
Iik − Ijk + fiIijk

)
, Iijk[q̄ · k2] =

1

2

(
Iij − Iik + fjIijk

)
, (B.13)

we see that the multiplication with ε exactly cancels out the first term against the second in
both expressions, whereas the last terms are again O(ε). Therefore, the only contribution is
from the last term Ijk = 1

2 +O(ε), which gives for the total integral simply

Iijk[µ
2] =

1

2
+O(ε) . (B.14)
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B.2 Higher rank integrals

B.2. Higher rank integrals

The extension to higher rank introduces four new master integrals, that are given below. They
were calculated in [85]. Using the notation pji = (pj − pi), they are given by

Ii[µ
2] =

iπ2m4
i

2
+O(ε)

Ii[((q + pi) · e3)((q + pi) · e4)] = −m
2
i Ii + Ii[µ

2]

4
+O(ε)

I[µ2((q + pi) · e2)] =
iπ2

12
(pji · e2)(p2

ji − 2m2
i − 4m2

j ) +O(ε)

Iijk[µ
4] =

iπ6

4

(
p2
jk + p2

ji + p2
ki

4
−m2

i −m2
j −m2

k

)
+O(ε) .

(B.15)
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C � Spinor helicity formalism

The spinor helicity formalism is used very often in the calculation of scattering amplitudes.
Here the notation will be introduced and a few useful identities will be derived. More infor-
mation can be found in several reviews, for example in [168,169].

Massless fermions obey the Dirac equation,

/pU(p) = 0 . (C.1)

In the Weyl basis, the right- and left-handed spinors that are a solution to this equation are
the spinors,

UR =

(
0

uR(p)

)
, UL =

(
uL(p)

0

)
, (C.2)

where the two entries satisfy
p · σuR = 0, p · σ̄uL = 0 . (C.3)

In the massless case, the anti-particle solutions to the Dirac equation satisfy the same equation
as U(p). Considering everything outgoing, left- and right-handed fermions can be represented
as ŪL and ŪR. Left- and right-handed anti-fermions are then represented by UR and UL. The
spinors are written compactly as

ŪL(p) = 〈p, ŪR = [p, UL(p) = p], UR(p) = p〉 . (C.4)

This allows us to write common occurring expressions in a compact way. First of all, the Dirac
equation now reads

/pp〉 = /pp] = 0 . (C.5)

The Lorentz-invariant spinor product becomes

ŪL(p)UR(q) = 〈pq〉, ŪR(p)UL(q) = [pq] . (C.6)

The chiral projection becomes

p〉[p = UR(p)ŪR(p) = /p

(
1− γ5

2

)
, p]〈p = UL(p)ŪL(p) = /p

(
1 + γ5

2

)
. (C.7)

Note that this implies
〈pq〉 = [qp]∗ . (C.8)

Taking the trace of two projection operators gives

〈qp〉[pq] = Tr
[
p〉[pq]〈q

]
= Tr

[
/p

(
1− γ5

2

)
/q

(
1 + γ5

2

)]
= 2p · q , (C.9)
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C Spinor helicity formalism

which means that
|〈pq〉|2 = |[qp]|2 = 2p · q . (C.10)

Using the asymmetry of σ2 one can furthermore show that

〈pq〉 = −〈qp〉 [pq] = −[qp] . (C.11)

From this it trivially follows that
〈pp〉 = [pp] = 0 . (C.12)

From equation (C.3) it follows that we can write

uR(p) = iσ2u∗L(p) . (C.13)

This expression can be used to rewrite

u†L(p)σ̄µuL(q) = u†L(p)σ̄µ(−(iσ2)2)uL(q)

= u†L(p)(−iσ2)σµT (iσ2)uL(q)

= uTR(p)σµTu∗R(q)

= u†R(q)σµuR(p) ,

(C.14)

which means that
〈pγµq] = [qγµp〉 . (C.15)

Similarly, using the Fierz identity of the sigma matrices one gets

〈pγµq]〈kγµl] = 2〈pk〉[lq], 〈pγµq][kγµl〉 = 2〈pl〉[kq] . (C.16)

The Schouten identity reads

〈ij〉〈kl〉+ 〈ik〉〈lj〉+ 〈il〉〈jk〉 = 0

[ij][kl] + [ik][lj] + [il][jk] = 0 .
(C.17)

With these identities it is possible to construct a spinor representation of polarization vectors
for massless gauge bosons of definite helicity ±1,

ε∗µ+ (k) =
1√
2

〈rγµk]

〈rk〉 , ε∗µ− (k) =
1√
2

[rγµk〉
[rk]

, (C.18)

where r is an auxiliary light like four-vector known as a reference vector. This definition has
all the necessary properties of a polarization vector. Since the Dirac equation tells us that
/k|k〉 = /k|k] = 0, this polarization vector is transverse to its momentum for any reference
vector,

ε±(k, r) · k = 0 . (C.19)

Furthermore, it satisfies

ε+ · (ε+)∗ = ε+ · ε− = −1

2

〈rγµk][rγµk〉
〈rk〉[rk]

= −1 ,

ε+ · (ε−)∗ = ε+ · ε+ =
1

2

〈rγµk]〈rγµk]

〈rk〉2 = 0 ,

(C.20)

where the Fierz identities from equation (C.16) were used to make the numerator of the former
cancel against its denominator and make the numerator of the latter become proportional to
〈rr〉 and hence vanish.
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D � Residues

In this appendix the explicit expressions for the residues appearing in the d-dimensional in-
tegrand reduction algorithm are collected, which were derived in Chapters 5.1 and 5.2. They
are given both in normal and higher rank.

D.1. Five-point contributions

D.1.1. Normal rank

∆ijk`m(q, µ2) = c
(ijk`m)
5,0 µ2 (D.1)

D.1.2. Higher rank

Λijk`m(q, µ2) = ∆ijk`m(q, µ2) (D.2)

D.2. Four-point contributions

D.2.1. Normal rank

∆ijk`(q, µ
2) = ∆R

ijk`(q, µ
2) + c

(ijk`)
4,0 + c

(ijk`)
4,2 µ2 + c

(ijk`)
4,4 µ4 (D.3)

with
∆R
ijk`(q, µ

2) =
(
c

(ijk`)
4,1 + c

(ijk`)
4,3 µ2

)
(q + pi) · v⊥ (D.4)

D.2.2. Higher rank

Λijk`(q, µ
2) = ∆ijk`(q, µ

2) + c
(ijk`)
4,5 µ4 (q + pi) · v⊥ (D.5)
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D Residues

D.3. Three-point contributions

D.3.1. Normal rank

∆ijk(q, µ
2) = ∆R

ijk(q, µ
2) + c

(ijk)
3,0 + c

(ijk)
3,7 µ2 (D.6)

with

∆R
ijk(q, µ

2) =
(
c

(ijk)
3,1 + c

(ijk)
3,8 µ2

)
(q + pi) · e3

+
(
c

(ijk)
3,4 + c

(ijk)
3,9 µ2

)
(q + pi) · e4

+ c
(ijk)
3,2 ((q + pi) · e3)2 + c

(ijk)
3,5 ((q + pi) · e4)2

+ c
(ijk)
3,3 ((q + pi) · e3)3 + c

(ijk)
3,6 ((q + pi) · e4)3

D.3.2. Higher rank

Λijk(q, µ
2) = ∆ijk(q, µ

2) + c
(ijk)
3,14 µ4

+c
(ijk)
3,10 µ2 ((q + pi) · e3)2

+c
(ijk)
3,11 µ2 ((q + pi) · e4)2

+c
(ijk)
3,12 ((q + pi) · e3)4

+c
(ijk)
3,13 ((q + pi) · e4)4 (D.7)

D.4. Two-point contributions

D.4.1. Normal rank

∆ij(q, µ
2) = ∆R

ij(q, µ
2) + c

(ij)
2,0 + c

(ij)
2,9 µ

2 (D.8)

with

∆R
ij(q, µ

2) = c
(ij)
2,1 (q + pi) · e2 + c

(ij)
2,2 ((q + pi) · e2)2

+ c
(ij)
2,3 (q + pi) · e3 + c

(ij)
2,4 ((q + pi) · e3)2

+ c
(ij)
2,5 (q + pi) · e4 + c

(ij)
2,6 ((q + pi) · e4)2

+ c
(ij)
2,7 ((q + pi) · e2)((q + pi) · e3)

+ c
(ij)
2,8 ((q + pi) · e2)((q + pi) · e4) .
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D.5 One-point contributions

D.4.2. Higher rank

Λij(q, µ
2) = ∆ij(q, µ

2)

+µ2
(
c

(ij)
2,10 (q + pi) · e2 + c

(ij)
2,11 (q + pi) · e3 + c

(ij)
2,12(q + pi) · e4

)

+c
(ij)
2,13 ((q + pi) · e2)3 + c

(ij)
2,14((q + pi) · e3)3 + c

(ij)
2,15 ((q + pi) · e4)3

+c
(ij)
2,16((q + pi) · e2)2((q + pi) · e3)

+c
(ij)
2,17((q + pi) · e2)2((q + pi) · e4)

+c
(ij)
2,18((q + pi) · e2)((q + pi) · e3)2

+c
(ij)
2,19((q + pi) · e2)((q + pi) · e4)2 (D.9)

D.5. One-point contributions

D.5.1. Normal rank

∆i(q, µ
2) = c

(i)
1,0 + c

(i)
1,1((q + pi) · e1) + c

(i)
1,2((q + pi) · e2)

+ c
(i)
1,3((q + pi) · e3) + c

(i)
1,4((q + pi) · e4)

(D.10)

D.5.2. Higher rank

Note that for historical reasons, there is no c(i)
1,9.

Λi(q, µ
2) = ∆i(q, µ

2)

+c
(i)
1,5((q + pi) · e1)2 + c

(i)
1,6((q + pi) · e2)2

+c
(i)
1,7((q + pi) · e3)2 + c

(i)
1,8((q + pi) · e4)2

+c
(i)
1,10((q + pi) · e1)((q + pi) · e3) + c

(i)
1,11((q + pi) · e1)((q + pi) · e4)

+c
(i)
1,12((q + pi) · e2)((q + pi) · e3) + c

(i)
1,13((q + pi) · e2)((q + pi) · e4)

+c
(i)
1,14 µ

2 + c
(i)
1,15((q + pi) · e3)((q + pi) · e4) (D.11)
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E � GoSam example

As a simple example to illustrate the basic functioning of GoSam, let us assume we want
to calculate to order O(ααs) the process e+e− → tt̄, which are QCD corrections to the
electroweak LO process. The minimal input card named eett.in would look like Figure E.1.

process_path=eett
in = e+, e-
out = t, t~
order = gs, 0, 2

Figure E.1.: The minimal input card for the process e+e− → tt̄. The process is written in a directory ‘./eett’
relative to the current working directory. The corrections are QCD, which means that the LO
diagrams have no factors of gs, whereas the NLO diagrams have two powers of gs.

A complete description of all possible options in the input card is given in the manual. The code
generation can be invoked by calling the gosam.py executable on this card. After generating
and compiling the source code, going in the directory ‘/eett/matrix’ and typing

$ make test.exe

will create a useful testing executable that generates a number of phase space points and
returns the Born contribution, the finite part and the single and double pole of the calculation.
Also the IR poles to check against and an estimation of the timing per phase space point are
printed.

In this example the first phase space point generated (which may vary from one installation
to another) is given in Table E.1. Running the executable prints out (along with the banners
of the programs involved) the setup used and the results as shown in Figure E.2.

particle E px py pz

p1 250.00000000000000 0.0000000000000000 0.0000000000000000 249.99999999947775
p2 250.00000000000000 0.0000000000000000 0.0000000000000000 -249.99999999947775
p3 249.99999999999994 159.08877886329807 -21.562578473620317 86.118381599711881
p4 250.00000000000006 -159.08877886329827 21.562578473620317 -86.118381599711938

Table E.1.: Benchmark phase-space point for e+e− → tt̄.
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E GoSam example

# --------- SETUP ---------
# renormalisation = 1
# scheme = DRED
# reduction with NINJA
# rescue with GOLEM95
# --- PARAMETER VALUES ---
# Boson masses
# mZ = 91.18760000000000
# mW = 80.37600000000000
# mH = 125.0000000000000
# wZ = 2.495200000000000
# wW = 2.124000000000000
# wH = 0.000000000000000
# Active light quarks:
# Nf = 5.000000000000000
# Nfgen = -1.000000000000000
# Fermion masses
# mc = 1.270000000000000
# mb = 4.200000000000000
# mbMS = 4.200000000000000
# wb = 0.000000000000000
# mt = 171.2000000000000
# wt = 0.000000000000000
# mtau = 1.776840000000000
# wtau = 0.000000000000000
# -------------------------
# Renormalisation scale:
# mu = 499.9999999994778
# -------------------------

# LO: 0.3096926486067998E-01
# NLO, finite part: 22.22515377498502
# NLO, single pole: 2.521442058297684
# NLO, double pole: 0.000000000000000
# IR, single pole: 2.521442057085296
# IR, double pole: 0.000000000000000
# Time/Event [ms]: 2.000

Figure E.2.: The output of the executable created from the input card in E.1 using the phase space point
given in E.1.

All of the settings in this output can be set both in the original input card or after generation
and compilation in the file test.f90, after importing them from the configuration module.
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F � Benchmark phase space points

In this appendix all the phase space points referred to in the main text are collected. They
can be used as benchmarks to check results against. The finite part, single pole and double
pole are given as c0, c−1 and c−2, defined by

2Re
{
Mtree-level∗Mone-loop

}
(αs/2π) |Mtree-level|2

≡ c−2

ε2
+
c−1

ε
+ c0 . (F.1)

Note that the results are normalized to the tree-level matrix element squared. For some
processes it may be useful to also list this tree-level matrix element squared, denoted as a0
and given (unless otherwise specified) by

a0 =
|Mtree-level|2

(4παs)b
, (F.2)

with its tree-level QCD coupling stripped off, as defined in equation (6.1). The reconstruction
of the renormalized pole can be checked against the value of c−1 and c−2 obtained by the
universal singular behavior of the dimensionally regularized one-loop amplitudes [113], while
the precision of the finite parts is estimated by re-evaluating the amplitudes for a set of
momenta rotated by an arbitrary angle about the axis of collision (see Section 6.2.1). The
accuracy of the results in this appendix is indicated by the digits in boldface.

F.1. SAMURAI and Ninja pp→ H + 3j in VBF

In this appendix we collect numerical results for the renormalized virtual contributions to the
subprocesses of pp → H + 3j in VBF as described in Section7.1, in correspondence to the
phase-space point in Table F.1. The results are collected in the tables in Figure F.2 and are
computed using dimensional reduction.

particle E px py pz

p1 250.00000000000000 0.0000000000000000 0.0000000000000000 250.00000000000000
p2 250.00000000000000 0.0000000000000000 0.0000000000000000 -250.00000000000000
p3 131.06896655823209 27.707264814722667 -13.235482900394146 24.722529472591685
p4 164.74420140597425 -129.37584098675183 -79.219260486951597 -64.240582451932028
p5 117.02953632773803 54.480516624273569 97.990504664150677 -33.550658370629378
p6 87.157295708055642 47.188059547755266 -5.5357612768047906 73.068711349969661

Table F.1.: Benchmark phase-space point for pp→ H + 3j in VBF.
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F Benchmark phase space points

dd→ Hddg Samurai Ninja

a0 1.519753605442887
c0 -49.62885275361386 -49.62885275380776
c−1 -28.21416578385935 -28.21416578391514
c−2 -8.333333333333529 -8.333333333333366

ds→ Hdsg Samurai Ninja

a0 0.2511067733973208
c0 -27.91604024256694 -27.91604024290788
c−1 -23.04838629098442 -23.04838629110849
c−2 -8.333333333333222 -8.333333333333332

uc→ Hucg Samurai Ninja

a0 0.1220793683951386
c0 -28.00158510004069 -28.00158510046460
c−1 -23.05619736939017 -23.05619736954724
c−2 -8.333333333333233 -8.333333333333336

ud→ Hudg Samurai Ninja

a0 7.296212701461837
c0 -43.40744002959294 -43.40744002965619
c−1 -28.66853328380996 -28.66853328382680
c−2 -8.333333333333263 -8.333333333333337

us→ Husg Samurai Ninja

a0 0.1732508159673296
c0 -27.94376246701186 -27.94376246744694
c−1 -23.05249781250525 -23.05249781264788
c−2 -8.333333333333231 -8.333333333333334

us→ Hcdg Samurai Ninja

a0 6.905052324462774
c0 -47.02344237420569 -47.02344237420878
c−1 -28.99396496272290 -28.99396496272331
c−2 -8.333333333333343 -8.333333333333362

uu→ Huug Samurai Ninja

a0 0.8025232323452055
c0 -48.90884551361260 -48.90884551379160
c−1 -28.26517439546503 -28.26517439551836
c−2 -8.333333333333519 -8.333333333333366

Table F.2.: Numerical results for the subprocesses of pp → H + 3j in VBF as described in Section 7.1,
evaluated at the phase-space point given in Table F.1, with both Samurai and Ninja. at a scale µ =
2p1 · p2 = 500 GeV.
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F.2 Ninja Ztt̄

F.2. Ninja Ztt̄

In this section the results are collected for the process pp → Ztt̄, with the Z subsequently
decaying into a e+e− pair, as described in Section 6.2.

F.2.1. uū→ tt̄e+e−

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000
p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000
p3 198.2750073412062761 -4.9121008822519290 15.8302462223025771 98.6347459347833393
p4 173.6629710756763814 16.3353989288707595 -23.9314331386695365 -3.1350873345500285
p5 46.8935971645872911 -36.1432949461904798 -18.9709760240555774 -23.0818923436094785
p6 81.1684244185300656 24.7199968995716510 27.0721629404225368 -72.4177662566238212

parameter value

mH 125.0
mW 80.376
mZ 91.1876
mt 171.2
mb 0.0
nf 5

nf,gen 2
µ2 250000.0

uū→ tt̄e+e−

c0 12.5823450965837065
c−1 -7.9257868784365293
c−2 -2.6666666666673140

Table F.3.: Benchmark point for the subprocess u(p1)ū(p2)→ t(p3)t̄(p4)e+(p5)e−(p6).

F.2.2. gg → tt̄e+e−

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000
p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000
p3 182.1516563163594071 24.8252511898625059 15.4219345397897296 -54.9149955586248879
p4 183.3554226695324587 -42.7895170685190607 43.4712527757529159 24.2709380426964820
p5 62.5564264059783639 24.4748131480545723 -42.3016153533453831 -39.0494986466153833
p6 71.9364946081297632 -6.5105472693980087 -16.5915719621972677 69.6935561625437856

parameter value

mH 125.0
mW 80.376
mZ 91.1876
mt 171.2
mb 0.0
nf 5

nf,gen 2
µ2 250000.0

gg → tt̄e+e−

c0 17.2203140681080065
c−1 -11.3322887135133410
c−2 -5.9999999999999787

Table F.4.: Benchmark point for the subprocess g(p1)g(p2)→ t(p3)t̄(p4)e+(p5)e−(p6).
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F Benchmark phase space points

F.3. Ninja Ztt̄j

In this section the results are collected for the process pp → Ztt̄j, with the Z subsequently
decaying into a e+e− pair, as described in Section 6.2.

F.3.1. uū→ tt̄e+e−g

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000
p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000
p3 183.2414081421947287 -30.2337217736484156 32.1314578860740667 48.1815850690226029
p4 199.0327070603159996 74.5268539046026035 -40.9270527537185629 -55.4554134393922311
p5 70.1181125436057044 -63.0760999348447697 21.5315800178266556 21.7794946135846281
p6 20.7607087314536756 -7.2430664321972609 -7.1983324871256098 -18.0756472939650585
p7 26.8470635224299627 26.0260342360878454 -5.5376526630565506 3.5699810507501222

parameter value

mH 125.0
mW 80.376
mZ 91.1876
mt 171.2
mb 0.0
f 5

nf,gen 2
µ2 250000.0

uū→ tt̄e+e−g

c0 -20.4367763710913373
c−1 -25.9078542815554513
c−2 -5.6666666665792098

Table F.5.: Benchmark point for the subprocess u(p1)ū(p2)→ t(p3)t̄(p4)e+(p5)e−(p6)g(p7).

F.3.2. gg → tt̄e+e−g

particle E px py pz

p1 250.0000000000000000 0.0000000000000000 0.0000000000000000 250.0000000000000000
p2 250.0000000000000000 0.0000000000000000 0.0000000000000000 -250.0000000000000000
p3 174.2203895522303014 -25.0977827305029138 -19.5610151031829993 5.5472629175473589
p4 186.7123996976260685 -14.0800163072181022 56.3619207264196902 -46.6601246640355427
p5 60.3016377245591073 38.1795332240129639 22.1553968884492853 41.0822241824339116
p6 18.6184873501163182 5.2347824612577458 -1.6661313271933778 -17.7895792583830961
p7 60.1470856754682259 -4.2365166475497116 -57.2901711844925998 17.8202168224373914

parameter value

mH 125.0
mW 80.376
mZ 91.1876
mt 171.2
mb 0.0
nf 5

nf,gen 2
µ2 250000.0

gg → tt̄e+e−g

c0 9.2826425323344441
c−1 -26.2816094048822784
c−2 -9.0000000000005702

Table F.6.: Benchmark point for the subprocess g(p1)g(p2)→ t(p3)t̄(p4)e+(p5)e−(p6)g(p7).
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F.4 SAMURAI pp→ H + 2j in GF

F.4. SAMURAI pp→ H + 2j in GF

In this appendix the results for the renormalized virtual contributions of the process pp →
H+ 2j in GF are given for a non-exceptional phase space point. The setup is the one as given
in Section 7.2.2, except that here we use for the renormalization and factorization scales the
value of the Higgs boson mass. Assigning the momenta as

g(p1) g(p2) → H(p3) g(p4) g(p5) ,

g(p1) g(p2) → H(p3) q(p4) q̄(p5) ,

q(p1) q̄(p2) → H(p3) q(p4) q̄(p5) ,

q(p1) q̄(p2) → H(p3) q′(p4) q̄′(p5) , (F.3)

for the phase space point given in Table F.7, the results are given in Table F.8. They are
computed in the dimensional reduction scheme. For this process, the tree-level matrix element
squared is given by

a0 ≡
|Mtree-level|2
(4παs)2g2

eff

. (F.4)

To check the precision of the renormalized poles, their values are compared with the value
that are given by the universal singular behavior of dimensionally regularized one-loop ampli-
tudes [113]. The agreeing digits are given in boldface.

particle E px py pz

p1 250.00000000000000 0.0000000000000000 0.0000000000000000 250.00000000000000
p2 250.00000000000000 0.0000000000000000 0.0000000000000000 -250.00000000000000
p3 143.67785106160801 51.663364918413812 -22.547134012261804 42.905108772983255
p4 190.20318863787611 -153.36110830475005 -108.23578590696623 -30.702411577195452
p5 166.11896030051594 101.69774338633616 130.78291991922802 -12.202697195787838

Table F.7.: Benchmark phase space point for Higgs boson plus two jets production in GF.

gg → Hgg

a0 0.1507218951429643 · 10−3

c0 59.8657965614009
c−1 − 26.4694115468536
c−2 −12.00000000000001

gg → Hqq̄

a0 0.5677813961826772 · 10−6

c0 66.6635142370683
c−1 −16.5816633315627
c−2 −8.66666666666669

qq̄ → Hqq̄

a0 0.1099527895267439 · 10−5

c0 88.2959834057198
c−1 −10.9673755313443
c−2 −5.33333333333332

qq̄ → Hq′q̄′

a0 0.1011096724203529 · 10−6

c0 33.9521626734153
c−1 −13.864929283413
c−2 −5.33333333333334

Table F.8.: Numerical results for the processes listed in equation (F.3).
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F Benchmark phase space points

F.5. SAMURAI pp→ H + 3j in GF

In this appendix the results for the renormalized virtual contributions of the process pp →
H+ 3j in GF are given for a non-exceptional phase space point. The setup is the one as given
in Section 7.2.3, except that here we use for the renormalization and factorization scales the
value of the Higgs boson mass. Assigning the momenta as

g(p1) g(p2) → H(p3) g(p4) g(p5) g(p6) ,

g(p1) g(p2) → H(p3) q(p4) q̄(p5) g(p6) ,

q(p1) q̄(p2) → H(p3) q(p4) q̄(p5) g(p6) ,

q(p1) q̄(p2) → H(p3) q′(p4) q̄′(p5) g(p6) , (F.5)

for the phase space point given in Table F.9, the results are given in Table F.10. They are
computed in the dimensional reduction scheme. For this process, the tree-level matrix element
squared is given by

a0 ≡
|Mtree-level|2
(4παs)3g2

eff

. (F.6)

particle E px py pz

p1 250.00000000000000 0.0000000000000000 0.0000000000000000 250.00000000000000
p2 250.00000000000000 0.0000000000000000 0.0000000000000000 -250.00000000000000
p3 131.06896655823209 27.707264814722667 -13.235482900394146 24.722529472591685
p4 164.74420140597425 -129.37584098675183 -79.219260486951597 -64.240582451932028
p5 117.02953632773803 54.480516624273569 97.990504664150677 -33.550658370629378
p6 87.157295708055642 47.188059547755266 -5.5357612768047906 73.068711349969661

Table F.9.: Benchmark phase-space point for pp→ H + 3j in GF.

gg → Hggg gg → Hqq̄g qq̄ → Hqq̄g qq̄ → Hq′q̄′g

c0 41.22878766741685 48.68424134989478 69.32351140474695 15.79262767177915
c−1 -47.16715419132659 -36.08277728077228 -29.98862932963659 -32.35320587073968
c−2 -14.99999999999991 -11.66666666666683 -8.333333333333339 -8.333333333333398

Table F.10.: Numerical results for the processes listed in equation (F.5).
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F.6 Ninja pp→ Htt̄j

F.6. Ninja pp→ Htt̄j

In this appendix we collect numerical results for the renormalized virtual contributions to the
processes (7.29), in correspondence to the phase-space point in Table F.11. The results are
collected in Table F.12 and are computed using dimensional reduction.

particle E px py pz

p1 250.00000000000000 0.0000000000000000 0.0000000000000000 250.00000000000000
p2 250.00000000000000 0.0000000000000000 0.0000000000000000 -250.00000000000000
p3 177.22342332868467 -31.917865771774753 -19.543909461587205 -15.848571666570733
p4 174.89951284907735 13.440699620020803 24.174898117950033 -8.2771667589629576
p5 126.37478917634435 6.8355633672742222 -3.2652801590882752 6.0992096455298030
p6 21.502274645893632 11.641602784479652 -1.3657084972745175 18.026528780003872

Table F.11.: Benchmark phase-space point for tt̄Hj production.

qq̄ → tt̄Hg gg → tt̄Hg

c0 -71.8886458274311 -37.18424603354295
c−1 -32.6902910180535 -35.92174974376358
c−2 -5.66666666663801 -9.000000000056112

Table F.12.: Numerical results for the two subprocesses listed in equation (7.29) evaluated at the phase-space
point of Table F.11 for a scale µ = 2p1 · p2 = 500 GeV.
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