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ABSTRACT
A new form of a grammar is described, which provides
two separate sets of stochastic parameters for represent-
ing both the semantic and the syntactic knowledge, re-
quired for automatic speech understanding. The semantic
structure is introduced as an adequate representation of
natural spoken, one-sentence command utterances. The
constraints and probabilities delivered by the grammar
can be integrated into the framework of a stochastic top-
down parser to decode the semantic content of an utter-
ance directly from its observation sequence. The per-
formance of the developed methods is proved for the do-
main of a speech understanding graphic editor, which can
be controlled solely by natural spoken commands.
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1. INTRODUCTION

1.1  A Speech Controlled Application

Using natural speech as a tool to operate a technical sys-
tem [8], the semantic content of the utterance has to be
found, which means speech understanding.

We chose a graphic editor (fig. 1) as a suitable application
for understanding command utterances. The user should
be facilitated to create, alter or delete three-dimensional
objects like spheres, cuboids, cones or cylinders. We de-
mand, that the speech understanding part of the system is
able to analyse utterances, which are

• natural spoken sentences without subordinate clauses

• in continuous speech from an unknown speaker.

Figure 1: Project: A speech understanding graphic editor
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1.2  Maximum-a-Posteriori Top-Down-Decoding

Stochastic methods have proved to be a powerful ap-
proach for speech recognition [6] (i.e. finding the most
likely word chain given the utterance), so it is obvious to
solve speech understanding in a similar way, too. Thus,
the problem of mapping a sequence of observation vec-
tors O to its semantic content S can be expressed by max-
imizing the maximum-a-posteriori probability :

. (1)

Applying Bayes’ inversion formula and taking into ac-
count just the most likely word chain W, we obtain the fol-
lowing classification rule, derived more detailed in [12]:

. (2)

The probabilities  and  in eq. (2) have to be
delivered by the grammar, which is described in the fol-
lowing chapters. The emission probability  is
calculated by phoneme-based, continuous Hidden-Mar-
kov-Models, trained speaker independently, which can be
adopted from existing speech recognition systems [5].

In contrast to the bottom-up strategy, which is applied for
the speech understanding systems of many research
groups ([2], [3], [13], and others) fig. 2 shows a top-down
arrangement of the decoding process satisfying eq. (2).
The top-down approach is well-established in speech rec-
ognition, and our own tests with a ’time of day’-under-
standing task gave encouraging results [1].

2. DEMANDS OF THE GRAMMAR G

The grammar G providing the a-priori probability
and the conditional probability  has to meet the
following requirements:

• G contains rules, which are interpreted as stochastic
events. These rules can be separated into two sets of
rules contributing either to the a-priori probability

or to the conditional probability . In the
following, this two sets of rules are called the semantic
model Gsem and the syntactic model Gsyn, respectively.

• A sequence of rule applications to originate a word
chain is called a derivation. The most likely derivation
to compose a certain word chain W is demanded to be
equivalent to the semantic content S of the utterance.
Only that rules in the derivation are significant, which
are contained in the semantic model Gsem.
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3. THE SEMANTIC MODEL Gsem

3.1  Definition of the Semantic Structure

In [11], the semantic content of an utterance is assembled
from "conceptual labels", which each express a small se-
mantic partition of the utterance. In our approach, the se-
mantic structure S (representing the semantic content) is
a tree consisting of a finite number N of semantic units
(we simply call them semuns) :

(3)

Each semun  with  is an (X+2)-tupel of a
type , a value  and X successor-semuns1)

:

, (4)

The semun  is defined as the root of the semantic
structure S. Every semun  is marked exactly
once as a successor semun. The special semun ’blnk’ has
the type , no value and no successor.

In the sense of predicate logic, a semun with X successors
can be compared to an X-place relational constant [4]. In
this context, a 0-place relational constant can be realized
by a semun  with X=1 successor  and the suc-
cessor type .

1) Currently, we are using semuns with  successors.

Figure 2: Layers of the speech understanding system

Figure 3: Semantic structure S in a graphic form
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As an example, fig. 3 shows the semantic structure S of
the German word chain "bitte schiebe die große rote
kugel fünf millimeter nach rechts" ("please move the
large red sphere five millimetres to the right").

3.2  Probabilities in the Semantic Model

If statistical dependencies are assumed only inside of
each semun,  can be calculated as product of the fol-
lowing first order probabilities:

, with... (5)

• ...  denoting the a-priori probability that the root
semun  is of the type :

(6)

The semantic model has to provide  for all types.

• ...  denoting the conditional probability that the
value  occurs with the semun  of type :

(7)

The semantic model has to provide this probability for
all combinations of types  and values .

• ...  denoting the conditional probability that the X
successor semuns  of the semun

with type  are of the types
:

(8)

The semantic model has to provide this probability for
all combinations of types  and the types of possi-
ble successors .

4. THE SYNTACTIC MODEL Gsyn

4.1  Simplifying Assumptions

We assume the following restrictions for the word chains
 originated by the syntactic model

to express a given semantic content S:

• Every word  in the word chain W can be assigned to
exactly one semun .

• For each semun , one word wsig is produced ob-
ligatorily, which depends on the value  of the se-
mun . Another word winsig is produced optionally,
which depends only on the type . We call these
two words the significant word and the insignificant
word, respectively.

• An unbroken part  of W is originated for
each semun and all its successor branches.

4.2  Production Rules

The last assumption above implies to use a stochastic
context-free grammar [10] as syntactic model. This
grammar, denoted  contains the sets V,
T and P of variables, terminals and production rules. The
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derivation always starts rewriting the start symbol
as variable , with  marking the root of the se-
mantic structure S:

(9)

The probabilities for rewriting the variables ,
and  each depend on the characteristics of one ex-
plicit semun :

• For the case , the variable  produces a
sequence of a variable , an optional variable

 and X variables  for
the successors of :

(10)

 always produces the empty string :

(11)

The probability of eq. (10) has to be provided by the
syntactic model for all imaginable arrangements of the
above values depending on all possible types  of
the semun . It is estimated by a transition network
similar to an ergodic hidden markov model (fig. 4).
Such a syntactic module (SM) consists of  states:

,  and  represent
the corresponding variables, ’strt’ and ’end’ stand for
the entry and the exit of the SM. The probability for
the arrangement (eq. (10)) is approximated by multi-
plying all transition probabilities  along a certain
path through the SM. This path, i.e. the order of pass-
ing the states of the SM is constrained by eq. (10). The
syntactic model has to provide a separate set of SM-
parameters  for all types  of the semun .

•  produces one significant word wsig out of the vo-
cabulary depending on the value  of the semun :

(12)

•  produces one insignificant word winsig out of
the vocabulary depending on the type  of :

(13)

The desired probability  is calculated by maxi-
mizing the product of the probabilities concerning all the
productions according to eq. (10), (12) and (13) required
to derive ’ ’.

Figure 4:  SM for the semun with  successor
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5. INTEGRATION OF THE SEMANTIC
AND THE SYNTACTIC MODEL

The stochastic process of originating word chains with
the grammar described above can be seen as a complex
transition network. The syntactic model Gsyn is repre-
sented by a set of syntactic modules (SMs) according to
fig. 4., the semantic model Gsem connects these SMs with
transition edges. Fig. 5 depicts one selected path through
such a network, consisting of four SMs:

• The first syntactic module representing the semun
of the semantic structure S is entered with the proba-
bility  in eq. (6). So the type  is fixed.

• For every further semun  inserted into the semantic
structure, a new SM is entered with the probability
according to eq. (8). So the semun’s type  is fixed.

• The time alignment of the emitted words is taken out
by passing through each SM with the probability and
the order according to eq. (10).

• From the state  an insignificant word winsig is
emitted with the probability according to eq. (13).

• The value  of each semun  effects the signifi-
cant word wsig, which is emitted from state .
Hence, before the word is emitted according to
eq. (12), the value has to be fixed with the probability

 according to eq. (7).

6. EVALUATION AND RESULTS

As training and testing data, 1843 utterances to operate a
simple graphic editor (fig. 1) were collected in a Wizard-
of-Oz simulation from 33 different speakers [9]. The ut-
terances contain about 7 words on average. Training was
taken out by a strategy similar to the Inside-Outside algo-
rithm shown in [7], based on counting the number of exe-
cuted rules in an iterative process. The number of types
and values in the models was 41 and 250, respectively,
the resulting number of model parameters is about 2500.

Figure 5: Origination of a word chain along a search
path as a sequence of transitions within the grammar net-

work initiated by the semantic and the syntactic model
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To evaluate the grammar, the utterances’ semantic con-
tents were extracted according to eq. (2). However, the
acoustic-phonetic modelling problem was left aside at
this time, so the word chain W itself was the input of the
parser and the factor  in eq. (2) was omitted.
Fig. 2 outlines the cooperation of the training and evalua-
tion processes and explains our definition of the ’per-
formance rate’:

Tab. 1 shows the performance of the text-understanding
system for equal training and testing material.

We distinguish models with

• continuous probabilities  and

• discrete probabilities, which means that all probabili-
ties in the respective model are set either 0 or 1.

The performance increases significantly by using models
with continuous probabilities, which shows the impor-
tance of stochastic production rules in the grammar:

Tab. 2 shows the performance of the text understanding
system for disjoint training and testing material. In this
case, 16,3% of the 92 utterances have been rejected due
to words, which have not been seen in the training, 5.4%
have been rejected due to their syntax. Only 1.1% (1 ut-
terance) was really misrecognized!

Figure 6: Evaluation of the performance rates

1843 equal training and test utterances

semantic model syntactic model performance rate

continuous continuous 99.8 %
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Table 1: Percentage of correctly assigned semantic
structures with identical training and test set

1751 training utterances and 92 test utterances

semantic model syntactic model performance rate

continuous continuous 77.2 %

Table 2: Percentage of correctly assigned semantic
structures with disjoint training and test sets
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7. CONCLUSIONS
The presented grammar is suitable for accurate under-
standing text of simple formed command utterances. The
problem of lacking vocabulary may be reduced by auto-
matically adding a number of word equivalents from a
dictionary of synonyms.

The integration of the acoustic-phonetic models deliver-
ing  into the framework of the top-down ap-
proach has been already completed. Presently, we are op-
timizing performance rates and computation effort,
simultaneously we develop the graphics generator (fig. 1)
for converting semantic structures into a graphic database
access. The search algorithm as well as the training algo-
rithms will be presented in the future.
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