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ABSTRACT

A system for understanding time utterances spoken in
German language is presented. Stochastic models contain
the knowledge in the semantic, syntactic and acoustic-
phonetic levels. An adequate semantic representation al-
lows the integration of these models within a one-pass
Viterbi search. The simultaneous use of all knowledge
sources for the search procedure results in the smallest
possible search space for the determination of the most
probable semantic content accurately following the
Bayes classification rule. Both the recognition accuracy
and the computing speed facilitate a realistic application.
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1. INTRODUCTION

Using speech as a communication medium in technical
systems, the syntax and the semantics of the spoken utter-
ances are often strongly constrained within a certain do-
main. The research system described in this paper exclu-
sively handles utterances that describe a particular time of
day, spoken in German language. Their semantic content
is defined as a cardinal number S counting the number of
minutes elapsed since midnight, with . S can
also be expressed by a tupel  of two numbers with

 and :

(1)

In this case, h absolutely marks the full hour and m the
amount of minutes, which have passed additionally.

An example for the word chain of an utterance within this
domain is "zwei nach dreiviertel acht" ("two past a quarter
to eight"). According to the definition above, the semantic
content of this word chain is . The
same semantic content  can also be expressed by
other word chains like "sieben uhr siebenundvierzig"
("seven fourtyseven") or "dreizehn minuten vor acht"
("thirteen minutes to eight").

The desired capability of the system is the extraction of
the semantic content S from such ’time utterances’ avail-
able as continuous speech from an unknown speaker.

0 S 1439≤ ≤
h m,( )

0 h 23≤ ≤ 0 m 59≤ ≤

S S h m,( ) 60 h m+⋅= =

S h 7= m 47=,( ) 467=
S 467=

2. MAXIMUM-A-POSTERIORI DECODING

Speech understanding can be interpreted as mapping a
sequence of observation vectors O (i.e. the preprocessed
speech signal of the utterance) to its semantic content S.
The maximum-a-posteriori decoding criterion is used for
finding the most likely semantic content

. (2)

Applying the Bayes’ inversion formula and neglecting
, which is constant within the maximization, this

equation can be written as

. (3)

The a-priori probability  of a certain semantic con-
tent can be estimated directly from a limited training cor-
pus, whereas this is not possible for the conditional prob-
ability  due to the high variety of S and O [3]. By
the use of the additional representation levels close-to-
word-level semantic representation U and word chain W,
it is possible to split the modelling problem into individ-
ual parts, which can be solved separately and expressed
by first order conditional probabilities. Assuming statisti-
cal independence of these probabilities,  can be
written as

. (4)

Considering only those values of W and U, which maxi-
mize (decoding by the Viterbi algorithm) the joint proba-
bility

, (5)

we obtain the classification rule

 . (6)

The top-down decoding (fig. 1) of the semantic content
 can be described as a synthesis of hypotheses at the

different representation levels [5] followed by a detection
of the hypotheses with the maximum joint probability ac-
cording to eq. (6). The hypotheses originated by the 1st

order semantic model, the semantic generator and the
word chain generator occur with the corresponding joint
probabilities ,  and . Directly
implementing the top-down decoder following fig. 1, the
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probability  would have to be computed for
each word chain W with the corresponding
explicitly. Chapters 4 and 5 describe the methods em-
ployed to avoid these explicit computations for the im-
plemented system.

3. STOCHASTIC MODELS

The 1st order semantic model specifies the a-priori proba-
bility  for the occurrence of the semantic content S
within a particular domain of interest.  can either be
estimated from a training corpus or it can be specified us-
ing semantic expert knowledge, available in a certain hu-
man-machine-dialogue situation. Both for easily design-
ing the model and for efficiently decoding the utterance,
it is advantageous to use a discrete probability distribu-
tion as shown exemplary in Fig. 2:

The 2nd order semantic model contains the conditional
probabilities  for the occurrence of the semantic
representation U given S. The close-to-word-level se-
mantic representation U of a time utterance is defined as
a triple  with x denoting the hours, y denoting the
quarters of an hour and z denoting the minutes. The value

Figure 1: Search for the most probable semantic content
by generating hypotheses in a ’top-down’ strategy

Figure 2: Discrete 1st order semantic model
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x  indicates an absolute time, y
and z  are data relative to x. For the above
example of the German word chain W: "zwei nach dreivi-
ertel acht", the close-to-word-level semantic representa-
tion  is obtained.

There exists an unambiguous mapping function to deter-
mine the semantic content S from a given U:

(7)

The conditional probability  can be estimated in a
parametric form from training data using histogram
methods and parameter smoothing. Due to the lack of an
adequate amount of training material we applied this
technique on the test corpus to estimate  as well
as . It is assumed, that  for  and
that  is independent of the value x. Fig. 3 shows an
example for a possible discrete probability distribution,
only depending on the values y and z.

The syntactic model specifies the conditional probabili-
ties  for the occurrence of the word chain W
given U. The syntax of pure time utterances can be ex-
pressed by a regular grammar  which is equivalent to a
finite state automaton , so that the formal languages

 and  are equal [4] [7]:

(8)

The automaton can be seen as a transformer ,
which accepts a sequence of input symbols and produces
a sequence of output symbols. In our case, the input is the
word chain W, the output causes allocations to the com-
ponents x, y and z of the close-to-word-level semantic re-
presentation U. Since the examined domain is still com-
prehensible, the syntactic model is originated by ’expert’
knowledge instead of training it. Thus, it is assumed that

 represents a uniform distribution for all word
chains which are valid for a given U:

(9)

Fig. 4 shows a syntactic model automaton consisting of
the start/end state, 8 inner states and 11 edges, which is
able to process a limited set of German time utterances.
The model implemented in our system to understand ar-
bitrary German time utterances is about five times larger.

Figure 3: Discrete 2nd order semantic model
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Every pair of input/output symbol positioned under the
states of the graph in fig. 4 represents one possible transi-
tion for each edge ending in the specific state. Each tran-
sition accepts one input symbol, i.e. one word out of W,
written left of the slash ’/’. The transition optionally allo-
cates a value to one or more components x, y and z of U,
written right of the slash.

It must be guaranteed, that:

• Every valid word chain is accepted by the automaton,
i.e. the automaton is passed from ’start’ to ’end’.

• Every path from ’start’ to ’end’ causes exactly one un-
ambiguous allocation to each of the components of U.

The acoustic-phonetic models serve for calculating the
conditional probability  of emitting an observa-
tion sequence O given the word chain W. We use pho-
neme-based, continuous Hidden-Markov-Models, which
were trained from a multi-speaker phonetically balanced
speech data base. Several of these phoneme models are
then assembled to entire word models by using a pro-
nouncing dictionary. These acoustic modelling technique
has proved to be powerful in many of the present speech
recognition systems [8] [2] and was adopted unchanged.

4. INTEGRATION OF THE SYNTACTIC
AND THE SEMANTIC MODELS

For the search procedure, a language model is required,
which contains all information from the 1st and 2nd order
semantic models and from the syntactic model. For keep-
ing the computing and memory effort manageable during
the search, hypotheses with the same probability
can be regarded in common under certain conditions. The
arising hypothesis-clusters are described in a parametric
form by sets  of values U where ,  and  are
sets of values x, y and z:

(10)

In our implemented system, one single parametric de-
scription  represents up to 2225 explicit hypotheses
for U. With this fundamental restriction, it is possible to

Figure 4: Simplified syntactic model, consisting of 10
states, 11 edges and possible input/output symbols
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derive an automaton  from a syntactic model described
in chapter 3 that the following relation holds:

(11)

The automaton  must only contain those transitions,
which generate output symbols allocating values x, y and
z that follow the restriction .

The language model is composed by paralleling all these
reduced syntactic models, which have the entry probabil-
ity , respectively. Fig. 5 shows an exam-
ple for a language model build from three automata, each
derived from the automaton in fig. 4, required for three
hypothesis-clusters.

5. SEARCH PROCEDURE

To avoid generating all hypotheses on the representation
levels in fig. 1 explicitly, the most likely semantic content

 is computed using the Viterbi search algorithm. Two
different approaches were investigated:

5.1  Two-pass search

At the first stage, the N most likely hypotheses for the
word chain are determined. The result of this stage is ei-
ther a word lattice or just the most likely word chain. We
only consider the case , i.e. the most probable word
chain  is found using a maximum likelihood classifi-
cation:

, (12)

The language model is taken into account exclusively at
the second stage:

(13)

This approach can not constitute an optimal solution for
finding the most probable semantic content S. It is not
guaranteed, that the word chain maximizing
according to eq. (6) is among the hypotheses passed over
to the second stage, since N is limited.

Figure 5: Example language model, consisting of three
paralleled automatons ,  and
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5.2  One-pass search

The language model as well as the acoustic-phonetic
models are taken into account in a one-pass search proce-
dure [6].

The actual search space results from combining the word
HMMs according to all transitions in the language model.
With a medium number of 30 states per word HMM the
theoretical maximum search space reaches a size that re-
quires a dynamic organisation of the states. Using a beam
search technique [8], the number of grid points that have
to be processed can be kept in a range comparable to the
one resulting from a bi- or unigram language model. The
simultaneous use of all knowledge sources during the
one-pass search procedure results in a high accuracy what
hypotheses can be pruned at the respective moment. In
our implementation, an adequate pruning strategy leads
to a reduction of computing time by the factor two with-
out any effect to the recognition accuracy.

Making use of the output symbols produced by the lan-
guage model, the most likely semantic content can be de-
termined without any backtracking procedure. By keep-
ing track of all allocations to x, y and z along all paths,

 is computed applying eq. (7) to the values along the
most likely path. Neglecting the effects of the pruning,
the described one-pass search decodes the most probable
semantic content according to eq. (6).

6. EXPERIMENTAL RESULTS

The performance of the system was evaluated using 1023
utterances spoken by 20 different speakers, recorded in a
low noise office environment. The speakers were in-
structed to talk in their natural manner with normal pro-
nunciation.

Chosen  for all hypotheses U, 28% of all
semantic contents were correctly assigned using the two-
pass search. For the one-pass search the share of correctly
assigned sentences was 78%. The considerable lower rec-
ognition rate for the two-pass search is caused by the lack
of semantic and syntactic knowledge, when determining
the spoken word chain. This leads to wrong or even void
word chains, passed over to the second stage.

Semantic models for  and  adapted to the se-
mantic contents in the test corpus increased the recogni-
tion rate up to 87% in the case of the one-pass search. It is
obviously clear why this improvement of the language
model had no effect when applying it after determining
only the most likely word chain according to eq. (12) in
the two-pass search.

P (U ,S ) const P (S ) and P (U |S )
trained

two-pass
search 28 % 28 %

one-pass
search 78 % 87 %

Table 1:  Percentage of correctly assigned semantic
contents under different conditions

SE

=

P U S,( ) = const

P S( ) P U S( )

Certain situations in spoken dialogue systems, e.g. a
voice controlled booking system, lead to an extreme low
number of possible hypotheses for S (times of depar-
tures, etc.). Using semantic knowledge of this kind, it is
even possible to improve the accuracy of the system up
to 100 % [1].

7. CONCLUSIONS

The use of stochastic models for representing semantic
knowledge in connection with an efficient syntactic mod-
elling has been proven to be an important step towards a
realistic applicability of speech understanding systems.
The described system can be employed not only for time
utterances, but in principle for all utterances whose lan-
guage can be specified by a regular grammar and which
contain a fixed number of semantic content fragments.

Future work focuses on understanding utterances, which
are still out of a restricted domain, but with an infinite
number of semantic content fragments arranged in a tree
topology [9].
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