
Technische Universität München

Faculty of Civil, Geo and Environmental Engineering

Chair of Computational Modeling and Simulation

Prof. Dr.-Ing. André Borrmann

Spatial BIM Queries: A Comparison

between CPU and GPU based Approaches

Robert Schweizer

Bachelor’s Thesis

for the B.Sc. in Engineering Science

Abstract

From today’s perspective, the future of computation lies in parallelization. This is

a central design focus of modern GPUs, whose enormous calculation capabilities are

now available for general purpose programming.

This thesis examines the portability of spatial queries to NVIDIA’s popular GP-

GPU CUDA platform. The two algorithms analyzed are the query on the R-tree

spatial indexing structure and an intersection test between triangle meshes. Both

of them offer potential for the high-level parallelization necessary for efficient GPU

programs.

The CUDA implementation showed no significant advantage over the single-

threaded CPU one for the R-tree query, both for single as well as multiple parallel

queries. The mesh intersection test on the other hand performed better using CUDA,

at least when the tested objects were preselected by their bounding boxes using an

R-tree.

The entire CPU code of the examined program was written in C#. A pure C

implementation could yield different results. The analysis could also be repeated for

a multi-threaded CPU program and on newer hardware.

Author: Robert Schweizer

Philipp-Foltz-Straße 31

D-81737 München

Student ID: 03630077

Supervisors: Prof. Dr.-Ing. André Borrmann

Dipl.-Ing. (FH) Simon Daum

Date of Issue: October 15, 2014

Date of Presentation: January 27, 2015

Contents

List of Abbreviations 7

1 Introduction and Motivation 9

2 Spatial BIM Queries 13

2.1 History of BIM . 13

2.2 BIM Queries . 14

2.3 Spatial Operators in QL4BIM . 15

2.3.1 Topological Predicates . 15

2.3.2 Intersections between Triangle Meshes 17

2.3.3 Triangle Pair Meshes . 17

2.4 Queries Parallelized in this Thesis 19

2.4.1 Find All Meshes Intersecting One Search Mesh 19

2.4.2 Find All Intersection Pairs of the Model 19

3 Parallel Programming 21

3.1 History of GPU Programming . 21

3.1.1 Development of Dedicated GPUs 21

3.1.2 Early Experiments with GPGPU 23

3.2 Comparison of GPU and CPU Programming 23

3.3 NVIDIA CUDA . 25

3.3.1 Hardware Architecture . 26

3.3.2 Thread Hierarchy . 27

3.3.3 Memory Hierarchy . 28

3.3.4 Application Structure . 29

3.3.4.1 Host Functions . 29

3.3.4.2 Device Functions . 30

3.3.5 Maximization of Device Utilization 31

4 Implementation 35

4.1 R-Tree . 35

4.1.1 Data Structure and Parameters 35

4.1.2 R-Tree Creation . 36

4.1.2.1 Implementation Used in QL4BIM System 36

4.1.2.2 Possible Optimization and Parallelization 37

4.1.3 Sequential R-Tree Query . 38

4.1.4 Parallel R-Tree Query . 38

4.1.4.1 Input Data Representation on the GPU 39

4.1.4.2 Parallelization Approaches 40

4.1.4.3 Overflow Treatment 40

4.2 Mesh-Intersection Test . 41

4.2.1 Sequential Implementation 42

4.2.2 Parallel Implementation . 42

4.2.2.1 Levels of Parallelism 42

4.2.2.2 Mesh Partitioning 43

4.2.2.3 Test on a Reduced Set of Meshes 44

4.2.2.4 Adjustments for Finding All Intersection Pairs . . . 45

4.2.2.5 Treatment of Kernel Timeouts on Windows 45

5 Performance Analysis 49

5.1 Remarks on Platform Comparison 49

5.2 Test Description . 49

5.2.1 Test Setup . 49

5.2.2 Parameter Settings . 50

5.2.3 Model Selection . 50

5.3 Results . 51

5.3.1 Model Properties . 51

5.3.2 Data Structure Creation . 52

5.3.3 Intersection With Search Mesh 54

5.3.4 All Mesh Intersections Query 57

5.3.5 Observed Trends . 59

6 Conclusion and Outlook 63

A Remarks on ManagedCUDA 65

B Digital Files 67

Bibliography 69

7

List of Abbreviations

ALU Arithmetic Logic Unit

BIM Building Information Modeling

CAD Computer-Aided Design

CIL Common Intermediate Language

CLI Common Language Infrastructure

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DP Double Precision

DRAM Dynamic Random-Access Memory

FLOPS Floating-Point Operations Per Second

FPU Floating-Point Unit

GPU Graphics Processing Unit

IDE Integrated Development Environment

IFC Industry Foundation Classes

ILP Instruction-Level Parallelism

JIT Just-In-Time

KIT Karlsruher Institut für Technologie

LINQ Language Integrated Query

MEP Mechanical, Electrical and Plumbing

NVCC NVIDIA CUDA Compiler

8

OpenCL Open Computing Language

PC Personal Computer

PCIe Peripheral Component Interconnect Express

PTX Parallel Thread Execution

QL4BIM Query Language for Building Information Models

RAM Random-Access Memory

SDK Software Development Kit

SFU Special Function Unit

SIMD Single-Instruction, Multiple-Data

SIMT Single-Instruction, Multiple-Thread

SM Streaming Multiprocessor

SP Single Precision

SSE Streaming SIMD Extensions

VES Virtual Execution System

9

Chapter 1

Introduction and Motivation

The number of integrated components that microelectronic processors contain per

area has been steadily increasing each year and with every development cycle that

has passed since the 1950s. The exponential growth was first observed in Moore

(1965) and is thus commonly referred to as “Moore’s law”, and has continued until

today (see the green line in figure 1.1).

However, this does not directly translate into better performance, as other factors

are also influential. Some of these have exponentially improved for many years in

accordance with “Dennard scaling” (Dennard et al., 1974; McMenamin, 2013). The

most important part of this theory is the processor’s clock speed. When it increases,

every calculation runs faster by roughly the same factor. However, this has not

improved substantially since the mid 2000s (dark blue line in figure 1.1). This is

because the operating voltage of the chips – an important factor in their power

leakage per area – could not be reduced as significantly as in previous decades.

Back then, the decrease in heat generation due to the voltage optimization had

enabled the clock speed increases. Now, this is impossible without producing higher

temperatures than the materials used can withstand.

However, as the minimum manufacturing scale continues to steadily decrease,

ever more components can be built into the same chip area, even though their speed

does not change. These can be used either to improve single threaded execution

with complicated methods facilitating Instruction-Level Parallelism (ILP) – what

Central Processing Unit (CPU) designers focus on – or to process a growing array

of several threads simultaneously; this is the main target of Graphics Processing

Unit (GPU) development (Wilt, 2013, p. 3 ff.). CPUs also now offer multiple cores

for the concurrent execution of several threads, but their strength still lies in their

optimized single thread performance.

According to Preshing (2012), this has been increasing by only approximately

21 % per year since the mid 2000s. GPU performance on the other hand has largely

followed the exponential growth of electronic components per area. This can be seen

10 CHAPTER 1. INTRODUCTION AND MOTIVATION

Figure 1.1: Trend overview of Intel processors regarding the component count (“Moore’s
law”) as well as clock speed and heat production, which are connected by the so-called
“Dennard scaling”. The single-core performance per clock cycle is also specified by the
available degree of ILP. From Sutter (2004).

Figure 1.2: Performance comparison between Intel CPUs and NVIDIA GPUs with respect
to Single Precision (SP) as well as Double Precision (DP) Floating-Point Operations Per
Second (FLOPS) for each complete device. Most improvements in CPU throughput since
the late 2000s can be attributed to the increasing number of cores which they feature. From
Galloy (2013) under CC BY-NC-SA 2.5.

11

in figure 1.2, where the only visible jumps of CPU performance for the last years are

owed to their increase in core numbers. But even with this, the raw computational

power of GPUs is increasing much faster than that of CPUs.

However, the problem with GPUs is that their immense capabilities are difficult

to harness for many important applications. Much research has been devoted to

porting and optimizing a multitude of algorithms for GPU programming platforms

such as NVIDIA’s Compute Unified Device Architecture (CUDA).

In this thesis, this porting and optimizing was done for the topological analysis

of 3D design files created by Building Information Modeling (BIM). To this end,

algorithms were implemented for the querying of a spatial indexing structure called

the R-tree, as well as intersection testing between triangle meshes. Both of these

promise to be portable to CUDA, because their structure allows for the high-level

parallelism required for an efficient GPU application.

The topological analysis of digital building models is a very important task,

especially for larger models. However, an efficient implementation of the spatial

algorithms with a favourable scaling is essential for larger models in particular. For

the intersection query examined in this thesis – which finds all objects overlapping a

search object – the R-tree is used as a preselector. This way, the number of objects

for which the later mesh intersection test has to be done, can be decreased. This

may facilitate a better than linear scaling of this query’s runtime with increasing

model sizes.

13

Chapter 2

Spatial BIM Queries

This chapter will give a short overview of BIM and describe the implementation of

spatial queries thereof. A focus is put on topological queries and on how they can

benefit from the algorithms examined in this thesis.

2.1 History of BIM

BIM is a widely used planning method in the construction industry of today (Au-

todesk, 2002). It interconnects models with databases supplying many kinds of ad-

ditional information required for the construction process, e.g. lists of required parts

or assembly specifications. Changes made to one of these databases are coordinated

across all the others, so that the consistency of the model is always guaranteed.

The history of BIM starts with the adoption of PC-based Computer-Aided De-

sign (CAD) in the building industry in the early 1980s. As soon as digital geometry

models started to replace manual drafts on drawing boards, planners also began

to specify additional data about objects surpassing their geometric properties. An

example of this is information about the construction process or meaning of models,

which can be derived from the different layers contained in the files.

About ten years later, in the beginning of the 1990s, object-oriented CAD was

introduced. Here, the geometric model is only a part of the stored data object,

which further includes non-graphical information like its type, ID, and logical rela-

tionships with other objects. This coincided with the wide adoption of 3D models in

the building industry. Creating designs in three dimensions now offered strong ad-

vantages such as the possible automation of section view drawings or the generation

of construction schedules.

However, object-oriented CAD is still just an extension of the graphics-based

CAD, which was not initially designed to store further information about the build-

ing. It is thus called building graphic modeling, in contrast to building information

modeling, which was introduced in the early 2000s as a response to these shortcom-

14 CHAPTER 2. SPATIAL BIM QUERIES

ings. It uses object-based parametric modeling, which has been developed for me-

chanical engineering since the 1980s (Eastman et al., 2011, p. 40 f.). Here, geometric

models can reflect dependencies between the dimensions of different components or

other interconnected properties by calculating them from a list of parameters. In

structural engineering, this additional information can include spacing rules between

objects such as the minimum distance between windows or design thresholds such

as the maximum slope of an excavation. Thus an even stronger focus is put on the

inter-object relationships in order to capture the design intent of the engineer.

This vastly improves the interface between the mind of the designer and the

stored model. Ideas about this kind of object relationships have always been crucial

in every kind of planning process, but now they can be appropriately modeled in

the computer. This also facilitates changes to the model, as the software can auto-

matically determine and apply the additional changes required for related objects.

BIM uses databases for storage, and is therefore a perfect solution for projects

relying on close collaboration, where the model has to be stored away from the

designer’s computer and possible parallel accesses have to be managed in order to

keep the model consistent. This requires server structures, called model manage-

ment servers or product model servers and are considered an IT infrastructure with

growing importance (Borrmann et al., 2009c).

To facilitate the collaboration between different BIM softwares, the Industry

Foundation Classes (IFC) have been developed since the 2000s as an open file format.

They use entities which are organized in an inheritance hierarchy. Each of these

describes either a part of the construction process, e.g. tasks, material or physical

objects, called IfcProducts, or relationships and properties thereof. Thus all the

dependencies and interconnections which appear in complex BIM models can be

stored appropriately.

2.2 BIM Queries

With increasing project sizes, the extraction of partial models from the overall design

file becomes more and more important for asynchronous collaboration, analysis and

further processing. Not many of the designers working together require the complete

model, and having a smaller subset of objects can facilitate their work considerably.

The interface for retrieving such partial models is usually implemented in the form

of a query language.

Various implementations exist of a query language specifically tailored to the

needs of examining IFC models (Daum et al., 2014). Most of them provide methods

commonly used for database accesses such as Select, Update and Delete. Select

usually provides the functionality of filtering the model to obtain partial models.

Furthermore, normally using the Where keyword, the data sets affected by these

2.3. SPATIAL OPERATORS IN QL4BIM 15

queries can be restricted. This means that only a subset fulfilling a user-defined

condition is subject to the operation being executed.

Although these query languages provide capabilities for the semantic processing

of IFC models, they have one restriction: they only take into account non-geometric

information such as objects’ IDs and types, and possibly interconnect these using

nested conditions. They do not, however, use the geometry of the models to pro-

vide support for spatial conditions. This is only offered by the scientific QL4BIM

proposed in Daum et al. (2014).

2.3 Spatial Operators in QL4BIM

The Query Language for Building Information Models (QL4BIM) is a BIM query

language which stands out by supporting filter expressions with spatial operators.

These consist of:

Metric Operators describing distance relationships between objects. Possible

conditions are e.g. Distance, CloserThan and FartherThan. Specific imple-

mentations thereof are described by Borrmann et al. (2009a).

Directional Operators constraining the directional relationships between objects.

These are usually expressed with respect to coordinate axes in conditions such

as Above, Below or NorthOf. See Borrmann et al. (2009b) for details.

Topological Operators comprising primitive conditions like Touch, Within and

Contains. This is what the algorithms developed in this thesis are targeted

for.

Daum et al. (2014) provides a sequential reference implementation of the topo-

logical operators called QL4BIM System, which will be used as a point of reference

here.

2.3.1 Topological Predicates

Using the classification proposed by Egenhofer et al. (1991), the entire range of

possible topological relationships between two objects in 3D-space can be reduced

to the eight predicates in figure 2.1. To determine the truth of these predicates

for a pair of IfcProducts, their physical form has to be stored digitally. The IFC

support many different types of such geometry representations. QL4BIM System

uses a boundary representation called IfcTriangulatedFaceSet, which approximates

the geometry of each IfcProduct with a closed mesh comprised only of triangles. To

generate this for every IfcProduct when opening an IFC file, the xBIM Toolkit is

employed.

16 CHAPTER 2. SPATIAL BIM QUERIES

(a) Visualization of the possible constellations for
3D objects. Figure from Daum et al. (2014) under
CC BY-NC-ND 3.0.

∂ ∩ ∂ ◦∩◦ ∂∩◦ ◦ ∩ ∂

∅ ∅ ∅ ∅ A and B are disjoint
¬∅ ¬∅ ∅ ∅ A equals B
¬∅ ∅ ∅ ∅ A and B touch
∅ ¬∅ ∅ ¬∅ A contains B / B is inside A
∅ ¬∅ ¬∅ ∅ A is inside B / B contains A
¬∅ ¬∅ ¬∅ ¬∅ A and B overlap
¬∅ ¬∅ ∅ ¬∅ A covers B / B is covered by A
¬∅ ¬∅ ¬∅ ∅ A is covered by B / B covers A

(b) Combinations of boundary-boundary, inside-inside, boundary-
inside and inside-boundary intersections between objects A and B
corresponding with the predicates. The inside region here corre-
sponds to the interior point set, and can thus not be modeled ex-
actly using an inside mesh as described in section 2.3.3. Table from
Egenhofer et al. (1991).

Figure 2.1: The eight possible topological predicates defining the relationships between
3D bodies using the classification from Egenhofer et al. (1991).

2.3. SPATIAL OPERATORS IN QL4BIM 17

2.3.2 Intersections between Triangle Meshes

One of the most important tasks in the topological relationship analysis of two

objects is the intersection test. It determines whether they intersect, touch or do

not meet at all. Using the meshes provided by the IfcTriangulatedFaceSets, this

breaks down to individual tests on the triangles of the two meshes: If any triangle of

mesh A intersects any triangle from mesh B, the meshes have to be overlapping. The

same holds for the touching relationship, although all possible triangle combinations

still have to be checked in order to exclude a possible intersection. If no triangles

from mesh A meet any triangles of mesh B, the meshes do not meet.

2.3.3 Triangle Pair Meshes

For distinguishing between intersecting and touching constellations of boundary rep-

resentation models, different approaches exist. The one described above uses an

intersection test which, for each triangle pair tested, distinguishes between the three

possible results: intersecting, touching and disjoint. However, this requires the data

to provide a high degree of floating-point precision, which normally can not be ex-

pected.

Many different kinds of imprecisions are introduced during the life span of a full

fledged IFC model. These include truncation errors in floating-point numbers, e.g.

when defining the position of the boundary relative to the IfcProduct and further

positioning this with respect to the overall model. It also has to be taken into

consideration here that in a general case, the IfcTriangulatedFaceSet created from

the stored boundary definition can only be considered an approximation thereof.

For example, when the meshes of two spheres meet in their exact model, e.g. as

splines, their triangle representations at the meeting point are not defined clearly

enough when using common tesselation techniques. Thus the result of the described

elaborate triangle testing between their IfcTriangulatedFaceSet representations can

not be relied upon either.

A possible solution to this shortcoming is an epsilon test in the triangle test

implementation. This does not require the floating-point approximations of the

triangles to equal each other exactly, but only within a certain user-defined tolerance.

Thus the expected imprecisions within the model can be accounted for.

Apart from this, a user-defined parameter for what can still be counted as touch-

ing and what has to be considered disjoint might have further uses: it offers the pos-

sibility of setting a maximum distance from the searching mesh in which objects are

still returned as intersecting. A possible query using this could be FindObjectsWith-

inXMeters.

However, for this work a different approach is used: instead of using only one

triangle mesh, a TrianglePairMesh was generated from the IfcTriangulatedFaceSet.

18 CHAPTER 2. SPATIAL BIM QUERIES

Overlapping

Touching

Figure 2.2: Example constellations of TrianglePairMeshes adapted to 2D which clearly
define the overlapping and touching relationships from figure 2.1.

This basically corresponds to creating separate inside and outside triangle meshes

of each IfcProduct ’s surface, with a small offset in their respective directions from

the single IfcTriangulatedFaceSet representation. The offset here is comparable to

the epsilon constant used in the triangle test in that it is a user-defined measure for

the acceptable imprecisions in the model.

The objects are defined as fully intersecting only if both meshes of object A

intersect both meshes of object B. Although this way four times as many mesh

intersection tests need to be run, there are several advantages:

No Mesh-Level Touching/Intersecting Determination

The complexity of the intersection test for the individual triangles decreases,

because it does not have to discern between touching and intersecting rela-

tionships. Any meeting triangles are counted as intersecting, and testing can

stop for that mesh combination as soon as the first one is found.

No Epsilon Test Necessary

The implementation of a correct epsilon test therein is not necessary. This is

usually not trivial, which is also a problem with the one employed for this work:

it uses coordinate transformations, where the different scaling of the epsilon

“sphere” along the dimensions would have to be calculated appropriately.

Additional Information about Spatial Predicate

The combinations of intersections between the different meshes can provide

more information than the single boundary test. For example, for a touching

relationship between objects A and B they define whether the topological

predicate A touches B, A covers B or B covers A is fulfilled (see the examples

in figure 2.2).

This is possible because the inner meshes can often be considered equivalent

to the inner region of the respective object. With that, table 2.1b can be used

2.4. QUERIES PARALLELIZED IN THIS THESIS 19

for the specification of the predicate. This simplification can be applied to all

cases except the ones that do not yield an intersection of the meshes at all,

i.e. the disjoint and contains/inside relationships. These have to be further

inspected, e.g. using a ray test as proposed by Daum et al. (2013).

2.4 Queries Parallelized in this Thesis

This work covers only two topological queries, but many of the described concepts

should be reusable for different spatial query implementations. The discussed algo-

rithms for spatial look-up and intersection testing are crucial parts of many spatial

analysis programs.

2.4.1 Find All Meshes Intersecting One Search Mesh

The first investigated query is the IntersectsWith operation. This basically retrieves

every object in the IFC model which truly intersects with, i.e. does not merely

touch, a search object. Potential uses of the retrieved subsets lie in error detection

and compatibility checks for newly inserted objects. Unwanted or physically im-

possible intersections can easily be identified this way. This is often used when a

complete building model has to accommodate changes for additional features, e.g

when Mechanical, Electrical and Plumbing (MEP) services are implemented.

The brute-force approach to this problem is running a mesh intersection test

(further described in section 4.2) between the search mesh and every single mesh

stored in the model. However, to achieve better than linear runtime scaling with

respect to the model size, preselection methods can also be considered. In this thesis,

an R-tree is queried (see section 4.1) to obtain a reduced set of meshes on which the

intersection test is run. It uses the axis aligned bounding box of each mesh to store

it efficiently. Thus the intersection test only has to be run on the meshes whose

bounding boxes intersect that of the search mesh.

2.4.2 Find All Intersection Pairs of the Model

Even though it is only an extension of the single IntersectsWith query, finding all

mesh intersection pairs can be important in model consistency and error checking.

Implementing it separately promises huge performance benefits, especially when

considering the kind of natural parallelism it offers; sequentially running the Inter-

sectsWith query for every single mesh in the model would be a waste of optimization

potential here.

This query is a good example of a computationally complex, but also paralleliz-

able procedure. As such, it is even better suited for the GPU than the single mesh

20 CHAPTER 2. SPATIAL BIM QUERIES

intersection query, and can thus be used as a measure of how the GPU performs

under optimal circumstances.

21

Chapter 3

Parallel Programming

The core of this thesis was the implementation of spatial queries on the massively

parallel computation platform offered by recent GPUs using the NVIDIA CUDA

Software Development Kit (SDK). The following section will briefly introduce GPUs

and their programming in general, and then give a more specific description of the

CUDA programming model in particular.

3.1 History of GPU Programming

3.1.1 Development of Dedicated GPUs

The development of the modern GPU began in the 1970s, when the first display

controllers were introduced with the sole purpose of preparing the data stream pro-

duced by the main processor for being displayed on the screen. The main function

of these devices was creating a video output stream containing luminance and color

information for the respective display, which also included ensuring horizontal and

vertical sync (Singer, 2013).

Until the late 1990s, GPUs were programmed using the so-called fixed-function-

pipeline (see figure 3.1a). This used predefined functions for each step in the render-

ing process and only allowed the programmer to change some of their parameters

(Behrmann, 2007). However, the clearly defined structure of the computations also

facilitated extremely efficient hardware design, as the different computational units

could be built to fit the needs of their specific tasks very tightly (Owens et al., 2008).

This simple design permits two kinds of parallelism: First, task parallelism, which

means that the different stages in the rendering pipeline can be working on different

chunks of data simultaneously if that data has already passed through the previous

steps. Secondly, data parallelism, i.e. the division of data on several processors of

the same pipeline stage. This is possible because the different vertices/fragments of

22 CHAPTER 3. PARALLEL PROGRAMMING

(a) The fixed-function-pipeline with the separated shading stages marked in yellow. The
pipeline structure is completely predetermined here and can only be influenced by parame-
ters.

(b) The new programmable pipeline with the flexible vertex and fragment shading stages
marked in yellow. These offer the developer a wider range of options by allowing for freely
customizable shader programs.

Figure 3.1: Comparison of the two graphics pipeline architectures. Based on Khronos
Group (OpenGL ES 2.X - The Standard for Embedded Accelerated 3D Graphics).

3.2. COMPARISON OF GPU AND CPU PROGRAMMING 23

a mesh being rendered can pass the calculation independently and thus at the same

time.

Around the turn of the millennium, the graphics pipeline started to become more

flexible: the programmer was now able to write his own customized programs, called

vertex shaders and fragment shaders, which were then run as their respective stages

in the pipeline (see figure 3.1b, the replaced stages are marked yellow in figure 3.1a).

In the beginning, the functionality that the hardware offered for these programs was

very limited, but the amount of available memory, the quality of the instruction sets

and the control-flow flexibility increased steadily. At this point, fragment and vertex

shaders were still run on different hardware units, as their instruction sets were quite

different. However, this carries the disadvantage of load imbalances, which appear

when one of the shader programs is more computationally complex than the other.

As a result, one of the specialized processors can not be used at full capacity, because

the throughput of the pipeline is limited by its slowest component.

The solution to this problem was the unified shader architecture, which intro-

duced the concept of stream processors. These are able to execute any kind of

shader program, so that the load balancing between the different rendering stages is

no longer a problem. They still employ both kinds of parallelism mentioned above,

and can thus offer the high amount of throughput required for graphics process-

ing. The GPU was now sufficiently programmable for a wide range of developers

to use it for general computations aside from pure rendering tasks. This gave rise

to new GPGPU abstractions like NVIDIA CUDA and the Open Computing Lan-

guage (OpenCL) in the following years, which made it possible to program the GPU

relatively easily using high-level languages such as C.

3.1.2 Early Experiments with GPGPU

Facilitated by the advent of programmable shaders, one of the first experiments

with using the computational power of GPUs for non-graphical computations was

published in Larsen et al. (2001). However, this early implementation of matrix

multiplication on the GPU did not yield performance superior to that of CPUs. One

of the problems at the time was that native support for single-precision floating-point

operations on GPUs was not introduced until 2003. This enabled the first GPGPU

programs, one of which was LU factorization in Galoppo et al. (2005), to outperform

comparable CPU implementations (Du et al., 2012).

3.2 Comparison of GPU and CPU Programming

Implementing an algorithm for the GPU is vastly different from doing the same for a

CPU. The core reason for this distinction are the two opposing optimization maxims

under which the hardware is designed:

24 CHAPTER 3. PARALLEL PROGRAMMING

Throughput Optimization

GPUs are typically designed to handle a large amount of data, all of which

has to be processed as fast as possible. The work is distributed on an array

of processors, each of which handles its assigned tasks sequentially. However,

the processors work in parallel and thus increase throughput; alone they are

not very fast compared to CPUs, but combined they can usually handle more

data and perform more arithmetic operations in the same time.

Latency Optimization

CPUs on the other hand are naturally built to minimize the reaction time as

much as possible. A classic example for this optimization process is the calcu-

lation of the mouse cursor’s position. Despite the involvement of a tiny amount

of data, it has to be calculated in as few clock cycles as possible to maximize

the responsiveness of the system. Due to the nature of the required work, its

distribution on multiple processors is neither possible nor sensible. Acceler-

ating the sequential execution of the routine is the only feasible optimization

approach here.

Although the raw computing power of CPUs is typically lower than that of GPUs,

they will still be an integral part of most computers in the future. This is because

harnessing the GPU’s superior capabilities requires a completely different approach

to software design. Furthermore, the development effort is usually higher, while the

benefit to be gained depends strongly on the problem type. Many kinds of algorithm

can not be parallelized at all, e.g. if they are intrinsically iterative procedures like

series of numbers (e.g. the Fibonacci sequence) and common root finding techniques

(e.g. Newton’s method).

Additionally, due to the long-lasting difficulties in improving single threaded

computing performance apart from clock frequency increases, and especially be-

cause of the factual standstill of the achievable maximum frequency due to cur-

rently insurmountable physical barriers since the early 2000s, CPU vendors have

been introducing two levels of parallelism since the late 1990s (Wilt, 2013, p. 439):

SIMD Instructions

The first of these were introduced in the late 1990s on Intel’s x86 architecture

under the name Streaming SIMD Extensions (SSE). They offer instructions

for simultaneously performing vector operations like additions on 32-bit float

arrays.

Multithreading

Widely available since 2006, this has been the main source of computing power

increase on CPUs from then on. Nowadays, twelve or more cores can be found

in high-end CPUs, each of which can work separately from the others.

3.3. NVIDIA CUDA 25

The main problem of these improved CPU capabilities is that many programs

do not make use of them. It requires additional time and effort – and thus devel-

opment cost – to exploit any of these different levels of parallelism. Minimizing the

execution time of simple single-threaded programs will therefore remain one of the

most important efforts of CPU vendors. A currently popular way of doing this is

increasing the ILP that a processor offers, which is either exploited automatically

at runtime, or through compiler optimizations.

The critical requirement for an algorithm to be implemented on GPUs is that

it involves numerous parallel operations. If it does, performance improvements can

be expected from employing a GPU implementation instead of a CPU one. Classic

examples of this are of course the routines of the GPU’s original application field

of graphics processing and rendering; here each pixel or polygon can be considered

separately. However, with the increasing popularity of GPGPU, many different

applications where GPUs offer superior performance have become known, e.g. linear

algebra.

3.3 NVIDIA CUDA

The CUDA SDK by NVIDIA is one of the two major GPGPU implementations used

today (NVIDIA Corporation, 2014b). It was announced in 2006 as a way of making

the numerous possibilities opened up by the newly introduced stream processors

available to a larger community of general purpose programmers. Since then, a

research community has evolved which tries to optimize every kind of algorithm

that offers some degree of parallelism for CUDA. For common applications, NVIDIA

offers highly optimized libraries, e.g. for random number generation (cuRAND) or

fast Fourier transform (cuFFT).

The CUDA SDK comes with an IDE called Nsight, which allows developers to use

C and C++ as programming languages for their CUDA programs. It also includes

a debugger for host and device code, as well as a profiler, which indicates poten-

tial performance bottlenecks in the program and helps to determine the optimum

configuration parameters. However, many other languages like Fortran, MATLAB,

Java or C# offer interfaces and wrappers for CUDA. In this thesis, managedCUDA

(Kunz, 2014) was used as a way of calling CUDA programs written in C from a

managed C# environment.

C# uses the Common Language Infrastructure (CLI), which translates the code

to Common Intermediate Language (CIL) at compile time (ECMA, 2012). The

resulting code, comparable to assembly for CPUs, is then executed in the Virtual

Execution System (VES) on the machine running the code. The VES further pro-

cesses the CIL code using a Just-In-Time (JIT) compiler and runs it with a high

level of abstraction from the hardware. This includes “managing” the data, mean-

26 CHAPTER 3. PARALLEL PROGRAMMING

ing that memory is automatically allocated and later deallocated through garbage

collection.

As it was developed by NVIDIA, CUDA is only available on high-end NVIDIA

GPUs. A more widely available standard is OpenCL, which is implemented by all

major GPU vendors, and thus available on most current PCs. However, several

studies (Karimi et al., 2010; Fang et al., 2011; Du et al., 2012) imply that CUDA

tends to perform slightly better. The NSight IDE is also superior to the IDEs offered

for OpenCL in terms of analyzing and profiling capabilities.

CUDA offers a high degree of downward compatibility. Although new features

are introduced with every generation of devices and every version of the SDK, code

written and optimized for older hardware can usually run on newer machines as well.

The standard output of the NVIDIA CUDA Compiler (NVCC) is a Parallel Thread

Execution (PTX) file, which is comparable to assembly code. Only once the kernel

is executed, it is translated to actual binary code by the running graphics driver,

similar to the JIT compilation done within the CLI for C#. With this procedure,

the code finally run on the device can be optimized specifically for that device’s

capabilities.

To denote the supported CUDA functionality of different generations of their

hardware, NVIDIA introduced the compute capability versioning scheme. The first

digit marks the hardware generation, with versions 1.x for Tesla, 2.x for Fermi, 3.x

for Kepler and 5.x for Maxwell microarchitecture devices. The second digit indicates

minor differences within the same architecture.

3.3.1 Hardware Architecture

NVIDIA GPUs which support CUDA use the unified shader architecture described

above. This means that their stream processors have general-purpose computing

capabilities, which can be used for all possible tasks in the rendering pipeline. CUDA

offers a way of programming these processing units, then called CUDA cores, in

higher-level languages like C. Each CUDA core has an Arithmetic Logic Unit (ALU)

for integer operations and a Floating-Point Unit (FPU) for floating-point operations

(NVIDIA Corporation, 2009). These are grouped together in an array of Streaming

Multiprocessors (SMs), each of which contains, in addition to its CUDA cores (Wilt,

2013, p. 46):

• Special Function Units (SFUs) for the fast and precise (22 bits) computation

of the transcendental functions sine, cosine, logarithm, exponential, reciprocal

and reciprocal square root. This is better capability than that offered by

CPUs, which yield a native precision of only twelve bits and implement fewer

functions in the hardware (Wilt, 2013, p. 244, p. 251 f.).

3.3. NVIDIA CUDA 27

• Warp schedulers with one instruction dispatch unit each, which select the

warps to be executed, and issue their instructions to the corresponding logic

units in parallel.

• Shared memory accessible to multiple threads.

• L1 and L2 cache.

The Quadro 600 GPU used for this work is a 2nd-generation CUDA device based

on the Fermi architecture. It features 2 SMs, each of which has 48 CUDA cores,

four SFUs, two warp schedulers, 64 KB of on-chip memory (usable as L1 cache and

shared memory) and 768 KB of separate L2 cache. The on-chip memory can be

configured at runtime to offer either 48 KB of shared memory with 16 KB of L1

cache or 16 KB of shared memory with 48 KB of L1 cache.

3.3.2 Thread Hierarchy

This hardware architecture is abstracted for the programmer as a three level hier-

archy: The top level is the grid, made up of one or multiple thread-blocks. Each

of these consists of one or several warps, each of which is again made up of exactly

32 threads. This structure is shown in figure 3.2; the warps are not shown there

because they are usually not directly exposed to the programmer. Each thread cor-

responds to one execution of the so-called kernels, which are little programs written

by the developer and are very similar in nature to the shader programs the GPU

was originally designed for.

These kernels can be executed from the CPU (host) in a similar way to normal

functions (see section 3.3.4.1). However, the size of each block as well as the number

of blocks always have to be passed as arguments to the kernel call. Each block is

then assigned to one of the SMs on the GPU (device) and further split into warps

of 32 threads. The distribution of the blocks onto SMs is done automatically, so

that a CUDA application developed for one device can also run on different devices

with different numbers of SMs, and also benefit from the increasing number of SMs

found in newer generations of GPUs. There are no guarantees made concerning the

execution order of the threads: They can only be forced to wait for all other threads

of the same block at certain points in the kernel code using the syncthreads()

command.

Following NVIDIA’s Single-Instruction, Multiple-Thread (SIMT) hardware de-

sign, which is a realization of the Single-Instruction, Multiple-Data (SIMD) architec-

ture commonly used by GPUs, every thread of a warp executes the same instruction

at the same time. This also means that if threads inside a warp take different paths

through conditional code branches, only one of those branches can be executed at

the same time. Because of that, the threads taking one branch have to wait while

28 CHAPTER 3. PARALLEL PROGRAMMING

Grid

Block (1, 1)

Thread (0, 0) Thread (1, 0) Thread (2, 0) Thread (3, 0)

Thread (0, 1) Thread (1, 1) Thread (2, 1) Thread (3, 1)

Thread (0, 2) Thread (1, 2) Thread (2, 2) Thread (3, 2)

Block (2, 1)Block (1, 1)Block (0, 1)

Block (2, 0)Block (1, 0)Block (0, 0)

Figure 3.2: Sketch of the hierarchy between threads, blocks and the grid in CUDA. From
Wikimedia Commons (2010a) under CC BY 3.0.

the other threads execute the code of their branch, and vice versa. For performance

optimizations, this is a significant detail, making the minimization of code branching

inside of warps an important point of interest.

3.3.3 Memory Hierarchy

The memory available to CUDA kernels is also arranged in a hierarchy as follows

(see also figure 3.3):

Per-Thread Local Memory

Local memory is private to each thread, and typically stored in the thread’s

registers. Registers are tiny memory units (32 bits each on CUDA devices) pri-

marily used to store the instructions of a program on a processor. As this type

of memory is built on the respective processor, it is instantly available when

read, and the fastest kind of memory on the GPU. Every variable declared

inside a CUDA kernel without special qualifiers is stored in local memory.

However, if the number of registers available to each thread (63 on the Quadro

600) is insufficient to store the instructions as well as the local variables, the

spillover is stored in global memory (register spilling). Furthermore, arrays

whose lengths can not be determined at compile time are also stored in global

3.3. NVIDIA CUDA 29

memory. As the access time for data in global memory is more than two orders

of magnitude higher, this can become a significant performance bottleneck.

Per-Block Shared Memory

Shared memory is available to every thread of a block, and can thus be used for

inter-thread communication. It is stored in the SM’s on-chip memory, which

results in an access latency of two clock cycles (Luo et al., 2010).

Global Memory

Global memory can be accessed by every thread running on the GPU as well

as by the host CPU via the connecting PCIe bus. Due to its storage on the

device’s off-chip DRAM, the access latency lies between 400 and 800 clock

cycles for compute capabilities 1.x and 2.x and between 200 and 400 for newer

hardware. This makes it the slowest kind of memory available on the GPU.

As described above in Per-Thread Local Memory, parts of that can also stored

here, which can lead to a massive drop in performance.

An important detail to keep in mind when accessing global memory is that

all transactions here are performed for either 32-, 64- or 128 byte words. This

means that if all 32 threads of a warp access one bit of memory with a 128

byte offset from each other, 32 separate costly global memory transactions are

initiated. However, if the offset is only 4 bytes, one 128-byte memory access

is sufficient. This increases memory throughput to 32 times that achieved

with the spaced memory access. The strategic issuing of accesses such that

consecutive threads access closely spaced consecutive memory regions is called

memory coalescing.

3.3.4 Application Structure

Programs developed using CUDA’s C++ environment are always split into two

parts: On the one side the host code is present. This works the same way as normal

C++, apart from some small syntax extensions introduced by CUDA. It contains

the starting point of program execution, either in the main function if there is one, or

in a function called by another C++ or CUDA file. On the other side are the device

functions, which are kernels running exclusively on the GPU. These are invoked

from CUDA host functions, using a special syntax.

3.3.4.1 Host Functions

This is the default function type in CUDA source files. However, the host keyword

can be put before the method’s name to clarify its status. It can only be called from

other host functions and is executed on the CPU. CUDA offers libraries and syntax

extensions for GPU memory management and kernel execution, which include:

30 CHAPTER 3. PARALLEL PROGRAMMING

Grid

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Figure 3.3: Different types of memory which CUDA kernels commonly access. Adapted
from Wikimedia Commons (2010b) under CC BY 3.0.

cudaMalloc() allocates memory in the device’s global memory in a similar manner

as malloc() does on the host Random-Access Memory (RAM).

cudaMemcpy() copies data between host and device memories, comparable to

memcpy() for host-only copies. The copy direction has to be passed as an

argument.

kernelName<<<gridSize, blockSize>>>(par1, par2, ...) is the normal way

of calling a CUDA device function. It is invoked in the same way as any other

C method, using the name and passing the necessary arguments. However, the

number of blocks has to be specified in gridSize, and the number of threads

per block in blockSize.

In a typical CUDA program which uses these functions, memory for input and

output data is first allocated on the device. Then, the input data is copied there

and the kernel is run. In order to make the input and output memory available to

the kernel, pointers to it are passed as arguments. Finally the results are copied

back to the host for further use.

3.3.4.2 Device Functions

Functions written as kernels to be exclusively run on the device are marked either

with the device or the global qualifier. They support specific CUDA methods

like syncthreads() and can access custom runtime constants, the most important of

3.3. NVIDIA CUDA 31

which are blockIdx and threadIdx. These uniquely identify each thread, by specifying

the block’s position in the grid as well as the thread’s position in its block.

A global method is only callable by host functions. This is where the code

execution starts on the device, so e.g. static shared memory allocation is usually

handled here. The return type always has to be void, so the only way of returning

results is to store them in an array in device memory and later copy them from the

host side using cudaMemcpy().

device on the other hand marks a method that can only be called from other

device functions. This works in the same way as in standard C and values can be

returned to the calling function. Starting with compute capability 2.0, recursive

calls of device functions are supported. However, the code is still run in a kernel,

so the complexity of the code should be kept to a minimum. Code branching can

cause massive performance drawbacks due to each warp’s threads sharing their in-

structions, and if the kernel uses too many registers, register spilling could become

a problem.

An example CUDA program with one host and one global device function is

shown in listing 3.1. It is written in CUDA’s C++ environment, and makes use of

the host functions described above in section 3.3.4.1.

3.3.5 Maximization of Device Utilization

An important part of the optimization of CUDA programs is minimizing the amount

of processors idling during the execution of a program. Using all the available

hardware resources will increase the data throughput.

There are three levels on which to optimize device utilization in CUDA (NVIDIA

Corporation, 2014b, pp. 72-76):

Application Level

The most important way of constantly keeping the GPU occupied here is the

reduction of the latency created by kernel calls. When the host program calls

a CUDA kernel, the passed arguments are transferred to the GPU and the

blocks assigned to their SMs. This can be a reason for bad performance if

many separate calls are issued to a kernel executing comparatively quickly.

A possible solution to this are asynchronous kernel calls running in parallel, if

the program does not need them to be sequential. CUDA provides a stream

architecture exactly for this purpose. This allows every method involving a

CUDA device to be assigned to a stream. Functions attached to the same

stream are then executed one after another.

Device Level

On the level of a single CUDA device, it is important to keep all its SMs busy

32 CHAPTER 3. PARALLEL PROGRAMMING

// Device code:

__global__ void ArrayAdd(float* A, float* B, float* C)

{

// Determine position of thread in grid

int i = blockIdx.x * blockDim.x + threadIdx.x;

// If the number of entries in the arrays (N) is not divisible

// by the block size , there are more than N threads running.

if (i < N)

C[i] = A[i] + B[i];

}

// Host code:

int main()

{

...

size_t size = N * sizeof(float);

// Allocate arrays in device memory

float *d_A , *d_B , *d_C;

cudaMalloc (&d_A , size);

cudaMalloc (&d_B , size);

cudaMalloc (&d_C , size);

// Copy vectors from host memory to device memory

cudaMemcpy(d_A , h_A , size , cudaMemcpyHostToDevice);

cudaMemcpy(d_B , h_B , size , cudaMemcpyHostToDevice);

// Calculate the block and grid dimensions

int threadsPerBlock = 32;

// Make sure that at least N threads are run

int numBlocks = (N + threadsPerBlock - 1) / threadsPerBlock;

// Kernel invocation

ArrayAdd <<<numBlocks , threadsPerBlock >>>(A, B, C);

// Copy results back to host

cudaMemcpy(h_A , d_C , size , cudaMemcpyDeviceToHost);

...

}

Listing 3.1: Simple CUDA program for parallel addition.

3.3. NVIDIA CUDA 33

at all times. This can be achieved by issuing enough blocks (either in one or

several parallel kernel calls) with a sufficient block size. Each SM can handle

multiple blocks simultaneously, the exact number of which is dependent on the

factors described below. For that reason, a great number of small blocks can

use the same number of SMs as only a few larger blocks.

SM Level

This third level of optimization is the most important one, as it directly affects

the programming of the kernels. There also have to be taken into account

numerous device properties and runtime parameters varying strongly between

the different core generations (compute capabilities).

The main concern here is keeping the arithmetic units of the SM busy. The

percentage of time that they actually spend doing calculations during a kernel

call is referred to as occupancy.

Usually there are multiple warps resident on an SM during the kernel run.

These may belong to one or several thread blocks, depending on the number

of blocks and warps which the SM can hold for this specific kernel. The

number of blocks is limited by the amount of shared memory that the kernel

requires, or by the maximum amount of warps which the SM can handle. This

again is limited by the register count that each thread of the kernel uses: The

maximum number of stored registers per SM, and thus per block, is 32768 on

the Quadro 600. The maximum block size for the triangle intersection test

kernel, which uses 53 registers, is thus 618 threads. Using a block size of

32 threads, a theoretical amount of 19 blocks can run simultaneously on the

same SM. However, the maximum number of resident blocks per SM is limited

to eight on this device. A detailed table of the hardware limits of different

compute capability versions can be found in NVIDIA Corporation (2014b, pp.

182-184).

If the computing units of the SM are kept busy by the resident warps depends

on the arithmetic intensity of the kernel being executed. This is the ratio of

calculations done per memory access. When a warp issues a global memory

access, this takes between 200 and 800 clock cycles to be processed. In the

meantime, the threads of this warp can not perform any more computations.

To still keep the arithmetic units busy, it is stored and later reactivated when

the access query returns. Then the SM’s warp schedulers select a different warp

whose instructions are then issued to the processors. However, if the arithmetic

intensity of the running kernel is too low, sometimes all warps residing on

this SM might be waiting for memory transactions to finish. This, although

sometimes unavoidable, is a waste of throughput theoretically processable by

the device.

35

Chapter 4

Implementation

The following chapter first specifies the two algorithms which were implemented on

the GPU to be used for the discussed spatial BIM queries: the querying of an R-tree

as well as intersection testing between triangle meshes. Both their sequential and

parallel implementations are described, together with their possible application and

combination.

The sequential implementations were largely reused from the available QL4BIM

System. They are, together with the host (CPU) code of their parallel counterparts,

programmed in C# atop the .NET Framework. This provides Language Integrated

Queries (LINQs) (Meijer et al., 2006), which are methods for data querying available

for all classes which implement the IEnumerable interface (most importantly Array,

List, HashSet and Dictionary). They are heavily used in all the following algorithms,

both in those taken from QL4BIM System (see Daum et al., 2014) as well as in the

host code of the newly developed parallel ones.

4.1 R-Tree

4.1.1 Data Structure and Parameters

The R-tree is a multidimensional indexing structure for managing data objects with

regard to their positions in space proposed by Guttman (1984). It uses a multi-level

tree-like structure with each node from one level containing pointers to several nodes

on the next level (child nodes). Each node is only referenced by exactly one parent

node, with the exception of the root node. Those on the bottommost level are called

“leaves” and only reference the single data object stored in them. Every node has

an axis-aligned bounding box enclosing all of its children’s bounding boxes, or its

stored data object.

The tree is height balanced, which means that all leaf nodes are on the same

level. Its defining variables are its fanout M , i.e. the maximum number of children

36 CHAPTER 4. IMPLEMENTATION

Figure 4.1: Possible structure of an R-tree storing objects in 2D-space with M = 3 and
m = 1 over three levels. From Daum et al. (2014) under CC BY-NC-ND 3.0.

a node can have, and m, i.e. the minimum number of children a node (except for the

root node) must have. Through appropriate restructuring during Add and Remove

operations, the tree can always fulfill these requirements as long as m ≤ M
2 .

Figure 4.1 shows an example R-tree illustrating these properties.

4.1.2 R-Tree Creation

4.1.2.1 Implementation Used in QL4BIM System

The creation of an R-tree is a very complex and time-consuming task; it usually

takes much longer than a single query on the complete tree. Because of that, the

runtime reduction of the algorithm employed for this, as well as the reuse of once

created R-trees, are important aspects in the optimization of the overall application

performance.

QL4BIM System’s implementation, which is also used for this work, supports

two methods for tree construction: One uses the original algorithms proposed by

Guttman (1984). The other one increases performance by incorporating optimiza-

tions to construct the R*-tree proposed by Beckmann et al. (1990). Both of these

are based on a sequential approach, where all the elements of the final tree are added

to an initially empty tree one after another. The most important procedures for this

are the following:

ChooseLeaf decides to which node a newly inserted leaf should be added. In

Guttman (1984), the best node of each level is chosen recursively based on

4.1. R-TREE 37

which node needs the least enlargement of its bounding box area/volume.

The thus determined node’s children are compared as candidate nodes for the

next level in the next recursion step.

SplitNode is called every time the node decided upon by ChooseLeaf is full. The

tree then has to be adjusted by dividing the children of the overflowing node

in two newly created nodes as intelligently as possible. The Linear Split al-

gorithm of Guttman (1984) first decides on two seed leaves to start the new

nodes, and then divides on them the remaining leaves with the same crite-

rion as ChooseLeaf. The initial leaves are selected by calculating which of the

bounding boxes have the highest distance from each other in relation to the

extent of the R-tree along each respective dimension. The pair with the high-

est relative distance along any of the considered dimensions is then chosen as

the seed pair.

4.1.2.2 Possible Optimization and Parallelization

For possible optimizations of R-tree creation, one has to consider two different as-

pects: On the one hand, a focus can be put on decreasing the computational cost

of the creation process itself, by e.g. choosing cheap implementations of ChooseLeaf

and SplitNode. On the other hand, e.g. for massively reused R-trees or when only

the search time is important, it might be more sensible to focus on lowering the cost

of querying the tree. A possible approach to this could be to reduce the average

amount of overlap between different nodes in the same level, and thus the mean

number of candidate nodes that need to be checked.

An alternative to the original algorithms for ChooseLeaf and SplitNode is pro-

posed by Beckmann et al. (1990). This R*-tree promises superior performance in

query as well as construction time.

Furthermore, there have been efforts to improve construction performance by

parallelizing this algorithm and running it on the GPU. Apart from the possible

speed-up of the pure R-tree creation, this method offers an additional benefit in

combination with a GPU-based query algorithm: The copy overhead between host

and device is reduced. As this is comparatively high and sometimes responsible for

significant portions of the overall runtime, running both operations without moving

the R-tree structure between GPU and CPU can improve their combined perfor-

mance substantially.

One of the first studies on parallel R-tree construction, also called bulk loading,

was published in Kamel et al. (1992). Further research on porting this technique to

the GPU was done in the last few years: Luo et al. (2012) found that GPU-based

bulk loading offers speeds of between 26% and 600% of those of comparable CPU

implementations. Which of the two implementations needs less time depends mostly

38 CHAPTER 4. IMPLEMENTATION

on the number of objects to be stored here; as expected, the GPU tends to perform

better for larger data sets. However, You et al. (2013) detected possible inferior

query performance when searching trees created in this way.

4.1.3 Sequential R-Tree Query

Using this index structure, it is possible to retrieve all the stored objects whose

bounding boxes intersect with an arbitrary search box. This can easily be done by

first checking for intersections between the search box and the bounding boxes of the

topmost level of nodes. Then, the same test is done for all child nodes of the nodes

whose bounding boxes intersect with the search box. Repeating this procedure will

eventually yield the stored objects of the leaf nodes whose bounding boxes intersect

with the search box.

The sequential code for the R-tree query was implemented for QL4BIM System in

the scope of Daum et al. (2014) and reused identically for this work. It largely follows

the query algorithm presented in Guttman (1984). However, as recursive functions

in combination with C#’s yield return-statement lead to complicated code, a loop

over a queue was employed; see algorithm 1 for the specific implementation.

Algorithm 1 Sequential C# algorithm for the R-tree query. Returns ev-
ery object stored in RootNode’s R-tree whose BoundingBox intersects with
SearchMesh.BoundingBox.

if not BoxesIntersect(RootNode.BoundingBox, SearchMesh.BoundingBox) then
yield break

end if
queue.Enqueue(RootNode)
while queue.Count > 0 do

parent ⇐ queue.Dequeue()
for each node in parent.Nodes do

if BoxesIntersect(node.BoundingBox, SearchMesh.BoundingBox) then
if parent.IsLeaf then

yield return node.Item
else

queue.enqueue(node)
end if

end if
end for

end while

4.1.4 Parallel R-Tree Query

The R-tree query potentially offers parallelism, as the box intersection tests can be

performed simultaneously on the different nodes of each level. This implies possible

4.1. R-TREE 39

performance benefits from a GPU implementation. Because of that, there have been

various studies of accelerating this procedure using CUDA, e.g. Kunjir et al. (2009),

Luo et al. (2012), Yampaka et al. (2012), and You et al. (2013). The algorithm used

here is largely based on that presented in Luo et al. (2012).

4.1.4.1 Input Data Representation on the GPU

The first problem which has to be solved is the representation of the R-tree data in

the GPU’s global memory. This has three main requirements:

1. The size of the data has to be minimized, by reducing the amount of redundant

or unused information. The benefit of this is that the individual cudaMem-

cpy()-operations take less time.

2. The data should be stored in as few different places as possible, so that the

number of cudaMemcpy()-commands which have to be issued is reduced. This

saves the overhead produced by each cudaMemcpy() call.

3. It is best if nodes belonging to the same parent are located in adjacent regions

in device memory. This makes coalescing memory accesses possible, which can

speed up program execution significantly.

It is thus evident that the original C# representation is not suitable for the GPU’s

needs. The referenced C# objects are distributed randomly across the application’s

memory heap, with no continuous chunk of memory reserved exclusively for them.

Therefore a different memory model proposed in Luo et al. (2012) is employed.

As the R-tree search only takes into account the bounding boxes, but not the

spatial objects stored in the leaf nodes, it is sufficient to copy the tree structure and

the box coordinates to the GPU. They are represented by two arrays:

Index Array Every group of M entries corresponds to the child nodes of one parent

here, with the first M entries belonging to the root. Each positive entry is a

non-leaf node and contains the array index of its first child node. If a parent

has less than M child nodes, the remaining entries are filled up with zeros.

Negative entries are leaf nodes; their value uniquely identifies their respective

spatial object stored in the R-tree, similar to an ID (figure 4.2(a)).

Box Array It has exactly the same length as the index array, because it stores

each bounding box at the same offset that the corresponding node has in the

index array. Where the corresponding entry in index array is zero, the value

is a don’t-care (figure 4.2(b)).

40 CHAPTER 4. IMPLEMENTATION

3 6 0 9 12 1815 0 0 -1 -2 -3 -4 -5 -6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

R16 R17 X R12 R13 R15R14 X R1 R2 R3 R4 R5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Rect

X R6

Figure 4.2: Array structure employed for storing R-trees on the GPU. From Luo et al.
(2012), c© 2012 IEEE.

4.1.4.2 Parallelization Approaches

As mentioned above, a single R-tree query has the parallelism offered by simultane-

ously checking all the candidate nodes of the same level for intersections. However,

even higher performance improvements can be achieved when multiple queries are

run simultaneously. This can be used e.g. when searching for all mesh intersections

in an IFC model.

These two levels of parallelism can directly be applied to the CUDA architecture,

so that each block handles a separate query and each thread checks the box intersec-

tion for one node (see figure 4.3). This fits the purpose of each level of parallelism

in CUDA perfectly: The different blocks have no way of communicating with each

other during a kernel call, which is not necessary as each individual query has its

own independent search box. Inside a block, however, threads can work together

and quickly exchange data using shared memory and the syncthreads() command.

This is necessary, because the threads of each block have to have a common pool of

nodes which have to be checked, somewhat similar to the queue employed for the

sequential implementation.

4.1.4.3 Overflow Treatment

However, unlike the sequential implementation, the queue can overflow here, i.e.

there are too many candidates and too few threads to perform all the intersection

tests in parallel. In each level, the threads check all the children of the nodes stored in

the queue for intersections. Even for zero-nodes in the index array, a dummy thread

which is not doing meaningful work is running. This means that there cannot be

more than blockSize/M nodes in the queue at once.

4.2. MESH-INTERSECTION TEST 41

Grid

R-tree query (Data-Rects, Query-Rects)

R-tree single query
(Data-Rects, Query-Rects[0])

Block 0 Block n-1

R-tree single query
(Data-Rects, Query-Rects[n-1])

Figure 4.3: Structure of a kernel call employing two levels of parallelism. From Luo et al.
(2012), c© 2012 IEEE.

If a thread finds an intersecting node, which does not fit into the queue any-

more, it sets the block-wide shared Boolean overflowing to true. After the next

syncthreads(), the other threads check this variable and start the overflow treat-

ment: The indices of the nodes whose children were checked in this level, i.e. the

results from the previous level, are written to the output array. Finally the output

overflow flag for this block is set to true.

The host code handles blocks with a positive overflow flag as follows: All the

node indices returned by overflowing blocks are gathered into one list. At the same

time, another list is made of their respective search boxes. These can be different

if multiple queries were issued in parallel. Using these lists, the kernel is called

again, but this time an entire block is assigned to each index. Due to the storage

model of the R-tree on the device, all these blocks can be issued together and

search the same tree. They simply have to start at the previously returned indices,

which are transferred to the device before the kernel is called. For initial (standard

top-level) queries, this is set to zero (the root node). If these blocks again return

positive overflow flags, the procedure is repeated recursively until all the searches

have finished.

4.2 Mesh-Intersection Test

This test uses the concept of intersection testing of triangle pair meshes described

in section 2.3.3. The basic idea here is to discern between touching and intersecting

relationships between objects by testing both the inner and the outer mesh of object

A against both meshes of object B. A real intersection is only proven if all these

tests return true, in accordance with the definition of the touching relationship in

figure 2.1.

42 CHAPTER 4. IMPLEMENTATION

As described in section 2.3.2, the individual tests between two meshes are per-

formed by checking each triangle of mesh A for an intersection with any triangle

of mesh B. Because the meshes form closed surfaces, this directly proves that they

meet. For this project, the triangle intersection algorithm presented in Möller (1997)

was used. This is publicly available at Möller (1999) in highly optimized standard

C. As such, it can be used by any CUDA kernel without further changes besides

adding the device qualifier in front of the function names.

4.2.1 Sequential Implementation

For it to run in C# however, some expressions had to be adapted, while the al-

gorithm itself remains unchanged. The overall mesh intersection test for Triangle-

PairMeshes, which uses this triangle intersection test, is already present in QL4BIM

System. It expects the R-trees containing the individual triangle pairs of the two

TrianglePairMeshes as input arguments. The two trees are then checked against

each other level by level using a queue similar to the one in the sequential R-tree

query described above. However, each queue entry is now a pair of R-tree nodes,

with the initial entry being the two root nodes. The pairs of their child nodes whose

bounding boxes intersect are then added to the queue and processed in the same

way again. Using this procedure, eventually the queue only contains pairs of leaf

nodes with intersecting bounding boxes. Then the individual triangle tests are run

on them one after the other. However, if a combination of mesh intersections (e.g.

inner-inner) has already been proven, the individual triangle pairs are no longer

tested for that.

4.2.2 Parallel Implementation

Unlike the sequential implementation, the parallel one separately checks the four

mesh combinations which have to be considered for each intersection test. Addi-

tionally, it is designed as a search, where all the meshes of the current model are

already stored on the device beforehand. While this increases the initialization time

of the program, the latency of the individual intersection queries is vastly reduced.

The search mesh is then tested against all the stored triangle meshes by looking for

intersections between all possible triangle combinations.

4.2.2.1 Levels of Parallelism

This algorithm again exposes two levels of parallelism. As such it fits the CUDA

programming model perfectly: One thread can be assigned to each triangle of the

stored meshes, and then sequentially check the triangles of the search mesh for

intersections. However, if another thread of the same mesh has already found an

intersection, further testing would be a waste of computational resources. For that

4.2. MESH-INTERSECTION TEST 43

0 64 128 192 256 320 384 448 512 576
0

200

400

600

800

1,000

1,200

1,400

1,600

Mesh Size, Including the Upper Interval Boundary

N
u

m
b

er
o
f

M
es

h
es

Mesh Size Distribution

Figure 4.4: Histogram of the mesh sizes found in the AC11-Institute IFC model. The bins
include their upper boundaries and have a size of 32. Thus every successive bin needs one
more warp per mesh.

reason, the threads assigned to the same mesh communicate to each other whether

they have already found a positive result. To that end, each mesh is checked by one

block, with a shared Boolean result variable.

4.2.2.2 Mesh Partitioning

A problem that had to be overcome here are the vast differences in the number of

triangles per mesh. This ranges from 12 to 576 in the examined AC11-Institute

IFC model. Therefore, a block size of 576 is necessary to fit the testing of even the

largest mesh in only one block. This wastes a great amount of potential performance,

because over 96% of the meshes have 32 or less triangles, and can thus be tested by

only one warp (see figure 4.4).

As the control flow is only fixed within each warp, the surplus warps in blocks

which are checking a small mesh can immediately return. Although this would free

44 CHAPTER 4. IMPLEMENTATION

30 Triangles ~90 Triangles

32 Threads/Block

32 Threads 96 Threads

Figure 4.5: Example of the distribution of a simple as well as a complex mesh on blocks
of 32 threads each. Made of figures from Wikimedia Commons (2007) and Wikimedia
Commons (2008, under CC BY-SA 3.0).

the computational units on their SMs, their register memory remains allocated. This

prevents other blocks from being run on the same SM. Its processors might thus not

have enough work to keep them occupied during memory accesses of the remaining

active warps.

To resolve this issue, the large objects are distributed on several blocks as shown

by example in figure 4.5. Every block then only tests a set of triangles, which do

not form a closed mesh. However, the intersection is still proven for the entire

mesh if at least one of these mesh fragments intersects with the search mesh. The

disadvantage of this is that when one of the blocks finds an intersection, the others

have to continue their checks anyway because communication is impossible. This

results in extra computational effort being done, which can only be neglected because

merely a minuscule portion of the meshes consists of more than a few dozen triangles.

4.2.2.3 Test on a Reduced Set of Meshes

As from a certain model size upwards the numerous blocks can not be handled

by the device’s SMs all at once, they would eventually have to wait for execution.

This ultimately leads to a close to linear scaling of the runtime with respect to the

number of checked meshes. As this is impractical for large BIM models, preselection

can be done using an R-tree which indexes all the meshes in the IFC file. Then only

those whose bounding boxes intersect with that of the search mesh have to be tested

triangle by triangle.

To minimize data transfer between host and device, the complete set of meshes

for the entire model is still first copied to the GPU. Although this causes a large

initial overhead, subsequent queries can then be carried out much faster. This is

because only the pointers to the candidate meshes or their mesh fragments need to

be copied to the device prior to each function call. Every issued block then tests the

triangles which its pointer references.

4.2. MESH-INTERSECTION TEST 45

4.2.2.4 Adjustments for Finding All Intersection Pairs

The search for all mesh-mesh intersection pairs in the entire model was implemented

slightly differently. The single search mesh kernel would require one separate kernel

call for every mesh in the model. For typical model sizes, thousands of them would

have to be issued. This is impractical in CUDA, as they would either have to be

run completely sequentially, or partly parallelized using concurrent kernel execution.

This can be done using CUDA’s asynchronous function call framework, which works

with several streams running in parallel. However, the maximum number of kernels

running simultaneously is limited to 16 on compute capability 2. Moreover, each of

these separate calls still causes a lot of overhead due to SM allocation and parameter

copying.

Therefore a single kernel handling this massive intersection query was devised.

As for the single query, each block handles one mesh, with large ones being split

into several block sized fragments. However, instead of checking its triangles against

one single search mesh as before, each block now performs intersection tests against

several other meshes.

These are again preselected individually for every mesh. This is done by first

querying an R-tree and then removing from its candidate list all the meshes which

have an index in the global mesh list of lower or equal the current mesh’s index (see

figure 4.6). This way, each combination of meshes is ensured to only be checked

once. Additionally, unnecessary tests of meshes against themselves are prevented.

The resulting lists of candidate indices for each mesh are finally concatenated into

one array. The interval in this array which each block should process is stored in a

second array.

4.2.2.5 Treatment of Kernel Timeouts on Windows

One problem that was encountered here lies in the long runtime of this extremely

computation intensive kernel. Upwards of a few thousand meshes, the execution

takes more than a few seconds to finish. This leads to an error, because Windows

automatically stops all shader programs running for more than a certain time thresh-

old (NVIDIA Corporation, 2014a). This crashes the application, and has hung the

entire machine several times during the development of this program. To still be able

to carry out benchmarks of larger IFC models on Windows systems, the maximum

execution time has to be reduced.

To that end, all blocks which need to be run are split up into several grids, each

with a low enough runtime, and executed sequentially. The offset that each thread

has to add to its runtime blockIdx constant to achieve identical behaviour as with

one single grid is passed as an argument in each kernel call.

46 CHAPTER 4. IMPLEMENTATION

IDs of initial candidate meshes

0

1

2

3

4

5

8

9

6

7

0 1 2 3 4 5 6 7 8 9

ID
s

of
se

ar
ch

in
g

m
es

h
es

Figure 4.6: Sketch of the selection process of candidates for the self intersection test:

1. The candidates () for each searching mesh (corresponding to rows) are selected using
a multiple parallel R-tree queries. As every bounding box intersection is found for
both meshes involved, the R-tree produces a symmetric pattern in the matrix.

2. The candidates on the lower left side of the matrix, i.e. with smaller indices than
the search meshes, as well as those on the diagonals, with equal indices, are removed
(thick black line). This prevents the same mesh combination from being checked twice
as well as intersection tests of meshes against themselves.

3. The indices of the remaining candidates in the top right half of the matrix are stored
in an array.

4.2. MESH-INTERSECTION TEST 47

To determine the number of blocks that each grid should run, a measure of the

expected computational complexity is needed for each searching mesh. The number

of its candidate blocks multiplied with the number of blocks into which the mesh

is divided itself is a very good approximation of this. Basically, the number of run

blocks is multiplied with the number of blocks which they have to check – which

yields the number of block-block intersection tests. However, this can not predict

how quickly the blockwise tests find intersections, and can thus stop their triangle

testing. Additionally, many blocks are not full, which also reduces the number of

necessary tests.

These variations depend on the examined IFC file, the block’s rough position

therein as well as the type of object stored in it. Their effects can thus be approxi-

mated by the runtime of previously run blocks. This is especially promising because

in most IFC files, the IfcProducts are numbered by either spatial position or type.

To benefit from this, the expected runtime of each mesh is calculated by multiplying

its expected complexity with the runtime per expected complexity of the previously

run grid.

However, the runtime of each grid still shows variations with respect to the

predicted one. It thus needs a corresponding safety margin, especially because a

timeout immediately causes a crash of the program. However, the chosen grid size

has to minimize the overhead caused by individual kernel calls at the same time.

Assuming a constant runtime per candidate block checked, the theoretical number

of candidate blocks which can be checked in 500 ms can easily be calculated from

the previously run grid. Together with a minimum of 100 blockwise intersection

tests per grid, this proved to be a good solution: The overall runtime of this test

was not significantly increased, and none of the examined models caused a timeout.

49

Chapter 5

Performance Analysis

To judge the strengths and weaknesses of the different implementations of the exam-

ined spatial BIM queries, a benchmark testing the runtimes of several combinations

thereof was performed on multiple real-life models with different sizes.

5.1 Remarks on Platform Comparison

When analyzing the CPU and GPU implementations of an algorithm, a clear state-

ment about which one performs better is often difficult (Lee et al., 2010). Apart from

the almost impossible performance comparison of the different hardware, the pro-

gramming on each platform is also difficult to standardize. For both architectures,

there exist virtually unlimited possibilities for optimization and fine-tuning.

The most important factor in these performance tests is that the host code is

written in C#. As this is run in a hardware abstraction called the Virtual Execution

System (VES), the developed application might be running slower than it would

written in C. This affects both pure CPU operations as well as CUDA functions,

but to a different degree. This makes a direct comparison of the runtimes extremely

difficult.

For those reasons, only the rough trends visible within the numbers were com-

pared, which contain information about the scaling behaviour of the different plat-

forms for different model sizes.

5.2 Test Description

5.2.1 Test Setup

The performance analysis was performed on a workstation with a quad-core Intel

Xeon E31225 CPU at 3.10 GHz of clock speed and 8 GB of DDR3-1333 RAM. The

installed dedicated graphics device was an NVIDIA Quadro 600 workstation GPU

50 CHAPTER 5. PERFORMANCE ANALYSIS

with two SMs. These have 48 CUDA cores each, resulting in a total of 96 CUDA

cores, which are clocked at 1.28 GHz. It further offers 1 GB of global memory, as

well as 64 KB of on-chip memory per SM. The latter was left at its default settings,

yielding 16 KB of L1-cache and 48 KB of shared memory (see section 3.3.1 for the

configuration of on-chip memory). Each SM can also store up to 32768 registers.

The machine was running Windows 7 Enterprise Service Pack 1 in its 64-bit

version. The installed version of the CUDA driver and runtime was 6.5, on top of the

NVIDIA graphics driver version 340.62. The C# code was built and executed using

the .NET Framework 4.5. All compilations were done targeting the x64 platform in

release mode, and the program was finally run without any debuggers attached. All

floating-point calculations were performed with double precision.

As a measure of the accuracy of the results, the standard deviation is a good

indicator. For a machine not otherwise occupied, according to Haveraaen et al.

(2001), it decreases fastest when taking the minimum of the obtained runtimes as

the correct one and measuring it from there. Therefore, the described benchmark

was run three times for each model, with the lowest collected times assumed as the

measurement results.

5.2.2 Parameter Settings

In the source code of the developed programs, numerous constant parameters had

to be defined. Almost all of these have impacts on the overall performance, but the

scrupulous analysis and optimization of each one would go beyond the scope of this

thesis. Educated guesses were made for their optimal values, which are listed in

table 5.1.

5.2.3 Model Selection

The goal of this performance test is the comparison of the scaling behaviours of

the different query implementations. This is evaluated with respect to model size,

i.e. the number of objects in an IFC file, as well as other query-specific properties,

especially the number of found results. The perfect test subjects would thus only

change in these characteristics, but none else. This can only be achieved using

artificial models, such as the one used in Daum et al. (2014).

However, they can only be compared with representations of real-world buildings

to a limited degree. As the tests show, their distinct properties might severely impact

the performance of spatial operations executed on them. One of the most important

peculiarity of actual models is the varying complexity which each mesh has. A

very large meshes, i.e. consisting of many triangles, requires more computations per

tested mesh intersection.

5.3. RESULTS 51

Parameter Description (see section) File Value

NumBenchmark-
Runs

Number of times that a benchmark is repeated
to obtain meaningful results (5.2.1)

CUDACaller.cs 3

MinNumNodes The minimum number m of children which an
R-tree non-root node must have (4.1.1)

CUDARTree.cs 1

MaxNumNodes The maximum number M of children which
an R-tree node can have (4.1.1)

CUDARTree.cs,
rTreeSearch.h

8

RTreeQueryBlock-
Size

Block size used for the R-tree query kernel
(4.1.4)

CUDARTree.cs,
rTreeSearch.h

512

CUDAMeshInter-
sectorBlockSize

Block size used for the two mesh intersector
kernels (4.2.2.2)

CUDAMesh-
Intersector.cs

32

StartingMaxNum-
RunBlockTests

Block tests performed in the first partial run
of the all mesh intersections kernel (4.2.2.5)

CUDAMesh-
Intersector.cs

2000

MinNumRun-
BlockTests

Minimum number of block pairs to test per
kernel run (4.2.2.5)

CUDAMesh-
Intersector.cs

100

TargetMilliseconds-
PerKernelRun

Target runtime of each partial all mesh inter-
sections kernel run in milliseconds (4.2.2.5)

CUDAMesh-
Intersector.cs

500

Table 5.1: Descriptions and chosen values of all the constants in the project.

Furthermore, unless constructed very elaborately, the objects in artificial models

are regularly distributed across space. However, most real-world models are spatially

inhomogeneous. This corresponds to a building having big, open rooms with a small

amount of furniture in one section, and smaller rooms with a high density of room

setup and MEP equipment in the other. Although it did not become apparent in

the tests done in this thesis, this can have an impact on the R-tree performance: It

might lead to an unfavorable tree structure, which can influence its construction as

well as query time.

For those reasons, an extensive test using real-world models with different object

counts was performed. Ten models were supplied by the Chair of Computational

Modeling and Simulation of TUM. However, only four of these could be tested,

because the others either could not be exported in the IFC format from Autodesk

Revit, or required too much memory to be evaluated on the test system with 8 GB

of RAM. Additional models were downloaded from the Open IFC Model Repository

(University of Auckland, 2012), which were originally supplied by researchers from

Karlsruher Institut für Technologie (KIT).

5.3 Results

5.3.1 Model Properties

First, the average number of TrianglePairs per object was analyzed for each IFC

file (see figure 5.1). This shows that the average mesh complexity indeed varies

52 CHAPTER 5. PERFORMANCE ANALYSIS

K
IT

A
C
11

-F
ZK

-H
au

s

K
IT

A
C
11

-In
st
itu

te

K
IT

A
D
T
-S

W
-5

-B
ui

ld
in

gs

K
IT

A
P20

08
-In

st
itu

te
-V

ar
-2

K
IT

FJK
-P

ro
je
ct

K
IT

G
eb

ae
ud

e-
G
ru

pp
e

K
IT

N
em

-F
ZK

-H
au

s

T
U
M

G
eb

ae
ud

e
3

T
U
M

G
eb

ae
ud

e
5

T
U
M

G
eb

ae
ud

e
9

T
U
M

N
or

dg
eb

ae
ud

e
0

20

40

60

80

∅
T

ri
a
n

gl
eP

a
ir

s
p

er
M

es
h

Figure 5.1: Plot of the average number of TrianglePairs per TrianglePairMesh for each
examined IFC file.

strongly between different building models. Thus the construction time of the Tri-

anglePairMeshes as well as the average mesh intersection time should be compared

with respect to the number of TrianglePairs, not meshes, in a model.

5.3.2 Data Structure Creation

Next, the construction times of the different data structures, including their copy

time to the CUDA device if necessary, were examined. They have to be considered

separately from the individual query processing times, because, once created, they

can be used for multiple queries.

The first created object was the CUDAMeshIntersector. Although each mesh

causes a small minimum overhead here, the deciding factor for the instantiation time

is the number of TrianglePairs (see figure 5.2). This has a much clearer connection

with the measured time than the number of meshes, showing an almost perfectly

linear correlation except for one outlier.

The computationally intensive tasks in this constructor function are the calcula-

tion of the TrianglePairMeshes from the original single TriangleMesh representation

and their storage in separate triangle arrays for the CUDA device as described in

section 4.2.2. This is all done in sequential C# code making heavy use of LINQ,

which naturally scales linearly with increasing amounts of processable data. The

copying of the resulting arrays takes only a small portion of time in the order of

milliseconds, which only has a minor impact here.

5.3. RESULTS 53

CUDA Mesh Intersector

0 0.5 1

·104

0

2

4

Number of Meshes

C
on

st
ru

ct
io

n
T

im
e

[s
]

0 0.2 0.4 0.6 0.8 1

·106

0

2

4

Number of TrianglePairs

C
on

st
ru

ct
io

n
T

im
e

[s
]

Figure 5.2: Scatter plots of the CUDAMeshIntersector construction times. While they
only show a limited connection with the number of meshes, they depend on the number
of TrianglePairs almost perfectly linearly when considering the data point with over four
seconds of runtime an insignificant outlier.

The IFC file with over four seconds of runtime, which does not fit in the linear

model for this test, is TUM Nordgebaeude. The exceptionally bad performance here

can perhaps be attributed to a memory bottleneck. When loading this IFC file in

QL4BIM System, almost all of the test machine’s 8 GB of memory were occupied.

This possibly slowed down all further analysis, because memory allocation therein

might have either been fragmented or required moving part of the main memory to

the hard drive first.

The next called constructor is that of the CUDARTree which indexes all the

meshes – one per IfcProduct – of the IFC file. From this, the candidates for individual

mesh intersection tests can be obtained. The created instance references both the

original C# R-tree as well as its array representation (described in section 4.1.4),

which is stored on the CUDA device. The object can thus be used for both parallel

CUDA queries as well as sequential ones in C#.

The main constructor tasks are the creation of the R-tree in C#, the derivation of

the corresponding array structure and finally the copying of this to the CUDA device.

The tree construction dominates the runtime here. It only takes the individual

meshes’ bounding boxes into consideration, not their complexity. Thus its runtime

can be expected to only depend on their number. This relation is plotted in figure 5.3,

and proves to be linear. This corresponds with the almost constant insertion time

for sufficiently large R-trees described in Guttman (1984).

The last constructed object is a list of the C# R-trees containing all the Trian-

glePairs of each object. These are used by the C# mesh intersector, which compares

the individual TrianglePairs against each other using these R-trees. Constructing

all of them facilitates the reuse of the data structures for multiple queries. How-

54 CHAPTER 5. PERFORMANCE ANALYSIS

CUDA R-Tree Containing All Meshes

0 0.2 0.4 0.6 0.8 1 1.2 1.4

·104

0

0.2

0.4

0.6

0.8

Number of Meshes

C
o
n

st
ru

ct
io

n
T

im
e

[s
]

Figure 5.3: Scatter plot of the CUDARTree construction times. Their dependence on the
number of meshes is almost perfectly linear for all examined models.

ever, it has to be noted that for a single intersection query with a search mesh, only

the objects which are selected by the global meshes R-tree have to be indexed and

searched. This can reduce the overall runtime significantly, which is why construct-

ing all R-trees beforehand is only beneficial if they are used for a large number of

queries.

The timing results plotted in figure 5.4 show an overall linear relation between

the construction time and the number of TrianglePairs. As with the model-wide

R-tree before, this can be attributed to the practically constant R-tree insertion

times of each TrianglePair.

5.3.3 Intersection With Search Mesh

After all the necessary data structures were created, a simple query looking for all

meshes intersecting with one search mesh was executed. The intersection criterion

used for this was that the two inner as well as the two outer TriangleMeshes inter-

sect. To achieve this, these two mesh combinations were checked separately in the

parallel CUDA implementation, while the C# mesh intersection tester was adjusted

accordingly. The search mesh which this benchmark uses is the octant with the

smallest x-, y- and z-coordinates of the largest mesh’s bounding box.

The first test, whose results are depicted in figure 5.5, used both implementations

to check the search mesh against every single object in the model. As the parallel

CUDA program uses a brute-force method which tests every triangle in the entire

5.3. RESULTS 55

R-Trees Containing All TrianglePairs

0 0.2 0.4 0.6 0.8 1

·106

0

10

20

30

Number of TrianglePairs

C
on

st
ru

ct
io

n
T

im
e

[s
]

Figure 5.4: Scatter plot of the construction times of all the R-trees containing the indi-
vidual TrianglePairs, showing a clearly linear correlation.

scenery against all triangles of the search mesh, its linear scaling with the number

of TrianglePairs in the scenery makes sense. In the more intelligent C# approach,

non-intersecting meshes are quickly excluded from testing in the first level of the

R-tree test. Thus the number of found results has a higher impact on the overall

runtime here.

The next conducted test did the same single mesh intersection query, but only

using a selection of candidate meshes. These are extracted from the total set of

objects using an R-tree query (see figure 5.6).

The runtime of this does not scale linearly, but increases by trend with the

number of intersections for both methods. However, both methods need roughly the

same relative amount of time for every examined model. This could be caused by

the R-tree structure and search box setting particular to each test subject.

The plots also show that the CUDA implementation has a minimum latency of

more than 2.5 ms. This can largely be attributed to the relatively high overhead

of each data copy and kernel launch operation. Additionally, the interfacing by

managedCUDA slows down execution, with a pure C++ implementation promising

better results.

The mesh intersection tests run using the thus acquired candidate list had the

runtimes shown in figure 5.7. They scale almost identically for all three examined

parameters. This can probably be attributed to the interdependence between the

parameters themselves: The number of candidates is of course higher for larger result

56 CHAPTER 5. PERFORMANCE ANALYSIS

Single Mesh-Intersection on Full Scenery

0 0.5 1

·104

0

0.2

0.4

0.6

0.8

Number of Meshes

Q
u

er
y

T
im

e
[s

]

0 0.2 0.4 0.6 0.8 1

·106

0

0.2

0.4

0.6

0.8

Number of TrianglePairs

Q
u

er
y

T
im

e
[s

]

0 200 400

0

0.2

0.4

0.6

0.8

Number of Intersections

Q
u

er
y

T
im

e
[s

]

CUDA
C-Sharp

Figure 5.5: Scatter plots of the single mesh intersection query times without using the
global meshes R-tree to reduce the number of checked meshes. The CUDA intersection test
scales linearly with respect to the number of TrianglePairs in the model, while the C# one
correlates most strongly with the number of found intersecting meshes.

5.3. RESULTS 57

R-Tree Single Query

0 0.5 1

·104

0

1

2

3

4

5

·10−3

Number of Meshes

Q
u

er
y

T
im

e
[s

]

0 200 400

0

1

2

3

4

5

·10−3

Number of Intersections

Q
u

er
y

T
im

e
[s

]

CUDA
C#

Figure 5.6: Scatter plots of the single query times on the global meshes R-tree. For both
methods, there is a slightly positive correlation between query time and the number of
intersections.

mesh sets. The number of candidate TrianglePairs again depends on the number of

candidate meshes.

The C# test shows almost identical performance to that without prior candidate

selection in figure 5.5. This corresponds with its intelligent approach that rapidly

disqualifies all distant meshes completely, as described above.

5.3.4 All Mesh Intersections Query

Finally, all intersections between any meshes were determined. This is largely a

presentation of CUDA’s scaling behaviour when executing several queries in parallel.

The intersection criterion used here is the same as for the single mesh search.

This test was only performed using lists of candidates created with an R-tree. As

shown above, the CUDA results would be much worse in a full mesh search, while

the C# ones would remain largely unaffected.

Thus the first analyzed runtimes here (see figure 5.8) were those of the multiple

R-tree queries selecting a candidate list for every single object in the entire examined

scenery. The quadratic increase of query time for both methods with respect to the

number of meshes can be explained with the double impact of this value: It describes

the R-tree size (including the statistical number of results) as well as the number of

individual searches in it.

However, the results still vary strongly from a perfectly quadratic line. Each

model seems to have individual properties, which affect the query time of each

58 CHAPTER 5. PERFORMANCE ANALYSIS

Single Mesh-Intersection on Candidates

0 500 1,000 1,500 2,000

0

0.2

0.4

0.6

0.8

Number of Candidate Meshes

Q
u

er
y

T
im

e
[s

]

0 0.5 1 1.5

·105

0

0.2

0.4

0.6

0.8

Number of candidate
TrianglePairs

Q
u

er
y

T
im

e
[s

]

0 200 400

0

0.2

0.4

0.6

0.8

Number of Intersections

Q
u

er
y

T
im

e
[s

]

CUDA
C-Sharp

Figure 5.7: Scatter plots of the single mesh intersection query times when previously using
the global meshes R-tree to reduce the number of checked meshes. The number of candidate
TrianglePairs is calculated from using the number of candidate meshes and the average
number of TrianglePairs per mesh for each model. The query times scale similarly for all
three examined parameters.

5.3. RESULTS 59

R-Tree Multiple Query

0 0.5 1

·104

0

1

2

3

4

5

Number of Meshes

Q
u

er
y

T
im

e
[s

]

0 1 2 3

·105

0

1

2

3

4

5

Number of Found
Candidates

Q
u

er
y

T
im

e
[s

]

CUDA
C#

Figure 5.8: Scatter plots of the query times for the intersection candidates of every mesh
on the global meshes R-tree. The dependence of both methods’ runtimes on the number of
meshes appears to be almost quadratic, while that on the number of intersections does not
show a very clear trend.

method significantly. Even the number of found candidates only has a minor impact

here.

The inconsistent scaling of the CUDA queries might be caused by the overflow

treatment: When a thread block finds more nodes than it can handle in one level,

another search is started with a separate block assigned to each of the previous

nodes. Every time this is done, the corresponding parameters have to be shuffled

in C#. Additionally, the overhead caused by their copying to the device and the

kernel run has to be accepted. If this process has to be done once for one model

file, but several times for another, it can impact the resulting query time in CUDA

significantly.

Finally, the acquired candidate lists were optimized as described in figure 4.6.

Then the mesh intersection tests were run, yielding the results shown in figure 5.9.

The number of candidates alone is evidently no reliable indicator of the required

computational effort. The number of candidate TrianglePairs, which is extrapolated

from each model’s average number of TrianglePairs per mesh, is a better indicator

here. However, it shows no clearly trending curve for any of the two examined

methods either.

5.3.5 Observed Trends

When comparing the two implemented algorithms, it can be observed that the R-

tree query performance showed no or only minor improvements on the GPU over the

60 CHAPTER 5. PERFORMANCE ANALYSIS

All Mesh Intersections

0 0.5 1 1.5

·105

0

50

100

150

Number of Candidate
Meshes

Q
u

er
y

T
im

e
[s

]

0 0.2 0.4 0.6 0.8 1

·107

0

50

100

150

Number of candidate
TrianglePairs

Q
u

er
y

T
im

e
[s

]

CUDA
C#

Figure 5.9: Scatter plots of the all mesh intersections query times. The query times
increase with the number of candidate TrianglePairs, but no consistent correlation model
can be deduced from the data.

CPU. However, the mesh intersection test generally ran faster on the GPU, at least

when candidate preselection was done. This showed that an R-tree of all objects

in a model should be employed in combination with the CUDA mesh intersection

tester to achieve optimal results. The runtime sum from this scheme is shown in

figure 5.10.

It can be observed that the combined query consistently performed better on the

GPU. However, this direct comparison does not carry much significance because the

test can not really be considered fair (see section 5.1). The much more important

information is the trend of the computing time for each platform: Both clearly have

a direct dependence on the number of found intersections. The CUDA results form

a linear function with a rather flat slope. The C# ones seem to increase almost

quadratically, which appears unlikely from the way the sequential implementations

are programmed. In any case, the slope of the sequential calculations is much steeper

than that of the parallel ones. For larger models – which is the only application where

a different implementation would be sufficiently rewarding – the runtimes can thus

be expected to be shorter by orders of magnitude on the GPU.

It has to be noted that the above tests were all done under the assumption that

the initial creation of the described data structures would be necessary. As such,

they were not added to the respective query times. However, not all of the C#

R-trees of TrianglePairs would have to be created for a single mesh intersection

test.

5.3. RESULTS 61

R-Tree Single Query + Mesh Intersection

0 0.2 0.4 0.6 0.8 1

·106

0

0.2

0.4

0.6

0.8

Number of TrianglePairs

Q
u

er
y

T
im

e
[s

]

0 200 400

0

0.2

0.4

0.6

0.8

Number of Intersections

Q
u

er
y

T
im

e
[s

]

CUDA
C#

Figure 5.10: Scatter plots of the R-tree single query in combination with the mesh inter-
section on the thus obtained candidates. The plot shows the sums of the runtimes. CUDA
consistently performs better in this scheme than C#, while both implementations show a
clear dependence on the number of found intersecting meshes.

63

Chapter 6

Conclusion and Outlook

In this thesis, the performance of queries on the R-tree spatial indexing structure,

as well as the intersection checking of triangle meshes was compared for two archi-

tectures: A single CPU core programmed in C# and a CUDA-capable GPU. The

conducted tests demonstrated that GPU programming is beneficial for spatial BIM

queries, but only for selected queries and especially for larger models.

For the R-tree search, the sequential implementation was generally faster. How-

ever, multiple R-tree queries could be executed reasonably fast with the CUDA

implementation, because it takes advantage of this additional high level of paral-

lelism. The mesh intersection test, which in fact performs an enormous number of

triangle overlap analyses, also runs faster on CUDA. As it exhaustively checks every

input mesh combination, these have to be preselected by their bounding boxes to

obtain reasonable scaling. This is a promising application of the R-tree.

The performance analysis was performed on a workstation PC with an NVIDIA

GPU released in late 2010 and a CPU from early 2011. Repeating it with current

hardware would probably improve the results of the CUDA implementation. This

is because current GPUs feature multiple times as many SMs as the one used for

the analysis. All CUDA programs which run a large grid of many blocks can thus

be expected to run faster on newer devices in proportion to the increased number

of SMs. The latest NVIDIA workstation GPU is the Tesla K40 and features 2880

CUDA cores, which is 30 times as many as were available for this benchmark. The

CPU single core performance has increased only by a much smaller factor since 2011.

Recent CUDA devices have also introduced a number of new features, which

might be useful for more efficient implementations of the described algorithms.

Among the most promising ones is Dynamic Parallelism (NVIDIA Corporation,

2014b, p. 134 ff.). This lets CUDA kernels dynamically launch new grids on the

device, without returning control to the host. It might be especially useful for the

R-tree query, where the amount of computations that need to be done can not be

sufficiently estimated beforehand.

64 CHAPTER 6. CONCLUSION AND OUTLOOK

Another interesting idea would be to do all the computations only with single

floating-point precision. As shown in figure 1.2, the theoretical peak performance

is much higher this way, especially for GPUs. These are highly optimized for a

large number of low-precision operations, because these are commonly necessary

for graphics output. Thus the CUDA implementations might benefit more from

performing only single precision calculations than the CPU ones.

To provide a fairer comparison, an analysis of how well the runtime scales when

distributing the program on several parallel CPU threads should be conducted. This

is a promising option because today’s high end processors already have up to a dozen

and more cores. This number can be expected to increase further in the next years,

as this is the easiest way for CPU vendors to improve performance.

65

Appendix A

Remarks on ManagedCUDA

There is a tutorial on the basic workings of and how to set up a managedCUDA

project within Visual Studio at Kunz (2014). Most classes and methods exposed by

this library have documentation comments within their code, which can easily be

accessed using Visual Studio’s IntelliSense.

Here are some further remarks in addition to that:

• ManagedCUDA 6.5 has a bug treating device variables of Boolean type. In

the early development of the programs for this thesis, large Boolean arrays

were used to store the results of the R-tree queries and mesh intersection tests

on the device. When these were copied back to the host immediately after

a kernel run, an unspecified error occurred sporadically, which crashed the

program.

The risk of this happening could be reduced by producing a time gap between

kernel run and the copy operation, e.g. by performing a dummy copy operation

on one of the input arrays. However, the problem was only solved completely

when using full integer variables to store this Boolean information. These do

not cause any errors.

This is probably due to the fact that managedCUDA extends Boolean variables

to a size of four bytes per element. This facilitates coalescing memory accesses,

which need that as a minimum word size (NVIDIA Corporation, 2014b, p.

187).

• When a CUDA kernel is run through managedCUDA, the Nsight debugger

cannot be used on it. Thus there is no benefit from compiling it in debug

mode. However, the performance is multiple times faster without debug sym-

bols included. This is why the kernels for managedCUDA should always be

compiled in release mode.

67

Appendix B

Digital Files

The CD that is handed in with this thesis contains the following files:

• This thesis as a PDF file, with internal and external hyperlinks.

• The developed Visual Studio 2012 solution. This is located in the Parallel-

BimQueries folder and includes the IFC files on which the benchmarks were

run in Data\Ifc\. Its three projects are the following:

CudaKernels This is the CUDA project with the two kernel files and the

local headers which they need. They are compiled to two PTX files,

which can be loaded by managedCUDA.

QL4BIM2015 This contains the code of the spatial queries developed for

QL4BIM System.

– The CUDA folder holds the additional classes developed for this the-

sis, where CUDACaller is the implementation of some test queries,

including the benchmark described above. The CUDA kernel files

are loaded in the CUDAMeshIntersector and the CUDARTree class

constructors.

– Spatial\Topology\MeshIntersector.cs is where the intersection

criterion had to be set, e.g. that inner with inner and outer with

outer are both required.

– In Spatial\Topology\TriangleIntersector.cs, small changes to

the C#-implementation of the triangle intersection test from Möller

(1999) were made.

– Spatial\IndexedFaceSet.cs was modified to prevent the inclusion

of degenerate triangles in the created TrianglePairMeshes.

– In Spatial\Indexing\RTree\RTreeQuery.cs, the intersection check

between the items of found leaves and the search box was removed,

68 APPENDIX B. DIGITAL FILES

because this requires an intersector for each new item type and is not

part of the standard R-tree query.

QL4BIMClient This is the graphical interface, from where the functions of

the CUDACaller class are run. For this, buttons were added in MainWin-

dow.xaml and functionality assigned to them in MainWindow.xaml.cs.

• The benchmark results as a table in Benchmark.csv.

BIBLIOGRAPHY 69

Bibliography

Autodesk, Inc. (2002). White Paper: Building Information Modeling. url: http :

//www.laiserin.com/features/bim/autodesk bim.pdf.

Beckmann, Norbert et al. (1990). “The R*-Tree: An Efficient and Robust Access

Method for Points and Rectangles”. In: SIGMOD Rec. 19.2, pp. 322–331.

Behrmann, Jan-Hendrik (2007). OpenGL und die Fixed-Function-Pipeline. Tech. rep.

url: https://wwwcg.in.tum.de/fileadmin/user upload/Lehrstuehle/Lehrstuhl

XV/Teaching/WS07 08/Seminar/talks/Jan-Hendrik Behrmann.pdf.

Borrmann, André, Stefanie Schraufstetter, and Ernst Rank (2009a). “Implementing

Metric Operators of a Spatial Query Language for 3D Building Models: Octree

and B-Rep Approaches”. In: Journal of Computing in Civil Engineering 23.1,

pp. 34–46.

Borrmann, André and Ernst Rank (2009b). “Specification and Implementation of

Directional Operators in a 3D Spatial Query Language for Building Information

Models”. In: Advanced Engineering Informatics 23.1, pp. 32–44.

— (2009c). “Topological Analysis of 3D Building Models using a Spatial Query

Language”. In: Advanced Engineering Informatics 23.4, pp. 370–385.

Daum, Simon and André Borrmann (2013). “Boundary Representation-Based Im-

plementation of Spatial BIM Queries”. In: Proc. of the EG-ICE Workshop on

Intelligent Computing in Engineering. Vienna, Austria.

— (2014). “Processing of Topological BIM Queries using Boundary Representation

Based Methods”. In: Advanced Engineering Informatics.

Dennard, Robert H. et al. (1974). “Design Of Ion-implanted MOSFETs with Very

Small Physical Dimensions”. In: IEEE Journal of Solid State Circuits 9.5, p. 256.

Du, Peng et al. (2012). “From CUDA to OpenCL: Towards a performance-portable

solution for multi-platform GPU programming”. In: Parallel Computing 38.8,

pp. 391–407.

http://www.laiserin.com/features/bim/autodesk_bim.pdf
http://www.laiserin.com/features/bim/autodesk_bim.pdf
https://wwwcg.in.tum.de/fileadmin/user_upload/Lehrstuehle/Lehrstuhl_XV/Teaching/WS07_08/Seminar/talks/Jan-Hendrik_Behrmann.pdf
https://wwwcg.in.tum.de/fileadmin/user_upload/Lehrstuehle/Lehrstuhl_XV/Teaching/WS07_08/Seminar/talks/Jan-Hendrik_Behrmann.pdf

70 BIBLIOGRAPHY

Eastman, Chuck et al. (2011). BIM Handbook: A Guide to Building Information

Modeling for Owners, Managers, Designers, Engineers and Contractors. Wiley.

isbn: 9780470541371.

ECMA (2012). Common Language Infrastructure (CLI) (Standard ECMA-335).

Ecma International. url: http://www.ecma- international .org/publications/

standards/Ecma-335.htm.

Egenhofer, Max J. and Robert D. Franzosa (1991). “Point-set topological spa-

tial relations”. In: International journal of geographical information systems

5.2, pp. 161–174. url: http : / / www . tandfonline . com / doi / abs / 10 . 1080 /

02693799108927841.

Fang, Jianbin, Ana Lucia Varbanescu, and Henk Sips (2011). “A Comprehensive

Performance Comparison of CUDA and OpenCL”. In: 2011 International Con-

ference on Parallel Processing. Taipei City: IEEE, pp. 216–225.

Galloy, Michael (2013). CPU vs GPU performance. url: http://michaelgalloy.com/

2013/06/11/cpu-vs-gpu-performance.html (visited on 12/20/2014).

Galoppo, Nico et al. (2005). “LU-GPU: Efficient Algorithms for Solving Dense Lin-

ear Systems on Graphics Hardware”. In: Proceedings of the 2005 ACM/IEEE

Conference on Supercomputing. IEEE Computer Society.

Guttman, Antonin (1984). “R-trees: A Dynamic Index Structure for Spatial Search-

ing”. In: ACM SIGMOD Record 14.2, pp. 47–57.

Haveraaen, Magne and Hogne Hundvebakke (2001). “Some Statistical Perfor-

mance Estimation Techniques for Dynamic Machines”. In: Norsk Informatikk-

konferanse 2001. Trondheim, pp. 176–185.

Kamel, Ibrahim and Christos Faloutsos (1992). “Parallel R-Trees”. In: Proceedings

of the 1992 ACM SIGMOD international Conference on Management of Data.

New York, New York, USA: ACM Press, pp. 195–204.

Karimi, Kamran, Neil G. Dickson, and Firas Hamze (2010). “A Performance Com-

parison of CUDA and OpenCL”. In: arXiv abs/1005.2. url: http://arxiv.org/

abs/1005.2581.

Khronos Group. OpenGL ES 2.X - The Standard for Embedded Accelerated

3D Graphics. url: https : / / www . khronos . org / opengles / 2 X/ (visited on

11/25/2014).

Kunjir, Mayuresh and Aditya Manthramurthy (2009). Using Graphics Processing in

Spatial Indexing Algorithms. Tech. rep. Indian Institute of Science.

Kunz, Michael (2014). ManagedCUDA Project Page. url: http://managedcuda.

codeplex.com/ (visited on 12/14/2014).

http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.ecma-international.org/publications/standards/Ecma-335.htm
http://www.tandfonline.com/doi/abs/10.1080/02693799108927841
http://www.tandfonline.com/doi/abs/10.1080/02693799108927841
http://michaelgalloy.com/2013/06/11/cpu-vs-gpu-performance.html
http://michaelgalloy.com/2013/06/11/cpu-vs-gpu-performance.html
http://arxiv.org/abs/1005.2581
http://arxiv.org/abs/1005.2581
https://www.khronos.org/opengles/2_X/
http://managedcuda.codeplex.com/
http://managedcuda.codeplex.com/

BIBLIOGRAPHY 71

Larsen, E. Scott and David McAllister (2001). “Fast Matrix Multiplies Using Graph-

ics Hardware”. In: Proceedings of the 2001 ACM/IEEE Conference on Supercom-

puting. New York, New York, USA: ACM, p. 55.

Lee, Victor W. et al. (2010). “Debunking the 100X GPU vs. CPU Myth: An Eval-

uation of Throughput Computing on CPU and GPU”. In: SIGARCH Computer

Architecture News 38.3, pp. 451–460.

Luo, Lijuan, Martin D. F. Wong, and Wen-mei Hwu (2010). “An Effective GPU

Implementation of Breadth-First Search”. In: Proceedings of the 47th Design

Automation Conference. New York, New York, USA: ACM, pp. 52–55.

Luo, Lijuan, Martin D. F. Wong, and Lance Leong (2012). “Parallel Implementation

of R-Trees on the GPU”. In: Design Automation Conference (ASP-DAC), 2012

17th Asia and South Pacific. IEEE. IEEE Computer Society, pp. 353–358.

McMenamin, Adrian (2013). The end of Dennard scaling. url: https : / /

cartesianproduct .wordpress . com/2013/04/15/the - end - of - dennard - scaling/

(visited on 12/20/2014).

Meijer, Erik, Brian Beckman, and Gavin Bierman (2006). “LINQ: Reconciling Ob-

jects, Relations and XML in the .NET Framework”. In: Proceedings of the 2006

ACM SIGMOD International Conference on Management of Data. Chicago,

p. 706.

Moore, Gordon E. (1965). “Cramming more components onto integrated circuits”.

In: Electronics 38.8, pp. 114–117.

Möller, Tomas (1997). “A Fast Triangle-Triangle Intersection Test”. In: Journal of

Graphics Tools 2.2, pp. 25–30.

— (1999). Triangle/Triangle Intersection Test Routine. url: http://fileadmin.cs.

lth.se/cs/Personal/Tomas Akenine-Moller/code/opttritri.txt.

NVIDIA Corporation (2009). Whitepaper - NVIDIA’s Next Generation CUDA Com-

pute Architecture: Fermi. url: http ://www.nvidia .com/content/pdf/ fermi

white papers/nvidia fermi compute architecture whitepaper.pdf.

— (2014a). CUDA FAQ. url: https://developer.nvidia.com/cuda-faq (visited on

12/07/2014).

— (2014b). NVIDIA CUDA C Programming Guide. Version 6.5. url: http://docs.

nvidia.com/cuda/pdf/CUDA C Programming Guide.pdf.

Owens, John D. et al. (2008). “GPU Computing”. In: Proceedings of the IEEE 96.5,

pp. 879–899.

Preshing, Jeff (2012). A Look Back at Single-Threaded CPU Performance. url: http:

//preshing.com/20120208/a- look-back-at-single-threaded-cpu-performance/

(visited on 12/20/2014).

https://cartesianproduct.wordpress.com/2013/04/15/the-end-of-dennard-scaling/
https://cartesianproduct.wordpress.com/2013/04/15/the-end-of-dennard-scaling/
http://fileadmin.cs.lth.se/cs/Personal/Tomas_Akenine-Moller/code/opttritri.txt
http://fileadmin.cs.lth.se/cs/Personal/Tomas_Akenine-Moller/code/opttritri.txt
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
http://www.nvidia.com/content/pdf/fermi_white_papers/nvidia_fermi_compute_architecture_whitepaper.pdf
https://developer.nvidia.com/cuda-faq
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf
http://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/
http://preshing.com/20120208/a-look-back-at-single-threaded-cpu-performance/

72 BIBLIOGRAPHY

Singer, Graham (2013). The History of the Modern Graphics Processor. url: http:

//www.techspot.com/article/650-history-of-the-gpu/ (visited on 09/23/2014).

Sutter, Herb (2004). The Free Lunch Is Over - A Fundamental Turn Toward Con-

currency in Software. Updated in August 2009. url: http ://www.gotw.ca/

publications/concurrency-ddj.htm (visited on 12/20/2014).

University of Auckland (2012). Open IFC Model Repository. url: http : / /

openifcmodel.cs.auckland.ac.nz/ (visited on 12/07/2014).

Wikimedia Commons (2007). Dolphin triangle mesh.png. url: http ://commons.

wikimedia.org/wiki/File:Dolphin triangle mesh.png (visited on 01/23/2015).

— (2008). Wire frame.svg. url: http://commons.wikimedia.org/wiki/File:Wire

frame.svg (visited on 01/23/2015).

— (2010a). Block-thread.svg. url: http://commons.wikimedia.org/wiki/File:Block-

thread.svg (visited on 01/23/2015).

— (2010b). Memory.svg. url: http://commons.wikimedia.org/wiki/File:Memory.

svg (visited on 01/23/2015).

Wilt, Nicholas (2013). The CUDA Handbook: A Comprehensive Guide to GPU Pro-

gramming. Pearson Education. isbn: 9780321809469.

Yampaka, Tongjai and Prabhas Chongstitvatana (2012). “Spatial Join with R-Tree

on Graphics Processing Units”. In: IC2IT. url: http://www.cp.eng.chula.ac.th/

%7Epiak/paper/2012/final SpatialJoin IC2IT2012.pdf.

You, Simin and Jianting Zhang (2013). “GPU-based Spatial Indexing and Query

Processing Using R-Trees”. In: Proceedings of the 2nd ACM SIGSPATIAL In-

ternational Workshop on Analytics for Big Geospatial Data, pp. 23–31.

Some figures contained in this thesis were published under the following licenses,

which require the links to their descriptions to be provided:

CC BY-NC-SA 2.5: http://creativecommons.org/licenses/by-nc-sa/2.5/legalcode

CC BY-NC-ND 3.0: http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode

CC BY 3.0: http://creativecommons.org/licenses/by/3.0/legalcode

CC BY-SA 3.0: http://creativecommons.org/licenses/by-sa/3.0/legalcode

http://www.techspot.com/article/650-history-of-the-gpu/
http://www.techspot.com/article/650-history-of-the-gpu/
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
http://openifcmodel.cs.auckland.ac.nz/
http://openifcmodel.cs.auckland.ac.nz/
http://commons.wikimedia.org/wiki/File:Dolphin_triangle_mesh.png
http://commons.wikimedia.org/wiki/File:Dolphin_triangle_mesh.png
http://commons.wikimedia.org/wiki/File:Wire_frame.svg
http://commons.wikimedia.org/wiki/File:Wire_frame.svg
http://commons.wikimedia.org/wiki/File:Block-thread.svg
http://commons.wikimedia.org/wiki/File:Block-thread.svg
http://commons.wikimedia.org/wiki/File:Memory.svg
http://commons.wikimedia.org/wiki/File:Memory.svg
http://www.cp.eng.chula.ac.th/%7Epiak/paper/2012/final_SpatialJoin_IC2IT2012.pdf
http://www.cp.eng.chula.ac.th/%7Epiak/paper/2012/final_SpatialJoin_IC2IT2012.pdf
http://creativecommons.org/licenses/by-nc-sa/2.5/legalcode
http://creativecommons.org/licenses/by-nc-nd/3.0/legalcode
http://creativecommons.org/licenses/by/3.0/legalcode
http://creativecommons.org/licenses/by-sa/3.0/legalcode

Declaration of Originality

I hereby declare that this thesis is my own unaided work. All direct or indirect

sources used are acknowledged as references.

I am aware that my work may be examined for the unmarked use of someone else’s

intellectual property by means of plagiarism recognition software.

This paper was not previously presented to another examination board and has not

been published.

I confirm that my thesis in electronic form is identical to the printed version.

Place, Date Signature

	List of Abbreviations
	Introduction and Motivation
	Spatial BIM Queries
	History of BIM
	BIM Queries
	Spatial Operators in QL4BIM
	Topological Predicates
	Intersections between Triangle Meshes
	Triangle Pair Meshes

	Queries Parallelized in this Thesis
	Find All Meshes Intersecting One Search Mesh
	Find All Intersection Pairs of the Model

	Parallel Programming
	History of GPU Programming
	Development of Dedicated GPUs
	Early Experiments with GPGPU

	Comparison of GPU and CPU Programming
	NVIDIA CUDA
	Hardware Architecture
	Thread Hierarchy
	Memory Hierarchy
	Application Structure
	Host Functions
	Device Functions

	Maximization of Device Utilization

	Implementation
	R-Tree
	Data Structure and Parameters
	R-Tree Creation
	Implementation Used in QL4BIM System
	Possible Optimization and Parallelization

	Sequential R-Tree Query
	Parallel R-Tree Query
	Input Data Representation on the GPU
	Parallelization Approaches
	Overflow Treatment

	Mesh-Intersection Test
	Sequential Implementation
	Parallel Implementation
	Levels of Parallelism
	Mesh Partitioning
	Test on a Reduced Set of Meshes
	Adjustments for Finding All Intersection Pairs
	Treatment of Kernel Timeouts on Windows

	Performance Analysis
	Remarks on Platform Comparison
	Test Description
	Test Setup
	Parameter Settings
	Model Selection

	Results
	Model Properties
	Data Structure Creation
	Intersection With Search Mesh
	All Mesh Intersections Query
	Observed Trends

	Conclusion and Outlook
	Remarks on ManagedCUDA
	Digital Files
	Bibliography

