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ABSTRACT

The aim of this work is to exploit the acoustic-phonetic sim-

ilarities between several languages. In recent work cross{

language HMM-based phoneme models have been used only

for bootstrapping the language{dependent models and the

multi{lingual approach has been investigated only on very

small speech corpora. In this paper, we introduce a statisti-

cal distance measure to determine the similarities of sounds.

Further, we present a new technique to model multi-lingual

phonemes. The experiments are conducted with the OGI

Multi-Language Telephone Speech Corpus for the languages

American English, German and Spanish. In the �rst exper-

iment phoneme recognition rates between 39.0% and 53.9%

are achieved using language{dependent models. Using cross{

language models yields for some phonemes improvement,

but in average a degradation of recognition performance is

observed. However, cross{language models speeds up the

cross{language transfer and reduces the size of the phoneme

inventory of multi-lingual speech recognition systems. Fi-

nally, a new method of modelling multi-lingual phonemes,

which can be used for a variety of language, is presented.

This technique reduces the number of phoneme-based units

in a multi-lingual speech recognition system.

1. INTRODUCTION

The multi{lingual approach addresses two aspects of a multi{

lingual speech recognition system. First, there is a demand

to optimize the process of cross{language transfer of speech

recognition technology. Porting a speech recognition sys-

tem from one language to another is an expensive and time

consuming process. At the moment, state of the art cross{

language transfer requires collection of a huge database in

the new language and a complete new training of the acous-

tic models. For a robust and commercial telephone{based

application utterances of at least 1000 speakers have to be

collected and evaluated. Further the training of the acoustic

Hidden Markov Models (HMMs) takes a lot of time and re-

quires a lot of computational power. To reduce cost and time

of cross{language transfers multi{lingual phoneme modelling

becomes an important issue for international companies and

speech laboratories.

Second, many applications are limited in memory and com-

putational resources. For a multi{lingual speech recognition

system which covers a variety of languages it can be neces-

sary to reduce the number of parameters to ful�l the hard-

ware limitations. Therefore, acoustically similar models and

parameters should be used for di�erent languages.

In our multi{lingual approach the similarities of sounds

across languages are exploited. The fact that there are simi-

larities of sounds is also documented in international pho-

netic inventories, like IPA, SAMPA or Worldbet. These

inventories are developed by phoneticians classifying the

sounds of many languages. This classi�cation was done by

sophisticated phonetic knowledge rather than by statistical

measurement. In this work we present a statistical method

to determine the similarities of sounds across languages.

2. PREVIOUS WORK

The idea of creating multi{lingual phoneme models was �rst

presented in [3]. In this paper the terms poly{ and mono{

phonemes were introduced. Poly{phonemes are sounds

whose realisational properties across several languages are

similar enough to be equated. Mono{phonemes are sounds

which have language{dependent properties. The experi-

ments were conducted with the EUROM 0 database contain-

ing 8 minutes of speech for each language[9]. In another work

the cross{language transfer of a speech recognition system

from English to Japanese was speeded up by using sounds of

the source language for bootstrapping and for adaptation of

the HMMs of the target language[2]. Several multi{lingual

recognition tasks were presented using language{dependent

models. The recognition performance for several languages

on phonetic and word level were compared in [6] and [8].

3. MULTI{LINGUAL PHONEME

MODELLING

3.1. OGI{ML Speech Corpus

For our investigations we used the OGI Multi-Language Tele-

phone Speech Corpus [10]. The languages American En-

glish, German and Spanish were selected from the corpus

which covers 11 languages in all. For each language at least

100 speakers were collected. The utterances (story-before-

tone) contain about 60 seconds of unconstrained spontaneous

speech and were spoken once by each speaker. The sentences



Language #speak. #train #test #nar ph #br ph

English 149 100 49 66 41

German 100 75 25 72 44

Spanish 102 76 26 60 40

Total 351 251 100 198 125

Table 1: number of speakers (= utterances) for training

and test of the OGI-MLTS corpus. Further, number of pho-

netic units for each language (narrow and mapped broad

transcription)

are labelled with the Worldbet phonetic inventory [5]. To re-

duce the number of phonetic units the diacritic part of the

labels were removed. Further, the labels were mapped to a

reduced phoneme set to guarantee a reliable estimation of

the parameters. These two steps yield a reduction from 198

narrow based phonetic units(nar ph) to 125 broad phonemes

(br ph).

Alternative to the OGI MLTS{Corpus there are many

language{dependent speech corpora, like PHON-

DAT(German), TIMIT and Wall Street Journal(English) or

Bref(French). These corpora have the advantage that they

contain much more speech material than the OGI corpus

and that it is possible to train context{dependent phoneme

models. The disadvantage using these huge corpora is, that

all these databases were recorded with di�erent equipment

and that they di�er in speaking style and quality. So the

comparison of phoneme models across languages can be

overlapped and covered up by di�erent recording conditions.

3.2. International Phonological Invento-

ries

The most used phonetic inventory is the International Pho-

netic Alphabet (IPA). Because IPA contains non ASCII sym-

bols which are di�cult to process on di�erent computer plat-

forms, some alternative phonetic inventories were created.

For European languages SAMPA was invented and designed

in the scope of projects in the European Union (ESPRIT).

SAMPA contains a broad phoneme set which uses the same

symbol for quite di�erent sounds across languages (i.e r-

sounds). The Worldbet ([5]) in its basic form is an ASCII

representation of the IPA. Further, it is possible to provide

each symbol with diacritics. These diacritics allow to mark

allophonic realizations of the phonemes. At the current sta-

tus there are 299 di�erent phonetic symbols for a variety of

di�erent languages.

3.3. Language{Speci�c Phoneme Prop-

erties

In the beginning we de�ned the goal to exploit and model

similar sounds. However, the realization of the phonemes

in each language can di�er. The reasons for the di�erent

acoustic realization are:

� di�erent phonetic context (because of di�erent phoneme

sets)

� di�erent speaking styles

� di�erent prosodic features

� di�erent allophonic variations

One important aspect is called principle of su�cient percep-

tual separation[7]. This means that the sounds of a language

are kept acoustically distinct so as to make it easier for the

listener to distinguish one from another. Because each lan-

guage has a separate phoneme inventory, the boundaries be-

tween two similar phonemes in each language are language{

speci�c. Hence, the variation of the realization of a sound

has a language{speci�c component.

3.4. Statistical Phoneme Modelling

The phonemes are modelled by continuous density Hidden

Markov Models (CD-HMM) [4]. As density functions Lapla-

cian mixtures are used. Each phoneme consists of a 3 state

left-to-right HMM. The acoustic feature vectors consists of

24 mel-scaled cepstral, 12 delta cepstral, 12 delta delta cep-

stral, energy, delta energy and delta delta energy coe�cients.

The length of the analysis window is 25 msec and the dis-

placement is 10 msec for each frame. Because of the limited

size of the speech corpus only context independent phoneme

models are created.

3.5. Distance Measure

One important issue of this investigation is to �nd a reliable

distance measure for phonemes modelled by a 3 state Markov

model. This distance measure can be used for clustering

or substitution of multi{lingual phoneme models. It is also

useful for developing or evaluating a multi{lingual phonetic

inventory, like IPA, SAMPA or Worldbet.

To measure the distance or the similarity of two phoneme

models we use a relative entropy-based distance metric [1].

During training the parameters of the mixture Laplacian

density phoneme models are estimated. Further, for each

phoneme a set of phoneme tokens X is extracted from a test

or development corpus. A phoneme token is a realization

or observation of a phoneme and is marked by the phonetic

label.

Given two phoneme models �i and �j and given the sets

of phoneme tokens or observations Xi and Xj the distance

between model �i and �j is de�ned by:

d(�i; �j) = log p(Xij�i)� log p(Xij�j)

This distance measure can be considered as log likelihood

measure which tests how well two di�erent models �t to the

same data Xi. Corresponding, the distance between model

�j and �i is de�ned by:

d(�j ; �i) = log p(Xj j�j)� log p(Xj j�i)

To get a symmetric distance the average is taken:

d(�i; �j) =
1

2
(d(�i; �j) + d(�j ; �i))

4. PHONEME RECOGNITION

The phoneme models were trained by a standard viterbi{

based maximum likelihood training algorithm. The recogni-

tion tests were performed using the phonetic labels resulting



Language #Tokens LDP[%] ML1[%] ML2[%]

English 21191 39.0 37.3 37.0

German 9430 40.0 34.7 37.7

Spanish 9525 53.9 46.0 51.6

Total 40146 42.8 38.8 40.8

Table 2: phoneme recognition rates depending on number

of phonemes and densities; #Tokens: number of classi�ed to-

kens; LDP: 125 language dependent models using 9696 den-

sities; ML1: 72 multi-lingual models using 6419 densities;

ML2: 72 multi-lingual models using 6155 densities

in an isolated rather than a continuous phoneme recognition

task.

4.1. Language{Dependent Models

In the �rst experiment we conducted training and test for

each language separately to get baseline recognition results.

Hence, the phoneme models are language-dependent. The

phoneme recognition results are listed in Table 2 (column:

LDP).

It is obvious that the phoneme recognition rate for Spanish is

much higher than for German and English. This can be ex-

plained by the simple vowel structure of Spanish. In German

and English short and long vowels exist which are di�cult

to distinguish during labelling as well as recognition.

The recognition rate increased using automatically aligned

labels generated by the forced viterbi algorithm instead of

using the original hand labelled transcription. Using the

re{aligned labels for recognition the accuracy increased to

49.2%, 49.9% and 62.0% for English, German and Spanish,

respectively.

4.2. Cross{Language Phoneme Model

Substitution

In the second experiment we evaluated the performance of

the English phoneme models used instead of the German

phoneme models in a German recogniser. Therefore, we com-

puted the distance d(�GE ; �AE) between the German (GE)

and English (AE) phoneme models using the proposed dis-

tance metric. Then we substituted the German phonemes

with the corresponding English phonemes which had the

smallest distance or highest similarity to each other. The

phoneme recognition results are presented in column 4 of

Table 3. For a few phonemes this substitutions yield im-

provement (/k/, /p/ and /N/). This is also shown by the

negative distance values d(�GE; �AE) between German and

English models. A negative distance value means that the

English model generates a higher likelihood than the Ger-

man model. However, most of the substitution yields a sig-

ni�cant degradation. In spite of the fact that the English

models were trained with more data than the German mod-

els, the language{speci�c models achieve in average a higher

performance than the substituted cross{language models.

The ability to use this distance measure to evaluate a pho-

netic inventory can be demonstrated for the diphones /aU/

and /aI/. A high dissimilarity between the German and

Phoneme d(�GE ; �AE) GE[%] AE[%] Multi-Ph.[%]

n 0.995 60.9 48.6 56.4

m -0.625 44.7 40.4 49.3

N -2.041 22.2 26.4 23.6

p -1.937 25.0 30.6 25.0

b 2.731 34.5 29.1 32.4

d 0.484 27.7 17.0 23.4

t 0.488 45.7 35.5 36.6

g 4.207 30.2 15.3 32.0

k -5.368 37.9 53.8 38.7

s 2.427 45.4 34.1 29.5

z 5.981 40.4 21.3 42.6

f 1.344 52.2 46.5 45.2

h 3.315 50.0 20.1 25.0

S 6.654 54.9 38.2 52.9

aI 1.722 63.0 56.3 56.7

aU 15.35 53.4 5.5 42.5

Table 3: phoneme recognition rates for German consonants

and diphthongs; col. 2: distance between German and En-

glish phoneme models; col. 3,4,5: recognition rate using

German, English or Multi{Lingual models, respectively. The

phonetic symbols are taken from the Worldbet

the English model for /aU/ was observed meaning that both

sounds should get a di�erent symbol in a multi{lingual inven-

tory. On the other hand the German and English diphthong

/aI/ showed a high similarity justifying the use of the same

symbol for these two sounds.

4.3. Multi{Lingual Phoneme Models

The main studies have focussed on the ability to create

multi{lingual phoneme models which can be used in a va-

riety of languages. For each symbol of a multi{lingual pho-

netic inventory a separate statistical model should be cre-

ated. However, the previous experiments have shown that

the language{dependent models yield a higher performance

than the cross{language models. Now we want to combine

the language{dependent and the language{speci�c acous-

tic properties to a multi{lingual model. In [9] the poly{

phonemes are de�ned as phonemes which are similar enough

to be modelled them as one phoneme. A drawback of this ap-

proach is that the complete acoustic space of a poly{phoneme

model is used during a language{dependent recognition test.

In our approach we identify and model regions of the acous-

tic space in which similar phonemes are overlapping. There-

fore, we apply an agglomerative density clustering technique

to reduce equal or similar realizations of similar phonemes.

Only the densities of corresponding states in the phoneme

are clustered.

Figure 1 shows the architecture of a single multi-lingual

phoneme. Densities used in all languages are located in the

hatched region. Whereas the densities are tied across dif-

ferent languages, the mixture weights of the densities are

language{dependent. This property should emphasize the

fact, that a speci�c realization of a phoneme appears in one

language more often than in another language. The density

clustering was conducted with di�erent cluster thresholds.



Thr. #densit(a,b,c). Engl.[%] Germ.[%] Span.[%]

0 341(0 0 341) 46.7 44.7 59.4

2 334(0 14 327) 45.0 46.4 57.5

3 303(27 34 280) 48.0 45.8 57.5

4 227(106 57 178) 50.9 44.1 58.7

5 116(221, 48, 72) 49.3 43.1 57.0

6 61(285, 22, 34) 41.2 38.6 50.4

Table 4: recognition rates for phoneme /m/ using di�er-

ent cluster thresholds. (a,b,c) denotes the number of densi-

ties clustered to the 3, 2 or 1 language region, respectively.

Method ML2 is used

Number of densities and recognition rate for the phoneme

/m/ are given in Table 4. Using a cluster threshold of 5 the

number of densities were reduced by a factor of 3 without any

signi�cant degradation. In this case 221, 48 and 72 of the

341 initial densities are clustered to the poly{phoneme re-

gion, to the two{language and to the mono language region,

respectively.

The recognition rates for the complete multi{lingual system

are given in column 5 and 6 of Table 2 (ML1, ML2). For the

experiment ML1 the conventional poly{phoneme de�nition

is used meaning that the complete acoustic region of a poly{

phoneme (outer contour of Figure 1) is used for recognition.

The new proposed method including only partial overlap of

acoustic region yields improvement of 2.0% (ML2). How-

ever, the recognition rates are lower than in the language{

dependent case.
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Figure 1: Multi{lingual 3 state left{to{right hidden Markov

model. Filled region shows densities (in a 2 dimensional

space) used in all of the 3 languages (poly{phoneme region).

5. CONCLUSIONS AND FUTURE

WORK

In this paper, we described a method to determine the sim-

ilarities of sounds across di�erent languages. Further, a

new approach of multi{lingual phoneme modelling was in-

troduced. The proposed acoustic{phonetic modelling con-

siders language{dependent as well as language{independent

properties using a density clustering algorithm.

However, many questions have to be clari�ed. First,

the modelling and density clustering of the multi{lingual

phoneme models have to be improved and optimized. Fur-

thermore, this technique has to be applied to context-

dependent phoneme models (diphones or triphones). It is

expected, that the overlap of densities and cross{language

similarities between context{dependent phoneme models are

higher than for context{independent models. However, this

requires multi{lingual databases of a huger size than the

OGI corpus o�er. Hence, we have to evaluate this approach

on di�erent databases, like TIMIT and PHONDAT. Chan-

nel compensation and normalisation technique may help to

reduce the database dependencies. Finally, additional lan-

guages have to be incorporated and evaluated for this multi-

lingual approach.
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