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ABSTRACT

Keyword spotting is a very forward-looking and promising branch
of speech recognition. This paper presents a HMM-based keyword
spotting system, which works with a new algorithm.

The first discussion topic is the description of the search algorithm,
that needs no representation of the non-keyword parts of the speech
signal. For this purpose, the computation of the HMM scores and
the Viterbi algorithm had to be modified. The keyword HMMs are
not concatenated with other HMMs, so that there is no necessity for
filler or garbage models. As a further advantage, this algorithm
needs only low computional expense and storage requirement.

The second discussion topic is the determination of a optimal
decision threshold for each keyword. In order two decide between
the two possibilities “keyword was spoken” and “keyword was not
spoken”, the scores of the keywords are compared with keyword
specific decision thresholds. This paper introduces a method to fix
decision thresholds in advance. Starting with measured phoneme
distributions, the score distributions of whole keyword models can
be calculated. Furthermore, these keyword distributions form the
basis of the computation of decision thresholds.

Tests with spontaneous speech databases yielded 73.9% Figure-Of-
Merit when using context-dependent HMMs. The detection rate at
10 fa/kw/h comes to 80%.

1. INTRODUCTION

Keyword spotting becomes a very important branch of speech
recognition. Latest research experiences show that it is nearly
impossible to design a recognizer that covers all words uttered
during the practical application. Therefore the aproach of only
detecting keywords within any other words, sounds and noise
without modeling these non-keyword parts of the utterance can be
considered very promising. In contrary to other keyword spotting
systems, which need some out-of-vocabulary representation, we
renounce from explicit modeling the background.

The presented speaker-independent keyword word spotting system
is able to indicate and classify predefined words within continuous
speech. There are no restrictions concerning keyword occurencies:
each utterance may contain any number of keywords. This keyword
spotter, which is part of the big German speech understanding and
translation project Verbmobil, is a phoneme based recognition

system, so that all keywords are composed of phoneme Hidden
Markov Models (HMM).

The paper presents a new algorithm which uses normalized scores
during the Viterbi search. By a special treatment of the HMM
scores, in this algorithm neither garbage nor filler nor silence
models are necessary to represent the out-of-vocabulary parts of the
utterance. Every keyword is allowed to start and to finish anywhere
within the spoken sentence at any position. Since this method
enables the recombination of different  paths with different length
within the Viterbi search, no additional computing load occurs.
Backtracking is not necessary. The output of the algorithm yields
normalized scores indicating the matching of the keywords at
distinct time positions.

In order to decide between the two possibilities “keyword was
spoken” and “keyword was not spoken” the normalized score of
each word must be compared with a word specific threshold. A new
technique is presented to calculate optimal values for these
thresholds. Starting from the score distributions of the individual
phonemes contained in a keyword, the total score distribution of the
whole word is computed by length-weighted convolution of the
single phoneme distributions. The score distributions are modeled
by Gaussians, thus the threshold for each individual keyword can be
calculated analytically.

This method enables the determination of the thresholds without the
need of ever having spoken the keywords at all! This can be a
decisive condition in practical applications where (like in our
VERBMOBIL project) not enough training material exists for the
individual keywords, whereas the phoneme models can be trained
very well. Additionally, this new method allows a-priori estimation
of the suitability and usefulness of each keyword in advance
(without having spoken these words).

2. SYSTEM OVERVIEW

The keyword spotting system consists of three fundamental
modules. The first module is concerned with signal analysis and
feature extraction. The speech signal is sampled with a frequency of
16 kHz, and 400 samples at a time are combined to frames with a
frame period of 10 ms. A total number of 30 mel-filtered cepstral
coefficients and their  time derivatives of first and second order are
calculated, giving a feature vector with 64 components.  This vector
is optimized by the use of a linear discriminant analysis. The second
module computes the emission probabilities for all states of all



HMMs. The third module contains the recognizer itself. Fig. 1
shows the basic structure of this module.

Figure 1: basic structure of the recognition module

The basic unit of the recognizer is a keyword model with a
subsequent decision instance. For all keywords such basic units are
set up, but no keyword can influence another one because all basic
units are completely independent. Each keyword model is realized
as a concatenation of phoneme HMMs, but no filler, silence or
garbage models are attached at the beginning or the end. The first
state of the keyword model has no predecessor state and the last
state has no successor state. The search is done applying a modified
Viterbi algorithm using specific normalized scores. The decision
instance observes the score of the last state of a keyword model and
provides classification by comparing local score minima with a
decision threshold.

3. MODIFIED VITERBI ALGORITHM

For our purposes the standard Viterbi algorithm and the
computation of scores have to be modified. The algorithm described
below is based on local scores, which can be interpreted as a
distance measure from a certain state to the best state with the
highest emission probability. The term  means the local
score of state sj. This local score is defined as the difference
between the negative logarithm of the emission probability

 of state sj and the value of the best state at that time. So
the best state always has , while all other states have
scores greater than zero.

Since the first state of a keyword HMM is not concatenated with
any predecessor, new search paths are allowed to start at any point
in time. These paths don’t take over any previous scores and begin
with zero. Nevertheless, paths with different starting points are
allowed to recombine in a proper way. For this purpose it is
necessary to compare paths with different length within the search.
This is achieved by using length normalized scores. The total
amount of accumulated scores and penalties is devided by the
number of states the path has passed. So two variables must be
handled for each state sj and each time instant t: the normalized
score  and the length of the path .

When Aij is the penalty from state si to state sj, the search algorithm
can be notated in the following recursive form:

At any time instant t  a new path may start with

 and

These equations can be interpreted as computing all possible paths
leading to state sj and selecting the best one. To calculate the
normalized score of such a path, first reduce the weight (i.e. its
length) of the predecessor score and then add the weighted local
score of state sj. All weigths depend on the length of the path. When
the best predecessor state sk is determined, its incremented length
becomes the length of state sj.

This algorithm needs low computional expense and storage
requirements. So it’s sufficient to allocate memory only for one
column of the trellis. Tracing back thru the Viterbi matrix is not
necessary. No HMMs for the non-keyword parts of the speech
signals must be trained. Moreover this algorithm easily enables a
time synchronous implementation of a keyword spotting system.

As a result of this calculation scheme, the normalized score of the
last state of a keyword model, which serves as input for the decision
instance, no longer is a monotonously increasing function in time.
The score decreases when the HMM represents the speech signal
well and increases when there is only bad matching. So the decision
instance has to look for the minima of the score and evaluate them.

4. DECISION THRESHOLDS

The purpose of any decision instance is to determine which class the
input belongs to. In the case of the keyword spotter the two
possibilities “keyword was spoken” and “keyword was not spoken”
have to be decided by observing the score of the last state of the
keyword HMM. The decision rule is implemented by using a
decision threshold. If the value of a local score minimum remains
under this threshold, the occurence of the keyword is indicated, else
the keyword is rejected. In contrary to using the same decision
threshold for each keyword, experience shows that using individual
thresholds improves recognition performance substantially.

In the following a method is presented to fix optimal thresholds for
particular keywords automatically. The score of the last state of a
HMM is considered to be a random variable. Its conditional
probability density functions (cpdf) depend on the corresponding
class of the sample. If these cpdf’s are known for the two cases
“keword was spoken” ω1 and “keyword was not spoken” ω0,
decision thresholds can be calculated using distinct approaches.

4.1. Computation of cpdf’s of keywords

In a phoneme based HMM recognition system a word model is
composed of its phoneme models. The normalized score Y of a
keyword HMM is interpreted as a random variable. Since each
keyword HMM is composed of a sequence of phonemes, this
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keyword score can be calculated using phoneme scores X. These
phoneme scores are also thought to be random variables. Because
of various mean phoneme lengths, weighting coefficients αi must
be used to take this effect into account.

, with

Li is the mean duration of phoneme i measured in its number of
frames, while Ltotal is the sum of all mean phoneme durations,
representing the mean duration of the keyword.

The cpdf of the keyword score Y can be calculated as the
convolution of the scaled cpdf’s of the involved phonemes:

In order to reduce computing expense and to get analytic solutions,
all cpdf’s are approximated by Gaussians . In this way the
keyword score Y is a Gaussian, too. Its mean value and standard
deviation can be simply calculated using the means μi and the
standard deviations σi of the phonemes:

These few parameters μi and σi must be measured once before
calculating the cpdf’s of any keywords. Figure 2 shows an example
of experimentally measured and Gaussian approximated cpdf’s of a
phoneme for the conditions “phoneme was spoken” and “phoneme
was not spoken”. A comparison of calculated and experimentally
measured cpdf’s of keywords yielded quite good accordance of the
means and standard deviations. It is remarkable that in general long
keywords have small variances, whereas short keywords have great
variances. Thus it is very promising to use word specific threshold
especially when working with short and long keywords at the same
time. Moreover, the suitability of a keyword may be predicted when
the two cpdf’s are known, because it is possible to estimate the
detection rate and the corresponding number of false alarms.

Figure 2: cpdf’s for the two classes “phoneme was spoken” and
“phoneme was not spoken”. The measured densities are
approximated by Gaussians.

4.2. Computation of thresholds

There are several methods to fix decision thresholds Yth when the
cpdf’s for the two classes “keyword was spoken” and “keyword was
not spoken” and the a-priori probabilities of the classes are known.
One possibility is maximizing the detection rate and simultaneously
minimizing the false alarms utilizing statistical hypothesis testing
strategies like the Bayes’ decision rule, the Neyman-Pearson rule,
etc. But best results were achieved by prescribing a fix detection
rate α. Since the cpdf is a Gaussian, the equation can be solved and
Yth calculated (Φ-1 means the inverse Gaussian distribution):

5. RESULTS

The keyword spotting system was evaluated with speech data bases
dealing with the scheduling of date appointments for meetings.
These English dialogues are spontanous speech, spoken from native
male and female speakers, containing a lot of silence parts and
noise.

Two kinds of HMM were used to test the system: context-
independent and context-dependent HMMs. Both were trained on a
approximatly 12 hours speech data base consisting of Multicom
94.1, Multicom 94.2, Verbmobil CD 6.0 and Verbmobil CD 8.0.

The tests were done with the Multicom 94.4 corpus. This data base
contains  614 utterances of 2.13 hours duration. The list below
shows the test vocabulary. When using these 25 keywords, in
Multicom 94.4 there are a total number of 941 keyword
occurrencies.

Monday, Tuesday, Wednesday, Thursday, Friday,
Saturday, Sunday, morning, afternoon, tomorrow,
evening, lunch, breakfast, meeting, office, schedule,
appointment, vacation, calendar, seminar, conference,
secretary, together, available, holiday

Figure 3 shows the receiver-operating-characteristics (ROC) for
both context-independent and context-dependent HMMs using an
equal decision threshold for each keyword. The figure of merit, a
commonly used performance score, is defined as the average
detection rate from 0 to 10 fa/kw/h (false alarms per keyword per
hour). This evaluation yielded a FOM of 58.5% for context-
independent and 73.9% for context-dependent HMMs.
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Figure 3: ROC for context-independent and context-dependent
HMMs.

Evaluation of recognition performance using word specific
thresholds was performed with context-independent HMMs. Table
1 shows some results, prescribing various detection rates α. The
experimentally yielded detection rates are better than previously
prescribed and all measured operating points lie above the ROC for
the context-independent case.

6. DISCUSSION

A new keyword spotting algorithm is presented that allows keyword
detection without representation of the non-keyword parts of a
utterance by silence, garbage or filler models. Every point in time a
new Viterbi path is allowed to start. In order to be able to compare
paths of different length, specific normalized scores are used within
the search. A new approach is introduced, which allows calculation
of word specific decision thresholds in advance. Starting with score
distributions of phonemes, the cpdf’s of keywords can be calculated
and then applying different strategies decision thresholds can be
fixed. Using only equal-length keywords, word specific decision
thresholds don’t become very effective. The advantageous
application of word specific decision thresholds is the greater the
more the vocabulary contains both short keywords and very long
keyword-phrases.

In contrary to utilizing Bayes’ decision rule for settling the
boundaries, fixing a definit detection rate has proven to give best
results for practical applications. Tests carried out with the

Multicom 94.4 sponaneous continuous speech corpus yielded a
FOM of 58.5% for context-independent and 73.9% for context-
dependent HMMs. This notable result is attained with low
computional and storage expense, since no out-of-vocabulary
models are used. Moreover, this keyword spotting system doesn’t
need any language model. However, it may be promising to apply a
specific kind of post-processing in order to avoid keyword overlaps
and to consider statistically achieved regularities of the language.
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prescribed α detection rate fa/kw/h

30% 34.0% 0.319

35% 39.7% 0.750

40% 48.0% 1.41

45% 53.3% 2.53

Table 1: Recognition performance using pre-calculated keyword
specific decision thresholds and context-independent HMMs.
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