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ABSTRACT

This paper is concerned with the symbol segmentation and
recognition task in the context of on-line sampled handwrit-
ten mathematical expressions, the first processing stage of
an overall system for understanding arithmetic formulas.
Within our system a statistical approach is used tolerating
ambiguities within the decision stages and resolving them
either automatically by additional knowledge acquired
within the following processing stages or by interaction
with the user. The recognition results obtained by different
writers and expressions demonstrate the performance of our
approach.

1.  INTRODUCTION

We are accustomed in writing mathematical expressions
containing integrals, fractions, exponents or indices by
hand, but there is no user-adequate solution for entering
these expressions into a computer. The most natural way is
offered by analyzing the handwriting, but next to symbol
segmentation and recognition structure analysis is required
for extracting the meaning of the two-dimensional symbol
positioning [1][2]. But this is just one difference to hand-
written word recognition. Furthermore, the symbol segmen-
tation and recognition task within our application is compli-
cated by some additional circumstances:
• symbols are placed above, below, or even within other

symbols.
• the writing size depends on the symbol as well as on its

meaning within the expression (e.g. an upper case „X“
has not to be larger than a lower case „x“).

Hence, symbol segmentation and recognition systems pre-
sented up to now require an unequivocal stroke positioning
for segmentation and an unequivocal style of symbol writ-
ing for recognition. Based on these restrictions, within the
processing stages hard decisions are done (similar to sys-
tems used for analyzing printed expressions [1]) tolerating
almost none of the inaccuracies caused by handwriting
[3][4].

In comparison, our soft decision approach presented at
ICASSP 95 tolerates ambiguities within the two processing

stages [5], namely the symbol segmentation and the symbol
recognition stage, both presented independent of each other
at ICASSP 96 [6][7]. A brief review on the main points is
given next. Within this review especially the determination
of the probabilities is focused because the combination of
former independent stages required some changes. In the
following the final decision stage of the symbol segmenta-
tion and recognition system is presented. Within this pro-
cessing stage the probabilities calculated in the preceding
stages are used for determining the most probable symbol
sequence based on the handwritten input. Additionally,
knowledge obtained by a verification concerning the mathe-
matical syntax is used. The recognition results presented at
the final section of this proposal illustrates the performance
of our approach and system.

2.  APPROACH AND SYSTEM OVERVIEW

Based on the on-line sampled sequence of strokes
a symbol hypotheses net (SHN) is generated

containing symbol hypotheses of
the handwritten input. Thus, soft-decision segmentation is
done transforming the incoming stroke sequence  into one
or more different sequences  of symbol hypotheses
represented by the corresponding path through the SHN.

Figure 1: Statistical approach and system overview.
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Each symbol hypotheses is classified by a symbol recogni-
tion system based on Hidden Markov Models (HMMs) as-
signing different symbol recognition results  to
each symbol hypotheses  of the SHN. Hence, this
classification is a soft-decision process again, transforming
each symbol hypotheses sequence  into different sym-
bol sequences .

Each decision within the segmentation and recognition
stage is done by a certain decision probability resulting to
the sequence probabilities  and . The
final classification of the symbol sequence is based on these
probabilities [5].

3.  MAIN STAGES OF THE SYSTEM

3.1  Generating a symbol hypotheses net (SHN) [6]

The soft-decision segmentation by generating symbol hy-
potheses , such as illus-
trated by fig. 2, is based on:
• the unity measure determined by the

complexities  of the strokes. The com-
plexity categorization  of each stroke

 into one of the classes „Primitive“ ( ), „Standard“
( ) or „Complex“ ( ) is done by analyzing stroke-
specific features.

• the unity measure  of the strokes within
, which is determined in several steps. First, by

analyzing geometrical features between each stroke
pairs  and , the two by two unity measures

, , , are calculated. For
this calculation, knowledge obtained by a stroke pre-rec-
ognition stage is used additionally. Next, the two by two
unity measures  are combined in a certain man-
ner resulting to the unity measure  of the stroke
sub-sequence , .

The overall unity measure  of the strokes within the
symbol hypotheses , , is determined by the
product of  and . By using two thresholds

 and ,  is transformed to  repre-
senting a probability measure that the stroke sub-sequence

 is a symbol of the handwritten input. The
determination of the probability measure
(stroke  represents a symbol by itself) is done by analyz-
ing the probability measures of all symbol hypotheses

, , concluding stroke .

Each symbol hypotheses  with  is
represented within the net (an example is given in fig. 4), the
probability  of the path  through the SHN is de-
fined by:

. (1)

S k g d, ,( )
G k g,( )

G i( )

S j( ){ }

P G i( )|L( ) P S j( )|G i( )( )

G k g,( ) Lk … Lk g+, ,( ) 0 g 3≤ ≤,=

ZC k g,( ) 0 1,{ }∈
Ck … Ck g+, ,( )

Ck CP CS CC, ,{ }∈
Lk CP
CS CC

ZG k g,( )
G k g,( )

Lk Lk g+
ZP k g,( ) 1 k N g–≤ ≤ 1 g 3≤ ≤

ZP k g,( )
ZG k g,( )

Lk … Lk g+, ,( ) 1 g 3≤ ≤

Z k g,( )
G k g,( ) 1 g 3≤ ≤

ZC k g,( ) ZG k g,( )
Z0 Z1 Z k g,( ) P̃ G k g,( )|L( )

Lk … Lk g+, ,( )
P̃ G k 0,( )|L( )

Lk

G k g,( ) 1 g 3≤ ≤ Lk

G k g,( ) P̃ G k g,( )|L( ) 0>

P̃ G i( )|L( ) i

P̃ G i( )|L( ) P̃ G k g,( )|L( )
G k g,( ) path i∈( )

∏=

Finally, normalization has to be done to
transforming  to  regarding

(2)

as well as

(3)
Thus, only the absolute values of the paths through the SHN
are influenced but not their relative value among each other.

3.2  Symbol hypotheses classification

Each element  of the SHN is regarded as a possible
symbol of the handwritten input and therefore has to be ap-
plied to the symbol hypotheses classification system [5].

As illustrated in fig. 3, for each  preprocessing is
done first, correcting the slant and slope of each symbol hy-
potheses as well as extracting parameters necessary for size
and position normalization. Next, each symbol hypotheses
is applied to a pre-recognition stage which is almost identi-
cal the stage used already for generating the SHN. However,
this time pre-recognition is done for separating the symbols
„Dot“, „Minus“, and „Fraction“ from the remaining sym-
bols of the alphabet [6]. This separation is necessary be-
cause no „writing“ is done for a „Dot“ and the distinction
between „Minus“ and „Fraction“, both represented by a hor-
izontal line, requires contextual knowledge. Within the
symbol hypotheses pre-recognition stage ambiguous recog-
nition results between the symbols „Dot“ and „Minus“ as
well as „Minus“ and „Fraction“ are tolerated. Symbol hy-
potheses rejected by the pre-recognition stage, i.e. symbol

Figure 2: Detail view of the SHN generation stage.
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hypotheses not representing one of the above named sym-
bols, are applied to a HMM-based classification system pre-
sented in [7].

Three different feature vector sequences ,
are extracted by the symbol hypotheses

, one of them ( ) generated by analyzing the
temporal information during writing, the remaining two by
the result (i.e. the image) of the writing. For each feature
vector sequence consisting of  feature vectors the gen-
eration probability  is calculated using
the Viterbi algorithm within the semicontinuous HMMs

 representing the symbols  of the alphabet.

The symbol recognition result  as well as its alter-
natives , are determined by a weighted multi-
plication of the single generation probabilities, each of them
additionally normalized to the number of feature vectors:

(4)

.

The corresponding probabilities  are de-
termined by changing the argmax- to the max-operator.

For homogeneity, a generation probability analogous to the
HMM-based symbol classification is assigned to the pre-
recognized symbols by:

(5)

In the case of an ambiguous pre-recognition result, the gen-
eration probability of the corresponding recognition alterna-
tive , , is determined by using a
very small but positive delta probability :

(6)

Figure 3: Overview of the symbol hypotheses classifica-
tion stage, a detail view of the HMM-based clas-
sification system is given in [7].
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3.3  Symbol sequence classification

The information available at this final decision stage con-
sists of the probabilities  obtained by generat-
ing the symbol hypotheses  and, such as illustrated in
fig. 4, the probabilities  obtained by their
recognition.

Using the elements of the generated SHN, the decision cri-
terion given in fig. 1 can be transformed to:

. (7)

Using the Bayes theorem and assuming, that all „a-priori“-
probabilities are constants, eq. (7) results in:

=
, (8)

.

Focusing the left term within this decision criterion, either
long or short paths (small or large number  of symbols

 within the path ) through the SHN will be pre-
ferred depending on the relation of the „a-priories“  and

. Within the right part, always short paths will be pre-
ferred caused by the normalization done during the symbol
hypotheses generation and classification. Hence, normaliza-
tion is done to the number of elements  within the path

 „neglecting“ the „a-priories“ and resulting to the final de-
cision criterion:

=
(9)

Finally, a verification concerning the mathematical syntax
based on the number of parentheses, brackets, braces (a left
one requires a right one of the same kind and reverse) and
power symbols (always by pairs) is carried out. Recognition
results failing this verification are considered as invalid.

Figure 4: Information available for the final symbol se-
quence classification: an example containing the
top-3 symbol recognition results to each .
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4.  RECOGNITION RESULTS AND DISCUSSION

For the recognition experiment nine writer contributed five
versions of 17 different expressions using each symbol of
the given alphabet (currently 84 symbols). The number of
symbols within the expressions are ranging from at least 13
up to 45 symbols, on average an expressions consists of 27
symbols. In comparison to this number, word recognition
means recognizing 5 characters on average [8].

Within our recognition experiment the 10 most probable
symbol sequences , , are generated by the deci-
sion criterion given in eq. (9) without using any language
model (a very powerful knowledge source for the recogni-
tion of handwritten words or speech) or any symbol distri-
bution knowledge but using the knowledge obtained by the
quite simple syntax verification.

On average, 44% of the expressions are recognized error-
free (i.e. each symbol within the expression) by , de-
pending on the writer it ranges from 28% to 68%. The aver-
age recognition rate is raising up to 72% within the
most probable recognition alternatives, but the user has to
do the selection.

Some well (completely error-free) and poor (at least one er-
ror within each , ) recognized expressions are
given in fig. 5. Within the poor recognized expressions the
error position(s) and their kind are marked based on .

Calculating a symbol-normalized recognition rate analo-
gous to [1] for achieving independency of the complexity of
the expressions, the average recognition rate results in more
than 95% ranging between 93% and 98% for the different
writers. If an error occurs, in 80% of all cases the error is
only based on a wrong symbol recognizer result (the symbol

Recognition rate of the expressions by ,

Average: 44% 56% 60% 63% 72%

Writer-dep.
range:

28% -
68%

39% -
79%

40% -
84%

45% -
84%

54% -
87%

Expr.-dep.
range:

2% -
91%

4% -
96%

11% -
96%

11% -
96%

16% -
100%

Table 1: Average recognition results and their ranges de-
pending on the writer and on the expression.

Figure 5: Some examples from the expression data base.
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hypotheses  underlaying the symbols recognizer re-
sults  within the sequence  coincide with the
symbols of the handwritten input). Furthermore, the re-
corded symbol recognition errors are mainly caused by a
mix-up of upper and lower case letters having the same
shape [7].

5.  CONCLUSIONS

Though the average symbol segmentation and recognition
rate obtained by our system is more than 95%, „only“ 44%
of the mathematical expressions of our test data set are rec-
ognized completely error-free. This problem is based on the
quite large number of symbols within an expression as well
as on the missing of a language model usable for mathemat-
ical expressions. By displaying the 10 most probable recog-
nition results to the user for selection, the expression recog-
nition rate raises to 72% by using this kind of interaction.
Thus, next to the combination with the structure analysis
system presented in [2], another task is the implementation
of a pen-based user interface enabling the user to make cor-
rections exactly at the error position(s) either by choosing
recognition and/or segmentation alternatives or by re-writ-
ing symbols.
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