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Abstract
In this paper a universal approach to the classification of
video image sequences by Hidden Markov Models
(HMMs) is presented. The extraction of low level features
allows the HMM to build an internal image representation
using standard training algorithms. As a result, the states of
the HMMs contain probability density functions, so called
image density functions, which reflect the structure of the
underlying images preserving their geometry. The success-
ful application of the approach to both the recognition of
dynamic head and hand gestures demonstrates the universal
validity and sensitivity of our method. Even sequences con-
taining only small detail changes are reliably recognized.

1. Introduction

Vision based gesture recognition has many applications in
natural and intuitive human-machine-communication, tele-
communications, and robotics. Since gestures are dynamic
processes, they require methods for the classification of im-
age sequences.

Statistical approaches using HMMs applied to image
sequence modeling mainly differ in the way they extract
features from the images. There are specific disadvantages:
Property-based feature extraction methods [1, 2] do not
make full use of the HMM modeling abilities, since they
produce only one feature vector per image, and are not uni-
versal, since they require a-priori knowledge. Common low
level feature extraction methods [3, 4] forming feature vec-
tors out of vertical or horizontal image stripes result in an
asymmetric spatial behaviour and have difficulties in image
normalization.

Our new and efficient approach, in its first version pre-
sented in [5], overcomes the above difficulties using spa-
tially symmetric low level features which represent only a
small image area. For that reason the HMM is allowed to
model all spatial and the temporal dimensions in a consis-
tent way. The main idea is to choose features on the basis
of intensity or gradient images that force an ordinary HMM
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Figure 1: Typical edge images taken out of hand gesture
sequences (see table 3) and corresponding image density
functions after HMM training (see sec. 3)

training algorithm to represent similar successive images
as so called image density functions (IDFs) in a respective
HMM state. If edge images are used, an IDF indicates the
existance and the average value of an edge point at a certain
image position (see fig. 1).

The procedure is in detail explained in sec. 2. The setup
of the experiments and the obtained results are described in
sec. 3 and 4.

2. Description of the Algorithm

To generate a geometry preserving density representation
of the image f �n� � f �n1�n2�, the training algorithm of
a HMM has basically to be provided with feature vectors



consisting of two-dimensional image coordinates. The sim-
plest feature set would theoretically contain all pixel coor-
dinate vectors of all images of a sequence in a row. If the
vectors in this set appear a number of times that is pro-
portional to a corresponding pixel value f �n�1, the training
algorithm will approximate the desired IDFs [5].

Since in practice this plain feature set is too large to
handle, the number of features has to be significantly re-
duced. To achieve this, a regular K � L grid of so called
image vectors vinit

i j is positioned over the image. Up to
two attributes are attached to every image vector. The first
attribute ninit

i j contains the average intensity or the aver-
age magnitude of the gradient respectively. The second at-
tribute dinit

i j contains the average orientation of the gradient
if required. All mean values are calculated in the nearest
neighborhood Ni j implicitly defined by an Euclidian dis-
tance measure D:

Ni j � fnjD�n�vi j�� D�n�vkl �

for all k� l with k �� i and l �� jg, (1)

ni j �
1

jNi jj
∑

n�Ni j

f �n�� (2)

di j �
1

jNi jj
∑

n�Ni j

δ�n�� (3)

jNi jj is the number of pixels in the neighborhood of vi j.
To put more information in the individual positions of

the image vectors, they have to be placed in an optimal
way considering their attributes. This is done by a vari-
ation of the k-means algorithm [6]: Instead of clustering
randomly positioned feature points, the task here is find-
ing an optimal representation of the regularily positioned
image pixels taking into account their randomly distributed
intensities or gradients. The iteration step to calculate the
optimal image vectors vopt

i j results in the calculation of new
image vectors at time t � 1 as the specific centers of mass

of the old neighborhoods N�t�
i j at time t. The average ori-

entation attribute di j is only needed for gradient images to-
gether with the restricted summation areas introduced with
eq. (10). The complete optimization algorithm is:

1. initialization:

v�0�i j � vinit
i j implying (4)

n�0�i j � ninit
i j and (5)

d�0�
i j � dinit

i j from eqs. (1) – (3); (6)

1 f �n� stands for the intensity image or the magnitude part of the gra-
dient image (edge image); the orientation part of the gradient image is
called δ�n�.

2. iteration:

v�t�1�
i j �

1

∑
n�N

�t�
i j

f �n� ∑
n�N

�t�
i j

n � f �n� (7)

implying new N�t�1�
i j and d�t�1�

i j from eqs. (1) and (3);

3. if D
h
v�t�1�

i j �v�t�i j

i
� ε for all i� j repeat step 2, else go

to step 4;

4. the optimal vectors and intensity attribute are obtained
at the last time step t � T �1:

vopt
i j � v�T�1�

i j and (8)

nopt
i j � n�T�1�

i j � (9)

In the case of gradient images the iteration converges faster
if the orientation attribute di j is used to select only edge
pixels f �n� whose orientation δ�n� differs less than a thresh-
old Δd from di j. Consequently the summation areas in
eq. (7) change to

n � N�t�
i j and

���δ�n��d�t�i j

���� Δd (10)

while those in eqs. (2) and (3) remain unchanged. The ori-
entation angle difference is defined to be less or equal�180
degrees. At the end of the iteration process the image vec-
tors are concentrated near brighter image areas or are lo-
cated on significant edges respectively.

The choice between intensity and edge images, the two
kinds of image vectors vinit

i j and vopt
i j , and the possibility to

let each vector appear once or in proportion to the respec-
tive average intensity attribute ninit

i j or nopt
i j result in sev-

eral possibilities to form different feature sequences. Ex-
periments show that the best sequence can be built out of
gradient images with the optimal vectors vopt

i j in combina-

tion with a repetition in proportion to the attribute nopt
i j (see

also [5]).
The images become invariant to translation and rota-

tion if the vectors are normalized using the moment-based
centers of mass and orientation angles.

3. Experimental Setup

The used HMMs are semi-continuous since those models
are a good compromise between few training data and ac-
curacy of modeling [6]. Semi-continuous HMMs have a
codebook of mixture density functions (or prototypes) cal-
culated for the whole training data. The covariance matri-
ces of the prototypes are diagonalized. Training and recog-
nition are carried out by the Viterbi algorithm.



                        

Figure 2: Two example images taken out of the head ges-
ture sequences (s. table 1)

# action/meaning # action/meaning

1 yes (normal) 6 maybe (start left)
2 yes (emphasized) 7 go to the rear
3 no (start right) 8 go to the right
4 no (start left) 9 go to the left
5 maybe (start right)

Table 1: Head gesture catalog I

The classification was tested on sequences containing
dynamic head and hand gestures respectively. The head
was recorded from the front, the (right) hand from above.
Head and hand were recorded in about full size (see figs. 1
and 2 for examples) against a uniformly colored back-
ground. The gestures are planned to be used for the vi-
sual control of a virtual object world. The following three
different catalogs were used:

1. Head gesture catalog I containing 9 gestures that are
mainly characterized by global position and orienta-
tion changes of the head (s. table 1).

2. Head gesture catalog II containing 5 gestures with
internal changes exclusively in the area of the eyes
(s. table 2).

3. Hand gesture catalog containing 12 gestures that are
a combination of shape, position and orientation
changes (s. table 3).

Each of the gestures was recorded 30 times; all gestures
were performed from only a single person. Each image se-
quence contains 70 non-interlaced images at the European
rate of 50 images (fields) per second. The final sizes of the
images were 180�144 pixels for the head and 192�144
pixels for the hand images in YUV -mode.

# action/meaning # action/meaning

1 look at right 4 blink left eye
2 look at left 5 blink both eyes
3 blink right eye

Table 2: Head gesture catalog II

# action/meaning # action/meaning

1 go to the front 7 reset
2 go to the left 8 grab
3 go to the rear 9 release
4 go to the right 10 grab on the left
5 take this 11 grab on the right
6 no 12 stop action

Table 3: Hand gesture catalog

p 15�11 30�22 45�33 60�44

16 1.62 1.82 2.12 1.52
32 2.12 0.61 1.92 1.11
64 0.51 0.10 1.31 0.91

128 2.12 0.00 1.31 0.71

Table 4: Error rates (%) for head gesture catalog I (see ta-
ble 1)

The edge images are the result of an absolute value
calculation of a simple gradient operator applied to the Y -
component of the unsegmented image with a subsequent
threshold operation (see figs. 1 and 2 for examples). The
gradient threshold for the hand gestures is uncritical, where-
as the threshold for the head sequences is adjusted to a
value so that only the eye and nostril areas remain visible
(which is even less than in fig. 2). The segmented inten-
sity images with a zero background were calculated with
a color histogram based segmentation method out of the
UV -components.

4. Experimental Results

20 of the sequences of each gesture were used for the train-
ing and the other 10 for recognition. The models used had
different numbers of prototypes p and different grid reso-
lutions of K � L initial image vectors. All the presented
results are averaged over s � 5–15 states (the error rates
stabilize between 5 and 15 states) and over all gestures of
a catalog. Image vectors with a zero attribute ni j were dis-
carded.

The following tables show results for gradient images
only since they produce the lowest error rates. But at least
the gestures from the head catalog I and the hand catalog
are classified with acceptable error rates if intensity images
are used (less than 7% without and 0.3% with translational
vector normalization).

Table 4 shows the results for head gesture catalog I.
The error rates typically decrease for an increasing number
of prototypes. At the optimal grid resolution of 30� 22
vectors an error rate of zero can be reached.



p 15�11 30�22 45�33 60�44

2 46.36 50.55 23.64 21.09
4 16.73 27.27 0.91 0.36
8 27.82 34.18 8.00 5.27

16 12.00 25.27 2.91 4.55

Table 5: Error rates (%) for head gesture catalog II (see
table 2)

p
2 4 8 16 32 64 128

71.04 60.97 19.09 15.06 10.65 9.35 6.43

Table 6: Error rates (%) for combined head gesture catalogs
I and II (see tables 1 and 2) with constant 60�44 grid

The results for gesture catalog II show a different be-
haviour (see table 5): As a rule, the error rates decrease for
a higher grid resolution but are always optimal for p � 4
prototypes. Obviously 4 prototypes are a good compromise
between modeling accuracy and amount of training data to
cover the two crucial eye areas. Despite of the expected dif-
ficulties in distinguishing sequences with very small chang-
ing areas the lowest error rate is less than 0.4%. The nor-
malization of the vectors has only small effects on the error
rates of the head gestures. But it can be very helpful if
larger offsets between different sequences are expected.

Although the respective error rates of both head gesture
catalogs are very low, merging the two catalogs is difficult
since they require different optimal parameter settings. For
that reason the lowest achievable error rate of the combined
head gesture catalogs is about 6.4% (see table 6).

The results for the hand gesture catalog in table 7 are
already satisfactory if only a low grid resolution of 6� 4
vectors is used. If additionally a translational normaliza-
tion of the vectors is applied, the error rates decrease to
zero. Evidently the coherent structure of the hand is eas-
ier to model than the distributed structures of the internal
face features. More hand gesture recognition results with
further parameter variations can be found in [5].

Table 8 shows the effect of the restricted summation
areas expressed by eq. (10) applied to the hand gesture cat-
alog. As Δd decreases the number of iterations (which
are mainly responsible for the execution speed of the al-
gorithm) decreases significantly. Obviously the execution

p 4 8 16 32 64

pure 11.52 0.76 1.14 0.76 0.98
normalized 13.79 0.45 0.00 0.00 0.00

Table 7: Error rates (%) for hand gesture catalog (see ta-
ble 3, constant 6�4 grid)

Δd 180 21 14 7

rel. iterations 100.00 54.62 45.10 27.18

pure 0.98 1.89 1.89 3.71
normalized 0.00 0.00 0.00 0.00

Table 8: Error rates (%) for hand gesture catalog (see table
3, constant 6� 4 grid, p � 64 prototypes, Δd in degrees,
average number of iterations in % relative to Δd � 180 de-
grees)

speed can be tripled while the error rate of the normalized
sequences does not change.

5. Conclusion

A new method for the classification of image sequences
using Hidden Markov Models was presented. Low level
feature vectors that significantly reduce the amount of re-
dundant image information and that allow the HMM a com-
plete spatio-temporal modeling cause the generation of im-
age density functions in the HMM states. The results ob-
tained from different recognition tasks prove that the algo-
rithm is universally applicable and very sensitive.
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