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Abstract

Near-field antenna measurements are usually performed in an anechoic chamber in order

to ensure a free-space interaction between the antenna under test (AUT) and the probe.

However, for electrically large antennas or for in-situ antenna measurements, the cost

of building and maintaining an anechoic chamber can be prohibitively high due to the

required space. Measurements can be performed in these cases in a semi-anechoic or in

an outdoor measurement facility. When near-field antenna measurements are performed in

semi-anechoic or outdoor facilities, the measured near-field distribution is contaminated

with multipath signals. These errors in the near-field distribution are carried over to the

far field if adequate steps are not taken to remove the errors. Echo suppression can be

performed during the actual data acquisition or during the application of a near-field

far-field transformation (NFFFT) algorithm.

NFFFT algorithms relate the measured near-field distribution to the far-field pattern

of the AUT. Examples of such algorithms include the modal expansion techniques and

techniques based on equivalent currents. Recently, a plane-wave based near-field far-field

transformation algorithm has been presented. The algorithm utilizes a translation operator

derived from the fast multipole method (FMM) to translate outgoing plane waves from

the AUT to incident plane waves at the probe. It allows the efficient processing of mea-

surements acquired on an irregular grid and it includes capabilities for full probe correction.

In this thesis, novel measurement and signal processing techniques for obtaining reli-

able antenna measurement results in non-anechoic facilities are presented. This is achieved

by a careful modification of either the measurement procedure or the post-processing steps.

The presented techniques are applied to simulated and actual echoic data and the results are

xiii
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compared to those obtained from echo-free measurement data. Substantial improvement in

the measurement results were obtained by the following approaches:

• By utilizing certain a priori knowledge about the measurement geometry in a spa-

tial filtering formulation. Auxiliary sources with associated plane wave spectra are

assumed for echo sources during the process of near-field far-field transformation.

These additional plane wave spectra are translated to the measurement points and

superimposed on the incident plane waves from the AUT. This representation im-

proves the model of the inverse problem formulation such that the model is closer to

the actual source arrangement from which the near-field data was acquired. The echo

sources are assumed to be localized and translations of plane waves are performed

from the echo locations to the measurement points. The advantage of localized echo

sources is that only the minimum number of unknowns are introduced to the prob-

lem by considering the echo sources. When the locations of the echo sources are

not known, a technique for determining the directions of the most dominant echo

sources is presented. Also, when echo localization is not feasible, a technique for

representing non-localized echo sources is presented.

• The manner in which the auxiliary sources are formulated is such that the technique

is applicable to measurements that are acquired on non-canonical measurement ge-

ometries as opposed to some existing filtering techniques which depend on canoni-

cal set-ups for echo suppression. The presented techniques can, therefore, be utilized

with conformal or non-redundant sampling strategies. Conformal and non-redundant

sampling techniques are becoming important as the enormous sizes of test antennas

present new challenges that are not well suited to traditional antenna measurement

techniques.

• Additional unknowns which are introduced by an assumption of additional sources

for the echo sources typically require additional information for sources that are out-

side the measurement volume. A multi-probe measurement technique for providing

additional information about all the sources in a multipath measurement environment

is presented. The technique is based on measuring the field distribution with an in-

ward looking and an outward looking sets of probes. Additional information can also

be obtained by utilizing two oppositely directed Huygens’ source. Huygens’ sources

measure a linear combination of the electric and the magnetic fields. This measure-
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ment technique provides the information required to resolve both the outgoing and

incident wave on the measurement volume.

• Probe antennas operate as spatial filters on the near-field as well as angular filters

of the far-field. Directive probes, therefore, have the advantage of filtering off-

axis multipath signals. However, traditional near-field antenna measurements are

not well-suited for directive probes. For instance, multiple interactions between the

AUT and the probe can be a setback. Also, numerical errors can result due to probe

insensitivity in certain directions in the forward hemisphere of the probe for pla-

nar measurements. In this thesis, a beamforming technique which filters off-axis

multipath signals is presented. The technique depends on combining neighboring

measurement signals with appropriate weights such that the synthetic probe array is

steered towards the AUT. The actual measurement is performed with a small probe

in order to avoid multiple reflections. Probe correction is also performed using the

far-field pattern of the small probe in order to avoid numerical errors.

• For an arbitrary measurement surface enclosing the AUT, the same number of AUT

modes are captured in the measurement data once adequate sample spacing and mea-

surement distance are utilized. However, for echo sources outside the measurement

surface, the echo contributions change with the particular measurement distance. In

order to identify and suppress the multipath components, a technique derived from

principal component analysis (PCA) is investigated. Measurements are performed on

multiple measurement surfaces with varying measurement distances. The measure-

ment data on the different measurement surfaces are then processed jointly with the

plane wave based NFFFT algorithm or by applying the singular value decomposition

(SVD) to the obtained far-field patterns for each measurement.

The presented techniques typically require additional information in form of additional

measurements. However, they will help to relax the usually stringent requirements for an

anechoic chamber when performing near-field antenna measurements.
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Chapter 1

Introduction

An important step after the design and fabrication of antennas is the testing stage when

the antenna is measured in order to assess its radiation parameters. Such measurements

are necessary, for example, to confirm that the fabricated antenna satisfies certain design

specifications such as the required radiation pattern, cross-polarization, gain, directivity,

etc. and that it conforms with government regulations [IEEE, 2013]. The most important

antenna parameter is the field pattern which gives the radiation properties of the antenna

as a function of direction. Since antennas are usually employed in order to convey energy

to far away distances, the most informative radiation pattern is that which characterizes

the antenna in the far-field. The far-field is the region starting from a commonly accepted

radial distance of 2D2/λ from the antenna, where D is the largest dimension of the

antenna and λ is the wavelength [Balanis, 2005]. The amplitude of the electric field in

this region decays linearly with distance and the waves can be assumed to have a locally

planar wavefront. The far-field pattern of an antenna under test (AUT) or generally a

device under test (DUT) can be obtained by a direct far-field measurement. Measurements

in the far-field are quite straight-forward for antennas whose radiation characteristics

satisfy the far-field criteria at a relatively short distance from the antenna. A short distance

makes it practical to provide a controlled environment necessary to avert errors due to

echoes, electromagnetic interference and to avoid security lapses. As the DUT becomes

electrically larger, the far-field boundary emerges farther away from the antenna and direct

far-field measurements can become inconvenient due to the required space. Direct far-field

measurements in these cases can be achieved by means of compact antenna ranges. In

1
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compact ranges, one or more collimating reflectors are used to create a region of plane

waves, called the quiet zone, in front of a reflector [Dudok and Fasold, 1986, Hartmann

et al., 2002, Olver, 1991]. However, due to the required equipments, compact ranges

can be expensive to set-up. Near-field techniques [Yaghjian, 1986] allow measurements

at shorter distances and provide adequate information for the determination of the test

antenna parameters and for antenna diagnostics [Lee et al., 1988, Leibfritz et al., 2007b].

To obtain the far-field pattern, the measured near-field data is processed with a near-field

far-field transformation (NFFFT) algorithm [Johnson et al., 1973, Ludwig, 1971, Petre and

Sarkar, 1994]. NFFFT algorithms relate the measured near-field data to equivalent sources

which are initially unknown. The choice of the equivalent source type typically depends on

the acquisition geometry. Plane wave, cylindrical wave, and spherical wave expansions are

easily related to measurements acquired on planar, cylindrical, and spherical measurement

surfaces, respectively. Once the equivalent sources are obtained, the field values can be

evaluated outside the source region. Recently, a plane wave based NFFFT algorithm has

been developed in which the AUT is represented by means of a set of outgoing plane

waves on the complete unit sphere [Schmidt et al., 2008]. The outgoing plane waves from

the AUT are translated into incident waves at the probe by means of a diagonal translation

operator derived from the Fast Multipole Method (FMM). The incident plane waves are

then weighted by the far-field pattern of the probe to correct for the probe influences. The

formulation of the algorithm is such that no particular measurement geometry is assumed,

therefore, any arbitrary scanning surface can be selected. Also, full probe correction

is possible for arbitrary probes without effect on the efficiency of the algorithm. The

algorithm and other NFFFT algorithms are reviewed in detail in Chapter 2.

In order to obtain accurate results of the far-field pattern from near-field measurements,

it is essential that measurements are carried out in an environment devoid of multipath

propagation. As such, antenna measurements are usually carried out in anechoic chambers.

An anechoic chamber is a room shielded to prevent electromagnetic waves penetrating

from outside and interior lined with Radiation Absorbent Material (RAM) to prevent

reflections off the walls, ceiling and floor of the room. However, in certain situations,

especially for electrically large antennas or when antennas are tested in-situ, i.e. while they

are mounted within the final operating environment, it can be quite challenging to move the

whole structure into an anechoic chamber. Moreover, the cost of building large anechoic

chambers can be prohibitively high. Alternatives in these situations include outdoor
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Figure 1.1: Interior of the anechoic chamber at the TU München.

measurements or measurements in a semi-anechoic environment. It is known in such

measurements that the measured near-field data will be corrupted with multipath contribu-

tions. Far-field patterns obtained via near-field measurements and NFFFT algorithms are

particularly prone to errors due to multipath propagation since errors in a single near-field

data point affect the obtained far-field values for several directions. Techniques dealing

with suppressing multipath signals in antenna measurements have, therefore, gained sig-

nificant research attention. Various techniques have been suggested to improve the quality

of measurements acquired in non-anechoic environments including Matrix Pencil (MP)

and Fast Fourier Transform (FFT) based algorithms. Both techniques attempt to identify

the line-of-sight signal from a broadband measurement [Leon et al., 2008, Leon Fernandez

et al., 2009, Loredo et al., 2004]. The need for a broadband measurement, however, means

that these methods are not suitable for narrowband antennas. Furthermore, they can result

in a substantial increase in measurement time for broadband antennas. Recent research

efforts have been dedicated to multipath suppression using a single frequency measure-
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ment [Black and Joy, 1995, Cano-Fácila et al., 2011, Direen et al., 2009, Gonzalez et al.,

2011, Gregson et al., 2009, Hess, 2010, Hindman and Newell, 2005, Pogorzelski, 2009,

2010, Toivanen et al., 2010, Wittmann, 1990]. In [Hindman and Newell, 2005] and [Greg-

son et al., 2009], a modal filtering technique applicable to measurements on canonical

geometries is described. The multipath suppression is achieved by altering the measure-

ment set-up and by eliminating the higher order modes which result from multipath signals.

The source reconstruction method has also been extended for multipath suppression

[Gonzalez et al., 2011], where the equivalent sources are obtained over a surface en-

compassing the desired source and the disturbers. The increment in the computational

domain, however, can be substantial when the multipath sources are not in close proximity

with the AUT, leading to unrealistic sample spacing and measurement distance. The

same restriction is applicable to the modal technique presented in [Hess, 2010]. Outward

probes or interior scanning in spherical measurements was proposed by Wittmann et al.

in [Wittmann, 1990] and [Direen et al., 2009] for the Test Zone Field (TZF) evaluation,

whereby measurements are taken over a sphere in order to determine the incident field

within the test volume. Subsequently, TZF compensation and extended probe instrument

calibration (EPIC) [Black and Joy, 1995, Pogorzelski, 2009, 2010, Toivanen et al.,

2010] techniques were introduced requiring an initial measurement in the measurement

chamber. The knowledge gained from this measurement is then used to correct for the

room reflections in subsequent measurements of the AUT. In [Black and Joy, 1995,

Toivanen et al., 2010] a spherical mode analysis of the test zone field is carried out

using measurements of a calibration antenna with known spherical mode coefficients.

The TZF is then removed from the AUT measurement during subsequent measurements

and post-processing. In [Pogorzelski, 2009, 2010], room reflections are considered by

calibrating and correcting for the effect of an extended probe which includes the effect of

reflections from fixed objects in the measurement room. However, room calibration has to

be carried out whenever there is a change in the scattering situation of the room and the

mentioned techniques have only been considered for measurements acquired on a spherical

geometry. Non-canonical measurement geometries are sometimes desireable because of

some advantages such as non-redundant sampling [Bucci and Gennarelli, 2102, Bucci

et al., 1996, 1998, D’Agostino et al., 2012, Qureshi et al., 2013], reduction of multiple

reflections [Qureshi et al., 2012a], etc. All of the mentioned single frequency echo sup-

pression methods still have rather restricted performance, in particular for the suppression
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of multipath signals emanating from locations beyond the measurement surface or when

measurements are acquired on non-traditional geometries. Details of these techniques and

a literature review of echo suppression in antenna measurements are presented in Chapter 3.

In this thesis, the effect of multipath signals on far-field patterns obtained from echoic

near-field measurements is studied. Measurement approaches and post-processing proce-

dures are then developed in order to improve the quality of such measurements acquired in

echoic environments. Specifically, in terms of post-processing procedures, spatial filtering

methods are investigated. Spatial filtering depends on the fact that AUT signals and echo

signals originate from different locations. The plane wave based algorithm is well suited to

exploit the source locations for echo suppression since translations of plane waves can be

efficiently performed to and from arbitrary locations. In Chapter 4, the scattering centers

representation of non-anechoic measurement environments is presented. In this technique,

additional sets of outgoing plane waves are assumed for each echo source and plane wave

translations are carried out from the echo locations to the measurement points. In this

way, the echo sources are integrated into the NFFFT process and their contributions are

retrieved and separated from that of the AUT by solving an inverse problem.

Integrating echo sources that are outside the measurement volume within the NFFFT

process introduces additional unknowns which requires additional information during

near-field measurements. Measurement approaches involve the use of an additional or

a special type of hardware or field acquisition in such a way that more information is

obtained about the multipath signals. For example, the multi-probe measurement tech-

nique measures the AUT with two sets of probe antennas namely: the inward and outward

looking set of probes or two oppositely directed Huygens’ sources. This measurement

procedure aids the subsequent removal of echo contributions by means of auxiliary

sources. This measurement technique is presented in Chapter 5.

The difference between the AUT and echo source locations is exploited further in

Chapter 6 with the beamforming technique. Unlike the scattering centers approach where

auxiliary sources are assumed for the echo sources, the beamforming technique seeks to

focus the probes’ main radiation on the AUT and attenuating the echo signals. It is well

known that a field probe acts as a filter for the measured AUT fields, whose influence can

be either described in spatial or in spectral domain. Directive probes, for instance, serve
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to filter out signals that originate far away from the boresight axis. However, there are

several drawbacks to the use of such directive probes including the possibility of multiple

reflections and probe nulls. Beamforming techniques are used to generate the effects

of a directive probe without the previously stated disadvantages. The AUT is measured

with a small probe antenna in the usual manner. Neighboring measurement signals are

thereafter combined in a moving average manner in order to generate the signal as would

be measured by a highly directive probe array. The generated near-field signals are then

transformed using the plane wave based near-field far-field transformation algorithm.

Probe correction does not reverse the reduction in multipath signals achieved by the use

of a directive probe or beamforming since sources are assumed only within the minimum

sphere enclosing the AUT.

In Chapter 7, statistical techniques for echo suppression are presented. These tech-

niques depend on multiple measurement surfaces to collect additional information about

the echo signals and to cancel the effects of multipath errors in the far-field. The thesis is

concluded in Chapter 8 with a summary.



Chapter 2

Overview of Near-Field Far-Field
Transformation Algorithms

An antenna is a transducer which serves as an interface between guided and unguided

waves. As a transmitter, an antenna converts alternating currents to radiated electromag-

netic waves and vice versa as a receiver. Antennas are an important component of several

modern wireless communication devices such as mobile phones, TVs, etc. They are used

to control and optimize the radiation or reception of electromagnetic power. The character-

istics of an antennas are defined by certain key properties and parameters.

2.1 Antenna Parameters

2.1.1 Directivity and Gain

An isotropic antenna is an hypothetical antenna which radiates power equally in all direc-

tions. In reality, antennas radiate preferentially in certain directions than others. Directivity

is a parameter which defines the degree to which an antenna concentrates its radiated en-

ergy in a particular direction in space. Specifically, it is defined according to [IEEE, 2013]

as “the ratio of the radiation intensity in a given direction from the antenna to the radiation

7
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intensity averaged over all directions”, i.e.

D =
4πU
Prad

, (2.1)

where Prad is the total radiated power and U is the radiation intensity in a specific direction.

Directivity is a function of direction but it is often used to refer to the maximum directivity

when the direction is not specified. The directivity requirement of an antenna can vary ac-

cording to its application. For instance, in a line-of-sight microwave radio relay or satellite

dish antennas, it is desireable for the involved antennas to be highly directive in the direc-

tion in which the signal is expected to be received or transmitted. However, the requirement

for a mobile phone antenna, for instance, is different since electromagnetic waves can arrive

in any direction depending on the users environment. For such applications, a less directive

antenna is desired. Gain also measures the directionality of an antenna. It is related to

directivity by

G = ηD, (2.2)

where η is known as the radiation efficiency. The radiation efficiency η = Prad/Pin is the

ratio between the total radiated power by the antenna to the accepted power by the antenna.

The term accepted power means that gain does not include losses due to polarization or

impedance mismatch. Radiation efficiency is always between 0 and 1 meaning that the

gain of an antenna in a particular direction is usually less than the directivity in the same

direction. Both parameters are dimensionless quantities and are usually given in decibels

(dB), i.e.

D = 10log(D) dB. (2.3)

2.1.2 Polarization

Polarization is a property of an antenna that describes the plane in which the electromag-

netic wave received or transmitted by the antenna is polarized in the far zone. The polar-

ization of an electromagnetic wave is the path along which the time-varying electric field

vector oscillates at a fixed observation point. There are three main categories of polariza-

tions as shown in Fig. 2.1. Polarization can be represented by two orthogonal components

Ex and Ey. Vertical and horizontal polarization belong to the linear polarization category

where the trace of the field vector is either horizontal Ex or vertical Ey as seen from an

observation point along the direction of propagation. Waves with ‖Ex‖= ‖Ey‖ and having
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Figure 2.1: Different types of polarizations.

a phase difference of 90◦ between the two orthogonal components are circularly polarized.

Depending on the direction of the trace, circular polarization can be either right hand circu-

lar polarization (RHCP) or left hand circular polarization (LHCP). Waves that are neither

linearly or circularly polarized are said to have elliptical polarization. In this category, the

orthogonal components have different magnitudes and can have arbitrary phase difference.

For efficient reception of electromagnetic wave, the receiving antenna has to be polariza-

tion matched with the incoming wave. Polarization mismatch between the incident wave

and a receiving antenna results in polarization mismatch losses.

2.1.3 Input Impedance

An antenna is usually operated within electronics systems where it either receives or trans-

mits electromagnetic waves. The input impedance of an antenna is the impedance seen

from the point of view of the connected electronics. For a transmitting antenna, power

is supplied to the antenna by means of a generator with peak voltage Vg and an internal

impedance

Zg = Rg + jXg. (2.4)

The antenna itself can also be represented by an impendance

ZA = (RL +Rr)+ jXA, (2.5)
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where RL and Rr are the loss resistance and radiation resistance, respectively, of the an-

tenna. The Thevenin equivalent circuit with these components is depicted in Fig. 2.2 [Bal-

anis, 2005]. The power delivered to the antenna goes towards radiation through Rr and

Vg

Rg

Xg

RL

Rr

XA

a

b

Figure 2.2: Equivalent circuit of an antenna connected to a generator.

losses in form of heat dissipation in RL. The remaining power is dissipated in the inter-

nal resistance Rg of the generator. In order to deliver maximum power to the antenna, the

antenna and the generator must be conjugate matched i.e. when

Rr +RL = Rg (2.6)

and

XA =−Xg. (2.7)

Under these conditions, half of the power provided by the generator is dissipated as heat in

the internal resistance of the generator and the other half is delivered to the antenna. The

amount that goes towards radiation depends on the antenna radiation efficiency

η =
Rr

Rr +RL
. (2.8)
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2.1.4 Bandwidth

The bandwidth of an antenna is the range of frequencies in which the performance of the an-

tenna does not degrade according to some criterion. The criterion maybe input impedance,

shape of the radiation pattern, beamwidth, etc. Broadband antennas are the antennas whose

performance fulfil certain specifications for a relatively wide range of frequencies. Nar-

rowband antennas are those that have an acceptable characteristics within only a small

frequency range.

2.2 Antenna Field Regions

The space surrounding an antenna is usually categorized into three field regions, namely,

the reactive near-field, the radiating near-field and the far-field or Fraunhofer regions as

shown in Fig. 2.3. The reactive near field is typically the region in the immediate vicinity

of the antenna up to a distance of about 0.62
√

D3/λ [Balanis, 2005]. In this region, either

the electric field or magnetic field dominates such that the power density is predominantly

reactive. In the radiating near field, the radiating components of the field start to become

dominant but the field distribution in this region varies depending on distance. Near-field

measurements are carried out in this region because of the reduced multiple interactions

between the AUT and the probe. The most interesting field region from the perspective of

D

Reactive

 Near Field

Radiating 

Near Field
Far Field

AUT

Range

Field distribution

Figure 2.3: Antenna Field Regions.
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antenna applications is the far-field region because antennas are usually evaluated based on

their ability to convey energy efficiently over relatively large distances. The far-field region

begins at a distance of about 2D2/λ . The shape of the radiation pattern in the far field is

independent of distance and the waves can be assumed to have a locally planar wavefront

with radial dependence exp(jkr)/r. In order to obtain the far-field pattern by near-field

measurements, the field distribution in the near field is measured and the measurements

are transformed to the far field by means of NFFFT algorithms. Due to the band limited

nature of the radiated field, the field distribution can be acquired by taking discrete samples

over a chosen surface following a sampling criterion. The NFFFT is achieved by replacing

the AUT with some equivalent sources such as equivalent electric and magnetic currents or

eigenmodes and relating the measured near-field data to the assumed equivalent sources.

Equivalent sources are then obtained by solving an inverse problem and correcting for

the probe antenna influences [Laitinen and Breinbjerg, 2008, Paris et al., 1978, Sánchez-

Escuderos et al., 2010]. Once the equivalent sources are obtained, the field values can

afterwards be computed outside the source region. The far-field pattern is usually expressed

in terms of two complex orthogonal polarization basis. There are several possible options

for choosing polarization basis and coordinate systems depending on the orientation of the

AUT during measurements and the measurement geometry [Ludwig, 1973, Masters, 2014].

In this thesis, the far field is plotted on the polar spherical polarization basis where the field

is resolved onto two unit vectors one aligned to each of the two spherical unit vectors êθ

and êφ . The coordinate system is the spherical coordinate system with angle φ ranging

from 0◦ to 360◦ and angle θ from 0◦ to 180◦.

There are three classical acquisition geometries, planar, cylindrical and spherical mea-

surement geometries as shown in Fig. 2.4, Fig. 2.5 and Fig. 2.6, respectively. These ge-

ometries are easily associated with modal NFFFT algorithms where plane wave expansion,

cylindrical wave expansion and spherical wave expansion are utilized for planar, cylindrical

and spherical measurement geometries, respectively.

2.3 Planar Near-Field Measurements

The planar near-field measurement [Hajian et al., 1993, Wang, 1988] set-up is widely used

because of its simplicity in terms of the required measurement hardware and the ease of

obtaining the far-field pattern from planar near-field data. The planar acquisition involves
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a measurement of the near-field distribution over a plane located at a distance d away from

the AUT, as shown in Fig. 2.4. The AUT is usually fixed and the probe moves horizontally

and vertically with a fixed orientation along the scan plane. For practical reasons, the

D

AUT

Lϕ

Lθ

d

x

z

Figure 2.4: Planar measurement set-up.

scan plan is truncated when the near-field signal has fallen considerably with respect to the

maximum. Due to the finite size of the scan plane, only an angular segment of the far field

is obtained from planar measurements. The valid angles,

φv = arctan

(
Lφ −dφ

2d

)
(2.9)

and

θv = arctan

(
Lθ −dθ

2d

)
(2.10)

are the angular ranges for which the far field can be obtained reliably from the near-field

measurement [Newell and Crawford, 1974, Yaghjian, 1975]. In Eq. (2.9) and Eq. (2.10),

Lφ and Lθ are the lengths of the scan plane, where a is the separation distance between the

AUT and the measurement plane and dφ and dθ are the dimensions of the AUT. The finite

extent of the scan plane results in a truncation error in the far-field [Bucci and Migliore,

2006, D’Agostino et al., 2007, Newell, 1988]. In order to minimize the truncation error,
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the near field should be acquired until its magnitude falls to about −35dB relative to the

peak. As such, planar measurements are more appropriate for directive antennas where

most of the radiated energy can be captured with a limited scan plan size. The transmission

equation [Newell, 1988]

U ′(rM) = F ′ao

∫ ∫
t10(K)S′02(K)ejγdejK·rMdK, (2.11)

relates the measured probe signal U ′(rM) to the transmitting function t10(K) of the AUT

and the probe’s plane wave spectrum receiving characteristic (PWRC) S′02(K). The probe

position in the measurement plane is denoted by rM and K is the transverse component of

the propagation vector k, i.e.

K = kxx̂+ kzẑ, (2.12)

and

γ =
√

k2 −K2 (2.13)

is the y-component of the propagation vector. Also, in Eq. (2.11), the constant

F =
1

1−ΓlΓp
(2.14)

is a mismatch correction term where Γl and Γp are reflection coefficients of the load and

the probe, respectively. By taking the Fourier transform of the measured signal U ′(rM),

the coupling product

D′(K) =
e−jγd

4π2F ′ao

∫ ∫
U ′(rM)e−jK·rM drM, (2.15)

with

D′(K) = t10(K)S′02(K) (2.16)

is obtained. Eq. (2.16) provides a single equation for the two unknown components of

t10(K). The second equation,

D′′(K) = t10(K)S′′02(K) (2.17)

is obtained by taking a second measurement utilizing a probe which has a PWRC that is

linearly independent from the first probe. In practice, the first probe is simply rotated by an
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angle of 90◦ around the y-axis for the second measurement. The components of the probe

corrected transmission function of the AUT

t10m =
D′(K)S′′02c(K)−D′′(K)S′02c(K)

s′02ms′′02c − s′02cs′′02m

(2.18)

and

t10c =
D′′(K)S′02m(K)−D′(K)S′′02m(K)

s′02ms′′02c − s′02cs′′02m

(2.19)

are obtained by solving Eq. (2.16) and Eq. (2.17) [Newell, 1988]. Processing of the discrete

near-field data is accomplished through the discrete form of Eq. (2.16) and Eq. (2.17). In

order to take the advantages of the FFT, planar near-field measurements are usually done

with equal sample spacing. To satisfy the Nyquist sampling criterion, a maximum sample

spacing of Δx ≤ λ/2 and Δz ≤ λ/2 is required. The sets of wavenumbers defined by the

FFT are

kx =
2πm
MΔx

; −M
2 ≤ m ≤ M

2 −1 (2.20)

kz =
2πn
NΔz

; −N
2 ≤ n ≤ N

2 −1 (2.21)

where M and N are the number of near-field samples along the x- and z-directions of the

measurement plane, respectively. The number of k samples in each direction is the same

as the number of measurement samples in the corresponding direction. However, once

the Nyquist sampling criterion is fulfilled, the near-field data can be padded with zeros in

order to achieve higher resolution in the spatial frequency domain. Once the transmitting

coefficients of the AUT are obtained, the electric far field

E(r,K) =
jkaoe−jkr

r
t10(K)cosθ (2.22)

can be evaluated as derived in [Newell, 2009].

2.4 Cylindrical Near-Field Measurements

Certain types of antennas, such as base station antennas, feature fan-beam radiation patterns

owning to their elongated shape. This means that, whereas planar scanning is suitable for

the plane in which the antenna is elongated and in which the pattern is narrow, the broad

pattern in the orthogonal plane will require a prohibitively large scan plane size in that
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direction. A cylindrical scan geometry, shown in Fig. 2.5, allows for such antennas to

be measured fully in the direction in which the radiation pattern is broad while having a

truncation similar to the planar measurement in the other direction. The AUT is usually

a

AUT

Probe

Measurement 

Cylinder

ϕ

Figure 2.5: Cylindrical measurement set-up.

mounted on a positioner capable of rotating around the azimuth direction while the probe

only moves vertically over each step in azimuth. Similar to planar measurements, a valid

angle

θv = arctan

(
Lθ −dθ

2a

)
(2.23)

is defined where a and Lθ are the radius and length of the cylindrical scan surface, respec-

tively. If the cylinder is also truncated along the azimuth direction, a second valid angle

φv = φt − arcsin
(ρo

a

)
(2.24)

is defined where ρo is the radius of the minimum cylinder enclosing the AUT [Balanis,

2008]. The sampling criterion along the vertical axis is Δz ≤ λ/2 similar to that of planar
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measurements and the angular sample spacing

Δφ ≤ 360◦

2N +1
(2.25)

is chosen according to the size of the AUT where N = kρo is the number of azimuthal

modes. Modal NFFFT for cylindrical near-field measurement is accomplished by means of

cylindrical wave expansion. The transmission equation [Yaghjian, 1977]

U ′(φo,zo) = F ′ao

∫ ∞

−∞

∞

∑
n=−∞

2

∑
s=1

R
′s
n (γ)T

s
n (γ)e

jnφoejγzodγ, (2.26)

relates the probe signal U ′(φo,zo) at measurement point (φo,zo) to the AUT cylindrical

wave transmitting function T s
n (γ) and the probe cylindrical wave receiving function R

′s
n (γ).

Using Fourier series for n and Fourier integral for γ , the coupling product

I′n(γ) =
2

∑
s=1

R
′s
n (γ)T

s
n (γ) =

1

4π2ao

∫ ∞

−∞

∫ 2π

0
U ′(φo,zo)e−jnφoe−jγzodφodzo (2.27)

is written in terms of the measurement signal. A second measurement is obtained with a

second probe to set up the second equation of the coupling product. The components of the

transmission functions of the AUT

T 1
n (γ) =

I′n(γ)
R′1

n (γ)
+ I′′n(γ)

R′′2
n (γ)

R
′2
n (γ)

R′1
n (γ)

1− R′2
n (γ)

R′1
n (γ)

R′′1
n (γ)

R′′2
n (γ)

(2.28)

and

T 2
n (γ) =

I′′n(γ)
R′′2

n (γ)
+ I′n(γ)

R′1
n (γ)

R
′′1
n (γ)

R′′2
n (γ)

1− R′2
n (γ)

R′1
n (γ)

R′′1
n (γ)

R′′2
n (γ)

(2.29)

are obtained by expanding Eq. (2.27) where I′′n(γ) is obtained from the second probe. Once

these coefficients are computed the asymptotic far electric field components

Eθ (r → ∞,θ ,φ) = 2jko sin(θ)
∞

∑
n=−∞

(−j)nT 2
n (γ)e

jnφ , (2.30)
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and

Eφ (r → ∞,θ ,φ) =−2jko sin(θ)
∞

∑
n=−∞

(−j)nT 1
n (γ)e

jnφ (2.31)

can then be found anywhere else in space by summing up the mode coefficients [Leach

and Paris, 1973, Yaghjian, 1977]. The mode summation can be truncated at n = N without

introducing significant errors into the transformation process.

2.5 Spherical Near-Field Measurements

In spherical near-field measurements, the near-field distribution of the AUT is measured

over a sphere. A typical spherical measurement set-up is shown in Fig. 2.6. The probe

antenna samples the near-field distribution of the AUT over the measurement sphere with

the angular sample spacing,

Δθ ,Δφ ≤ 360◦

2N +1
. (2.32)

In Eq. (2.32), N = krmin + n1 is the multipole order of the AUT where rmin is the radius

of the minimum sphere enclosing the AUT. The value of n1 is chosen according to the

measurement distance and the required accuracy. It is often set to n1 = 10 [Hansen, 1988]

for relatively good accuracy. Spherical scanning is used when it is desired to obtain a wider

range of angles than can be obtained through planar and cylindrical measurement since

the complete angular range can be obtained in principle through spherical measurements.

Modal NFFFT is accomplished in spherical measurements by means of spherical wave

expansion (SWE). The electric field

E(φ ,θ ,r) = k
√

ZF0

4

∑
c=3

2

∑
s=1

∞

∑
n=1

n

∑
m=−n

Q(c)
smn�F

(c)
smn(φ ,θ ,r) (2.33)

is written as a superposition of spherical waves �F(c)
smn(φ ,θ ,r) with spherical mode coef-

ficients Q(c)
smn where (s,m,n) are the mode indices with s = 1 and s = 2 representing the

transverse electric (TE) and the transverse magnetic (TM) modes, respectively [Ludwig,

1971]. The index n can be truncated at n = N without introducing significant errors in the

expansion since the mode coefficients are very small for higher indices n > N. N is chosen

according to the electrical size of the AUT as explained previously. The upper index (c)

specifies the radial dependence of the spherical wave function with (c) = 3 corresponding
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Figure 2.6: Spherical measurement set-up.

to the spherical Hankel function of the first kind or outgoing spherical waves and (c) = 4

corresponds to spherical Hankel function of the second kind or incoming spherical waves.

When sources are restricted within the measurement sphere, (c) = 3 is sufficient for the

expansion. Processing of sampled measurement data is done through the spherical trans-

mission equation

w′(A,χ,θ ,φ) = ∑
smn
μ

vTsmnejmφ dn
μm(θ)e

jμχ Psμn(kA), (2.34)

which relates the received probe signal, w′(A,χ,θ ,φ) at the probe location (A,χ,θ ,φ)
to the unknown expansion coefficients Tsmn of the AUT where dn

μm(θ) are known as the

rotation coefficients. In Eq. (2.34), (χ,θ ,φ ) are the Euler angles and the measurement

radius is denoted by A. The probe polarization angles χ = (0◦,90◦) are sufficient for first

order probe correction. The probe response constants,

Psμn(kA) =
1

2
∑
σv

Csn(3)
σ μv (kA)Rp

σ μv, (2.35)
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take into account the response of the probe to outgoing spherical waves from the AUT,

where Csn(3)
σ μv (kA) are the translation coefficients and Rp

σ μv are the receiving coefficients

of the probe antenna. Dependence on the spatial coordinate is removed by means of the

discrete Fourier transform (DFT) for the χ , φ and θ integrals to obtain

wn
μm(A) = v

2

∑
s=1

TsmnPsμn(kA). (2.36)

By choosing μ =±1 for first order probes, two equations

wn
1m(A) = vT1mnP11n(kA)+ vT2mnP21n(kA), (2.37)

and

wn
−1m(A) = vT1mnP1,−1,n(kA)+ vT2mnP2,−1,n(kA), (2.38)

can be solved for the expansion coefficients T1mn and T2mn of the AUT [Hansen, 1988].

First order probes are rotationally symmetric probes with the spherical mode index μ =±1

and thus with a simple sinusoidal azimuthal pattern. Also, for the regular rectangular open-

ended waveguide probes which are not rotationally symmetric, this first order approxima-

tion can be made if the measurement distance is not too short [Laitinen et al., 2004, Newell

and Gregson, 2013].

2.6 Arbitrary Measurement Geometries

There are certain NFFFT techniques that can be applied to arbitrary measurement geome-

tries. These techniques are useful in situations in which the canonical measurement geome-

tries previously described do not offer the best sampling approach. For example, it can be

useful to have a measurement surface that is conformal to the measured device such as for

in-situ antenna measurements whereby it can be challenging to mount the whole structure

on a positioner [Geise et al., 2014]. Also, in order to reduce multiple interactions between

the AUT and the probe in planar measurements, the measurement geometry in Fig. 2.7 has

been suggested in [Qureshi et al., 2012a]. Similar concept is also applicable for cylindrical

measurements. The scan plane is moved away from the AUT in the region where the mea-

surement is more vulnerable to multiple interactions and the other regions are measured at a

closer distance in order to keep a wide valid angle. The process of using the FFT in order to
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Figure 2.7: Measurement approach to reduce multiple reflections [Qureshi et al., 2012a].

obtain the far-field is, however, not applicable. Also, non-redundant sampling techniques,

such as the one described in [Qureshi et al., 2013], can result in geometries that are not

canonical. Techniques that can handle arbitrary measurement geometries are, therefore, in-

valuable in these scenarios. One of such techniques based on equivalent magnetic currents

is discussed in [Blanch et al., 1995, Petre and Sarkar, 1992, Sarkar and Taaghol, 1999].

Fast Irregular Antenna Field Transformation Algorithm

The Fast Irregular Antenna Field Transformation Algorithm (FIAFTA) is an NFFFT al-

gorithm applicable to measurements acquired on arbitrary measurement geometries. In

this technique, the radiation behavior of the AUT is represented by a set of plane waves

(Ī − k̂k̂) · J̃(k̂) propagating on the complete Ewald sphere. The measured signal at the

point rM,

U(rM) =−j
ωμ
4π ∑̂

k

TL(k̂,rM)P̄ (k̂, r̂M) · (Ī− k̂k̂) · J̃(k̂) (2.39)

is then related to the AUT by translating the outgoing plane waves from the AUT to incident

plane waves at the probe as depicted in Fig. 2.8 using the fast multipole method translation
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operator [Coifman et al., 1993]

TL(k̂,rM) =− jk
4π

L

∑
l=0

(−j)l(2l +1)h(2)l (krM)Pl(k̂ · r̂M), (2.40)

where h(2)l and Pl are the spherical Hankel function of the second kind and the Legendre

polynomials of degree l, respectively. The far-field pattern of the probe, P̄ (k̂, r̂M), is used to
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Figure 2.8: Translation of outgoing plane waves at the AUT to incident plane waves at the

probe position.

weight the plane waves to fully compensate for the probe pattern influences. The multipole

order L of the translation operator is chosen depending on the size of the AUT and of the

probe antenna according to

L =

⌈
kd
2

+1.8d2/3
o

(
kd
2

)1/3
⌉
, (2.41)

where d is the sum of the diameters of the minimum spheres enclosing the AUT and the

probe antenna and do is the desired accuracy of the multipole expansion. It should also be
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noted that the minimum spheres of the AUT and the probe antenna must not overlap for

the multipole representation to converge. The plane wave translation is performed from the

AUT to all the measurement points and a linear system of equations

U ′ =−j
ωμ
4π

C · J̃ ′ (2.42)

is formulated. The normal system of equations,

CH ·U ′ =−j
ωμ
4π

CHC · J̃ ′, (2.43)

is solved iteratively using the generalized minimum residual solver (GMRES) [Saad and

Schultz, 1986] to retrieve the plane wave coefficients of the AUT. Among other advan-

tages, which will be mentioned later, the choice of GMRES is due to its applicability to a

more general type of matrices as compared to other iterative methods such as the conjugate

gradient (CG) [Hestenes and Stiefel, 1952] method. The CG method is only suitable for

systems of equations involving symmetric, positive definite matrices. For these kinds of

problems, the CG method converges to the global minimum of the quadratic form which

coincides with the solution to the linear systems of equations. The algorithm, however, can

break down when these conditions are not met [Saad and Schultz, 1986]. Certain methods,

such as the biconjugate gradient method [Lanczos, 1952, Saad, 2003, Watson, 1974], try to

generalize the CG method for non-symmetric matrices. However, certain conditions may

still lead to the algorithm to breakdown [Freund and Nachtigal, 1991]. The relative residual

of GMRES

σ =
‖CH

k CkJ̃
′
k−CHU ′‖

‖CHU ′‖ (2.44)

and the near-field residual

ε = ‖U ′+ j
ωμ
4π

C · J̃ ′‖ (2.45)
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are used to determine the accuracy of the obtained plane wave coefficients obtained at the

k-th iteration and to decide when to terminate the iterative solver. The coupling matrix

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1
φ (kφ1,kθ1,φ1,θ1) . . . C1

θ (kφP,kθQ,φ1,θ1)

. . .

. . .

. . .

C1
φ (kφ1,kθ1,φM,θN) . . . C1

θ (kφP,kθQ,φM,θN)

C1
φ (kφ1,kθ1,φ1,θ1) . . . C1

θ (kφP,kθQ,φ1,θ1)

. . .

. . .

. . .

C1
φ (kφ1,kθ1,φM,θN) . . . C1

θ (kφP,kθQ,φM,θN)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.46)

relates the plane wave coefficients of the AUT

J̃ ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J̃φ (kφ1,kθ1)

J̃θ (kφ1,kθ1)

.

.

.

J̃φ (kφP,kθQ)

J̃θ (kφP,kθQ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.47)

to the measured signal

U ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U1(φ1,θ1)

.

.

.

U1(φM,θN)

U2(φ1,θ1)

.

.

.

U2(φM,θN)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2.48)
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where

C1,2
φ ,θ (kφ p,kθq,φm,θn) = TL(k̂, r̂M)W (kθq)P

1,2
φ ,θ (kφ p,kθq,φm,θn), (2.49)

are the elements of the coupling matrix. In (2.49), W (kθq) are the weighting factors for in-

tegration over the sphere. The number of measurement points in the φ and θ directions are

denoted by M and N, respectively, while the indices P and Q are the number of plane wave

samples in the φ and θ directions, respectively. The algorithm can also be implemented in

a multilevel manner similar to the multilevel fast multipole method whereby neighboring

measurement points are grouped into boxes and the boxes are subsequently grouped into

subboxes in a multilevel fashion [Schmidt and Eibert, 2009]. Plane wave translations

J̃ iN
N (k̂) = TL(k̂,rbox)

(
Ī− k̂k̂

) · J̃(k̂) (2.50)

are performed from the AUT to the box center at the highest level as shown in Fig. 2.9. A

AUT

Level n+1

Level n

Level n-1

Observation point

Figure 2.9: Multilevel grouping of measurement points.

series of anterpolations and disaggregations are applied in order to obtain the plane wave

spectra

J̃ iN
N (k̂) = D̄in

n (k,r
in
n ) ·

(
Ī− k̂k̂

) · J̃ in+1
n+1 (k̂) (2.51)

at the lowest level where

D̄in
n (k,r

in
n ) = V̄n(k̂)e−jr

in
n ·k (2.52)
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is the combined disaggregation and anterpolation operator. The anterpolation operator

V̄n(k̂) is the adjoint operator of interpolation and it is used to reduce the spectral con-

tent at the lower levels of the multilevel structure. For points that are too close to the AUT,

direct translations of outgoing plane waves can be carried out to the measurement points.

Also, a subdivision of the AUT can be done to allow for a multilevel processing of groups

of measurement points at short measurement distances [Schmidt and Eibert, 2012]. In this

case, the AUT is subdivided into smaller sources regions and plane wave translations are

performed from each of the sources regions to the measurement points.



Chapter 3

Survey of Existing Echo
Suppression Techniques

Multipath propagation leads to erroneous near-field distribution for near-field antenna mea-

surements carried out in non-anechoic environments. These errors are carried forward to

the equivalent sources and subsequently to the far field if adequate steps are not taken to

remove the multipath contributions. Semi-anechoic or outdoor measurements can become

a necessity when the DUT is too large to move to an anechoic chamber. This is partic-

ularly true for in-situ antenna measurements where the AUT is mounted for instance on

an airplane in order to observe how the antenna performs when mounted on the final sys-

tem. Even for small test devices, the test frequency may not be ideal for the available

measurement chamber because different absorber dimensions are more effective for dif-

ferent frequency ranges. Techniques that help in obtaining reliable measurement results

from echoic data become invaluable in these circumstances. Echo suppression techniques

usually involve either a dedicated echo-aware measurement procedure or post-processing

of acquired data. Some techniques involve a combination of both. Dedicated measure-

ment approaches involve, for example, the use of directive probe antennas [Hansen and

Larsen, 1984, Slater, 1985]. The idea is to improve the signal to echo ratio by amplifying

the line-of-sight (LOS) signals and by attenuating the echo signals at the time of measure-

ment. The effect of the probe patterns is then corrected during the NFFFT process. This

technique requires highly directive probe antennas and can result in multiple interactions

27
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between the AUT and the probe. Also, there are still individual measurement points which

can be strongly corrupted by multipath signals. The dedicated measurement category in-

cludes hardware-gating techniques which exploit the time difference of arrival (TDOA) of

the LOS signal and the multipath signal components to avoid the latter. This is achieved by

gating out unwanted components by means of fast switching signal generators [Blech et al.,

2010, Leibfritz et al., 2007a]. These techniques seek to improve the quality of the acquired

data at the time of data acquisition by means of specialized hardware. The remaining tech-

niques that are discussed in the following are those that do not depend only on hardware

and can be categorized into two groups; techniques requiring broadband measurements or

time domain techniques and those requiring a single frequency measurement.

3.1 Time Domain Techniques

The AUT and multipath signal components arrive at the probe with different time delays

due to the different propagation paths of the signals. To exploit this time difference to

separate the signals, a broadband measurement of the AUT is carried out and processed.

There are two main techniques in this category; the fast Fourier transform (FFT) based

method and the technique based on the matrix-pencil method (MPM). These techniques

require a broadband measurement, which can considerably increase the measurement time,

and they are only suitable for broadband AUTs and probes.

3.1.1 FFT-Based Method

Under free-space condition, the LOS is the only path between the AUT and the probe.

The frequency response of the system is therefore characterized by a flat amplitude and

linear phase responses. However, in the presence of multipath propagation, frequency-

selective fading starts to appear. This is because, although the physical lengths traveled

by the spectral components are the same, these distances represent different proportions of

the wavelengths for different frequencies. The signals then combine either constructively

or destructively at different degrees depending on the frequency. To obtain an echo free

data from the echoic measurement facility, the S21(φ ,θ) parameter is carried out in the

frequency domain within a chosen bandwidth around a center frequency ( fo), with a fre-

quency step of Δ f . The bandwidth is chosen in relation to the reciprocal of the smallest

expected time delay (δ t) between the LOS signal and the first arriving multipath signal
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i.e. BW = 1/δ t. In order to better distinguish the contributions in the time domain, a

larger bandwidth BW = 10/δ t is suggested in Loredo et al. [2004]. The spacing Δ f is

chosen small enough to provide a good separation between the most important components

to avoid aliasing. It is related to the time response length i.e. the time until the last reflec-

tion is received. In this way, the frequency response of the measurement environment can

be modeled for each measurement point and by transforming to the time domain via the

inverse fast Fourier transform (IFFT), the late arriving signals can then be identified and

filtered out. The echo-free frequency response of the measurement facility can be obtained

by transforming back to the frequency domain. A drawback of the FFT based technique

is that it requires a relatively wide bandwidth in order to be effective [Loredo et al., 2004,

2009]. In [Moon et al., 2009], a method to reduce the required measurement bandwidth

for the FFT based technique by generating virtual measurement data is described. Sim-

ilar techniques based on equalizing for the multipath propagation channel are described

in [Karthaus et al., 1998, Leather et al., 2004a,b, Newall and Rappaport, 1997].

3.1.2 Matrix-Pencil Method

The Matrix-Pencil Method (MPM) is a technique used to decompose a complex signal

into a sum of complex exponentials [Sarkar and Pereira, 1995]. For the purpose of echo

suppression in antenna measurements [Fourestie et al., 1999], the transmission coefficient

S21 of the echoic system is measured at different frequencies between fo −BW/2 and fo +

BW/2. The measurement bandwidth BW is the reciprocal of the TDOA between the LOS

signal and the signal from the echo source. The broadband measurement sequence for each

measurement point

S21(nΔ f ) =
M

∑
i=1

RiesinΔ f (3.1)

is written as a sum of complex exponentials, with

si = αi + jβi, (3.2)

where M and Ri represent the number of contributing paths to be considered and the com-

plex amplitudes of those paths, respectively. The factors αi represents the attenuation and

βi is related to the propagation time of the i-th path. Once the unknown coefficients Ri,

αi and βi are found for the boresight azimuth angle using the MPM [Sarkar and Pereira,
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1995], a single path (exponential) having the largest Ri is selected based on the assumption

that the LOS signal will have the largest amplitude compared to the multipath signals. This

leads to a solution in the form

S21( fo) = Re(α+jβ ) f . (3.3)

The same representation in (3.1) is applied for all the desired azimuth angles and by com-

paring β of the boresight azimuth angle to those of the candidate paths. The corresponding

factors for the other azimuth angles are chosen based on the fact that the propagation time

for the LOS signal should be the same for all the azimuth angles. Compared to the FFT

based method, MPM requires a smaller measurement bandwidth for good accuracy. How-

ever, the performance degenerates as the number of echo sources increases [Leon Fernan-

dez et al., 2009] and it depends on the assumption that the multipath signal level is lower

than the LOS signal.

3.2 Single Frequency Techniques

Recent research efforts have been dedicated to multipath suppression using single fre-

quency measurements [Black and Joy, 1995, Cano-Fácila et al., 2011, Direen et al., 2009,

Gonzalez et al., 2011, Gregson et al., 2009, Hess, 2010, Hindman and Newell, 2005,

Pogorzelski, 2009, 2010, Toivanen et al., 2010, Wittmann, 1990]. These techniques, un-

like those explained in the previous section, require only a single frequency data for echo

suppression. This broadens their applicability to include narrowband antennas along with

the advantage that the measurement time is not considerably increased. As explained in

Chapter 2, in order to obtain the far-field pattern from near-field measurements, equivalent

sources are used to replace the AUT during the NFFFT process and the goal is to ob-

tain these equivalent sources by solving an inverse problem. Echo suppression techniques

seek to integrate echo suppression within the NFFFT process, for example, by obtaining

additional equivalent sources for the echo contributions. Higher order modes may be con-

sidered for echo sources in modal NFFFT algorithms. Likewise, by using the knowledge

of the echo locations in source reconstruction NFFFT techniques, additional sources can

be obtained to represent echo sources at the considered locations. These techniques are

discussed in the following.
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3.2.1 Chamber Calibration Techniques

The techniques in this category require an initial measurement in the semi-anechoic or

outdoor facility. The initial measurement usually involves known antennas and evaluates

the scattering situation of the facility. The knowledge gained from the initial measurement

is utilized during the main measurement to correct for the multipath effects. In the test zone

field (TZF) compensation method [Black and Joy, 1995, Toivanen et al., 2010], the first task

is to determine the TZF using a calibration antenna with known radiation characteristics

through initial measurements. The calibration antenna is positioned in place of the AUT

and the received signal

w = ∑
sμn

RsμnQ(4)
smn (3.4)

is expressed in terms of the receiving coefficients of the calibration antenna Rsμn and the

mode coefficients of the TZF Q(4)
smn. The superscript index 4 indicate the coefficients for

incoming waves. There are different sets of Rsμn for each orientation of the calibration

antenna such that Rsμn is a function of (φ ,θ ,χ). The calibration antenna should be electri-

cally larger than the measured AUT to ensure that the calibration antenna is sensitive to all

spherical modes to be corrected. It can also be shifted away from the origin to increase its

electrical size in the spherical mode expansion. A system of equations

Rq =w (3.5)

is set up to obtain the TZF mode coefficients. R is a M-by-J matrix where M is the total

number of orientations of the calibration antenna and J is the number of spherical modes.

Also, q and w are column vectors containing the spherical wave coefficients of the TZF

and the measured signal values, respectively. The second stage involves the usage of the

obtained Q(4)
smn for field compensation. This is done in a similar way as the first stage. The

AUT is used for the measurement and the measured signal

w = Qr (3.6)

is expressed in terms of the TZF coefficients previously obtained and the AUT receiving

coefficients r. In order to set-up Eq. (3.6), rotations are applied to the vector q for each of

the M orientations of the AUT so that the dimension of matrix Q is M-by-J. In this way,

the obtained AUT coefficients are free from the multipath contributions. Extended probe
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instrument calibration (EPIC) [Pogorzelski, 2009, 2010] is a similar technique requiring an

initial measurement in the measurement room. Room scattering is estimated and included

in the computed spherical wave coefficients of the probe. By correcting the AUT measure-

ment for probe influences, the measurement is also corrected for echo contributions. Since

both techniques require an initial estimation of the room scattering, the estimation has to

be repeated whenever there is a change in the room configuration.

3.2.2 Modal Echo Suppression Techniques

As mentioned in Chapter 2, modal NFFFTs are utilized for canonical measurement geome-

tries with a specific wave expansion taking advantage of the orthogonality of the employed

set of eigenmodes. Planar, cylindrical, and spherical wave expansions are usually used

for planar, cylindrical and spherical measurement geometries, respectively. These sets of

waves take the role of equivalent sources for the purpose of NFFFT. The number of eigen-

modes required to represent the AUT or the multipole order of the AUT is related to the

size of the minimum sphere enclosing the AUT. However, in presence of multipath signals,

the multipole order of the field will be different from the multipole order of the AUT with

the former being higher. Modal echo suppression techniques utilize the a priori knowl-

edge of the AUT multipole order in various ways for the purpose of removing multipath

components.

Oversampling

The angular sample spacing in cylindrical and spherical near-field measurements is usually

decided according to the size of the AUT. However, when sources are present outside the

measurement volume, the multipole order of the field over the volume is higher than the

multipole order of the AUT. This means that if the sampling criterion and cut-off mode

for the mode expansion is determined from the size of the AUT, aliasing would occur. A

simple method to reduce the introduced multipath error is to oversample the field and to

include higher order modes in the expansion. This can be done, for example, according to

the size of the measurement sphere for spherical measurements. The higher order modes

are thereafter ignored for the purpose of evaluating the far-field pattern.
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Mathematical Absorber Reflection Suppression (MARS)

When antennas are measured in traditional set-ups, such as planar, cylindrical, or spherical

configurations, the AUT is placed in a way that it requires the minimum number of eigen-

modes to represent its equivalent sources. This corresponds to placing the AUT during the

measurement campaign at a location that minimizes the radius of the minimum sphere cen-

tered at the origin and enclosing the AUT. For spherical measurements, the most efficient

placement of the AUT is such that it is centered at the origin of the measurement sphere.

This is because the spherical wave expansion is usually done with respect to the origin of

the coordinate system. The use of a minimum sphere not centered at the origin will require

the ability to specify the origin of the spherical wave expansion for which efficient imple-

mentations have not been reported [Hansen, 1988]. In [Wood, 1977a,b], Wood presented

a method capable of specifying the origin for a spherical wave expansion but it requires the

measurement of both the electric and magnetic fields. Fig. 3.1 shows two possible place-

ments of the AUT in a spherical measurement set-up. The AUT in Fig. 3.1(a) requires the

minimum number of modes to represent it because it is located at the center of the coordi-

nate system. In Fig. 3.1(b), however, the AUT is shifted away from the origin. This means

that the minimum sphere enclosing the AUT is larger than in the first case even though the

AUTs are identical. In the Mathematical Absorber Reflection Suppression (MARS) tech-

nique, the AUT is measured with a set-up as shown in Fig. 3.1(b) so that the effects of the

echo contributions are more pronounced [Gregson et al., 2013]. The consequence of this

shift away from the origin is also that the required number of spherical modes and the num-

ber of required field samples are increased in accordance with the radius of the minimum

sphere in Fig. 3.1(b). Once these spherical modes are obtained, a phase shift is applied

to the spherical modes according to how much the AUT is shifted from the origin. This

corresponds to mathematically shifting the AUT back to the origin. The spherical modes

after the phase shift with n ≤ N represent the AUT in Fig. 3.1(a). Once the modes are at the

origin, the a priori knowledge about the required number of modes to represent the AUT is

used to separate the modes belonging to the AUT (n ≤ N) and those due to the multipath

signals (n > N).

IsoFilterTM

The idea of the IsoFilterTM is similar to MARS in exploiting the a priori knowledge about

the electrical size of the AUT [Hess, 2011, Hess and McBride, 2010]. In this technique,
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Figure 3.1: Spherical measurement set-up including the minimum sphere with AUT located

at the center of the coordinate system in (a) and the AUT shifted away from the origin in

(b). The required number of spherical modes is minimum when the AUT is located at the

origin of the measurement sphere.

it is required that the measurement sphere encompass all the echo sources. The sampling

criterion is chosen by considering a minimum sphere that includes all contributing sources

as demonstrated in Fig. 3.2. The increase in the size of the minimum sphere obviously

mandates an oversampling of the near field. After the full set of spherical modes due to all

the sources are obtained, the ones that belong to the AUT are retained. This is achieved

by phase shifting the modes to the AUT phase center and discarding higher order modes

N > krmin according to the size of the minimum sphere enclosing the AUT (rmin). Because

of the need for the measurement sphere to encompass all radiating sources, the IsoFilter

technique is more suited to filter contaminations that are due to the AUT mounting struc-

tures. Like MARS and other modal filtering techniques, the described technique is only

applicable to measurements obtained on canonical measurement geometries and as such

cannot take advantages provided by other measurement set-ups such as non-redundant sam-

pling geometries.

3.2.3 Source Reconstruction Techniques

Echo suppression techniques in this category are used in conjunction with NFFFT algo-

rithms that are based on source reconstruction. Source reconstruction in NFFFT algorithms

assumes equivalent Huygen’s sources over a fictitious surface over or enclosing the AUT

to represent the AUTs radiation behavior. Once these currents are found, the radiation pat-
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Figure 3.2: Spherical measurement geometry in the IsoFilter technique.

tern of the AUT or goal field can be computed at any distance in the near- or far-regions.

For suppression of unwanted contributions, the fictitious surface over which the equivalent

sources are obtained are extended to include the locations of the echo sources. Spatial fil-

tering of the unwanted current sources is performed afterwards before computing the goal

field. For example, when the equivalent current sources are obtained on a fictitious cylinder

enclosing the AUT, the length of the cylinder is normally determined by the length of the

AUT. However, in order to account for the echo contributions, the size of the cylinder is ex-

tended to include the known disturbers such as radiations from the feed cables and the AUT

mounting structures, etc. The obtained current distribution is then truncated to spatially fil-

ter out the unwanted contributions [Araque Quijano et al., 2011, Quijano and Vecchi, 2010,

Quijano et al., 2011]. In [Cano-Fácila et al., 2011], the plane wave spectrum is computed

over an extended aperture according to the image theory to account for ground reflections.

The part representing the AUT is retained for transformation into the far-field while the

images representing reflections are removed from the plane wave spectrum. Other echo

suppression techniques based on source reconstruction are presented in [Gonzalez et al.,

2011] and [Cano et al., 2010]. However, motivations for new echo suppression technique
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still remains. Most of the mentioned echo supression techniques require, for instance, that

the measurement samples be acquired on a canonical measurement geometry. Modern an-

tenna measurements requirements are, however, tending towards conformal measurement

surfaces with arbitrary probe orientations due to large test devices [Geise et al., 2014].

Also, because minimal knowledge of the measurement geometry in utilized in some of the

techniques, the additional oversampling required to effectively filter the echo signals can

be substantial.



Chapter 4

Scattering Centers
Representation of Echoic
Measurement Facilities

The plane wave based NFFFT algorithm was presented in Chapter 2. It involves a repre-

sentation of the radiated AUT field by a set of outgoing plane waves in all directions taking

the role of equivalent sources for the AUT. These outgoing plane waves are translated into

incident plane waves at the probe by means of the FMM translation operator. This results

in a linear system of equations

U ′ =−j
ωμ
4π

C · J̃ ′, (4.1)

where J̃ ′ contains the unknown plane wave coefficients of the AUT and C is the coupling

matrix which includes the effects of plane wave translations and probe correction. The for-

mulation in (4.1) is that of an inverse problem where one has a knowledge of some output,

usually noisy, and a system model derived from the physical nature of the problem with

an unknown input. Typically, the problem is ill-posed in terms of uniqueness and stability

of the solution as it involves ill-conditioned system matrices. The reliability of the result

depends on the accuracy of the model and the process from which the result is obtained.

Several regularization techniques such as the Tikhonov regularization [Tikhonov and Ar-

37
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senin, 1977] and the truncated singular value decomposition (TSVD) [Hansen, 1990, Xu,

1998] exist to improve the stability of ill-posed problems. However, due to the large size

of the involved matrices in antenna measurements, iterative solutions are more favorable.

The stability of the solution with the GMRES solver to random errors has been studied by

Qureshi in [Qureshi et al., 2012b] for planar near-field measurements. The regularization

properties of the GMRES [Calvetti et al., 2002a,b] helps to stabilize the solution when the

model is accurate. In a multiple source scenario with additional sources other than the

AUT, the model in Eq. (4.1) is essentially incomplete since the measured signal

U ′ =U ′
AUT +U ′

echo, (4.2)

is a superposition of the AUT signal U ′
AUT and signals from the echo sources U ′

echo. The

model can be improved by integrating these additional sources. This can be achieved by

attributing the measured signal to the AUT and the echo sources during the problem for-

mulation and obtaining the equivalent sources for each contributing source. Echo sources

are treated as auxiliary sources or scattering centers contributing to the measured near-field

data and their contributions are retrieved by integrating them into the NFFFT process. To

this end, the formulation in Eq. (4.1) is done for all the contributing sources by assuming a

set of out-going plane waves over the Ewald spheres related to the various scattering cen-

ters as an equivalent source for the echo sources. Plane wave translations are performed

from each of these scattering centers to the measurement points as illustrated in Fig. 4.1. A

new system of equations

U ′ =−j
ωμ
4π

CAUT · J̃ ′− j
ωμ
4π

NSC

∑
i=1

CSCi · J̃ ′
SCi (4.3)

is formulated with more unknowns due to the new sources [Yinusa et al., 2011, 2012a,b].

The coupling matrix CSCi of the i-th scattering center includes the effect of plane wave

translations and probe correction in the same way as the coupling matrix for the AUT-

probe interaction is formulated. Eq. (4.3) is solved iteratively using GMRES to retrieve the

contributions of the AUT and of the scattering centers. The computation of the translation

operator in Eq. (2.40) generally requires the knowledge of the source and probe locations

both of which are usually available for the AUT. This can also be easily evaluated for

localized echo sources. However, echo locations may not be known exactly in certain

situations such as in outdoor measurement set-ups or when the number of echo sources
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Figure 4.1: The translation operator converts out-going plane waves at the sources to in-

cident plane waves at the probe antenna. Here, plane wave translations are performed for

the AUT and for the additional plane waves assumed for the auxiliary sources. Copyright
c©2013, IEEE.

are relatively large for manual input to be practical. The approach to scattering centers

placements for echo sources, therefore, depends on the amount of information known about

the echo sources. The different situations are discussed later.

4.1 Echo Data Generation

Throughout the remainder of this thesis, several echo suppression techniques will be pre-

sented and their effectiveness will be investigated by applying the techniques to echoic
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data. In practical antenna measurements, there are several other types of errors that can

lead to unreliable measurements including, probe position uncertainty, probe alignment er-

rors, etc. In order to study the effects of echoes in isolation from the other types of errors,

synthetic data is relied upon in several examples in addition to actual measurement data.

Synthetic data is obtained by modeling the AUT and probe by means of dipole distributions

as described in [Schmidt et al., 2011].

Echo Scenario #1

A 3 GHz AUT is modeled with the dipole distribution shown in Fig. 4.2. The length and

color of the dipoles represent the relative amplitude excitation and the phase, respectively,

of the dipoles. The two layers of dipoles are separated by a distance of λ/4 and have

−0.1
0

0.1

−0.1
0

0.1

−0.1

−0.05

0

0.05

0.1

x−Axis [m] y−Axis [m]

z−
A

x
is

 [
m

]

Figure 4.2: Electric dipole distribution used to model the 3 GHz AUT. The length and color

of the dipoles represent the relative amplitude excitation and the phase, respectively.

a phase difference of 90◦ in order to concentrate the radiation in the -y direction. Echo

sources are represented as point sources in a similar fashion by means of electric dipoles.

The probe antenna is modeled similarly with 50 electric dipoles on two square planes each
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measuring 8.64 cm x 8.64 cm with a symmetric amplitude excitation. The far-field pattern

of the probe antenna is as shown in Fig. 4.3. The output signal at a measurement point rM,

Figure 4.3: Normalized Eφ far-field pattern of the 3 GHz probe antenna in dB.

U(rM) =

iprobe

∑
i=1

E(rM −rp,i) ·pi, (4.4)

is generated by weighting and superimposing the electric field around the probe aperture

at positions rM −rp,i. The amplitude, phase and polarization of the i-th probe dipole are

represented by pi and

E(rM) =−j
ωμ
4π

iAUT+Echo

∑
i=1

(
Ī+

1

k2
∇∇

)
e−jk|rM−rd,i|

|rM −rd,i| ·di (4.5)

denotes the electric field at the point rM, obtained by superimposing the dyadic Greens

function of free space at the desired location for all the source dipoles including the echo

sources. In (4.5), Ī is the unit dyad and di incorporates the amplitude, phase and polariza-
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tion of the i-th source dipole. The minimum sphere enclosing the AUT modeled in Fig. 4.2

has a radius of 0.16 m. At a frequency of 3 GHz, this corresponds to a multipole order

N = 20. Following Eq. (2.32), a maximum angular sample spacing of 8.7◦ is required

along the φ and θ directions for the spherical measurement of this AUT. The measurement

distance is set at 0.5 m. The plane wave based NFFFT is then applied to the near-field data

without echo sources using a stopping tolerance of 10−7 for the GMRES solver. Fig. 4.4

shows the obtained far-field pattern of the AUT. This far-field pattern will also be used as a

Figure 4.4: Normalized Eφ far-field pattern of the 3 GHz horn antenna in dB obtained from

anechoic near-field data.

reference far-field for a subsequent evaluation of the presented techniques. In the next step,

echo sources are introduced by means of electric dipoles. The echo sources in this exam-

ple are three point sources located outside the measurement sphere as shown in Fig. 4.5.

Signals arising due to echo sources are evaluated and superimposed on the AUT signal.

The same sampling criterion as the non-echoic scenario is utilized. The plane wave based

NFFFT algorithm is applied to the simulated echoic data with identical processing as the

non-echoic case. The obtained far-field in this case is shown in Fig. 4.6 with the main cuts
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in Fig. 4.7.

Measurement

sphere

x

y

z

Probe

 antenna

AUT

θ 

ϕ

Echo source #1

located at (0,3,0)

Echo source #2

located at (3,0,3)

Echo source #3

located at (2,0,0)

Figure 4.5: Scenario 1; Simulated echoic scenario with three echo sources. Echo source

#1, #2 and #3 are located at coordinates (0,3,0), (3,0,3) and (3,0,0), respectively. Distances

are in meters.

Figure 4.6: Normalized Eφ far-field pattern of the 3 GHz horn antenna in dB obtained from

the echoic near-field data generated from the scenario in Fig. 4.5.
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Figure 4.7: Far-field main cuts obtained from Fig. 4.6.

It can be seen that the presence of echo introduced a significant difference between the
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reference far-field pattern and the obtained far-field pattern. The error level

EL = 20log(‖‖Ere f (φ ,θ)‖−‖Eerr(φ ,θ)‖‖) (4.6)

is computed as the linear difference between the reference far-field Ere f and the obtained

far-field Eerr (both normalized to a maximum of 1) for a particular near-field data and

NFFFT processing.

Echo Scenario #2

The second example involves planar measurement of a broadband double ridged horn an-

tenna with a frequency range of between 1 GHz and 19 GHz shown in Fig. 4.8. An OEWG

probe (WR90) was used to measure the near-field distribution over the measurement plane

at frequencies of 8.2 GHz and 10.3 GHz in the measurement chamber where reflections

are minimal. The size of the measurement plane was 1.2 m x 1.1 m and the measurement

distance was 0.47 m. A sample spacing of 12 mm was chosen along both directions of the

measurement plane corresponding to sample spacings of 0.33λ and 0.41λ at 8.2 GHz and

10.3 GHz, respectively. The sample spacings satisfy the Nyquist criterion of Δx,y ≤ 0.50λ
for both measurement frequencies. The obtained near-field distributions are shown in

Fig. 4.11(a) and Fig. 4.12(a).

In the second stage, echoes were introduced to the measurements by means of metallic

plates. The sets of near-field data were generated with two metal plates in the measurement

chamber in order to introduce multipath contamination into the measurements as shown

in the picture in Fig. 4.9. The schematic is shown in Fig. 4.10. The two metal plates

were placed in the shown orientations in order to increase the influence of the multipath

components within the valid angle. Near-field distributions obtained in presence of the

metal plates are shown in Fig. 4.11(b) and Fig. 4.12(b). The ripples in the measured near-

field data due to the presence of the metal plates are clearly visible. These near-field errors

are carried over to the far field. The extent of the far-field errors depends on the employed

NFFFT algorithm and on the post-processing efforts to remove the echo contributions.

The far-field pattern of the AUT was obtained from the non-echoic and echoic near-field

data generated in this example using the classical FFT based technique. The results are

shown in Fig. 4.13 and Fig. 4.14 for measurement frequencies of 8.2 GHz and 10.3 GHz,

respectively. The effect of reflections from the metal plates is clearly visible in the H-plane
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Figure 4.8: Double Ridged Broadband Horn Antenna DRH18 used as AUT [RF Spin,

2014].

Figure 4.9: Two metal plates were introduced to the chamber in order to generate multipath

contamination into the measurement data.

far-field pattern of the AUT for both frequencies. The FFT based algorithm is particularly

prone to multipath errors since it does not incorporate much a priori information about the
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Figure 4.10: Schematic of echoic scenario.

AUT into the the NFFFT process. The plane wave spectrum (PWS) is simply obtained

from the measurement data without any consideration to the size of the AUT.
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dB
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dB
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Figure 4.11: Near field distribution of the broadband horn antenna at 10.3 GHz for the

described planar measurement set-up, pol1.
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dB
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Figure 4.12: Near-field distribution of the broadband horn antenna at 10.3 GHz for the

described planar measurement set-up, pol2.
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Figure 4.13: Obtained Eθ far-field pattern cuts at 8.2 GHz with and without metal plates

using the classical FFT based algorithm for the planar near-field measurement example

within the valid angle. The effect of reflections from the metal plates is clearly visible in

the H-plane far-field pattern of the AUT.
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Figure 4.14: Obtained Eθ far-field pattern cuts at 10.3 GHz with and without metal plates

using the classical FFT based algorithm for the planar near-field measurement example

within the valid angle. The effect of reflections from the metal plates is clearly visible in

the H-plane far-field pattern of the AUT.
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4.2 Scattering Centers Representation of Localized Echo
Sources

In order to separate multipath signals from direct AUT signals, auxiliary sources are as-

sumed for the contributing echo sources. Plane wave translations are thereafter performed

from the AUT location and locations of the assumed sources to the measurement points.

Depending upon the amount of a priori knowledge about the echo sources, different ap-

proaches to the placement of the auxiliary sources are possible. For instance, in a semi-

anechoic chamber, there maybe few echo sources whose sizes and locations can be assumed

to be known. However, in an outdoor environment, the number of potential echo sources

may be too high for a manual input of echo locations. When echo locations are known,

the translation operator from the echo sources to the measurement points can simply be

computed by replacing the echo sources with auxiliary sources in the same locations. The

multipole orders of the translation operator required between the echo sources and the

probes depend on the size of the concerned echo source and the size of the probe antenna.

Plane wave translation is then performed from the AUT and scattering centers to the mea-

surement points which leads to an improved model of the actual interactions that led to the

measured data.

4.2.1 Spherical Measurement with Fixed AUT

As an example, the three echo sources in Fig. 4.5 are represented with scattering centers.

Since the echo sources are point sources, a single, small scattering center is employed to

model each of the echo sources resulting in three scattering centers each with a multipole

order of 4 compared to the AUT multipole order of 20. At a frequency of 3 GHz and

an accuracy of 10−3 for the translation operator, the total number of plane waves used to

represent the radiation behavior of the AUT with the dipole distribution in Fig. 4.2 is 1600

for both polarizations. The echo sources have a total number of 300 plane wave samples.

It should be noted that the number of plane wave samples needed to represent an echo

source does not depend on the strength of the echo but on the electrical size of the involved

disturber. The GMRES solver was stopped at the 100th iteration as it did not converge to

the previous 10−7 relative residual. The obtained far field with this representation of the

echo sources as localized scattering centers is shown in Fig. 4.15 with the far-field main

cuts shown in Fig. 4.16. The influence of the echo suppression effort can be seen when
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compared to the results in Fig. 4.6 and Fig. 4.7 as the maximum error level is reduced from

about -20 dB to about -40 dB in the Eφ main axis.

Figure 4.15: Normalized Eφ far-field pattern cuts of the 3 GHz horn antenna in dB obtained

from the echoic near-field data generated from the scenario in Fig. 4.5. The echo sources

are included in the NFFFT process by means of scattering centers at the same locations as

the echo sources.



54 CHAPTER 4. SC REP. OF LOCALIZED ECHO SOURCES

0 50 100 150 200 250 300 350
-100

-80

-60

-40

-20

0

Theta in degrees

d
B

 

 

Reference far field

Far field with localized
scattering centers

Error level

(a) E-plane pattern

0 50 100 150 200 250 300 350
-100

-80

-60

-40

-20

0

Phi in degrees

d
B

 

 

Reference far field

Far field with localized
 scattering centers

Error level

(b) H-plane pattern

Figure 4.16: Main cuts for the pattern in Fig. 4.15.
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4.2.2 Cylindrical Measurement with Rotating AUT

In a typical cylindrical measurement set-up, the AUT is mounted on a positioner capable of

rotating around the azimuth and the probe scans a single line vertically for each azimuthal

step of the AUT. This means that the generated multipath signal resulting from a scatterer

differs depending on the azimuth position of the AUT. A single scattering center in this

case is not suitable to represent a single scatterer because of the change in the scattering

situation when the AUT steps in Azimuth. Scattering centers representation is done in this

case with many auxiliary sources, one for each of the azimuth positions. All the scatter-

ing centers are located at the position of the intended scatterer. The number of scattering

centers needed to represent a single source is, therefore, equal to the number AUT angular

steps in azimuth. Plane wave translations are performed from each scattering center to the

corresponding measurement points sharing the same azimuth angle and no coupling is as-

sumed between the scattering center with the remaining measurement points. The system

of equations with these replicated scattering centers looks as shown in Fig. 4.17 for a cylin-

drical measurement set-up with four azimuthal steps. The vectors U1 to U4 are the groups

of measurement points on same azimuth angle. As an example, cylindrical measurement
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Figure 4.17: Representation of a single echo source in a cylindrical measurement geometry

with rotating AUT on four azimuth points.

data was generated for the 3 GHz AUT shown in Fig. 4.2 with three echo sources as shown

in Fig 4.18. The AUT was rotated about its axis about the azimuth angle and the induced

current on the echo sources are computed for each of the AUT orientations. Once the in-

duced current on the echo sources are obtained, the probe scans the measurement points
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vertically. This procedure is repeated for all azimuth steps of the AUT in order to generate

the measurement data over the measurement cylinder. The near-field data was obtained

with an angular sample spacing of 8.7◦ and a vertical sample spacing of λ/2. The height

of the measurement cylinder was 1.6 m and the measurement distance was 0.5 m resulting

in a valid θ angle of about 55◦. The echo sources were represented by means of repli-

cated scattering centers as explained earlier. Plane wave translations are performed from

the scattering centers to the measurement points sharing the same azimuth and all other

couplings are assumed to be zero for the scattering center. The location of the echo sources

are assumed to be known and since the assumed echo sources are point sources, the num-

ber of plane waves assumed for the echo sources are relatively small. This representation

increases the unknown plane wave coefficients of the echo sources by a factor equaling the

number of azimuth steps of the AUT. The results are shown in Fig. 4.19 and Fig. 4.20. It can

be observed that representing the echo source by means of auxiliary sources resulted in a

reduction in the error level of the obtained far-field pattern. The achieved echo suppression

is not as good as the case with a fixed AUT because only the measurement points sharing

the same azimuth angle are utilized for the scattering centers. In the previous example with

a fixed AUT, all the measurement points were used to set up the system of equations for

both the AUT and for the auxiliary sources.
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Figure 4.18: Representation of a single echo source in a cylindrical measurement geometry

with rotating AUT on four azimuth points.
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Figure 4.19: Main cuts for cylindrical. The rectangular boxes demarcate the valid angles.
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Figure 4.20: Main cuts for cylindrical.
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Result for DRH18 at 8.2 GHz

The effects of multipath contributions on the obtained far-field pattern of the AUT shown in

the measurement set-up in Fig. 4.9 can be clearly seen in Fig. 4.13. The error level varied

from about -50 dB to -10 dB. The direct AUT signals were contaminated by multipath sig-

nals arising from the metal plates. In that result, the far-field pattern was obtained using the

classical FFT technique. In the FFT technique, the far-field pattern of the AUT is obtained

directly from the measurement data without utilizing any a priori information about the

AUT. In this section, the plane wave based NFFFT algorithm was utilized first to observe

its performance in the presence of echo contributions and to further improve the perfor-

mance by integrating the echo sources within the NFFFT process. Unlike the FFT based

algorithm, the plane wave based NFFFT algorithm shows a better performance in presence

of echo signals due to its inherent spatial filtering capability. Sources are assumed within

the minimum sphere enclosing the AUT as demonstrated in Fig. 4.21. This allows the al-

Measurement points

AUT

Minimum Sphere

Minimum Sphere

U(rM)

Inverse Problem
Equivalent

 sources

Figure 4.21: Near-field data is related to equivalent sources with-in the minimum sphere

enclosing the AUT.

gorithm to utilize the size and location of the AUT and to automatically exclude sources

that are outside the minimum sphere. Once the equivalent sources within the minimum

sphere are obtained, the far-field pattern of the AUT can be computed using those equiva-

lent sources. The reference far-field pattern of the DRH18 antenna obtained by the plane

wave based NFFFT algorithm from measurements without the metal plates is shown in
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Fig. 4.22. The far-field pattern is also evaluated from the echoic data obtained in presence

of the metal plates through the same algorithm and the result is shown in Fig. 4.23. In or-

Figure 4.22: Normalized Eφ far-field pattern of the DRH18 broadband antenna at 8.2 GHz

in dB obtained without the metal plates.

der to compensate for the effect of the metal plates in Fig. 4.9, the second metal plate which

produces the significant portion of the multipath components is represented with scattering

centers. The scattering centers are placed on a discretized surface covering the metal plate.

A total number of 144 small scattering centers each with a multipole order of 3 were em-

ployed to model the metal plate. The plane wave coefficients attributed to both the AUT and

the scattering centers were obtained from the inverse problem solution. Once the solution

was obtained, the far field with echo suppression was computed with the plane wave coef-

ficients of the AUT alone. The obtained far-field pattern with the metal plates represented

by means of auxiliary sources is shown in Fig. 4.24. A closer observation of the results can

be achieved through the main pattern cuts in Fig. 4.25 and Fig. 4.26. Two observations can
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Figure 4.23: Normalized Eφ far-field pattern of the DRH18 broadband antenna at 8.2 GHz

in dB obtained from near-field data in presence of echoes from the metal plates.

be made about the results: the results with echo from the metal plates without scattering

centers representation shown in Fig. 4.25(a) and Fig. 4.26(a) are not significantly degraded

when compared to the reference far-field pattern. Secondly, scattering centers representa-

tion of the echo sources leads to a further reduction in the error levels arising due to the

echo signals. The first observation can be attributed to the utilization of certain a priori

knowledge regarding the size and location of the AUT in the plane wave based NFFFT al-

gorithm. This was not the case for the results obtained with the FFT based algorithm shown

in Fig. 4.13. The achieved improvement in the far-field pattern of the AUT when scattering

centers are utilized is due to the more accurate source model as previously explained. The

source model with scattering centers is closer to the actual source geometry from which the

near-field data was obtained. The translations of plane waves from the auxiliary sources to

the measurement points can implemented in a multilevel fashion. Neigbhouring scattering
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Figure 4.24: Normalized Eφ far-field pattern of the DRH18 broadband antenna at 8.2 GHz

in dB obtained from near-field data in presence of echoes from the metal plates. The echo

sources are included in the NFFFT process by means of localized scattering centers.

centers are combined and plane wave translation is done from the groups of scattering cen-

ters to the measurement points similar to the multilevel FMM [Schmidt and Eibert, 2009].

In this way, the number of plane wave translations can be reduced.
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Figure 4.25: Eφ E-Plane pattern cuts with and without scattering centers representation for

the planar near-field measurement example within the valid angle.
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Figure 4.26: Eφ H-Plane pattern cuts with and without scattering centers representation for

the planar near-field measurement example within the valid angle.
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Result for DRH18 at 10.3 GHz

The result is also obtained for a measurement at 10.3 GHz.
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Figure 4.27: H-Plane pattern with and without scattering centers representation for the

planar near-field measurement example within the valid angle.
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Figure 4.28: E-Plane pattern with and without scattering centers representation for the

planar near-field measurement example within the valid angle.
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4.3 Scattering Centers Representation of Partially Local-
ized Echo Sources

The previously described placement of auxiliary sources assumes the knowledge of the

exact location of the echo sources. Such knowledge is, however, often not available. For

instance, in an outdoor measurement facility the number of echo sources may be too large

for manual input of all the echo sources. Also, in a semi-anechoic chamber the process of

manually computing the echo location in the measurement coordinate system may be time

consuming. In these situations, it is useful to find a technique to derive some partial knowl-

edge about the echo sources and to use such limited knowledge for echo suppression. Such

partial knowledge that can be derived from the measurement data is the directions of arrival

of the echo signals. The distance between the echo sources and the measurement surface

will, however, remain unknown. Fortunately, results from scattering centers placement is

not sensitive to the distance, as will be shown in the following sections.

4.3.1 Echo Localization

In the absence of echoes and electromagnetic interference, the measured near-field data is

completely attributed to the AUT. It has been shown that random measurement errors as

encountered in antenna measurements do not introduce significant errors to the solution

[Qureshi et al., 2012b]. Therefore, when the measurement is done in an anechoic chamber,

Eq. (2.42) is solved using GMRES with enough iterations until the minimum residual is

achieved depending on the desired accuracy. A typical convergence of the GMRES algo-

rithm in scenarios where the input source geometry matches the actual source geometry

is shown in Fig. 4.29. GMRES converges quickly to a solution with the desired relative

residual. However, when the data is perturbed by multipath signals, there can be a signifi-

cant difference between the solution having the minimum residual and the desired solution

corresponding to the AUT plane wave coefficients. The convergence behavior in this case,

as shown in Fig. 4.30, is such that the relative residual reduces very slowly and much more

iterations are needed to reach the same relative residual as compared to the non-echoic

case. Moreover, in presence of multipath signals, the minimum residual solution can be

very different from the desired AUT plane wave coefficients. In order to localize the echo

sources, an initial low-pass estimate of the AUT far-field pattern is obtained. This can

be done by replacing the coupling matrix C in Eq. (4.1) with a low-rank approximation
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Figure 4.29: When all the information about the source locations are known, GMRES

converges to the solution with a decrease in the relative residual for every iteration. In

example 1, GMRES converged to a relative residual of 10−7 in 40 iterations.

Ck = UΣkVH , where U and V coincide with the left-singular and right-singular vectors

obtained from the singular value decomposition (SVD) of the matrix C, respectively, and

(·)H denotes complex conjugate transpose. The diagonal matrix Σk contains the singular

values of C with values less or equal to the k-th singular value set to zero [Manning et al.,

2009]. By obtaining the solution over a restricted singular value spectrum, the obtained

solution is less sensitive to noise and the effect of the echo contribution is restricted. The

result is, however, a poor approximation of the desired final result as high-pass components

of the AUT are also restricted. The computation of the SVD can be computationally costly

due to the size of the involved matrix. However, due to the regularization properties of the

GMRES algorithm [Calvetti et al., 2002b], a similar low-rank solution can be obtained by

terminating the GMRES algorithm after a few iterations. The result, J̃ ′
k, obtained at this

stage from the normal system of equations,

CH
k ·U ′ =−j

ωμ
4π

CH
k Ck · J̃ ′

k , (4.7)
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Figure 4.30: Convergence behavior of the GMRES algorithm for the echoic scenario in

Fig. 4.5. The solution did not converge to the desired 10−7 in 40 iterations.

is associated with a relatively large residual mainly composed of the multipath contribu-

tions. In the second stage, the far-field residual

r = CH
k ·U ′+ j

ωμ
4π

CH
k Ck · J̃ ′

k , (4.8)

is evaluated and the directions of the echo sources are identifiable from the peaks in the far-

field pattern. This localization procedure is particularly effective for echo sources having a

relatively high contribution in the measured near-field data. For relatively lower-level echo

sources, the retrieval of the echo locations can be performed iteratively. This means that the

high-level echo sources are retrieved first and the locations of the remaining echo sources

are retrieved from the residuals.

Echo Localization Example

The effectiveness of the echo localization technique using far-field residual is demonstrated

using the synthetic near-field data generated from the scenario in Fig. 4.5. In order to find

the directions of the echo sources, an initial estimate of the AUT plane wave coefficients
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is obtained by an early termination of the GMRES algorithm as previously described. The

obtained far-field from the residual after five iterations for the echo scenario in Fig. 4.5 is

shown in Fig. 4.31. The direction of the three echo sources can be seen clearly from the

figure. The obtained information from the above procedure can be combined with any a

priori knowledge, such as the room dimensions to fix the scattering centers locations.

Figure 4.31: Normalized far-field in linear scale obtained by the residual from an early

termination of GMRES for the 3 GHz horn antenna. The echo locations correspond to the

peaks in the far-field pattern.

Iterative Echo Localization

Large dynamic range between the different echo sources can make it difficult for a simul-

taneous localization of high-level and low-level echo sources. The localization procedure

can be implemented in an iterative manner such that the directions of the strongest echo

sources are obtained first. The residual is then obtained for the remaining echo sources

and the process is repeated until the direction of the weakest echo source is determined.

The sequence of echo localization by signal strength for the scenario in Fig. 4.5 is shown
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in Fig. 4.31 and Fig. 4.32. In Fig. 4.31, the echo location marked within the circle is the

strongest. This strong echo source may influence the determination of other echo directions

from the same far-field residual as the weaker are more difficult to identify. However, as it

can be seen in Fig. 4.32, the weaker echo sources become more visible once the strongest

echo sources are removed. Removal of echo sources is performed by assuming an auxiliary

source in the obtained location and solving for the plane wave coefficient of that auxiliary

source in the inverse problem solution. Once the plane wave spectrum of the source is ob-

tained, the far-field residual excluding the source can be obtained similar to Eq. (4.8). The

stronger echo sources can be further removed from Fig. 4.32 in order to easily recognized

the remaining echo sources and the iteration continues as necessary.

Figure 4.32: Normalized far-field in linear scale obtained by the residual from an early

termination of GMRES for the 3 GHz horn antenna. In this figure, the remaining echo

sources within the circles are enhanced once the stronger echo source was removed during

the previous iteration.



72 CHAPTER 4. SC REP. OF PARTIALLY LOCALIZED ECHO SOURCES

4.3.2 Sensitivity to Errors in Scattering Centers Placement

Echo localization using the far-field residual finds only the directions of the echo sources.

The radial distance of the scattering centers can be chosen according to the room dimen-

sions or other a priori information regarding the echo sources. Since the exact knowledge

about the echo sources may not always be available, it is important to investigate the ro-

bustness of the scattering centers modeling to errors in scattering centers placement. The

errors can be in the radial distance of the scattering centers or in the angular placement of

the scattering centers. The two types of errors are investigated for the three echo sources

modeled in the echo scenario of Fig. 4.5. In Fig. 4.33 the mean error in the H-plane Eφ

pattern is plotted against errors in the radial placement of the scattering centers. The vari-

0.5 1 1.5
-55

-50

-45

-40

-35

-30

d

dB

Mean error with scattering centers
Mean error without scattering centers

Figure 4.33: H-plane average error for the 3 GHz horn antenna plotted against errors in the

scattering centers radial placement, d is the ratio between the scattering centers distances

to the true echo locations.

able d is the ratio between the scattering centers distances to the true echo locations, i.e.

d = 1 corresponds to the case where the scattering centers are perfectly placed. It can be

seen that the error level in the far-field pattern is still reduced even with errors in the radial

placement of scattering centers compared to the far field where no scattering centers are

employed. The result for errors in the angular placement of the scattering centers is shown

in Fig. 4.34. In this figure, the x axis is the amount of error introduced in the θ and φ angu-
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lar placement of the auxiliary sources. It can be observed that the placement of scattering

centers to represent the echo sources results in a reduction of the error level even when the

locations of the echo sources are only partially known.
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Figure 4.34: H-plane average error for the 3 GHz horn antenna plotted against errors in the

scattering centers angular placement. The same amount of error is introduced in both θ
and φ placements of the scattering centers.

4.4 Scattering Centers Representation without Echo Lo-
calization

In some situations, either due to the number of echo sources or because of the dynamic

range of the involved sources, echo locations are unknown and echo localization is not fea-

sible. Scattering centers placement in these situations can still be performed in order to

represent the unlocalized echo sources. To improve the achievable echo suppression with-

out knowledge of the echo locations, the scattering centers placement are optimized by

searching for locations where the least amount of error is introduced by location mismatch

between the echo sources and the auxiliary sources. To this end, an echo free measurement

is made and a single scattering center is placed at a particular location during the NFFFT

process. The NFFFT is repeated several times with the scattering center at varying loca-
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tions and the attributed energy is recorded. The optimal placement of scattering centers

in this situation is found to be along the plane containing the AUT aperture but restricted

to the regions outside the measurement sphere as shown in Fig. 4.35. This placement of

the scattering centers is similar to the spatial filtering echo suppression technique presented

in [Cano-Fácila et al., 2011]. In that technique, the PWS of the AUT is obtained over an

extended aperture to obtain the image sources due to reflections from the floor, ceiling and

walls of the measurement room. The PWS is then spatially filtered such that the far-field

pattern of the AUT is computed only with the PWS over the AUT aperture. The spacing

between the scattering centers and the multipole orders of the scattering centers must be

chosen carefully so that the minimum spheres enclosing the auxiliary sources do not in-

tersect with each other. The placement of scattering centers over the plane containing the
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Figure 4.35: When the echo locations are unknown, the auxiliary sources are placed on the

same plane as the AUT aperture but limited to the region outside the measurement sphere.

AUT aperture is implemented for the echoic data generated from the scenario depicted in

Fig. 4.5. A total of 200 scattering centers are placed over a square outside the measurement

sphere each with a multipole order of 4 to represent the three echo sources whose locations

are assumed to be unknown. Plane waves are assumed for the AUT and for each of the

scattering centers. Once the plane wave coefficients for all the sources are obtained, the

far-field pattern of the AUT is evaluated using the plane wave coefficients of the AUT. The

obtained results with the representation in Fig. 4.35 is shown in Fig. 4.36 and Fig. 4.37.
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Figure 4.36: Normalized Eφ far-field pattern of the 3 GHz horn antenna in dB obtained

from the echoic near-field data generated from the scenario in Fig. 4.5. The echo sources

are included in the NFFFT process by scattering centers on the AUT aperture plane.

The results show an improvement in the obtained far-field pattern with echo signals com-

pared to when no echo suppression was applied. However, the result is not as good as the

ones obtained when exact or partial knowledge of the echo source locations are used during

scattering centers placements.

4.5 Summary

In this chapter, techniques were presented to improve the scattering model for the plane

wave based near-field far-field transformation algorithm when measurements are acquired

in echoic environments. This is done by representing the echo sources by means of auxil-

iary sources and integrating them during the NFFFT process. Sets of plane wave sources

are assumed for the auxiliary sources and these plane waves are translated to the measure-

ment points in the same way plane wave translations are performed from the AUT. The
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Figure 4.37: Far-field pattern cuts obtained by placing scattering centers on the plane con-

taining the AUT aperture.
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equivalent sources for all the contributing sources are then obtained in an inverse problem

solution. When the locations of the echo sources are unknown, techniques for determining

the echo directions as well as techniques for scattering centers placement without echo lo-

calization were presented. These techniques ensure that the inverse problem is set-up with

a source geometry that is closer to the actual source geometry from which the near-field

data is obtained.
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Chapter 5

Multi-probe Antenna
Measurement Technique

Reducing the influence of multipath propagation in antenna measurements usually takes

the form of post-processing of acquired echoic data, a particular echo aware acquisition

approach or a combination of both. Measurement approaches involve the use of special-

ized hardware or acquiring the field such that the possible removal of the echo signals is

enhanced. Measurement approaches that facilitate the removal of multipath signals lead

to near-field data that incorporates more information about the echo sources than the usual

measurement procedures. In Chapter 4, techniques were presented to improve the model

of the inverse problem from which the AUT far-field pattern is obtained. The techniques

involved the assumption of auxiliary sources for the echo sources such that the model of

the scattering situation is closer to the actual echoic environment. In this way, additional

unknowns are introduced due to the echo sources. In this chapter, a measurement tech-

nique is described which enhances the extraction of multipath components during data

post-processing such as near-field far-field transformations. This is achieved by taking sev-

eral independent near-field measurements with multiple probe antennas such that adequate

information is available to resolve the direct contributions of the AUT and the contributions

of the echo sources [Yinusa and Eibert, 2013a,b,c]. Particularly useful for this purpose are

measurements with probe antennas looking towards and away from the AUT. The echo con-

tributions are then retrieved by means of auxiliary sources during the NFFFT process. The

79
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AUT is assumed to be fixed during the measurement campaign. Therefore, the technique

is not suitable for the standard roll-over-azimuth scanners but it works for any measure-

ment set-up with a fixed AUT. Also, more advanced positioners such as those equipped

with robotic arms [Francis et al., 2014] will allow for more flexibility regarding the probe

orientation during near-field measurements which will make inward and outward looking

probes easily achievable. In [Hill, 1998] and [Hill, 1997], Hill proposed ideal Huygens’

probes or an approximation by means of inward and outward probes with spherical wave

expansion when sources are present inside and outside the measurement sphere. However,

no results have been presented for real probes with or without probe correction. The multi-

probe antenna measurement technique when applied in near-field measurements results in

near-field data that contains more information about the various sources, such as the AUT

and the echo sources, contributing to the measurement signal.

5.1 Theory

In order to illustrate the concept of multi-probe antenna measurements, consider the trans-

mission line set-up with the AUT located inside the transmission line as shown in Fig. 5.1.

The AUT is assumed to generate single mode transmission line waves with wave ampli-

tudes b10 and b20. Assuming that there are no reflections on the transmission line, i.e. r1

= 0 and r2 = 0, the wave amplitudes generated by the AUT, b10 and b20, can be retrieved

independently from a single measurement at each port if the coupling factors between the

waves and the assumed probes are known. Possible probes for this 1D scenario include,

for example, directional couplers which measure the wave in a particular direction on a

transmission line. If r1 
= 0 and r2 
= 0, however, the measured signal is corrupted, i.e. it

is not attributable only to the AUT. Additional information is therefore needed in this case

to separate the direct AUT contributions from that of the echo sources. For the scenario

shown in Fig. 5.1, four independent measurements, two at each port, are sufficient to set up

a system of equations for the four unknown wave coefficients of the incoming waves, a1

and a2, and the outgoing waves, b1 and b2, at each port. The first and second measurements

required at each port can then be obtained, for example, by utilizing directional couplers

coupled to the waves in the forward and reverse directions, respectively, at each port. An

alternative approach providing an equal amount of information is to measure the currents

and voltages at the two ports. The incoming and outgoing wave coefficients can then be
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Figure 5.1: 1D antenna measurement scenario as transmission line. Copyright c©2013,

IEEE.

obtained by simultaneously solving the well known voltage and current equations for the

transmission line. In both approaches, however, it is assumed that there are no multiple

interactions between the AUT and the disturbers i.e. no additional currents are induced on

the AUT as a result of the scattered signals.

Next, the consideration is extended to a general 3D measurement set-up, e.g. a spher-

ical measurement set-up with the AUT at the origin as shown in Fig. 5.2. The probe an-
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ϕ

Figure 5.2: Spherical measurement setup.
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tenna measures the near-field distribution on the chosen measurement surface. Due to the

band limited nature of the radiated field, measurements are done at discrete points over

the surface following an appropriate sampling criteria. Regarding the probe antennas, the

advantages of directive probes in avoiding multipath signals have been studied in [Hansen

and Larsen, 1984]. The idea there was to improve the signal to echo ratio by amplifying

the line-of-sight signals and by attenuating the echo signals at the probes. The effect of

the probe patterns was then corrected during the NFFFT. The drawbacks of this approach

include the need for highly directive probe antennas and the possible multiple interactions

between the AUT and the probes. Also, there are still individual measurement points which

can be strongly corrupted by multipath signals.

A rather theoretical approach, corresponding to the voltage and current measurement

in the 1D transmission line example, is to measure both the electric field and the magnetic

field distribution on the measurement surface by utilizing electric and magnetic dipoles,

respectively, as probes. This has been proven in [Hansen, 1988] to provide adequate in-

formation sufficient to differentiate between incoming and outgoing waves with respect to

the volume enclosed by the measurement surface. Furthermore, linear combinations of

the electric field and the magnetic field could be measured by means of Huygens’ source

probes. A Huygens’ source is realizable with an electric and a magnetic dipole perpen-

dicularly oriented with respect to each other [Best, 2010]. By measuring the field with

two particular orientations of the Huygens’ source, two linear combinations of the electric

field and of the magnetic field are obtained. By this consideration, it is clear that a mea-

surement with inward and outward looking probes provides also sufficient information to

distinguish between incoming and outgoing waves with respect to the measurement vol-

ume. Following this logic and given the challenges in implementing Huygens’ sources, we

propose a measurement technique where the AUT is measured with two sets of probe an-

tennas, one set radiating mainly towards the AUT and the other set radiating mainly away

from the AUT as illustrated in Fig. 5.3. This can be achieved by probes used twice with

different orientations to produce the desired effect or with a multiple probe setup. Every

set of the above mentioned probes contains a probe for each of the measured polarizations.

This measurement technique, as opposed to avoiding multipath signals, measures more

multipath contributions and aids a subsequent integration of those sources into the NFFFT,

which can however be separated from the AUT signals.
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Figure 5.3: Multi-probe measurement set-up. This measurement set-up consists of two sets

of probes, one directed towards the AUT and the other directed away from the AUT. Each

set contains typically probes for two independent polarizations.

5.2 Integration with Plane Wave Expansion

The near-field measurement procedure with the multi-probe approach results in two pairs

of near-field data for each measurement point; two orthogonal polarizations for the inward

looking and for the outward looking probes. Outgoing plane waves are assumed for the

AUT and plane wave translations are done from the AUT to the measurement points as

previously described. The computation of the translation operator remains unchanged and

is performed only once for each measurement point. The plane waves are weighted with the

far-field pattern of the corresponding probe which now has four degrees of freedom instead

of two. This leads to twice the number of equations in the linear system of equations in

Eq. (2.42) as more measurement samples are available from the outward looking probe.
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The coupling matrix in this case

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1i
φ (kφ1,kθ1,φ1,θ1) . . . C1i

θ (kφP,kθQ,φ1,θ1)

C1o
φ (kφ1,kθ1,φ1,θ1) . . . C1o

θ (kφP,kθQ,φ1,θ1)

. . .

. . .

. . .

C1i
φ (kφ1,kθ1,φM,θN) . . . C1i

θ (kφP,kθQ,φM,θN)

C1o
φ (kφ1,kθ1,φM,θN) . . . C1o

θ (kφP,kθQ,φM,θN)

C2i
φ (kφ1,kθ1,φ1,θ1) . . . C2i

θ (kφP,kθQ,φ1,θ1)

C2o
φ (kφ1,kθ1,φ1,θ1) . . . C2o

θ (kφP,kθQ,φ1,θ1)

. . .

. . .

. . .

C2i
φ (kφ1,kθ1,φM,θN) . . . C2i

θ (kφP,kθQ,φM,θN)

C2o
φ (kφ1,kθ1,φM,θN) . . . C2o

θ (kφP,kθQ,φM,θN)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.1)

as usual, relates the measured probe signals

U ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

U1i(φ1,θ1)

U1o(φ1,θ1)

.

.

.

U1i(φM,θN)

U1o(φM,θN)

U2i(φ1,θ1)

U2o(φ1,θ1)

.

.

.

U2i(φM,θN)

U2o(φM,θN)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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to the plane wave coefficients of the AUT

J̃ ′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J̃φ (kφ1,kθ1)

J̃θ (kφ1,kθ1)

.

.

.

J̃φ (kφP,kθQ)

J̃θ (kφP,kθQ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (5.2)

The elements of the coupling matrix,

C(1,2)(i,o)
φ ,θ (kφ p,kθq,φm,θn) = TL(k̂, r̂M)W (kθq)P

(1,2)(i,o)
φ ,θ (kφ p,kθq,φm,θn), (5.3)

take into account plane wave translations, weighting of the plane waves with the far-field

pattern of the corresponding probe, and the weights needed for integration over the sphere.

The superscripts i and o refer to the inward and outward looking probes, respectively. Echo

sources are integrated into the near-field far-field transformation process by means of aux-

iliary sources. Outgoing plane waves are assumed for the auxiliary sources as described in

Chapter 4. Similar to the AUT, the outgoing plane waves from the auxiliary sources are

translated to incoming plane waves at the probes. The incoming planes waves are thereafter

weighted by the far-field pattern of the inward and outward looking probes. The resulting

linear system of equations is solved iteratively to retrieve the plane wave coefficients of

the AUT and those of the auxiliary sources representing the echo sources. The multi-probe

measurement technique is tested with the echoic scenario depicted in Fig. 4.5. The sam-

pling criteria are the same as with the single probe measurement only that additional mea-

surement samples are acquired with an outward looking probe. Auxiliary sources each with

a multipole order of 4 are used to represent the echo sources. The result of the NFFFT pro-

cess with localized auxiliary sources are shown in Fig. 5.4 and Fig. 5.5. It can be observed

that the obtained far-field pattern is closer to the reference far-field compared to the case

of the single probe measurement in Fig. 4.15 and Fig. 4.16. This is because the scattering

centers approach provides the information to set-up the additional unknowns through the

assumption of auxiliary sources and the multi-probe data provide the information needed

to determine those additional unknowns.
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Figure 5.4: Normalized Eφ far-field pattern of the 3 GHz horn antenna in dB obtained from

the echoic near-field data generated from the scenario in Fig. 4.5. The near-field data is

acquired by the multi-probe technique and the echo sources are included in the NFFFT

process by means of localized scattering centers.

Sensitivity to scattering centers placement

When the exact locations of the echo sources are not known, the directions of the echo

sources can be found using the technique based on the far-field residual described in sec-

tion 4.3.1. The auxiliary sources are then placed along the line of sight between the target

echo source and the AUT. This approach to scattering centers placement introduces an er-

ror to the distance between the measurement surface and the auxiliary sources representing

the echo sources. In order to further study the robustness of the measurement technique

to errors in the scattering centers placement, the NFFFT was performed several times with

the auxiliary sources placed at various locations along the lines connecting the origin and

the target echo source, i.e. the errors are introduced in the radial distances of the auxiliary

sources. The mean values of the error between the reference far-field and far-field obtained

from echoic near-field data are plotted in Fig. 5.6 for the main cuts, where d is the ratio

between the scattering centers distances to the true echo locations, i.e. d = 1 corresponds
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Figure 5.5: Far-field cuts for the result in Fig. 5.4.

to the case where the scattering centers are perfectly placed. A similar study is performed

for errors in the angular placement of the scattering centers. To this end, the radial distance
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of the scattering centers are kept accurate and an equal amount of errors are introduced in

the phi and theta angles of the scattering centers during the NFFFT process. The mean

values of the error for this case is plotted in Fig. 5.7. It is clear that the echo suppression

capability does not degrade with some errors in the scattering centers placement when the

measurement is acquired using the multi-probe measurement approach.
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Figure 5.6: H-plane average error for the 3 GHz horn antenna plotted against errors in the

scattering centers radial placement, d is the ratio between the scattering centers distances

to the true echo locations.

Synthetic data as used in the previous example allows the isolation of the intended type

of measurement error, in this case, the effect of multipath propagation and the impact of

the proposed technique in mitigating such an effect. Since actual measurements might con-

tain other forms of errors apart from multipath propagation, it is important to demonstrate

how the proposed measurement technique performs in such situations. A second exam-

ple is therefore provided utilizing data measured in an anechoic chamber. The AUT is a

1.92 GHz base station antenna with a minimum sphere radius of 0.7 m similar to the one

shown in Fig. 5.8. A sample spacing of 4◦ is utilized along both the φ and θ directions at a

measurement radius of 2.7 m. The probe antenna in this case is an open-ended waveguide.

Data for a single echo source located on the x-axis, 7.0 m away from the origin is generated

synthetically using the coupling matrices for the outward and inward probes. The synthetic
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Figure 5.7: H-plane average error for the 3 GHz horn antenna plotted against errors in the

scattering centers angular placement. The same amount of error is introduced in both θ
and φ placements of the scattering centers.

data for the echo source is then superimposed on the measured AUT signal to generate the

echoic data employed in the NFFFT. Fig. 5.9 and Fig. 5.10 show the result for measure-

ments with multiple probes with a scattering center placed at the echo location during the

NFFFT. Fig. 5.11 shows the sensitivity to errors in the placement of the scattering center.

Figure 5.8: A base station antenna [UVSAR].
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Figure 5.9: H-plane (θ = 90◦) cut through the reference far-field, far-field with echo and

the far-field with echo suppression for the base station antenna.

Planar Measurement Set-up

For the planar measurement set-up, a scan plane of 4.0 m by 4.0 m is chosen at a measure-

ment distance of 0.5 m resulting in a valid angle of about 75◦ around boresight. The sample

spacing is λ/2 with the same probe antenna with the far-field pattern shown in Fig. 4.3. The

multi-probe measurement is done with one set of probes radiating mainly towards the plane

containing the AUT aperture and a second set of probes radiating away from it. Echo local-

ization as described in Sec. 4.3.1 is limited to echo sources within the valid angle but the

technique is also applicable with manual input of the echo source locations. A single echo

source is introduced at a distance of 0.5 m on the y-axis behind the scan plane and two sets

of near-field data are generated with the shown probe orientations in Fig. 5.12. Auxiliary

sources are introduced during the NFFFT to retrieve the multipath components as earlier

described. Fig. 5.13 and Fig. 5.14 show the far-field with and without echo suppression for

the H-plane and E-plane, respectively.
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Figure 5.10: E-plane (φ = 0◦) cut through the reference far-field, far-field with echo and

the far-field with echo suppression for the base station antenna.

5.3 Integration with Spherical Wave Expansion

The multi-probe measurement technique is also integrated with the spherical wave expan-

sion procedure described in [Hansen, 1988] utilizing the discrete Fourier transform (DFT)

with first order probe correction. The transmission formula,

w(A,χ ,θ ,φ) = ∑
smn
μ

vTsmneimφ dn
μm(θ)e

iμχ Psμn(kA), (5.4)

relates the received probe signal, w(A,χ,θ ,φ) at the probe location (A,χ,θ ,φ) to the un-

known expansion coefficients, Tsmn, of the AUT. The probe response constants,

Psμn(kA) =
1

2
∑
σv

Csn(3)
σ μv (kA)Rp

σ μv, (5.5)

take into account the response of the probe to outgoing spherical waves from the AUT,

where Csn(3)
σ μv (kA) are the translation coefficients and Rp

σ μv are the receiving coefficients of

the probe antenna. Following a series of DFTs for the χ , φ and θ integrals and choosing
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Figure 5.12: Multi-probe measurement for planar set-up. The echo sources should be lo-

cated behind the measurement plane for the shown measurement technique to be effective.
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Figure 5.13: H-plane (θ = 90◦) cut through the reference far-field and the far-field with

and without echo suppression within the valid angle for the 3GHz horn antenna with planar

scan geometry.

200 220 240 260 280 300 320 340
−100

−80

−60

−40

−20

0

Theta in degrees

d
B

 

 

Far−field without echo

Far−field with echo

Far−field with echo suppression

Figure 5.14: E-plane (φ = 90◦) cut through the reference far-field and the far-field with

and without echo suppression within the valid angle for the 3GHz horn antenna with planar

scan geometry.
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μ =±1, a system of equations,

wn
μm(A) = v

2

∑
s=1

TsmnPsμn(kA), (5.6)

is set up for the expansion coefficients of the AUT (see section 2.5). In order to integrate

the data obtained using the multiprobe measurement procedure, we rewrite Eq. (5.6) with

more unknowns,

wn
μm(A) = v

2

∑
s=1

T (3)
smnP(3)

sμn(kA)+ v
2

∑
s=1

T (4)
smnP(4)

sμn(kA), (5.7)

due to the assumption of incident and outgoing waves. In Eq. (5.7), the coefficients of the

outgoing waves, T (3)
smn are due to both the AUT and the echo sources whereas the incident

waves, T (4)
smn, are only due to the echo sources. Setting μ =±1 for the received signals from

the inward and outward probes results in four equations in four unknown expansion coef-

ficients, i.e. the TE (s = 1) and TM (s = 2) modes of the incident and outgoing spherical

waves. In Eq. (5.7), P(3)
sμn(kA) is as written in Eq. (5.5) and

P(4)
sμn(kA) =

1

2
∑Csn(4)

σ μv (kA)Rp
σ μv, (5.8)

with

[Csn(3)
σ μv (kA)]∗ = (−1)s+σCsn(4)

σ μv (kA), (5.9)

being the relationship between the translation operators in Eq. (5.5) and Eq. (5.8) [Hansen,

1988]. Since parts of the echo signal are also present in the outgoing waves, the coefficients

of the incident waves obtained by solving Eq. (5.7) are subtracted from the coefficients of

the outgoing waves to obtain the expansion coefficients of the AUT, i.e.

Tsmn = T 3
smn −T 4

smn. (5.10)

The performance of the multi-probe technique with spherical wave expansion is tested

with the echoic scenario depicted in Fig. 4.5. Near-field data generation is according to

the previously described steps concerning the use of inward looking and outward looking

probes. However, For the SWE technique, an angular sample spacing of 5.5◦ is employed

along both φ and θ directions corresponding to a multipole number of 32. This is because
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the echo sources removed from the measurement volume increase the field variation over

the measurement surface and consequently lead to the field having a higher multipole or-

der. Since the measurement volume serves as a band-limiting filter itself, the size of the

measurement volume is used to determine the highest order of the spherical waves to con-

sider. Therefore, when there are no sources outside the measurement sphere, the sampling

criteria is determined according to the size of the AUT. However, when there are sources

outside the measurement volume, sample spacing should be chosen according to the size of

the measurement sphere in order to avoid aliasing. The sampling density is not increased

for the plane wave expansion technique since the transformation technique does not need

to resolve the individual field modes but determines directly the AUT and the scattering

centers plane wave samples. Also, the flexibility to specify various source locations from

which plane wave translations are performed, allows the number of unknowns due to these

localized sources to remain minimal. SWE is done with respect to the origin for all sources

since an efficient implementation for localized sources with SWE has not be reported yet.

The advantage of the SWE is that the echo locations are not required for echo suppres-

sion. The echo suppression results with multi-probe measurements and SWE are shown in

Fig. 5.15 with the main pattern cuts in Fig. 5.16.

Figure 5.15: Normalized Eφ far-field pattern of the 3 GHz horn antenna in dB obtained

from the echoic near-field data generated from the scenario in Fig. 4.5. The near-field

data is acquired by the multi-probe technique and spherical wave expansion is employed to

obtain the far-field pattern.
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Figure 5.16: Far-field cuts for the result of multi-probe measurements with SWE shown

Fig. 5.15.
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5.4 Summary

In this chapter, a measurement technique for improving the quality of far-field patterns

obtained when antennas are measured in non-anechoic environments was presented. The

technique involves measuring the AUT with two sets of probe antennas, namely, inward

and outward sets of probes. This ensures that enough information is gathered to resolve

both the incident and outgoing waves from the measurement volume. The measured echoic

near-field data was transformed using the plane wave based NFFFT with the effect of the

echo sources integrated by means of auxiliary sources. A method to process multi-probe

data with the spherical wave expansion NFFFT was also presented. In this case, incident

and outgoing spherical waves are assumed for the involved sources in the inverse prob-

lem. The proposed techniques result in a substantial improvement in the far-field pattern

obtained from echoic near-field data. Additional measurement samples are required due

to the new sets of probe antennas but the technique does not require an increase in the

measurement distance or in the sampling density and it is not restricted to canonical mea-

surement geometries. The method is restricted to measurements with a fixed AUT. A great

advantage is the adaptability of the scattering centers e.g. in planar measurements the scat-

tering centers amplitude can adapt to the varying echo contributions due to the influence of

moving scanner parts.
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Chapter 6

Beamforming Filtering of
Near-Field Data

Probe antennas operate as a spatial filter on the near-field phase front as well as an angular

filter of the far-field [Schejbal et al., 2008, Slater, 1985]. Directive probes reduce the influ-

ence of multipath signals by filtering of off-axis signals. In this chapter, a beamforming

technique for echo suppression is presented [Yinusa et al., 2014]. The technique is based

on combining neighboring near-field signals in order to generate the signal as it would be

measured by a probe array. The filtered near-field data is transformed into the far-field by

means of the plane wave based NFFFT algorithm. The flexibility of the algorithm allows

for probe correction with the far-field pattern of the original probe such that there are no

nulls in the utilized probe far-field. A related concept has been investigated in [Hansen and

Larsen, 1984] where near-field data was acquired using a directive near-field probe. The

motivation there was to suppress echo signals arriving away from the boresight axis by

the choice of directive probe antennas in spherical near-field measurements. The authors

concluded that probe correction in spherical wave expansion does not amplify signals

originating from outside the minimum sphere. The use of such directive probes can,

however, lead to higher order interactions between the AUT and the probe. Also, probe

nulls may lead to errors either due to probe insensitivity in certain directions in the forward

hemisphere or due to numerical errors during probe correction. The latter is true especially

for planar and cylindrical near-field measurements [Gregson et al., 2007]. The present

99
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technique avoids such limitations since the near-field probe does not have to be particularly

directive. It simply generates the near-field data for a large probe by combining signals

from a small probe at different positions. Probe correction does not reverse the reduction

in multipath signals achieved by the use of a directive probe or beamforming since sources

are assumed only within the minimum sphere enclosing the AUT. The benefits of using a

directive probe antenna in near-field measurements includes the opportunity to reduce the

sampling rate and the reduction of multipath effects on the measurement result because

the probe spatially prefilters the measurements [Schejbal et al., 2008, Slater, 1985]. For

instance, a sampling rate of 5λ was reported in [Slater, 1985] with high-gain probes.

These advantages can, however, be overshadowed by the resulting multiple interaction

between the AUT and the probe and errors arising due to the probe insensitivity in certain

directions in the forward hemisphere especially for planar and cylindrical measurement.

6.1 Effects of Directive Probes in Planar Near-Field Mea-
surements

In order to highlight the disadvantages of directive probes in planar near-field measure-

ments, the 3 GHz AUT with the dipole distribution shown in Fig. 4.2 is measured with a

probe modeled with the dipole distribution shown in Fig. 6.1. The probe has a minimum

sphere radius of 0.16 m which is the same as the minimum sphere enclosing the AUT.

Simulations are carried out for both spherical and planar measurement geometries. The

measurement distance for the spherical set-up is 0.5 m with an angular sample spacing of

5.5◦ along φ and θ directions. Following Eq. (2.41), the multipole order of the translation

operator from the AUT to the measurement points was computed as 31 as opposed to 19

given the relatively large size of the probe antenna. The obtained far-field pattern for the

3 GHz AUT using the large probe antenna is shown in Fig. 6.2 and the main far-field cuts

in Fig. 6.3. It is observed that the obtained far-field pattern has very low error level because

it is close to the AUT reference pattern. For spherical measurements, nulls in the forward

hemisphere of the probe do not lead to errors since the main beam of the probe is always

focused on the AUT at the origin.
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Figure 6.1: Electric dipole distribution used to model the electrically large probe antenna.

The length and color of the dipoles represent the relative amplitude excitation and phase,

respectively.

Figure 6.2: Normalized Eφ far-field pattern of the 3 GHz horn antenna in dB obtained from

a spherical near-field measurement and plane wave based NFFFT. The near-field data has

been acquired using the probe antenna shown in Fig. 6.1.
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Figure 6.3: Far-field cuts for the result shown in Fig. 6.2.
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6.2 Beamforming for Planar Near-Field Measurements

For planar measurements, the measurement distance of 0.5 m is chosen with a sample spac-

ing of λ/2 and a measurement plane size of 4 m x 4 m. The measurement distance is large

enough to ensure that the minimum spheres enclosing the AUT and the one enclosing the

probe do not overlap. The size of the probe is also considered in the computation of the

translation operator similar to the case of a spherical measurement. The probe orientation is

fixed throughout the measurement campaign such that the boresight of the probe is always

perpendicular to the measurement plane as is common practice in planar measurements.

The obtained far-field pattern with the directive probe is shown in Fig. 6.4 and Fig. 6.5.

Figure 6.4: Normalized Eφ far-field pattern of the 3 GHz horn antenna in dB obtained from

a planar near-field measurement and by plane wave based NFFFT. The near-field data is

acquired using the probe antenna shown in Fig. 6.1.

It can be observed from the obtained far-field pattern with planar measurement using the

directive probe that the error level increased also within the valid angle. This is because of

the probe’s insensitivity in the directions corresponding to the probe nulls which becomes

more significant as the probe moves away from the middle of the measurement plane. The

planar measurement is repeated with a smaller probe modeled with the dipole distribution
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Figure 6.5: Far-field cuts of the result shown in Fig. 6.4 with the valid angle shown within

the rectangle.
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shown in Fig. 6.6 having a minimum sphere radius of 4.67 cm. The obtained far-field in

this case is shown in Fig. 6.7 and Fig. 6.8 with relatively low error levels. In order to
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Figure 6.6: Electric dipole distribution used to model the electrically small probe antenna.

The length and color of the dipoles represent the relative amplitude excitation and phase,

respectively.

obtain the spatial filtering advantages of a large probe without the accompanying penalties

earlier pointed out, the near-field measurement is done with a small probe. This also has the

advantage of reducing the multiple interactions between the AUT and the probe. The signal

from the individual measurement points are thereafter combined in a moving average man-

ner such that a signal is generated similar to the signal measured by a larger probe antenna.

The individual probe signals are weighted appropriately such that the resulting probe is

steered towards the AUT. Fig. 6.9 shows an example of how probe signal combination is

performed for two points for planar measurement with 13 points in each direction. In this

way, the direct AUT signals are combined constructively while the multipath signals are

attenuated. The effect of probe combination is then resolved during probe correction. In

order to demonstrate the improvement in SNR due to probe combination, synthetic data is

generated using the technique described in [Schmidt et al., 2011] involving electric dipole
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Figure 6.7: Normalized Eφ far-field pattern of the 3 GHz horn antenna in dB obtained

from a planar near-field measurement and plane wave based NFFFT. The near-field data is

acquired using the small probe antenna shown in Fig. 6.6.

distributions for the 3 GHz AUT shown in Fig. 4.2. The scan plane is along the x-z plane

at y = 0.5 m with a dimension of 4 m x 4 m and a sampling rate of λ/2. The contributions

from the AUT and echo sources towards the measured signal are then computed. For the

following example, two echo sources are assumed at locations shown in Fig. 6.10. The

signals from the AUT and both echo sources are evaluated for each measurement point

including the effect of the measurement probe. The signal-to-echo ratio

SER(x,y,z) = 20log10

‖UAUT(x,y,z)‖
‖UEcho(x,y,z)‖ (6.1)

is computed by taking the ratio of the direct AUT signal at each measurement point to

the echo signals. The SER is computed with and without beamforming and the SER gain

over the measurement plane for the scenario depicted in Fig. 6.10 is shown in Fig. 6.11.

The filtered near-field data is transformed into the far field by means of the plane-wave

based NFFFT algorithm described in Chapter 2. The formulation of the algorithm does

not assume any particular measurement geometry or probe order. Moreover, in line with



6.2. BEAMFORMING FOR PLANAR NEAR-FIELD MEASUREMENTS 107

0 50 100 150 200 250 300 350
-100

-80

-60

-40

-20

0

Theta in degrees

d
B

 

 

Reference far field

Far field with
the small probe

Error level

(a) E-plane pattern

0 50 100 150 200 250 300 350
-100

-80

-60

-40

-20

0

Phi in degrees

d
B

 

 

Reference far field

Far field with
the small probe

Error level

(b) H-plane pattern

Figure 6.8: Far-field cuts of the pattern in Fig. 6.7 with the valid angle shown within the

rectangle. The improvement in the error levels as compared to the results in Fig. 6.5 is due

to the sizes of the utilized probes.
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Figure 6.9: Scheme of measurement point combinations. The new signals for points de-

noted with a line are obtained by a weighted sum of the signals at the points denoted with

the same color.

Measurement
plane

AUT

Echo source #1
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Figure 6.10: Set-up for planar echoic scenario.

Eq. (2.39), different probes with arbitrary probe orientations can be used for different mea-

surement points within the same data set. These features allow for a near-field far-field

transformation of the data obtained by combining neighboring measurement points. Plane

wave translations and probe correction are performed with respect to the individual data
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Figure 6.11: SER gain in dB over the measurement plane between the data with probe

combination and the data without probe combination.

points and signal combination is done at the lowest level i.e. after probe correction. This

means that the utilized probe pattern is that of the actual small probe and not the pattern of

the combined probe. In this way, the spatial filtering advantages of using a directive probe

are obtained without the penalty of dealing with numerical errors due to nulls in the probe

far-field pattern. One would think that probe correction would reverse the gains in echo

suppression by amplifying the off-axis signals but this is not the case since sources are as-

sumed only within the minimum sphere enclosing the AUT. The linear system of equations

in Eq. (4.1) can be rewritten in this case as

P−1U ′
AUT +P−1U ′

echo =−j
ωμ
4π

P−1C · J̃ ′, (6.2)

where each row of the matrix P−1 specifies the filtering function for the corresponding

measurement point. The idea of applying P−1 to the measurement data is that it reduces

the ratio of U ′
echo to U ′

AUT when carefully chosen to utilize the a priori knowledge about

the configuration of the sources. This means that the combined points in U ′
echo combine

destructively and U ′
AUT combine constructively. The destructive combination in U ′

echo is

not recovered by the application of P−1 to C on the right hand side. This is because the

matrix C contains a spatial filter due to the integration of a minimum sphere enclosing the

AUT in its formulation. The obtained far field with echo and the far field with beamforming

obtained for the scenario in Fig. 6.10 are shown in Fig. 6.12 and Fig. 6.13, respectively. The
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results with beamforming show a lower error level when compared to the far field obtained

from non echoic near-field data.

Figure 6.12: Normalized Eφ far-field pattern of the 3 GHz horn antenna in dB obtained

from the echoic near-field data generated from the scenario in Fig. 6.10.

Figure 6.13: Normalized Eφ far-field pattern of the 3 GHz horn antenna in dB obtained

from the echoic near-field data generated from the scenario in Fig. 6.10. The signals are

combined before applying the NFFFT algorithm.
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Figure 6.14: Eφ E-plane pattern of the 3 GHz AUT from the echoic near-field data gener-

ated from the scenario in Fig. 6.10.
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Figure 6.15: Eφ H-plane pattern of the 3 GHz AUT from the echoic near-field data gener-

ated from the scenario in Fig. 6.10.
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6.3 Summary

In this chapter, a beamforming technique for echo suppression in near-field measurements

was presented. The technique depends on the combination of neighboring measurement

signals to generate signals with lower echo contributions. Combination of measured signals

has the spatial filtering advantages of a highly directive probes without the disadvantages

of multiple interactions between the AUT and the probe. The far field obtained from the

combined signals show a better accuracy when compared to the far field obtained by a

direct application NFFFT algorithm on echoic measurement data.
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Chapter 7

Statistical Techniques

Time domain techniques for echo suppression in antenna measurements were introduced

in Chapter 3. They depend on a broadband measurement of the AUT to obtain a frequency

domain characterization of the multipath environment. Echo suppression is accomplished

in those techniques by going back and forth between time and frequency domains and

recognizing the difference in propagation time between the direct AUT signal and multipath

signals. Two major drawbacks for such techniques include the increase in measurement

time needed for an accurate broadband measurement and the need for a broadband AUT

and probe. The latter can be solved by using averaging techniques whereby the AUT is

measured at several different measurement distances. In planar measurements, for example,

a well-known averaging technique used to reduce multiple reflection between the AUT and

the probe is to perform the planar measurement on two to five closely spaced planes over

a distance of λ/2. The measurements on the planes are then averaged in order to obtain

near-field data with reduced contributions from multiple reflections [Newell, 1988]. Similar

techniques can also be used to improve the quality of far-field patterns obtained from echoic

near-field measurements.

7.1 Multiple Measurement Distances

For closed measurement surfaces such as the spherical measurement geometry, the obtained

far-field pattern from near-field data on the measurement surface is independent of the mea-
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surement distance when factors such as multiple reflections are not taken into account. In

other words, once the minimum sphere enclosing the AUT and the one enclosing the probe

are separated, the same far-field pattern of the AUT can be obtained from the near-field

measurement regardless of the choice of the measurement distance. However, for sources

outside the measurement volume, the measured components vary depending on the mea-

surement distance. Typically, the larger a measurement volume, the higher the number of

modes that are captured by a measurement over that measurement surface for sources out-

side the volume. This is because the measurement volume itself acts as a spatial filter for the

radiated field from the source. For sources within the measurement volume, it is clear that

the measurement is able to capture all the modes generated by the sources. Measurement

on several measurement spheres, therefore, measures the same spectral components of the

AUT but different components of the echo sources. For spherical measurement, for exam-

ple, the AUT is measured over several concentric spheres as shown in Fig. 7.1. This can be

x

y

z

Figure 7.1: Near-field measurements on several spheres obtain varying modal contents of

the echo signals. Averaging the obtained far-field pattern results in echo suppression as the

echo signals vary depending on the measurement radius.

accomplished by repeating the measurement with the probe at different radial distances for

the traditional roll-over-azimuth positioners where the AUT is rotating and the probe is usu-
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ally fixed. This naturally increases the required measurement time. Once the near-field data

on these concentric spheres are measured, NFFFT is performed on the resulting data with

the plane wave based NFFFT algorithm to obtain the far-field pattern. Since the resulting

measurement data is on an arbitrary measurement surface, traditional modal transformation

techniques are not well suited for the transformation process. For non-closed measurement

geometries, the far-field pattern obtained from a particular near-field measurement usually

depends on certain choices made during the near-field acquisition. For example, in planar

near-field measurement, the valid angle depends on the size of the measurement plane and

on the measurement distance. In cylindrical measurements, the valid angle depends on the

radius and the height of the cylindrical surface over which the near field is acquired. In these

two cases, the measurement distance and the extent of the measurement surface would have

to be optimized for each measurement set-up such that the valid angle is the same for each

of the multiple measurements. The averaging technique was tested using echoic measure-

ment data with a Rohde & Schwarz HF906 double-ridged waveguide horn antenna shown

in Fig. 7.2 as the AUT [Rohde & Schwarz, 2014]. The measurement was carried out at a

Figure 7.2: Double-Ridged Waveguide Horn Antenna HF906 as AUT.

frequency of 5.9 GHz. The AUT was mounted on a standard roll-over-azimuth positioner

such that the movements during the measurement duration of a single polarization is done

by the AUT and the probe remains fixed. The only movement involving the probe is the

rotation of 90◦ to generate a second independent measurement. The measurement distance

is 2.7 m with an equal sample spacing of 2.5◦ along θ and φ directions. The radius of the

minimum sphere enclosing the AUT is 30 cm which corresponds to a multipole order of 50
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for the translation operator between the AUT and the measurement points at an accuracy

of 10−3 for the translation operator. This configuration is shown in Fig. 7.3. The normal

system of equations resulting from the plane wave translations was solved using the GM-

RES algorithm until a relative residual of 10−5 was reached. The convergence is shown in

Fig. 7.4 and the obtained far-field pattern which is also used as reference for subsequent

echoic measurements is shown in Fig. 7.5.

Figure 7.3: Spherical measurement set-up with the double ridged broadband horn antenna

HF906 used as AUT. Rotation over the complete measurement sphere is achieved by move-

ments of the AUT and the measurement radius is tuned by moving the probe.
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Figure 7.4: Convergence of the GMRES algorithm for the measurement set-up in Fig. 7.3.
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(a) Eθ pattern of the HF906 AUT at 5.9 GHz.

(b) Eφ pattern of the HF906 AUT at 5.9 GHz.

Figure 7.5: Far-field patterns of the HF906 AUT at 5.9 GHz obtained from the near-field

data measured with the set-up in Fig. 7.3.
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To generate the near-field data with echo signals, a metallic bucket was introduced into

the measurement room as shown in Fig. 7.6 and the near-field data with echo signals was

obtained. The probe is moved farther away from the AUT and another scanning was car-

Figure 7.6: Metallic bucket used to generate echo signals.

ried out to produce the measurement data for a second measurement sphere. This process

is repeated for five different positions of the probe antenna with an increment of 0.05 m

(1.0λ ) in the measurement distance such that measurement data is obtained for five con-

centric spheres. The sampling criteria is fulfilled for each of the measurement spheres such

that the number of samples is increased by a multiple of the number of measurement radii.

NFFFT is then performed for the data on the five concentric spheres. The number of mea-

surements is dictated by several factors such as measurement time and maximum distance

over which the probe can be displaced. Since the additional measurements serve as addi-

tional constraints for the NFFFT, more radial observations provide a better echo suppres-

sion performance. The far-field result with the metallic bucket for near-field measurement

on a single measurement sphere with radius of 2.7 m is shown in Fig. 7.7(a) and Fig. 7.8(a)

where the effects of echoes from the metallic bucket are clearly visible. Fig. 7.7(b) and

Fig. 7.8(b) show the corresponding results for the far-field obtained from near-field mea-
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surements on five concentric spheres. It can be seen that the multiple measurement resulted

in a lower error level when compared to the results from a single sphere. The echo suppres-

sion improved with increasing number of measurement spheres but the measurement was

limited to five due to positioner constraints.
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(a) Obtained from near field data on a single measurement sphere.
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(b) Obtained from near field data on five measurement spheres.

Figure 7.7: Phi = 90◦ cut for Eθ for the measurement set-up in Fig. 7.6
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(a) Obtained from near field data on a single measurement sphere.
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(b) Obtained from near field data on five measurement spheres.

Figure 7.8: Phi = 0◦ cut for Eφ for the measurement set-up in Fig. 7.6
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Example 2: HF906 at 3 GHz with metal plate

A second example for echo suppression performance of the multi-distance measurement

technique was investigated using the HF906 broadband antenna as AUT. In this example

the near-field measurement has been carried out at a frequency of 3 GHz with a sampling

rate of 4◦ along both φ and θ directions and the probe is a NSI WR284 probe [Nearfield

Systems, Inc., 2014]. The probe was fixed during the measurement of a complete

polarization with the AUT rotating. Echo signals were introduced to the measurement

by means of a metal plate placed in the measurement room as shown in Fig. 7.9 and

Fig. 7.10. The metal plate has a dimension of (1.03 m x 1.03 m) and it is fixed throughout

the measurements. The measurement distance for the reference measurement was set at

2.52 m. In order to obtain the far-field pattern, the plane wave based NFFFT algorithm

was applied to the measured near-field data. For this purpose, a multipole order of 29

was assumed for the AUT resulting in a plane wave sample spacing of 6◦ at an accuracy

of 10−3. The normal equation resulting from the linear system of equations was solved

iteratively using the GMRES algorithm until a relative residual of 10−5 was reached.

The obtained Eθ and Eφ far-field pattern from the reference measurement are shown,

respectively, in Fig. 7.11 and Fig. 7.12 and they are also used as reference for the echo

suppression results.

In order to observe the effect of the metal plate on the measurement result, the far-field

pattern from near-field measurement with the metal plate on a single measurement sphere

(r = 2.52 m) was obtained using the same settings for the NFFFT algorithm. The results

are shown in Fig.7.13(a) and Fig.7.14(a) where the main cuts are compared to those of the

reference far-field pattern. The effects of the echo signals can be seen clearly from the rela-

tively high error levels between the obtained far-field patterns with echoes and the reference

far-field. In order to generate measurement data for additional measurement spheres, the

measurement distance was incremented by 0.05 m (0.5λ ). Measurement data was gener-

ated with measurement distances of 2.52 m, 2.57 m, 2.62 m, 2.67 m, 2.72 m with the same

sample spacing on each of the measurement spheres. This resulted in 5 times the num-

ber of measurement samples compared to the initial reference measurements. The plane

wave based NFFFT algorithm was then applied to the multiple distance measurement data

with the same criteria as previously explained. Additional plane wave translations are per-

formed due to the additional measurement samples. The resulting far-field patterns are
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shown and compared to the reference far-field pattern in Fig. 7.13(a) and Fig. 7.13(a). The

echo suppression capabilities of the multiple sphere measurement can be clearly seen from

the reduced error levels as compared to the results from a single sphere near-field data.

Figure 7.9: Spherical measurement set-up with the double ridged broadband horn antenna

HF906 used as AUT. Echoes are generated by means of the metal plate.

Figure 7.10: Side view of the spherical measurement set-up with the double ridged broad-

band horn antenna HF906.
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Figure 7.11: Normalized Eθ far-field pattern of the HF906 broadband antenna at 3 GHz in

dB obtained without the metal plate.

Figure 7.12: Normalized Eφ far-field pattern of the HF906 broadband antenna at 3 GHz in

dB obtained without the metal plate.



126 CHAPTER 7. STATISTICAL TECHNIQUES

0 50 100 150 200 250 300 350
-50

-40

-30

-20

-10

0

Theta in degrees

d
B

 

 

Reference far field

Far field with echo

Error level

(a) Obtained from near-field data on a single measurement sphere.
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(b) Obtained from near-field data on five measurement spheres.

Figure 7.13: Phi = 90◦ cut for Eθ for the measurement set-up in Fig. 7.9
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(a) Obtained from near-field data on a single measurement sphere.

0 50 100 150 200 250 300 350
-50

-40

-30

-20

-10

0

Theta in degrees

d
B

 

 

Reference far field

Far field with echoes
on 5 measurement spheres

Error level

(b) Obtained from near-field data on five measurement spheres.

Figure 7.14: Phi = 0◦ cut for Eφ for the measurement set-up in Fig. 7.9
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7.2 Singular Value Decomposition

In linear algebra, the singular value decomposition (SVD) is a popular matrix factorization

method used to decompose a matrix

Amn = UmmΣmnVH
nn (7.1)

into two orthogonal matrices U and V and one diagonal matrix Σ containing the singular

values of A usually arranged in descending order. The symbol H denotes complex

conjugate transpose and (m,n) denote the sizes of the matrices. Measurements on multiple

spheres contain the same number of modes from the AUT but the modes related to the echo

sources are different depending on the measurement radius. This kind of problems are usu-

ally solved by utilizing the singular value decomposition to retrieve the signal component

that is common to all the measurements. Ideally, the main signal and the interfering signal

should be uncorrelated. This is not the case for antenna measurements since the echo

signals are directly generated by the AUT and probe interaction. The technique, however,

can help to remove some echo contributions and random noise generated through the

measurement process. In this technique, the far field is obtained separately for each of the

near-field data on the spheres. The several plane wave coefficients are then partitioned into

a matrix of size M x N where M is the number of plane wave samples and N is the number

of measurement spheres. Since the plane wave coefficients are obtained for the same AUT,

this matrix should ideally be a rank 1 matrix. However, due to the variation of the echo

signal on the different measurement spheres, the rank of the matrix can be greater than 1.

The matrix containing the plane wave coefficients is then expanded into three matrices

A1 = UΣ1VH , where U and V coincide with the left-singular and right-singular vectors

obtained from the SVD of the matrix A, respectively. The diagonal matrix Σ1 contains the

largest singular value of A with all other singular values set to zero [Manning et al., 2009].

This procedure is used to find the optimal low rank approximation of matrices in a least

square sense where one simply sets the desired number of singular values to zero, a result

known as the Eckart-Young theorem [Martin and Porter, 2011]. In this way, the rank of

matrix A is downgraded to 1.

For the measurement set-up shown in Fig.7.6, the near-field data was measured over 5

measurement spheres as described previously. The plane wave coefficients were, however,
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obtained separately for each of the measurement spheres resulting in five different far-field

patterns. The plane wave coefficients are then partitioned into a single matrix of size M x 5.

The matrix is thereafter processed by utilizing the SVD and setting all except the maximum

singular value to zero. The result obtained from the first column of the new matrix is

shown in Fig. 7.15. Similar processing of the data measured on multiple sphere for the

measurement with the metal plates resulted in the far-field pattern shown in Fig. 7.16. The

results are similar to the ones obtained by a joint processing of the measurements acquired

on the multiple spheres.
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Figure 7.15: Far-field pattern for the measurement set-up in Fig. 7.6 (with bucket) obtained

with the SVD technique.
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Figure 7.16: Far-field pattern for the measurement set-up in Fig. 7.9 (with metal plates)

obtained with the SVD technique.
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7.3 Summary

In this chapter, statistical techniques for echo suppression in near-field antenna measure-

ments were presented. The techniques are based upon multiple observations of the near

field on measurement surfaces with different measurement distances. The multiple obser-

vations contain a fixed number of modal contributions from the AUT but varying contribu-

tions from the echo sources allowing for techniques derived from the principal component

analysis. Echo suppression is achieved by jointly processing the near-field data acquired

on the multiple surfaces with the plane wave based NFFFT algorithm or by obtaining the

far-field patterns separately from each near-field measurement and applying the SVD tech-

nique on the far fields. Both techniques result in an improved far-field pattern from echoic

near-field data. However, joint processing of the near-field data results in a better echo

suppression.



132 CHAPTER 7. STATISTICAL TECHNIQUES



Chapter 8

Summary and Future Work

Measurement and post-processing techniques for improving the quality of far-field patterns

obtained when antennas are measured in non-anechoic environments were presented. The

techniques take advantage of certain a priori information about the AUT and the measure-

ment environment. These techniques are summarized in Table 8.1. In particular, the scat-

tering centers representation utilizes auxiliary sources to replace echo sources during the

process of the near-field far-field transformation. The acquired near-field data is therefore

attributed to both the AUT and the contributing echo sources. Once the equivalent sources

representing only the AUT are obtained, the far-field pattern without echo contributions are

thereafter evaluated. For non-localized echo sources, a technique was presented to evaluate

the direction from which the dominant echo sources were received. This is done by termi-

nating the iterative solution for the linear system of equation at an early stage and obtaining

an estimate of the AUT far-field pattern. The far-field residual at this stage provides useful

information regarding the directions of the echo sources. It was also demonstrated that

once the directions of the echo contributions are known, very good echo suppression can

be achieved since the scattering centers representation is robust to errors in the radial place-

ment of auxiliary sources. Results were presented both for point sources through synthetic

echo data and for real echo measurements generated in the measurement chamber. For

real echo sources, it was found to be more efficient to use several small auxiliary sources

over the surface of the echo source than to use one large auxiliary source. This is because

small sources incorporate more a priori information about the dimension of the target echo

source.

133
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Measurement Post-processing Application

Single probe PWE with auxiliary sources as-

sumed for echo sources. (Chap-

ter 4)

Works well when echo sources

are in the directions where the

probe is sensitive for the consid-

ered measurement points.

Weighting and combination

of neighboring measurement

points. (Chapter 6)

Measurement errors can be

compounded. Should be used

with very accurate measurement

equipments. Echo locations are

not required.

Inward and out-

ward probe

PWE with auxiliary sources as-

sumed for echo sources. (Sec-

tion 5.2)

For localized echo sources. Al-

gorithm for localizing dominant

echo sources is presented. Ap-

plicable to measurements with

fixed AUT.

SWE with incoming and outgo-

ing waves. (Section 5.3)

When echo locations are not

known. It requires angular over-

sampling of near-field data.

Measurement

on multiple

surfaces en-

closing the

AUT.

Use measurements on multi-

ple surfaces as additional con-

straints in linear system of equa-

tion for PWE. (Chapter 7)

Echo locations are not required.

Measurement time is relatively

long due to measurements with

multiple distances.

Apply truncated SVD technique

to far-fields from different mea-

surement surfaces. (Section 7.2)

Table 8.1: Summary of the presented echo suppression techniques.

In order to characterize sources within and outside a measurement volume, it is

theoretically necessary to measure both the electric field and the magnetic field distribution

on the measurement surface. This can be achieved by utilizing electric and magnetic

dipoles or by means of Huygens’ source probes which measures a linear combination of

the electric and magnetic fields. The multi-probe technique involves measuring the AUT

with two sets of probe antennas, namely, inward and outward sets of probes. This ensures

that enough information is gathered to resolve both the incoming and outgoing waves

from the measurement volume. The measured echoic near-field data was transformed

using a plane wave based NFFFT with the effect of the echo sources integrated by means
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of auxiliary sources. The proposed technique results in a substantial improvement in the

far-field pattern obtained from echoic near-field data. Additional measurement samples

are required due to the new sets of probe antennas but the technique does not require an

increase in the measurement distance or in the sampling density and it is not restricted

to canonical measurement geometries. The method is restricted to measurements with a

fixed AUT. A great advantage is the adaptability of the scattering centers e.g. in planar

measurements the scattering centers amplitude can adapt to the varying echo contributions

due to the influence of moving scanner parts.

The location of the AUT during the measurement is usually known and required for

most NFFFT algorithms. The beamforming technique takes advantage of this a priori

information to improve the signal to echo ratio and to improve the obtained far-field

pattern of the AUT from echoic near-field measurements. In this technique the signals

from neighboring measurement points are combined and carefully weighted such that the

synthetic probe array is steered toward the AUT. This gives the spatial filtering advantages

of a larger probe without the penalty of numerical errors due to probe insensitivity which

occurs from electrically large probes. The filtered near-field data in this case can be seen

as though it is measured with several probes of different sizes depending on the number

of points that are being combined. Traditional modal NFFFT algorithms are not able to

correct for such probe antennas. However, the flexibility of the plane wave based NFFFT

algorithms, allows for specification of different probes for different measurement points.

The idea of taking measurements on multiple planes to reduce the impact of multiple

reflection in planar near-field measurements is well-known in the antenna measurement

community. A similar technique for echo suppression in antenna measurements was

presented for spherical measurements. In this technique, the near-field distribution of the

AUT is measured over several concentric spheres. The far field obtained jointly from all

the measurement points typically has lower effects from the echo when compared with the

far field obtained from the near field on a single measurement sphere. The post-processing

with the singular value decomposition was also explained whereby the far field from each

measurement sphere is obtained separately. The SVD technique is then applied to the far

fields in order to obtain the echo-free far field pattern. The technique requires additional

measurement time, however, it is also applicable to narrowband antennas and probes as

opposed to time domain echo suppression techniques which require broadband AUT and
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probes.

The presented multi-probe measurement technique is applicable in situations where the

AUT is fixed. However, for most available positioner systems, this is not the case. The

AUT is usually mounted on a roll-over-azimuth positioner such that most of the movement

is done by the AUT and the probe remains fixed. Measurements on multiple surfaces and

application of the SVD is suitable for this measurement set-ups. Also, scattering center

placement for cylindrical measurement with rotating AUT has been described. More ad-

vanced positioners such as those equipped with robotic arms will allow a more flexible

choice regarding the orientation of the probe antenna. The representations of the scattering

centers can be done in a multi-level manner such that neighboring scattering centers are

combined and fewer direct plane translations are performed from the scattering centers to

the probe. New applications can also be found for the presented techniques. It will be

interesting and useful to investigate the applicability of the beamforming technique and

scattering centers representation for far-field measurements and compact antenna ranges.
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