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ABSTRACT

A
s easy as it seems for us to visually perceive and recognize our environment, we are

still just at the beginning of understanding how the human vision system might

work in its whole. Complex neuroscientific models have been built, drawing their foun-

dation both from neurophysiology, as well as empirical-obtained data from psychological

studies. Most of the existing models aim at representing and evaluating different theo-

rems, disregarding their real-world applicability - being in terms of efficiency, robustness

and generality. Pure technical-oriented vision systems however are confined to quite spe-

cific scenarios - like face recognition or tracking of objects - and seem to fail to function

in a more general context while humans or animals still outperform any technical system

by far.

This thesis presents an approach towards the efficient integration of neuroscientific

knowledge into a technical environment for improving vision models in time-crucial

real-world scenarios in the context of humanoid robotics. Instead of copying and com-

putationally replicating what we know about the information processing in the brain,

this thesis tries to grasp the pure functional aspect of it, in order to enhance technical

systems.

The main contribution of this thesis is the analysis, the development and the evalua-

tion of an efficient biologically-inspired vision system which supplies a humanoid robot

with the ability to visually perceive and understand its environment in an efficient and

scalable manner. The proposed model integrates three essential parts of human vision:

Visual attention, object-based attention and object recognition. Visual and object-based

attention play a major role in how and what we perceive in our field of vision by select-

ing and reducing the available information. Both of which are essential for a fast and

reactive vision system.

Six major contributions of this thesis helped to build this model: a) the design of a

new visual attention system, which outperforms state-of-the-art system in terms of ac-
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curacy, speed and complexity realized by b) our Sampled Template Collation method

for efficiently evaluating different image regions and which is able to adapt to compu-

tational needs; c) a new object-based attention system, which enhances object recog-

nition; d) our object recognition model - an enhancement of a computational model

called HMAX, which is an abstraction of the neural information processing in the visual

cortex. The model was modified in terms of speed and performance in order to put it

in a more technical context. We quantitatively and qualitatively show that by the in-

tegration of neuroscientific knowledge about neural information processing in the brain

like lateral-inhibition and avoidance of entropic redundancy results in a higher classifi-

cation accuracy and faster processing speed; e) the development of a temporal reasoning

framework which enables the system to classify over time and account for uncertainties

in non-static real-world scenarios; f) the system architecture for the efficient integration

of visual attention, object-based attention and object recognition, which enabled the

humanoid robot iCub to detect and segment even fast moving objects like a thrown ball.

The whole system was realized using a cluster architecture with multi-core CPUs and

GPUs to spread the computational payload and match the strong concurrent and highly

parallel character of information processing in the brain. Further enhancement involved

the application of methods for optimization from signal detection theory, information

theory, signal processing and linear algebra. This enabled the system to not only rec-

ognize the object, but also to localize where the object is present. The results discussed

in this thesis evidently show that technical systems can be enhanced by following the

biological paradigm.



KURZFASSUNG

O
bwohl es für uns leicht erscheint, unsere Umwelt zu erkennen und mit ihr zu in-

teragieren, fangen wir erst an zu verstehen, wie die visuellen Informationen im

Gehirn in ihrem Ganzen verarbeitet werden. Die meisten der komplexen neurowis-

senschaftliche Modelle, beziehen ihre Daten aus empirisch gewonnenen psychologischen

Studien und neurophysiologischer Forschung. Dabei haben diese Modelle das Ziel die

unterschiedlichen Theorien zu evaluieren und verifizieren, ohne dabei eine potentielle

praxisorientierte Anwendung zu betrachten. Rein technisch orientierte Bildsysteme sind

hingegen begrenzt auf sehr spezifische Anwendungsgebiete wie Gesichtserkennung oder

Objektverfolgung. Diese Systeme funktionieren jedoch nicht uneingeschränkt für jedes

Szenario. Der Mensch hingegen ist in der Lage all diese technischen Systeme bei Weitem

zu übertreffen.

Diese Dissertation verfolgt den Ansatz der effizienten Integration neurowissenschaftlicher

Erkenntnisse in ein technisches Umfeld für die Verbesserung von Bildsystemen für zeitkri-

tische Szenarien im Kontext von humanoider Robotik. Anstatt das Wissen über die In-

formationsverarbeitung im Gehirn zu replizieren, versucht die vorgestellte Arbeit jedoch

den rein funktionellen Aspekt zu extrahieren, um technische Systeme zu verbessern.

Ein westenlicher wissenschaftlicher Beitrag dieser Dissertation ist die Analyse, Entwick-

lung und Evaluierung eines effizienten biologisch inspirierten Bildsystems, das in zeitkri-

tischen Szenarien und Applikationen - wie in einem humanoiden Roboter - eingesetzt

werden kann. Das vorgestellte Model beinhaltet drei fundamentale Gebiete des men-

schlichen Sehens: Visuelle Aufmerksamkeit (Visual Attention), objektbasierte Aufmerk-

samkeit (Object-based Attention), Objekterkennung (Object Recognition). Visuelle und

objektbasierte Aufmerksamkeit spielen eine maßgebende Rolle in der Frage wie und was

wir in unserem visuell wahrnehmen, indem sie die Fülle an vorhandenen Informationen

selektieren und reduzieren.
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Weitere wichtige Beiträge dieser Arbeit helfen das System zu realisieren: a) die Entwick-

lung eines neuen Visual Attention Systems, welches in der Lage ist andere, dem Stand der

Technik entsprechende Systeme in Geschwindigkeit und Genauigkeit zu übertreffen; b)

unsere Sampled Template Collation Methode zur effizienten Evaluierung verschiedener

Bildregionen; c) ein neuer Object-based Attention Ansatz, welches in der Lage ist die

Objekterkennung zu verbessern; d) unser Objecterkennungs Modell - eine Erweiterung

des HMAX Modell, welches eine Abstraktion der neuronalen Informationsverarbeitung

im visuellen Cortex darstellt. Das Modell wurde angepasst in Bezug auf Skalierbarkeit,

Geschwindigkeit und Performanz, um es in zeitkritischen Szenarien nutzen zu können.

Wir zeigen, dass durch die Integration neurowissenschaftlicher Erkenntnisse höhere Klas-

sifikationsraten erzielt werden können; e) die Entwicklung einer Systemarchitektur für

die Integration von Visual Attention, Object-based Attention und Objekterkennung,

welche es dem humanoiden Roboter iCub ermöglicht auch sich schnell bewegende Ob-

jekte zu erkennen und segmentieren.

In Anlehnung an die hochparallele Informationsverarbeitung im Gehirn wurde das ganze

System als parallel rechnendes und verteiltes System realisiert mit Unterstützung von

Mehrkernprozessoren und Grafikprozessoren, um die vorhandene Rechenleistung effizient

Nutzen zu können. Weitere Optimierungen beinhalten die Nutzung von Kenntnissen

aus der Signalentdeckungstheorie, Informationstheorie, Signalverarbeitung und linearer

Algebra. Das System ist zudem nicht nur fähig zu erkennen, was das Objekt ist, sonder

auch, wo es ist. Die Ergebnisse dieser Dissertation zeigen, dass technische Systeme durch

biologische inspirierte Ansätze verbessert werden können.
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Chapter 1

INTRODUCTION

This chapter explains the motivation behind working on a biologically-inspired vision

system and the problems that needed to be addressed and which were encountered. The

chapter closes with the contribution of this work and an outline of this thesis.
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Section 1.1 Motivation

1.1 Motivation

T
he idea of intelligent and human-like robots has always fascinated people. First

introduced in science fiction literature and later movies, it now becomes more and

more reality through ongoing research and development in the field of robotics. In

industrial processes, robots have been integrated into the factory for years and are

already vastly used for very specific automated tasks. The next big step will likely be

robots for end users in home environments - as kitchen aid, to clean the house, to support

elderly people in everyday tasks, to go shopping and maybe just as a companion. Robots

can be built to easily extend our capabilities and to avoid the restriction of a biological

body. They don’t age, need no food, don’t rely on air or water and are therefore perfectly

suited especially for purposes in life-unfriendly environments like space exploration or

rescue tasks for emergency situations in inhospitable terrain after an nuclear fallout,

earthquake or fire.

Research could roughly be separated into two camps - empirical sciences like medicine,

biology or chemistry and applied sciences like computer science and electrical or mechan-

ical engineering. Former could be assigned to be more analytical research, especially in

neurosciences where the structure and functionality of the human brain has been a focus

of interest. Whereas latter sciences tend to be more on the engineering side where tech-

nical systems are built from scratch, focusing on very specific tasks. Recently researchers

have drawn more attention to the enormous potential of neurobiological findings for the

development of new technical models, which are able to exceed the capabilities of state-

of-the-art systems.

The possibility to visually perceive the world is probably one of the most important

abilities to any human being. As easy as it seems for us to recognize our surroundings

and interact with our environment, we are still just at the beginning of understanding

how the human vision system might really work. For a few decades, researchers have been

able to investigate how visual information is processed in the retina and the visual cortex.

Complex models have been built, drawing their foundation both from neurophysiology,

as well as psychological empirical-obtained data. Despite ongoing analytical research,

very few applicable models have shown to function in the real world. Most of the existing

models aim at representing and evaluating different theorems, disregarding their real-

world applicability - being in terms of efficiency, robustness and generality.
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Pure technical-oriented vision systems however are confined to quite specific scenarios

- like face recognition or tracking of objects - and seem to fail to function in a more

general context while humans or animals still outperform any technical system by far.

It is therefore worthwhile investigating the neuroscientific findings for its applicability as

it could lead to a new generation of technical systems which can exceed the capabilities

of state-of-the-art systems.

This work has been strongly motivated by the believe, that following the biological

example might be the only possible way in succeeding to build intelligent robots with

the capabilities of a human being.

1.2 Problem Description

O
ne of the main challenges in pursuing a biologically-inspired approach is to solve

the question of how to combine analytically obtained neurobiological models with

technical systems in a way that the properties, the functionality and the advantages

of the models are preserved. This is followed by the question if the particular model is

suitable for a technical application in terms of performance, accuracy, and computational

tractability.

If a model in its current form is not applicable for a technical utilization, is it possible

to modify the model and how? In order to obtain the same functionality, is it necessary

to replicate all the complexity we can find in the brain, the diversity of neurons and

the way to process and transmit information? And if not, what level of abstraction can

we apply to obtain and sustain the functionality while at the same time keeping the

authenticity of the model to be a sound representation of parts of the brain.

Given that technical resources - like the resources in the brain - are limited, this can

become a significant problem in the development of real-world systems, like humanoid

robots.

Processing and interpreting huge amounts of data is a challenging problem - both from

a computational and from an algorithm design perspective. Especially in the field of

computer vision a large number of information carried in the pixels has to be processed

in a short period of time before new information is available.
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Each pixel might carry necessary and important data valuable for interpreting the cur-

rent scene. The question is how to distinguish between redundant and important data

and to extract only the necessary information in order to reduce the computational cost

while at the same time being able to generate features which are unique, representative

and invariant to different factors like lightning, orientation or scale.

This work is intended to contribute to the development of a scalable, modular and

efficient vision system by using a biologically-inspired approach.

1.3 Contribution

This thesis presents an approach towards the efficient integration of neuroscientific

knowledge into a technical environment for improving vision models in time-crucial real-

world scenarios in the context of humanoid robotics. Instead of copying and computa-

tionally replicating what we know about the information processing in the brain, this

thesis tries to grasp the pure functional aspect of it, in order to achieve similar results.

The main contribution of this thesis is the analysis, the development and the evalua-

tion of an efficient biologically-inspired vision system which supplies a humanoid robot

with the ability to visually perceive and understand its environment in an efficient and

scalable manner. The proposed model integrates three essential parts of human vision:

Visual attention, object-based attention and object recognition. Visual and object-based

attention play a major role in how and what we perceive in our field of vision by select-

ing and reducing the available information. Both of which are essential for a fast and

reactive vision system.

Six major contributions of this thesis helped to build this model:

1. The design of a new visual attention system, which outperforms state-of-the-art

system in terms of accuracy, speed and complexity realized by

2. Our Sampled Template Collation method for efficiently evaluating different image

regions, which is able to adapt to computational needs;

3. A new object-based attention system, which enhances object recognition;
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4. Our object recognition model - an enhancement of a computational model called

HMAX, which is an abstraction of the neural information processing in the visual

cortex. The model was modified in terms of speed and performance in order to put

it in a more technical context. We quantitatively and qualitatively show that by

the integration of neuroscientific knowledge about neural information processing

in the brain like lateral-inhibition and avoidance of entropic redundancy results in

a higher classification accuracy and faster processing speed.

5. The development of a temporal reasoning framework which enables the system to

classify over time and account for uncertainties in non-static real-world scenarios.

6. The system architecture for the efficient integration of visual attention, object-

based attention and object recognition, which enabled the humanoid robot iCub

to detect and segment even fast moving objects like a thrown ball.

1.4 Thesis Outline

T
he thesis consists seven chapters. It is thematically subdivided into chapters, which

match the functional processing of the developed system (see figure 1.1):

Chapter 2. Related work.

This chapter, an overview on the related work is given. The chapter is split into

three parts. (1) Visual Attention, (2) Object-Based Attention and (3) Object

Recognition. Each of these chapters are divided into two subsections - the first

gives a brief overview over the biological foundation of the specific topic, the second

presents computational models that try to capture its functionality and behavior.

Those models vary in their focus on biological accuracy and plausibility - mostly

anticipated by life sciences - and technical applicability - more endorsed by engi-

neering and computer sciences.

Chapter 3. Sampled Template Collation For Fast Saliency Maps Generation.

In this chapter, our visual attention system is presented. It’s main advantages are

a low computational complexity, online scalability and a high accuracy in predict-

ing the human gaze which can compete with state-of-the-art models. First the

core functionality of the system - Sampled Template Collation - is explained. The

second section presents the experimental results of the system in regard to accu-
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racy in predicting the fixation of human subjects and in regard to computational

efficiency and scalability.

Chapter 4. Object-Based Attention using Sampled Template Collation.

Object-based attention explains the behavior of neural responses when an object

is fixated. Visual stimuli are adjusted in favor of the particular object, which

enhances the processing of the object’s features. So far, only little research has

been conducted towards the application of object-based attention in technical ap-

plications. In this chapter, our object-based attention system is presented. The

method we developed is based on our sampled template collation model. The

advantages are the low computational complexity and the improved object recog-

nition results due to the segmentation. The first section describes how sampled

template collation is used for object segregation. The second section presents the

visual segmentation results and the improved object classification performance.

Chapter 5. Enhancing a Computational Model for Object RecognitionModHMAX.

This chapter will introduce the object recognition system developed in this thesis.

It consists of ModHMAX, a for time-crucial applications enhanced modification

of HMAX and the concept of temporal reasoning, which introduces time to static

recognition models and presents a more realistic approach to biologically-inspired

object recognition. The chapter starts with a discussion about the use of 3D in-

formation in object recognition.

Chapter 6. A System Architecture for Visual Attention, Object Segregation and

Object Recognition.

This chapter proposes an architecture for the integration of visual attention, object-

based attention and object recognition for active camera systems. We describe how

the single modules are integrated into a software framework and how the communi-

cation and information processing is handled between the modules. We successfully

enable the humanoid robot iCub to adjust the gaze to the most salient point using

out visual attention system based on sampled template collation. The fixated ob-

ject is then fed to our object-based attention system for object segregation. The

segmented object is then classified using our ModHMAX approach.

Chapter 7. Conclusions.

Finally, we present a summary of this thesis as well as some further discussion of
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our system and contributions. We also give an outlook and suggestions of possible

future work and improvements.
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Chapter 2

RELATED WORK

In this chapter, an overview on the related work is given. The chapter is split into three

parts. (1) Visual Attention, (2) Object-Based Attention and (3) Object Recognition.

Each of these chapters are divided into two subsections - the first gives a brief overview

over the biological foundation of the specific topic, the second presents computational

models that try to capture its functionality and behavior. Those models vary in their

focus on biological accuracy and plausibility - mostly anticipated by life sciences - and

technical applicability - more endorsed by engineering and computer sciences.
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T
he most challenging problem in robotics is arguably vision, and we stand to gain a

great deal in following the biological system as a guideline for the design of artificial

visual system for robots, especially humanoid robots [Ude and Cheng, 2004; Ude et al.,

2005; Goerick et al., 2005; Ude et al., 2008b]. Humans are capable of detecting and

recognizing objects under the most complex circumstances. They can easily identify

objects under most lighting conditions, different orientations, shapes or sizes [Duhamel

et al., 1997; Anderson et al., 2000; Booth and Rolls, 1998]. Even objects in clutter

pose little problems, in contrast to state-of-the-art computer-based object recognition

systems , which struggle to perform adequately under varying situations [Riesenhuber

and Poggio, 1999; Serre et al., 2007b]. Therefore, it only makes sense – and perhaps is

the only successful way – to analyze how the visual system in biological systems works

and use that knowledge for modeling those mechanisms to build a more likely effective

and robust object recognition system.

The human brain contains more than 10 billion neurons and more than 10 trillion

synapses, making up networks and subnetworks of immense complexity [Yantis, 2008].

Recently, due to a deeper understanding of information processing in the brain and due

to more powerful computational resources, the vision and robotics community started

building more and more systems which gain their inspiration and functionality from bi-

ological models. Be it for building robots by studying the human corpus [Pfeifer et al.,

2007], or for building robotic insects [Wood, 2008], or to integrate intelligence into hu-

manoid robots [Bar-Cohen and Breazeal, 2003]. Or to enhance common techniques like

face recognition by using biologically-inspired features [Meyers and Wolf, 2007]. The

widely applied SIFT features [Lowe, 1999] are also inspired by neurons in the inferior

temporal cortex. Some research draw more attention to active-vision systems, which

have been used to solve different vision problems like: object recognition [Chen et al.,

2011; Bevec and Ude, 2012; Andreopoulos et al., 2011; Goerick et al., 2005]; visual search

[Rasolzadeh et al., 2010; Halverson and Hornof, 2012]; visual attention [Siagian and Itti,

2007]; or visual tracking [Mahadevan and Vasconcelos, 2013]. It has also been investi-

gated how to integrate object recognition [Ude et al., 2008b, 2004] and visual attention

also with a focus on the aspect of computational complexity [Ude et al., 2005].
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2.1 Visual Attention

T
he amount of sensory information provided by the visual world is immense and

computationally expensive to process in it’s whole. It is therefore useful and im-

portant to filter out currently unnecessary information to avoid an overload of sensory

data and to reduce the computational payload. Visual attention is a concept that origins

from life sciences, especially psychology, where researchers try to explain the unconscious

selection process of visual information in humans. The nervous system emphasizes infor-

mation which seem to be more important or more interesting compared to other stimuli

and which is subsequently passed on for a more detailed investigation. This concept of

information reduction and detecting regions of interest or uniqueness is obviously very

useful for technical applications and has been exploited in a vast variety of different

vision tasks like feature detection, image segmentation [Mishra et al., 2009a,b], image

matching [Siagian and Itti, 2007], image and video compression [Cheng et al., 2011], ob-

ject detection [Goferman et al., 2012] or tracking [Frintrop, 2010]. In the first subsection

the biological background is briefly discussed, followed by the second subsection which

presents some state-of-the-art computational models for visual attention.

2.1.1 Biological Background

The research on visual attention1 is arguably one of the most broadly studied topics in

a wide area of research fields from psychology, cognitive neuroscience or even computer

science. Visual attention describes the unconscious selection of a subset of all visually

observed information. The perceived stimuli are biased in favor of the most salient ones,

which usually is a small set of stimuli that show different patterns in comparison to the

rest of the stimuli.

Visual Attention has been under intense investigation in research probably because it is

present in all everyday situations involving vision. A bird in the sky draws our attention

towards it, because the color sticks out from the blue background. So does a red apple

on a tree, because the green of the leaves surround it. Traffic signs are designed to stick

1In literature visual attention is used to describe spatial attention - in contrast to object-based atten-
tion, although visual attention refers to the whole process of attention in the visual cortex. In this
work visual and spatial attention mean the same.
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out from the surroundings in order to draw a driver’s attention to it. Marketing agency

have been using concepts from visual attention to create appealing advertisements.

Carrasco investigated the visual attention related publications of the last 25 years and

found an almost exponential increase in the number of articles in scientific journals (see

figure 2.1) [Carrasco, 2011]. Borji and Itti show in [Borji and Itti, 2013] a taxonomy of

different attentional studies (see Figure 2.2).

Figure 2.1 Number of articles on visual attention published in all scientific journals
[Carrasco, 2011].

Mark et al. [Mark et al., 2007] describe attention as the state of selectively processing

simultaneous sources of information. In the context on visual attention, this means, that

attention enables us to concentrate on one object over others in our visual field.

There are two camps that grant different rolls to attentional processing [Kanwisher and

Wojciulik, 2000]. Recent research believes that preattentive vision perceptually analyses

the entire scene to a higher level, even including object identification. A subset of this

information is then selected for further analysis and response planning. The traditional

research on the other hand, considers the preattentional process as a very basic mech-

anism without any involvement in higher cognitive functions. They believe that object

recognition is only possible with focused attention, after preattentive processing.

This work will focus on the classical view of visual attention, because of its long history,

broader acceptance and vast variety of models which have been developed to describe
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Figure 2.2 Taxonomy of visual attention studies [Borji and Itti, 2013].

it. Although those models don’t integrate a higher preattentive analysis like suggested

in recent work, the prediction rate of those models comes very close to the human’s

performance [Judd et al., 2012], which suggests the correctness of the classical approach.

Two approaches have been intensely discussed in attentional research, namely bottom-

up and top-down [Connor et al., 2004]. Bottom-up mechanisms operate on the raw

sensory input without any conscious shift of attention to salient areas in the visual field.

These low level features can be e.g. differences in color, motion, orientation, lightness.

Top-down mechanism on the other hand involve higher cognitive strategies, biasing the

raw input toward specific features e.g if we are looking for our keys, or searching for a

specific tool in the kitchen. Top-down mechanisms are also responsible for the strong

attentional bias towards faces, humans or animals. This phenomenon supports the idea

of some kind of preattentive object identification.

One of the first and probably most prominent concepts of bottom-up visual attention

is Treisman’s Feature Integration Theory [Treisman and Gelade, 1980]. In contrast to

preattentive object identification theories, Treisman suggests that features are registered

early, automatically, and in parallel during the preattentive stage, while objects are
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identified separately and at later step in processing called focused attention stage. The

proposed features include separable dimensions like shape and color and local elements

or parts like lines, edges or curves which are separately analyzed and the integrated into

a complex whole representation. The visual scene is accordingly coded into separable

dimensions, such as color, orientation, spatial frequency, brightness and direction of

movement. The features that are present at the fixated area of attention are combined

to form an object. Figure 2.3 gives an example of the different feature maps involved in

the visual attention process.

����

������

�	��


	��

�	��

�
��


��

	��


����

����
�
��

�

�

��


Figure 2.3 Feature Integration Theory example with individual feature maps: The basic
colors blue, yellow, green, red and orientation, contrast, size and luminance.

More recently visual attention has been investigated on a neuroscientific level using

functional magnetic resonance imaging (fMRI). Kanwisher and Wojciulik show in [Kan-

wisher and Wojciulik, 2000] where visual attention happens in the brain using functional

neuroimaging which provides new and more detailed insights in the neural processing.

They found out that attention not only modulates the gain on incoming visual infor-

mation like suggested by bottom-up models, more importantly attention can also add

a pure top-down signal that increases baseline activity in striate and extrastriate cor-

tex. Attention can also select locations, features or objects under different conditions.
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They conclude that attention affects the processing already at the first stage of cortical

information processing in the primary visual cortex.

Itti and Koch give a simplified overview over the involved brain areas during visual

attention [Itti and Koch, 2001] (See figure 2.4). The information is processed along two

parallel and hierarchical streams. The dorsal stream (including the posterior parietal

cortex) is responsible for the spatial localization of the visual information and therefore

for directing the attention and gaze towards objects of interest. The ventral stream

(including the inferotemporal cortex) on the other hand is responsible for the recognition

and identification of objects.

Figure 2.4 Neural Mechanism and brain regions involved in visual attention processing
and motor control of the eye (Image taken from [Itti and Koch, 2001]).
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2.1.2 Visual Attention Models

There exist a vast number of visual attention models. The first models that were created

can be classified as cognitive models, that focus on biological plausibility and have their

roots in Treisman’s Feature Integration Theory. Borji and Itti [Borji and Itti, 2013]

grouped the most prominent state-of-the-art models into different categories: Informa-

tion Theoretic Models, Graphical Models, Spectral Analysis Models, Pattern Classifica-

tion Models, Bayesian Models or Decision Theoretic Models. In this subsection one of

the probably best known models by Itty and Koch [Itti et al., 1998] will be presented

as well as Harel’s, Koch’s, and Perona’s Graph-based Visual Saliency model (GBVS)

[Harel et al., 2006]. A distributed visual attention model for humanoid robots by Ude et

al. [Ude et al., 2005] concludes this section to give an example of a technical application

of visual attention and its realization in real world scenarios.

Itti and Koch present in [Itti et al., 1998] a saliency-based visual attention model for

rapid scene analysis (see figure 2.5), based on the Feature Integration Theory. It de-

composes the input image into multiscale image pyramids generated with a low-pass

Gaussian filter. The pyramids have different modalities: color, intensity and orientation

- latter created using edge detecting Gabor filters at different orientations. Then the

center-surround differences are calculated. These operations are similar to the func-

tionality of visual receptive fields. The neurons are most sensitive in the center, while

the surrounding can inhibit the response. This behavior particularly contributes to the

detection of locations that differ from their surrounding area. All resulting feature maps

are then normalized and combined to a final saliency map. The model was designed

under the premise of biological plausibility in accordance with the anatomy of the visual

system in macaque monkeys.

The Graph-based visual saliency model (GBVS) was proposed by Harel et al. [Harel

et al., 2006]. They argue that their Markovian graph-based approach is inspired by

the neural communication in the visual cortex. The architecture consists of two stages:

In the first step activation maps of certain feature channels are created, and are then

normalized in the second step, in a way which highlights conspicuity and combination

with other maps. The feature maps are created from basic feature channels of the image,

like color, orientation, intensity. The activation map is created calculating dissimilarities

between pixels in those feature maps using
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Figure 2.5 General architecture of Itti and Koch’s model. (Image taken from [Itti et al.,
1998]).
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In the next step a fully-connected, directed graph is built by connecting the point of

interest with all other points in M . The edges of the graph G are weighted using the

feature dissimilarity score and a Gaussian-like distance weight F :

w((x1, y1), (x2, y2)) = d((x1, y1), (x2, y2)) ∗ F (x1 − x2, y1 − y2),

with F (a, b) = exp(−a
2 + b2

2σ2
)

(2.2)
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Now a Markov chain is defined on the graph G by normalizing the weight of all edges

of every node to 1. Each node can now be regarded as a Markovian state and its edges

as transition probabilities of the Markov chain. The higher the weight, the higher is the

transition probability, meaning it is more likely to move on to a state, that was more

different and accordingly more unique in the feature map. The equilibrium distribution

of this chain would accumulate mass at nodes with high dissimilarities, because of the

higher transition probabilities. The resulting mass distribution creates the activation

map A. The second part of the approach aims on promoting areas with a high amount

of dissimilarities by concentrating the masses from the activation map A. This step is

similar to the previous one. A Graph is created using subsets of pixels in A as nodes.

The edge weights are calculated using equation 2.2. Harel et al. argue, that this method

seems to behave better compared to a Differences of Gaussians or nonlinear interactions

approach. The normalization step can be carried out multiple times to account for

local maxima. The final saliency map is now created by summing the normalized single

channel activation maps.

Many of the approaches to visual saliency are computational expensive and complex

(see comparison in [Cheng et al., 2011]), making those models less suitable in real-

world scenarios. More recent systems, however, are more focused on computational

performance, like [Lin Zhang, 2013] or Cheng et al.’s work in [Cheng et al., 2011]. Latter

compare different models by their computation times for building a saliency map and

propose a fast model of their own based on regional contrast. The most related model

in regard to our template sampling approach is Erdem and Erdem’s work in [Erdem and

Erdem, 2013]. They compare covariances of non-overlapping neighbored image regions

to compute the saliency map.

Ude et al. applied a visual attention system on a humanoid robot [Ude et al., 2005] and

showed how computational expensive models can be implemented in a parallel fashion

to achieve low-latent real time performance. Their visual attention system is built on

Itti and Koch’s architecture. They apply the same feature cues intensity, orientation,

and color but extended the model with motion and disparity. Two very important

features to detect salient areas in a real world scenario. The human brain is strongly

biased towards motion, which could be explained by evolutionary processes, where it

was important to detect a moving enemy or prey in order to survive. By introducing

disparity to the system they account for the fact, that close objects or objects in reach

are more interesting or important that distant objects. To handle the computational
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cost, they split up the cues on a cluster of PCs and combine the resulting maps later on

another PC. Ude et. al use synchronization schemes to handle the possibility of delay in

the image processing, otherwise unsynchronized images could be combined which would

result in erroneous saliency maps. They applied their system on a humanoid robot with

an active eye system by driving the gaze towards the most salient point generated by

their system.

2.2 Object-Based Attention

O
bject-based attention tries to explain what happens in the brain after a saccade,

when an object is fixated. In this step the focused object or area seems to stick

out suppressing the surrounding, even in cluttered scenes. The attended object is con-

sciously perceived, which is also described as selective attention in contrast to previous

unconscious perception.

It is obvious that this step contributes towards object recognition by separating the

attended object from the surrounding and biasing features in favor of the attended

objects. It can therefore be regarded as some kind of segmentational process, similar to

segmentation in computer vision.

In this section the biological background of object-based attention is presented. Object-

based attention systems for technical applications has however hardly been investigated,

here we present work by Walther et al., whose research has focused particularly on that

topic.

2.2.1 Biological Background

Because of the long history of research on spatial attention, theories on object-based

attention are not as mature and represent just a small fraction of attentional research.

Recent research, however, has demonstrated the importance of objects in organizing

(or segregating) visual scenes, guiding attentional selection and for object recognition

[Vecera, 2000; Walther and Koch, 2006].

Desimone and Duncan describe two basic phenomena that define the problem of visual

attention [Desimone and Duncan, 1995]. The first one is the limited capacity for pro-
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cessing the information available on the retina. The second one is the ability to filter out

currently unnecessary information, which enhances the visual representation of objects,

even if spatially occluded in cluttered real-world scenarios.

Yantis [Yantis, 2008] describes two categories that influence visual selection. One is

bottom-up, involuntary or unconsciously, and stimulus-driven and depends on primitive

physical appearance of an object. The second kind of influence on selection is top-down

and depends on a more cognitive decision. He emphasizes that selective attention is

required when the visual system is confronted with typically cluttered natural scenes.

Cohen and Tong [Cohen and Tong, 2013] describe object-based attention as a pattern-

specific attentional filtering in the visual cortex, meaning that patterns which don’t

belong to the attented object - like color or texture - are suppressed. The neural activity

patterns in early visual areas are strongly biased in favor of the attended object.

Together with foveal vision and the much higher density of cones in the center of the

fovea, the phenomenon of object-based attention contributes towards the recognition of

objects in higher cortical areas [Walther et al., 2005], as it helps to segment the object

from irrelevant clutter [Walther and Koch, 2006].

Ungerleider et al [Ungerleider and G, 2000] also state that in everyday life, the scenes

we view are typically cluttered with many different objects, but the capacity of the

visual system to process information about multiple objects is limited. They explain

that the different objects in the visual field compete for neural presentation, because

of the limited processing capacity in the visual cortex. This competition is biased by

bottom-up mechanisms driven by primitive features and top-down influences, such as

selective attention.

Kastner et al. [Kastner and Ungerleider, 2001] explain this behavior more detailed.

At the neural level, competition among multiple stimuli is evidenced by the mutual

suppression of their visually evoked responses and occurs most strongly at the level of

the receptive field. Functional brain imaging studies reveal that biasing signals due

to selective attention can modulate neural activity in visual cortex not only in the

presence, but also in the absence of visual stimulation. Subjects that are shown two

different objects and that are asked to identify two dissimilar attributes at the same

time (e.g., color of one and orientation of the other) perform worse than if the task had

been performed with only a single object. They conclude that multiple objects present

at the same time in the visual field compete for neural representation due to limited
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processing resources. Sensory suppression among multiple stimuli present at the same

time in the visual field has been found in several areas of the visual cortex, including

areas V2, V4, the middle temporal (MT) and medial superior temporal (MST) areas,

and inferior temporal (IT) cortex.

Similar statements can also be found by Mangun in [Mangun, 1995]. He states that

visual selective attention improves our perception and performance by modifying sensory

inputs at an relatively early stage of processing. These spatial filters alter the inputs to

higher stages of visual analysis that are responsible for feature extraction and ultimately

object perception and recognition, and thus provide physiological evidence for early

precategorical selection during visual attention.

Desimone advocates the Biased Competition Theory [Desimone, 1998] which suggests

that the visual processing in the brain can be biased by other mental processes such as

Bottom-up or Top-down. He proposes a model which is comprised of five main tenets:

1. Objects in the visual field compete for cell responses in the visual cortex. If, for ex-

ample, two stimuli are presented simultaneously within the visual field, both neural

representations are initially activated in parallel. Neural responses in that region

will be determined by a competitive interaction between those stimuli. These

interactions will be mutually suppressive on average.

2. Competitive interactions are strongest in a given cortical area when competing

stimuli activate cells in the same local region of cortex. Receptive fields which

receive two competing stimuli will react the strongest.

3. Competitive interactions can be biased in favor of one stimulus in a cluttered field

by virtue of many different mechanisms, rather than by a single overall attentional

control system. These mechanisms are bottom-up (e.g. one stimulus has greater

novelty or has a higher contrast than another) as well as top-down driven.

4. The feedback bias is not purely spatial and can be driven by stimuli possessing

a specific relevant feature, like color, texture, contrast or shape. This non-spatial

driven feedback refers to behavioral tasks like visual search, where the sum of

specific features are biased over location. When a subject is e.g. asked to look

for a red object in his visual field, stimuli which react to red are emphasized and

stimuli of other colors suppressed.
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5. The main source of the top-down biasing inputs to ventral stream areas in ex-

trastriate cortex derives from structures involved in working memory, specifically

prefrontal cortex.

Proulx et al. [Proulx and Egeth, 2008] describes the Biased Competition Theory as

a competition of objects for cortical representation in a mutually inhibitory network,

which is biased in favor of the attended item. They also mention that bottom-up and

top-down information are the two sources of information which allow an object to be

processed over other objects.

The Biased Competition Theory has broadly found acceptance in related research com-

munities until today. More recent research like Vecera’s paper on Object-based Segre-

gation [Vecera, 2000] also state that the biased competition model has been useful in

describing a range of behavioral and neurobiological data from visual search experiments

that rely on spatial attention, which suggests that the general approach of combining

stimulus information and goal-related information may provide an accurate description

of many attentional phenomena.

Vecera’s work is focused on object-based segregation, which refers to the visual process

responsible for determining which visual features combine to form shapes which contains

the object and separates it from its surroundings. Object segregation is synonymous

with perceptual organization, the term used in conjunction with the gestalt principles

of visual organization [Koffka, 2013]. Object segregation and object-based attention

are interrelated. Before a shape can be selected, the features of the shape first must

be segregated from features of other shapes to some extent. The ability to perform

figure-ground segregation and distinguish foreground shapes from background regions

also involves object segregation processes.

In Figure 2.6 an example of figure-ground segregation is given. Object-based attention

could be directed to either the black region or the white region. Attentional selection

is more efficient if attention is directed to a single region than to multiple regions.

Because any visual scene contains many objects that compete with one another as they

are being segregated and compete for attention, the visual system must be capable of

allocating processing to one object or region over others. This allocation is achieved by

biasing processing toward one object or region. These biases provide a resolution for the

competition between objects or regions; this competition between objects occurs within

both segregation processes and object attention processes. For example, the two regions
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Figure 2.6 An example of figure-ground segregation in object-based attention. The
black region appears to be more salient than the white region or the gray background
[Vecera, 2000].

in Figure 2.6 compete with one another for neural representation. Observers tend to

perceive the symmetric black region as figure because symmetry acts as a bottom-up bias

in the figure-ground competition and favors symmetric regions as figure (and asymmetric

regions as ground). The biased competition account attempts to explain (1) how some

objects or regions become more salient figures or perceptual groups and (2) how some

objects are selected over others.

Vecera [Vecera, 2000] mentions, that two sources of competition occur in natural multi-

object scenes. First is a competition within object-based segregation processes and

second a competition within object-based attentional processes. The outcome of the

first competition is a perceptual group that is more salient than others; the outcome of

the second is the actual selection process of the perceptual group. These two sources

of competition are obviously highly interrelated, they are however discussed as separate

in the visual perception literature. In this work, there is no distinction made between

those two terms.

An important source of bottom-up information influencing object segregation are so

called image cues, which allow the visual system to determine if two features origin from
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the same object or different object. The gestalt principles of organization, shown in

figure ??, are bottom-up cues that are useful for visual segregation

(a) Proximity (b) Similarity

(c) Connectedness (d) Common Region

Figure 2.7 Some of the gestalt cues of perceptual organization. These cues provide
bottom-up information helping the visual system to segregate salient objects from
their surrounding. (a) The proximity cue allows close features to group to higher
order information (The circles form horizontal rows of elements.) (b) The similarity
cue groups features on the basis of similar primitives (Circles with same luminance
are grouped together.) (c) The connectedness cue groups features that are physically
connected to one another. (d) The common region cue groups features that are within
a shared region (Images taken from [Vecera, 2000]).

The gestalt principles are a basic model of visual perception, because it does not integrate

any concept of learning, which is evidently a essential part of neural processing. Through

experience the visual system learns representations of natural scenes. Features of the

same color, for example green of leaves, are more likely to belong together as features

which are unknown to the perceptual system. Similar features are assigned to the same
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object and features which are different are expected to belong to a different object or

shape.

Object-based segregation and object recognition are obviously strongly interrelated.

Without object segregation a multi-object scene, which basically represents all natu-

ral scenes, would be much harder to classify, if not entirely impossible. Petersen et al.

[Peterson, 1994] assume an even stronger interrelation between both processes, that is

based on feed-back information processing. They believe that object recognition partly

happens prior to figure-ground segregation. Objects are preliminarily identified by a

prefigural recognition process and then again influence figure-ground segregation. This

prefigural assumption stands in contrast to most hierarchical accounts of perceptual

segregation and object recognition that place segregation processes prior to recognition

processes like Marr [Marr, 1982] or Biederman [Biederman, 1987].

2.2.2 Object-Based Attention Models

Sun and Fisher present an object-based visual attention model for computer vision [Sun

and Fisher, 2003] that extends Duncan’s Integrated Competition Hypothesis. In contrast

to existing feature-driven models, they extend their system to be object-driven. They

describe two new mechanisms in their proposed uniform framework: The first computes

the visual salience of objects and groupings; the second implements hierarchical selectiv-

ity of attentional shift. They state three theoretical aspects found in modern literature,

which are brought together in their model: 1.) Integrated competition for visual atten-

tion. 2.) Bottom-up and top-down interaction and 3.) Hierarchical selectivity of visual

attention.

Walther et al present in [Walther et al., 2005] a selective visual attention system and

address the problem of object learning in cluttered scenes. They propose a method for the

selection of salient regions which are likely to contain objects, based on bottom-up visual

attention. They apply the method on unsupervised one-shot learning of single objects

in clutter and show that it can strongly improve learning and recognition performance.

Their attention system is based on Itti et al’s approach explained earlier, where the

result of the Winner-Take-All operation is used for object segmentation and then further

processed with Lowe’s SIFT features. They validated their approach and achieved a false

positive rate of 0.8% compared to 6.8% for random patch selection.
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Figure 2.8 Sun and Fisher’s model of object-based attention, integrating both top-down
and bottom-up features. (Image taken from [Sun and Fisher, 2003].)

2.3 Object Recognition

I
n the last couple of years there has been an increase in biologically-inspired hierarchical

models for object recognition, due to a deeper understanding of information processing

in the brain [Thomure et al., 2010; Serre et al., 2007b; Poggio et al., 2011]. Some of these

models have also been applied to enhance common techniques like face recognition by

using biologically-inspired features [Meyers and Wolf, 2007]. Some research draw more

attention to active-vision systems, which have been used to solve different vision prob-

lems like: object recognition [Chen et al., 2011; Andreopoulos et al., 2011; Goerick et al.,

2005; Wersing and Körner, 2003]; visual search [Rasolzadeh et al., 2010; Halverson and

Hornof, 2012]; visual attention [Siagian and Itti, 2007]; or visual tracking [Mahadevan

and Vasconcelos, 2013]. It has also been investigated how to integrate object recognition
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[Ude et al., 2008a, 2004] and visual attention also with a focus on the aspect of compu-

tational complexity [Ude et al., 2005]. Especially the HMAX model [Riesenhuber and

Poggio, 1999] has been investigated and modified in multiple publications [Serre et al.,

2007b; Moreno and Mar, 2007; Mutch and Lowe, 2006; Theriault et al., 2011].

2.3.1 Biological Background

A
s easy as it seems for mammals to process visual information and infer their en-

vironment in less than 200 milliseconds [Thorpe et al., 1996; Serre et al., 2007b;

Tovee, 1994; Reinagel and Reid, 2000], despite a extensive detailed knowledge about the

anatomical architecture of the cortical areas and its functional organization [Van Essen

et al., 1992], we still have much to learn about the brain’s vision system. For a few

decades, researchers have been able to investigate how visual information is processed

in the retina and the visual cortex [Nassi and Callaway, 2009; Vinje and Gallant, 2000;

Huth et al., 2012]. Complex models have been built, drawing their foundation from

both neurophysiology and psychological, empirically obtained data [Serre et al., 2007a;

Riesenhuber and Poggio, 1999, 2000; Gustavo Deco, 2004].

The hierarchical structure of the visual cortex and the interconnections between the

individual visual areas are highly distributed and parallel. Figure 2.9 visualizes the

immense complexity, which makes it difficult to understand the full functionality of the

visual cortex, although the identification of connections between the cortical areas and

the emphasis of the hierarchical structure have been well examined [Van Essen, D.C.

et al., 2001; Felleman, D.J. and Van Essen, 1991]. DeYoe and Van Essen point out

the manifold relationships between sensory cues and perceived attributes [DeYoe and

Van Essen, 1988]. Nassi and Callaway provide an overview over recent research about

distributed parallel processing strategies in the visual system [Nassi and Callaway, 2009].

Sharpee et al. demonstrate in [Sharpee et al., 2004] a model which maximizes the mutual

information between the neural responses. They applied their approach to responses of

simple and complex cells in the visual cortex and obtained realistic estimates of the

relevant dimensions by maximizing information.

DiCarlo et al. [DiCarlo et al., 2012] suggest, that the brain is able to rapidly recognize

objects through a cascade of reflexive, largely feedforward computations that builds a

powerful neural representation in the inferior temporal cortex. Figure 2.10 visualizes a

simplified model of cortical areas involved in vision processing. The number of neurons
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in each cortical area decreases along the pathway from 190 million in V1 to 150 million

in V2 and 65M in V4. In the last layer the inferior temporal cortex receives about 10

million neural responses for each representation. It takes about 100ms for the visual data

to arrive at the inferior temporal cortex, which is consistent with rapid scene analysis

studies, where subjects are asked to identify scene which are shown for a short period

of time.

2.3.2 Object Recognition Models

There exists a large number of different object recognition models or models for feature

generation. In this section three state-of-the-art models are presented. The first and

most prominent one is arguably the Lowe’s scale-invariant feature transform (SIFT). The

second one are deep convolutional neural networks inspired by LeCun’s work, which

have recently shown to outperform any existing system by far. The third one is the

convolutional neural network HMAX by Poggio, Riesenhuber and Serre, which is inspired

by the information processing in the visual cortex.

All three models are more or less biologically-inspired to some degree. It is however

important to mention, that the neural basis of those models is very tenuous from a

neuroscientific point of view. Those models were created not with a focus on biological

plausibility - the neuroscientific model is rather stripped down to some functional aspects

of the processing.

SIFT features for example adapt the shift-invariance of the complex neurons in the visual

cortex. Deep Convolutional Neural Networks (DCNN) adapt the hierarchical structure

in the brain and the learning of neural activity towards specific patterns. HMAX in

contrast has a lower hierarchy with four layers and fixed filter set for convolution. It

already performs well with a low number of training images whereas DCNN needs much

more input images to train their weights and filters. A lack of this huge amount of

data was responsible for a minor performance in these DCNNs. Only recently DCNNs

could show their enormous capabilities with the development of large image databases

like ImageNet1 and the introduction of Rectified Linear Units as activation functions to

the architecture [Glorot et al., 2011]. The training however takes a very long time, with

about one week on a GPU cluster for training about 19 million parameters.

1http://www.image-net.org/
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Figure 2.9 Hierarchical representation of the visual areas in the brain. Felleman and
van Essen distinguish 32 visual cortical areas connected by 187 linkages. [Felleman,
D.J. and Van Essen, 1991].
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Figure 2.10 Cortical areas involved in vision processing in the brain. The top image
shows the locations in a macaque’s cortical area that show reaction during an object
recognition process. The visual information origins from the retina and is processed
through the ventral stream to LGN, V1, V2, V4, PIT, CIT and finally AIT. The
bottom image displays the latency and the processing direction in the ventral stream.
The size of the different cortical areas are proportional to the rectangles. The ap-
proximate number of neurons is shown in the right corner of each rectangle. The
approximate number of neurons involved in each representation is shown above the
rectangles. (Images from [DiCarlo et al., 2012]).
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Table 2.1 Classification accuracy averaged over 15 classes. 150 training examples per
class [Ciliberto et al., 2013]. SIFT, Bag-of-Words and Sparse Coding.

k-NN(%) RLS (%) SVM (%)

SIFT 39.9 - -

BOW 60.6 84.7 83.6

SC 68.2 87.7 86.6

HMAX 80.7 86.5 89.1

Our work on the object recognition part is strongly based on HMAX, as it allows

1. for a quick training with little training data,

2. the computational advantages for training and processing, which is a crucial re-

quirement for robotics in real life scenarios,

3. its possibilities for improvements and modifications and

4. it proofed superior to state-of-the-art object recognition systems like SIFT.

Ciliberto et al. [Ciliberto et al., 2013] compared HMAX to three commonly used object

recognition approaches: SIFT, Bag-of-Words and Sparse Coding. They evaluated the

different algorithms using a image database of 15 classes. HMAX outperforms the other

approaches is most cases (see table 2.1). Serre et al. [Serre et al., 2007b] compared

HMAX features to SIFT for different number of training example and features. They

also experienced a significant difference between the two approaches (see 2.11). Moreno

et al. [Moreno et al., 2007] performed another comparative study between SIFT and

HMAX. They evaluated various variants of SIFT and HMAX: Original HMAX, HMAX

sampled at DoG, SIFT non-rotation-invariant, original SIFT, SIFT-Gabor and SIFT-

Gabor non-rotation-invariant.They conclude that HMAX performs better than any of

the SIFT variants in all of their different experiments.

2.3.2.1 Scale-Invariant Feature Transform (SIFT)

The SIFT algorithm was developed by D.Lowe [Lowe, 1999] and creates features that are

invariant to image scaling, translation, and rotation, and partially invariant to illumina-

tion changes and affine or 3D projection. The algorithm can be described in four steps.
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Figure 2.11 Comparison between SIFT and HMAX C2 features for different number of
features (top) and different number of training examples (bottom). (Plot from [Serre
et al., 2007b])

.
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Figure 2.12 Comparison between SIFT and HMAX for object detection performance of
airplanes(top) and leopards(bottom) depending on the number of features (Plot from
[Moreno et al., 2007]).
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First, the scale-space extrema are detected using Difference of Gaussians, which creates

a set of keypoints with (x, y, σ), with σ being the variance of the applied Gaussian filter.

In the second step the keypoints are localized with sub-pixel accuracy using Taylor series

expansion of scale space. Points with intensities lower than a chosen threshold are re-

jected, which eliminates keypoint candidates with a low contrast. To achieve invariance

to rotation the third step involves an orientation assignment to each keypoint. Therefore

an orientation histogram is created with the gradient magnitude of the neighborhood

around the keypoint. Any value above 80% is used to calculate the orientation. In the

forth step the keypoint descriptor is created using a 16x4x4 neighborhood with 8 bin

orientation histograms resulting in a total of 128 bin values. The keypoint descriptor

is the vector of this histogram. To remove false-positive keypoint descriptor matches

between two images, the two nearest neighbor matches are compared. If the match is

greater than 80%, they are rejected. This eliminates around 90% of false matches while

only 5% of true positives are removed.

2.3.2.2 Deep Convolutional Neural Networks

In the last couple years Deep Convolutional Neural Networks (DCNN) showed remark-

able performance on recognizing thousands of different object categories using large

image databases for training. LeCun [LeCun et al., 1998] describes that DCCN are

built from three architectural ideas: local receptive fields, shared weights and spatial

sub-sampling.

The local receptive fields refer to convolution operations with an edge-like filter. This

filtering is similar to the reaction of simple cells to edges in their receptive field in the

visual cortex. The operation which defines the spatial sub-sampling is max pooling.

It is similar to complex cell responses, which are local-spatially invariant to particular

responses. A DCNN’s architecture consists of multiple alternating layers of convolution

and max pooling with different filters and weights, which are learned during training

stage. In 2012 Krizhevsky et al. presented a DCCN which exceeded any previous object

recognition systems by far (15.3% error rate compared to the second best with 26.2%,

[Krizhevsky et al., 2012]). Figure 2.13 shows their DCCN architecture. Their network

has 60 million parameters and 650,000 neurons with 5 convolutional and max pooling

layers, followed by three fully-connected layers.
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Figure 2.13 Krizhevsky et al.’s architecture of a convolutional neural network. (Images
from [Krizhevsky et al., 2012])

.

2.3.2.3 The HMAX Model

Figure 2.14 Functional Overview of the hierarchical object recognition architecture
HMAX. The single layers process the information in parallel and pass it on to the
next layer.
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The HMAX model by Riesenhuber and Poggio [Riesenhuber and Poggio, 1999; Serre

et al., 2007b] matches closely with empirically-obtained data from psychological [Hubel

and Wiesel, 1968] and neurobiological studies [Tanigawa et al., 2010]. It models the

ventral pathway in the areas of the visual cortex V1, V2 and V4 and its hierarchical feed-

forward structure for visual object recognition. This strict feed-forward processing is a

simplification to the actual classification process in the visual cortex where feedback plays

an important role. Riesenhuber and Poggio model the behavior of simple and complex

cells found by [Hubel and Wiesel, 1968] in the visual cortex in four alternating layers

of simple cells (S1, S2) and complex cells (C1, C2). Figure 2.14 visualizes the different

layers and outputs. Here we briefly illustrate the standard HMAX model presented in

[Serre et al., 2007b]

S1 Layer The first layer is based on a representation of simple cells in V1 which react

to oriented edges and bars in their receptive field. The response of these cells is quite

similar to Gabor filters with specific parameters according their tuning of orientation

and frequency;.

A Gabor Filter Bank of 64 filters is used for convolution with the input image to create

a representation of the S1 receptive field response. Serre et. al. [Serre et al., 2007b]

apply parameters, which resemble the response of the actual V1 parafoveal simple cells

in the visual cortex; corresponding to neurophysiological data in [De Valois et al., 1982].

C1 Layer Complex cells have a a larger receptive field than simple cells and add some

degree of spatial invariance and shift tolerance to the system. They gain input from two

S1 filter outputs of same scale band and same orientation. Their functionality can be

described as a max pooling operation or a moving maximum over two filter outputs of

S1; They keep only the maximum value of two neighbored (of same band) responses of

the previous S1 layer within a sliding window.

S2 Layer In the third layer a set of templates is matched against the response from

the previous layer C1. The templates are sampled over the whole receptive fields from

a set of randomly chosen images. The layer models the composite feature cells in V4

[Riesenhuber et al., 1999].
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C2 Layer Like in C1, the complex composite cells in the C2 layer perform a max

operation over all the template responses across all scales. The operation removes all

position and scale information resulting in global invariance. The whole response is a

complex feature vector which can be used to train and test a classifier.
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2.4 Summary

I
n this chapter we presented a brief introduction and overview of neuroscientific and

technical research related to this thesis. The three main modules were visual attention,

object-based attention and object recognition. All three are of strong scientific relevance,

both in neurosciences like biology or psychology and in technical sciences like computer

vision or engineering. First we gave an introduction in the biological foundation of visual

attention and presented some computational models later. Object-based attention was

explained in more detail, as it is less known and investigated in the research community.

Finally object recognition models relevant to this work were introduced.

In the following chapters, our contribution to these three fields is presented. First we

introduce Sampled Template Collation for visual attention, then object-based attention

and finally object recognition.
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Chapter 3

SAMPLED TEMPLATE

COLLATION FOR FAST

SALIENCY MAPS GENERATION

The majority of visual attention systems were created with a focus on biological plausi-

bility and a high accuracy in predicting the human saccades. Only little attention has

been drawn to efficiency and scalability. In this chapter, our visual attention system is

presented. It’s main advantages are a low computational complexity, online scalability

and a high accuracy in predicting the human gaze which can compete with state-of-the-

art models.

In the first section the core functionality of the system - Sampled Template Collation - is

explained. The second section presents the experimental results of the system in regard

to accuracy in predicting the fixation of human subjects and in regard to computational

efficiency and scalability.
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S
alient region detection is a broadly investigated research area, because it is concerns

a wide field of scientific disciplines. Life sciences like psychology [Lamberts and

Goldstone, 2004] or neuroscience [Ungerleider and G, 2000] are interested in analyzing

and predicting why salient regions are attractive to the human brain and how the neural

processing is involved in this decision [Bundesen et al., 2005]. Numerous computational

models have been proposed trying to model visual attention and predicting which areas

will be favored over others. Those saliency estimators can loosely be separated into

biologically based, computational, or a combination of both which builds the majority

of models [Borji and Itti, 2013]. The nervous system emphasizes information which

seem to be more important or more interesting compared to other stimuli and which is

subsequently passed on for a more detailed investigation. This concept of information

reduction and detecting regions of interest or uniqueness is obviously very useful for

technical applications and has been exploited in a vast variety of different vision tasks

like feature detection, image segmentation [Mishra et al., 2009a,b], image matching

[Siagian and Itti, 2009], image and video compression [Guo and Zhang, 2010], object

detection [Goferman et al., 2012] or tracking [Frintrop, 2010].

Our model calculates the saliency map by sampling templates randomly over the image.

Each template is then compared to the other templates by calculating a dissimilarity

score. Higher scores mean lower similarity, and vice versa lower responses higher simi-

larity. Templates with a higher overall dissimilarity score therefore originate from areas

in the image which stick out from the rest and are in some kind unique. We consider

these areas salient and use the templates’ dissimilarity score to generate our saliency

maps. See figure 3.1 for an overview of the model.

3.1 Sampling

F
irst we sample templates from random positions on the image. For the evaluation

we used templates of three different sizes (8,16,24). The different sizes account for

the different dimensions a salient region might have. In other systems this behavior is

achieved using for example Difference of Gaussian pyramids or subsampling. Using only

one single template size however, doesn’t affect the AUC(area under curve) of the receiver

operator characteristics (ROC) score. We experienced only about 0.02% difference in

the AUC score when using only one size. The number of sampled templates can be

adjusted according to computational or accuracy requirements. Less templates can be
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Figure 3.1 Model Overview. The input image gets converted to Lab Color Space.
Then templates are randomly sampled and compared to each other using a metric
which uses the L2 norm with color, shape and entropy information. Each template
thereby obtains a dissimilarity score. This dissimilarity score get back-projected to
the position in the image where the template was sampled from. The higher the
score the more unique the template and the more salient this region is. Using simple
smoothing, morphological operators and thresholding, the saliency map can be further
post-processed to obtain better results.
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Algorithm 1: Sampled Template Collation for Saliency Maps

Data: Image I; Set of templates T ; Sampling rate n; Saliency Map S
Result: Saliency Map S

for i← 1 to n do
getRandomPosition (pi);
ti = sampleTemplateFromImage(pi, I);
addTemplateToSet(ti, T );

end
forall the ti ∈ T do

forall the tk ∈ T 6= ti do
s = calculateSimilarityScore(ti, tk);

end
setSimilarityScore(s, ti, S, pi);

end

calculated faster and are useful for generating single fixation points, more templates give

a finer resolution and a more accurate and complete saliency map.

3.2 Collation Calculation

A
fter the sampling process, each template T is compared with each other template

of the same size. Different characteristics can be used to calculate the differences

between the templates. For our evaluation we used the features color space, shape,

distance and entropy. The model can easily be extended to take different and more

complex measures into account, like for example the correlation coefficient or a higher

weight for templates which might contain faces using simple template matching.

3.2.1 Color Space and Shape

Different color spaces like RGB or HSV were tested, CIE Lab provided us with the

most consistent results. CIE Lab is a three-dimensional color-opponent space with L

representing the lightness and a and b the color-opponent dimensions. A benefit is that

the CIE Lab color space is perceptually uniform, which means that a change in color

values should produce a change of the same visual importance. We use a L2 norm to
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calculate the pixel-wise differences of lightness L and color-opponent dimensions a and

b between two templates T1 and T2. The pixel-wise operation incorporates differences in

shape into the dissimilarity score measure.

l = ||T1L
− T2L

||L2
=
√

∑

(T1L
− T2L

)2

a = ||T1a
− T2a

||L2
=
√

∑

(T1a
− T2a

)2

b = ||T1b
− T2b

||L2
=
√

∑

(T1b
− T2b

)2

(3.1)

3.2.2 Distance Weight

We include a distance weight to the dissimilarity score to account for local salient areas.

Templates which are closer together have a higher weight than templates which are e.g.

on the opposite side of the image. We compute the distance weight w by

w = 1− d(T1, T2)
max(d)

(3.2)

with d(T1, T2) being the euclidean distance between the pixels’ positions in template T1

and T2. The maximum possible distance max(d) is the diagonal of the image. We set

the distance weight to zero, if d(T1, T2) is above a certain threshold (in our case half the

maximum distance), this immensely improves computational performance while having

no impact on the overall AUC(ROC) score.

3.2.3 Entropy

There exist numerous visual attention models which are built on information theoretic

foundation to find the most salient areas [Bruce and Tsotsos, 2005; Lin et al., 2010;

Tamayo and Traver, 2008].

Entropy is a measure for information. A low entropy value means there is only little

information carried in the template, high entropy means high information. We calculate

the entropy in regard to the pixels intensity distribution in a template. A low result
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means in our case a template with almost the same pixel intensity at all positions,

whereas a high entropy would be a uniform distribution of intensities. This entropy

approach introduces a simple position and rotation invariant descriptor for texture.

Figure 3.2 visualizes a template with low entropy at the bottom and a template with a

high entropy at the top. A more uniform distributed color histogram, like in the upper

case means a higher entropy. A more narrow distribution like in the bottom case means

a lower entropy.

Figure 3.2 Two templates sampled from different locations. The upper template con-
tains the eye and has a high entropy because of a broadly distributed color histogram.
The bottom template was sampled from the hand and has a very narrow color distri-
bution, which results in a low entropy.

We integrate the self-information of a template in our model by using:
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H(X) = −
M
∑

m=1

pm log pm (3.3)

with pm being the relative frequency of brightness value m within the template. Using

entropy we gain slightly better results (see table 3.2), as areas which would be salient

because of their lightness and color uniqueness - e.g. a small area of a blue sky in the

top of an image are not necessarily salient to a human subject.

We finally calculate the overall dissimilarity score s by calculating:

s = l(a+ b) ∗ w ∗H(T1)H(T2) (3.4)

3.3 Evaluation

T
he model was evaluated using two open accessible saliency benchmark databases.

These databases measure the similarity between the model and human observers.

We also evaluated our model for computational efficiency during online processing and

the effect of the sampling rate on the map stability.

3.3.1 Saliency Benchmarks

We tested our approach on Judd’s et al. [Judd et al., 2012] saliency benchmark database1.

The database contains 300 natural images with eye tracking data from 39 observers. In-

cluding a center bias our model performs significantly better than without a center

bias (see table 3.1). The best results were achieved calculating the saliency map with

0.6∗ centermap+0.4∗our model. The center map is a symmetric Gaussian stretched to

fit the aspect ratio of the image. The factors were optimized using a different training set

- see [Judd et al., 2012] for more details on center map and the optimization. Without a

center bias our model still outperforms standard models like Itti & Koch (see table 3.1).

See figure 3.3 for a comparison of images and saliency maps for several models.

1http://people.csail.mit.edu/tjudd/SaliencyBenchmark/
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(a) Original
Image

(b) Human Fix-
ation Map

(c) Our
Model

(d) Intersection
/w Input

(e) GBVS (f) Itti

Figure 3.3 Sample images and saliency maps for several models. Column (a) shows
the input image, column (b) the fixation map of multiple human subjects. Column
(c) shows the generated saliency map using our Sampled Template Collation model.
Column (e) shows the results using Graph-based Visual Saliency [Harel et al., 2006]
and column (f) the ones from Itti’s model [Itti and Koch, 2001] (Images taken from
the MIT saliency benchmark database [Judd et al., 2012].)
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Table 3.1 Results of Judd’s et al. saliency benchmark dataset. Our model (blue)
outperforms Itti & Koch’s model even without center bias (/wo CB) and performs
similar to GBVS with center bias (/w CB)

Model ROC Similarity

Deep Gaze 2 [Kümmerer et al., 2014] 0.870 0.460

GBVS [Harel et al., 2006] 0.801 0.472

Sampled Template Collation /w CB 0.794 0.477

Multi-Resolution AIM [Advani et al., 2013] 0.772 0.471

Center Based 0.783 0.451

Sampled Template Collation /wo CB 0.687 0.357

Torralba [Torralba et al., 2006] 0.684 0.343

Itti & Koch [Itti and Koch, 2001] 0.562 0.284

Chance 0.503 0.327

We also tested our model with the ImgSal database1 [Li et al., 2013], which contains

235 color images, divided into six different categories ordered by their salient region size.

We achieve an overall AUC(ROC) score of about 82% using a center bias, see table 3.2.

Our model outperforms state-of-the-art models like Multi-Resolution AIM [Advani et al.,

2013] or long standing Itti et. al’s [Itti and Koch, 2001]. There are models which

outperform our system, like Judd et al. [Judd et al., 2012], which train a model using

human fixation data, which incorporates the human’s strong attention focus towards

faces, persons or animals. We are not explicitly aiming at an adaption of the human

fixation, but rather for generating a fixation point or region for salient areas. Our model

however can be easily extended to bias templates with e.g. faces over templates with no

faces using simple template matching.

Figure 3.4 and figure 3.5 present more challenging tasks for visual attention systems.

The first image shows a landscape with a small vehicle in the right middle. Our model

is able to detect the vehicle as most salient point in the scene. The second image shows

a person camouflaged with the background. Although the color and texture is identical

to the rest of the image, the person clearly is detected as the most salient area.

1http://www.cim.mcgill.ca/ lijian/database.htm

52



Section 3.3 Evaluation

Figure 3.4 Sample image from a database of vehicles in natural background [Itti, 2000].
The image was processed using the sampled template collation method to create the
saliency heat map. The generated most salient point is located on the vehicle (circled
in green).

53



Chapter 3 SAMPLED TEMPLATE COLLATION FOR FAST SALIENCY MAPS
GENERATION

Figure 3.5 Test image with uniformly distributed texture. The saliency map was gener-
ated using our sampled templates collation approach. The irregularities in the image
are detected as most salient area, although the person is camouflaged with the texture
identical to the background.
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Table 3.2 Results of ImgSal saliency benchmark dataset with and without template
entropy (TE); without center bias (CB) and without smoothing (Sm.).

Category /w TE /wo TE /wo CB /wo Sm.

Large 0.819 0.818 0.793 0.707

Intermediate 0.813 0.799 0.780 0.670

Small 0.817 0.790 0.772 0.669

Cluttered 0.808 0.808 0.780 0.677

Repeating Distr. 0.848 0.844 0.816 0.715

Large & Small 0.826 0.809 0.798 0.706

Overall 0.818 0.805 0.785 0.690

3.3.2 Frame Rate Control

In the context of real-time processing it is important to be able to adaptively react

to different computational scenarios and to maintain a certain degree of low-latency

computation. Our model’s main aspect is the sampling process which has the major

benefit, that it can be adjusted online. To estimate the computational speed of our

performance we adaptively change the number of sampled templates to match a standard

camera image frequency of about 30 fps at 640x480 pixels. If the processing is slower

than 30 fps, less templates are sampled; if faster, more are sampled. We tested this

setting on an intel i7 with 3.4 GHz and were able to sample about 130 templates using

one core and about 440 templates using four cores for every camera frame captured at

30 Hz.

We enhanced our approach to dynamically adapt the sampling rate to achieve a desired

frame rate using the following equation:

samplesnew =

√

fpscurrent
fpsdesired

∗ samplescurrent (3.5)

which assumes a complexity of O(n2) for the worst case scenario with no distance weight.

By reducing the sampling rate, the frame rate can be kept constant even if computa-

tionally intensive programs run on the same computer. Figure 3.6 shows how the frame
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rate control works during a test run. The high framerate in the beginning is reduced by

increasing the sampling rate using equation 3.5 to match a desired frame rate of 15Hz.

The frame rate control can easily be extended to incorporate more complex constraints

like a minimum desired sampling rate.
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Figure 3.6 Number of samples and framerate during a test run. The plot shows the
results of a test run of the visual attention system with a previously defined desired
framerate of 15 Hz. In the beginning the framerate is higher than anticipated, so the
sampling rate is increased until the desired framerate is achieved. The ∆s represents
the adjusted sampling factor, which is constantly calculated depending on the current
framerate and sampling rate.

3.3.3 Sampling

We evaluated the effects of the sampling process on the consistency of the saliency map

and the salient point position. Due to the random selection of the template position

56



Section 3.3 Evaluation

during the computation, the generated saliency maps of two successive frames are dif-

ferent from each other. Depending on the number of sampled templates this effect has

varying degrees of impact on the generated saliency maps.

The more templates are sampled, the less the deviation between the maps and the higher

the stability of a generated saliency map. We measure the deviation by calculating the

L1-norm of two generated saliency maps of the same input image. The deviation of the

most salient point is measured by the euclidean distance between the two points in the

image. The results are displayed in figure 3.7. Both values are normalized, so that 100%

deviation means the maximal possible deviation. From about 100 sampled templates,

the deviation in the saliency map and the most salient points are constant with about

0.2 ∗ 10−3% and 4% deviation, respectively. Figure 3.8 visualizes the different saliency

map generated from the same image but with a low sampling rate ( ≈ 20 templates)

from two successive frames. The low density of distributed templates is the reason for

missing salient areas like the green pen in the image at the bottom.

A beneficial side effect of the deviation induced to the randomness in sampling are the

different calculated position of most salient points. Instead of a static result, the maxima

jump over other similar salient points, which leads to a visual scan path. In other visual

attention models, this scan path was created calculating a winner-take-all network to

find the next most salient point. This computational expensive step can be avoided.

Figure 3.9 shows an example of two different maximum salient points calculated from

the same image with a high sampling rate of 400 templates. Although the resulting

maps are similar to a certain degree, the most salient point lies alternating on the green

pen (top image) or yellow image (bottom image), because both areas are similar salient.

Our approach can be extended to account for lower salient areas, by keeping templates

sampled from the most salient area and assigning them a lower weight for the STC cal-

culation in the next frame. This has the advantage, that instead of using old image data

like in the winner-takes-all approach, a new acquired image can be used for generating

the saliency map. This approach would have two advantages:

1. It wouldn’t matter if the position of most salient object would change, as the

templates sampled from the new position would get lower weighted as well.

2. It would take new objects into account which haven’t been in the scene before.
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Figure 3.7 Saliency Map Stability. The graph shows the deviation in percent between
saliency maps generated with increasing sampling rates (green line) and the distance
deviation of the most salient point in those saliency maps (yellow line). While in the
beginning the resulting saliency maps clearly differ from each other, the deviation
remains constant at a sampling rate of about 100 templates. The map deviation
percentage was calculated using the maximum possible deviation, which is size of
the image times maximum saturation value. In case of the salient point deviation
percentage, the maximum possible distance was used which is the image diagonal.

3.3.4 Computational Performance

Our model’s main aspect is the sampling process which has the major benefit, that

it can be adjusted online. To describe the complexity, we use the Big O notation,

which characterizes functions by giving an upper bound according to their growth rates

depending on the input values. After the sampling process, each template is compared to

the other templates by calculating a dissimilarity score. Usually this results in a number

of function calls of n templates times n templates, so a complexity of O(n2). In our case
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(a) Image with most salient point (b) Saliency Map

Figure 3.8 Difference in saliency maps with a low sampling rate. The saliency maps
were generated with a very low sampling rate ( ≈ 20 templates) from two successive
frames which show the same image. The produced results vary significantly, due to
the low density of templates, which makes it more likely to miss salient areas, like the
green pen in the bottom right image. This behavior can be measured by the saliency
map deviation (see figure 3.7).

the used dissimilarity score is a commutative function, so that f(T1, T2) = f(T2, T1). So

for the first template it takes n function calls, for the second template n − 1, for the

third template n− 2 and so on. This leads to a complexity of O(1

2
n(n + 1)), which for

a sampling rate of e.g. 100 templates would require 5.500 function calls, compared to

10.000 for non-commutative functions.

The complexity can be further reduced by introducing a distance threshold, which only

allows close templates to be compared (see 3.2.2). We approximate the system’s com-

plexity by assuming that we calculate the k nearest neighbors of each template, which
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(a) Image with most salient point (b) Saliency Map

Figure 3.9 The saliency maps were generated with a higher sampling rate ( ≈ 400
templates) from two successive frames which show the same image. The produced
results are similar but have different maximum salient points. This fluctuation has the
advantage of avoiding further processing for example a winner-take-all computation
to find other similar salient points. Other salient points can automatically be detected
to a certain degree just by exploiting the effects of random sampling.

has the complexity O(n log n). The number of dissimilarity score calculations therefore

is n ∗ k. The complexities combined are

O(n log n) +O(n ∗ k)

= O(n log n) +O(n)

= O(max(n log n, n))

(3.6)
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The inequation n log n > n is true for all n > 2. As the number of sampled templates

will always be larger than 2 for an operating system, we can approximate that the overall

complexity is O(n log n):

∀n > 2 : O(max(n log n, n)) = O(n log n). (3.7)

We evaluated the computational complexity on the basis of achieved framerate per sam-

pling rate. Therefore we steadily increased the number of samples while calculating the

resulting framerate (see figure 3.10). The generated curve (green line) shows an approx-

imation to our expected complexity of O(n log n) (blue line). The CPU usage (orange

line) increases linear with the number of samples. As shown in figure 3.7, the generated

saliency maps remain stable at about 100 samples, which would give us a framerate of

about 140 Hz with a CPU Usage of 60%.

We perform about as good as GBVS [Harel et al., 2006] in regard to the ROC Score for

predicting the human gaze. Our approach however is scalable and we have a much lower

complexity of O(n log n) compared to O(n4K).

In case of a non-commutative function we propose algorithm 2: Neighbor-based Sam-

pled Template Collation for Non-Commutative Dissimilarity Score Functions. Instead

of comparing a set of templates, which would have a complexity of O(n2), we sample

a template and then sample k neighbors around that template within a radius r and

calculate the dissimilarity score for that template. This similarity score is then added

to the saliency map. The k neighbors only are used with one template and then dis-

carded. We repeat that step until we have sampled all n templates and calculated the

dissimilarity scores.

This approach has the complexity O(n× k). For a sufficiently small k (namely k < n),

this approach has a lower complexity than the original approach.
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Figure 3.10 Processing performance measured in frames per second when constantly
increasing the sampling rate. We mathematically approximated the complexity of
our system to be O(n log n) and empirically approximate the real complexity with
the measured framerate against the sampling rate. The corresponding graphs show
that the approximations are similar. As previously shown, the saliency map deviation
remains stable at about 100 samples which would give us a framerate of about 140
Hz with a CPU usage of 60%. Therefore we can adapt the sampling rate to match
the camera’s framerate.

62



Section 3.3 Evaluation

Algorithm 2: Neighbor-based Sampled Template Collation for Non-Commutative
Dissimilarity Score Functions

Data: Image I; Set of templates T ; Sampling rate n; Number of Neighbors: k;
Radius r; Saliency Map S

Result: Saliency Map S

for i← 1 to n do
getRandomPosition (pi);
ti = sampleTemplateFromImage(pi, I);
for m← 1 to k do

getRandomPositionWithinRadius (p2, r);
t2 = sampleTemplateFromImage(p2, I);
s = calculateSimilarityScore(ti, t2);
addSimilarityScoreToMap(s, pi, S);

end

end
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3.4 Summary

I
n this chapter we presented Sampled Template Collation - a method for visual at-

tention and saliency. The benefits of STC are the scalability and computationally

efficiency. Our method outperformed state-of-the-art in terms of prediction accuracy of

human observers and in terms of computational complexity. Sampled Template Colla-

tion is especially suited for the applications in time-crucial scenarios and test cases with

limited hardware, like a mobile platform or a humanoid robot.

In the next chapter we present the application of Sampled Template Collation for Object-

based attention. A biologically-inspired method based on visual attention for segmenting

objects.
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Chapter 4

OBJECT-BASED ATTENTION

USING SAMPLED TEMPLATE

COLLATION

Object-based attention explains the behavior of neural responses when an object is

fixated. Visual stimuli are adjusted in favor of the particular object, which enhances

the processing of the object’s features. So far, only little research has been conducted

towards the application of object-based attention in technical applications.

In this chapter, our object-based attention system is presented. The method we de-

veloped is based on our sampled template collation model. The advantages are the

low computational complexity and the improved object recognition results due to the

segmentation. The first section describes how sampled template collation is used for

object segregation. The second section presents the visual segmentation results and the

improved object classification performance.
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O
bject-based attention describes the relationship between a fixated object and the

visual stimuli in the visual cortex. Desimone and Duncan describe two basic phe-

nomena that define the problem of visual attention [Desimone and Duncan, 1995]. The

first one is the limited capacity for processing the information available on the retina.

The second one is the ability to filter out currently unnecessary information, which en-

hances the visual representation of objects, even if spatially occluded in cluttered real-

world scenarios. They suggest that the quality of sensory representation of a fixated

object is improved. This results in an enhanced processing of the object’s features.

Object-based attention suggests a pattern-specific attentional filtering in the visual cor-

tex. Activity patterns in early visual areas are strongly biased in favor of the attended

object [Cohen and Tong, 2013]. This phenomenon contributes towards the recognition

of objects in higher cortical areas [Walther et al., 2005; Walther and Koch, 2006].

4.1 Sampled Template Collation for Object-Based

Attention

O
ur object-based attention approach is based on Sampled Template Collation and

preserves the same advantages like scalability and efficiency.

Figure 4.1 shows our processing pipeline. First we resize the image - we experienced

the best results with an image size of 160x120. We apply Gaussian blurring to reduce

noise and texture, then dilate and erode the image, which helps with the isolation of

individual elements and joining smaller separated elements on an object. We convert

the image from RGB to Lab color space and calculate the object-based attention map

using Sampled Template Collation.

One single seed template is taken from the area with the highest salient point computed

by our visual attention procedure. All following sampled templates are then compared

to this seed template using a similar metric as in equation 3.4:

The color dimensions a,b and lightness l are calculated using a L2-norm:
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l = ||T1L
− T2L

||L2
=
√

∑

(T1L
− T2L

)2

a = ||T1a
− T2a

||L2
=
√

∑

(T1a
− T2a

)2

b = ||T1b
− T2b

||L2
=
√

∑

(T1b
− T2b

)2

(4.1)

The entropy H is calculated with

H(X) = −
M
∑

m=1

pm log pm (4.2)

with pm being the relative frequency of brightness value m within the template.

The final dissimilarity score s is

s = (a+ b) + (α ∗ l) + |H(T1)−H(T2)| (4.3)

with α = 1

3
. Areas with a lower response are therefore more likely to contain the object.

We only use a single template as seed, because a set of templates with a larger spatial

distribution might not contain the attended object and could lead to false object-based

attention maps, especially for small objects.

After thresholding the heatmap we apply contour finding and remove all contours which

don’t contain the most salient point where the seed template was sampled from. This

way we avoid areas which have a similar response to the center object, like the areas

around the cup in figure 4.1 at "Contour". Algorithm 3 depicts the single steps involved

in the generation. The method createObjectBasedAttentionMap describes two different

approaches to the sampling process, which are shown in algorithm 4 and algorithm 5 in

section 4.1.1.
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Figure 4.1 Our object-based attention model. We prepocess the image with blurring,
dilation, erosion and converting it to Lab color space. Then we calculate the object-
based attention map using sampled template collation. We binarize the map using
thresholding and apply contour finding. Finally we remove the contours that don’t
contain the seed template.
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Algorithm 3: Sampled Template Collation for Object-Based Attention

Data: Image I; Set of templates T ; Salient Point S; Object-Based Attention Map
M

Result: Object-Based Attention Map M

gaussianBlur(I);
dilate(I);
erode(I);
convertToLabColorSpace(I);
M = createObjectBasedAttentionMap(I, S) ; /* See algorithm 4 and 5 */

binaryThreshold(M);
findCentralContour(M);
removeOtherContours(M);

4.1.1 Dense and Sparse Sampled Template Collation

In contrast to Sampled Template Collation for visual attention, different sampling rates

might have a stronger effect on the quality of the object-based attention map, as it is not

guaranteed that the whole area on the object is covered during the calculation. Regions

on the object might be missing in the final contour finding step, or areas that don’t lie

on the object might be assigned to it. Therefore we developed two different algorithms

for calculating the Sampled Template Collation:

1. Sparse Sampled Template Collation randomly samples templates over the

input image as done in the visual attention approach. We added a morphological

closing operation after the heatmap is generated to cope with gaps in the repre-

sentation (see algorithm 5). Figure 4.2 visualizes the different results. The images

on the left side were generated without post-processing the heat map. The red

dots are areas where no template has been sampled from. Those areas are later

falsely recognized as contours of the object. This behavior is more likely at a low

sampling rate because it can’t be guaranteed that pixels in the input image are

covered. These dots can be removed by applying the morphological operations

dilation and erosion (see right images).

2. Dense Sampled Template Collation calculates the similarity at every possible

position in the image. At every pixel a template is sampled and compared to the

seed template (see algorithm 4). This creates a complete representation of every
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pixel but is computationally more expensive than the sparse approach and not

scalable during online processing.

Algorithm 4: Dense Sampled Template Collation

Data: Image I; Pixel p; Salient Point Position S; Seed Template C; Object-Based
Attention Map M

Result: Object-Based Attention Map M

C = sampleSeedTemplateFromImage(S, I);
forall the pi ∈ I do

ti = sampleTemplateFromImage(pi, I);
end
forall the ti ∈ T do

s = calculateSimilarityScore(ti, C);
setSimilarityScore(s, ti, S, pi);

end

Algorithm 5: Sparse Sampled Template Collation

Data: Image I; Salient Point Position S; Seed Template C; Sampling Rate n; Set
of Templates T ; Object-Based Attention Map M

Result: Object-Based Attention Map M

C = sampleSeedTemplateFromImage(S, I);
for i← 1 to n do

getRandomPosition(pi);
ti = sampleTemplateFromImage(pi, I);
addTemplateToSet(ti, T );

end
forall the ti ∈ T do

s = calculateSimilarityScore(ti, C);
setSimilarityScore(ti, M , pi);

end

We evaluated the effects of the sampling by comparing the deviation between the two

frames and the deviation between the two methods dense and sparse sampling. Figure

4.3 depicts the results.

The deviation between the frames is calculated by the absolute difference of the heatmaps

between two successive frames, which were generated using the same input image. With

a low sampling rate the deviation is low (see orange curve in figure 4.3), because the
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Figure 4.2 Postprocessing the object-based attention map. When the object-based
attention map is generated using the sparse sampling approach, small outlier patches
can occur due to the incomplete representation. This especially can happen at a low
sampling rate because it is not guaranteed that all areas are covered by templates
(see left column). Using the morphological dilation and erosion can help to cover up
those holes (right column). Applying Contour finding and removing those contours
that don’t contain the most salient point can also help to get rid of the outliers.
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heatmaps are initialized with a certain value and the few sampled templates cover only a

fraction of the image (see figure 4.4a). The reason for the initial increase of the deviation

are the random positions the templates are sampled from. With more templates, more

area is covered but not enough for a constant heatmap. At about 250 templates the

deviation decreases, at this point the generated heatmaps start to converge to a stable

object-based attention representation (see figure 4.3c-i).

We measure the deviation between the sparse and dense Sampled Template Collation

method by comparing the heatmap generated by the dense method (see figure 4.3j) and

the heatmaps generated using the sparse method at different sampling rates (images

a-i). We calculate the absolute difference of the heatmaps in relation to the maximal

possible deviation. The deviation maximally decreases around 250 templates and stays

constant at about 1000 templates similar to the deviation between frames.

The framerate achieved with the dense method is around 15Hz at a resolution of 160x120

using one CPU core. The framerate using the sparse method highly depends on the

number of sampled templates. At about 1000 templates, at which point the deviation

starts to converge, we get a framerate of about 240Hz. Figure 4.3 visually compares

the generated heatmaps and intersections with the input image for different sampling

rates. At around 1000 templates the heatmap (image g) shows little difference to the

one generated with the dense approach (image j). The differences in the intersection

already show good results with a sampling rate at about 300 (image c).

The presented results suggest that using the sparse sampling with a sufficiently high

sampling rate produces similar good results at a much better computational performance

than the dense method.

4.1.2 Efficient Sparse Sampled Template Collation

The method of sampling templates at random positions has the disadvantage that a

randomly chosen position could have been visited before. If this issue is ignored and the

template is sampled, the collation calculation is unnecessarily performed again which

leads to an increase of redundant information and computation especially at higher

sampling rates. Suppose we have N pixels, then the probability to visit an unvisited

pixel is

73



Chapter 4 OBJECT-BASED ATTENTION USING SAMPLED TEMPLATE
COLLATION

 10

 100

 1000

 10000

 100  1000
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

F
ra

m
es

 p
er

 S
ec

o
n
d
 [

H
z]

D
ev

ia
ti

o
n
 [

·1
0

2
%

]

Samples

Framerate

Deviation between Frames

Deviation between Methods

Figure 4.3 The effect of sampling on the framerate, deviation between frames and devia-
tion between the sparse sampling method and the dense method. "Deviation between
methods" displays the difference between the heatmap generated using the dense
method and a currently generated heatmap using the sampling method. "Deviation
between frames" displays the difference between the current generated map and the
one generated a frame before that. At the beginning this deviation is low, because
the heatmaps are initialized with the same value and there are only a few templates
sampled which only cover a fraction of the image area. With an increasing sampling
rate this deviation also increases as more area is covered but not enough for a similar
heatmap. At about 250 templates the deviation decreases, at this point the generated
heatmaps start to converge to a stable object-based attention representation.
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(a) 100 samples; 1600 Hz (f) 700 samples; 315 Hz

(b) 200 samples; 930 Hz (g) 1000 samples; 240 Hz

(c) 300 samples; 675 Hz (h) 2000 samples; 125 Hz

(d) 400 samples; 525 Hz (i) 3000 samples; 88 Hz

(e) 500 samples; 440 Hz (j) Dense sampling, full representation; 15 Hz

Figure 4.4 Object-based Attention Maps generated with different sampling rates. Here
we visualize the effect of different sampling rates on the generation of the object-based
attention heat maps and the intersection with the input image. The intersections
were generated after applying thresholding and contour finding with rejecting outlier
contours. We start from 100 samples in (a) to 3000 samples in (i). Figure (j) shows
the map when generated with the dense method. With increasing sampling rate the
maps stabilize, in the sense of the minimization of differences between frames. At the
same time the deviation to the dense method also minimizes. At around 700 samples
the intersection and the heat map are stable and similar to the ones generated by the
dense method.
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N

N
= 1 (4.4)

for the first trial. For the second trial it is

N − 1
N

(4.5)

For the third trial:

N − 2
N

(4.6)

and so on, until the last trial with

N − (N − 1)
N

=
1
N

(4.7)

The probability for visiting an unvisited pixel after i pixels have been visited is therefore

pi =
N − (i− 1)

N
(4.8)

This problem is identical to the coupon collector’s problem which describes how many

coupons need to be bought until the full set is complete. In our case we are interested in

how many samples S it needs until all pixels have been visited. The probability pi has

a geometric distribution with expectation 1/pi. The overall expectation of the number

of samples S necessary to visit all pixels is the sum of the single expectations of pi:

E(S) =
1
p1

+
1
p2

+ . . . ...+
1
pn

=
n

n
+

n

n− 1
+ . . . ...+

n

1

= n× (
1
1

+
1
2

+ . . . ...+
1
n

)

= n×Hn

(4.9)
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with Hn being the harmonic number. For an image of size 40x30 with 40x30 = 1200

pixels the expected number of samples to be taken until all pixels have been visited is

9201. For an image with 160x120 = 19200 pixels it already takes 200.446 samples. This

clearly is computational highly inefficient if a complete representation is desired.

Algorithm 6 describes a method which avoids generating any redundant information.

First a list of unvisited points is created from the input image. In our case this list

contains all points in the image but could also be adjusted to for example every second

point only. During the sampling a random point in this list is chosen for sampling a

template from this position. The point is then removed from this list of unvisited points.

This approach guarantees that every point is visited only once at most and that every

additional template sample increases the information and density in the object-based

attention map.

Figure 4.5 visualizes the development of the inefficient sparse template sampled collation

approach of visited pixels for an image of size 40x30 with 1200 pixels. The green curve

represents the percentage of visited pixels, which has only about 60% visited pixels at

1200 samples. Figure 4.6 display the results for the efficient sparse sampled template

collation approach. The green line is linear and direct proportional to the number of

sampled templates. The maximum number of the 1200 possible positions is reached in

1200 sampling steps. Here the probability to visit an unvisited pixel is always 1 (see

orange curve). In contrast the probability of the inefficient approach decreases with the

number of samples (figure 4.5 orange curve). At about 800 samples half of the pixels

have been visited, so for every visited pixel 800/600 = 1.33 pixels had to be sampled.

The probability to find an unvisited pixel is already at only 50%.

Postprocessing the map with morphological operators like explained in the previous sec-

tion can help to cover unvisited pixels. The blue curve in figure 4.5 shows the substantial

increase in visited pixel when applying postprocessing. At about 1000 samples almost

all pixels are covered. The efficient sparse template sampled collation approach can also

benefit from postprocessing see figure 4.6). The blue curve shows that the whole image

is covered at about 600 samples.

Concluding we can say that the efficient sparse sampling template collation approach

has shown to be superior in every aspect to the previous version. Using a list of unvisited

points avoids generating redundant information, it is more computationally efficient and

generates denser object-based attention maps. In addition it maintains the randomness
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of sampling which has previously been shown to have beneficial properties in online

processing.

Algorithm 6: Efficient Sparse Sampled Template Collation

Data: Image I; Non visited Points P ; Salient Point Position S; Seed Template C;
Sampling Rate n; Set of Templates T ; Object-Based Attention Map M ;

Result: Object-Based Attention Map M

V = createSetOfNonVisitedPoints(I);
if n > sizeOf(V ) then

// The sampling rate n is adjusted, if it is higher than the

// number of non visited points.

n = sizeOf(V );
end
C = sampleSeedTemplateFromImage(S, I);
for i← 1 to n do

pi = sampleRandomPoint(V );
removePointFromSet(pi,V );
ti = sampleTemplateFromImage(pi, I);
addTemplateToSet(ti, T );

end
forall the t ∈ T do

s = calculateSimilarityScore(ti, C);
setSimilarityScore(s, ti, M , pi);

end

4.2 Applications for Object-Based Attention

I
n neuroscience and psychology object-based attention explains the behavior of neural

responses when an object is fixated. Visual stimuli are adjusted in favor of the par-

ticular object, which enhances the processing of the object’s features. Here we present

two applications which can benefit from our object-based attention method: 1.) Object

Recognition and 2.) Visual Search Tasks
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Figure 4.5 The effect of sampling on the number covered pixels and probability to pick a
previously unvisited pixel using the sparse sampled template collation approach. Sim-
ilar to the coupon collector’s problem, the number of selected pixels which haven’t
been visited before significantly decreases with number of samples. Without post-
processing it takes about 5000 samples for a 1200 pixel image to cover the whole
image.

4.2.1 Object Recognition

Our Object-based attention approach enhances the representation of the attended object

by biasing the object’s features. This is achieved by segmenting the attended object

from the surrounding, which is a crucial preprocessing step in object recognition. An

image which contains multiple objects will produce ambivalent results in the classification

because features are generated from all objects. Therefore we introduced object-based

attention to the object recognition process.

More explicitly we can say that the object recognition process benefits from the object-

based attentional approach for two reasons:
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Figure 4.6 The effect of sampling on the number covered pixels and probability to
pick a previously unvisited pixel using the efficient sparse sampled template collation
approach. The number of new selected pixels which haven’t been visited before a
linear in the number of samples. No redundant computational step needs to be
performed. Without postprocessing the samples needed to cover the whole image are
identical to the number of pixels in the image.

1. It provides a segmentation of the fixated object from the surrounding areas which

are likely to contain objects that interfere with the classification performance. This

is especially useful in cluttered scenes, and essential for interacting and reasoning

about the environment.

2. It drastically reduces the region of interest and therefore the area where the tem-

plates are sampled from. Subsequently less templates are needed to that cover the

area of the object, which accounts for a faster processing speed. The sampling

process in the object recognition step (see chapter 5) is particularly computation-

ally intensive as the feature vector is generated calculating the response of every

template in the dictionary to every newly sampled template, which results in a
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complexity of O(n × m), with n being the number of sampled templates and m

being the number of templates in the dictionary.

We tested our object-based attention approach on various objects (see figure 4.8). The

tests show good results also with cluttered objects. The Object Recognition greatly

benefits from this object segmentation step. Before, it was not possible to classify an

image with two known objects of different classes in it. Our approach now enables

a distinct classification of objects in the same image. Additionally the probabilistic

classification over time function (see chapter 5) converges faster, because templates are

sampled only from the object and therefore the classifier outputs a higher probability of

the object’s class.

We evaluate our approach by measuring the probabilistic responses of the classification

with and without object-based attention. The results in figure 4.7 show, that the clas-

sification with our approach is more accurate and consistent compared to the previous

approach. The probability estimates have less variance and are around 97%, whereas

without OBA the results show higher fluctuation and significantly less accuracy with

around 70%. This also benefits the probabilistic summation over time approach - the

believe system achieves 100% almost immediately, without object-based attention it

takes three times as long. The old approach was not able to distinguish between ob-

jects, whereas the new approach showed no difference in classification performance to

single object images.

4.2.2 Visual Search

We modified Sampled Template Collation for object-based attention so it can be used

for visual search tasks. Visual search is an active perceptual task involving attentional

mechanisms. The environment is scanned for a particular object using the object’s

visual features. Many visual search model are biologically-motivated and based on the

Feature Integration Theory explained in chapter 2. Visual Search provides clues of

the position of the searched object, which are then verified in active saccades on the

particular positions. We are not constantly aware of every object in our visual view and

only objects we actually attend to are recognized in a higher cognitive fashion.

This approach is highly efficient from a computational perspective:
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Figure 4.7 Classification results with and without Object-based Attention (OBA) for
a test case with two objects in the image. The different images were acquired over
multiple time steps at different view angles on the objects. The results show that
the object recognition noticeably benefits from the OBA approach. The probability
estimates are much preciser with OBA (green line) than without (orange one).

1. The information needed for visual search, which are the features in the visual

field, is already present due to the feature processing for visual attention. This

information is then biased in favor of features that are similar to the object we are

looking for.

2. It drastically reduces the region of interest for higher cognitive processes like object

recognition. First the image is segmented for possible candidates of the object and

only then verified by computational more complex functions.
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(a) Input Image (b) Object Heat Map (c) Intersection

Figure 4.8 Object-based Attention using Sampled Template Collation. The center of
the input image (a) is used as template seed to create the object-based attention
heatmap (b). Column c shows the result of intersecting heat map and input image.
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We slightly modified our Sampled Template Collation approach to be able to bias those

templates which might be sampled from the object (see algorithm 7).

First we generate an object-based attention map and intersect the result with the input

image. The resulting area of the segmented object is then used as a region of interest

for the initial sampling process for generating a set of object templates (see figure 4.9

(A) - (C)). The sampled object templates now act as seed templates. For every sampled

template in a new image, those object templates are used to calculate a similarity score.

This score is then again back projected to the origin of the image template to generate

the visual search map. Figure 4.9 shows the initial procedure (first row) and some results

of the process. Figure 4.9 (D) shows the initial visual search map generated with the

templates sampled from the intersection in (C).

Algorithm 7: Sampled Template Collation for Search Tasks

Data: Image I; Set of templates T ; Salient Point S; Object-Based Attention Map
M ; Object Templates O; Visual Search Map V

Result: Object-Based Attention Map M

gaussianBlur(I);
convertToLabColorSpace(I);
M = createObjectBasedAttentionMap(I, S); O = sampleObjectTemplates(I, M);
T = sampleImageTempalts(I); forall the tk ∈ T do

forall the oi ∈ O do
s = calculateSimilarityScore(ti, oi);
setSimilarityScore(s, V );

end

end

Figure 6.3 shows visual search results for Waldo. Here only one seed template is sampled

from the middle of the image, which has a similar pattern as Waldo itself. This seed

template is used to calculate a visual search map. The result contains three candidates,

one of them is Waldo, the other two look very similar to Waldo.
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(a) Input (b) OBA Map (c) Intersection (d) Visual Search Map

(e) Input (f) Visual Search Map

Figure 4.9 Visual Search with Object-based Attention using Sampled Template Colla-
tion. The first row pictures the initial step, where object templates are sampled from
the green packaging from the created OBA intersection. The three following rows
show examples of the visual search maps.
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(a) Input (b) Heatmap

(c) Intersection (d) Candidates

Figure 4.10 Where’s Waldo? A seed template is taken from the middle of the image
(a), which has a similar pattern as Waldo itself. The heatmap (b) shows the highest
responses for this pattern. Intersected with the input (c) the candidates can be
extracted (d). [Image from http://whereswaldo.com/]
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4.3 Summary

I
n this chapter we presented Object-based Attention using Sampled Template Colla-

tion. The method we developed is based on our sampled template collation model for

visual attention.

We evaluated our approach and showed that it is online scalable, has low computational

complexity and improves object recognition results due to the segmentation. We evalu-

ated the dense and sparse sampled approach in regard to computational complexity and

consistency and showed that sparse sampled template collation can achieve the same re-

sults with faster processing than the dense method. We also introduced efficient sparse

sampled template collation which doesn’t suffer the coupon collector’s problem. We pre-

sented useful applications for object segmentation, visual search and object recognition.

In the next chapter we introduce our approach to object recognition. It is based on a

simplified computational model of information processing in the visual cortex.
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Chapter 5

ENHANCING A

COMPUTATIONAL MODEL FOR

OBJECT RECOGNITION

ModHMAX

This chapter will introduce the object recognition system developed in this thesis. It con-

sists of ModHMAX, a for time-crucial applications enhanced modification of HMAX and

the concept of temporal reasoning, which introduces time to static recognition models

and presents a more realistic approach to biologically-inspired object recognition. The

chapter starts with a discussion about the use of 3D information in object recognition.
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5.1 3D or not 3D?

I
n the last couple of years 3D sensing camera systems have gained in popularity due

to inexpensive infrared emitting RGB-D cameras like the Kinect. Using depth for

object recognition can have advantages over normal 2D approaches, especially because

the depth information can be used to segment the environment by using the position

information of spatially separated objects. Using depth information can additionally

avoid misclassification due to texture or lightning.

The methods to acquire depth information can be separated into two categories: Active

and passive. Passive systems use two cameras, where position and distortion are known

after calibration. The depth can then be inferred by point correspondences. Active

systems use a light emitting source like infrared or laser and - in the first case - project

known patterns onto a surface and therefore calculate the depth information. Systems

with laser measure the time of flight the light took to the object and back and infer

the distance. These so called Light Detection And Ranging systems (Lidar) can have a

much higher range compared to the Kinect, but are also much more expensive.

One major problem with those systems is that light passes through transparent objects,

returning no depth information at all. This is especially an issue with regard to household

robotics, where a lot of the objects are made of glass or transparent plastic. To visualize

this issue, figure 5.1 shows a disparity map of a scene containing glasses. The color gray

in the disparity map means, that there is no depth information at all about that region

and it is therefore not possible to create features for learning and classifying objects.

Using 2D RGB information instead, we are able to create features like the one generated

by our system.

The drawback with transparent objects and the fact, that depth information is not es-

sential for humans to recognize objects are reasons to investigate 2D object recognition

rather than 3D. Recent success stories in object recognition performance using convolu-

tional neural networks on two dimensional data support this assumption.

5.2 The ModHMAX Computational Model

O
ur object recognition system is strongly based on HMAX, as it allows
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(a) RGB Image (b) Disparity Map

(c) S1 feature map (d) C1 feature map

Figure 5.1 Comparison 2D and 3D. There is no depth information available using an
active light emitting sensor (b) and therefore we have no information about the object.
It is not possible to create features using only the disparity map. By using the 2D
RGB image instead, it is possible to create features like the ones used in our system:
Figure (c) S1 and (d) C1.

1. for a quick training with little training data,

2. the computational advantages for processing and classification, which is a crucial

requirement in robotics,

3. its possibilities for improvements and modifications and

4. it proofed superior to state-of-the-art object recognition systems like SIFT (see

section 2.3.2).

We developed and evaluated different methods and modifications in the architecture for

improving the standard HMAX model to be applicable in real-world scenarios in terms

of speed, object recognition performance and classification over time. Figure 5.3 shows
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the architecture of our system with the corresponding layer in the original HMAX model

and the related area in the visual cortex. Figure 5.2 shows a map of the locations of the

corresponding brain areas with the processing latencies for rapid scene classification.

S1

C1

S2

C2

Classif- 
ication

Figure 5.2 Processing latencies for visual stimuli in the brain. (Adapted from [Thorpe
and Fabre-Thorpe, 2001]).

5.2.1 Enhancements and Modifications in S1 and C1

The first layer is based on a representation of simple cells in V1 which react to oriented

edges and bars in their receptive field. The response of these cells is quite similar to Ga-

bor filters with specific parameters according their tuning of orientation and frequency;

The Gabor filters are created using the function

G (x′, y′) = exp

(

−x
′2 + y′2γ2

2σ2

)

cos

(

2π
x′

λ
+ ψ

)

(5.1)
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Figure 5.3 Functional Overview of our object recognition architecture. The left column
indicates which response corresponds to which layer in the HMAX model. The right
column gives a rough idea of the corresponding areas in the brain.
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with

x′ = x cos θ + y sin θ (5.2)

and

y′ = −x sin θ + y cos θ (5.3)

where θ controls the orientation of the filter, ψ the phase offset, σ the variance of the

Gaussian, γ the spatial aspect ratio and λ represents the wavelength of the sine function.

The original HMAX model creates a Gabor Filter Bank of 64 filters for convolution

with the input image to create a representation of the S1 receptive field response. For

biological plausibility and comparability we apply the same parameters as in Serre et.

al. [Serre et al., 2007b], which resemble the response of the actual V1 parafoveal simple

cells in the visual cortex; corresponding to neurophysiological data in [De Valois et al.,

1982].

The second layer represents the complex cells in the visual cortex. They have a much

larger receptive field than simple cells and add some degree of spatial invariance and shift

tolerance to the system. They gain input from two S1 filter outputs of same scale band

and same orientation. Their functionality can be described as a max pooling operation

or a moving maximum over two filter outputs of S1; They keep only the maximum value

of two neighbored (of same band) responses of the previous S1 layer within a sliding

window.

An example: We have two windows Wa and Wb of S1 filter outputs a respectively b

over the same area [(x0, y0); (xn, yn)] with n being the window size. The C1 response at

position (x0, y0) would be max(Wa,Wb), with max being the maximal occurring value

in Wa and Wb. The specific parameters and S1 neighbors (bands) are shown in table

5.1.

A single response r can be described as

r = max(Wax,y
,Wbx,y

) ∀x, y ∈ Wa,Wb (5.4)
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with Wa and Wb being one of the sliding windows sampled from the previous S1 layer

over the same position of two neighbored filter outputs a and b; and x and y being all

pixels in the window.

5.2.1.1 Orientation-free Gabor Filter

Gabor filters have shown to provide a good estimate for the response of cortical simple

cells and so they are used in all of the HMAX-like implementations. The model presented

in [Serre et al., 2007b] uses four different orientations with different sizes and parameters

resulting in 64 different filters.

Mutch and Lowe [Mutch and Lowe, 2008] use a slightly different approach by applying

twelve different orientations but with a sparse representation to a pyramid-based model.

Instead of a template with multiple layers - one for each orientation - the sparse rep-

resentations reduces the layers to one by applying a per-pixel maximum operation over

the different layers. This results in a one layered template with only the most dominant

orientation (see figure 5.4). Computing only one layer compared to four, reduces com-

putational complexity - however computing twelve orientations per Gabor filter would

result in 192 different Gabor filters1 and therefore 192 convolutions, which is computa-

tionally worse than the standard approach with 64 Gabor filters with four layers.

According to the idea of sparse representation trough the introduction of more orien-

tations and reduction to one layer, we investigated if it is possible to integrate the

functionality to an earlier layer in the HMAX model in order to reduce the computa-

tional complexity. Therefore we had a look at the Gabor filter convolution at stage

S1.

The different orientations are supposed to contribute to the system’s orientation invari-

ance. However, those models create n-layered patches - with n being the number of

different orientations. These patches are used for creating a feature vector for classifi-

cation by applying a radial basis function, which calculates the norm of the difference

of the n-dimensional patches. Consequently the result of the RBF function is quite dif-

ferent if the patches are rotated, which indicates, that orientation invariance is in fact

very limited. In addition Mutch and Lowe’s template reduction indicates that a simple

1Mutch and Lowe actually use one sized Gabor filters applied to an image pyramid, which results in
the same complexity.
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Figure 5.4 Dense representation (left) of a template compared to sparse representation
(right) used in Mutch’s and Lowe’s model. (Image taken from [Mutch and Lowe,
2008])

combination of Gabor filters of different orientations could have the same effect while

reducing the computational complexity.

Therefore we investigated, if Gabor filter of different orientations can be combined by

creating an orientation-free Gabor filter using

Gλ,ψ,σ,γ (x, y) =

exp

(

−x
2 + y2γ2

2σ2

)

cos

(

2π
√
x2 + y2

λ
+ ψ

) (5.5)

This approach creates a much finer representation of edges than ordinary Gabor filters,

as all possible orientations are covered (see figure 5.6 and 5.5). Mutch et Lowe also argue

in [Mutch and Lowe, 2008] that cells in the visual cortex have much finer gradiations of

orientation than π/4.

In addition, an orientation-free Gabor filter reduces the computational cost of convo-

lution from n orientations to one - in our case from 64 to 12. Another benefit of a

orientation-free Gabor filter is that it is separable, which would make it computation-
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ally more effective. But in the HMAX model the filter is only defined within a circular

area as it is more accurate to a simple cells’ anatomy, which makes it non-separable.

We tested non-circular Gabor filters against circular ones and got better defined edges

using the original approach.

The features generated with the templates sampled from orientation-free Gabor filtered

images showed however worse performance than the original approach (see figure 5.7).

We believe that the features are too specific and complex to be used for classification.

As this approach turned out to be insufficient, we investigated if the filter bank can be

reduced while maintaining most of its descriptive features and classification accuracy.

5.2.1.2 Reducing the Filter Bank

The HMAX model has a set of fixed parameters for Gabor filters in the S1 layer and the

MAX Pooling function in the C1 layer. The Gabor filter differ in size, amplitude and

deviation. The C1 Filters in size, overlap (or stride). The applied parameters in both

layers are organized in separated bands (see table 5.1). The response of a specific set of

Gabor filters is processed using a specific grid size of the C1 layer. The reason mentioned

in [Serre et al., 2007b] for choosing the specific parameters and bands is biologically

motivated: the parameters seem to resemble the responses of Simple and Complex Cells.

We are however more interested in performance than biologically plausibility, therefore

we broke up the link between the S1 and C1 band and investigated how it affected the

classification result. First we evaluated each band independently by creating features

just by sampling from one single band at a time. The results in table 5.1 indicate that a

larger filter size in S1 and C1 has a positive effect on the classification accuracy. In the

second step we mixed the S1 band and C1 band and evaluated the effect on the test set.

A larger Gabor filter size had a negative effect on the accuracy, while a smaller Gabor

filter size improved the results. In the C1 Layer we measured an opposite effect, the

larger the grid size of the max pooling filter, the better the results. In order to evaluate

this effect, we added even larger MAX filter to the system, which are not present in the

original HMAX model. A selection of the results of possible combinations are shown in

table 5.2. It clearly indicates, that a combination of small Gabor filters and large MAX

pooling filter are superior and outperform the other possible combinations. Therefore

we chose the S1 filter band 2 with a filter size of 11x11 and 13x13 and the C1 filter band

9 with a size of 28.
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(a) 0◦ (b) 45◦

(e) 90◦ (f) 135◦

Figure 5.5 Gabor filters with four different orientations.
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(a) Orientation-free Gabor filter (b) Response

Figure 5.6 Orientation-free Gabor Filter
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Figure 5.7 Classification Performance for Standard HMAX, Orientation-Free Gabor
Filter and ModHMAX. [Dictionary Size 200; 800 Patches sampled.]
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Table 5.1 Parameters applied in S1 and C1 by Serre in [Serre et al., 2007b]. On the
right column, we evaluated the classification results for each single band individually.
It indicates, that similar performance can be achieved using just a subset of the filter
bank, because the difference in classification accuracy between a single band vs the
whole filter bank is quite small.

S1 Layer C1 Layer

s σ λ Grid Size Overlap Band Accuracy

θ
=

0◦
,4

5◦
,9

0◦
,1

35
◦

7× 7 2.8 3.5

9× 9 3.6 4.6
8× 8 4 1 0.768

11× 11 4.5 5.6

13× 13 5.4 6.8
10× 10 5 2 0.774

15× 15 6.3 7.9
12× 12 6 3

17× 17 7.3 9.1
0.784

19× 19 8.25 10.3

21× 21 9.2 11.5
14× 14 7 4 0.780

23× 23 10.2 12.7
16× 16 8 5

25× 25 11.3 14.1
0.792

27× 27 12.3 15.4

29× 29 13.4 16.8
18× 18 9 6 0.804

31× 31 14.6 18.2
20× 20 10 7

33× 33 15.8 19.7
0.796

35× 35 17.0 21.2

37× 37 18.2 22.8
22× 22 11 8 0.788

Original HMAX 0.806

ModHMAX 0.842
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Table 5.2 Classification results for different combinations of filter bands. Note that filter
band 8 and 9 in C1 are not existent in the standard HMAX system. We added them
to evaluate the effect of even larger MAX filter on the accuracy. Band 8 has size 26
and Band 9 has size 28.

Band S1 Band C1 Accuracy

1 7 0.808

1 8 0.812

1 9 0.808

2 1 0.784

2 6 0.814

2 7 0.821

2 8 0.840

2 9 0.842

3 6 0.798

3 7 0.814

6 1 0.754

6 7 0.808

7 1 0.738

5.2.1.3 Filter Factorization

Separable filter have a significant computational advantage over non-separable filters.

A convolution in the spatial domain for a two-dimensional filter has the complexity

O(N ∗M ∗K2), whereas a separable kernel has O(N ∗M ∗K), with M and N being the

number of columns and rows of the image and K the size of the kernel. Using singular

value decomposition (SVD) we are able to factorize a Gabor filter into separable matrices.

The SVD of the Gabor filter matrix takes the following form:

G = USV T =
j
∑

i=1

uisiv
T
i (5.6)

We can precalculate the separable filters and create the convolved image J from image

I by using
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J =
j
∑

i=1

I ∗ (ui
√
si) + I ∗ (vTi

√
si) (5.7)

We achieve almost similar results for j ≥ 3 compared to the original filter with an

average error rate of 9.5 ∗ 10−5 over the whole filter (see figure 5.8) - and still are faster

by applying the separable filtering for j = 3 than using the non-separable filter.
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Figure 5.8 Error Distribution in a 20x20 Gabor filter created with Singular Value De-
composition. The figure displays the difference between an original Gabor filter and
one created using Singular Value Decomposition with the first three separated sum-
mations (see equation 5.6). The average error rate is very low (9.5 ∗ 10−5), so that
this approximation can be used as an approximation for the Gabor filter.
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5.2.2 Enhancements and Modifications in S2 and C2

The third and fourth layer of the HMAX model again mimic the functionality of simple

and complex cells in the visual cortex. This behavior is represented with convolution and

max pooling. Instead of Gabor filter like in S1, the used filters are templates randomly

sampled during training from the C1 layer and collected in an universal dictionary.

Instead of template matching for n templates in the dictionary with k C1 feature maps,

just a subset of all possible positions in C1 is randomly chosen and compared using a

Radial Basis function.

Each templates has four channels, assembled by sampling from the C1 feature maps in

the same band of different orientation (0◦, 45◦, 90◦, 135◦) at the same randomly chosen

position. Different template sizes are used, which slightly contributes to size invariance

in the system. The templates are needed for two different cases: First for building a

dictionary which is kept and used throughout training and classification, and second for

calculating the response of new sampled templates to this dictionary which is used to

create the feature vector.

The equation used to compute the distance between the template and a template in the

dictionary is a radial basis function:

ri,k = exp(−β||Ti −Dk||22) (5.8)

with β being a weight constant for adjusting the amplitude of the response, Ti being a

sampled template and Dk one of the templates in the dictionary.

Like in C1, the complex composite cells in the C2 layer perform a max operation over

all the template responses across all scales, this creates an n dimensional feature vector,

which can later be used for training a classifier.

For each template in the dictionary the maximum response for equation 5.8 is calculated

using all the rbf responses of the templates of equal size. Using equation 5.8 this leads

to
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fk = arg max
Ti

(exp(−β||Ti −Dk||22)); (5.9)

which builds the feature vector F = {f0, f1, . . . , fd} for all k in the dictionary D, with d

being the length of the dictionary and Ti being a sampled template.

The operation removes all position and scale information resulting in global invariance.

The whole response is a complex feature vector which can be used to train and test a

classifier.

5.2.2.1 The Dictionary

The convolution and max pooling operation involving the dictionary is computationally

expensive because the radial basis function is calculated between all randomly sampled

templates Ti and all templates Dk in the dictionary. Note that the patch sets have

different sizes {4,8,12,16}; so not all patch sets can be compared to another, which

leaves a total number of RBF function calls of

n = |S| ×
|S|
∑

m=0

|Tm| × |Dm| (5.10)

with S being the set of the different patch sizes, in our case |S| = |{4; 8; 12; 16}| =

4; Tm being the set of sampled templates with the patch size Sm and Dm being the

set of templates with patch size Sm in the dictionary. Assuming for example |T | =

{250; 250; 250; 250} and |D| = {250; 250; 250; 250} the number of rbf operations would

be 4× 2502 = 250.000.

Reducing the complexity while at the same time keeping the classification performance

at an acceptable level has received only little attention although it is crucial in order to

meet the requirements for online classification. We investigated different possibilities to

optimize the system for online processing by minimizing the size of the dictionary and

the size of the sampled templates while maximizing the classification performance.

We investigated and evaluated different aspects of the dictionary. First we analyzed

the changes in classification performance for different sizes of the dictionary. Figure 5.9
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shows the results for a 10-class problem for a constant template sampling size of 800

and dictionary sizes of 20, 200, 2000 and 8000. At a dictionary size of about 200 we

already get a significant improvement over smaller dictionaries whereas at a size above

2000 there are only little changes in the performance. While the orientation-free Gabor

filter can’t achieve equal results, the original HMAX and our ModHMAX modifications

perform similar.
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Figure 5.9 Classification Performance for Standard HMAX, Orientation-Free Gabor
Filter and ModHMAX for different dictionary sizes. [10 classes; 800 Patches sampled
in C1 layer.]

We further analyzed how the single features in the dictionary contribute to the classifica-

tion performance. Therefore we evaluated different sizes of subsets of the dictionary with

randomly picked features - Figure 5.10 shows the results of picking an optimal subset of

the existing dictionary. In general this method improves the classification performance

for smaller dictionaries, as important features are detected and kept in the subdictionary

whereas bad features, that might even decrease the performance, are rejected. We eval-
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uated the features using a statistical F-score, which is more significant than precision

or recall, and applied the evaluation on a dictionary with 8000 features. ModHMAX

in particular benefits from this approach and performs better than the original HMAX

approach.
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Figure 5.10 Classification Performance using optimal feature selection for the dictionary.
[10 classes; 800 Patches sampled in C1 layer.]

We also investigated the influence of different template sizes in the dictionary. The

applied sizes are 4x4,8x8,12x12 and 16x16. We evaluated the sizes by selecting only one

template size for training and classification for different dictionary sizes and sampling

rates. Figure 5.11 shows the results. Smaller templates seem to perform less well than

templates with a larger size, as long as the dictionary and sampling rate is high enough.

A small dictionary and a low sampling rate decrease the result for the largest template

size - presumably because larger templates are more complex and characteristic only of

a subset of objects.
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Figure 5.11 Classification Performance for Standard HMAX and ModHMAX using just
one patch size. [10 classes; Dictionary Size 50 and 200 samples or dictionary size 200
and 800 samples]

We further investigated the effect of the sampling rate in the C1 feature maps on the

classification performance. Figure 5.12 shows the results with a dictionary size of 200 and

different sampling rates for a 10-class problem. At about 800 samples the performance

reaches a maximum. ModHMAX outperforms the standard approach for a lower number

of samples.

We tried to optimize the selection of templates in the dictionary in order to find a better

representation of the objects. Therefore we applied k-means clustering to find centers in

the sampled template sets by comparing the distance of intensities at each pixel position.

The results however showed a decrease in classification performance (e.g. about 3%

for the 10-class problem), this effect is consistent with the work described by [Serre

et al., 2007b]. The k-means algorithm tries to minimize the distance of the templates

to their assigned cluster center. We believe that by using k-means, small variations in
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Figure 5.12 Classification Performance for Standard HMAX, Orientation-Free Gabor
Filter and ModHMAX for different sampling rates. [10 classes; Dictionary Size 200]

the templates, which might be important for classification, are assigned to one common

cluster and represented by only one center template. Additionally, the quantity of similar

templates, which represent similar parts of an object is lost, whereas possible outliers

might get represented with an own cluster center. By sampling randomly from a set of

templates, these outliers are less likely to be selected.

In test scenarios which especially focus on computational performance using a small

dictionary and low template size, the ModHMAX approach seems to outperform the

original approach. A likely explanation is that the possibility to find a better template

match with ModHMAX is more likely as the dictionary and the sampled templates

are chosen from less feature maps as the original HMAX. For a larger dictionary and

sampling size the original approach slightly outperforms ModHMAX.
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5.2.2.2 Object Localization

In the standard HMAX implementation, the dictionary is created by randomly sampling

templates as elements in the dictionary from the maps created in C1. This approach

bears the risk to select a non-optimal set with over-represented and redundant features.

Especially in image data sets, where image categories are presented in clutter for training

and testing it is uncertain if the applied algorithm actually classifies the object itself or

just the surroundings. The category car in the Caltech101 database is for example such

a case: The actual object only takes a fraction of the image, whereas objects like trees or

houses take up most of the space. Therefore it is uncertain, if the presented algorithms

actually recognize the class car or mainly the background, as the templates are randomly

selected over the whole image.

Instead of random selection, we wanted to analyze how well a dictionary can represent a

single object class. To deal with this problem our method follows an approach, which is

based on neural tuning. Cells in the brain selectively represent specific sensory patterns.

We assign templates to specific object classes and each class is represented by an own

sub-dictionary, which is created by keeping only templates that reoccur to a certain

degree in all the training images. Hereby we want to achieve, that the created dictionary

represents the actual object instead of it’s surroundings. A car tire probably will appear

in all images for example, however a tree might not, therefore patches containing the

tree will most likely be filtered out.

After the sub-dictionaries are created, we apply an approach derived by lateral inhibition

appearing in neural processing. For each template in a sub-dictionary we calculate the

response of each template of each other sub-dictionary. If a template exists, which reacts

above a certain threshold to templates in all sub-dictionaries, then these templates are

completely removed. That way the sub-directories are more confined to their specific

class.

Mathematically, we can describe the set of sub-dictionaries as a partition of dictionary

D

D =
⋃

Di∈D

Di (5.11)

with
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Di = {x|∀x ∈ Di : ∄y ∈ Dj, i 6= j : r(x, y) > θ} (5.12)

with θ being a threshold of the response of the radial basis function r of Equation 5.8.

Pseudo-Algorithm 8 displays how a sub-dictionary is created.

Algorithm 8: Create Object Specific Dictionary

Data: Sub-Dictionary Di; Set of training images T; Set of patches C; Threshold θ
Create New Set Of patches(T1, Di);
forall the s > 1 do

Create New Set Of patches(Ts, C);
forall the k do

forall the p do
if f(Dip, Ck) < θ then

delete(Dip);
break;

end

end

end

end

One common method in computer vision to localize specific objects in an image is the

simple sliding window approach, which is rather naive and inefficient, especially for time-

crucial scenarios. The templates in the sub-directories are object-specific and therefore

allow us to deduce the object location to a certain degree using the patches maximum

response occurrences in the image. This approach requires no additional calculation,

as the maximum responses are anyway needed to be calculated by the system in order

to create the feature vector for the classifier. We create a saliency map by adding the

maximum response values for each patch in the sub-dictionary to the location in the

saliency map where the patch from the test image was sampled that created this highest

response. Figure 5.13 shows some results of the object localization approach. We trained

the dictionaries for a one-class problem using training images for the specific object as

positive data and background images from the Caltech-101 data set as negative classes.

Column B shows the salient regions calculated by backprojecting the maximum responses

of the subdictionary to the sampled templates. Column C shows the salient regions of

the subdictionary of the negative class. Note that there is no classification involved,
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the results are simply the maxima of the radial basis function values and therefore the

backprojected feature vector values.

5.2.2.3 Integration of Entropy

There has been an ongoing debate about the feedback to the LGN1 and its functional

role is still not completely clear [Eivind Norheim and Einevoll, 2009; Briggs and Usrey,

2011; Jones et al., 2012]. The general consensus however seems to be, that there exists

an influence to the cells in LGN generated by the feedback from V1.

The standard HMAX model is a straight feed-forward hierarchy. This is an arguable

simplification, as feed-back projections are an integral part of the visual system, although

it might appear that those projections are counter productive to a low latency and fast

processing. Here, we focus on the feedback from V1 to the LGN, due to the fact that

cells in V1 provide an extensive feedback connection to LGN (about 30% of the synaptic

input to LGN relay cells) [Sillito et al., 2006]. McClurkin et al. [McClurkin et al., 1994]

state that the influence of feedback to the LGN enhances the information about the

stimulus in the firing pattern. They cooled the visual cortex to reduce the feedback to

the LGN and then applied Shannon’s information measure to reveal that the average

stimulus-information transmitted decreased. They conclude that the feedback increases

the information that LGN neurons transmit in about all of the stimulus parameter they

tested: pattern, luminance, and spatial and sequential contrast.

We integrated the information maximization and the feedback processing in the LGN

in our object recognition architecture at the end of layer C1 and before the template

matching in S2. The set of sampled templates are evaluated by the LGN node according

to their information gain. Here we apply simple tools from information theory, and

measure the self entropy for each randomly sampled template X by calculating

H(X) = −
M
∑

m=1

pm log pm (5.13)

with pm being the probability that a randomly chosen pixel in the template has brightness

level m. H(X) is large if the system has many equally likely states (high uncertainty);
1The lateral geniculate nucleus is located in the thalamus. It is the major target of the retinal ganglion

cells. It receives inputs from both eyes and relays these messages to the primary visual cortex via
the optic radiation
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(a) Input image (b) Saliency map for object
subdirectory

(c) Saliency map for subdirec-
tory of negative class

Figure 5.13 Object Localization. A saliency map of maximum responses to the object
subdirectories. The map which belongs to the object in a) is shown in b); c) shows
the response of a different object subdirectory. The first two images were taken from
the Caltech101 database, the others were taken from the UIUC car dataset.
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and therefore the template contains a higher information value. On the other hand,

H(X) is zero if and only if the system attains only a single state with p = 1. In that

case the template contains no information. In our case, a template’s entropy is gained

by taking the intensity values of each position in the template into account. Pseudo-

algorithm 9 describes how this step works: We sample a template, then evaluate its

information value and depending on a threshold decide if we reject it or not. We do this

until the size of the set of accepted templates matches a predefined sampling rate. To

avoid an endless loop which can occur during online processing when the camera is for

example pointed at a white wall, we set the threshold to reduce over time.

Algorithm 9: Entropy Integration
Data: Set of C1 feature maps M ; Set of Templates T ; Sampling Rate s; Threshold

θ
while |T | < s do

t = Sample new Template from M ;
h = Calculate Entropy(t);
if h > θ then

Add to Set of Templates(t, T );
end

end

The LGN increases the information about stimulus pattern, luminance and spatial con-

trast [McClurkin et al., 1994]. We approximate this functionality by calculating the

entropy of each template sampled randomly from an image. Templates with a low

entropy are rejected and only templates with a higher entropy are kept. Figure 5.14

illustrates the impact of the LGN functionality integration to selectivity and sensitivity

of templates on natural images. The blue dots represent sampled templates, those with

a high entropy are shown in column c, in contrast column b shows the randomly sampled

templates without the entropy step.

In order to further reduce the computation time of the system we tested two additional

approaches to approximate the entropy in a template: 1. The standard deviation of the

patch and 2. The difference of the maximum and minimum occurring intensity in the

patch T :

H(X) ≈ max(T )−min(T ) (5.14)
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(a)Input (b)Standard (c)Enhanced

Figure 5.14 The figures at (b) show the unadaptive feed-forward template (blue spots)
sampling of the standard HMAX model. Our approach (column c) adds LGN feedback
with entropy-sensitive selection according to the template’s information gain. It shows
that templates sampled in areas with low information (like the surface of a street or a
wall) are rejected. That way areas are selected which are easier to distinguish, which
helps in the classification process. The pictures were chosen from the Caltech-101
database.

The intensity difference and the standard deviation approach were both equally fast

but about 1.5× faster than the entropy approach, with similar results (see figure 5.15).

In order to evaluate our entropy approximations, we ran the different approaches on a

test set of random images. We randomly sampled templates and rejected those below

a certain threshold, which was chosen for each approach individually. We then counted

the remaining not rejected number of patches, calculated their average entropy and

overall entropy. The results are displayed in table 5.3 and show that our approximation

approaches can give a good estimate for entropy.
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Table 5.3 Results for our different entropy approximations averaged over randomly cho-
sen images. We sampled 800 templates and rejected those below a certain threshold
for each approach. The number of not rejected templates is quite similar for each
approach, as well as the overall sum of entropy of those templates and the average
template entropy. It indicates, that our approximations can be used for estimating
the information in a template. See figure 5.15 for a visual comparison.

Min Max Std Dev Entropy

Not rejected Templates 239 230 234

Entropy Sum 905 870 922

Average Entropy per Template 3.758 3.752 3.89

(a)Original (b)Entropy

(c)Std Dev (d)Min Max

Figure 5.15 Approximations for calculating the entropy function. The green rectangles
in figure (B) indicate areas with a high entropy. (C) shows the result with an ap-
proximation for entropy using standard deviation. (D) shows the result using just
the difference of the maximum and minimum intensity. See table 5.3 for numerical
comparison.
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We tested our system against the Caltech-101 database. For each run, we randomly

chose a training and testing image set and computed results with different numbers of

positive training examples (1, 3, 15, 30 and 40) and 50 negative training examples. Our

approach outperforms the original system in regard to the classification accuracy (e.g.

for the airplanes dataset 92% compared to 86%; faces: 96% to 90%, cars 96% to 94%)

or is at least of equal result (see figure 5.16).
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Figure 5.16 Comparison of classification results for faces, airplanes and cars of the Cal-
tech image database between the standard HMAX and our entropy-enhanced model.

The complexity of calculating a template entropy is O(c× r) with c being the columns

and r the number of rows of the template. The complexity for calculating n samples with

t templates in the dictionary is O(n× t) and on a pixel basis O(n(c× r)× t(c× r)). We

can assume, that t > (c× r), which results in a lower overall complexity when applying

our entropy approach. This is because we avoid calculating t(c×r) operations with each

rejected low-entropy template.
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5.3 Temporal Reasoning

I
n this section we focus on the temporal aspect of object recognition, which has only

received little attention so far.

It is known that the entire process of object recognition activates much more areas in

the brain than just the visual cortex, which indicates that in order to achieve similar

efficiency in technical applications, simple feature generation and classification alone

won’t solve the problem in the long run. We need to regard object recognition not as a

distinct but as a cognitive process. According to the principle of temporal contiguity a

cognitive association is made between objects seen in rapid succession [Li and DiCarlo,

2010].

The HMAX model was developed as a proof-of-concept for reproducing the human

performance in rapid scene classification - a test used in psychology and neuroscience

to describe how fast and how well a human subject reacts to the task of distinguishing

between categories in natural images shown for a very short period, where there’s no

time for eye movement of shifts of attention [Peelen et al., 2009; Li et al., 2002].

Classical object recognition systems in technical applications also disregard a temporal

influence on the classification process. But in real world scenarios and especially in

robotics, it is essential to model uncertainty and make use of the robot’s abilities to act

on it. With a humanoid robot and its active vision system and manipulators we have

the tools to model the uncertainty by including the temporal aspect. Accounting for

time could push current models from static single image recognition to a higher level of

object consciousness

Rapid scene classification as applied in studies is usually not the normal way how humans

perceive their environment [Deubel and Schneider, 1996]. To identify objects we usually

move our eyes to different salient areas to gain some kind of certainty about our belief

what the object might be [Farah, 1992]. Depending on the visibility of the scene, this

procedure might vary in time until some certainty is gained [Goldstone, 1998]. Our

system reproduces this behavior by applying a biologically-inspired object recognition

model to a time-aware architecture.

Our approach uses a support vector machine classifier which supports probabilistic out-

puts of the membership likeliness for each trained class [Wu et al., 2004; Chang and
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Lin, 2011]. The evaluation shows (figure 5.17), that these probability estimates can be

used as a certainty measure of the right classification: If a feature vector is more likely

to represent an object of e.g. class 1, the probability for that class is higher than for

the other classes. We tested how representative and valuable those results are for being

applied to our system. Figure 5.17 shows the probabilities’ frequency distribution of a

two-class classification benchmark over multiple runs. The green bars represent the true

positive, the red bars the false negative test results. It shows, that the probabilities give

a good estimate of how likely the class assignment is. The false negative votes had an

average probability of about 63% whereas the true positive probability was about 87%

(keep in mind: these probabilities are not the classification average, but the average of

the probability responses of the true positive/false negative tests). We ran multiple test

to verify the correctness of our probability over time approach.
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Figure 5.17 Probabilities’ frequency distribution of a two-class classification benchmark.

In terms of a time series of probabilities this allows us to make further assumptions:

1. If we see a high probability, we can assume less risk of false classification.

119



Chapter 5 ENHANCING A COMPUTATIONAL MODEL FOR OBJECT
RECOGNITION ModHMAX

2. If we see a low probability, we’re less certain, because we face a higher risk of a

false negative test.

Therefore we assume, that the higher the response to a certain object and the more

often this signal appears, the more likely it is that the response really represents the

object we see. To model this behavior, we make use of psychophysics – a method

used for example in digital signal processing and cognitive neuroscience to describe the

likeliness of a perceptual system’s response to a frequent stimulus. This approach is

similar to concept of summation in neurophysiology. Summation is the method of signal

transduction between neurons, which determines if an action potential will be triggered

and the neuron fires. There exist two types of summation - spatial and temporal.

Spatial summation refers to the achieving of the action potential by summing the input

of multiple presynaptic neurons firing at roughly the same time. Temporal summation

on the other hand refers to achieving the action potential by summing the potentials of

a single presynaptic neuron firing frequently over a short period of time - in our case the

frequent probability estimates of the different classes.

We apply probability summation over time [Watson, 1979] - a method used in signal

detection theory - which models the probability P that a signal is detected accounting

for all Pi, with Pi being the probability that a temporal stimuli threshold is exceeded at

time i.

P = 1−
∏

i

(1− Pi) (5.15)

Equation (5.15) is the probability for one channel. We are interested in n channels,

or in our case n classes, which compete to reach the threshold. Therefore we apply a

maximum function over the set of classes k:

P = max
k

(1−
∏

i

(1− Pi,k)) (5.16)

In our case we chose the threshold to be at least 1

n
∗ 100% - with n being the number

of possible classes - to have a probability above 0% of getting detected, because if the

probability is below the threshold, there exists at least one signal which has a higher

value. We fit this constraint to an exponential distribution to model the assumption

that higher probabilities are more likely to be correct than lower probabilities. This was
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empirically evaluated earlier in figure 5.17 and the true positive curve shows exponential

character as well. We map the probability values from [ 1

n
; 1] to be in a range between

[a; b] in exponential space. Therefore we calculate

f(x, n) = exp(g(x, n)) (5.17)

with the mapping function

g(x, n) = mx+ t (5.18)

With our constraints

g( 1

n
, n) = a; g(1, n) = b; (5.19)

with a being the lower bound and b the upper bound of the mapping, we get

m =
b− a
1− 1

n

; t = b−m; (5.20)

We now need to normalize equation 5.17 to a range from [ 1

n
; 1] by applying

f(x, n) =
exp(g(x, n))− exp(a)

exp(m ∗ (b−m))− exp(a)
(5.21)

Because Equation (5.21) is a continuous probability distribution defined for [1/n; 1], we

set Pi,k,n = f(Ri,k, n) from Equation (5.15) with Ri,k being the probability response for

class k at time i from the classifier:

P = max
k

(1−
∏

i

(1− f(Ri,k))) (5.22)

Figure 5.18 visualizes the resulting graphs of equation 5.22 for n = 2, 3, 4, 5. Figure 5.19

visualizes the probability estimates collected in our experiments and our estimated prob-

ability over time function for a two-class problem.

5.3.1 Accounting for Non-Static Scenes

Static object recognition assumes a constant discrete image. In our temporal approach

we can’t make that assumption, because in real-world scenarios the environment can
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Figure 5.18 Stimuli functions from Equation 5.21 for different number of classes n.

change due to active influence like changing the point of view, or passive influence like

an moving object. This makes it necessary to model the environment’s uncertainty.

Objects in the visual field normally don’t suddenly disappear or change its structure.

According to the principle of temporal contiguity an association is made between objects

seen in rapid succession [Li and DiCarlo, 2010]. Any difference would be interpreted as

a displacement or masking of the object. Without the consideration of external motion

or ego-motion, it would not be possible to build a believe system over an object in the

visual field.

Therefore, we model motion as a trigger for resetting the classification believe certainty.

If there is unsuspected motion from an external force e.g. something moves in the field

of view or the object is taken away or replaced, we reset the believe probability in

Equation (5.22) back to 0%. We model the motion detection as a stream separate from
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Figure 5.19 Comparison between estimated probability over time function f(x, 2) (see
equation 5.21) and collected data (shown in figure 5.17).

object recognition, which responses also end in the decision node. We detect the motion

by reacting to a certain threshold to account for noise in the image data.

Figure 5.20 Architecture for Temporal Reasoning.
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The images are processed in two parallel nodes, which handle object recognition and

motion sensitivity - similar to the ventral and dorsal stream in the visual cortex (see

figure 5.20). The responses of both stream are integrated into the decision making node

- which is slightly based on the functionality of the prefrontal cortex (PFC) and the

frontal eye fields (FEF) - an area located in the PFC, which is responsible for guiding

eye movement and saccades. The decision node integrates the classification response

probabilities over time and the external motion in the visual field to calculates a certainty

measure over the present object. If after several trails the robot is still uncertain about

the object, it could move its eyes or torso to a different position to have a better view

point, or move or turn the object itself.

5.4 Processing Speed

W
e compared the computation speed for convolution with different filter sizes on

CPU and GPU for the separable filter and the non-separable filter in figure 5.21

for a image size of 320× 240. Using our separable filter approach we achieve a constant

processing time on GPU of under 1 ms for j = 3 on all kernel sizes. The average

computation time of the S1 layer using our ModHMAX approach with 4 Gabor filters

takes under 8 ms on GPU compared to about 256 ms for 64 filters on CPU with the

standard system (see table 5.4). This is a speed up of about 64.

Compared to our CPU implementation of the standard HMAX model with nonsepa-

rable Gabor filters, our system speeds up the computation using GPUs and separable

orientation-free Gabor filters by a factor of ≈ 16.8 (see table 5.4).

Table 5.4 Processing speed of S1 layer in HMAX vs our system (averaged over 100
cycles; CPU: i7, GPU: Geforce 670 GTX).

HMAX ModHMAX

CPU GPU CPU GPU

Non-separable filter 252 ms 98 ms 32 ms 12 ms

Separable filter 177 ms 60 ms 22 ms 8 ms

In table 5.5 we show the computation speed for the next layer C1. Again we compared

the speed of the original HMAX system against ours.
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Figure 5.21 Speed comparison between Image Filtering with non-separable and separa-
ble kernel using CPU and GPU for different kernel sizes.

Table 5.5 Processing speed C1

HMAX ModHMAX

CPU GPU CPU GPU

MAX Operation 140 ms 37 ms 17.5 ms 4.65 ms
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Table 5.5 shows processing speed for a dictionary of size 2000 with a sampling rate of

200 patches per patch size per C1 layer. Our system speeds up the overall processing

for the S2 Layer by a factor of ≈ 8.6.
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5.5 Summary

I
n this chapter we presented our ModHMAX object recognition system - a modified

and enhanced version of HMAX with a focus on time-crucial applications for real-

world scenarios. We were able to speed up the first two layers using singular value

decomposition and GPU programming. We evaluated the different combinations of

Gabor filters and Max Pooling Size. Additionally, we investigated the different effects of

dictionary and sampling size to the classification accuracy. The building of the dictionary

was modified so that object-specific dictionaries can be built for localization purposes.

We also introduced an information-theoretic measure into the system using an entropy

metric, which is able to improve classification accuracy by up to 6%. Finally we presented

a temporal reasoning approach which enables the system to built a believe system over

time, to mimic a more realistic approach to biologically-inspired object recognition.

In the next chapter we present an approach towards the integration of the previously

presented fields, namely visual attention, object-based attention and object recognition.

We suggest a software architecture and apply it on the humanoid robot iCub.
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A SYSTEM ARCHITECTURE

FOR VISUAL ATTENTION,

OBJECT SEGREGATION AND

OBJECT RECOGNITION

This chapter proposes an architecture for the integration of visual attention, object-

based attention and object recognition for active camera systems. We describe how the

single modules are integrated into a software framework and how the communication

and information processing is handled between the modules. We successfully enable

the humanoid robot iCub to adjust the gaze to the most salient point using out visual

attention system based on sampled template collation. The fixated object is then fed to

our object-based attention system for object segregation. The segmented object is then

classified using our ModHMAX approach.
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First we describe the general idea of the software architecture and how the single modules

- visual attention, object-based attention, object recognition and temporal reasoning -

are connected and what information they exchange. In the second section we explain

the realization of the architecture in the software frameworks ROS and Yarp on the

humanoid robot iCub.

6.1 Biologically-inspired foundation

T
he architecture and functionality of our system was inspired by the highly par-

allel anatomy of the human visual system and the way information is processed

between the neurons [Nassi and Callaway, 2009]. Following the biological model, the

computational architecture’s focus lies on multiple strategies: The hierarchical process-

ing [Felleman, D.J. and Van Essen, 1991], the parallel processing [Nassi and Callaway,

2009], the modularity and the plasticity [Kourtzi et al., 2006; Lomber et al., 2010].

A large body of works have been proposed recently with a strong relation to neuromor-

phic algorithms and their implementations [Indiveri et al., 2011; Kourtzi et al., 2006;

Rachmuth et al., 2011]. However, most of this research focuses on building specific

models e.g. Itti and Koch’s computational model of visual attention [Itti et al., 1998],

which does not necessarily make them applicable in real-world scenarios. Other projects

(e.g. blue brain project [Markram, 2006; Maass et al., 2002]) make use of large scale

computing to simulate and visualize neuronal models with a focus on the very detail of

even ion channel distributions, but do not consider its functional utilization.

In our work, we propose a functional architecture, which can spread the computational

processing streams over a cluster of PCs with multiple CPUs1 and GPUs2 using a con-

struction of software nodes that are responsible for the functionality. The software

architecture is based on the well-established robot operating framework (www.ros.org)

which handles the communication and synchronization between the single processes.

We created our computational architecture corresponding to the functionality and struc-

ture of the human brain by embracing following key-features:

1Central Processing Unit
2Graphics Processing Unit; highly parallel structure
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Plasticity

The brain is able to change neural pathways, e.g. by experience or brain damage

[Kolb and Whishaw, 1998; Voytek et al., 2010], and also between different brain

regions [King et al., 1988; Finney et al., 2001].

Due to the general approach, the architecture is able to dynamically change its

behavior and it’s connections among the different nodes. It is possible to cope

with possible loss of a processing unit by redirecting the processing stream and

spreading the same functionality over multiple PCs gaining redundancy of func-

tionality and data. The architecture is not dependent on a certain position, the

computation can be spread over any number of PCs at any possible place as long

as they are connected via Ethernet.

Modularity

The anatomical organization and functional organization of the brain is modular.

Different areas in the brain cope with different tasks, e.g. auditory or visual [Chen

et al., 2008]. Each area is defined by dense internal connectivity and relatively

sparse external connectivity to other modules [Unit, 2009].

Our architecture is modular and expandable both in hard- and software. The

software nodes are not bound to run on a specific computer and can be orga-

nized according to their computational complexity. The hardware can be extended

within a single PC, e.g. with a better GPU; or with another PC. The functionality

can be broken down to into several processes to spread the computational payload.

Connectivity

However far from fully understood, different regions in the brain are functionally

connected to enable sensory integration and perform motor and cognitive tasks

[Horwitz et al., 2003; Rubinov and Sporns, 2010]. This is realized by functional

integration and dynamic interaction within the different areas and neurons [Sporns

et al., 2000; Breakspear, 2004].
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The nodes can be connected dynamically during runtime. The data is streamed

via network using TCP/IP1 or for larger data UDP2 for lower latency. For several

technical reasons we primarily utilize the UDP protocol:

1. as less data needs to be transferred, due to a lower overhead compared to

TCP;

2. If data is lost we do not require it to be resend (which is the case for TCP),

as older data are of no interest in our architecture, but the current one,

because we emphasize the importance of the immediate sensory awareness of

the surrounding world;

3. If the arriving information is outdated, the system won’t use it for further

processing. The discrepancy of asynchronous data could lead to false results.

4. To achieve this level of reliability TCP would need to send data back to the

sender which negatively affects the bandwidth and can increase the network’s

latency.

Concurrent and Parallel Processing

Information processing happens in highly parallel fashion in the brain and is essen-

tial for coping with the large input of the sensory information and the mammal’s

ability to quickly react to sudden threats. Multiple processing stream, each more

or less responsible for a particular type of low-level sensory cue, process the sen-

sory information at the same time [DeYoe and Van Essen, 1988; Rauschecker, 1998;

Ballard, 1986].

In our system the data is processed in parallel using multiple CPUs, GPUs, and

PCs. The degree of synchronization between the single processing streams can be

chosen manually or even dynamically. The synchronization policy can be chosen

to be exact, within a time frame, or approximate. Thus, we can ensure that the

processed data is from the same time period.

Hierarchical Processing

Besides the parallel processing in the brain, the information is handled in a hier-

archical way, because different regions depend on the functional output of other

1Transport Control Protocol / Internet Protocol; uses retransmission in case of message loss
2User Datagram Protocol; unidirectional transmission
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areas, e.g. in the visual cortex, where information is passed on from V1 to V2 and

V4 [Felleman, D.J. and Van Essen, 1991; Bodegård et al., 2001].

A hierarchical processing is realized using the nodes and connections between them

on multiple layers with different synchronization strategies. This results in a time-

window-synchronous processing between the layers, whereas the processing within

the layers is highly parallel.

Figure 6.1 Experimental set-up. A computer cluster and monitors showing a running
ModHMAX system.

Figure 6.1 shows an early experimental set-up of our architecture running ModHMAX.

We created a cluster consisting of four PCs; two with an Intel i5 quad core CPUs and

one PC with two Xeon quad core CPUs. One PC with an i7 is also equipped with a
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Nvidia GeForce GTX 580 with 560 CUDA Cores with a processor clock of 1.5 GHz. We

connected the PCs to six monitors to visualize the processed data.

6.2 Active Camera Systems

I
n an active camera system, the viewpoint of the cameras can actively be manipulated,

for example by using a pan and tilt unit which provides two DOF.

From a technical perspective, active vision can be used to improve perception in a couple

of cases [Aloimonos et al., 1988; Rivlin and Rotstein, 2000]:

• Tracking of objects - simply by the ability to follow the trajectory, but also by

a reduction of motion blur evoked by exposure and the rapid movement of the

object.

• Occluded Objects - the point of view can be changed to avoid the occlusion.

• Limited field of view

• Limited resolution of the camera

• Enhancing depth perception

• Reduction of sensory information - using one active camera instead of multiple

static ones.

From a psychological perspective, active vision systems could also be beneficial during

human-robot interaction when integrated in a robot head. A robot that looks and

behaves more human-like is more likely to be accepted by a person. Especially eye

contact is a social form of non-verbal communication and has a strong influence on our

behavior. They provide some sort of social and emotional information of the other person

and play a major role in facial expressions, which can indicate someone’s emotional state

and intentions. Talking to a person with sunglasses is for example a situation, where no

real eye contact can be made that produces a lack of non-verbal communication, which

can make people feel uncomfortable. We can help in preventing an alienation of robots

in close human-robot environments by using active camera systems as robot eyes.
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6.3 General Software Architecture

T
he active camera system provides images to all modules - visual attention (VA),

object-based attention (OBA) and object recognition (OR). The VA module uses

the image to calculate the most salient point in pixel position. The coordinates are then

fed to the active camera module to control the gaze position and to the OBA module

which uses them to calculate the OBA map using the image from the camera. The

resulting OBA map is sent to the OR module, which internally creates the feature maps

and samples only from the area suggested by the OBA map to create the classification

probabilities. These probabilities are then used by the temporal reasoning model to

infer the object class over time. If the eyes move or if there is any larger movement in

the image, which might indicate that the fixated object is not longer in the image, the

internal believe system of the temporal reasoning module is reset in order to avoid false

classification. Figure 6.2 gives a simplified overview of the different modules and their

connections.

6.4 The Humanoid Robot iCub

T
he iCub is a humanoid robot that was built to study cognition and designed to

resemble the looks of a 3.5 year old child [Metta et al., 2008]. It was created by the

RobotCub project, a 5 years long project funded by the European Commission through

Unit E5 "Cognitive Systems, Interaction & Robotics". The iCub has a 6 DoF head (3

DoF for the neck, 3 DoF for the cameras (eyes)). The active eye cameras make the iCub

especially suitable for research related to human vision.

To control the iCub gaze and saccades we use iKinGazeCtrl, a iCub module based in iKin

- a library for forward and inverse kinematics [Pattacini, 2011]. iKinGazeCtrl provides

functions for saccades steering the neck and the eyes independently. We supply it with

the pixel coordinates of the most salient point.
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Figure 6.2 Simplified overview of the system architecture.

Figure 6.3 The humanoid robot iCub. [Metta et al., 2008]
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6.5 Software Integration

W
e integrate our modules in ROS - the robot operating system. It provides libraries

and tools for message passing, message synchronization and parallel processing

over one or multiple PCs using nodes. A ROS node is a process that runs on a PC and

can communicate to other nodes using TCP/IP or UDP. The connection between nodes

is established using a mater - the ROS core - which acts as a nameserver. The messages

are published by using an identifier called topics, which is made known to the ROS core

so that other nodes can subscribe to it.

The framework applied with the iCub is Yarp - Yet Another Robot Platform [Metta

et al., 2006]. Like ROS it provides tools for message passing between processes and

devices. Instead of topic, Yarp messages are identified by ports.

6.5.1 The Main Modules

Here we describe the single modules of our architecture (see figure 6.4):

• The iCub modules are controlled using Yarp. The eye camera provides its images

on a Yarp port called /icub/cam. We integrate the functionality to access the

Yarp network and the ports in a ROS node /yarpToRosImage and subscribe to

the Yarp port in order to obtain the camera image.

• The visual attention node (blue) subscribes to the image message published by

the /yarpToRosImage node. It then calculates the saliency map using our sam-

pled template collation approach and publishes the most salient point in pixel

coordinates.

• The object-based attention map (green) subscribes to the pixel coordinates of

the most salient point from the visual attention node, calculates the object-based

attention map and publishes it.

• The object recognition and temporal reasoning modules are arranged in three

different nodes (yellow) for reasons of efficiency and modularity.

– The /S1_C1_cuda node subscribes to the camera image and calculate the first

and second layer of our object recognition system. The convolution with the
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Figure 6.4 Our architecture using ROS and YARP running on the humanoid robot
iCub.
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Gabor filter and the Max Pooling operation are calculated on GPU using

CUDA. This way the node can be run separately on a PC with a suitable

graphics card. After the calculations the node publishes the resulting C1

maps.

– The /S2_oba node integrates the S2 and C2 layer of the object recognition

system. It subscribes to the C1 maps and to the object-based attention

map. It samples templates from the C1 maps only from those areas which

are suggested by the object-based attention map. Then the feature vector

is generated by calculating the maximum response of the templates to a set

of initially sampled templates - the dictionary. This feature vector is then

published.

– The prefrontal cortex node /pfc integrates the classification, the temporal

reasoning and the motion detection. It subscribes to the feature vector sup-

plied by the S2 node to classify the object, the classification output is then

used for our classification over time approach. It also subscribes to the camera

image to detect if there’s any movement to reset the internal believe system.

The pfc node can control the eye movement, which is necessary to keep the

fixation on the object as long as it is not properly classified with certainty,

or to slightly change the fixation to get a better result. Otherwise the visual

attention module would change the fixation to the most salient point.

• The /RosToICubGazeController node subscribes to pixel coordinates of the visual

attention node and the pfc node. It also integrates Yarp functionality to send the

pixel coordinates to the /iKinGazeCtrl/head port in the iCub’s Yarp network.

6.5.2 CPU Usage and Synchronization

In time-crucial scenarios where soft real-time is desired, like in robotics, it can be nec-

essary to look at the CPU consumption of the system. If the processor operates under

full load, it could happen that the system becomes non-reactive and we risk that certain

processes freeze and stop working properly. This can become a safety hazard especially

in environments with human-robot interaction.

We therefore introduced a node into the system that measures the CPU usage on the PC.

The /cpu_usage node publishes the percentage of CPU load in the system. The visual
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attention and object-based attention node subscribe to it and can adjust the sampling

rate accordingly. We can set a lower bound to maintain an amount of stability of the

results, as evaluated in the previous chapters. The /S2_oba node also can subscribe to

the cpu load node and adjust the sampling rate of the templates sampled from the C1

maps. A lower bound is however in this case harder to find as it depends on the number

of objects trained, the size of the dictionary and the size of the segmented object.

In real-world scenarios it is important to handle message synchronization to avoid non-

consistent information about the environment. If the processed data is outdated, the

produced information is not only obsolete and redundant but might also cause action

that endanger the environment. ROS provides some tools to tackle this problem:

• The Time Sequencer can be used to ensure that messages are processed in temporal

order according to the header’s timestamp, which helps to process only the most

up-to-date data.

• The Synchronizer is used if a node has subscribed to multiple messages which

share a common callback function. The object-based attention node subscribes for

example to the camera image and the pixel coordinates of the most salient point.

If the pixel coordinate message is delayed for too long, the callback function would

produce a map which is based on outdated data. In our architecture we use

the ApproximateTime policy which matches the messages according to their time

stamp, allowing some time difference.

6.5.3 Processing

Figure 6.6 gives an overview of the overall processing. First an image is captured from

the iCubs active camera. This image is sent to three nodes: Visual Attention, Object-

based Attention and Object Recognition (in our case /S1_C1_cuda, the node for the

first two layers of our recognition system). Additionaly the image is sent to the /pfc

node which handles the temporal reasoning.

The visual attention node now calculates the most salient point in the image and sends

the image coordinates to /object_based_attention and to /RosToICubGazeController.
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(a) iCub looks at robot. (b) Ball is thrown. Attention drifts.

(c) Ball comes closer. Saccade towards ball. (d) Ball is most salient point and fixated.

(e) Ball out of sight (f) iCub looks back at robot

Figure 6.5 A test case to evaluate if our system is fast and efficient enough to detect a
fast moving object. At first the robot is the most salient area to the iCub (a). Then
a red ball is thrown, which slightly draws away the attention of the iCub towards the
ball (b-c). At (d) the ball is fixated and correctly segmented with our object-based
attention approach. In (e-f) the ball is out of sight and the iCub looks back at the
robot. Note that there is no motion detection involved, just our Sampled Template
Collation approach for Visual Attention and Object-based Attention.
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The /RosToICubGazeController node converts the pixel coordinates to a yarp message

and sends it to /iKinGazeCtrl/head which adjusts the iCub to center the eyes at the

given pixel coordinates.

The /object_based_attention node calculates the object-based attention map using

a current input image and the pixel coordinates from the visual attention module to

sample a seed template from that position. The map is then sent to the /S2_oba node

from the object recognition system.

The /S2_oba node gets the calculated C1 maps from the /S1_C1_cuda node and the

object-based attention map and only samples templates in the C1 maps from the object

area. It calculates the feature vector and sends it to the /pfc node.

The /pfc node uses the feature vector to classify the object and builds the internal

believe system of the object class for temporal reasoning. If motion is detected using

the input image, this believe system is reset.

Each node constantly processes new arriving data. The visual attention node calculates

for each input image a new most salient point and tries to adapt to the frequency of the

camera, which has about 60 Hz. We tuned the node to update the most salient point

at about 20 Hz for the gaze controller, so that the active camera image is more stable.

The object based attention map is updated at about the same frequency.

Figure 6.5 shows a test case with the iCub and a thrown ball to display how fast and

efficient the visual attention and object-based attention system are running.
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Figure 6.6 Processing Overview. First a saliency map of the acquired image is calculated
using sampled templates collation (STC), then the most salient area is fixated with
an active camera. The focused object area is then segmented using a STC-based
approach to object-based attention. After eliminating areas that don’t contain the
object, the resulting map is used to subsample templates for object recognition.

144



Section 6.6 Summary

6.6 Summary

I
n this chapter we proposed a software architecture for visual attention, object-based

attention and object recognition for active camera systems. We implemented the

architecture using ROS and Yarp and evaluated it using the humanoid robot iCub. The

single modules run in parallel processes and communicate with synchronized messages.

The architecture also supports dynamically adaption of the sampling rate in relation to

the overall CPU usage, which helps in preventing a frozen and non-reactive system.

We showed that the processing is fast and efficient and was able to detect and segment

even a thrown ball (see figure 6.5).
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Chapter 7

CONCLUSION

In this chapter, we will first give a brief summary of the contents of this thesis. Then we

will explain the contributions of this work. In the final section we will give an outlook

of future work.

147





Section 7.1 Summary

7.1 Summary

T
his thesis presented an approach towards the efficient integration of neuroscientific

knowledge into a technical environment for improving vision models in time-crucial

real-world scenarios in the context of humanoid robotics. We showed that by following

the biological paradigm technical systems can be enhanced.

In chapter 3 we introduced a new method for generating visual attention maps and

most salient point. The approach is based on our sampled template collation concept,

which provides a fast and scalable way of calculation higher-level similarity relationships

between regions of an image.

We extend this approach in chapter 4 to adapt the lesser known theory of object-based

attention for technical applicability. We gave two application scenarios - 1.) Object-

based attention for visual search and 2.) Object-based attention for object segmentation.

In chapter 5 we presented ModHMAX, a enhanced modification of the computational

model HMAX for time-crucial applications like robotics. We introduced a new approach

towards temporal reasoning in object recognition and presented an method to generate

object-specific dictionaries for object localization.

In chapter 6 we presented a software architecture which integrates visual attention,

object-based attention and object recognition for active camera systems. We tested our

system on the humanoid robot iCub.
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7.2 Contributions

The main contribution of this thesis is the analysis, the development and the evaluation

of an efficient biologically-inspired vision system which supplies a humanoid robot with

the ability to visually perceive and understand its environment in an efficient and scalable

manner. We showed that by following the biological paradigm technical systems can be

enhanced.

The proposed model integrates three essential parts of human vision: Visual attention,

object-based attention and object recognition. Visual and object-based attention play a

major role in how and what we perceive in our field of vision by selecting and reducing

the available information. Both of which are essential for a fast and reactive vision

system.

Six major contributions of this thesis helped to build this model:

• The design of a new visual attention system, which outperforms state-of-the-art

system in terms of accuracy, speed and complexity realized by

• Our Sampled Template Collation method for efficiently evaluating different image

regions, which is able to adapt to computational needs;

• A new object-based attention system, which enhances object recognition;

• Our object recognition model - an enhancement of a computational model called

HMAX, which is an abstraction of the neural information processing in the visual

cortex. The model was modified in terms of speed and performance in order to put

it in a more technical context. We quantitatively and qualitatively show that by

the integration of neuroscientific knowledge about neural information processing

in the brain like lateral-inhibition and avoidance of entropic redundancy results in

a higher classification accuracy and faster processing speed.

• The development of a temporal reasoning framework which enables the system to

classify over time and account for uncertainties in non-static real-world scenarios.

• The system architecture for the efficient integration of visual attention, object-

based attention and object recognition, which enabled the humanoid robot iCub

to detect and segment even fast moving objects like a thrown ball.
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7.3 Outlook

A
lthough the presented work is complete in itself, as it integrates all parts into a

working system, there is always potential for extensions and improvement. Here we

want to suggest a couple of ideas for pursuing our approach:

• Sampled Template Collation could benefit from a more complex similarity

calculation, like including the orientation of the templates.

• Visual Attention could be enhanced using a top-down approach in order to

detect objects that our strongly biased in human visual processing, for example

faces.

• Object-based Attention could be enhanced by using more than one seed tem-

plate for the segregation process.

• Object Recognition based on HMAX has - like all other approaches its limita-

tions: The more objects are learned, the harder it is to classify. It is our believe,

that HMAX could benefit from more hierarchical layers and feature learning in the

architecture itself. Which would be similar to recent deep learning approaches.

• Using 3D information would push the usability to more robotic related tasks

and would enable an interaction with the environment. It also would be beneficial

for visual attention and object-based attention.
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