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Abstract—This paper proposes a schedule synthesis approach taking
fault diagnosis and testability into account at design time. Over the last
years, the amount of automotive software and hardware has been succes-
sively growing. As a consequence, the complexity of present-day Electrical
and Electronic (E/E) architectures reached a state where current fault
detection mechanisms are often not sufficient or computationally too
expensive to guarantee a reliable system functionality. As a remedy,
we propose a novel design methodology, optimizing a subsequent fault
diagnosis in terms of the necessary detection time as well as the diagnostic
resolution. Our approach is based on a time-triggered architecture and
aims at a decentralized message-based fault diagnosis solution. In order
to increase the system reliability, during schedule synthesis a modified
and adapted message distribution is taken into account which additionally
considers previously undiagnosable resources. While our approach might
lead to a slightly increased bandwidth utilization, it clearly improves the
overall diagnosis of faulty resources by a reduced detection time and an
increased diagnostic resolution.

I. INTRODUCTION AND RELATED WORK

Recent years have seen an unprecedented increase in vehicle
functionality based on software and electronics. A large number
of these functions, like drive-by-wire or advanced driver assistance
systems, are highly safety-critical and, hence, have hard real-time
requirements. At the same time, the continuous advancements in
the underlying hardware architecture, e.g., shrinking geometries and
reduced supply voltages, result in an increased occurrence of faults.
By consequence, there is a demand for highly predictable Electri-
cal and Electronic (E/E) architectures with reliable fault tolerance
mechanisms as their integral part.

Currently, the automotive industry is slowly shifting from event-
triggered towards time-triggered architectures, which innately provide
a better predictability. On the other hand, many powerful fault
tolerance strategies for distributed systems have been introduced over
the past years, for some of which [1, 2] provide a good overview.
In our work, these two aspects are regarded as part of a conjunct
system design approach where the synthesis of a system schedule
is explicitly considering an improved fault diagnosis1 during system
operation.

Moreover, the design of E/E architectures is based on a number
of specialized tools which are often incompatible and lacking ap-
propriate interfaces for a coherent development process and, thus,
require time-consuming and cost-intensive testing, as described in [3].
As a matter of principle, our approach can be used to improve
and reduce testing efforts during the entire development life cycle
by providing a defined observation time2 as well as an increased
diagnostic resolution (i.e., a larger number of diagnosable resources).
Related work. As fault tolerance is inevitable for safety-critical
systems, there exists a variety of work in the area of reliability-
aware system synthesis. The approaches range from component-
based strategies [4, 5], enhancing system reliability by the proper
selection of hardware, to task-based methods [6–8], where the focus
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is on software fault detection, process mapping and scheduling
optimization. Many of these approaches consider important diagnosis
strategies, for instance, in [9] the optimal use of imperfect software
fault detectors is analyzed and [10] is generating reliability-aware
task graphs based on predefined fault management requirements.

By contrast, our work considers exclusively a message-based
system communication as foundation for a subsequent permanent
fault diagnosis and therefore attempts to optimize and extend the
message scheduling. An example for a diagnosis algorithm using
malicious messages to distinguish healthy from unhealthy nodes is
given in [11, 12], which is designed as an add-on protocol for a time-
triggered communication platform. As the authors do not alternate a
given system specification and rely on existing messages, their diag-
nosis method might benefit from our work, which defines a maximal
observation time and inserts auxiliary messages for undiagnosable
resources.
Contributions of the paper. We propose a novel approach towards
an improved fault diagnosis in a distributed network-oriented system,
like an automotive E/E architecture. It is based on time-triggered
architectures and uses a framework which was previously introduced
in the context of schedule integration [13, 14]. Within our diagnosis-
aware system design, this framework is extended for a use in the area
of message-based fault diagnosis.

The main contribution of this work is the modification of the
time-triggered system schedule in such a way that a subsequent
diagnosis of faults at runtime can be performed, first, within a fixed
and reduced observation time and, second, with a higher diagnostic
resolution without compromising the previously defined specification
constraints. The first goal is achieved by adapting the transmission
times of existing messages in the network in order to obtain an
optimal distribution for their detection. The second goal uses the
available bandwidth of the communication channel to insert auxiliary
diagnostic messages for naturally undiagnosable resources, like ones
executing reception tasks only. Furthermore, the message insertion
can be used to resolve infeasible constraints in terms of a too short
observation time.

To the best of our knowledge, this is the first approach where the
communication schedule is modified to enhance the message-based
diagnosis of permanent faults. Currently, the proposed method mainly
considers runtime diagnosis. However, we regard this work as an
initial step towards future Design for Testability (DFT) techniques
for distributed architectures, which also cover manufacturing and
maintenance tests.

II. SYSTEM MODEL AND BACKGROUND

Our approach is using a graph-based system specification where
software functionality and hardware components are modeled by
process graphs and architecture graphs, respectively. An example for

1The term detection often relates to the identification of the presence of
a fault, whereas diagnosis describes the identification of its cause.

2Observation time and detection time are used interchangeably, both
describing the duration to detect the manifestation of a fault.978-1-4799-4833-8/14/$31.00 ©2014 IEEE
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Fig. 1. Specification for a distributed system consisting of several applications
mapped to a distributed architecture. The bottom part shows the communica-
tion on the bus resource for three different schedules, where two and tbo indicate
the worst and best observation time, respectively, whereas tmax

o represents its
upper bound. A fault ( ) is meant to occur on r1 and prevent a further message
transmission.

a system specification for a distributed system with three applications
ai ∈ A is shown in the upper part of Fig. 1. Here, the application
graphs GP = (P,EP ) consist of the vertices P = T ∪ M
corresponding to tasks t ∈ T and messages m ∈ M , respectively,
and edges EP representing their data-dependencies. Accordingly, the
architecture graph GR = (R,ER) connects resources r ∈ R (e.g.,
Electronic Control Units (ECUs) and buses) through architectural
links l ∈ ER. Both graphs share the mappings EM = (P,R) which
associate each process with a particular resource.
Time-triggered scheduling. The system model comprises a fully
synchronous time-triggered schedule where at design-time each pro-
cess, i.e., task or message, is assigned a start time and applications
are defined by their end-to-end delay. Automotive applications define
distributed control functions which rely on such maximal end-to-
end delays from sensor to actuator rather than on single deadlines
for each task. Consequently, given a sufficient bandwidth of the
communication channel, the start-times of messages within the end-
to-end boundaries might be adapted without affecting the control
performance. The main goal of this work is to modify these schedules
in order to improve a subsequent fault diagnosis in terms of detection
time and diagnostic resolution without compromising the original
design constraints.

We assume the required maximum fault detection time to be
specified by the system designer depending on specific application
requirements as well as the subsequent fault tolerance strategy.
Permanent fault diagnosis. As mentioned before, the fault diagnosis
itself is not part of this paper but some of its fundamental properties
are crucial for our approach. In order to exclude a single point of
failure, we consider a decentralized diagnosis mechanism where each
resource has knowledge about the system schedule and the ability
to monitor the traffic on the bus it is attached to. Furthermore, we
regard an implicit fault model, showing a fail-silent behavior, where
the omittance of expected messages is an indicator for permanent
faults.

In this context, while all unmasked faults originating from a
physical phenomenon will finally lead to a bit-flip (see [15]), their
cause can be natural, i.e., due to environmental conditions, or internal,
i.e., due to unstable or marginal hardware. In contrast to the first
case, which generally leads to transient faults, the second case results

in intermittent and permanent faults with severe consequences, for
instance, a partial or complete system failure.

Hence, besides a fast detection time, a reliable fault diagnosis must
be able to distinguish between the transient and the more severe
intermittent and permanent faults (for the sake of simplicity, in this
work we consider only permanent faults). For our system model,
we assume that a single message loss can indicate any type of fault,
whereas two or more consecutive message losses point to a permanent
fault of the corresponding resource.

III. MOTIVATING EXAMPLE

Fig. 1 depicts different allocations of messages to the bus resource
for an exemplary specification. The communication pattern is illus-
trated for two periodic cycles and will be referred to as schedule
(a), (b) and (c), respectively. Schedule (a) represents the unaltered
message allocation resulting from the original user-defined system
design. The messages m1 and m2 are sent from task t1 to task
t2 and, hence, from r1 to r3, whereas m3 is sent from r1 to r2.
Now, let us assume that during the transmission of m2, resource r1
exhibits a permanent fault ( ), resulting in the transmission failure of
all its messages. As explained before, in order to rule out transient
faults, it is necessary to detect at least two consecutively omitted
messages from a potentially faulty resource. Thus, for schedule (a)
the diagnosis of a faulty r1 would require a worst case observation
time of two,1, which is assumed to be higher than a predefined
maximum observation time tmax

o . By contrast, our approach uses the
idle times on the bus to distribute messages from each resource in
such a way that tmax

o between two messages is not exceeded, as
shown in schedule (b). This can, in many cases, not only reduce the
observation time itself, but it also enables a better overall system
predictability by defining un upper bound for the observation time
(compare two,2 ≤ tmax

o ).
So far, we have been considering existing messages from the

original system specification. However, a complex distributed system,
like an E/E architecture, can contain a number of resources whose
faults might not be detectable with the help of a fully implicit
fault diagnosis described above. For instance, in the specification in
Fig. 1 the resources r2 and r3 are both sinks of the corresponding
task communication and, thus, not transmitting messages on their
own. For this purpose, to increase the diagnostic resolution, our
approach is able to identify the undiagnosable resources and integrate
auxiliary processes which can broadcast short diagnostic messages in
user defined time intervals (e.g., once a hyper period). Schedule (c)
illustrates this for r3 where a diagnostic message md (triggered by
task td) increases the overall diagnostic resolution of the system from
one resource to two resources.

IV. DIAGNOSIS-AWARE SYSTEM DESIGN

In this section, we formally describe our diagnosis-aware system
design which, besides the graph elements introduced in Section II,
also uses the definitions listed below. Additionally, the main param-
eters are illustrated in Fig. 2 within a hypothetical time-triggered
schedule based on the specification from Fig. 1.
p ∈ T ∪M – system process p ∈ P which is either a task t ∈ T or

a message m ∈M
w(p̃,p) ∈ R – waiting time between the end of p̃ and the start of p

for data-dependent processes
op,oa ∈ R – variable for the offset interval of a process p or

application a
ha ∈ R – period after which the execution of application a is

repeated
sp, ep, hp ∈ R – start time, execution time, and period of process p

Hr ∈ R – hyper period (i.e., least common multiple) of all pro-
cesses executed on resource r
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Fig. 2. A hypothetical time-triggered schedule for a system based on the
example in Fig. 1. It illustrates the main parameters for our diagnosis-aware
system design.

α(p) : P → A – function returning the respective application a of pro-
cess p

ρ(p) : P → R – function returning the respective resource r executing
process p

Preventing process overlapping. To adapt a schedule, we shift
messages and applications within specified time constraints, ensuring
that the defined maximal end-to-end delay is met. Hence, to begin
with, we define the boundaries of the application offset oa as well
as the individual message offsets om.
∀a ∈ A,∀m ∈M, (p̃,m) ∈ EP , (m, p′) ∈ EP :

0 ≤ oa < ha (1a)
−w(p̃,m) ≤ om ≤ w(m,p′) (1b)

According to Eq. (1a), an application can have an offset of up to its
period and this is equivalent to setting an identical offset for all its
corresponding processes. In contrast to this, in Eq. (1b) the offset of
one single message is bounded by the waiting times to its predecessor
and its successor process. For instance, in the schedule in Fig. 2 the
message m3 (whose offset interval om3 is indicated by the subjacent
gray area) can be maximally shifted by −w(t3,m3) towards t3 and
by w(m3,t4) towards t4.

Without loss of generality, we consider a non-preemptive single-
threaded execution model where a resource can execute concurrently
at most one process. Hence, it must be guaranteed that both tasks and
messages are not scheduled on a shared resource at the same time.
The constraints assuring non-interference between the corresponding
messages and tasks are defined for the Eq. (2a) and (2b), respectively,
which, in turn, determine the message offsets om and the application
offsets oa. More precisely, in both cases the two exclusively disjunc-
tive (⊕) inequalities are preventing two processes from overlapping.
∀m, m̃ ∈M,m 6= m̃, a = α(m), ã = α(m̃), ρ(m) = ρ(m̃),

i = {0, · · · ,
3Hρ(m)

hm
− 1}, j = {0, · · · ,

3H
ρ(m̃)

h
m̃
− 1} :

oa + om + i · hm + sm + em ≤ oã + om̃ + j · hm̃ + sm̃
⊕ oã + om̃ + j · hm̃ + sm̃ + em̃ ≤ oa + om + i · hm + sm (2a)

∀t, t̃ ∈ T, t 6= t̃, a = α(t), ã = α(t̃), a 6= ã, ρ(t) = ρ(t̃),

i = {0, · · · ,
2Hρ(t)
ht

− 1}, j = {0, · · · ,
2Hρ(t̃)
ht̃

− 1} :

oa + i · ht + st + et ≤ oã + j · ht̃ + st̃
⊕ oã + j · ht̃ + st̃ + et̃ ≤ oa + i · ht + st (2b)

Adapting message distribution. Having guaranteed that no two
processes can utilize a resource at the same time, we can now
formulate the main constraints for the diagnosis-aware message
distribution, as shown in Eq. (3). As mentioned before, one of our
goals is to assure the compliance with an upper bound for the
observation time of omitted messages. Considering the subsequent
fault diagnosis, the system designer selects a maximum observation
time tmax

o,r for each resource r during which a fault shall be detected.

Here, the observation time is defined as the interval between the
expected arrival times of two consecutive messages from the same
resource.
∀r ∈ R, ∀m ∈Mr, a = α(m), i = {0, · · · ,

Hρ(m)

hm
} :∨

m̃∈Mr

em ≤
(
xm,i · hm̃ + sm̃ + om̃ + oã=α(m̃)

)
− (i · hm + sm + om + oa) ≤ tmax

o,r

(3)

However, as the individual process periods may differ between
applications, it is not sufficient to compare adjacent messages only.
Therefore, an auxiliary integer variable xm,i is used in such way,
that for each iteration i of a message occurrence m, the defined
equation finds at least one closest neighbor m̃ within the analyzed
hyper period. In contrast to Eq. (2a) and (2b), where all system
messages are considered concurrently, here we regard messages from
each particular resource r, denoted as Mr , separately.
Inserting diagnostic messages. Our second goal is to extend the
system schedule by inserting diagnostic messages and, hence, include
previously undiagnosable resources r ∈ Rd into our algorithm. The
retrieval of these resources is performed with the help of a Depth-
First Search (DFS) algorithm on the architecture graph GR and shall
not be explained in detail.

Having determined the set Rd, we can extend the system specifica-
tion with particular diagnostic tasks td which periodically broadcast
short diagnostic messages md. The maximum observation time serves
as constraint according to Eq. (4).
∀r ∈ Rd, td ∈ Td,r,md ∈Md,r :

htd = hmd ≤ t
max
o,r (4)

Our algorithm is applied to the extended message and task sets in
Eq. (5a) and (5b) where the initial values for the start-times, std
and smd , are adjusted based on the corresponding application offset
oad . The inclusion of the new processes into the existing schedule
is performed in compliance with all previous constraints.

T ′ = T ∪ Td (5a)
M ′ =M ∪Md (5b)

Although not discussed in detail, the insertion procedure described
above makes use of a special conflict refinement. In cases, where
the adaptation of the message distribution cannot comply with the
specified constraints (e.g., there are not enough messages to guarantee
a defined maximal observation time), auxiliary diagnostic messages
can be inserted to decrease the observation time. Such a scenario
is also used in the case study in Section V. Note, that, depending
on the used hardware, the proposed inserting scenario might require
adaptations of the respective resources, e.g. in terms of its bus
interface, to enable a transmission of messages.

V. CASE STUDY RESULTS

Given the scope of the paper, the focus here is on demonstrating
the general feasibility and effectiveness of our approach. For this, the
presented case study comprises a hypothetical system specification
which is inspired by an automotive E/E architecture with 4 bus-
attached ECUs, 25 tasks and 15 messages. The maximal tolerable
observation times tmaxo for ECU 1 to 4 are set to 2.7, 5.0, 4.0
and 3.0 ms, respectively. The calculations were carried out on an
Intel Core i5 with 2.6 GHz and 8 GB RAM. For the methods that
required solving a decision problem, Microsoft Z3 version 4.3.0 as
Satisfiability Modulo Theories (SMT) solver has been used.

Fig. 3 depicts the case study outcome for both the unaltered system
schedule (a) and the adapted schedule resulting from our diagnosis-
aware system design (b). The bus resource in the middle of each
schedule contains the entire message communication and the task
schedules for ECUs 1 and 2 as well as 3 and 4 are arranged above
and below, respectively. For clarity reasons only 13 ms are depicted
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Fig. 3. Screenshot of a schedule visualization tool, showing the resulting schedules for the presented case study. Messages in schedule (a) follow solely the
constraints of the initial specification and seem more clustered, whereas our adapted schedule (b) distributes them according to a defined maximum observation
time tmaxo .

TABLE I
INITIAL AND OPTIMIZED WORST CASE OBSERVATION TIMES.

observation time two ECU 1 ECU 2 ECU 3 ECU 4

initial 5.0 ms 5.0 ms 9.7 ms 4.5 ms
optimized 2.7 ms 5.0 ms 4.0 ms 3.0 ms

from the entire hyper period of 20 ms. All processes (i.e., tasks and
messages) belonging to one ECU are shown in the same color. The
worst case observation time two for ECU 3 is highlighted in both
schedules and the processes td and md, inserted by our algorithm,
are framed.

In general, it can be seen that our method distributes the messages
more evenly without affecting the end-to-end delays of the individual
applications (e.g., the relative positions of single tasks to each other
are unaltered), which might be already a hint that longer observation
times have been decreased. For instance, it can be clearly seen that
the initial worst case observation time of 9.7 ms for messages from
ECU 3 could be reduced to the required maximum observation time
of 4.0 ms, decreasing the fault detection time by more than 50%.
At the same time, also the observation times for the remaining three
ECUs could be adapted to comply with the defined maximum times,
as shown in Table I. The computation time of our algorithm for the
presented case study did not exceed 1.3 seconds promising a good
scalability for larger systems whose analysis is part of future work.

VI. CONCLUSION AND FUTURE WORK

This paper presents an approach to enhance the fault diagnosis in
safety-critical distributed systems, like automotive E/E architectures.
We assume a time-triggered and message-based communication and
demonstrate how our approach can decrease the observation time
necessary to diagnose permanent faults. Additionally, an insertion
method for diagnostic messages is proposed which includes previ-
ously undiagnosable resources and provides a conflict refinement
for failed schedule adaptations. We consider this work to be a first
approach towards a DFT framework, including testing and diagnosis

over the entire lifetime of a distributed system. In this context, we
are currently working on suitable diagnosis algorithms which could
be used in such a framework.
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[6] O. Héron, J. Guilhemsang, N. Ventroux, and A. Giulieri, “Analysis of on-line self-
testing policies for real-time embedded multiprocessors in DSM technologies,” in
Proc. of IOLTS, 2010, pp. 49–55.

[7] Y. Xie, L. Li, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin, “Reliability-aware
co-synthesis for embedded systems,” in Proc. of ASAP, 2004, pp. 41–50.

[8] P. Waszecki, M. Kauer, M. Lukasiewycz, and S. Chakraborty, “Implicit Intermittent
Fault Detection in Distributed Systems,” in Proc. ASP-DAC, 2014, pp. 646–651.

[9] J. Huang, K. Huang, A. Raabe, C. Buckl, and A. Knoll, “Towards fault-tolerant
embedded systems with imperfect fault detection,” in Proc. of DAC, 2012, pp.
188–196.

[10] C. Bolchini and A. Miele, “Reliability-Driven System-Level Synthesis of Embedded
Systems,” in Proc. of DFT, 2010, pp. 35–43.

[11] M. Serafini, N. Suri, J. Vinter, A. Ademaj, W. Brandstatter, F. Tagliabo, and J. Koch,
“A tunable add-on diagnostic protocol for time-triggered systems,” in Proc. of DSN,
2007, pp. 164–174.

[12] M. Serafini, A. Bondavalli, and N. Suri, “On-Line Diagnosis and Recovery: On the
Choice and Impact of Tuning Parameters,” IEEE Transactions on Dependable and
Secure Computing, vol. 4, no. 4, pp. 295–312, 2007.

[13] F. Sagstetter, M. Lukasiewycz, and S. Chakraborty, “Schedule Integration for Time-
Triggered Systems,” in Proc. of ASP-DAC, 2013, pp. 53–58.

[14] F. Sagstetter, S. Andalam, P. Waszecki, M. Lukasiewycz, H. Staehle, S. Chakraborty,
and A. Knoll, “Schedule Integration Framework for Time-Triggered Automotive
Architectures,” in Proc. of DAC, 2014, pp. 20:1–20:6.

[15] A. Herkersdorf, H. Aliee, M. Engel, M. Glaß, C. Gimmler-Dumont, J. Henkel,
V. B. Kleeberger, M. A. Kochte, J. M. Kühn, D. Mueller-Gritschneder et al.,
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