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Abstract—This paper proposes an optimization methodology
for inductor components in active cell balancing architectures of
electric vehicle battery packs. For this purpose, we introduce a
new mathematical model to quantitatively describe the charge
transfer of a family of inductor-based circuits. Utilizing worst
case assumptions, this model yields a nonlinear program for
designing the inductor and selecting the transfer current. In the
next step, we transform this problem into a geometric program
that can be efficiently solved. The optimized inductor reduces
energy dissipation by at least 20% in various scenarios compared
to a previous approach which selected an optimal off-the-shelf
inductor.

I. INTRODUCTION AND RELATED WORK

Lithium-Ion (Li-Ion) battery cells are utilized in almost all
high power Electrical Energy Storage (EES) applications, e.g.,
Electric Vehicles (EVs). Their operation parameters are quite
narrowly specified, but compliance is safety-critical. The cells
are thus constantly managed by a Battery Management System
(BMS). Since the weakest cell determines the overall capac-
ity of the battery pack in high-voltage series topologies, one
main BMS function is cell balancing [1]. The efficiency of
the battery pack (and thus, e.g., the driving range of an EV)
can be vastly improved by actively transferring charge between
cells. Inductor-based charge transfer circuits are more efficient
here than those with capacitors and require less volume than
transformer architectures [2],[3]. Their performance strongly
depends upon the parameters of the circuit itself as evidenced
by a discrete optimization that searched commercially available
components [4]. Encouraged by these results, we are interested
in the design of components specifically for the purpose of cell
balancing. Here, we look at the inductor design since it has
the strongest impact on performance while other components,
mainly the transistors, are far more complex to modify. In
our case study (Section IV), we demonstrate that specifically
designed inductors reduce the energy dissipation significantly
compared to selecting an off-the-shelf inductor [4].
Contributions. The value of this paper is two-fold:
(1) We propose a new mathematical charge transfer model (Sec-
tion II). It performs on par – regarding precision and computation
speed – with existing models, but it greatly facilitates further
analytic treatment due to its simplicity.
(2) Using the proposed model to look for the most energy-
efficient inductor entails a nonlinear program at first (Sec-
tion III-B). For a more robust design that produces an inductor
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Fig. 1: In a battery pack with series-connected cells, we equalize
Cells C2 and C3. In a round-robin fashion, we charge their common
inductor L2 from C2 and discharge it into C3 by suitably switching
the MOSFETs that control the current flow.

0

Ĵ

t

iL

TON TOFF

(c) Inductor current iL
+ −

C2

L2

Rσ

(a) Inductor charging (TON)

+ −
C3

L2

Rδ

(b) Inductor discharging (TOFF)

Fig. 2: By aggregating the resistances on the current path, we can
describe the charge transfer in two equivalent circuits, (a) and (b).
The current in the inductor rises during TON until the desired peak
value Ĵ is reached. We then switch the MOSFETs and the inductor
discharges during TOFF.

which performs well under various situations, we reformulated
this program in the Geometric Programming (GP) framework
and thereby dramatically improved the solution speed (Sec-
tion III-C). The inductors designed in this way are at least 20%
more energy efficient than the commercial components found
in [4] (see case study in Section IV).

II. MATHEMATICAL MODEL

Inductor-based charge transfer circuits such as the one from
Fig. 1 are driven by a Pulse Width Modulation (PWM) signal.
This naturally separates the circuit into two phases: inductor
charging (TON) and inductor discharging phase (TOFF) (cf. Fig. 2;
more detail on the low-level MOSFET control in [3]). The
charge transfer can subsequently be modeled individually by
equivalent circuits (Section II-A). This yields the transfer losses.
In addition, we need to account for the switching losses in the
MOSFETs that drive the PWM signal (Section II-B).

A. Transfer losses during each PWM step
We can add up the resistances on the active circuit paths and

obtain Rσ and Rδ for charging (TON) and discharging (TOFF)
phase, respectively. Such a calculation has been performed, e.g.,
in [3]. For the general approach described here, it suffices to
separate the constant part R0 from the inductor resistance RL
which is considered a design parameter and remains identical in
both phases:

Rσ =Rσ
0 +RL Rδ =Rδ

0 +RL (1)

Equivalent circuit. Once the equivalent resistances are estab-
lished, we can subsequently focus entirely on the equivalent
circuit models from Fig. 2. In this work, we aim for a simple
quantitative model that enables the application of mathematical
optimization techniques. We thus assume that the cell voltage
remains constant during individual PWM cycles. This is justified
because the overall variation of the cell voltage is small (see
Fig. 3) while the frequency of the PWM is high (1kHz to
100kHz). Under these circumstances, both charging (TON) and
discharging (TOFF) phase are governed by the following first-
order Ordinary Differential Equation (ODE) where all parame-
ters, particularly i0 and V , need to be adjusted according to the
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Fig. 3: We discharged a 1.1A h 18650 Li-Ion cell from A123 Systems
with a constant current of 100mA. The measured voltage – considered
to be the OCV under the modest load – remains within a small range
of 200mV over the majority of the discharge cycle.

individual phase.

L
d
dt

i(t)+Ri(t) =V i(t) = i0 (2)

The unique solution of (2) is given by

i(t,V, i0,R) =
V
R
− V − i0R

R
exp
(−R

L
t
)
. (3)

We are mainly interested in the amount of charge that is
transferred over a certain time T . This quantity can be calculated
by integrating current i(t) from (3):

q(T,V, i0,R) =
V
R

T +
L(V − i0R)

R2

[
exp
(−R

L
T
)
−1
]

(4)

Here, the integration constant is chosen such that q(0) = 0.
Timing. To obtain the charge evolution corresponding to an
entire PWM cycle, we need to evaluate (4) for the two phases
depicted in Fig. 2. Toward this, note that i(t) from (3) is
invertible and we can obtain a desired current id after a period
of Td given by:

Td(id ,V, i0,R) =
−L
R

log
(V − idR

V − i0R

)
(5)

For the purpose of implementation and easier analysis, we
substitute (5) into the equation for the transferred charge (4).
This yields the following closed-form solution.

qd(id ,V, i0,R) =
V
R

Td(id)+
L(V − i0R)

R2

[V − idR
V − i0R

−1
]

=
−LV
R2 log

(V − idR
V − i0R

)
+

L(i0− id)
R

(6)

We design TON such that the inductor reaches the desired
current Ĵ at its end. During TOFF, we ensure that there re-
mains no current in the inductor (id = 0). Overall, we are thus
working with [V R id i0] given by

[
V σ Rσ Ĵ 0

]
and[

−V δ Rδ 0 Ĵ
]

during TON and TOFF, respectively.
With this knowledge, we can individually derive qd from (6)

for both TON as well as TOFF case with respect to V . Using (7),
this shows that qd decreases with |V | for both phases:

d
dV

V log
(V −RĴ

V

)
= log

(
1− RĴ

V

)
+V

V

V −RĴ
· V − (V −RĴ)

V 2

≥RĴ
V

/
V −RĴ

V
+

V −RĴ
V 2 = 0 (7)

The inequality holds since log(1+ v)≥ v
1+v ∀v >−1.

Bounding charge transfer. Over multiple PWM cycles, the
transferred charge evolves only according to the involved cell
voltages that follow the changes in State-of-Charge (SoC). Cell

voltage increases monotonously with SoC, however. Therefore,
the initial voltages of sender, V σ

0 , and receiver, V δ
0 , are the

highest and lowest voltages to be considered. With this in mind
and since qd from (6) decreases with |V | (see (7)), we can bound
the transferred charge:

qd(V )≥qmin := qd(V σ
0 ), qd(V )≤qmax := qd(V δ

0 ) (8)

In other words, the most charge is taken from the transmitting
cell or put into the receiving cell if they were to hypothetically
reach V δ

0 , the initial voltage of the receiver. Conversely, the least
charge leaves the transmitter or reaches the receiving cell if
either were to measure V σ

0 , the initial voltage of the transmitter.
Since the voltage evolves so slowly with SoC (see Fig. 3), these
bounds are quite tight. For evaluation, we assume circuit param-
eters

[
R L Ĵ V δ

0 V σ
0

]
= [0.25 1e-4 1.0 3.1V 3.3V].

This scenario is highly unfavorable for the precision due to the
high resistance and the unrealistically large voltage gap (roughly
corresponding to SoCs of 5% and 80%). Nevertheless, the worst

case relative error remains small with |qd(V δ
0 )−qd(V σ

0 )|
|qd(V δ

0 )| ≤ 6.8%.

Bounding transfer losses. Given a relation q→ V (q), we can
calculate the stored energy of a cell as Ebatt(Q) =

∫ Q
0 V (q)dq.

The energy that is lost during the transfer in a single PWM
cycle is thus given by

Et f =Ebatt(Qσ )−Ebatt(Qσ −qσ )−
[
Ebatt(Qδ +qδ )−Ebatt(Qδ )

]
=
∫ Qσ

Qσ−qσ

V (q)dq−
∫ Qδ+qδ

Qδ

V (q)dq≤V σ
0 qσ −V δ

0 qδ . (9)

B. Switching losses during each PWM step
The switching of a MOSFET dissipates energy due to charging

and discharging of input and output capacitances of the transistor
in every PWM cycle. This loss is given by 1

2COSSV 2
ds where

COSS and Vds are output capacitance and drain-source voltage of
the transistor, respectively. In addition, the current that is drawn
during tON – summarizing turn-on delay and rise time – and
tOFF – consisting of turn-off delay and fall time – cannot be
utilized. This entails losses of the form 1

2 tIdsVds where Ids is the
drain-source current of the transistor. Please refer to Chapter 4.3
”Switching Losses” in [5] for further information.

Since all the involved voltages are upper-bounded by V σ
0 and

Ids vanishes at the beginning of TON as well as at the end of
TOFF, the switching losses for every single PWM cycle can be
characterized by (10).

Esw =
1
2
(tOFF + tON)ĴV σ

0 +COSSV 2
σ (10)

III. OPTIMAL INDUCTOR DESIGN

In this section, we aim to find the optimal inductor for any of
the inductor-based charge transfer architectures that can be de-
scribed by the mathematical model presented in Section II, e.g.,
the architectures from [2], [3]. The objective is to minimize the
average energy losses for a set S of scenarios s =

[
V σ V δ

]
.

A. Inductor Design Constraint
In order to minimize transfer (Section II-A) and switching

(Section II-B) losses, we would like to have an inductor with
microscopic resistance and large inductance that supports gi-
gantic peak currents. However, there is obviously a trade-off
involved between these features. Using the procedure described
in Chapter 14 ”Inductor Design” of [5], we begin by ensuring
that the following inequality holds.

Kg ≥
ρL2I2

max

B2
maxRLKu

(11)



Here, Kg is the core geometrical constant summarizing the size
and the layout of the core. It can be obtained from data tables.
ρ = 1.724e-6Ωcm−2 is the resistivity of copper wire. Imax can be
assumed to be the peak current Ĵ for non-dominated designs. Ku
is the winding fill factor and is in the range of Ku = 0.7. Finally,
we set Bmax = 0.3T for most ferrite core materials according to
Chapter 9.4.5 ”Design of Inductors” in [6].

Given the dimension of the overall circuitry, we select a
suitable core which determines the geometrical constant Kg.
From any combination of L,R, Ĵ that fulfills (11), we can then
go back to [5] and calculate air gap length lg as well as number
of turns n. This means that selecting L,R, Ĵ implicitly fixes the
entire inductor design.

B. Nonlinear programming formulation
A straightforward implementation of our design problem is the

introduction of variable N for the number of PWM cycles that are
required to conclude the balancing in the worst case. We obtain
the difference ∆Q from the Open Circuit Voltage (OCV) (see
data in Fig. 3). If measuring the OCV is not feasible, ∆Q can be
obtained using SoC estimation. The calculation of PWM cycles
N assumes that both the charge taken out of the sending cell and
the charge arriving in the receiving cell are minimal as given
by (8). With s =

[
V σ V δ

]
referring to individual scenarios, we

thus formulate:

min ∑
s∈S

Ns · (Es
t f +Es

sw) using (9), (10) (12)

s.t. Inductor constraint (11)

Ns =
∆Qs

qσ ,s
min +qδ ,s

min
Ns · (TON

s +TOFF
s)≤ Tmax ∀s ∈S

Mathematical program (12) is based on main variables R,L, Ĵs

and auxiliary variables TON
s,TOFF

s,Ns. Although it is nonlinear,
it can be solved, e.g., using a nonlinear Sequential Quadratic Pro-
gramming (SQP) solver. Notwithstanding, it is unclear whether
this approach yields a global or only a local minimum without
further analysis, e.g., regarding convexity.

C. Geometric programming formulation
To solve larger problems than the nonlinear formulation from

Section III-B allows, we have transformed (12) to conform to
the Geometric Programming (GP) framework. After [7], a GP
problem in standard form is:

min f0(x)
s.t. fi(x)≤ 1 ∀i = 1, . . . ,m

gi(x) = 1 ∀i = 1, . . . , p

where x = [x1, . . . ,xn] is a vector of positive real-valued decision
variables. fi and gi are posynomial and monomial functions,
respectively. A monomial has the form:

m(x) = cxa1
1 xa2

2 . . .xan
n c > 0,ai ∈ R

Posynomials are sums of monomials and closed under addition,
multiplication, positive scaling as well as division by monomials.
Geometric Programming (GP) is a special form of convex opti-
mization. GPs have polynomial time computational complexity
and can be solved very efficiently by a variety of off-the-shelf
solvers.

In the following, we will mainly use the power series version
of the natural logarithm given in (13) to transform (12).

log(1+ z) = z− z2

2
+

z3

3
+ . . . (13)

Charge transfer reformulation. Starting from (6) describing qd ,
the charge transferred during a PWM cycle, we can transform
qσ

max from (8) as follows.

qσ
max =

−LV δ
0

Rσ2 log
(

1− ĴRσ

V δ
0

)
− LĴ

Rσ

≈
LV δ

0
Rσ2

[ ĴRσ

V δ
0

+
1
2

( ĴRσ

V δ
0

)2
+

1
3

( ĴRσ

V δ
0

)3]
− LĴ

Rσ

=
LĴ2

2V δ
0
+

LĴ3Rσ

3V δ2
0

(14)

Using relation log( 1
v ) =− log(v) for qδ

min, we obtain

qδ
min =

−L(−V σ
0 )

Rδ2 log
( −V σ

0

−V σ
0 − ĴRδ

)
+

LĴ
Rδ

≈ LĴ2

2V σ
0
− LĴ3Rδ

3V σ2 . (15)

PWM Cycle calculation. The number of PWM cycles, N, can
be bounded from below by

N ≥ ∆Q
qσ

min +qδ
min

. (16)

This can be reformulated to

∆Q
N
≤qσ

min +qδ
min =

LĴ2

2V δ
0
+

LĴ3Rσ

3V δ2
0

+
LĴ2

2V δ
0
− LĴ3Rδ

3V δ2
0

=
LĴ2

V δ
0

+
LĴ3
(
Rσ

c +RL−Rδ
c −RL

)
3V δ2

0
.

We thus arrive at a posynomial formulation:

∆Q
N

+max

{
0,

LĴ3(Rδ
c −Rσ

c )

3V δ2

}
≤ LĴ2

V δ
(17)

Here, the max operation can and must be evaluated a priori since
the resistances of the remaining circuit without the inductor,
Rσ

c ,R
δ
c , are constant from the perspective of this optimization.

Switching loss estimation. Formulation (10) for the switching
losses is already a posynomial in Rσ , Rδ , Ĵ, V σ .
Transfer loss calculation. Equation (9) that describes the trans-
fer losses is a posynomial in Rσ , Rδ , Ĵ, L if we employ (14) and
(15) for the charge transfer. This can be seen in the following.

Et f =V σ
0 ·qσ

max−V δ
0 ·qδ

min

=V σ
0
( LĴ2

2V δ
0
+

LĴ3Rσ

3V δ2
0

)
−V δ

0
( LĴ2

2V σ
0
− LĴ3Rδ

3V σ2
0

)
=

LĴ2

2
( V σ

0

V δ
0
−

V δ
0

V σ
0︸ ︷︷ ︸

≥0

)
+

LĴ3RσV σ
0

3V δ2
0

+
LĴ3RδV δ

0

3V σ2
0

(18)

Timing estimation. To estimate TON, we start from (5) and let
i0 = 0 as discussed. Using (13), we can then reformulate this as
follows.

TON =
−L
Rσ

log
(

1− ĴRσ

V σ

)
≈ LĴ

V σ
+

LĴ2Rσ

2V σ2 +
LĴ3Rσ2

V σ3 (19)

Equation (19) is a posynomial in the variables Rσ ,L, Ĵ and even



V σ . Performing the identical transformation for TOFF does not
lead to a posynomial in the same way, however. We therefore
utilize only the first term in the power series representation and
thus obtain an upper bound:

TOFF =
L

Rδ
log
(

1+
ĴRδ

V δ

)
≤ LĴ

V δ
(20)

Here, the relation log( 1
v )=− log(v) was used in the first equality.

In total, if we want to ensure that the duration of an entire
balancing run remains below a threshold Tmax, we can thus utilize
the following constraint.

TON +TOFF ≤
LĴ
V δ

+
LĴ
V σ

+
LĴ2Rσ

2V σ2 +
LĴ3Rσ2

V σ3 ≤ Tmax

N
(21)

Here, only the second inequality is part of the optimization.
Since its left-hand side is a posynomial and its right-hand side
a monomial, it is compatible with the GP approach.
Overall problem. With the help of the posynomial reformula-
tions that were just discussed, we can now rewrite problem (12)
in the GP paradigm:

min ∑
s∈S

Ns · (Es
t f +Es

sw) using (10), (18) (22)

s.t. Inductor constraint (11) ∀Ĵs

Cycle count constraint (17) ∀Ns

Time constraint (21) ∀TON
s,TOFF

s,Ns

To solve problem (22) we used CVX, a MATLAB package that
suitably reformulates geometric programs to equivalent convex
representations and solves them [8].

IV. CASE STUDY

In this section, we evaluate the scalability of the proposed
approach as well as the performance of the resulting inductors.
Design quality. For a demonstration of how the optimization
is used in practice, we start from a design using off-the-
shelf components that was considered optimal by the search
algorithm of [4] for the same circuit architecture. It uses the
MURATA(8.2) inductor with effective volume Ve = 893mm3 and
the ONSEMI(7.8) MOSFET. This entails the following circuit
parameters.[

Rσ
0 Rδ

0 ?
COSS tON tOFF

]
=

[
35mΩ 35mΩ ?
125pF 44ns 168ns

]
(23)

We base our designs on cores POT1107 and ETD29, as de-
scribed, e.g., by the data tables in Appendix D of [5]. POT1107
has geometric constrant Kg = 6.67e-4 and effective volume
Ve = 251mm3 and should lead to a final product with volume
in the range of the MURATA(8.2). The larger ETD29 with
Kg = 9.78e-2 and Ve = 5470mm3 is included for comparison.
Volume data has been obtained from the corresponding part
numbers 0R42929EC and 0F41107UG in the Magnetics catalog.

The scenarios we take into consideration are chosen such that
both cells remain within a typical SoC range of [10%,90%] with
a maximum difference of 10 percentage points. They are detailed
in Table I.

Scenario s1 s2 s3 s4 s5
SoCσ (V σ ) 0.9(3.315V) 0.76(3.284V) 0.55(3.273V) 0.41(3.262V) 0.25(3.220V)

SoCδ (V δ ) 0.82(3.304V) 0.72(3.279V) 0.49(3.271V) 0.33(3.240V) 0.18(3.197V)
∆Q[C] 316.5 172.8 189.2 300.2 287.8

TABLE I: Scenarios for inductor design

# Scenarios |S | 1 5 10 50 100
Runtime [s] 2.45 9.33 15.36 82.14 179.97

TABLE II: Runtime measurements for growing scenario vector
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Fig. 4: Specifically designing the inductor reduces the average energy
losses for the scenarios in Table I of a fixed inductor at least by 20%.

Fig. 4 shows the results of our experiment. Each of the
marks represents an inductor design that is optimal for a certain
allotted balancing time Tmax and core with geometrical constant
Kg. All the curves flatten out once Tmax is so large that time
constraint (21) is not active in the optimization any longer. For
Tmax = 1min, the required current is too large for the fixed
inductor. Otherwise, the comparable designs from the proposed
approach dissipate at least 20% less energy ( 42V A s

34.7V A s = 1.21
for Tmax = 2min). The larger core yields only mediocre further
benefits.

Furthermore, we have evaluated the relative errors that arise
from bounding the charge transfer in (8) as well as from the
power series reformulations (14) and (15). Both remain well
under 1% in the optimal points of GP problem (22).
Scalability. To measure the performance of GP instance (22)
we select the scenarios randomly by drawing voltage pairs
according to V ∼N (3.15,0.1), using the larger one as sender
and calculating ∆Q via Fig. 3. We solve GP instance (22) with
increasing |S | and record the required runtime. This procedure
yields Table II. Clearly, the scalability is excellent – almost linear
– probably because the GP formulation is quite sparse. Even
larger problems are solved in merely minutes on the computer
we utilized (Intel i5-2540M @ 2.60GHz with 8GB RAM).

V. CONCLUDING REMARKS

We presented a new mathematical model to quantify inductor-
based charge transfer circuits that leads to a geometric program
for parameter optimization. By specifically designing the in-
ductor in this way, we were able to significantly improve the
energy efficiency during balancing compared to off-the-shelf
components.
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